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Abstract

As semiconductor manufacturing technology progresses, it is characterized by
diminishing critical dimensions, and tighter photolithographic depth of focus windows
caused by the need to resolve these shrinking features. Previously inconsequential
variations in the surface topography of thin films, combined with minimum required film
thicknesses and greater numbers of film layers, are squeezing the effective window of
operation of the photolithography process. Process steps that apply and extend existing
semiconductor manufacturing techniques have been introduced whose sole purpose is to
planarize the surface of a given thin film, to try to reclaim some of the process window.
But these steps only affect relatively local regions of a film on a silicon wafer.

Chemical-Mechanical Polishing (CMP) is a method of achieving global film
planarization, using technology adopted from the precision grinding and lapping industry.
By polishing an entire wafer, it is possible to achieve an unprecedented degree of thin
film smoothness. However, CMP is a process technology for which the underlying
physical understanding is weak, and which has many control variables. CMP process
control is at an early stage of development relative to other semiconductor processing
technologies. This thesis attempts to advance the state of the practice of CMP process
control by applying a new algorithmic control technology, run-by-run control (RbR), to a
CMP process in a production semiconductor fab. The results obtained show that RbR is a
promising approach for CMP process control, however, some practical manufacturability
issues remain to be addressed for RbR to successfully move out of the laboratory and
onto the factory floor.

This thesis also assesses a proposal within the host manufacturing organization, Fab 4 of
Digital Equipment Corporation's Digital Semiconductor Division, to introduce CMP in
place of an existing planarization process. This proposal is particularly notable because it
is to introduce new technology to a production CMOS process, not to a process under
development. By applying a net-present-value-focused framework, the complexity of the
proposal could be managed and a common reference language for engineers and



managers was established. This framework caused new issues to be addressed that were
not traditionally considered, but that were vital to evaluating the proposal: the "real
option" value of switching to CMP, and the cost of disruption due to introducing new
technology to the factory floor. A simple model of disruption was proposed and applied
based on previous academic research on multi-factor productivity.
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Thesis Supervisor: Dr. Roy E. Welsch
Title: Professor of Statistics and Management
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Chapter 1: Introduction

1.1 Planarization and Chemical-Mechanical Polishing

The march of silicon-based integrated circuit technology to deliver ever more

functional sophistication and performance at ever decreasing prices has continued

unabated for over thirty years. The primary driver of this cost/performance

juggernaut has been that each new technology generation has enabled smaller

devices, more densely packed and connected together on a silicon die, than the

generation that preceded it.

This in turn has imposed increasingly more challenging technical and business goals

upon semiconductor manufacturers. Semiconductor manufacturing consists of a

series of photolithographic steps, in which successive layers of metals, dielectrics,

and other materials are deposited and patterned in such a way as to form electronic

devices connected in a functioning circuit. The need to shrink device sizes and space

them more tightly has squeezed the required minimum feature size to be

photolithographically discerned down to sub-micron levels. The need to connect

exponentially growing numbers of devices together to realize such complex products

as microprocessors, along with the challenges of building working, reliable

transistors in shrinking dimensions, have increased the number of layers and the
2

complexity of each layer of a semiconductor product.

The optics of reducing minimum feature size (also known as critical dimension, or

CD) require an increasing numerical aperture (NA) in the focusing lens of the

photolithographic stepper, so that it can gather enough light to give the necessary

resolution to the image to be printed on the silicon wafer. However, that resolution

will only be achieved within a certain depth of focus above the wafer surface. Thus

horizontal CD shrinkage affects vertical focus latitude. Specifically, depth of focus is

inversely proportional to NA squared, whereas CD is inversely proportional to NA.



So, for example, doubling NA to cut CD in half cuts the corresponding vertical focus

range by a factor of four for a given exposure wavelength of light.

The surface topography of each layer of an integrated circuit reflects the topography

of the layers beneath it. Topography accumulates from layer to layer, as patterning

produces regions where certain layers are absent, abutted by taller regions having

fewer omitted layers. The increasing number of layers in modem integrated circuits

compounds this effect, to the point that the vertical topography of a complex

integrated circuit could be quite severe (see Figure 1.) That is to say, severe enough

to give the photolithography step insufficient process window to accommodate its

rapidly diminishing depth of focus. Also, severe enough to cause many other defect

modes, such as poor step coverage of deposited films and residual material after dry

etching. 3 The negative impacts of topography are expected to be most severe at the

highest film layers, namely those of the metal lines that interconnect the transistors;

as complex logic demands three, four, or more metal wiring levels, this becomes

critical.

Film 2 Selectively Deposited Over Film 1

Figure 1: VLSI Processing Topography

Therefore, there is a clear need to not only deposit and pattern films, but to planarize

them, that is, to reduce the topography across the surface of a die, if not the entire

wafer. Planarization techniques such as plasma etchback 4 have been developed to

address this need. These techniques generally consist of depositing another film onto



a given surface layer to try to cover over its topography, and subsequent nonselective

etching steps to "etch back" the combined layers to some acceptable overall

thickness. This can also be supplemented by gap filling between closely-spaced

structures. All of these techniques build upon existing semiconductor unit processes

such as dry etching, although the added films may include specially designed

materials such as spin-on glass.5

There are, of course, degrees of planarization of topography. The above techniques

are successful at smoothing and local flattening of steps, what is referred to as

"local" planarization. (Referring back to Figure 1, these techniques would have a

smaller impact on Film 2 topography the wider the spacing between adjacent Film 2

peaks.) None of these techniques achieves "global" planarization, which is the

absence of topography over the surface of a deposited film, across the entire wafer.

6,7 At four or more layers of metal, with technology CDs of 0.5 micron and below,

the photolithographic depth of focus process window provided by the above

techniques is relatively narrow. Fortunately, it is now possible to ameliorate this

situation by using new photolithographic I-line steppers featuring variable NA. 8

These steppers can be set to trade off resolution for depth of focus at any layer; this is

especially useful for the higher metal levels where wider lines than those needed to

make transistors are acceptable.

But this approach does nothing to reduce the defect modalities caused by topographic

irregularity, and in some cases it may be prohibitively expensive to upgrade to the

newer stepper technology. The consensus seems to be that to enable state-of-the-art

and future IC fabrication, global planarization of multiple deposited layers is

required. 9 To achieve this, a different approach to planarization technology has been

developed recently, Chemical-Mechanical Polishing, or CMP. CMP applies precision

industrial polishing technology to sub-micron VLSI requirements. By polishing the

entire wafer it is possible to achieve global planarization, and with fewer individual

steps than deposition/etchback processes require.-o



The principle of operation of CMP is to press the wafer surface to be polished against

a rotating polish pad; a slurry (e.g., consisting of silica particles in water and KOH, in

the case of polishing silicon dioxide) is applied to the pad as it rotates. A

combination of mechanical abrasion (due to the pad and slurry particles) and

chemical etch (due to slurry chemistry) causes material to be removed from the wafer

surface. Because areas that protrude erode more efficiently than areas that are

recessed, this process planarizes the wafer surface.

Wafer Carrier Slurr

Platen

Figure 2: Chemical-Mechanical Polishing Tool (not to scale)

A diagram of a CMP tool, adapted from " is shown in Figure 2. The wafer is held on

a rotating carrier backed by a special carrier film as it is polished. It is possible to

vary the wafer and pad rotational rates, pad temperature, the downforce applied by

the carrier, and many other parameters to achieve a nominal polishing rate and rate

variation across the wafer. The process consumables, namely the slurry, polish pad,

and carrier film, all affect process behavior and manufacturability, i.e., the ability to

maintain constant process behavior over time.12 For instance, as a wafer is polished,

polish debris accumulates on the pad, reducing mean polish rate across the wafer.

Pad conditioning, abrading the pad to expose fresh pad material to the polish process,

is used to counter this process degradation. 13 CMP planarization is also sensitive to



pattern density, so that equivalent layers (e.g., first inter-level dielectric) on different

VLSI chips can experience different polish rates under the same CMP "recipe."1 4

Despite the heritage of CMP in decades of precision industrial polishing, the detailed

physical behavior of the polishing mechanism is still not fully understood. 15 Progress

in CMP in the VLSI manufacturing setting has meanwhile been driven by empirical

knowledge acquired by experimentation and cumulative experience. As a rough

dT
model, Preston's equation, - = KPV, is often used, especially when polishing

dt

oxide. It says that the rate of oxide removal increases with applied pressure (P)

between the wafer and pad, and with increasing relative velocity (V) of the wafer

with respect to the pad. K is a constant of proportionality that encapsulates other

process variables such as pad temperature. Preston's equation has been shown to

track experimental results in the literature, 16 but it falls short of being a complete

predictive model of CMP process behavior. For example, it does not model polish

rate variability across the wafer.

1.2 Problem Statement and Thesis Plan

In CMP, then, we have a process technology for which underlying physical

understanding is weak, and which has many identifiable (and perhaps a few more as-

yet-unknown) control variables. Not surprisingly, then, CMP process control is at an

early stage of development relative to other semiconductor processing technologies.

This thesis attempts to advance the state of the practice of CMP process control by

applying a new algorithmic control technology, run-by-run control (RbR), to a CMP

process in a production semiconductor fab.

We have already noted the need for planarity throughout the integrated circuit

fabrication process, so it should not be surprising to find CMP applied at many stages

of the process. However, CMP may not always be the best choice everywhere in the

manufacturing sequence. This thesis also assesses a proposal within the host

manufacturing organization, Fab 4 of Digital Equipment Corporation's Digital



Semiconductor Division, to introduce CMP in place of an existing planarization

process. This proposal is particularly notable because it is to be a "retrofit,"

introducing new technology to a production process, not a process under

development.

The next chapter describes CMP process control at DEC, and introduces the run-by-

run control method. Chapter 3 describes the experimental approach taken to obtain

CMP process models for use by the RbR controller, and the results of those

experiments. The next chapter describes the method and results of testing RbR in

controlling a CMP process. Chapter 5 discusses the application of a framework for

assessing the CMP retrofit proposal, how such effects as performance disruption and

yield improvement were modeled, and how the strategic value of CMP could be put

into dollar terms. The thesis concludes with lessons learned and suggestions for

future work.



Chapter 2: Process Control and CMP

Manufacturing processes transform a set of material and other inputs into a desired

combination of material properties and geometry, i.e., the product. The resulting product

characteristics almost always exhibit some deviation, however slight, from the target

result, and so tolerances must be established. Tolerances distinguish products that are

unacceptably off target from those having negligible variations, and also separate

correctly functioning but "lower-performance" products from "higher-performance" ones.

Manufacturing process control attempts to minimize products' deviations from their

target geometry and properties, to thereby maximize the number of "within-tolerance"

and/or "maximum performing" products made by a given process.

Before CMP After CMP

Figure 3: CMP Planarization

As shown in Figure 3, for CMP the task is to transform a thin film having arbitrary

topography across a wafer into a flat film. The resulting film will possess a nominal

thickness that is a function of its pre-polish thickness, the underlying topography of

previously deposited films, and the planarizing performance of the CMP machine.

Typically, a pattern of point locations across the wafer is selected for measurement, and



these points will be at the same location within a die*. (Thin film measurement systems

such as the Prometrix 650 and 750 used in this research support such wafer pattern

specification.) Therefore each pattern of points will describe a particular (replicated)

vertical section of the film. It should be noted that the underlying topography is only

captured by tracking multiple patterns of distinct point locations.

Some material properties of the thin film may be altered by the polishing process. For

example, foreign particles previously embedded in the film may be removed by polishing,

or the dielectric properties of a polished oxide may be altered at the surface17. These

changes constitute responses to be characterized and controlled; understanding them is

important to integrating CMP into the overall CMOS manufacturing process.

However, important as they may be, polishing-induced material property changes are

nonetheless side-effects (good or bad) of CMP. The primary motivation for polishing is to

alter film geometry. This thesis focuses on the geometry process response and how to

improve its quality. To set the stage, it is necessary to first understand how polished film

geometry was being controlled in Fab 4 of Digital Semiconductor at the beginning of the

author's internship there, and the results that were typically obtained.

2.1 CMP Process Control at DEC

Digital Semiconductor, a division of Digital Equipment Corporation, uses CMP in its 0.5

micron CMOS manufacturing facility in Hudson, MA. In its current application, CMP

polishes a deposited oxide film down, breaking through an underlying silicon nitride

layer, and continuing for a pre-calculated amount of time, with the goal that a specified

mean thickness for the nitride film is achieved. A nine-point pattern across the wafer is
tused similar to that shown in Figure 4 to obtain spatial information across the wafer t

Each "point" is chosen by the process engineer such that the area covered by the point's spot size is relatively uniform;
it doesn't span a pattern of features.

"A note on wafer geometry: wafers are sliced from a cylinder of silicon, and a tip of the resulting circular wafer is cut to
permit the wafer to be oriented in two-dimensional space; this end is called the "flat."



Figure 4: Approximate Film Thickness Measurement Pattern

Each point is at the same location within a VLSI chip (die). For that point or vertical

section, process engineers have determined the target silicon nitride thickness to be

achieved. The key feature of the nine-point pattern is that it provides, roughly, a center

point surrounded by a 4-point middle ring and 4-point outer ring. The points in the outer

ring are at angular offsets with respect to the middle ring, to increase the spatial

information obtained. (Due to the geometry of placing die within a wafer, any collinearity

of three points in the pattern is a chance occurrence.) In choosing the number of points,

engineers traded measurement time and cost against ability to characterize film thickness

across the entire wafer.

In this context there are (at least) two ways to characterize the film geometry after

polishing:

* What is the average film thickness across a wafer and how does it vary?

* What is the range of film thicknesses across a wafer and how does it vary?



These are statistical measures that summarize the raw data obtained from the 9-point film

thickness measurements. The criterion for using them is that they can be used to capture

the film thickness variability within a wafer, from wafer to wafer, and from lot to lot.

These are also the measures used within DEC, and so are used herein for consistency and

convenience. (Qualitatively, the "average" refers to the arithmetic mean of a group of

measurements, while the "range" is the difference between the maximum and the

minimum values within the group. These measures will be formally laid out later.)

The same nine-point post-polish data measurements, combined with corresponding pre-

polish data measurements, can be used to determine the polish rate of the CMP machine,

and permit its variability to be evaluated and tracked in the same way as ending film

thickness. In a manufacturing setting such data may be available as part of tracking the

process that precedes CMP, otherwise it will have to be obtained as part of the CMP

operation in the fab.

Having identified the process responses of interest, DEC process engineers used

statistical design of experiments (DOE) and response surface techniques8 to arrive at

settings for carrier and pad rotational speed, choice of polishing pad material, and other

CMP machine input parameters that would give the "best" CMP process response for

polish rate. All settings were to be left unaltered by machine operators on the

manufacturing line. For each lot of wafers, the time spent polishing would be calculated

by the operators based on the latest machine polish rate information.

This approach was motivated by the significant drift in polish rate exhibited by CMP

machines. By significant drift, I mean that the overall average polish rate, as well as the

variability of the polish rate across the wafer, consistently deteriorated as the cumulative

number of wafers polished rose, and could reach one or more lower control limits within

a few hundred wafers. Why does this occur? Polish pads and other consumables have

finite lifetimes, and their key polishing properties degrade with cumulative wafers



polished, even with pad conditioning. ("Aggressive" - frequent, lengthy, and/or

maximally abrasive - pad conditioning reduces the effect, but also reduces pad life,

increasing materials costs and time-consuming pad replacements.) The good news is that

since this drift makes the process unstable from a "Deming" perspective, 19 it should be

possible to compensate for errors without over-controlling, i.e., without making the

situation even worse.

Another reason to focus on machine polish rate is the variability of the incoming oxide

and nitride film thicknesses. For instance, a wafer that receives a thicker oxide deposition

will require a longer polish time to achieve the target thickness. Under these

circumstances, assuming an unchanging polish rate and pre-polish film thickness and then

selecting a fixed polish time for the CMP process should not be expected to give a high

Cpk result*.

2.2 Lot-Level vs. Wafer-Level Control

The ideal way to control the polishing process would be to measure film thickness in

detail across the wafer while it is being polished, and to use real-time feedback control to

adjust the polish time and other machine input parameters, for each wafer polished, to

optimize resulting film variability and mean thickness. The sensing technology required is

not widely available, however, 20 and was not provided by the CMP equipment vendor.

(Such a real-time, wafer-level approach is being explored elsewhere, but on other

processes.21 )

What is readily possible is to measure films before and after polishing. The DEC process

engineering staff therefore developed a lot-level, manual closed-loop control system for

CMP. This system requires that a number of unpatterned, non-product "monitor" wafers

be polished, and that a number of thickness measurements be made, for every product lot.

*Cpk, also known as the process capability ratio, is a statistical measure of the ability of the process to produce within-

spec results.



The CMP machine operator plugs the information thus gained into some simple formulas

that have been developed from experience. The operator uses the results to set the

polishing time for each lot, roughly compensating for changing grand mean polish rates

and grand mean incoming thicknesses. Starting with this time setting, a pilot wafer from

each lot is first polished and measured, and the polish time for the rest of the lot is

adjusted if the results so indicate. The polish time is thus fixed for all but one wafer in the

same lot.

This approach keeps the average post-polish thickness for the wafers in a lot close to

specified limits, even as the polish rate degrades, by adjusting the polish time. Eventually,

the polish rate will degrade so far that the cycle time of the CMP machine is judged to be

unacceptably low; in this case consumable items may be swapped and/or other

adjustments may be performed to "reset" the machine state to a higher polish rate. The

need to process monitor wafers adds to the fab's operating costs, since monitors do not

become products.

Statistical process control techniques are used to deal with thickness variability caused

either by incoming thickness variation or by polish rate variation. The operator waits for

certain polish rate variability measures, such as the percent difference in center-to-edge

polish rate, to exceed specified limits, and then acts to bring those measures back in spec,

again by replacing consumable items and so on. These measures being out of spec do not

correspond to out of spec polished product, but signal that it is likely that product will go

out of spec soon, possibly on the next run, unless corrective action is taken. This is a

practical approach for avoiding producing scrap, but unlike the case of decaying mean

polish rate, the operator has no means to compensate for decaying variability as it occurs,

because all other machine settings are held constant.

Since DEC first developed and applied this CMP process control approach, one

commercial vendor has begun to market a CMP endpoint detection tool. This is a system

that promises to signal in real-time that the target thickness for a polished layer has been



reached. With this technology, polish times could be automatically adjusted for each

wafer to compensate for differences in mean starting thicknesses and polish rates. Film

thickness uniformity control would remain unaddressed, however.

This endpoint detector, the Luxtron 2350, tries to capitalize on the observation that, as

material A is polished down to material B, the polisher can signal the difference in

coefficient of friction between the two materials. This is because the polisher adjusts its

wafer carrier motor controller current to compensate for the friction change and maintain

a steady wafer rotational rate. By tapping onto the carrier motor controller signal and

processing it, the Luxtron 2350 tries to provide a signal that can be reliably used to detect

endpoint. This approach was claimed by Luxtron to work well for CMP applications such

as DEC's. However, for the case of interlevel dielectric polishing, where the oxide

between two metal layers is to be polished down to a target thickness, this approach does

not work because no material interface is crossed.

Over the course of 4 weeks at DEC I tested the Luxtron 2350, but found that the signal it

provided did not distinguish between oxide and nitride layers at all, even when

unpatterned oxide-over-nitride layers were polished. (On actual product, due to

patterning, less than half the surface will have any nitride under the oxide, so polishing

blanket wafers is a best-case test scenario for the 2350.) The reason was that the 2350 was

designed to work with newer polisher models than those installed at DEC; the new

models have different, higher-quality motors and motor controllers. We appeared to be in

a "garbage in, garbage out" situation, with the polisher motor was providing an

unacceptably poor input signal to the 2350.

2.3 CMP Process Control Improvement Challenges

The DEC approach works well in the factory, but the question is, can we do better,

particularly with respect to three issues:



* Rather than passively watch polished films become steadily less and less uniform

until the machine is reset, can we actively compensate for machine "wear"?

* Can we polish fewer or zero non-product wafers?

* Can we automate parameter compensation to reduce the chance for operator errors

and permit more complex, optimized compensation calculations?

Of course, this should be accomplished while achieving as good or better mean thickness

results than are already achieved by manual closed-loop control.

2.4 Run by Run Process Control

Over the last few years at MIT, as part of ongoing research into semiconductor

manufacturing process control, 2 2 an on-line technique for process control has been

developed, called "run by run" (RbR) process control 23. The RbR controller modifies the

process recipe on each lot or "run," based on data collected in the previous run. So-called

"gradual mode" RbR controls the process to target in the presence of drift. The key

assumptions of gradual mode RbR control are that:

1. The process exhibits systematic drift in one or more responses;

2. The process has at least one control variable that can be conveniently adjusted

between runs;

3. Each drifting response (y) to be controlled can be modeled (or be transformed to be

modeled) as a first-order function of control variables (xi), i.e., y = a + Xbixi

4. There are no statistically significant interactions amongst the control variables (i.e.,

no xixj cross-terms);

5. Process drift can be modeled more or less as a change to the intercept a, i.e., the

process's sensitivity to adjustments to xi is fairly stable over time.

In the rest of this thesis, I will use the adjective "first-order" as short hand for the

mathematical model described by points 3 and 4 above. Note that while the model can

describe a simple quadratic or other non-linear relationship between the response and a

given control variable (by suitable transformation of the control variable), it does not

admit more complex relationships, such as a linear term plus a quadratic term. (While one



could transform the non-linear terms, e.g., renaming 'X2' to be 'w', the controller would

in practice try to adjust x and w separately; the current RbR software treats each control

parameter as independently adjustable. William Moyne lays out the algorithmic details

and limitations in his thesis 24.)

Under these assumptions, the RbR controller provides two algorithms to control the

process to target. One is based on an exponentially weighted moving average (EWMA)

algorithm, while the other uses the predictor-corrector (PCC) algorithm. 25 Both work to

conservatively adjust the process model by updating the constant term a to reflect current

process behavior. The EWMA algorithm locates a "new model target contour" that

represents the drifting process, and selects a setting for xi on the contour that minimizes

the distance from the previous setting. The stability and robustness of the EWMA-based

controller were studied26 and found to perform well over a wide range of drift behaviors.

This approach has been tested in a few semiconductor processes, such as plasma

etching,27' 28 in laboratory settings. Essentially, the EWMA algorithm implements a

simple integral controller.

The PCC algorithm is a two-level EWMA; the practical effect is that it provides a

forecasting mechanism that can quickly and effectively react to drifts and to changes in

drift rate and direction. It also suggests no changes when it sees only random fluctuations

in a process response. Both algorithms are parameterized to permit the amount of history

and/or the aggressiveness of the forecasting to be adjusted.

Having updated its internal model of the process using EWMA or PCC, the RbR

controller then sets the control variables for the next run by solving the set of

simultaneous equations that describe the responses, such that the vector of responses will

be as close as possible - in a least squares sense - to the target vector of responses.

Reflecting upon the CMP process control challenges described earlier, RbR control

appears to be a promising approach. It need not collect data from monitor wafers; it is



automated; it requires no new sensing, measurement, or control hardware for the CMP

machine; and most importantly, it holds out the practical possibility of film uniformity

drift compensation. Another attraction is that the algorithms have been implemented
29within a UNIX-based software environment designed for portability and ease of use29

and can be obtained free of charge to U.S. industry.

However, the effectiveness of RbR is clearly limited by the fidelity of the first-order

response model to actual process behavior. There is no research demonstrating just how

much process variability must be explained by this model for RbR to work. A research

group at San Jose State University and National Semiconductor is applying RbR to

CMP30 , developing an optimized laboratory process and sophisticated behavior models,

such as for "pad rebounding." The SJSU group has reported success using a primitive

process model but has not provided details in the literature. As of this writing, no other

work has been published on applying RbR control to CMP, although an R&D project by

SEMATECH, University of Michigan, and MIT is underway.

2.5 Choosing the controlled response

As has been noted by other researchers of model-based manufacturing process control, 31

it is not necessarily the case that the best response for monitoring is also the best response

for controlling a process. In the particular case of RbR, statistical summaries designed to

give the maximum insight into process behavior will not necessarily have the first-order

functional behavior described above, nor should they be required to do so. Conversely, it

may or may not be particularly helpful to equipment operators, technicians, and engineers

to chart a measure chosen only for its compatability with the premises of RbR.

A useful set of monitoring statistics was already being charted for the CMP process at

DEC, as mentioned earlier. These summaries were obtained from raw thickness data

measured at each of nine points; four wafers from each lot are sampled to collect this

information. The measures for each lot were: the grand mean film thickness (TT) and the

range of mean film thicknesses (RT); the mean film thickness range across a wafer (TR)

and the range of film thickness ranges across a wafer (RR); the grand mean polish rate



(P); and the polish rate "nonuniformity." The first four measures concern themselves

with the product result, while the last two focus on process behavior.

To define each of these measures, let Xijk be the film thickness at the ithi site of the jh

wafer of the k h lot polished, then:
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Let Yijk be the initial film thickness, and Tk be the polish time for the lot, then the mean

polish rate is:
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The polish rate nonuniformity for a wafer is measured by taking the polish rate for the site

closest to the center of the wafer, subtracting from it the average of the polish rate for the

points on the 4-point outer ring, and dividing by twice the mean polish rate for all nine

points. This gives a nonuniformity measure from the center to the edge that ranges

between ± 100%. The polish rate nonuniformity for a lot is defined as the mean of the

nonuniformities for the four sampled wafers in each lot.

Engineering intuition about the polish process indicated that while the means might have

first-order response models, the ranges and nonuniformities were unlikely to exhibit such

simple relationships to CMP process parameters. Specifically, any measure of film

thickness variability would summarize the spatial variation of the polish process, which

was expected to be complex. (For example, the polish rate near the wafer flat is often

different from the rest of the wafer.) It also seemed risky to try to predict a priori the

"best" statistic for controlling the variability of CMP; research on spatial uniformity

control by Guo 32 suggests that using a single spatial uniformity metric to direct on-line

process control may be a weaker approach than "unbundling" the metric into

unsummarized spatial responses.

So rather than use DEC's CMP process charting and control measures, I decided to use

the nine-point data from each sampled wafer directly, that is, to have the RbR control a

nine-element response vector Y corresponding to the final polished film thicknesses at the

nine measurement sites. I would specify that each site be polished to the same target

thickness. In solving the resulting simultaneous equation for the best least-squares error

over the nine sites, the RbR algorithm would obtain one type of "optimum" balance of

mean film thickness and film thickness variation within a wafer and within a lot. (The

controller would in fact treat mean thickness and thickness variation with equal

importance.) The spatial variation complexity issue would be neatly sidestepped by only



modeling individual sites on a wafer: the expectation was that the response at any one site

would be well-modeled by a first-order equation.

Before we leave the question of which response to control, consider the possibility of

putting the polish rate at each site under RbR control instead of the final film thickness.

This would be consistent with the common process control focus on machine behavior

rather than on product characteristics, and harkens back to Preston's equation. However,

it suffers from two weaknesses that cause me to stick with film thickness, at least for

now:

* "Polish rate" is not directly measured, but is itself a summary measure, and so is

potentially filtering information from the controller (e.g., initial film thickness

variation);

* Polish rate would still need to be converted from "response" to "control parameter"

form to enable the RbR controller to determine a lot's polish time, which poses an

added complication compared to using final film thickness.

2.6 Choosing the control variables

If Y is the target thickness vector, what are the components of X? To begin, the RbR

controller could adjust polish time for a given lot. But one input parameter would not be

sufficient to control both the mean and the variation in film thickness. But which of the

other CMP process control variables should be chosen? Here, a constraint was imposed

by the manufacturing, as opposed to laboratory, setting of this work. To obtain

permission eventually to try out RbR on the manufacturing line, the controller would

have to avoid modifying the existing, production-qualified CMP process recipe.

Otherwise all chips made while RbR was being tested would be automatically assigned

"nonconforming" status, which would have made the cost of the experiment to the fab

unacceptably high. So only input parameters that were unused by the process recipe were

viable candidates to be RbR control variables, in addition to polish time.



Fortunately there was an unused input parameter that could be easily and accurately set by

the operator from one lot to the next: back pressure. As illustrated in Figure 5, the CMP

wafer carrier can apply air pressure to the back of the wafer as it is being polished, which

"bows" the shape of the wafer against the polish pad. In this way, polishing rate

variability can be altered without changing any other input parameter. Specifically, the

center of the wafer is expected to polish faster while the outer edge is expected to polish

slower than the grand mean polishing rate. While this clearly is not a fully general film

thickness uniformity control variable, it does give the RbR algorithm something to work

with within the stated operating constraints, and it is not obvious a priori that full

generality is needed. (A "fully general" variable would permit thickness adjustment in

any direction for any of the 9 points.)

Back Pressure

Wafer

Figure 5: Back Pressure Effect

The lot-to-lot response to be controlled was therefore expected to take the form:

F = A, + BInit, +CT +DP +EPJ~, +GP 2 +HT 2

for each point i and each lot j. (To get a lot's response, a number of wafers from each lot

are sampled.) Here, F is the final film thickness, Init is the initial oxide film thickness, T

is the lot polish time, and P is the back pressure; the same T and P are applied to every

wafer in a lot. B is expected to be a positive coefficient, C a negative one, while D and E

should be negative in the center and positive at the wafer edge. This equational form only

makes the claim that higher-than-quadratic-order terms are not expected; the exact form

of the response will be that which best explains the experimental data. The actual,

empirically determined response might or might not include the P term, the PT

j .. Wafer



interaction, or higher-order terms. How close we could come to the specific first-order

RbR model would remain to be seen.

The back pressure terms in the above equation deserve some comment. From a physical

perspective, back pressure could possibly act in two ways. It could combine with polish

time to remove more or less material, or it could act as an offset to the amount of material

removed, independent of polish time. The former action corresponds to basic intuition

about the continuous effect of applied pressure over time. The latter action reflects the

case where the magnitude of back pressure relative to the magnitude of the polish arm

downforce applied by the CMP machine (the P in Preston's equation) is particularly

small. Then, if there is a back pressure effect at all, it is likely to be a result of the

geometric bending of the wafer rather than the (negligible) change in effective downforce.

This could yield an effect that is decoupled from polish time and is more akin to the other

geometric effect, changing initial film thickness.

'Init' is a covariate, a parameter that affects the outcome but over which the CMP process

has no control. It is not the combined nitride and oxide thicknesses, but just the thickness

of the oxide over the nitride film. This is a consequence of the following: (1) the nitride

film thickness was tightly controlled across the wafer, and so could safely be treated as a

constant without jeopardizing the RbR experiment, and (2) to have required the nitride

film thickness be available for every point, for all wafers to be sampled (if not 100% of

the wafers) would have entailed a significantly more costly level of tracking than what

was presently used by the fab, and at a time when the fab was looking for ways to reduce

its data collection overhead. The oxide thickness at each point for each wafer could be

easily obtained before a polish operation, and without imposing extraordinary costs on the

fab.

The next chapter discusses the statistical design of experiments and the resulting

behavioral models to be used by the RbR controller.



Chapter 3: DOE Approach and Results

This chapter begins by describing the statistical design of experiments (DOE) approach I

used to characterize the Fj response surface. The remainder of the chapter discusses the

results of linear regressions on the experimentally obtained data. The regression

coefficients are to provide behavioral models for use by the RbR controller. The reader

should note that, to protect Digital Equipment Corporation proprietary data, all reported

time units, be they minutes or seconds, have been multiplied by "fudge factors" to

conceal actual CMP polish rates and times.

3.1 Statistical DOE

I designed an experiment to characterize the final film thickness at each of 9 wafer sites

as a function of initial thickness, polish time and back pressure. In designing the

experiment, I made the following assumptions:

* A number of wafers could be polished one after another in the same cassette, under

different settings of polish time and back pressure.

* The number of wafers polished (experimental runs) would be small enough that CMP

process drift would not affect the results. If this assumption were wrong, drift could

be accounted for by an analysis of covariance, using wafer number as the covariate.

* The multiple regression results would probably show at least first-order behavior, and

interactions between polish time and back pressure were quite possible.

* Initial thickness would be a measurable parameter provided by previous

manufacturing steps, but not a controlled experimental design factor. Therefore it

would be a covariate, a variable that affects the (regression) results but is not

controllable.



If there were interactions amongst variables, and/or curvature in the response, the actual

coefficients for those terms would be of interest , so the experiment should be designed to

provide such information. The experimental design need not make an a priori choice

about which terms will be (statistically) significant: it only need be general enough to

capture the highest-order terms we expect to encounter. In particular, the design must be

powerful enough to capture the effect of back pressure alone and its interaction with

polish time, as was discussed in the previous chapter.

The assumption that the initial oxide film thickness is a covariate for the purposes of this

experiment is assailable. While it is true that in actual production the CMP process can

only accept in coming thickness as an input, having been determined earlier in the

manufacturing sequence, the necessarily non-production nature of the experiment could

have been leveraged here. That is, I could have added special instructions to the

experimental lots, requesting that they be specially processed to provide certain oxide

thicknesses. In this way, I could have provided an experiment which more fully captured

the response surface, whereas the range provided by the covariate approach was limited

by the variability of the oxide film deposition process. However, as will be discussed,

there were already significant challenges in mounting this experiment in a production

setting, and I judged the incremental cost of making this improvement to be quite high in

this context.

Another constraint was that the number of wafers available for experimentation was

going to be limited to two lots (50 wafers total), including RbR experiments. This was a

consequence of the high cost of materials and processing, and of the low priority and

ever-shrinking permitted number of non-product wafers in the manufacturing line. In fact,

the two lots would be available weeks apart, so it was important to get started with the

first lot when it arrived.

*Not because the RbR controller can use them, but because they could be used by the simulation package supplied in

the MIT software to model the "actual" equipment being controlled.



Also, the time available on CMP tools to run experiments would be very limited. For the

testing of RbR, which would require many continuous hours of processing, time on the

CMP machines would have to be pre-negotiated with the production group, but that

group would not hesitate to "bump" me if actual conditions in the fab warranted it. (At

first, I could straightforwardly schedule time on weekends, but later the fab moved to

production 7 days a week, which made it less clear when and how such experimental time

slots might become available.)*

For the response surface experiments of this chapter, I decided to run as few wafers as

possible, and to "jump in" at some point most convenient to the operators and as close as

possible to the time when I expected to able to try out RbR, since the machine state I

would capture with the response surface experiments would be changing as the operators

polished product lots in the interim.

I decided to run a single experiment to characterize the process as a function of back

pressure and polish time. I needed to account for more than just the presence or absence

of curvature, so augmenting a 22 design with center points alone would not have imparted

enough information. I chose a central composite design33 (CCD) approach to capture the

quadratic response surface within the practical ranges of time and pressure.

However, the CCD needed to be both rotatable and orthogonally blockable 34 . Rotatability

is needed for equal estimation accuracy in all directions, and is a common requirement.

Orthogonal blocking would have let the experiment be run a few wafers at a time over

*This is a good illustration of issues that arise trying to perform experiments in manufacturing settings. I sat down with
the production supervisor and made the case that it was worth his while to sacrifice some productive time on the
machine to permit me to run my experiments. He couldn't have cared less about the thesis research, of course, the
payoff to him was the possibility of saving operator time and improving quality down the road. Even at that, this
person was much more accomodating than the norm, which I attribute to his background in a pilot fab; in most
manufacturing settings I would have required substantially more political muscle than I needed here. In the end for
the RbR test, I was fortunate that an operator was suddenly out on a special project, leaving a CMP machine
unexpectedly free for use for half of Monday and half of Tuesday over a few weeks.



separate time periods, in the event that machine access for experiments was extremely

tight.

But it turns out that a CCD is difficult to block while remaining 100% rotatable. Note that

a CCD requires 5 settings for each input parameter: very low (-a), low (-1), medium (0),

high (1), and very high (a). For a two-input experiment such as this, the CCD will specify

some combination of center points (0,0), corner points (±I1,±1), and star points (•a,0) and

(0,±a). Looking at the number of corner, start, and center points in the design, it turns out

Scorner -(star + center,) -
that a = (corner) 4 gives a rotatable design, while a = -comner + center2-

givs K2.-(corner +center2 )

determines a for a two-block design. In general, it is difficult to exactly satisfy both

equations. Software developed at DEC35 suggested a = 1.2 to give a "highly" rotatable

design supportive of orthogonal blocking:

Center Point (0,0), plus 5 replications

Corner Points -1, -1 -1, , -1 1,

Star Points -1.2,0 1.2,0 0, -1.2 0,1.2

With 4 corner points, 4 star points, and 6 center points, this gave 14 runs to be performed

in randomized order, leaving 36 wafers for future experiments.

For the mapping of normalized experimental settings to actual polish time and back

pressure settings, I relied on advice from DEC process engineers based on their

experience with the existing CMP process. I chose allowable polish time ranges of

between 80 and 140 seconds (1 second settable precision). Then, for back pressure, since

too high a setting could push the wafer out of its carrier, I chose 3 psi as an upper limit,

which was well below the maximum for the tool. The lower limit for back pressure was

zero psi, with 0.1 psi settable precision throughout the range.



At this point, the reader should note another limiting impact of the covariate assumption

for initial thickness: it will not be entirely sufficient to use regression results alone as

validation that there is no interaction between initial thickness and polish time or back

pressure. Again, this is because the experimental design doesn't encompass initial

thickness as a control variable. However, in theory, we could fall back on simpler

graphical analysis methods of the experimental results: plot the final thickness against

initial thickness, with different fixed values of polish time and back pressure, and look for

intersecting versus parallel lines; parallelism would tend to validate the absence of

interactions, while intersections would indicate interactions. But this would require that at

least two (time, pressure) pairs be replicated in the design, so that at least two lines could

be drawn. Since only the center is replicated, there is insufficient data to do this. Since at

the time this experiment was designed such interaction seemed unlikely, this became a

tradeoff between thoroughness and cost: the expected value of the data was judged to be

less than the cost of obtaining it*, since appropriate replicates could certainly have been

added to the experiment.

3.2 Experiment #1

After obtaining a suggested randomized ordering from a statistical software package, and

mapping the x values onto the parameter ranges, I arrived at the experimental design

shown in Table 1. The next step was to obtain the experimental material. In this

manufacturing setting, this consisted of:

1. Being scheduled to use one of the lots assigned to engineering experimentation-

available slots were few and dwindling as volume production increased in the fab;

2. Specifying the "route" the lot would take through the production sequence until it

reached the CMP step, including any pre-experiment measurements I might request to

be made by the operators or "holds" to be personally made by me.

SIn fact, with production pressures being what they were, it never seemed to me that this was a true option, and I never
tried to get permission to do this from the production supervisor.



Run # Wafer # Polish Time Back Pressure Point

1 12 110 1.5 Center

2 2 85 0.3 Corner

3 11 110 3.0 Star

4 10 110 1.5 Center

5 15 135 2.8 Corner

6 5 110 1.5 Center

7 22 85 2.8 Corner

8 1 110 1.5 Center

9 21 110 0.0 Star

10 19 140 1.5 Star

11 16 135 0.3 Corner

12 14 110 1.5 Center

13 4 110 1.5 Center

14 8 80 1.5 Star

Table 1: Design for Experiment #1

Because of scheduling constraints mentioned earlier, only one cassette of wafers was

available at this time, so the first experiment proceeded by choosing wafers from between

1 and 25,* not 1 and 50 as might have been expected. My specified route ensured that the

wafers would get the same patterning they would have received had they been destined to

be completed circuits, but skipped certain steps that did not impact topography, for

example, ion implantation to adjust transistor device characteristics.

The first CMP run happened to be a center point, which was fortunate, because I

misprocessed this wafer and had to discard it from the dataset. The misprocessing was as

follows: CMP operators and engineers had noticed that the machine gave the most

consistent results if it was first "warmed up" by at least one polish/condition cycle after a

maintenance operation or between lots, but in loading wafers into my test cassette I

neglected to insert any warm-up wafers ahead of my 14 experimental ones. So the first

wafer acted as the warm-up for the remaining 13. Indeed, when the data from the first

*Actually, one wafer was mis-processed and scrapped on the manufacturing line, so there were only 24 to choose from.



wafer* was included in the regressions, less than 60% of the variability was explained by

fitting a quadratic model to the data; when this first wafer was omitted, R shot up to over

90%. Since 5 of the 6 center points remained, it was still possible to get a servicable

estimate of curvature and reproducability, and subsequent experiments had results

consistent with those obtained here.

The results of regressions on the data gathered by the first experiment are summarizedt in

Table 2, which shows the coefficients of each variable for the final thickness response at

each of the 9 chosen sites on a wafer. As a reminder, the site map is illustrated in Figure

6. The regression package provided with Microsoft Excel Version 5.0 for Windows 3.1

was used to produce these results. Here the time units are minutes.

Response Intercept Init. Thick Time Pressure T*P T2  p2

Site 1 92% 1200 .429 -295 0 0 0 0

Site 2 92% 1301 .454 -299 0 0 0 0

Site 3 97% 1958 .328 -824 0 0 139 0

Site 4 98% 2339 .184 -1005 0 0 189 0

Site 5 98% 1591 .552 -902 52.2 0 162 -18.8

Site 6 92% 1344 .425 -332 0 0 0 0

Site 7 99% 1820 .410 -886 45.9 0 159 -15.6

Site 8 97% 1696 .466 -862 44.0 0 147 -15.7

Site 9 97% 1296 .468 -363 0 0 0 0

Table 2: Regression Coefficient Results for 9 sites

There are two main features to look for in assessing these results with respect to the RbR

controller. First, how well would a first-order model of the type needed by the RbR

algorithms model the responses to be controlled; second, how often and how much is

back pressure a significant factor in determining the final film thickness?

*This data was later inadvertently deleted by me from the spreadsheet, and so is not available for analysis in this thesis.

tThe data and regression results and details are provided in the appendix.



It appears that using a model that omits interaction and quadratic terms will have high

fidelity to the behavior model obtained via linear regression. None of the responses

demonstrates a statistically significant interaction between polish time and back pressure!

In addition, as compared with those responses that have no squared terms, those that do

also possess higher linear coefficients, and opposite-signed squared coefficients, so that

qualitatively their behavior is not all that far removed from those "linear" responses.

Figure 6: Wafer Site Map

In fact, if the regression calculations are repeated for sites 3,4,5,7, and 8 with a model that

has zeros for the quadratic terms, the resulting R is still over 90%, as summarized in

Table 3. Since this now is a first-order model - there is still no statistically significant

interaction between time and pressure - tt is the coefficients in this table that would be

used by the RbR software, along with those of sites 1,2,6, and 9 from the previous table.

Unfortunately, for the RbR model, the back pressure term is only present in two

responses, and its effect is small: at maximum pressure of 3 psi it predicts a relatively

small change in angstroms of thickness compared to the change possible by altering

polish times. Further, only the expected increase in the amount of film removed from the

center is observed at all, while the predicted edge polish braking effect is not seen. This

all means that the back pressure variable does not appear to provide a particularly

dynamic nor general thickness variability adjustment knob to the RBR controller.



Response Intercept Init. Thick Time Pressure T*P T2  p 2

Site 3 96% 1346 .429 -317 0 0 0 0

Site 4 94% 1553 .281 -312 0 0 0 0

Site 5 94% 939 .647 -310 -7.78 0 0 0

Site 7 94% 1292 .431 -305 -2.25 0 0 0

Site 8 94% 1200 .487 -322 0 0 0 0

Table 3: Linearized Regression Results

However, events in the manufacturing line caused this conclusion to be premature. First,

machine maintenance records revealed that, because back pressure was not part of the

production CMP recipe, it had never been calibrated since the time that the machine was

originally delivered from the vendor over 18 months earlier, because no one had bothered

to include it in the regular preventive maintenance worklist. So this experiment had been

run with a questionable input parameter. Second, a major, annual preventive

maintenance procedure was carried out by factory technicians just a few days after this

experiment was performed. Typical procedures include leveling the polish platen and

similar activities that require the machine to be down for an extensive period. So the state

of the machine had just been significantly altered relative to where it had just been

characterized, adding further doubt about the usefulness of the experimental results. I

decided that the results were enough in question to warrant repeating the experiment,

using newly-recalibrated back pressure and a freshly post-annual-preventive-maintenance

CMP machine.

3.3 Experiment #2

By now the second cassette of experimental wafers had arrived, so the experiment was

simply repeated using the same randomized wafer selection as for the first cassette. Since

the cassettes will not have undergone identical processing, some component of variation

in the results will be due to differences between wafers processed in different cassettes,

however, there is no particular need to specifically account for this difference. Table 4



summarizes the regression results; again, the RbR first-order model permitted an

excellent fit to the data, and the coefficients appear qualitatively similar to those produced

by the first experiment. (In fact, the equipment technicians reported that back pressure

had been only moderately out of calibration.) Unfortunately, this also means that the back

pressure variable is still insufficient to permit RbR to improve the variability of the

polished film thickness. Here, only one site is sensitive to back pressure, with a weak,

albeit improved, effect on the result.

Response g• Intercept Init. Thick Time Pressure T*P T2  P2

Site 1 92% 1428 .450 -465 0 0 0 0

Site 2 93% 2160 0 -435 0 0 0 0

Site 3 95% 1563 .366 -440 0 0 0 0

Site 4 97% 1473 .406 -449 0 0 0 0

Site 5 93% 1398 .429 -354 0 0 0 0

Site 6 97% 1531 .357 -484 18.1 0 0 0

Site 7 95% 1544 .356 -425 0 0 0 0

Site 8 96% 1425 .438 -390 0 0 0 0

Site 9 97% 1452 .510 -548 0 0 0 0

Table 4: Repeated Regression Results

Thus it appeared that the response surface for the CMP process was such that it was

basically insensitive to back pressure.* At this stage I judged there were three main

options for going forward. First, I could proceed with RbR control with the polish time

control variable alone. But this would have meant only controlling mean polished film

thickness, and not nonuniformity, because the RbR controller would not have sufficient

degrees of freedom at its disposal to do any better. Besides, since the existing DEC CMP

process control method did this already, the costs of such a demonstration would have

been difficult to justify. Second, I could put the production recipe itself in bounds for

*Subsquent investigation by DEC process engineers uncovered a technical basis in the recipe for this behavior, but the
details are proprietary. Generally, a number of process parameters could be set and/or interact such that they could
swamp the back pressure effect.



experimentation. This would have entailed more materials and machine time than was

feasible to obtain within the remaining project schedule, especially given the increasing

fab production rates and consequently decreasing machine availability for engineering

activities. The third choice was to move to a different CMP process. This was the path I

selected, but it would come with its own set of issues, as discussed next.

3.4 Back End CMP Experiment #1

The process engineering group was in the midst of developing another CMP process for

use in the fab. This was to planarize inter-level dielectrics between metal layers, a

common CMP application. Since the metal lines used to connect transistors are normally

deposited above the films that form the devices, the manufacturing process is sometimes

spoken about as having a "front end" (processing to make devices) and a "back end"

(processing to connect devices.) Thus the application was referred to as "back end CMP."

There were both pluses and minuses to switching focus away from the production CMP

application to back end CMP:

+ Polishing inter-level dielectric is a mainstream CMP application, and so would be a

good vehicle for "showcasing" RbR control of CMP;

+ A single CMP machine was dedicated to back-end development, so it would be easier

to access for experiments than the production machines had been, but it suffered from

chronic wafer-handling problems and so would be more difficult to operate;

- Since back-end CMP was still under development, process engineering was not as far

down the learning curve as it was on the production CMP process, for instance, in

successfully "resetting" the machine when polish rate nonuniformity exceeded

specified limits;

+ Experimental wafers were cheaper and easier to obtain, and unpatterned films would

be suitable for data collection because no patterned wafers had yet been tried on the

back-end recipe anyway;

- There was no baseline SPC data against which to judge the performance of the RbR

controller;



- There would be no chance to demonstrate RbR on the manufacturing line, on actual

products.

I devised an experimental strategy that entailed running the response surface

characterization experiment just after fresh consumables had been installed, at a time

when the machine was behaving "well." Also, as soon as possible after obtaining a

regression model, I would begin to test the RbR controller. (In fact, since the RbR

controller would require some initial conditions about the state of the machine, I planned

to use replicated center point data freshly obtained from the experiment to represent a

"lot" that had just been polished. This data, plus the incoming film thickness of the first

lot to be polished under RbR control, would serve as the initial conditions.)

There was another experimental advantage that I derived from having had more

experience in the fab than when I had designed the original 14-wafer central composite

design. As I discussed earlier in this chapter, although the incoming film thickness is a

covariate for CMP on the production line, it is possible to treat it as a control variable

when performing a designed experiment. I now had the practical option of having wafers

individually deposited with specified thicknesses of unpatterned inter-level dielectric,

since my experimental wafers would not be prepared as part of normal production. I

could use engineering estimates of how much ILD film thicknesses would vary to give

likely upper and lower bounds, and from this design an experiment that would permit the

response surface as a function of pre-polish thickness to be more confidently

characterized than it had been in the 14-wafer case.

I specified that a nominal 15 kA-thick unpatterned ILD film would be polished down to a

12.5 kA target thickness under RbR control. Based on engineering experience, I set the

lower and upper bounds for the pre-polish thickness to be 14 kA and 16 kA, respectively,

for the purposes of the experimental design.



This time around I would have a fair degree of scheduling control of the CMP machine,

so making the experiment suitable for orthogonal blocking no longer appeared necessary.

Hence, I settled again on a uniform-precision, central composite design, with a= 1.68, as

indicated by Table 16-8 of Reference 34. This design uses 6 center points, 6 star points,

and 8 corner points. While the back pressure range did not change, the polish time uses a

wider range [60 to 240 seconds] to capture a broader swath of the response surface

compared with the front-end CMP experiment. The resulting experimental design is

shown in Table 5. Note again that initial thickness is now a controlled variable, so the

values in the table are designed.

As before, nine points are selected on the wafer surface to provide nine responses to be

controlled under RbR software. The exact same points are not selected, however, since

there is no pattern involved, but their approximate locations on the wafer are still

designed to provide a central point, four points making a middle ring, and four points

making an outer ring. Using software built into the Prometrix 650/750 film thickness

measurement system, the following pattern was selected as shown in

Figure 7, for its symmetry and avoidance of a single point at the wafer flat.

Figure 7: Back-end CMP Wafer Response Pattern

An inconvenient aspect of this experiment was that the film thicknesses provided by the

diffusion operation could never exactly match those specified in the experimental design.

At each of the nine sites, the actual film thickness was found to be as much as hundreds

of angstroms different from the specified thickness. This means that the span of the



covered response surface is different from that intended by the experimental design. Cost

and time constraints precluded going back to the diffusion operation and attempting to get

more precise film depositions.

Run # Initial Thickness Polish Time Back Pressure Point

1 14405 97 2.4 Comer

2 15000 150 1.5 Center

3 15000 150 1.5 Center

4 15000 240 1.5 Star

5 15000 150 1.5 Center

6 14405 203 0.6 Corner

7 14405 97 0.6 Comer

8 14405 203 2.4 Comer

9 15000 150 1.5 Center

10 15595 203 2.4 Comer

11 15000 150 1.5 Center

12 15000 150 0.0 Star

13 15000 150 3.0 Star

14 15595 97 2.4 Comer

15 15000 60 1.5 Star

16 15000 150 1.5 Center

17 14000 150 1.5 Star

18 15595 97 0.6 Corner

19 15595 203 0.6 Comer

20 16000 150 1.5 Star

Table 5: Back-end CMP Response Surface Experimental Design

The regression results of the experiment are summarized in Table 6. The regression used

the measured initial film thickness values. The intercept term, plus all interaction and

2nd-order terms, were all zero, and are omitted from the table for brevity. The initial

thickness coefficient is essentially unity.

From a physical perspective, polishing a single-material, unpatterned film having little

topographic variation produced a constant polish rate that was simply the difference



between beginning and ending thicknesses, divided by the polish time. One could infer

from this that the richer behavioral models seen in the previous CMP experiments were

driven by the presence of patterning, more topographic variety, and/or by polishing more

than one material.

Response Init. Thick. Time Pressure

Site 1 94% 1.003 -1216 0

Site 2 94% .998 -1248 0

Site 3 94% 1.005 -1291 0

Site 4 92% .995 -1276 0

Site 5 94% .996 -1265 0

Site 6 93% .993 -1150 110

Site 7 91% .979 -1120 122

Site 8 92% .976 -1145 183

Site 9 92% .999 -1094 0

Table 6: Back-end CMP Coefficient Regression Results

A disturbing aspect of these results, though, is that there is no apparent back pressure

effect at the center of the wafer, only at the edge, and that only one-third of the sites seem

to be back-pressure sensitive at all. This did not bode well for back pressure acting as an

effective film variability control parameter. However, as it happened, just after this

experiment was run, the CMP process technician uncovered significant polish rate

nonuniformity problems on the machine. A major maintenance activity ensued to repair

the machine, until acceptable results were once again achieved. The machine's state

having now been significantly altered, I judged that this invalidated the model I had just

obtained with the latest experiment.

Therefore, as soon as possible after the repair work was completed, I ran a second

response surface experiment, but this time I returned to a 14-wafer CCD design, primarily

because it would have taken extra time to get the needed special-thickness wafers made

up, I had a ready supply of 15 KA film wafers, and I wanted to get started on the machine



while it was still behaviorally stable. (I was also feeling comfortable, based on the

previous experimental data, that this time around I could omit a rigorous accounting for

pre-polish thickness interactions.) The other change I made was using the standard value

for a rotatable design, no longer concerning myself with orthogonal blocking. The site

selection on the wafer surface was unchanged.

3.5 Back End Experiment #2

The experimental design, and its summarized regression results, are shown in Table 7 and

Table 8, respectively. Again, the intercept, interaction, and quadratic terms were zero, and

are omitted from the table for brevity.

Run # Polish Time Back Pressure Point

1 150 1.5 Center

2 97 0.6 Corner

3 150 3.0 Star

4 150 1.5 Center

5 203 2.4 Corner

6 150 1.5 Center

7 97 2.4 Corner

8 150 1.5 Center

9 150 0.0 Star

10 240 1.5 Star

11 203 0.6 Corner

12 150 1.5 Center

13 150 1.5 Center

14 60 1.5 Star

Table 7: 14-Wafer Central Composite Rotatable Design

This time, the back pressure impact is stronger, but four out of the nine sites are still

unaffected. Still, in looking at the geometry of the sites, we see an increase in material

removal at the center with applied back pressure, and a decrease at the wafer edge, so it is

not surprising that the effect in the middle ring area of the wafer is neutral.



Response m Init. Thick. Time Pressure

Site 1 90% 1.005 -1152 -91

Site 2 91% 1.000 -1233 0

Site 3 90% 1.014 -1281 -110

Site 4 91% 1.003 -1308 0

Site 5 91% .993 -1228 0

Site 6 89% .985 -1172 205

Site 7 89% .984 -1211 130

Site 8 90% .981 -1221 197

Site 9 86% 1.000 -1163 0

Table 8: Final Back-end CMP Response Surface Coefficient Results

To summarize these results, recall the general form of the response from the previous

chapter:

Fj = A, + BIniti, + CiTj +DP +EiPTj , GP 2 + Hi 2

The regression model that best fits the data has the A,E,G, and H coefficients set to zero,

and B set to 1. The effect of back pressure as a supplement to polish arm downforce (the

PT cross-term) appears to be negligible, but it does exhibit a geometric effect (the P term)

in certain locations on the wafer.

At last I could proceed to test out RbR control of CMP, using the above model and the

results of the six center points as the "initial conditions." The next chapter describes the

design and results of this testing.



Chapter 4: RbR Experimental Approach & Results

As part of its research into the on-line control of semiconductor manufacturing processes,

a research group led by Prof. Duane Boning at MIT's Microsystems Technology

Laboratories has developed a UNIX-based software package with the following

capabilities: 36

* implements parameterized EWMA and predictor-corrector control (PCC) algorithms;

* provides an "equipment simulator" that can be perturbed with noise and drift; and

* provides a graphical user interface for ease of use.

The equipment simulator gives the RbR software a "virtual machine" that it can attempt

to control, under various machine behavior circumstances. It requires a behavioral model

to be supplied just as does the RbR controller; this too will usually be derived from a

response surface characterization experiment and regression. The simulator will accept

essentially any polynomial behavioral model the user cares to supply, as contrasted with

the first order model required by the RbR controller. This capability is highly beneficial

when a substantial portion of the machine's behavior is described by interaction and

supra-linear terms - it is probably unclear in such a case how well the RbR software can

control such a non-linear machine without first simulating it.

There was no such discrepency for the back-end CMP experiment: machine behavior was

well-described using purely linear, non-interacting terms. Therefore the model held by the

RbR controller and the model held by the simulator would be identical. If no noise were

introduced, one would expect the RbR controller to give ideal results. Adding white noise

and drift would not especially reveal anything about the ability of the RbR method to

work beyond the theoretical treatments in the literature 37 which analyze EWMA control

under the same types of perturbations. In fact, we expect the more powerful PCC

algorithm to work well in this situation. I judged that the most revealing thing to be done

at this stage would simply be to proceed to polish as many wafers as possible under RbR

control. (From the perspective of making the case for RbR within the factory, I also



sensed that simulation results would not be anywhere near as compelling to

manufacturing personnel as "real" results.)

The back-end CMP process was still under development, and so there was as yet no

stable process from which to infer "typical" amounts of noise and drift. However, data

from the front-end CMP process could illustrate how one stable CMP process was

currently behaving. I arranged to have all the wafers in two arbitrarily chosen front-end

CMP lots measured, as follows:

(1) I selected nine sites per wafer to match the ones used by production in its own

tracking;

(2) At each site, production personnel measured the deposited nitride film thickness A,

the subsequent deposited oxide film thickness B, and the post-CMP nitride film

thickness C;

(3) Noting the polish time T for each lot, I calculated a "mean polish rate" for each wafer

in a lot as the average of (A + B-C) TIover the nine sites; and

(4) I also calculated the natural log of the standard deviation of polish rate for each wafer

(because this is expected to be a roughly Gaussian distribution, unlike the standard

deviation).

The resulting charts* suggest that the qualitative degree of drift may be substantial for the

front-end process: with a standard deviation (a) of about e 3 or 5%, the polish rate

appears to deteriorate by as much as two a per lot. This is still within the capability of the

PCC algorithm to track the overall trend. While this may or may not be predictive of the

back-end process, it at least suggests that the RbR controller should not be ruled out a

priori. The real issue was therefore how long and how well the combination of back

pressure and polish time could control polished film uniformity under perhaps rapidly

deteriorating machine conditions.

I have converted polish rate data into a percentage of a nominal rate to protect DEC proprietary data.
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Figure 8: Front-end CMP Lot #1 Polish Rates
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Figure 10: Front-end CMP Lot #2 Polish Rates
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Figure 11: Lot #2 Polish Rate Variation

4.1 RbR Test

As I noted earlier, the PCC algorithm consists of a two-level EWMA that promises

superior ability to compensate for systematic drift compared to a single-level EWMA

controller. The model update equations of PCC* for each run t are:

This notation is taken from Moyne's thesis.
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This notation is taken from Moyne's thesis.
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n, =cc (y, - Ax,)-+ (I - a)n,_,

4d = P(y, -Ax, -c,_,)+(1- )d,
c, = n, + d,

where n is the noise estimate, d is the drift trend estimate, c is the updated constant term

in the RbR model, y and x are the measured responses and control variables, respectively,

and A represents the (unchanging) model coefficients of x. The algorithm's behavior is

controlled by the parameters a and P3.

For this test, I set the two PCC algorithm parameters at a = 0.5 and 1 = 0.9. The a

parameter controls over how many previous lots EWMA-style averaging will occur - at

0.5, only the last 5 or so lots would have a major impact. The 3 parameter sets the

sensitivity of the trending function - at 0.9 only the last two lots would have a major

impact. The 3 setting would thereby permit good tracking of changes in response slope.

In contrast, setting P3 low for a leisurely tracking would not have resulted in much

practical algorithmic difference from a simple EWMA integral controller.

Each polished lot was to contain 25 wafers, all but 4 of which were to be treated as

dummies, that is, dummy wafers are polished but not measured. All wafers started with a

15 kA unpatterned ILD film; after being used as data, wafers were reused as dummies, so

that ultimately I was able to polish 200 wafers while only expending a fraction of that

number. I placed the data wafers such that they were evenly spaced across the cassette

and the last wafer polished would always be a data wafer. The reasons I chose this

approach instead of placing 4 wafers at random anywhere in the cassette for each run

were:

* To ensure that sufficient warm-ups would always be performed before a data wafer;

* To ensure that the results of the last wafer polished in the lot (the one experiencing

the most accumulated drift, if you will) would be included in the response being

controlled; and

* To ensure that the response being controlled consistently reflected the drift across a

lot.



Note, however, that variation due to within-cassette placement cannot be accounted for as

it would be with random placement. In hindsight, some compromise, such as random

selection from inside each of 4 quartiles in the cassette, would have ameliorated this

problem. In production, if it is desired to engage in SPC charting of aspects of the CMP

process using the same raw data (monitoring, as opposed to controlling) it would also be

helpful to have randomized locations within a lot.

I used only 4 wafers per lot due to the sampling precedent set in the front-end CMP

process, that is, I wanted to be able to demonstrate the feasibility of RbR control without

having resorted to more expensive sampling than was already tolerated by the

manufacturing organization. This sample size is not entirely sufficient to characterize

within-a-lot variability 38 (which tends to make the above wafer placement discussion a bit

beside the point) but it is adequate to capture lot-to-lot variability, which is the prime

focus of RbR control.

During this test, nine lots were polished under RbR control. On each run, the software

would accept as inputs:

* the four-data-wafer average of the post-polish ILD film thickness at each of the nine

sites for the previous lot, and

* the four-data-wafer average of the pre-polish ILD film thickness at each of the nine

sites for the upcoming lot.

The target thickness for each site was set the same, at 12.5 kA. No pad replacement or

other machine maintenance activities were permitted to be performed during this

experiment, so that the data could be viewed as having been collected "back-to-back,"

however, due to the length of time required to pre-measure a lot, polish it, measure it, exit

the fab, operate the software, re-enter the fab, and so on, only two or three lots were

polished per day, with the machine left idle overnight.



4.2 RbR Test Results

To assess the results of the test, I used six different measures, all of which are already

used in some form at DEC to track the front-end CMP process. Thus, I would have a

common basis to discuss the results with DEC personnel, even if I could not use the

front-end data as a direct baseline for comparison. (For instance, it would be specious to

compare the Cpk for the back-end CMP process under RbR control to the Cpk of the

front-end process without RbR control, and there is no Cpk established for the back-end

CMP process still being developed.)

As described in Section 2.5, the measures for each lot were: the grand mean film

thickness TT and the range of mean film thicknesses RT; the mean film thickness range

across a wafer TR and the range of film thickness ranges across a wafer RR; the grand

mean polish rate P; and the polish rate nonuniformity NU. The first four measures

concern themselves with the end result of polishing, while the last two focus on CMP

machine behavior.

For this test, the polish rate nonuniformity for a wafer is measured by taking the polish

rate for the site closest to the center of the wafer (site 1), subtracting from it the average

of the polish rate for the 4 outermost sites on the wafer (sites 6, 7, 8, and 9), and dividing

by twice the mean polish rate for the wafer. This gives a nonuniformity measure from the

center to the edge with a range of ±100%. The polish rate nonuniformity for a lot is the

mean of the nonuniformities for the four data wafers in each lot:

NUk =



NUjk =

(P +P4 +P +8jP9jPk-~ P6jk + 7jk + 8jk + 9j

4

9 j

2x i=9

The six charts that show each of these measures for lots 1 through 9 follow*. Also shown

in Table 9 are the settings used for polish time and back pressure for each lot. Note that

the settings and results for lot #0, which supplied initial conditions for the RbR software,

are not shown here since they were not obtained under RbR control.t

Lot # Polish Time (seconds) Back Pressure (psi)

1 136 1.9

2 146 2.6

3 154 2.8

4 131 3

5 125 3

6 123 3

7 135 3

8 121 3

9 121 3

Table 9: Settinngs Provided by RbR Controller

Before interpreting the data, the reader should note that I made a processing error on lot

#4 in operating the software, which resulted in the RbR controller suggesting a spurious

polish time of 131 seconds as shown. Operating the software correctly would have given

a suggested polish time of 145 seconds, or 14 seconds longer than was actually used on

*I have converted polish rate data into a percentage of a nominal rate to protect DEC proprietary data.

*They were taken from the center point results of the just-completed response surface experiment, as described in the
previous chapter.



lot #4. This does not invalidate any subsequent results, since the RbR algorithm does not

use the history of its recipe suggestions in its calculations. However, when reading the

four film thickness outcome charts, lot #4 should be discounted, while the polish rate data

do remain meaningful.

Lot #4 is significant for another reason: it is here that the back pressure setting first

reaches the allowable maximum 3.0 psi, where it remains for all further runs. This

indicates that the machine state has drifted to the point where it can only be adequately

compensated for by excessive application of back pressure. From this point on, the RbR

algorithms have only one practically remaining control variable, polish time, so the best

that can be expected from the software is that grand mean wafer thickness will stay close

to 12.5 kA. That is, the ability to compensate for degrading variability has been lost after

lot #4. This is a consequence of the physics of the CMP machine and of having only two

control variables to begin with. Again, it is useful to segregate the results into those

"before" and "after" lot #4.
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Figure 12: Grand Mean Film Thickness Results (TTk)
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Figure 13: Range of Mean Within-Wafer Film Thicknesses (TRk)
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Figure 15: Range of Range of Film Thicknesses Across a Wafer (Rrk)
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Figure 17: Polish Rate Nonuniformity (Nuk)

Looking at the results obtained before and after the RbR controller "hits the wall" at lot

#4, the controller seems to do a credible job of controlling average film thickness and

film thickness variability as long as the state of the machine permits it to do so. Once it is

down to one control variable, the mean film thickness remains within roughly the same

band, but the various range measures steadily deteriorate as the machine continues to

drift.

Meanwhile, the effective polish rate shows a steady decline (with the exception of the

uptick on the last lot) consistent with intuitive expectations. It might be possible that back

pressure could marginally raise the overall polish rate, but to a first approximation the

RbR controller has no way to restore decaying mean polish rate; it can only try to

compensate for worsening uniformity in that rate as experienced by a film on a wafer.

The final chart most clearly shows the breakdown of polish rate variability control after

lot #4.

i



Chapter 5: Economics of CMP as a Replacement

for an Existing Planarization Process

The CMOS-5 fabrication process used by Digital Semiconductor to fabricate the 21164

Alpha microprocessor is a 4-metal-layer, 0.5g process.39 This process does not use CMP

to planarize inter-metal dielectrics, but instead uses state-of-the-art local planarization

techniques. It was proposed to introduce CMP planarization in the "back end" of the

CMOS-5 process, that is, to polish one or more inter-level dielectric layers, to bring

CMOS-5 in line with planarization technology trends 40 and improve its overall quality.

More concretely, the significant expected benefits of back-end CMP included

higher probe yield via reduced defect density and a wider process window for

photolithography. The global planarity achievable with CMP would also permit the back

end process to be enhanced for better performance characteristics, for example, metal line

geometries could be reduced further, which would mean smaller die sizes and therefore

lower average die cost and improved die yields for Fab 4.4 1 The question was whether

introducing a new process technology to the CMOS-5 back end was "worth it."

This turns out to be a complicated question. For example, an important aspect of this

complexity is the operating backdrop into which CMP was to be introduced into the back

end of CMOS-5. CMOS-5 was a production-qualified process, not a new process under

development. However, it was still relatively early in its life cycle, meaning the volume of

wafers it processed was at its lifetime low, as was process yield. This was not a static

situation: volume was being quickly increased ("ramped") and yields were improving as

engineers, technicians, and operators learned more about the process. The fab was

working hard to meet its near-term business commitments as well as its long-range

capability plans. This was challenging enough to manage, so why place any of this at

further risk by changing a process technology? Even "mundane" technology introductions



on the factory floor have a poor track record in practice: for instance, a study by Hayes

and Clark found that "in most cases the additional cost, over several months, of adding

new equipment (in terms of lost labor productivity, increased waste, equipment idle time,

and so forth) appeared to be greater than the cost of the equipment itself."42

There was also a cultural component to the situation. In many high-technology

businesses, the push for new technology often comes from the engineering staff, who

focus on technical benefits. Aside from basic figures such as equipment prices and local

installation charges, the task of calculating the net financial impact on the business is

frequently passed over to financial analysts. The financial analysts then perform what are

often viewed by the engineering culture as a series of mysterious computations that

generate a number, such as the return on investment (ROI). If the ROI is high, then the

engineers accept their good fortune and move on, while a low ROI forces the engineers to

find other benefits ignored by ROI, such as "strategic considerations," or to give up; the

unvoiced opinion often is that "bean counters" have erected a roadblock to "doing the

right thing." (Kaplan 43 provides an accounting perspective on this issue.) The engineers

and financial analysts lack a common language to permit decisions to be made with a

minimum of confusion and frustration over which side "won."

There are at least two sub-problems here: (1) engineers' insufficient understanding of the

financial calculations and why/whether/when they are meaningful, and (2) engineers and

financial analysts not translating "strategic considerations" into dollars, thereby

undervaluing certain projects. Originally, I was presented the "is it worth it?" question by

my first internship supervisor primarily as an exercise in cost of ownership 44 (COO)

calculations. By exhaustively and uniformly accounting for every cost driver that impacts

the acquisition, installation, operation, and maintenance of capital equipment, COO

provides a systematic methodology for factories to make a variety of comparisons

amongst competing machines and technologies. But, while calculating the cost of

ownership would have been one possible way to bridge the first gap, it would not have

dealt with the second, nor with the other sources of complexity previously mentioned.



5.1 Analysis Approach

To deal with this question and its ramifications, I used an analysis approach that had the

following (often overlapping) components:

SI adopted net present value (NPV) as a common decision guide.

An investment's NPV is the monetary value today of the expected future cash flows

generated by the investment, less the investment's cost. The farther out in the future

and the riskier a revenue stream is, the less it is worth in NPV terms. The advantages

of focusing on NPV were: (1) many aspects of the "is it worth it?" question could be

translated into NPV, (2) NPV is cash dollars, i.e., it is not a cost accounting

abstraction that engineers can simply dismiss as "funny money," and (3) NPV is the

best financial decision metric 45 because it rates a project on whether it will increase

the company's value. Therefore, NPV was general and powerful enough to provide a

common language as well as a common decision metric for engineers, managers, and

financial analysts.

* I applied a structured framework to deal with the complexity of the problem.

A sufficiently general framework was missing which could (1) permit the complexity

of the problem to be systematically and coherently addressed, while (2) providing a

more powerful lens for viewing the proposal than that afforded by COO alone. I

believe it was the absence of a suitable analysis framework that explained why

management was still wrestling with the economics of back-end CMP when I arrived,

months after the engineering development work on it had begun.

* I focused on illuminating relevant issues more than on generating a final number, and

made assumptions, contingencies, and options explicit in the decision framework.

It seemed to me that the most fruitful path to analyzing the situation would avoid a

black box approach and expose effects of a variety of drivers on the end result. Unless

people understood when and why the NPV results might change significantly, they

could not be expected to buy into the decisions implied by those calculations. I chose

to put the analysis framework in spreadsheet format to facilitate sensitivity analysis;

the idea was to allow people to explore the space of parameter values that give a



positive project NPV and understand the robustness of various outcomes on their

own.

This analysis approach led me to develop a particular decision framework for evaluating

whether and when it might be justified to replace the existing planarization technology

with CMP in the back end. The remainder of the chapter will consist of a walk through

that framework. Any and all numeric data used will be strictly illustrative, and do not

represent actual measures of the CMOS-5 process, the Fab 4 facility at Digital

Semiconductor, or any other aspects of the DS business. For simplicity, all dollar figures

cited are without inflation. Keeping DEC's recent large operating losses in mind, I also

assumed a 0% effective annual tax rate, since DEC can "carry forward" much of these

losses into future years. (One effect of this is that I assume no tax shield benefits to DEC

from capital depreciation of purchased equipment like CMP machines.)

5.2 Decision Framework

The decision framework poses numerous questions about the proposal and tries to answer

them in NPV terms. While using the framework, a variety of assumptions about

manufacturing strategy, including the technology roadmap of the business, the production

volume plan, and the marketing plan, must implicitly be made and applied. I will not

specify what these assumptions were at DEC; suffice it to say that a fab that is competing,

for instance, on fast cycle time will look at these questions differently from one that is

competing on low cost production. 4 6 The top-most level of the decision framework

consists of three categories: Cheaper, Faster, and Better.

5.2.1 Cheaper?

Some key elements of COO calculations are germane to this question, including the

relative price tags of the equipment (with installation charges), the annual material and

labor cost expended to operate them, and the amount of equipment needed to attain the

desired capacity levels at the desired times. Since Fab 4 is already using CMP equipment

in the CMOS-5 process, it is able to estimate capacity, labor, and material needs for the

back end with more assurance than if it was a neophyte CMP user. This is particularly



important considering that capacity, i.e., processing speed per machine, drives the basic

capital acquisition requirement for the fab:

N x Capacity =

F
where N is the number of machines required of a given technology, and F is the target

throughput capacity of the fab. The conversion of capital cost, labor and materials to NPV

terms is straightforward.

5.2.2 Faster?

The existing planarization technology uses a number of processing steps on several

machines in the fab. For each of these steps, a cassette of wafers enters a queue, is

processed, may be measured, and is transported to the next step. In assessing relative

processing speeds of CMP vs. the existing technology, one can consider the "static" cycle

time, which refers to the processing time only, and the "dynamic" cycle time, which is the

total time an actual cassette takes on average to move from one operation to another in

the fab. While the processing time of each of the above steps is small relative to CMP (for

instance, a film deposition is a batch operation on the entire cassette at once), taken

together, the static time to planarize a wafer the current way may not be much different

from CMP static cycle time. The significant difference may be in dynamic cycle time:

having to stand in one queue (for CMP) instead of many queues with many transport

steps means that CMP will exhibit less dynamic variability, and therefore will have the

shorter dynamic cycle time assuming roughly comparable static cycle times.

The question is, does any of this impact either the fab cycle time, which is the time the

fab takes to turn a raw silicon wafer into product, or the fab throughput, the rate at which

the fab produces product? The answer depends on the operating context in which the

technology is to be inserted, and specifically on which operation is the bottleneck

operation limiting the fab's throughput. 47 If and only if back-end planarization is the

current bottleneck, and/or inserting CMP would make it the bottleneck, will these cycle

time considerations impact fab throughput. In such a case, it would be extremely useful to

supplement a paper estimate of the net change in throughput with that produced by a



validated dynamic simulator. (For instance, Wood 48 has developed a simulator that

integrates economic and technological information in assessing various fab designs.) For

this exercise, I assume that in fact the fab's throughput bottleneck is elsewhere, and that

CMP will not become the bottleneck if it is deployed.

The fab cycle time will be impacted by the introduction of CMP, with its reduced

dynamic variability as described earlier. But is the cycle time impact significant?

Qualitatively, cycle time reduction has been credited in the literature with improving

learning rates and reducing defectivity, thereby improving yield. Unfortunately, recent

studies have been thus far unable to statistically validate this belief in a causal

relationship between shorter cycle time and higher probe yield.49 Nevertheless even if we

accept this assertion based on engineering judgement* it seems likely that new plateaus of

cycle time performance must be reached to produce significant yield impact. It will be

difficult to know in advance whether such a plateau is reached, if ever. Instead, I focus on

the fact that shorter cycle time also reduces work-in-process (WIP) inventory, and hence

WIP carrying costs. In this case every increment of cycle time saved is equally valuable.

With this in mind, I concentrate on WIP carrying costs to assess the cycle time reduction

benefit of CMP.

Little's Law 50 provides a rough estimate of the effect of reduced cycle time on WIP,

assuming the fab is running at its throughput capacity:

AL= x AW

i.e., the change in WIP (AL) is the fab throughput rate (k) times the change in cycle time

(AW). WIP represents working capital that is being invested to keep production going at a

certain rate. If this capital were not being used here, it could be invested somewhere else

in the business and earn the rate of return for the business. Thus putting working capital

into WIP has an opportunity cost that is the foregone income from not investing

*Or faith!



elsewhere in the business. The opportunity cost of WIP is its carrying cost times the

opportunity cost of capital for the business:

0 = AL x CarryingCost x r

From this, we see that as fab throughput rates increase, and as the average selling value of

a wafer in the manufacturing line increases, a given cycle time improvement will be much

more valuable. Also, the more expensive capital is, the higher the opportunity cost paid

by the business for tieing up working capital in WIP.

However, as Wood51 points out, this dollar incentive for reducing WIP must be balanced

against maintaining the minimum fab loading needed to keep the bottleneck processes

fully busy; if total WIP drops below this threshold it will reduce fab throughput and

therefore increase the average cost per wafer. For the purposes of this analysis I assume

that we remain above this threshold.

To get a sense of the dollar savings, for a 5000 wafer starts per week (WSPW) fab, a 1

week cycle time reduction would reduce WIP by 5000 wafers. Assuming carrying cost

per wafer of WIP to be $1000, this represents $5M of savings that could be invested

elsewhere in the business. Using the average historical semiconductor industry

opportunity cost of capital of 15%52, the opportunity cost savings for 1 year would be

$750K.

5.2.3 Better?

Whether or not applying CMP technology to back-end planarization will be "better" than

staying with the existing method is itself a multi-faceted question that can be addressed

by breaking it down into component questions about core competency, process yield,

disruption effects, and new options and contingencies.

5.2.3.1 Core Competency

A classical benefit of implementing a new technology is to provide a learning platform

that would otherwise have to be built by the next technology generation. The argument

would go, "We know we'll need back-end CMP in future manufacturing processes, so we



should begin going down the learning curve on this technology today, otherwise we'll be

starting from scratch years from now." (Recent empirical research 53 on the production of

EPROM semiconductor memories also supports the hypothesis that an incumbent

technology user has an advantage over a new entrant.) A related rationale argues that

manufacturers should be open to developing new capabilities or core competencies that
54will help take them in the competitive direction indicated by their business strategy. 54

However, Digital Semiconductor has employed an aggressive technology development

method that ensures minimal time-to-market, using dual overlapping development

teams. 55 The practical effect of this method is that back-end CMP is already being

considered for the next-generation technology, so that even if CMOS-5 engineers don't

learn about back-end CMP now, Digital Semiconductor as an organization may still be

going down the learning curve. The difference will be in a slower net rate of learning than

if two teams were attacking the problem. Nevertheless, the degree to which this proposal

improves the firm's strategic flexibility by virtue of acquiring a new core competence

seems limited here, and will not be considered further.

5.2.3.2 Yield

Probably the most elemental facet of introducing a new process technology such as CMP

is the perceived opportunity to increase process yield. From an engineering perspective,

CMP, by providing complete planarization, can remove defect modalities that arise in

processing because of a relative lack of planarity. CMP may even excise defects that

would have been caused by embedded particles by literally polishing them away. Yield

may also improve because of a wider process window for photolithography, or the overall

back-end process, once integrated with CMP, may be simpler or otherwise less defect-

prone. Of course, CMP also comes with its own set of operational and process challenges

that can negatively affect yield, for instance, debris generated by polishing can be a potent

source of particle contamination of the wafer. Fundamentally, however, there is an

expectation that overall yield will be improved by introducing CMP.



Economic Benefits

Assessing the economic benefit of improved yield can proceed with a cost or revenue-

oriented viewpoint, and starts with the average number of good die on a processed wafer,

referred to at Digital as the equivalent quantity shipped, or EQS. EQS is the product of

the number of die per wafer, the fab's line yield, die probe yield, assembly yield, and the

yields of all subsequent electrical and functional tests. The EQS tells how much

throughput is needed to satisfy product demand; summing this over all products gives the

total required (not necessarily actual) fab capacity:

EQSi x WSPWi = Demand, for each product i, and Demand, = Capacity Needed

For a given demand level, increasing EQS will permit sufficient product quantities to be

made with fewer wafer starts. So the value of improved yield can be assessed by

determining the cost savings of less required capacity. This can be done by accounting for

the cost of making scrap.

For a given increase in EQS, we have (for a given product demand):

EQS x WSPW = (EQS + AEQS)x (WSPW - AWSPW)

which simplifies to:

AWSPW AEQS
WSPW - AWSPW EQS

CMP is expected to impact die probe (functional) yield, primarily, as opposed to line

yield, or downstream parametric test yields. Also, a given product has a predetermined

number of die per wafer. This means that:

AYieldprobe _ AEQS
Yieldprobe EQS

The value of improving EQS is represented in these equations by it ability to reduce the

production rate (WSPW) needed to satisfy product demand. If EQS is small to begin



with, a modest improvement will have a large impact, but for a high baseline yield

performance the same yield improvement will not give as much economic benefit.

This can also be seen if, as stated above, we account for yield improvement benefits by

figuring the cost of making scrap. This can be done either by assessing this cost to the

reported cost per die, or by costing die as if the yield was 100% and treating scrap costs as

a separate expense. Either way, the total cost should come out the same; I choose to use

the former method because the formula is brief:

(crap WaferCost WaferCost x DemandC ,-x Demand
scp EQS EQS + AEQS

= AEQS x WaferCost x Demand
EQS + AEQS

Again, where EQS is low, a given improvement in yield can substantially reduce the

incurred cost of scrap. The basic message of these equations seems to be to perform yield-

improvement investments as early as possible in the fab's life cycle, when the product of

per-wafer costs and demand is relatively high and yields are relatively poor.

On another front, increasing EQS will permit proportionally more product revenue to be

generated per wafer. This is because each "extra" die that is yielded can be packaged,

tested, and sold. Assuming the marginal costs of packaging, testing, and so on do not

exceed the marginal revenue obtainable from selling one more chip, then the resulting net

revenue should be counted towards the financial benefits of higher yield. (Either demand

exceeds supply at the market price, in which case the fab can sell every "extra" chip it

makes at a given wafer production rate with higher yield, or demand is already met at the

current levels, in which case the fab can switch part of its capacity to another product. If

increased yield would only create piles of unsold inventory, there are fundamental

business problems that are beyond the scope of CMP technology to address.)



In contrast to the cost of scrap, the revenue benefit of improved yield is insensitive to the

baseline yield; it is just the product of the incremental income per good die and AEQS.

Qualitatively, this can be a much larger number than the reduced cost of scrap, so to

ignore it may significantly undervalue the value of improved yield to the business. Yet it

is also sensitive to the vagaries of market pricing, and therefore adds another element of

uncertainty to the assessment. It also pulls the focus of the analysis further from a purely

factory-based view.

For the purposes of this analysis, I chose to consider yield-driven revenue improvement

alone because it is consistent with the financial, cash-flow view of NPV, and because it is

lilely to be much greater than the cost of scrap; had the context been more oriented to cost

accounting, I would have used the cost of scrap.

Yield Modeling

Over the years, the semiconductor industry has developed sophisticated yield models for

predicting EQS. Yield models are generally a function of the average number of defects

per unit area and of the area of the chip in question, and are usually empirically developed

by each factory to drive continuous improvement, assess the manufacturing costs of

proposed products, and otherwise assist operational decision-making. 56 A well-known

model, which I will use here for illustrative purposes, is the negative binomial:

Y = Y x 1+DxA -

where Do is the defect density, A is the chip area, and a is the "cluster parameter". a is

often between I and 3 for logic chips like microprocessors; I select ( = 2 for

convenience. Here Y is the product of the line yield Yi and the probe yield, which is the

yield of electrically good die at wafer test or sort. Line yield for the fab accounts for

grossly misprocessed, e.g., broken, wafers. (We might anticipate that the multi-step

planarization process in current use would present more mis-processing opportunities

than the single-machine CMP technology.)



The utility of this modeling approach is that it focuses process improvement effort on the

myriad physical anomalies - defects - that can cause incorrect electrical behavior, i.e.,

that directly drive measured yield results. It also acts as a gross reflection of the degree of

process control at a given point in time: presumably, tightly controlled processes will

have low defect densities. (This is the economic argument for trying run-by-run process

control of CMP.) However, it is only a snapshot in time of the process. How quickly

defect density is reduced over the lifetime of of the fab is not comprehended by this

modeling method. In the following discussions of disruption and of options and

contingencies, I will bring in the important element of time.

5.2.3.3 Disruption

In manufacturing, technology retrofit decisions are often not entertained at all, on the

principle that once a process is "qualified" for production it is simply too disruptive to

consider technological modifications. The onus is placed on the process developers to

anticipate technology trends and plan for their smooth introduction over successive

technology "generations." Research on new process development 57 also supports

separating process development from production per se; the semiconductor industry has

seen the rise of the "pilot fab" that is dedicated to prototyping new manufacturing

processes. However, consider once again the situation in Digital Semiconductor's Fab 4:

* The CMOS-5 process has only been production qualified relatively recently;

* Fab 4 is the development fab for CMOS-5, and is becoming the first production fab

for CMOS-5;

* DS is a small operation by merchant semiconductor industry standards, with only one

or two other fabs to which the 0.5 micron process could be promulgated;

* Fab 4 is already using CMP in another portion of CMOS-5, so its incremental cost of

learning to apply CMP to interlevel dielectric planarization is lower than if CMP was

being introduced from scratch.

So the CMOS-5 process is still a relatively new process, and the scope and span of the

process knowledge transfer problem is limited: perhaps the back-end CMP proposal is not

prima facie too late and/or too ambitious to succeed.



On the other hand, qualitative research by Bohn58 warns of the substantial management

challenges to successful learning in an environment such as Fab 4, which is trying to

ramp up production. A recent empirical study, also by Bohn, 59 shows that a high degree

of process variation (noise) can be present even in a "high volume" production fab, and in

fact this noise can make it surprisingly challenging to manage the yield improvement

process in a given plant. For instance, Bohn observed that the chance that an experiment

on a process change that gave a true yield improvement of 3% - substantial impact for a

single change to a complex manufacturing process such as CMOS VLSI - would give

results that would lead the engineers to reject the change, ranged anywhere from 18% to

40%! This reinforces the need for sophisticated management of the yield enhancement /

learning process.

None of the fabs measured by Bohn was reported to be altering its basic process

technology, but this is what we propose to do with back-end CMP. While the end

resulting yields might be better, the above research should raise doubts about just how

and when those end results may be achieved. In fact, the track record for factory floor

process technology changes has not been good, as was noted earlier. Chew et al.6 ° in

particular report a qualitative model of what I will refer to as the cost of disruption, which

is the anticipated loss of fab revenues due to production delays and interruptions as new

technology is introduced. This goes beyond the planned cost of the development effort

needed to put the new technology into production, and reflects the realities of machine

downtime, immature maintenance processes, and so on. It probably does not reflect the

"opportunity cost" of having engineers and others work on the new technology instead of

continuing to improve the old. I have roughly redrawn their figure, "Murphy's Curve," in

Figure 18.

Murphy's Curve implies that the "hit" to yield by introducing and then coping with new

process technology is early and substantial, and that it may take a significant amount of



time to beat back process noise to levels where systematically effective learning (e.g., few

Type II errors of the sort noted by Bohn) is driving yield enhancement.
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Figure 18: Disruption Costs of New Technology Introduction

In assessing comparative fab performance, U.C. Berkeley's Competitive Semiconductor

Manufacturing Program researchers recently developed a statistical model of yield

improvement against a number of manufacturing variables.6 1 This was based on data

from over 30 fabs in the United States and overseas. For a given fab in the Berkeley

study, the yield improvement regression model was:

W= ct o +a *• DieSize + a 2 * log(P)

where P is the process age and W is a transformation of die yield:

W = log(- ).1l-y

The W transformation reflects the common experience that the difficulty of obtaining the

next incremental yield improvement increases as overall yield rises. Looking at a specific

fab, the first two terms in the regression form a baseline yield, while the last term

describes how quickly the fab has improved yield on average over time; oa2 is the fab's

"learning rate." Fab 4 possessed its own projections for baseline yield and yield



improvement, for each product (die size), over the next few years. Fitting these

projections to the Berkeley model, one could impute the expected Fab 4 "learning rate."

To model the disruption costs of introducing CMP, I had the following considerations.

First, there is no analytic or simulation model described in the research literature that

predicts the amount of disruption to be experienced; there is no model of the

performance/time curve as a function of measured disruption drivers. Developing such a

model was well beyond the scope of this work. Second, at the other extreme, there is little

benefit to merely positing a total disruption cost and entering that number into the net

present value calculation. Such a black box technique provides no insight and is pure

guesswork. Third, although I initially tried perturbing Fab 4's oa2 to model the disruption

in learning, this implies a steady, long-range effect that contrasts with the deep short-run

effects observed by Chew et al.

Therefore, I choose to model yield (including the cost of disruption) as follows:

1. I set a starting yield point corresponding to the current process defect density with the

current planarization technology, and then transform it to W;

2. I extrapolate a W line for the current planarization technology based on the Fab 4

learning rate. If CMP yield falls below this line (not the horizontal) then a disruption

cost is incurred, while falling above this line indicates that CMP is giving a net yield

benefit;

3. I posit some percentage improvement in defect density due to CMP technology

(roughly speaking, the positive "bump" one might expect due purely to theoretical

engineering considerations);

4. I use the ending yield from (2) along with the CMP defect density from (3) and the

negative binomial model to get an ending CMP yield, which I transform to W;

5. I model the CMP W vs. time relation as a concave-shaped group of three connected

lines, using the starting W from (1) and the ending W from (4) as two of its four

points;



6. I posit the location of the third point and fourth points by making assumptions about

how deeply and quickly yield will dip, and then how quickly it will recover. This

allows various "disruption scenarios" to be played out, even if I can't predict whether

any one of them will occur.

7. I transform W back to yield, and into net revenue impact, to obtain an input to the

overall net present value calculation.

The resulting model has the basic form shown in the following figure.

Time

Figure 19: W Improvement vs. Time

This model implies that, for the introduction of a new process technology like CMP to

succeed, the immediate effects of disruption need to be minimized, and that recovery

from disruption should proceed, on average, faster than the historical fab learning rate, in

order to be able to achieve a net benefit from the new technology. This reinforces the

observation by Chew et al. of the importance of shrewdly managing new technology

introductions on the plant floor:

"...managers typically underinvest in learning both before and after startup. This

is particularly true of the organizational changes relating to new technologies. To

correct these deficiencies, firms must radically alter the way they think about and

plan the implementation of technology." 62

3:



To demonstrate the model, I will use the following contrived scenario:

* The time line is 5 years from (1) to (5);

* Starting probe yield of 50%, and constant line yield of 95%;

* CMP improves total process defect density by 20%, i.e., DCMp = 0.8D0 ;

* The maximum yield disruption is 10% of the starting probe yield, occuring 3 months

after (1) and lasting another 3 months before starting to recover;

* The learning rate for the fab is the industry average = 0.35 reported in the Berkeley

study.

With these numbers it is possible to calculate a net present value effect for adopting CMP

that reflects process yield impacts on revenue. An example calculation is shown in

Exhibit 1, which compares the NPV of the income stream from products manufactured

with the current process to that from products manufactured during a switch to CMP in

the back end. In addition to the assumptions already described above, I fabricated data on

fab throughput, income per chip, and the number of chips per wafer that is intended to

suggest the situation of a fab ramping production volume with a new process, and a

profitable new product line.

In this case, the effects of disruption continue to be felt long after the yield dip in the first

year, despite the fact that eventually the technical yield benefits of CMP are realized

(84% vs. 81% without CMP.) This is evident in the continued yield lag in years 2 - 4. For

CMP to have come out ahead in this scenario would have required a much shorter yield

crash at the beginning, followed by a "burst" of yield learning, to permit CMP yields to

catch up by year 2 or 3.

So far, time has been considered in the context of changing yield performance. The next

section looks at how the proposed introduction of CMP also impacts the time component

of managerial decision making, by adding new options and contingencies.
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5.2.3.4 Options and Contingencies

Until now the analysis has focused on "passive" cash-flow benefits. This leaves out the

fact that investing in CMP technology for the back end of the CMOS-5 process gives fab

management an option on real assets 63' 64. This option, like options on financial assets

such as common stocks, has a monetary value, and therefore to ignore it would be to

undervalue CMP, perhaps significantly. However, just as it is necessary to consider the

capital cost of CMP equipment versus the capital that would otherwise be expended if

CMP were not chosen, it is necessary to weigh the option CMP provides against the

options already provided by the existing planarization technology (and which would be

forfeited if CMP were adopted.)

There are two separate options to be considered in the case of back end CMP, one for the

near term and one for the future. The near-term choice is to reduce the dimensions of the

upper-level metal lines. Microprocessor Report 6 5 lists the contacted pitch of the third-

level metal for CMOS-5 as 5 microns, the largest it reported from among major CMOS

vendors such as Motorola, Intel, and Texas Instruments. Fab 4 management has the

option to shrink these dimensions if it so chooses. The customer benefit would be quite

visible, compared to other manufacturing process technology changes that are often

undertaken: cutting the minimum achievable die size for a given VLSI design.* Smaller

chip size means less cost per die, which can be used to increase fab market share and

profitability.

This process enhancement can be undertaken with either the existing planarization

technology or with CMP as a starting point. The global planarization provided by CMP,

however, means that the metal lines can be shrunk and squeezed together more

aggressively; the minimum achievable metal line spacing with CMP could be expected to

be about half that without CMP, absent inter-level metal connection architecture changes.

*CAD routing algorithms will differ in their ability to take advantage of tighter design rules; for simplicity assume the

same CAD tools are used throughout.



The superior planarity afforded by CMP also better enables such techniques as stacked

vias, which permit software routers to pack circuits even more tightly.

I use a decision tree (shown in Figure 20) to consider this question in NPV terms, by

calculating the expected value of the NPV, given each possible decision: the decision that

maximizes expected NPV is the "best" choice. In this case, the decision is whether or not

to adopt CMP. Once that decision is made, three scenarios can arise:

* Market conditions dictate a "modest" metal line shrink, i.e., one that can be

accomplished without the added planarity provided by CMP (with probability p2);

* An "aggressive" shrink is needed that requires CMP (with probability pl1);

* No shrink is needed.

If CMP is adopted, then the first two scenarios will have the same effect (p = pl + p2),

which is that some nominal engineering cost ($1 M, for illustration) will be incurred to

implement the shrink, so the NPV of the project is just the NPV of doing CMP, less $1 M.

If no shrink is needed, the NPV is the NPV of doing CMP.

Figure 20: Decision Tree to Shrink Upper-Level Metal Lines



If we stay with the current planarization technology, and a modest shrink is needed, we

reduce the NPV by $1M, compared to the NPV of not changing to CMP. Similarly, if no

shrink is needed, the NPV doesn't change. However, if it is the case that the market

demands an aggressive shrink, then we will be forced to adopt CMP later, or to forfeit

market share. Since it is quite probable that once CMP has been foregone, that it is

unlikely to be reconsidered, I assume the outcome is reduced sales. This is illustrated on

the p I branch of the decision tree by assessing a penalty to NPV(No Change).

Therefore the expected NPV of the CMP decision is:

E(NPVcuMP) = (1- pl- p2)x NPVcump +(pl + p2)x (NPVCMp - $M)

and the NPV of the decision to stay with current planarization technology is:

E(NPVNoChange) = (1- pl - p2)x NPVNoChang,,,e + Pl X (NPVNoha,,ge - Penalty) +

p2 x (NPVNo,,Change -$ 1M)

Once the NPV for no change and for CMP are determined via the calculations and

considerations described in the rest of this chapter, and some estimation (or set of

estimations) of p 1 and p2 and the lost sales penalty are made, then the expected NPV

values can be calculated. In practice, this determination requires considerable market

research, and must be attuned with the overall business strategy of the fab and the firm.

Next, I consider the future option that I mentioned earlier, made possible by CMP. This

option can extend the lifetime of the fab if it is exercised. If CMP is used to planarize all

three dielectric layers above the transistors, it makes possible a full-blown shrink of the

entire process to a critical dimension of less than 0.5 microns. Without CMP, such an

option is not available to management.

This option is only available until such time as the planned next-generation technology

arrives on the scene in volume. (Critical dimensions then would be even smaller than

could be attained by this CMOS-5 process shrink I am discussing here.) The fast pace of

industry CMOS technology trends does not make for a very large window, but there is a

window, nevertheless, that could be exploited.



The same techniques Wall Street uses to value financial options can be used to value this

option. Here, investing in CMP buys a call option on a real asset. That asset is the cash

flows from a fab running this CMOS-5-Shrink process, for some number of years, over

some product line, a few years from now. The option's expiration date is the last day

when there is enough time to design and implement the shrink in the fab, and still capture

the maximum available market before the future planned process kicks in. Just what those

future cash flows will be is highly uncertain, but this actually makes the option more

valuable, all other things being equal. 66 Finally, the option's exercise price is the process

shrink development cost. Standard valuation methods, such as the Black-Scholes

equation 67 can then be applied to give a net present value for the option to shrink the

process. The power of this approach is that it transforms a "soft, strategic" consideration

into a "hard, financial" consideration possessing a real NPV.

To illustrate, I assume that the shrink would boost cash flows by C = $25M per year over

a four-year period T, beginning two years after the decision is made. (The two years

would cover time for R&D and factory deployment.) I assume that I have one year left to

decide before the option to do the shrink expires. Using the 15% discount rate, these cash

flows form an asset whose value will be, using the present value formula:

$25 1 14
$25M X I ( = $47M.

(1.15 ) .15 .15(.15) 4

I further assume that those cash flows could vary with a standard deviation of 40%, and

that it will cost $25M in engineering, capital equipment, and other considerations to

implement the shrink. Using the Black-Scholes tables provided by Brealey and Myers6 8 I

obtain a ratio of option value to asset value of 0.47, so that the value of the option to

shrink is = 0.47 x $47M = $22M. This value should be counted in the overall net present

value of implementing CMP in the back end.



5.3 Summary

By taking advantage of the fact that net present values are additive, the various NPV

components of capital equipment cost, cycle time reduction, yield enhancement,

disruption costs, and options can be combined into an NPV for the CMP project. The

overall framework could apply to any proposed technology insertion, not just CMP.

However, the real advantage lies not in generating "the" NPV for the proposal; there are

many areas where absence of marketing data, validated models, etc., forces judgement

calls to be made. Rather, the advantage of this framework lies in: (1) managing the

complexity of the problem by structuring the analysis, and (2) enabling spreadsheet

"what-if" exercises to test the sensitivity of the NPV outcomes to a variety of

assumptions and perturbations.



Chapter 6: Conclusions

6.1 Design for Run-by-Run Control

As Hardt 69 points out, statistical design of experiments, statistical process control, and

real-time feedback control represent a progession of process control techniques. The goal

in DOE is to find the combination of settings for parameters that together give the "best"

process response. The intent is to not change these optimal settings once they have been

found, and in the case of Taguchi-style designs, part of their optimality lies in giving

process responses that are fairly impervious to "noise," such as variations in those

parameter settings. In statistical process control, when the process goes out of control,

some exogenous root cause is to be identified and remedied to bring the process back in

control; the process parameter settings are not altered. Only feedback control adjusts the

process parameter settings to minimize process response deviations from target; the

"optimal" setting constantly changes.

Selecting a control regime for a process is a fundamental part of process design. For

instance, to perform Taguchi-style robust process design is defacto to plan to control that

process in the factory via statistical process control. It is certainly the case that a real-

world manufacturing process often has many process control methods active at once, for

example, the servo control of the CMP wafer carrier rotational rate occurs along with

SPC of the overall polish rate. But this is the result of subdividing the system into

separate design areas of concern; within those areas there is a single control method,

determined by the design.

From this perspective, simply walking up to an operating manufacturing process and

applying a process control technique for which it was not designed is certainly risky, and

probably doomed to failure. Sung-Do Ha's Ph.D. thesis demonstrated this point in

introducing a new method for categorizing and applying process variabilities to improve



control. But this was, in retrospect, what I tried to do in my test of run-by-run control. For

the front end CMP process, back pressure was not considered in the process recipe

design, and so would be viewed as an extraneous noise source to be withstood. As it

turned out, the recipe was highly robust to this unanticipated source of response variation.

In the back end CMP case, the response to changing back pressure was significant, but

insufficient to permit full-range compensation for drifting polish rate uniformity. Neither

process was designed to be controlled by run-by-run methods. That is, the particular

recipes being used for CMP were designed to work in a control regime other than RbR.

Process design for run-by-run control would still characterize the response surface using

design of experiments, for each response to be controlled. But now the goal would be to

identify the minimum number of input parameters that:

* each have a linear slope with respect to the response

* do not interact with each other

* each have enough dynamic range that they can take the response over its full span.

The intent is to maximize the likelihood that systematic process variations such as

drifting uniformity can be adequately compensated for over a long period of time.

If such an operating range cannot be established due to nonlinearity or equipment

limitations, then it is not practical to control the process by run-by-run techniques absent

some major recasting of the process. More than one parameter would be needed generally

to give the software the necessary running room to succeed, but certainly the number of

input parameters being adjusted need be no larger than the number of responses.

So, had I been free from the constraint of not changing the pre-specified CMP machine

recipe(s), this would have given me the opportunity to design for RbR. However, as

should be clear by now, this would have required that I construct a complete response

surface encompassing all candidate control variables, to permit the inappropriate ones

(like back pressure) to be excluded from consideration.



6.2 Manufacturability of RbR Control

There are issues that only arise in a manufacturing setting, as opposed to laboratory or

development milieu. These issues determine the practicality of using run-by-run control

in manufacturing. First, machines undergo maintenance and repair procedures. Swapping

out polish pads or leveling the polish platen are examples of this for CMP machines.

Each such procedure alters the machine's state, sometimes imperceptibly, sometimes

substantially. This means that using a set process model for run-by-run control is ill-

advised. We therefore need a method for adjusting the model after machine maintenance,

such that the run-by-run controller continues gives good results over weeks, months, and

years of CMP operation. A designed experiment could be run each time, but the more

input parameters are involved the more expensive this will be. Polishing several non-

product wafers after each maintenance activity adds no product value, and increases cost.

The more input parameters are being adjusted run by run, the more expensive this will

get, notwithstanding the observation that, with no interactions to model, less than full

resolution experiments need be performed.

Second, consider ILD planarization. Each product will have four dielectrics to be

polished, and CMP pattern sensitivity means that each dielectric layer will have a

different response surface. Multiply this by the number of products made by the fab and

the number of individual models to be handled gets quite large. This magnifies the above

issue of process recharacterization: we don't want to do this for each model. One possible

answer is to use a "blanket" wafer as the control: polishing a single, unpatterned film

would be the baseline. This would limit recharacterizing to one type of wafer, but then it

would be necessary to accurately translate that response surface to each product response

surface at each layer. Perhaps by processing many lots operators would learn how to

perform such mappings: whether a 10% change in the slope of a given input parameter

for the blanket wafer response means the same change in a patterned wafer, and how it

behaves across different ILD layers.



A conceptually cleaner solution would be to use the "rapid response" algorithms

described in the early work on run-by-run control70. These algorithms were only

developed for single-response applications, so this requires further research to extend the

approach for multiple-response control. A related, monitor wafer-based approach that

does provide multi-variable adaptation, but which is still being developed for

nonuniformity control, has been reported by Texas Instruments.71

A closely related question to that of long-term model tracking is how much of the

variability of the machine needs to be explained by the "linear" model for RbR to work

well. If R' for the regression results of the response surface modeling experiments had

been less than, say, 80%, would this have indicated a problem? Or to put it another way,

is there a minimally acceptable degree of fit, below which RbR will have difficulty

working? How does this interact with the "true" regression results, that is, as the most

accurate regression model accrues higher-order terms and interaction terms, how does the

Ra threshold change for the RbR model? While there is certainly a place for simulation

in exploring these questions, empirical results will also be needed.

A more mundane, but real problem is the need to leverage the computerization of the fab.

Requiring operators to enter measurement data and set CMP machine parameters

represents an opportunity for errors and wastes operators' time. Clearly, RbR needs to be

integrated with the fab CIM system, at a minimum to automatically feed measurement

data to the RbR controller, and to permit the controller to download its recipe suggestions

to the CMP machine directly.

Finally, who monitors the controller, and how? When a control variable "hits the wall,"

as back pressure did, what is the appropriate action? From this perspective,

methodologies will need to be developed that mesh with the equipment management

protocols of the fab. Overall, it is learning via application on the manufacturing line, as

opposed to R&D lab learning, that most limits the wider use of RbR as it exists today.



6.3 Technology Insertion Strategy

Consider the back-end CMP proposal as one case on the question of how and whether to

insert new technology onto the factory floor. Researchers such as Tyre and Bohn72

counsel the judicious use of a variety of approaches, including simulation, prototyping,

and factory tests, to learn about and apply new manufacturing technology. As I noted in

the previous chapter, in the case of semiconductors, with its huge capital investments,

there is a school of thought that pushes all but the most narrow process changes out of the

factory setting and into the pilot manufacturing stage or earlier, as a matter of

manufacturing policy or strategy. This policy implicitly assumes that disruption is

unavoidable, and cannot be managed well enough (i.e., that Murphy's Curve cannot be

mitigated enough) to escape with a positive NPV for the project.

For the case at hand, this assumption may well be true. For one thing, changing the

planarization method for inter-metal dielectrics will affect the entire back end of the

CMOS-5 process. So other processing steps will have to be revisited, even if no metal or

process shrinks are performed. For example, the etch techniques used to cut vias through

dielectric material, to permit electrical connections to be made between metal lines at

different levels, are tuned to work with "thin" and "thick" dielectric film topography

limits. CMP will alter these limits, so the etch process must be adjusted. The process

integration challenge may be quite significant in practice. Because of this, using a

prototype fab may be a better strategy for introducing back end CMP than using Fab 4,

the volume manufacturing line for CMOS-5.*

As a general policy, however, avoiding all but the most tightly construed innovations on

the semiconductor factory floor has its own risks to organizational learning. It assumes

that the risk of monetary losses due to disruption is so high that it is worth pushing more

learning out of the factory, where experiments have the highest fidelity to production

realities. In other industries, there is evidence that using the factory as a learning

.The irony of this is that Fab 4 previously served as the pilot fab for CMOS-5.



laboratory 73 can be a source of competitive advantage. The question becomes, then,

whether to err on the side of less net organizational knowledge and learning but with

better factory stability, or more organizational learning amid higher factory disruption.

To help answer this question, more work is needed to create validated models of the

disruption caused by introducing new process technology to the factory floor. That is, the

"system dynamics" of new technology insertion must be understood, and perhaps the

techniques of systems dynamics 74 are applicable to this problem. Also, the analysis

framework I used for the back end CMP proposal is only one way in which the question

could have been framed (one alternative is the Strategic Cost Management approach 75).

Other lenses may give fresh insight to the questions of risk and payoff.
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Appendix

Data and Regression Results of Experiment #1

Polish Back Site 1 Site 1 Site 2 Site 2 Site 3 Site 3 Site 4 Site 4
Time Pressure Final Init Final Init Final Init Final Init

1.83333 1.5 1299.4 1281.6 1295.3 1299.1 1400.6 1481.3 1423.7 1596.9
1.416667 0.3 1496.1 1398.1 1514.4 1367.9 1571.8 1536.1 1591.5 1677.2
1.83333 1.5 1367.7 1372.4 1415.5 1398.9 1439.5 1624.6 1447.1 1802.2
1.83333 1.5 1384.2 1392.5 1418.2 1388.8 1453.1 1575.8 1466.5 1704.7
1.33333 1.5 1556.6 1472.6 1579.5 1402.2 1637 1614 1668.5 1756.6
1.83333 1.5 1331.1 1439.6 1373.6 1408.1 1412.6 1586.1 1451.8 1694.5
1.83333 3 1327.8 1357.8 1335.4 1335.1 1424.1 1591.8 1431.6 1753.2
1.83333 1.5 1409.4 1480.4 1402.1 1486.7 1473.6 1610.8 1480.5 1768.4

2.25 2.8 1287.1 1466.7 1302.1 1411.1 1344.5 1620.4 1355.9 1746.6
2.25 0.3 1212.5 1441.2 1272.3 1476 1335.2 1660.6 1370.3 1818

2.33333 1.5 1256.2 1370.6 1272.8 1384.3 1317.1 1584.2 1338.9 1726.4
1.83333 0 1298 1312.1 1346.6 1356.6 1397.3 1506 1430 1660.2

1.416667 2.8 1573.9 1553.8 1580.7 1570.4 1621.7 1686.3 1635.2 1855.6
Site 5 Site 5 Init Site 6 Site 6 Site 7 Site 7 Site 8 Site 8 Site 9 Site 9
Final Final Init Final Init Final Init Final Init
1362 1529.2 1299.6 1429.2 1304.1 1322.1 1264.2 1323.8 1282.2 1387.1

1523.5 1575.3 1490.4 1427.2 1564.9 1643.7 1510.3 1583.1 1493.7 1564.8
1447.2 1682.6 1370.9 1447.9 1467.5 1697.4 1427.9 1665.8 1394.4 1625.7
1429.3 1638.5 1382.7 1492.9 1429.5 1630 1386.5 1626.8 1357 1601.1
1635.2 1695.6 1603.1 1555.7 1639.7 1694.7 1611.1 1668 1579.4 1578.6
1397.6 1625.7 1401 1536.6 1427 1645.9 1380.9 1620.4 1395 1586.1
1354.6 1634.2 1315 1501.6 1412.4 1696.7 1339.7 1626.8 1335.8 1589.3
1476.4 1719.9 1385.1 1604.4 1453.9 1684.1 1424.6 1646.9 1407.1 1655.5
1336.8 1723 1252.8 1511.3 1327.4 1703 1293 1682.9 1248.4 1603.2
1325.8 1725.2 1257.9 1533.3 1326.9 1692.5 1288.2 1696.6 1235.8 1653.4
1328.6 1651.2 1234.9 1505 1346 1671.4 1297.3 1654.5 1229.5 1641.7

1379.5 1600.2 1362 1455 1403.7 1623.6 1384.7 1616.1 1351.4 1564.6
1622.8 1763.4 1547.1 1597.9 1605.7 1710.5 1587.8 1716.5 1565 1667.2



Site 1 Regression
SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R

Standard E

Observatio

Regression Statistics

0.965738595

0.932651034

Square 0.91918124

-rror 32.01001451

Ins 13

ANOVA

df SS MS F Significance F

Regression 2 141892.6774 70946.3387 69.2401892 1.38565E-06

Residual 10 10246.41029 1024.641029

Total 12 152139.0877

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1200.132843 201.2934166 5.962106774 0.00013897 751.6230828 1648.642602
Polish Time -295.478222 30.21286383 -9.7798813 1.94854E-06 -362.7966894 -228.1597546
Site 1 Init 0.503860759 0.127737642 3.944497101 0.002754729 0.219243507 0.788478012

RESIDUAL

OUTPUT

PROBABILITY

OUTPUT

Observation Predicted Site 1 Residuals Standard

Final Residuals

1 1304.170718 -4.77071768 -0.149038286

2 1485.986422 10.11357806 0.315950437

3 1349.921275 17.7787254 0.555411351

4 1360.048876 24.15112414 0.75448651

5 1548.147234 8.452766348 0.264066308

6 1383.780718 -52.6807176 -1.64575738

7 1342.564908 -14.7649075 -0.461259007

8 1404.338237 5.061763421 0.158130619

9 1274.319418 12.78058165 0.399268224

10 1261.470969 -48.970969 -1.529864005

11 1201.275214 54.92478576 1.71586257

12 1319.538471 -21.5384708 -0.672866638

13 1564.437542 9.462457881 0.295609297

Percentile Site 1 Final

3.846153846 1212.5

11.53846154 1256.2

19.23076923 1287.1

26.92307692 1298

34.61538462 1299.4

42.30769231 1327.8

50 1331.1

57.69230769 1367.7

65.38461538 1384.2

73.07692308 1409.4

80.76923077 1496.1

88.46153846 1556.6

96.15384615 1573.9
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Site 2 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Sqi

Standard Error

Observations

Regression Statistics

0.956925992

0.915707355

uare 0.898848825

34.18617692

13

ANOVA

df SS MS F Significance F

Regression 2 126960.3438 63480.17192 54.317156 4.25548E-06

Residual 10 11686.94692 1168.694692

Total 12 138647.2908

Coefficients Standard t Stat P-value Lower 95% Upper 95%

Error

Intercept 1301.122943 212.8097077 6.114020628 0.0001136 826.9532831 1775.2926

Polish Time -298.505661 31.48335435 -9.481380465 2.584E-06 -368.6549581 -228.35636

Site 2 Init 0.454372206 0.14088984 3.225017548 0.0090974 0.140450025 0.76829439

RESIDUAL

OUTPUT

PROBABILITY

OUTPUT

Observation Predicted Site 2 Residuals Standard

Final Residuals

1 1344.137497 -48.83749735 -1.428574405

2 1499.775664 14.62433615 0.427785072

3 1389.483844 26.0161565 0.76101392

4 1384.894684 33.30531578 0.974233412

5 1540.236102 39.26389774 1.148531403

6 1393.664068 -20.0640678 -0.586905867

7 1360.494897 -25.09489676 -0.734065609

8 1429.377723 -27.27772318 -0.79791675

9 1270.649826 31.45017432 0.919967576

10 1300.138582 -27.83858184 -0.814322757

11 1233.597179 39.20282118 1.146744817

12 1370.263899 -23.66389919 -0.692206656

13 1591.786036 -11.08603555 -0.324284156

Percentile Site 2 Final

3.846153846 1272.3

11.53846154 1272.8

19.23076923 1295.3

26.92307692 1302.1

34.61538462 1335.4

42.30769231 1346.6

50 1373.6

57.69230769 1402.1

65.38461538 1415.5

73.07692308 1418.2

80.76923077 1514.4

88.46153846 1579.5

96.15384615 1580.7
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Site 3 Regression
SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted F

Standard i

Observatic

ANOVA

0.989885178

0.979872665

R Square 0.973163553

Error 16.99715402

,ns 13

df SS MS F Significance F

Regression 3 126583.8477 42194.61591 146.051028 5.97326E-08

1

Residual 9 2600.129202 288.9032447

Total 12 129183.9769

Coefficients Standard t Stat P-value Lower 95% Upper 95%

Error

Intercept 1958.262465 261.1572589 7.49840335 3.69893E- 1367.483251 2549.041679

05

Polish Time -823.9212678 184.2571472 -4.471583765 0.00155112 -1240.740211 -407.102325

PTsquared 138.5897008 50.15181666 2.763403403 0.02198942 25.13832306 252.0410786

Site 3 Init 0.328191338 0.093187718 3.521830388 0.00649674 0.117385913 0.538996763

RESIDUAL

OUTPUT

Observation Predicted Site 3

Final

1 1399.705353

2 1573.317214

3 1446.735172

4 1430.719435

5 1635.783285

6 1434.099805

7 1435.970496

8 1442.206131

9 1337.851217

10 1351.044509

11 1310.244151

12 1407.811679

13 1622.611553

Residuals

0.894646819

-1.51721356

-7.23517192

22.38056538

1.216715335

-21.4998054

-11.870496

31.39386855

6.648782859

-15.8445089

6.855848659

-10.5116792

-0.91155253

Standard

Residuals

0.052635095

-0.0892628

-0.42566961

1.31672428

0.071583474

-1.264906195

-0.698381389

1.847007359

0.39117036

-0.932185995

0.403352741

-0.618437605

-0.053629715

Percentile Site 3 Final

3.846153846 1317.1

11.53846154 1335.2

19.23076923 1344.5

26.92307692 1397.3

34.61538462 1400.6

42.30769231 1412.6

50 1424.1

57.69230769 1439.5

65.38461538 1453.1

73.07692308 1473.6

80.76923077 1571.8

88.46153846 1621.7

96.15384615 1637

PROBABILITY

OUTPUT
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Polish Time

PTsquared Residual Plot

I I. 2
:-, , : ,, • ,,,:,, ,, : ,. ,,, , q

.::i:
* ' : ':::::::i::i:::·:. : :

:: -:::: -i::- ::i
-:':~:::'::::::: :::i

:::i:i: I: 'i : ::': ::::-: ::ii:i:,,:
:':::-: ~iii:d: : :::::/.: //::::::::j:j:/::::i::::/:/::

:::: :: -:;::-:::::~ :~ :i:: i:-::i::::::ii i'::·:·::i:::-i ::i:: ::·:·:;::::-; : ::

4 4 .

PTsquared

- - -

ilr~~- 3* -·--L ··\

I -

3



Site 3 Init Residual Plot

9 *50 i i !
i: 
iio
:

o
• -, :

•o 1•1 ..... .... . ,.

).: !>:::.---- ---- ::- : i: .::- ... '5,50 .. .. .... . 1000 1650 17

• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ + : .. ::.... : "•
•

..

Site 3 Init

10o
14

..10

.20

-30

0



Site 4 Regression
SUMMARY

OUTPUT

Regression Statistics

Multiple R 0.991580282

R Square 0.983231455

Adjusted R Square 0.97764194

Standard Error 15.42921426

Observations 13

ANOVA

df SS MS F Significance F

Regression 3 125629.1772 41876.3924 175.906400 2.63032E-08
Residual 9 2142.545874 238.0606526

Total 12 127771.7231

Coefficients Standard t Stat P-value Lower 95% Upper 95%

Error

intercept 2338.979391 217.2278507 10.76740106 1.92741 E- 1847.575478 2830.383304

06

Polish Time -1005.122703 163.6919637 -6.140330167 0.00017070 -1375.419933 -634.825472

PTsquared 188.957196 44.46727873 4.249353714 0.00214451 88.36514626 289.5492458

Site 4 Init 0.184309469 0.067678668 2.723302247 0.02348054 0.031209568 0.337409369

RESIDUAL

OUTPUT

PROBABILITY

OUTPUT

Observation Predicted Site 4

Final

1 1425.684357

2 1603.405997

3 1463.523091

4 1445.552917

5 1658.497703

6 1443.672961

7 1454.491927

8 1457.29343

9 1355.964032

10 1369.123728

11 1340.651906

12 1437.351146

13 1636.286806

Residuals

-1.98435662

-11.9059969

-16.4230905

20.94708267

10.00229679

8.127039253

-22.8919266

23.20656953

-0.0640316

1.17627235

-1.75190634

-7.35114598

-1.0868061

Standard

Residuals

-0.128610348

-0.771652834

-1.064415221

1.357624719

0.648270004

0.526730598

-1.483674163

1.50406684

-0.004150023

0.076236698

-0.113544754

-0.476443314

-0.070438201

Percentile Site 4 Final

3.846153846 1338.9

11.53846154 1355.9

19.23076923 1370.3

26.92307692 1423.7

34.61538462 1430

42.30769231 1431.6

50 1447.1

57.69230769 1451.8

65.38461538 1466.5

73.07692308 1480.5

80.76923077 1591.5

88.46153846 1635.2

96.15384615 1668.5

I
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Site 5 Regression
SUMMARY OUTPUT

Regression Statistics

Multiple R 0.99276416

R Square 0.98558067

Adjusted R Square 0.97528115

Standard Error 16.6227054

Observations 13

ANOVA

df SS MS F Significance F

Regression 5 132205.192 26441.038 95.69188 2.74702E-06

Residual 7 1934.200354 276.31434

Total 12 134139.3923

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1591.0748 252.7766816 6.2943892 0.0004064 993.3533595 2188.7962

Polish Time -902.44292 182.4295028 -4.946804 0.0016623 -1333.81984 -471.066

Back Pressure 52.2373347 16.31095281 3.2025925 0.0150117 13.66808775 90.806582

PTsquared 162.148619 49.76850605 3.2580568 0.0139017 44.46488726 279.83235

BPsquared -18.781231 5.02765046 -3.735588 0.0073049 -30.6697272 -6.8927358

Site 5 Init 0.55177654 0.085318933 6.4672227 0.0003446 0.35002947 0.7535236

RESIDUAL OUTPUT PROBABILITY

OUTPUT

Observation Predicted Site 5 Residuals Standard

Final Residuals

1 1361.47057 0.529431229 0.0318499

2 1521.23175 2.268247058 0.1364547

3 1446.11309 1.086909359 0.065387

4 1421.77975 7.520254955 0.4524086

5 1647.77233 -12.5723308 -0.756335

6 1414.71701 -17.11700528 -1.029736

7 1370.9898 -16.38979554 -0.985988

8 1466.69436 9.705644263 0.5838787

9 1331.18629 5.613708981 0.3377133

10 1347.36141 -21.56140653 -1.297106

11 1315.37547 13.22452821 0.7955701

12 1364.54847 14.95152787 0.8994642

13 1610.05971 12.74028622 0.7664388

Percentile Site 5 Final

3.846153846 1325.8

11.53846154 1328.6

19.23076923 1336.8

26.92307692 1354.6

34.61538462 1362

42.30769231 1379.5

50 1397.6

57.69230769 1429.3

65.38461538 1447.2

73.07692308 1476.4

80.76923077 1523.5

88.46153846 1622.8

96.15384615 1635.2
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Site 5 Init Residual Plot

Site SInk

BPaquared Residual Plot
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PTaquared Residual Plot
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Site 6 Regression
SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squ

Standard Error

Observations

Regression Statistics

0.967458124

0.935975221

are 0.923170265

31.34815727

13

ANOVA

df SS MS F Significance F

Regression 2 143661.4673 71830.73364 73.094764 1.07582E-06
Residual 10 9827.069639 982.7069639

Total 12 153488.5369

Coefficients Standard t Stat P-value Lower 95% Upper 95%

Error

Intercept 1344.392015 245.3836087 5.478736018 0.0002697 797.6431683 1891.14086
Polish Time -331.7663133 28.77154689 -11.53105582 4.246E-07 -395.873326 -267.6593
Site 6 Init 0.425170984 0.156146433 2.72289911 0.0214533 0.077254989 0.77308698

RESIDUAL

OUTPUT

PROBABILITY

OUTPUT

Observation Predicted Site 6 Residuals Standard

Final Residuals

1 1343.808144 -44.20814387 -1.410231022

2 1481.193766 9.206234216 0.293677046

3 1351.758841 19.14115874 0.610599168

4 1370.891536 11.80846448 0.376687675

5 1563.47543 39.62457004 1.264015926

6 1389.471508 11.52849249 0.367756624

7 1374.590523 -59.59052308 -1.900925869

8 1418.2981 -33.1981002 -1.059012813

9 1240.478718 12.32128226 0.393046461

10 1249.832479 8.067520623 0.257352308

11 1210.152948 24.74705224 0.789426059

12 1354.777555 7.222444756 0.230394555

13 1553.770453 -6.670452693 -0.212786118

Percentile Site 6 Final

3.846153846 1234.9

11.53846154 1252.8

19.23076923 1257.9

26.92307692 1299.6

34.61538462 1315

42.30769231 1362

50 1370.9

57.69230769 1382.7

65.38461538 1385.1

73.07692308 1401

80.76923077 1490.4

88.46153846 1547.1

96.15384615 1603.1
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Polish Time Residual Plot
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Site 7 Regression
SUMMARY

OUTPUT

Regression Statistics

Multiple R 0.99663319

R Square 0.993277716

Adjusted R Square 0.988476084

Standard Error 11.55400634

Observations 13

ANOVA

df SS MS F Significance F

Regression 5 138075.6423 27615.12845 206.86255 1.91776E-07

Residual 7 934.4654382 133.4950626

Total 12 139010.1077

Intercept

Polish Time

Back Pressure

PTsquared

BPsquared

Site 7 Init

Coefficients

1820.058002

-886.46709

45.89207394

158.5933618

-15.6182019

0.41028564

Standard Error

143.7326897

123.3520723

11.4727104

33.53384307

3.606955899

0.036759582

t Stat

12.6627979

-7.186479103

4.000107413

4.729352417

-4.330022964

11.1613249

P-value

4.429E-06

0.0001796

0.0051892

0.0021342

0.0034378

1.032E-05

RESIDUAL

OUTPUT

Lower 95%

1480.184441

-1178.14818

18.76344409

79.29847993

-24.1472912

0.323363102

PROBABILITY

OUTPUT

Observation Predicted Site 7

Final

1 1304.054048

2 1569.266181

3 1458.034249

4 1430.380997

5 1649.053866

6 1436.904538

7 1421.162297

8 1452.57745

9 1333.153492

10 1335.156373

11 1334.536114

12 1394.058012

13 1590.362382

Residuals

0.045951715

-4.366180737

9.465751089

-0.880996787

-9.353866461

-9.90453846

-8.76229723

1.322550099

-5.75349229

-8.25637274

11.46388561

9.641988

15.33761819

Standard

Residuals

0.003977124

-0.377893227

0.819261372

-0.076250329

-0.80957775

-0.857238447

-0.758377395

0.114466797

-0.497965132

-0.714589597

0.992200045

0.834514688

1.327471851

Percentile Site 7 Final

3.846153846 1304.1

11.53846154 1326.9

19.23076923 1327.4

26.92307692 1346

34.61538462 1403.7

42.30769231 1412.4

50 1427

57.69230769 1429.5

65.38461538 1453.9

73.07692308 1467.5

80.76923077 1564.9

88.46153846 1605.7

96.15384615 1639.7

107

Upper 95%

2159.931562

-594.785997

73.02070378

237.8882436

-7.08911258

0.497208177
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Site 7 Init Resdual Plot

Site 7 Init

BPaquared Residual Plot

B12squared 4

*
4

SPaquared
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PTsquared
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Site 8 Regression
SUMMARY OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Squ

Standard Error

Observations

0.991871493

0.983809058

iare 0.972244099

18.67214051

13

ANOVA

df SS MS F Significance F

Regression 5 148294.4674 29658.89348 85.0680996 4.11243E-06

Residual 7 2440.541817 348.648831

Total 12 150735.0092

Coefficients Std Error t Stat P-value Lower 95% Upper 95%

Intercept 1695.952401 239.9685237 7.067395233 0.0001993 1128.517416 2263.387386

Polish Time -861.8479879 202.5990089 -4.253959547 0.00377463 -1340.91817

382.7778009

Back Pressure 44.02603285 18.48894896 2.381207983 0.04879537 0.306647041 87.74541866

PTsquared 147.2226267 55.20462271 2.666853236 0.03214602 16.68453045 277.760723

BPsquared -15.67594387 5.792550499 -2.706224809 0.03036435 -29.3731395

1.978748279

Site 8 Init 0.466208966 0.062717313 7.433497139 0.00014523 0.317906193 0.614511739

RESIDUAL

OUTPUT

Observation Predicted Site 8 Residuals Std. Residuals

Final

1 1258.664967 5.535032892 0.296432693

2 1520.321106 -10.02110586 -0.536687578

3 1418.108433 9.791566622 0.524394438

4 1399.926284 -13.42628372 -0.719054343

5 1616.955595 -5.855594745 -0.313600615

6 1396.942546 -16.04254634 -0.859170181

7 1360.152712 -20.45271188 -1.095359789

8 1409.297084 15.30291607 0.819558747

9 1287.065536 5.934463825 0.317824506

10 1304.876082 -16.67608186 -0.893099635

11 1288.630084 8.669916216 0.464323638

12 1364.169672 20.53032779 1.099516565

13 1571.089899 16.71010097 0.894921553

PROBABILITY

OUTPUT

Percentile Site 8 Final

3.846153846 1264.2

11.53846154 1288.2

19.23076923 1293

26.92307692 1297.3

34.61538462 1339.7

42.30769231 1380.9

50 1384.7

57.69230769 1386.5

65.38461538 1424.6

73.07692308 1427.9

80.76923077 1510.3

88.46153846 1587.8

96.15384615 1611.1
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Polish Time Residual Plot

Back Pressure Residual Plot
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BPaquared Residual Plot

BPsquared

PTsquared Residual Plot

4*

1 2 3 4 5

* 4

PTsquared
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Site 9 Regression
SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Square

Standard Error

Observations

egression Statistics

0.985449512

0.971110741

0.965332889

21.59198951

13

ANOVA

df SS MS F Significance F

Regression 2 156717.563 78358.78148 168.074703 2.01225E-08
Residual 10 4662.140109 466.2140109

Total 12 161379.7031

Coefficients Standard t Stat P-value Lower 95% Upper 95%
Error

Intercept 1295.819828 140.3198979 9.23475464 3.2809E-06 983.1675577 1608.4721
Polish Time -363.2377511 19.99800207 -18.16370205 5.4905E-09 -407.7960842

318.679418

Site 9 Init 0.46751947 0.088543463 5.280112781 0.00035759 0.270232306 0.66480663

RESIDUAL

OUTPUT

PROBABILITY

OUTPUT

Observation Predicted Site 9 Residuals Standard

Final Residuals

1 1278.380208 3.819792059 0.176907832

2 1512.807481 -19.10748 -0.884933774

3 1389.930354 4.469646486 0.207004847

4 1378.429375 -21.42937 -0.992468737

5 1549.529062 29.87093796 1.383426847

6 1371.416582 23.5834175 1.092229945

7 1372.912645 -37.1126448 -1.718815433

8 1403.862434 3.237566276 0.149942935

9 1228.062102 20.33789754 0.941918647

10 1251.53158 -15.7316 -0.728584082

11 1215.791789 13.70821053 0.634874824

12 1361.364914 -9.96491 -0.46150976

13 1560.681474 4.318525505 0.20000591

Percentile Site 9 Final

3.846153846 1229.5

11.53846154 1235.8

19.23076923 1248.4

26.92307692 1282.2

34.61538462 1335.8

42.30769231 1351.4

50 1357

57.69230769 1394.4

65.38461538 1395

73.07692308 1407.1

80.76923077 1493.7

88.46153846 1565

96.15384615 1579.4
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Polish Time Residual Plot
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Site 3 First Order Model Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Square

Standard Error

Observations

0.981221101

0.962794848

0.955353818

21.9232969

13

ANOVA

df SS MS F Significance F

Regression 2 124377.6675 62188.83373 129.3899907 7.12878E-08

Residual 10 4806.309468 480.6309468

Total 12 129183.9769

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1345.767823 178.1476336 7.554227891 1.93856E-05 948.8300901 1742.705555

Polish Time -316.5649366 20.07895168 -15.76600918 2.16448E-08 -361.3036367 -271.8262365

Site 3 Init 0.429341134 0.110535127 3.884205359 0.003038065 0.183053479 0.675628788

RESIDUAL

OUTPUT

Observation Predicted Site 3

Final

1 1401.381793

2 1556.811744

3 1462.906378

4 1441.954531

5 1616.63783

6 1446.376744

7 1448.823989

8 1456.98147

9 1329.201088

10 1346.460602

11 1287.278528

12 1411.986519

13 1621.298783

Residuals

-0.781793466

14.98825551

-23.40637791

11.14546941

20.36216982

-33.77674427

-24.72398873

16.61852973

15.29891175

-11.26060182

29.82147217

-14.68651947

0.401217245

Standard

Residuals

-0.035660397

0.683667953

-1.067648631

0.508384732

0.928791409

-1.540678139

-1.127749574

0.758030592

0.697838096

-0.513636333

1.360264029

-0.669904693

0.018300954
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Polish Time Residual Plot

Site 3 Init Residual Plot

Site 3 Init
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Site 4 First Order Model Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squa

Standard Error

Observations

Regression Statistics

0.974468138

0.949588152

ire 0.939505782

25.37953652

13

ANOVA

df SS MS F Significance F

Regression 2 121330.5143 60665.25717 94.183032 3.25584E-07
Residual 10 6441.208741 644.1208741

Total 12 127771.7231

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1552.775503 187.2338866 8.293239708 8.579E-06 1135.592333 1969.9587

Polish Time -312.1295494 23.22262564 -13.44075189 9.991E-08 -363.8727928 -260.3863
Site 4 Init 0.281221873 0.104813537 2.683068237 0.0229714 0.047682718 0.514761

RESIDUAL OUTPUT

Observation Predicted Site 4 Residuals Standard Residuals

Final

1 1429.621204 -5.921203975 -0.23330623

2 1582.257299 9.242700741 0.364179256

3 1487.356054 -40.25605444 -1.586161922

4 1459.936922 6.56307815 0.258597242

5 1630.597112 37.90288827 1.493442886

6 1457.068459 -5.268458749 -0.207586878

7 1473.576183 -41.97618268 -1.65393811

8 1477.850755 2.64924486 0.104385076

9 1341.666139 14.23386059 0.560840052

10 1361.745381 8.554618883 0.337067577

11 1309.974662 28.9253382 1.139711049

12 1447.422549 -17.42254852 -0.686480169

13 1632.427281 2.772718655 0.109250169
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Site 4 Init Residual Plot

Site 4 Init

Polish Time Residual Plot

Polish Time
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Site 5 First Order Model Regression

SUMMARY OUTPUT

Multiple R

R Square

Adjusted R Squa

Standard Error

Observations

Regression Statistics

0.968246837

0.937501938

Ire 0.91666925

30.52039772

13

ANOVA

df SS MS F Significance F
Regression 3 125755.9402 41918.64674 45.00149 9.61116E-06

Residual 9 8383.452092 931.4946769

Total 12 134139.3923

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 938.7697838 231.0304097 4.063403537 0.002827 416.1422894 1461.39728

Polish Time -309.764972 28.06449639 -11.03761022 1.56E-06 -373.251322 -246.27862

Back Pressure -7.783686851 10.06760827 -0.773141609 0.459262 -30.5582164 14.9908427

Site 5 Init 0.646974739 0.142041674 4.554823379 0.001376 0.325653903 0.96829558

RESIDUAL OUTPUT

Observation Predicted Site 5 Residuals Standard Residuals

Final

1348.545576 13.45442409 0.440833839

2 1516.780274 6.719726051 0.220171641

3 1447.791501 -0.591500889 -0.019380511

4 1419.259915 10.04008511 0.328963115

5 1611.084659 24.11534149 0.790138507

6 1410.978638 -13.37863823 -0.438350717
7 1404.802393 -50.20239324 -1.644880047

8 1471.923659 4.476341342 0.146667202

9 1334.741749 2.058250905 0.067438535

10) 1355.624311 -29.82431065 -0.977192726

11 1272.594008 56.00599194 1.8350348

12 1406.156313 -26.65631266 -0.873393358

13 1619.017005 3.782994748 0.12394972
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Back Pressure Residual Plot

Back Pressure

Polish Time Residual Plot

Polish Time
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Site 5 Init Residual Plot
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Site 7 First Order Model Regression
SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squar

Standard Error

Observations

Regression Statistics

0.976311685

0.953184506

re 0.937579342

26.8903676

13

ANOVA

df SS MS F Significance F

Regression 3 132502.2809 44167.42695 61.08135 2.63663E-06

Residual 9 6507.826828 723.0918698

Total 12 139010.1077

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1292.257431 133.2629559 9.697049133 4.62E-06 990.795451 1593.71941

Polish Time -305.0531852 24.60709389 -12.39696108 5.83E-07 -360.7183413 -249.388029

Back Pressure -2.250150423 8.342681038 -0.269715504 0.793461 -21.12262047 16.6223196

Site 7 Init 0.430719457 0.077429859 5.562704946 0.000351 0.255560815 0.6058781

RESIDUAL OUTPUT

Observation Predicted Site 7 Residuals Standard Residuals

Final

1 1299.072227 5.027773148 0.186973017

2 1567.397279 -2.497278637 -0.092868892

3 1460.721239 6.778760849 0.252088813

4 1431.690748 -2.190747733 -0.081469609

5 1612.084889 27.61511079 1.026951777

6 1438.539187 -11.5391871 -0.429119723

7 1457.04451 -44.6445099 -1.66024171

8 1454.99267 -1.09267037 -0.040634267

9 1333.102579 -5.70257873 -0.212067712

10 1334.2054 -7.305400487 -0.271673508

11 1296.995941 49.00405933 1.822364798

12 1432.309369 -28.60936884 -1.063926283

13 1590.543962 15.15603768 0.563623298
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Site 8 First Order Model Regression
SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squa

Standard Error

Observations

Regression Statistics

0.973917782

0.948515846

re 0.938219015

27.85761022

13

ANOVA

df SS MS F Significance F

Regression 2 142974.5448 71487.27238 92.11726 3.61716E-07

Residual 10 7760.464473 776.0464473

Total 12 150735.0092

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1199.754728 139.206679 8.618514114 6.1E-06 889.5828643 1509.92659

Polish Time -322.48943 25.55549325 -12.61918237 1.82E-07 -379.430627 -265.548233

Site 8 Init 0.486808465 0.082612972 5.892639513 0.000153 0.30273526 0.67088167

RESIDUAL OUTPUT

Observation Predicted Site 8 Residuals Standard Residuals

Final

1 1252.961153 11.23884723 0.403439029

2 1513.561184 -3.261183654 -0.117066167

3 1419.449648 8.450352082 0.303340883

4 1400.464118 -13.96411777 -0.501267613

5 1581.765342 29.33465847 1.053021355

6 1397.348544 -16.44854359 -0.590450633

7 1400.464118 -60.76411777 -2.181239427

8 1410.248968 14.35103208 0.515156611

9 1293.403477 -0.403476855 -0.014483542

10 1300.072753 -11.87275283 -0.426194233

11 1252.703997 44.59600272 1.600855291

12 1395.255267 -10.55526719 -0.37890067

13 1578.501433 9.298567069 0.333789115
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Site 8 Init Residual Plot

Site 8 Init

128

.600 • :00 1 . .000. : i 1200 100 i i .
ii •! .i.'/."• !i • iili!ili. •.•.•.••...?...!..•..•i•i•@ ii:i!•!•i::ii~ixii• •i :ii••i•' i~i;iii':i~ii~ii~ii':::i~i:.i•  •

ii!ilii• ::i .-i.iii:::.: !:i:i••.•••!!:!:••• :.•.••••••~•••i..i.••i•.!!.••~ .• I;•!.:-.I;:;_:;_:••?!!•!•~i•.: :;. : · .!•i:-;:::i::I•~iii:iiiii!i!!ii!ii• :I'I•i!.••'.:

DO

::,::::.:::i::::;i~:.::i -.-....:_ :i i:i
::::·:-:·::r·j::: ::-:-:::j··::: :::i:-i:: :::·: :·~:: ::-:·::::::-::: :;:· :::::-.:::-::: :·: :

.,.._:..." -:::'::;:::'::::::''::::::":' :·:::: ::::·:..: :i
::' : ::-': : j·i

;rt:1·:i:::::i: :(i ::·-::I-:· i~E~;i'.i~:·'ii;:-:: ::-:':'':'. :-:·-· ;.::.:
::::::::i:i::;:::: :.i :

:::.::::·:::
:::::.:::j::ji

·i::i:::::,:i:-·

::::-::·: ::i::'::··:-: ::::::::I::·: ::.:::(::-i:;:::::::::::::::::I :r: ::·-:.::::::::::-:::i:i:::i:.:i-i::i:::-:::::::::.·:;i;: :··:a$-

i :::.:: ,,,,,,,l;i;ia~i,:iii-i:i':::i:ii::i :i::-ii::::i:i-:-:-i:::ii:i i:~':,'·:.:'~:;i;ii:I'ii-ii:ii;ii::i:-: -:~::::~: :':'·:':'bB: .-:----::::::: -: .'. :.:::-:·::::.:::.:::::::-:::::-:::::;::: ·.:: :::-.-:
:.:...:._...::.:. ::::::

:....:.:... :: .. ::;:.::·:·:·:::;i'::.i;L''':l::-:ili
I: :::: ::::': :: :;:' ; :::-::::::-l:::i ;::i

:::i:i:- ::·:::-:: : ::
,:ri,:i ili'ii,::ii::i-.,i,:iij~.::: ::::·::

i rll
-:::-:: :· : : ::::-::·:: :-:::-;::-i:::i::·: ;:

:· ·:

:::::ii i;:l~oi ::: .:-.-:-.. :i:·:
:··:

i:

:--i::::.i::·:, i: :::: :i.i:,:i:,i
ii

:::::· :::.:.::..- :: ::::-:::i::i ii:::.:·' :::-:::::·::;::.:.:.:-:;::::.:::. .:::,:::-::; ::::::-:
:·j::::::;ii::::::-:::ai:::::i: i'::':::::::::iii:i:::i:ii::·:'::i -·'::'': :~::: :::::

::::-'i: j::::::

- - I



Data and Regression Results of Experiment #2

Polish Back Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9
Time Pressure Init Init Init Init Init Init Init Init Init

1.83333 0 1538.9 1806.9 1668.1 1746.9 1706.9 1753.5 1755.9 1613.9 1402.2
1.32 1.5 1481.8 1754.2 1734.9 1792.2 1707.4 1725.7 1711.5 1640.0 1451.6

1.83333 1.5 1544.4 1779.6 1705.4 1796.9 1689.3 1725.1 1843.9 1668.2 1552.7
1.41666 0.3 1547.3 1777.2 1715.3 1829.6 1716.8 1708.8 1881.3 1661.1 1512

2.25 2.7 1506 1712.2 1680.3 1796.6 1725.4 1650.9 1824.1 1631.7 1487.2
1.83333 1.5 1476 1644.3 1717.2 1843 1741.7 1699.8 1868.2 1648 1502.3
1.83333 3 1584.1 1808.3 1722.1 1848.9 1785 1724.3 1938.3 1722.5 1604.5
1.41666 2.7 1596.8 1837.3 1758.3 1878.1 1808.8 1776.7 1922.2 1718.2 1541.5
1.83333 1.5 1509.7 1733.8 1693.7 1748.1 1652.1 1667.3 1829.9 1604.3 1483.2
2.33333 1.5 1570.8 1824.8 1722.5 1815.3 1747.1 1711.6 1886.4 1702 1549.9

2.25 0.3 1662.4 1898.8 1856.8 1936.7 1866.1 1824.2 1970.3 1793.9 1594.9
1.83333 1.5 1591.6 1846.1 1742.6 1866.9 1760.9 1779.5 1857.3 1694.5 1540.6
1.83333 1.5 1482.8 1646 1582.2 1621.2 1577 1601.2 1603.4 1515 1365.2
1.83333 1.5 1410.4 1542.2 1573.7 1620.3 1548.4 1545 1569.5 1475.5 1330.8

Site 1 Site 2 Site 3 Site4 Site 5 Site 6 Site 7 Site 8 Site 9
Final Final Final Final Final Final Final Final Final

1279.4 1392.1 1381 1360.3 1495.6 1280.7 1407.1 1429.3 1187.8
1513 1617.3 1621.3 1632.6 1706.4 1561.4 1631.7 1662.1 1489.8

1289.3 1408.9 1400.2 1395.5 1479.7 1282.5 1421 1437.1 1238.1
1465.7 1530 1539.6 1555.5 1608.3 1466.5 1573.8 1575.3 1424.6
1046.3 1148.6 1221.7 1212.5 1342.7 1088.3 1232.4 1267.2 1028.3
1305.9 1387.4 1401.9 1384.5 1508.9 1271.8 1453.3 1467.3 1213.8
1242.4 1342.2 1403.3 1394.6 1480.9 1325.5 1426.4 1444.1 1236.8
1477.4 1538.4 1587.1 1608 1657.6 1501.8 1615.9 1620.2 1474.9
1286.7 1382.4 1400 1371.8 1483.5 1293.3 1445.7 1437.8 1198.5
1079.8 1182.6 1166.3 1197.2 1344.6 1061.5 1235.3 1278.2 957.06
1135.8 1188.4 1201.9 1200.4 1387.5 1075.8 1279.4 1319.9 1005.3
1248.6 1346 1418.1 1416 1496.4 1293.3 1435.6 1443.3 1274.2
1236.7 1325.3 1327.1 1302.6 1441 1258.7 1356.4 1387.6 1106.3
1137.9 1291.5 1279.8 1271 1355.7 1176.4 1261.3 1312.9 1108.1
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Site 1 Regression
SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Sqt

Standard Error

Observations

0.966884202

0.93486506

uare 0.923022344

39.71035247

14

ANOVA

df SS MS F Significance

F

Regression 2 248963.156 124481.5781 78.9401 2.9921 E-07

Residual 11 17346.0330 1576.912093

Total 13 266309.189

Coefficients Standard t Stat P-value Lower 95% Upper 95%

Error

Intercept 1428.36227 264.714133 5.395867049 0.00022 845.730096 2010.9944

Polish Time -465.1496743 37.0237900 -12.56353479 7.25E-08 -546.63853 -383.6608

Site 1 Init 0.450190868 0.1763683 2.552561164 0.026872 0.06200667 0.8383751

RESIDUAL OUTPUT

Observation Predicted Site 1 Final Residuals Standard

Residuals

1 1268.388143 11.0118566 0.27730443

2 1481.457527 31.54247 0.794313597

3 1270.864193 18.4358069 0.464256944

4 1465.980405 -0.28040537 -0.007061266

5 1059.762949 -13.4629490 -0.339028697

6 1240.071138 65.8288622 1.657725458

7 1288.736771 -46.3367706 -1.166868781

8 1488.264853 -10.8648533 -0.273602541

9 1255.24257 31.45743 0.792172016

10 1050.174395 29.6256051 0.746042361

11 1130.172801 5.62719926 0.141706102

12 1292.113202 -43.513202 -1.095764691

13 1243.132436 -6.4324357 -0.161983848

14 1210.538617 -72.638617 -1.829211084

130



Polish Time Residual Plot
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Site 2 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squ

Standard Error

Observations

Regression Statistics

0.968931923

0.938829071

are 0.933731493

35.23150647

14

ANOVA

df SS MS F Significance F

Regression 1 228604.6836 228604.6836 184.17162 1.21419E-08

Residual 12 14895.10858 1241.259048

Total 13 243499.7921

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 2160.077083 59.48857859 36.31078661 1.219E-13 2030.462607 2289.691559

Polish Time -435.0308702 32.05595559 -13.57098431 1.214E-08 -504.8747963 -365.186944

RESIDUAL

OUTPUT

Observation Predicted Site 2

Final

1362.521938

1585.836334

1362.521938

1543.783205

1181.257625

1362.521938

1362.521938

1543.783205

1362.521938

1145.006503

1181.257625

1362.521938

1362.521938

1362.521938

Residuals

29.57806222

31.46366562

46.37806222

-13.78320525

-32.65762509

24.87806222

-20.32193778

-5.383205255

19.87806222

37.59349732

7.142374909

-16.52193778

-37.22193778

-71.02193778

Standard

Residuals

0.839534416

0.89305479

1.316380333

-0.391218163

-0.92694376

0.706131094

-0.576811491

-0.152795205

0.564212667

1.067042006

0.202726923

-0.468953486

-1.056495776

-2.015864347
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Polish Time Residual Plot
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Site 3 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Sque

Standard Error

Observations

Regression Statistics

0.980185592

0.960763795

ire 0.953629939

29.56746848

14

ANOVA

df SS MS F Significance F

Regression 2 235478.1422 117739.0711 134.676655 1.84195E-08

Residual 11 9616.587118 874.2351926

Total 13 245094.7293

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1562.724718 203.3346297 7.685482399 9.545E-06 1115.187989 2010.261446

Polish Time -439.5290389 26.97193773 -16.29579021 4.7501E-09 -498.8939036 -380.1641742

Site 3 Init 0.366375796 0.117671506 3.113547262 0.00986286 0.107382426 0.625369165

RESIDUAL OUTPUT

Observation Predicted Site 3 Residuals Std Residuals

Final

1 1368.074409 12.92559069 0.437155812

2 1618.171754 3.128246 0.105800265

3 1381.740226 18.45977351 0.624327156

4 1568.502835 -28.9028348 -0.977521455

5 1189.405629 32.29437063 1.092226433

6 1386.063461 15.83653913 0.535606866

7 1387.858702 15.44129773 0.522239425

8 1584.256994 2.843005987 0.096153176

9 1377.45363 22.54637032 0.76253976

10 1168.240733 -1.940733135 -0.065637447

11 1254.070957 -52.17095729 -1.764471562

12 1395.369406 22.73059392 0.768770378

13 1336.602728 -9.50272847 -0.321391345

14 1333.488534 -53.68853421 -1.815797461
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Polish Time Residual Plot
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Site 4 Regression
SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Sque

Standard Error

Observations

Regression Statistics

0.985823138

0.971847259

are 0.966728579

25.81544408

14

ANOVA

df SS MS F Significance F

Regression 2 253063.3263 126531.6632 189.862859 2.96732E-09
Residual 11 7330.808684 666.4371531

Total 13 260394.135

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1472.53052 147.7543925 9.96606933 7.6483E-07 1147.32513 1797.735909
Polish Time -449.427776 23.53498346 -19.09615857 8.7721E-10 -501.2279516 -397.627601

Site 4 Init 0.406368164 0.080124383 5.071716594 0.00035962 0.230015496 0.582720831

RESIDUAL

OUTPUT

Observation Predicted Site 4

Final

Residuals Standard

Residuals

1358.46564

1607.578878

1378.784048

1579.332213

1191.399066

1397.51762

1399.915193

1599.041068

1358.953282

1161.547334

1248.331246

1407.22982

1307.385162

1307.01943

1.834360069

25.02112198

16.71595189

-23.83221251

21.10093378

-13.01762045

-5.315192615

8.958931559

12.84671827

35.6526657

-47.93124593

8.77018044

-4.78516177

-36.01943042

0.071056692

0.969230741

0.647517503

-0.923176546

0.817376363

-0.50425708

-0.205891969

0.34703767

0.497636927

1.381059555

-1.856688802

0.339726112

-0.185360428

-1.395266737
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Polish Time Residual Plot
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Site 5 Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R 0.971164873

R Square

Adjusted R Square

Standard Error

Observations

0.943161211

0.932826886

29.02100013

14

ANOVA

df SS MS F Significance F

Regression 2 153729.9742 76864.9871 91.264905 1.41432E-07

Residual 11 9264.402935 842.2184486

Total 13 162994.3771

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1397.518271 166.3658764 8.400269942 4.094E-06 1031.34926 1763.687281

Polish Time -353.8168827 26.67665915 -13.26316316 4.132E-08 -412.5318433 -295.1019221

Site 5 Init 0.428583994 0.096666341 4.433642473 0.0010055 0.215822705 0.641345283

RESIDUAL OUTPUT

Observation Predicted Site 5

Final

1 1480.405184

2 1662.244296

3 1472.862106

4 1632.070569

5 1340.909107

6 1495.319907

7 1513.877594

8 1671.500297

9 1456.918781

10 1320.725819

11 1401.210875

12 1503.54872

13 1424.732123

14 1412.474621

Residuals

15.194816

44.15570359

6.837894288

-23.77056935

1.790892637

13.58009301

-32.97759392

-13.90029677

26.58121886

23.87418081

-13.71087529

-7.148719666

16.26787679

-56.77462099

Standard

Residuals

0.523580026

1.52150868

0.235618837

-0.819081673

0.061710232

0.467940214

-1.136335542

-0.478973733

0.915930489

0.822651897

-0.472446684

-0.246329197

0.560555347

-1.956328891
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Site 6 Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Squ

Standard Error

Observations

0.989925421

0.979952339

are 0.97393804

24.64699256

14

ANOVA

df SS MS F Significance F

Regression 3 296940.2726 98980.09086 162.9371 8.69267E-09

Residual 10 6074.742421 607.4742421

Total 13 303015.015

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1531.480463 172.9345373 8.85583925 4.78E-06 1146.158235 1916.802691

Polish Time -483.9748006 22.44441799 -21.56325911 1.03E-09 -533.984089 -433.9655122

Site 6 Init 0.357121266 0.09573061 3.730481448 0.003907 0.143820137 0.570422395

Back Pressure 18.06731083 7.856989027 2.299520945 0.04429 0.560845295 35.57377637

RESIDUAL OUTPUT

Observation Pred. Site 6 Final

1 1270.407082

2 1536.018861

3 1287.365804

4 1461.518347

5 1080.890399

6 1278.330636

7 1314.181073

8 1529.128427

9 1266.724195

10 1040.557266

11 1099.417968

12 1306.793201

13 1243.118479

14 1223.048264

Residuals

10.29291845

25.38113898

-4.86580385

4.98165343

7.409601257

-6.530635823

11.31892691

-27.32842653

26.57580532

20.94273355

-23.61796812

-13.49320071

15.58152099

-46.64826386

Standard Residuals

0.417613566

1.029786451

-0.19741978

0.202120134

0.300629022

-0.264966844

0.459241706

-1.108793556

1.07825753

0.849707465

-0.958249493

-0.547458303

0.632187516

-1.892655412
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Back Pressure Residual Plot

Back Pressure
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Site 7 Regression
SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Square

Standard Error

Observations

?egression Statistics

0.977101632

0.9547276

0.946496255

30.53822281

14

ANOVA

df SS MS F Significance F

Regression 2 216334.69 108167.345 115.9868225 4.04654E-08

Residual 11 10258.41358 932.5830526

Total 13 226593.1036

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1544.051292 132.3719009 11.66449436 1.55609E-07 1252.702555 1835.400029

Polish Time -425.4332714 28.24673798 -15.06132395 1.09174E-08 -487.603954 -363.2625888

Site 7 Init 0.356306641 0.072154368 4.938116011 0.000443913 0.197495867 0.515117415

RESIDUAL

OUTPUT

Observation Predicted Site 7

Final

1 1389.730544

2 1592.29819

3 1421.085528

4 1611.673699

5 1236.765375

6 1429.743779

7 1454.720875

8 1626.246641

9 1416.097235

10 1223.511924

11 1288.857406

12 1425.860037

13 1335.393781

14 1323.314986

Residuals

17.3694565

39.40181015

-0.08552792

-37.87369946

-4.365375228

23.5562207

-28.32087484

-10.34664108

29.60276506

1178807554

-9.457406155

9.739963089

21.00621926

-62.0149856

Standard

Residuals

0.568777581

1.290245683

-0.002800684

-1.240206403

-0.142947913

0.771368421

-0.92739106

-0.338809535

0.969367642

0.386010529

-0.309690784

0.31894335

0.687866461

-2.030733287
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Polish Time Residual Plot
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Site 8 Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Squa

Standard Error

Observations

0.981757903

0.963848579

re 0.957275594

24.98467775

14

ANOVA

df SS MS F Significance F

Regression 2 183072.7197 91536.35983 146.6379 1.17406E-08

Residual 11 6866.575343 624.2341221

Total 13 189939.295

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1425.245773 140.3671973 10.15369545 6.35E-07 1116.299499 1734.192047
Polish Time -389.5791704 23.00866417 -16.93184652 3.16E-09 -440.2209244 -338.9374164

Site 8 Init 0.438431277 0.085124749 5.150456022 0.000318 0.251072873 0.625789681

RESIDUAL OUTPUT

Observation Predicted Site 8 Residuals Standard Residuals

Final

1 1418.60283 10.69716952 0.428149189

2 1630.028562 32.07143767 1.28364424

3 1442.409649 -5.309648817 -0.212516202

4 1601.620013 -26.32001261 -1.053446151

5 1264.080954 3.119045704 0.12483834

6 1433.553337 33.74666298 1.350694346

7 1466.216467 -22.11646715 -0.885201217

8 1626.654439 -6.454438522 -0.258335872

9 1414.39389 23.40610978 0.936818558

10 1262.439041 15.7609592 0.630824994

11 1335.194507 -15.29450742 -0.612155481

12 1453.940391 -10.6403914 -0.425876672

13 1375.241977 12.35802281 0.494624063

14 1357.923942 -45.02394175 -1.802062136
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Polish Time Residual Plot
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Site 9 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squa

Standard Error

Observations

Regression Statistics

0.986933684

0.974038096

ire 0.96931775

29.18191346

14

ANOVA

df SS MS F Significance F

Regression 2 351446.8235 175723.4118 206.3489 1.90043E-09

Residual 11 9367.424808 851.5840734

Total 13 360814.2483

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1452.418291 149.1948819 9.735040991 9.66E-07 1124.042404 1780.794178

Polish Time -548.3254627 27.04266823 -20.27630773 4.61E-10 -607.8460043 -488.804921

Site 9 Init 0.510362247 0.100538607 5.07628126 0.000357 0.289078153 0.731646342

RESIDUAL OUTPUT

Observation Predicted Site 9 Residuals Standard Residuals

Final

1 1162.786714 25.01328601 0.857150304

2 1469.470519 20.3294812 0.696646614

3 1239.596232 -1.49623223 -0.051272588

4 1447.291421 -22.69142104 -0.777585098

5 977.6967345 50.60326553 1.734062627

6 1213.873975 -0.07397496 -0.002534959

7 1266.032997 -29.23299665 -1.001750508

8 1462.347107 12.55289266 0.430160026

9 1204.126056 -5.626056035 -0.192792568

10 964.0044866 -6.944486573 -0.237972283

11 1032.662749 -27.36274852 -0.937661218

12 1233.420849 40.77915096 1.397411825

13 1143.903311 -37.60331084 -1.288582768

14 1126.34685 -18.24684953 -0.625279406
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Polish Time Residual Plot
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Data and Regression Results of Back End Experiment #1

Polish Back Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9

Time Pressure Init Init Init Init Init Init Init Init Init
2.5 1.5 15106.0 15147.0 15201.0 15162.0 15102.0 15110.0 14984.0 14980.0 14929.0

2.5 1.5 15122.0 15259.0 15311.0 15291.0 15210.0 15263.0 15210.0 15050.0 15004.0

4.0 1.5 15158.0 15183.0 15236.0 15199.0 15138.0 15081.0 14963.0 14966.0 14920.0

2.5 1.5 15213.0 15298.0 15349.0 15343.0 15269.0 15254.0 15220.0 15056.0 15013.0

2.5 1.5 15218.0 15245.0 15299.0 15259.0 15197.0 15143.0 15026.0 15026.0 14982.0

2.5 1.5 15170.0 15273.0 15326.0 15310.0 15231.0 15227.0 15189.0 15019.0 14978.0

2.5 0.0 15195.0 15213.0 15271.0 15231.0 15167.0 15116.0 15005.0 14998.0 14959.0

2.5 3.0 15157.0 15242.0 15301.0 15284.0 15204.0 15182.0 15159.0 14985.0 14933.0

1.0 1.5 15293.0 15327.0 15380.0 15331.0 15270.0 15256.0 15126.0 15119.0 15084.0

2.5 1.5 15264.0 15365.0 15414.0 15394.0 15318.0 15324.0 15275.0 15098.0 15068.0

1.6 2.4 14717.0 14753.0 14810.0 14765.0 14706.0 14686.0 14572.0 14568.0 14523.0

3.4 0.6 14704.0 14741.0 14799.0 14757.0 14698.0 14678.0 14562.0 14559.0 14514.0

1.6 0.6 14665.0 14708.0 14755.0 14717.0 14659.0 14639.0 14521.0 14521.0 14481.0

3.4 2.4 14687.0 14730.0 14789.0 14741.0 14686.0 14670.0 14558.0 14552.0 14509.0

3.4 2.4 15738.0 15823.0 15875.0 15862.0 15783.0 15788.0 15734.0 15550.0 15516.0

1.6 2.4 15714.0 15797.0 15845.0 15832.0 15758.0 15761.0 15697.0 15529.0 15499.0

1.6 0.6 15684.0 15802.0 15853.0 15836.0 15757.0 15788.0 15742.0 15568.0 15526.0

3.4 0.6 15760.0 15856.0 15905.0 15898.0 15825.0 15825.0 15784.0 15613.0 15571.0

2.5 1.5 14389.0 14446.0 14497.0 14455.0 14395.0 14393.0 14272.0 14266.0 14230.0

2.5 1.5 16075.0 16170.0 16221.0 16208.0 16131.01 16115.0 16076.0 15903.0 15858.0
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Polish Back Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9

Time Pressure Final Final Final Final Final Final Final Final Final

2.5 1.5 12264.0 11989.0 12045.0 12187.0 12115.0 12343.0 12397.0 12265.0 12324.0

2.5 1.5 12043.0 12059.0 12122.0 11965.0 11908.0 12554.0 12203.0 12153.0 12064.0

4.0 1.5 10273.0 10138.0 9999.6 10208.0 9982.1 10489.0 10452.0 10272.0 10223.0

2.5 1.5 12120.0 12002.0 12090.0 11814.0 11900.0 12336.0 12032.0 12416.0 12114.0

2.5 1.5 12161.0 11988.0 12170.0 11912.0 11834.0 12310.0 12102.0 11831.0 12439.0

2.5 1.5 12191.0 12122.0 12255.0 11919.0 12069.0 12441.0 12223.0 12140.0 12251.0

2.5 0.0 12351.0 12104.0 12204.0 12205.0 12105.0 11999.0 11882.0 11610.0 12042.0

2.5 3.0 12150.0 12172.0 12136.0 11969.0 11973.0 12512.0 12473.0 12129.0 12398.0

1.0 1.5 14180.0 14114.0 14211.0 14018.0 14010.0 14183.0 13881.0 14021.0 14031.0

2.5 1.5 12257.0 12197.0 12169.0 12132.0 12073.0 12419.0 12273.0 12068.0 12219.0

1.6 2.4 12787.0 12732.0 12792.0 12601.0 12606.0 13065.0 12566.0 12790.0 12719.0

3.4 0.6 10681.0 10563.0 10736.0 10396.0 10282.0 10880.0 10360.0 10359.0 10916.0

1.6 0.6 12777.0 12729.0 12810.0 12538.0 12524.0 12776.0 12596.0 12360.0 12628.0

3.4 2.4 10715.0 10507.0 10707.0 10289.0 10415.0 11068.0 10532.0 10793.0 11049.0

3.4 2.4 11602.0 11530.0 11456.0 11374.0 11350.0 11882.0 12308.0 11721.0 11964.0

1.6 2.4 13794.0 13745.0 13867.0 13729.0 13635.0 14110.0 13808.0 13678.0 13738.0

1.6 0.6 13726.0 13716.0 13854.0 13816.0 13592.0 13914.0 13871.0 13375.0 13771.0

3.4 0.6 11699.0 11651.0 11614.0 11318.0 11562.0 12005.0 11659.0 11579.0 11830.0

2.5 1.5 11447.0 11286.0 11235.0 11346.0 11185.0 11529.0 11421.0 11300.0 11410.0

2.5 1.5 13012.0 12971.0 13054.0 12705.0 12837.0 13184.0 12925.0 13051.0 13116.0
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Site 1 Regression
SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Square

Standard Error

Observations

fegression Statistics

0.997335769

0.994678635

0.938827448

76.1031866

20

ANOVA

df SS MS F Significance F

Regression 2 19486684.49 9743342.245 1682.2955 2.89259E-20

Residual 18 104250.5102 5791.69501

Total 20 19590935

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Polish Time -1216.013742 22.97901808 -52.91843791 3.289E-21 -1264.290905 -1167.736579

Site 1 Init 1.00324024 0.003937964 254.7611489 1.796E-33 0.994966878 1.011513602

RESIDUAL

OUTPUT

Observation Predicted Site 1

Final

1 12114.91271

2 12130.96455

3 10343.06059

4 12222.25942

5 12227.27562

6 12179.12009

7 12204.20109

8 12166.07796

9 14126.53925

10 12273.42467

11 12806.90449

12 10629.3579

13 12754.73599

14 10612.30282

15 11666.70831

Residuals

149.0872903

-87.96455353

-70.06058952

-102.2594154

-66.27561656

11.87991495

146.798909

-16.07796193

53.46075279

-16.4246676

-19.90448654

51.64209692

22.26400593

102.697181

-64.70831114

Standard

Residuals

1.959015082

-1.155859005

-0.920599947

-1.343694265

-0.870865197

0.156102727

1.928945627

-0.211265292

0.702477192

-0.215821023

-0.261546033

0.678579955

0.292550246

1.349446529

-0.850270718
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13807.13501

13777.0378

11688.7796

11395.58946

13087.0525

-13.13500574

-51.03779854

10.22040358

51.41054232

-75.05250217

-0.172594688

-0.670639441

0.134296657

0.675537315

-0.98619395

Polish Time Residual Plot
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Site 2 Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Squ;

Standard Error

Observations

0.998352934

0.996708582
are 0.940970169

61.83799552

20

ANOVA

df SS MS F Significance F

Regression 2 20843392.87 10421696.44 2725.3834 4.8689E-22
Residual 18 68830.87842 3823.93769

Total 20 20912223.75

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Polish Time -1247.669741 18.65710267 -66.87371359 4.968E-23 -1286.86689 -1208.47259

Site 2 Init 0.997742297 0.00318309 313.4508703 4.305E-35 0.991054868 1.004429726

RESIDUAL

OUTPUT

Observation Predicted Site 2

Final

11993.62823

12105.37536

10158.04234

12144.28731

12091.40697

12119.34376

12059.47922

12088.41374

14044.72645

12211.13605

12710.94383

10478.11878

12666.04543

10467.14362

Residuals

-4.628226414

-46.37536372

-20.04233824

-142.2873133

-103.4069716

2.65624412

44.52078196

83.58625534

69.27354918

-14.13604724

21.05616962

84.88121543

62.954573

39.8563807

Standard

Residuals

-0.07484438

-0.749949337

-0.324110412

-2.300969042

-1.67222386

0.042954887

0.719958362

1.351697361

1.120242475

-0.228598083

0.340505371

1.372638533

1.018056495

0.644528988
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-27.6759503

-7.586788813

-41.5755003

60.39855389

-8.210875975

-43.3185966

-0.447555747

-0.122688143

-0.672329366

0.976722376

-0.132780435

-0.700517477

Polish Time Residual Plot
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Site 3 Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Squa

Standard Error

Observations

0.995533174

0.9910863

ire 0.935035539

104.5969009

20

ANOVA

df SS MS F Significance F

Regression 2 21895940.57 10947970.29 1000.682 2.32445E-18
Residual 18 196929.2103 10940.51168

Total 20 22092869.78

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Polish Time -1291.28877 31.56630634 -40.90718616 3.26E-19 -1357.60717 -1224.97037

Site 3 Init 1.005343662 0.005366948 187.3212944 4.54E-31 0.994068114 1.01661921

RESIDUAL OUTPUT

Observation Predicted Site 3 Residuals Standard Residuals

Final

12054.00708

12164.59488

10152.26095

12202.79794

12152.53076

12179.67504

12124.38113

12154.54144

14170.89675

12268.14528

12810.16471

10500.61192

12754.87081

10490.55848

11582.3617

-9.00707862

-42.59488142

-152.6609519

-112.7979406

17.46924252

75.32496365

79.61886505

-18.5414448

40.10325104

-99.14527859

-18.16471207

235.3880787

55.12918933

216.4415153

-126.3617015

-0.08611229

-0.407228905

-1.45951697

-1.078406144

0.167014915

0.720145272

0.761197171

-0.177265719

0.383407641

-0.947879695

-0.17366396

2.250430716

0.527063315

2.069291856

-1.208082652
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13850.6954

13858.73815

11612.52201

11346.24514

13079.45761

16.30459794

-4.738151354

1.477988679

-111.2451407

-25.45761368

0.155880316

-0.045299156

0.01413033

-1.063560581

-0.243387839

Polish Time Residual Plot
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Site 4 Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R SquE

Standard Error

Observations

0.990432031

0.980955607

ire 0.92434203

151.3107588

20

ANOVA

df SS MS F Significance F

Regression 2 21227279.93 10613639.96 463.58 1.48227E-15

Residual 18 412109.0234 22894.94574

Total 20 21639388.95

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Polish Time -1275.781622 45.66647481 -27.93694121 2.8E-16 -1371.7234 -1179.839844

Site 4 Init 0.994528727 0.007778372 127.8582077 4.4E-28 0.97818696 1.010870493

RESIDUAL OUTPUT

Observation Predicted Site 4

Final

11889.5905

12017.8847

10012.71563

12069.6002

11986.05978

12036.78075

11958.21298

12010.923

13971.33829

12120.32116

12630.20824

10351.36072

12582.47086

10335.44826

11450.31496

Residuals Standard Residuals

297.4095023

-52.88470339

195.2843727

-255.6001972

-74.05978414

-117.7807492

246.7870202

-41.92300231

46.66171432

11.67883776

-29.2082369

44.63928034

-44.47085803

-46.44826004

-76.31496258

1.965554232

-0.349510529

1.290617892

-1.689240072

-0.489454846

-0.778403004

1.630994531

-0.277065574

0.308383321

0.07718445

-0.193034766

0.295017226

-0.293904137

-0.30697262

-0.504359129
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13691.37039

13695.3485

11486.118

11186.45869

12929.86755

37.62961179

120.6514969

-168.1179967

159.5413121

-224.8675457

0.24869092

0.797375532

-1.111077613

1.05439503

-1.486130579

Polish Time Residual Plot
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Site 5 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squ

Standard Error

Observations

Regression Statistics

0.995941699

0.991899867

ire 0.935894304

98.32899457

20

ANOVA

df SS MS F Significance F

Regression 2 21311370.75 10655685.37 1102.0929 1.03002E-18

Residual 18 174034.6411 9668.591172

Total 20 21485405.39

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A
Polish Time -1265.093823 29.68055452 -42.6236586 1.568E-19 -1327.450402 -1202.737243
Site 5 Init 0.995729943 0.005078295 196.0756213 1.997E-31 0.985060832 1.006399055

RESIDUAL

OUTPUT

Observation Predicted Site 5

Final

11874.77905

11982.31788

10012.98459

12041.06595

11969.37339

12003.22821

11939.5015

11976.3435

13939.70241

12089.85672

12606.40349

10346.57065

12559.60419

10334.62189

Residuals

240.2209509

-74.31788301

-30.88459281

-141.0659497

-135.3733937

65.77178818

165.4985046

-3.343503348

70.29758612

-16.8567169

-0.403493834

-64.57064962

-35.60418649

80.3781097

Standard

Residuals

2.443032718

-0.75580843

-0.314094464

-1.43463228

-1.376739326

0.668895156

1.683109904

-0.034003229

0.714922251

-0.171431804

-0.004103508

-0.656679649

-0.362092449

0.817440573
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11426.93764

13653.91139

13652.91566

11468.7583

11170.79798

12899.38516

-76.93763828

-18.91139436

-60.91566442

93.24170409

14.20202092

-62.38516094

6000.0

-0.782451185

-0.192327751

-0.619508668

0.94826256

0.144433704

-0.63445336
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Site 6 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squa

Standard Error

Observations

Regression Statistics

0.995828282

0.991673968

re 0.931870905

95.77167584

20

ANOVA

df SS MS F Significance F

Regression 3 18571797.31 6190599.105 674.9296 4.74902E-17

Residual 17 155927.6362 9172.213894

Total 20 18727724.95

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Polish Time -1150.478482 28.86714544 -39.85425176 3.12E-18 -1211.38292 -1089.574044

Site 6 Init 0.99310661 0.005686977 174.6281986 4.18E-29 0.98110812 1.0051051

Back Pressure 110.2338499 28.87098883 3.818152905 0.001376 49.32130281 171.1463969

RESIDUAL

OUTPUT

Predicted Site 6

Final

12294.99545

12446.94076

10540.47764

12438.0028

12327.76797

12411.18892

12135.60332

12531.8499

14165.70674

12507.52026

12997.05456

10742.83708

12751.95762

10933.31316

12043.60635

Residuals Standard Residuals

48.00454965

107.0592383

-51.47763557

-102.0028022

-17.76796849

29.81107625

-136.6033152

-19.84990108

17.29326148

-88.52026494

67.94543849

137.1629192

24.04237893

134.6868423

-161.6063479

0.501239529

1.117859089

-0.537503757

-1.065062309

-0.185524252

0.311272367

-1.426343582

-0.207262752

0.180567598

-0.92428439

0.709452329

1.432186687

0.251038511

1.40633273

-1.687412761
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14064.64417

13893.03712

11881.93036

11582.93801

13293.06759

45.35583248

20.96288376

123.0696372

-53.93801081

-109.0675936

0.473582947

0.218883961

1.285031677

-0.563193766

-1.138829332
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Back Pressure Residual Plot
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Site 7 Regression

SUMMARY OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Squa

Standard Error

Observations

0.984838436

0.969906746

Lre 0.907542834

185.3756736

20

ANOVA

df SS MS F Significance F

Regression 3 18828478.81 6276159.605 182.6369 1.38445E-12

Residual 17 584190.386 34364.14035

Total 20 19412669.2

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Polish Time -1119.711645 55.86609285 -20.04277708 2.89E-13 -1237.578963 -1001.844327

Site 7 Init 0.978964751 0.011072793 88.41172324 4.37E-24 0.955603166 1.002326335

Back Pressure 121.8290454 55.92513516 2.178430953 0.043739 3.83715932 239.8209316

RESIDUAL OUTPUT

Observation Predicted Site 7

Final

12052.27228

12273.51831

10352.14655

12283.30796

12093.3888

12252.96005

11890.08697

12406.33468

13870.85274

12337.15102

12755.12831

10532.95965

12485.90882

10748.33607

11899.59862

13856.46365

Residuals

344.7277214

-70.51831226

99.85344862

-251.3079598

8.61120185

-29.9600525

-8.086970213

66.66532185

10.14725931

-64.15102105

-189.1283063

-172.9596489

110.0911778

-216.3360717

408.4013816

-48.46365074

Standard

Residuals

1.859616824

-0.380407585

0.538654542

-1.355668492

0.046452707

-0.161618037

-0.043624765

0.359622817

0.054738894

-0.346059544

-1.020243394

-0.933022363

0.593881471

-1.167014353

2.203101268

-0.261434792
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13681.22478
11729.25457

11355.24938

13121.30179

189.7752173

-70.25457416

65.7506238

-196.3017863

1.023733123

-0.378984862

0.354688523

-1.05894038
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Back Pressure Residual Plot
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Site 8 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squai

Standard Error

Observations

Regression Statistics

0.99041864

0.980929082

re 0.919861915

145.3615472

20

ANOVA

df SS MS F Significance F

Regression 3 18476257.3 6158752.433 291.46987 3.59991E-14
Residual 17 359209.6497 21129.9794

Total 20 18835466.95

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A
Polish Time -1144.93082 43.86581435 -26.10075379 3.714E-15 -1237.479728 -1052.38191

Site 8 Init 0.975915098 0.008729414 111.7961793 8.15E-26 0.95749762 0.994332577

Back Pressure 183.0842727 43.77154776 4.182723299 0.0006245 90.73425036 275.434295

RESIDUAL

OUTPUT

Observation Predicted Site 8

Final

12031.50753

12099.82159

10300.44849

12105.67708

12076.39963

12069.56822

11774.44759

12311.01352

13884.55596

12146.66551

12813.19479

10436.883

12437.77509

10759.60329

Residuals

233.4924679

53.17841104

-28.44849068

310.3229204

-245.3996266

70.43177909

-164.4475948

-182.0135166

136.4440392

-78.66551368

-23.19478678

-77.88300046

-77.77508635

33.39671442

Standard

Residuals

1.606287718

0.365835478

-0.195708502

2.134835013

-1.688201807

0.484528271

-1.131300526

-1.252143501

0.93865291

-0.541171412

-0.15956618

-0.535788191

-0.535045807

0.229749305
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11733.56655

13751.0492

13459.55819

11465.49751

11334.70415

12932.27717

-12.56655372

-73.04919629

-84.55819431

113.5024859

-34.70415186

118.7228322

-0.08645033

-0.502534527

-0.58170951

0.780828824

-0.238743688

0.816741666

Polish Time Residual Plot
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Back Pressure Realdual Plot

Back Pressure
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Site 9 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squ"

Standard Error

Observations

Regression Statistics

0.987477638

0.975112085

are 0.918173867

154.5010787

20

ANOVA

df SS MS F Significance F

Regression 2 16834551.7 8417275.85 352.62129 1.44547E-14

Residual 18 429670.5 23870.58333

Total 20 17264222.2

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A
Polish Time -1094.208051 46.60411267 -23.47878735 5.946E-15 -1192.119734 -996.2963677

Site 9 Init 0.999535776 0.008091331 123.5316926 8.116E-28 0.982536508 1.016535044

RESIDUAL

OUTPUT

Observation Predicted Site 9

Final

12186.54947

12261.51466

10536.24157

12270.51048

12239.52487

12235.52673

12216.53555

12190.54762

13982.78959

12325.48495

12754.58311

10797.89696

Residuals

137.4505271

-197.5146561

-313.2415744

-156.510478

199.475131

15.47327412

-174.5355461

207.452384

48.21040544

-106.4849457

-35.58311314

118.1030395

Standard

Residuals

0.889641213

-1.278403087

-2.0274394

-1.01300573

1.291092157

0.100149942

-1.129672023

1.342724502

0.31203928

-0.689218137

-0.230309804

0.764415631

170



13 12712.60261 -84.60261054 -0.547585889

14 10792.89928 256.1007184 1.657598254

15 11799.43181 164.568192 1.065158854

16 13730.13003 7.869969466 0.050937958

17 13757.1175 13.88250351 0.089853764

18 11854.40628 -24.40627572 -0.157968319

19 11487.87397 -77.87396542 -0.504035092

20 13115.11821 0.88179122 0.005707347

Polish Time

Site 9 Init Residual Plot

Site 9 Init
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Data and Regression Results of Back End Experiment #2

Polish Back Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9

Time 'Pressure Init Init Init Init Init Init Init Init Init
1.0 1.5 15305.0 15169.0 15276.0 15316.0 15206.0 15148.0 15215.0 15234.0 15086.0

2.5 1.5 15448.0 15363.0 15414.0 15342.0 15237.0 15387.0 15293.0 15158.0 15177.0

2.5 1.5 15307.0 15162.0 15270.0 15311.0 15205.0 15124.0 15199.0 15223.0 15080.0

3.4 0.6 15457.0 15389.0 15445.0 15364.0 15264.0 15412.0 15335.0 15197.0 15212.0

4.0 1.5 15340.0 15192.0 15289.0 15344.0 15244.0 15168.0 15238.0 15258.0 15104.0

2.5 0.0 15437.0 15366.0 15417.0 15335.0 15241.0 15386.0 15299.0 15169.0 15188.0

2.5 1.5 15367.0 15233.0 15338.0 15373.0 15271.0 15205.0 15276.0 15297.0 15150.0

1.6 2.4 15423.0 15355.0 15417.0 15320.0 15228.0 15410.0 15293.0 15157.0 15175.0

2.5 1.5 15346.0 15206.0 15318.0 15355.0 15245.0 15188.0 15254.0 15271.0 15131.0

3.4 2.4 15453.0 15383.0 15447.0 15352.0 15259.0 15431.0 15334.0 15184.0 15228.0

2.5 1.5 15559.0 15509.0 15561.0 15480.0 15381.0 15566.0 15469.0 15343.0 15363.0

2.5 3.0 15501.0 15422.0 15475.0 15391.0 15295.0 15448.0 15354.0 15216.0 15239.0

1.6 0.6 15436.0 15310.0 15405.0 15455.0 15361.0 15330.0 15395.0 15405.0 15256.0

2.5 1.5 15428.0 15299.0 15410.0 15444.0 15336.0 15300.0 15365.0 15376.0 15238.0

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9

Final Final Final Final Final Final Final Final Final

14175.0 13979.0 14102.0 13984.0 13903.0 14034.0 14022.0 14053.0 13887.0

12516.0 12231.0 12214.0 12071.0 12026.0 12574.0 12333.0 11995.0 12029.0

12363.0 12115.0 12193.0 12001.0 11939.0 12348.0 12081.0 12166.0 12169.0

11529.0 11074.0 11101.0 10877.0 10929.0 11179.0 10972.0 10800.0 11084.0

10757.0 10284.0 10255.0 10177.0 10384.0 10640.0 10428.0 10386.0 10573.0

12683.0 12502.0 12552.0 12331.0 12117.0 12069.0 11869.0 11848.0 11930.0

12517.0 12280.0 12373.0 12286.0 12204.0 12556.0 12423.0 12361.0 12610.0

13457.0 13284.0 13206.0 13197.0 13081.0 13666.0 13237.0 13183.0 13279.0

12396.0 12107.0 12076.0 12028.0 11992.0 12410.0 12046.0 12240.0 12054.0

11371.0 11250.0 11014.0 10898.0 10894.0 11743.0 11240.0 11333.0 11257.0

12499.0 12464.0 12424.0 12286.0 12127.0 12569.0 12406.0 12270.0 12416.0

12391.0 12263.0 12201.0 12309.0 12130.0 12811.0 12432.0 12585.0 12542.0

13508.0 13297.0 13372.0 13443.0 13392.0 13522.0 13332.0 13423.0 13457.0

12425.0 12154.0 12319.0 12168.0 12178.0 12525.0 12399.0 12235.0 12645.0
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Site 1 Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Square

Standard Error

Observations

0.997137714

0.99428362

0.902335188

72.31137044

14

ANOVA

df SS MS F Significance F

Regression 3 10004493.22 3334831.074 637.764961 1.02641E-11

Residual 11 57518.27724 5228.934295

Total 14 10062011.5

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A
Time -1152.28015 26.1640273 -44.04062635 1.0097E-13 -1209.866815 -1094.693485

Site 1 Init 1.004699578 0.005104521 196.8254271 7.3034E-21 0.993464597 1.01593456

Pressure -90.8199345 26.01718417 -3.490767252 0.00505173 -148.0833997 -33.55646926

RESIDUAL

OUTPUT

Observation Predicted Site 1 Residuals Standard

Final Residuals

1 14088.41699 86.58300528 1.197363634

2 12503.66881 12.33119081 0.170529071

3 12362.00617 0.99383136 0.013743777

4 11568.91971 -39.9197128 -0.552053053

5 10666.74103 90.25897051 1.248198865

6 12628.84702 54.15298443 0.748886159

7 12422.28814 94.71185666 1.309778201

8 13422.34271 34.65728768 0.479278535

9 12401.18945 -5.189452196 -0.071765369

10 11401.42503 -30.42503239 -0.420750322

11 12615.19046 -116.1904624 -1.606807639

12 12420.68799 -29.68798509 -0.410557633

13 13598.87969 -90.87968893 -1.256782832

14 12483.57482 -58.57481762 -0.81003606
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Site 2 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Square

Standard Error

Observations

Regression Statistics

0.995219611

0.990462073

0.906333913

95.84775572

14

ANOVA

df SS MS F Significance F

Regression 2 11447983.92 5723991.961 623.06753 4.79799E-12

Residual 12 110241.5073 9186.792277

Total 14 11558225.43

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Time -1233.24547 34.69949542 -35.54073208 1.573E-13 -1308.849175 -1157.64177

Site 2 Init 1.0004105 0.005908596 169.314409 1.211E-21 0.987536775 1.013284225

RESIDUAL

OUTPUT

Observation Predicted Site 2

Final

13941.98141

12286.19284

12085.11033

11214.61504

10265.25444

12289.19407

12156.13947

13375.77802

12129.12839

11208.61258

12432.25277

12345.21706

13330.75955

12222.16657

Residuals

37.01859426

-55.19283755

29.88967297

-140.6150421

18.74556318

212.805931

123.8605275

-91.77802197

-22.12838903

41.38742087

31.74722944

-82.21705705

-33.75954947

-68.16656554

Standard

Residuals

0.386222859

-0.575838601

0.311845309

-1.467066611

0.195576443

2.220249492

1.292263199

-0.957539603

-0.230870184

0.431803755

0.33122559

-0.857788025

-0.352220552

-0.711196262
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Site 3 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squar

Standard Error

Observations

Regression Statistics

0.994988502

0.990002119

re 0.897275231

107.0508826

14

ANOVA

df SS MS F Significance F

Regression 3 12482493 4160831.065 363.0777 1.6803E-10
Residual 11 126058.81 11459.89146

Total 14 12608552

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A
Time -1280.6728 38.719121 -33.07597803 2.3E-12 -1365.89305 -1195.452545

Site 3 Init 1.01417343 0.0075671 134.0245965 5E-19 0.99751841 1.030828446

Pressure -110.1189689 38.525013 -2.858375876 0.015562 -194.911995 -25.32594326

RESIDUAL OUTPUT

Observation Pred. Site 3 Final Residuals Standard Residuals

1 14046.66207 55.337933 0.516931119

2 12265.6088 -51.608801 -0.482095993

3 12119.56783 73.432172 0.685955788

4 11256.35646 -155.35646 -1.451239397

5 10217.82792 37.172077 0.347237461

6 12433.82978 118.17022 1.103869693

7 12188.53162 184.46838 1.723184104

8 13309.34304 -103.34304 -0.96536375

9 12168.24815 -92.248152 -0.861722482

10 11060.17066 -46.170661 -0.431296407

11 12414.6923 9.3077043 0.086946544

12 12162.29493 38.705073 0.361557716

13 13495.3871 -123.3871 -1.152602401

14 12261.55211 57.447892 0.536640996
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Site 4 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squat

Standard Error

Observations

Regression Statistics

0.994867134

0.989760615

re 0.905573999

106.7337936

14

ANOVA

df SS MS F Significance F

Regression 2 13214216 6607108.241 579.9727 7.091E-12

Residual 12 136705.23 11392.1027

Total 14 13350922

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Time -1308.263551 38.532284 -33.95240043 2.71E-13 -1392.21819 -1224.308917

Site 4 Init 1.003086766 0.0065362 153.465846 3.94E-21 0.98884556 1.017327969

RESIDUAL

OUTPUT

Observation Predicted Site 4 Residuals Standard Residuals

Final

1 14055.01336 -71.013362 -0.665331565

2 12118.69829 -47.698291 -0.446890245

3 12087.6026 -86.602601 -0.811388769

4 10976.41164 -99.41164 -0.931397978

5 10158.30914 18.690862 0.175116627

6 12111.67668 219.32332 2.054862932

7 12149.79398 136.20602 1.276128341

8 13260.98494 -63.984943 -0.599481576

9 12131.73842 -103.73842 -0.971936025

10 10964.3746 -66.374598 -0.621870507

11 12257.12426 28.875735 0.270539761

12 12167.84954 141.15046 1.322453296

13 13396.40166 46.598344 0.436584723

14 12221.01314 -53.013141 -0.496685628
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Site 5 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squar

Standard Error

Observations

Regression Statistics

0.996018006

0.992051868

re 0.908056191

88.08301351

14

ANOVA

df SS MS F Significance F

Regression 2 11620770 5810385.011 748.8944 1.7587E-12

Residual 12 93103.407 7758.617269

Total 14 11713873

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Time -1227.994191 31.804898 -38.61022212 5.87E-14 -1297.29111 -1158.697271

Site 5 Init 0.99299906 0.0054306 182.8520667 4.81E-22 0.98116677 1.004831352

RESIDUAL

OUTPUT

Observation Predicted Site 5 Residuals Standard Residuals

Final

1 13871.54952 31.450484 0.357055037

2 12060.3412 -34.341201 -0.389873141

3 12028.56523 -89.565231 -1.016827509

4 10994.23735 -65.237346 -0.740634811

5 10225.30091 158.69909 1.801699161

6 12064.3132 52.686803 0.598149411

7 12094.10317 109.89683 1.24765067

8 13144.31904 -63.319039 -0.718856415

9 12068.28519 -76.285194 -0.866060215

10 10989.27235 -95.272351 -1.081620019

11 12203.33307 -76.333066 -0.866603704

12 12117.93515 12.064853 0.136971397

13 13276.38791 115.61209 1.31253554

14 12158.64811 19.351892 0.219700611
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Site 6 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squa

Standard Error

Observations

Regression Statistics

0.991213444

0.982504092

re 0.888413926

131.3890551

14

ANOVA

df SS MS F Significance F

Regression 3 10663725 3554574.978 205.9061 2.7591E-09
Residual 11 189893.92 17263.08379

Total 14 10853619

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A
Time -1171.8553 47.551038 -24.64415814 5.63E-11 -1276.51448 -1067.196118
Site 6 Init 0.985328018 0.0093443 105.446684 6.97E-18 0.96476129 1.005894748
Pressure 204.5986531 47.329604 4.322847348 0.001209 100.426844 308.7704618

RESIDUAL OUTPUT

Observation Pred. Site 6 Final Residuals Standard Residuals

1 14060.7915 -26.791501 -0.203909685

2 12538.50195 35.498052 0.270175111

3 12279.36068 68.639321 0.522412778

4 11336.04514 -157.04514 -1.195268078

5 10564.93216 75.067838 0.571340118

6 12230.61864 -161.61864 -1.230076887

7 12359.17225 196.82775 1.498052876

8 13788.2545 -122.2545 -0.930477021

9 12342.42167 67.578328 0.514337576
10 11723.04395 19.956049 0.151885168

11 12714.87566 -145.87566 -1.11025734

12 12905.50494 -94.504936 -0.719275561

13 13341.15068 180.84932 1.37644129

14 12452.77841 72.22159 0.549677369
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Site 7 Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Square

Standard Error

Observations

0.992292655

0.984644712

0.890943751

127.1642251

14

ANOVA

df SS MS F Significance F

Regression 3 11406284 3802094.619 235.1219 1.4365E-09
Residual 11 177878.14 16170.74015

Total 14 11584162

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Time -1211.014796 45.932735 -26.36496163 2.71E-11 -1312.11212 -1109.917477

Site 7 Init 0.983886642 0.0090132 109.1603679 4.77E-18 0.96404866 1.00372462

Pressure 130.4819205 45.700348 2.855162485 0.015652 29.8960808 231.0677602

RESIDUAL OUTPUT

Observation Pred. Site 7 Final

1 13954.54334

2 12214.76431

3 12122.27896

4 11060.85065

5 10344.12835

6 12024.94475

7 12198.03824

8 13410.00121

9 12176.39273

10 11294.73422

11 12387.92836

12 12470.50427

13 13275.49019

14 12285.60415

Residuals

67.456655

118.23569

-41.278964

-88.85065

83.871651

-155.94475

224.96176

-173.00121

-130.39273

-54.73422

18.071643

-38.504274

56.509814

113.39585

Standard Residuals

0.530468809

0.929787379

-0.324611454

-0.698707912

0.659553828

-1.226325623

1.769064879

-1.360454998

-1.025388464

-0.430421531

0.142112631

-0.302791719

0.444384525

0.891727632
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Site 8 Regression

SUMMARY

OUTPUT

Regression Statistics

Multiple R

R Square

Adjusted R Squat

Standard Error

Observations

0.99458575

0.989200814

re 0.896328234

109.6488272

14

ANOVA

df SS MS F Significance F

Regression 3 12114182 4038060.637 335.8651 2.4708E-10
Residual 11 132251.52 12022.86531

Total 14 12246433

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Time -1221.219172 39.485319 -30.92843648 4.79E-12 -1308.12582 -1134.312527

Site 8 Init 0.981228084 0.0077629 126.3989217 9.51E-19 0.96414194 0.998314223

Pressure 197.2703549 39.328871 5.015917084 0.000393 110.70805 283.8326597

RESIDUAL OUTPUT

Observation Pred. Site 8 Final Residuals Standard Residuals

1 14022.71499 30.285013 0.276200064

2 12116.3129 -121.3129 -1.106376586

3 12180.09272 -14.092721 -0.128525958

4 10890.15241 -90.152408 -0.82219218

5 10382.60695 3.3930539 0.030944735

6 11831.20087 16.799128 0.153208463

7 12252.7036 108.2964 0.987665842

8 13379.76005 -196.76005 -1.794456486

9 12227.19167 12.808331 0.116812297

10 11232.48308 100.51692 0.916716764

11 12297.84009 -27.840091 -0.253902311

12 12469.12966 115.87034 1.056740383

13 13268.01798 154.98202 1.413439877

14 12330.22062 -95.220617 -0.868414372
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Site 9 Regression

SUMMARY

OUTPUT

Multiple R

R Square

Adjusted R Squar

Standard Error

Observations

Regression Statistics

0.97469809

0.950036366

re 0.862539396

213.3734278

14

ANOVA

df SS MS F Significance F

Regression 2 10388387 5194193.539 114.0873 4.4129E-08

Residual 12 546338.64 45528.21968

Total 14 10934726

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

Time -1163.144087 77.100236 -15.08612881 3.64E-09 -1331.13107 -995.157107

Site 9 Init 1.000074307 0.0132356 75.55961336 1.92E-17 0.97123648 1.028912129

RESIDUAL OUTPUT

Observation Predicted Site 9 Residuals Standard Residuals

Final

1 13923.97691 -36.976906 -0.173296679

2 12270.26754 -241.26754 -1.130729073

3 12173.26033 -4.2603304 -0.019966546

4 11270.0719 -186.0719 -0.872048144

5 10452.54598 120.45402 0.564522104

6 12281.26836 -351.26836 -1.646261014

7 12243.26553 366.73447 1.718744794

8 13303.46563 -24.465627 -0.114661075

9 12224.26412 -170.26412 -0.797963091

10 11286.07309 -29.073091 -0.136254504

11 12456.28136 -40.281359 -0.188783391

12 12332.27215 209.72785 0.982914588

13 13384.47165 72.528354 0.339912777

14 12331.27207 313.72793 1.470323332
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