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ABSTRACT

Prochlorococcus marinus is a tiny, photosynthetic marine prokaryote containing
the unusual photosynthetic pigments divinyl chlorophylls a and b, and lacking
phycobilisomes, the light harvesting apparatus found in most cyanobacteria. The unique
pigments of this organism suggest a phylogenetic affinity with the Prochlorophyta, a
recently described group of (monovinyl) chlorophyll a and b-containing prokaryotes
which also lack phycobilisomes. The Prochlorophyta have been proposed as a
monophyletic group sharing a common ancestry with "green" chloroplasts in algae and
higher plants.

Phylogenetic analysis of relationships among P. marinus, the prochlorophytes
Prochloron sp. and Prochlorothrix hollandica, and other members of the cyanobacterial
radiation indicates that the distribution of prochlorophytes within the cyanobacterial
radiation is polyphyletic, and that none of the known chlorophyll b-containing
prokaryotes is specifically related to chloroplasts. This result, inferred from 16S
ribosomal RNA (rRNA) sequences, has been confirmed by a parallel, independent study
using rpoC gene sequences. The polyphyletic distribution of prochlorophytes and green
chloroplasts among the cyanobacteria implies that photosynthetic systems employing
(monovinyl and divinyl) chlorophyll b arose several times during the evolution of
photosynthetic organisms. However, since the publication of these results it has been
pointed out that they are also consistent with the existence of an ancestral
cyanobacterium containing both chlorophyll b and phycobilisomes, with subsequent loss
of one or the other light harvesting system in all known surviving lineages.

P. marinus is a major constituent of the photosynthetic picoplankton across wide
regions of the tropical and subtropical open oceans, with cell densities of 105 cells/ml
frequently encountered in both the Sargasso Sea and the Pacific. Cultured strains of this
ecologically important organism isolated from Sargasso Sea, north Atlantic,
Mediterranean and Pacific waters were found by phylogenetic analysis of 16S rRNA,
psbB and petB and D sequences to belong to a single lineage within the cyanobacteria.
P. marinus shares this lineage with strains of marine A Synechococcus, a planktonic
cyanobacterium which also shares its open ocean habitat.

An investigation into the genetic structure of P. marinus field populations in
depth profiles from the Sargasso Sea and the Gulf Stream revealed a high degree of
genetic heterogeneity within water samples, detected by partial sequencing of cloned
PCR products containing portions of the single-copy genes petB and D and their
intergenic region, amplified from flow cytometrically sorted cells. Populations within
water samples contained a minumum of six alleles recovered from a sample of 23 clones.



The presence of numerous additional alleles were implied by rarefaction analyses, which
indicated that diversity was incompletely sampled in datasets containing 19 to 28 clones
per water sample. Overlapping sets of alleles were recovered from the two water
columns, from different depths within each water column and from flow cytometrically
distinguishable subpopulations within water samples, suggesting that each of these
populations drew its membership from a single gene pool.
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Title: Professor of Biology and Civil and Environmental Engineering
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INTRODUCTION



G. Ledyard Stebbins has pointed out that "the ultimate aim of scientific endeavor

in any discipline is to obtain facts by reductionist methods and use them to synthesize

broadly integrated theories that provide new insights into the world of nature" (Stebbins

1982). The evolutionary and population genetic studies that comprise this thesis have

been designed to obtain, by the reductionist methods of DNA sequencing and

phylogenetic analysis, information leading to new theories about the evolution of light

harvesting pigments in oxygenic photosynthetic organisms, and about the population

structure of a prokaryotic phytoplankter which inhabits the largest and possibly best-

mixed environment on earth, the tropical and subtropical open oceans.

Procholorococcus marinus is a eubacterial photosynthetic plankter less than 0.8

pm in diameter which contains the unusual photosynthetic pigments divinyl chlorophylls

a and b (chl a2 and b2), and lacks phycobilisomes, multicomponent protein and pigment

complexes used for light harvesting by most cyanobacteria (Chisholm et al 1988, 1992,

Goericke and Repeta 1992). Upon its discovery in 1988, the unusual pigments found in

P. marinus suggested a taxonomic affinity with the newly recognized Prochlorophyta

(Lewin 1977), photosynthetic prokaryotes containing "normal" chlorophylls a and b (chl

al and bl) and lacking phycobilisomes (Chisholm et al. 1988).

According to the endosymbiotic hypothesis proposed by Mereschkowsky (1905,

1910), plastids of higher plants and green algae originated in a free living prokaryote

containing green pigments, and which came to live endosymbiotically within the

cytoplasm of a eukaryote. Over the course of the symbiosis, the chl a and b-containing

prokaryote degenerated into an organelle incapable of independent survival (Margulis

1970, 1981, Raven 1970). At the time research for this thesis began, the evolutionary

origin of photosynthetic organelles within the cyanobacteria had become well established

by molecular phylogenetic analyses (Fox et al. 1980, Woese 1987, Giovannoni et al.
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1988, Van den Eynde et al. 1988, Witt and Stackebrandt 1988, Ludwig et al. 1990,

Valentin and Zeitsche 1990a, b), but whether the chlorophyll b photosynthetic antenna

had been "invented" by an intracellular prokaryote containing phycobilisomes or arose by

endosymbiosis of a free-living, chl b-containing prokaryote remained to be established

(Cavalier-Smith 1982). The recently discovered chlorophyll b-containing prokaryotes

Prochloron didemni (Lewin 1977, Lewin and Cheng 1989), and Prochlorothrix

hollandica (Burger-Wiersma et al. 1986) had been proposed as descendants of the

putative free-living, chlorophyll b-containing ancestor to green chloroplasts, but P.

hollandica had subsequently been shown to branch separately from cholorplasts in 16S

rRNA and psbA phylogenetic trees (Turner et al. 1989, Morden and Golden 1989a, b).

Chapter One of this thesis contributed to the formulation of new hypotheses about

the origin of chlorophyll b-containing photosynthetic antennae by providing a 16S rRNA

phylogenetic analysis of relationships among the prochlorophytes P. marinus,

Prochloron sp., P. hollandica, chloroplasts and other cyanobacteria (Urbach et al. 1992).

The results were congruent with those of an independent study using rpoC sequences

(Palenik and Haselkorn 1992). Chapter Four is an Epilogue discussing responses in the

literature to this publication.

Chapter Two of this thesis is a phylogenetic study which infers evolutionary

relationships among P. marinus cultures isolated from diverse ocean provinces,

expanding on the previous work. Phylogenetic patterns inferred from three sequences,

16S rRNA, psbB and petBID, are used to address questions of whether oceanic

prochlorophytes derive from multiple lineages dispersed among the cyanobacteria,

whether phylogenetic patterns for the three genes are consistent, and whether they reflect

geographic relationships among sites of P. marinus culture isolation. In addition, this

study provides sequence data which can be used to link the properties of P. marinus in

14



culture to those of populations in the sea and a phylogenetic framework for interpretation

of the evolution of characteristics among P. marinus cultures.

P. marinus is a major constituent of the picophytoplankton in tropical and

subtropical regions of the open ocean, with depth integrated cell abundances in the

Sargasso Sea and north Pacific of 5 x 108 and 2 x 109 cells cm -2 , respectively (Olson et

al. 1990, Cambell and Vaulot 1993) and a global population of approximately 1026 cells

(according to a back of the envelope calculation which assumes a tropical and subtropical

open ocean area of 2 x 1014 m2, an average P. marinus cell density of 104 cells/ml and a

euphotic zone depth of 150 m). Experiments with cloned, cultured isolates have

established that individual P. marinus genotypes can grow over wide ranges of light

intensity and temperature, but differ in their growth potential at environmentally relevant

extremes of high and low light (Partensky et al. 1993, Moore et al. 1994). In order to

enable future workers to interpret the patterns of distribution and abundance in P.

marinus field populations and to use the properties of P. marinus in culture to predict the

growth and succession of populations in the wild, it is necessary to assess the patterns of

distribution of P. marinus genotypes in natural populations (Wood 1988, Wood and

Leatham 1992, Weisse 1993). Specifically, it is necessary to answer the questions, are P.

marinus natural populations genetically heterogeneous, and what is the temporal and

spatial scale of genetic variability among populations?

Chapter Three is a direct analysis of P. marinus populations in which the

questions of genetic heterogeneity and differences among populations at different depths

and in different water masses are addressed by sequencing cloned petBID PCR products

amplified from natural populations sorted by flow cytometry. With the basic outline of

the population structure of P. marinus known, it becomes possible to formulate improved



hypotheses about properties and processes involving this important component of the

marine food web.
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Chapter One

MULTIPLE EVOLUTIONARY ORIGINS OF

PROCHLOROPHYTES WITHIN THE

CYANOBACTERIAL RADIATION



© Nature 1992. Reprinted by permission.

Multiple evolutionary origins of
prochlorophytes within the
cyanobacterial radiation
Ena Urbach, Deborah L. Robertson*
& Sale W. Chisholm

Ralph M. Parsons Laboratory,
48-425 Massachusetts Institute of Technology,
Cambridge. Massachusetts 02139. USA
* Department of Molecular Genetics and Cellular Biology,
University of Chicago. Chicago, Illinois 60637, USA

THE taxonomic group Prochlorales (Lewin 1977) Burger-
Wiersma, Stal and Mur 1989 was established to accommodate a
set of prokaryotic oxygenic phototrophs which, like plant, green
algal and euglenoid chloroplasts, contain chlorophyll b instead of
phycobiliproteins. Prochlorophytes were originally proposed (with
concomitant scepticism' - ) to be a monophyletic group sharing a
common ancestry with these 'green' chloroplasts". Results from
molecular sequence phylogenies, however, have suggested that
Prochlorothrixr oliandica7 is not on a lineage that leads to plas-
tidss- 2. Our results from 16S ribosomal RNA sequence com-
parisons, which Include new sequences from the marine picoplank-
ter Prockhorococmn marinus13" and the Lissocdiam patella
symbiont Prochloron sp."s, indicate that prochiorophytes are
polyphyletic within the cyanobacterial radiation, and suggest that
none of the known species is specifically related to chloroplasts.
This implies that the three prochlorophytes and the green chloro-
plast ancestor acquired chlorophyll b and its associated structural
proteins in convergent evolutionary events. We report further that
the 16S rRNA gene sequence from Procklorococcus is very similar
to those of open ocean Synechococcus strains (marine cluster A
(ref. 16)), and to a family of 16S rRNA genes shotgun-cloned
from plankton in the north Atlantic and Pacific Oceanso 7'".

The order Prochlorales subsumes two formally described gen-
era: Prochloron, a symbiont of marine ascidians 20 , and Pro-
chlorothrix, a free-living, filamentous, fresh-water plankter7 . Like
green chloroplasts, these prokaryotes have appressed thylakoid
membranes containing chlorophylls a and b and lacking phy-
cobilisomes. The recently discovered Prochlorococcus, a free-
living, tiny unicell that is widespread and abundant in the
oceans", shares these traits with its 'relatives', but differs in that
it contains divinyl chlorophylls a and b (exclusively), and a-
rather than 9-carotene'4"2 .

NATURE VOL 355 1~N .'UARY 1992



LETTERS TO NATURE

TABLE 1 Evolutionary distance and fractional similarity matrix for 16S rRNA sequences from A. tumefaciens and members of the prokaryotic oxygenic
Dhototroph radiation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. Agrobacternum tumefaciens
2. SARIO0
3. Synechooccus PCC6301
4. Prochlorococcus mannus
5. Prochloron sp.
6. Synechocystis PCC6308
7. Synechocystis PCC6906
8. Gloeobacter PCC7421
9. Gloeothece PCC6501

10. Myxosarcina PCC7312
11. Lyngbya PCC7419
12. Oscillatoria PCC6304
13. Anabaena PCC7122
14. Prochlorothrix hollanoica
15. Cyanophora cyanelle
16. Marchantia chloroplast
17. Synechococcus WH7805
18. Synechococcus WH8103

797
885
886
886
910
888
890
884
896
893
910
897
905
883

127
133
130

Estimated evolutionary distances29 
(xl.000. below the diagona, and fractional similarity values (xl.000. above) for pairs of 16S riRNA sequences for

Prochlorothrix hollandica.e other prochlorophytes (this work). cyanooacteria 22
30 (D. L. Distel and J. B. Waterbury, manuscript in preparation). photosynthetic

organelles
22". , a full-length, shotgun-cloned sequence from the Sargasso Sea'l . and A. tumefaciens 3 . used in the construction of the phylogenetic tree

in Fig. la. Sequences were aligned according to their conserved primary and secondary structures ano compared by the computer program of Olsen 23, using
788 nucleotides of sequence unambiguously aligned for all organisms considered. Gap values were set at 0.5 nucleotide substitution. Marchantia Marchantia
polymorpha: Cyanophora, Cyanophora paradoxa. Genomic DNA from Prochlorococcus (isolated from the Sargasso Sea, 30 May 1988, 28* 58.9' N. 64" 21.5' W.
at a depth of 120 m: ref. 14) was extracted using standard tecnniques33 from a dilution culture inoculated with an average cell density of one cell per
culture (isolate SSW5. 58% probability of clonality). Prochloron cetis were collected in Fpbruary 1990 from reef flats in the Kamori Channel. Koror. Palau.
West Caroline Islands (7" 25'N. 134* 30'E). Collection and method of isolating the symbiont from the host, Lissoclinum patella are descnribed in ref. 34.
DNA was extracted from frozen cells using standard protocols' 5. except that the extraction buffer was adjusted to 0.25 M EDTA. 16S rRNJA genes were
amplified from genomic DNA of Prochlorococcus using the polymerase chain reaction (PCR) with the primers PLG1.1 (ACGGGTGAGTAACGCGTRA) and PLG2.1
(CTTATGCAGGCGAGTTGCAGC). designed to be specific for members of the oxygenic phototroph lineage and thus select against sequences from heterotrophic
contaminants in the culture. Prochloron sequences were amplifea using the primers P1 (AGAGTTTGATCCTGGCTCAG) and P2 (CTTGTTACGACTTCACCCC).
which amplify 16S rRNA sequences from all eubacteria. as there was no significant contamination from heterotrophs in this preparation PCR reactions
contained 10 ng genomic DNA. 100 nM each primer, 200 pM eacn dNTP. 2.25 mM MgCI2 . 50 mM KCI. 10 mM Tris (pH 8.4), and 5 units Tao polymerase
(Perkin Elmer Cetus). Reaction volumes were 200 L1. covered with 100 pl sterile mineral oil. Cycle parameters were: 94 TC for 1 min. Ta for i min. and 72 "C
for 2 min. Samples were processed for 40 to 50 cycles. T. was 66 'C for the PLG1.1/PLG2.1 primer pair. and 58 *C for the P1/P2 pair. PCR products were
purified from preparative polyacrylamide gels by electro-elution (D-gel. EpiGene), and reamplified asymmetrically using 2 nM of one limiting primer. Asymmetric
PCR products from both coding and complementary strands were ethanol-precipitated twice with ammonium acetate and used for dideoxy-nucleotide
sequencing with Sequenase version 2 (US Biochemical Corporatioa, in parallel reactions containing OGTP and dlTP. plus and minus single-strand binding
protein. 1.147 bases of continuous sequence (Escherichia coli 16S rRNA nucleotide positions 128 to 1.312) were determined for Prochlorococcus and
1.377 bases (E coli positions 28 to 1.452) for Prochloron. Sequences are available through GenBank. accession numbers X63140 and X63141.

a
Agrobacter/um

Glosobacter PCC7421

F -Synechococcus WH7805
lat_ SAR100

Synechoccus WH85103
___ PROCHLOROCOCCUS

Synechooccus PCC6301
PROCHLOROTHRIX

SAnabaena PCC7122

Cyanophora cyanelle
Marchantia chloroplast

-- Lyngbya PCC7419
Oscillatoria PCC6304
Gloeothece PCC6501
Synechocystis PCC6906

PROCHLORON
Synechocystis PCC6308

hMyxosarcina PCC7312

0 a nlo a0s15

Fixed point mutations per sequence position

FIG. 1 Nucleic-acid sequence phylogenies, inferred from 16S rRA data,
illustrating the apparent independent appearance of chlorophyll b-cortaining
organisms in the cyanobacterial lineage. The phylogenetic position of a
full-length, shotgun-cloned 16S rRNA gene from Sargasso Sea plarKton1 9

(SAR100) is also shown. A sequence for the freshwater Synecnaococus
strain PCC6307 (D L. Distel and J. B. Waterbury. manuscript in precarationl

Agrobacterlum
Gloeobacter PCC7421

Cyanophora cyanelle
Marchantia chloroplast

Syneechococcus WH7805
SARIOG
Synechococcus WH8103

PROCHLOROCOCCUS
Synechococcus PCC6301

1- PROCHLOROTHRIX
- Lyngbya PCC7419

I-- Oscillatoria PCC6304
, - Synechocyotis PCC6906

- 4 . Gloeothece PCC6501
L_ Anabaena PCC7122

PROCHLORON
L Syechocystas PCCC6308

- Myxzosarclna PCC7312

branches immediately to the left of Prochlorococcus with 100% bootstrap
confirmation in both distance matrix and parsimony trees (not shown).
Numbers inoicate per cent confirmation by bootstrap analysis, summarizing
the tree output from 100 resampled datasets, of the phylogenetic group to
the right. Only values greater than 50% are labelled. a Distance matrix
analysis. Horizontal distances are proportional to evolutionary distances
(Table 1). b. Parsimony analysis of the same data using the heuristic tree
search option of PAUP"I . An equally parsimonious tree reverses the relative
positions of Prochlorococcus and Synechococcus WH7805.
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TABLE 2 Evolutionary distance and fractional similarity matrix for 16S rRNA sequences from A. tumefaciens. memoers of the prokaryotic oxygenic
phototroph radiation and shotgun clones from marine plankton communities

1 2 3 4 5 6 7 8 9 10
. Agrobactenum tumefacens 782 808 821 797 812 805 799 812 805

2. SAR6 258 967 954 918 964 912 951 951 971
3 SAR7 222 33 987 925 977 919 964 984 971
4. SAR100 205 47 13 931 977 932 964 984 971
5. Synec~ococcus PCC6301 236 87 79 72 935 974 922 915 935
6. Prochlorococcus marinus 217 37 23 23 68 942 987 981 994

,. Prochlorothrix hollandica 226 94 86 72 27 61 929 922 942
8. Synechococcus WH7805 234 51 37 37 83 13 75 981 981
9. Synechococcus WH8103 217 51 16 16 90 20 82 20 974
3. AL037 226 30 30 30 68 7 61 20 26

Estimated evolutionary distances (x1.000, below the diagonal) and fractional similarity values (x1,000. above) for pairs of 16S rRNlA sequences for
ProchNorothrixg. other prochloroohytes (this workl. cyanobacteriaX 1D. L. Distel and J. 8. Waterbury, manuscript in preparation), shotgun-cloned 16S rRNA
geres"7 1- 9. and Agrooacterium 2, used in the construction of the phylogenetic tree in Fig. 2. The 186 bases of aligned sequence corresponding to position
306 to 514 in the E coli 16S r•NA sequence were analysed as aescribed in the legend to Table 1.

We compared 16S rRNA gene sequences for both Pro.
chlorococcus and Prochloron with sequences from the oxygenic
phototroph databases8 22 iD. L. Distel and J. B. Waterbury,
manuscript in preparationI using both distance matrix-' (Fig.
Ia: Table 11 and parsimony •2 (Fig. I b) algorithms. Bootstrap
resampling:5 was used to estimate reliability of the inferred trees
(Fig. la, b). For simplicity we refer only to the results of the
distance matrix analysis in our discussion, although results from
parsimony analysis are in essential agreement.

The 16S rRNA tree strongly supports the derivation of both
Prochlorococcus and green chloroplasts (represented in our
analysis by the Marchantia polymorpha chloroplasti from
different, phycobilisome-containing ancestors among the
cyanobacteria (Fig. la). Prochlorococcus forms a shallowly
branching cluster with marine A Synechococcus strains WH7805
and WH8103 (ref. 16) (confirmed in 100% of bootstrap resamp-
lings), before which branch the cyanobacteria Svnechococcus
PCC6307 (D. L. Distel and J. B. Waterbury, manuscript in
preparationi (not shown: confirmed in 100% of bootstrap
resamplings) and Synechococcus PCC6301 (confirmed in 730 /9
of bootstrap resamplings .The Marchantia chloroplast branches

Agrobactertum

Synechococcus PCC6301

.----. cPROCHLROTHR I

SARS

-PROCHLOROCOCCUS

-ALo37

Syneehococcus WH7Is05
- SARiMOO

- SAR7
--_68

- Synechococcus WH8103

S 0.f 004 006 O.8 010 0.12

F xed point mutations per sequence position

F:G 2 Phylogenetic tree illustrating relationships among prochloroDnytes.
rre-ioers of tne Synecnococcas group ano shotg.n-clonea sequences from
Sargasso Sea planktone'71 (SAR) and Pacific Ocean picoplankton: a iALO).
The tree was constructed using distance matrix analysis and 16S rCRNA
seoJence data (Table 2). Differences in the branching order between this
tree and the one shown in Fig. la are presumaoay due to the short length
of :he shotgun-cloneo sequences. which limits the resolution of this analysis.
Bootstrap analysis indicates that Procnlorococcus. Synechococcus strains
WH8101. WH7805. and the cloned sequences form a coherent phylogenetic
c!.s:er distinct from Prochloromrix ano Synechococcus PCC6301. out the
tr'•icning oroer in tris cluster Is Indeterminate.

1;'1URE - VOL 355 - 16 JANUARY 1992

with the Cyanophora paradoxa cyanelle (95% bootstrap
confirmation , in accord with evidence that green chloroplasts
and the cvanobacterium-like cyanelle descend from a common
ancestor ' : . Branching patterns for Prochioron and Prochloroth-
rix are less than 95% confirmed, thus their descent from separate,
phycobilisome-containing ancestors. though likely, is less cer-
tain than for Prochlorococcus and the chloroplasts.

Prochlorococcus is closely related not only to the open-ocean
strains, Synechococcus WH7805 and WH8103, but also to a
diversity of shotgun-cloned 16S rRNA gene sequences from the
Sargasso Sea" ' ' 9 and the north Pacific Ocean' g (Figs 1 and 2;
Tables I and 2). Individual samplings from these sites, where
both Prochlorococcus and Svnechococcus are common, have
routinely netted a puzzling multiplicity of sequences. exhibiting
greater than 95% similarity, interpreted as belonging to open-
ocean Synechococcus '"". This diversity can now be partially
attributed to sympatric populations of Synechococcus and Pro-
chlorococcus. which, despite their sequence similarity, are separ-
ate species by ecological as well as phenotypic criteria2'.

We conclude that the phycobilisome-/chlorophyll b÷ (green
chloroplast I phenotype seems to have evolved de now at least
three, and possibly four times during the evolution of cyanobac-
teria: once in the ancestry of the green chloroplast lineage, again
in that of Prochlorococcus, and once or twice in the ancestries
of Prochloron and Prochlorothrix. the mutual independence of
which has not positively been demonstrated. The shallowness
of the Prochlorococcus cluster suggests a particularly recent
origin for this organism's pigment phenotype. In the light of
these results, and those of Palenik and Haselkonms, the order
Prochlorales can no longer be justified as a natural grouping.
The taxon should therefore be abandoned, and prochlorophytes
reclassified in the cyanobacteria. O
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Chapter Two

PHYLOGENETIC RELATIONSHIPS AMONG

CULTURED STRAINS OF PROCHLOROCOCCUS MARINUS

ISOLATED FROM DIVERSE OCEANIC PROVINCES



ABSTRACT

Based on relationships inferred from 16S rRNA, psbB and pet B and D sequences,

cultured strains of Prochlorococcus marinus were found to belong to a single lineage

within the cyanobacteria, which they share with strains of marine A Synechococcus.

Branching patterns inferred for P. marinus strains using 16S rRNA, psbB and pet B and

D sequences were consistent, and revealed no correlation between genetic distance and

the geographic distance between sites of culture isolation, with the most closely related

strains originating in surface waters of the Mediterranean and the Pacific Oceans. The

branching order of deeply diverging lineages within the P. marinuslmarine A

Synechococcus cluster, including one strain of P. marinus and two strains of marine A

Synechococcus, appear inconsistent in 16S rRNA gene trees inferred by neighbor-joining,

parsimony and maximum likelihood methods of analysis. This result suggests a near-

simultaneous radiation of P. marinus and marine A Synechococcus lineages.

INTRODUCTION

Prochlorococcus marinus is a tiny, photosynthetic marine prokaryote containing

divinyl chlorophylls a and b (chl a2 and chl b2) and which recently has been recognized

as a major constitutent of the photosynthetic picoplankton in wide regions of the Atlantic,

Pacific, Mediterranean and Red Seas and in the Banda Sea of Indonesia (Chisholm et al.

1988, Gieskes et al. 1988, Li and Wood 1988, Olson et al. 1990, Vaulot et al. 1990, Li et

al. 1992, Vaulot and Partensky 1992, Cambell and Vaulot 1993, Goericke and

Welschmeyer 1993, Goericke and Repeta 1993, Lantoine and Neveux 1993, Veldhuis

and Kraay 1993, Vaulot et al. 1994). P. marinus comprises 35% of the seasonally

averaged chl a at north Pacific station ALOHA (Letelier et al. 1993) and 30% at Sargasso

Sea station OFP (Goericke and Welschmeyer 1993). The ecological importance of this



ubiquitous and unusual organism has sparked efforts to characterize its physiological

capabilities in pure culture (Partensky et al. 1993, Morel et al. 1993, Moore et al. 1994).

Phylogenetic analysis using 16S ribosomal RNA gene sequences has established

that a strain of P. marinus isolated from the Sargasso Sea (strain SSW5, descended from

SARG, the original P. marinus isolate) is closely related to the marine A Synechococcus

(Waterbury and Rippka 1989), a group of cyanobacterial strains including isolates from

open ocean habitats in which P. marinus also is found (Urbach et al. 1992).

Cyanobacterial 16S rRNA gene sequences cloned from natural populations in the

Sargasso Sea and north Pacific (Giovannoni et al. 1990, Britschgi and Giovannoni 1991,

Schmidt et al. 1991) also fall into this cluster (Urbach et al. 1992). An independent study

using rpoC gene sequences found that the genetic distance between SARG and a second

P. marinus isolate originating in the Mediterranean Sea (MED), was greater than the

distance between two heterocyst-forming cyanobacteria assigned to different genera

(Palenik and Haselkorn 1992), suggesting that differences between P. marinus isolates

may be significant. rpoC analyses also cluster P. marinus with Synechococcus WH8103

(Swift and Palenik 1992). The 16S rRNA and rpoC studies each reported, in addition,

that P. marinus is unrelated to the "normal" chlorophyll a and b (chl al and bl) -

containing prokaryotes Prochloron sp. and Prochlorothrix hollandica, and to green plant

and algal chloroplasts. These conclusions have been cast into some doubt, however, by

the discovery that base substitution biases at rapidly evolving nucleotide sites are

correlated with branching patterns in these studies' phylogenetic trees (Lockhart and

Penny 1992).

To help resolve these controversial relationships and examine isolates of P.

marinus from additional oceanographic provinces, we present here the results of an

investigation into the phylogenetic relationships among cultured isolates of P. marinus,



addressed by comparisons of three gene sequences and including marine A

Synechococcus and cloned 16S rRNA gene sequences from the Sargasso Sea. Questions

to be addressed are (1) whether oceanic prochlorophytes represent more than one

independent lineage of chlorophyll b2-containing prokaryotes dispersed among the

cyanobacteria, (2) whether the inferred phylogenetic patterns for each of the three genes

are consistent, (3) whether a different phylogenetic pattern is inferred by methods

suggested as insensitive to nucleotide substitution bias, and (4) whether evolutionary

relationships reflect geographic relationships among sites of P. marinus culture isolation.

Detailed knowledge of the evolutionary relationships among P. marinus cultured strains

is, in addition, useful for organizing information on the physiological differences among

these strains. Also, if gene transfer does not play a major role in the evolution of P.

marinus, then knowledge of the phylogenetic relationships will provide a link between

phenotypes of cultured cells and sequences recovered by molecular cloning experiments

exploring genetic diversity in field populations (Giovannoni et al. 1990, Schmidt et al.

1991, Britschgi and Giovannoni 1991, DeLong et al 1993, Fuhrman et al. 1993, this

thesis Chapter Three).

BACKGROUND

Characteristics of P. marinus strains. Cultures have been established for P.

marinus isolated from a variety of geographic and hydrographic regimes (Chisholm et al.

1992, Partensky et al. 1993, Moore et al. 1994, L. Moore, pers. comm.). For this study

we selected cultures drawn from widely separated locales within P. marinus' geographic

range: the Sargasso Sea, Mediterranean Ocean, north Atlantic and south Pacific Oceans.

The P. marinus type strain, Sargasso Sea clone SS120 (designated CCMP-1375 at the

Center for the Culture of Marine Phytoplankton, Bigelow Laboratory for Ocean Sciences,

West Boothbay Harbort, ME) originated in the deep euphotic zone during spring



stratification and is descended from SARG, the original P. marinus isolate (Chisholm et

al. 1992). The Sargasso Sea isolate used for 16S rRNA analysis, SSW5, was isolated

from SARG by dilution to a mean cell density of one cell per culture tube, and is

assumed to be identical to SS120 1. Mediterranean clone Med4 (CCMP1378) originated

in mixed surface waters of the Mediterranean in winter and is descended from strain

MED (Chisholm et al 1992, Partensky et al. 1993). North Atlantic isolate FP5 is an

uncloned culture collected from 30 m in the North Atlantic by F. Partensky, and Pacific

strain MIT9107, also not cloned, came from 25m in the mixed surface layer of the

oligotrophic south Pacific, and was isolated by J. Dusenberry and M. DuRand. In

addition to these strains, Sargasso Sea culture MIT9303, isolated from 100 m in the

Sargasso Sea during summer stratification by L. Moore, was included in some of the

analyses. Synechococcus clone WH8103, a high phycourobilin (PUB) strain isolated

from the surface of the Sargasso Sea, and the reference culture for marine A

Synechococcus (Waterbury and Rippka 1989), was selected to represent marine A

Synechococcus (Table 1).

Physiological studies have characterized P. marinus clones SS120 and Med4 (or

their parent cultures) according to pigment content and respose to variation in

temperature and illumination (Partensky et al. 1993, Morel et al. 1993, Moore et al.

1994). These studies confirm the presence in both strains of divinyl chlorophylls a and b

(chl a2 and b2) as well as accessory pigments zeaxanthin, a-carotene and an unknown

pigment which elutes with chlorophyll cl by HPLC (Chisholm et al. 1988, Chisholm et

al. 1992, Goericke and Repeta 1992). In addition, it is now known that SS120 (and

1In light of the results of Chapter Three, which indicate that P. marinus field populations are genetically
heterogeneous, the possibility exists that the primary isolate SARG could have contained more than one
genetic variant. Since SSW5 and SS 120 were independently isolated from SARG, it therefore is possible
that they are not genetically identical. Omitting the SSW5 sequence from the dataset does not change the
conclusions of this study.



e1

1-4 O3

C .N

00
OV) •

?ý ilýNN N0 0OO
mt \ 0

4 m

?0W)\
0•

F-
0
C)

tf



SARG) grown at high light (>20 giE m-2 s-1) contains chl b1, which may comprise up to

55% of total chlorophyll b (chl b, equal to chl b1 + chl b2) (Partensky et al. 1993, Morel

et al. 1993, Moore et al. 1994). In contrast, clone Med4 (and MED) contains no

detectable chl bl under any growth conditions tested. Both strains are capable of

photoadaptation by changing the ratio of their chl b to chl a2 , but chl b/a2 ratios for Med

4 are one tenth those of SS120 at all growth irradiances (Partensky et al. 1993, Morel et

al. 1993, Moore et al. 1994).

It has been hypothesized that the different chl b/a2 ratios for SS 120 and Med4 are

genetic adaptations to the low and high light environments from which the two clones

were collected, respectively. The low light SS120 clone is capable of acclimating to

conditions at the bottom of the euphotic zone in oligotrophic waters by elaborating

extensive, chl b-containing photosynthetic antennae capable of absorbing blue light,

while the high light-adapted Med4 fails to elaborate an extensive antenna (Partensky et

al. 1993, Moore at al. 1994). This hypothesis is consistent with the results of growth

experiments which have shown that SS120 is capable of growth at low light intensities (2

to 6 tE m- 2 s-1) at which no growth was observed for Med4, and that Med4 is capable of

growth at high light intensities (>100 igE m-2 s- 1) at which SS120 fails to grow. The

compensation light intensity (Icomp), which predicts the minimum illumination for cell

survival, was significantly lower for SS120 than for Med4 (Moore et al. 1994), again

consistent with the hypothesis. Other cultures included in the phylogenetic study are

much less well characterized than SS120 and Med4.

Genetic loci. For this study, evolutionary relationships among the four P.

marinus cultures SS120, Med4, FP5 and MIT9107 and Synechococcus WH8103 were

examined using three sequences exhibiting varying degrees of evolutionary conservation:

the 16S ribosomal RNA genes, psbB, and petB and D. Strain MIT9303 was evaluated



using only 16S rRNA, as psbB and petB/D sequences were unavailable for this culture

due to time limitations. Future work after the completion of this thesis may include psbB

and petB/D sequences for this strain.

16S ribosomal RNA (rRNA) genes are the standard tool for phylogenetic

reconstructions (Hillis and Dixon 1991, Olsen and Woese 1993) and have provided

phylogenetic information for many diverse taxa (e.g. Woese 1987, Sogin et al. 1989,

Medlin et al. 1993). 16S rRNA analyses have the advantage of compatibility with a large

and well-characterized database, containing sequences from hundreds of organisms and

organelles, and a dedicated computerized clearinghouse which provides automated

sequence alignment and similarity searching (Larsen et al. 1993). Several cloning

experiments exploring the diversity of microbial communities in the sea have provided

16S rRNA gene sequences, some of which are likely to derive from wild P. marinus

(Giovannoni et al. 1990, Schmidt et al. 1991, Britschgi and Giovannoni 1991, DeLong et

al. 1993, Fuhrman et al., 1993).

psbB and petB and D encode proteins of the photosynthetic apparatus and are

much less constrained evolutionarily than 16S rRNA. These loci were selected to infer

phylogenies sensitive to evolutionary differences on a finer scale. Each has the

additional advantage of being a single-copy sequence unique to photosynthetic organisms

(Vermaas and Ikeuchi 1991), and so is easily amplified from P. marinus cultures, which

contain heterotrophic bacteria. psbB encodes the chlorophyll a-binding antenna protein

CP47 and petB and D encode subunits of the photosynthetic b6/fcomplex responsible for

transferring electrons between Photosystem II and Photosystem I (Widger and Cramer

1991). petB and D are neighboring cistrons with a consistent tandem orientation in

oxygenic photosynthetic prokaryotes and organelles (Vermaas and Ikeuchi 1991, Greer

and Golden 1992) and provide PCR priming sites which permit amplification of a



fragment containing the 3' end of petB and the 5'end of petD, plus the highly variable

intergenic region between them (the amplified locus will be referred to as "petB/D").

The psbB and petB/D loci are not close to each other on cyanobacterial chromosomes

(Vermaas and Ikeuchi 1991).

Problems posed for molecular phylogenetic analysis by nucleotide

substitution biases. An unusal feature of cyanobacterial and chloroplast sequences is the

wide variation in their DNA base compositions (Herdman et al. 1979, Lockhart et al.

1992a), which is especially evident at rapidly evolving sites such as noncoding regions

and silent third codon positions (Lockhart and Penny 1992, Lockhart et al. 1992a, b). An

additional property of the cyanobacterial phylogeny is the presence of many deeply

branching lineages which apparently originated within a short period of evolutionary

history (Giovannoni et al. 1988). The juxtaposition of these two unusual features creates

a situation in which the inferred branching pattern is susceptible to the artefactual

clustering of sequences converging towards similar G+C content (Lockhart et al 1992a,

b, c, Lockhart and Penny 1992, Lockhart et al. 1993), and there is as yet no accepted

method for assessing the relative contributions of nucleotide substitution bias "noise" and

true phylogenetic "signal" to trees inferred from such data (Lockhart et al. 1993).

Bootstrap resampling analyses, which are frequently used to assess the sensitivity of

phylogenetic inferences to sampling error in the nucleotide positions chosen for the

analysis (Felsenstein 1988), cannot detect systematic distortions in branching patterns

due to nucleotide substitution biases (Lockhart et al. 1992a).

Lockhart et al. (1992a, b) used G+C content at third codon positions to

characterize nucleotide substitution biases in the evolution of different taxa, noting that

branching patterns inferred from protein-encoding sequences grouped organisms having

similar nucleotide substitution biases. They suggest that in instances when nucleotide



substitution biases differ among lineages, standard phylogenetic methods will infer

incorrect phylogenetic relationships. Lockhart et al. (1992a) further assert that the

influence of nucleotide substitution bias detected at third codon positions in protein

encoding genes may determine branching patterns inferred for the same organisms using

16S rRNA genes, even though the 16S rRNA sequences may exhibit little variation in

G+C content (c.f. Table 3).

Several molecular phylogenetic methods have been suggested as being relatively

immune to nucleotide substitution biases, although none are yet generally accepted as

such (Sogin et al. 1989, 1993). Woese et al. (1991) suggested that distance and

parsimony methods applied to transversion mismatches would have generally reduced

sensitivity, and so would be less susceptible to these artefacts. Hasegawa and Hashimoto

(1993) suggested that phylgenetic analysis of amino acid sequences would have this

property as well (see also Hashimoto et al. 1994), and amino acid parsimony has been

applied to plastid and cyanobacterial data (Morden et al. 1992). Most recently, two

similar, new algorithms have been devised which are reported to be insensitive to

variation in G+C bias among lineages, LogDet (Lockhart et al. 1994) and paralinear

distances (Lake 1994). However, computer programs which impliment these algorithms

are not yet publicly available.

For our analysis of P. marinus phylogenetic relationships we have employed

standard methods of phylogenetic inference: neighbor-joining, parsimony and maximum

likelihood. In addition, we explored branching patterns inferred by transversion distance

analysis and amino acid parsimony to assess whether these methods, suggested as

relatively insensitive to nucleotide substitution biases, infer a phylogeneic pattern

consistently different from those inferred by standard analyses.



METHODS

Cell culture and DNA isolation. P. marinus clones and isolates were grown in

modified K/10 - Cu medium as previously reported (Chisholm et al. 1992). DNA was

prepared from dense cultures as described (Urbach et al. 1992), or by a modification of

the alkaline lysis protocol of Li et al. (1991). For this protocol, 1 ml of culture containing

106 to 108 P. marinus was concentrated by spin filtration at 2,000 x g using 0.2 Apm pore

Ultrafree-MC filter units (Millipore) and washed twice with cell suspension buffer (0.5 M

NaCl, 10 mM Tris [pH 8.0] 10 mM EDTA). Cells were resuspended in a final volume of

100 pl cell suspension buffer and lysed by addition of 12 .l 0.5 M DTIT and 6 .l 10 M

NaOH followed by a 10 minute incubation at 650C. After addition of 120 ptl

neutralization buffer (90 mM Tris [pH 8.0] plus 0.5 mol/1 HC1), DNA was precipitated by

addition of 1 pl 20 mg/ml glycogen (Boehringer) and 0.6 ml cold 100% ethanol and

storage overnight at -20 0C. Precipitates were collected by centrifugation at 16,000 x g

for 30 min at 40C, washed with 70% ethanol and resuspended in TE (10 mM Tris [pH

8.0] 1 mM EDTA). DNA was stored at -200C.

Synechococcus WH8103 was grown in S/N Medium according to Waterbury et

al. (1986). DNA was prepared by CsCl density gradient centrifugation (Sambrook et al.

1989).

PCR and DNA sequencing. 16S rRNA genes from P. marinus Med4, FP5,

MIT9107 and MIT9303 were amplified using oxygenic phototroph-specific primers and

protocols as described (Urbach et al. 1992), except that one primer in each PCR reaction

was labelled with biotin (Hultman et al. 1989). psbB and petBID were amplified using

biotinlyated/unbiotinylated primer pairs containing inosine (Knoth et al. 1988) under the



following conditions: psbB primers PPSBB 1353 (5'GTIGCIGGIACIATGTGGTA) and

PPSBB 1928R (5'GCRTGICCRAAIGTRAACCA), 2.25 mM MgC12, 2 min. 940C,

followed by 1 min 940 C, 1 min 510 C, 1 min 720C. (5 cycles), 1 min 940 C, 1 min 560 C, 1

min 72 0C (10 cycles), 1 min 940C, 1 min 620 C, 1 min 720C (25 cycles), followed by 10

min 720C; petB/D primers PPETBD314 (5'PPETBD314

(5'ATGATGGTIYTIATGATGAT) and PPPETBD 1160R

(5'CCRTARTARTTRTGICCCAT), 1.5 mM MgCl2 , 2 min 940 C followed by 1 min

940 C, 1 min 450 C, 1 min 72 0C (5 cycles), 1 min 940C, 1 min 500C, 1 min 720 C (10

cycles), 1 min 940C, 1 min 570C, 1 min 720 C (25 cycles), followed by 10 min 720 C.

100 Wl PCR reactions contained MgCI2 concentrations as indicated, plus lx Mg-free Taq

polymerase buffer (Promega), 200 gM each dNTP, 100 nM each primer and 5 units Taq

polymerase (Promega). PCR products from three or more replicate reactions were

pooled and separated by electrophoresis in 1% agarose gels. Bands were purified using

GeneClean (Bio 101) and single stranded sequencing templates prepared using

Dynabeads (Dynal) according to the manufacturers instructions.

DNA sequences were determined using Sequenase (United States Biochemical),

according to the manufacturer's protocol. 16S rRNA gene sequences were determined

from both strands using amplification primers and internal primers as described (Urbach

et al. 1992). 90.5% of 16S rRNA gene sequences were determined on both strands. psbB

and petB/D sequences were determined using amplification primers and internal primers

PPSBB1527 (5'ITTYTAYGAYTAYGTIGG), PPSBB 1508R

(5'CCIAGRTARTGRTARAAIGC), PPSBB 1898R (5'CGAAAIACICCRTC), and

PPETBD532R (5'CCIACRCTYTCICCICC). psbB sequences were redundantly

determined over 92% of their length, with 60% of nucleotides determined on both

strands. petB/D sequences were determined from one strand only, as the biotinylated



version of PPETBD1160R did not function well as a PCR primer. 94% of petB/D

sequences were redundantly determined.

Sequence alignment and phylogenetic analysis. Sequences were aligned

according to conserved regions of 16S rRNA primary and secondary structure or

according to conserved regions in amino acid translations (Lang and Haselkorn 1989,

Widger and Cramer 1991) using the Olsen sequence alignment editor (Olsen 1990).

Mismatch frequency and base compositions were calculated using the program of Olsen

(1988, 1990). Neighbor-joining (Saitou and Nei 1987) and protein parsimony were

performed using Kimura two-parameter genetic distance estimates (2:1 transition

transversion ratio) and the DNADIST, NEIGHBOR and PROTPARS programs in

PHYLIP verision 3.4 (Felsenstein 1991). DNA parsimony was performed with PAUP's

branch and bound and MULPARS options (Swofford 1991). DNA maximum likelihood

calculations were done using fastDNAml (Olsen et al. 1992), and likelihood comparisons

between different phylogenetic trees were performed using PHYLIP's DNAML program.

Log likelihood values and standard deviations are from DNAML comparisons.

RESULTS

Relationships inferred by standard methods: molecular phylogenetic

branching patterns and bootstrap calculations. Relationships among cultured strains

of P. marinus, marine A Synechococcus and other members of the oxygenic

photosynthetic radiation were investigated using three standard methods for phylogenetic

analysis: neighbor-joining (Saitou and Nei 1987), parsimony, and maximum likelihood

(Felsenstein 1988). All strains of P. marinus and marine A Synechococcus fell into a

single lineage in trees inferred by all analyses in this study (Figures 1, 2, 3). This



Figure 1. Phylogenetic relationships among cultured strains of P. marinus,

shotgun cloned sequences from Sargasso Sea picoplankton ("SAR" sequences) and other

members of the cyanobacterial lineage, inferred from 16S rRNA gene sequences using

Agrobacterium tumefaciens as an outgroup. (a), Distance matrix tree inferred by

neighbor-joining with Kimura two parameter genetic distance estimates (Kimura 1980)

(Table 2a). Numbers indicate the percent of trees inferred from 100 bootstrap datasets

which contained the phylogenetic group to the right, with numbers above the lines from

neighbor-joining analysis and below from parsimony. Bootstrap values below 50% are

omitted. (b), The most parsimonious tree (668 steps) inferred by parsimony. (c),

Maximum likelihood tree (In L = -4767.84277), not significantly better than the tree

inferred by neighbor-joining (In L = -4800.28223, S.D. 19.0879, Aln L = -32.43945).

Transversion analysis inferred a branching pattern identical to that in the maximum

likelihood tree.
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Figure 2. Phylogenetic relationships among cultured strains of P. marinus and

other members of the cyanobacterial lineage inferred using psbB sequences. Trees are

arbitrarily rooted to Anabaena PCC7120 to facilitate comparison to those inferred from

16S rRNA gene sequences (Figure 1). (a), Distance matrix tree inferred by neighbor-

joining with Kimura two parameter genetic distance estimates (Table 2b). Numbers in

parentheses indicate G+C base composition at third codon positions; other numbers are

as in Figure la. Identical branching patterns were inferred by parsimony, maximum

likelihood (In L = -1925.90128) and transversion neighbor-joining analyses, with some

deep branches rearranged in the transversion tree (not shown). (b), Consensus for the

four most parsimonious trees (267 steps) inferred by protein parsimony.
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Figure 3. Phylogenetic relationships among cultured strains of P. marinus and

other members of the cyanobacterial lineage inferred using petB/D sequences. Trees are

arbitrarily rooted to Nostoc PCC7906 to facilitate comparison to those inferred from 16S

rRNA gene sequences (Figure 1). (a), Distance matrix tree inferred by neighbor-joining

with Kimura two parameter genetic distance estimates (Table 2c). Numbers in

parentheses indicate G+C base composition at third codon positions; other numbers are

as in Figure la. An identical branching pattern was inferred by protein parsimony, and

for P. marinus and Synechococcus WH8103 by neighbor-joining analysis of transversion

distances, which inferred a different pattern for more deeply branching lineages (not

shown). (b), Consensus of the two best trees inferred by DNA parsimony (129 steps).

(c), Tree inferred by maximum likelihood (In L = -1031.58031), which was not

significantly better than the tree inferred by neighbor-joining (In L = -1038.59363, S.D. =

6.7154, Aln L = -7.01331 ).
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clustering was consistent in neighbor-joining and parsimony analyses, whether or not

chloroplast sequences were included in the datasets, and persisted in a 16S rRNA gene

tree which included diverse cyanobacterial taxa (Figure 4).

P. marinus strains Med4, MIT9107, FP5 and SS120 (the "P. marinus four culture

clade") formed a phylogenetic group distinct from Synecyococcus WH8103 in all

analyses. However, the phylogenetic position of the deeply branching P. marinus

MIT9303 was different in 16S rRNA trees inferred by different methods.

Identical branching patterns were inferred for relationships among members of

the P. marinus four culture clade and Synechococcus WH8103 for all three genes using

the neighbor-joining method, and for 16S rRNA and psbB genes using the parsimony and

maximum likelihood methods as well (Tables 2a, b, c, Figures la, b, c, 2a, 3a). For

petB/D sequences, however, relationships among the four P. marinus cultures could not

be resolved using parsimony (Figure 3b), and the maximum likelihood tree, though not

significantly more likely than the neighbor-joining tree, exhibited a slightly altered

branching order (Figure 3c).

Bootstrap analysis (100 resampled datasets each for neighbor-joining and

parsimony calculations) strongly supported the pattern inferred by all three methods for

16S and psbB sequences for branching order among members of the P. marinus four

culture clade and Synechococcus WH8103, except that the relative positions of strains

FP5 and SS120 received varying levels of support (Figures la, 2a). Consistent with the

generally lower resolving power in the petBiD dataset, bootstrap values were lower in

trees inferred from these sequences (Figure 3a). The lower resolution in petB/D trees

may be due to the shorter length of petB/D sequences; after intergenic regions and third



Figure 4. Phylogenetic relationships among P. marinus cultured strains and

diverse cyanobacterial taxa, inferred by neighbor joining using 16S rRNA sequences.

Differences in the branching pattern between this tree and the tree in Figure la are

presumably due to the smaller number of nucleotides used in the analysis, due to short

length and sequence ambiguities of some sequences.
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codon positions were removed from the analysis, petBID phylogenetic inferences were

drawn from 258 nucleotide positions, while psbB and 16S rRNA gene analyses

considered 333 and 1085 nucleotide postitions, respectively.

The phylogenetic position of P. marinus strain MIT9303 was ambiguous. While

16S rRNA gene trees inferred by the three standard methods consistently recovered the

P. marinus four culture clade as a coherent group, they were inconsistent in their

depictions of the relative branching order of five more deeply branching lineages in the

P. marinus/marine A Synechococcus lineage, including P. marinus MIT9303, the four

culture clade, the two marine A Synechococcus strains and SAR7, a cloned sequence

from the Sargasso Sea (Giovannoni et al. 1990) (Figure la, b, c). In bootstrap

calculations, the branching order of these deeply branching lineages received less than

50% support (Figure la). The discordance in the branching order of P. marinus

MIT9303 and marine A Synechococcus lineages inferred by different phylogenetic

methods and their low bootstrap values suggests a near-simultaneous radiation of P.

marinus and marine A Synechococcus lineages during evolutionary history (Hoelzer and

Melnick 1994).

Effects of nucleotide substitution biases. We explored the possible effects of

nucleotide substitution bias on our phylogenetic trees by labelling the psbB and petB/D

neighbor-joining trees according to their third codon position G+C content (Lockhart and

Penny 1992, Lockhart et al. 1992b) (Figures 2a, 3a). It is immediately apparent from

inspection of these labelled trees that P. marinus isolates fail to cluster with chloroplasts

despite similarities in their third codon position G+C content (Figures 2, 3), and that

nucleotide substitution bias is therefore not the sole organizing factor in these trees. 16S

rRNA gene trees also fail to group P. marinus with chloroplasts (Figure 1). However,



within the P. marinuslmarine A Synechococcus cluster the phylogenetic branching

pattern inferred by the majority of analyses is correlated with G+C content at third codon

positions, with the Med4/MIT9107 phylogenetic pair showing considerably lower third

codon position G+C content (0.18 to 0.27) than SS120 (0.32 to 0.34) and Synechococcus

WH8103 (0.66 to 0.72). Although this clustering may reflect actual phylogenetic

relationships in which substitution biases simply differ among lineages, it is also

consistent with a systematic error in phylogenetic inference (Lockhart et al. 1992a).

Again, there is no accepted molecular criterion for determining which hypothesis is

correct.

To further explore the possible effects of nucleotide substitution biases,

phylogenetic branching patterns were assessed using two methods of analysis thought to

be insensitive to them (Woese 1991, Hasegawa and Hashimoto 1993): transversion

analysis with neighbor-joining and, for the two protein-encoding sequences, amino acid

parsimony. Transversion analysis inferred an identical branching pattern for

Synechococcus WH8103 and the members of the P. marinus four culture clade as was

found by standard neighbor-joining for all three gene sequences, although the relative

branching order for deep branches in the P. marinus/marine A Synechococcus clade

agreed with the maximum likelihood calculation in the 16S rRNA transversion tree

(Figures 1, 2, 3). Relationships inferred by protein parsimony were also largely

congruent with trees inferred by standard methods, except that P. marinus strains SS120

and FP5 were joined to form a sister clade to P. marinus Med4 and MIT9107 in the psbB

protein parsimony tree (Figure 2b).

In sum, transversion and protein parsimony analyses do not suggest a consistent,

alternative phylogenetic branching pattern, but instead reinforce the conclusions of the



standard neighbor-joining, parsimony and maximum likelihood analyses: P. marinus

Med4 is most closely related to P. marinus MIT9107, below which diverge P. marinus

strains FP5 and SS120 in somewhat indeterminate order, with the most deeply branching

culture being P. marinus MIT9303. The branching order of five deeply branching

lineages in the P. marinuslmarine A Synechococcus cluster is not resolved.

Intergenic region and third codon position mismatches. Intergenic "nonsense"

regions and third codon (silent) positions in protein-encoding genes are rapidly evolving,

and therefore sensitive indicators of small amounts of evolutionary change. However,

when compared to the first two codon positions in protein-encoding genes or to 16S

rRNA genes, intergenic regions and third codon positions become rapidly saturated with

nucleotide substitutions and (in intergenic regions) insertions and deletions. These tend

to obscure evolutionary relationships when homologous nucleotide positions cannot be

aligned or when the proportion of superimposed substitutions becomes large.

Comparison of aligned sequences of petB/D and psbB from cultured strains of P.

marinus, Synechococcus WH8103, chloroplasts and other cyanobacteria illustrates this

point. In comparisons of P. marinus petB/D intergenic regions, which range from 34 to

90 basepairs in length, homologous nucleotide positions could be identified only for a

portion of the intergenic regions of strains Med4 and MIT9107 (Figure 5). Third codon

position mismatches ranged from 41.1% to 64.3% (similarity 0.589 to 0.357) for psbB

and from 39.5 to 66.1 percent (similarity 0.65 to 0.339) for petB/D, and were considered

too large to give reliable phylogenetic information (Tables 2b, c) (for a similar analysis,

see Bhattacharya et al. 1991). In addition, third codon positions were highly

heterogeneous in G+C content (Table 3), which may bias phylogenetic inferences.

Intergenic regions and third codon positions were therefore omitted from phlyogenetic

analyses.



Table 3. G+C Base compositions of sequences used in these
analyses.

DetB/D Codon Dosition(s)
All 1st2 3rd

P. marinus Med4 0.37 0.47 0.18
P. marinus MIT9107 0.38 0.46 0.21
P. marinus FP5 0.40 0.45 0.29
P. marinus SS120 0.41 0.46 0.32
Synechococcus WH8103 0.57 0.49 0.72
Prochlorothrix hollandica 0.54 0.47 0.67
Synechococcus PCC7002 0.50 0.48 0.55
Nostoc PCC7906 0.49 0.49 0.49
Marchantia chloroplast 0.32 0.43 0.11
Zea maize chloroplast 0.41 0.47 0.29

DSbB Codon position(s)
All ist2 3rd

P. marinus Med4 0.39 0.47 0.25
P. marinus MIT9107 0.40 0.47 0.27
P. marinus FP5 0.41 0.48 0.26
P. marinus SS120 0.45 0.51 0.34
Synechococcus WH8103 0.58 0.54 0.66
Synechocystis PCC6803 0.51 0.50 0.52
Prochlorothrix hollandica 0.56 0.55 0.58
Synechococcus PCC7942 0.55 0.52 0.61
Anabaena PCC7120 0.48 0.53 0.39
Zea maize chloroplast 0.42 0.49 0.26

16S rRNA G+C composition

Agrobacterium tumefaciens 0.54
P. marinus Med4 0.53
P. marinus Pac7 0.53
P. marinus FP5 0.54
P. marinus SSW5 0.54
P. marinus MIT9303 0.54
Synechococcus WH8103 0.54
Synechococcus WH7805 0.54
SAR6 0.53
SAR7 0.54
SAR139 0.54
Synechococcus PCC6301 0.54
Prochloron sp. 0.52
Anabaena PCC7120 0.53
Marchantia polymorpha chloroplast 0.54



Figure 5. Comparison of petB/D intergenic region sequences for cultured strains

of P. marinus and other members of the oxygenic photosynthetic radiation. Sequences

are aligned according to amino acid translations in coding regions, and, with the

exception of the sequence for P. marinus MIT9107, intergenic regions are arbitrarily

represented as continuous with petB. An alignment gap has been inserted into the P.

marinus MIT9107 intergenic region sequence in order to accentuate the similarity

between the 5' end of this sequence and that from P. marinus Med4. Intergenic region

sequences from Prochlorothrix hollandica, Nostoc PCC7906 and Marchantia

polymorpha and Zea maize chloroplasts have been truncated. Sequence data for P.

marinus MIT9303 are from this work, other attributions are as in Table 2c.
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DISCUSSION

Chlorophyll a2 and b2-containing marine prokaryotes arise from a single

lineage within the cyanobacteria. The cultured P. marinus strains included in this study

are phylogenetically restricted to a single lineage within the cyanobacteria, which they

share with marine A Synechococcus strains WH8103 and WH7805. Neighbor-joining,

parsimony and maximum likelihood analyses of nucleotide sequences, parsimony

analysis of amino acid sequences, and analysis of transversions by neighbor-joining, all

replicate this result, which links strains of P. marinus and marine A Synechococcus

having very different G+C substitution biases, despite the presence in the dataset of

chloroplast sequences having third codon position G+C content similar to those of P.

marinus. The consistency of these results argues that the P. marinuslmarine A

Synechococcus phylogenetic grouping represents a true evolutionary lineage, and not an

artefactual cluster.

Branching patterns among four cultured isolates of P. marinus and

Syenchococcus WH8103 are highly consistent. The branching order inferred for P.

marinus Med4, MIT9107, FP5 and SS120 and Synechococcus WH8103 in phylogenies

inferred from three gene sequences was consistent. It is therefore likely that gene

transfer does not play a major role in the evolution of these organisms and that P.

marinus exhibits clonal inheritence similar to that in Escherichia coli (Selander et al.

1987). This finding buttresses the assumption that prokaryotic organisms exhibiting

closely related sequences at a single locus are likely to be genetically similar at most loci,

and hence phenotypically similar. This assumption is implicit in most analyses of

sequences cloned from natural populations (Young 1989).



Phylogenetic relationships among P. marinus isolates do not correlate with

geography. P. marinus Mediterranean strain Med4 and Pacific strain MIT9107, both

isolated from mixed surface waters, were found to be closely related, while north Atlantic

strain FP5 and Sargasso Sea deep chlorophyll maximum cultures SS120 and and

MIT9303 fell into progressively more deeply branching lineages. There was thus no

correlation between genetic distance and the geographic distance between sites of culture

isolation, with the two Sargasso Sea isolates exhibiting less sequence similarity than the

Med4/MIT9107 pair.

The different possible branching positions for P. marinus MIT9303 suggest

different evolutionary scenarios for P. marinus and marine A Synechococcus

pigments. The ambiguity in the branching position of P. marinus MIT9303 leaves open

the question of the origins of P. marinus and marine A Synechococcus pigments. If the

correct placement of P. marinus MIT9303 were as the deepest branch of the P.

marinuslmarine A Synechococcus cluster, as indicated by the 16S rRNA gene parsimony

and maximum likelihood trees (Figures lb, c), this would suggest that the chl a2 and b2

P. marinus phenotype was ancestral to the whole P. marinus/marine A Synechococcus

cluster, implying further that cells capable of this phenotype arose from an ancestor

shared with Synechococcus PCC6301 and gave rise to Synechococcus WH8103 (both

strains being chl a l and phycobilisome-containing cyanobacteria, neither of which

contains chl a2 or chl b (Rudiger and Schoch 1988, Waterbury et al. 1979, L. Moore,

pers. comm.). If, on the other hand, the correct placement of P. marinus MIT9303 were

at the base of a unitary P. marinus lineage, as inferred by neighbor-joining using 16S

rRNA gene sequences (Figure la), then the phylogeny would be consistent with a single

origin of the chl a2 and b2 phenotype without "reversion" to the chl al and

phycobilisome-containing phenotype. The characterization of the P. marinus



photosynthetic apparatus and its genes, with comparison to those of marine A

Synechococcus is likely to yield the most conclusive data pertaining to this question.

Ambiguity in the branching order of deeply diverging lineages in the P.

marinuslmarine A Synechococcus cluster precludes identification of some cloned

sequences from natural populations. Most studies investigating the phylogenetic

diversity of uncultured microorganisms in the sea have employed 16S rRNA gene

sequences, many of which fall into the P. marinuslmarine A Synechococcus cluster

(Giovannoni et al. 1990, Schmidt et al. 1991, Britschgi and Giovannoni 1991, DeLong et

al., 1993, Fuhrman et al, 1993). While some of these sequences form close phylogenetic

associations with cultured P. marinus or marine A Synechococcus strains (e.g. SAR6 and

SAR139), others (e.g. SAR7) form deep branches in the P. marinuslmarine A

Synechococcus cluster and are not specifically related to sequences from characterized

cells (Figure 1). Because the branching order of P. marinus and marine A

Synechococcus lineages in the cluster cannot at present be resolved, these cloned

sequences cannot confidently be assigned to either taxonomic group. Assignment of

phenotypes to these sequences must await the discovery of closely related sequences in

phenotypically characterized cells, results of in situ hybridization experiments, or future

refinements in the methods of phylogenetic inference.
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Chapter Three

GENETIC DIVERSITY IN NATURAL POPULATIONS

OF PROCHLOROCOCCUS MARINUS IN THE

SARGASSO SEA AND THE GULF STREAM



ABSTRACT

An investigation into the genetic structure of Prochlorococcus marinus field

populations in depth profiles from the Sargasso Sea and the Gulf Stream revealed a high

degree of genetic heterogeneity within water samples, detected by partial sequencing of

cloned PCR products amplified from flow cytometrically sorted cells. Overlapping sets

of alleles were recovered from the two water columns, from different depths within each

water column and from flow cytometrically distinguishable subpopulations within water

samples, suggesting that each of these populations drew its membership from a single

gene pool.

INTRODUCTION

Prochlorococcus marinus is a unicellular prokaryote which makes up a high

proportion of the photosynthetic picoplankton throughout wide regions of the tropical

and subtropical marine environment (Chisholm et al 1988, Giskes et al. 1988, Olson et al.

1990, Vaulot et al. 1990, Li et al. 1993, Campbell and Vaulot 1993, Veldhuis and Kraay

1993). Sometimes referred to as a prochlorophyte (Lewin 1981, Chisholm et al. 1988),

P. marinus is recognized by its tiny size (0.6 to 0.8 ptm) and unique set of photosynthetic

pigments, which include divinyl chlorophylls a and b (chl a2 and b2) and specifically do

not include phycobilipigments, typical of most other cyanobacteria.

In efforts to understand the role of this organism in the marine microbial

community, a number of recent studies have characterized the water column distribution

of P. marinus in terms of cell number, biomass, productivity, chlorophyll fluorescence

and DNA content at several locations (Giskes et al. 1988, Li and Wood 1988, Olson et al.



1990, Vaulot et al. 1990, Li et al. 1992, Vaulot and Partensky, 1992, Cambell and Vaulot

1993, Goericke and Repeta 1993, Goericke and Welschmeyer 1993, Vaulot et al. 1994)

and over time (Olson et al. 1990, Cambell and Vaulot 1993). These studies have

established that P. marinus is present throughout the euphotic zone at all times of the

year and numerically dominates the picophytoplankton at oligotrophic, deep chlorophyll

maxima during thermal stratification. Other, parallel studies have analyzed physiological

and pigment differences among cultured P. marinus isolated from different depths and

locations (Morel et al. 1993, Partensky et al. 1993, Moore et al. 1994), identifying

differences in their growth rate response to varying levels of illumination which suggest

that some genetic variants may have relatively greater growth rates in brightly lit surface

waters, while others may have growth advantages at dimly lit depths (Moore et al. 1994).

Med4 and SS120, a pair of cloned isolates from 5 m and 120 m in the in the

Mediterranean and the Sargasso Sea, respectively, are the most extensively characterized

P. marinus strains (Partensky et al. 1993, Morel et al. 1993, Moore et al. 1994). Each can

grow over a wide range of light intensities, but consistent with having been isolated at the

surface, Med 4 is able to grow at high light intensities (>100 kE m-2 s- 1) at which SS120

is unable to grow, and SS120, isolated from a deep chlorophyll maximum (DCM) at 120

m, grows at low light intensities (2 - 6 gE m- 2 s-1) at which Med4 shows no growth

(Moore et al. 1994). The two isolates differ in their compliment of photosynthetic

pigments as well, with SS120 elaborating "normal" chlorophyll b (chl bl) at light

intensities above 20 pE m-2 s- 1 and exhibiting a tenfold higher chlorophyl b (chl b1 +

chl b2) to chl a2 ratio (chl b/a2 ratio) than Med4 over the entire range of growth light

intensities (0.05 to 0.15 for Med4 and 0.4 - 2.4 for SS120) (Morel et al. 1993, Partensky

et al. 1993, Moore et al. 1994). Med4 contains no detectable chl b1 under any conditions

tested (Morel et al. 1993, Partensky et al. 1993, Moore et al. 1994).



Phylogenetic analyses using four gene sequences, 16S ribosomal RNA (rRNA),

psbB, petB/D and rpoC, have shown that cultured strains of P. marinus fall into a single

phylogenetic cluster which they share with the marine A Synechococcus, phycobilisome-

containing cyanobacteria with which they also share their marine habitat (Swift and

Palenik 1992, this thesis Chapter Two). P. marinus Mediterranean strain (Med4),

derived from strain MED (Chisholm et al. 1992, Partensky et al. 1993) and Pacific strain

(MIT9107), both isolated from mixed surface waters (Chisholm et al. 1992, J.

Dusenberry, pers. comm.), were found to be closely related, while DCM culture SS120

and others fell into more deeply branching lineages (this thesis Chapter Two). There was

no correlation between genetic distance and the geographic distance between sites of

culture isolation, with two Sargasso Sea isolates exhibiting less sequence similarity than

the Mediterranean and Pacific pair. Fractional sequence similarity among four P.

marinus isolates ranged from 0.994 to 0.989 for 16S rRNA and from 0.973 to 0.934 at

the first two codon positions of petB and D (0.838 to 0.788 at all codon positions).

Intergenic region sequences between petB and D were similar for Med4 and MIT9107,

while sequences from other cultures were so divergent that homologous nucleotide

positions could not be identified (this thesis Chapter Two).

Data from HPLC and flow cytometric studies suggest that genetic differences

may distinguish P. marinus populations at different depths in stratified water columns,

and that different genetic variants may coexist within water samples. At sites in the

Atlantic, Pacific and in the Red Sea, ratios of chl b/a2 were found to be lower near the

surface than at the DCM (Veldhuis and Kraay 1990, 1993, Cambell and Vaulot 1993,

Goericke and Repeta 1993), with the range of chl b/a2 ratios within a water column (0.15

to 2.9 in the Sargasso Sea) being greater than those observed in individual cultures (0.05

to 0.15 for Med4 and 0.4 - 2.4 for SS120) (Goericke and Repeta 1993). HPLC analysis

of samples from from DCM's in the subtropical Pacific has shown that cells passing



through a 0.65 gtm filter exhibit 1.7-fold lower ratios of chl b2/a2 than cells retained by

the filter, suggesting that subpopulations with different pigment ratios may coexist in the

water sample (Letelier et al. 1993). While the flow cytometric study provided data on

fluorescence ratios for individual P. marinus cells excited at 457 and 488 nm, exploiting

the different fluorescence excitation properties of chl a2 and b at these wavelengths to

estimate pigment ratios (Cambell and Vaulot 1993), the HPLC studies examined bulk

chlorophyll, and so could have included chl b from cells other than P. marinus.

Differences in chl b/a2 ratios in these HPLC reports are therefore not direct evidence of

genetic heterogeneity between P. marinus at different depths.

Flow cytometry of field samples from the Pacific, the Red Sea and the Sargasso

Sea have occasionally identified "multiple populations," consisting of discrete

distributions of chlorophyll autofluorescence and light scatter from individual cells

(Cambell and Vaulot 1993, Veldhuis and Kraay 1993, B. Binder, R. Olson, J.

Dusenberry, E. Zettler, unpublished observations). These flow cytometric

subpopulations may derive from genetically distinct subpopulations which express

different pigment phenotypes when exposed to uniform conditions, but they could also

derive from samples containing recently mixed, genetically similar populations

acclimated to different conditions of light or nutrient supply (Dusenberry and Chisholm

in preparation).

Data consistent with the possibility of genetic heterogeneity within P. marinus

populations at discrete depths have also come from molecular cloning experiments

(Giovannoni et al. 1990, Britchgi and Giovannoni 1991, Schmidt et al. 1991, DeLong et

al. 1993, Fuhrman et al. 1993). Investigations in which 16S ribosomal RNA gene

sequences were cloned from uncharacterized marine picoplankton have recovered a

number of sequences which fall into the P. marinuslmarine A Synechococcus cluster.



While some of these sequences (e.g. SAR6 and SAR139) can be phylogenetically linked

to cultured P. marinus or marine A Synechococcus, others (e.g. SAR7) form deep

branches that are not robustly affiliated with either taxon, and so cannot be identified as

P. marinus or Synechococcus with the data at hand (Urbach et al. 1992, this thesis

Chapter Two). In order to assess the the genetic structure of P. marinus populations (as

defined by their flow cytometric signature), therefore, it is necessary to physically

separate P. marinus from other members of the community.

We report the results of a direct analysis of P. marinus populations using cells

sorted by flow cytometry as starting material. P. marinus were functionally defined for

this study as cells exhibiting the P. marinus flow cytometric "signature:" characteristic

values for red fluorescence and forward light scatter (measured relative to standard 0.57

pm beads), in the absence of orange fluorescence, when excited by 488 nm laser light

(Chisholm et al. 1988). Genotypes were sampled from sorted P. marinus by PCR

amplification of the petBID locus 1 with cloning and single run, partial sequencing of the

resulting clones (Adams et al. 1991, Adams et al. 1992, Kahn et al 1992). Preliminary

analysis ofpetB/D amplification products by direct sequencing revealed the presence of

superimposed sequences differing mostly in the intergenic region, suggesting the

presence of multiple petB/D alleles (Appendix I). 21 to 28 clones were analyzed for each

of eight sorted samples from different depths in the Sargasso Sea and the Gulf Stream,

and including subpopulations of two flow cytometrically defined "double populations" in

the Gulf Stream depth profile. Questions addressed are whether P. marinus field

populations at discrete depths are genetically homo- or heterogeneous, and whether

genetic differences can be detected between populations at different depths, between

1The petB/D locus includes the 3' end of petB, an intergenic region, and the 5' end of petD, (this thesis
Chapter Two). These genes encode subunits of the photosynthetic bff complex and are single-copy,
linked cistrons with a consistent orientation in all photosynthetic prokaryotes and organelles in the
literature (Vermaas and Ikeuchi 1991, Greer and Golden 1992).



subpopulations in multiple populations (as differentiated by their fluorescence and

forward light scatter per cell), and between water columns in adjacent, but

hydrographically distinct water masses. Gene sequences obtained from field populations

are compared to sequences from cultured cells.

METHODS

Characteristics of sampling sites and flow cytometric signatures. P. marinus

were collected from depth profiles in the Sargasso Sea (330 58.65'N, 660 6.63'W, 10:00

local time, 11 July 1993) and the Gulf Stream (370 30.68'N, 680 13.69'W, 08:00 local

time, 17 July 1993) during cruise 9306 of RV Columbus Iselin. The Sargasso Sea

sampling site exhibited a typical summer hydrographic profile, with a chlorophyll-poor,

mixed upper layer overlying thermally stratified waters and a pronounced DCM (as

indicated by in vivo chlorophyll fluorescence measurements) at 70 m. The Gulf Stream

profile was more complex, with relatively low concentrations of chlorophyll at the

surface and a pair of subsurface chlorophyll maxima at 85 m and 150 m (Figure 1).

Samples were collected at depths predicted to contain the most different P. marinus

populations, avoiding samples at the immediate surface which are difficult to visualize

using the sorting flow cell. Sargasso Sea samples were collected at 40 m, 70 m (the

DCM) and below the DCM at 120 m. Gulf Stream samples were collected at 50 m, 85 m

(the shallower DCM) and at 135 m, between the two DCM's (Figure 1).

Flow cytometric characteristics of P. marinus populations varied with depth

according to patterns familiar from previous investigations (Olson et al. 1990): at each

depth in the Sargasso Sea P. marinus populations formed a single cluster on two

dimensional scatter plots of chlorophyll fluorescence versus forward light scatter for



Figure 1. Depth profiles of temperature (thin lines) and in vivo chlorophyll

fluorescence (heavy lines) at the Sargasso Sea (330 58.65'N, 660 6.63'W, 10:00 local

time, 11 July 1993) and the Gulf Stream (370 30.68'N, 680 13.69'W, 08:00 local time, 17

July 1993) sampling sites. Open squares on the in vivo cholrophyll fluorescence plot

mark depths at which samples were collected.
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individual cells, with the distribution of values for each parameter approximating a

lognormal distribution. Modes for chlorophyll fluorescence and forward light scatter

showed an increase with depth, reflecting photoacclimative increase in chlorophyll per

cell, in addition to possible genetic differences between populations at different depths.

In the Gulf Stream, the P. marinus surface population again showed a unimodal

distribution, but populations at 85m and 135m were double ("multiple") populations

(Figure 2).

Sample concentration and flow cytometric sorting. Samples were collected

using Niskin (30 1) or Go-Flo (10 or 30 1) bottles. Subsamples (300 to 750 ml) were

concentrated to approximately 7 ml over 0.45 gpm Durapore filters (Millipore) under light

vacuum (5" Hg) and cells adhering to the filter resuspended by vigorous pipetting. P.

marinus cell recoveries as measured by flow cytometry in similar concentrates were

approximately 50%. Concentrates were immediately sorted by flow cytometry aboard

ship using an Epics V flow cytometer (Coulter Electronics) or frozen in liquid nitrogen

for sorting in the laboratory using an EPICS 753. Frozen cells were sorted over a period

of about about 20 minutes immediately after thawing to avoid loss of autofluorescence,

which can start to occur at about 30 minutes (Vaulot and Xiuren 1988, J. Dusenberry and

R. Olson, unpublished observations). P. marinus populations were flow cytometrically

defined according to their red fluorescence (660-700 nm) in the absence of orange

fluorescence (540-630 nm) and by their characteristic forward light scatter (relative to

0.57 gim beads) when illuminated by blue laser light (488 nm) (Chisholm et al. 1988).

Bitmap sort windows were drawn to separate P. marinus from other constituents of the

photosynthetic planktonic community when P. marinus populations were unimodal, and

to isolate members of flow cytometric subpopulations when multiple populations were

observed. Approximately 106 P. marinus cells were collected in each sorted sample.



Figure 2. Contour plots for flow cytometric distributions of P. marinus sorted

from Sargasso Sea (a-c) and Gulf Stream (d-e) field samples. Sorted (sub)populations

used for genetic analysis are outlined. Red Fluorescence signals of the dimmly

fluorescing cells in the 40 m Sargasso Sea sample (a) (processed in the laboratory) were

enhanced by increasing the laser power to 1.2 watts PMT voltage to 1500 volts. Other

samples (processed at sea) were processed using laser power of 1.0 watts and a PMT

voltage of 1100 volts. To minimize the possibility of contaminaton standard beads were

not added to samples used for sorting; distributions (e) and (f) are from reference

samples. P. marinus cells were identified by their characteristic red vs. FALS signature

and absence of orange phycoerythrin fluorescence (orange fluorescence data not shown).

Sargasso Sea samples: (a) 40 m, (b) 70 m, (c) 120 m. Gulf Stream samples: (d) 50 m,

(e) 85 m, (f) 135 m. Red Fluorescence: in vivo fluorescence of chlorophyll excited by

488 nm blue laser light. Forward Angle Light Scatter: forward angle light scatter of 488

nm laser light, a proxy for cell size.
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Isolation of genomic DNA. A modification of the protocol of Li et al. (1991)

was used to prepare DNA from sorted cells. Cells from the flow cytometric sort were

concentrated above 0.2 gm pore size Durapore membranes using Ultrafree-MC filter

units (Millipore) spun at 2000 x g and washed twice with cell suspension buffer (0.5 M

NaCl, 10 mM Tris [pH 8.0] 10 mM EDTA). Cells were resuspended in a final volume of

100 pl cell suspension buffer and lysed by addition of 12 tl 0.5 M DTF and 6 pl 10 M

NaOH followed by a 10 minute incubation at 65 0C. After addition of 120 pl

neutralization buffer (90 mM Tris [pH 8.0] plus 0.5 mol/l HCI), DNA was precipitated by

addition of 1 tl 20 mg/ml glycogen (Boehringer) and 0.6 ml cold 100% ethanol.

Precipitates were stored at -20 0C for several months. In the laboratory, crude DNA

precipitates were collected by centrifugation at 16,000 x g for 30 min at 40 C, washed

with 70% ethanol and resuspended in TE (10 mM Tris [pH 8.0] 1 mM EDTA). DNA

was stored at -200C.

Construction of the petB/D clone library. Portions of the petB and D genes and

their intergenic region were amplified using degenerate oligonucleotide primers

containing inosine (Knoth et al. 1988). Priming sites correspond to highly conserved

regions in petB and D amino acid sequences, with forward primer PPETBD314

(5'ATGATGGTIYTIATGATGAT) corresponding to nucleotide positions 274 to 293 in

the Nostoc PCC7906 petB coding sequence (Kallas et al. 1988), and reverse primer

PPPETBD1160R (5'-CCRTARTARTTRTGICCCAT) corresponding to nucleotide

positions 64 to 83 in the Nostoc PCC7906 petD sequence (Kallas et al. 1988). 100 pl

PCR reactions contained DNA isolated from approximately 105 sorted cells, 5 U of Taq

DNA polymerase (Promega) and a PCR reaction cocktail containing 1 x Mg-free PCR

reaction buffer (50 mM KCI, 10 mM Tris-HCl [pH 9.0 at 25 0 C], 0.1% [wt/vol] Triton X-

100), 1.5 mM MgC12, 200 pM (each) dATP, dCTP, dGTP and dTTP, 0.5 pM

PPETBD314 and 1 gM PPETBDI 160R. After initial denaturation for 2 min at 940C,



thermal cycle parameters were 1 min 940 C, 1 min 470C, 1 min 720 C (5 cycles), 1 min

940C, 1 min 520C, 1 min 72 0C (10 cycles), I min 940 C, 1 min 570C, 1 min 720C (25

cycles), followed by 10 min 720C. PCR products from pairs of replicate reactions were

pooled and separated by electrophoresis in a 1% agarose gel. Products in the 400 to 800

basepair region of the gel were excised and purified with GeneClean (Bio 101). 1/30th to

1/1000th of each primary amplification product was reamplified for 30 cycles of 1 min

940C, 1 min 570C, 1 min 72 0C, followed by 10 min 720 C, in reaction cocktail with 5 U

Taq polymerase added during the first 570 C incubation. Control reactions lacking

template DNA gave no amplication products for either primary amplifications or

reamplifications, as judged from agarose gels.

Pooled reamplification products from pairs of replicate reactions were excised

from a 1% agarose gel, purified with GeneClean and half to all of each product was

inserted into pCRII vector (TA Cloning Kit, Invitrogen) according to the manufacturer's

instructions. OneShot Competent cells were transformed using half of each ligation

mixture. Both white and blue colonies were picked from LB plates (0.5% tryptone, 1%

yeast extract, 0.5% NaCl, 1.5% Bacto-agar) containing 40 gtg/ml X-gal and 50 gg/ml of

either ampicillin or kanamycin. Plasmid DNA was isolated by InstaPrep (5prime-

3prime) or standard alkaline lysis (Sambrook et al. 1989). Plasmids were digested with

restriction endonuclease EcoRI and the digests analyzed by agarose gel electrophoresis.

Clones containing 400 to 800 basepair inserts were chosen for sequence analysis.

DNA sequencing and database entry. Double-stranded plasmids containing

PCR fragment inserts in random orientation were sequenced using Sequenase version 2.0

(USB) and primer PTASP6 (5'GATCCACTAGTAACGGCCG), complimentary to vector

sequence flanking the pCRII cloning site. DNA sequences were entered into a sequence

alignment editor (Olsen 1990), translated into amino acid sequences and aligned with a



petBID sequence database according to conserved regions in the amino acid sequence

(Widger and Cramer 1991, Greer and Golden 1992). In order to obtain sequences across

the intergenic region for all clones recovered, clones giving sequence at the 5'

(PPETBD314) end of the amplified petBID fragment, and which did not match sequences

already in the database, were sequenced from the opposite side of the pCRII cloning site

using PTAT7 (5'GAGCGGCCGCCAGTGTGA), which was closer to the intergenic

region. This procedure yielded some sequences spanning the entire length of the cloned

fragment, while others covered only portions of the 3' end of petB, the intergenic region

and the 5' end of petD. Sequences, which were determined in a single run and in one

direction only (Adams et al 1991, Adams et al. 1992, Kahn et al. 1992), ranged from 71

to 562 basepairs in length. Clones with sequences which did not align with petB or D

were eliminated from the analysis.

Sequence comparisons. Fractional sequence mismatch values were computed

using the computer program of Olsen (1988, 1990). The phylogenetic tree was inferred

using the Phylip version 3.4 neighbor-joining program (Felsenstein 1991) and Kimura

genetic distance calculations (2:1 transition:transversion ratio) (Kimura 1980). To

minimize effects of sequence determination and PCR errors, alignment gaps were

omitted from sequence comparisons.

Population genetics calculations. Values for E(Sn) were calculated using

COMPAH90 (E.D. Gallagher, University of Massachusetts/Boston).



RESULTS

Sequence diversity in the combined dataset. The combined dataset for all eight

sorted samples contained 191 clones with inserts homologous to petB and D. Among the

191 clone sequences, 71 alleles were identified as deriving from genetically distinct

individuals in the sampled populations (Table 1).

The 71 alleles were identified according to a two step process, employing both

qualitative and quantitative criteria to distinguish true genetic differences from sequence

mismatches arising from PCR and sequence determination errors. In the first, qualitative

step, sequence comparisons were used to identify 59 sets of clones among which

intergenic regions varied in length from 19 to 91 basepairs, and in sequence to such a

degree that homologous nucleotides could not be identified for use in sequence

alignment. Differences among these 59 sets were deemed qualitatively different from

PCR and sequence determination errors (which were nonetheless undoubtedly present).

Most of the 59 sets of clones having unalignable intergenic regions contained single or

identical clones, or clones exhibiting minimal differences attributable to error, but three

sets contained clones having sufficient mismatch (up to 19.1%) to suggest that they had

been amplified from genetically distinct, though related individuals. In the second,

quantitative step, a criterion of 3.5% mismatch was applied as an upper bound for

sequence differences considered indistinguishable from PCR plus sequence

determination errors in order to subdivide the three sets of clones and add an additional



Table 1: Frequency of genetic
cytometrically sorted samples.

alleles among cloned amplification products from flow

Allele / Sample
P. marinus

1 Allelel
2 Allele2
3 Allele3
4 Allele4
5 Allele5
6 Allele6
7 Allele7
8 AlleleS
9 Allele9

10 Allelell
11 Allelel2
12 Allelel3
13 Allelel4
14 AllelelS
15 Allelel6
16 Allelel7
17 Allele19
18 Allele21
19 Allele22
20 Allele23
21 Allele25
22 Allele26
23 Allele27
24 Allele28
25 Allele29
26 Allele30
27 Allele31
28 Allele32
29 Allele33
30 Allele35
31 Allele36
32 Allele37
33 Allele38
34 Allele39
35 Allele41l
36 Allele42
37 Allele43
38 Allele44
39 Allele45
40 Allele46
41 Allele47
42 Allele48
43 Allele50
44 Allele51
45 Allele52
46 Allele54
47 Allele56
48 Allele57
49 Allele58
50 Allele59
51 Allele60O
52 Allele61l
53 Allele62
54 Allele63
55 Allele64
56 Allele65
57 Allele66
58 Allele67
59 Allele68
60 Allele69
61 Allele71
62 Allele72
63 Allele73
64 Allele74
65 Allele75
66 Allele76
67 Allele77
68 Allele78

P. marinus Total
No. different Alleles
E(S19)

Chloroplast-like
69 Allele20
70 Allele24
71 Allele40

TOTAL

G50 G85Br G85D G135Br G135D S40 S70 5120 TOTAL

12 14

16 5
1

1
1 3

1
1
3
2
1
1
1

1 2
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 2
1
1

1 1
1 1
1 1
1 1
1 1
1 1
1 2
1 1
1 1
1 1
1 1
1 2
1 1
1 1
1 1

1
4
1
1
1
2
1
1
1

23
6
5.3

23 24
14 6
12.1 5.2

23 23 19 28 24 187
6 16 8 15 21 67
5.4 13.7 8.0 10.5 16.8 10.9

23 23 25 24 23 21 28 24 191

Abbreviations: G50, 50m; G85Br and G85D, Bright and Dim clouds of 85m double population;

G135Br and G135D, Bright and Dim clouds of 135m double population; all from the Gulf Stream

depth profile. S40, 40m; S70, 70m; S120, 120m; all from the Sargasso Sea depth profile.

E(S19), estimated number of different alleles for a constant sample size of 19 clones.
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12 alleles to the dataset2. The subdivision of these three sets of clones according to the

quantitative criterion resulted in the total of 71 alleles (Table 2).

Pairwise comparisons among alleles identified by subdivision of sets of clones

having similar intergenic regions show a mean fraction of sequence mismatch at third

codon positions (fractional mismatch at third codon positions/3 x fractional mismatch at

all codon positions) of 0.82, significantly different from the expectations of random PCR

and sequence determination errors (this thesis Appendix II).

A prototype sequence (the longest and least ambiguous) was chosen to represent

each allele in sequence comparisons and aligned with other sequences in the database

according to conserved regions in amino acid translations (Figure 3, this thesis Appendix

IV). Translations of prototype sequences were highly homologous to petB and D

sequences already in the database, with all translations containing phylogenetically

conserved amino acid residues, including histidines at positions 186 and 201 in the

Synechococcus PCC7002 sequence, hypothesized to participate in heme binding (Carter

et al. 1981, Widger and Cramer 1991, Hope 1993), when sequence was available for

these positions. The most striking differences among alleles were in the intergenic

region, which differered in length and sequence among alleles. In coding regions

pairwise nucleotide comparisons among the 71 alleles showed that they differed by an

average of 24.1% ±4.9% (Figure 4a), with most differences occurring at third codon

positions which differed by 51.4% ±9.5% (Figure 4b). The more highly conserved first

two codon postions differed by only 10.8% ±6.8% (Figure 4c). Since the overwhelming

2The 3.5% upper limit criterion for sequence mismatch among clones assigned to a single Allele was
arrived at by an optimization protocol which considers the fraction of sequence mismatch at third (silent)
codon positions for sequence comparisons along a scale of total sequence mismatch. Within the bounds of
theoretical limits, the criterion divides the set of pairwise sequence comparisons within the three sets of
alleles having similar intergenic regions into the two subsets having the greatest possible difference in their
mean third codon position to all codon position mismatch ratios (this thesis Appendix II).



Table 2a. Fractional sequence mismatch at all sequence positions, including intergenic
regions (x1000, below the diagonal) and fraction of sequence mismatch located at third
codon positions (fractional mismatch at third positions/3 x fractional mismatch at all
codon positions, for coding regions only) (x100, above the diagonal) for pairwise
comparisons of prototype sequences for Alleles having intergenic regions alignable with
Allele 1.

1 2 3 4 5 6 7 8 9 10

1. Allel - 082 089 094 085 100 090 090 081 080
2. Alle2 126 - 092 083 079 080 078 080 078 073
3. Alle3 158 124 - 091 085 086 084 079 089 080
4. Alle69 057 133 160 - 084 100 083 085 083 078
5. Alle71 080 167 173 095 - 100 079 080 071 072
6. Alle72 059 148 134 051 057 - 077 080 071 059
7. Alle73 073 156 169 070 077 076 - 085 060 078
8. Alle74 148 166 190 153 181 154 143 - 071 084
9. Alle75 081 157 155 077 072 048 086 155 - 057

10. Alle76 119 154 191 129 180 147 142 142 164 -

Table 2b. Fractional sequence mismatch at all sequence positions, including intergenic
regions (x1000, below the diagonal) and fraction
of sequence mismatch located at third codon positions (fractional mismatch at third
positions/3 x fractional mismatch at all codon positions, for coding regions only) (x100,
above the diagonal) for pairwise comparisons of prototype sequences for Alleles having
intergenic regions alignable with Allele 4.

1 2 3 4

1. Alle4 - 102 101 079
2. Alle41 132 - 102 091
3. Alle77 042 138 - 079
4. Alle78 045 160 060 -

Table 2c. Fractional sequence mismatch at all sequence positions, including intergenic
regions (x1000, below the diagonal) and fraction of sequence mismatch located at third
codon positions (fractional mismatch at third positions/3 x fractional mismatch at all
codon positions, for coding regions only) (x100, above the diagonal) for pairwise
comparisons of prototype sequences for Alleles having intergenic regions alignable with
Allele 17.

1 2

1. ALLE17 - 071
2. ALLE31 075 -



Figure 3. Intergenic region sequences for 71 petB/D alleles recovered from the

Sargasso Sea and Gulf Stream field samples (this work, Genbank accession numbers ),

cultured P. marinus strains Med4, SS120, FP5, MIT9107 (this thesis Chapter Two) and

MIT9313 (this work, Genbank accession number), Synechococcus strains WH8103 (this

thesis Chapter II) and PCC7002 (Brand et al. 1992), cyanobacteria Prochlorothrix

hollandica (Greer and Golden 1991) and Nostoc PCC7906 (Kallas et al. 1988) and

chloroplasts from Chlorella protothecoides (Reimann and Kueck 1989), Marchantia

polymorpha (Ohyama et al. 1986) and Zea maize (Rock et al. 1987). A potion of the

sequence alignment is shown, with the final six codons of petB at left and the initial eight

codons of petD at right. Intergenic region sequences are arbitrarily represented as

contiguous with petB, with alignment gaps inserted between the end of most intergenic

region sequences and the beginning of petD. Intergenic region sequences for P.

hollandica, Nostoc PCC7906, C. protothecoides, M. polymorpha Z maize are truncated.

Designations on nucleotide lines are clone names. Allele designations are indicated on

the translation lines below.
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Figure 4. Frequency distributions for nucleotide mismatch in all pairwise

comparisons of allele prototype sequences. The number of nucleotides in each

comparison varies according to the lengths of the different sequences. a) all codon

positions, mean 24.1%, std. dev. 4.9%. b) third codon positions, mean 51.4%, std. dev.

9.5%. c) first two codon positions, mean 10.8%, std dev. 6.8%.
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majority of sequence differences among alleles are located at evolutionarily

unconstrained sites, most mismatches among alleles are likely to be due to evolutionary

processes. Thus, even though some prototype sequences undoubtedly contain errors, the

alleles named in this study serve the purpose of identifying genotypes present in the

natural populations.

Phylogenetic affinities of the cloned sequences. Neighbor-joining analysis

including twenty of the longest prototype sequences revealed that most alleles belong to

the P. marinuslmarine A Synechococcus cluster, within which P. marinus and marine A

Synechococcus lineages are not well resolved (Figure 5) (this thesis Chapter Two). The

presumption that alleles branching with Synechococcus WH8103 in the tree actually

derive from correctly sorted P. marinus cells, and not from contaminating

Synechococcus, is reinforced by the observation that Type 6, an allele which branches

close to Synechococcus WH8103, is highly similar to petB/D sequences from cultured P.

marinus MIT9313 (99.7% sequence identity over 260 bp) and P. marinus MIT9303

(98.3% identity over 272 bp) (Figure 5b). The possibility remains, however, that some

sequences recovered in this study do, in fact, come from mis-sorted Synechococcus. To

reflect this possibility, alleles which fall into the P. marinus/marine A Synechococcus

lineage should be considered as presumptive P. marinus alleles.

Three alleles, numbers 20, 24 and 40, do not cluster with P. marinus/marine A

Synechococcus, but instead form a phylogenetic group branching below the divergence of

chlorophyte and land plant chloroplasts (Figure 5). The position of this cluster is

reminiscent of the phylogenetic branch point for rhodophyte, pheophyte and some green

algal chloroplasts in 5S rRNA, 16S rRNA and psbA phylogenies (Van den Eynde et al.

1988, Maid et al. 1989, Douglas and Turner 1991, Markowicz and Loiseaux-de Goer

1991, Oyaizu et al. 1993). Thus, these alleles may have originated in plastids of



Figure 5. Phylogenetic relationships among 20 petB/D alleles cloned from flow

cytometrically sorted populations in the Sargasso Sea and the Gulf Stream, cultured

strains of P. marinus and other members of the oxygenic phototroph radiation. (a) tree

inferred by neighbor joining using 163 nucleotides at the first two codon positions of

petB and petD. Alleles 20, 24 and 40 form a cluster allied with green plant and algal

chloroplasts. The remaining clones cluster with P. marinus and marine A Synechococcus

WH8103. (b) tree inferred from 77 nucleotides at first two codon positions in petB and D

to include short sequences from P. marinus cultured strains MIT9303 and MIT9313.

Allele 6 is 99.7% identical to P. marinus MIT9313 and 98.3% identical to P. marinus

MIT9303 for all sequence positions.
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cryptophytes or coccolithophorids, both of which were present at the Gulf Stream and

Sargasso Sea stations (R. Olsen, pers. comm.), or perhaps in plastids of the newly

discovered marine chlorophyte Ostreococcus tauri (Courties et al. 1994), which may

have been liberated during sample concentration. Liberated choroplasts lacking

phycoerythrin would match the flow cytometric definition of P. marinus used for cell

sorting and could therefore have been included in the sorted samples without machine

error. The three chloroplast-like alleles were omitted from the population genetic

analysis, leaving 68 P. marinus alleles in the dataset..

Phylogenetic affiliations of alleles not included in the neighbor-joining tree

(because of short sequences) were assessed by comparison of mismatch frequencies

between these sequences and selected sequences used to infer the tree (Table 3). All

alleles not included in the tree were more similar to at least one member of the P.

marinus/marine A Synechococcus cluster than to sequences outside the cluster and so

were included in the population genetic analysis.

Allele counts for P. marinus in sorted samples. Clones recovered from each of

the eight sorted samples contained between 6 and 21 P. marinus petB/D alleles (Table 1).

Correcting for unequal sample size by the method of Hurlbert (1971), the estimated

number of alleles present in a sample size of 19 clones for each sorted sample varied

from 5.16 to 16.83 (Table 1).

To assess the completeness of sampling for genetic diversity, rarefaction curves

were generated for each sorted sample and for lumped samples containing both members

of flow cytometric double populations, constituents of entire water columns or the entire

dataset (Figure 6). For a sample which contains a good representation of the genetic

diversity in its parent population, a plot of E(Sn) (the estimated number of genetic
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Figure 6. Rarefaction curves for clones recovered from a) individual sorted

samples, b) lumped samples containing both members of flow cytometric double

populations or constituents of entire water columns and c) a lumped sample containing

the entire dataset. The upward trend of all curves indicates that the number of alleles in

all populations are incompletely sampled. E(Sn) (the estimated number of alleles for n,

the number of clones in a random subsample (Hurlbert 1971).
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variants for subsample size n) versus n approaches horizontal as n approaches the sample

size (Hurlbert 1971) 3. Curves for each of the eight sorted samples, and for lumped

samples show upward trends of E(Sn) with n, and no indication of curve flattening. It is

therefore apparent that many more genetic variants were present in the Sargasso Sea and

Gulf Stream populations than were recovered in this study.

Distribution of alleles among sorted samples. Of the 68 P. marinus alleles in

the dataset, only 16 were found more than once, with 12 appearing in more than one

sample. Since rarefaction curves indicate that populations in the different sorted samples

were not exhaustively sampled, the absence of shared alleles is not considered evidence

of dissimilarity between samples. However, the shared presence of alleles is positive

evidence of similarity. Scoring alleles according to their presence in the different

samples reveals no consistent pattern of shared genotypes, but instead suggests that all of

the sorted populations drew membership from a common gene pool (Table 4). Of

particular interest is the finding that eleven alleles were shared between the Gulf Stream

and Sargasso Sea depth profiles and that two alleles were shared by members of the

double population from 85 m in the Gulf Stream, and one by the pair recovered from 135

m.

3This assumes a large parent population with a relatively small number of genotypes. It is possible to
imagine a parent population in which every individual has a different genotype, in which case rarefaction
curves would never flatten out, even for samples approaching the size of the parent population. However,
even for this imagined situation an upward trend in the rarefaction curve for a finite sample would indicate
that unsampled variants were present in the parent population.
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DISCUSSION

Field populations of P. marinus are genetically heterogeneous. We find that

field populations of P. marinus are genetically heterogeneous, according to the

distribution of "presumptive" P. marinus petB/D alleles cloned out of flow cytometrically

sorted field samples. The P. marinus alleles must be considered only presumptive

because they fall into a lineage containing both P. marinus and marine A Synechococcus

cultured isolates, which fail to form distinct phylogenetic clusters (Figure 5, this thesis

Chapter Two). Thus the P. marinus identity of these alleles, presumed because of the

flow cytometric purification, cannot be confirmed by phylogenetic analysis, and it is

possible that some may have originated in marine A Synechococcus mistakenly included

in the P. marinus sorted samples.

Between 6 and 21 alleles were present in the set of clones recovered from each of

eight flow cytometrically sorted samples, with the presence of large numbers of

additional alleles implied by rarefaction analysis (Figure 6). The set of alleles recovered

within a water column is phylogenetically diverse within the P. marinus/marine A

Synechococcus cluster, with both Sargasso Sea and Gulf Stream water columns

containing alleles which form phylogenetic clusters with distantly related cultures

isolated from the Pacific and the Sargasso Sea (compare Table 1 and Figure 5). The

structure of P. marinus populations implied by these results is consistent with the detailed

findings of Selander and colleagues for the population genetics of Escherichia coli, in

which most of the genetic diversity of the species is found within local populations, and

in which cell lineages are globally distributed (Selander et al. 1987).

Oceanographic implications of genetic diversity within P. marinus populations

are twofold. First, the physiologic activities of P. marinus in the water column are not
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simply described by the properties of one or a small number of cultures isolated from the

same geographic area, but by the combined activities of a phylogenetically diverse set of

cells, some of which are similar to isolates from distant parts of the world. Like SS 120

and Med4, these genetic variants may exhibit physiological differences which would give

each a selective advantage under different environmental conditions. The second

oceanographic implication is that adaptive changes in P. marinus populations over the

annual cycle and with depth are as likely to be due to shifts in their genetic composition,

due to differences in growth rates of indigenous genetic variants under varying

environmental conditions, as to intracellular adaptive responses (Wood 1988, Wood and

Leatham 1992).

P. marinus populations recovered from the Gulf Stream and the Sargasso Sea

water columns share eleven out of the 12 alleles which were found in more than one

sorted sample (Table 4), despite the large scale hydrographic differences which

distinguish these two water bodies. The large number of these shared alleles suggests,

again, a similarity to the population structures of E. coli, in which populations in distant

locations share alleles.

Flow cytometrically defined subpopulations from two "double populations"

recovered from the Gulf Stream exhibited overlapping sets of petB/D alleles in our

analysis, with the pair of subpopulations at 85 m sharing two alleles and the pair at 135 m

sharing one. This result implies that these flow cytometric subpopulations are not

genetically different, but may owe their distinct properties to processes such as

synchronized cell division (Vaulot et al 1994) or mixing of cells acclimated to conditions

in different water masses. Since the subpopulations of the two double populations were

incompletely resolved, however, it is also possible that the shared alleles could result

from the presence in either sort window of cells in the "tail" of the other subpopulation's
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distribution. Also, it should be noted that multiple populations observed at DCM's in the

Atlantic are transient phenomena (unpublished observations of R. Olsen), whereas

multiple populations at Pacific station ALOHA are a stable feature of a permanent DCM

(Cambell and Vaulot 1993). Multiple populations at ALOHA may therefore have a

different origin from those examined in our study, and may indeed contain genetically

different subpopulations.

Genotype frequencies among PCR clones derived from natural populations using

degenerate, inosine-containing primers reflect both gene frequencies in the sample

population and PCR amplification bias for or against specific alleles. It is therefore

speculative to draw inferences from gene frequencies in datasets such as the one at hand.

With this caveat in mind, it nonetheless bears mentioning that Allele 1 and Allele 1-like

sequences predominate in clones recovered from the shallow mixed layer at both

sampling sites (Figure 7), while at DCM's Allele 1-like sequences are present but do not

predominate. Since HPLC and flow cytometric studies find that surface waters under

stratified conditions contain low chl b2/a2 ratios (Goericke and Repeta 1993, Cambell

and Vaulot 1993) similar to those found in P. marinus Med4 (Goericke and Repeta

1993), and since Allele 1 belongs to the phylogenetic cluster containing MIT9107 and

Med4, these results may be correlated. The results of this study are therefore consistent

with the hypothesis that populations at different depths in stratified watercolumns draw

their membership from a single gene pool, but that gene frequencies vary at different

depths, resulting in populations exhibiting different chl b/a2 pigment ratios.
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Figure 7. Frequency of Allele 1-like alleles in sorted samples. The frequency of

alleles having intergenic regions similar to Allele 1 (Alleles 1, 2, 3, 69, 71, 72, 73, 74, 75

and 76) is scored for samples at different depths in the two water columns, lumping

Bright and Dim flow cytometric subpopulations at two depths in the Gulf Stream profile.

Although this inference must be considered speculative, the high frequency of recovery

of Allele 1-like sequences in surface water samples is consistent with a predominance of

these alleles in P. marinus populations in the surface mixed layer.
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Chapter 4

EPILOGUE: RESPONSES IN THE LITERATURE

TO THE PUBLICATION OF CHAPTER ONE:

MULTIPLE ORIGINS OF PROCHLOROPHYTES

WITHIN THE CYANOBACTERIAL RADIATION
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Since its publication, "Multiple Origins of Prochlorophytes within the

Cyanobacterial Radiation" (Urbach et al. 1992) has generated numerous citations and has

contributed to the formulation of new theories about the evolution of pigments in

cyanobacteria and chloroplasts (Bryant 1992, Bullerjahn and Post 1992). This Epilogue

is a brief review of published responses to this paper. The conclusions of Chapter One

relevant to the discussion are (1) according to 16S ribosomal RNA (rRNA) phylogenetic

analysis the three known prochlorophytes and chloroplasts each fall into separate

lineages dispersed among the cyanobacteria, and (2) this polyphyletic distribution

suggests chl b photosynthesis was "invented" several times during the evolution of

cyanobacteria and chloroplasts (Urbach et al. 1992).

Most authors citing this work have no argument with the first of these conclusions

(e.g. Bryant 1992, Bullerjahn and Post 1992, Cavalier-Smith 1992, Palenik and

Haselkorn 1992, Swift and Palenik 1992, Cretiennot-Dinet et al. 1993) which echoes an

inference drawn by Turner et al. (1989) and by Morden and Golden (1989a, b) from

analyses of the evolution of Prochlorothrix hollandica, and which agrees with the

analyses of Palenik and Haselkorn (1992) and Lockhart et al. (1992c). However, several

workers have pointed out that the independent invention of chlorophyll b in each of

several lineages is not the only evolutionary scenario to fit the data, and that the

distribution of chl b among cyanobacterial and chloroplast lineages could also result from

lateral gene transfer (Palenik and Haselkorn 1992) or by descent of the entire

cyanobacterial lineage from an ancestor containing both chlorophyll b and

phycobilisomes, with subsequent loss of phycobilisomes in some lineages

(prochlorophytes and green chloroplasts) and chl b in others (most cyanobacteria)

(Bryant 1992, Cavalier-Smith 1992). I wholly concur with these observations, and with

the suggestion that information on prochlorophyte chlorophyll biosynthesis and

chlorophyll a/b binding proteins will help to clarify this issue. To this end, Bullerjahn
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and Post (1992) cite findings that the major chl a/b binding proteins of Prochloron sp.

and P. hollandica are of similar molecular weight and are immunologically cross

reactive. They combine these observations with sequence data indicating that P.

hollandica antenna proteins are different from chloroplast light harvesting complexes,

and form the hypothesis that photosynthetic antennae in P. hollandica and Prochloron sp.

share a common origin separate from that of green chloroplasts. Future work in this

direction, including analysis of the P. marinus photosynthetic system, will surely reveal a

fascinating evolutionary story.

One research group, including P. Lockhart, A.W.D Larkum, D. Penny and

coworkers does, however, take issue with the phylogenetic branching pattern inferred

from 16S rRNA sequences in Chapter One (Lockhart and Penny 1992, Lockhart et al.

1992b, Larkum 1992, Lockhart et al. 1993). Their skepticism comes as an extension of

their work showing that branching patterns inferred from protein-encoding genes are

confounded by nucleotide substitution biases (detected as differences in G+C

composition at third codon positions, see Chapter Two). Lockhart et al. (1992b) argue

that phylogenetic trees inferred from cyanelle, prochlorophyte, cyanobacterial and

chloroplast protein-encoding sequences are invalid because patterns of similarity in third

codon position G+C content are congruent with the inferred phylogenetic branching

patterns. They argue, in addition, that 16S rRNA trees, even those inferred from

sequences without detectable G+C bias, are also invalid, based on the following premise:

Although the effects of substitutional bias upon inference are best
demonstrated by analysis of protein-coding nucleotide sequences, bias (a
genomic effect in eubacterial lineages) must also affect variable sites
within rRNA genes and may also have an effect on amino acid
substitution (Jukes and Bhushan 1986; but see Prager and Wilson 1988).
Inference from such datasets (particularly where long edges link taxa:
e.g., Giovannoni et al. 1988; Morden and Golden 1989; Evrard et al. 1990;
Kishino et al. 1990) may therefore also be misled.

(Lockhart et al. 1992a)
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Larkum (1992) proposes that, since phylogenetic trees linking the Cyanophora paradoxa

cyanelle to chloroplasts and showing prochlorophytes dispersed among the cyanobacteria

are invalid, it is reasonable to propose that prochlorophytes are monophyletic and and

share an ancestry with green chloroplasts.

Lockhart and coworkers make a valid point in saying that phylogenetic trees,

inferred by methods which assume constant substitution biases across taxa, may be in

error when calculated from data having varying third codon position G+C content. Their

extension to 16S rRNA sequences quoted above is a subtle argument, but also may hold

true. Resolution of these phylogenetic problems must await the development of methods

demonstrated to be insensitive to nucleotide substitution biases. However, the failure of

P. marinus strains to group with chloroplasts having similar third codon position G+C

content in trees inferred with psbB and petB/D sequences (Urbach and Chisholm in

preparation, this thesis Chapter Two) argues against an evolutionary link between P.

marinus and chloroplasts.

I'll close with a quote from Bullerjahn and Post (1992) which is appropos:

If one reviews much of the literature on the prochlorophytes, it
becomes clear that taxonomic classification and the inferring of
relationships between organisms can be a risky enterprise. Some
microbiologists have been eager to show a direct relationship between
prochlorophytes and the chloroplast, whereas others were determined to
place them among the cyanobacteria. The underlying problem in such
exercises lies both in the danger of overemphasizing one aspect while
belittling others and in the import of externally imposed bias into the
judgement of a certain property.
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Appendix I

PRELIMINARY ANALYSIS OF GENETIC DIVERSITY IN GULF STREAM

POPULATIONS OF PROCHLOROCOCCUS MARINUS

BY DIRECT SEQUENCING OF PCR PRODICTS AMPLIFIED

FROM FLOW-CYTOMETRICALLY SORTED CELLS
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Chapter Three details an investigation into the genetic diversity of natural

populations of Prochlorococcus marinus from the the Gulf Stream and the Sargasso Sea

in which P. marinus were sorted from field samples by flow cytometry and the diversity

of petB/D sequences in the sorted samples assessed by cloning and sequencing individual

molecules from PCR amplification products. This Appendix describes a preliminary

investigation which preceded the cloning experiment in which PCR products sorted from

Gulf Stream field samples were directly sequenced. Autoradiograms of the resulting

sequencing gels revealed comigrating bands at numerous nucleotide positions, especially

in the intergenic region between petB and petD, indicating that multiple petB/D

sequences were likely to be present in the amplification products.

METHODS

Sample collection, flow cytometric sorting and DNA isolation. The DNA

preparations used for this preliminary experiment were the same as those used for the

analysis of Gulf Stream populations in Chapter Three, and originated in samples

collected from 50 m, 85 m and 135 m at 370 30.68'N, 680 13.69'W during July of 1993.

Samples collected from 85 m and 135 m each contained a pair of flow cytometrically

defined "double populations," subpopulations of which were sorted into separate

samples, resulting in a total of five sorted samples (Figure 2 in Chapter Three).

PCR amplification. Sequences at the petB/D locus were amplified as described

for the analysis of petB/D sequences from cultured P. marinus and Synechococcus, using

biotinylated forward primer PPETBD314 and unbiotinylated reverse primer

PPETBD1160R (this thesis Chapter Two). PPETBD1160R also served as a primer for

sequencing. Conditions for PCR amplification were less stringent than those used for the

cloning experiment (this thesis Chapter Three) and produced sufficient amounts of PCR
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products to serve directly as sequencing templates. Templates were prepared using

streptavidin-coated magnetic beads (Dynal) and sequenced directly with Sequenase

(United States Biochemical), both according to their manufacturers' instructions.

RESULTS

Autoradiograms from direct sequencing of petB/D amplified from sorted samples

revealed multiple comigrating bands which differed in numbers and intensities among the

different samples (Figure 1). Most dramatic were the results of direct sequencing of

petB/D from the 85 m Bright and 135 m Dim samples in which multiple comigrating

bands were frequent in the intergenic region above the petB/D start codon and were also

visibile at some third codon positions in petD (Figure 1, lanes b and e). Multiple

comigrating bands were less prominent, but visible, in sequencing reactions from the 50

m amplification (lane a) and could not be detected in the 85 m Dim and 135 Bright (lanes

c and d, compare to reactions for a P. marinus culture in lane e).

"Major" sequences could be read above the relatively low or absent background

of comigrating bands for the 50 m, 85 m Dim and 135 m Bright samples. All of these

major sequences were similar to Allele 1, the most frequently recovered allele in the

cloning experiment (49 out of 191 clones in the combined dataset for Gulf Stream and

Sargasso Sea sorted samples, 22 out of 139 clones for Gulf Stream samples alone, Table

1 in Chapter 3) (Figure 1, lanes a, c and d).

DISCUSSION

The presence of multiple comigrating bands in sequencing autoradiograms can

result either from sequence heterogeneity in the template DNA or from suboptimal
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reaction conditions which allow premature termination of nascent DNA chains. The

latter cause would not, however, be expected to produce a disproportionate number of

comigrating bands at third codon position sites and intergenic regions, a result which is

dramatically evident in autoradiogram lanes from the 85 m Bright and 135 m Dim sorted

samples (Figure 1, lanes b and e) and, less dramatically, in lanes from the 50 m sorted

sample (lane a). The results of this analysis were therefore consistent with the presence

of multiple petB/D alleles in at least some of the flow cytometrically sorted field samples,

and prompted the cloning and sequencing investigation in Chapter Three.

The investigation in Chapter Three revealed that, in fact, all of the PCR products

from the Gulf Stream and similar products from the Sargasso Sea contained multiple

petB/D sequences. Consistent with the results of direct sequencing, the 85 m Bright and

135 m Dim samples contained the largest variety of petB/D alleles: when corrected to a

constant sample size of 19 clones these samples contained 12.1 and 13.7 alleles,

respectively. The 50 m, 85 m Dim and 135 m Bright sorted samples yielded 5.3, 5.2 and

5.4 alleles for the same constant sample size (Table 1 in Chapter Three).

There was, however, one type of comparison in which the results of the direct

sequencing and cloning experiments did not consistently agree. The major sequence and

the most frequently recovered allele were not consistently identical for each of the sorted

samples: while the 50 m sample yielded a majority of Allele 1 clones (17 out of 23

clones) consistent with its major sequence, the sets of clones recovered from the 85 m

Dim and 135 m Bright samples were mostly Allele 5 (17 out of 24 and 16 out of 23

clones, respectively), with only a minority of clones belonging to Allele 1 (three out of

24 and two out of 23 clones, respectively) (Table 1 in Chapter Three). This discrepency

may be attributable to two potential causes: 1) Allele 1 may have been preferentially

amplified under the less stringent conditions used to produce PCR products for direct
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sequencing as compared to the cloning experiment, or 2) Allele 1 may have been

preferentially chosen as template during direct sequencing reactions. Discrepencies in

the identities of major sequences and most frequently recovered alleles for the different

sorted samples reinforce the necessity of mentioning the caveat in Chapter Three:

genotype frequencies among PCR clones (and major sequences of PCR products) derived

from natural populations using degenerate, inosine-containing primers reflect both gene

frequencies in the sample population and PCR amplification bias (as well as sequencing

reaction bias) for or against specific alleles. It is therefore speculative to draw inferences

from gene frequencies (or major sequences) in datasets such as the one at hand.
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Figure 1. Autoradiograms from direct sequencing of petB/D PCR products

amplified from flow cytometrically sorted P. marinus from natural populations in the

Gulf Stream (a-e) and from unsorted, cultured P. marinus MIT9313, isolated from the

135 m Gulf Stream water sample (L. Moore pers. comm.) (f). The arrow marks the

initial petD ATG codon, above which is intergenic region sequence. Dashes mark the

positions of third codon positions in petD. a) 50 m, b) 85 m Bright, c) 85 m Dim, d) 135

m Bright, e) 135 m Dim sorted samples (Chapter Three). f) unsorted, cultured MIT9313.
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Appendix II

JUSTIFICATION FOR THE 53.5% SEQUENCE DIFFERENCE

CRITERION FOR SEQUENCES ASSIGNED TO A SINGLE ALLELE
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Introduction. In Chapter Three, genetic diversity in natural populations of

Prochlorococcus marinus was investigated by comparing DNA sequences of cloned PCR

products amplified from flow cytometrically sorted field samples. The genetic locus

examined included the 3' end of the petB gene, an intergenic "nonsense" region and the 5'

end of the petD gene (the amplified locus, including both gene fragments and the intergenic

region, being referred to as "petB/D"). Clone sequences (which were inferred from single

gel readings, and not confirmed by sequencing complimentary strands) were categorized into

Alleles, or sets of clones within which sequence differences were indistinguishable from

PCR and sequence determination (PCR+SD) error, corrresponding to genotypes present in

the field samples. For ease of analysis, each Allele was characterized by a single clone

designated as its "prototype." Among the 191 clones analyzed there was a great deal of

sequence diversity, with 59 sets of clones exhibiting intergenic region sequences that were so

different in length and sequence that it was impossible to identify homologous nucleotides

for use in sequence alignment. These sequence differences were easily identified, despite the

undoubted presence of PCR+SD error, as ones which originated in genetically distinct

individuals in the sorted populations. Three of these sets of clones, however, contained

sequences exhibiting sufficient mismatch to suggest that they were amplified from

individuals containing different, though related sequences. These sets were subdivided into

Alleles according to a •3.5% total sequence mismatch with prototype criterion for clones

included within an Allele. The total number of Alleles arrived at by this process, including

the sets of clones with unalignable intergenic sequences, was 71.

This Appendix presents arguments in support of the •3.5% total sequence mismatch

criterion used to group clones into Alleles in Chapter Three. Initially, bounds are set on

possible values for the criterion using a theoretical calculation based on published values for

Taq polymerase error rates in PCR and an ad hoc estimate of the range of sequence

determination error rates. Next, evidence is presented from the distribution of closely related
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clones among field samples suggesting that some sequences within these bounds do differ as

a result of natural variation, and not simply due to PCR+SD error. Finally, a practical

method is described for optimizing the choice of criterion using the fraction of sequence

mismatch occuring at third codon positions, and the method is applied to the dataset.

Theoretical confidence limits for the frequency of sequence mismatches between

cloned PCR products attributable to PCR+SD error. During the course of PCR

amplification, replication errors give rise to PCR products containing one or more

mismatches with the original template sequence. The frequency of errors within individual

PCR product molecules can be seen to follow a Poisson distribution, with variance equal to

the mean, despite the fact that the frequency of errors in whole PCR reactions conforms to a

Luria-Delbruck distribution (Eckert and Kunkel 199 la,b), and thus has a very high

variance'.

In the final, cloned PCR product the mean error frequency (f) is equal to the

probability that polymerase error has caused a nucleotide to become mismatched with its

progenitor in the original template (Eckert and Kunkel 1991a,b),

1The Luria-Delbruck distribution was first proposed to describe the widely varying frequency of mutant cells
in replicate bacterial cultures grown under non-selective conditions in the classic fluctuation test (Luria and
Delbruck 1943), but the distribution is equally applicable to the frequency of errors in replicate PCR reactions
(Eckert and Kunkel 1991a,b). In a Luria-Delbruck process the rare occurrence of a mutation (PCR error)
during an early generation (cycle) causes the mutant (error) frequency in a small number of cultures
(reactions) to be substantially greater than the mean, giving rise to a frequency distribution having a high
variance. This is because the final number of mutants (PCR products) resulting from an early mutation (error)
is amplified through the process by a factor of 2x, where X equals the number of generations (cycles) between
the mutation (error) and the analysis. Thus, in a Luria-Delbruck process the number of the round in which a
error occurs influences the final error frequency attributable to that error. In the case of the distribution of
errors within a single PCR product molecule, however, the situation is different. In this case, each nucleotide
is descended from its original template nucleotide through a number of rounds of PCR replication, each with a
probability of error. Every nucleotide in the chain is subject to this process independently, and the final error
frequency attributable to any error is equal to 1/L, where L is the number of nucleotides in the chain, and is
independent of the number of the round in which the error occurred. If the probability of error is assumed to
be equal for every nucleotide position, errors within the chain are seen to be rare, independent events with
equal probabilities of occurrence. Thus the frequency of these errors conforms to a Poisson distribution.
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nm
f =_ (1)

2

where n is the number of PCR cycles and m the probability of error per nucleotide per

cycle2. Since these errors are distributed as a Poisson distribution, the variance for the

frequency of errors in individual PCR product molecules is equal to the mean, and

confidence limits can be calculated for the frequency of PCR errors in individual product

molecules using known values for the polymerase error rate. The expected frequency of

differences between two cloned PCR products that can be attributed to PCR error is equal to

the expected frequency of errors in a cloned molecule twice the length (1) of the region

compared between the two products (neglecting coincidence of errors at homologous

nucleotide sites and assuming the two cloned molecules are not amplification products of the

same template molecule, which would decrease the expected frequency of their sequence

differences). Accordingly, the 95% confidence upper limit (L95) for the frequency of

mismatch between two cloned sequences attributable to PCR error is

L95 = f + to.1[21-1 'f (2)

where t0.1121-1] is the critical value for student's t distribution for a one-tailed test with a =

0.05 and degrees of freedom equal to 21 - 1.

A term may be added to expression (1), the mean frequency of polymerase errors in

cloned PCR products, in order to account for sequence determination errors. This gives
nm

f =_-+g (3)
2

where g is the rate of sequence determination errors in errors nucleotide- 1. If sequence

determination errors are assumed to follow a Poisson distribution, this expression for f may

be used to calculate 95% confidence intervals for PCR+SD error using equation (2).

2The probability that a molecule has inherited a DNA strand containing an error introduced during the
previous round is m/2, hence the 2 in the denominator. This factor applies to the product of the final PCR
round as well, although in this case it reflects the probability that the progeny of a mutant strand in a cloned
heteroduplex will predominate in the final plasmid preparation. This formulation neglects the effects of
superimposed errors.
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Sequence determination errors are estimated ad hoc at between 0.0 and 5.0 x 10-3 errors

nucleotide-1.

Application of the theoretical confidence limits to analysis of the data in

Chapter Three. Mean, standard deviation and upper 95% confidence limits for the

frequency of sequence differences expected in cloned PCR products compared over 71

basepairs (the length of the shortest sequence in the dataset) were calculated using the lowest

and highest reported Taq polymerase error rates (Eckert and Kunkel 199 la) (corrected to

reflect nucleotide substitutions only3), over the estimated range of sequence determination

errors (Table 1). These upper confidence limits provide theoretical bounds for the value of

the criterion to be used to declare sequences different or indistinguishable. If the lowest

combined error rate were to apply, sequences in Chapter Three having alignable intergenic

regions and differing by up to 3.1% of nucleotide positions would be considered

indistinguishable from PCR products amplified from identical template sequences, at p =

0.05. However, applying the highest reported error rate raises this criterion value to 18.5%.

Thus, the 95% upper confidence confidence limit for the amount of sequence difference

between cloned PCR products attributable to error is shown to be sensitive to estimates of the

polymerase and sequence determination error rates, the true values of which are unknown for

this experiment (Table 1).

3 Values for the range of Taq polymerase error rates in PCR are available from the literature (Eckert and
Kunkel 1991) but require correction in order to be applicable to data analysis for Chapter 3. In Chapter 3,
apparent insertions and deletions are not counted as sequence mismatches (i.e., gap weights were set to zero)
on the assumption that these mismatches are likely to have been caused by PCR+SD error. Accordingly, Taq
polymerase error rates used to calculate theoretical upper 95% confidence limits for PCR+SD error in Chapter
3 have been corrected to omit insertion and deletion errors using the original data, where this is aplicable.
Specifically, the highest reported Taq polymerase PCR error rate has been corrected from 2 x 10 to 1.6 x 10-
4 errors nucleotide- 1 cycle-1, using the original data (Dunning et al. 1988), while the lowest reported error
rate is unchanged because insertions and deletions were not observed in the original experiments (Goodenow
et al. 1989).
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Applying the calculated extreme bounds for the criterion to the task of lumping

indistinguishable sequences into Alleles using the set of clones recovered from the Gulf

Stream and Sargasso Sea yields a total of 74 Alleles in the combined dataset for the lowest

error estimate and 59 Alleles for the highest one4. While the impulse to err on the side of

conservatism would dictate the choice of •18.5% mismatch as criterion for inclusion within

an allele, independent evidence suggests that this criterion would lump together a number of

cloned sequences which do, in fact, derive their differences from genetic heterogeneity in P.

marinus populations. A lower criterion, while still above the 95% upper confidence limit

calculated from the lowest reported Taq polymerase error rate, can be estimated by

considering the pattern of distribution of closely related sequences among field samples and

the ratio of their mismatches at third codon positions to mismatches at all codon positions in

order to distinguish sets of related sequences giving useful information about genetic

diversity from sets in which members differ mostly due to PCR+SD error.

An upper limit for the sequence mismatch criterion suggested by the

distribution of closely related sequences among field samples. In the dataset of Chapter

Three four 100.0% identical sequences belonging to Allele 71 were recovered from four

different field samples: the 85m Dim and 135m Dim Gulf Stream samples and the 40m and

70m Sargasso Sea samples, and therefore were cloned out of separate PCR reactions. Allele

71 is highly similar to Allele 1 (8.1% mismatch), which includes numerous identical clones

distributed among several field samples. If the 18.5% mismatch criterion were to be applied,

Allele 1 and Allele 71 (as well as several others) would be lumped together as members of a

single Allele. While it is not unlikely that a single Allele 71 clone could have been produced

from an original Allele 1 template, it is highly unlikely that the identical set of errors would

4 Application of the upper bound criterion calculated using the highest combined PCR+SD error rate causes all
sequences having alignable intergenic regions to be lumped with each other. There are 59 sets of intergenic
regions which cannot be aligned with each other, therefore application of this higherst possible criterion value
results in a dataset containing 59 Types.
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occur in four separate PCR reactions and four separate sequence determinations. Therefore,

at least some sequences in the dataset that differ by 8.1% represent true genetic variants and

not the results of PCR+SD error.

Optimization of the criterion for distinguishing sequence mismatch attributable

to PCR+SD error from mismatch due to genetic diversity by considering the fraction of

sequence mismatch at third codon positions: a practical method. Evolutionary change

at third codon positions is generally faster than at the first two positions because degeneracy

in the genetic code allows substitution at the third position of most codons without changing

the encoded amino acid. PCR+SD errors, on the other hand, should be random with respect

to codon postion. A high fraction of sequence mismatch at third codon positions (fraction of

mismatch at third codon positions = fractional mismatch at third codon positions/3 x

fractional mismatch at all codon positions) is therefore evidence that a pair of cloned

sequences differ mostly due to true evolutionary divergence under selection for a conserved

amino acid sequence, rather than due to PCR+SD error. Conversely, a low ratio is evidence

of the activity of random processes like PCR error and inaccurate sequence determination.

In an ideal dataset, a pair of cloned sequences which differ due to PCR+SD error

alone should have a fraction of sequence mismatch at third codon positions equal to

approximately 0.33. In an actual dataset like the one in Chapter Three, however, there is

likely to be a significant amount of scatter in values for this ratio at the low end of the total

sequence mismatch scale due to sampling error associated with the small number of

mismatches in highly similar cloned sequences of finite length. Additionally, in a real

dataset some sequences differing by small increments of total mismatch may, in fact, differ

due to evolutionary processes, but these individual comparisons cannot be distinguished from

PCR+SD error because sampling error obscures differences in their fractions of mismatch at

third codon positions. The effect of the presence of these small evolutionary differences will
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be to increase the average fraction of mismatch at third codon positions above the 0.33 value

for comparisons at the low end of the total sequence mismatch scale. In the face of this

complexity, the task of setting a total mismatch criterion below which sequence differences

are considered indistinguishable from PCR+SD error (for experiments in which the error rate

has not been experimentally determined) becomes a process of examining the distribution of

fractional mismatch at third codon positions along the scale of total mismatch and

identifying a point of discontinuity at which the sphere of influence of random errors gives

way to one of evolutionary divergence. At this point there will be a maximum difference

between the means for fractional sequence differences at third codon positions for sequence

comparisons above and below the criterion. This transition point should fall between (or

perhaps slightly below) the theoretical upper 95% confidence limits for mismatch

attributable to PCR+SD error, determined according to the range of probable polymerase and

sequence determination error rates.

Optimization of the criterion for sequences in Chapter Three. For comparisons

of clones having alignable intergenic regions in the dataset of Chapter Three, a plot of the

fractional sequence mismatch at third codon positions (in coding regions only) versus total

mismatch (in coding regions plus intergenic regions) exhibits a marked biphasic appearance

(Figure 1). Consistent with the expectations of random error due to PCR+SD superimposed

over a smaller amount of difference due to evolutionary processes, comparisons at the low

end of the total mismatch scale have a lower average fraction of mismatches at third codon

positions than do comparisons at the high end, but this average is greater than 0.33. A

criterion chosen to distinguish domains of total sequence mismatch in which the dominant

cause of sequence mismatch is PCR+SD error or true genetic diversity should divide the

dataset into two subsets having the greatest possible difference in their average fraction of

sequence mismatch at third codon positions. A graph plotting this difference for
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Figure 1. Fraction of sequence mismatch at third codon positions (in coding regions

only), plotted against total mismatch (including coding and intergenic regions) for

comparisons of clones with alignable intergenic regions in the dataset of Chapter Three.

Dotted vertical lines are theoretical upper 95% confidence limits for percent sequence

mismatch (L9 5 x 100) attributable to PCR+SD error for the highest and lowest combined

Taq polymerase and sequence determination error rates (Table 1). Datapoints below 1%

total mismatch are omitted, and some symbols represent superimposed data points. Solid

curve: fourth order polynomial fitted to all datapoints. Dashed curves: upper and lower 95%

confidence intervals for the solid curve.
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hypothetical criteria placed along the total mismatch frequency scale at intervals of 0.1%

mismatch shows a local maximum at 3.5% total mismatch, between the theoretical bounds

imposed by published values for Taq polymerase error rates combined with estimates for

sequence determination error rates (Figure 2). The value 3.5% total mismatch was therefore

chosen as the best possible criterion to distinguish sequences differing due to PCR+SD error

from those differing mostly due to evolutionary divergence, for the dataset of Chapter Three.

This value is consistent with a Taq polymerase error rate near the low end of the range of

reported values5.

Reexamination of the graph plotting the fraction of sequence mismatch at third codon

positions versus total mismatch frequency (Figure 1) using the 3.5% criterion to divide the

data into two subsets and analyzing each subset independently for the mean and its 95%

confidence intervals, illustrates the contrast between sequence differences attributed to

PCR+SD error at the low end of the total sequence mismatch scale, and differences due to

natural variation at the high end (Figure 3). The mean fraction of sequence mismatch at

third codon positions for comparisons to the left of the criterion equals 0.48; for comparisons

to the right of the criterion the mean is 0.81. 95% confidence intervals for these means do

not overlap, indicating that the criterion chosen by this method separates the sequence

comparisons in the dataset of Chapter Three into groups which are significantly different in

their fraction of sequence difference at third codon positions, and therefore in their ratio of

random to evolutionary sequence differences.

5 It should be pointed out that this analysis would be improved by an additional sequencing effort, providing
full-length sequences confirmed by sequencing in both directions for all clones having alignable intergenic
regions. It is predicted that the number of sequence comparisons yielding ones and zeros for third codon
position/all codon position mismatch ratios would decrease with increased sequence lengths and accuracy,
reducing scatter at low total mismatch values in Figures Al-1 and AI-3 and perhaps altering Mean R - mean L
values at low total mismatch values in Figure AI-2 as well. An additional sequencing effort before
publication of these results is being considered.
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Figure 2. Optimization of the criterion identifying the upper bound for total

sequence mismatch considered indistinguishable from PCR+SD error. Datapoints are

differences between mean values for the fraction of sequence mismatch at third codon

positions for datapoints in Figure 1, grouped to the right and left of hypothetical criteria

placed at 0.1% intervals along the total mismatch axis. Dotted vertical lines are theoretical

upper 95% confidence limits for percent sequence mismatch (L95 x 100) attributable to

PCR+SD error for the highest and lowest combined Taq polymerase and sequence

determination error rates (Table 1), and therefore represent theoretical bounds for the

criterion. The curve is a second order polynomial fitted to points between 2.0% and 5.9%

total mismatch to aid in identifying the local maximum, which is marked with a solid vertical

line at 3.5% total mismatch. The criterion is therefore set at the value of total mismatch

dividing the sequence comparisons into the two groups having the most different mean

fraction of sequence mismatch at third codon positions possible within the bounds of the

theoretical limits.
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Figure 3. Data from Figure 1 divided into two groups by the criterion (solid vertical

line) drawn at 3.5% total mismatch. Data to the left of the criterion are comparisons between

closely related sequences which, on average, exhibit low fractions of sequence mismatch at

third codon positions emblematic of sequences which differ mostly due to PCR+SD error.

Data to the right of the criterion are comparisons between sequences differing by greater than

3.5% total mismatch which, on average, exhibit higher fractions of sequence mismatch at

third codon positions, characteristic of sequences differing due to evolutionary processes.

Error bars enclose 95% confidence intervals for the mean of all datapoints to the left or right

of the criterion.
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Conclusion. This Appendix presents both theoretical and practical methods for

discriminating between true natural variation and PCR+SD error in the analysis of cloned

sequences amplified from populations of mixed genetic composition. To my knowledge,

both are currently absent from the literature. The practical method is applied to the data of

Chapter Three for sorting clone sequences having alignable intergenic regions into Alleles

corresponding to genotypes present in natural populations. Even without this analysis, the

dataset of Chapter Three shows abundant genetic diversity, with 59 sets of petB/D clones

having unalignable intergenic regions; differences among these sets must be attributed to

natural variation and not to PCR+SD error. Application of the practical method to the

analysis of clones having alignable intergenic regions adds 12 additional Alleles to the

Chapter Three data used for population genetics analysis. The Alleles produced by

subdivision of sets of clones having alignable intergenic regions exhibit an average fraction

of sequence mismatch at third codon positions of 0.82 when compared to related Alleles,

significantly different from the expectations of random error. Therefore, even if their

prototype sequences contain errors, these Alleles serve to identify genotypes present in the

natural populations and are legitimately included in the population genetics analysis.
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Appendix III

COMPARISON OF NUCLEOTIDE DIFFERENCES AMONG CLONES

ASSIGNED TO ALLELE 1 TO KNOWN PATTERNS OF NUCLEOTIDE

SUBSTITUTION ERROR BY TAQ POLYMERASE

FOR DATA OF CHAPTER THREE
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This Appendix provides an analysis of the pattern of sequence mismatch among

clones assigned to one "Allele," or set of clones within which sequence differences are

considered indistinguishable from PCR and sequence determination (PCR+SD) error

according to the 3.5% total sequence mismatch criterion (Appendix I), in order to

investigate the hypothesis that their differences arose through Taq polymerase error

during PCR. Results suggest that different sources of sequence variation, possibly

sequence determination error or natural genetic variation, contribute to sequence

mismatch within Types, in addition to Taq polymerase error.

Sequence mismatches among clones assigned to Allele 1, the allele containing the

greatest number of clones in the dataset of Chapter Three, were compared to nucleotide

substitutions characteristic of Taq polymerase error. Allele 1 was spawned from the

subdivision of a larger set of clones having alignable intergenic regions (Appendix I) and

contains a total of 44 clones, 11 of which are identical to the prototype sequence. 11

additional clones, 10 derived from the 70m Sargasso Sea sorted sample and one from the

50m Gulf Stream sample, contained the identical G->A substitution as their only

mismatch with the prototype. This nucleotide substitution was present in the remaining

S70 clone sequenced across the site in question, as well, and may have originated in a

natural variant of Allele 1 P. marinus present at 70m in the Sargasso Seal. If this

nucleotide substitution is not attributed to PCR+SD error, then at least 22 out of 44 (50%)

of the clone sequences classified as Allele 1 are error-free. Among other mismatches, T-

>C transitions were the most frequently encountered substitutions (14 out of 44 total

substitutions), with C->T almost equally abundant (12 out of 44), followed by A->G (5

out of 44) and G->A (5 out of 44)

1Although it is possible that a significant fraction of pet B/D sequences cloned out of a pair of pooled PCR
reactions, each beginning with about 105 sorted cells could contain the same PCR error, especially if this
error occurred at a hotspot for PCR misincorporation (Keohavong and Thilly 1989), it seems unlikely that
all of them would have the same error.
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(Table 1). Detailed studies examining Taq polymerase errors have proven that most Taq

polymerase errors are A->G or T->C transitions (Dunning et al. 1988, Saiki et al. 1988

Tindall and Kunkel 1988, Keohavong and Thilly 1989, Ennis et al 1990, Eckert and

Kunkel 1991). Therefore, the type of sequence mismatches observed between clones

assigned to Allele 1 and the Allele 1 prototype do not conform to expectations of

variation due solely to Taq polymerase error. It therefore seems likely that natural

genetic variation and/or sequence determination error contribute significantly to sequence

variation within Alleles.
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Table 1. Nucleotide mismatches between clones assigned to Allelel and the Allele 1
prototype sequence, excluding G->A at position 1243.

Nucleotide Identities:
Prototype->clone

Number of
Occurrences

T->C
T->A
T->G

C->T
C->A

G->A
G->T

A->G
A->T
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Appendix IV

ALLIGNED SEQUENCE DATA
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