Message Passing Tools for Software Integration

by
John C. Carney

B.S. in Electrical Engineering, Tufts University (1993)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1995
© John C. Carney, 1995. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

AULNOL .ot e
Department of Electrical Engiééering and Computer Science
April 26, 1995
N\

Certified DY ...coovveeiereiirieireesrest e s sresseesnes B T AN oo lfn s T e
Donald E. Troxel
Professor of Electrical Engineering
Thesis Supervisor

N

Accepted By .....coeerineeineiiineee

................. Y-vvw‘ "',“VV’ [ Tt s UZEERIIY O S
Chairman, Department Cgmmittee on @uate Students
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 171995

LIBRARIES

tiarker Eng

FrederiqR Morgen&aler






Message Passing Tools for Software Integration

by
John C. Carney

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

As the base of developed software grows, software integration is becoming increasingly important. Many
software systems are large and complex. Since re-writing the entire system is not generally possible, newly
developed programs must be integrated into the existing system. It is the responsibility of the developer to
not only write a new program or tool, but to make it work within the existing environment.

There are several approaches to software integration. Programs within the Unix environment typi-
cally are integrated by operating on a common set of files. One program is used to create a file, another to
process it, and perhaps yet another to analyze the results. Other approaches include program databases and
remote procedure calls (RPCs). An alternative approach for software integration is through the use of a mes-
sage passing system. The goal of the message passing system is to provide a method by which structured
information may be exchanged between two or more running processes. These processes may possibly be
running on a single workstation or on multiple workstations connected by a network.

While there are not many message passing systems in existence, the majority which do exist have
been designed to be used for a special purpose or in a particular context. There are some general purpose
message passing systems, however, these systems impose a fixed integration architecture and message for-
mat. A more flexible peer-to-peer approach to message passing has been developed. The peer-to-peer mes-
saging system allows the software developer and integrator to completely design and choose the desired
integration architectures and message formats.

The Communications Handling Application Tool Suite (CHAT) has been developed and provides
the programmer with a suite of libraries which can be used to integrate software programs using the peer-to-
peer message passing approach. There are three libraries of routines, providing support for packaging data
into messages, handling incoming messages, and application connection. All three libraries are implemented
both in C and Tcl/Tk, a scripting language and toolkit for creating graphical user interfaces under X-Win-
dows. The CHAT suite will allow arbitrary combinations and architectures of C programs and Tcl/Tk pro-
grams to exchange messages.

Libraries within the CHAT suite have been used to integrate a new factory display program into
CAFE, MIT’s Computer Aided Fabrication Environment. CAFE is a software system for the use in the man-
ufacture of integrated circuits, and provides day-to-day support for both research and production facilities at
MIT. The factory display program is a graphical program which displays a map of a semiconductor manu-
facturing facility, including the machines and lots within the facility. The CHAT suite has also been used
within other software integration efforts and plans have been made to use the libraries in future integration
projects within MIT’s Computer Integrated Design and Manufacturing (CIDM) project.

Thesis Supervisor: Donald E. Troxel
Title: Professor of Electrical Engineering






Acknowledgments

I arrived at MIT in the fall of 1993 and was appointed to be a teaching assistant in Profes-
sor Troxel’s digital design laboratory (MIT’s famous course 6.111). Professor Troxel’s
leadership and expertise helped to turn my year as a teaching assistant into one of my
greatest learning experiences. When an opportunity to be a part of Professor Troxel’s
research group became available to me; my decision to join the group was a very easy one
to make. There are many people who have helped with my research work over this past
year, but without Professor Troxel’s support and advice it would not have been possible.

I would like to thank those who have helped me over this past year. Professor
Duane Boning has provided excellent advice and support throughout my research work.
When my software was under development and documentation was nonexistent, William
Moyne served patiently as my first user. He helped me to work out many bugs and I con-
tinually bounced ideas off of him. William also sacrificed a night of sleep to help me port
my software to OS/2. Asbjoern Bonvik made excellent suggestions which helped me
when I was defining the factory display command language. He has also successfully
demonstrated an integration of the factory display program with his own facility schedul-
ing software. Greg Fischer was instrumental in the factory display / CAFE integration. His
efforts helped to make this integration project run smoothly. Thomas Lohman has helped
me with his knowledge of Unix and has helped to isolate and debug a tricky problem
within my code.

I would like to thank my officemates James Kao, Jimmy Kwon, Myron Freeman,
Michael Mcllrath, and Francis Doughty for providing a pleasant and (sometimes too)
friendly environment in which to work. It really was pleasure to work among such a great
group of people.

I have been incredibly fortunate to have had so much emotional support from my
mother, my father, Lea and Julie. They deserve a tremendous amount of credit.

This work has been made possible by support from the Advanced Research
Projects Agency (ARPA) contract #N00174-93-C-0035.






Table of Contents

List Of FIZUIES ....ovviiiiiiiiiiiciiitetereccst ittt ettt 11
LiSt Of TaADIES ....coeiuiriiiiiteerenietrrnr ettt 13
1 INrOUCHON. .....cocuiiiiiecetniecee sttt ettt sb e sae s nennen 15
1.1 Software Integration..........ccccvererreriereeietirerenentees et seeas 16

1.2 Message Passing SYSIEMS .....cc.coueeurerereiereriencereenineneeseeneenteesseesresssesseneessenes 17

1.3 A Peer-to-peer Approach ...........ocomviniciiiiininnincnieiencnineneecenese e 19

14  The Communications Handling Application Tools Suite (CHAT) ................. 19

1.5  Exercising the CHAT SUIte ........ccecvricirminiiinriciicnrncreccteeeee e 23

1.6 Organization of ThesiS........cccoevinriiniecirniciieiieiecsecte ettt 23

2 A Message Passing Example ...........cccocevveiiieinienniienninnieeesessreeeseeenenes 25
2.1  The Electronic VIEWEIaph ........ccccceveeureuiririieereieietreeesteeeee e e se e saeseas 25
2.2 Electronic Viewgraph Interface..........cccccoveiniinnnnneninneeeteeneeee, 26
2.3 VIeWEIaph SEIVET ..ottt sae e 28
2.4 Defining the MeSSages.......ccovvrnireruinieriicienieseeeesesesie et sieeteseeseess e saesesens 28
2.5  Defining the ProtoColS .......c..cccceveviriiriiienentiiiesecteieteceee et essesne e 30
2.6 SUIIMNATY ....oiiiiiriiiiiiteieeeet ettt eses e st e b ess e s s et et essesaessassaessasstesnsnsensassassnsnns 34

3 The Connection Support Library ...........cccceeeveeevieniiercesieeneesieeceecreesenenn, 37
3.1 CONNECtiON SUPPOTL ....ceermierrreeeeerereenteeesitestessessesssessessesssessansassesssasassssssenne 37
3.2 SOCKELS ..ttt ettt ettt ettt ettt ns s rees 38
3.3  Establishing @ CONNECHION. ........cccceeirrirntineineninntinreseneennessessessessesasssesasssnenes 38
34  CConnection Library ROULINES .........ccceeeerrerriinreirinecreesrceeere e 40
3.5  Tcl Connection Library ROUHINES.......cc.cocvreieerriiereneinecnriee e 43
3.6 Other SOCKEt TYPES....c.ccurririrreiriiinireireintereesee e e ese e be s s s eseseseenes 45
3.7  Connection Library Example: The Echo Server and Clients........................... 45
3.8 SUMMMALY ....ootiiiiciiiitctteeteec ettt s e s bt st sae s 49

4 The Communications Handling Library ............cccccccevveuiveiveiirereeeeseennne. 51
4.1 Handling Newly Connected CHEntS............cccoeeeereveerieereeneeeeeeeeressesnee e 52
4.2  Definition of @ MESSAZE .......ccecceurierrinteintractnentenensensesesssssssesessesssessesssensensen 56
4.3  Standard Message Format and Parsers .............ccoeueveevereeeerereeieenceseeeeseee e 57
44  Handling of Incoming MeSSages ..........ccecvverrireriererreeereierireeeeseeesree s 60

Page 7



4.5  Event-Based Message Handling ...........cccccoovvvviivininininnennniciicciennn 61

4.5  Queue-Based Message Handling .........c.ccccoevininiiiniininiinnnnciinicniienennn 65
4.7  Combination Message Handling...........cccooeeremerciermeeseeneeicrierereeseeeneine 68

TR N1 1010 1 O 70

5 The Message Packaging Library.........cccccovvvinviinininicninnicninncinecnnennn, 71
5.1  The World of Message Data ObJects.........ccccovvueeincriicciiviiiniiniiciceeiens 72

5.2  CLibrary Routines for Message Packaging .........c..ccceverceiveeniinieneennnieceecennnens 73

5.3  Tcl Library Routines for Message Packaging..........c.ccccoeevvivinnccnicnnencnnenn. 78

ST I 4140 1 o P 80

6 Exercising the TOOIS.......cccvvviriereriiireireniesee e et s sne e 81
6.1  CAFE OVEIVIEW....cootiiriiriiiieiiiintsintenis et ss st sassassses s snessesan s 81

6.2  Factory Display OVEIVIEW .......ccccveiiiiiiiiiinniinininncnsesnene e 81

6.3  Factory Display Integration with CAFE...........ccccoccoiiiininininciininencncnens 83

6.4  Sending Messages from CAFE...........c.cccociiniininninicniniieneneniceneenes 84

6.5 Communication between fdaemon and fdisplays ..........cccoeeirerrcrenicnrcnennne 84

6.6  Initial State of the DiSplay .........cccceeveriireciineiinnieeceeceeetece e 84

6.7  Integration ArCRItECTUIE .......coceerircrireriieiei ettt r b see e saees 85

6.8  Facility History and Facility Simulations ..........c..ccccevvverevninineninnnnncnnnnens 85

6.9  Run by Run Control Integration ..........c.cccceoervcreeniiicnninnninncnineiinciinienens 86
6.10 Other Integration Projects..........coccocireeiererereeiennieecncrtecnieeeeeesnesessnens 86
6.11  SUMMATY ...couoeeiiiiriiiceiiiieiriciccisinicreictctcrcsesbcs v ansses s esesssesserssasesnesnens 87

A O00) 11 L1 T 10§ TSSOSO 89
7.1 A Graphical Tool for Software Integration...........cceeceverevrivcenivucsencnnencnnens 89

7.2  Message VerifiCation .........cccccveviiciinininininincnicenee e 90

7.3  Time-out MechaniSm........cccoeviiiieriiiiiniiciniiniincenie e 90

7.4  Efficient Message FOrmats .........cc.cvcerirvininiiniinncnniininncnneseseesnssne s 91

7.5  Lightweight Version of the Libraries........c..ccccocnininininininiiininicinicninens 91

7.6  Porting Libraries to Other Platforms............cccoceniivinnnininininiicinenn 91

N V11111 OSSO URPOP 92
RefEIeNCES ....cooeeeieierere ettt e 95
Appendix A - Using the Library Source Code...........cccoviiiniiinininninninnnnene. 97
The C Source FIles........coiiiiiriiininieereee sttt 97

The Tcl Source Files ......cocoevrieienieiciiciitniiiccs e 97
Appendix B - Viewgraph Source Code..........cccooriiinineniinnininnseniniaeanne 99
Appendix C - Message FOormats ..o, 107
The Binary Message FOrmat...........c.cccooiviiviiiiniininiiinnnineenesese e 107

Object File HEader ..........ccocviriniiiiiinnriiiriiicieresinseieee st 108

Object File DITECLOIY .....coceeuiiiiuiiiniiiiictiictet et 108

The ASCII Message FOrmat ...........cccooevieiiiiiniiiiiicnciene et 110
Appendix D - Factory Display Details..........ccccooeiiininiininniniiiiinien 113
USEr’s ManUAl.........cocoivieiiienincenieiencecene ettt s s st et 113

Obtaining Information From the Display ..........cceceieioinininniniinnicnens 115
CUSEOMUZALIONS.......cevveerereerereeenirteetesteetessesteesesassssessesssssnessssssssssessasssassas 117

The fdisplay Command Language...........cccocevvruevuinirninnieneieinineniseiesiennans 118

Page 8



Socket COMMUNICATION ......cceeiiriiiiieriieereeerereeessesiessiesaetreesesesseeesessssamseestessess 123

Outgoing Commands .........ccceeveeeuiererrieriesieeteerreeteeeeeessee e eeseessaesreeseenseans 123
The fdriver Program........c..cccccocvinenninininnnenieecncennee et 125
Input File FOrmat .......ccccooviiiiiiiiinecccceeeeeteeseet ettt 125
Other Commands ..........cocuveeiiiriniiiiiinee et nas 129
The fdaemon Program.............coecovvvenininiicnininninniinicnenecenesteee e 130

Page 9



Page 10



List of Figures

O 00O\ H WK

[ N I N N e e N e N e N S
OO0 ~IONWN P W —-=O

Message Passing via Central Message Server........coveveevevceeevercinseesieeseenseeeenns 18
Example of Peer-to-peer Message Passing........ccccceeveervcniencneninenenecnecceeeeen, 20
Layers of the CHAT SUItE ......ccceeivieeirieieereeeeie et 21
Viewgraph WIndOWS ......c.cccvciiiiiieriinieiniienrccertr ettt sae s 27
Viewgraph Server Dynamic Model ...........cccoovirireninnnninieneneenescseeieseeeeaeens 31
Viewgraph Server SUDSLALEs .........coccivieiicirieiirueieinieee et 32
Viewgraph Client Dynamic Model...........c.ccccovrvirininnniecinniececeeeeenee e 34
Viewgraph Client SUDSEALEs..........cceeeeievirriineneeietesesere et st sae s 35
Viewgraph Client SuDSLates............ccovviviiviiiiiieiincnieiicnecee et 36
Connection FIOW of EVENLS..........ccccoiviniinininiinecencneesaenseessensessesaeessassessssassas 39
Communications Handling Library ...........ccceeccvveivinveninnvnneicenecscsveesceeereennnns 52
Example fdisplay Main Window .........cccoccveeneniienicirereeretee et 82
CAFE / Factory Display Integration Architecture.........c..ccceveeevcenvinvieneneecnennne. 85
Facility History / Factory Display Integration Architecture............c.ccccevrueenene.e. 87
Binary Message FOrmat ..........c.coccviviierinineiinencnesteceeresrees st sve s ne e 109
Populated Main WIndOW ..........cccocevieiniirinteienerenesteeeressssesaeseeeessaes e sas e seaas 114
Hypertext Information Window............ccecevveciiveeenecineeninienienesnenresesnesessnessnenns 116
Customize WINdOW........c.cceieuieirueninininistetesesesteetectereesessessesaesesessssessenessesens 118
fdriver Input File FOrmat ...........ccccovereriniinininertncnereceie e 126
Sample INPut File........ccoeeiriinieiceeet sttt ae e s et eessesensens 129

Page 11



Page 12



List of Tables

OO\ B WN—

Messages Used by the Viewgraph Application ...........ccocveeverervererienerencsssesenaenn 29
C Connection Library ROULINES .........cccoueuieiieiiiiennccresinctrrsneenese e 41
Connection Error Codes...........cooieriniiniininenininiiercsesteeeceieerecae st 43
Tcl Connection Library ROULINES.........ccccocvevvrerieieciinereeierecereeseesresee e 43
ECho Server C Code..........couiiiiienricininiesienentete ettt sae e st eaa s 45
Echo CLent C Code .......c.oouccviiiininiiieinceieincseieste ettt 47
Echo Client TCl COde.....c.coueiriiiniricniciiciniitectneniesceeeete ettt se e sae s 48
C Library Routines for Handling Newly Connected Clients..............cc.cocerueneenenee. 54
C Skeleton Printer Server Program...........cocoeecveverenierieneenceenenenesesesesissesseennnas 55
Tcl Library Routines for Handling Newly Connected Clients ............cccceceeuevnanen. 55
Tcl Skeleton Printer Server Program........cocceceeviecienencninniesincrceiesieceeesne e 56
Standard Message FOIMALS ........ccecvveeriiierieeneneeienteneneseeeeseese e sressee e seesees 57
Example Parser SCenarios..........c.ceevuierirreentinicncncsenteee et 59
Example Parser Implementation in C ..........cccoevevuieenencneninenineneneeneceeeeenieee 60
Example Parser Implementation in Tcl...........ccoceeriirvieninnieniiiieniereeceece s 60
C Library Routines Event-Based Message Handling .............cccceceevrveireenenrnennnen. 63
C Library Routines for Event-Based Message Handling...........c.ccccoevueevecurennennen. 64
Example of Event-based Multiuser ECho Server..........ccccocovevevnnerenvenenenierennnne 65
C Library Routines for Queue-Based Message Handling..........c..ccoceceeueenuicnnncee. 66
Tcl Library Routines for Queue-Based Message Handling............ccccoceeceniecnnneannne 67
C Library Routines for Combination Message Handling ...........cccoceevverenennnnnee. 69
Tcl Library Routines for Combination Message Handling...........ccccceverecrerennnnnne. 69
Data TYPES ...oueiniieiictiictitc ettt st e et 72
C Library Routines for Message Packaging .........c.ccoceeeecireeerecinnecivnvenennecveeenne. 73
C Message Packaging Library Example..........cccccooevueviecireeeeeeeieiceeeeceeenne, 76
Tcl Library Routines for Message Packaging............ccocccvevverueenueenveeeeeeseerennen, 78
C Library Source and Header Files...........ccccooeeveiiinieinienrecieeeeeeeceeee e 97
Tcl Library Source FIIEs ..........ccceeuiveiriiiieinenrirrcneseeieteeee e see et saenenas 98
Viewgraph Server Source Code...........ocoiviruiniininnenieniieerieniecscsenteseee e 99
TIEE TYPES...couieuiruiieieiiirieinieereteisesestesteseeseesessassesaesaesassessesssssessessesesensensessnes 109
Configuration ProtOtyPes........ccccueuieiririentrierirnncestestesesesseseesessessessessessessessesenss 119

Page 13



32
33
34
35
36

Page 14

Object Placement and Removal Commands.........c..ccceceiinviinviiiiniininiinnnninns 120

Object Manipulation Commands .............cccovurvviviiniiniinninncnc s 122
Utility Commands..........ccccoiviniiiiiiiiiicic e 122
Outgoing Commands ..........cceevmiveiiniiinini s 124
Allowable Commands in Input File..........cococovnninininniiicnece 127



Chapter 1

Introduction

Unix-based environments typically provide a rich abundance of tools. Generally these
tools are integrated by operating on a common set of files. One tool is used to create a file,
another to process it, and perhaps yet another to analyze the results. There is no interaction
amongst tools and each provides its own interface.

A program database is one method used to integrate tools [Rei90]. In this method a
single database is used to store all the necessary information about a system. Tools are
integrated by having access to a common set of data structures. It can often be difficult to
integrate a tool into this type of system. Before a tool can be written, a programmer must
have full understanding of the program representation.

An alternative is through the use of remote procedure calls (RPCs). In this model
control is passed from a calling application to a procedure which runs within a remote
application. The procedure processes any arguments passed to it and returns results and
control back to the calling application. While other models may be built using RPCs, by
itself RPCs might not provide a rich enough set of features [Dic94].

Another approach for integrating tools is through the use of a message passing sys-
tem. The goal of a message passing system is to provide a method by which structured
information can be exchanged between two or more running processes. These processes

may be running on a single workstation or on separate workstations connected by a net-

Page 15



work. It is the intent that the message passing system will offer, in most cases, an easier

alternative for integrating both existing and new tools into a system.

1.1 Software Integration
Software integration can play a very large role in the software development process. There

are many instances where integration is both desirable and necessary.

When developing large software systems, development is usually done concur-
rently, with several programmers each working on their individual pieces of the project. It
often provides a good abstraction if many of these pieces are separately running execut-
able programs. For example, when developing a Computer Aided Software Engineering
(CASE) environment, the environment can be broken into an editor program, a compiler
program, a debugger program, and possibly several other programs [Rei90] [Chu94]. In a
highly integrated environment, these programs might interact with each other in some
other manner than simply operating on a common set of files. For example, a CASE user
might write a program using the editor, and then attempt to compile that program using the
compiler. The compiler program might find syntax errors on various lines of the program
and alert the user of these errors by directly highlighting these lines within the editor. Per-
haps the user could then query each of the highlighted lines to determine the cause of the
error. It is the integrated nature of the combined programs which provides a powerful
environment for the CASE user.

As systems are being used, users constantly desire new and better tools. Since re-
writing the entire system is generally not possible, these new tools must be integrated into
the existing system. It is the job of the programmer to not only write the new tool, but to
make it work in the existing environment. A particular example of this occurs in the aca-
demic world, through the use of research-based software systems. In this situation there is
a constant turnover of students, each adding his or her own programs to an existing sys-
tem. It is usually desirable for the student to spend more of the effort in developing the
new programs, and less of the effort in learning the internals of the existing system and
integrating the new programs to work within the system.

One potentially large area of software integration is in the use of graphical user

interfaces (GUISs). There are many non-graphic legacy systems which could benefit if they

Page 16



were converted to use GUIs [Lib94]. One approach would be to rewrite sections of the
original source code, creating a single executable with graphical capabilities. Another
approach is to write a totally separate and stand-alone GUI program. The non-graphic and
GUI programs could then be run in conjunction, exchanging the appropriate data and
information as to create a transparent system of programs. In fact, this powerful abstrac-
tion of separate integrated non-graphic and GUI programs can also be applied when creat-
ing new applications, and is not limited to integration with legacy systems. Often the task
of integration is forced upon programmers after-the-fact. When a system is designed with
modularity and integration in mind, as in the case of integrating a new non-graphic pro-
gram with a new GUI program, the level of abstraction can lend itself to quicker, easier,

and more flexible development.

1.2 Message Passing Systems
The basic idea behind message passing systems is that integrated programs establish con-

nections with each other in some manner. Connected programs can then pass messages
among themselves. These messages may contain information which is being made avail-
able to connected programs as well as any other kinds of requests or notifications. In gen-
eral, the message passing system will provide mechanisms for establishing connections,
handling of messages, and packaging of data into messages.

While there are not many message passing systems in existence, the majority that
do exist are not well known because they are often designed and tailored to be used for a
special purpose or in a particular context. There are, however, some general purpose mes-
sage passing systems which have been developed. Two of these are ToolTalk™, a com-
mercial product developed by SunSoft Inc. [Sun91], and Msg, developed at Brown
University as part of Field [Rei90], a highly integrated software development environ-
ment.

Both ToolTalk and Msg require tools to register their interest in particular mes-
sages with a central message server. This message server runs as a separate process, and
simultaneously handles many sessions of connected tools. All messages are routed
through the central message server and pattern matched against the registered interests of

connected tools. The messages are then selectively broadcast to those tools whose interest

Page 17



match. See figure 1 for an example of this type of system. Forcing the use of a central mes-
sage server places several constraints on users of such a system. All messages must be
transmitted in two passes, one to the central message server, and one to the connected
tools. The central message server must process all incoming messages; and, as a result,
message size and bandwidth may become quickly limited as the number of sessions, con-
nected tools and registered interests increase.

Stepl: Application A sends Lookup message
to the central message server.

Step 2: Server selectively broadcasts the mes-
sage to all applications which have reg-
istered interest in Lookup messages.

. Transpose -
© Cleulate -
Message:
Lookup E
“John Doe".

Message:
Lookup
"John Doe".

kS

Figure 1: Message Passing via Central Message Server

Page 18



1.3 A Peer-to-peer Approach
It is clear that as the base of developed software grows, software integration will become

increasingly important. Message passing tools can offer an easy solution for many soft-
ware integration tasks. The central message server based approaches provide a simple
architecture for message passing, but have some limitations. Beside the inherent ineffi-
ciency in sending messages in two passes, these approaches enforce a standard message
format for all connected applications. Programmers and software integrators are not free
to design or choose their own message formats. This may especially be a problem when it
is desired to integrate software into an existing framework. For example, the Unix finger
program [Zim91] consists of a daemon program which is always running and client pro-
grams. These client programs connect to the daemon, send a message querying for infor-
mation about the users of the particular machine, and then wait for a reply message from
the daemon. If it were desired to write a new finger client program, perhaps a graphical
one, then the new client would have to communicate using messages of the format which
is already being used by the widely installed base of finger daemon programs.

A more flexible peer-to-peer approach to message passing has been developed.
This approach allows individual programs to establish one or many connections with vari-
ous other programs. Programs may choose to handle messages differently on various con-
nections, and are not limited to a single message format. In fact, a program might receive
messages over a connection of one format, but send messages over that same connection
of a different format. The peer-to-peer messaging system allows the programmer and soft-
ware integrator to completely design and choose whatever connection architectures they
desire. If it is desired to use a central message server architecture, this can easily be built
using the peer-to-peer messaging system, as these architectures are a subset of those which

can be built. An example of peer-to-peer message passing is shown in figure 2.

1.4 The Communications Handling Application Tools Suite (CHAT)
The Communications Handling Application Tools Suite (CHAT) has been developed and

provides the programmer with a suite of libraries which can be used to integrate software
programs using the peer-to-peer message passing approach. There are three libraries of
routines, providing support for packaging data into messages, handling incoming mes-

sages and application connection. All three libraries are implemented both in C and in Tcl/

Page 19



Applications may send messages

of one format over the connection
but, receive messages of a differ-

© Mesgng |

ent format over the connection.

Library

AN

Message:
Join group
“CAD”

&

U itbrary.
Message:
Message: x [set result {1.21
<<ERROR: 2.42 3.10}}
2020>>.
 Mesaging
Ubeary.

T e

Figure 2: Example of Peer-to-peer Message Passing

Tk, a scripting language and toolkit for creating graphical interfaces under X-Windows

[Ous94]. The CHAT suite will allow arbitrary combinations and architectures of C pro-

grams and Tcl/Tk programs to exchange messages. The various layers of the CHAT suite

are shown in figure 3.

1.4.1 Message Packaging Library

Data may only be sent between connected programs as a contiguous series of bytes. As a

result all message formats must built around this constraint. For many integration tasks,

simply an ASCII string of text followed by a newline character might suffice as the mes-

sage format. A program wishing to package more complicated data of varying types and

lengths into a single message has a much more difficult job of serializing the data into a

standard message format. When the message is received by the connected program, the

Page 20



Meseegs Packagtng 'Message Packaging |

“Message Handling  Message Handling

Figure 3: Layers of the CHAT Suite

-

data must then be extracted into a usable representation. The message packaging library
allows a program to easily create a message data object. This object can then be filled with
an arbitrary number of slots, where each slot contains a single or a vector of primitive
types. The library provides an interface which allows slots to be easily set and queried.
When all of the appropriate data has been packaged into the message data object, a library
routine can then transform the internal object into a formatted serial buffer of bytes. This
buffer can then be transmitted (possibly over a network) to the connected program. Con-
versely, when the formatted serial buffer is received by the connected program, a library
routine can transform it back into an internal message data object whose data can then be

easily queried by the program.

1.4.2 Message Handling Library
When incoming messages are received by a connected program, there are many possible

ways to handle the newly arrived message. The message handling library provides a facil-
ity for event-based handling, whereby incoming messages on a connection can be bound
to an internal handler routine. Messages will then be transparently received by the pro-

gram. Whenever a complete message arrives, the program will be interrupted and the han-

Page 21



dler routine will be called on the newly arrived message. The message handling library
also provides a facility for queue-based handling. Again, messages will transparently be
received by the program. Whenever a complete message arrives, it will automatically be
placed in the message queue associated with the connection. At any time the program may
check the status of the message queue, and pop messages from the queue as desired. The
message handling library also provides a third method of message handling which is a
combination of event-based and queue-based handling. In this method, a program can tog-
gle message handling on a connection between event-based and queue-based whenever
desired.

The message handling library is at the core of the CHAT suite. It has been
designed with flexibility in mind and places very few constraints on the message formats
which may be handled. As a result, the formatted serial buffers generated by the message
packaging library can be handled by the message handling library. However, if the integra-
tion task is not compatible with that format, then practically any other message format can
be used. This may occur, for example, when a new program is to be integrated into an
existing framework or in the case when the integration task requires only a very simple

message format and not the complete capabilities of the message packaging library.

1.4.3 Connection Support Library
This library of routines provides a simple interface to Berkeley Sockets and the TCP/IP

protocols. The TCP/IP protocols are used by the Internet (and many other networks) for
network communication. The Unix operating system provides sockets as an interface to
the TCP/IP protocols as well as a number of other protocols. The connection support
library restricts use to two kinds of sockets. These are TCP sockets and Unix Domain
sockets. TCP sockets use the TCP/IP protocols to establish a communication stream
between any two programs which are running on the same system, or between any two
programs running on different machines and connected by the Internet. Unix Domain
sockets can only be used to establish a communication stream between any two programs
running on the same system. It is not necessary to provide support for Unix Domain sock-
ets, but when it is known that two programs will be running on the same system, Unix

Domain sockets will deliver more efficiency. By restricting use to TCP sockets and Unix

Page 22



Domain sockets, the connection support routines are much cleaner and easier to use than
the direct socket system calls provided by the Unix operating systems. Since these two
types of sockets represent the great majority of sockets currently in use, there is virtually

no loss of flexibility when integrating new programs into existing software systems.

1.5 Exercising the CHAT Suite
Libraries within the CHAT suite have been used to integrate a new factory display pro-

gram into CAFE, MIT’s Computer Aided Fabrication Environment. CAFE is a software
system for use in the manufacture of integrated circuits, and provides day-to-day support
for both research and production facilities at MIT [McI92]. The factory display program is
a graphical program which displays a map of the semiconductor manufacturing facility,
including the machines and lots within the facility. CAFE uses massage passing to com-
municate with a factory display daemon. Multiple factory display programs can simulta-
neously be connected to the factory display daemon and also communicate with it by
using message passing. As the status of machines and lots change within the CAFE sys-
tem, messages are sent to the various displays which are then be updated to reflect the new
status information.

Libraries within the CHAT suite have also been used to integrate a graphical user
interface and simulation environment with a run by run control server [Moy95]. Plans
have been made to use the CHAT suite in research work being done on the remote fabrica-
tion and remote inspection projects within MIT’s Computer Integrated Design and Manu-

facturing (CIDM) project.

1.6 Organization of Thesis
This chapter has served to present a background of software integration and message pass-

ing tools as well as an overview of new work which has been done in creating peer-to-peer
based message passing tools for software integration, including a description of the CHAT
suite. Finally, some examples of how these tools have been exercised were outlined.

In the following chapter a specific message passing application will be discussed
and analyzed. Then the libraries within the CHAT suite will be further presented and
described in detail. The factory display integration into CAFE, which was introduced ear-

lier in this chapter will be fully discussed. Finally, some limitations and ideas for future

Page 23



work will be presented. Wherever possible, detailed descriptions and code examples will
be preceded by sections of overview, so that readers may selectively skip the details as

desired and re-visit them as it is necessary.

Page 24



Chapter 2

A Message Passing Example

The message passing tools within the CHAT suite provide a great deal of functionality and
flexibility. Before presenting the libraries themselves, an example application which uses
message passing is discussed here. It is the intended that this example will provide a
higher level starting point for understanding message passing, without delving into the
code or routines which are used to implement such an application. The code is provided in
the appendix. The example presented here is specific, however, an understanding of the
message passing nature of the example will serve as a skeleton on which to build a much

broader range of applications.

2.1 The Electronic Viewgraph
When people, both in industry and in the academic world, schedule a meeting to present

new information they very often make use of a viewgraph projector. This allows the
speaker to project pictures onto a screen, which he or she can then control and point to
throughout the presentation. Communication among long-distance colleagues is often
done with a telephone conversation. These telephone conversations are either between two
individuals, or an entire group of participants by means of a conference call. The idea of
the electronic viewgraph, is to allow the speaker to project electronic images from his or
her computer onto the computer screens of the other participants, provided that the com-

puters of the participants are connected by a network. The speaker can then use a pointer

Page 25



to point on the local image, while the long-distance participants look at the same image
and pointer on their own computer screens. The speaker controls which pictures are dis-
played, when to display them, and where the pointer is pointing. The other participants in
the viewgraph session are locked-out from having any control of the viewgraph, however,
speakers may turn over their control as they desire. The electronic viewgraph provides a

nice interface and is as simple to use as its non-electronic counterpart.

2.2 Electronic Viewgraph Interface
It is easy to see that message passing might be useful as a communication mechanism

among electronic viewgraph programs. For example, when the speaker points to some-
thing on his or her local screen, messages might be sent to all other participants’ view-
graph programs, supplying them with information about the pointer’s state and location.
However, before diving straight into message passing details, it will be useful to take a

close look at the viewgraph interface and define the program from the user’s perspective.

2.2.1 Viewgraph Windows
When a participant of the viewgraph session starts-up the viewgraph program they will get

two windows on their screen. One window contains several control buttons, and the other
contains a blank canvas region. These are shown in figure 4. The window containing the
blank canvas region is the actual viewgraph screen where the pictures and pointer will be
displayed during a presentation. The controls window contains buttons which are used to
control the viewgraph display. This window also contains a few status labels, providing

information about the current state of the viewgraph session.

2.2.2 Program States
From the perspective of a single participant of the viewgraph session there are three states

which their viewgraph program may be. Regardless of the state of the program, any partic-
ipant has the ability to quit the program and exit from the session at any time by simply
clicking on the Quit button in the controls window. Also, any participant may at any time
submit electronic images to the pool of images available to the viewgraph controller. To
submit an image, the participant clicks on the Submit Image button and then is presented
with a window where they can browse their local directories and select a file containing an

image. For the sake of simplicity, only image files in the GIF file format are supported by

Page 26



Electronic View Graph

Figure 4: Viewgraph Windows

the viewgraph program.

The first state, is that where no participant has control of the viewgraph. When the
program is in this state, the Controller label in the controls window will be followed by
nobody to indicate this. At this point, control is up-for-grabs. Beside the Quit and Submit
Image buttons only one other button will be active, which is the Take Control button. The
first participant to click on this button will be given control of the viewgraph.

The second state, is that where the participant owns control of the viewgraph. As
controller of the viewgraph, the controller’s username and hostname will appear next to
the Controller label in the controls windows of all the participant. At this point, the Take
Control button will be disabled, and the Give Up Control and Load Image buttons will be
active. The participant who owns control may at any time click on the Give Up Control
button. This will then put the viewgraph back into the “nobody has control” state and con-
trol is once again up-for-grabs. However, if instead the controller clicks on the Load
Image button, he or she will be presented with a menu containing the names of all the sub-
mitted images. The controller may then choose any image to be displayed. After this, the
selected image will appear within the canvas region of all participants’ viewgraph win-

dows. The name of the image will appear next to the Image label in each participants’ con-

Page 27



trols window. The controller may then point his or her mouse on the displayed image and
press the mouse button. While the mouse button is held down, a fixed pointer will appear
at the same location on each participants’ viewgraph window. When the mouse button is
released, the pointer will disappear from all participants windows. The controller may
freely load any images and point on them as desired.

The final state, from the point of view of a participant, is that where another partic-
ipant owns control of the viewgraph. At this point the three buttons Take Control, Give Up
Control, and Load Image buttons will all be disabled. The name of the current controller
along with the name of the currently displayed image will appear in all participants’ con-
trols windows. When in this state, the participant may contentedly watch the presentation
and wait for the controller to give up control. Of course, the participant may also submit

images or quit from the session at any time.

2.3 Viewgraph Server
It is clear that there must be a high level of coordination amongst all participating view-

graph programs within a session. It is the job of the viewgraph server program to handle
this coordination. The idea is that when a new viewgraph session is desired, the viewgraph
server program is started and runs for the duration of the entire session. Then each partici-
pant starts-up their local viewgraph client, which will connect to the viewgraph server.
Clients may join in or leave a session at any time. Each client has the ability to communi-
cate with the server by exchanging messages with it. Some messages will contain images
and be very large. When the server is busy handling such messages, busy will appear next
to Server in each clients’ controls window, otherwise idle will appear. This status indica-
tion is to simply let the participants know that the server is busy working and may be slug-

gish at the moment in responding to other messages.

2.4 Defining the Messages
When designing integrated software, such as the viewgraph application, it is helpful to

define the messages which will be used in the communication. Since the viewgraph appli-
cation consists of two programs, a client and a server, it is useful to think about which
messages will be received and sent by the server, and which messages will be received and

sent by the client. Complicating this process is the fact that a server and multiple clients

Page 28



may be running concurrently. For example, in the viewgraph program, when nobody has
control of the viewgraph each participant will have an active Take Control button. Click-
ing on this button may result in a message being sent to the server. Since the sending and
handling of the message will take some small amount of time, it is certainly possible that
two or more participants will click on this button near simultaneously before the server
can respond. The client programs at this point should not assume that they own control of
the viewgraph, instead they should only assume control of the viewgraph when they
receive a message from the server saying that they own control. The defined messages and
protocols should unambiguously handle these kinds of subtleties and applications should
not be designed on the assumption that the probabilities of such events happening are very
small. It will be much easier to design in robustness from the outset, than to fix these prob-
lems later.

There are a total of ten messages used by the viewgraph application. The following
table lists these messages along with a brief description and overview including the infor-

mation contained within the message.

Message Description

PRESUBMIT This message contains no data. It is sent by a client to simply tell the
server that it is about to send a SUBMIT message. The server then sends a
SERVSTAT message all clients informingthat the server is busy.

SUBMIT This message contains the name and data for an image. It is sent by a cli-
ent when it wishes to have the contained image added to the pool of avail-
able images.

TAKE This message is sent by a client when the client desires to take control of
the viewgraph. The message contains the username, hostname, and pro-
cess ID associated with the client program.

GIVE This message contains no data and is sent by the controlling client when
the client desires to give up control of the viewgraph.

DISPLAY This message is sent by the controlling client and contains the name of the
image which the client desires to be displayed. This message is also sent
by the server to all clients.

POINT The controlling client sends this message to the server. The message con-
tains the state and possibly coordinate of the pointer. The server sends this
message to all clients.

CONTROL This message is sent by the server to all clients and contains the username.
hostname, and process ID of the controlling client.

Table 1: Messages Used by the Viewgraph Application

Page 29



Message Description

PICTURE This message contains the name and data of an image. The server sends
this message to all clients except the client which submitted the image.

SERVSTAT This message is sent by the server to all clients and contains the status of
the server.

Table 1: Messages Used by the Viewgraph Application
2.5 Defining the Protocols
While it is necessary to define the messages which will be exchanged by integrated pro-
grams, the messages do not stand on their own. It is also necessary to define the actions
which lead up to the messages to being sent, as well as actions which follow when a mes-
sage is received. This can generally be called the messaging protocol. A nice way to orga-
nize the protocol is by creating a dynamic model of each program’s states and events.
Creating an integrated application is an iterative process, and when designing the dynamic
model it may be necessary to go back and add, eliminate, or re-design the actual messages
which will be used to communicate among the programs. Figure 5 shows the dynamic
model for the viewgraph server. The dynamic modelling concepts and notations used are
those proposed by James Rumbaugh [Rum91]. The dynamic model contains several
states, each of which have one or many substates. Figure 6 shows the viewgraph server’s
substates.

The viewgraph server is event-driven. The program spends the great majority of its
time in an idle state and only acts when an event occurs. This event may be a new client
connecting, a client death, or a newly arrived message. When an event occurs the server
will enter a state where it handles the event. It is certainly possible while in the process of
handling one of these events that another event will occur. The dynamic model presented
doesn’t allow for this possibility and restricts these events to only occur when the server is
in the idle state. As a result, the message passing tools must provide a mechanism for
accomplishing this desired behavior. Once the server starts running, there is no specifica-
tion in the dynamic model to end the server program. The program must be explicitly
killed when the viewgraph session is over.

It is the job of the viewgraph server to store all of the images which have been sub-

mitted by the clients. This is necessary to allow for new clients to connect into the session

Page 30



I START

INITIALIZE

entry / set controller to nobody
set pointer to off
set display to blank
set client_set to empty

p
new client connection(C)

HANDLE NEW CLIENT

.

}_

7

client death(C)

\.

HANDLE CLIENT DEATH —

N\

J

new incoming message(C, M) r

HANDLE PRESUBMIT

do: determine message type

Y

J/

message(C, M) [type == PRESUBMIT]

message(C, M) [type == SUBMIT]

HANDLE SUBMIT

message(C, M) [type == TAKE]

HANDLE TAKE

message(C, M) [type == GIVE]

HANDLE GIVE

L

message(C, M) [type == DISPLAY]

HANDLE DISPLAY

INNRNRNH

message(C, M) [type == POINT]

HANDLE POINT

— "/

message{C, M) [type unknown]

Figure 5: Viewgraph Server Dynamic Model

at any time. The HANDLE NEW CLIENT substate diagram shows that all saved images

are sent to newly connected clients upon initial connection to the server. The idea is that

each client will cache these images locally, so that when the viewgraph controller selects

an image to load, a short message is sent telling each client which image to load, instead of

a large message being sent containing the image itself. The HANDLE SUBMIT substate

diagram shows that whenever a new image is submitted to the server, it is saved by the

Page 31



[ HANDLE NEW CLIENT

Page 32

new client connection(C)

( entry / put C in client_set
send SERVSTAT (busy) message
to all clients in client_set

send CONTROL(controller)
message to client C

send PICTURE message for each
saved image to client C

send DISPLAY/(display) message
to to client C

send SERVSTAT (idle) message
to all clients in client_set

send POINT(pointer message)
L to client C

L v

HANDLE CLIENT DEATH

HANDLE TAKE
message(C,M) [type == TAKE]

( entry / test if controller is nobody)

[controller != nobody] J [controller == nobody]

entry / set controller to C

send CONTROLLER(controller)
message to all clients in client_set

\ !

client death(C)
K

-
entry / remove C from client_set ]

L test if C is controller

[controller != C]

(" entry / send CONTROL(nobody)
message to all clients

send POINT(off)
L message to all clients

[controller == C}

(entry/ test if C is submitter j

[submitter != C] [submitter == C]

[entryl send SERVSTAT(idle) ]

message to all clients
. l
—

HANDLE GIVE

message(C,M) [type == GIVE]

8 HANDLE POINT

message(C,M) [type == POINT]

[ entry / test if controller is C )

[controller = C] ' [controller == C]

( entry / test if controller is C J

[controller = C)] _[ [controller == C]

entry / set controller to nobody

send CONTROLLER(nobody)
message to all clients in client_set

k R

( HANDLE PRESUBMIT
message(C,M) [type == PRESUBMIT]

entry / save point from M

send POINT(point)
message to all clients in client_set

\ b4

entry / set submitter to C

send SERVSTAT(busy) message
to all clients in client_set

L 7

~
HANDLE DISPLAY

message(C,M) [type == DISPLAY]

(entry / test if controller is C )

{controller !=C] j [controller = C)

entry / save display from M

send DISPLAY (display)
message to all clients in client_set

L 1

HANDLE SUBMIT
message(C,M) [type == PRESUBMIT]

entry / save image from M
set submitter to nobody

send PICTURE(image) message
to all clients in client_set

send SERVSTAT (idle) message
to all clients in client_set

( {

Figure 6: Viewgraph Server Substates




server and then immediately sent to all of the connected clients.

One thing to note about the protocol is that the POINT, DISPLAY, and GIVE mes-
sages should only be sent by the client who owns control of the viewgraph and never sent
by a non-controlling client. However, when the server receives one of these messages it
checks for this condition and if it finds that the message was not sent by the controlling cli-
ent, then it will simply ignore the message. Likewise, the TAKE message should only be
received by the server when no client has control. The server also checks for this condition
and will ignore the message if there already exists a client which owns the control of the
viewgraph. While it is not necessary to check these conditions when things are properly
implemented, however doing so provides some level of safety for the server against poten-
tially harmful clients which do not follow the specified protocol.

The viewgraph client program is a graphical program and is also event-driven.
Beside handling newly arrived messages, the client program must also handle the button
clicks, and menu selections of the user. Figure 7 shows the dynamic model for the view-
graph client program. The program spends most of its time in the idle state, with events
handled as they occur. Although certain events would cause the program to leave the idle
state such as a button click, these events can only occur when the button is enabled. Care
must be taken when interpreting the dynamic model to understand the various conditions
placed on these events. The substates of the viewgraph client program are shown in figure
8 and in figure 9.

Upon start-up the viewgraph client’s buttons are disabled. These buttons then
become enabled and disabled based on the actions of the local user and the other remote
users. One thing to note about the client program is that upon the user clicking the Quit
button, the program simply cleans up locally and exits. No message is sent to the server
informing it that the client is about to exit. The server already has the ability to handle an
unexpected client death. In the case of the viewgraph program unexpected and expected
client exits are handled in exactly the same manner by the server. An additional EXITING
message is not a necessary part of the protocol. However, if the application required that
unexpected and expected client deaths be handled differently, then it would be a good idea

to include an extra message in the protocol for this purpose.

Page 33



? START

~
r INITIALIZE
entry / create main windows and
controls do: determine message type

connection failed
disable "Take", "Give", END
and "Load"” buttons

connect to server

new incoming message(M)

disable mouse events in

canvas
L ’ lmessage(M) [type = CONTROL]
HANDLE CONTROL I
connection succeeded
M == PI
IDLE J-— F_L HANDLE PICTURE l message(M) [type CTURE]
M) [type == DISPLAY
‘—“ HANDLE DISPLAY } message(M) [type 1
<—{ HANDLE SERVSTAT } message(M) [type == SERVSTAT]
==POI
F—[ HANDLE POINT } message(M) [type ==POINT]
message(M) [type unknown]

Quit button pressed
P —(L do: delete local image cache }—’@ END
Submit Image button pressed ( HANDLE SUBMIT IMAGE
L BUTTON
Take Control button pressed [button enabled] ( HANDLE TAKE CONTROL
'L BUTTON
Give Up Control button pressed [button enabled] HANDLE GIVE UP
'L CONTROL BUTTON
Load Image button pressed [button enabled] ( HANDLE LOAD IMAGE
L BUTTON
mouse event in canvas [mouse events enabled] ( HANDLE MOUSE EVENT
L IN CANVAS

Figure 7: Viewgraph Client Dynamic Model

2.6 Summary
This chapter has introduced the electronic viewgraph application. It has presented a model

of a solution for the integration and message passing which may be used in an implemen-
tation of such a program. During any viewgraph session one server program and many cli-
ent programs may be connected and running. The programs have a set of ten messages
which get exchanged among the clients and servers as the participants in the viewgraph

session act upon their own graphical interfaces. The dynamic models attempt to show the

Page 34



' 3 ( )

HANDLE PICTURE HANDLE CONTROL
message(M) [type == PICTURE] message(M) [type = CONTROL)]
entry / save picture from M to local cache entry / get username, hostname, and PID
add picture name to "load” menu from M
I test username, hostname, and PID
. J
I [matches local user,
s N\ host and PID]
HANDLE DISPLAY
1 entry / enable "GIVE" and
message(M) [type == DISPLAY] "LOAD" buttons, disable
"TAKE" button
entry / get name from M and load image enable mouse events on
with that name from cache into display \ canvas

[matches another user]
L 1 By ey

(" entry / disable "GIVE", "TAKE",
( A and "LOAD" buttons
HANDLE SERVSTAT

disable mouse events on
message(M) [type == SERVSTAT] canvas

\
[matches nobody]

[ entry / get server status from M and display J

status in server label (" entry / enable "TAKE" button,
L l disable "GIVE" and
and "LOAD" buttons

disable mouse events on
p ~ canvas

HANDLE SUBMIT IMAGE BUTTON

Submit Image button pressed [button enabled] l
K !

y entry / put username and host-
entry / get file selection from user name in controller label
send PRESUBMIT message to server L 7 )
send SUBMIT message containing
selected image to server ' N
L v J HANDLE SUBMIT IMAGE BUTTON

Submit Image button pressed [button enabled}

HANDLE TAKE CONTROL BUTTON
Take Control button pressed [button enabled)

entry / get file selection from user
send PRESUBMIT message to server
j send SUBMIT message containing

( entry / send TAKE messsage to server sclected image 10 server

(- & / |- J

Figure 8: Viewgraph Client Substates

actions which lead up to a message being sent, as well as the programs’ responses to the
messages when they are received.

While it is easy to understand the purpose and interface of the viewgraph applica-
tion, the message definitions and protocols are fairly complex. The modelled solution has
been presented with hardly any regard to the tools which will be used to actually connect
the programs, package the messages, and handle the received messages. The difficult part
of the integration process is in designing the messages and protocols, for each individual

problem will lend itself to a unique design. It is intended that the flexible tools provided by

Page 35



~
F HANDLE POINT r HANDLE MOUSE EVENT ON CANVAS
message(M) [type = POINT) mouse event on canvas [mouse event enabled)
K’
Gnu'y / get point state from M j ( entry / test mouse event j
EMﬂ_j —[ [state is on] ‘mouse button released I mouse button pressed
entry / get coord from M .and ( entry / send POINT(on) message to server J
place pointer on display
at coord 1}
I l————T ( entry / send POINT(off) message to server J
( entry / delete pointer from displayJ _ 1 J
L b ) r —
HANDLE LOAD IMAGE BUTTON
( N Load Image button pressed [button enabled)
HANDLE GIVE UP CONTROL BUTTON
Give Up Control button pressed [button enabled] entry / get image name selection from menu
send DISPLAY mesage containing
‘ entry / send GIVE messsage to server j image name to server
\ 3 ) i J

Figure 9: Viewgraph Client Substates

the CHAT suite will allow the programmer to concentrate their efforts on designing solu-
tions to the difficult aspects of the integration problem without having to be overly con-
cerned about or constrained by the details of the underlying network connections, message

formats, or message handling mechanisms.

Page 36



Chapter 3

The Connection Support Library

Before messages can be sent among connected programs, these programs must be con-
nected to each other. The goal of the connection support library is to provide a simple pro-

gramming interface to network communication.

3.1 Connection Support
The connection support library allows two running programs on the same machine or on

different machines connected by a network to establish a full duplex communication chan-
nel over which data may be transferred. The library uses the Berkeley socket interface pro-
vided by the Unix operating system as an interface to the TCP/IP protocols. Sockets
provide a level of abstraction which allows network I/O to be similar to file I/O. However,
there are many more details and options involved with network I/O [Ste90], including
addressing, as well as the wide range of communication protocols supported. By restrict-
ing the connection support library to two type of sockets, TCP sockets and Unix domain
sockets, network communication and connection establishment can be greatly simplified.
TCP sockets are used to establish reliable stream connections between two processes on
different systems or two processes on a single system. TCP sockets use the underlying
TCP/IP protocols, which are the protocols used by the Internet. As a result connections
may be established between two programs connected by the Internet. Unix domain sockets

may only be used to establish reliable stream connections between two processes on the

Page 37



same system. While the use of Unix domain sockets is not necessary, they do provide
more efficiency and should be used when it is known that two connected processes will be

running on the same system.

3.2 Sockets
A socket is defined as an endpoint for communication. For communication to be possible

between two processes, each must have access to a socket in the form of a socket descrip-
tor. The socket descriptor is a handle to the communication channel, and it is used as a ref-
erence whenever it is desired to act upon that channel, such as when a program wishes to
write data to it or read data from it. Since a socket is only an endpoint for communication,
it must be associated with another socket (the other endpoint) in order for data to be
exchanged over the communication channel. The routines provided by the connection sup-
port library allow a program to create sockets and build the necessary association. Once
this association is established, then each program can write to its socket descriptor in a
similar manner to writing to a file descriptor. The information written to the socket
descriptor can then be obtained by the connected program by reading from its own associ-

ated socket descriptor.

3.3 Establishing a Connection
In order for a connection to be established there is a flow of events which must take place

The connection process is not symmetric for each program. One program initiates the con-
nection, while the other program listens for and accepts the connection. For both TCP and
Unix domain sockets there exists a port (or path) which uniquely identifies where the lis-

tening program is listening. This port (or path) is known to both programs beforehand and
has an analogous meaning as a telephone number. Establishing a connection between two

programs is similar to establishing a connection between two telephones.

3.3.1 Flow of Events
The program which accepts a connection will be called the acceptor, while the program

which initiates the connection will be called the initiator. Each program must follow a dis-
tinct flow of routine calls in order for the programs to successfully connect and exchange
information. There are two scenarios for these flow of events shown in figure 10.

In each scenario there is no restriction on which program starts first, the acceptor

Page 38



Acceptor Initiator Acceptor Imtiator

__________ r--_------ L Lk L
Program Starts Program Starts T
Program Starts
listen Program Starts listen l
accept connect
B
program blocks [==-====-- R
| connect accept
connection established connection established connection established connection established
series of series of series of series of
read / write read / write read / write read / write
.......... IS S P ISR SN S S
close close close close
Fommmmm - - (- e F ......... [ _____________________________
Scenario 1 Scenario 2

Figure 10: Connection Flow of Events

or the initiator. Before any other connection routines are called, the acceptor must call the
listen routine. By calling this routine the acceptor program establishes the port (or path) on
which it would like the initiator program to connect to. Using the telephone analogy, this

is essentially the acceptor program’s way of assigning itself a telephone number.

In the first scenario, the acceptor program then calls the accept routine. At this
point the program desires that an initiator connect to it. The acceptor program will block
until this happens. Finally the initiator program issues the connect routine and the connec-
tion is established. Once the connection is established both programs may issue a series of
read and write calls to exchange information. When the programs have finished, they then
close the connection by both issuing the close routine.

In the second scenario, the initiator issues a connect call before the acceptor issues
the accept call. In this case, the accept routine does not block and the connection is imme-
diately established when the acceptor accepts. Again, after the connection is established
each program may exchange information with read and write calls, and then close the con-

nection.

Page 39



3.3.2 Multiple Connections
It is possible for the acceptor program to accept many connections on an port (or path)

from one or many initiator programs. To do this the flow of events is simply extended. The
acceptor program first calls listen. Then the acceptor calls accept multiple times through-
out the program. For each call to accept there is an initiator’s call to connect. The acceptor
program will block if it accepts before the corresponding connect call, but won’t block if it

calls accept after the corresponding connect call.

3.3.3 TCP Connections
In order for a TCP connection to be established, the acceptor program must listen to a port

on the local system. A port is simply a 16-bit value, where ports 1-1023 are reserved only
for superuser processes. The IP address of the local host machine of the acceptor program
combined with the port number forms a unique logical location on the network where the
program listens for connections. When an initiator then connects, it will connect to that

address and port number.

3.3.4 Unix Domain Connections
Unix domain connections can only be established between two programs on the same

machine. In this case the acceptor program listens to a path. The path is the unix domain
path of a unique filename. Both acceptor and initiator should have read and write access to
the directory where this unique filename exists. A typical place is the /tmp directory. The

initiator program the connects to that unique filename in order establish the connection.

3.4 C Connection Library Routines
The following table lists each routine in the C connection library, along with a description

of how the routine is used. To use these routines, the programmer must link in the com-

piled object code of the library as well as including the appropriate header file in with their

Page 40



own source code.

int bs_tcp_listen(port)

int port;
This routine listens to a TCP port on the local machine for connections. The port argument
should be a positive integer where 1-1023 are reserved for superuser processes. Upon suc-
cess the routine will return a socket descriptor, which is simply a small positive integer.
This socket descriptor is a handle to the listening port and will be used as an argument to
other routines. Upon failure the routine returns -1.

int bs_unix listen(path)

char *path;
This routine listens to a Unix path on the local machine for connections. The path argument
is should be a pointer to a character buffer containing a Unix domain path to a local file.
This file should not exist on the system before this call is issued, as the call will cause the
operating system to create a special zero sized socket file on the local system. The program
which issues this routine as well as programs wishing to connect to it should all have read
and write access to the directory where this special file exists. The routine will return a
socket descriptor, upon success and -1 upon failure.

int bs_accept(sd)

int sd;
This routine accepts a connection on a listening socket descriptor. The sd argument is the
listening socket descriptor which was obtained by a call to bs_tecp_listen or
bs_unix_listen. This routine will block if the connecting client has not yet attempted
to connect, otherwise it will return immediately. The routine returns a new socket descriptor
which is a handle to the connected client, and can be used as an argument to read and
write to exchange information with the client. It is possible to accept multiple connec-
tions on the same listening socket descriptor, by calling bs_accept multiple times with
the same argument. For each connecting client, bs_accept will return a new socket
descriptor which is connected only with one client. The bs_accept routine will return -1
upon failure.

int bs_tcp_connect (host, port)

char *host;

int port;
This routine connects to a listening TCP port on a host. The host argument is a pointer to a
character buffer containing the IP address of the host either as a hostname (i.e. “gar-
con.mit.edu”) or in dotted decimal notation (i.e. “18.62.0.242”). Upon successful connec-
tion the routine will return a socket descriptor, which can be used as an argument to read
and writae to exchange information with the connected host program. Upon failure the
routine will return -1.

int bs_unix_connect (path)

char *path;
This routine connects to a listening unix domain path. The path argument is a pointer to a
character buffer containing the unix domain path of the listen host. Upon successful con-
nection the routine will return a socket descriptor, which can be used as an argument to

read and write to exchange information with the connected host program. Upon failure
-1 will be returned.

Table 2: C Connection Library Routines

Page 41



int sd;

int bs_sock_is_tcp(sd)

A connected socket descriptor (one returned by the bs_accept routine) may be tested to
check if it is part of a TCP connection. The sd argument is the connected socket descriptor.
If the connected socket descriptor is part of a TCP connection, then 1 is returned, otherwise
0 is returned.

int sd,

char *bs_get_tcp_name(sd, format)

format;
It may be desired to obtain the hostname (or host address) of a connected socket descriptor
(one returned by the bs_accept routine). This may be useful as a very basic security
measure to prevent connections from unauthorized hosts. The sd argument is the connected
socket descriptor. The format argument is either BS_HOSTNAME, or BS_DOTTED. The
routine returns a pointer to a character buffer which either contains the hostname of the con-
nected client or the IP address (in dotted decimal form) of the connected client, depending
on the value of the format argument. This character buffer is static and will be overwritten
on the next successive call to this routine.

read(),

write(), close();
The read and write and close routines are system calls provided by the operating sys-
tem for reading from, writing to, and closing file descriptors and socket descriptors. Pro-
grams can write bytes to a socket descriptor, the connected program can then read those
bytes from it’s associated socket descriptor. Reading from a socket descriptor is slightly dif-
ferent than reading from a file, in that if the program attempts to read bytes from a descrip-
tor for which no bytes are available, the program will block until these bytes are available.
See any Unix system programming text for a treatment of read and write. All socket
descriptors should be closed using the close system call when they are no longer needed
and before the program exits. Note, that after closing a listening unix domain socket
descriptor, the unique file it created at the specified path will still exist. The unlink sys-
tem call should be used to remove it from the file system.

Table 2: C Connection Library Routines

3.4.1 Exception Handling for the C Routines
Many of the routines of the C connection library routines return -1 upon error. There may

be one or many reasons why the routine failed. For example, when using

bs_tcp_connect to connect to a host, the supplied hostname might not be spelled cor-

rectly. In this case the remote hostname will not be able to be resolved. Should an error

occur, the program may check the value of the external integer variable bs_errno. The

following table lists the possible values of the bs_exrrno variable along with the corre-

sponding description of the error.

Page 42




bs_errno | description

Can’t resolve remote host name.

Can’t create socket.

Can’t connect to the server.

Can’t resolve local host name.

Local hostname error.
Can’t create a TCP socket.
Can’t bind local address or path.
Listen failed.

8 Accept failed.
TABLE 3. Connection Error Codes

SNl slwIN=| O

3.5 Tcl Connection Library Routines
In all of the libraries, wherever possible, there is a direct one-to-one mapping between

each available C library routine and its Tcl library routine counterpart. It is intended that
the programmer interface to both the C routine and the Tcl routine will as parallel as possi-
ble. The following is a list of the Tcl connection library routines along with a description
of each routine. Before using these routines the file containing the library code must be

sourced.

bs_tcp_listen port
This routine listens to a TCP port on the local machine for connections. The port argument
should be a positive integer where 1-1023 are reserved for superuser processes. Upon suc-
cess the routine will return a socket descriptor. This socket descriptor is a handle to the lis-
tening port and will be used as an argument to other routines. Upon failure the routine raises
a Tcl error.

bs_unix listen path
This routine listens to a UNIX path on the local machine for connections. The path argu-
ment is should be a string containing the path to a local file. This file should not exist on the
system before this call is issued, as the call will cause the operating system to create a spe-
cial zero sized socket file on the local system. The program which issues this routine as well
as programs wishing to connect to it should all have read and write access to the directory
where this special file exists. The routine will return a socket descriptor, upon success and
will raise a Tcl error upon failure.

Table 4: Tcl Connection Library Routines

Page 43



bs_accept sd
This routine accepts a connection on a listening socket descriptor. The sd argument is the
listening socket descriptor which was obtained by a call to bs_tcp_listenor
bs_unix_listen. This routine will block if the connecting client has not yet attempted
to connect, otherwise it will return immediately. The routine returns a new socket descriptor
which is handle to the connected client, and can be used as an argument to read and puts
to exchange information with the client. It is possible to accept multiple connections on the
same listening socket descriptor, by calling bs_accept multiple times with the same
argument. For each connecting client, bs_accept will return a new socket descriptor
which is connected only with one client. The bs_accept routine will return -1 upon fail-
ure.

bs_tcp_connect host port
This routine connects to a listening TCP port on a host. The host argument is a string con-
taining the IP address of the host either as a hostname (i.e. “garcon.mit.edu”) or in dotted
decimal notation (i.e. “18.62.0.242"). Upon successful connection the routine will return a
socket descriptor, which may be used as an argument to read and puts to exchange infor-
mation with the connected host program. Upon failure the routine will raise a Tcl error.

bs_unix_connect path
This routine connects to a listening unix domain path. The path argument is a string con-
taining the unix domain path of the listening host. Upon successful connection the routine
will return a socket descriptor, which can be used as an argument to read and puts to
exchange information with the connected host program. Upon failure, a Tcl error will be
raised.

bs_sock_is_tep sd
A connected socket descriptor (one returned by the bs_accept routine) may be tested to
check if it is part of a TCP connection. The sd argument is the connected socket descriptor.
If the connected socket descriptor is part of a TCP connection, then 1 is returned, otherwise
0 is returned.

bs_get_tcp_name sd
This routine returns the IP address in dotted decimal notation of a connected socket descrip-
tor (on returned by the bs_accept routine). The sd argument is the connected socket
descriptor.

read, puts, close
The read and put s and close routines provided by Tcl for reading from, writing to, and
closing file descriptors and socket descriptors. Programs may write strings to a socket
descriptor, the connected program can then read those bytes from it’s associated socket
descriptor. All socket descriptors should be closed using the close routine when they are
no longer needed and before the program exits. Note, that after closing a listening unix
domain socket descriptor, the unique file it created at the specified path will still exist. The
exec rm Tcl command can be used to remove it from the file system.

Table 4: Tcl Connection Library Routines

3.5.1 Exception Handling for the Tcl Routines
Whenever one of the Tcl library routines fails, a Tcl error is raised. This error can be

trapped by the Tcl program by using the catch command. Once caught, the error mes-

sage may be displayed to determine the cause of the error. This is the normal exception

Page 44



handling technique used by Tcl.

3.6 Other Socket Types
While the connection support library provides support only for TCP sockets and Unix

domain sockets, all of the higher level libraries of the CHAT suit will work with any type
of stream-oriented socket. There are several Unix system calls which can be used for cre-

ating and establishing connections which use other types of sockets.

3.7 Connection Library Example: The Echo Server and Clients
In this section a small example will be presented. An line oriented echo server will be cre-

ated which will run continuously on a host. The job of the server is to listen for connecting
clients and accept connections. The server will read a complete line of text (a string fol-
lowed by a newline character) from the connected client and then write the line back to the
client. The server will continue reading lines from the client until the client exits. At that
point, the server will close it’s connection and wait for another client to connect. The
server runs continuously, until a client sends it a line of text containing the string
“CLOSE_SERVER”. The server will then close it’s connection and exit.

In the example, the client will also be presented. The job of the client is to connect
to the echo server. It then will read a complete line from stdin and write it to the echo
server. It will then read the reply line from the echo server and print it out to stdout. This
continues until there is an eof on stdin, at which point the client closes its connection and

exits.

3.7.1 The Server Code
The example server code is written in C and uses the C connection library routines. The

code is shown in table 5. The program includes “basic_sockets.h” which is the header file

/* The following is the code for a line based echo server */

#include <stdio.h>
#include <string.h>

/* The following includes the header file for the connection library */
#include "basic_sockets.h"

#define PORT 9656
#define BUFFER_SIZE 512

Table 5: Echo Server C Code

Page 45



extern int bs_errno; /* global error code */

main() {
int listening_socket, accepted_socket, length;
char ¢, line[BUFFER_SIZE];

/* attempt to set up listening socket */

if ((listening_socket = bs_tcp_listen(PORT)) < 0) {
fprintf(stderr, "Error code: %d\n", bs_errno);
exit(1);

/* This is an infinite loop that will allow client after client to
connect */

for (;;) {

/* attempt to accept connection from client */

if ((accepted_socket = bs_accept(listening_socket)) < 0) {
fprintf (stderr, "Error code: %¥d\n", bs_errno);
close(listening_socket});
exit(1);

/* continually read character from client until a complete line is
received or the client dies */
length = 0;
while (read(accepted_socket, &c, 1) == 1) {
/* got a character */
line[length++] = c;
if (¢ == '\n') { /* complete line */

write(accepted_socket, line, length); /* echo line to client */

/* check line for CLOSE_SERVER message */

if (strncmp(line, "CLOSE_SERVER\n", length) == 0) {
close (listening_socket); /* close sockets and exit */
close (accepted_socket) ;
exit(0);

length = 0;

/* read failed, client has died, close connection and repeat the loop */
close(accepted_socket) ;

Table 5: Echo Server C Code
for the connection library routines. The program starts by obtaining a listening TCP socket
on port 9656, which was arbitrarily chosen. Then it accepts a connection on that listening

socket. Once the program has successfully done this, it starts reading characters, one at a

Page 46



time from the connected client and saves them in a character buffer. Although, the charac-
ter buffer is of a fixed size, for simplicity of the example, the program does no checking to
see whether the buffer is full. When a newline character is received by the server, it then
echoes the received line back to the client, by writing to the connected socket descriptor. If
the line received contains a “CLOSE_SERVER” message, then the server will close its
sockets and exit. Otherwise, the server will simply read lines from the connected client
and echo them back. If when reading a character, the read routine returns 0 (causing the
while loop to terminate), then this indicates that the client program has died. When this
occurs, the server closes the connection from that client and accepts a connection from
another client. Note that a limitation of this server is that it can only service one connected

client at a time.

3.7.2 The Client Code
Two echo client programs will be presented in this section. For simplicity, both programs

will assume that the server is running on the host “garcon.mit.edu” and listening to port

9656. The first client is written in C and shown below in table 6. The client starts by

* The following is the code for the line-based echo client */

#include <stdio.h>
#include <string.h>

#include “basic_sockets.h”

#define SERV_PORT 9656
#define SERV_NAME "garcon.mit.edu"

#define BUFFER_SIZE 512

extern int bs_errno; /* global error code */

main() {
int connected_socket, length, status;
char ¢, line(BUFFER_SIZE];

/* attempt to connect to the server */

if ((connected_socket = bs_tcp_connect (SERV_NAME, SERV_PORT)) < 0) {
fprintf (stderr, "Error code: %d\n", bs_errno);
exit(1);

/* get a line from stdin */
while(fgets(line, BUFFER_SIZE, stdin) != NULL) (
length = strlen(line);
write(connected_socket, line, length); /* write line to server */

Table 6: Echo Client C Code

Page 47



/* read line from server */
length = 0;
while ((status = read(connected_socket, &c, 1)) == 1) {
line[length++] = c;
if (¢ == '\n') { /* complete line */
fprintf(stdout, "%s", line); /* print line to stdout */
if (strncmp(line, “CLOSE_SERVER\n”, length) == 0) {
close(connected_socket) ;
exit(0);
}
length = 0;
break;

}

if (status == 0) { /* server died */
fprintf (stderr, "Server Died\n");
close(connected_socket) ;
exit(l);

}

/* eof on stdin */
close(connected_socket) ;
exit(0);

Table 6: Echo Client C Code
attempting to connect to the server. If that succeeds, then the client will get a line from
stdin and write it to the server. The server then echoes the line back to the client which
subsequently prints it to stdout. The client will test the echoed line to see if it contains the
“CLOSE_SERVER” message. If it does then the client will exit, since the server will no
longer be running. Otherwise, the client will continue and the get line, write line, read ech-
oed line, print line process will continue until there is an eof condition on stdin.

This echo client has been written in Tcl/TK and the code is shown below in table 7.

# The following is the code for the line based echo client

source “basic_sockets.tcl”

set SERV_PORT 9656
set SERV_NAME “garcon.mit.edu”

# Attempt to connect to server

if {[catch {set connected_socket [bs_tcp_connect $SERV_NAME $SERV_PORT]} err]
\

= 0} {
puts stderr $err

exit

# Loop forever

Table 7: Echo Client Tcl Code

Page 48



while {1} (

set status [gets stdin line); # Get a line from stdin

# Check for eof
if {$status == -1} {
close $connected_socket

exit

puts $connected_socket $line; # Write line to server
set line ""; # Read line from server
while {1} {

set ¢ [read $connected_socket 1]

# Check to see if server died
if {$c == """} {
close $connected_socket

exit

# Check for complete line
if {$c == "\n"} {(
puts stdout $line
# Check if line contains "CLOSE_SERVER"
if {$line == “CLOSE_SERVER”"} {
close $connected_socket
exit
}
break

set line $line$c
}

Table 7: Echo Client Tcl Code
In order for the program to run, it must source the “basic_sockets.tcl” file, which contains
the source code for the Tcl connection library routines. The Tcl client is very similar to the
C client, however, the exception handling mechanism is slightly different. The Tcl pro-
gram uses the Tcl catch command to trap for an error when trying to connect to the

Server.

3.8 Summary
The connection support library, presented in this chapter, provides easy to use routines for

establishing connections between two programs. A program may be allowed to have mul-
tiple open connections between it and other programs, however, for each connection to be
successfully established there is a defined flow of events which must take place. The con-

nection support routines, as they stand, provide no mechanism for determining whether

Page 49



there exists new clients wishing to connect. Programs must simply execute the accept rou-
tine on a listening socket, and if there is a connecting client then the accept routine will
return, otherwise it will block. The communications handling library, presented in the next
chapter, will provide both a polling mechanism and an event-based mechanism for testing
listening sockets for newly connecting clients. This will be vital in writing programs
which allow an arbitrary number of clients to connect, such as the viewgraph server pro-
gram, which was outlined in chapter 2.

The echo server and client programs are small programs which demonstrate a
method of exchanging information between programs. These programs exchange lines of
text, and the event leading up to a line being sent by a client, and the action after a line has
been received by the server is very simple. In many cases the information to be exchanged
amongst programs, and the subsequent actions will be much more complicated. The mes-

sage packaging library will address this issue in chapter 5.

Page 50



Chapter 4

The Communications Handling Library

The communications handling library is at the core of the CHAT suite. The library pro-
vides a mechanism for determining when new clients have connected. There are two
approaches for doing this. One allows the program, at any time, to simply test whether a
new client has connected. This is a polling mechanism. The other allows the program to
bind it’s own internal handling routine to a new client connection event. Whenever a new
client connects, the program will be interrupted and its handling routine will automatically
be called. This is an event-based mechanism.

Similar to determining whether new clients have connected, the connection han-
dling library provides both a polling and event-based mechanisms for determining when
new messages have arrived. In the polling situation, messages are transparently received
and placed in a message queue. At any time the program may test the status of the mes-
sage queue, and pop messages from the queue as desired. In the event-based situation,
incoming messages are bound to an internal handling routine. Whenever a message
arrives, the program is automatically interrupted and the internal handler routine is called.
The library also provides a combination of the two approaches, by allowing the program
to toggle between the polling mechanism and the event-based mechanism.

The routines provided by the communications handling library are flexible. They

will work for a wide variety of message formats. It will be necessary to define what a mes-

Page 51



sage is, and how to configure the routines to work with some standard message formats, as

well as any new formats created by the programmer. The following figure shows what is

provided to a messaging application by the communications handling library.

Listening
Socket

f

4 TCP Port or Unix Domain Path

CHR1

CF1

0100110101001010101

0100110101001010101

0100110101001010101

0100110101001010101

Incoming Data Streams

New Client Connection
Handling Routine

New Client Flag

Message Parsers

P2

[ =]

Message Handling Routines
. > MHR1
Message
from C4

MHR2

N

|

| ] ]

u n
Messages Messages
from C1 From C2

Message Queues

4.1 Handling Newly Connected Clients
As a program runs, clients may attempt to asynchronously connect to it. If the program has

Figure 11: Communications Handling Library

no prior knowledge about how many simultaneous connections it will be handling, then

the program must have some other mechanism for handling newly connected clients than

what is provided by the connection support library.

4.1.1 Polling-Based Handling of Newly Connected Clients
A simple way to handle newly connecting clients is to allow the program to poll a listen-

ing socket for a connection. This allows a program to create a polling loop where the pro-

Page 52



gram can on each iteration of the loop, check the status of the socket for new connections
and then sleep for a fixed amount of time. If the program detects that there is a newly con-
nected client, then it can accept a connection on the listening socket, and be guaranteed
that the accept routine will not block. The com_connected roiutine is used to test the

status of a listening socket for newly connected clients.

4.1.2 Event-Based Handling of Newly Connected Clients
A more sophisticated approach to handle newly connected clients, is for the program to

register its interest in a listening socket. Associated with that interest is a subroutine.
Whenever an new client connects to the program, that event will cause the program to be
automatically interrupted, and the subroutine will be called. The subroutine can then
accept a connection on the listening socket, and be guaranteed that the accept routine
won’t block. This event-based approach to handling new client connections is accom-

plished by using the com_register_listen routine.

4.1.3 C Library Routines for Handling Newly Connected Client
The C routines provided by the communications handling library for handling newly con-

nected clients are specified below in table 8. The com_register_ 1listen routine
allows the program to associate one of its own subroutines, with the new client connection
event. This handler subroutine must conform to a predefined prototype. Passed to the han-
dler will be the actual socket descriptor of the listening socket for which a new client has
connected. This allows the same handler routine to be used to handle connections on mul-
tiple listening sockets. For example, a program might have a listening Unix domain socket
as well as a listening TCP socket. Both of these listening sockets may be registered with
the same handler subroutine, such that a new client connection on either socket will cause
the same subroutine to be called. Since the subroutine has the actual socket descriptor

passed in as an argument, it can then simply accept the connection on that descriptor. The

Page 53



handler routine must also return a void.

int com_connected(sd)

int sd;
Tests the listening socket descriptor sd to determine whether a new client has con-
nected to that socket. Returns 1 if a new client has connected and 0 otherwise. If
com_connected returns 1, then a call to bs_accept is guaranteed to accept a
connection immediately without blocking.

int com register listen(sd, handler)

int sd;

void (*handler) ();
This routine associates a handler routine which is to be called whenever a new cli-
ent connects to the listening socket descriptor specified by the sd argument. The
handler argument is a pointer to a function which returns a void. A pointer to a
function in C is simply the name of the function. When this handler function is
called, it will be passed the socket descriptor on which the new client has con-
nected. It is guaranteed that a call to bs_accept on that socket descriptor within
the handler routine will not block. The com_register_1listen routine will
return -1 on error, and 0 otherwise.

void com_unregister (sd)

int sd;
This routine, stops the handling of newly connected clients on the listening socket
descriptor sd.

Table 8: C Library Routines for Handling Newly Connected Clients

In table 9 is the skeleton code for a printer server program. The program simultaneously
listens to a TCP socket and a Unix domain socket. Whenever a new client connects to
either socket, the server reads data from the client and sends it to the printer. For simplic-
ity, the skeleton program does no exception handling. The program starts by creating two
listening sockets, and then registering each socket with the handling routine (in this exam-
ple called new_client). After the sockets are register, the program enters a while loop,
where it pauses, and blocks until an occur. When a new client event occurs, the program
breaks out of the pause, and the handler routine is called. When the handler routine is
completed, the program re-enters the while loop. All events which are handled by the rou-
tines in the communications handling library are guaranteed to not be preempted by other
events. For example, during the time when the new_client handler routine is running it is
possible for another new client connection to occur. When this happens, the new_client

handler routine will finish handling the first event, and when it returns it will be immedi-

Page 54



ately called with the next event.

/* Skeleton printer server program */
#include "basic_sockets.h"
#include “com_handler.h"

/* This routine is called whenever a new client connects to either the
* listening TCP socket, or the listening Unix domain socket */
void new_client (sd)
int sd;
{
int accepted_socket;

main() {

accepted_socket = bs_accept(sd); /* accept connection, this will not block */
....... /* read data from accepted_socket and send it to the printer */
close (accepted_socket) ; /* finished printing, close accepted socket */

int listening_socketl, listening_socket2;
listening_socketl = bs_tcp_listen("garcon.mit.edu", 2454); /* Create TCP sock */

listening_socket2 = bs_unix_listen("/tmp/pservsock"); /* Create Unix sock */
com_register_listen(listening_socketl, new_client); /* Register TCP sock */
com_register_listen(listening_socket2, new_client); /* Register Unix sock */
while(1l) pause(); /* Block until an event occurs, then repeat loop */

Table 9: C Skeleton Printer Server Program

4.1.4 Tcl Routines for Handling Newly Connected Clients

The Tcl routines for handling newly connected clients are parallel to the C routines pre-

sented earlier. The prototypes and descriptions of the Tcl routines are included below in

table 10.

com_connected sd

Tests the listening socket descriptor sd to determine whether a new client ha con-
nected to that socket. Returns 1 if a new client has connected and 0 otherwise. If
com_connected returns 1, then a call to bs_accept is guaranteed to accept a
connection immediately without blocking.

com_register_ listen sd handler

This routine associates a handler routine which is to be called whenever a new cli-
ent connects to the listening socket descriptor specified by the sd argument. The
handler argument is name of the associated handling function. When this handler
function is called, it will be passed the socket descriptor on which the new client
has connected. It is guaranteed that a call to bs_accept on that socket descriptor
within the handler routine will not block. The com_register_ 1listen routine
has no return value.

com_unregister sd

This routine, stops the handling of newly connected clients on the listening socket
descriptor sd.

Table 10: Tcl Library Routines for Handling Newly Connected Clients

Page 55




As in the C case, a handler routine which is specified in the com_register_listen routine
must conform to a predefined prototype. The Tcl handler routine should expect one argu-
ment which will be the socket descriptor of the listening socket on which a new client has
connected. The handler routine should return no value. The following is the skeleton ver-
sion of the print server program. For simplicity of the example, no exception handling
code is included. The only noticeable difference between the C version and the Tcl version
is that the Tcl program does not use the while(1) pause() loop construct, which causes the
program to block until an event occurs. Instead the internal event loop provided by TK

(Tcl’s graphical toolkit) automatically provides this functionality.

# Skeleton printer server program
source "basic_sockets.tcl®
source "com_handler.tcl"

# This routine is called whenever a new client connects to either the

# listening TCP socket, or the listening Unix domain socket */

proc new_client {sd} {
set accepted _socket [bs_accept $sd]; # accept Connection, this will not block
....... ; # read data from accepted_socket and send it to the printer
close $accepted_socket; # finish printing, close accepted socket

set listening socketl [bs_tcp_listen "garcon.mit.edu" 2454]; # Create TCP sock

set listening_socket2 [bs_unix listen(“/tmp/pservsock”)]; # Create Unix sock
com_register_listen $listening_socketl new_client; # Register TCP sock
com_register_listen $listening_socket2 new_client; # Register Unix sock

Table 11: Tcl Skeleton Printer Server Program

4.2 Definition of a Message
Data communicated over socket connections must be containable within a serial buffer of

bytes. A message is a notification or request of some kind including data and information
which is to be communicated among connected programs. Since these messages will be
communicated over socket connections, ultimately they must be containable within a
serial buffer of bytes. There is another constraint on the format of a message. Since socket
communication is stream oriented several buffers of characters which are written in suc-
cession to the stream will appear as a single concatenation of messages to the receiving
program. The receiving program must be able to detect where one message ends in the
stream and the next message begins. To accomplish this, messages must formatted such
that they may be decoded and extracted from the stream. For example, consider a message

format containing ASCII text followed by a newline character. The newline character acts

Page 56



as a separator between successive messages, and when the receiving program sees a new-
line character, it knows that a complete message has arrived. The message handling rou-
tines provided in the communications handling library will work on a wide variety of
message formats. When using these handling routines it will be necessary to specify the
message format. This is done by specifying an appropriate parser for the message format.
The parser, when given a buffer containing possibly many concatenated messages, can
parse a single message from the buffer. The library comes with several standard parsers,
however, a parser interface will be defined so that new message parsers may be added as
required. Note, the parsers which are being described here are only used to parse a com-
plete message from a stream of messages and are not being used to parse out individual

pieces of information contained within the messages.

4.3 Standard Message Format and Parsers
In table 12 is a list of the standard message formats and parsers which are available with

the communications handling library. It is intended that these formats will provide, in
most cases, enough of a basis for a wide range of message passing applications to be built.
A programmer simply must choose a suitable message format for the application from

those which are readily available.

Format Parser Description

line ch_parse_line Considers a message to be a string of ASCII characters
followed by a newline character. The parser parses the
string and truncates the newline character.

fline ch_parse_fline Same as the line format, however, the parser parses the
string and includes the newline character.

brace ch_parse_brace Considers a message to be ASCII strings of characters
contained within matched sets of curly braces, arbitrarily
nested. The backslash character is considered an escape
character. A curly brace preceded by a backslash is not
considered a matching brace. A backslash character fol-
lowed by a backslash character is simply considered to be
a single backslash. The parser parses the message,
excluding the matching braces comprised of the first curly
brace and the last curly brace. Example, “{this {is} {a
{message} }}” will get parsed as “this {is} {a {mes-
sage}}”.

Table 12: Standard Message Formats

Page 57



Format Parser Description

fbrace ch_parse_fbrace | Same as the brace format except the parser includes the
matching braces comprised of the first curly brace and
the last curly brace.

binary? ch_parse_binary | This format is made of binary bytes of data, assembled
together in a special way. This format will be discussed in
more detail in chapter 5 and in an appendix.

Table 12: Standard Message Formats

a. This format is not available in the Tcl version of the communications handling library,
since Tcl is not capable of handling binary data.

4.3.1 Creating a New Parser
Additional parsers may be written and used with the message handling routines. To create

a new parser it must adhere to a standard prototype. The following is the prototype which

C parsers should conform to:

int a_new_parser{buff, size, start, length, next)
char *buff;
int size, *start, *length, *next;
{
/* your parser code goes here */

}

The parser is passed a pointer buff, which is a pointer to a character buffer containing all
bytes which have been read from the stream. This buffer may contain an incomplete mes-
sage, or several messages concatenated together. The size argument is the number of bytes
which is contained in this character buffer. The job of the parser is to examine the buffer
and determine if at least one complete message is contained within the buffer. The vari-
ables start, length, and next are all pointers to pre-allocated integers. If the buffer contains
a complete message, then the parser should set *start to be the offset within the buffer of
the first character in the message. It should set *length to be the number of characters in
the message (possibly 0). It should set *next to be the offset within the buffer of where a
new buffer should be formed for the next successive call to the parser. The parser should
then return 1 if it was successful in parsing a message from the buffer. Otherwise the
parser should return 0. The value of *next cannot be greater than the size argument. If it
must be greater than the size argument, then the parser should return 0. The parser will get

a chance to try again on the next call which will be on a greater sized buffer. The idea of

Page 58



having three values, *start, *length, *next, to specify a message is to allow for any type of
decodable message format which may or may not have a header or trailer or both. If a
message format contains a header or trailer or both, then by properly setting these values,
the parser may (if it wishes) extract out the internal and meaningful section of the message
and throw away the header and trailer.

Consider an example for a new parser. We will create a message format where the
message is designed such that it will always begin with the two characters “<<” and the
end of the message is denoted by the two characters “>>”. We will allow arbitrary charac-
ters to occur between separate messages (possibly whitespace, etc.). For this format, the
important information resides between the less-thans and greater-thans. This will be called
the “ligg” parser. The following table shows some possible scenarios of inputs to the

parser, and what the parser should do in response to those inputs.

Input Input Result of
*buff size Parser
"-—-<<reque" 10 The parser determines that there is not a com-

plete message in the buffer and returns -1.

"---<<request value a>>" | 22 The parser determines that there is a complete
message in the buffer and sets:”

*start = 5;

*length = 15;

*next =22;
The parser then returns 1.

v--—<<ack>>--<<verify-" 20 The parser recognizes a complete message and
sets:

*start = 4;

*length = 3;

*next =9;
The parer then returns 1. Note, in this case the
parser could have set *next to be anything
between and including 9 and 11;

"egg>> " 6 The parser recognizes a complete message and
sets:

*start = 3;

*length = 0;

*next = 5;
The parser then returns 1.

Table 13: Example Parser Scenarios

The following is a possible C implementation of the parser. Note that the parser should

Page 59



only be used to read the buffer which is passed to it, and should not modify it in any way.

/* This is an example parser */
int ch_parse_llgg(buff, size, start, length, next)
char *buff;
int size, *start, *length, *next;
{
int i;

for (i=1; i<size; i++) {

if ((buff[i] == '<') && (buffli-1] == '<')) /* found "<<" */
*start = i + 1;
if ((buff[i] == '>') && (buff(i-1] == '>')) { /* found ">>" */

*length = (i - 1) - *start;
*next = i + 1;

*return 1;

}
return 0;

Table 14: Example Parser Implementation in C

Creating a Tcl parser is very similar, to creating a C parser. Passed to the Tcl parser routine
is a string containing the buffer, and the size of the buffer. The Tcl routine returns an
empty string to indicate that it could not successfully parse a message from the buffer.
Otherwise it returns a Tcl list containing the three values for start, length, and next. The

following is an example implementation of a Tcl version of the “ligg” parser.

# This is an example parser
proc ch_parse_llgg {buff size} {
set tmp [string first "<<" $buff]; # Look for "<<"
if {$tmp == -1} {
return {}
} else {
set start [expr $tmp + 2]

set tmp [string first ">>" $buff]; # Look for ">>"
if {$tmp == -1} {

return {}
} else {

set length [expr $tmp-1 - $start]

set next [expr $tmp+2]

return [list $start $length $next]

Table 15: Example Parser Implementation in Tcl

4.4 Handling of Incoming Messages
Messages are comprised of bytes of data which can be received on a socket and buffered

by the operating system. A program can read bytes from the buffer, determine if there are

Page 60



complete messages available, and then act on those messages. The message handling rou-
tines, provide a cleaner and transparent mechanism for handling incoming messages to a
program. The program registers its interest in incoming messages on a particular con-
nected socket descriptor. While registering interest, the program must also specify the for-
mat of the incoming messages on that descriptor. This is done by simply choosing (or
creating) the appropriate message parser for the desired message format. Once a con-
nected socket is registered, bytes received on it will automatically be read by the program
as they become available and attempted to be parsed by the message parser. If a complete
message can successfully be parsed, the user’s handler routine may be called to act on the
message, or the message may automatically placed in a message queue. The action that
occurs when a message is received depends on how the program has configured its inter-
est. The message handling library will also be able to automatically detect the death of a

connected socket, and will allow the program to act appropriately when this occurs.

4.5 Event-Based Message Handling
The event-based messaging approach allows a program to bind messaging events on a

connected socket descriptor to a handling routine. There, are two types of events which
may occur. The first is a message arrival. Whenever a new message arrives, the program
will be interrupted and the user’s routine bound to that event will automatically be called.
The other type of event which may occur is the death of a connected socket descriptor.
Whenever this event occurs, the program will also be interrupted and the user’s routine
which is bound to that event will be called. This routine may then unregister the dead
descriptor, and close it, as well as perform any other clean-up which should be done when
a connected client program dies (possibly unexpectedly). Many client-server programs
may be completely event-based. They remain in an idle for the great majority of the time,
and only exit the idle state to handle evenst. They then return to the idle state after the
event has been handled. The event-based message handling routines provided make this
kind of event-based program easy to write. While a handler is being executed, it is possi-
ble that another event will occur during that time. When this occurs, the first handler will
complete, and then another handler will be called to handle the most recent event. The

message arrived event, and connection died events are level-triggered.

Page 61



4.5.1 C Library Routines for Event-Based Message Handling
There are two routines which provide support for event-based messaging. The

com_register_event routine is used to bind messaging events on a connected
descriptor to handler routines. The com_unregister routine is used to unbind these
events from being handled. In table 16 the event-based messaging routines are described
in more detail.

Handler routines are written by the programmer and must conform to a standard
prototype. The following is an example handler routine which handles a newly arrived
message.

int a_new handler (message, size, sd)
char *message;

int size, sd;

{

/* your message handling code goes here */

}
The message argument is a pointer to a character buffer containing the newly arrived mes-

sage. The handling routine may read bytes from this character buffer. The size argument is
the number of bytes contained in the message buffer. Note, the byte just following the
message buffer is guaranteed to be an ASCII null (value 0). Although this byte is not part
of the message itself, it may be helpful when processing ASCII based messages. The mes-
sage buffer will automatically be destroyed when the handler returns. If it is desired for a
message to persist after the handler returns, then it should be copied by the handler rou-
tine. The sd argument is the connected socket on which the message was received. This
allows for the possibility of multiple connected sockets to be bound to the same handling
routine. The following is an example handler routine which handles a connected socket
death.

int a_new_death_handler(sd);
int sd;
{
/* your socket death handling code goes here */
com_unregister(sd); close(sd);
}
The sd argument is the connected socket descriptor which has died. In addition to the

application specific clean-up which is performed within the handler, the handling routine

Page 62



should also com_unregister the connected socket and close it.

int com_register_event (sd, parser, handler, death_handler)

int sd, (*parser)();

void (*handler) (), (*death_handler)();
This routine associates a handler routine which is to be called whenever a new mes-
sage arrives on the connected socket descriptor specified by the sd argument. The
routine also associates a handler routine which should be called if the program on
the other end of the connected socket dies. The parser argument is a pointer to a
message parsing routine and specifies the message format of the incoming mes-
sages over the connected socket. The handler argument is a pointer to the associ-
ated message handling routine which will be called whenever a new message
arrives on the connected socket. When this handler routine is called, it will be
passed, as arguments, a pointer to a character buffer containing the newly arrived
message, the size of the message, and the socket descriptor over which the message
was received. The death_handler argument is a pointer to the associated handling
routine which will be called if the program on the other end of the connected socket
dies. When this routine is called it will be passed as an argument the connected
socket descriptor which has died. Recall that in C, pointers to routines (or func-
tions) are simply the name of the routine. The com_register_event routine
will return -1 on error, and 0 otherwise.

void com_unregister(sd)
This routine stops the handling of messaging events on socket descriptor sd.

Table 16: C Library Routines Event-Based Message Handling

4.5.2 Tel Library Routines for Event-Based Message Handling

The Tcl library routines for Event-Based messaging are exactly analogous to the C library
routines. These are described in table 17. The following is a Tcl handler routine to handle
a newly arrived message.

proc a_new_handler {message size sd} {
{

# your message handling code goes here
}

In the Tcl case, the message argument is a string which contains the newly arrived mes-
sage. The size and sd arguments have the same meaning as in the C case. The following is
and Tcl handler routine to handler a connected socket death.

proc a_new_death_handler {sd} {

{
# your socket death handling code goes here
com_unregister $sd; close $sd

Page 63



The handler should com_unregister and close the dead socket descriptor.

com_register_ event sd parser handler death handler
This routine associates a handler routine which is to be called whenever a new mes-
sage arrives on the connected socket descriptor specified by the sd argument. The
routine also associates a handler routine which should be called if the program on
the other end of the connected socket dies. The parser argument is the name of a
message parsing routine and specifies the message format of the incoming mes-
sages over the connected socket. The handler argument is the name of the associ-
ated message handling routine which will be called whenever a new message
arrives on the connected socket. When this handler routine is called, it will be
passed, as arguments, a string containing the newly arrived message, the size of the
message, and the socket descriptor over which the message was received. The
death_handler argument is the name of the associated handling routine which will
be called if the program on the other end of the connected socket dies. When this
routine is called it will be passed as an argument the connected socket descriptor
which has died. The com_register_event routine has no
return value

com_unregister sd
This routine stops the handling of messaging events on socket descriptor sd.

Table 17: C Library Routines for Event-Based Message Handling

4.5.3 An Event-Based Messaging Example
In chapter 3, the line-based echo server was presented and implemented. The implemented

server could only handle one connected client at any given time. Here, we will extend the
echo server so that it can handle arbitrary simultaneous clients. We will do this in an event
based manner. The server will start-up and create a listening socket. It will then associate a
new_client handler, which will be called whenever a new client wishes to connect. The
program will remain in an idle state waiting for client connections. When new clients con-
nect, the new_client handler will accept the connection from the client, and register the
newly connected socket to handle messaging events. The fline message format will be
specified. Whenever a connected client sends a message, the new_message handler will
echo it back to the client and test it to determine if it is a “CLOSE_SERVER message”. If
it is the server will exit, otherwise it will return to the idle state. The server will handle cli-
ent deaths with the dead_client handler which simply unregisters and closes the associated
socket descriptor.

Although, this echo server can handle multiple clients simultaneously, the code is
arguably as simple as the single client handling server which was presented in chapter 3.

the following is the C code for the example line-based multiuser echo server. Exception

Page 64



handling is omitted from the code for simplicity.

/* The following is the code for a multiuser line based echo server */

#include <stdio.h>

#include <string.h>

/* The following includes the header file for the connection library, and
the communication handling library. */

#include “basic_sockets.h”

#include “com_handler.h”

#define PORT 9656
#define BUFFER_SIZE 512

/* The following three routines are the event handlers */

void new_message (message, size, sd) /* This handles new incoming messages */
char *message;
int size, sd;
{
write(sd, message, size); /* echo message back to client */

/* exit server if it is the “CLOSE_SERVER” message */
if (strcmp(message, “CLOSE_SERVER\n") == 0)
exit (0);

void dead_client(sd) /* This handles a client death */
int sd;

com_unregister(sd); close(sd); /* Stop handling and close descriptor */

veid new_client(sd) /* This handles new clients connecting */
int sd;
{

int accepted_socket;

accepted_socket = bs_accept(sd); /* accept connection from client */

/* register message handling on the newly connected client */
com_register_event (accepted_socket, ch_parse_fline,
new_message, dead_client);

main() {

int listening_socket;

listening_socket = bs_tcp_listen(PORT); /* get listening socket */
com_register_listen(listening_socket, new_client); /* register socket */
while(l) pause(); /* Wait in an idle state for events to occur */

Table 18: Example of Event-based Multiuser Echo Server

4.6 Queue-Based Message Handling
In the queue-based approach, a program may register its interest in a connected socket

Page 65



descriptor. All incoming messages on that descriptor will be transparently received by the
program and placed in a message queue. At any time the program may check the status of
the message queue and pop messages from the queue. As in the event-based case, the pro-
grammer chooses a message format for the incoming messages by specifying the appro-

priate message parser.

4.6.1 C Library Routines for Queue-Based Message Handling
A program calls the com_register_qgueue routine to allow messages to be automati-

cally received on a connected socket descriptor and queued. As it desires the program my
issue the com_stat call to determine the number of messages in the queue, or the
com_died call to determine if the connected socket has died. If the program wishes to
pop a message from the queue, it may issue the com_pop call. Finally, when the program
no longer wishes for messages to automatically be queued, the com_unregister call is
used to turn off message handling on the connected socket descriptor. The following table

describes the C library interface to these routines.

int com_register_queue(sd, parser)

int sd, (*parser)();
This routine expresses interest in messages arriving on the connected socket
descriptor specified by the sd argument. The parser argument is a pointer to a mes-
sage parsing routine and specifies the message format of the incoming messages
over the connected socket. Newly arrived messages will automatically be queued.
The com_register_queue routine will return -1 on error, and 0 otherwise.

int com_stat (sd)

int sd;
This routine checks the status of the message queue associated with the connected
socket descriptor sd. If there are any messages in the message queue, the
com_stat routine will return a positive integer indicating the number of messages
in the queue. If there are no messages in the queue, then 0 will be returned when the
connected socket descriptor is alive and -1 will be returned when the connected
socket descriptor is dead.

int com_died(sd)
int sd;
This routine returns 1 if the connected socket descriptor sd is dead, and 0 otherwise.

Table 19: C Library Routines for Queue-Based Message Handling

Page 66



char *com_pop(sd, size)

int sd, *size;
This routine pops the earliest received message from the message queue associated
with connected socket descriptor sd. A pointer to a character buffer is returned. The
character buffer contains the message. If there are no messages in the queue and the
socket descriptor is alive, then com_pop will block until a message arrives in the

queue?. If there are no messages in the queue and the descriptor is dead, then NULL
will be returned. If a non-null pointer to a pre-allocated integer passed in as the size
argument, it will get filled by the routine with the size of the message in bytes. It is
guaranteed that an ASCII null (value 0) will always follow the last byte of the mes-
sage. The responsibility is left to the programmer to free the message buffer when it
is no longer needed. This is accomplished by issuing a £ree call.

void com_unregister(sd)
This routine stops message handling on socket descriptor sd.

Table 19: C Library Routines for Queue-Based Message Handling

a. The current implementation of this routine, prohibits it from blocking within the
event handler of another socket descriptor as this will cause a deadlock situation. As
a result, within a handler of another socket descriptor, the program should test the
queue with com_stat to make sure that messages are available in the queue before
issuing the com_pop call.

4.6.2 Tcl Library Routines for Queue-Based Message handling
The Tcl version of the communications handling library provides an analogous set of rou-

tines for queue-based message handling. These are described in table 20.

com_register_ queue sd parser
This routine expresses interest in messages arriving on the connected socket
descriptor specified by the sd argument. The parser argument is the name of a mes-
sage parsing routine and specifies the message format of the incoming messages
over the connected socket. Newly arrived messages will automatically be queued.
The com_register_gueue routine returns no value.

com_stat sd
This routine checks the status of the message queue associated with the connected
socket descriptor sd. If there are any messages in the message queue, the
com_stat routine will return a positive integer indicating the number of messages
in the queue. If there are no messages in the queue, then 0 will be returned when the
connected socket descriptor is alive and -1 will be returned when the connected
socket descriptor is dead.

com_died sd
This routine returns 1 if the connected socket descriptor sd is dead, and 0 otherwise.

Table 20: Tcl Library Routines for Queue-Based Message Handling

Page 67



com_pop sd ?size?
This routine pops the earliest received message from the message queue associated
with connected socket descriptor sd. A string is returned which contains the mes-
sage. If there are no messages in the queue and the socket descriptor is alive, then

com_pop will not return until a message arrives in the queue?. If there are no mes-
sages in the queue and the descriptor is dead, then an empty string will be returned.
The size argument is optional and is the name of a variable. If it is passed as an
argument then the value of that variable will be set with the size of the message in
bytes.

com_unregister sd
This routine stops message handling on socket descriptor sd.

Table 20: Tcl Library Routines for Queue-Based Message Handling

a. While com_pop is waiting for a message to arrive, idletasks will be processed, thus
avoiding a lock-up of the display

4.7 Combination Message Handling

Throughout a program it is entirely possible to have some socket descriptors use an event-
based message handling approach while others use a queue-based handling approach.
However, there may be a situation where it would be desirable to have both capabilities on
a single socket descriptor with the ability to, at any time, toggle between the two
approaches. The communication handling library provides routines which support this

kind of combination message handling.

4.7.1 C Library Routines for Combination Message Handling
A connected socket descriptor is registered using the com_register_notify com-

mand. The message handling starts off in the queue-based mode and the com_stat,
com_died, com_pop routines will be functional. The program can then issue the
com_notify on routine, to switch from queue-based message handling to event-based
message handling. If there are any messages in the message queue at this point, the han-
dler routine will be called successively on each message in the queue until the queue is
empty. Then the message handler will be called as each new message arrives. The pro-
gram can switch back to queue-based messaging by issuing the com_notify off call.

The following table contains a description of the C interface to the combination message

Page 68



handling routines.

int com_register notify(sd, parser, handler, death_handler)

int sd, (*parser)();

void (*handler) (), (*death_handler) ();
This routine has exactly the same interface as the com_register_event rou-
tine, however, it registers a connected socket descriptor for both event-based and
queue-based message handling. Once registered, the initial state of message han-
dling will be queue-based. The com_stat, com_died, and com_pop routines
will all be functional.

void com_notify_on(sd)

int sd;
This routine puts the connect socket descriptor, sd, into an event-based message
handling mode. In this mode, the registered handler and death_handler routines
will be called as message events occur on the socket descriptor. If there are any
messages in the message queue when the message handling mode is switched, then
the queue will be emptied by calling the handler routine successively on each mes-
sage until the queue.

void com_notify off (sd)

int sd;
This routine puts the connected socket descriptor, sd, into a queue-based message
handling mode. In this mode, messages will be place in the message queue as the
arrive. The com_stat, com_died, and com_pop routines can then be used to
access the messages in the queue.

void com_unregister (sd)
This routine stops messaging handling on socket descriptor sd.

Table 21: C Library Routines for Combination Message Handling

4.7.2 Tcl Library Routines for Combination Message Handling
The Tcl version of the communication handling library provides a parallel set of combina-

tion message handling routines. These are described in table 22.

com_register notify sd parser handler death_handler
This routine has exactly the same interface as the com_register_event rou-
tine, however, it registers a connected socket descriptor for both event-based and
queue-based message handling. Once registered, the initial state of message han-
dling will be queue-based. The com_stat, com_died, and com_pop routines
will all be functional.

com_notify on sd
This routine puts the connect socket descriptor, sd, into an event-based message
handling mode. In this mode, the registered handler and death_handler routines
will be called as message events occur on the socket descriptor. If there are any
messages in the message queue when the message handling mode is switched, then
the queue will be emptied by calling the handler routine successively on each mes-
sage until the queue is empty.

Table 22: Tcl Library Routines for Combination Message Handling

Page 69



com_notify off sd
This routine puts the connected socket descriptor, sd, into a queue-based message
handling mode. In this mode, messages will be place in the message queue as the
arrive. The com_stat, com_died, and com_pop routines can then be used to
access the messages in the queue.

com_unregister sd
This routine stops messaging handling on socket descriptor sd.

Table 22: Tcl Library Routines for Combination Message Handling

4.8 Summary
This chapter has presented the communications handling library of the CHAT suite. The

library provides many flexible ways of handling communications. First, it provides a poll-
ing and event-based approach to handling new client connections. Programs which require
connections on multiple sockets, or multiple connections on a single socket can be greatly
simplified with the routines provided. Second, the library provides support for messages
of varying formats and is not constrained to use single message format. Some standard
message formats are provided and wide variety of others may be added by designing an
appropriate message parser for the particular format. Finally, connected socket descriptors
may be registered for event-based or queue-based message handling as well as a combina-
tion of the two. These routines are at the core of the CHAT suite. By configuring message
handling in the appropriate way, the routines are designed to be integrated into just about

any existing or newly created framework.

Page 70



Chapter 5

The Message Packaging Library

In some cases a very simple message format is sufficient for an application. This message
format may be as simple as a line of ASCII text. In many cases, however, it is desired to
package data of varying types and lengths within a single message. For example, if a mes-
sage contains the data for an image, it may be necessary to package the image data, as well
as other information, such as the height, width and name of the image. The message pack-
aging library provides two message formats which allow entries of singles or vectors of
various primitive types to be packaged together to form a complete message. Ultimately
the message must be containable in a serialized buffer of bytes so that it may be transmit-
ted over a network (or even saved to a file). Direct manipulation of a buffer of is difficuit.
The approach of the message packaging library is to provide a programmer’s interface,
whereby a message data object may be created and slots within the object may be set. This
message data object is stored as an internal data structure, with several available methods
for manipulating it. All manipulation is done on the message data object by using the
using library routines. At any time the object may be converted to a formatted serial buffer
of bytes. This conversion from a data structure to a serial buffer is known as data marshal-
ling. Likewise, the formatted serial buffer of bytes may be converted back into a message
data object for further manipulation. The emphasis of the message packaging library is on

the interface for constructing messages, and the actual data structures and message for-

Page 71



mats used by the library is of little importance to a user of the library.

5.1 The World of Message Data Objects
The message packaging library maintains a global world of message data objects. Objects

may be created and removed from the world at any time. The number of objects which can
be contained in the world is arbitrary and limited only by system memory. Each message
object is referenced by its name. A message object name is a case sensitive ASCII string

which must begin with a letter and contain only letters, numbers, and underscores. Object
names are unique in a namespace global to the program. Each object can have an arbitrary
number of slots. Slots are referenced by name, following the same convention as message
object names. Slot names are unique to the individual object and need not be unique to all
objects. A slot contains data, which is a single or vector of a primitive type. There are

twelve supported types which are described in table 23. The supported types are based on

those supported by TIFF [Ald92], a tag-based file format for storing and interchanging

raster images.

Type Name Description

1 OB_BYTE 8-bit unsigned integer.

2 OB_ASCII 8-bit byte containing 7-bit ASCII code; the last byte must be
NUL (0).

3 OB_SHORT 16-bit (2-byte) unsigned integer.

4 OB_LONG 32-bit (4-byte) unsigned integer.

5 OB_RATIONAL Two OB_LONGS: the first represents the numerator of a frac-
tion; the second, the denominator.

6 OB_SBYTE 8-bit signed (twos complement) integer.

7 OB_UNDEFINED 8-bit byte containing anything.

8 OB_SSHORT 16-bit (2-byte) signed (twos complement) integer.

9 OB_SLONG 32-bit (4-byte) signed (twos complement) integer.

10 OB_SRATIONAL Two OB_SLONGS: the first represents the numerator of a
fraction; the second, the denominator.

11 OB_FLOAT Single precision (4-byte) floating point number.

12 OB_DOUBLE Double precision (8-byte) floating point number.

Page 72

Table 23: Data Types




5.2 C Library Routines for Message Packaging
The C library routines for packaging messages are rich. The object_create,

object_rm, and object_mv routines are used to create, remove and rename message
data objects. The object_slot_set routine is used to package a new slot of data into
the message, and similarly, the object_slot_get routine is used to query a slot of
data from a message. The two routines ascbuf_from object and

binbuf_ from_object are used to convert a message data object into a serial buffer of

bytes. Both a binary buffer format and an ASCII buffer format can be producedl. Appro-
priate parsers exist for the two formats and they can be used in conjunction with the com-
munications handling library. When using the binary buffer format, the
ch_parse_binary parser should be used and when using the ASCII buffer format the
ch_parse_fbrace parser should be used. When one of these formatted buffers is
recieved by a program, the program may call the object_£from_binbuf or
object_from_ascbuf to convert the buffer into a message data object which can
manipulated by the other library routines. The following table describes the C library rou-

tines for message packaging.

void object_create(name)

char *name;
This routine creates a new message data object in the word of objects. The name
argument is a case sensitive ASCII string which will be used to reference the object.
This name must begin with a letter.

void object_rm(name)

char *name;
This routine removes the message data objec,t referred by name, from the world of
objects. If no such object exists, the routine does nothing.

Table 24: C Library Routines for Message Packaging

1. The binary buffer format is a more compact representation of the message data object, however,
the use of the floating point data types (OB_FL.OAT and OB_DOUBLE) within the binary
buffer format is not guaranteed to work across platforms. The C library routines for message
packaging support the binary buffer format, but the Tcl library routines do not support this for-
mat since Tcl cannot handle binary data. As a result when integrating C programs with Tcl pro-
grams, the ASCII buffer format should be used. The specification of both formats is supplied in
an appendix.

Page 73



int object_mv(namel, name2)

char *namel, *name2;
This routine renames a message data object frome namel to name2. If an object of
namel does not exist, the routine will return -1. Otherwise the routine will return 0.
If an object of name2 already exists in the world of objects, it will be overwritten.

int object_exists(name)

char *name;
This routine tests whether the object refered to by name exists in the world of
object. It returns 1 if it does exist, and O otherwise.

char **objects{(argc)

int *argc;
This routine routine returns a list of all objects in the world. The returned list is an
array of character strings (argv style). If there are no objects in the world, then an
empty list will be returned. The arge argument is a pointer to a pre-allocated inte-
ger. If it is not NULL, then it will be filled in with the number of elements in the
returned list. The returned list will be overwritten on successive calls to the
objects routine. If it is desired to save the list, then it must be copied before the
next call to objects.

void object_slot_set(name, slot, value, type, length)

char *name, *slot;

void *value;

int type, length;
This routine sets a slot within the object refererred to by the name argument. If the
object does not already exist, it will be created. The slot argument is a case sensitive
ASCII string (starting with a letter) which will be used to refer to the slot. The value
argument is a pointer to data which will be copied into the slot. This data is a single
or array of one of the types described in table 23. The type argument specifies the
type of the data and is the integer type value. These type values are also defines as
macros of the type names within the library header file. The length argument, is the
number of elements of the specified type to which value points. For example, to set
a slot to contain a vector of three signed long integers, the value argument would be
a pointer to an array containing three ints, the type would be 9 (or OB_SLONG),
and the length would be 3. This routine copies the data into the message object, so
any further manupilation of the original value will not be reflected within the
object.

void object_slot_rm(name, slot)

char *name, *slot;
This routine removes a slot refered by the slot argument, from the object refered by
the name argument. If the object does not exist in the world, or the slot does not
exist within the object, then the routine will do nothing.

void object_slot_mv{(name, slotl, slot2)

char *name, *slotl, *slot2;
This routine renames the slot within the object refered by name, from slotl to slot2.
If the object or slot does not exist, the routine will return -1, otherwise it will return
0. If the destination name refered by slot2 already exists within the object, it will be
overwritten.

Table 24: C Library Routines for Message Packaging

Page 74



int object_slot_exists(name, slot, type, length)

char *name, *slot;

int *type, *length;
This routine tests whether the slot refered by the slot argument, exists within the
object refered by the name argument. If either the object does not exist, or the slot
does not exists, the routine will return 0, otherwise it will return 1. The type and
length arguments are pointers to pre-allocated integers. If these arguments are not
NULL and the slot exists, they will be filled in with the respective type and length
of the data contained within the slot.

void *object_slot_get (name, slot, value)

char *name, *slot;

void *value;
This routine is used to get the data contained within a slot refered by the slot argu-
ment in the object refered by the name argument. The routine copies the data into
pre-allocated space pointed to by the value argument. If the value argument is
NULL, the routine will allocate space (using malloc) and the data will be copied
into it. The return value is a pointer to this space. If either the object or slot does not
exist, then NULL will be returned. It is up to the user of this routine to manage the
memory passed into the routine, or allocated by the routine.

char **object_slots(name, argc)

char *name;

int *argc;
This routine routine returns a list of all slots which exist within the object refered to
by the name argument. The returned list is an array of character strings (argv style).
If the object does not exist in the world or if the object contains no slots, then an
empty list will be returned. The argc argument is a pointer to a pre-allocated inte-
ger. If it is not NULL, then it will be filled in with the number of elements in the
returned list. The returned list will be overwritten on successive calls to the
object_slots routine. If it is desired to save the list, then it must be copied
before the next call to object_slots.

void cbject_print (name)

char *name;
This routine prints the object refered to by name to stdout in a human readable for-
mat. This routine is useful for debugging purposes and allows the slots within the
object to be easily viewed.

char *ascbuf_from_ object (name, size)

char *name;

int *size
This routine represents the object refered by name as a fomatted ASCII buffer of
bytes. The routine returns a pointer to the character buffer containing the packaged
message. This character buffer will be overwritten on successive calls to
ascbuf_from_object. As aresult it should be copied if it is desired to save it.
The size argument is a pointer to a pre-allocated integer. If it is non NULL it will be
filled with the size of the returned character buffer. This returned character buffer is
always guaranteed to have an ASCII nul (0) character following it in memory. It is
intended that this buffer can be written to a file, or written to a connected program
via a socket. The buffer may then be converted back into a message data object.

Table 24: C Library Routines for Message Packaging

Page 75



char *binbuf_from object (name, size)

char *name;

int *size
This routine works exactly the same as ascbuf_from_object, except the
returned character buffer will be in a more compact binary format.

char *object_from ascbuf (buf, name)

char *buf, *name;
This routine takes a properly formatted ASCII character buffer, pointed to by buf,
and unpackages it into a new message data object. The newly formed message data
object may keep its original name by supplying NULL as the name argument. In
this case, a pointer to the original name will be returned by the routine. The space to
which this pointer points will be overwritten on successive calls. The newly created
message data object may be renamed by supplying the new name as the name argu-
ment. If an object with that name already exists, it will be overwritten with the new
message data object.

char *object_from_binbuf (buf, name)

char *buf, *name;
This routine works exactly the same as object_£rom_ascbuf, except that it
takes as an argument a pointer to a properly formattted binary buffer.

Table 24: C Library Routines for Message Packaging

5.2.1 A Message Packaging Example
The following code is a simple example of message packaging. There are three peices of

/* This is the code for a message packaging example */

#include “object.h”
#include <strings.h>
#include <stdio.h>

/* Here is some data which will be packaged */
char user[] = “John C. Carney”;

int numbers{] = {31, 22, 45, 2};

int weight = 160;

main () {
char *buf;

int size;

int weight2;

object_create(“new_ob”);

object_slot_set(*new_ob”, “USER”, user, OB_ASCII, strlen(user)+l);
object_slot_set("new_ob”, “FAVORITE_NUMBERS”, numbers, OB_SLONG, 4);
object_slot_set (“new_ob®, “WEIGHT”, &weight, OB_SLONG, 1);
object_print (“new_ob”);

/* convert object to a buffer */

buf = ascbuf_from_object (“new_ob”, &size);

/* At this point buf could be written to a file or a socket */
printf(*The buffer is:\n%s\n”, buf);

Table 25: C Message Packaging Library Example

Page 76



/* create a new object from a buffer */
object_from_ascbuf (buf, “new_ob2*);
object_print (“new_ob2”);

/* query the “WEIGHT” slot from “new_ob2” */
object_slot_get (*new_ob2”, “WEIGHT", &weight2);
printf("The weight is %d\n”, weight2);

object_rm(“new_ob”);
object_rm(“new_ob2”) ;

Table 25: C Message Packaging Library Example
data, an ASCII string, and array of five integers and a single integer. A mesage data
objected, named “new_ob” is created and slots are set for each peice of data. The object is
then printed and converted to an ASCII formatted buffer. At this point the buffer may be
sent to a connected program or even written to a file. The buffer is then converted back
into a message data object, named “new_ob2”. This object is printed and a value is
extracted from one of its slots. The value is printed, confirming that it is the same as the
original value which was originally set. Finally, both objects are removed from the world
and the program ends.

At this point it is worth re-emphasizing that the message packaging library pro-
vides a rich set of routines for creating messages which can contain slots of varying types
and sizes. Once a programmer has access to such a library, the difficult part of creating an
application which uses message passing is in deciding on the information and messages
which should be sent and the actions taken to respond to such messages. The message
packaging library attempts to relieve the programmer from the details of the message for-

mat by providing a simple interface for creating messages.

5.2.2 Nesting Message Objects
Although there is no direct support by the library routines for nesting message objects, this

may be accomplished indirectly. A message object may be created and converted into an
ASCII buffer. This buffer can then be set as the slot of another message object. This pro-
cess allows objects to be nested arbitrarily, however it relies on the programmer to under-

stand and manage the representation of the final object which is created.

5.2.3 Efficiency and Caching Issues
Since there may exist an arbitrary number of message data objects on the world, each

Page 77



manipulation of an object requires the library routine to locate the object within the world.
Internally, these objects are stored in a list. Although the internal details do not affect the
programmer interface, it is useful to be aware of this when writing efficient code. Locating
an object within the list may require the library routine to search the entire list in the worst
case. However, any time a message data object is manipulated in any way, it will be re-
linked to the head of list list. This creates a “most recently used” caching scheme, where
the most recently manipulated objects will be linked toward the beginning of the list, mak-
ing them more quickly located. As a result successive, or near successive, manipulations

of a message data object will be very efficient.

5.3 Tcl Library Routines for Message Packaging
The Tcl library routines for message packaging are parrallel to the C library routines. The

Tcl routines only support the ASCII formatted buffer and do not support the binary for-
matted buffer. The nesting and efficiency issues presented for the C library routines also
apply in the Tcl case. The following table describes the available Tcl library routines for

message packaging..

object_create name
This routine creates a new message data object in the word of objects. The name
argument is a case sensitive ASCII string which will be used to reference the object.
This name must begin with a letter.

object_rm name
This routine removes the message data object referred by name, from the world of
objects. If no such object exists, the routine does nothing.

object_mv namel nameZ2
This routine renames a message data object frome namel to name2. If an object of
namel does not exist, a Tcl error will be raised. If an object of name2 already exists
in the world of objects, it will be overwritten.

object_exists name
This routine tests whether the object refered to by rame exists in the world of
object. It returns 1 if it does exist, and O otherwise.

objects
This routine returns a Tcl list of all objects in the world. If there are no objects in
the world, then an empty list will be returned.

Table 26: Tcl Library Routines for Message Packaging

Page 78



object_slot_set name slot value type length
This routine sets a slot within the object refererred to by the name argument. If the
object does not already exist, it will be created. The slot argument is a case sensitive
ASCII string (starting with a letter) which will be used to refer to the slot. The value
argument is single element or a Tcl list of elements containing the data to be stored
in the slot. This data is of one of the types described in table 23. The type argument
specifies the type of the data and is the integer type value. These type values are
also contained within global variables corresponding with the name of the type (to
be used as a macro). The length argument, is the number of elements of the speci-
fied type to which value points. For example, to set a slot to contain a list of three
signed long integers, the value argument would be a list containing three ints
(stored as strings in Tcl), the type would be 9 (or $OB_SLONG), and the length
would be 3.

object_slot_rm name slot
This routine removes a slot refered by the slot argument, from the object refered by
the name argument. If the object does not exist in the world, or the slot does not
exist within the object, then the routine will do nothing.

object_slot_mv name slotl slot2
This routine renames the slot within the object refered by name, from slot1 to slot2.
If the object or slot does not exist, the routine will rraise a Tcl error. If the destina-
tion name refered by slof2 already exists within the object, it will be overwritten.

object_slot_exists name slot ?type ?length??
This routine tests whether the slot refered by the slot argument exists within the
object refered by the name argument. If either the object does not exist, or the slot
does not exists, the routine will return 0, otherwise it will return 1. The optional
type and length arguments are names of Tcl variables. If these are passed in as argu-
ments, and the slot exists, they will be filled in with the respective type and length
of the data contained within the slot.

object_slot_get name slot
This routine is used to get the data contained within a slot refered by the slot argu-
ment in the object refered by the name argument. The data is returned as a Tcl list.

object_slots name
This routine routine returns a Tcl list of all slots which exist within the object ref-
ered to by the name argument. If the object does not exist in the world a Tcl error
will be raised.

object_print name
This routine prints the object refered to by name to stdout in a human readable for-

mat. This routine is useful for debugging purposes and allows the slots within the
object to be easily viewed.

ascbuf_from object name ?size?
This routine represents the object refered by name as a fomatted ASCII string con-
taining the packaged message. The size argument is a name of a Tcl variable. If it is
passed in then it will be filled with the size of the returned string. It is intended that
this string can be written to a file, or written to a connected program via a socket.
The string may then be converted back into a message data object. This routine will
raise a Tcl error if the object to be converted does not exist in the world.

Table 26: Tcl Library Routines for Message Packaging

Page 79



object_from_ascbuf buf ?name?
This routine takes a properly formatted ASCII character string, buf, and unpack-
ages it into a new message data object. The newly formed message data object may
keep its original name by not supplying the optional name argument. In this case
the routine will return the object’s name. The newly created message data object
may be renamed by supplying the new name as the name argument. If an object
with that name already exists, it will be overwritten with the new message data
object.

Table 26: Tcl Library Routines for Message Packaging

5.4 Summary
This chapter has served to present the Massage Packaging Library, which is the final

library within the CHAT suite. The library allows for message data objects to be created.
Data of various typoes may be stored in an arbitrary number of slots within a message
object. The object can then be converted to a character buffer, which has one of two spe-
cific message formats. The details of these message formats are left out of this chapter, as
the emphasis has been placed on the interface routines for these creating and manipulating
messages. In addition, a user may utilize all of the functionality of the library without
knowing the details of the message formats. The intent of the Message Packaging Library
has been to provide a simple interface to a rich message format. This library is indepen-
dant, however, the messages generated by the library may be used in conjuntion with the

Communications Handling Library.

Page 80



Chapter 6

Exercising the Tools

In chapters 3, 4, and 5 the CHAT suite of libraries were presented. This chapter will dis-
cuss a factory display program which has been developed and integrated into CAFE,
MIT’s Computer Aided Fabrication Environment. Emphasis will be placed on the specific
integration architecture which has been implemented. Finally, the chapter will conclude
with a brief description of the integration of a graphical user interface and simulation envi-
ronment with a run by run control server [Moy95], as well as other planned integration

projects at MIT.

6.1 CAFE Overview
CAEFE is a software system for use in the manufacture of integrated circuits, providing

day-to-day support for both research and production facilities at MIT [McI92]. One task of
the CAFE system is to maintain a database of lots and machines within a facility. When-

ever a new lot enters the facility, or when any machine operation is performed, appropriate
information will be entered into CAFE by a facility staff member. Multiple CAFEs may be
running simultaneously, possibly over a network, with each operating on a common data-

base.

6.2 Factory Display Overview
A factory display program, called fdisplay, has been developed. The fdisplay program is a

Page 81



graphical program, written in Tcl/Tk, which displays a map of the semiconductor facility.
Machines within the facility appear as icons on the display. The icon itself and the color of
the icon may be used to display the status of a machine. Users may click on specific icons
to determine which lots are currently in the processing queue at a machine. Users may also
browse information about the various lots and machines within the facility. When a lot
transfers from one machine to another, it may appear as an animated dot which moves
along a path from the source machine to the destination machine. The following figure

shows an example of the main window of the fdisplay program.

eraggekﬁck

Figure 12: Example fdisplay Main Window

6.2.1 Controlling the Display
At the core of the fdisplay program is a command language which is used for controlling

the display. The command language provides commands for configuring attributes of the

Page 82



display, placement, manipulation and removal of objects within the display, as well as
some utility commands. The idea is that the command language for controlling the display
provides an interface for other programs which may wish to drive the display. It is
intended that the fdisplay program will always be used in conjunction with a driver pro-
gram. The fdisplay program is an output device, like a printer, and requires communica-
tion from a driving program to control the output. Detailed information about the fdisplay

program and the display command language may be found in the appendix.

6.3 Factory Display Integration with CAFE
The idea of integrating the fdisplay program with CAFE, is to provide a real-time graphi-

cal display of the current status of all the lots and machines within the facility, with an
active display that dynamically changes as the status information changes. The CAFE
database contains this status information, however the information is continually changing
as the facility staff enters new information into CAFE. This type of integration problem
lends itself well to a message passing solution. As new status information gets entered into
the CAFE program, CAFE may then send a message which contains the information to a
running display. The display will then change to reflect the newly arrived message. This
simple integration architecture is complicated by a few issues. The first is that multiple
CAFE programs may be running simultaneously, possibly distributed over a network, with
new status information continually being entered into each CAFE. Similarly, there may be
several display programs being run simultaneously by many users of the system. New sta-
tus information which is entered into any CAFE program must then cause a message to be
“broadcasted” to each running display. The solution to both of these issues is with the use
of a daemon program, called fdaemon. The fdaemon program runs continually at a central-
ized location and listens for connections from clients. Whenever a new fdisplay is started,
it establishes a connection with the fdaemon program. At any given time, there may be
several fdisplays connect to the fdaemon program. Whenever new status information is
entered into any running CAFE program, CAFE establishes a connection with the fdae-
mon and then sends a message. The fdaemon program then distributes the message to all

connected displays. The main job of the fdaemon program is to act as a gatherer and dis-

tributer of messages.

Page 83



6.4 Sending Messages from CAFE
The CHAT suite is written in C and in Tcl/Tk, however CAFE is written in Lisp. As a

result, CAFE cannot directly use the message passing libraries to send messages to the
Jfdaemon program. CAFE does have the ability to spawn executable programs. A program,
called fmessage was written in C and uses the CHAT libraries. At those specific locations
within the CAFE code where it would be desired for CAFE to send a message, the fmes-
sage program is spawned. The fmessage program then connects to the fdaemon program
and sends the appropriate message. The idea of spawning a program from CAFE when-
ever a message needs to be sent may raise issues of efficiency. These messages occur
infrequently, and the simplicity of the integration greatly outweighs any effort to make

communication from CAFE more efficient.

6.5 Communication between fdaemon and fdisplays
Since the fdaemon program is written in C, and the fdisplay program is written in Tcl/Tk,

these programs both use the CHAT libraries for message communication. The fdaemon
program gets new status information from CAFE, it then converts this status information
into a command in the fdisplay command language. The fdaemon then sends this com-
mand to each connected display. The fdaemon program is acting as the driver program for
possibly several running fdisplay programs. Since the information and commands being
sent are fairly simple, a message format of an ASCII string followed by a newline charac-
ter was chosen as the message format throughout the entire integration. All message han-
dling throughout the integration are done in an event based manner. The fdaemon program
remains blocked until a new client connects or a new message arrives. Similarly, the fdis-

play program remains blocked until a new message arrives.

6.6 Initial State of the Display
Thus far, it only has been discussed what happens when new status information is entered

into CAFE. This information ultimately causes messages to be sent and each running dis-
play to be updated. However, there must be a mechanism which gets the display into its

initial state before it can handle these new status messages. Before the fdaemon program is
run, an initial state file is extracted from the CAFE database. As new status information is

gathered by the fdaemon program, it logs it to a file. Whenever a new display client con-

Page 84



nects to the fdaemon, it is immediately sent the initial state file, along with the log file.
This pre-loads the current state of the facility onto the display. This allows new display cli-
ents to connect in at any time. However, after long periods of facility activity the facility
log file will grow, causing newly connecting clients to take longer to load up the current
state of the facility. As a result, a daily or weekly maintenance schedule is executed

whereby the log file is cleared and a new initial state file is generated from the CAFE data-

base.

6.7 Integration Architecture
The integration architecture is shown in figure 13. In the figure there are three CAFEs and

three fdisplays running, however, in practice these numbers are dynamically changing as

users start up new CAFE sessions or new display programs.

Initial
State File
File

Multiple CAFEs and fdisplays may be running simultaneously and distributed over

a network. As new status information is entered into any CAFE, the fmessage program
is spawned, causing a message to be sent to the fdaemon. This message then gets
logged to a file and distributed to all connected displays.

Figure 13: CAFE / Factory Display Integration Architecture

6.8 Facility History and Facility Simulations
There is another use for the factory display program. The display can be used to “play-

Page 85



back” facility events in much faster than real time. This would allow a user to perhaps
view the entire previous week’s event history in just a few minutes. The graphical manner
in which a user can see all machines at every instant in time coveys an enormous amount
of information in a very suitable way. While a view of the facility’s historical events is
useful, also very useful is a view of simulated facility events. The factory display software
has been integrated with facility scheduling and simulation software to provide an “output
device” for the data produced by these programs [Bon94].

The fdriver program has been developed and is written in C++. The job of the
fdriver program is to read an input file containing a facility history (either real or simu-
lated), and to drive an fdisplay program. It does so by sending messages at appropriate
times such that the facility’s history gets played out on the display much faster than real
time. The fdisplay program also has the ability to send messages back to the fdriver pro-
gram telling it to slow down, speed up, pause, and continue the play-back of facility
events. The input file format for the fdriver program is very similar to the factory display
command language and is described in the appendix.

When a fdriver program is started, it automatically spawns an fdisplay program
and a communication channel is established between the two programs. To a user of the
program, this is transparent and it appears as though it is a single program. Figure 14 con-

tains a diagram of the integration architecture.

6.9 Run by Run Control Integration
Libraries within the CHAT suite have been successfully used in the integration of a run by

run control server with a graphical user interface and machine simulator[Moy95]. The run
by run control server provides a computational engine which allows various statistical
process control algorithms to be requested. The graphical user interface is a client program
which connects to the server and contains a set of simulation, graphing, and archiving
tools to aid in the test of the server. Other clients may also connect to the server, using the

results of the server to set the control parameters on production equipment.

6.10 Other Integration Projects
There are other integration efforts in progress within MIT’s Computer Integrated Design

and Manufacturing (CIDM) project. Plans have been made to use the message passing

Page 86



!

History
File

A file containing facility history (either real or simulated)
is read by the fdriver program, causing messages to be sent to
the fdisplay program at appropriate times.

Figure 14: Facility History / Factory Display Integration Architecture

libraries of the CHAT suite as part of this integration work. The remote fabrication project

[Kwo095] and remote inspection projects [Kao95] are two such examples.

6.11 Summary
A factory display program has been developed and successfully integrated into CAFE by

using the tools provided by the CHAT suite. This chapter has served to outline the archi-
tecture of the integration. Other integration efforts have successfully made use of the

tools. Plans have been made to incorporate the tools onto other integration projects at
MIT.

Page 87



Page 88



Chapter 7

Conclusion

Message passing provides an approach to software integration whereby structured infor-
mation may be exchanged among running programs. The CHAT suite of libraries has been
developed to provide flexible support for message passing within C and Tcl/Tk programs.
Although the tools have been used successfully in integration projects, there are some lim-
itations of the tools and potential for future work in this area. This chapter will address

these issues.

7.1 A Graphical Tool for Software Integration
The libraries developed as part of the CHAT suite provide solutions for some of the lower

level message passing issues. These include establishing connections, handling incoming
messages, and packaging data into standard formatted messages. However, these libraries
in a sense solve some of the easier, but nonetheless necessary, problems of software inte-
gration. Once we have established a mechanism for sending and receiving messages, the
more difficult and higher level problems arise. What is the set of messages which may be
sent or received? What are the events leading up to a particular message being sent? What
actions are taken when a particular message is received? What is a suitable integration
architecture? The answers to these questions will be unique for each integration project
encountered. Although the Viewgraph program described in chapter 2, and the Factory

Display program described in chapter 6 both are integrated using the message passing

Page 89



tools, the integration architecture, messages and actions are very different.

A graphical model which describes the dynamic nature of the integrated applica-
tion can be extremely helpful in designing working solutions. In chapter 2, the viewgraph
example was modelled in this fashion. Useful as part of the future development of the
message passing system would be a graphical tool. This tool could be used to aid in the
modelling of integrated systems. Users would be able to schematically draw applications
and connections as well as defining messages and events. When the integrated system is
modelled the graphical tool would have the ability to synthesize the model into actual
message passing code. The code would consist of function calls to the library routines
within the CHAT suite. The resulting code may then be edited and added into new or

existing applications to realize the integrated system.

7.2 Message Verification
As messages are received by the current suite of tools, they are parsed by a message parser

to determine if a complete message has arrived. This restricts received messages to be of
the proper format appropriate for the chosen parser. However, messages are sent by simply
writing them to the connected socket descriptor without any restrictions on what may be
written to a socket descriptor. As a result, it is possible to write a message which is not
properly formatted. This may result in the buffer of received data to be corrupted, causing
the parser to fail to parse any subsequent messages. To prevent this, it would be useful to
provide support for message verification on the sending end of the connection. This would
verify that all outgoing messages are properly formatted and that verified messages which

are sent will be reliably received. Currently, this burden is placed on the programmer.

7.3 Time-out Mechanism
The message passing tools provide support for detecting when connections are dead.

However, it is possible for a live connection to have a hung program connected to it. If this
occurs, messages sent to that program will not be properly handled. It is possibly that the
sending program is expecting a reply which will never come. In these cases it would be
useful if the message passing tools supported a time-out mechanism. That is, if a reply
message is not received within some amount of time, the program can perform some

action to handle this exception. The action might be to simply assume the connected pro-

Page 90



cess is hung and close the connection. This time-out functionality may be implemented
external from the library routines, but a better solution would be to incorporate it directly

into the libraries.

7.4 Efficient Message Formats
The message packaging library offers an interface to two message formats. There is a

binary message format and an ASCII message format. The binary message format is a
more compact representation of the data contained within the message. However, if the
amount of data contained within the message is very large, then transmission of the mes-
sage will not be very efficient. As a result, more efficient message formats can be
designed. These message formats could use data compression algorithms to compress suit-
able messages. Efficiency will be gained when the CPU overhead for compressing and
decompressing the message is less than the difference in transmission times between the
larger and smaller versions of the message. An optimized system might have to measure
data throughput and adaptively adjust its decision to compress or not based on this mea-

surement.

7.5 Lightweight Version of the Libraries
The communications handling library allows programmers to specify a message format

and appropriate message parser. There are many choices to choose from as well as a spec-
ification for designing a new message format and parser. However, the library could be
simplified if it only supported a single message format. If one of the general purpose mes-
sage formats were chosen as the “standard” message format, then a lightweight version of
the library could be made based on that single format. The newly created library would
not require the programmer to specify any information about the message format or mes-
sage parser. However, the more flexible and heavier weight library would still be available

if it were necessary to have the added flexibility.

7.6 Porting Libraries to Other Platforms
The libraries developed as part of the CHAT suite were written to run under Unix. It might

be very desirable to run the libraries on other platforms which provide support for the
TCP/IP protocols, such as personal computers. The library code uses some Unix specific

system calls which must be modified when porting it to other operating systems. A version

Page 91



has been successfully ported to IBM’s OS/2 operating system. The OS/2 version of the
libraries only provides support for TCP socket connections and does not support Unix
domain socket connections. This does not remove any functionality from the libraries,
however, socket connections on the same machine, if any, will have to be made using the
less efficient TCP connection. The viewgraph server program described in chapter 2 was
compiled to run on OS/2. Clients running on a Unix machine, successfully connected and
communicated with the server. Future work may involve porting the libraries to more plat-

forms.

7.7 Summary
As newer and larger software systems are being developed, software integration is

becoming an increasingly important. An enormous effort is spent on integrating pieces of
new software with existing software. There are many methods used to integrate software.
Programs may operate on a common set of files, or on a common database. The focus of
this thesis has been on using message passing as a mechanism for software integration.

Message passing allows communication of data and information among running
programs. While there are some general purpose message passing systems available, they
do not provide the flexibility to design message formats or specific integration architec-
tures. As a result, the CHAT suite of libraries has been developed to provide a flexible
level of message passing support for applications. The CHAT suite provides support for
establishing connections, handling newly connecting clients and newly arrived messages,
as well a support for packaging data into messages. It is intended that existing programs
can be linked with the libraries and easily modified to include message passing capabili-
ties. New programs can also be written to include these capabilities.

The CHAT suite has been written both in C and in Tcl/Tk, a scripting language
used for building graphical interface. As a result a wide combination of C programs and
Tcl/Tk programs may be integrated together to produce an integrated application. The
viewgraph application, presented in chapter 2, and the factory display program, presented
in chapter 6, are two examples where the message passing tools have been successfully
used in software integration efforts. The tools have also been used in other software inte-

gration projects, and plans are underway to use them in other projects at MIT.

Page 92



Although the message passing libraries are flexible, they serve the purpose of solv-
ing some of the lower level message passing issues. There is some room for future
improvement of the libraries themselves, however, there is a significant room for future
work aimed at solving some of the higher level issues of software integration. Each indi-
vidual integration project will provide several new problems and challenges which must
be solved. Future development of software design tools and frameworks aimed specifi-
cally at software integration will help to reduce the amount of pain and effort required to

integrate software.

Page 93



Page 94



References

[Rei90]

[Dic94]

[Chu%4]

[Lib94]

[Sun91]

[Zim91]

[Ous94]

[McI92]

[Moy95]

S. P. Reiss, “Connecting Tools Using Message Passing in the Field Environ-
ment,” IEEE Software, July 1990, pp. 57-76.

A. Dickman, “The RPC-vs.-Messaging Debate: Under the Covers,” Open
Systems Today, August 15, 1994, pp. 58-59.

C. Chung, Y. Wang, W. Lin, Y. Kuo, G. Hsieh, “Tools Cooperation in an Inte-
gration Environment by Message-passing Mechanism,” Proceedings Eigh-
teenth Annual International Computer Software and Applications
Conference (COMPSAC 94), Taipei, Taiwan, Nov. 9-11, 1994.

D. Libes, “X Wrappers for Non-Graphic Interactive Programs,” Proceedings
of Xhibition 94, San Jose, California, June 20-24, 1994.

SunSoft Inc, “The ToolTalk Service,” A SunSoft White Paper, Revision 01,
June 1991.

D.. Zimmerman, The Finger User Information Protocol, Network Working
Group, RFC 1288, December 1991.

J. K. Ousterhout, Tcl and the Tk Toolkit, Addison Wesley, Reading, MA,
1994.

M. B. Mcllrath, D. E. Troxel, M. L. Heytons, P. Penfield, Jr., D. Boning, R.
Jayavant, “CAFE - The MIT Computer-Aided Fabrication Environment,”
IEEE Transactions on Components, Hybrids, and Manufacturing Technol-
ogy, Vol. 15, No. 2, May 1992, p. 353.

W. P. Moyne, Run by Run Control: Interfaces, Implementation, and Integra-

Page 95



[Rum91]

[Ste90]

[Ald92]

[Chi%4]

[Bon94]

[Kwo95]

[Kao95]

Page 96

tion, S.M. Thesis, Department of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology, February 1995.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Ori-
ented Modelling and Design, Prentice Hall, Englewood Cliffs, New Jersey,
1991.

W. R. Stevens, Unix Network Programming, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1990.

Aldus Corporation, TIFF™ Revision 6.0, Aldus Developers Desk, Seattle,
WA June 1992.

V. Chin, The CAFE Layout Program, S.B. Thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology,
May 1994.

A. Bonvik, Introduction to the CAFE Scheduling and Simulation Testbed,
Massachusetts Institute of Technology Internal CIDM Memo Series, Memo
94-11, September, 1994.

J. Kwon, Remote Fabrication of Integrated Circuits, Massachusetts Institute
of Technology Internal CIDM Memo Series, Memo 95-3, March, 1995.

J. Kao, Remote Microscope for Inspection of Integrated Circuits, Massachu-
setts Institute of Technology Internal CIDM Memo Series, Memo 95-5,
March, 1995.



Appendix A

Using the Library Source Code

The libraries which make up the CHAT suite are available in C and Tcl/Tk source code.
This appendix describes the source code files and how to incorporate the libraries into new

programs.

The C Source Files
The following table lists the C source code files and header files which make up the CHAT

libraries. To incorporate one or more libraries into a program, the C source code for the
libraries must be compiled and linked with the program. The corresponding header files
must be included by the program. Once the header files are included, the library routines

may be used throughout the program.

CHAT Library Source File Cﬁgﬁgglgigg
Connection Support basic_sockets.c basic_sockets.h
Communications Handling com_handler.c com_handler.h
Message Packaging object.c object.h

Table 27: C Library Source and Header Files

The Tcl/Tk Source Files
The Tcl/Tk libraries of the CHAT suite require that the version of Tcl/Tk include the

Page 97



TclDP, TclX, and TclCOM extensions. A Tcl/Tk “wish” shell can be built with these
extensions (and some others) with a single install of the GoldTk package available by
anonymous ftp at ftp://mtl.mit.edu/pub/CIDM/goldtk/goldtk3.6g.tar.gz. The following
table lists each CHAT library and its corresponding Tcl/Tk source code. To incorporate a

library into a Tcl/Tk program, simply use the Tcl source command on the desired library

source file.
CHAT Library Source File
Connection Support basic_sockets.tcl
Communications Handling com_handler.tcl
Message Packaging object.tcl

Table 28: Tcl Library Source Files

Page 98



Appendix B

Viewgraph Source Code

This appendix contains the source code for the viewgraph server application described in

chapter 2. It is intended that this source code will provide a skeleton for which other inte-

grated applications may be built. The source code is commented and should be self-

explanatory, however, refer back to chapters 3, 4, and 5 for descriptions of the actual

library routines used within the code. The code for the viewgraph client has been omitted,

as much of the code for the client is used for creating the user interface and is not related

to message passing.

/*

Copyright (c) 1995 Massachusetts Institute of Technology.
All rights reserved.

This software is supplied *as is,” without any kind of
warranty whatsoever, but not limited to the implied
warranties of merchantability and fitness for a particular
purpose. MIT makes no representations about the suitability
of this software for any purposes and does not promise to
support it in any way.

This software is not to be incorporated into a commercial
product, or access to it sold, without written permission
from MIT.

This software may be copied or distributed to others within
your organization that are within the United States or Canada

so long as this copyright notice is included. This software may
not be distributed outside the United States and Canada.

Please send bug reports, fixes, or enhancements to
cafe@mtl.mit.edu

Table 29: Viewgraph Server Source Code

Page 99



Page 100

* or Room 36-277, MIT, Cambridge, Mass. 02139.
*/

#ifndef lint

static char copyright(] =

“@(#) Copyright (c) 1995 Massachusetts Institute of Technology.\n\
All rights reserved.\n”;

#endif not lint

/* John C. Carney
* Massachussetts Institute of Technology

* ygd.c - Viegraph Server Program

* This program is started to create a viewgraph session. Arbitrary clients

* may connect to the server. Messages are received and sent by the server to
* accomplish the viewgraph functionality.

*/

/* The following includes all three header files for the CHAT suite */
#include “basic_sockets.h”

#include “com_handler.h”

#include “object.h”

/* Other includes, used mainly for the file descriptor set macros */
#include <unistd.h>

#include <sys/types.h>

#include <sys/time.h>

#include <stdio.h>

fd_set clients; /* The set of socket desciptors of the clients */

int control = -1; /* The current controller (-1 means nobody) */

int num_pictures = 0; /* The number of pictures stored in message objects */

int submit_sfd = -1; /* The descriptor of the client who is currently
submitting a picture */

/* This is the handler which is calles when a client dies */
void died(sfd)
int sfd;
{
char *buf; int i, size, cpid = -1;
unsigned char tmp;

com_unregister(sfd) ; /* Unregister message handling on the socket */
close(sfd); /* Close the socket */
FD_CLR(sfd, &clients); /* Remove socket descriptor from set of clients */
if (sfd == control) { /* Did the dead client have control? */

control = -1;

/* set control object to nobody */
object_slot_set (“control”, "USERNAME”, “nobody”, OB_ASCII, 7);
object_slot_set(“control”, "HOSTNAME”, ““, OB_ASCII, 1};
object_slot_set(“control”, "PID”, &cpid, OB_SLONG, 1);
buf = ascbuf_from_object(“control”, &size);
for (i = 0; i < 256; i++) /* send control message to all clients */

if (FD_ISSET(i, &clients))

write(i, buf, strlen(buf));

tmp = 0;
/* set the point object to off */
object_slot_set(“point”, "STATE”, &tmp, OB_BYTE, 1);

Table 29: Viewgraph Server Source Code




object_slot_rm(“point”, “COORD") ;
for (i = 0; i < 256; i++)
if (FD_ISSET(i, &clients)) /* send point message to all clients */
write(i, buf, strlen(buf));
}

if (sfd = submit_sfd) { /* Was the dead client in the middle of submitting
*/
submit_sfd = -1; /* an image ? */
tmp = 0;
object_slot_set(“*servstat”, “STATUS”, &tmp, OB_BYTE, 1);
buf = ascbuf_from_object (“servstat”, &size);
for (i = 0; i < 256; i++) /* send a status message to all clients */
if (FD_ISSET(i, &clients))
write(i, buf, strlen(buf));

/* A client wishes to take control */
void take(sfd)
int sfd;
{
char *buf; int i, size;
if (control == -1) { /* if nobody has control */
control = sfd;
object_mv(“incoming”, “control”);
object_slot_set(“control”, “COMMAND”, “CONTROL”, OB_ASCII, 8);
buf = ascbuf_from_object(“control”, &size);
for (i = 0; i < 256; i++) /* send control message to all clients */
if (FD_ISSET(i, &clients))
write(i, buf, strlen(buf));

/* A client wishes to give up control */
void give(sfd)

int. sfd;

{
char *buf; int i, size, cpid = -1;
if (control != sfd) return; /* test whether client even has control */
control = -1;

/* set control object to nobody */
object_slot_set (“control”, "USERNAME”, *nobody”, OB_ASCII, 7);
object_slot_set(“control”, “HOSTNAME”, “*“, OB_ASCII, 1);
object_slot_set(“control”, *PID”, &cpid, OB_SLONG, 1);
buf = ascbuf_from_object(“control”, &size);
for (i = 0; i < 256; i++) /* send control message to all clients */

if (FD_ISSET(i, &clients))

write(i, buf, strlen(buf));

/* A client is about to send an image */
void presubmit (sfd) (
char *buf; int i, size;
unsigned char busy;
submit_sfd = sfd;
/* Tell all clients that the server is busy */
busy = 1;

Table 29: Viewgraph Server Source Code

Page 101



Page 102

object_slot_set(“servstat”, “STATUS”, &busy, OB_BYTE, 1);
buf = ascbuf_from_object(“servstat”, &size);
for (i = 0; 1 < 256; i++)
if (FD_ISSET(i, &clients))
write(i, buf, strlen(buf));

/* A client has submitted an image */
void submit (sfd)
int sfd;
{
char newob[10];
char *buf; int i, size;
unsigned char busy;
sprintf (newob, “pic%d”, num_pictures++);
/* save image by moving message object to another name */
object_mv(“*incoming”, newob);
object_slot_set(newob, “COMMAND”, “PICTURE”, OB_ASCII, 8);
buf = ascbuf_from_object (newob, &size);
for (i = 0; i < 256; i++) /* send new picture object to all clients */
if (FD_ISSET(i, &clients) && (i!=sfd))
write(i, buf, strlen(buf));
submit_sfd = -1;
busy = 0; /* send status “idle” message to all clients */
object_slot_set(“servstat”, “STATUS”, &busy, OB_BYTE, 1);
buf = ascbuf_from_object(“servstat”, &size);
for (i = 0; 1 < 256; i++)
if (FD_ISSET(i, &clients))

write(i, buf, strlen(buf));

/* The controlling client has chosen an image to display */
void display (sfd)
int sfd;
{
char *buf; int i, size;
if (control != sfd) return; /* test whether the client has control */
object_mv(“incoming”, “display”);
buf = ascbuf_from_object(“display”, &size);
for (i = 0; i < 256; i++) /* send display message to all clients */
if (FD_ISSET(i, &clients))
write(i, buf, strlen(buf));

/* The controlling client has changed the pointer*/
void point (sfd)
int sfd;
{
char *buf; int i, size;
if (control != sfd) return; /* test whether the client has control */
object_mv(“incoming”, “point”);
buf = ascbuf_from_object(“point”, &size);
for (i = 0; i < 256; i++) /* send point message to all clients */
if (FD_ISSET(i, &clients))

write(i, buf, strlen(buf));

Table 29: Viewgraph Server Source Code




/* This handler is called whenever any message is received by a client
* The approach is to convert the message buffer to an object, and rename
* the object to “incoming”. Then the “COMMAND” slot is tested to see what
* kind of message was received. The appropriate routine is then called for
* the incoming message. Each routine will then look at the “incoming” message
* and act appropriately based on the contents of the message.
*/
veid handler (message, size, sfd)
char *message;
int size, sfd;
{
char command[20];
object_from_ascbuf (message, “incoming”); /* convert to an object */
object_slot_get(“incoming”, “COMMAND”, command);
if (strcmp(command, “PRESUBMIT”) == 0)
presubmit (sfd) ;

else if (strcmp(command, “SUBMIT”) == 0)
submit (sfd) ;

else if (strcmp(command, “TAKE”) == 0)
take(sfd);

else if (strcmp(command, “GIVE") == 0)
give(sfd);

else if (strcmp(command, “DISPLAY*) == 0)
display(sfd);

else if (strcmp(command, “POINT”) == 0)
point (sfd);

/* This routine is called whenever a new client connects to the listening
* socket descriptor */
void new_client (sfd)
int sfd;
{
char picob[10], *buf; int i, size, newsfd;
unsigned char busy;
newsfd = bs_accept(sfd); /* accept connection */
FD_SET(newsfd, &clients); /* add socket descriptor to the set of clients */

/* Tell all clients that the server is busy */
busy = 1;
object_slot_set(“servstat”, “STATUS”, &busy, OB_BYTE, 1);
buf = ascbuf_from_object(“servstat”, &size);
for (i = 0; 1 < 256; i++)
if (FD_ISSET(i, &clients))
write(i, buf, strlen(buf));

/* Send the control message, picture messages, display message,
point message to the new client */

buf = ascbuf_from object(“control”, &size);

write(newsfd, buf, strlen(buf));

for (i = 0; i < num_pictures; i++) {
sprintf(picob, “pic%d”, i);
buf = ascbuf_from_object (picob, &size);
write(newsfd, buf, strlen(buf));

}

buf = ascbuf_from_object(“display”, &size);

write(newsfd, buf, strlen(buf));

Table 29: Viewgraph Server Source Code

Page 103



Page 104

buf = ascbuf_from_object(“point”, &size);
write(newsfd, buf, strlen(buf));

/* Tell all clients that the server is idle */
busy = 0;
object_slot_set (“servstat”, “STATUS”, &busy, OB_BYTE, 1);
buf = ascbuf_from_object(“servstat”, &size);
for (i = 0; 1 < 256; i++)
if (FD_ISSET(i, &clients))
write(i, buf, strlen(buf));

/* register handling on new client */
com_register_event (newsfd, ch_parse_fbrace, handler, died);

/* Here is the main. There are some objects which will be used to store the
* gtate of the viewgraph program. These are initialized. Then a listening
* socket is created and registered */

main (argc, argv)

int argc;

char **argv;

{

int sfd, cpid = -1;
unsigned char pstate = 0;

/* There should be a single argument containing the port number */
if (arge != 2) {

fprintf(stderr, “usage: %s port\n*, argv[0]);

exit(1);

/* These objects will be used to store the state of the viewgraph
* application */

object_create(“control”);

object_slot_set (“control”, “COMMAND”, “CONTROL”, OB_ASCII, 8);

object_slot_set (“control”, "USERNAME”, “nobody”, OB_ASCII, 7);

object_slot_set(“control”, "HOSTNAME”, ““, OB_ASCII, 1);

object_slot_set(“control”, “PID”, &cpid, OB_SLONG, 1);

object_create(“*display”);
object_slot_set (“display”, "COMMAND”, “DISPLAY”, OB_ASCII, 8);
object_slot_set (“display”, "NAME”, “blank”, OB_ASCII, 6);

object_create(“point”);
object_slot_set(“point”, "COMMAND”, “POINT”, OB_ASCII, 6);

object_slot_set(“point”, “STATE", &pstate, OB_BYTE, 8);

object_create(“servstat”);
object_slot_set(“servstat”, "COMMAND”, “SERVSTAT”, OB_ASCII, 9}:

/* Create a listening socket descriptor */

if ((sfd = bs_tcp_listen(atoi(argv([1l]))) < 0) {
fprintf(stderr, "“Could not listen to port %s\n”, argv[l]);
exit(1);

}

FD_ZERO(&clients); /* initialize the set of clients to empty */

Table 29: Viewgraph Server Source Code




com_register_listen(sfd, new_client); /* register the listening socket
* for handling */
while(l) pause(); /* pasue and wait for events to occur */

Table 29: Viewgraph Server Source Code

Page 105



Page 106



Appendix C

Message Formats

The message packaging library presented in chapter 5 provides an interface for creating
message objects. These objects can be converted into a serial buffer of bytes. The value in
the library is that it does not burden the programmer with the underlying details of the
message format. The programmer simply uses the interface routines to create messages
and to add and remove the slots (or entries) into those message. In this appendix, the

underlying binary and ASCII message formats are specified.
The Binary Message Format

The first format to be described is a binary message format based on TIFF, a tag-based file
format for storing and interchanging raster images. The binary message format will gener-
alize some of the ideas set forth in the TIFF specification. To read more about TIFF please

read the TIFF 6.0 specification (Aldus Corporation, Seattle, WA).

The binary message begins with a 16 byte object file header which points to an object file
descriptor (OFD). The object file descriptor can contain an arbitrary amount of entries,

where each entry points to a specific piece of data.

Page 107



Object File Header
The binary message must begin with a 16-byte header which abides by the following.

Bytes 0-3: The byte ordering used within the message. These four bytes should
be 49494949 HEX for little endian byte ordering (least significant
byte comes first) for any type of multi-byte numeric data within the
buffer. These four bytes should contain 4D4D4D4D HEX for big

endian byte ordering (most significant byte comes first).

Bytes 4-7: The number 01AESB HEX. This number is arbitrarily chosen but
identifies the binary message format. The ordering of this number

depends on bytes 0-3.
Bytes 8-11:  The size of the binary message buffer in bytes.

Bytes 12-15: The offset (in bytes) to the Oth OFD. The offset refers to the loca-
tion within the buffer relative to the beginning of the buffer (which
is at location 0). All offsets must be integer divisible by 4, placing
the pointed information on 4-byte word boundaries. Other than the
word boundary constraint, these offsets may point anywhere in the

buffer and it is up to the reader to follow the pointers.
Object File Directory

The first four bytes of the object file directory (OFD) contain the offset to the next OFD, if
one exists. If there does not exist another OFD then these four bytes should be 0. The next
four bytes of the OFD contain the number of directory entries contained within the OFD.
Following this should be 16-bytes for each entry within the OFD.

The 16-byte OFD entry should abide by the following format:
Bytes 0-3: The Type field.

Bytes 4-7: The Count field.

Page 108



Bytes 8-11:  Offset to the Tag field.

Bytes 12-15: Offset to the Value field.

Header Directory Entry
0 Byte Order X Type
4 01AE5B HEX X+4 Count
8 Size of Buffer X+8 \ Offset of Value
12 A Offset of Oth OFD X+12

\. Offset of Tag

o0 ™
A B Offset of Next OFD Value
A+4 Number of Directory Entries
A+8 Directory Entry O Tag
A+24 Directory Entry 1
A+40 Directory Entry 2

Figure 15: Binary Message Format

An entry contains an offset to a tag and an offset to it’s associated value. The tag is simply
a NUL terminated ASCII string. It should begin with a letter and contain only letters,
numbers, and underscore characters. The value may be a single element of a particular
type or a vector of elements of a particular type. The type field contains a a number which
represents the type of data. The count field contains the number of elements of this type
stored in the value field. Each entry is actually a one dimensional array of data, where a

count of one is a single element.

Type Description
1=BYTE 8-bit unsigned integer
2=ASCII 8-bit byte containing 7-bit ASCII code; the last byte must be
NUL (0).
3=SHORT 16-bit (2-byte) unsigned integer.
Table 30: TIFF Types

Page 109



Type Description

4=LONG 32-bit (4-byte) unsigned integer.

5=RATIONAL Two LONGS: the first represents the numerator of a fraction; the
second, the denominator.

6=SBYTE An 8-bit signed (twos-complement) integer.

7=UNDEFINED An 8-bit byte that may contain anything.

8=SSHORT A 16-bit (2-byte) signed (twos-complement) integer.

9=SLONG A 32-bit (4-byte) signed (twos-complement) integer.

10=SRATIONAL Two SLONGsS: the first represents the numerator of a fraction; the
second, the denominator.

11=FLOAT Single precision (4-byte) IEEE format.
12=DOUBLE Double precision (8-byte) IEEE format.
Table 30: TIFF Types

The ASCII Message Format

The ASCII message format is intended to be a mapping of the binary message format. It is
advantageous to have both a binary message format and an ASCII message format. While
it seems that the binary message format would be more efficient, some programming lan-

guages are better equipped to deal with ASCII messages.

The concepts of object file descriptor and directory entries will also be used in the ASCII
message format. The entire ASCII message must be enclosed within braces, and each
OFD must be enclosed within braces. Any type of white space (spaces and newlines) are

allowed between successive braces. A typical message might have the following syntax:
{{Oth OFD)} {1st OFD} ...}

Note there is no object file header. 1t is not necessary in the ASCII message format. Each

OFD should have the following syntax:
{num_entries} {TAG TYPE COUNT {VALUE}} {TAG TYPE COUNT {VALUE}} . ..

The number of directory entries within the OFD should be placed in the num_entries loca-
tion. The TAG, TYPE, COUNT and VALUE locations are analogous to those in the binary

message format. The following are some example entries:

Page 110



An entry containing two shorts representing the dimensions of a matrix might look like the
following. Note that individual numbers within the value are separated by white space.
This is true of all the numeric types (1, 2,4, 5, 6, 8, 9, 10, 11, 12).

{MAT_DIM 3 2 {12 15}}

An entry containing an ASCII string representing a street address might look like the fol-
lowing. Note here that the terminating NUL character is included in the COUNT (per the
TIFF spec.) however this NUL character is not embedded within the ASCII buffer. Since
it is possible for and ASCII string to contain curly braces which may interfere with the
braces that define the message format. All curly braces within ASCII entries must be
escaped by preceding it with the “\” character. Likewise, all “\” characters within an

ASCII entry must also be escaped by preceding it with another “\” character.
{STREET ADDRESS 2 17 {555 Memorial Dr.}}

An entry containing 32 bytes of UNDEFINED (type 7) data. While the data is actually 32
bytes, each byte is encoded with 2 ASCII bytes representing the hexadecimal digits O, 1, 2,
3,4,5,6,7,8,9, A, B, C, D, E, F. These digits may have white space or newlines embed-
ded within them.

{MY_ICON 7 32 {OAFF217C 30CA2BlA EC1A578A 0034DFAl}}

An entire message can be built up from entries. Here is an example of an entire message.

{ {{4} {(name 2 15 {Carney, John C}}
{dob 1 3 {11 1 71}}
{height 11 1 {6.00}}
{weight 11 1 {162.50}}}
{{3} {favorite_food 2 6 {pizza}}
{favorite_numbers 8 5 {-5 22 12 -8}}

{favorite_icon 7 32 {0AFF2A7C 30CA2B1A EC1A578A 0034DFAl}}}

Page 111



Interface with the Message Packaging Library

The message formats described may encapsulate multiple message objects into a single
character buffer. However, the current version of the message packaging library only sup-
ports the conversion of single message objects into a character buffer. In this case, these
buffers will only contain a single object file descriptor. Slots within the message object
map directly into entries within the message. The name of the slot is stored in the tag field
of the message. The type, count, and value fields of the entry are used to store the type,
length, and value of a slot. The first entry of a message will always be used to store the

¢

name of the message object. The rag filed will always contain “_name”, and the name

itself will be of type 2 (ASCII) and stored within the value field of the first entry. This con-
vention is used by the message packaging library, and object names will automatically be

extracted from this entry within the message buffer.

Page 112



Appendix D

Factory Display Details

The fdisplay, fdaemon, and fdriver programs were described in chapter 6. This appendix
will provide a brief fdisplay user’s manual, as well as a technical specification of the fdis-

play command language and the fdriver file format.

User’s Manual
The fdisplay program may be spawned from another program or started directly from the

command line prompt. It is intended that fdisplay will be run in conjunction with a driver
program via a socket connection. As a result, when the fdisplay program is launched it
must be made aware of the socket address of the host driver program. The -host command
line option followed by the host address can be used. The host address can either be in the
form ip_address:port, for a TCP socket connection, or a unix path for a unix domain
socket connection. If the -host option is not explicitly specified, then the fdisplay program
will use the setting of the FD_HOST environment variable, if it has been set. The follow-
ing lines are examples of how to launch the fdisplay program:

prompt% fdisplay -host garcon.mit.edu:1086

Page 113



prompt% fdisplay -host /tmp/sock

prompt% fdisplay

Although these three examples are shown as lines being typed in at the command prompt,
in many cases the driving program will transparently spawn the fdisplay program directly.
Once launched the main window of the fdisplay program will appear. The window starts
off “blank”, until the driver program begins sending commands which will populate the
display with a facility map including machines and lots. A detailed map can be loaded in

seconds. The following figure shows an example populated main window

Fatory Diaplay

Figure 16: Populated Main Window

The main window is a resizable window which contains a scrollable canvas region
along with a main tool-bar. Several objects are placed on the canvas. There are passive
objects such as walls and two types of headings. The purpose of these objects is to provide

the user a basic map of the facility. Although it is possible for these objects to be added or

Page 114



removed during a display session, generally they will be placed at start-up time and
remain static throughout the display session. The three other types of objects which may
be placed on the display are machines, lots, and paths. Machines appear as icons on the
display, with the machine name and number of lots directly below the icon. Lots may be
placed at the various machines. As the lots are placed the number of lots indicators will
change to reflect the newly placed lots. Lots may be removed from a machine and placed
at another machine. During these transitions it might be desirable that the lot take some
non-zero time to transfer between machines. The path object allows lots to be placed in a
path and remain on the display while being transferred between machines. The path
appears as a segmented line on the display and will only appear visible if it contains one or
more lots. At various times a lot may appear as a dot on the display. The dot may move
along a path to create an animation effect.

Obtaining Information From the Display

While the colors of the icons themselves on the display might provide the immediate sta-
tus of a machine, the user also has the ability to probe the display to obtain various other
status information about the machines, lots, and transit paths within the facility. At the bot-
tom of the main window of the fdisplay program is a tool-bar containing several buttons.
Three of these are labeled Machines, Lots, and Transit. Clicking the left mouse button on
one of these will bring up a new window containing a list of all of the objects of the
respective type within the facility. For example, clicking on the Machines button, will
bring up a window containing a list of all the names of the machines contained within the
facility. The names of the machines will appear in the color corresponding to the color of

their icon on the display. Clicking on any machine name with the left mouse button will

Page 115



cause a target to flash on top of the machine’s icon on the display. This is useful as a quick
way of locating machines within the facility. This is perhaps more useful when applied to
lots. Clicking on the name of a lot with the left mouse button, will flash a target on the
machine or transit path where the lot currently resides. Clicking the right mouse button on
the name of an object within the list will bring up a hypertext-type window which contains
any type of textual information about the object, as well as links to pictures, or executable
programs. Clicking on picture link will allow the picture to viewed, while clicking on an
executable link will spawn an executable program in the background. An example of a

hypertext information window for a machine is shown in figure 17.

‘coater

Figure 17: Hypertext Information Window
The hypertext information window may also be brought up by clicking the left mouse but-

ton directly on an icon for a machine, or a line representing a path.
In addition to information which is obtained from probing the display, at the top
right of the main window is a 40 character text message which can be used to display any

type of message to the user. For example, this message might be used in a real-time dis-

Page 116



play to notify facility workers of urgent facility-wide status information.

Customizations

Another button on the bottom tool bar is the Customize button. Clicking on this will bring
up the customize window. The customize window is shown in figure 18. The customize
window contains a scale which allows the canvas of the display to be scaled. When sliding
the scale bar, various parameters and toggles such as font and icon sizes will automatically
be chosen. These sizes are the defaults for the desired scale of the canvas, but may be
overridden by directly manipulating the entries within the customize window. After select-
ing the desired customizations, the Apply or OK button must be clicked for the canvas to

be modified.

Figure 18: Customize Window

The customize window also contains a checkbutton to control whether the bell is audible.
The bell is used as an alert to the user, but the user may turn it off as desired.

The final checkbutton in the customize window is the Dynamic Sorting checkbut-
ton. The display maintains several lists. As commands are fed to the display the lists

change. It is usually desirable to view these lists in sorted order. To do this the display

Page 117



dynamically sorts each list as needed. When the display is heavily populated, this sorting
may result in a sluggish operation of the display. As a result the user has the ability to con-
trol whether dynamic sorting is used. When dynamic sorting is off, an additional “Sort”
button will appear in the bottom tool bar. This button can then be used by the user to sort
lists whenever desired. The default initial state for dynamic sorting is on, however, the
-nds (no dynamic sorting) command line option may be used when launching the fdisplay
program to cause the initial state of dynamic sorting to be off.

The fdisplay Command Language

It is the responsibility of a driver program to feed commands to the fdisplay program over
a TCP or Unix domain stream socket. The command language consists of several primi-
tive commands which can be used by the driver program to manipulate the display. The
command language syntax is that of the commands in the Tcl/Tk language. Several of the
commands require arguments. These arguments may be lists. Lists in the Tcl/Tk language
are usually enclosed in curly braces or double quotes, and elements within the lists are
separated by white space. Any single arguments or list elements which contain white
space should also be enclosed within curly braces or double quotes. Curly braces may be
nested, but double quotes may not. Refer to a Tcl/Tk manual for further information about
these rules.

The first commands which are fed to the display at start-up are configuration com-
mands. These commands are used to configure the allowable attributes of objects, as well
as the order in which they are displayed in the hypertext window, when the user desires
more information about an object. There are several built-in attributes in addition to those

configured by the user. These will become more apparent later when the object placement

Page 118



commands are described. Each of the configuration commands should be sent at most
once to the display and before any other commands.

The prototypes for the configuration commands are provided in the following
table. Question marks are used to denote optional arguments. Bold is used for text exactly

as it should appear in the command, and italicized text is used for supplied arguments.

setup machine_attributes ?-attribute default? ?-attribute default?

Defines additional attributes for machine objects. A default value is also associated with each
attribute.

setup_lot_attributes ?-attribute default? ?-attribute default?

Defines additional attributes for lot objects. A default value is associated with each attribute.

setup_path_attributes ?-attribute default? ?-attribute default?

Defines additional attributes for path objects. A default value is associated with each attribute.

setup_machine_display ?-attribute {heading type}? ?-attribute {heading
type}?

Determines which attributes are to be displayed in the machine information hypertext window.
Attributes are displayed in the order specified in this command. Associated with each attribute is a
heading which is displayed in the hypertext window along with the value of the attribute. The
type associated with each attribute must be one of: text, picture, or executable. If the attribute
type is text, then the attribute value will be displayed as text in the hypertext window. For
attributes of type picture, the value must be the path to a gif format image file, preceded by an @
symbol (i.e. @/usr/pictures/etcher.gif). For attributes of type executable, the value
must be the name or path of an executable program.

The following are built-in machine attributes and their types. These may also be specified to be
displayed in the machine hypertext window.

Attribute =~ Tvpe

name text
lots text
icon text
color text

setup_lot_display ?-attribute {heading type}? ?-attribute {heading
type}?

Same as setup_machine_display, except for lot objects.

The following are built-in lot attributes and their types.

Attribute Tvpe

name text
location text
color text

Table 31: Configuration Prototypes

Page 119



setup_path_display ?-attribute {heading type}? ?-attribute {heading
type}?

Same as setup_machine_display, except for path objects.

The following are built-in path attributes and their types.
Attribute Type

name text
lots text
color text

Table 31: Configuration Prototypes

The next set of commands are those which are used for placement and removal of objects
within the display. These objects include walls, headings, machines, lots and paths. In

order to further manipulate objects placed on the display, a tag for each object is required
as areference to the object. A tag is simply a case-sensitive text string which begins with a
letter and may contain any combination of letters and numerals. All tags must be unique in
a global name space. The following table contains the prototypes for the object placement

and removal commands.

place_wall coord list ?-tag wall_tag?

Places a wall on the canvas. A wall is specified by a list of x and y coordinates where a straight line
segment is drawn between adjacent coordinate pairs. The coordinates represent pixels in a Carte-
sian plane, with +x to the right and +y down. The coordinates need not be integer values. An
optional tag can be specified. It is only necessary to specify this tag if it will be later desired that
the wall be removed from the display.

place_headingl x y heading ?-tag headingl_tag?

Places a large heading on the display at the specified coordinate. The heading is a text string. If it
contains white space then it must be enclosed in curly braces or double quotes. A tag argument is
optional.

place_heading2 x y heading ?-tag heading2_tagv

Places a small heading on the display at the specified coordinate. The heading is a text string. If it
contains white space then it must be enclosed in curly braces or double quotes. A tag argument is
optional.

Table 32: Object Placement and Removal Commands

Page 120




place_machine machine_tag x y name ?-icon icon? ?-color color?
?-flash period? ?-attribute value?

Places a machine on the display at the specified coordinate. A tag and machine name must be spec-
ified. Once specified, a machine’s coordinate and name cannot be mutated. An icon for the machine
may be optionally specified by providing a path to an X bitmap file preceded by an @ symbol (i.e.
@/bitmaps/etcher). The bitmap specified should be of size 32x32 pixels, however it is also
required that a smaller bitmap of 16x16 pixels exist in the same path and name, but with _sm
appended to the name (i.e. the 16x16 bitmap /bitmaps/etcher_smmust also exist). If an icon
bitmap is not specified then the default block icon will be used. The color for the icon can option-
ally be specified. The color defaults to black if not specified. The flash option allows the machines
icon to flash every period millisecond. The default period is O (no flashing). Any of the additionally
defined machine attributes may also be optionally specified. Any additional attributes which are
specified, but not defined, will be ignored.

place_path path tag coord list name ?-color color? ?-attribute
value?

Places a path on the display. The path appears as a segmented line specified by a list of coordinates.
The path will only appear visible when lots are in the path. A name for the path must also be spec-
ified. The coordinate list and path name cannot be mutated. A color for the path may optionally be
specified. The color defaults to black if not specified. Any of the additionally defined path
attributes may also be optionally specified. Any additional attributes which are specified, but not
defined, will be ignored.

place_lots lot_tag list lot_name_list dest_tag ?-color color?
?-attribute value?

Places one or many lots on the display. Each tag in the list of lot tags is associated with the corre-
sponding name in the lot name list. A tag must be specified as the destination of the lots. This des-
tination tag may be that of a machine or a path. A color may be optionally specified. The color
defaults to black if not specified. Any of the additionally defined lot attributes may also be option-
ally specified. Any additional attributes which are specified, but not defined, will be ignored.

remove_wall wall tag
remove_headingl headingl_tag
remove_heading2 heading2 tag
remove_machine machine_tag
remove_path path tag
remove_lots lots_tag list

Removes the respective objects from the display. When removing a machine or path from the dis-
play all lots residing at that machine or path will also be removed.

Table 32: Object Placement and Removal Commands

The next set of commands are those which deal with object manipulation. These com-

mands allow for object attributes to be manipulated as well as for lots to be displayed and

Page 121




moved. The prototypes for these commands are in the following table.

change_machine machine tag ?-icon icon? ?-color color? ?-flash period?
?-attribute value?
Changes one or many machine attributes. These attributes may include a machine’s icon or color as
well as any of the additionally defined attributes.

change_path path_tag ?-color color? ?-attribute value?

Changes one or many path attributes. These attributes may include a path’s color as well as any of
the additionally defined attributes.

change_lots lot_tag list ?-color color? ?-attribute value?

Changes one or many lot attributes. These attributes may include a lot’s color as well as any of the
additionally defined attributes.

move_lots lot_tag list dest_tag ?-conditional cond tag?

Moves all lots in the list of lots to the path or machine represented by the destination tag. If the
conditional option and conditional tag are specified, then only the subset of lots residing at the
machine or path represented by the conditional tag will be moved to the destination. By being pro-
vided with a conditional option, driver programs may possibly be simplified.

show_lots lot_tag list x y ?-conditional cond_tag?

Displays all lots in the lot list as a dot on the display at the specified coordinate. If the conditional
option and conditional tag are specified, then only the subset of lots residing at the machine or path
represented by the conditional tag will be displayed. This command can be used to create anima-
tion effects, where lots appear as moving dots on the display. Any subsequent show_lots command
on a lot currently being display, will cause the lot to be redisplayed only at the newly specified
coordinate. The dot will remain on the display until either a move_lots command or hide_lots
command is performed on the corresponding lot.

hide_lots lot tag list ?-comditional cond tag?

All lots in the lot list which are being displayed as dots will be hidden. If the conditional option and
conditional tag are specified, then only the subset of lots residing at the machine or path repre-
sented by the conditional tag will be hidden.

Table 33: Object Manipulation Commands

The final commands in the fdisplay command language are utility commands. These are

described in the following table.

change_ message message

Displays a maximum of a 40 character message on the top right of the display.

ring bell message

Rings the bell on the terminal of the display. If the user has set the customization to turn the bell off
then this command will do nothing.

Table 34: Utility Commands

Page 122




load_file filename

Executes the commands contained in the specified file. The commands in the specified file may be
any of those in the command language.

set_flashing state

If state is 1, then machine icon flshing is enabled for all machines whose flash attribute is non-zero.
If state is zero, then flashsing is disabled for all machine icons.

set_auto_animate state ?transfer _time?

If state is 1, then the display is put in auto-animation mode. Every move_lots command will cause
an animation effect where a lot appears to move along a straight line from the source machine to
the destination machine. The transfer_time is the length of the animation effect in milliseconds. If
state is 0, then the display is removed from auto-animation mode.

set_dynamic_sorting state

If state is 1, then as activity occurs on the display, lists will automatically be sorted. If state is 0,
then lists will not automatically be sorted. This creates a quicker display when running an animated
facility simulation.

restart

Removes all objects from the display. Initial set-up and configuration remains the same and the dis-
play may not be reconfigured.

kill
Kills the current fdisplay program.

# line
Any line preceded by a pound symbol is considered a comment and ignored by the fdisplay pro-

gram.

Table 34: Utility Commands

Socket Communication
Commands in the factory display command language are received as messages over a

TCP or Unix domain socket connection. If the connected driver program should die, or if
the socket connection is broken for any reason, the display will bring up a window notify-
ing the user that the connection has been broken. All information up to that point will
remain on the display and the display can be manipulated by the user in the normal way.
However, new messages will no longer be received.

Outgoing Commands
While the display is viewed as an output device, it will send commands as messages over

Page 123




the connected socket to the driving program. When the user presses the Quit button, the
exit command will be sent over the socket to the driver program. The driver program can
then use this information in an appropriate manner to stop operation. The other commands
which are sent over the socket connection are those which can be used to control anima-
tion play and speed. In order for these commands to be sent, the factory display program
must be launched with the -controls option. This will cause a speed control slide bar and a
Run/Pause toggle button to appear within the tool bar. The Run/Pause toggle button ini-
tially starts in the paused state, with the word Run appearing within the button. If the user
presses the Run button then the run command will be sent to the driver program. The but-
ton will then change states and the word Pause will appear within the button. If the user
should press the Pause button, then the pause command is sent to the connected driver
program. The button then toggles back to show the word Run. If the user slides the speed
control slider bar, then the command change_speed speed will be sent when the user
releases the slider bar. The speed is an integer number from 25 to 400 and the slide bar
will always initially start in the 100 position. The following table summarizes the outgo-

ing commands which are sent from the display program to the connected driver program.

exit

This command is sent when the user presses the “Quit” button.

This command is sent when the display is launched with the “~controls” option and the user presses
the “Run” button. Pressing the “Run” button will also cause it to toggle to a “Pause” button.

pause

This command is sent when the display is launched with the “-controls” option and the user presses
the “Pause” button. Pressing the “Pause” button will also cause it to toggle to a “Run” button.

Table 35: Outgoing Commands

Page 124




change_speed speed

This command is sent when the display is launched with the “-controls” option and the user
releases the speed control slider bar. The speed is an integer value ranging from 25 to 400.

Table 35: Outgoing Commands

The fdriver Program

The fdisplay program described can receive commands to place objects and change their
state on a display. The commands are executed as they are received. Historical or simu-
lated facility data contains events occurring at various times. In order to display such
information the fdriver program is used to send commands to a connected fdisplay pro-
gram at the appropriate times, creating a dynamic display. The fdriver program reads an
input file, processes the information contained in the file, spawns an fdisplay program, and
awaits the run command from the fdisplay program. After receiving this command the
fdriver program will begin sending commands to the fdisplay program over a unix domain
socket. Between subsequent commands, the fdriver program will be idle for some time
allowing for commands to be received by the display in a time sequence which is a scaled
version of the actual time sequence for the real (or simulated) events. The default is for the
driver to output commands 1000 times faster than the real (or simulated) event times.
Input File Format

Since the main use of the fdriver program is to “play” commands to the fdisplay program
at the proper times, the input file format of the fdriver program contains mainly the same
commands as those which are directly used to control the display itself. The organization

of these commands within the file is important. The following figure shows the overall file

Page 125




format.

display setup commands
initial state commands
begin dynamic

dynamic commands

end_dynamic

Figure 19: fdriver Input File Format

The beginning of the file contains those commands which setup the display and attributes.
The commands which follow are those which put the display into its initial state. These
commands will all be sent to the display immediately after the file is processed. The initial
state commands are then followed by the begin_dynamic directive, which informs the
fdriver program that the following commands are dynamic commands. Each dynamic
command must conform to the following prototype:

at unix time command
The word “at” specifies that the event represented by command occurred at a particular
date and time. The date and time is specified as a Unix time string. The Unix time string
must be in double quotes and in the following format:

"day month date hh:mm:ss year" ,

example: "Mon Nov 28 16:20:35 1994"
The day and month are abbreviated and the hours are from 0 to 24. This time format corre-
sponds to the format string “%a %h %d %T %Y when used with the Unix commands
contained in the time.h header file. The following table outlines which commands may be
used in each section of the input file. The commands which are used are a subset of those

described in the earlier section about the fdisplay command language. Refer back to that

Page 126



section for information about particular commands.

Input File Section

Allowed Commands

display setup commands

These commands setup the attributes
of objects on the display as well as
their ordering within the hypertext
information window.

setup_machine_attributes
setup_lot_attributes
setup_path_ attributes
setup_machine_display
setup_lot_display
setup_machine_display

initial state commands

These commands put the display into
its initial state. This involves creating
a facility map as well as populating it
with machines and lots.

place_wall
place_headingl
place_heading2
place_machine
place_lots
Place_path
remove_wall
remove_headingl
remove_heading2
remove_machine
remove_lots
remove_path
change_machine
change_lots
change_path

dynamic commands

Commands are specified to occur at
specified time. All dynamic com-
mands must be preceded by the “at
unix_time” syntax described ear-
lier. It is not required that the
dynamic commands appear in the file
in sequential order by Unix time.
Sorting will be done while the file is
being processed.

place_wall
place_headingl
place_heading2
place_machine
place_lots
remove_wall
remove_headingl
remove_heading2
remove_machine
remove_lots
remove_path
change machine
change lots
change_path
move_lots

ring bell

Table 36: Allowable Commands in Input File

The move_lots command used by the fdriver program is slightly different than the

move_lots command described earlier in the section on fdisplay. The following proto-

Page 127



type should be used:

move_lots lot_tag list dest_tag ?-path path tag tansfer_ time?

The command allows a path and transfer time in seconds to be specified with lot move-
ment. If these are specified, the driver program will expand the move command into sev-
eral primitive commands. This will effectively cause the lots to first be moved to the path.
Then distributed over the path and transfer time, the lots will appear as dots on the path.
Finally, when the lot reaches the end of the path it will be moved to the destination
machine. If the file specifies that a lot be moved at any time while the lot is in transit, then
the previous move will be preempted by the new move. For example, the fdriver program
might expand the following command:

move_lots {lotl lot2} etcher -path storage_to_etcher 1800

into the following sequence of primitives understood by the fdisplay program:

move_lots {lotl lot2} storage_to_etcher

show_lots {lotl lot2} 100 100 -conditional storage_to_etcher
show_lots {lotl lot2} 100 110 -conditional storage_to_etcher
show_lots {lotl lot2} 100 120 -conditional storage_to_etcher
show_lots {lotl lot2} 100 130 -conditional storage_to_etcher
show_lots {lotl lot2} 100 140 -conditional storage_to_etcher
show_lots {lotl lot2} 100 150 -conditional storage_to_etcher
move_lots {lotl lot2} etcher -conditional storage_to_etcher

These expanded commands are then “played” to the fdisplay program at the appropriate
time to create the animation effect that a lot is moving on a path. The conditional construct
in the fdisplay command language allows two or more fdriver move_1lots to be per-
formed on the same lots in an overlapping time interval and simply be expanded into
primitive commands. As the commands are played to the fdisplay the most recent move
will preempt the previous move. All moves may be animate without defining paths and

using -path option. This is done by placing the fdisplay program in auto-animate mode.

Page 128



Other Commands
At any point within the fdriver input file the load_f£ile command may be used. This

command has the following prototype:

load_file filename
This command is analogous to the fdisplay 1load_£ile command. Whenever this com-
mand appears within the input file the file specified will be included into the input file at
that point. This command may be nested arbitrarily into the included files as well.

Any line of text within the input file preceded by a pound symbol is considered a
comment and ignored by the program.

A Sample Input File
The following file is an input file for a single run of the fdriver program.

# demo file

# setup display

setup_machine_attributes -status "up"

setup_machine_display -name {"Name" text} -status {"Status" text} \
-lots {"Lots" text}

setup_path_display -name {"Name" text} -lots {"Lots" text}

setup_lot_display -name {"Name" text} -location {"Location" text}

# put display into initial state (create map)

place_wall {60 200 20 200 20 20 300 20 300 200 260 200}
place_headingl 160 30 "Demo Lab"

place_heading2 65 170 "Rm. 100"

place_machine etcher 60 50 Etcher -color red -status down
place_machine tube 260 140 Tube -color green

place_lots {11 12} {Lotl Lot2} etcher -color blue

place_path etcher_tube {60 50 260 140} "etcher -> tube" -color purple

# dynamic events

begin_dynamic

at "Mon Nov 28 08:40:00 1994" change_machine tube -status down -color red
at "Mon Nov 28 09:45:00 1994" change_machine etcher -status up -color green
at "Mon Nov 28 10:15:00 1994" move_lots 11 tube -path etcher_tube 1800

at "Mon Nov 28 10:30:00 1994" move_lots 12 tube -path etcher_tube 1800

at "Mon Nov 28 11:30:00 1994" change_machine tube -status up -color green
end_dynamic

Figure 20: Sample Input File
When “playing” the commands to the fdisplay program, the fdriver program will send

commands uniformly in time to change the message in the upper right corner of the dis-

play. This message will display to the user the Unix time of the events as they are being

Page 129



executed on the display.

The fdaemon Program

The fdaemon program accepts a single argument on the command line. That argument is
the path to the fdaemon configuration file. The file sets variables which contain the port on
which incoming messages will be received, as well as possibly multiple outgoing ports on
which clients will connect. Associated with each outgoing port are initial state files and
log files which may be set in the configuration file. As clients connect to the specific port,
they will be sent these files as well as incoming messages as they occur. It is possible to
specify filters for these files and the messages. The filters are simply regular expression
substitutions and allow information to be transformed before it is sent to the client. For
example in the CAFE integration, CAFE specific information is hard coded in the filters of
the fdaemon configuration file, instead of coding it within CAFE or the fdisplay itself. This
allows the fdaemon and fdisplay to be completely generic and configurable to the specific
system into which it is integrated. The exact specification of the fdaemon configuration
file is omitted from this brief overview, however, the commented sample configuration file
supplied with the factory display distribution should be instructive in configuring the fdae-

mon program.

Page 130



