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Abstract

The objective of this paper is the study of failure modes of infinite plates subjected
to a piercing loading. This project was conducted as a part of the Joint MIT-Industry
Consortium on Tanker Safety. The study has found a mathematical model for diverging
concertina tearing with good experimental correlation. The experiments also showed that
the concertina and pure cutting failure modes occur at similar force levels, and in a non-
ideal situation, i.e. with introduced eccentricities, pre-cuts, and other structural
imperfections, a shift between the modes and then back was observed.

Tests were conducted in MIT's Civil Engineering REMERGENCE facilities using
an Instron 20 kip Universal Testing Machine. The specimen had three sides bolted into a
frame which was attached to the crosshead of the UTM, leaving the top side free for
contact with the wedge. In the first series of experiments, the wedge began cutting from a
notch cut in the free edge, but the first 10 cm of deformation was governed by the free
edge boundary conditions. The next tests were conducted by manufacturing a precut hole
below this transition area. The area of the deformation was small compared to the surface
area of the sample and thus was not affected by the clamped boundary conditions,
therefore modeling an infinite plate.

The samples had an exposed surface area of 290 mm by 560 mm and thickness of
0.4 mm. Most of the tests were run with a crosshead speed of 1 inch per minute, while
the wedge was stationary and perpendicular to the direction of travel of the sample. The
wedges were of various shapes: blunt, rounded, and 450 rounded; the thicknesses of the
wedges were 0.5 in and 0.75 in. The narrow rounded wedge initiated failure in concertina
tearing mode, transitioned into cutting, and then returned back into concertina failure.
The other wedges each caused a concertina failure mode.

The measured force levels for both the diverging concertina tests and the tests with
both concertina and central cutting showed good correlation with the predicted mean
force levels. Theory that predicts the folding wavelength and the diverging shape both
also show good correlation with the measured data. In addition, formulas were derived
for the shape of the diverging tear using a simple fracture criteria. An excellent correlation
was obtained with the measured shape of the torn plates.
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1 Introduction

In the tearing of infinite plates, there are two primary modes of failure. The more

common is a central cutting mode, in which the plate is cut longitudinally in front of the

wedge, and the displaced metal curls into cylindrical surfaces. The other mode of failure is

concertina a tearing. This occurs when the plate "bunches up" before the wedge and the

force becomes distributed and causes tearing in two locations roughly equidistant from the

longitudinal axis of the wedge. In a longitudinally stiffened plate, the concertina folding

extends over the width of the constrained region, tearing along the stiffeners. In an infinite

plate, tearing begins at both sides of the edges of the wedge and diverges. The section of

the plate ahead of the wedge folds in a fan-fold or "concertina" folding mode. Figure 1.1

shows diverging and constrained concertina shapes.

This paper concentrates on diverging concertina tearing of an infinite plate, but

also correlates previously derived theories for constrained concertina tearing. Concertina

tearing has been observed both in previous experiments and in actual ship grounding

accidents. A section of the hull of an oil tanker involved in a grounding showed a case of

concertina tearing, as did experiments performed by Kitamura, et al [1]. This

demonstrates that concertina deformation is a mode of failure which occurs in practice and

is important in the consideration of ship hull structure.

1.1 Environmental Significance

Over the past fifteen or twenty years, there have been numerous grounding

accidents of VLCCs (Very Large Crude Carriers), the EXXON VALDEZ, the American

Trader, etc., which have done immeasurable damage to the fragile environment of the

Earth's oceans. The most recent accidents have increased the public awareness of the



danger of oil tanker spills. As a consequence of this, the United States government has

enacted new, tougher laws concerning the design and manufacture of VLCC hulls,

however no in-depth experimental studies were conducted in these areas. The question of

double vs. single hull design has been considered. The Joint MIT-Industry Consortium on

Oil Tanker Safety arose to address these issues.

In 1990, the U.S. Congress passed the Oil Pollution Act (OPA90). This requires

that all U.S. and foreign flag vessels operating in U.S. waters which are constructed after

or are overhauled after June 30, 2015 must have a double hull, [2], [3]. Immediately

following that, the U.S. Coast Guard began working on a set of acceptable regulations for

shipbuilders to follow in order to be in compliance with the Act; now the Coast Guard is

also researching studying other designs which might fulfill the spirit, if not the letter of

OPA90.

1.2 Prior Research on Wedge Penetration

1.2.1 Central Separation

In research performed in 1993, Leonard Maxwell [4] studied the initiation of

central separation and concertina tearing. He found that the central separation tests

showed "distinct trends in plate geometry results and force vs. length of cut curves." It

was shown that there was good correlation between the proposed theory for the cutting

equations for the specified geometry. The cylindrical wedge caused central tearing to

occur with a pre-cut for initiation.

In other research which has been conducted on central separation, central cutting

occurred with good correlation with theory, however the tests were limited in scope and



only pertained to specific rock and ship geometries, or only under special circumstances.

Maxwell attempted to find a correlation between different rock geometries and the

initiation of failure. However, he found not only central separation, but also concertina

tearing occurred, depending on pre-cut placing and wedge geometry.

Further tests were conducted by the experimental team of the Joint MIT-Industry

Consortium on Tanker Safety to support new steady state central cutting theory

developed by Zheng and Wierzbicki. At a frame angle of 100, a thin sheet of steel was

started in central cutting from a pre-cut hole using a 450 sharp, 0.75 inch wedge. This

caused a central cutting pattern to occur, in which the flaps of steel were pushed away

from the cut by the wedge to the "downward" side of the sample. The initiation occurred

as Maxwell had predicted, and then the cutting quickly became steady state.

1.2.2 Braided Cut

Earlier attempts at steady-state central cutting caused a braided pattern to occur,

similar to the edge of a lasagna noodle. Using a 0.5 inch 450 sharp wedge, central cutting

was obtained on thin, 0.4 mm steel plate. However, with no tilt angle, the flaps did not

have a "downward" side to be pushed to. This caused the flaps to fold alternating to each

side of the sample. In much the same manner of alternating folds as is found in concertina

tearing, the metal cut ahead of the wedge until a point, and then began to fold. However,

due to its geometry, the wedge would then cut through the folded metal causing the flaps

to alternate to the other side of the sample. Theory for this failure mode has not yet been

developed, but it was observed that the average force level for the braided steady state

central cutting was very similar to the force level of the standard steady state central

cutting.



Both the braided and standard central separation were observed in the experiments

which alternated between the cutting and concertina tearing modes. As will be discussed

later, the average force levels for not only the two types of central separation, but also the

forces for diverging concertina are similar.

1.2.3 Bounded Concertina Tearing

In the tests conducted by Maxwell, concertina tearing occurred across the entire

width of the sample. The frame of the apparatus simulated longitudinal stiffeners for the

plate, and the sample was torn at the boundary of the plate. Again, Maxwell was not able

to achieve steady-state deformation because of the shortness of the stroke of the testing

machine; however, enough concertina folds were formed that the failure would continue in

a concertina tearing mode.

When double hull tests were begun by the Joint Consortium on Tanker Safety

experimental team, it was found that concertina folding occurred between the stiffeners in

the specimen. The tearing diverged until it reached the stiffeners, and then continued the

length of the plate bounded by the stiffeners. An additional test was run with a single hull,

longitudinally stiffened plate. Using a wedge with a width equal to half the distance

between the stiffeners and precuts at the stiffeners, bounded concertina occurred. This

experiment correlated extremely well with theory for both average force and with theory

for fold length. It will be covered in detail in Chapter Four.

1.2.4 Diverging Concertina Tearing

The emphasis of this research project was specifically diverging concertina tearing.

It was found that once a tear began in the concertina mode from a pre-cut, it would begin



to diverge with a specified shape and would continue to diverge until the tears hit a

boundary such as the previously mentioned vertical stiffeners. The diverging experiments

in this paper were conducted on so-called infinite plates, in which the boundary conditions

were far enough removed from the tearing that the clamping action of the frame could be

ignored. The tests were limited by the stroke of the testing machine, and were not

allowed to continue diverging until hitting the frame.

One shortcoming of all previous concertina tests was that in no case was the

steady state process studied. Each study concentrated on the initiation of specific failure

modes, but not on how the tearing proceeded. An additional goal of this project was to

quickly attain steady state (by using a thin plate and small wedges) and studying the

diverging shape and folding pattern.



Fig. 1.1 Concertina Failure Diagrams



2 Experimental Procedures

2.1 Testing Facilities

All experiments were carried out on an Instron 20,000 lbf screw driven universal

testing machine. A 386 personal computer with a National Data Acquisition software

package was used to process the output from the test machine, Figure 2.1. There was

concern that the data acquisition program may not be set up properly or that there may be

some problem with the machine since some of the output was showing cut off of the data

peaks. It was recommended by Nurick [5] that a verification of the machine output be

conducted.

The approach to verification was to conduct tensile tests on a 1000 lbf Instron

machine (that was known to give good results) and the 20,000 lbf Instron machine, and

then compare the results. To prepare the 20,000 lbf Instron machine the connections

between the data acquisition computer and the Instron were rewired, and the built-in chart

recorder was returned to working order. The idea was to use the chart recorder from the

20,000 lbf Instron machine and run the data acquisition program concurrently to ensure

consistent output. Note that the rewiring was required because some of the connections

were frayed. The rewiring cleared up the data cutoff problem.

The tensile specimens used were in accordance with ASTM section A370

specifications. Two tests were conducted on each Instron machine. There was excellent

correlation of the force-displacement graphs between the 1000 lbf Instron and the chart

recorder output and data acquisition program output of the 20,000 lbfInstron machine.

The conclusion was that the setup and output of the 20,000 lbf Instron machine was

satisfactory and ready for testing.



2.2 Material Properties

The metal used in the experimental part of this study was ASTM A366 sheet metal

in two thicknesses. For the infinite plate tests, samples with a thickness of 0.4 mm (0.016

inches) were used; for the longitudinally stiffened plate, a sample with a thickness of 1.130

mm was used. The infinite plate tests were conducted with the thinner plate and a small

wedge to further lessen the edge effects of the clamped edges. For the stiffened plates,

dimensions were used to create a scale model of a typical single hull VLCC.

An important material property for concertina tearing is the stress-strain relation.

The material flow stress is the equilibrating variable in the mathematical relation between

the force required to tear the sample and the displacement of the crosshead which allows

this expression to be applied to different steels. The material flow stress must be

calculated experimentally from the stress-strain curve.

The average flow stress is calculated from the stress-strain diagram. The ultimate

stress, cult is the stress level when the sample fails. The flow stress, ao is calculated by

finding the stress required for 12% strain. Yield stress, ay is the stress level when the

deformation ceases to follow the linear-elastic pattern and begins plastic deformation. In

this test, the majority of the deformation is plastic, so it is necessary to calculate this value.

The tensile tests were conducted following the guidelines of ASTM Specification A370.

Samples were machined from the steel per the dimensions of the ASTM

specification. A dimensioned sketch of the sample is included as Figure 2.2. The samples

were cut from an orientation of 0 and 90 degrees to the sheets rolling direction. Figure

2.3 illustrates the angle of orientation to the rolling axis. Note that a longitudinal



specimen corresponds to a roll angle of zero degrees. However, it was found that the

results were essentially the same for each of the samples, whether they were from a 00 or

900 orientation.

A third important material property is the specific work of fracture, R, in Joules

per unit area, Wierzbicki [6], Atkins [7] and Stronge et al [8]. This is a parameter

characterization of the tearing process which assumes that the local deformation in the

crack tip zone can be separated from the far-field processes. R is an experimentally

determined value which is found through a long series of tests. For a mild steel, the range

of values is

300 N/mm < R 1000 N/mm

The specific work of fracture is related to the flow stress and two additional factors by

R = m ro58t  (1)

where 8t is the crack opening displacement (COD) and m is a three-dimensionality factor.

2.3 Specimen Preparation

The specimens for the infinite plate tests were cut to dimensions of 16.5 inches by

approximately 24 inches. In the tests begun from the free edge, the specimens needed to

be shortened in order to fit the wedge above the edge of the sample due to the limited

stroke of the testing machine. The tests from a precut hole were left the original size and

were machined to accommodate the wedge. The longitudinally stiffened plate had the



same dimensions as the other plates which were initially cut from the free edge. Figure 2.4

shows the geometry of an unstiffened plate.

The unstiffened plates which had initiation on the free edge were simply notched

the width of the wedge in the center of the plate, and the wedge was aligned with the

notch. The wedge then pushed this tongue ahead as it formed the first fold. It was found,

however, that the edge effects were too great, and concertina folding with a width b of

the entire free surface began. This continued for about 10cm before a diverging pattern

with an initial width equal to that of the wedge began.

The next set of tests was run with a precut hole slightly greater than the width of

the wedge (b=9 mm for the small wedge tests, and b=20mm for the wide wedge tests).

The hole began 20cm from the top of the plate and was approximately 20cm long.

The single hull longitudinally stiffened plate was precut by short slits at the inside

edge of the welds for the stiffeners. This specimen also differed in thickness from the

infinite plates. The specimen was designed to model a unidirectionally stiffened single hull

VLCC. It was decided to scale the model by the stiffener/plate thickness ratio, using

available thicknesses of ASTM A366 steel from stock. The end result was to use

thickness t=1.130 mm for the plating and t= 1.829 mm for the flange. Figure 2.5 is the

construction specifications for the longitudinally stiffened model.



2.4 Wedges, Adapter, and Frame Design

2.4.1 Wedges

There are as many possible wedge geometries as there are rocks in the ocean.

Selecting the typical rock for use in modeling of wedge geometry is therefore not easy.

The dilemma is to select a wedge geometry that makes analysis of the experiments easier,

while trying to capture what happens in a real ship grounding.

Numerous wedges of various shapes and sizes have been designed and fabricated

for the Tanker Safety Project experiments. For the concertina tests, the wedges can be

categorized into small and large wedge sizes. The small wedges were designed for the

first generation of load cell adapter and the wide wedge was designed for the redesigned

load cell adapter. Each of the wedges was machined from solid blocks of cold rolled mild

steel. Figure 2.6 shows the various sizes and tip shapes.

The small wedges have two different geometries. One is a square (blunt) end and

has 900 corners. The other small wedge is semicircular, with a radius equal to half the

width of the wedge. The wide wedge has a wedge semi-angle of 450 and the tip is

rounded with radius r-1/16".

2.4.2 Adapter

Midway through this study, the testing apparatus was modified to accommodate

the double hull tests. This section details the problem which was encountered and the

solution to it. It was realized after the dramatic off-center loading observed in the double

hull test that the same problem had existed for the single hull tests as well.



As the cutting of the first double hull specimen progressed to about two inches in

depth, it was noticed that a significant moment was placed on the adapter connecting the

wedge to the load cell. This adapter is approximately two feet in length. The cause of this

was the frame holding the specimens had to be offset so that it could pass next to the

adapter during the cutting stroke. The offset was on the order of three inches from the

center of loading. The tremendous reaction force encountered in cutting both plates of the

double hull specimen and this offset caused a moment to occur. The test was immediately

stopped for fear of damaging the load cell. To correct this condition, a new adapter was

designed consisting of four rods bolted to a plate. This plate was then connected to the

load cell. This configuration allowed the specimens to be aligned directly under the center

of loading and thus the rods would straddle the plate as the wedge progressed deep into

the plate. Figures 2.7 and 2.8 show the side view of the load cell-to-wedge adapter

configurations and a detailed wedge to adapter configuration.

2.4.3 Frame

The frame was designed by and constructed under the guidance of Maxwell. It

was designed for forces exceeding those which occurred during the single plate tests of

this study, so it is sufficient here to simple show the apparatus design figures [4]. Figures

2.9 through 2.11 show the frame design.



2.5 Test Parameters

The 20,000 kip Instron Universal Testing Machine has speed settings ranging from

2 inches per minute to 0.0002 inches per minute. Each crosshead speed was hand-timed

and found to be correct, however this testing machine did not reliably run in the 2 inches

per minute setting. Because of the need for the longest possible cut length in the tests (to

allow time for steady state to develop), and because velocity is not important in the

describing equations (as they are integrated over a time-like parameter and not time itself),

the crosshead was run at the highest reliable testing speed, 1 inch per minute. However,

after repairing the driver on the machine, one test was run under otherwise identical

conditions with the wide wedge but at a testing speed of 2 inches per minute and the

results were nearly identical. The velocity independence was also shown by the

experimental team on a steady-state central cutting sample.

The load cell is an Instron 20,000 lbfD30-20 load cell, with settings at 500, 1000,

2000, 5000, 10,000 and 20,000 lbf settings. For each test, the highest expected load was

estimated and the lowest possible load cell setting was used for highest resolution. The

data acquisition program, National Data Acquisition NI-DAQ sampled voltages from the

load cell at 'a rate of 40 samples per second and then averaged them for one data point per

second. These voltages were then converted to forces using a Microsoft Excel

spreadsheet and the calibration data from the Instron's built-in chart recorder.
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3 Theory

This chapter will briefly outline the derivation of the theory for concertina tearing

that Wierzbicki proposes in Report #22 of the Joint MIT-Industry Project of Tanker

Safety, entitled "Concertina Tearing of Metal Plates: Improved Solution and Comparison

with Experiments." An alternative to that solution proposed in Section 12 of the same

report is also developed. Section 3.3 will then expand this theory to include diverging

concertina and support the research conducted in this study.

3.1 Concertina Folding

The proposed mathematical model for concertina folding is based on the solution

for progressive folding tubes, however that problem has been modeled with one fold being

formed at a time. In the problem of concertina folding in sheet metal, qualitative tests

show that the solution must include the interaction between two folding elements and not

just one. Figure 3.1 shows a proposed model for this solution.

For a detailed description of the physical deformation pattern, the reader is

referred to Wierzbicki [6]; however, a brief description will be given here. In the first

phase (Fig. 3.1 (b)), a "roof"' type mechanism is formed with stationary hinge lines and

zones of in-plane compression in the transverse direction, which causes tearing fracture to

occur at the support. This phase is completed when the back trapezoidal element and the

front rectangular element first touch and are in a vertical position. The second phase is

characterized by the rebending in which hinge lines and zones of in-plane compression in

the transverse direction are formed within the trapezoidal element and a new "trapezoidal

element" forms ahead of it. Thus, when a given element is in Phase I, there is always an



element in Phase II immediately preceding; conversely, there is always a Phase I element

ahead of a Phase II element.

In order to find the folding wavelength, H, and the tearing force, F, we must

start with the principle of virtual work. This will give the global equilibrium of the plate:

Fzi = Eb + Em + Et + Ef (2)

where zi is the wedge velocity, Em is the rate of membrane energy, Eb is the rate of

bending energy, Es is the rate of shear energy, and Eff is the rate of tearing fracture

energy. Since this is a periodic process and we are interested in the mean value for the

resisting force, we can integrate Eq. (2) over a time-like parameter, i.e. r being the time

the wedge advances by 2H.

Fidt = bdtf -+ Emdt + f Edt + ffdt
0 0 0 0 0

(3)

The next task is to calculate each of the terms in Eq. (3).

3.1.1 External Work

The left hand side of Eq. (3) must be evaluated by defining a relationship between

force and displacement of the wedge:

Eext =jF(u)idt= jF(u)du=
0 0

FmUIH = Fm2H (4)



where F, is the mean force over the distance 2H.

3.1.2 Energy dissipation due to bending

Following Wierzbicki [6], the bending energy is concentrated in a system of stationary

hinge lines and no work is dissipated in the continuous bending mode, assuming fully

plastic bending resistance. The rate of bending work in the i -th hinge line is equal to the

product of the fully plastic bending moment Mo, the rate of hinge rotation ýi, and the

length of the hinge line 1i :

() = Mo04li (5)

Integrating Eq. (5) in time and summing over i , we get:

Eb = Mo1ZA (6)

From the kinematic model proposed in Ref. [6], the total bending energy becomes:

Eb = 2 nMo[b +2] (7)

where

Mo = 2 ( t 24,3 (8)



3.1.3 Energy dissipated due to membrane forces

Following Wierzbicki [6], the rate of membrane work in the plane stress condition

Em = t cyapadS,
S

a, fi= 1, 2 (9)

It is assumed that the plate is inextensible in the x-direction, ek = 0, and that no work is

done in shear deformation, ýý = 0, so the only non-vanishing component of the strain rate

is k = -- Integrating with respect to y gives:

H

0
(10)

where

H
(11)

is the velocity component in the y -direction and A is the maximum tip velocity difference

at the transverse edge of the plate. After substitution and integration with respect to time,

the kinematic model developed in Ref. [6] gives:

1 H 3

Em = - t (12)



3.1.4 Energy Dissipated in Shear

There is a relative shear displacement between the shared boundaries of each

folding element. This displacement causes a shear strain in the back rectangular element

of area S = ýr7. The rate of shear energy for one side is:

Eshl =  tf 2d' (13)
S

According to Ref [6], this becomes:

1 H2
Eshl = Mo -- (14)

2 t

This value must be doubled, then, because there is an identical element on either side of

the symmetry line; it must be doubled again due to shear strain reversal. Thus the total

energy dissipated in shear is:

H 2

Esh = 4 Eshl = 2Mo-- (15)
t

3.1.5 Energy Due to Tearing

The energy due to tearing was derived in Ref. [6] directly from the COD (Crack Opening

Displacement) criterion. Defining St as the Crack Tip Opening Displacement (CTOD)

parameter and neglecting as before the effect of shear, the tearing energy is:



2H dt2

Ef= Am N t dd = tt 2H
0 0

(16)

3.1.6 Folding wavelength

Combining the external work, the energy dissipation due to bending, the energy

dissipation due to membrane forces, the energy dissipated in shear, and the energy

dissipation due to tearing, gives:

Fm b 2 2m= Hr-+2 -+-+2 +4.m8t
Mo H H n t t (17)

Minimizing the mean indentation force with respect to H and ý gives two algebraic

equations:

1 2H+- 2H (b -+2) 0
t ýt H 2 (18)

2r H 2
=0

H et

These equations can only be solved in an approximate way and lead to

H b 0.57
t t (19)



-= 0.4( -S= b )0.855

3.1.7 Mean Indentation Force

Substituting these optimum values for H and ý into the equation for mean

indentation force and taking m = vr3 gives the mean indentation force for non-diverging

concertina to be

Fm = 3ats5 3b 1/3 + 2 -taSrt  (20)

3.2 Alternative Solution

Wierzbicki [6] suggested that although not as rigorous of a solution, an alternative

way to accommodate the relative displacement is to compress the deformed shape GMN

and make it compatible with C'D'G. This solution leads to much simpler algebra, as the

optimization of H and ý can be solved directly. The energy dissipation due to shear

should be replaced by the membrane tension/compression energy. Figure 3.1 shows the

interaction between these elements.

This gives us the non-dimensional mean force equation, in terms of H and ' .

Fm b H 2

S= 7r--+2rý +2 (21)Mo H H t



A minimization with respect to H and ý occurs at

H = 0.56b2/3t 1 3  == b/6 (22)

Giving us the optimum mean force Fm

F, = 3.25o,t5 /3bl / 3 + 2Rt (23)

3.3 Diverging Concertina

The solution for concertina tearing is assuming a plate of thickness t , with flow

stress ao, and a constant tear width b. For diverging concertina tearing, however, it is

not possible to simple assign a constant value to the tear width b . The solution to this

problem lies in finding the diverging shape that the deformation follows. In this

discussion, it is presented that the tearing occurs orthogonally to the direction of the

principal stress, i.e. the tear is orthogonal to the segment (modeled as a straight line)

which runs from the tip of the wedge to the point of tearing, Figure 3.2. From geometry,

a differential equation governing the tearing shape can be derived.

(24)
dr y

where H is given by Eq. (22).

b =2y dy = 0.56(2y)2/3tl/3 (25)
dr y



In terms of non-dimensional quantities, y = , Y = t, and initial tear width, Yo = Y. , Eq
t t t

(25) becomes:

= 1.58 0.56(26)
C& yl/3

Separating this ODE, and integrating gives the tear width y5 with respect to non-

dimensional cut length V and using the initial condition y(Y = Yo) = yo gives:

b= 25 = 2(1.179~7 + Y/3) (27)

where o0 is the dimensionless initial width of the tear (pre-cut). Substitution of this into

Eq. (22) gives us a final relation between cut length, initial tear width, and the mean

indentation force:

Fm = 4.09rot 2[1.179 + (.)4/3 1/3 +2Rt (28)

3.4 Thick Plate Solution

The solution for concertina folding so far has been based on the assumption that

the folding is linear, such that the folding distance is the entire length of the folding

element, 2H. However, in tests conducted on thicker plates, it was observed that the

folds were not constructed of straight segments, but rather they were a series of connected

circular sections. Thus, according to Wierzbicki and Abramowicz [6] and [9], the

effective crush distance is equal to approximately 75% of the available crush distance.



This causes the equation for the mean indentation force to increase by a factor of 4/3.

Figure 3.3 shows these cross-sectional shapes.

The diverging solution is then

Fm = 4.33urt5 /3 b1/3 +2Rt

S5.4o5 s t2[. 19 + (y)43 1/4

(29)

(30)
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4 Experimental Results and Discussion

In each test, the specimens were sheet steel, ASTM A366, and had a plate

thickness, t, equal to 0.4 mm. Table 1.1 gives a summary of the qualitative test results. It

is shown that there is good repeatability in failure mode from each set of experimental

parameters. It is important to note that parameters such as material, deformation speed,

angle of attack, and thickness remain constant throughout the tests. A detailed account of

the experiments follows.

Test Number Wedge Shape Wedge Width Initiation Type Crosshead Failure Mode

Velocity

1 Blunt 0.2 in Free Edge I in/min Concertina

2 Blunt 0.2 in Free Edge 1 in/min Concertina

3 Blunt 0.2 in Precut Hole 1 in/min Concertina

4 Blunt 0.2 in Precut Hole 1 in/min Concertina

5 Rounded 0.2 in Precut Hole 1 in/min Concertina

6 Rounded 0.2 in Precut Hole 1 in/min 2-Mode

7 Rounded 0.2 in Precut Hole 1 in/min 2-Mode

8 450 Rounded 0.75 in Precut Hole 2 in/min Concertina

9 450 Rounded 0.75 in Precut Hole 1 in/min Concertina

10 450 Rounded 0.75 in Free Edge 1 in/min Bounded

Table 4.1 Summary of Experimental Results



The first four tests were conducted with a narrow square wedge. Although the

tests were initiated differently (two from the free edge, and two from a precut hole inset

from the edge) each test clearly demonstrated a diverging concertina mode of failure. The

next three tests were also conducted using a narrow wedge, this time with a semi-circular

cross section. The first test behaved very similarly to the blunt wedge, with regular

diverging concertina. The second and third tests had a slight induced eccentricity and

alternated modes between a diverging concertina and a pure cutting. The third type of test

was conducted with a wider wedge. This wedge had a 450 wedge semi-angle, and a

rounded tip, r=1/16". These tests were expected to also cause a two mode deformation.

However, even with an exaggerated eccentricity (approximately 10 degrees from

orthogonal) only diverging concertina tearing occurred. One of these tests was run with a

crosshead velocity of twice the other tests to show the velocity independence of the mean

indentation force. The fourth type of test was run on a longitudinally stiffened single hull

panel. This sample was precut at the welds to immediately initiate bounded concertina and

not "waste" crosshead stroke to attain steady state.

4.1 Narrow Wedges

The first tests were conducted using wedges with a width of 0.2 inches. The

narrow wedge was modeled after a pencil eraser which was used on Xerox paper tearing

tests, [10].

4.1.1 Tests Initiated from Plate Edge

The first two tests were precut at the free edge such that the precuts were centered

on the wedge and there 9 mm wide. In both cases, as the wedge began cutting the sample,

only one side of the cut continued to form. A part of the plate on the other side of the



wedge began concertina folding which extended all the way to the support frame. This

continued for approximately 60 mm while the single tear migrated under the center of the

wedge. As the membrane tension increased, the mode of failure changed. The samples

"bunched up" immediately before the wedge and began a clear concertina tearing mode

Figure 4.1 is a photograph taken of the sample after failure from where the concertina

mode began in sample #1. Figure 4.2 is a photograph of test #2 and shows the

characteristic wavy plastic deformation along the length of the tears. and the accordion-

folded steel which was pushed before the wedge.

The graph of force vs. displacement (cut length) shows the sinusoidal shape of the

force for test #1, Figure 4.3. The plot for test #2 is shown as Figure 4.4. As the metal

bends, the force increases until the peaks represent the instant before the tearing began.

The force decreases while the specimen tears, and then begins to increase as the specimen

folds again. The average value of the sinusiod increases as the cut length increases

because the tear width also increases.

The graph of wavelength, H, vs. cut width, b, shows that the wavelength does

grow almost as predicted, Figure 4.5. Also shown is a diagram for the diverging shape of

tests #1 and #2 in Figures 4.6 and 4.7. These figures show that the predicted shape is very

accurate.

4.1.2 Tests Initiated from Precut Hole

The third through seventh tests were initiated by inserting the narrow wedge into a

precut hole with width 9 mm in the samples. The notches were cut approximately 20 cm

from the top edge to avoid the effect of free edge boundary conditions. All of the tests

began immediately with the concertina tearing mode.



Square Wedge

The third test did not deform straight along the axis of motion of the wedge.

Either because the precut was not straight of the wedge was not aligned perfectly in the

center of the notch, the tearing skewed to the side. (Figure 4.8) The fourth tests

developed into a textbook example of concertina tearing mode, with the initial tear width

known and perfectly symmetric geometry. (Figure 4.9)

The force-displacement graph and wavelength-tear width data for test #3 show

that, although the geometry was skewed, there is still good correlation between the

experimental data and the theory. The force-displacement curves for tests #3 and #4 are

included as Figures 4.10 and 4.11.

The wavelength data for both tests is displayed in Figure 4.12 and compared with

the prediction of Eq. (22). The correlation is very good for approximately the first 15 cm

of the wedge travel and then degenerates. Figures 4.13 and 4.14 show the diverging tear

width with respect to the cut length for tests #3 and #4. In test #3, note that although the

test skewed to the side, the cut width still diverged as Eq. (27) describes.

Round Wedge

The first test conducted with the narrow round wedge is indiscernible in both

qualitative and quantitative measures from the square wedge tests initiated from a precut

hole. The test again began immediately with concertina tearing. It entered into a

diverging mode and followed the predicted shape closely. The mean indentation force

level was slightly less than the predicted range until the 0.15 meter cut length, but the



force increased to the mean level by the end of the test. The folding wavelength was very

similar to what was expected. Figures 4.15 through 4.18 show the deformed specimen

and correlation with the theoretical predictions.

Tests #6 and #7 were also run with the narrow round wedge initiated from a

precut hole; however, in these tests a slight eccentricity was introduced. The wedge was

aligned slightly askew from orthogonal to the plate, simulating more realistically the non-

idealness of an actual VLCC grounding scenario. Physical observation of a grounded ship

in dry-dock showed the alternation between modes in a full-scale scenario, validating this

experimental model. In the tests, the wedge began concertina tearing as in the previous

tests, but as these experiments progressed, the concertina folds began to be pushed off to

the side. Rather than stop the test, each sample was allowed to continue. One tear

eventually migrated beneath the wedge as the fold was pushed completely off to the side;

central cutting began from this tear.

After the central cutting progressed for a brief period, approximately 5 cm in test

6, and seven centimeters in test #7, the metal again bunched up before the wedge and

began diverging concertina. It was noticed that the mean force level for both the central

cutting (Zheng and Wierzbicki [ 11]) and the force level at the re-initiation of concertina

tearing remained almost constant in both tests. Figures 4.19 and 4.20 show the torn

specimens, and Figures 4.21 and 4.22 show the correlation with mean force predictions

for both concertina and central separation.

4.2 Wide Wedge

The wide wedge, described in section 2.4.1, was initially expected to also show a

multiple mode deformation, and was thus set with an initial eccentricity. However,



because of the wedge shape, the concertina folds were "caught" and the wedge and not

pushed clear of the wedge in the test #8. The folds were beginning to skew to the side at

the cut length that the test was stopped due to the limited stroke of the Instron UTM, and

given sufficient testing length would eventually have entered into central cutting.

Test #9 was run at a crosshead speed of two inches per minute. This was done to

show the velocity independence of concertina tearing. Again, pure diverging concertina

tearing occurred, with mean forces and geometries following almost exactly the predicted

values. Similarly to the independence on round vs. blunt narrow wedge geometry on the

failure process, it is virtually impossible to tell the one inch per minute test from the two

inches per minute test by qualitative or quantitative means. Figures 4.23 through 4.29

show photographs of the specimens #8 and #9 and also show the correlation with

predicted mean indentation force levels, diverging shape, and cut width vs. fold length.

4.3 Bounded Concertina Tearing

One final type of concertina tearing is folding which occurs between two solid

boundaries. In the early concertina initiation tests by Maxwell [4], these boundaries were

the frame supports. In test #10, the boundaries are longitudinal stiffeners which are

electron beam welded to the plate. This test was conducted using the wide wedge at a

crosshead velocity of one inch per minute. The base plate in this test was a thicker sample

than the other experiments in this study, and is more accurately described by the thick

plate equations, Eq. (29). The sample was initially precut from the free edge at the

vertical stiffeners to ensure initiation in bounded concertina, and not initially diverging

until ultimately reaching the stiffeners. The folds occurred in a very regular pattern, with

the folding wavelength effectively constant over the entire test, and nearly equaling the

expected value. The measured folding wavelength is 7.37mm and the predicted value is



7.87mm, giving an error of only 6.3%. Figure 4.30 shows the deformed specimen, with

regular folds between the stiffeners, and Figure 4.31 show the correlation with the

predicted mean force level.
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Figure 4.8 A photograph of the deformed specimen #3 at the end of the test.

Figure 4.9 A photograph of the deformed specimen #4.



- *"
Y
E
o

E
o
u
cC

I
a
cn

L~3
I

o
o
t
o

cl

a
o
Y
o

a

·et
E
eP

Li
U)

rlw-
0

0
U)

Li=

o

r-(suoi)o(

O

r--
030-



O C
C1 C
uL) CD

(suoV61 K) 0io{

61

r=

U,

06

0l
U,

Cu
S.
0

Q

6
C-Lo

OD

0_O

O'

0C
C C

C3

O

r--i r-4



Cl d

H H

C3

0

0

U,E.o

C.)

.0oU,2

0

Qe,
o

•D

00 \O -

(Lu) H 'oua- Ploi

E

O

L.ccn



01
_

u e\ 'U

UU

L.

U

(1

cyI.

E

I.
"-9 a -- L*-

oc,

a \

.f I

C i.

NvmJ

t_
bD

0000000() qP4 .

(urw) qlplm M;)J.

O
O
m

cr)

emIt

Cd



o

0oU

cuU

0j

U

02 E

Ui

E//v

E/

0D 0 0 0 0 D

64

U1

U

'\

0r

U

U

'U\



Figure 4.15 A photograph of test #5, diverging concertina with a round wedge.
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Figure 4.19 A photograph of the deformed specimen #6 at the end of the test.

Figure 4.20 A photograph of the deformed specimen #7.
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Figure 4.23 A photograph of the deformed specimen #8 at the end of the test.

Figure 4.24 A photograph of the deformed specimen #9.
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Figure 4.30 A photograph of the bounded concertina tearing, test #10.
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5 Conclusions

In this study, a solution for diverging concertina tearing was derived and 10 tests

were conducted to validate this theoretical solution of concertina tearing. The data

collected correlated closely with the theory. It was shown that concertina tearing is a

valid failure mode for thin sheet steel, and that concertina mode can develop from central

tearing. This was unexpected; it was thought that once central tearing was initiated the

failure would continue in that mode. It would be expected that the tests with notches cut

in the center of the plate would continue in central tearing, but they also went directly into

concertina tearing. The results of tests #3 and #4 are of particular interest to the ongoing

tanker project, because they simulate a blunt rock piercing the hull more accurately than

tests which are initiated at the free edge.

The series of tests #5 through #7 were all conducted using the narrow round

wedge, although with widely different results. The first test was nearly identical in all

respects to the other diverging tests conducted with the blunt wedge. Tests #6 and #7

showed a multiple failure mode. They alternated between steady state diverging

concertina tearing and central cutting, thus demonstrating the similarity between mean

force levels for both failure modes.

Tests #8 and #9 demonstrated that diverging concertina tearing is velocity

independent, by being nearly identical in both quantitative and qualitative results. The later

test was run at twice the velocity of the first, and is virtually indistinguishable from the

first.

The final test was a demonstration of bounded concertina (the basis of the

diverging theory). This showed that the underlying modeling assumptions describe the



deformation well, and can be expanded upon to derive the diverging shape and mean force

equations.
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