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Abstract

When two ships are operating in proximity, the resulting hydrodynamic forces can
cause significant loads on the ships. Such problems can be solved by a numerical
approach, based on the use of a three-dimensional panel method. The objective of
this paper is to compute the case of two ships which are allowed to move under the
influence of the hydrodynamic forces. In this problem, the direct evaluation of the
time derivative term from Bernoulli's equation may be computed by one-sided finite
difference if two ships are moving. A new approach presented here is to partially
combine Bernoulli's equation and Lagrange's equation. Numerical experiments will
demonstrate and validate the efficacy of this approach from the concept of the "pos-
sible displacement" which leads to a more accurate two-sided finite difference scheme.
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Chapter 1

Introduction

Hydrodynamic interaction forces become an important consideration in restricted

waters such as ports or channels because ships are operating near to each other due

to navigational constraints. Therefore it is necessary to build a model for predicting

the relative positions of the bodies which may be ships or ocean structures under the

influence of hydrodynamic forces.

Most studies of interaction forces between bodies are restricted in the cases of

two bodies of simple geometries with known velocities, such as two bodies passing

each other in opposite directions with steady-state velocities or one body passing a

stationary one. The present study is an extension of Korsmeyer et al. (1993) [5] in

which geometrical idealizations are removed by adopting a three-dimensional panel

method. The condition of steady-steady velocities is relaxed in the present study

which allows the bodies to be moved by the hydrodynamic forces, but the method is

still applied to cases with steady-state velocities for validation.

Some experimental studies have been surveyed in this field. Cohen and Beck

(1983) [1] have tested the interaction forces of a mathematical hull form passing an-

other stationary mathematical shape in shallow water with the presence of rectangular

channels.

Some computations have been made by Landweber, Chwang & Guo (1991) [7]. In

their paper, Lagrange's equation is used to predict the hydrodynamic forces. They

consider the case of one body stationary and the other approaching it along a line



joining bodies' centroids. If the bodies are laterally symmetrical, there is only one

degree of freedom for each body, because it can be expected that there is no sway

force and yaw moment acting on the bodies. Under such a simplification, they are

able to solve the equation of motion in closed-form, in terms of the added-mass

coefficients, and obtain simple expressions for the velocity of the moving body as a

function of its relative position. Isaacson and Cheung (1988) [3] consider the case

of one body drifting in an incident wave near another one. They approach the two-

body problem in two dimensions from the pressure distribution given by Bernoulli's

equation, although their method can be extended to three dimensions. In their paper,

the velocity potential is decomposed into a component associated with an incident

wave potential, a diffraction potential, and a potential due to the motion of the moving

body. However, Landweber et al. (1991) [7] pointed out that there are some missed

terms related the derivatives of the unit potentials in their force expression due to

an incorrect assumption that " unit potentials are invariant with time ..." Actually,

the unit potential is a function of the geometrical configuration of the bodies and any

enclosing boundaries which may vary with time. Therefore the derivatives of the unit

potentials can not be disregarded in the force expressions.

If Lagrange's equation is used for the case of bodies influenced by the hydrody-

namic forces, it is not superior to the approach from Bernoulli's equation. In La-

grange's equation, for every single related modes the spatial derivative may be done

numerically by moving the body back and forth from the exact position. This defi-

nitely increases much computational burden because in the present study the bodies

are free to move in different modes under the influence of the hydrodynamic forces.

The advantages of Lagrange's equation are that the evaluations of the fluid veloc-

ities are avoided, and the spatial derivatives can be calculated by two-sided finite

difference.

For computational convenience, the partial derivative with respect to time of the

velocity potential in Bernoulli's equation can be replaced by the total derivative with

respect to time minus a convective derivative (or a "transport" term). If the bod-

ies' velocities are known a priori, then this total derivative may be calculated to



any desired accuracy by shortening the time interval and applying some numerical

differentiation technique. However, if the body positions are influenced by the hydro-

dynamic forces, the following relative position is unknown before getting the forces at

the current time instant. The exception is in some simplified case like [7] in which the

equation of motion can be solved in a closed form. For more complicated cases, there

is no closed-form solution of the relative positions. Therefore, the direct evaluation

of the total derivative may only be done by one-sided finite difference, because all

known information is previous to the current time instant.

In the present study, the time derivative is split into two terms. One of them

contains the unknown accelerations, and the other is calculated by two-sided finite

difference from the concept of the "possible displacement" which is different from the

actual displacement. That altered force expression can be combined with the equa-

tion of motion in order to eliminate the unknown hydrodynamic forces, and finally

form a linear system for the unknown accelerations. After obtaining the accelera-

tions, the hydrodynamic forces and the relative position of the next time instant can

be calculated. Since the altered expression for the hydrodynamic forces makes the

calculations of the time derivative by two-sided finite difference possible, there is a

consequent decrease in the computational work for a given accuracy.

The flow problems are formulated under two major assumptions:

1. Ideal flow is assumed, without viscous effects.

2. Free-surface effects are ignored.

The integral equations are discretized as a linear system by a panel method. The

panel method approach, which follows from the pioneering work of Hess and Smith

(1962) [2], is to represent the geometry of the problem by quadrilateral or triangular

panels and assume the strengths of the singularities to be unknown constants over

the panels.

The present study is an extension of the program CHANEL, a derivative of the

program WAMIT (Wave Analysis MIT). The program CHANEL is a panel-method

program which computes the hydrodynamic forces for the case of one body fixed and



one body in translation with constant velocity. There are no assumptions about the

form of the bodies or their relative positions. The extended version implements the

features of allowing two bodies to be moved by the hydrodynamic forces, and utilizing

the altered expression outlined above.

Three different methods are described in §2 for computing the force and mo-

ment on each body, presuming the velocity potential and source strength have been

determined on the surface of the body. The mathematical formulations for the flow

problems are outlined in §3. The influence of the propeller on the hydrodynamic force

is surveyed in §4. Numerical techniques are discussed in §5. Computational results

are presented in §6 for validation and efficacy. Conclusions and possible extensions

are included in §7.



Chapter 2

Force Expressions

2.1 Bernoulli's Equation

In this section, we show how the hydrodynamic forces and moments are obtained by

Bernoulli's equation. Presume that the flow problem can be solved without difficulty,

so the hydrodynamic forces and moments acting on each body may be evaluated by

integration of the pressure over the corresponding wetted surface. We consider two

general three-dimensional bodies floating on a free surface and undergoing arbitrary

six-degree-of-freedom motion. Thus, the generalized coordinates xi are defined as the

displacements of each of the bodies in each mode of motion. That is, x, through x6

denote the displacements for six degrees of freedom for the first body, x7 through x 12

denote the displacements for the second body. Therefore, the configuration of this

two-body dynamic system can be described completely by those generalized coordi-

nates. The position vector =_ { xi } is a function of time and the corresponding

bodies' velocities are ui = dj, where the dot denotes time differentiation. The gen-

eralized normal vector is ni, and is defined similarly. Integrating the pressure from

Bernoulli's equation over the body's surface we obtain the expression for the forces

and moments,

F = -PI ( + V .- V)idS, (2.1)



where SB denotes the union of the bodies' wetted surface, since ni is nonzero only on

the body for which the mode i is defined. In (2.1), the partial derivative with respect

to time of the velocity potential, which is also called the local derivative, represents

the rate of change of the velocity potential with respect to time at a fixed position.

Because numerically the velocity potential is evaluated on the bodies' surfaces, it is

awkward to directly evaluate the partial derivative if the body is moving. The partial

derivative may be evaluated by

dob _

d- t + (0 . ), V(2.2)
dt -t

where the vector U contains the corresponding bodies' velocities. The total derivative,

d¢/dt, represents the rate of the change of the velocity potential with respect to time

in a coordinate system moving with the element which we are interested in. In other

words, The value of do/dt is obtained by following the motion of an element of

fixed identity and calculating the difference of the velocity potential at different time

instants. The second term on the right hand side is called the convective derivative

because it represents the change of the velocity potential caused by the convection

of an element from one position to a second position having a different value of the

velocity potential. Since (2.2) is correct for every particle on the surfaces, after

integration over the surface SB (2.2) becomes

pd I JsB 1 nidS = p j (a )nidS + p js (U . V¢)nidS. (2.3)

Since the time-derivative and surface integration are independent, these operators

can be interchanged. Substituting (2.3) into (2.1) leads to a force expression,

dt J JB qfd + JJB ((§7 V2)nA F =a -p ienidS + p er ((U . Vfo)nh -fVc . V frn)dS. (2.4)

An alternative expression for the forces may be derived from the transport theorem



as is shown in Newman (1977 §4.12) [9]:

dp f ndS = p fo( )nd S + p so j)dS. (2.5)
dt sB " t an

Here Vi is defined respectively as the i-th component of the fluid velocity vector V¢

or the cross-product r x Vq, evaluated on the body corresponding to mode i and

elsewhere on SB i = 0. The second integral on the right hand side represents the

transport of the quantity of Vi out of the volume V, as a result of the movement of

the boundary. Adding (2.1) and (2.5) together, we obtain another force expression.

d 0
Fi = -p OndS + p - -V .-Vrni)dS. (2.6)

dtJf sB f fSB
0(O 2

Both (2.4) and (2.6) are valid. The only difference between two equations is the

"convective derivative" term and the "transport" term. A comparison of the numer-

ical results of both terms will be show in §6. Hereafter, (2.6) is employed in the

present study.

The first integral in (2.6) is the added-mass. For a single body, moving with

constant velocities in an unbounded flow, this integral is independent of the body's

position when expressed in terms of a coordinate system moving with the body. When

other boundaries are present, including both a channel and a second body, this integral

will depend on the configuration of the system and the bodies' velocities. Thus at

different time instants this quantity will change, and the resulting time derivative

indicated in (2.6) is the "linearized" force or moment acting on the respective body.

The second integral in or (2.6) represents an additive "quadratic" component to each

force and moment. If the bodies are moved by the hydrodynamic forces, the direct

evaluation of the time derivative term of (2.6) may only be done numerically by

one-sided finite difference, because the positions of bodies at the next time-step are

not known before the forces are computed.



2.2 Lagrange's Equation

A different approach for hydrodynamic forces is established by Milne-Thomson. The

cardinal idea of this method is that the bodies and the fluid are treated as forming

together one dynamical system, and thus the troublesome calculation of the effect of

the fluid pressure on the surface of the body is avoided.

The following is mainly from Milne-Thomson (1960, §17.60) [8] and Lamb (1932,

§6) [6]. To begin with this approach, first consider a single body immersed in an

unbounded fluid. If the body is moving, the resulting motion of the fluid will be

irrotational and acyclic. The irrotationality is due to the consequence of Kelvin's

theorem, and the acyclic is explained by the following statement. If the bodies are

moved through a cycle of positions and returned to their own original positions, there

is no evidence that the fluid particles are each in their original positions. Moreover,

such a motion once established will instantly cease if the body stops moving. We will

suppose that the motion of the fluid is entirely due to the motion of the body.

Under such circumstances, the motion of the fluid is determined by the existence

of a velocity potential q which must satisfy the Laplace equation and the boundary

conditions. If the single body is replaced by a group of bodies, this argument still

holds.

If there are n degrees of freedom in a dynamical system, n independent coordi-

nates are necessary to describe the motion of the system, and these are called the

generalized coordinates. Therefore, we can conceive that the position of any spec-

ified dynamical system is determinable in terms of a certain number of generalized

coordinates Xl, X2 , ... , xn-

When bodies and fluid are formed together as a dynamical system, the gener-

alized coordinates serve to specify the configuration of the bodies. In other words,

a n-dimensional configuration space is built by n generalized coordinates, and the

configuration of the system at an arbitrary instant is a point in the configuration

space. Therefore the motion of the dynamic system can be "visualized" as a curve

in the configuration space. The fluid, however, has infinite freedom which can not be



described by a finite number of the generalized coordinates, i.e. the positions of the

various particles of the fluid are not determined by the instantaneous values of the

coordinates of the bodies. However, the boundary condition still holds

= V7, (2.7)
On

where V• is the normal component of the velocity of the fluid. But by hypothesis,

V, is a linear function of the generalized velocities ul, u 2 , ---..., un, so that the boundary

condition (2.7) together with the Laplace equation determine ¢ uniquely as a linear

function of the generalized velocities. Therefore the total velocity potential can be

expressed as the sum

S= ujl, (2.8)

in which qi represents the velocity potential due to a body motion with unit velocity

in the i-th mode. The unit velocity potential, 0j, also satisfies the Laplace equation,

and is a function of the geometrical configuration of the bodies and any enclosing

boundaries, but not of the velocities.

Under such a consideration, Milne-Thomson(1960, §17.60) [8] was able to derive

a force expression by Lagrangian mechanics with the result:

d OTL OTL (2.9)
F = - d (-u) + (2.9)dt aui ai

where TL is the kinetic energy of the fluid. We may express (2.9) in terms of the

added-mass coefficients. The added-mass coefficients is defined as

mij = p 1 jnidS. (2.10)

It should be noted that the added-mass coefficients are functions of the configura-

tion of the system only, i.e. the generalized coordinates. Actually, the added-mass



coefficients may be expressed in another form

mni = p JJ nidS = p Oj 0i dS
I SB f 

5 B Oni

= J q$(Vq5 - n)dS = p j V - (OjVoi)dV

=p Jj (V V )dV + p f(0, .V2 )dV

= p f (V4j - V i)dV, (2.11)

where the divergence theorem and Laplace equation have been used, and the volume

integrals are over the entire fluid volume. It is clear that the added-mass coefficients

are symmetrical from (2.11). Therefore, we can express the kinetic energy of the

fluid in terms of the added-mass coefficients

TL = _p VVdV = pJ (V -VO)dV

= p] (uiVq i) . (uVq5o)dV = 1uuip]](V Voj)dV

1= 2 u ujunmj, (2.12)

where (2.11) is used. It should be pointed out that the kinetic energy is a func-

tion of the generalized coordinates and their derivatives, the generalized velocities.

Both the generalized coordinates and the generalized velocities are functions of time.

Substituting (2.12) in (2.9), we can get

8TL 1 8mjkO TL - u 1 j u k mk (2.13)
Oax 2 kO9x

8TL 1OTL = mij(uk6ij + Uj6ik) = ujmij (2.14)

d OTL Omi,
d ui ) = mnijj + UjUk a (2.15)

where d denotes the acceleration in the j-th mode. Adding those results together,where itj denotes the acceleration in the j-th mode. Adding those results together,



(2.9) becomes
.(mij 18mjk

Fi = -mij --ujuk( ) (2.16)
U (Xk 2 o&,

This result has been shown by Korsmeyer, et al. (1993) [5].

The characteristic of the Lagrangian formulation is to express the force and mo-

ment strictly in terms of the added-mass coefficients, which avoids the evaluation of

the velocity on the body surface. In (2.16), the spatial derivatives of the added-mass

coefficients can be done numerically by two-sided finite difference. For every single

related mode, the spatial derivative can be done by moving the body back and forth

from the exact position, and calculating the difference of the added-mass coefficients.

In our present case, where both bodies are moved by the hydrodynamic forces in

surge, sway and yaw, the computational burden would be increased as much as one

order of magnitude.



2.3 Combined Approach

After discussing Lagrange's equation and Bernoulli's equation, we can arrive at an

alternative approach which takes advantage of both formulations. Compared to (2.6),

the derivative terms of (2.16) can be calculated by two-sided finite difference, but

require more computations because many modes need to be done separately. This

alternative approach starts from expressing the first term in (2.6) in terms of the

added-mass coefficients.

p ndS = p d (ujj )nidS

- p f fs -uj nidS + puj (d-)nidS

= JIS p qrindS + pu 1  fs nidS

=m ij man+ (2.17)-imi+ uj dt

im Omij dxk (2.18)
- + 9Xk dt

it= mm + U jUk (2.19)
&Xk

From (2.19), it is clear that the first term in (2.6) is equal to the sum of the first

two terms in (2.16). Numerically, the spatial derivatives in (2.19) can be done by

two-sided finite difference. Observing the process from (2.18) to (2.19), the relation

dxk/dt = Uk has been used. Therefore if we go one step backward and use the relation

df/dt = 71 in (2.17), the time derivative of the added-mass coefficients can be done

by two-sided finite difference. Substituting (2.17) in (2.6) yields

dmi O 1
F_ = -m_+ I - I V - V ni)dS (2.20)dt SB n

The advantage of (2.20) is that we can use two-sided finite differencing to evaluate

the time derivative in the second term with less computational work for a given



accuracy than with one-sided finite differencing. Numerically, the calculation of the

second term in (2.20) is made via the concept of the "possible displacement" in

which the generalized coordinates of the system are considered to be incremented

by an infinitesimal amount from the values they have at an arbitrary instant. In

(2.20), the infinitesimal increment which is the possible displacement, is computed

by adopting the velocity at the arbitrary instant. By moving the bodies with the

positive and negative orientations of the velocities at each time-step, we find two

possible positions for each body. Of course, these positions are not actually on the

paths of the bodies unless the velocities are steady. The time-derivative term in

(2.20) may be computed by performing two-sided finite difference of the added-mass

coefficients at the two possible positions.

For the possible displacement, it is appropriate to (2.17) that the velocities are

maintained invariant. Observing (2.17), the time derivative has been split into two

terms. One of them contains the unknown accelerations representing the rate of

change of velocities with respect to time, and the other takes care of the rate of

change of the added-mass coefficients with respect to time. In other words, for the

second term on the right hand side of (2.17) we only consider the changes of the

unit potentials which are due to the configuration only. The contributions from the

changes of the velocities are relegated to the first term. At this point, it can be

understood that this two-sided finite difference can not be applied to the left hand

side of (2.17), because the contributions from the change of the velocities would be

lost.

If we use Ri to denote the the last integral in (2.20), we can rewrite (2.20) as

dmj
Fi = -mijiLj - ujdt + Ri. (2.21)

The next step is to write down the equations of motion. It is reasonable to

ignore the motions in heave, roll and pitch which will be balanced by the hydrostatic

restoring forces, because the major concern in the present study is the relative position

of the two bodies in the horizontal plane. Therefore a 3x3 mass matrix is formed for



each body due to the previous simplification. Furthermore, if we assume that all the

hydrodynamic forces and the external forces are referred to the center of gravity, all

off-diagonal entries drop out in the mass matrix. Therefore the equations of motion

can be reduced to

Fz + Fei = mii, (2.22)

where m denotes the mass or the moment inertia of the body in the i-th mode, and Fej

denotes the given external forces other than the hydrodynamic force in the i-th mode.

Combining (2.21) and (2.22) in order to eliminate Fi, we can get six simultaneous

equations which are
dmi-,

midi + +mi -uj-- + Ri + Fei (2.23)

After using the usual matrix operations to solve the six simultaneous equations,

the only unknowns, itj, in (2.23) are found and the hydrodynamic forces are computed

by (2.21).

If the velocity potential and the fluid velocity can be evaluated without difficulty,

the hydrodynamic forces and the relative positions may be calculated by performing

the following steps:

1. At the current time-step, obtain the velocity potential and the fluid velocity.

2. In order to evaluate the time derivative by two-sided finite difference, move

the bodies back and forth to two possible positions, and obtain the velocity

potential only.

3. Solve a linear system for the unknown accelerations, and then obtain the hy-

drodynamic forces, if desired.

4. Move the bodies to the position of the next time-step, according the bodies'

accelerations and velocities.

5. Repeat step 1 -• step 4 for the next time-step.



Chapter 3

Solutions of the Potential Flow

Problems

In order to compute the forces and moments outlined in the previous section, it is

seen that the flow problems must be solved at each time-step. The flow problems are

solved under the assumptions that the fluid is inviscid, and incompressible, the flow

is irrotational and the free-surface effects are neglected. Then at each time-step the

entire flow can be described by a velocity potential ¢(:) where Y is a position vector

in a fixed Cartesian coordinate system (x, y, z) which is defined such that the x- and

y-axes lie in the plane of the free surface and the z axis has its positive direction

pointing out of the fluid domain. We use SB to denote the surfaces of bodies, SF the

free surface, and Sc the surface which encloses the fluid. In the fluid domain which

is enclosed by SB, SF, and Sc, the velocity potential O(Y) satisfies the Laplace's

equation

V 2 = 0. (3.1)

Boundary conditions must be provided on the surface SB U Sc U SF, with the gener-

alized unit normal vector fn. On the free surface the velocity potential ¢(Y) satisfies

the "rigid lid" boundary condition



S= 0 on SF, (3.2)
Oz

on the enclosing boundary the velocity potential q(F) satisfies the boundary condi-

tions

= 0 on Sc, (3.3)
On

and on any moving body surface SB the velocity potential ¢(£) satisfies the boundary

conditions

i¢ = U - n on SB, (3.4)On

where U denotes the bodies' translational and angular velocities and 6 denotes the

generalized normal vector.

The above boundary value problem can be solved by applying Green's theorem.

Defining the field point '= (x,y,z) and the source point (= (,',~ ), the Green

function may be chosen in the following form

G(;=-+-, (3.5)
r r

where

r = [( -- ()+ -) + (Z - ()']2 (326)

r' = [(x - )2 + (y _ )2 + (Z + )2]. (3.7)

Applying Green's theorem gives the potential formulation.

27ro(£)+ () G(Y; () dS G G(x-; d) #()S. (3.8)0riC JJSCB USC 0i~n

In the potential formulation Green's theorem is used directly, with the source strength

equal to the known normal velocity and the dipole moment equal to the unknown



potential. This second-kind Fredholm integral equation can then be solved for the

unknown velocity potential on the body. If we represent the velocity potential by

sources alone, with unknown strength a(&), evaluating the normal derivative on the

body leads a similar Fredholm equation for the source strength.

2iru(X) + a I (U 0- G(-; S•ý dSý = U - i(x) E SB U SC. (3.9)

From which, the fluid velocity is given by

VO(') = 2rx(x)a(o) + f fsBusc u()VG(; )dSý. (3.10)

If Sc describes an enclosing channel with a rectangular cross section, a particular

Green function which satisfies (3.3) may be used to greatly reduce the computational

effort (Newman,1992) [10].



Chapter 4

The Influence of the Propeller

The influence of the propeller may be included in the ship interaction simulation. The

inclusion of a propeller behind the ship hull modifies the velocity potential so that

the forces experienced by both ships are different from the case with no propeller.

Because of the complexity of the analysis of the flow due to the presence of a propeller,

we approach this problem by considering the propeller in its simplest form as an

actuator disk. In the present study, only the induced velocities on the other ship by

the propeller are considered, and the changes of the velocity potential by the propeller

are not taken into account.

The simplest representation of an ideal propeller is as a circular disk of negligible

thickness with a diameter equal to that of the propeller. Through the disk, the flow

passes continuously while subjected to a constant pressure jump across the disk. The

effects of a finite number of blades and the production of fluid rotation are ignored.

An actuator is really a set of counter-rotating propellers with an infinite number

of blades with constant circulation over the radius. Under such an idealization, ex-

pressions are developed for the velocity induced at a radius r, and axial position x,

by an infinite set of helical vortices uniformly distributed around the circumference

of a circle of radius r,. Because an actuator disk is a set of counter-rotating infinite

bladed lifting lines, we shall replace Z concentrated vortices of unit strength with a

continuous distribution with total circulation Z.

The elimination of the circumferential variation in the flow field simplifies the



problem, and Hough and Ordway (1964) were able to find a closed-form solution in

terms of elliptic integrals. Their results can be computed very rapidly, as follows:

For r, < rv

a(xc, rc, rv) =

ut(xCer, r, ,)

Z 1
{f C1}4{r rr, tan/

Z 1
= { C2}.4r wrc

For r, > rv

Uia(Xc, rc, rv) =

ut(xc, rc, rv)

Z 1
(02}

4 r 7rv tan j

Z 1
4= - { C61}.47 r c

C1 = + c Q 1(q) + -Ao(s, t)2 V-r 2 2

xc 7--
C2 c ::QI(q) - _Ao(s, t),24 2V 2

and

X1 + (rc - rv) 2

2rcrv

s = sin-i{ Xc
sx2 + (r c - r) 2

S4rcr (4.4)F3 + (rc rv)2'

Q_ is the Lengendre function of the second kind and half integer order, and A0

is the Heumann's Lambda function.

The circulation may be computed by the equation

=w r tan 3( C ) CT
Z 1 + V/1 +CT '

(4.1)

where

(4.2)

(4.3)

(4.5)



where CT is the thrust coefficient and 3 is the disturbed pitch angle.

The resultant induced velocity by the propeller is the product of the circulation

and the results form the expressions above. It should be noted that the propeller

coordinate system is different the body coordinate system. More description and

explanation for the propeller and the actuator disk may be found in Kerwin (1990)

[4].



Chapter 5

Numerical Implementation

Since (3.8), (3.9), and (3.10) can not be solved analytically, a panel method is

used to solve the flow problem at each time-step. In this method, the boundary

surfaces are divided into N plane quadrilateral or triangular panels over which the

strengths of the singularities are assumed to be unknown constants. At each panel,

the collocation point is situated at the centroid of the panel. After discretization, the

integral equation (3.8) becomes

N a N -- a
27r((i) + 1 5(%)-G( '_;ýj)dS j= = G((i; j) -- (j)dSj ij = 1,2,...,N

j=j On=j
(5.1)

where N is the total number of the panels, and i,j are the panel indices. (5.1) forms

a linear system:
N
Z Aij(1 i) = BS i = 1, 2, ..., N (5.2)

j=1

where A is an NxN influence coefficient matrix, 0 is the unknown Nxl matrix

containing the unknown velocity potential of each panel, and B is a known Nxl

matrix, which is determined by the boundary condition. Since we do not have any

restriction on the geometry for each body, generally speaking, A is a non-symmetric,

full matrix. A direct or an iterative method can solve (5.2) for the unknown constants

O(xi). In the same manner, (3.9) can be discretized and solved for the unknown source

strengths a(s).



For the solution of the equations of motion, the quantities should be carefully

defined from the viewpoint of the coordinate system. A global Cartesian coordinate

system is chosen such that the x- and y- axes lie in the plane of the free surface and

z axis has its positive sense directed out of the fluid volume. The body coordinate

systems are defined such that the center of waterplane of the body is the origin, the

orientation of the x- axis is from the stern to the bow, and the orientation of the z

axis is coincident to the orientation of the global z axis. Between the body coordinate

system and the global coordinate system, the only required connections for expressing

the quantities are the angles among axes if the magnitudes of all coordinate systems

are equal. In a integral equation, all vector quantities should be expressed in the same

coordinate system. If a scalar quantity is the product of two vectors, both vectors

should be expressed in the same coordinate system which is not necessary to be equal

to the coordinate system in which the other vector quantities are expressed. In (3.8),

(3.9), and (3.10) the vectors are expressed in the global coordinate system, and in

(2.20) the vectors are expressed in the body coordinate system. It should be noted

that because in (3.10) the fluid velocities are solved in the global coordinate system,

for the "transport term" in (2.20) it is necessary to transform the fluid velocities into

the body coordinate system.

Because the bodies are not fixed, we need to update the positions of the bodies

at each time-step, with the accelerations of bodies caused by the hydrodynamic force

calculated by (2.20), after solving the potential problems.

There are two different kinds of time-steps for the calculation of the hydrodynamic

forces and body motions. The primary kind of time-step we simply call the "time-

step" and it controls the accuracy of body motions. The other kind of time-step

we call the "sub-time-step" and it controls the accuracy of the computation of the

hydrodynamic forces (2.20).

The discretized form of the time derivative term in (2.23) is given by

d puj Y (kN 1 ( - Ae)knikAk
puj -' jnidS k= 2' (5.3)Pu dt s B 2AE



where k, N, A,Ae denote the k-th panel, the number of panels, the area of the panel,

and the magnitude of the sub-time-step, and t = MAt where M and At denote the

M-th time-step and the magnitude of the time-step, so Ojk is the velocity potential

on the k-th panel due to a body motion with unit velocity in the j-the mode. Because

(2.23) is solved in the body coordinate system and rigid body motions are assumed,

the generalized normal vectors and the surface areas of the panels will not change

with respect to time.

Another linear system is formed by (2.23) for the unknown accelerations. After

solving (2.23), the forces may be obtained by (2.21). The evaluated forces and

added-mass coefficients may be non-dimensionalized by the appropriate combinations

of water density p, body velocity U, and body length L. The non-dimensionalization

is as follows

The added-mass:

m rnij (5.4)m =pLk

The forces (and moments) whether the quadratic force or the total force:

Fij = 1 L (5.5)
2pU2Lm'

In these expressions, the tilde denotes dimensional quantities, and i, j are mode in-

dices. In (5.4) and (5.5), k = 3 and m= 2 for i, j = 1, 2, 3, 7, 8, 9, k = 5 and m=4

for i,j = 4,5,6,10,11,12, and k = 4 and m = 3 for the other combinations.

After solving (2.23), the displacement is given by

1t
D t = u'At + 1il (At) (5.6)

As mentioned in §2.3, the bodies are moved to two possible positions at each

time-step. If we use subscripts, o, +, -, to respectively denote the exact position

and two possible positions moved from the exact position by positive and negative

velocity, those displacements are given by



Pt - P = nA e (5.7)

pt - pt = _utAc, (5.8)

where P and u denote the position vector and the velocity vector respectively. If the

body is moved form P_ to pt+At, we can take advantage of (5.6), (5.7), and (5.8)

pt+t - p+ (p+At - t+At) (pt+At - Pt - Pt)
-P•, ~0 )+ -o)(P o-+)

= -ut+AtAcE + utAt + itt(At)2 - UtAE. (5.9)2
Between ut+At and ut, the relation is given by

u t+A t = ut + ittAt. (5.10)

Combining (5.9) and (5.10) in order to eliminate ut, we can get

Pt+At Pt = _ut+AtAe + ut+atAt - jt(At)2 + 2itt(At)2 - ut+AtAc +p+ 2

= ut+At(At - 2Ae) - 1iLtAt(At - 2Ae). (5.11)

2

Observing (5.11), the two positions, Pt and pt+At are identical and the computation

is reduced if we choose the magnitude of the sub-time-step to be equal to one half of

the magnitude of the time-step.

The number of panels required to achieve the desired computational accuracy

and the associated computational burden are practical issues. From the viewpoint

of computational effort, set-up of the linear system and solution of the linear system

are dominant compared to the other processes. Since A is a full matrix in (5.2), set-

up of the linear system requires the evaluation of N 2 influence coefficients. Solution

of the linear system requires an effort proportional to N3 computations if a direct



method like Gaussian elimination is used. This kind of computations may be reduced

by a factor of N if a suitable iterative scheme is utilized. Although both set-up of

a linear system and solving a linear system require O(N 2 ) computations, set-up of a

linear system really dominates the required computations according to the numerical

experiment. Therefore it is enough to only include the computations of set-up of a

linear system for roughly estimating the computation effort.

Compared to performing one-sided finite difference, the computation is increased

in the present method for each time-step, because bodies are moved from the current

positions to two possible positions in order to perform two-sided finite difference.

In two-sided finite difference, for each time-step the velocity potential and the fluid

velocity are required at the current position, but only the velocity potential is required

at two possible positions. If we take advantage of (5.11), the computation is reduced

because the solutions at two possible positions are shared with the neighboring time-

steps. Thus there are two velocity potential problems and one fluid velocity problem

solved for each time-step in two-sided finite difference. In one-sided finite difference,

if we choose the magnitude of the sub-time-step equal to the magnitude of the time-

step, the solutions at the current position are shared with the neighboring time-steps,

too. Thus there are one velocity potential problem and one fluid velocity problem

solved for each time-step. If we approximately estimate the computation effort, there

are CIN 2 computations for set-up of a linear system where C1 is some constant. A

velocity potential problem requires C1N 2 computations because a full matrix is set

up for (3.8), and a fluid velocity problem requires 4C1 N 2 computations because a full

matrix is set up for (3.9), and 3CIN 2 computations are required for three components

of the gradient of the Green's function. Therefore, there are 6C 1N 2 computations for

each time-step in two-sided finite difference, and 5C 1N 2 computations for each time-

step in one-sided finite difference, and the ratio of computations between two methods

which is 6/5. The above estimation is made via an assumption that all matrices are

done individually. Actually, when matrices are set up for a velocity potential problem

and a fluid velocity problem at a current position, some computed information can

be shared among entries. Reconsidering the previous estimation with that in mind



there are C2N 2 additional computations for the fluid velocity problem at the current

position. Therefore the ratio becomes

Ratio - 2C, + C 2  (5.12)
C1 + C2

The ratio becomes 2/1 for the extreme case in which all required information for

the fluid velocity problem can be directly obtained from the solutions of the velocity

potential problem, i.e. C2 = 0. C2 may vary from 0 to 4C 1. Therefore the reasonable

ratio is between 6/5 and 2. A numerical experiment will determine the ratio based

on the CPU time for two different methods.



Chapter 6

Numerical Results

6.1 Demonstration

In this section, numerical results are shown for demonstration of the modified code,

an extension of the program CHANEL. First of all, the global coordinate system

must be introduced clearly. Figure 6-1 shows a three-dimensional global coordinate

system. In this figure, the origin of the body coordinate system of the first body is

situated at x = -0.25, y = 0.30, and z = 0.00, and the origin of the body coordinate

system of the second body is situated at x = 0.25, y = 0.50, and z = 0.00. Figure

6-2 shows a two-dimensional global coordinate system. In this figure, the origin of

the body coordinate system of the first body is situated at x = -1.00, and y - 0.30,

the origin of the body coordinate system of the second body is situated at x = 1.00,

and y = 0.50, and the two channel walls are at y = 0.00 and y = 0.80 respectively.

It is adopted that the channel walls are rectangular and no external forces other

than the hydrodynamic forces are present in the following examples. As the first

example, we compare the efficiency of the two-side finite difference and one-sided

finite difference. For simplicity, we consider the case in which a 300 panel spheroid

with constant unit speed in surge passes another identical fixed spheroid. In such a

case the first term in (2.20) is zero. Therefore the comparison is for the second term

in (2.20) and the first term in (2.6). All dimensions are scaled by the spheroid's

length. The spheroid's beam is 0.1, the center-plane of the moving spheroid is situated



at y = 0.341, a distance away from the "lower" channel boundary, and the fixed one

is at y = 0.565. The total channel width is 0.8 and the channel depth is 0.068. The

magnitude of the time-step is 0.10 for two-sided finite difference and it's 0.05 for one-

sided finite difference. The "exact" answer is obtained by a smaller magnitude, 0.04,

and a five-point finite difference operator. Because the bodies are not influenced by

the hydrodynamic forces, we can use this numerical differentiation technique.

Observing the results shown in Figure 6-6, apparently the performance of two-

sided finite difference is superior to that of one-sided finite difference for the accuracy

of the forces. It should be noted that for the same accuracy of forces the magnitude

of the time-step of one-sided finite difference is smaller than that of two-sided finite

difference. Therefore by observing (5.6) one-sided finite difference is better than

two-sided finite difference for movement due to a smaller magnitude of the time-step.

The next step is to compare the required computational burden of two methods for

one time-step. As mentioned in §5, the ratio of required computations is between

6/5 and 2. If the modified code is run on a DEC 3000/700 for the case described

above, It takes 6 seconds to solve a potential problem at the possible position and

13 seconds to solve a potential problem and a fluid velocity problem at the current

position. Therefore the ratio is approximately 1.46, a reasonable result in light of

our estimation in §5. If we presume that the results shown in Figure 6-6 achieve

the same accuracy for both methods, we can determine the ratio of the required

computations of two methods for a simulation process. From Figure 6-6 the required

time-steps of two-sided finite difference is one half of that of one-sided finite difference

for a simulation process, but for one time-step two-sided finite difference requires 1.46

times greater computational effort than one-sided finite difference. Therefore for a

simulation process we conclude that two-sided finite difference requires 72 % of the

computational effort of one-sided finite difference.

The second example is to compare the "convective derivative" term in (2.4) and

the "transport" term in (2.6). Consider a spheroid with constant unit velocity in

surge passing a fixed one. The spheroid's beam is 0.125, and the channel's width

and depth are 0.8 and 0.2 respectively. For illustration this comparison is only made



at one position, but for different discretizations. The cases of 432, 972, 1728, 3888

panels have been tested. The moving spheroid is situated at x = -0.2, and y = 0.25,

and the fixed one is at x = 0.0 and y = 0.55. The results are shown in Figure 6-7.

The horizontal axis is the inversion of the number of panels. For the surge mode,

the results are identical because both equations are the same in surge. Results in

Figure 6-7 look convergent in sway but not in yaw. We have investigated these

results carefully, but we do not yet have an explanation for this discrepancy. We

would like to derive one of these terms directly from the other, but we have been

unsuccessful in this effort so far.

The third example is to consider the influence of the propeller. Consider the

two same mariners in a bow-on meeting. The first ship is situated at y = 0.3 and

moves with constant unit velocity in the x direction, and the second ship is situated

at y = 0.5 and moves with constant negative unit velocity in the x direction. The

propellers are the same for two ships. The thrust coefficient and the radius of the

propeller are 0.7 and 0.02 respectively, and the propeller is set at z = -0.04. The

channel's width and the depth are 0.8, 0.068 respectively. Because we only consider

the modification of the fluid velocity by the propeller, the comparison is for the

integral called the "quadratic" component in (2.20). The results shown in Figure

6-8 are for the first ship and a few time-steps for illustration. Form Figure 6-8, we can

conclude that the influence of the propeller on the fluid velocity is hardly noticeable

as calculated by the Hough and Ordway's expression.



6.2 Application

In the following examples the bodies are free to move under the influence of the

hydrodynamic forces. In the first example, we consider a mariner passing an initially

stationary body, say, a whale. The length of the mariner is 148.37 meters, and it is

15 meters for the whale. After non-dimensionalizing by the length of the mariner, the

beam of the mariner is 0.14, and it is 0.02 for the whale. Consider that the mariner

is travelling with an initial unit velocity in an unbounded fluid but with finite depth,

0.0871. Initially, the mariner is situated at x = -2.0, and y = 0.00, and the whale is

situated at x = 0.0, and y = 0.07. In other words, half of the whale is situated inside

the track of the mariner. The results shown in Figure 6-9 are the forces on the whales

in the global coordinate system. The horizontal axis denotes the x coordinates of the

mariner. From Figure 6-9, first a positive force in the y direction pulls the whale

away from the track. Therefore when the mariner approaches the whale, the whale

has already been moved outside the track. Figure 6-10 shows the relative positions

of the mariner and the whale at different time instants, and Figure 6-11 shows the

positions of the whale only.

The second example is to consider that two mariners is in a bow-on meeting with

the rectangular channel walls. The width and the depth of the channel is 0.8 and 0.068

respectively. The first ship is situated at x = -2.0, and y = 0.30, and it is x = 2.0,

and y =-- 0.50 for the second ship. In this example, during the whole simulation both

ships are subjected to given external forces equal to the initial suction forces due to

the channel walls with one more minus sign. In other words, with these external

forces the ship will travel straight if there is no other ship. The results shown in

Figure 6-12 are the hydrodynamic forces on the first ship in the body coordinate

system. The initial negative force in sway is due to the suction effects of the channel

walls. Similarly, the first ship is subjected to a negative interaction force pulling

the first ship away from the second ship at the beginning. Figure 6-13 shows the

trajectories of the origins of the body coordinate systems of two ships respectively.

The last example is to consider that two mariners are in a bow-on meeting in an



unbounded fluid with finite depth, 0.0871. The first ship is situated at x = -2.0, and

y = 0.00, and it is x = 2.0, and y = 0.14 for the second ship. The results shown in

Figure 6-14 are the hydrodynamic forces on the first body in the body coordinate

system. The pattern is similar to the previous two examples. Figure 6-15 shows the

trajectories of the origins of the body coordinate systems of two ships respectively.

From the examples above, we can conclude that two bodies do not absolutely

conflict when they are operating near to each other. Initially, the repulsive forces

start to move the bodies away from each other. Later, the stronger attractive forces

can not immediately overcome the inertia imparted by the initial repulsive forces.

Therefore it is not so easy that two bodies hit each other.



Figure 6-1: The three-dimensional global coordinate system.

Figure 6-2: The two-dimensional global coordinate system.
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Figure 6-3: 400 panel mariner.
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Figure 6-4: 300 panel spheroid.



Figure 6-5: 200 panel whale.
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Figure 6-14: Forces on the first ship in the body coordinate system.
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Chapter 7

Conclusions

The present study has adopted the concept of the possible displacement for comput-

ing the time derivative term and made feasible that calculation by two-sided finite

difference with consequent decreasing computations for a given accuracy. This algo-

rithm has been utilized to predict the relative positions and the hydrodynamic forces

for the cases of two bodies moved by the hydrodynamic forces.

From the results shown, we can conclude that the bodies are subjected to repulsive

forces first and pushed away from each other, and later the stronger attractive forces

can not immediately overcome the inertia imparted by the initial repulsive forces.

Thus, the bodies do not necessarily collide when they are operating near to each

other. Physically, the above description is realistic. Consider the case of a uniform

flow in the x- direction past a fixed sphere. Of course, the streamlines are disturbed by

the presence of the fixed sphere. Following a fluid particle just above the x- axis from

minus infinity, it can be expected that the fluid particle is subjected to hydrodynamic

forces and the pathline is no longer a straight one. Let's consider the motion of

the fluid particle in the y- direction. The fluid particle is moved upward when it

approaches the sphere, and downward when it passes the midsection of the sphere. It

can be understood that the fluid particle is first subjected to a repulsive force which

moves the fluid particle upward. After passing the midsection of the sphere, the fluid

particle starts to move downward because the attractive force has already overcome

the inertia imparted by the initial repulsive force. Therefore it can be realized that



the fluid particle is subjected to an attractive force before it passes the midsection of

the sphere. The above example is more or less similar to our case of hydrodynamic

interaction of bodies, if we imagine one body as a fluid particle influenced by the

other body. For the case of one body moving in an unbounded fluid, the body will

never run into the fluid particle because of the boundary condition. Otherwise, the

fluid particle will "pierce" the body. However, the rigid body is not deformable like

a mass of fluid, and two bodies could still run into each other if they are operating

really close to each other.

It is still obscure to the writer that the calculations of the "convective derivative"

term do not agree with those of the "transport" term. The complete connection

between Lagrange's equation and Bernoulli's equation is still unsolved. We still can

not directly derive the equivalence of the spatial derivatives in Lagrange's equation

and the integral related to the fluid velocity in Bernoulli's equation.

Various extensions are possible. Free-surface effects can be considered by using

the time-domain Green functions, and the motions in the vertical plane can be taken

into account for the predictions of the motions of submarines. Rudder forces may

be included in the simulation. Those extensions can extend the existing computer

program to an elaborate simulator for training ship pilots.



Appendix A

Transport Theorem

The derivation of (2.5) follows from the conservation of momentum, as outlined

by Newman(1977, §4.12) [9]. Before the derivation of (2.5), some preparations are

required. The transport theorem is introduced,

dI(t) 1 dV + f(L-) f dS, (A.1)dt--- = f f fV M"at) (A. 1)•

where I(t) is a general volume integral of the form

I(t) = ff f(A, t)dV, (A.2)

where f is an arbitrary differential scalar function of position F and time t, V(t) is

a prescribed fluid volume which may also vary with time, Y is the vector containing

the components of the velocities of the boundary surface, and ' is the normal vector

of the boundary surface. Gauss' theorem is given as

SfjV fdV = f fdS. (A.3)

Let us consider that a body is surrounded by a fixed fictitious surface Sc, exterior

to the body surface SB. Thus SB + Sc forms a closed surface which encloses a fluid



volume V(t). Therefore, the rate of change of the fluid momentum in this volume is

d d

p_ s Onc dS = p_ V dVdtJ B±SC ~k dS=t jqd

=p JjV(O )dv + pf VO(U - )dS

= J J n + Vq(U. - )]dS, (A.4)

where Gauss' theorem and the transport theorem have been used, and the partial

time-derivative and the spatial derivative can be interchanged. Separate integrals in

(A.4) over the surfaces SB and Sc respectively with the result

d ffPd f d
p sO #dS + p on#ddtJJsB dtJJsc

= p f [n H + VO(U -n)]dS + p s (t )adS + p j s VO( . n-)dS. (A.5)

The last integral is zero in (A.5) due to the boundary condition on the fixed fictitious

surface Sc, U -= 0. Furthermore, 0//Ot = de/dt on the fixed fictitious surface, and

time-derivative and the surface integration can be interchanged. Therefore, in (A.5)

the second integral on the left-hand-side equal to the second integral on the right-

hand-side together with the boundary condition on the body surface SB, U.n = 04/On

yield the result

d I S J ( + -Vq)dS, (A.6)
- ffS 0 S= f SB(t 07

which is (2.5).

For a multi-body problem with channel walls, (A.6) is still valid provided that we

individually apply (A.6) on each single body with the fixed fictitious surface enclosing

that single body only.
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