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Abstract

This thesis presents a methodology based on simulations and invariants for proving timing
properties of real-time, distributed systems. This methodology is used to prove tight time
bounds for two systems, a leader election protocol for a ring of processes, and Fischer's
timing-based mutual exclusion algorithm. A framework for verifying these proofs using the
Larch tools is also developed, and the proof for Fischer's algorithm is checked within this
framework.

Many formal methods have been developed for proving the correctness of untimed dis-
tributed systems. However, real-time systems often have subtle timing dependencies that
are difficult to analyze and reason about. Furthermore, for many real-time systems, cor-
rectness is insufficient; it is important to satisfy certain performance requirements. It is
necessary, therefore, to extend the formal models and techniques to the timed setting.

We use a timed automaton model, together with simulations which establish that one
automaton implements another. The methodology presented here exploits the strengths of
simulation-based techniques, and is demonstrated to be applicable to real-time systems, for
proving performance, as well as correctness, properties. The resulting proofs are rigorous
and systematic, and have a hierarchical structure that appears to scale reasonably to large
systems. In addition, they are amenable to automated verification.

Thesis Supervisor: Nancy A. Lynch
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

A variety of formal methods have been developed to analyze distributed systems, and prove

they satisfy basic correctness properties. For real-time systems, it is also often important to

establish timing properties, which guarantee the performance of these systems. Sometimes,

even the correctness of the system may depend on these timing properties. Unfortunately,

real-time systems often have subtle timing dependencies that are difficult to analyze, and

proofs of these properties have typically been ad hoc. (See [LS93], which contains sev-

eral examples of such proofs.) This thesis develops a methodology for analyzing real-time

systems.

One family of methods that has been used successfully for analyzing untimed, or asyn-

chronous, systems is based on the notion of a simulation, which establishes a correspondence

between the given system and a more abstract system that specifies the allowable behavior.

Specifically, a system is described as a state machine, and its behavior is the externally ob-

servable aspects of the sequence of steps it performs in a particular execution. A simulation

is a correspondence between the states of a system and the states of its specification such

that any step of the system appears identical to some sequence of steps of the specification

that preserves the simulation. In this case, every behavior of the system is also a possible

behavior of its specification, and we say that the system implements its specification.

Together with invariance assertions, simulations have been used by many researchers

to verify the correctness of a wide variety of asynchronous systems, some quite complex

and subtle. They have used many different specification methods, including temporal logic,

automata, CCS, and UNITY [LS84, LT87, CM88, WLL88, Lyn89b, Mil89, Nip89, Gaw92,

9



AL91, SLL93a, KMP93].

Techniques based on simulations yield rigorous, formal proofs, which typically have a

systematic decomposition into independent pieces. This structure makes proofs easier to

read and to check, both directly and using automated tools. In addition, because the system

and its specification are expressed in the same way, as an abstract program or machine,

simulation-based techniques allow layered or hierarchical proofs, where a system is proven

to have certain properties using a sequence of abstract machines beginning with one that

describes the given system and ending with one that describes the desired properties, in

which every abstract machine implements its successor.

More recently, simulation-based techniques have been extended to timed systems, pro-

viding a formal and systematic approach to proving timing properties [LA92, AL92].1 These

techniques have been demonstrated on small examples, and the style and difficulty of the

proofs are comparable to those of typical inductive assertional arguments. The local nature

of the checks suggests that this method may scale well to more complex systems. However,

it is important to test this hypothesis, by providing concrete evidence with larger examples,

and to develop a framework that exploits the strengths of simulation-based techniques, and

mitigates its shortcomings.

In particular, a methodology that exploits the strengths of simulation-based techniques

and indicates possible simulations would be very helpful. For example, Lynch and Attiya

make explicit their strategy for finding simulations with their definition of progress function

collections. Guidelines for picking appropriate intermediate specifications would also be

very useful. A good methodology will yield modular, hierarchical proofs, with intermediate

specifications and simulations that capture the intuition behind the algorithm.

Also, the proofs in [LA92] are rather lengthy and involve much tedious checking. This

seems to be an inevitable consequence of the demand for more formal reasoning. It is

important to understand how the length and complexity of the proof increases with the

system being studied. It is desirable, of course, to minimize this as much as possible

without sacrificing rigor. General theorems can capture common arguments, and eliminate

repetitive work, as well as expose additional structure. For common system components,

such as channels, standard transformations may produce simpler intermediate specifications.

If simulations are given in a standard form, this too can be exploited.

1The strong possibilities mappings of [LA92] define a simulation.
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Another promising prospect is the development of automated tools. Automated tools

can be used to mechanically verify a proof, which provides added confidence in the cor-

rectness of a proof by eliminating the possibility of human error in the manipulation of

formal expressions. Some tools can infer "trivial" steps, and so reduce the need to check by

hand the straightforward, uninteresting parts of the proof. These parts are usually omitted,

anyway, from the discussion of the proof, since they are not instructive. Nonetheless, to

have a complete proof, it is important to check that they are correct. If the tool is "smart"

enough, it may even deduce the desired claim without any guidance. If it cannot, it may

provide information indicating its difficulty, which may be helpful in constructing the proof.

This thesis builds primarily on the work by Lynch and Attiya [LA92]. To describe

timed systems, we use a variation of the timed automaton of Merritt, Modugno, and Tuttle

[MMT91], which we call the MMT automaton. An MMT automaton consists of an I/O

automaton [LT89, LT87], together with a boundmap, which specifies the timing assumptions

for the system. Following Lynch and Attiya, we incorporate the timing conditions into the

state, to yield an I/O automaton of a particular form, which we call a timed automaton.2

We then define a class of simulations, the timed forward simulations, which only considers

the admissible behaviors, those in which time is unbounded, which correspond to the real

behaviors of the system.

We use these simulations, together with invariant assertions, to prove correctness and

timing properties of two systems, a simple message-passing protocol due to LeLann, Chang,

and Roberts [LeL77, CR79] for leader election on a ring of processes, and Fischer's timing-

based mutual exclusion algorithm using a single shared read-write register [Lam87, Fis85].

For both algorithms, we use intermediate specifications to obtain hierarchical proofs, and

we extract general heuristics for finding these intermediate specifications.

We also use the Larch tools [GH93] to verify the proof for Fischer's algorithm, building

on the work by S6ylemez [S5y94], formalizing the basic model and techniques in the Larch

Shared Language (LSL), and verifying the proofs using an enhanced version of the Larch

Prover (LP) [GG91, Pog95]. This elaborates on work described in [LSGL94]. In this proof,

we also try to encapsulate commonly used arguments in lemmas, to make the proof more

modular, and to expose some general principles that may be useful in other proofs.

2This is different from the timed automaton of [MMT91]. Our terminology also differs from that of
[LA92], and reflects later usage, such as in [Lyn93, LSGL94].
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Related Work

Other models and techniques for handling time and proving timing properties have been

developed. Lynch and Vaandrager have developed a very general notion of a timed au-

tomaton, and they describe a wide variety of simulation-based techniques for this model

[LV91, LVarb]. Abadi and Lamport [AL92] demonstrate how timing properties can be

expressed using Lamport's Temporal Logic of Actions (TLA) [Lam91], and thus, the meth-

ods developed for TLA, including simulations, can be immediately applied. Their use of

simulations, however, is more restricted, and they did not address how timing properties,

specifically, can be approached systematically. Many others, including Haase [Haa81], Tel

[Tel88], Shaw [Sha89], Harel, Lichtenstein, and Pnueli [HLP90], Alur and Dill [AD90], and

Shankar and Lam [SL87, Sha92], also use models that incorporate timing information into

the state, but none of them use simulations in their proofs. Shankar uses a model almost

identical to ours, except that there are no explicit time passage steps.

Other methods for modelling timed distributed systems include temporal logic [AL92],

process algebras [DS89, Wan91, NS91], and Petri nets [CR83].

Several different approaches to proving timing properties have also been proposed, many

of them based on augmented temporal logics. The earliest work used bounded temporal oper-

ators [BH81, KVdR83], but scattered examples of an explicit clock approach, presented sys-

tematically by Ostroff [Ost89], also can be found. Henzinger, Manna, and Pnueli [HMP94]

compare these two styles. More recently, Alur and Henzinger [AH89] presented an approach

called temporal quantification, embodied by their new logic, TPTL.

Automatic verification motivated much of the design of recent temporal logics, so an im-

portant consideration was that they be decidable. Harel, Lichtenstein, and Pnueli [HLP90]

presented a decidable restricted explicit clock logic. Alur and Henzinger's TPTL is also

decidable, and in another paper [AH90], they explore the trade-off between complexity

and expressiveness. All these logics use discrete time (i.e., the natural numbers), since

extensions to dense time domains are undecidable. Alur, Courcoubetis, and Dill [ACD90],

however, present a logic based on "branching time" computation tree logic (CTL), rather

than on linear time, with a dense time domain. These logics are all intended to be used

with model-checking verification procedures, introduced by Clarke and Emerson [CE81], in

which a system is modelled by a finite state machine, and every reachable state is verified

12



to satisfy the desired property.

There are many other approaches to automatic verification. For example, Wang, Pet-

tersson, and Daniels [WPD94] present a method based on solving a system of constraints on

the clock variables of a process algebraic specification. Our approach is to follow as closely

as possible the formal reasoning we already use to convince ourselves, and use a general

purpose theorem prover to verify our steps [SGG+93, S6y94, LSGL94]. Engberg, Gronning,

and Lamport [EGL92], and Shankar [Sha93] also take this approach, though Shankar uses

PVS rather than LP.

Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 contains some background and

motivation for those unfamiliar with formal reasoning for distributed systems in general,

and simulations in particular. The theoretical foundations, the models and techniques

used in this thesis, together with some very simple illustrative examples, are developed in

Chapter 3. The next two chapters explore in detail some larger, more interesting examples.

Particular attention should be paid to how these proofs are organized, as this illustrates

the methodology. In Chapter 4, a timing analysis for LeLann, Chang, and Roberts election

protocol for asynchronous ring networks is presented. Chapter 5 examines Fischer's timing-

based mutual exclusion algorithm, a nontrivial test case which illustrates techniques for

reasoning about time. In addition to correctness, an upper bound on the time to reach the

critical region is proved. The timing analyses in these chapters provide the only rigorous

proofs we know of for the time bounds of these algorithms. Chapter 6 considers the use of

the Larch tools to develop and verify simulation proofs, and evaluates their use in verifying

the proof of the Fischer algorithm. Chapter 7 concludes with some discussion about our

experiences, and future directions.
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Chapter 2

Background and Motivation

This chapter introduces and attempts to motivate the choices made in this thesis, in terms

of models, methods, and tools.

2.1 Formal Reasoning for Distributed Systems

2.1.1 What is a Distributed System?

As computers have become more widespread, distributed systems have become the stan-

dard computation environment. A distributed system is a collection of sequential processes

running concurrently, which must coordinate with each other in order to solve a problem.

Unlike a sequential computer, a distributed system cannot easily be described by specifying

its output on a particular set of input; the interaction between the processes must also be

considered. Thus we characterize distributed systems by the behaviors they can exhibit.

Coordination necessitates interprocess communication, which is typically expensive com-

pared with steps taken locally by individual processes. Distributed systems have different

mechanisms for communicating, and there is usually some uncertainty, such as message de-

lay, or possible loss or damage of data, that is associated with communication. Since there

are multiple independent processes, the possibility of failure of one or more of the processes

must also be accounted for, and it is important to understand how the system as a whole

behaves in the presence of such failures.
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2.1.2 The Need for Formal Reasoning

Distributed systems, and the problems we wish them to solve, can and often are described

informally. They may arise in the real world, or be an abstraction of some observed phe-

nomenon, and thus have no a priori formal specification. Reasoning informally about these

systems is often helpful, but to make clear, precise claims about them, it is important to

have a formal model in which to express and reason about them.

There are two basic reasons for using formal methods. First, good formal descriptions

make any assumptions about the system explicit, and any claims about it precise. Formal

proofs also make our reasoning very precise, indicating which facts are needed to deduce

each step in the proof. Thus, formal methods distinguish the essential features of a system

from the details of a particular implementation. This can be especially useful for extending

or generalizing the models and claims, and is helpful in understanding the system better.

Second, formal proofs can be checked more easily. For very simple systems, informal

reasoning may be clear enough, but when the reasoning is subtle or very complex, it is

difficult to argue convincingly without some formal notation that can be checked carefully.

A good formal proof can be examined in small chunks, which can be verified individually,

and then pieced together to get the desired result. It can also be made progressively more

detailed and explicit as the need arises. This makes it easier to localize and understand any

difficulties.

These reasons are especially compelling for distributed systems, for which we lack a

reliable intuitive understanding. Even apparently simple systems may exhibit a complex

variety of behaviors, some unanticipated. Good formal models help develop our intuition

about how distributed systems work.

2.1.3 Operational vs. Assertional Reasoning

Since distributed systems are characterized by their behavior, a property of the system is

a statement that is true of any behavior exhibited by that system. It is possible to reason

directly about the behavior of a system operationally, that is, as it unfolds. This often

corresponds naturally with how we might reason informally. However, since a distributed

system can exhibit a wide variety of behaviors with little natural structure, it is difficult to

1 This is an empirical observation supported by many researchers in the field [CM88, LL90, Sch93].
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check that all behaviors have been considered.2 Furthermore, minor modifications to the

algorithm often result in some vastly different behaviors, requiring proofs to be substantially

rewritten. This results in proofs that tend to be ad hoc, and difficult to follow carefully,

and which cannot easily be modified to prove properties about similar systems.

Assertional methods attempt to overcome these problems by focusing on how the system

is affected by individual steps that it can take. That is, the system is described by a

state machine, and properties are expressed as assertions about states rather than about

behaviors. The states are often viewed as a collection of state variables modified by the

actions of the machine, which captures the intuition that individual steps often only affect

part of the system.

The most important assertional technique is invariance reasoning. An invariant is an

assertion that is true of every state reachable by some execution of the system. This is

usually proved inductively on the length, that is, the number of steps, of an execution, by

showing that the initial states satisfy the invariant, and that every action maintains it. This

typically allows invariance proofs to be decomposed straightforwardly into several simpler

pieces which, taken together, establish the invariant. Thus, the difficult, and interesting,

aspect of invariance proofs is discovering the "right" invariant. This requires insight about

the system, and usually, once expressed, the invariant is helpful in understanding the system.

Safety and Liveness

When using assertional reasoning, we distinguish properties as expressing either safety or

liveness. Intuitively, a safety property is a claim that nothing bad has happened, while a

liveness property is a claim that something good eventually happens. 3 Safety depends upon

the history of an execution; liveness, on the future.

Some properties have both safety and liveness aspects. For example, in the leader

election problem, where a single leader must be selected from a collection of processes, that

"at most one leader is selected" is a safety property, and that "some leader is selected" is

a liveness property. At any point in an execution, it is easy to see whether safety has been

violated or liveness has been satisfied, but not so easy to determine that safety will not

be violated, nor that liveness will not be satisfied. Safety properties can be expressed as

2Again, this is a subjective empirical claim supported by many researchers [LL90, CM88, Lam93b].
3Alpern and Schneider define these precisely in [AS85].
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assertions about the states,4 but liveness properties cannot be. Thus, it is generally much

easier to prove safety than liveness.

2.2 Models for Distributed Systems

In the study of computation, it is useful to distinguish between the machine, that is, the

computer or network of computers, and the program executing on the machine. The ab-

stract, formal description of the machine is the model, while the abstract program is the

algorithm. A complete formal description of the system consists of the algorithm expressed

in the formal model.

2.2.1 Desiderata

A good model for any class of objects should be expressive, accurate, and tractable. That

is, it should be easy to describe any object in that class in terms of the model; conclusions

derived from the model should reflect truths about the object; and it should be possible to

derive interesting properties from the model. Thus, a good model should expose important

attributes, and conceal irrelevant details. Different models do not necessarily represent

different objects; they may present different views of the same object. So there is not one

correct model, but rather, the choice of model depends on the questions one asks.

In particular, since distributed systems are characterized by their behaviors, this should

be reflected by the model; the externally observable aspects of the model should be dis-

tinguishable. Since distributed systems are often constructed from subsystems, the model

should support some notion of composition, which allows systems to be put together to form

larger systems, in a way that corresponds with our intuition. The model must also reflect

the communication mechanism, and the cost and uncertainties associated with it, as well

as the behavior of the system in the presence of failures.

2.2.2 Modelling Time in Distributed Systems

A fundamental issue in distributed computing is modelling timing uncertainties, which

become important when the processes need to coordinate their actions with each other and,

4In some cases, it is necessary to augment the state with auxiliary variables which record the history of
the execution.
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for real-time systems, with the environment. These uncertainties arise from many factors,

such as the current load on the computer, the medium for interprocess communication, the

reliability of this medium, and the distance separating the computers, and can affect not

only the time to communicate, but also the local step times of individual processes.

Synchronous and Asynchronous Models

The simplest possibility, the completely synchronous model, ignores these uncertainties, and

assumes the processes all take steps together, in distinct rounds, where processes simply

wait until all the processes have had a chance to take a step before proceeding to the next

round. This greatly simplifies the analysis of distributed systems, and many problems have

been studied in this context [LS93]. In these models, the time complexity of an algorithm

is usually measured by the number of rounds of communication it takes.

On the other extreme, asynchronous models make no timing assumptions, forbidding

protocols from using any timing information. This provides a robust model, where algo-

rithms do not depend on any timing conditions that a particular system may not satisfy.

Also, for most systems we are interested in, where communication is expensive compared

with taking local steps, the timing uncertainty for message delivery is also likely to be

large, making it difficult, if not impossible, to synchronize computation using communi-

cation. Thus, this model is quite realistic as well, and a lot of research on distributed

algorithms has been done in this context [Dij65, Lam74, LT87, Gaw92, LS93]. In this case,

the time complexity an algorithm is measured by the number of steps it takes.

However, these models cannot be used for systems which use timing restrictions to rule

out certain behaviors, and thus achieve simpler or chaaper solutions for some problems.

Moreover, research in the asynchronous setting has yielded many impossibility results, usu-

ally giving lower bounds on the resources required to solve certain problems [Lyn89a, BL93].

Many of these results arise in the context of fault-tolerance, where the system is required

to solve the problem, even though components may fail in some specified fashion.

Partially Synchronous Models

In recent years, there has been an increased interest in introducing a formal notion of time

into distributed models (e.g., [BH81, SL87, DS89, Ost89, Wan91]), and a methodology

for proving timing properties. By taking advantage of timing restrictions, a distributed
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system designer may opt for simpler, more efficient protocols, which would not be possible

in the asynchronous setting. And many systems do have some timing assumptions, and can

tolerate seriously degraded behavior in the absence of these assumptions (e.g., the time-

out mechanism in many communication protocols). And even in the asynchronous setting,

where performance arguments are largely ad hoc, a good methodology for reasoning about

time would be useful.

Modelling timed distributed systems presents several difficulties. In state transition

systems, for example, modelling time requires a real valued state variable that varies con-

tinuously, or some similar mechanism. This greatly increases the number of states, and

requires states to change continuously rather than in discrete steps, as in conventional sys-

tems. It is possible, however, to restrict attention to an interesting subset of systems that

are modelled sufficiently well by discrete state transition systems.

We would also like our model to capture certain characteristics of time, such as its

monotonicity, and exclude from consideration executions that do not correspond to real

possibilities. Thus, our model ought to ignore executions in which time reaches a limit or

goes backward.

Furthermore, protocols using time often rely on implicit relationships among their timing

assumptions to guarantee not only performance, but also correctness, making them difficult

to decompose into modular pieces. Even small changes to these assumptions can cause

drastic changes in the behavior of a system. Because of this, reasoning about even rather

simple systems can be surprisingly difficult, and usually involves checking a lot of details.

However, liveness properties play a smaller role in timed systems than they do in untimed

systems. Claims that certain events eventually occur are often replaced with stronger claims

that they occur within a given amount of time, that is, timing or performance claims. But

since time increases without bound, timing properties are merely safety properties. This

suggests that assertional reasoning may be especially useful in this setting.

2.2.3 Models for Communication

Since interprocess communication represents the dominant cost in distributed algorithms,

the mechanism for communication is typically an important aspect of any distributed model.

While there are many different models for communication, most can be viewed as either

shared memory or message passing models.
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As implied by the name, processes in a shared memory model communicate via memory

registers that can be read and written by multiple processes. This was one of the earliest

models used [Dij65]. Because the processes are executing concurrently, it is important to

define what happens when two or more processes attempt to write into a register simulta-

neously. The simplest, and strongest, interpretation is to assume that reading and writing

the shared registers happens atomically, which means that every read and write operation

can conceptually be ordered, even though they may happen at the same time. In some

shared memory models, each shared variable can be written only by one process, though it

can be read by others, and there are many other variations of this model.

A message passing model more closely matches the intuition of a network of computers,

where a process sends a message by placing it in a message channel, and another process

receives it by removing it from the channel. These models vary in the topology of the

network they model (i.e., which other processes a process may send messages to), reliability

of the channel (e.g., whether the channel may lose messages, or deliver them out of order)

and message delivery delay (i.e., the time between when a message is sent and when it is

received).

2.2.4 Other Issues: What we do not model

This thesis is primarily concerned with analyzing the timing behavior of distributed systems,

and particularly with developing a methodology to approach proving timing properties using

simulations. So, while other issues such as composition and fault-tolerance are important

considerations in our choice of model, we shall not present them here, but rather merely

remark on them as they arise.

2.3 Simulations

Simulations form the basis for a powerful class of assertional techniques in which both the

system and its specification are modelled by abstract programs or state machines. A system

is shown to satisfy or implement its specification by establishing a correspondence, the

simulation, between the states of the two machines, such that any step of the system appears

identical to some steps of the specification that preserve the simulation. Simulation-based

methods have been widely used for verifying safety properties of asynchronous systems,
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and their value is well established. Lamport [Lam93a] and Lampson [Lam93b] have argued

that simulation-based and related techniques are the most practical methods available for

verifying concurrent systems.

2.3.1 Advantages of Simulation Proofs

Like invariants, simulations are usually established by induction on the length of an exe-

cution, and the induction step is proved for every possible action. This gives simulation

proofs a modular decomposition similar to invariance proofs.

If the state is expressed as a collection of state variables, the simulation is often the con-

junction of conditions on these variables, which can be checked almost independently. This

provides further structure and modularity to the proofs. It also typically makes them more

robust. Minor changes in the system or its requirements affect only a few of the conditions,

so little additional work needs to be done to accommodate them. This is especially useful

in the design of distributed systems.

A simulation proof typically indicates, for every possible step of the implementation,

the corresponding step, or sequence of steps, of the specification. Thus, this captures, in a

way, some of the intuition used in operational reasoning, expressing more abstractly how a

system executes. So while invariants capture the static aspects of the system, simulations

express a more dynamic view.

In addition, because there is no syntactical distinction between a system and its specifi-

cation, it is possible to introduce an intermediate system specification which can be viewed

either as a specification for the original system, or an implementation of the original speci-

fication. A good intermediate specification highlights the essential features of an execution,

and abstracts away the details used to implement these features. A sequence of interme-

diate specifications can be used to construct a layered or hierarchical proof, in which each

intermediate specification implements its successor, with the original system at the bottom

of this "hierarchy" and the original specification at the top.

An intermediate specification may also describe many systems, possibly by capturing

some common structure exploited by these systems to solve a problem. This not only is

useful for understanding the problem, but also allows the upper layers of the hierarchy to

be reused in several proofs.

One apparent disadvantage of simulation proofs is that they tend to be long compared
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with similar operational arguments. However, this is because they are very complete and

explicit, whereas operational proofs often omit the analysis of "trivial" details. Of course,

in any proof, suppression of detail is often necessary to make the structure of the proof

clear, especially when checking these details is straightforward and unilluminating. It is

still possible, indeed desirable, to omit these details in the discussion of the proof, though

they should still be checked, lest the proof be incomplete or wrong. That it is easy to

detect the omission of details that need to be checked is really an advantage, rather than a

handicap.

2.3.2 Proving Timing Properties with Simulations

As noted earlier, assertional techniques are especially promising in the timed setting, be-

cause liveness properties, which are difficult to prove, are replaced by timing properties,

which express safety rather than liveness. Several researchers have extended their models

and methods to handle time and timing conditions, and many argue that the techniques de-

veloped for the asynchronous setting carry over into their extended models, so that entirely

new techniques need not be invented.

However, most examples in literature have analyzed smaller systems, not using simula-

tions, and not proving timing properties-just correctness.

This thesis builds chiefly on the work by Lynch and Attiya [LA92], applying their

techniques to systems with more actions, and which exhibit a greater variety of behaviors.

We are interested in any general methods or heuristics to control the complexity of the

proofs, particularly for timing properties, taking advantage of the hierarchical structure

of simulation proofs. In particular, we discover that it is helpful to look for markers of

definite progress (e.g., loop termination), which we call milestones, and define intermediate

specifications with internal actions that represent reaching these milestones.

2.4 Automated Tools

Automated tools represent an important factor in determining the extent to which tech-

niques to reason formally about distributed systems can be applied. These tools can be

used to verify the formal proofs, and detect logical gaps or errors in symbol manipulation

that are likely to arise in lengthy proofs. They can also be developed to fill in "trivial"
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steps, or carry out "similar reasoning" repeatedly in several cases, and thus greatly reduce

the boring, repetitive, and tedious work often required for a truly complete proof. This

is especially useful for simulation-based proofs, because of their length and the amount of

tedious detail that needs to be checked.

2.4.1 Choosing a Tool

There is a wide range of possible useful automated tools, ranging from model-checkers

[CG87], which exhaustively search all possible states to verify properties without any human

guidance, to programs that simply check the validity of each step in a detailed proof, from

specialized provers optimized for a particular domain of applications, to general purpose

theorem provers, from provers that halt and request guidance at difficult places in the proof,

to those that search silently for solutions.

There are clearly trade-offs in the various choices. Model-checking and decision pro-

cedures, for example, work well when the state space is small. However, since theorem

proving in general is undecidable, and even when it can be decided, is often computa-

tionally intractable, these approaches that attempt to find proofs without guidance may

run indefinitely; even deciding when to terminate the search is difficult. Thus, for general

theorem proving, some human guidance is necessary. On the other hand, reducing the

need for detailed human guidance is one of the major motivations for pursuing automated

assistance. A restricted language may allow for increased automation at the expense of

expressive power, and thus preclude its use in many contexts. Highly specialized tools may

better meet the needs of the users for which it was was designed, but are less likely to find

wide applicability.

In addition, automatic provers should be able to reproduce for a human user the rea-

soning used to derive theorems, ideally in a form that lends insight about the proof. The

language understood by the prover must also be reasonably comprehensible to people, so

that there is some assurance that what the prover verifies is in fact what was intended.

Moreover, because initial attempts often have mistakes, it is important to provide mean-

ingful feedback when a proof cannot be derived, or a claim being verified is in fact not true.

When the entire proof is provided, it may be sufficient to simply point out the particular

step that fails, but as the program derives more of the proof for itself, it becomes less clear

what is useful to a human reader in order to correct the proof.
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In this thesis, we use the Larch tools [GH93] to formalize and verify proofs that corre-

spond closely with proofs that we do without automated tools. The system is formalized in

the Larch Shared Language, and checked using LP, the Larch Prover [GG91], both enhanced

to handle full first-order logic.

2.4.2 The Implications of Time

Since time is a continuous quantity, adding time to the formal model presents additional

challenges for automated tools. Tools designed specifically for finite state machines, for

example, must cope with the uncountable possibilities introduced by time. In any system,

the ability to reason about continuous quantities also needs to be added, preferably in a

way that will easily deduce the elementary properties of real numbers. Time bounds also

increase the uncertainty in the system, and inequalities are more difficult to handle than

equations, especially for tools, such as LP, which rely on rewriting terms into canonical

forms based on equations.

2.4.3 Using Automated Tools

Unfortunately, only very modest problems have been analyzed completely using automated

tools, and there is a need to evaluate whether the tools can cope with the increased com-

plexity of larger systems, especially when timing information is introduced. One of the

major goals of this thesis is to understand how proofs can be designed, and what sort of

tools should be developed, in order to improve automated assistance for proving timing

properties.
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Chapter 3

Models and Methods

In this chapter, we introduce the theoretical models and methods used in this thesis. To

simplify the discussion, we omit some structure in the model typically introduced to address

some important issues for distributed systems that are not considered in this thesis.

3.1 The I/O Automaton Model

All the work in this thesis is done in the context of I/O automata, introduced by Lynch and

Tuttle [LT87] to describe asynchronous systems. This model is a simple state transition

system, where actions of the system label the transitions between states. The actions may be

either external or internal. An execution (or run) of the system is a sequence of transitions

from one state to another, and a behavior of the system is a sequence of external actions

labelling transitions in an execution.

One of the primary motivations for using this model is the notion of composition, which

allows us to build an automaton from smaller automata in a way that corresponds to our

intuition, i.e., the resulting automaton behaves as we expect. This leads to the notion of an

action signature, which describes the interface of an automaton, i.e., how it can be composed

with other automata. The action signature distinguishes input, output, and internal actions,

where an automaton must always be able to accept any input action (though it may simply

ignore it). Composition allows us to model complex distributed systems by building them

up out of smaller systems. This provides modularity in our descriptions and our proofs.

In this thesis, however, we are concerned primarily with the issues introduced by timing,

rather than by composition, and to simplify the discussion, we do not distinguish between
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input and output actions, considering them both simply as external actions.

Formally, an I/O automaton A consists of:1

* a set states(A) of states;

* a nonempty subset start(A) of start states;

* a set acts(A) of actions, partitioned into external and internal actions;

* a set steps(A) of steps, which is a subset of states(A) x acts(A) x states(A).

We write s E A s' or just s 7 -s' as shorthand for (s, 7r, s') E steps(A).

There are no restrictions on steps(A). This allows us to easily model nondeterminism

and the fact that not all actions may be possible from any state.2 We say that an action 7r

is enabled in a state s if there is a state s' such that s s> s'.

An execution fragment is a finite or infinite alternating sequence Sorlsl0 1 r2 s2 ... , where

sj is a state, 7rj is an action, sjl-1 )sj for each j, and the sequence ends with a state if

it is finite. An execution is an execution fragment with so E start(A). A state of an I/O

automaton is reachable if it appears in some execution of the automaton. The trace of an

execution is the sequence of external actions that occur in the execution.

Intuitively, an execution represents the entire computation done by the system, up

to a certain point, if it is finite. Assertions about the system only need to be true of

reachable states, since only reachable states can occur in an execution. Traces correspond

to the visible behavior of the automaton, and executions that have the same trace (even on

different systems) cannot be distinguished externally. System requirements can only restrict

the traces, not the executions themselves, as these may depend on how we choose to model

the system.

3.2 MMT Automata

In order to reason about time in concurrent systems, Merritt, Modugno, and Tuttle extended

the I/O automaton model by defining timed executions and allowing an automaton to

1Readers familiar with I/O automata will notice that the fairness partition is not included in this defini-
tion. This is because fairness is not considered in this thesis. This notion is revived as tasks in the section
on adding timing information, but with a rather different interpretation.

2If we distinguished between input and output actions, we would require that the automaton be input-
enabled, that is, for every state s and every input action 7r, there exists a state s' such that (s, r, s') E
states(A).
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specify some restrictions on these timed executions [MMT91]; we use a special case of their

definition [LA92, LV91], which we call MMT automata. An MMT automaton partitions

the actions into tasks,3 and defines upper and lower bounds on the time it may take to

perform each task. A task is considered to be performed by any action in that task. Timed

executions are simply executions of I/O automata, with each action paired with the time

at which it occurs, where time is allowed to be any nonnegative number, and executions

are assumed to start at time 0. These times must satisfy the bounds for the tasks, as well

as some other conditions that we consider natural for time, i.e., they should not decrease

along an execution, nor should infinitely many events happen in a finite interval.

Formally, an MMT automaton M consists of:

* an I/O automaton A;

* a finite partition tasks(M) of acts(A);

* two functions, lowerM: tasks(M) [0, oo) and

upperM: tasks(M) -, (0, oo]

that satisfy lowerM(C) < upperM(C) for all C tasks(M).

We often omit the subscripts when the automaton is clear from context. The states, actions,

and steps of M are the same as those of A, i.e., states(M) = states(A), etc. We say that a

task C is enabled in a state s if any action in C is enabled in s, i.e., if 7r is enabled in s for

some 7r E C.

A timed execution of an MMT automaton is a sequence so(7rl, tl)sl(r 2, t2)s2 ... where

solrsl7r2s2 ... is an execution of the underlying I/O automaton, ti < ti+l, and ti satisfies

the given lower and upper bound requirements. Since execution starts at time 0, we define

to = 0. Formally, if a task C is enabled in sj, we say that it is newly enabled by sj-_l s

if 7ri is not enabled in sj_ 1 (or j = 0), or 7rj E C. In this case, the following conditions

must hold:

Upper bound: If there exists k > j with tk > tj + upper(C), then there exists k' > j with

tk' < tj + upper(C) such that either 7rk, E C or C is not enabled in Sk.

Lower bound: There does not exist any k > j with tk < tj + lower(C) and rk E C.

3In the more general theory of I/O automata, these were introduced to address fairness, which does not
concern us here. In this context, it is easier to have tasks only in the timed setting.
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Intuitively, the upper bound condition says that, whenever a task C is scheduled to be

done (i.e., it is enabled), if the time passes beyond its upper bound, then in the interim,

either the task is done (i.e., some action 7r E C occurs), or it was disabled. The lower bound

condition says that the task cannot be done before the specified lower bound from the time

it was newly enabled. Both of these conditions express safety properties. Like executions

for I/O automata, timed executions correspond to the computation done by the system, up

to a certain point.

A timed execution is admissible if it is infinite and the times associated with the actions

increase without bound,4 or if it is finite and every task C enabled in the final state has no

upper bound, i.e., upper(C) = oo. Each timed execution of an MMT automaton M gives

rise to a timed trace, which is just the subsequence of external actions paired with their

associated times. The admissible timed traces of an MMT automaton are the timed traces

that arise from the admissible timed executions.

An admissible timed execution corresponds to an execution in which time increases

without bound; if it is finite, the only tasks which may be enabled in the final state are

those which are not required to occur in a bounded amount of time. Thus, admissibility

expresses a liveness property. Admissible timed traces describe the visible behavior of the

system.

3.3 Timed Automata

The MMT automaton models timing constraints by imposing extra conditions on the ex-

ecutions of I/O automata. The main motivation for this is to provide a clean notion of

composition. However, this makes it difficult to use some of the methods developed for

proving properties of I/O automata; in particular, it is not obvious how to use simulations

to prove timing properties for MMT automata.

Lynch and Attiya [LA92] describe how to incorporate the timing information of an MMT

automaton M into the state, yielding an equivalent I/O automaton T of a special form. We

call automata derived in this way timed automata. This transformation is useful because

all the techniques developed for I/O automata can be immediately applied to the timed

4Infinite timed executions which only allow a finite amount of time to pass are called Zeno executions,
after Zeno's paradox, in which to reach his goal, Achilles must take an infinite number of steps, each half
the length of the remaining distance, approaching closer but never reaching it each time.
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automaton corresponding to an MMT automaton.

The idea is to augment the state with a variable now to represent current time, as well

as variables first(C) and last(C) for each task C to represent the earliest and latest times

when the task must be done. All these variables represent time in absolute, not incremental,

terms. A special time-passage action is added to allow time to increase, but not beyond

any of the deadlines set by the upper bounds. To guarantee the lower bounds, a constraint

is added to each action of the MMT automaton.

Formally, each state of T consists of the following components:

basic E states(M), initially a start state of M

now E [0, oc), initially 0, representing the current time

for each task C of M:

first(C) [0, oc), initially lowerM(C) if C is enabled in basic, 0 otherwise.

last(C) E (0, oo], initially upperM(C) if C is enabled in basic, oo otherwise.

The actions of T are the actions of M and a special time-passage action v. The time-

passage action is internal, and the other actions are classified as internal or external accord-

ing to their classification in M.

If w E acts(M), then s T s' exactly if all the following conditions hold:

* s.basic- rM s'.basic.

* S'.now = S.now.

* For each C tasks(M):

- If 7r E C then s.first(C) < s.now.

s.first(C)

s.now + lowerM(C)

0

s.last(C)

s.now + upperM(C)

oo

if C is enabled in both s.basic and s'.basic

and 7r ~ C

if C is newly enabled by s.basic- M s'.basic

if C is not enabled in s'. basic

if C is enabled in both s.basic and s'.basic

and 7r C

if C is newly enabled by s.basic r > M s'.basic

if C is not enabled in s'. basic
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Notice that the three cases for s'.first(C) and s'.last(C) above are mutually exclusive, and

cover all the possibilities.

On the other hand, S-T s' exactly if all the following conditions hold:

* s'.basic = s.basic.

* s.now < s'.now.

* For each C C tasks(M):

- s'.now < s.last(C).

- s'.first(C) s.first(C)

- s'.last(C) = s.last(C).

For notational convenience, we often refer to the tasks of M as tasks of T; we say a

task is enabled in s E states(T) if it is enabled in s.basic, and that it is newly enabled by

s r >IT s' (for 7r $ v) if it is newly enabled by s.basic >M s'.basic. The following lemma

gives us necessary and sufficient conditions for an action 7r to be enabled in a state s of T.

Lemma 3.1 If T is a timed automaton and s E states(T) then

* 7r v is enabled in s if and only if r is enabled in s.basic and s.now > s.first(C),

where C is the task of 7r.5

* v is enabled in s if and only if s.now < s.last(C) for all tasks C.

Proof: This follows directly from the definition of the transformation from MMT au-

tomata to timed automata. ·

A timed execution of a timed automaton is a sequence so(7rl,t1)s(r 2, t2)s 2 ... where

so7rsl17r2 s2 ... is an execution and ti = si.now for all i. The admissible timed executions

are those in which the times associated with the actions increase without bound,6 and the

admissible timed traces are the traces of admissible timed executions. Lynch and Attiya

prove the following theorem:

Theorem 3.2 An MMT automaton and its corresponding timed automaton have the same

admissible timed traces.

5If its lower bound has not been reached, a task of a timed automaton may be enabled even though none
of its actions are. This is equivalent, but notationally more convenient, to the presentation in [LA92], which
checks whether tasks of the underlying MMT automaton are enabled.

6This forces there to be an infinite number of time-passage actions in an admissible timed execution.
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State
reported E {true, false}, initially false
countdown E N, initially k

Actions

External report Internal decrement
Pre: countdown = 0 A -reported Pre: countdown > 0
Eff: reported +- true Eff: countdown countdown - 1

Tasks
{report}: [cl,c2] {decrement}: [cl, c2]

Figure 3-1: Automaton Counter: A Simple Counter

We refer to the MMT automaton and its corresponding timed automaton interchange-

ably. Also, we often omit the basic part of the selector, writing s.field as a shorthand for

s.basic.field, where field is a component of the MMT automaton's state.

Notice also that lower bounds of 0 and upper bounds of oo impose no restrictions on the

automaton, making the corresponding first and last variables superfluous. In these cases,

we simply omit these variables from the automaton. 7

3.4 Notational Conventions and an Example

The model is described abstractly, rather than in terms of a particular language or semantics,

to allow flexibility and generality. However, we usually describe the state as a collection

of state variables, which are modified by the actions. We typically write the actions in

precondition-effect form, making it easy to determine whether an action is enabled, and if

it is, how the new state differs from the old. For the timing information, we simply list the

tasks, and the time bounds associated with each. When there is only one action in a task,

we often abuse notation by using the name of the action to denote the task as well.

A simple example, given in Figure 3-1, describes an automaton Counter which counts

down from k, and issues a report when it reaches 0. It has two state variables, reported and

countdown, and two actions, an internal decrement action and an external report action,

each in a separate task. It has lower and upper bounds of cl and c2 on the time it can take

to make a step, either to decrement its counter if it is not yet 0, or to report if it is already

0.

7Formally, we need to prove that this does not change the behavior of the automaton, which follows from
Lemma 3.3 proved later in this chapter.
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3.5 Invariants

An invariant of an automaton is any property that is true in all reachable states. We

usually establish an invariant I by proving that all start states satisfy it, and that all

steps preserve it, i.e., start(s) I(s) and I(s) A (sa s') #= I(s'). Often to establish the

induction step, we use properties already proven to be invariant, i.e., start(s) # I'(s) and

I(s) A I'(s) A (sas') I'(s'), allowing us to break the proof into more manageable pieces.

Timed automata satisfy the following invariants:

Lemma 3.3 In all reachable states of a timed automaton T, and for every task C:

1. now < last(C).

2. first(C) < now + lower(C).

3. If C is enabled then last(C) < now + upper(C).

4. If C is not enabled then first(C) = 0 and last(C) = oo.

5. If upper(C) = oo then last(C) = oo.

Proof: We only give the proof of the first; the rest are similar. We proceed, as indicated

above, by induction.

Base Case: In the start state, now = 0 and last(C) = upper(C) > 0 if task C is

enabled, and last(C) = oo if not. So now < last(C) for any task C.

Induction Step: Assuming s.now < s.last(C) and s ws', we show that s'.now <

s'.last(C). We consider separately when r is the time-passage action, and when it is

not.

Case 1 (7r = v): By construction, s'.now < s.last(C) = s'.last(C).

Case 2 (r $ v): By construction, s'.now = s.now, and we have the following

cases:

Case a (C is enabled in both s.basic and s'.basic and 7r V C):

s'.last(C) = s.last(C) > s.now = s'.now.

Case b (C is newly enabled by s.basic s'.basic):

s'.last(C) = s.now + upper(C) = s'.now + upper(C) > s'.now.

Case c (C is not enabled in s'.basic): s'.last(C) = oo > s'.now.
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We can also prove a simple invariant about Counter, which says that reported = false

unless countdown = 0.

Invariant 3.4 For Counter: If reported = true then countdown = 0.

Proof: (By induction)

Base Case: In the start state, reported = false, so this holds vacuously.

Induction Step: Assume that the invariant holds in s and that sss'.

Case 1 (r = report): s'.countdown = s.countdown = 0, so the invariant holds in s'.

Case 2 (r = decrement): s'.reported = s.reported = false, so the invariant holds

vacuously in s'.

Case 3 ( = v): s'.basic = s.basic so this invariant holds inductively.

3.6 Simulations

We often express the requirements of a system with a timed automaton that exhibits the

allowed behaviors. In this case, a system meets its specification if every behavior exhibited

by the system can also be exhibited by the specification. Formally, we say that a timed

automaton A implements another timed automaton B if every admissible timed trace of A

is an admissible timed trace of B. Thus we cannot distinguish A from B simply by observing

its behavior. Note that this relationship is not symmetric; B may allow behaviors that A

will not exhibit. Two automata are equivalent if each implements the other.

Simulations provide a powerful method to prove that one automaton implements an-

other. There are many variations of simulations [LVara, LVarb], but in this thesis, we only

need one of the simplest, the timed forward simulation.8

Formally, if A and B are timed automata then a timed forward simulation from A to B

is a relation f between states(A) and states(B) such that:

Time: If f(s, u) then u.now = s.now.

Start: If s E start(A) then there exists some u E start(B) such that f(s, u).

8This is called a weak timed forward simulation in [LV91, LVarb, Lyn93].
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Step: If f(s, u) for reachable states s and u of A and B, and s )A s', then there exists

some u' such that f(s', u') and there is some execution fragment of B from u to u'

with the same timed external behavior as (r, s'.now).

Notice that the last condition applies only to reachable states of A and B, so we may use

any invariants proved for A or B in our proof of the simulation.

We denote {u : f(s, u)} by f[s]; we usually write u E f[s] for f(s, u), and we say that u is

simulated by s. The key fact about timed forward simulations is expressed in the following

theorem:

Theorem 3.5 If there is a timed forward simulation from A to B then A implements B.

Proof: Every admissible timed trace is the trace of some admissible timed execution.

Suppose that a = s8071rs172s82... is an admissible timed execution of A. We show that if

there is a simulation f from A to B then there is an admissible timed execution a' of B

that has the same trace as a.

Let ai = S07rlS21 2 ... 7risi for i = 0, 1, .... By the start condition, there is a start state

u0 of B such that f(so, uo). We shall construct executions a of B such that a has the

same timed trace as a. Define a = uo0. Since So-- A S1, by the step condition, there is

some state ul such that f(sl, ul) and there is some execution fragment a' of B from u to

ul with the same timed external behavior as (rl,sl.now). Since uo is a start state, ac is

an execution of B, and it has the same timed trace as a = so7rlsl.

Given an execution a'il starting with uo and ending in some state ui_ E f[si-1] with

the same timed trace as ai-l, we recursively define ui and a i as follows: Since s_ 1 and

ui-1 are reachable, by the step condition, there is an execution fragment of B starting with

u_1 and ending in some state ui E f(si, ui) with the same external timed behavior as

(7ri,si.now). We use this execution fragment to extend a'l to an execution a that ends

in u. Thus a has the same timed trace as ai = acri-lriSi

If a is finite, that is a = an for some n, then we are done since a has the same timed

trace as a. Otherwise, a' = limi,,oo a' is an execution of B with the same timed trace as

a. Thus A implements B.
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State
reported E {true, false}, initially false

Actions
External report

Pre: -reported
Eff: reported - true

Tasks
{report}: [al, a2]

Figure 3-2: Automaton Report

f is a relation between the states of Counter and of Report, where u E f[s] if and only if:

u* .now = s.now

* u.reported = s.reported

ufirt(report) .first(decrement) + s.countdown. cl if s.countdown > 0
s.first(report) if -s. reported A s.countdown = 0

* u.last(report) s. last(decrement) + s.countdown * C2 if s.countdown > 
s.last(report) if -s.reported A s.countdown = 0

Figure 3-3: A Simulation from Counter to Report

3.7 A Simulation Proof

We conclude this chapter with a very simple simulation proof that illustrates many of the

common ideas used with this technique, including some general observations and heuristics,

and "natural" interpretations. We prove that the counter automaton from Section 3.4

implements a simpler automaton Report, shown in Figure 3-2, that has only a single report

action, which must occur within a specified time interval. We show that Counter implements

Report if al (k + 1)cl and a2 > (k + 1)c2. This proof is a slightly revised version of proofs

in [LA92, S6y94, LSGL94].

We begin by defining a relation f between states of the implementation automaton, in

this case Counter, and states of the specification automaton, in this case Report. This is

shown in Figure 3-3. With appropriate assumptions about the timing bounds, we prove

that this relation is a simulation from Counter to Report.

Simulations are often defined like this one, as a list of conditions, one for each state

variable of the specification, including one that guarantees the timing condition in the

simulation definition. The conditions for the untimed state variables are usually functions
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of the untimed state variables of the implementation, while the conditions on the time

bounds are usually inequalities that guarantee that the specification allows enough time for

the implementation to take the steps necessary to simulate the task. We assume here that

k > 0, so report is not enabled in the start state of Counter.

Proof that f is a simulation from Counter to Report if [(k+1)cl, (k+1)c2] C [al, a2]:

Time: By definition of f.

Start: In the start states uo and so of Report and Counter,

UO. nOW 0 = S. nOW

uo. reported = false = so. reported

uo.first(report) = al < (k + 1) ci = so.first(decrement) + so.countdown- cl

uo.last(report) = a2 > (k + 1) c2 = so.last(decrement) + so.countdown c2

so u0 E f[so].

Step: Suppose s and u E f[s] are reachable states and that s '.

Case 1 (r = report): This simulates u report U'.

Since report is enabled in s, we have s.reported = false and s.countdown = 0.

Thus, u.reported = false and u.first(report) < s.first(report) since u f[s], so

report is enabled in u, and this is a step of Report.

Thus u'.now = u.now = s.now = s'.now and u'.reported = s'.reported = true,

so u' E f[s'].

Case 2 (r = decrement): There is no corresponding step in Report. Since decrement

is internal, we show u E f[s'].

Because decrement is enabled in s, we have s.reported = false and s.countdown >

0. Thus u.now = s.now = s'.now, u.reported = s.reported = s'.reported = false,
and

u.first(report) < s.first(decrement) + s.countdown cl since u e f[s],

< s.now + s.countdown · c since decrement occured,

= s'.first(decrement) + (s.countdown - 1) cl by construction,

= s'.first(decrement) + s'.countdown cl by the effect of decrement,

u.last(report) > s.last(decrement) + s.countdown c2 since u E f[s],

> s.now + s.countdown. C2 by Lemma 3.3,

= s'.last(decrement) + (s.countdown - 1) c2 by construction,

= s'.last(decrement) + s'.countdown C2 by the effect of decrement.
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Case 3 (r = v): This simulates u u', where u'.now = s.now.

We know u' E f[s'] since u E f[s], so we only need to verify that s'.now <

u.last(report). If s.reported = u.reported = true then u.last(report) = oc. Other-
wise,

u.last(report) > f s.last(report) if s.countdown = 

s.last(decrement) + s.countdown c2 if s.countdown > 0 J
U
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Chapter 4

LeLann-Chang-Roberts Election

Algorithm

We now consider a simple asynchronous algorithm by LeLann, Chang and Roberts [LeL77,

CR79], which solves the election problem for a ring network in the message passing model.

Although the algorithm is asynchronous, we assume bounds on the communication delay

and the local step times in order to prove an upper bound on the time to election. This

does not rule out any possible behaviors, and it is commonly done in the timing analysis of

asynchronous distributed systems.

4.1 The Election Specification

In the election problem, several essentially similar processes in a network elect a single

process from amongst themselves to be the leader. This is important when dissimilar tasks

need to be performed by the processes, and so the tasks must be distributed among the

processes. Once a process has been elected, it can assign the tasks to the other processes.

We index the processes for notational convenience, but the processes do not have access

to these indices. This problem is specified by the automaton Election in Figure 4-1. Notice

that all the leader, actions constitute a single task, so this is not a distributed description of

the system. Exactly one leader action occurs within time treport, after which the automaton

takes no further (visible) actions.
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State
reported E {true,false), initially false

Actions
External leaderi

Pre: -reported
Eff: reported - true

Tasks
leader = {leaderi}: [0, treport]

Figure 4-1: Automaton Election: A Simple Specification for Leader Election

Figure 4-2: A Four Process Unidirectional Communication Ring

4.2 Some Preliminary Definitions

We only consider this problem for the simple case of an asynchronous ring network with

unidirectional communication. The processes are arranged in a circle, and each process

sends messages only to the process immediately clockwise from it, and receives messages

only from the process immediately counterclockwise. We index the processes in an n-process

ring by Zn (the integers modulo n) increasing clockwise around the ring (see Figure 4-2).

The channels are indexed by the processes they link, delivering messages clockwise around

the ring.

Although the processes do not know their indices, each process Pi has a unique identifier

UIDi E I, where I is totally ordered. Thus, if i j (mod n) then either UIDi < UIDj or

UID < UIDi. We assume each process knows only its own identifier, and nothing about

the identifiers of other processes, except that they are different from its own. In particular,

the identifiers do not necessarily increase or decrease around the ring. We also assume that

po has the maximum identifier, i.e., UIDo = max{UIDj : j E Zn). This last assumption

does not change the problem since the processes do not know their own indices, which are
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State
For each i E Z,,

statusi E {unknown, chosen, reported}, initially unknown
pending i E Queues(I), initially a queue with only UIDi
channeli,+l Queues(I), initially empty

Actions
External leaderi Internal sendi(m): m E I

Pre: statusi = chosen Pre: m is at the front of pendingi
Eff: statusi = reported Eff: m is removed from the front of pending,

m is added to the back of channel,,i+l

Internal receivei(m): m E I
Pre: m is at the front of channelil,
Eff: m is removed from the front of channeli-l,

if m > UID, then m is added to the back of pending i

if m = UIDi then statusi - chosen

Tasks
{leader,}: [0,1] sendi = {sendi(m): m E I}: [0,1]

receive, = {receive,(m): m E I}: [0, d]

Figure 4-3: Automaton LCR: LeLann-Chang-Roberts Algorithm

used for notational convenience only.

We also assume the channels are reliable and FIFO, that is, on any channel. We model

these channels by queues, adding messages sent to the back of the queue, and removing

messages received from the front.

For any set M, we denote the set of queues containing elements of M by Queues(M).

We write queues as sequences from front to back. In the queue ml, m 2, m3, for example,

ml is at the front, and will be removed next, while m3 is at the back, and was added

last. Given two queues ql and q2, their concatenation ql o q2 is the queue beginning with

the elements from ql followed by the elements of q2. Notice that if an element is removed

from the front of q2 and added to the back of ql, their concatenation ql o q2 is unchanged,

and that if it is merely removed from q2, their new concatenation is a subsequence of their

original concatenation. We will sometimes treat a queue as the set of its elements, using

appropriate notation.

4.3 LeLann-Chang-Roberts Algorithm

The automaton LCR in Figure 4-3 expresses a simple protocol proposed by LeLann [LeL77],

and improved by Chang and Roberts [CR79], to elect the process with the maximum iden-
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State
For each i E Z,
statusi E {unknown, chosen, reported}, initially unknown
pending i E Queues(I), initially a queue with only UIDi

Actions
External leaderi Internal deliveril,i(m): m E I

Pre: statusi = chosen Pre: m is at the front of pendingi_,
Eff: statusi = reported Eff: m is removed from the front of pendingi_1

if m > UIDi then m is added to the back of pending i

if m = UIDi then statusi +- chosen

Tasks
{leader/}: [0, I] deliveri,i = {deliveri_1,i(m): m E I}: [0, I + d]

Figure 4-4: Automaton NoChannel: LeLann-Chang-Roberts Algorithm Without Channels

tifier. Every process sends out its identifier, and waits for it to return around the ring.

However, an identifier is discarded by any process with a higher identifier, and a message

must be received by every process before returning to its originator. So only the maximum

identifier will not be discarded; it will return to its originator, which will then declare itself

the leader.

It is easy to see that this algorithm elects a single leader, but it is less clear how long

this protocol could take. If the processes sent messages synchronously, it would take n

rounds of communication. However, if some processes and channels are slower than others,

the messages may "pile-up" at these bottlenecks. Thus a single process may have up to n

messages pending, and the last message to be received would be delayed until all the earlier

messages are sent. This does not, however, slow down the entire system; in particular, we

show that LCR implements Election if treport > n(l + d) + 1.

We can simplify our analysis of this algorithm by noticing that from an abstract point of

view, there is little distinction between messages about to be sent, i.e., messages in pending,

and messages already sent but not yet received, i.e., messages in the outgoing channel. This

suggests a useful intermediate specification, which we develop in the next section

4.4 Eliminating Channels

We define a new automaton NoChannel, shown in Figure 4-4, which does not distinguish

between messages about to be sent, and messages already sent but not yet received. The two

queues of messages are simply concatenated, and the send and corresponding receive actions
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are replaced by a deliver action, with bounds to allow enough time to do both actions.

4.4.1 Observations and Invariants

We begin with some informal observations about the system. Recall that we are assuming

UIDo is the maximum identifier, i.e., UIDo > UID3 for all j $ 0. Thus, po will discard every

identifier it receives, and no other process will discard UIDo. Because the queues are FIFO,

the identifiers are not re-ordered in the queues; each will be received by po according to the

position of its process in the ring, unless it is discarded by some other process. In particular,

when UIDo is received by po, all other identifiers must already have been discarded. Also,

no process other than po will change its status, i.e., all other processes will always have

status = unknown.

To formally state and prove this intuition as invariants of NoChannel, let messages 

pendingn_1 opending,_2o .. opendingo, the queue of identifiers that have not been discarded,

beginning with the next one to be delivered to po. We begin by showing that the identifiers

in messages may be discarded, but not re-ordered or duplicated, i.e., messages is always a

subsequence of messages in the start state. This is a special case of the following invariant:

Invariant 4.1 For NoChannel:

For all k, pending k opendingk_ 1 o .. .opending o is a subsequence of UIDk, UIDki,..., UIDo.

Proof: (By induction)

Base Case: In the start state, pending k = UIDk for all k, so pending k o · · o pending o =

UII)k,... ,UIDo0 .

Induction Step: Assume this holds for s and s s'.

Case 1 (r = leaderi or 7r = v): s'.pending k = s.pending k for all k so this holds

inductively.

Case 2 (r = deliveri,i+l(UIDj)): The pending queues change only in that UID is

removed from the front of pending i and possibly added to the back of pendingi+l,

so s'.pendingk o ... s'.pending o is a subsequence of s.pending k o ... o s.pendingo,

which by the inductive hypothesis, is a subsequence of UIDk,..., UID for all k.

U
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We have the following useful corollary:

Invariant 4.2 For NoChannel:

If UIDk is at the front of pendingk_1 then k = 0 and messages = UIDo.

Proof: This follows immediately from the previous invariant, since UIDk pendingk_1 o

·.. o pending o C UIDk_1,... ,UID, unless k = 0, and thus k - 1 = n - 1. But then

messages = pending,_l o ... o pending o is a subsequence of UID_i,... , UIDo, with UIDo

in front, so messages = UIDo. ·

The next invariant asserts that only po will ever change its status, that is, every other

process will always have status = unknown.

Invariant 4.3 For NoChannel: statusk = unknown for all k 0.

Proof: (By induction)

Base Case: In the start state, statusk = unknown for all k.

Induction Step: Assume this holds in s, and that s s'.

Case 1 (r = deliveri_l,i(UIDi)): Since UIDi is at the front of s.pendingi_l, by

Invariant 4.2, i = 0. So s'.statusk = s.statusk = unknown for all k / i = 0, by

the inductive hypothesis.

Case 2 (r = deliveri_l,i(UIDj) for j $ i or r = leader/ or 7r = v):

s'.statusk = s.statusk for all k, so this holds inductively.

Finally, we prove that po will know it is the leader only after it has discarded its own

identifier, which will be the last one to be discarded.

Invariant 4.4 For NoChannel: statuso = unknown UIDo E messages X: messages $ 0.

Proof: (By induction)

Base Case: In the start state, statusi = unknown for all i and UIDo E messages.

Induction Step: Assume that this holds in s, and that ss'.

Case 1 (s.statuso #4 unknown): By the inductive hypothesis, s.messages = 0, and

so s'.statuso y4 unknown and s'.messages = 0.
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f is a relation between states of LCR and of NoChannel, where u E f[s] if and only if:

* u.now = s.now

* u.statusi = s.statusi for all i E Zn

* u.pending i = s.channeli,i+1 o s.pending i for all i E Zn

* u.1std eiivej ji· ,( f s.last(receivei+a) if s.channeli,i+l is not empty
u.last(deliver ) s.last(sendi) + d otherwise

* u.last(leaderi) > s.last(leaderi) for all i E Zn

Figure 4-5: A Simulation from LCR to NoChannel

Case 2 (s.statuso = unknown): By Invariant 4.3, s.statusi = unknown for all i, so

X 5 leader/.

Case a (r = deliver_l,(UIDo)): Since UIDo is at the front of s.pending,_ , by

Invariant 4.2, s.messages = UIDo. So s'.statuso = chosen and s'.messages =

0.

Case b (r = deliveri_l,i(UIDo) for i 0): Since the identifiers are unique and

UIDo is the maximum, UIDo > UIDi. So UIDo 0 s'.pending i C s'.messages

and s.statuso = s.statuso = unknown.

Case c (r = delivern_l,o(UIDj) for j 0): By the inductive hypothesis, UIDo E

s.messages, so UIDo E s'.messages and since the identifiers are unique,

UTIDo $ UIDj, so s'.statuso = s.statuso = unknown.

Case d (r = deliveri_l,i(UIDj) for i,j 0): By the inductive hypothesis,

UIDo E s.messages, both of which are unchanged by this action.

Case e (r = v): s'.basic = s.basic so this holds inductively.

4.4.2 LCR Implements NoChannel

We now show that LCR implements NoChannel by proving that the relation f defined in

Figure 4-5 is a simulation from LCR to NoChannel. Notice that the timing condition for

the deliveri,i+l task only requires the upper bound to allow enough time for the next send

action and its corresponding receivei+l, if there are no messages already sent but not yet

received, i.e., if channeli,i+l is empty. The following proof is straightforward, and does not

even require the invariants proved above.
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Proof that f is a simulation from LCR to NoChannel:

Time: By definition of f.

Start: If so and u0o are start states of LCR and NoChannel then uo.now = 0 = so.now and

for all i E Z:

uo.statusi = unknown = so.statusi

so.channeli,i+i is empty

uo.pending i and so.pendingi both contain only UIDi

uo.last(deiveri,i+ ) = I + d = so.last(sendi) + d

uo.last(leaderi) = oo

So uo E f[so].

Step: Suppose that s and u E f[s] are reachable states and that s s'.

leader/
Case 1 (r = leader/): This step is simulates u - u', which has the same external

behavior.
a. To see that leaderi is enabled in u, notice

u.statusi = s.statusi since u E f[s]

= chosen since leaderi is enabled in s

b. We have u' E f[s'], since u E f[s] and all variables are unchanged except

u'.statusi = reported = s'.statusi and

u'.last(leaderi) = oo = s'.last(leaderi)

Case 2 (r = sendi(UIDj)): There is no corresponding action in NoChannel. This

has the same external behavior since sendi(UIDj) is internal.

We have u E f[s'] since u E f[s] and s' = s except for s'.pendingi, s'.channeli,i+l,

s'.last(sendi), and possibly s'.last(receivei+l), and:

a. Since UIDj is removed from the front of pending i and added to the back of

channeli,i+l, we have s'. channeli,i+l os'.pendingi = s. channeli,i+ os.pendingi.

b. If s.channeli,i+l is empty, i.e., receivei+l is not enabled in s, then
u.last(deliver,+i) > s.last(sendi) + d since u E f[s],

> s.now + d by Lemma 3.3,

= s'.last(receivei+l) since receivei+l is newly enabled.

c. If s.channeli,i+l is not empty, then s'.last(receivei+l) = s.last(receivei+l).

deliver/_ i(UIDj)
Case 3 ( = receivei(UID3)): This simulates u u, which has the

same external behavior because both are internal.

a. Since UIDj is at the front of s.channeli_l,i, then UIDj is at the front of

u.pendingi_l = s.channeli_l,i o s.pending-_l, so deliveri_,i(UIDj) is enabled

in u.
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b. We need to check that u' E f[s']. Notice that s' = s except for channeli_l,i,

last(receivei), and possibly either pending i and last(sendi) or statusi and

last(leaderi), and u' = u except for pendingi_l and last(deliveri_l,i), and

possibly either pending i and last(deliveri,i+l) or statusi and last(leaderi).

UIDj is removed from the front of both s.channeli_l,i and u.pendingi_l, so

u'.pendingi_ = s'.channeli_l,i o s'.pendingi_1. If this is not empty, then

u'.last(deliveri_,i) = u.now + I + d, which, by Lemma 3.3, is greater than

s'.last(receivei) if s'.channeli_1,i is empty, and greater than s'.last(sendi_l)+

d otherwise.

If UIDj < UIDi, this is all that needs to be checked. If UIDj = UIDi then

u'.statusi = s'.statusi = chosen, and u'.last(leaderi) = st.last(leaderi) =

s'.now + 1. If UIDj > UIDi then UIDj is added to the back of pending i (in

both s and u), so u'.pendingi = s'.channel,i+l o s'.pendingi. If u.pendingi

is empty, then u'.last(deliveri,i+l) = s'.now + I + d = s'.last(sendi) + d.

Otherwise, u'.last(deliver,i+l) = u.last(deliveri,i+l) which is greater than

s'.last(receivei+l) = s.last(receivei+l) if s'.channeli,i+l = s.channeli,i+ is

not empty, and greater than s'.last(sendi) + d = s.last(sendi) + d if it is.

Case 4 (r = v): This simulates u u' such that u'.now = s'.now, which has the

same external behavior.

a. We know u E)u' because for all i, s'.now < s.last(leaderi) < u.last(leaderi)
and

s'.now I s.last(receivei+l) if channelii+ ulatdever
s.last(sendi) + d if channel = 0 J .last(de

b. Since u E f[s] and all variables except now are unchanged, u' E f[s'].

4.5 A Template for Synchronous n-round Algorithms

The invariants in the previous section prove that NoChannel will never elect any leader

other than po, but they do not establish that po will actually be elected. For the rest of

this chapter, we establish not only that it will be elected, but also an upper bound on the

time to election. We do this by viewing the automaton as though it were a synchronous

n-round algorithm. We capture this by defining a simulation between NoChannel and a
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State
reported E {true, false}, initially false
round E N, initially 0

Actions

External leaderi Internal increment
Pre: round = n A -reported Pre: round < n
Eff: reported - true Eff: round - round + 1

Tasks
leader = {leaderi}: [0, 1] {increment}: [0, p]

Figure 4-6: Automaton Rounds: A Template for n-Round Algorithms

simple automaton Rounds, shown in Figure 4-6, which keeps track of the rounds already

completed.

The increment action signifies the end of an abstract round. At the end of the nth

round, the leader task becomes enabled. Notice that, as in Election, all the leader actions

are in a single task. Rounds and Election are essentially the same as Counter and Report

in Chapter 3, except that the automaton now counts up to n, rather than down to 0.

Also, the single report action is replaced by a set of leader actions, and the bounds on the

two tasks of Rounds are different. However, the proof that Rounds implements Election

when treport > np + I is identical in form to the proof that Counter implements Report in

Section 3.7, so we do not reproduce it here.

4.6 NoChannel Implements Rounds

In this section, we show how to simulate the rounds of a synchronous execution. Intutively,

one round of communication, which may take up to I + d time to complete, corresponds

to a deliver action for every pair of connected processes with a message pending. Because

of the asynchrony, one "round" may start before the previous one, even several previous

ones, ends. We are only interested in the number of rounds that have completed, which we

determine by the "distance" the "slowest" messages have travelled.

4.6.1 Preliminary Definitions and Lemmas

To capture this intuition formally, we introduce the notion of the reach of a process, which

corresponds to the distance its identifier has travelled. This can be determined by the
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pending queue it appears in, unless it has already been discarded, in which case the reach

is defined to be n. The "slowest" identifiers are then those of processes with the minimum

reach, and the processes which contain these identifiers in their pending queues are the

bottlenecks. Formally, for any reachable state of NoChannel, we define:

i - j E {O,1,..., n- 1} if UIDj E pendingi

n if UIDj ~ messages
This is well-defined because, by Invariant 4.1, UIDj E pending i for at most one i Z.

* minreach = min{reach(j): j e Zn) is the minimum reach of any process.

* Slowest = {j e Zn: reach(j) = minreach} is the set of indices of processes with the

"slowest" identifiers.

* Bottlenecks = {i E Z: UIDj E pending i for some j E Slowest} is the set of indices

of processes holding the "slowest" identifiers.

Lemma 4.5 The following are true:

* In any state of NoChannel, reach(j) = n if and only if UIDj messages and

minreach = n if and only if messages = 0 if and only if Bottlenecks = 0.

deliver/,+l (UID1 )* If s ii+ (j)I s' then s'.reach(j) > s.reach(j) and s'.minreach > s.minreach.

Proof: This follows directly from the definitions of reach and Bottlenecks. ·

4.6.2 The Simulation

We now show that NoChannel implements Rounds by proving that the relation g defined

in Figure 4-7 is a simulation from NoChannel to Rounds. Recall that P0 has the maximum

identifier. so that it will eventually report that it is the leader. Following the intuition

above, the round is determined by the minimum reach of any process. The upper bound on

the increment action must allow enough time for all of the slowest identifiers to be delivered.

By definition, these identifiers are in the pending queues of the bottleneck processes.

1Note reach: Z - Z for each state of NoChannel.

51



g is a relation between states of NoChannel and of Rounds, where u E g[s] if and only if:

* u.now = s.now

* u.reported = s.statuso = reported

* u.round = s.minreach

* u.last(leader) > s.last(leadero) if s.statuso = chosen.

* u.last(increment) > s.last(deliveri,i+i) if i E s.Bottlenecks

Figure 4-7: A Simulation from NoChannel to Rounds

Proof that g is a simulation from NoChannel to Rounds if p > I + d:

Time: By definition of g.

Start: In the start states u0o and so of Rounds and NoChannel,

uo.now = 0 = so.lnow

uo.reported = false and so.statuso = unknown $ reported

uo.round = 0 = so.minreach since reach(j) = 0 for all j

uo.last(increment) = p l + d = so.last(deliveri,i+ ) for all i

so u0 E g[so].

Step: Assume s and u E g[s] are reachable states and that s'.

Case 1 (r = leader/): Since s.statusi = chosen, by Invariant 4.3, i = 0. This step
leaderUsimulates u leader u' for some u', which has the same external behavior.

a. To see that leadero is enabled in u, note

s.messages = 0 by Invariant 4.4

s.minreach = n by Lemma 4.5

u.round = n since u E g[s]

-u.reported since u E g[s] and s.statuso = chosen

b. We have u' E g[s'] since u E g[s] and all variables are unchanged except

s'.status = reported and u'.reported = true, and u'.last(leader) = oo =

s'.last(leaderi).

Case 2 (r = deliveri,i+l(UIDj)): Since this is internal, it must simulate internal

actions, i.e., increment.

Case a (j = i + 1): This step simulates u increment u for some u'.

By Invariant 4.2, j = 0 and s.messages = UIDo, since UIDj is at the front of

s.pendingj_1. Thus, s.minreach = n- 1 and s'.messages = 0, s'.statuso =
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chosen, s'.minreach = n, and s'.last(leadero) = s.now + 1. So increment is

enabled in u.

To see that u' E g[s'], we check u'.round = n and u'.reported = false since

u e g[s], and u'.last(leader) = u.now + I = s.now + I since leader is newly

enabled.

Case b (s.Slowest = j) and i + 1 j): This simulates the execution fragment
increment incrementund = mnec· u-u-- * - ~u, u where u'.round = s.minreach.

Such an execution fragment exists because u.reported = false, and this is not

changed by increment actions, and u.round = s.minreach < s'.minreach < n

by Lemma 4.5. Moreover, s'.reach(j) > s.reach(j) by Lemma 4.5, and for

all j' j, s'.reach(j') = s.reach(j') > s.reach(j), so we have s'.minreach >

s.minreach, and there is at least one increment in the execution fragment.

Since s.messages 5# 0, by Invariant 4.4, UIDo E s.messages. But UIDo is not

discarded by any action except delivern_l,(UIDo), so UIDo E s'.messages,

and s'.minreach < n.

We have u' E g[s'] because u' = u except u'.round = s'.mrninreach and

u'.last(increment) = u.now + p > s'.now + (I + d) > s'.last(deliveri,,i+l)

for any i' such that s'.pendingi, y 0.

Case c (j E s.Slowest but s.Slowest ({j}): There is no corresponding action

in Rounds. We have s'.reach(j') = s.reach(j') = s.minreach for some j' 

j, so s'.minreach = s.minreach. Thus, s'.Slowest = s.Slowest - (j), and

s'.Bottlenecks = s.Bottlenecks - i), so u E g[s'].

Case d (j s.Slowest): Again, there is no corresponding action in Rounds.

Since s'.reach(j') = s.reach(j') for all j' 54 j, we have s'.Slowest = s.Slowest.

So s'.Bottlenecks = s.Bottlenecks and u E g[s'].

Case 3 (r = v): This simulates u u' where u'.now = s'.now, which has the same

external behavior.

If leader is enabled in u then s.statuso # reported and s.minreach = n since u E

g[s]. By Lemma 4.5, s.messages = 0, so by Invariant 4.4, s.statuso $ unknown,

so s.statuso = chosen. Thus u.last(leader) > s.last(leadero) > s'.now.

If increment is enabled in u then s.minreach < n, so i E s.Bottlenecks for some i

by Lemma 4.5, and u.last(increment) > s.last(deliveri,i+l) > s'.now.
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And u' E g[s'] since u E g[s] and all variables except now are unchanged.

4.7 Discussion

We conclude this chapter with a few remarks about the approach used in this proof. First,

we note that the formal details of the proof were much easier to handle because of the hier-

archical structure. For example, by introducing NoChannel, the difficulty in the proof was

isolated mostly to the consideration of the deliver actions in the simulation from NoChannel

to Rounds. Without this intermediate abstraction, much of that proof would need to be

repeated for both the send and the receive actions of LCR. In addition, because there is no

conceptual distinction between messages about to be sent, and messages sent but not yet

received, this also simplified the statements of the invariants.

Second, each of the intermediate automata introduced in this example illustrate an

important idea that may be useful in many other simulation proofs. The reduction of the

buffered FIFO channels to a single queue representing both the pending buffer and the

channel should be applicable to any automaton that has this mechanism. As mentioned,

this allows us to reason about a simpler automaton, and makes the proofs clearer.

The Rounds automaton illustrated the idea of milestones, which we will see again in the

next example. In this case, we view an asynchronous algorithm as running synchronously

by specifying the "round" corresponding to each state. To do this, it is useful to track

the progress of every message. The current round then corresponds to the "distance" the

"slowest" message has travelled. Although the rounds here all have the same time bounds,

this is not necessary. The important point is that it must be possible to partition the states

so that the automaton never returns to one class of states once it has left it, before reaching

the desired goal.
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Chapter 5

Fischer's Mutual Exclusion

Algorithm

We now consider the mutual exclusion problem, in which several processes compete for a

critical resource. The mutual exclusion requirement demands that at most one process has

the resource at any time. Burns and Lynch [BL93] proved that in the asynchronous shared

memory model, the mutual exclusion problem for n processes requires at least n atomic

read/write shared variables. In this chapter, we examine Fischer's timing-based mutual

exclusion algorithm [Fis85, Lam87], using only a single shared variable. In addition to

mutual exclusion, we prove an upper bound on the time any process must wait to acquire

the resource while it remains unused. Our primary interest in this algorithm is as a test

case for the methods we have developed for proving timing properties.

5.1 The Mutual Exclusion Problem Specification

In the mutual exclusion problem, several processes, called users, are competing for a critical

resource, which cannot be used simultaneously by two processes. When a process is using

the resource, we say that it is critical, or that it is in its critical region. When it does not

need the resource, it is in its remainder region. To manage the resource, the users may

have to take additional steps to acquire or release the resource, during which we say a user

is in its trying or exit regions respectively. We assume that once a user has the resource, it

will not be interrupted, i.e., it may continue to use the resource until it releases it.

The timed automaton Mutex in Figure 5-1 is the specification for a system that not
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State
regioni E {remainder, trying, critical, exit} for i E I, initially remainder

Actions

External tryi External exiti
Pre: regioni = remainder Pre: regioni = critical
Eff: regioni - trying Eff: regioni - exit

External criti External remi
Pre: regioni = trying Pre: regioni = exit

for all j, regionj 4 critical Eff: regioni - remainder
Eff: regioni - critical

Tasks
{tryi}: [O,oo] {exiti): [, oo]
crit = {criti : i E I}: [0, tcrit] {remi}: [0, trem]

Figure 5-1: Automaton Mutex: A Simple Specification for Mutual Exclusion

only guarantees mutual exclusion, but also upper bounds on the time that any user must

spend in its trying region before some user is in its critical region, and the time any user

must spend in its exit region. This automaton keeps track of the regions of each of the

users (with indices in I), and ensures that at most one user is in its critical region at any

time. Notice that all crit actions belong to the same task. Intuitively, this means that if

some users are trying to acquire the resource when it is free, then one will succeed within

the specified upper bound. This specification is not truly distributed, that is, it does not

describe a truly distributed system, because the users can access each other's state.

5.2 Fischer's Mutual Exclusion Algorithm

Fischer proposed a simple timing-based algorithm using only a single n + 1-valued atomic

variable x that can be read and written by all the users. This register can contain any of

the users' names, or a special free value. For simplicity, we will use a user's index as its

name, and 0 as the free value. Intuitively, if a user is critical, the register contains its name,

and if every user is in its remainder region, the register is free, i.e., it contains 0. Figure 5-2

contains A familiar pseudocode-style listing of the program executed by each user is given

in Figure 5-2, and the corresponding timed automaton Fischer is shown in Figure 5-3. User

i is in its trying region if pci E {testing, set, checking, leave-trying}), and in its exit region if

pci C {reset, leave-exit).

Each user trying to obtain the resource first tests the register until it is free, and when
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Shared variable: x E I U {O}, initially O.

(pci)

remainder *** Remainder Region ***
tryi

testing wait until x = 0
set x -i

pause
checking if x $ i then goto test
leave-trying criti
critical *** Critical Region ***

exiti
reset x - 0
leave-exit remi (goto remainder)

Figure 5-2: Pseudocode for User i

State
pc E {remainder, testing, set, checking, leave-trying, critical, reset, leave-exit}
x E I U {0}, initially 0

Actions

for i E I, initially remainder

External tryi
Pre: pci = remainder
Eff: pci + testing

Internal testi
Pre: pci = testing
Eff: if x = O then pci set

Internal seti
Pre: pci = set
Eff: x -- i

pci - checking

Internal checki
Pre: pc/ = checking
Eff: if x = i

then pci - leave-trying
else pci - testing

Tasks
Assume a < b < c

{tryi}: [0, oo]

{testi}: [O,a]
{seti}: [O,a]
{checki}: [b, c]

External criti
Pre: pci = leave-trying
Eff: pci , critical

External exiti
Pre: pci = critical
Eff: pci - reset

Internal reseti
Pre: pci = reset
Eff: x - 0O

pci - leave-exit

External remi
Pre: pci = leave-exit
Eff: pci - remainder

{criti}: [O, a]
{exiti}: [O0,oo]
{ reseti}: [0, a]
{rem/}: [, a]

Figure 5-3: Automaton Fischer: Fischer's Algorithm
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it is, sets it to its own name. Since several users may be competing for the resource, the

user pauses long enough to give every user a chance to set the register. Then, when the

register value has stabilized, it checks if the register still contains its name. If it does, the

user takes the resource. Otherwise, it returns to testing until the register is free again. The

last user to set the register gets the resource, and upon exiting, resets the register to 0.

To maintain mutual exclusion, every user must allow enough time for the register to

stabilize before checking it. Otherwise, two users could both test the register and find it

free. The faster one could then set and check the register, and enter its critical region

before the slower one even manages to set the register. The slow user would then overwrite

the register, and find its name still there when it checks. Thus, it would also enter its

critical region, violating mutual exclusion. This is avoided by a simple timing restriction

that requires each user to allow enough time before checking the register for any other user

to set it. Formally, upper(seti) < lower(checkj) for all i,j E I.

Notice that every action is a task by itself, and no user can access the state of any other

user, corresponding to the intuition that each user acts independently of the other users.

Also, each action reads or writes the shared register at most once, and external actions do

not access it at all. This corresponds to the intuition that in one step an atomic read/write

register can only be either read or written by a single process. We define time bounds for all

the tasks other than tryi and exiti in order to prove the time bounds for the specification.1

We wish to prove that Fischer implements Mutex if tcrit > 5a + 2c and trem > 2a.

5.3 Fischer's Algorithm Satisfies Mutual Exclusion

In this section, we demonstrate that Fischer's algorithm satisfies mutual exclusion. This

is done entirely by proving some invariants about Fischer. But first we note the following

useful fact:

Lemma 5.1 For Fischer: If s -os' and s'.x 0 then 7r = set,.x or s.x = s'.x.

Proof: (By inspection)

Only the set and reset actions modify x, but the reset actions set x to 0, and s'.x 0.

Next we establish the following easy invariant:

'We can show tight, slightly better bounds; see Section 5.8.
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Invariant 5.2 For Fischer: If x 4 0 then pcx E {checking, leave-trying, critical, reset).

Proof: (By induction)

Base Case: In the initial state, x = 0, so this holds vacuously.

Induction Step: Assume that s satisfies the invariant, and that s s'.

Assume: s'.x = i 0.

Prove: s'.pci E {checking, leave-trying, critical, reset)

Case 1 (r = set/): s'.pci = checking

Case 2 (r $ seti): By Lemma 5.1, s.x = i.

By the inductive hypothesis, s.pci E {checking, leave-trying, critical, reset}.

But 7r reset/, so s'.pci E {checking, leave-trying, critical, reset} also.

Recall that for this algorithm to work, every user must delay checking the register until

all other users have a chance to set it. We only need to show this for the user whose index

is currently in the register, since only it can successfully complete the check action and

proceed to its critical region. The following invariant captures this crucial intuition.

Invariant 5.3 (Sufficient Confirmation Delay) For Fischer:

If x y$ 0 and pc = checking then first(checkx) > last(setj) for all j such that pcj = set.

Proof: (By induction)

Base Case: This holds vacuously in the initial state.

Induction Step: Assume that it holds in some reachable state s, and that sss'.

Assume: s'.x = i 0 and s'.pci = checking.

Prove: s'.first(checki) > s'.last(setj) for all j such that s'.pcj = set.

Case 1 (7r = seti): By the timing restriction and Lemma 3.3, if s'.pcj = set (i.e.,

setj is enabled in s'.basic) then s'.first(checki) = s'.now + lower(checki) >

s'.now + upper(setj) > s'.last(setj).

Case 2 (r seti): By Lemma 5.1, s.x = i, so r 54 testj for any j.

If s'.pcj = set then s.pcj = set also, so setj is not newly enabled by s -s'.

Also, s.pc i = checking, so by the inductive hypothesis, s'.first(checki) =

s.first(checki) > s.last(setj) = s'.last(setj).
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We can now prove the invariant that demonstrates mutual exclusion. It says that if any user

is in the critical region, or immediately before or after it, then its index is in the variable x

and no other user is about to overwrite it. Notice that there is no timing information in the

statement of this invariant, though timing information is used in its proof. This invariant

is slightly stronger than mutual exclusion, and clearly implies it:

Invariant 5.4 (Strong Mutual Exclusion) For Fischer:

If pci E {leave-trying, critical, reset}, then x = i and pcj ~ {set, leave-trying, critical, reset}

for all j i.

Proof: (By induction)

Base Case: This holds vacuously in the initial state.

Induction Step: Assume that this holds in some reachable state s, and that sa s'. If

7r = v, then s'.basic = s.basic, and this holds inductively. So assume that 7r v.

Case 1 (s.pci E {leave-trying, critical, reset} for some i): s.x = i and for all j i,

we have s.pcj {set, leave-trying, critical, reset}.

Case a (r E {criti, exiti}): s'.pcj = s.pcj {set, leave-trying, critical, reset} for

all j f i and s'.x = s.x = i, so the invariant holds.

Case b (r = reseti): s'.pcj , {set, leave-trying, critical, reset} for all j (includ-

ing i), so the invariant holds vacuously.

Case c (r E {tryj,testj,checkj,remj} for some j i): s'.x = s.x = i, and

for all j' {i,j), s'.pcj, = s.pcj, {set, leave-trying, critical, reset}, and

s'.pcj {set, leave-trying, critical, reset} since s.x ({i,j), so the invariant

holds in s'.

From the possible values of the pc variables in s, no other actions are enabled.

Case 2 (s.pcj {leave-trying, critical, reset} for all j):

Case a ( = checks. ): Since s.first(checkS.x) < s.now < s.last(setj) for all j,

by Invariant 5.3, s.pcj set for all j. So this holds because s'.x = s.x, and

s'.pcj ({set, leave-trying, critical, reset} for all j s.x.

Case b (r check,.): s'.pcj {leave-trying, critical, reset} for all j, so this

holds vacuously.

60



State
regioni E {remainder, trying, critical, exit} for i E I, initially remainder
status, an element of {start, seized, stable}, initially start

Actions

External tryi External criti
Pre: regioni = remainder Pre: regioni = trying
Eff: regioni - trying status = stable

Eff: regioni - critical
Internal seize status - start

Pre: for some i, region i = trying
status = start External exiti
for all j, regionj $ critical Pre: regioni = critical

Eff: status- seized Eff: regioni - exit

Internal stabilize External remi
Pre: status = seized Pre: regioni = exit
Eff: status - stable Eff: regioni remainder

Tasks
{tryi}: [0, o] crit = {criti: i E I}: [0, a + c]
{seize}: [0, 3a + c] {exiti}: [0, oo]
{stabilize}: [0, a] {remi}: [0, 2a]

Figure 5-4: Automaton Milestone: An Intermediate Milestone Automaton

5.4 Milestones: An Intermediate Abstraction

Although Invariant 5.4 guarantees mutual exclusion, it does not bound the time a user may

be in its trying region before some user (not necessarily the same one) enters its critical

region. Intuitively, it can not be too long, since once any user sets the register, only users

that have already tested the register and found it free will overwrite it. Each such user will

set the register only once until the register becomes free again, and the last user that sets

it will enter its critical region after waiting an appropriate amount of time, and its name

will remain in the register until it resets it as it exits.

While we could construct a simulation directly from Fischer to Mutex, we find it useful

to introduce an intermediate level of abstraction which captures this intuition. We define

an automaton Milestone, shown in Figure 5-4, with actions that correspond to milestones

toward the goal of some user entering its critical region. We then construct two intuitive

simulations, one from Fischer to Milestone, and one from Milestone to Mutex, which to-

gether establish that every admissible timed trace of Fischer is an admissible timed trace

of Mutex.

We say that the register is seized when a user sets it from 0 to its name. This is the first
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milestone; the register will not be free again until after some user enters its critical region,

and resets the register as it exits. Thus, all the users that will set the register must have

already tested it. The second milestone occurs when the last user sets the register. At this

point we say the register is stable; no user will set it again until it has been reset by this

user when it exits its critical region. If only one user wants the resource, then when it sets

the register, it is both seized and stabilized. Notice that seize and stabilize are not actions

of individual users, but of the entire system.

Informally, we might reason that a user entering its trying region will seize the register,

if it is free, within time 2a, i.e., enough time to do both test and set the register. Then

every user that has already tested the register must set it within time a, after which the

register will be stable. Finally, the last user to set the register will check it, and then enter

its critical region within time a + c. However, this does not take into account the possibility

that a user could already be in its trying region when the critical user exits. In this case,

the register may not be free for additional time a, after which any user waiting to test the

register will do so within time 2a as above, for total of time 3a. But if the only users trying

are still waiting to check the register, then it may take an additional time c before any

discover their names have been overwritten, and are ready to test the register again. Thus,

the upper bound for the seize action is 3a + c.2

We first prove the following easy invariant, which simply states formally that the register

is only seized or stable if some process is making progress towards its critical region, that

is, that it is in its trying region, and no other process is critical.

Invariant 5.5 For Milestone:

If status start then regioni = trying for some i and regionj 5- critical for all j.

Proof: (By induction)

Base Case: This holds vacuously in the initial state.

Induction Step: Assume that this holds in some reachable state s, and that so-) s'.

Case 1 (s.status = start): r #4 stabilize or criti for any i.

Case a (r = seize): s'.regioni = s.regioni = trying for some i, and s'.regionj =

s.regionj critical for all j.

2 This is not tight, and will be improved in Section 5.8.
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g is a relation between the states of Milestone and of Mutex, where u E g[s] if and only if:

* .nOW = s.now

* u.region, = s.regioni

s.last(seize) + 2a + c if s.regioni = trying for some i, and
s.status = start, and

* u.last(crit) > s.regionj critical for all j,
_ s.last(stabilize) + a + c if s.status = seized,

s.last(crit) if s.region, = trying for some i, and
s.status = stable.

* u.last(remi) > s.last(remi) if s.regioni = exit

Figure 5-5: A Simulation from Milestone to Mutex

Case b (r E tryj,exitj,remj) for some j): s'.status = s.status = start, so this

holds vacuously.

Case 2 (s.status start): s.regioni = trying for some i and s.regionj $ critical for

all j, so 7r (seize, tryi, exiti, remi}.

Case a (r E tryj,exitj,remj) for some j i): s'.regioni = s.regioni = trying,

s'.regionj critical, and for all j' $ j, s'.regionj, = s.regionj critical. (r

cannot be exitj, but we deal with it here rather than make a separate case.)

Case b (r = critj for some j): s'.status = start, so this holds vacuously.

Case c (r = stabilize): s'.regionj = s.regionj for all j so this holds inductively.

5.5 Milestone Implements Mutex

Intuitively, the seize and stabilize actions are steps the system must take before any user can

enter its critical region. We capture this with a relation g in Figure 5-5. The now, region,

and rem conditions are all straightforward. Notice that qualification on the conditions

involving seize, stabilize, and crit are their respective enabling conditions. Thus, for example,

u.last(crit) > s.last(seize) + 2a + c requires the crit deadline in Mutex to allow enough time

for the seize action in Milestone plus an additional 2a + c time to take the remaining steps

necessary to enter the critical region.

Proof that g is a simulation from Milestone to Mutex if t,,it > 5a+2c and t,em > 2a:

Time: By the definition of g.
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Start: If uo and so are start states of Mutex and Milestone, then uo.now = so.now = 0

and for all i, uo.regioni = so.regioni = trying and uo.last(crit) = uo.last(remi) = oo,

so uo E g[so].

Step: Suppose s and u E g[s] are reachable states, and s s':

Case 1 ( = tryi): This step simulates u i .

tryi is enabled in u, since u.regioni = s.region i = remainder.

Case a (u.regionj = s.region = trying for some j):

Since s' = s and u' = u except that u'.regioni = trying = s'.regioni, we have

ut E g[s'].

Case b (u.regionj = s.regionj $ trying for all j):

By Invariant 5.5, s.status = start.

Case i (u'.regionj = u.regionj = s.regionj = critical for some j):

u'.last(crit) = oo and all other conditions continue to hold.

Case ii (u.regionj = s.regionj $ critical for all j):

crit is newly enabled in u' and seize is newly enabled in s', so u'.last(crit) =

u.now + tcrit > (s.now + 3a + c) + 2a + c = s'.last(seize) + 2a + c.

Case 2 (r = seize): There is no corresponding step for Mutex.

s' = s except that s'.status = seized, s'.last(seize) = oc, and s'.last(stabilize) =

s.now + a. Since u.last(crit) s.last(seize) + 2a + c > s.now + 2a + c =

s'.last(stabilize) + a + c, we have u E g[s'].

Case 3 (r = stabilize): Again, there is no corresponding step for Mutex.

By Invariant 5.5, s.region i = trying for some i. Thus, s' = s except that

s'.status = stable, s'.last(stabilize) = oo, and s'.last(crit) = s.now + a + c. Since

u.last(crit) > s.last(stabilize) + a + c > s.now + a + c = s'.last(crit), we have

u E g[s'].

criti
Case 4 (r = criti): This simulates u -- u u

a. criti is enabled in u since u.regioni = s.regioni = trying, and u.regionj =

s.regionj $ critical for all j by Invariant 5.5.

b. We have u' = u except u'.regioni = critical = s'.regioni and u'.last(crit) =

oo, so u' E g[s'].

e xits i '.
Case 5 (r = exit-): This simulates u u 
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a. exiti is enabled in u since u.regioni = s.regioni = critical.

b. u'.regioni = exit = s'.regioni and since remi is newly enabled in s' and u',

u'.last(remi) = u.now + trem > s.now + 2a = s'.last(remi).

s'.status = s.status = start by Invariant 5.5, so if crit is (newly) enabled in u',

then seize is enabled in s' and u'.last(crit) = u.now+tcrit > (s.now+3a+c)+

2a + c > s'.last(seize) + 2a + c by Lemma 3.3. Otherwise, u'.last(crit) = oo.

So u' E g[s'].

Case 6 (r = remi): This simulates u rem-i u'.

remi is enabled in u since u.region = s.region i = exit. Since u' = u except

u'.regioni = remainder = s'.regioni, and u'.last(remi) = oc, we have u' g[s'].

Case 7 (r = v): This simulates u u', where u'.now = s'.now.

We know s'.now < s.last(C) for any task C of Milestone, and we show that

s'.now u.last(C) for any task C of Mutex. If C is not enabled in u.basic,

or C e {tryi,exiti) for some i, then u.last(C) = oo. Otherwise, we have the

following cases:

Case a (C = crit): s.regioni = u.regioni = trying for some i, and s.regionj =

u.regionj critical for all j.

Case i (s.status = start): u.last(crit) > s.last(seize) + 2a + c > s'.now.

Case ii (s.status = seized): u.last(crit) > s.last(stabilize) + a + c > s'.now.

Case iii (s.status = stable): u.last(crit) > s.last(crit) > s'.now.

Case b (C = remi for some i): s.region = u.region = exit, so u.last(remi) 

s.last(remi) > s'.now.

Thus, if u' = u except that u'.now = s'.now, then u u' and ' E g[s'].

5.6 Fischer implements Milestone

Recall the intuition we used to define the milestone automaton: The first time the register

is set before some user gets the resource corresponds to a seize action, and the last time

corresponds to a stabilize action. We denote by w(i), an upper bound on the time before

user i will set the register if it remains free. So if some users are trying to get the resource,
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f is a relation between states of Fischer and of Milestone, where u E f[s] if and only if:

· u.now = s.now

* u.regioni = s.regioni

trying
critical
exit
remainder

if s.pci E {testing, set, checking, leave-trying},
if s.pci = critical,

if s.pci E {reset, leave-exit},
if s.pci = remainder.

start if s.x = 0 or
for some i, s.pc i E {critical, reset},

seized if s.x 0, and
* u.status = ( for all i, s.pci {critical, reset}, and

for some i, s.pci = set,
stable if s.x : 0 and

for all i, s.pci {set, critical, reset}.

* u.last(seize) > s.last(reseti) + 2a + c if s.pci = reset.

* u.last(seize) > s.w(i) for some i if s.x = 0,
s.last(testi) + a if s.pci = testing,

where s.w(i) = J s.last(seti) if s.pci = set,
s.last(checki) + 2a if s.pci = checking,
.co otherwise.

* u.last(stabilize) > s.last(seti) if s.pci = set.

u.lastcri s.last(checkx) + a if s.pc = checking,
- s.last(criti) if s.pci = leave-trying.

us.last(reseti) + a
u.last(rem) s.last(remi)

if s.pci = reset,
if s.pci = leave-exit.

Figure 5-6: A Simulation from Fischer to Milestone

and the register is free, the upper bound for seize in a simulated state must allow enough

time for some user to set the register. If some user is exiting, but has not yet reset the

register, then the simulated state must allow enough time for the user to reset the register,

and then for some other user to seize it. Once the register has been seized, we only need

to allow enough time for each user that is still going to set the register to do so, and once

the register is stable, we only need to wait for the user that wrote last to check the register

and then enter its critical region. When a user is exiting, we need to allow enough time for

it to reset the register and then leave its exit region. For convenience, we often refer to the

region of a user in a state of Fischer. We capture this intuition with the simulation f in

Figure 5-6.

Proof that f is a simulation from Fischer to Milestone:

66



Time: By definition of f.

Start: In the start states uo and so of of Milestone and Fischer, uo.now = so.now = 0,

uo.regioni = so.pci = remainder for all i, uo.status = start and so.x = 0, and

uo.last(C) = oo for tasks C of Milestone, so Uo E f[so].

Step: Suppose that s and u f[s] are reachable states of Fischer and Milestone respec-

tively, and that s >s':

Case 1 (7r = tryi): This step simulates u >Y u'.

tryi is enabled in u since u.region i = s.region i = remainder, and s' = s except

that s'.pci = testing (and so s'.regioni = trying), and s'.last(testi) = s.now + a.

We show that u' E f[s']:

Case a (seize is newly enabled): u' = u except u'.regioni = trying and

u'.last(seize) = u'.now + 3a + c

= s'.now + a + 2a + c

s.last(resetj) + 2a + c if s'.pcj = reset.

s'.last(testi) + a

Case b (seize is not newly enabled): u' = u except that u'.regioni = s.region i =

trying, and since s.w(i) = oo > s'.last(testi) + a = s'.w(i),

u'.last(seize) = u.last(seize)

s'.last(resetj) + 2a + c if s'.pcj = reset.

s'.w(j) for some j if s'.x = O.

Case 2 (r = testi): There is no corresponding step in Milestone.

We show that u ¢ f[s']:

Case a (s.x $ 0): s' = s except that s'.last(testi) = s.now + a. So f[s'] = f[s]

since s'.x = s.x 54 0.

Case b (s.x = 0): s' = s except that s'.pci = set, s'.w(i) = s'.last(seti) =

s.now + a < s.last(testi) + a = s.w(i), and s'.last(testi) = oo. Since

u.status = start, stabilize is not enabled in u.basic, and the condition for

last(seize) is satisfied since for some j, u.last(seize) > s.w(j) > s'.w(j).
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Case 3 (r = seti): s.pc i = set, s'.pci = checking, and s'.x = i 4 0, so by strong mu-

tual exclusion, s'.pcj {critical, reset} for all j. We have the following cases:

Case a (s.x = 0): seize is enabled in u since u.status = start, u.regioni =

s.regioni = trying, and u.regionj = s.regionj critical for all j; suppose
seize /U eize) , so u'.status = seized.

Case i (s.pcj set for all j $ i): This step simulates u seize) stabilize) U

u" = u except that u".status = stable, u".last(crit) = s.now + a + c, and

u".last(seize) = oo. Since s.now + a + c is greater than any of the time

bounds in the condition for last(crit), and s'.pcj 54 set for all j, we have

u" E f[s'].

Case ii (s.pcj = set for some j i): This step simulates u se) u'.

u E f[s'] since s'.pcj = set and u' = u except that u'.status = seized,

u'.last(seize) = oo, and u'.last(stabilize) = s.now + a > s'.last(setj,) for

all j' such that s'.pcj, = set.

stabilize
Case b (s.x $ 0 and for all j $ i, s.pcj $ set): This step simulates u stabilize) 

stabilize is enabled in u since u.status = seized. u' = u except that u'.status =

stable, u'.last(stabilize) = oo, and u'.last(crit) = s.now + a + c. Since

s.now + a + c is greater than any of the time bounds in the condition for

last(crit), and s'.pcj $A set for all j, we have u' E f[s'].

Case c (s.x y$ 0 and s.pcj = set for some j i): There is no corresponding

step in Milestone.

u E f[s'] since u.status = seized, and s'.pcj = set.

Case 4 (r = checki): There is no corresponding step in Milestone.

We show that u E f[s'] in three easy cases:

Case a (s.x = i): s' = s except that s'.pci = leave-trying, s'.last(checki) = oo,

and s'.last(criti) = s.now + a < s.last(checki) + a < u.last(crit).

Case b (s.x = 0): s' = s except that s'.pci = testing, s'.last(checki) = oo, and

s'.last(testi) = s.now + a, so s'.w(i) = s.now + 2a < s.last(checki) + 2a =

s.w(i). Thus, for some j, u.last(seize) > s.w(j) > s'.w(j).

Case c (s.x {0, i}): There is nothing even to check. (In this case, f[s] C f[s'].)

crit, u'.
Case 5 ( = critb): This simulates u ? u

68



s.pci = leave-trying, so by strong mutual exclusion, s.x = i and for all j, s.pcj 

{set, critical, reset}. Thus, u.status = stable and u.regioni = trying, so crit is

enabled in u.

We have s' = s except that s'.pci = critical and s'.last(crit) = oo, and u' = u

except that u'.regioni = critical, u'.status = start, and u'.last(crit) = oc, so

ua E f[s'] since seize, stabilize, and crit are all disabled in u'.basic.

exit/ 'Case 6 (r = exiti): This simulates ui 

u.regioni = s.regioni = critical, so exit, is enabled in u, u.status = start, and

seize is not enabled in u.basic. We have s' = s except that s'.pci = reset and

s'.last(reseti) = s.now + a.

u' C f[s'] since u' = u except that u'.regioni = exit, u'.last(remi) = u.now +

2a = s.now + a + a = s'.last(reseti) + a, and if seize is enabled in u'.basic,

u'.last(seize) = u.now + 3a + c = s.now + a + 2a + c = s'.last(reseti) + 2a + c.

Case 7 (r = reseti): There is no corresponding step in Milestone.

s.pci = reset, so u.status = start, and s' = s except that s'.pci = leave-exit,

S'.x = 0, s'.last(reseti) = o, and s'.last(remi) = s.now + a < s.last(reseti) + a 

u.last(remi). If seize is enabled in u.basic then s.regionj = trying for some

j i and by strong mutual exclusion, s.pcj $ leave-trying, so s'.pcj = s.pcj C

{testing, set, checking}, and u.last(seize) > s.last(reseti) + 2a + c > s.now + 2a +

c > s'.w(j). Otherwise, u.last(seize) = oo. So u E f[s'].

Case 8 (r = remi): This simulates u r .

remi is enabled in u since u.region i = s.region exit. If u then a' E

f[s'] since u' = u and s' = s except that u'.region i = remainder = s'.pc i and

u'.last(remi)= o = s'.last(remi).

Case 9 (r = v): This simulates u > ' where u'.now s'.now.

We know s'.now < s.last(C) for any task C of Fischer. We show that s'.now <

u.last(C) for any task C of Milestone,

If C is not enabled in u.basic, or C c {tryi,exiti) for some i, then u.last(C) = oo.

Otherwise, we have the following cases:

Case a (C = seize): u.status = start and u.regionj $ critical for all j, so

s.x = 0 or s.pci = reset for some i.
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Case i (s.pci = reset): u.last(seize) > s.last(reseti) + 2a + c > sr.now. 

Case ii (s.x = 0): For some i, 

s. last( test , )  + a if s.pc, = t es t ing  

s . last(set ,)  if s.pc, = set  
u. last(seize)  > s . w ( i )  = 2 s l .now 

s.1ast(checki) + 2a if s.pcj  = checking 

00 otherwise 

Case b (C = stabilize): u.stntus = seized, so s.pci = set for some i ,  and 

Case c (C = crit): ~ ~ . s t n t u s  = stable, so s.x + 0 and by Invariant 5.2, s.pc,., E 

{checking, leave-trying, critical, reset). But s.pci $ {critical, reset) for all i 

and 

s.last(check,.,) + a if s.pc,,, = checking 
u. last(cri t)  2 I > sl .now 

s.last(crit,.,) if s.pc,,, = leave-trying 

Case d (C = remi for some i): u.regioni = exit, so s.pci E {reset, leave-trying) 

and 

s. last(reset;)  + n if s.pc, = reset 
u . las t ( rem;)  > I 2 s l .now 

s. last(rem j )  if s.pc, = leave-exit 

5.7 Discussion 

Tlre intermediate automaton in this example can also be viewed as introducing three 

"rountls" to entering the critical region. These rounds, corresponding to  seizing the register, 

stabilizing tlre register, and entering tlre critical region, have different time bounds, but the 

key point is that once seized, the register will remain seized until it has been stabilized, and 

then it will remain stable until some process enters the critical region. These milestones 

allow us to track the progress of the system, and by bounding the time for each milestone, 

we can bound tlre total time to enter tlre critical region. 

IClore generally, there need not be only one set of milestones, all of which need t o  be 

passetl. Rat her, there could be several alternative paths, each with its own set of milestones. 

This is similar to the decrementing junction method of Floyd [Flo67], with milestones corre- 

sponding to decrementing the function. Using the milestones as actions of an intermediate 

automaton allows us to construct hierarchical proofs that are rigorous, modular, and intiu- 

tive. 



5.8 Achieving Optimal Time Bounds 

The upper bound proved for the seize action of Milestone is not tight, and thus neither is 

the bound on tcrit. In this section, we give a simulation that establishes an upper bound of 

max(2a+ c - b, 3a) for the seize action. This yields an upper bound of max(4a + 2c - b,  5a + c )  

for the time for some user to  enter its critical region. This bound is tight because it is possible 

t o  construct executions of Fischer that reach each of these upper limits. To our knowledge, 

this bound was not known before. 

To establish this tight bound on the seize task, only a few conditions of the simulation 

need to  be modified. The proof that this is still a simulation follows the structure of the 

original proof, and only a few cases are affected, because our methodology produces a very 

modular proof.3 Thus proving the improved bound was very simple, and did not involve 

any intricate reasoning, but was straightforward to derive from the original proof. 

5.8.1 The Slack in the  Time Bounds 

We can see how the slack in the time bound arises by examining the informal reasoning 

given in Section 5.4, or the proof of the simulation from Fischer to AIilestone. Recall that 

the bound for seize was not 2n because a user might already be in the trying region. After 

the critical user exits, the trying user may still not be able to  successfully test the register, 

either because it is very slow and has not yet even checked the register after setting it 

earlier, or because the register has not yet been reset. The upper bound for seize of 3r1+ c 

allowed enough additional time both for a trying user to  finish checking, and for the esiting 

user to  reset the register. 

In the formal proof, the simulation requires that enough time be left after an exiting 

user resets the register to allow a user still waiting to check the register enough time t o  do 

so, as though it had just set- the register. 

This is not tight for two reasons. First, these effects are not additive, since the users malie 

progress concurrently. Thus, the bound should allow enough time for either possibility, hut 

not for both, i.e., max(2a + c ,  2n + a). Second, a user wa,iting to  check the register mlist 1la.ve 

set the register before the exiting user, which was the last to  set the register. Meanwhile, 

3 ~ l l e  simulation from the intermediate automaton with the improved b o ~ ~ r l d s  to  the mutual exclusion 
specification automaton also needs to  refect the new bounds, but this change is trivial. 



the exiting user checked the register, waiting at least time b before doing so, and entered

and exited the critical region. Thus, the user waiting to check has already been waiting for

at least time b, and thus will wait an additional time of at most c - b. Combining these

yields the upper bound of max(2a + c - b, 3a), instead of 3a + c, for the seize action.

This bound is tight, because there are executions that achieve it. For example, suppose

two processes trying to acquire the critical resource set the register at the same time (i.e.,

there is no time-passage action between the two set actions), and the process which sets the

register last waits exactly b time before checking it and proceeding to its critical section.

If this process then immediately exits and resets the register, the other process may still

take up to c - b time before it checks the register and finds its name overwritten, and an

additional a time to test whether the register is free.4 Then it may take a time to set the

register, for a total of 2a + c - b to seize the register after the critical resource became

available. The 3a bound is easily achieved by an exiting process taking a time to reset the

register after exiting, and then a trying process taking the full 2a time to test and then set

the register after it has been reset.

5.8.2 A Proof Sketch of the Improved Bound

To establish the tight upper bound, we need to decouple of the two sources of delay in the

simulation, and also prove an invariant that limits the time a user may take to check the

register after some other user exits the critical region.

The new simulation, in Figure 5-7, is identical to the one in Figure 5-6, except in the

conditions involving the seize actions. When some user is about to reset the register, the

upper bound for seize is only required to allow enough time to test and set the register after

it is reset. For the other condition, only the qualifier is different, extended to include any

case that seize might be enabled in u.

With this change alone, we can prove an upper bound of 2a + c for the seize action.

However, we can prove the tight upper bound of max(2a + c - b, 3a) with the following

invariant, which says that a user still waiting to check the register while some other user is

in its critical region, must have already waited at least time b. Note that if pcj = checking

then last(checkj) - c represents the time that user j set the register before reaching its

4 This suggests that if the register is free when a process checks it, it might immediately try to set it, rather
than testing it again. This will in fact reduce the upper bound to seize the register to max(a + c - b, 3a).
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f' is a relation between states of Fischer and of Milestone', where u E f'[s] if and only if:

* u.now = s.now

critical if s.pci = critical,· u.regioni = s.regioni = [ ei t
exit if s.pc i E {reset, leave-exit},

remainder if s.pci = remainder.

start if s.z = 0 or
for some i, s.pci E {critical, reset},

seized if s.x x 0, and
* u.status = for all i, s.pci 4 {critical, reset}, and

for some i, s.pc i = set,
stable if s.x $ 0 and

for all i, s.pci 4 {set, critical, reset}.

* u.last(seize) > s.last(reseti) + 2a if s.pci = reset.

* u.last(seize) > s.w(i) for some i if s.z = 0 or for some j, s.pcj = reset.

* u.last(stabilize) > s.last(seti) if s.pci = set.

ulast(crit) f s.last(check,) + a if s.pc = checking,
s.last(criti) if s.pci = leave-trying.

s.last(reseti) + a if s.pci = reset,
s.last(remi) if s.pci = leave-exit.

Figure 5-7: A Simulation for Proving a Tight Bound for the seize Action

current state.

Invariant 5.6 For Fischer:

If pci = critical and pcj = checking then now > last(checkj) - c + b.

Proof sketch: Rather than prove this formally here, 5 we sketch a proof following the

intuition described at the beginning of this section. If pci = critical then by strong mutual

exclusion, x = i, so user i was the last to set the register. This must have been at least time

b earlier, since check, has a lower bound of b, and if pcj = checking, user j must have set

the register before then. That is, if t is the time user j set the register then t < now - b,

and last(checkj) = t + c, yielding last(checkj) < now - b + c as required. ·

We can now prove that Fischer implements Milestone', where Milestone' is exactly the

same as Milestone, except for an upper bound of 2a + max(c - b, a) for the seize task. The

5We cannot prove this directly by induction. We first need to prove that if pc = checking = pcj
for some j x, then last(checkj) - c first(checks) - b. Then we strengthen the original invariant: If
pci E {leave-trying, critical} then now > last(checkj) - c + b.
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only substantial differences from the previous proof are in the consideration of the exit and

reset actions, but the case when x 0 and pcj = reset for some j also need to be handled

for the test and check actions. Other very minor changes are also needed, but these follow

in an obvious way from the changes to these conditions and to the upper bound of seize.

Proof sketch that f' is a simulation from Fischer to Milestone': We only consider

the four cases mentioned above, where this proof differs significantly from the proof in

Section 5.6. The changes for the test, check, and exit actions arise from the requirement

that u.last(seize) > s.w(i) when s.pcj = reset for some j, even if s.x 0. This simplifies

the analysis for the reset action. The case for the exit action is identical to the original proof

except for the last line, where Invariant 5.6 is used to establish s'.w(j) = s'.last(checkj) +

2a < s.now + 2a + c - b when s'.pcj = checking.

1. If r = testi and s.x 0 and s.pcj = reset for some j then

u.last(seize) > s.last(resetj) + 2a > s.now + 2a = stw(i).

2. If 7r = checki and s.x {0, i} and s.pcj = reset for some j then f'[s] C f'[s'] as before,

since for all j', s'.w(j') < s.w(j').

3. If r = exiti then u.region i = s.region i = critical, so exiti is enabled in u, u.status =

start, and seize is not enabled in u.basic. We have s' = s except that s'.pci = reset

and s'.last(reseti) = s.now + a. If u >exti u', then u' f'[s'] since u' = u except that

u'.regioni = exit, u'.last(remi) = u.now + 2a = s.now + a + a = s'.last(reseti)+ a, and
if seize is enabled in u'.basic,

u'.last(seize) = u.now + 2a + max(c - b, a)

_s'.last(reseti) + 2a

s'.w(j) for any j such that s'.pcj E {testing, set, checking}

4. If 7r = reseti then s.pci = reset, so u.status = start, and s' = s except that s'.pci =

leave-exit, s'.x = 0, s'.last(reseti) = o, and s'.last(remi) = s.now+a < s.last(reseti)+

a < u.last(remi). For some j, u.last(seize) > s.w(j) = s'.w(j), So u E f'[s'].

N
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Chapter 6

Automated Proof Assistance

In this chapter, we explore how automated tools can be used to assist in simulation proofs in

the style of the previous chapters. This builds mainly on work done by S6ylemez [S6y94] and

S0gaard-Andersen, Garland, Guttag, Lynch, and Pogosyants [SGG+93]. In particular, we

formally verify the proof in Chapter 5 using LP. As the proof is very lengthy and repetitive,

we consider only the salient features of the proof and the automation process; the full proof

can be found in the appendix.

6.1 The Larch Tools

Larch is a family of tools intended to support formal specification and verification in pro-

gramming. Since we are verifying abstract systems, rather than particular programs, we

use only two tools from this family, the Larch Shared Language (LSL) and the Larch Prover

(LP). In LSL, we write machine-readable definitions of our model and the abstract systems

we are modelling, including the requirements they are expected to satisfy. We then use LP

to reason about these systems and to prove that the required properties are guaranteed by

the system.

6.1.1 The Larch Shared Language

The basic unit of specification in LSL is a trait, which introduces types, called sorts, and

functions, called operators, that act on the sorts. Properties of these sorts and operators

are expressed by assertions in the trait, using first-order logic. Typically, a trait defines a

single concept or data type. Complex traits are often built using simpler traits, introducing
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a hierarchy of traits, which matches our mathematical understanding of the concepts. The

Larch tools include a library of LSL traits formalizing many common concepts in discrete

mathematics.

Two important characteristics of LSL are that sorts are disjoint, and that operators

always represent total functions, though the value of the function may not be constrained

over the whole domain. Also, the domain and range of operators are always sorts, specified

when the operators are introduced. Thus, any trait can be checked for syntactic correctness

in much the same way type-checking is done in many programming languages. This catches

many of the simple mistakes made when writing these traits. We use an LSL checker to do

this, as well as to generate input for LP, which will be discussed further in the next section.

Assertions are typically either logical expressions that are always true, or equations

expressing the equivalence of two expressions of the same sort. It is also possible to make

two other types of assertions about sorts. A sort is generated by a set of operators if every

element of that sort can be derived by a finite application of the operators. This justifies

structural induction, which cannot be expressed otherwise by a finite set of assertions in

first-order logic. We may further specify that the sort is generated freely if every element

generated by the operators is distinct. A sort is partitioned by a set of operators if distinct

elements can always be distinguished by at least one of the operators.

A trait may define a data structure by declaring a new sort and asserting appropriate

axioms. The sorts and traits may be parameterized, supporting a form of polymorphism.

The LSL checker also understands shorthands for a few common data structures in computer

science, such as records (called tuples) and enumerations, and it automatically generates

the appropriate axioms.

A trait may also list useful consequences of its axioms in a special section called the

implies clause. The intent is that these can be derived from the axioms. However, it is

useful to list them explicitly since they often express desired properties of a trait. The LSL

checker generates proof obligations for these implications.

6.1.2 The Larch Prover

The LSL checker generates input files for LP from the LSL traits, including a file of proof

obligations. This translation is straightforward because LP understands equations, as well

as "generated by" and "partitioned by" assertions. Logical assertions are interpreted as
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equations where the expression equals true.

Unlike the LSL checker, LP is an interactive tool; it processes each command before

reading the next one. In addition to assertions, which declare new facts to LP, there are

commands to introduce proof obligations, to provide guidance to LP when doing a proof,

to query LP about its state, and to control the way in which LP works automatically.

LP is a general purpose proof assistant, which attempts to rewrite terms into canonical

forms, so that logically equivalent expressions become syntactically identical. This is called

normalization. LP converts the equations given into rewrite rules. To prevent these rules

from being applied endlessly, LP defines a partial order, called the registry, on the operators,

and rewrites higher operators to lower ones. Finding an appropriate partial order for the

operators and rewriting the assertions comprise the bulk of the automatic work that LP

does.

In contrast to LSL, LP views all facts equally-there is no hierarchy of traits. Instead,

each assertion is given the name of the trait it was derived from, appended with a number

to distinguish it from the other assertions of that trait. The statements to be proven are

typically given a different name, to distinguish them from the other assertions. Whenever

LP derives a new fact from an old one, it appends another number to its name.

Proof obligations in LP are called conjectures. LP considers a conjecture proved if it

can normalize it to true. Rather than searching for a proof, LP normalizes the conjecture

and all the facts it knows, and then relies on guidance from the user. It may be enough to

point out particular facts or instances of general facts that can be used to further rewrite

the conjecture. Often, however, it is necessary to direct LP to consider several cases, or

to proceed by induction, or when trying to prove an implication, to assume the hypothesis

and attempt to prove the conclusion. These are called proof methods.

It is also possible to direct LP to automatically try these proof methods before prompting

the user for guidance. The trade-off here is that if the wrong methods are chosen, the

proof may evolve in some totally inappropriate fashion before LP discovers that it cannot

continue; the proof must then be backed out to some earlier stage, where the appropriate

proof methods can be applied. It may also be much more difficult, at that point, to even

understand what has gone wrong. This is much like compiling programs in languages that

lack sufficient redundancy for the compiler to discover the error before it is significantly

past the point the error occured.
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Some proof methods, such as case analysis, introduce additional assumptions for parts of

the proof, which need not even be consistent with the other assertions. These assumptions

are often particularly relevant to the proof, and LP names each with a suffix of XxxxHyp,

where the Xxxx indicates the proof method that introduced it.

LP can be run in "batch mode" by recording all the commands in a script file, which

is then executed. Each command is processed in turn, exactly as if it had been entered

interactively by a user. (An error, however, stops the execution of a script.) The current

state of LP can also be saved in freeze files, which can later be thawed, so that some common

work can be reused in several proofs. When executing a script, LP can also do box checking,

in which every time a proof method is invoked to prove the current conjecture, LP checks

that the file has certain marks that indicate that this was in fact intended, and every time

the current conjecture is established, LP checks the file for other marks that indicate that

this too was expected.

6.2 Machine-Readable Definitions

6.2.1 General Traits for Timed Automata

We begin by developing a library of traits that define the general notions used in timed

simulation proofs. This is analogous to the the development of the model in Chapter 3.

These traits can be reused in proofs similar to the ones in this thesis.

We begin with the definition of an I/O automaton A in Figure 6-1. The enabled and

effect predicates are intended to support the use of precondition-effect form for specifying

the transition relation of the automaton. Because sorts are determined by syntax alone,

execution fragments are defined as those "step sequences" that satisfy the execFrag pred-

icate. The start states and execution fragments are defined using predicates (start and

execFrag) rather than sets, since predicates are easier to handle in LP. States, actions,

and step sequences are parameterized by the automaton. However, traces represent exter-

nal behavior, and thus must be comparable between automata. Since sorts are disjoint, the

common operator is necessary to map the external actions to a common sort CommonActions.

We also define invariants in Figure 6-2. Notice that the operator inv is introduced

in the Automaton trait, but it is not used in that trait. This is because invariants vary

among automata. However, each automaton can define its own invariant, and then use the
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Automaton (A): trait

introduces

start : States[A] -+ Bool
enabled : States[A], Actions[A] - Bool

effect : States[A], Actions[A], States[A] - Bool

isStep : States[A], Actions[A], States[A] -* Bool
isExternal : Actions[A] - Bool
isInternal : Actions[A] - Bool

: States[A] -* StepSee
: StepSeq[A], Actions[A], States[A] - StepSee

first, last : StepSeq[A] - Statesl
execFrag : StepSeq[A] - Bool
task : Actions[A] - Tasks[I

enabled : States[A], Tasks[A] -+ Bool

inv : States[A] -+ Bool
common : Actions[A] - CommonJ

empty : - Traces

: Traces, CommonActions - Traces
trace : Actions[A] -* Traces

trace : StepSeq[A] - Traces
asserts

sort Traces generated by empty, ^

V a: Actions[A], s, s': States[A], ss: StepSeq[A], c: Tas]

isInternal(a) ¢~ - isExternal(a);

isStep(s, a, s') ¢e enabled(s, a) A effect(s, a, s');

enabled(s, c) ¢~ 3 a (enabled(s, a) A task(a) = c);

q[A]

[A]

[A]

A]

Actions

ks[A]

first({s}) = s; first(ss{a,s}) = first(ss);

last({s}) = s; last(ss{a,s}) = s;
execFrag({s}); execFrag(ss{a,s'}) ¢* execFrag(ss) A isStep(last(ss), a, s');
trace({s}) = empty;

trace(ss{a,s}) = (if isExternal(a) then trace(ss) ^ common(a) else trace(ss));
trace(a) = (if isExternal(a) then empty ^ common(a) else empty);

Figure 6-1: Larch Trait Defining Untimed I/O Automata

Invariants (A, inv): trait

assumes Automaton(A)

asserts

V s, s': States[A], a: Actions[A]

start(s) inv(s);

inv(s) A isStep(s, a, s') = inv(s');

Figure 6-2: Larch Trait Defining Invariants
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Time (T): trait

includes TotalOrder(T), Natural(- for e), AC(+, T)
introduces

0, infinity : - T

+ __ : T, T - T

__ * __ : N, T - T

asserts

V t, tl, t2: T, n: N

0 < t; t < infinity;

+ t = t;
tl + t2 $ infinity t infinity A t2 infinity;

* t = 0;
succ(n) * t = (n * t) + t;
t < (t + t);
t infinity = ((t + t) < (t + t2) tl < t2);

t infinity = (t + t = t + t2 ¢ t = t2);

implies

V t, t, t2: T, b: Bool

infinity + t = infinity;

t < infinity ' t infinity;

t infinity = ((t + t) < (t + t2) 4t tl < t2);

(if b then t else t2) = t ¢* (if b then tl = t else t2 = t);

(if b then tl else t2) < t ¢t (if b then tl < t else t2 < t);

(if b then tl else t2) > t 44 (if b then tl > t else t2 > t);

(if b then ti else t2) < t '4 (if b then tl < t else t2 < t);

(if b then t else t2) > t ¢4 (if b then tl > t else t2 > t);

Figure 6-3: Larch Trait for Time

Invariants trait to express that it is in fact an invariant.

We then axiomatize time and boundmaps using three traits. We model time as non-

negative reals extended with infinity. The Time trait in Figure 6-3 captures the properties

desired.1 The Bounds trait in Figure 6-4 is a tuple of lower and upper bounds, with some

convenient operators. The BoundMap trait in Figure 6-5 specifies the mapping that assigns

time bounds to each task of an automaton. Recall that an MMT automaton is merely an

I/O automaton together with an appropriate boundmap.

The TimedAutomaton trait in Figure 6-6 defines the timed automaton TA corresponding

to a I/O automaton A and a boundmap b. This straightforwardly expresses the transfor-

mation from MMT automata to timed automata described in Chapter 3.

Finally, the TimedForward trait in Figure 6-7 captures the definition of a timed forward

simulation from one automaton to another. For this to be meaningful, the automata are

required to have a now component in their state. This trait is also parameterized by in-

'We are doing concurrent research to use decision procedures to handle time more easily [Pog95]; this
was presented in [LSGL94].
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Bounds: trait

includes Time(Time)

Bounds tuple of first: Time, last: Time

introduces

__ + __ : Bounds, Time -+ Bounds
unbounded : -+ Bounds

asserts

V b: Bounds, t: Time

b + t = [b.first + t, b.last + t];
unbounded = [0, infinity];

Figure 6-4: Larch Trait for Expressing Lower and Upper Bounds

BoundMap(A,b): trait

includes Bounds

introduces

b : Tasks[A] -+ Bounds

asserts

V c: Tasks[A]
b(c).first < infinity;

b(c).first < b(c).last;

Figure 6-5: Larch Trait Defining a Boundmap for an Automaton

variants for each automaton, since the step condition only needs to be proved for reachable

states.

6.2.2 The Automata and Simulations

We can now specialize these general traits to define the particular automata and simulations

we used to verify Fischer's algorithm. Each automaton is defined by two traits, the first

specifying the untimed components, and the second, adding the timed aspects. We begin

by listing in Figure 6-8 the common actions that appear in the traces. An action is indexed

by the process that performs it.

The AutomatonMutex trait in Figure 6-9 specifies the untimed behavior required for any

mutual exclusion algorithm. An action is specified by its type and the index of its process,

and the transition relation is specified by enabled and effect predicates for each action.

The unchanged predicate is used to specify that any action changes only the state of its

process. Notice that the crit actions are in a single task, and all the other actions are in

classes by themselves. The TimedMutex trait in Figure 6-10 gives the time bounds on each

of the tasks.
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TimedAutomaton (A, b, TA): trait

assumes Automaton(A), BoundMap(A,b)

includes Automaton(TA), Bounds, FiniteMap(Bounds[A], Tasks[A], Bounds, __[__] for apply)

States[TA] tuple of basic: States[A], now: Time, bounds: Bounds[A]

introduces

nu : Time -+ Actions[TA]

addTime : Actions[A] - Actions[TA]

asserts

sort Actions[TA] generated freely by nu, addTime

V s, s': States[TA], c: Tasks[A], a: Actions[A], t: Time

defined(s.bounds, c);

isInternal(nu(t));

isInternal(addTime(a)) ¢* isInternal(a);

common(addTime(a)) = common(a);

start(s) ¢* start(s.basic) A s.now = 0

A V c ( (ienabled(s.basic, c) = s.bounds[c] = unbounded)

A (enabled(s.basic, c) = s.bounds[c] = b(c)));

enabled(s, nu(t)) ¢* s.now < t A t < infinity A V c (t < (s.bounds[c]).last);

effect(s, nu(t), s') 4= s'.now = t A s'.basic = s.basic A s'.bounds = s.bounds;

enabled(s, addTime(a)) *= enabled(s.basic, a) A (s.bounds[task(a)]).first < s.nov;

effect(s, addTime(a), s') *

s'.now = s.now

A effect(s.basic, a, s'.basic)

A c (s'.bounds[c] =
(if -enabled(s'.basic, c) then unbounded

else if enabled(s.basic, c) A task(a) c then s.bounds[c]

else b(c) + s.now)

);

inv(s) ¢
V c ( s.now < (s.bounds[c]).last

A (-'enabled(s.basic, c) = s.bounds[c] = unbounded)

A (enabled(s.basic, c) = (s.bounds[c]).last < (s.now + b(c).last))

A (s.bounds[c]).first < (s.now + b(c).first)
A (b(c).last = infinity = (s.bounds[c]).last = infinity))

A s.now < infinity

A inv(s.basic);

implies

Invariants(TA, inv)

V s, s': States[TA], a:Actions[TA], c:Tasks[A]

isStep(s, a, s') A inv(s)

=. (enabled(s.basic, c) = (s.bounds[c]).last < (s'.bounds[c]).last);

Figure 6-6: Larch Trait for Generating Timed Automata from MMT Automata
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TimedForward (Al, A2, f, I1, 12): trait

assumes Automaton(A1), Automaton(A2), NowExists(A1), NowExists(A2),

Invariants(Al, I1), Invariants(A2, I2)

introduces

f : States[All, States[A2] - Bool

I1: States[Al] -+ Bool

12 States[A2] - Bool

asserts

V s, s': States[All, u: States[A2], a: Actions[All, alpha: StepSeq[A2]

f(s, u) = u.now = s.now;

start(s) 3 u (start(u) A f(s, u));

f(s, u) A inv(s) A inv(u) A Il(s) A I2(u) A isStep(s, a, s')

= 3 alpha (execFrag(alpha) A first(alpha) = u A f(s', last(alpha))

A trace(alpha) = trace(a))

Figure 6-7: Larch Trait Defining Timed Forward Simulations

CommonActions: trait

CommonActionTypes enumeration of try, crit, exit, rem

introduces

__[__] : CommonActionTypes, UID -* CommonActions

asserts sort CommonActions generated freely by __[__]

Figure 6-8: Larch Trait Listing the Common Actions

Likewise, the AutomatonFischer and TimedFischer traits in Figures 6-11 and 6-12

specify the untimed and timed aspects of Fischer's mutual exclusion algorithm. That each

of the actions is in a class by itself can be derived from the assertion that Tasks F] is

generated freely by task. The TimedFischer trait also defines the sufficient confirmation

delay and strong mutual exclusion invariants used in the proof of the simulation.

The automaton expressing the milestones in the algorithm is defined in Figures 6-13

and 6-14. Notice that seize and stabilize generate actions without any process index,

since they are actions of the whole system. The implies clause lists some trivial but useful

lemmas that LP does not automatically recognize as true.

Finally, the timed forward simulation from the milestone automaton to the mutual

exclusion specification is defined in Figure 6-15 and the one from Fischer's algorithm to

the milestone automaton in Figure 6-16. Except for the STEP operator in each, both are

straightforward translations of the simulations in Chapter 5. The STEP operator allows LP

to exploit the fact that the effect relation defines a total function.
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AutomatonMutex (M): trait

includes Automaton(M), Arrayl(Region, UID, Regions), CommonActions

Region enumeration of rem, try, crit, exit

States[M] tuple of region: Regions

ActionTypes[M] enumeration of try, crit, exit, rem

introduces

__[__] : ActionTypes[M], UID - Actions[M]

unchanged : States[M], States[M], UID -* Bool

asserts

sort Actions[M] generated freely by __[__]

sort Tasks[M] generated by task

V i: UID
common(try[i]) = try[i];

common(crit[i]) = crit[i];

isExternal(try[i]);

isExternal(crit[i]);

V a, a': Actions[M], i, i':UID

task(a) = task(a') ¢t a = a'

V s, s': States[M], i, j:

start(s)

unchanged(s, s', i)

enabled(s, try[i])

effect(s, try[i], s')

enabled(s, crit[i])

effect(s, crit[i], s')

enabled(s, exit[i])

effect(s, exit[i], s')

enabled(s, rem[i])

effect(s, rem[i], s')

common(exit[i]) = exit[i];

common(rem[i]) = rem[i];

isExternal(exit[i]);

isExternal(rem[i]);

V (3 i (a = crit[i]) A 3 i' (a' = crit[i']));

UID

t¢ V i (s.region[i] = rem);

¢t V j (j i s'.region[j] = s.region[j]);

=t s.region[i] = rem;

*j s'.region[i] = try A unchanged(s, s', i);

*j s.region[i] = try A V j (s.region[j] cr:

¢t s'.region[i] = crit A unchanged(s, s', i);

* s.region[i] = crit;

*j s'.region[i] = exit A unchanged(s, s', i);

¢t s.region[i] = exit;

¢ s'.region[i] = rem A unchanged(s, s', i);

it);

inv(s) ¢* V j (i j = s.region[i] crit V s.region[j] crit);

implies

Invariants(M, inv)

V s, s': States[M], at: ActionTypes[M], i: UID

isStep(s, at[i], s') = unchanged(s, s', i);

Figure 6-9: Larch Trait Specifying the Untimed Mutual Exclusion Problem

6.3 Machine-Checkable Proofs

In this section, we examine parts of the proof that were checked mechanically. The entire

proof, presented in the appendix, is too long to examine in detail, and much of it involves

handling rather low-level details. However, as we shall see, most of the reasoning follows

the same structure as the hand proof.

We will look at two proof scripts. The first is the proof of the sufficient confirmation
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TimedMutex(TM): trait

includes AutomatonMutex(M), TimedAutomaton(M, bdmap, TM)
introduces

a, b, c : - Time
asserts

V i: UID

bdmap(task(try[i])) = unbounded; bdmap(task(exit [i])) = unbounded;
bdmap(task(crit[i])) = [0, (4*a)+(2*c)]; bdmap(task(rem[i])) = [0, 2*a];

implies

V s, s', '': States[TM], a: Actions[TM]
effect(s, a, s') A effect(s, a, s"'') = s' = s";

Figure 6-10: Larch Trait Specifying Time Bounds for Mutual Exclusion

delay invariant; the second is a fragment of the proof of the simulation from Fischer's

algorithm to the milestone automaton. Finally, we discuss how the proof was modified to

establish the improved bounds in Section 5.8.

6.3.1 The Sufficient Confirmation Delay Proof

We shall examine in detail the entire script, shown in Figure 6-17, for the proof of In-

variant 5.3, which established that processes "waited long enough" after setting the register

before checking it. Recall that a script is just a file with commands that are executed by

LP in order. This script, as well as the one in the next section, is presented without the box

checking marks that are found in the full proof scripts in the appendix. The indentation

indicates the structure of the proof, and where this is inadequate, comments have been

added.

The first command tells LP to restore the work saved in a freeze file, which resulted from

processing the axioms produced by the LSL checker from the TimedFischer trait. 2 The set

immunity command sets a parameter which prevents instantiations from being normalized

away by their parents. The set name command indicates the name for the axioms to be

derived.

The next command specifies which proof methods LP will attempt automatically. If

the conjecture is an implication, the first method directs LP to assume the hypothesis and

attempt to prove the conclusion. Otherwise, LP will normalize the conjecture. 3

2A few transitivity rules were also added to help LP in reasoning about inequalities.
3Unless directed otherwise, LP will always normalize the facts it has assumed; however, it will only

normalize the conjecture if this is among its automatic proof methods, or it is explicitly instructed to do so.
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AutomatonFischer (F): trait

includes Automaton(F), Arrayl(PC, UID, PCs), CommonActions, SetShorthand(PC)

PC enumeration of rem, test, set, check, lvtry, crit, reset, lvexit

Reg tuple of free: Bool, owner: UID , owner only relevant if -free

States[F] tuple of pc: PCs, x: Reg

ActionTypes[F] enumeration of try, test, set, check, crit, exit, reset, rem

introduces

__[__] : ActionTypes[F], UID - Actions[F]

unchanged : States[F], States[F], UID - Bool

asserts

sort Actions[F] generated freely by __[__]

sort Tasks[F] generated freely by task

V i: UID

common(try[i]) = try[i]

common(crit[i]) = criti

isExternal(try[i]);

isInternal(test[i]);

isInternal(set[i]);

isInternal(check[i]);

V s, s': States[F], i, j

start(s)

unchanged(s, s', i)

enabled(s, try[i])

effect(s, try[i], s')

enabled(s, test[i])

effect(s, test[i], s')

enabled(s, set[i])

effect(s, set[i], s')

enabled(s, check[i])

effect(s, check[i], s')

enabled(s, crit[i])

effect(s, crit[i], s')

enabled(s, exit[i])

effect(s, exit[i], s')

enabled(s, reset[i])

effect(s, reset[i], s')

enabled(s, rem[i])

effect(s, rem[i], s')

inv(s) 4= -s.x.free =

implies

Invariants(F, inv)

[i];
common(exit[i]) = exit[i];

common(rem[i]) = rem[i];

isExternal(crit [i]);

isExternal(exit[i]);

isInternal(reset[i]);

isExternal(rem[i]);

: UID

*j V i (s.pc[i] = rem) A s.x.free;

* V j (i j s'.pc[j] = s.pc[j]);

* s.pc[i] = rem;

¢4 s'.pc[i] = test A s'.x = s.x A unchanged(s, s', i);

¢4 s.pc[i] = test;

¢4 s'.pc[i] = (if s.x.free then set else s.pc[i])

A s'.x = s.x A unchanged(s, s', i);

¢4 s.pc[i] = set;

<4 s'.pc[i] = check A unchanged(s, s', i)

A -'s'.x.free A s'.x.owner = i;

*j s.pc[i] = check;
¢4 s'.pc[i] = (if -s.x.free A s.x.owner = i then lvtry

else test)

A s'.x = s.x A unchanged(s, s', i);

¢4 s.pc[i] = lvtry;

¢4 s'.pc[i] = crit A s'.x = s.x A unchanged(s, s', i);

¢ s.pc[i] = crit;

:= s'.pc[i] = reset A s'.x = s.x A unchanged(s, s', i);

¢* s.pc[i] = reset;

¢~ s'.pc[i] = lvexit A s'.x.free A unchanged(s, s', i);

*j s.pc[i] = lvexit;
e s'.pc[i] = rem A s'.x = s.x A unchanged(s, s', i);

(s.pc[s.x.owner] E { check, lvtry, crit, reset });

V s, s':States[F], at: ActionTypes[F], i, j: UID, b: Bool, p, pl, p2: PC

effect(s, at[i], s') unchanged(s, s', i);

s'.pc[j] = s.pc[j] = (enabled(s', at[j]) ¢* enabled(s, at[j]));

(if b then pl else p2) = p ¢* (if b then pl = p else p2 = p);

isStep(s, at[i], s') A -'s'.x.free =' at[i] = set[s'.x.owner] V s.x = s'.x;

isStep(s, at[i], s') A -s'.x.free A s'.pc[j] = set =4 s.pc[j] = set;

isStep(s, at[i], s') A s'.pc[j] = check =- s.pc[j] = check V at[i] = set[j];

Figure 6-11: Larch Trait Specifying Untimed Aspects of Fischer's Algorithm
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TimedFischer(TF): trait

includes AutomatonFischer(F), TimedAutomaton(F, bdmap, TF), SetShorthand(PC)
introduces

a, b, c : Time

SCD, StrongMutex, Mutex, Inv : States[TF] -+ Bool

asserts

V i: UID
a < b;

bdmap(task(try[i])) = unbounded; bdmap(task(crit[i])) = [0, a];

bdmap(task(test[i])) = [0, a]; bdmap(task(exit[i])) = unbounded;
bdmap(task(set[i])) = [0, a]; bdmap(task(reset[i])) = [0, a];

bdmap(task(check[i])) = [b, c]; bdmap(task(rem[i])) = [0, a];

V s: States[TF], i, j: UID
SCD(s) * -s.basic.x.free A s.basic.pc[s.basic.x.owner] = check

= j (s.basic.pc[j] = set

= (s.bounds[task(check[s.basic.x.owner])]).first

> (s.bounds[task(set[j])]) .last);

StrongMutex(s) ¢~ V i (s.basic.pc[i] E { lvtry, crit, reset }
= -s.basic.x.free A s.basic.x.owner = i

A V j (s.basic.pc[j] set));

Inv(s) ¢4 SCD(s) A StrongMutex(s);

Mutex(s) ¢* V i (s.basic.pc[i] E { lvtry, crit, reset }

= V j (j i = s.basic.pc[j] { lvtry, crit, reset }));

implies

Invariants(TF, Inv)

V s, s', s": States[TF], a: Actions[TF], at, at': ActionTypes[F], i, j: UID, t: Time
inv(s) A isStep(s, addTime(at[i]), s')

=> V j (j i = s'boundstask(at' =s.bounds[task(at'[j])]);

a < c; a infinity;

Figure 6-12: Larch Trait Specifying Timed Aspects of Fischer's Algorithm

The invariant is proven with three conjectures. The first establishes the base case for the

invariant, and the second proves that the invariant is preserved by the time passage action.

They are proved automatically by LP. The qed asks LP to verify that the conjecture has

been proven.

The last conjecture proves the invariant is preserved by all the other actions. Because

this is an implication, LP first assumes its hypothesis, and attempts to prove SCD(s' ). This

is also an implication with hypothesis s'.x 0 A s'.pc, = checking (expressed in Larch

by -s' .basic.x.free A s'.basic.pc[s' .basic.x.owner] = check). LP also assumes

this hypothesis, as in the proof in Chapter 5.

LP then strips the universal quantifier off the conclusion of the implication defining
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AutomatonIntermediate (I): trait

includes Automaton(I), Arrayl(Region, UID, Regions), CommonActions

States[I] tuple of region: Regions, status: Status

Status enumeration of start, seized, stable

Region enumeration of rem, try, crit, exit

ActionTypes[I] enumeration of try, crit, exit, rem

introduces

: ActionTypes[I], UID - Actions[I]

seize, stabilize : - Actions[I]

unchanged : States[I], States[I], UID -+ Bool

asserts
sort Actions[I] generated freely by __[__], seize, stabilize

sort Tasks[I] generated by task

V i: UID

common(try[i]) = try[i]; common(exit[i]) = exit[i];
common(crit[i]) = crit[i]; common(rem[i]) = rem[i];

isExternal(try[i]); isExternal(crit [i]);

isInternal(seize); isExternal(exit[i]);

isInternal(stabilize); isExternal(rem[i]);

V a, a': Actions[I], i, i':UID

task(a) = task(a') ¢* a = a' V (3 i (a = crit[i]) A 3 i' (a' = crit[i']));

V s, s': States[I], i, j: UID

start(s) ¢4 V i (s.region[i] = rem) A s.status = start;

unchanged(s, s', i) 1e V j (j i s'.region[j] = s.region[jl);

enabled(s, try[i]) 1= s.region[i] = rem;

effect(s, try[i], s') 14 s'.region[i] = try

A s'.status = s.status A unchanged(s, s', i);

enabled(s, seize) ¢ 4 3 i (s.region[i] = try) A V j (s.region[j] crit)

A s.status = start;

effect(s, seize, s') 1= V j (s'.region[j] = s.region[j]) A s'.status = seized;

enabled(s, stabilize) ¢4 s.status = seized;

effect(s, stabilize, s') ¢4 V j (s'.region[j] = s.region[j]) A s'.status = stable;

enabled(s, crit[i]) 4= s.region[i] = try A s.status = stable;

effect(s, crit[i], s') ¢~ s'.region[i] = crit
A s'.status = start A unchanged(s, s', i);

enabled(s, exit[i]) 1= s.region[i] = crit;

effect(s, exit[i], s') ¢4 s'.region[i] = exit

A s'.status = s.status A unchanged(s, s', i);

enabled(s, rem[i]) e s.region[i] = exit;

effect(s, rem[i], s') ¢4 s'.region[i] = rem
A s'.status = s.status A unchanged(s, s', i);

inv(s) {= s.status $ start = (3 i (s.region[i] = try) A V j (s.region[j] crit));

implies
Invariants(I, inv)

V s, s': States[I], at: ActionTypes[I], i: UID

enabled(s, task(crit[i])) ¢E 3 i enabled(s, crit[i]);

isStep(s, at[i], s') = unchanged(s, s', i);

V stat:Status
stat = start V stat = seized V stat = stable;

Figure 6-13: Larch Trait Expressing Milestones for Fischer's Algorithm
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TimedIntermediate(TI): trait

includes AutomatonIntermediate(I), TimedAutomaton(I, bdmap, TI)
introduces

a, b, c : - Time

asserts
V i: UID

bdmap(task(try[i])) = unbounded; bdmap(task(crit[i])) = [0, a+c];
bdmap(task(seize)) = [0, (2*a)+c]; bdmap(task(exit [i])) = unbounded;
bdmap(task(stabilize)) = [0, a]; bdmap(task(rem[i])) = [0, 2*a];

implies

V s, s': States[TI], a: Actions[I], at: ActionTypes[I], t: Time, i, j: UID
inv(s) A isStep(s, addTime(a), s')

= s'.bounds[task(rem[j])] = s.bounds[task(rem[j])]

V a = exit[j] V a = rem[j];

inv(s) A isStep(s, addTime(at[i]), s') A at crit

= s'.bounds[task(stabilize)] = s.bounds[task(stabilize)]

A s'.bounds[task(crit[j])] = s.bounds[task(crit[j])];
V s, s', s'': States[TI], a: Actions[TI]

effect(s, a, s') A effect(s, a, s") = s' = s'"

Figure 6-14: Larch Trait Expressing Time Bounds for the Milestones

I2M: trait

includes

TimedIntermediate(TI), TimedMutex(TM)

introduces

g : States[TI], States[TM] -+ Bool

STEP : States[TM], Actions[TM] - States[TM]

asserts

V u, u': States[TM], a: Actions[TM]
STEP(u, a) = u' e= effect(u, a, u');

% The simulation relation.
V s:States[TI], u:States[TM], i:UID
g(s, u) *

u.now = s.now
A i ( u.basic.region[i] = s.basic.region[i]

A (enabled(s.basic, task(seize))

(u.bounds[task(crit[i])]).last
> ((s.bounds[task(seize)]).last + (2*a) + c) )

A (enabled(s.basic, task(stabilize))

= (u.bounds [task(crit[i])]).last
> ((s.bounds[task(stabilize)]).last + a + c) )

A (enabled(s.basic, task(crit[i]))

=} (u.bounds [task(crit [i])]).last > (s.bounds [task(crit [i] )]).last )
A (enabled(s.basic, task(rem[i]))

= (u.bounds[task(rem[i])] ).last > (s.bounds[task(rem[i])]).last )
implies TimedForardTI TM g ;v, 

implies TimedForward(TI, TM, g, inv, inv)

Figure 6-15: Larch Trait for the Simulation from the Milestones to the Specification
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F2I: trait

includes TimedIntermediate(TI), TimedFischer(TF)

introduces

f : States[TF], States[TI] - Bool

STEP : States[TI], Actions[TI] I States[TI]

w : States[TF], UID - Time

asserts

V u, u': States[TI], a: Actions[TI]

STEP(u, a) = u' ¢* effect(u, a, u');

V s:States[TF], i:UID

s.basic.pc[i] = test = w(s,i) = (s.bounds[task(test[i])]).last + a;

s.basic.pc[i] = set = w(s,i) = (s.bounds[task(set[i])]).last;

s.basic.pc[i] = check = w(s,i) = (s.bounds[task(check[i])]).last + a + a;

- (s.basic.pc[i] E { test, set, check }) #= v(s,i) = infinity;

% The simulation relation.
V s: States[TF], u: States[TI], i: UID

f(s, u) ~*

u.now = s.now

A i ( (u.basic.region[i] = rem ¢* s.basic.pc[i] = rem)

A (u.basic.region[i] = try 
s.basic.pc[i] E { test, set, check, lvtry })

A (u.basic.region[i] = crit ¢• s.basic.pc[i] = crit)

A (u.basic.region[i] = exit it
s.basic.pc[i] E { reset, lvexit } )

A (u.basic.status = start t
s.basic.x.free V 3 i (s.basic.pc[i] E { crit, reset }))

A (u.basic.status = seized *=

-s.basic. x.free

A i (s.basic.pc[i] ~ { crit, reset })

A 3 i (s.basic.pc[i] = set))

A (u.basic.status = stable it

(-s.basic.x.free A V i (s.basic.pc[i] ~ { crit, reset, set })))

A (enabled(s.basic, task(reset[i]))

4 (u.bounds[task(seize)]).last

> ((s.bounds[task(reset[i])]).last + a + a))

A 3 i: UID ((u.bounds[task(seize)]).last > w(s, i))

A (enabled(s.basic, task(set[i]))

=4 (u.bounds[task(stabilize)]).last > (s.bounds[task(set[i])]).last)

A (enabled(s.basic, task(check[i]))
A -s.basic.x.free A s.basic.x.owner = i

4 (u.bounds[task(crit[i])]).last > ((s.bounds[task(check[i])]).last + a))

A (enabled(s.basic, task(crit[i]))

=4 (u.bounds[task(crit [i])]).last > (s.bounds [task(crit [i] )]).last)

A (enabled(s.basic, task(reset[i]))

=4 (u.bounds[task(rem[i])]) .last > ((s.bounds[task(reset[il)]).last + a))

A (enabled(s.basic, task(rem[i]))

=- (u.bounds[task(rem[i] )]) .last > (s.bounds[task(rem[i])]).last));

implies TimedForward(TF, TI, f, StrongMutex, inv)

Figure 6-16: Larch Trait for the Simulation from Fischer's Algorithm to the Milestones
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thaw TimedFischer

set immunity ancestor

set name SCD

set proof-methods =, normalization

prove start(s:States[TF]) SCD(s)

qed

prove SCD(s) A isStep(s, nu(t), s') #= SCD(s')

qed

prove SCD(s) A inv(s':States[TF]) A isStep(s, addTime(at[i]), s') = SCD(s')

resume by case atc[ic] = set[s'c.basic.x.owner]

/, CASE 1: atc[ic] = set[s'c.basic.x.owner]

prove (s'c.now + a) < (s'c.now + b)
instantiate t by s'c.now, tl by a, t2 by b in Time

instantiate c by task(set[jc]) in *impliesHyp

% CASE 2: - (atc[ic] = set[s'c.basic.x.owner])

instantiate s by sc.basic, s' by s'c.basic, at by atc, i by ic in AutomatonFischer
instantiate j by jc in AutomatonFischer

instantiate j by sc.basic.x. owner in AutomatonFischer

prove atc[ic] check[sc.basic.x.owner] by contradiction
prove atc[ic] set[jc] by contradiction

instantiate j:UID by jc in *hyp

qed

Figure 6-17: Larch Proof of Invariant 5.3: Sufficient Confirmation Delay

SCD,4 and assumes the s'.pcj = set hypothesis of the resulting implication. This is also

done, though not explicitly, in each of the cases of the hand proof.

LP generates fresh constants and substitutes them for the variables in the hypotheses

it assumes.5 These are the sc, s'c, atc, ic, and jc that appear in the proof.

When the conjecture is no longer an implication, LP normalizes it, and awaits further

guidance, supplied by the remainder of this script. First, we instruct LP to consider two

cases as in the hand proof. Note that ic represents the index of the process that took a

step, which need not be s'c.basic.x.owner (i.e., s'.x).

If the action is sets,.x, then we prove s'.now + a < s'.now + b. Unfortunately, LP is

not very good at even simple arithmetic, and a bit of further guidance is necessary for it

to recognize this. 6 The instantiate command calls LP's attention to instances of general

facts that are useful for establishing the current conjecture. The second instantiation, for

4All unbound variables are implicitly universally quantified in LP.
5 This is justified by the universal generalization rule of logic.
6 LP is being enhanced with decision procedures that will greatly improve its ability to deal with

arithmetic.
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7. CASE 3: set[ul]
resume by =:

instantiate j:UID by s'c.basic.x.owner in *impliesHyp % StrongMutex
prove s'c.basic.pc[i] 0 { crit, reset }

resume by case i = s'c.basic.x.owner

instantiate j:UID by ic in *impliesHyp

resume by case sc.basic.x.free

Figure 6-18: Larch Proof that seti Preserves the Simulation: Part 1

example, causes LP to recognize that the conjecture follows from Lemma 3.3. This is enough

for LP to derive the rest of the proof for that case.

If the action is not set,,.z, then Lemma 5.1, along with the other two lemmas, is in-

stantiated with the relevant constants that LP generated. Then, though this was not done

explicitly in the hand proof, it is proven (by contradiction) that checks,. and setj are not

newly enabled. The final instantiation uses the inductive assumption to finish the proof.

6.3.2 Preserving the Simulation under the seti Action

We now present the script for the proof that the simulation is preserved by the seti action.

This script, shown in Figures 6-18, 6-19, and 6-20, does not stand alone, but rather is

extracted from the larger proof that the simulation is preserved by any action of Fischer.

However, as in the hand proof, this is the most complex and interesting part of the proof.

Again, the script follows the structure of the hand proof closely.

Because this is only a fragment of a script, we begin by setting the context in which it

occurs. The conjecture being proved is

f(s,u) A isStep(s, a, s') A inv(s) A inv(u) A StrongMutex(s)

3 alpha (execFrag(alpha) A first(alpha) = u A f(s', last(alpha))

A trace(alpha) = trace(a))

and this script verifies the case when a = addTime(set [ull ). Unlike in the previous script,

the only proof method that LP applies by default is normalization. Thus, the conjecture is

still an implication.

The resume by => command causes LP to assume the hypothesis of the conjecture, and

attempt to prove the conclusion, as was done automatically in the previous proof script.

Following the proof in Chapter 5, we prove Vj, s.pcj {critical, reset}, and then consider
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% CASE (a): sc.basic.x.free
prove 3 i:UID (uc.basic.region[i] = try)

resume by specializing i:UID to s'c.basic.x.owner

resume by case V j:UID (s'c.basic.pc[j] set)

% CASE i. V j:UID (s'c.basic.pc[j] set)

assert (ac = seize); u'c = STEP(uc, addTime(ac))

assert a'c = stabilize; uc = STEP(u'c, addTime(a'c))

resume by specializing

alpha to (({uc}) { addTime(ac), u'c }) { addTime(a'c), u''c }

instantiate c:Tasks[I] by task(ac) in *impliesHyp / c-op(.first)

resume by case i = s'c.basic.x.owner
% CASE: - (i = s'c.basic.x.owner); First case was automatic.

instantiate j:UID by ic in *Hyp

resume by -

instantiate i:UID by ic in *impliesHyp

% CASE ii. -V j:UID (s'c.basic.pc[j] set)

assert (ac = seize); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to ({uc}) { addTime(ac), u'c }

instantiate c:Tasks[I] by task(ac) in *impliesHyp / c-op(.first)

prove 3 i:UID (s'c.basic.pc[i] = set)

declare op ic: -UID

fix j:UID as ic in *caseHyp

resume by specializing i:UID to ic

resume by case i = s'c.basic.x.owner

% CASE: - (i = s'c.basic.x.owner); First case was automatic.

instantiate j:UID by ic in *impliesHyp

resume by A

resume by •

instantiate i:UID by ic in *impliesHyp

resume by =
instantiate c:Tasks[F] by task(set[ic]) in *impliesHyp

Figure 6-19: Larch Proof that set/ Preserves the Simulation: Part 2

three cases. These cases correspond exactly to the cases in the hand proof, and they are

numbered accordingly. Figure 6-19 contains the first case, proven in two subcases, and

Figure 6-20 contains the later two cases.

Each case introduces constants to name the simulated actions and the resulting states.

These form the simulated execution fragment, which LP attempts to verify meets the

step condition. After specializing the conjecture, we first direct LP to consider that the

lower bounds for the actions are met, with the instantiate ... in *impliesHyp /

c-op(.first) command. This step was not in the hand proof because of our conven-

tion of omitting first components for trivial lower bounds. However, the LP traits derive
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resume by case V j:UID (s'c.basic.pc[j] set)

% CASE (b): -sc.basic.x.free A j:UID (s'c.basic.pc[j] set)

assert (ac = stabilize); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to (uc)) ({ addTime(ac), u'c }

instantiate c:Tasks[I] by task(ac) in *impliesHyp / c-op(.first)

prove 3 i:UID (sc.basic.pc[i] = set)

resume by specializing i:UID to s'c.basic.x.owner

resume by case i = s'c.basic.x.owner

% CASE: ic = s'c.basic.x.owner

prove -V i:UID - (sc.basic.pc[i] = set) by contradiction

% CASE: -(ic = s'c.basic.x.owner)

instantiate j:UID by ic in *Hyp

resume by =

instantiate i:UID by ic in *impliesHyp

% CASE (c): -sc.basic.x.free A -V j:UID (s'c.basic.pc[j] set)

resume by specializing alpha to {uc}

prove uc.bounds[task(seize)].last = infinity

instantiate c:Tasks[I] by task(seize) in *hyp

prove -V i:UID - (sc.basic.pc[i] = set) by contradiction

prove 3 i:UID (sc.basic.pc[i] = set)

resume by specializing i:UID to s'c.basic.x.owner

prove 3 i:UID (s'c.basic.pc[i] = set)

declare op ic:-+UID

fix j:UID as ic in *caseHyp

resume by specializing i:UID to ic

resume by case i = sc.basic.x.owner

% CASE: ic = s'c.basic.x.owner
instantiate c:Tasks[I] by task(crit[ic]) in *impliesHyp

% CASE: -(ic = s'c.basic.x.owner)

instantiate j:UID by ic in *impliesHyp

instantiate i:UID by ic in *impliesHyp

resume by A

resume by •

resume by =

Figure 6-20: Larch Proof that seti Preserves the Simulation: Part 3

the timed automaton systematically, so these conditions still need to be checked.

Within each case, we also prove some simple lemmas, usually with existential quanti-

fiers. These are all straightforward, but the quantifier prevents LP from recognizing them

automatically, and so they must be proved explicitly.

Finally, each case contains an additional case split not found in the hand proof. Actually,

this split is necessary, but the case when i = s'.x is so straightforward that we don't mention

it explicitly. Notice that LP needs little or no guidance for that case; however, it does need to

be directed to make the case split. The guidance provided to LP in the other case (i s'.x)
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merely directs LP to prove each condition of the simulation separately by assuming the

hypothesis and establishing the conclusion.

6.3.3 The Improved Bounds

The proof presented in Section 5.8 was not carefully and systematically checked. Instead,

it is informal, and appeals strongly to the similarity to the proof with the weaker bounds,

claiming that any changes, other than those explicitly noted, are straightforward. Without

automated verification, we must either be content with such informality, or else check every

tedious step of the proof again.

One of the important advantages of using automated tools is that the computer can

re-do these checks for us. If the changes really are straightforward, then the scripts should

require little modification. This is also part of the motivation for choosing a tool that follows

our conventional reasoning: if the structure of the hand proof does not change, neither will

the structure of the automated proof.

The proof presented in the appendix is, in fact, not the original proof, but one which

establishes a time bound of 2a + c for the seize task.7 Other than the obvious changes in

the traits reflecting the improved time bounds, the only changes required corresponded to

those described in Section 5.8.

6.4 Discussion

The simplest but most significant observation to make is that we succeeded in verifying this

proof using the Larch tools. This indicates that automating such proofs is not intractable,

but in fact realistic. The proof follows the hand proof closely, which makes it easy to

understand. It is also quite general, because it uses parameters, rather than specific values,

for the time bounds, and is valid for any number of processes.

Though it is difficult to accurately quantify the development time, the main simulation

proof, from Fischer to Milestone, took about a week to formalize and verify using LP. Since

this proof was intended largely as a test case on which to tune LP better to accomodate

simulation proofs, especially those involving time, many changes were made for readability

7The tight time bound was also verified using LP, but this required subtraction to be axiomatized, as
well as the additional invariant to be proved.
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and to reduce the running time. These changes, made over a period of about a year, reflect

a better understanding of how LP verified the proof, as well as improvements made to LP

suggested by the difficulties encountered in doing this proof.

Minor changes made in the hand proof seem to be easy to transfer to the automated

proof. To establish the improved time bound for the seize task, for example, required only

changes in the LSL traits reflecting the new bound, and a few minor changes to the proof

scripts, which corresponded to the changes in the hand proof.

Another important consideration is the amount of computation LP needs to verify the

proof. The current version of the proof takes about an hour of CPU time running on a DEC

3000 AXP Model 500 at 150MHz to process all the traits, and run all the proof scripts, a

little under half of which is spent on the proof of the simulation from Fischer to Milestone.

This is significantly reduced from our earlier proofs, mostly by assisting LP in ordering

operators in the registry, and by choosing formalizations that LP handles more effectively.

We believe there is still leeway to improve this further. For example, in a smaller test

case, we achieved a 30% speed-up by using decision procedures for arithmetic and boolean

algebra.

The main danger for Larch proofs is that the traits may define an inconsistent theory.

We encountered this problem with our initial Bounds trait, which introduced a subtle in-

consistency. Because we never directed LP to use this inconsistency, we only discovered it

when we tried to tune the traits so that LP would do more of the proof without guidance.

This problem was easily fixed, requiring only simple modifications to the traits.

Because determining consistency is undecidable, some theorem provers impose greater

restrictions on axiomatizations which guarantee consistency.8 However, such restrictions

make it more difficult and awkward to express some concepts, and thus make proofs more

complicated and less intuitive. This is especially problematic for proof development, since

the high level structure may be obscured. A possible compromise approach is to allow

greater flexibility at first, and then use a checker that accepts a restricted language once

the structure of the proof has emerged. Our experience indicates that adapting a proof to

use a new formalism is not difficult, if the fundamental concepts remain the same. This

seems to stem, again, from the similarity of the automated proofs to our standard hand

proofs.
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We have found that adhering to the reasoning we employ in our hand proofs generally

results in proof scripts that are clearer, more succinct, and easier to modify if necessary.

This is especially true at the high level; once the structure of the proof is defined, it is

convenient to set LP to do more work automatically, so that it can fill in the details with

little guidance.

One difficulty with this approach, however, is that some "obvious" facts used are proved

"by inspection," usually involving a simple check over many cases. In fact, in hand proofs,

we often simply use such facts without explicitly mentioning them. LP, however, needs

some guidance to derive the appropriate statement. This is often best handled by stating

the required facts as lemmas, which can be verified by LP with little difficulty.

Also, as mentioned earlier, simple arithmetic and boolean algebra require more guidance

in LP than corresponds to the hand proof, and this problem is exacerbated by first-order

quantifiers. A new version of LP which uses specialized decision procedures to do arith-

metic and boolean algebra is being tested, and we expect that this will improve both the

readability and the speed of the proofs. Although first-order logic is undecidable, we are

also considering ways to handle quantifiers better.

One of the most significant trade-offs in Larch is between usability and efficiency. Since

LP is intended for developing proofs, not merely verifying them, it is designed to interact

with the user. Thus, for example, LP attempts to retain the form of assertions as much as

possible, so that the user can recognize where the various facts arose from. This means,

however, that two semantically identical facts may retain syntactically different forms, and

thus not be recognized as equivalent by LP.

Also, Larch does restrict its language to first-order logic, and forbids subtyping by

requiring all sorts to be disjoint. This limits the expressive power of Larch, but simplifies

its semantics, and allows greater syntactic checks on the input.

We are still trying to learn how to approach these proofs better, so that it will usually be

easy to automate proofs of this sort. Some of this work, such as enhancing LP with decision

procedures, is already done and simply needs to be exploited in the Fischer proof. Other

work still needs to be done. We are also thinking about ways to improve the interaction

between LP and the user, to assist in proof development, as well as ways to isolate the user

from details conceptually unrelated to the proof, such as the ordering of the operators in

the registry. That this proof has been entirely verified using Larch is very encouraging, but
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we can still see many ways in which we can improve.
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Chapter 7

Conclusions and Future Work

We have presented a methodology based on simulations and invariants for analyzing real-

time distributed systems and establishing bounds on the time to accomplish certain tasks.

We have demonstrated it on some small but nontrivial examples, which previously had no

rigorous timing analysis. In particular, the tight upper bound on the time to reach the

critical region in Fischer's mutual exclusion algorithm was not, to our knowledge, known

before. We have also verified the proof of Fischer's algorithm using the Larch tools.

This methodology involves specifying both the system and its requirements as automata,

and establishing a relationship between them that proves that the system satisfies its re-

quirements. Because both are specified as automata, it is possible to introduce intermediate

specifications, which express some intuition about how the system unfolds. We have also

proposed an approach to defining these intermediate automata, using milestones, to assist

in proving timing properties.

This methodology leads to well-structured hierarchical proofs that are rigorous, sys-

tematic, and amenable to automatic verification. Also, invariants and simulations serve

as "documentation", expressing key insights about a system's behavior, including its tim-

ing. Invariants capture the unchanging aspect of the system, while simulations characterize

changes in the system, as reflected in the requirements. In this sense, simulations replace

operational arguments with an assertional framework.

It also appears that this methodology will scale reasonably to realistic systems. This

is because, although the length of the proofs increases as the systems grow, they do not

become too complicated. Rather than large, intricate proofs, they typically consist of many
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small checks that can usually be done independently. Furthermore, many of the checks are

trivial, and can be done automatically.

For an estimate of the complexity of simulation proofs, we can characterize the size and

complexity of a system by the number of state variables and actions I of an automaton for

that system. Proving an invariant typically requires separate consideration of each action.

Thus, the proof for an invariant is roughly proportional to the size of the system.

A simulation, on the other hand, involves two automata, one for the implementation, and

one for the specification. Again, separate consideration is usually required for each action of

the implementation, to verify that the simulation can be preserved by that action. However,

the simulation also grows more complex with the systems. In the examples we have done,

the number of conditions defining the simulation is proportional to the number of state

variables in the specification automaton, including the timing variables, or alternatively,

the number of variables in the untimed state plus the number of actions. Each of these

conditions must be preserved by every action in the implementation, so the proof of a

simulation grows as the product of the sizes of the two systems.

Moreover, most of the cases in these proofs are trivial, and thus these proofs are amenable

to automatic verification. We have defined a library of abstractions for the Larch tools,

which we have used to verify Fischer's algorithm in a way that corresponds closely with the

human reasoning we employ to convince ourselves. This provides added confidence that the

proof is indeed correct, and that every case has been properly checked.

Using automated verification tools also promises to be helpful when modifying systems.

When we modify a system or its specification only slightly, we expect that LP will be able

to check most of the original proof automatically, allowing us to concentrate our attention

on what has truly changed, without worrying that some important detail has been over-

looked. This was, in fact, our experience when we proved the improved bounds for Fischer's

algorithm.

More work is still necessary in applying these techniques to larger systems, to test

both the methodology and the automated tools. A natural starting point is to verify other

mutual exclusion algorithms. In particular, a detailed proof of the simulation given by Lynch

1 Parameterized actions and variables technically correspond to many actions and variables, but can
usually be treated uniformly, and thus can be considered a single action or variable for this analysis. For
example, the mutual exclusion automata in Chapter 5 have a set of state variables and actions for each
process, but the proof does not depend on the number of processes.
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[Lyn93] for Dijkstra's mutual exclusion algorithm [Dij65] should be an informative test of the

enhancements made to the Larch tools. The hybrid algorithm of Lynch and Shavit [LS92]

is another possibly instructive example to examine, as are Lamport's "bakery" algorithm

[Lam74], and algorithms proposed by Peterson and Fischer [PF77].

A much more ambitious study would be to attempt to analyze a more complex and subtle

practical algorithm such as the distributed minimum spanning tree algorithm of Gallager,

Humblet, and Spira [GHS83]. Welch, Lamport, and Lynch gave a rigorous and detailed,

and very lengthy, analysis of this algorithm [WLL88], but it did not include a performance

analysis. A timing analysis of this algorithm, accompanied by a simple, concise proof, would

be relevant for practical systems, and also serve as an interesting case study of the methods

developed here.

Operating systems, especially distributed operating systems, provide another rich do-

main for problems and protocols, such as synchronization [KR93] and scheduling [Jef92,

Zho92] with hard real-time constraints, that might be analyzed using this methodology.

For these, and other problems, it is important to characterize not only correctness but also

timeliness.

Perhaps the most useful application of these techniques lies in the analysis of communi-

cation protocols [CAZ92, MSST93], which generally have only informal claims of efficiency

and even correctness. For many of these, especially the distributed group communication

protocols, the correctness guarantees are not always clear, and only recently have there

been attempts at stating these more formally [HT93, FKL95, FvR95, MBRS94]. Unfortu-

nately, these usually lack performance guarantees, which are essential for communication

systems. S0gaard-Andersen, Lynch, and Lampson have recently done a lengthy case study

applying simulation methods to communication protocols [SLL93a, SLL93b], but this does

not include an analysis of the timing. Instead, the performance is typically determined

empirically (e.g., [vRHB94]).

Performance guarantees, however, are often difficult to characterize, especially "soft"

time bounds, that is, bounds that hold in "typical" cases. The MMT automaton model used

in this thesis is adequate only for expressing "hard" time bounds which usually characterize

real implementations. Lynch and Vaandrager have defined a more general timed automaton

model [LVarb] to specify systems which have a more complex relationship between timing

and state. However, little work has been done to develop a methodology for these more
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general automata, and in particular, this has not yet been used to model any systems with

soft time bounds. Furthermore, it is unclear how much additional complexity in the proofs

will result with this increased dependency between timing and state.

Another important class of systems that cannot be handled within the framework of

this thesis are randomized algorithms. Segala [Seg95] has developed a general probabilistic

automaton model, which Pogosyants and Segala [PS95] have specialized to a probabilistic

variant of MMT automata, and have proved some results using this model. Pogosyants is

also working on automating these proofs using the Larch tools. However, more work is still

necessary to understand the general structure behind such proofs, and to develop guidelines

to approach and automate such proofs.

We believe that this is a fruitful area of research, and that many interesting real-time

systems are now within the reach of formal methods. Furthermore, as automated tools

become more sophisticated, we expect practical machine verification of proofs of real-time

systems to be a reasonable goal.
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Appendix A

LP Proof Script Files

This appendix contains the proof scripts used to verify the Fischer algorithm described in

Chapter 5. The proof is divided into six scripts, corresponding to the implies clauses of the

automaton and simulation traits specific to the proof of Fischer's algorithm.'

At the beginning of several files are some commands that indicate how certain opera-

tors are to be ordered in the registry. This significantly reduces the time that LP spends

attempting find an order for the operators that does not cause it to loop infinitely during

normalization.

These proofs use LP's box-checking option, with marks generated by to indicate points

at which new proof obligations are introduced (the <> marks) and satisfied (matching []

marks).2 These marks are often enough to indicate the structure of the proof, and serve as

documentation, as well as checks that LP is proceeding as expected. Comments, preceded

by %, provide further documentation where necessary. Long commands may be split into

several lines, terminated by two periods (. .). These do not indicate any elision of the script,

which is provided here in full, exactly as it is processed by LP.

A.1 The Untimed Aspects of Fischer's Algorithm
set script untimedfischer

execute AutomatonFischer_Axioms

1There is some rearrangement of where the implications are proved. For example, there are actually two
scripts for establishing the implies clause of the TimedFischer trait, one for the sufficient confirmation delay
invariant, and the other establishing strong mutual exclusion.

2Proof obligations introduced explicitly with a prove command do not have redundant <> marks. They
are matched by [] conjecture.
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set box-checking on

set name UntimedFischer

set proof-methods #=,normalization

set immunity ancestor

declare vars p, p, p2: PC

prove p = (if b then pl else p2) ¢* (if b then p:PC = pl else p = p2) by case b

<> case bc

[] case bc

<> case - bc
[] case -bc

[] conjecture

qed

declare var at:ActionTypes[F]

prove effect(s, at[i], s') = unchanged(s, s', i) by induction on at:ActionTypes[F]

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal
[] basis subgoal

<> basis subgoal

<> #= subgoal
[] => subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal
[] conjecture

qed

prove s'.pc[j] = s.pc[j] = (enabled(s', at[j]) 4t enabled(s, at[j]))
<> = subgoal

resume by induction on at

<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal
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[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal
[] basis subgoal

<> basis subgoal

[] basis subgoal
<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

[] = subgoal

[] conjecture

qed

prove

isStep(s, at[i], s') A -s'.x.free • at[i] = set[s'.x.owner] V s.x = s'.x

by induction on at:ActionTypes[F]

<> basis subgoal
<> = subgoal

[] = subgoal
[] basis subgoal

<> basis subgoal
<> subgoal

[] • subgoal

[] basis subgoal

<> basis subgoal
<> =j subgoal

[] = subgoal

[] basis subgoal.

<> basis subgoal

<> = subgoal

[] • subgoal
[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> subgoal

[] • subgoal

[] basis subgoal

<> basis subgoal
<> subgoal

[] = subgoal

[] basis subgoal

[] conjecture

qed

set proof-methods normalization

prove isStep(s, at[i], s') A -s'.x.free A s'.pc[j] = set = s.pc[j] = set

resume by case i:UID = j
<> case ic = jc
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set proof-methods normalization, =.

resume by induction on at:ActionTypes[F]

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal
[] basis subgoal

<> basis subgoal

<> subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] • subgoal
[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal

<> subgoal

[] = subgoal

[] basis subgoal

[] case ic = jc

<> case - (ic = jc)

resume by #

<> #= subgoal
instantiate s by sc, s' by s'c, at by atc, i by ic, j by jc in UntimedFischer

[] #= subgoal
[] case - (ic = jc)

[] conjecture

qed

prove isStep(s, at[i], s') A s'.pc[j] = check = (s.pc[j] = check V at[i] = set[j])

resume by case i:UID = j

<> case ic = jc

set proof-methods normalization, =

resume by induction on at:ActionTypes[F]

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal
<> basis subgoal

<> = subgoal

[] = subgoal
[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal
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[] = subgoal
[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

[] E subgoal
[] basis subgoal

<> basis subgoal

<> = subgoal

[] = subgoal

[] basis subgoal

[] case ic = jc

<> case - (ic = jc)

resume by =>

<> = subgoal

instantiate s by sc, s' by s'c, at by atc, i by ic, j by jc in UntimedFischer

[] = subgoal

[] case - (ic = jc)

[] conjecture

qed

', The invariant

prove start(s) = inv(s) by =

<> = subgoal

[] = subgoal

[] conjecture

qed

prove inv(s) A isStep(s, a, s') = inv(s') by induction on a:Actions[F]

<> basis subgoal

resume by case s'.x = s.x
<> case s'c.x = sc.x

resume by case u = sc.x.owner

<> case uc = sc.x.owner

set proof-methods 4=, normalization

resume by induction on al

<> basis subgoal

<> #' subgoal

<> 4 subgoal

[] subgoal

[] 4= subgoal

[] basis subgoal

<> basis subgoal

<> 4= subgoal

<> 4 subgoal

[] -- subgoal

[] 4' subgoal
[] basis subgoal

<> basis subgoal

<> = subgoal

<> = subgoal
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[] = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> = subgoal

<> = subgoal

[] = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> =* subgoal
<> = subgoal

[] = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> => subgoal

<> = subgoal

[] = subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

<> => subgoal

<> = subgoal

[] = subgoal
[] =} subgoal

[] basis subgoal

<> basis subgoal

<> #= subgoal

<> = subgoal

[] = subgoal

[] =} subgoal

[] basis subgoal

[] case uc = sc.x.owner

<> case - (uc = sc.x.owner)

set proof-methods 4, normalization

resume

<> => subgoal

<> = subgoal

instantiate s by sc, s' by s'c, at by aic, i by uc in untimedfischer

instantiate j by sc.x.owner in untimedfischer

[] = subgoal

[] = subgoal

[] case - (uc = sc.x.owner)

[] case s'c.x = sc.x

<> case - (s'c.x = sc.x)

set proof-methods #=, normalization

resume

<> = subgoal

<> = subgoal

instantiate s by sc, s' by s'c, at by alc, i by uc in untimedfischer

[] = subgoal

[] = subgoal

[] case - (s'c.x = sc.x)

[] basis subgoal

[] conjecture

qed

set log untimedfischer
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statistics

quit

A.2 The Milestone Automaton
set script intermediate

execute AutomatonIntermediateAxioms

set name Intermediate

set immunity ancestor

set box-checking on

declare variable stat:Status

prove stat = start V stat = seized V stat = stable by induction on stat
<> basis subgoal

[] basis subgoal
<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

[] conjecture

qed

prove enabled(s, task(crit[i])) ¢* 3 i enabled(s, crit[i])
resume by case 3 i enabled(s, crit[i])

<> case 3 i:UID enabled(sc, crit[i])

declare operator ic: -+ UID

fix i as ic in *caseHyp

resume by specializing a:Actions[I] to crit[ic]

<> specialization subgoal

[] specialization subgoal

[] case 3 i:UID enabled(sc, crit[i])

<> case -3 i:UID enabled(sc, crit[i])

resume by case a = crit[i]

<> case ac = crit[ic]

[] case ac = crit[ic]

<> case - (ac = crit[ic])

resume by contradiction

<> contradiction subgoal

declare operator i'c: - UID

fix i as i'c in *contraHyp

[] contradiction subgoal

[] case - (ac = crit[ic])
[] case -3 i:UID enabled(sc, crit[i])

[] conjecture

qed

prove start(s) = inv(s) by =

<> = subgoal

[] = subgoal

[] conjecture

qed

prove inv(s) A isStep(s, a, s') #= inv(s') by case s.status = start
<> case sc.status = start

resume by induction on a:Actions[I]

<> basis subgoal

set proof-methods normalization, =

resume by induction on al
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<> basis subgoal

<> = subgoal

[] E subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal

<> subgoal

[] subgoal

[] basis subgoal

<> basis subgoal

<> • subgoal

[] subgoal

[] basis subgoal

[] basis subgoal

<> basis subgoal
resume by 

<> = subgoal

[] subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

[] case sc.status = start

<> case - (sc.status = start)

resume by case 3 i(sc.region[i] = try)
<> case 3 i (sc.region[il = try)

declare operator ic: - UID

fix i:UID as ic in *hyp

resume by induction on a:Actions[I]

<> basis subgoal

set proof-methods normalization, =

resume by induction on al

<> basis subgoal

<> subgoal
resume by specializing i:UID to ic

<> specialization subgoal

prove ic uc by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

instantiate j:UID by ic in *hyp

resume by case j = uc
<> case jc = uc

[] case jc = uc

<> case - (jc = uc)
instantiate j:UID by jc in *hyp

[] case - (jc = uc)

[] specialization subgoal

[] => subgoal

[] basis subgoal

<> basis subgoal

<> subgoal

[] E subgoal

[] basis subgoal

<> basis subgoal

<> subgoal

[] subgoal

[] basis subgoal

<> basis subgoal
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<> = subgoal
prove uc ic by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

resume by specializing i:UID to ic

<> specialization subgoal

instantiate j:UID by ic in *hyp

resume by case j = uc

<> case jc = uc

[] case jc = uc

<> case - (jc = uc)

instantiate j:UID by jc in *hyp

[] case - (jc = uc)

[] specialization subgoal

[] X subgoal

[] basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal

resume by =-
<> subgoal

[] = subgoal

[] basis subgoal

[] case 3 i (sc.region[i] = try)

<> case -3 i (sc.region[i] = try)
[] case -3 i (sc.region[i] = try)

[] case - (sc.status = start)

[] conjecture
qed

set log intermediate

statistics

quit

A.3 Sufficient Confirmation Delay
set script SCD

thaw TimedFischer

set box-checking on

set immunity ancestor
set name theorem

set proof-methods =, normalization

%%%%%% Preliminaries

% Put information in registry to speed up ordering

register height

__[__]:Bounds[F],Tasks[F] --+Bounds

> (.first, .last, bdmap, 3:Actions[F],Bool-+Bool, .basic, +:Time,Time-+Time)

register height .bounds > (.basic, enabled:States[F] ,Actions[F]-+Bool)

%%%%%%.% The proof

prove start(s:States[TF]) = SCD(s)
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<> =~ subgoal

[] = subgoal

[] conjecture

qed

prove SCD(s) A inv(s':States[TF]) A isStep(s, addTime(at[i]), s') = SCD(s')

<> #. subgoal

<> #= subgoal
<> subgoal

resume by case atc[ic] = set[s'c.basic.x.owner]
<> case atc[ic] = set[s'c.basic.x.owner]

prove (s'c.now + a) < (s'c.now + b)

instantiate t by s'c.now, t by a, t2 by b in Time

[] conjecture

instantiate c by task(set[jc]) in *impliesHyp

[] case atc[ic] = set[s'c.basic.x.owner]
<> case - (atc[ic] = set[s'c.basic.x.owner])

instantiate s by sc.basic, s' by s'c.basic, at by atc, i by ic in AutomatonFischer

% Uses Lemma 5.1

instantiate j by jc in AutomatonFischer

instantiate j by sc.basic.x. owner in AutomatonFischer

, We now know set[jc] and check[sc.basic.x.owner] are enabled in sc and s'c.
prove atc[ic] check[sc.basic.x.owner] by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

prove atc[ic] set[jc] by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture
instantiate j by jc in *hyp

[] case - (atc[ic] = set[s'c.basic.x.owner])

[] = subgoal

[] = subgoal

[] = subgoal

[] conjecture

qed

prove SCD(s) A isStep(s, nu(t), s') = SCD(s')

<> = subgoal

[] • subgoal

[] conjecture

qed

set log SCD

statistics

quit

A.4 Strong Mutual Exclusion
set script mutex

thaw TimedFischer

set proof-methods =, normalization

set immunity ancestor

set box-checking on
set name theorem

%%%%%% Preliminaries
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% Put information in registry to speed up ordering

register height

__[__]:Bounds[F] ,Tasks[F] -Bounds

> (.first, .last, bdmap, 3:Actions[F],Bool-+Bool, .basic, +:Time,Time-+Time)

register height .bounds > (.basic, enabled:States[F],Actions[F]-+Bool)

%%%/%%%% The proof

prove start(s:States[TF]) = StrongMutex(s)

<> = subgoal
[] = subgoal

[] conjecture

qed

prove

StrongMutex(s) A SCD(s) A inv(s:States[TF]) A isStep(s, addTime(at[i]), s')

=- StrongMutex(s')

by induction on at:ActionTypes[F]

% CASE 1: at = try

<> basis subgoal

<> = subgoal

<> = subgoal

resume by case icl = ic

<> case icl = ic

[] case icl = ic
<> case - (icl = ic)

critical-pairs *caseHyp with *impliesHyp

instantiate i by icl in *hyp

resume by case j = ic

<> case jc = ic

[] case jc = ic
<> case - (jc = ic)

critical-pairs *caseHyp with *impliesHyp

[] case - (jc = ic)

[] case - (icl = ic)

[] = subgoal
[] = subgoal

[] basis subgoal

% CASE 2: at = test

<> basis subgoal

<> = subgoal

<> = subgoal

resume by case ic = icl
<> case ic = icl

resume by case sc.basic.x.free
<> case sc.basic.x.free

[] case sc.basic.x.free

<> case - sc.basic.x.free

[] case - sc.basic.x.free

[] case ic = icl

<> case - (ic = icl)

instantiate j by icl in *impliesHyp
instantiate i by icl in *impliesHyp

resume by case j = ic
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<> case jc = ic

[] case jc = ic

<> case (jc = ic)

instantiate j by jc in *impliesHyp

[] case - (jc = ic)

[] case - (ic = icl)

[] = subgoal

[] subgoal

[] basis subgoal

% CASE 3: a = set

<> basis subgoal

<> =- subgoal

<> #= subgoal

prove icl ic by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

instantiate j by icl in *hyp

instantiate i by icl in *hyp

[] = subgoal

[] = subgoal
[] basis subgoal

% CASE 4: a = check

<> basis subgoal

<> 4= subgoal

<> #= subgoal
instantiate j by ic in *hyp

resume by case sc.basic.x.owner = ic A -sc.basic.x.free

<> case sc.basic.x.owner = ic A -sc.basic.x.free

prove ic = icl by contradiction

<> contradiction subgoal
instantiate j by icl in *hyp

instantiate i by icl in *hyp

[] contradiction subgoal

[] conjecture

prove V j (s'c.basic.pc[j] set)

resume by case j = ic

<> case jc = ic

[] case jc = ic

<> case - (jc = ic)

instantiate j by jc in *impliesHyp

instantiate c by task(set[jc]) in *hyp

resume by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] case - (jc = ic)

[] conjecture

[] case sc.basic.x.owner = ic A -sc.basic.x.free

<> case -(sc.basic.x.owner = ic A -sc.basic.x.free)

prove icl ic by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

instantiate j by icl in *hyp

instantiate i by icl in *hyp

resume by case j = ic
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<> case jc = ic

[] case jc = ic
<> case - (jc = ic)

instantiate j by jc in *hyp

[] case - (jc = ic)

[] case - (sc.basic.x.owner = ic A -isc.basic.x.free)

[] = subgoal
[] = subgoal

[] basis subgoal

% CASE 5: a = crit

<> basis subgoal

<> = subgoal

<> subgoal

resume by case icl = ic

<> case icl = ic

instantiate i by ic in *hyp

resume by case j = ic

<> case jc = ic

[] case jc = ic
<> case - (jc = ic)

instantiate j by jc in *hyp

[] case -(jc = ic)

[] case icl = ic

<> case - (icl = ic)

instantiate j by icl in *hyp

instantiate i by icl in *hyp

resume by case j = ic
<> case jc = ic

[] case jc = ic

<> case - (jc = ic)

instantiate j by jc in *hyp

[] case -(jc = ic)

[] case - (icl = ic)

[] = subgoal

[] = subgoal

[] basis subgoal.

% CASE 6: a = exit

<> basis subgoal

<> •= subgoal

<> 4= subgoal

resume by case ic = ic
<> case icl = ic

instantiate i by ic in *hyp

resume by case j = ic

<> case jc = ic

[] case jc = ic
<> case - (jc = ic)

instantiate j by jc in *hyp

[] case - (jc = ic)

[] case icl = ic

<> case - (icl = ic)

instantiate j by icl in *hyp

instantiate i by icl in *hyp

resume by case j = ic

<> case jc = ic
[] case jc = ic

<> case - (jc = ic)
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instantiate j by jc in *hyp

[] case - (jc = ic)

[] case - (icl ic)

[] •= subgoal

[] = subgoal

[] basis subgoal

% CASE 7: a = reset

<> basis subgoal

<> •= subgoal

resume by case i = ic

<> case icl = ic

[] case icl = ic

<> case - (icl = ic)

instantiate i by ic in *hyp

instantiate j by icl in *hyp

instantiate i by icl in *hyp

[] case - (icl = ic)

[] = subgoal
[] basis subgoal

% CASE 8: a = rem

<> basis subgoal

<> •= subgoal

<> •= subgoal
resume by case icl = ic

<> case icl = ic

[] case icl = ic

<> case - (icl = ic)

instantiate j by icl in *hyp

instantiate i by icl in *hyp

resume by case j = ic

<> case jc = ic

[] case jc = ic

<> case - (jc = ic)

instantiate j by jc in *hyp

[] case - (jc = ic)

[] case - (icl = ic)

[] z= subgoal

[] 4= subgoal

[] basis subgoal

[] conjecture

qed

prove StrongMutex(s) A isStep(s, nu(t), s') = StrongMutex(s')

<> subgoal

[] subgoal

[] conjecture

qed

prove StrongMutex(s) Mutex(s)

<> = subgoal

<> subgoal

<> = subgoal
instantiate i by ic in *hyp

resume by contradiction

<> contradiction subgoal

instantiate i by jc in *hyp

[] contradiction subgoal
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[] = subgoal

[] = subgoal

[] = subgoal

[] conjecture

qed

set log mutex

statistics

quit

A.5 The Simulation from the Milestones to the Specification
set script i2m

thaw I2M

set name theorem

set immunity ancestor

set box-checking on

%/.%%%% Preliminaries

% Put information in registry to speed up ordering

register height

___[__]:Bounds[I], Tasks[I] -+Bounds

> (.first, last, bdmap:Tasks[I]-+Bounds, 3:Actions[I] ,Bool-+Bool,

.basic:States[TI] -States[I], +:Time,Time-*Time)

register height

__ [__]:Bounds [M],Tasks[M] -+Bounds
> (.first, .last, bdmap:Tasks[M] -+Bounds, 3:Actions[M],Bool-+Bool,

.basic:States[TM] -States [M, +:Time,Time-*Time)

register height
.bounds:States[TI] -+Bounds[I]

> (.basic:States [TI] -+States[I], enabled:States[I] ,Actions[I] -- Bool)

register height
.bounds:States[TM] -Bounds [M

> (.basic:States[TM] I-States[M], enabled:States [M],Actions[M] -+Bool)

register height ____] :Regions,UID-+Region > V

% Introduce constants that will be used to replace variables

declare operators

uc: - States[TM] % Used by LP for u in hypotheses

sc, s'c: - States[TI] 7. Ditto for s and s'
u'c: - States[TM] % To abbreviate STEP(uc, ... )
ac, a'c: - Actions[M] %. To abbreviate actions

% Put information in registry to ensure intended orientation of equations

register top uc, u'c

register height u'c > uc

register height s'c > sc

% Some preliminary lemmas.
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prove effect(s, a, STEP(s, a))

rewrite conjecture with reversed I2M

[] conjecture

qed

prove enabled(s:States[M], task(crit[i])) ¢* 3 i:UID enabled(s:States[M], crit[i])

resume by case 3 i:UID enabled(s:States[M], crit[i])

<> case 3 i:UID enabled(sc, crit[i])

declare operator ic: -+ UID

fix i:UID as ic in *caseHyp

resume by specializing a:Actions[M] to crit[ic]

<> specialization subgoal

[] specialization subgoal

[] case 3 i:UID enabled(sc, crit[i])

<> case -3 i:UID enabled(sc, crit[i])

resume by case a:Actions[M] = crit[i]

<> case ac = crit[ic]

[] case ac = crit[ic]

<> case - (ac = crit[ic])

resume by contradiction

<> contradiction subgoal

declare operator i'c: -+ UID

fix i:UID as i'c in *contraHyp

[] contradiction subgoal

[] case - (ac = crit[ic])

[] case -3 i:UID enabled(sc, crit[i])

[] conjecture

qed

%%%% The proof of the simulation

prove start(s:States[TI]) = 3 u:States[TM] (g(s,u) A start(u:States[TM])) by =

<> = subgoal

declare operators nullbounds: -+ Bounds[M], startregs: - Regions

assert V i:UID (startregs[i] = rem)

assert V c:Tasks[M] (nullbounds[c] = unbounded)

resume by specializing u to [[startregs], 0, nullbounds]

<> specialization subgoal

resume by induction on c:Tasks[M]

<> basis subgoal

resume by induction on a7

<> basis subgoal

resume by induction on a5

<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

[] basis subgoal

[] basis subgoal

[] specialization subgoal

[] 4 subgoal

[] conjecture

qed

prove g(s,u) •= s:States[TI].now = u.now by =
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<> = subgoal

[] = subgoal

[] conjecture

qed

declare variable alpha:StepSeq[TM]

prove

g(s,u) A isStep(s:States[TI], a, s') A inv(s:States[TI]) A inv(u)

3 alpha (execFrag(alpha) A first(alpha) = u A g(s',last(alpha))
A trace(alpha) = trace(a:Actions[TI]) )

by induction a:Actions[TI]

<> basis subgoal

% CASE: a = nu(s'c.now)

resume by =

<> = subgoal

assert u'c = STEP(uc, nu(s'c.now))

resume by specializing alpha to ({uc}) { nu(s'c.now), uc }

<> specialization subgoal

resume by induction on c:Tasks[M]

<> basis subgoal

resume by induction on a7

<> basis subgoal

resume by induction on a5

<> basis subgoal

% CASE 1: c = task(try[ul])

instantiate c:Tasks[M] by task(try[ul]) in *impliesHyp

[] basis subgoal

<> basis subgoal

% CASE 2: c = task(crit[ul])
resume by cases

enabled(sc.basic, seize),

enabled(sc.basic, stabilize),

enabled(sc.basic, task(crit[ul])),

-, enabled(uc.basic, task(crit [ul]))

<> case justification

resume by contradiction

<> contradiction subgoal

instantiate stat by sc.basic.status in AutomatonIntermediate

declare operator ic: -+ UID

fix i:UID as ic in *contraHyp

[] contradiction subgoal

[] case justification

<> case enabled(sc.basic, seize)

prove s'c.now < (sc.bounds[task(seize)].last + a + a + c)

instantiate z by sc.bounds[c.last+a+a+c in Transitivity

[] conjecture

[] case enabled(sc.basic, seize)

<> case enabled(sc.basic, stabilize)

prove s'c.no < (sc.bounds[task(stabilize)].last + a + c)

instantiate z by sc.bounds[c] .last+a+c in Transitivity

1] conjecture
1] case enabled(sc.basic, stabilize)

<> case enabled(sc.basic, task(crit[ulc]))
[] case enabled(sc.basic, task(crit[ulc]))

<> case - enabled(uc.basic, task(crit[ulc]))
instantiate c:Tasks[M] by task(crit[ulc]) in *impliesHyp
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[] case - enabled(uc.basic, task(crit[ulc]))
[] basis subgoal

<> basis subgoal

% CASE 3: c = task(exit[ul])

instantiate c:Tasks[M] by task(exit[ull) in *impliesHyp

[] basis subgoal

C> basis subgoal

% CASE 4: c = task(rem[ul])

resume by case enabled(uc.basic, task(rem[ul]))

<> case enabled(uc.basic, task(rem[ulc]))
instantiate a:Actions[I] by rem[ulc], i by ulc in *impliesHyp

[] case enabled(uc.basic, task(rem[ulc]))

<> case - enabled(uc.basic, task(rem[ulc]))
instantiate c:Tasks[M] by task(rem[ulc]) in *impliesHyp

[] case -enabled(uc.basic, task(rem[ulc]))

[] basis subgoal

[] basis subgoal

[] basis subgoal

[] specialization subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

resume by induction on a3

<> basis subgoal

resume by induction on al

<> basis subgoal

% CASE 1: a = addTime(try[ul])

resume by 

<> 4= subgoal

assert (ac = try[ulc]); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to ({uc}) { addTime(ac), u'c }

<> specialization subgoal

instantiate c by task(ac) in *impliesHyp / c-op(.first)

prove u'c.basic.region[i] = s'c.basic.region[i]

resume by case i = ulc

<> case ic = ulc

[] case ic = ulc
<> case - (ic = ulc)

instantiate j by ic in *impliesHyp, theorem

[] case - (ic = ulc)
[] conjecture

% The rest are checking the bounds in the post-states.

% We do this in two parts, starting with the bound for the rem action

prove

(s'c.basic.region[i] = exit
=4 s'c.bounds[task(rem[i])] .last < u'c.bounds[task(rem[i])].last)

resume by case i = ulc
<> case ic = ulc

[] case ic = ulc
<> case - (ic = ulc)
resume by 

<> subgoal

instantiate c:Tasks[I] by task(rem[ic]) in *impliesHyp

instantiate c:Tasks[M] by task(rem[ic]) in theorem

instantiate j by ic in *impliesHyp
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instantiate i by ic in *impliesHyp / c-op(rem:--ActionTypes[M])

[] = subgoal

[] case - (ic = ulc)

[] conjecture

resume by case - enabled(u'c.basic, task(crit[i]))

<> case - enabled(u'c.basic, task(crit[ic]))

instantiate c:Tasks[M] by task(crit[ic]) in theorem

resume by case V j:UID - (s'c.basic.region[j] = crit)

<> case V j:UID - (s'c.basic.region[j] = crit)

[] case V j:UID - (s'c.basic.region[j] = crit)

<> case -V j:UID - (s'c.basic.region[j] = crit)

[] case - j:UID - (s'c.basic.region[j] = crit)

[] case - enabled(u'c.basic, task(crit[ic]))

<> case - (- enabled(u'c.basic, task(crit[ic])))

resume by case enabled(uc.basic, task(crit[ic]))

<> case enabled(uc.basic, task(crit[ic]))

resume by A

<> A subgoal

resume by =

<> = subgoal

resume by case enabled(sc.basic, seize)

<> case enabled(sc.basic, seize)

[] case enabled(sc.basic, seize)

<> case - enabled(sc.basic, seize)

instantiate c by task(seize) in *impliesHyp

instantiate c:Tasks[M] by task(crit[i]) in theorem

declare operator i'c: - UID

fix i:UID as i'c in *caseHyp

[] case - enabled(sc.basic, seize)

[] = subgoal

[] A subgoal

<> A subgoal

resume by =
<> • subgoal

[] = subgoal

[] A subgoal

<> A subgoal

resume by =.

<> = subgoal

prove enabled(sc.basic, task(crit[ic]))

resume by case 3 i (sc.basic.region[i] = try)

<> case 3 i:UID (sc.basic.region[i] = try)

declare operator i'c: -- UID

fix i:UID as i'c in *impliesHyp

[] case 3 i:UID (sc.basic.region[i] = try)

<> case -3 i:UID (sc.basic.region[i] = try)

[] case -3 i:UID (sc.basic.region[i] = try)

[] conjecture

[] •= subgoal

[] A subgoal

[] case enabled(uc.basic, task(crit[ic]))

<> case -enabled(uc.basic, task(crit[ic]))

% seize, stabilize, crit[i] are not enabled in sc

% (because crit[i] is not enabled in uc, and g(sc,uc) )

resume by case -3 i:UID (sc.basic.region[i] = try)

<> case -3 i:UID (sc.basic.region[i] = try)

resume by =.
<> = subgoal
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[] = subgoal
[] case -3 i:UID (sc.basic.region[i] = try)

<> case -(-3 i:UID (sc.basic.region[i] = try))

resume by A

<> A subgoal

resume by =,

<> •= subgoal

prove -enabled(sc.basic, seize) by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

[] = subgoal

[] A subgoal

<> A subgoal

resume by ='

<> = subgoal

[] = subgoal

[] A subgoal

<> A subgoal

resume by =-

<> = subgoal

declare operator i'c: -+ UID

fix i:UID as i'c in *caseHyp / c-op(sc)

instantiate i by i'c in *caseHyp

[] => subgoal

[] A subgoal

[] case - (-3 i:UID (sc.basic.region[i] = try))

[] case - enabled(uc.basic, task(crit[ic]))

[] case - (- enabled(u'c.basic, task(crit[ic])))

[] specialization subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

, CASE 2: a = addTime(crit[ul])

resume by =

<> = subgoal
assert (ac = crit[ulc]); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to ({uc}) { addTime(ac), u'c }

<> specialization subgoal

instantiate c:Tasks[M] by task(crit[ulc]) in *impliesHyp / c-op(.first)

prove u'c.basic.region[i] = s'c.basic.region[i]

resume by case i = ulc
<> case ic = ulc

[] case ic = uIc

<> case - (ic = ulc)

instantiate j by ic in *impliesHyp, theorem

[] case - (ic = ulc)

[] conjecture

prove

(s'c.basic.region[i] = exit

=s s'c.bounds[task(rem[i] )].last < u'c.bounds[task(rem[i])] .last)

resume by case i = ulc
<> case ic = ulc

[] case ic = ulc
<> case - (ic = ulc)

resume by =>

<> = subgoal

instantiate c:Tasks[I] by task(rem[ic]) in *impliesHyp
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instantiate c:Tasks[M] by task(rem[ic]) in theorem

instantiate j by ic in *impliesHyp

instantiate i by ic in *impliesHyp / c-op(rem:--ActionTypes[M])

[] = subgoal

[] case - (ic = ulc)

[] conjecture

resume by =
<> = subgoal

[] = subgoal
E] specialization subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

% CASE 3: a = addTime(exit[ull)

resume by =:

<> => subgoal

assert (ac = exit[ulc]); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to ({uc}) { addTime(ac), u'c }

<> specialization subgoal

instantiate c by task(ac) in *impliesHyp / c-op(.first)

prove u'c.basic.region[i] = s'c.basic.region[i]

resume by case i = ulc
<> case ic = ulc

[] case ic = ulc

<> case - (ic = ulc)

instantiate j by ic in *impliesHyp, theorem

[] case - (ic = ulc)

[] conjecture

prove

(s'c.basic.region[i] = exit

= s'c.bounds[task(rem[i])].last < u'c.bounds[task(rem[il])] .last)

resume by case i = ulc

<> case ic = ulc

[] case ic = ulc

<> case - (ic = ulc)

resume by =-
<> =• subgoal

instantiate c:Tasks[I] by task(rem[ic]) in *impliesHyp

instantiate c:Tasks[M] by task(rem[ic]) in theorem

instantiate j by ic in *impliesHyp

instantiate i by ic in *impliesHyp / c-op(rem:-+ActionTypes[M])

[] = subgoal

[] case - (ic = uc)

[] conjecture

resume by case - enabled(u'c.basic, task(crit[i]))

<> case - enabled(u'c.basic, task(crit[ic]))

instantiate c:Tasks[M] by task(crit[ic]) in theorem

resume by case V j:UID - (s'c.basic.region[j] = crit)

<> case V j:UID - (s'c.basic.region[j] = crit)

[] case V j:UID - (s'c.basic.region[j] = crit)
<> case -V j:UID - (s'c.basic.region[j] = crit)

[] case -V j:UID - (s'c.basic.region[j] = crit)

[] case - enabled(u'c.basic, task(crit[ic]))

<> case - (- enabled(u'c.basic, task(crit[ic])))

prove - enabled(uc.basic, task(crit[i])) by contradiction

<> contradiction subgoal

instantiate j by ulc in *contraHyp

[] contradiction subgoal
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[] conjecture

instantiate c:Tasks[M] by task(crit[ic]) in theorem

% We now know u'c.bounds[task(crit[ic])] = [s'c.now, (4*a) + (2*c) + s'c.now]

prove inv(s'c)

instantiate

s by sc, s' by s'c, a:Actions[TI] by addTime(exit[ulc]) in Invariants

[] conjecture

resume by A

<> A subgoal

prove -V j:UID -i(sc.basic.region[j] = crit) by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

resume by =

<> 4 subgoal

[] 4 subgoal

[] A subgoal

<> A subgoal

resume by =

<> subgoal

[] = subgoal

[] A subgoal

<> A subgoal

resume by =

<> subgoal

instantiate c:Tasks[I] by task(crit[ic]) in *impliesHyp

instantiate c:Tasks[I] by task(crit[ic]) in theorem / c-op(.last)

instantiate z by a+a+a+a+c+c+s'c.now in Transitivity

[] = subgoal

[] A subgoal

[] case - (- enabled(u'c.basic, task(crit[ic])))

[] specialization subgoal

[] = subgoal

[] basis subgoal

% CASE 4: a = addTime(rem[ul])

<> basis subgoal

resume by =

<> = subgoal

assert (ac = rem[ulc]); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to ({uc}) { addTime(ac), u'c }

<> specialization subgoal

instantiate c by task(ac) in *impliesHyp / c-op(.first)

prove u'c.basic.region[i] = s'c.basic.region[il

resume by case i = ulc

<> case ic = ulc

[] case ic = ulc

<> case - (ic = ulc)

instantiate j by ic in *impliesHyp, theorem

[] case - (ic = ulc)

[] conjecture

prove

(s'c.basic.region[i] = exit

4 s'c.bounds[task(rem[i] )].last < u'c.bounds[task(rem[i] )].last)

resume by case i = ulc
<> case ic = ulc

[] case ic = ulc
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<> case - (ic = ulc)

resume by =:

<> = subgoal

instantiate c:Tasks[I] by task(rem[ic]) in *impliesHyp

instantiate c:Tasks[M] by task(rem[ic]) in theorem

instantiate j by ic in *impliesHyp

instantiate i by ic in *impliesHyp / c-op(rem:--ActionTypes[M])

[] = subgoal

[] case - (ic = ulc)

[] conjecture

resume by case - enabled(u'c.basic, task(crit[i]))

<> case - enabled(u'c.basic, task(crit[ic]))

instantiate c:Tasks[M] by task(crit[ic]) in theorem

resume by case V j:UID - (s'c.basic.region[j] = crit)

<> case V j:UID - (s'c.basic.region[j] = crit)

[] case V j:UID - (s'c.basic.region[j] = crit)
<> case -V j:UID - (s'c.basic.region[j] = crit)

[] case -V j:UID - (s'c.basic.region[j] = crit)

[] case - enabled(u'c.basic, task(crit[ic]))

<> case - (- enabled(u'c.basic, task(crit[ic])))

prove enabled(uc.basic, task(crit[ic]))

declare operator i'c: -* UID

fix i:UID as i'c in *caseHyp

resume by specializing i:UID to i'c

<> specialization subgoal

prove i'c ulc by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

instantiate j by i'c in *impliesHyp

resume by contradiction

<> contradiction subgoal

prove jc uc by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

instantiate j by jc in *impliesHyp

[] contradiction subgoal

[] specialization subgoal

[] conjecture

instantiate c:Tasks[M] by task(crit[ic]) in theorem

resume by A

<> A subgoal

resume by =E

<> = subgoal

instantiate c by task(seize) in *impliesHyp

prove enabled(sc.basic, seize)

declare operator i'c: -+ UID

fix i:UID as i'c in (*impliesHyp / c-op(s'c)) - c-op(sc)

resume by specializing i:UID to i'c

<> specialization subgoal

prove i'c ulc by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

instantiate j by i'c in *impliesHyp

resume by contradiction

<> contradiction subgoal

prove jc ulc by contradiction
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<> contradiction subgoal

[] contradiction subgoal

[] conjecture

instantiate j by jc in*impliesHyp

[] contradiction subgoal

[] specialization subgoal

[] conjecture

[] = subgoal

[] A subgoal

<> A subgoal

resume by 

<> 4 subgoal

[] = subgoal
[] A subgoal

<> A subgoal

resume by 

<> subgoal

declare operator i'c: -* UID

fix i:UID as i'c in *impliesHyp / c-op(stable:-+Status)

[] subgoal

[] A subgoal

[] case - (- enabled(u'c.basic, task(crit[ic])))

[] specialization subgoal

[] = subgoal

[] basis subgoal

[] basis subgoal

<> basis subgoal

% CASE 5: a = addTime(seize)
resume by 4

<> subgoal

resume by specializing alpha to {uc}

<> specialization subgoal

prove

(sc.basic.region[i] = exit

= s'c.bounds[task(rem[i])].last < uc.bounds[task(rem[i])].last)

resume by 4

<> subgoal

instantiate c:Tasks[I] by task(rem[ic]) in *impliesHyp

instantiate c:Tasks[M] by task(rem[ic]) in theorem

instantiate i by ic in *impliesHyp / c-op(rem:-+ActionTypes[M])

[] = subgoal
[] conjecture

instantiate c by task(stabilize) in *impliesHyp

prove (a + a + c + s'c.now) < (sc.bounds[task(seize)].last + a + a + c)

resume by case a+a+c = infinity

<> case a + a + c = infinity

[] case a + a + c = infinity

<> case - (a + a + c = infinity)

instantiate t by a+a+c in Time

[] case (a + a + c = infinity)

[] conjecture

[] specialization subgoal

[] => subgoal

[] basis subgoal

<> basis subgoal

% CASE 6: a = addTime(stabilize)
resume by 

<> => subgoal
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resume by specializing alpha to {uc}

<> specialization subgoal

prove

(sc.basic.region[i] = exit

4 s'c.bounds [task(rem[i] ) ].last < uc.bounds [task(rem[i] )].last)

resume by 4

<> - subgoal

instantiate c:Tasks[I] by task(rem[ic]) in *impliesHyp

instantiate c:Tasks[M] by task(rem[ic]) in theorem

instantiate i by ic in *impliesHyp / c-op(rem:--*ActionTypes[M])

[] 4= subgoal

[] conjecture

instantiate c:Tasks[I] by task(crit[i]) in *impliesHyp

prove (a+c+s'c.now) < (sc.bounds[task(stabilize)].last + a + c)

resume by case a+c = infinity

<> case a + c = infinity

[] case a + c = infinity

C> case - (a + c = infinity)

instantiate t by a+c in Time

[] case - (a + c = infinity)

[] conjecture

[] specialization subgoal

[] = subgoal
[] basis subgoal

[] basis subgoal

[] conjecture
qed

set log i2m

statistics

quit

A.6 The Simulation from Fischer's Algorithm to the Mile-
stones

set script f2i
thaw F2I

set name theorem

set immunity ancestor

set box-checking on

..%%%%% Preliminaries

% Put information in registry to speed up ordering

register height

__[__]:Bounds[F],Tasks[F]-+Bounds

> (.first, last, bdmap:Tasks F] -+Bounds, 3: Actions[ F] ,Bool-*Bool,
.basic:States[TF] -States[F], +:Time,Time-*Time)

register height

__ [__]:Bounds[I],Tasks[I]-*Bounds

> (.first,. last, bdmap:Tasks[I] -*Bounds, 3:Actions[I1 ,Bool-*Bool,

.basic:States[TI] -*States[I], +:Time,Time-+Time)

register height
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.bounds: States [TF] -+Bounds [F]

> (.basic:States[TF] -+States[F], enabled:States[F] ,Actions [F]-+Bool)

register height

.bounds:States[TI] -+Bounds[I]

> (.basic:States[TI] -+States[I], enabled:States[I],Actions[I]-+Bool)

register height __[__ :Regions,UID-+Region > V

% Introduce constants that will be used to replace variables

declare operato]

uc:
SC, S'C:

u'c, U"c:
ac, a'c:

- States[TI]
-+ States[TF]
- States[TI]

-+ Actions[I]

% Used by LP for u in hypotheses

% Ditto for s and s'

% To abbreviate STEP(uc, ...), STEP(u'c, ...)

% To abbreviate actions

% Put information in registry to ensure intended orientation of equations

register top uc, u'c, u''"c

register height u'c > u'c > uc

register height s'c > sc

% Define some abbreviations for useful sets of facts

define-class $firstHyp

define-class $wdef

*impliesHyp / contains-operator(.first)

(F2I / contains-operator(w)) - contains-operator(f)

% Some preliminary lemmas

prove effect(s, a, STEP(s, a))

rewrite conjecture with reversed F2I

[] conjecture

qed

prove

inv(s:States[TF]) A isStep(s:States[TF],

=. V j (j:UID i w(s',j) = w(s,j))

addTime(at[i]), s')

resume by }

<> 4= subgoal

resume by .

<> =. subgoal
instantiate

s by sc, s' by s'c, at by atc, i by ic, j by jc

in TimedFischer / c-v(at':ActionTypes[F])

instantiate

s by sc.basic, s' by s'c.basic, at by atc,

in AutomatonFischer / c-v(j:UID)

i by ic, j by jc

instantiate s by sc, i by jc in $wdef

instantiate s by s'c, i by jc in $wdef

resume by cases

sc.basic.pc[jc] = test,

sc.basic.pc[jc] = set,
sc.basic.pc[jc] = check,

- (sc.basic.pc[jc] E { test, set, check })
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<> case justification

[] case justification

<> case sc.basic.pc[jc] = test

[] case sc.basic.pc[jc] = test

<> case sc.basic.pc[jc] = set

[] case sc.basic.pc[jc] = set

<> case sc.basic.pc[jcl = check

[] case sc.basic.pc[jc] = check

<> case - (sc.basic.pcljc] E {test, set, check})
[] case - (sc.basic.pc[jc] E {test, set, check})

[] = subgoal

[] •= subgoal
[] conjecture

qed

7, Now the proof obligations to check the forward simulation

prove start(s:States[TF]) = 3 u (f(s,u) A start(u)) by =
<> = subgoal

declare operators nullbounds: -+ Bounds[I], startregs: -+ Regions

assert V i:UID (startregs[i] = rem)

assert V c:Tasks[I] (nullbounds[c] = unbounded)
resume by specializing u to [[startregs, start], 0, nullbounds]

<> specialization subgoal

resume by induction on c:Tasks[I]

<> basis subgoal

resume by induction on a3

<> basis subgoal

resume by induction on al

<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

<> basis subgoal

[] basis subgoal

[] basis subgoal

[] specialization subgoal

[] = subgoal

[] conjecture

qed

prove f(s,u) s:States[TF].now = u.now by =

<> • subgoal

[] = subgoal

[] conjecture

qed

set proof-method explicit-commands

declare variable alpha:StepSeq[TI]

prove

f(s,u) A isStep(s:States[TF], a, s') A inv(s:States[TF]) A inv(u) A StrongMutex(s)
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4 3 alpha (execFrag(alpha)
A first(alpha) = u A f(s',last(alpha))
A trace(alpha) = trace(a:Actions[TF]) )

by induction on a:Actions[TF]

<> basis subgoal

% CASE: nu(s'c.now)

resume by 

<> subgoal

set proof-methods normalization

assert u'c = STEP(uc, nu(s'c.now))
resume by specializing alpha to ({uc}) { nu(s'c.now), u'c }

<> specialization subgoal

resume by A

<> A subgoal

% Trying to prove V c:Tasks[I] (s'c.now < uc.bounds[c].last)
resume by induction on c:Tasks[I]

<> basis subgoal

prove s'c.now < (sc.bounds[c].last + t)

instantiate t by sc.bounds[c].last, tl:Time by t in Time

[] conjecture

resume by induction on a3
<> basis subgoal

resume by induction on al
<> basis subgoal

% CASE 1: c = task(try[ul])

instantiate c:Tasks[I] by task(try[ul]) in *impliesHyp

[] basis subgoal

<> basis subgoal

% CASE 2: c = task(crit[ul])
resume by case -enabled(uc.basic, task(crit[ul]))

<> case -enabled(uc.basic, task(crit[ulc]))

instantiate c:Tasks[I] by task(crit[ulc]) in *impliesHyp

[] case enabled(uc.basic, task(crit[ulc]))
<> case - (- enabled(uc.basic, task(crit[ulc])))

declare operator dummyi:-+UID

fix i as dummyi in *caseHyp

declare operator critTask: -+Tasks[I]

assert task(crit[ulc]) = critTask

prove critTask = task(crit[sc.basic.x.owner])
instantiate

a:Actions[I] by crit[ulc], a':Actions[I] by crit[sc.basic.x.owner]
in AutomatonIntermediate

[] conjecture

resume by case sc.basic.pc[sc.basic.x.owner] = lvtry
<> case sc.basic.pc[sc.basic.x.owner] = lvtry

instantiate i by sc.basic.x.owner in *impliesHyp / c-op(lvtry)
[] case sc.basic.pc[sc.basic.x.owner] = lvtry
<> case - (sc.basic.pc[sc.basic.x.owner] = lvtry)

[] case - (sc.basic.pc[sc.basic.x.owner] = lvtry)

[] case - (- enabled(uc.basic, task(crit[ulc])))
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[] basis subgoal

<> basis subgoal

% CASE 3: c = task(exit[ul])
instantiate c:Tasks[I] by task(exit[ul]) in *impliesHyp

[] basis subgoal

<> basis subgoal

% CASE 4: c = task(rem[ul])

resume by case -enabled(uc.basic, task(rem[ul]))

<> case - enabled(uc.basic, task(rem[ulc]))
instantiate c:Tasks[I] by task(rem[ulc]) in *impliesHyp

[] case - enabled(uc.basic, task(rem[ulc]))
<> case - (- enabled(uc.basic, task(rem[ulc])))

instantiate i by uc in *impliesHyp

resume by case sc.basic.pc[ulc] = reset
<> case sc.basic.pc[ulc] = reset

[] case sc.basic.pc[ulc] = reset

<> case -(sc.basic.pc[ulc] = reset)

[] case -(sc.basic.pc[ulc] = reset)

[] case - (-enabled(uc.basic, task(rem[ulc])))

[] basis subgoal

[] basis subgoal

<> basis subgoal

% CASE 5: c = task(seize)

resume by case - enabled(uc.basic, task(seize))

<> case -enabled(uc.basic, task(seize))

instantiate c by task(seize) in *impliesHyp

[] case -enabled(uc.basic, task(seize))

<> case - (- enabled(uc.basic, task(seize)))
resume by case sc.basic.x.free

<> case sc.basic.x.free

declare operator ic:-+UID

fix i as ic in *hyp / c-op(seize)

prove w(sc, ic) > s'c.now

instantiate i by ic, s by sc in $wdef

resume by cases

sc.basic.pc[ic] = test,

sc.basic.pc[ic] = set,

sc.basic.pc[ic] = check,

- (sc.basic.pc[ic] E { test, set, check })

<> case justification

<> case justification

<>[] case sc.basic.pcica = test

C> case sc.basic.pc[ic] = test

<>[] case sc.basic.pc[ic] = set
<> case sc.basic.pc[ic] = set

[] case sc.basic.pc[ic] = check

<> case sc.basic.pc[ic] = check

<>[] case (sc.basic.pc[ic] E test, set, check)

<> case - (sc.basic.pc[ic] E {test, set, check})

[] conjecture
[] case sc.basic.x.free
<> case -sc.basic.x.free

% Now we know 3 i:UID (sc.basic.pc[i] = reset)

declare operator ic:-+UID
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fix i as ic in *caseHyp / c-op(reset:-+PC)

instantiate c by task(reset[ic]) in *impliesHyp / c-op(.last)

instantiate i by ic in *impliesHyp / c-op(reset:-+PC)

[] case -sc.basic.x.free

[] case - (- enabled(uc.basic, task(seize)))

[] basis subgoal

<> basis subgoal

7. CASE 6: c = task(stabilize)

instantiate c by task(stabilize) in *impliesHyp

resume by case - enabled(uc.basic, task(stabilize))

<> case -enabled(uc.basic, task(stabilize))

[] case -enabled(uc.basic, task(stabilize))

<> case - (- enabled(uc.basic, task(stabilize)))

declare operator ic:-UID

fix i as ic in *caseHyp

instantiate i by ic in *impliesHyp / c-op(set:-*PC)

[] case - (- enabled(uc.basic, task(stabilize)))

[] basis subgoal

[] basis subgoal

[] A subgoal

<> A subgoal

resume by A

<> A subgoal

[] A subgoal

<> A subgoal

prove w(s'c, i) = w(sc, i)

declare operator ic:-+UID

resume by generalizing i:UID from ic

<> generalization subgoal

instantiate s by sc, i by ic in $wdef

instantiate s by s'c, i by ic in $wdef

resume by cases

sc.basic.pc[ic] = test,
sc.basic.pc[ic] = set,

sc.basic.pc[ic] = check,

- (sc.basic.pc[ic] E { test, set, check })

<> case justification

<> case justification

<>[] case sc.basic.pcic] = test
<> case sc.basic.pc[ic] = test

<>[] case sc.basic.pc[ic] = set

<> case sc.basic.pc[ic] = set

<>[] case sc.basic.pc[ic] = check

<> case sc.basic.pc[ic] = check
<>[] case -(sc.basic.pc[ic] G test, set, check))

<> case - (sc.basic.pc[ic] E {test, set, check})

[] generalization subgoal

[] conjecture

[] A subgoal
[] A subgoal

[] specialization subgoal

[] = subgoal
[] basis subgoal
<> basis subgoal

resume by induction on a7

<> basis subgoal

resume by induction on a5
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<> basis subgoal

% CASE 1: try[ulc]

resume by =:
<> = subgoal

set proof-methods normalization

assert (ac = try[ulc]); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to ({uc}) { addTime(ac), u'c }

<> specialization subgoal

instantiate c by task(ac) in $firstHyp

prove

(s'c.basic.pc[i] = crit A= sc.basic.pc[i] = crit)

A (s'c.basic.pc[i] = reset <* sc.basic.pc[i] = reset)

A (s'c.basic.pc[i] = set sc.basic.pc[i] = set)

resume by case i = ulc

<> case ic = ulc

[] case ic = ulc

<> case - (ic = ulc)

instantiate j by ic in *impliesHyp / c-op(ulc)

[] case - (ic = ulc)

[] conjecture

prove 3 i:UID (w(s'c, i) < u'c.bounds[task(seize)].last)

instantiate c by task(seize) in theorem

resume by case -enabled(u'c.basic, seize)

<> case -enabled(u'c.basic, seize)

[] case -enabled(u'c.basic, seize)

<> case - (- enabled(u'c.basic, seize))

resume by case enabled(uc.basic, seize)
<> case enabled(uc.basic, seize)

declare operator ic:-+UID

fix i as ic in *hyp / c-op(w)

resume by specializing i:UID to ic

<> specialization subgoal
instantiate

s by sc, s' by s'c, at: ActionTypes[F] by try, i by ulc, j by ic

in theorem / c-op(w)

resume by case ic = ulc

<> case ic = ulc

instantiate s by sc, i by ulc in $wdef

[] case ic = ulc

<> case - (ic = ulc)

[] case - (ic = ulc)

[] specialization subgoal

[] case enabled(uc.basic, seize)

<C> case -enabled(uc.basic, seize)

resume by specializing i:UID to ulc
<> specialization subgoal

instantiate s by s'c, i by ulc in $wdef

[1 specialization subgoal

[] case _-enabled(uc.basic, seize)

[] case - (- enabled(u'c.basic, seize))

[] conjecture

resume by case i = ulc

<> case ic = ulc
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[] case ic = ulc
<> case - (ic = ulc)

instantiate j by ic in (*impliesHyp, theorem) / c-op(ulc)

resume by A

<> A subgoal

instantiate c:Tasks[I] by task(crit[ic]) in theorem / c-op(u'c)

resume by case - enabled(u'c.basic, task(crit[ic]))

<> case - enabled(u'c.basic, task(crit[ic]))

[] case - enabled(u'c.basic, task(crit[ic]))

<> case - (- enabled(u'c.basic, task(crit[ic])))

resume by -

<> = subgoal

declare operator dummyi:-*UID

fix i as dummyi in *caseHyp

[] = subgoal

[] case - (- enabled(u'c.basic, task(crit[ic])))

[] A subgoal
<> A subgoal

instantiate c:Tasks[I] by task(rem[ic]) in theorem / c-op(u'c)

resume by =
<> = subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by case - enabled(u'c.basic, task(crit[ic]))

<> case - enabled(u c.basic, task(crit[ic]))

[] case -enabled(u'c.basic, task(crit[ic]))

<> case - (-enabled(u'c.basic, task(crit[ic])))

resume by =

<> •= subgoal

declare operator dummyi: -+ UID

fix i as dummyi in *caseHyp

instantiate i by ic in *impliesHyp

[] = subgoal

[] case - (- enabled(u'c.basic, task(crit[ic])))

[] A subgoal
<> A subgoal

resume by =-
<> = subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

instantiate c by task(seize) in theorem / c-op(u'c)

resume by case -enabled(u'c.basic, task(seize))
<> case -enabled(u'c.basic, task(seize))

[] case -enabled(u'c.basic, task(seize))
<> case (-enabled(u'c.basic, task(seize)))

resume by =

<> = subgoal

instantiate c by task(reset[ic]) in *impliesHyp

instantiate i by ic in *impliesHyp

resume by case enabled(uc.basic, task(seize))
<> case enabled(uc.basic, task(seize))

[] case enabled(uc.basic, task(seize))

<> case -enabled(uc.basic, task(seize))

instantiate t by a+a+c in Time

resume by case a+a+c = infinity
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<> case a + a + c = infinity

[] case a + a + c = infinity

<> case - (a + a + c = infinity)

prove sc.bounds[task(reset[ic])].last < (sc.now + c)

instantiate c by task(reset[ic]) in *hyp

prove (sc.now +a) < (sc.now + c)

instantiate t by sc.now in Time

[] conjecture

[] conjecture

instantiate t by a in Time

[] case - (a + a + c = infinity)

[] case - enabled(uc.basic, task(seize))

[] = subgoal

[] case - (-enabled(u'c.basic, task(seize)))

[] A subgoal

<> A subgoal
instantiate c by task(stabilize) in theorem / c-op(u'c)

resume by cases - enabled(u'c.basic, task(stabilize))

<> case - enabled(u'c.basic, task(stabilize))

[] case -enabled(u'c.basic, task(stabilize))

<> case - ( -enabled(u'c.basic, task(stabilize)))

resume by =

<> = subgoal

instantiate c by task(set[ic]) in *impliesHyp / c-op(s'c)

instantiate i by ic in *impliesHyp

[] = subgoal
[] case - (- enabled(u'c.basic, task(stabilize)))

[] A subgoal

[] case - (ic = ulc)

[] specialization subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

% CASE 2: test[ulc]

resume by =
<> subgoal

set proof-methods normalization

resume by specializing alpha to {uc}
<> specialization subgoal

resume by case sc.basic.x.free

<> case sc.basic.x.free

prove 3 i:UID (w(s'c, i) < uc.bounds[task(seize)].last)

declare operator ic:- +UID

fix i as ic in *hyp / c-op(w)

resume by specializing i:UID to ic

<> specialization subgoal

resume by case ic = ulc
<> case ic = ulc

instantiate s by s'c, i by ulc in $wdef

instantiate s by sc, i by ulc in $def
instantiate

t by a, tl by sc.now, t2 by sc.bounds[task(test[ulc])].last in Time

[] case ic = ulc

<> case - (ic = ulc)

instantiate

s by sc, s' by s'c, at by test, i by ulc, j by ic in theorem / c-op(w)
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[] case - (ic = ulc)
[] specialization subgoal

[] conjecture

resume by case i = ulc
<> case ic = ulc

instantiate c by task(stabilize) in *impliesHyp

[] case ic = ulc
<> case - (ic = ulc)

instantiate j by ic in *impliesHyp / c-op(ulc)

resume by A

<> A subgoal

resume by =}

<> = subgoal

instantiate c:Tasks[F] by task(rem[ic]) in *impliesHyp / c-op(s'c)

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by 

<> subgoal

instantiate c by task(set[ic]) in *impliesHyp / c-op(s'c)

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

[] case - (ic = ulc)
[] case sc.basic.x.free

<> case - sc.basic.x.free

prove s'c.basic.pc[i] = sc.basic.pc[i]

resume by case i = ulc
<> case ic = ulc

[] case ic = ulc
<> case - (ic = ulc)

instantiate j by ic in *impliesHyp / c-op(ulc)

[] case - (ic = ulc)

[] conjecture

resume by A

<> A subgoal

resume by 

<> subgoal

[] = subgoal

[] A subgoal

<> A subgoal

resume by 

<> subgoal

instantiate i by ic in *impliesHyp

[] subgoal

[] A subgoal

<> A subgoal

resume by 
<> subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal
<> A subgoal

resume by 
c> subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal
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<> A subgoal

resume by 

<> = subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by =

<> = subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by case enabled(uc.basic, seize)

<> case enabled(uc.basic, seize)

declare operator ic:-+ UID

fix i as ic in *caseHyp / c-op(reset:-PC)

resume by specializing i:UID to ulc

<> specialization subgoal

instantiate i by ic in *impliesHyp / c-op(seize)

instantiate s by s'c, i by ulc in $wdef

instantiate c by task(reset[ic]) in *impliesHyp

prove (sc.now + a+a) < (sc.bounds[task(reset[ic])] .last +a+a)

instantiate t by a in Time

[] conjecture

[] specialization subgoal

[] case enabled(uc.basic, seize)

<> case -enabled(uc.basic, seize)

instantiate c by task(seize) in *hyp

[] case -enabled(uc.basic, seize)

[] A subgoal
[] case - sc.basic.x.free

[] specialization subgoal

[] =:: subgoal
[] basis subgoal

<> basis subgoal

% CASE 3: set[ul]

resume by =;
<> = subgoal

instantiate j by s'c.basic.x.owner in *impliesHyp

% StrongMutex •= sc.basic.pc[i] crit, lvtry, reset

set proof-methods normalization

prove s'c.basic.pc[i] { crit, reset }

resume by case i = s'c.basic.x.owner

<> case ic = s'c.basic.x.owner

[] case ic = s'c.basic.x.owner

<> case - (ic = s'c.basic.x.owner)

instantiate j by ic in *impliesHyp

[] case - (ic = s'c.basic.x.owner)

[] conjecture

resume by case sc.basic.x.free
<> case sc.basic.x.free

prove 3 i:UID (uc.basic.region[i] = try)

resume by specializing i:UID to s'c.basic.x.owner

<> specialization subgoal

[] specialization subgoal
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[] conjecture

resume by case V j:UID (s'c.basic.pc[j] set)

<> case V j:UID (s'c.basic.pc[j] set)

assert (ac = seize); u'c = STEP(uc, addTime(ac))

assert a'c = stabilize; u''c = STEP(u'c, addTime(a'c))

resume by specializing

alpha to (({uc}) { addTime(ac), u'c }) { addTime(a'c), uc }

<> specialization subgoal

instantiate c by task(ac) in $firstHyp

resume by case i = s'c.basic.x.owner

<> case ic = s'c.basic.x.owner

[] case ic = s'c.basic.x.owner

<> case -(ic = s'c.basic.x.owner)

instantiate j by ic in *Hyp

resume by 

<> = subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] case - (ic = s'c.basic.x.owner)

[] specialization subgoal

[] case V j:UID (s'c.basic.pc[j] set)

<> case -V j:UID (s'c.basic.pc[j] set)

assert (ac = seize); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to ({uc}) { addTime(ac), u'c }

<> specialization subgoal

instantiate c by task(ac) in $firstHyp

prove 3 i:UID (s'c.basic.pc[il = set)

declare operator ic:-+UID

fix j as ic in *caseHyp

resume by specializing i:UID to ic

<> specialization subgoal

[] specialization subgoal

[] conjecture

resume by case i = s'c.basic.x.owner
<> case ic = s'c.basic.x.owner

[] case ic = s'c.basic.x.owner

<> case -(ic = sc.basic.x.owner)

instantiate j by ic in *impliesHyp

resume by A

<> A subgoal

resume by 

<> subgoal
instantiate i by ic in *implies

[] r= subgoal

[] A subgoal

<> A subgoal

resume by -

<> subgoal
instantiate c by task(set[ic])

[] = subgoal

[] A subgoal

[] case - (ic = s'c.basic.x.owner)

[] specialization subgoal

sHyp

in *impliesHyp
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[] case -V j:UID (s'c.basic.pc[j] set)
[] case sc.basic.x.free

<> case - sc.basic.x.free

resume by case V j:UID (s'c.basic.pc[j] set)

<> case V j:UID (s'c.basic.pc[j] set)

assert (ac = stabilize); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to ({uc}) { addTime(ac), u'c }

<> specialization subgoal

instantiate c by task(ac) in $firstHyp

prove 3 i:UID (sc.basic.pc[i] = set)
resume by specializing i:UID to s'c.basic.x.owner

<> specialization subgoal

[] specialization subgoal

[] conjecture

resume by case i = s'c.basic.x.owner
<> case ic = s'c.basic.x.owner

prove -V i:UID - (sc.basic.pc[i] = set) by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

[] case ic = s'c.basic.x.owner
<> case -(ic = s'c.basic.x.owner)

instantiate j by ic in *Hyp

resume by ='

<> = subgoal
instantiate i by ic in *impliesHyp

[] = subgoal
[] case -(ic = s'c.basic.x.owner)

[] specialization subgoal

[] case V j:UID (s'c.basic.pc[j] set)
<> case -V j:UID (s'c.basic.pc[j] set)

resume by specializing alpha to {uc}

<> specialization subgoal

prove uc.bounds[task(seize)].last = infinity
instantiate c by task(seize) in *hyp

[] conjecture

prove 3 i:UID (sc.basic.pc[i] = set)

resume by specializing i:UID to s'c.basic.x.owner

<> specialization subgoal

[] specialization subgoal

[] conjecture

prove 3 i:UID (s'c.basic.pc[i] = set)

declare operator ic:-*UID

fix j as ic in *caseHyp

resume by specializing i:UID to ic

<> specialization subgoal
[] specialization subgoal

[] conjecture

prove - V i:UID - (sc.basic.pc[i] = set) by contradiction

<> contradiction subgoal
[] contradiction subgoal

[] conjecture

resume by case i = s'c.basic.x.owner
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<> case ic = s'c.basic.x.owner

instantiate c:Tasks[I] by task(crit[ic]) in *impliesHyp

[] case ic = s'c.basic.x.owner

<> case -(ic = s'c.basic.x.owner)

instantiate j by ic in *impliesHyp

instantiate i by ic in *impliesHyp

resume by A

<> A subgoal

resume by =

<> 4 subgoal

[] E subgoal

[] A subgoal

<> A subgoal

resume by -

<> 4 subgoal

[] 4 subgoal

[] A subgoal

[] case - (ic = s'c.basic.x.owner)

[] specialization subgoal

[] case -V j:UID (s'c.basic.pc[j] set)

[] case - sc.basic.x.free

[] 4 subgoal

[] basis subgoal

<> basis subgoal

% CASE 4: check[ulc]
resume by -

<> =- subgoal

set proof-methods normalization

resume by specializing alpha to {uc}

<> specialization subgoal

prove 3 i:UID (w(s'c, i) < uc.bounds[task(seize)].last)

declare operator ic:-+UID

fix i as ic in *hyp / c-op(w)

resume by specializing i:UID to ic

<> specialization subgoal

resume by case ic = ulc
<> case ic = ulc

resume by case sc.basic.x.free A sc.basic.x.owner = ulc
<> case -sc.basic.x.free A sc.basic.x.owner = ulc

prove -enabled(uc.basic, seize) by contradiction

<> contradiction subgoal

declare operator icl:-+UID

fix i as icl in *contraHyp / c-op(reset:-+PC)

instantiate i by icl in *impliesHyp

[] contradiction subgoal

[] conjecture

instantiate c by task(seize) in *hyp

[] case -sc.basic.x.free A sc.basic.x.owner = ulc

<> case -(-sc.basic.x.free A sc.basic.x.owner = ulc)

instantiate s by s'c, i by ulc in $wdef

instantiate s by sc, i by ulc in $wdef

prove (sc.now + a+a) < (sc.bounds[task(check[ulc])].last + a+a)

instantiate t by a in Time

[] conjecture

[] case -(-sc.basic.x.free A sc.basic.x.owner = ulc)

[] case ic = ulc

<> case - (ic = ulc)
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instantiate

s by sc, s' by s'c, at by check, i by ulc, j by ic in theorem / c-op(w)

[] case - (ic = ulc)

[] specialization subgoal

[] conjecture

resume by case sc.basic.x.free

<> case sc.basic.x.free

resume by case i = ulc
<> case ic = ulc

[] case ic = ulc
<> case - (ic = ulc)

instantiate j by ic in *impliesHyp / c-op(ulc)

resume by A

<> A subgoal

resume by >

<> subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by 

<> 4= subgoal

instantiate i by ic in *impliesHyp

[] => subgoal

[] A subgoal

[] case - (ic = ulc)

[] case sc.basic.x.free

<> case - sc.basic.x.free

prove

(s'c.basic.pc[i] = crit e¢ sc.basic.pc[i] = crit)

A (s'c.basic.pc[i] = reset {= sc.basic.pc[i] = reset)

A (s'c.basic.pc[i] = set ¢* sc.basic.pc[i] = set)

resume by case i = ulc

<> case ic = ulc

resume by case sc.basic.x.ouner = ulc
<> case sc.basic.x.owner = uic

[] case sc.basic.x.owner = ulc

<> case - (sc.basic.x.owner = ulc)

[] case -(sc.basic.x.owner = ulc)

[] case ic = ulc

<> case - (ic = ulc)
instantiate j by ic in *impliesHyp

[] case - (ic = uic)
[] conjecture

resume by case i = ulc

<> case ic = ulc

resume by case sc.basic.x.owner = ulc

<> case sc.basic.x.owner = ulc

prove (a + sc.now) < (sc.bounds[task(check[ulc])].last + a)

instantiate t by a in Time

[] conjecture

[] case sc.basic.x.owner = ulc

<> case - (sc.basic.x.owner = ulc)

[] case -(sc.basic.x.owner = ulc)
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[] case ic = ulc
<> case - (ic = ulc)
instantiate j by ic in *impliesHyp / c-op(ulc)

resume by A

<> A subgoal

resume by 

<> subgoal

[] subgoal

[] A subgoal

<> A subgoal
resume by 

<> = subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by 

<> = subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by 

<> = subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by 

<> subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by 

<> subgoal
instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

[] case - (ic = ulc)

[] case -sc.basic.x.free

[] specialization subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

% CASE 5: crit[ulc]

resume by 

<> subgoal

instantiate i by ulc in *impliesHyp % StrongMutex!

set proof-methods normalization

assert (ac = crit[ulc]); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to ({uc}) { addTime(ac), u'c }

<> specialization subgoal

instantiate c by task(ac) in $firstHyp

resume by A

<> A subgoal

prove
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-( 3 i:UID (s'c.basic.pc[i] = set)

A V i:UID (s'c.basic.pc[i] ~ { crit, reset }))

A -V i:UID (s'c.basic.pc[i] ~ { crit, reset, set })
A 3 i:UID (s'c.basic.pc[i] E { crit, reset })

resume by A

C> A subgoal

resume by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] A subgoal

<> A subgoal

resume by specializing i:UID to ulc
<> specialization subgoal

[] specialization subgoal

[] A subgoal
<> A subgoal

resume by specializing i:UID to ulc

<> specialization subgoal

[] specialization subgoal

[] A subgoal

[] conjecture

prove u'c.bounds[task(seize)].last = infinity

prove - enabled(u'c.basic, seize) by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

[] conjecture

resume by case i = ulc
<> case ic = ulc

[] case ic = uic

<> case - (ic = ulc)

instantiate j by ic in (theorem, *impliesHyp) / c-op(ulc)

resume by A

<> A subgoal

resume by =

<> = subgoal

instantiate i by ic in *impliesHyp

[] = subgoal

[] A subgoal

<> A subgoal

resume by 

<> = subgoal

instantiate i by ic in *impliesHyp

[] •= subgoal

[] A subgoal

[] case - (ic = ulc)

[] A subgoal

<> A subgoal

resume by case i = ulc

<> case ic = ulc

[] case ic = ulc

<> case - (ic = ulc)

instantiate i by ic in *impliesHyp

[] case - (ic = ulc)
[] A subgoal

[] specialization subgoal
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[] = subgoal
[] basis subgoal

<> basis subgoal

% CASE 6: exit[ulc]

resume by =}

<> = subgoal

instantiate i by ulc in *impliesHyp

set proof-methods normalization

assert (ac = exit[ulc]); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to (uc}) { addTime(ac), u'c
<> specialization subgoal

instantiate c by task(ac) in $firstHyp

prove

(s'c.basic.pc[i] B { crit, reset } = sc.basic.pc[i] ~ { crit, reset })

A (s'c.basic.pc[i] E { crit, reset } 4 sc.basic.pc[i] E { crit, reset })

A (s'c.basic.pc[i] = set 4* sc.basic.pc[i] = set)

resume by case i = ulc

<> case ic = ulc

[] case ic = ulc

<> case - (ic = ulc)

instantiate j by ic in *impliesHyp

[] case - (ic = ulc)
[] conjecture

prove 3 i:UID (w(s'c, i) < u'c.bounds[task(seize)].last)

resume by case -enabled(u'c.basic, task(seize))

<> case -enabled(u'c.basic, task(seize))

[] case -enabled(u'c.basic, task(seize))

<> case - (- enabled(u'c.basic, task(seize)))

prove - enabled(uc.basic, seize) by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

declare operator ic:-+UID

fix i as ic in *caseHyp / c-op(try:-+Region)

instantiate i by ulc in *hyp

prove ic ulc by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

resume by specializing i:UID to ic

<> specialization subgoal

prove inv(s'c)

instantiate

s by sc, s' by s'c, a: Actions[TF] by addTime(exit[ulc]) in Invariants

[] conjecture

resume by case s'c.basic.pc[ic] = check, s'c.basic.pc[ic] = test

<> case justification

instantiate j by ic in *impliesHyp, theorem

instantiate i by ic in *impliesHyp % StrongMutex

[] case justification

<> case s'c.basic.pc[ic] = check

instantiate s by s'c, i:UID by ic in $wdef

instantiate c by task(check[ic]) in theorem
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instantiate t:Time by a in Time

[] case s'c.basic.pc[ic] = check

<> case s'c.basic.pc[ic] = test

instantiate s by s'c, i by ic in $wdef

instantiate c by task(test[ic]) in theorem

prove (s'c.bounds[task(test[ic)] .last + a) < (sc.now +a+a)

instantiate t by a in Time
[] conjecture

prove (s'c.bounds[task(test [ic])].last + a) < (sc.now +a+a+c)

instantiate t by sc.now + a + a, tl by c in Time
[] conjecture

[] case s'c.basic.pc[ic] = test
[] specialization subgoal

[] case - (- enabled(u'c.basic, task(seize)))

[] conjecture

resume by case i = ulc
<> case ic = ulc

resume by case -enabled(u'c.basic, task(seize))

<> case -enabled(u'c.basic, task(seize))

[] case - enabled(u'c.basic, task(seize))

<> case - (- enabled(u'c.basic, task(seize)))

instantiate c by task(reset[ulc]) in *impliesHyp

prove - enabled(uc.basic, seize) by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

instantiate t by sc.now + a+a in Time
[] case - (- enabled(u'c.basic, task(seize)))

[] case ic = ulc

<> case - (ic = ulc)

instantiate j by ic in (*impliesHyp, theorem) / c-op(ulc)

instantiate i by ic in *impliesHyp

resume by case -enabled(u'c.basic, task(rem[ic]))
<> case -enabled(u'c.basic, task(rem[ic]))

[] case -enabled(u'c.basic, task(rem[ic]))

<> case - (- enabled(u'c.basic, task(rem[ic])))

[] case - (- enabled(u'c.basic, task(rem[ic])))

[] case - (ic = ulc)

[] specialization subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal

% CASE 7: reset[ull

resume by ='

<> = subgoal

set proof-methods normalization

resume by specializing alpha to {uc}

<> specialization subgoal

instantiate i by ulc in *impliesHyp / c-op(reset:-+PC) / c-op(.owner)

prove w(s'c, i) = w(sc,i)

resume by case i = ulc

<> case ic = ulc

instantiate s by s'c, i by ulc in $def

instantiate s by sc, i by ulc in $wdef

[] case ic = ulc
<> case - (ic = ulc)

instantiate
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s by sc, s' by s'c, at by reset, i by ulc, j by ic in theorem / c-op(w)

[] case - (ic = ulc)

[] conjecture

resume by case i = ulc

<> case ic = ulc

resume by A

<> A subgoal

instantiate i by ulc in *impliesHyp

instantiate

t by a, tl by s'c.now, t2 by sc.bounds[task(reset[ulc])].last in Time

[] A subgoal
<> A subgoal

resume by specializing i:UID to ulc

<> specialization subgoal

[] specialization subgoal

[] A subgoal

<> A subgoal

resume by specializing i:UID to ulc

<> specialization subgoal

[] specialization subgoal

[] A subgoal

[] case ic = ulc

<> case - (ic = ulc)

instantiate j by ic in *impliesHyp / c-op(ulc)

resume by A

<> A subgoal

resume by 

<> subgoal
instantiate i

[] = subgoal

[] A subgoal

<> A subgoal

instantiate i bI

[] A subgoal

<> A subgoal

instantiate i b'

[] A subgoal

<> A subgoal

instantiate i bi

[] A subgoal

<> A subgoal

by ic in *impliesHyp

I ic in *impliesHyp

y ic in *impliesHyp

y ic in *impliesHyp

resume by specializing i:UID to ulc

<> specialization subgoal

[] specialization subgoal

[] A subgoal

<> A subgoal

resume by specializing i:UID to ulc

<> specialization subgoal

[] specialization subgoal

[] A subgoal

[] case - (ic = ulc)

[] specialization subgoal

[] = subgoal

[] basis subgoal

<> basis subgoal
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% CASE 8: rem[ul]

resume by =>

<> = subgoal

set proof-methods normalization

assert (ac = rem[ulc]); u'c = STEP(uc, addTime(ac))

resume by specializing alpha to (uc}) { addTime(ac), u'c }
<> specialization subgoal

instantiate c by task(ac) in $firstHyp

prove

(s'c.basic.pc[i] = crit ~¢ sc.basic.pc[i] = crit)
A (s'c.basic.pc[i] = reset ¢* sc.basic.pc[i] = reset)

A (s'c.basic.pc[i] = set ¢* sc.basic.pc[i] = set)

resume by case i = uc

<> case ic = ulc

[] case ic = ulc

<> case - (ic = ulc)

instantiate j by ic in *impliesHyp / c-op(ulc)

[] case - (ic = ulc)

[] conjecture

prove 3 i:UID (w(s'c, i) < u'c.bounds[task(seize)].last)

declare operator ic:-+UID

fix i as ic in *hyp / c-op(w)

resume by specializing i:UID to ic

<> specialization subgoal

resume by case -enabled(u'c.basic, seize)

<> case -enabled(u'c.basic, seize)

[] case - enabled(u'c.basic, seize)
<> case - (- enabled(u'c.basic, seize))

prove enabled(uc.basic, seize)

declare operator icl:--+UID

fix i as icl in *caseHyp / c-op(try:-+Region)

prove icl ulc by contradiction

<> contradiction subgoal

[] contradiction subgoal

[] conjecture

resume by specializing i:UID to icl

<> specialization subgoal

instantiate j by icl in theorem

resume by case j = ulc

<> case jc = ulc

[] case jc = ulc

<> case - (jc = ulc)

instantiate j by jc in theorem, *hyp

[] case - (jc = ulc)

[] specialization subgoal

[] conjecture

resume by case ic = ulc

<> case ic = ulc

instantiate s by sc, i:UID by ulc in $wdef

[] case ic = ulc

c> case - (ic = ulc)

instantiate

s by sc, s' by s'c, at: ActionTypes[F] by rem, i by ulc, j by ic

in theorem / c-op(w)

[] case - (ic = ulc)
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[] case - (-enabled(u'c.basic, seize))

[] specialization subgoal

[] conjecture

resume by case i = ulc

<> case ic = ulc

[] case ic = ulc

<> case (ic = uc)

instantiate j by ic in (theorem, *impliesHyp) / c-op(ulc)

resume by A

<> A subgoal

resume by case - enabled(u'c.basic, task(crit[ic]))
<> case -enabled(u'c.basic, task(crit[ic]))

[] case -enabled(u'c.basic, task(crit[ic]))

<> case - (- enabled(u'c.basic, task(crit[ic])))

resume by =.
<> = subgoal

declare operator dummyi: -+ UID

fix i as dummyi in *caseHyp

[] #= subgoal
[] case - (- enabled(u'c.basic, task(crit[ic])))

[] A subgoal

<> A subgoal

resume by case -enabled(u'c.basic, task(rem[ic]))

<> case -enabled(u'c.basic, task(rem[ic]))

[] case -enabled(u'c.basic, task(rem[ic]))

<> case - ( -enabled(u'c.basic, task(rem[ic])))

resume by =

<> #= subgoal
instantiate i by ic in *impliesHyp

[] = subgoal
[] case - (-enabled(u'c.basic, task(rem[ic])))

[] A subgoal

<> A subgoal

resume by case - enabled(u'c.basic, task(crit[ic]))
<> case - enabled(u'c.basic, task(crit[ic]))
[] case -enabled(u'c.basic, task(crit[ic]))

<> case - (- enabled(u'c.basic, task(crit [ic])))

resume by #

<> #= subgoal
declare operator dummyi: --+ UID

fix i as dummyi in *caseHyp

instantiate i by ic in *impliesHyp

[] -= subgoal
[] case - (- enabled(u'c.basic, task(crit[ic])))

[] A subgoal

<> A subgoal

resume by case - enabled(u'c.basic, task(rem[ic]))
<> case -enabled(u'c.basic, task(rem[ic]))

[] case - enabled(u'c.basic, task(rem[ic]))
<> case (-enabled(u'c.basic, task(rem[ic])))

resume by =

<> = subgoal

instantiate i by ic in *impliesHyp

[] •= subgoal
[] case - (-enabled(u'c.basic, task(rem[ic])))

[] A subgoal

<> A subgoal

resume by case -enabled(u'c.basic, task(seize))
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<> case -enabled(u'c.basic, task(seize))
[] case - enabled(u'c.basic, task(seize))

<> case - (-enabled(u'c.basic, task(seize)))

resume by =

<> =:: subgoal

instantiate c by task(reset[ic]) in *impliesHyp

instantiate i by ic in *impliesHyp

resume by case enabled(uc.basic, task(seize))

<> case enabled(uc.basic, task(seize))
[] case enabled(uc.basic, task(seize))

<> case -enabled(uc.basic, task(seize))

prove (sc.now + a + a + a) < (sc.now + a + a + c)

instantiate t by sc.now + a+a in Time

[] conjecture

instantiate t by a+a in Time

[] case - enabled(uc.basic, task(seize))

[] = subgoal

[] case - (- enabled(u'c.basic, task(seize)))

[] A subgoal

<> A subgoal

resume by case -enabled(u'c.basic, task(stabilize))

<> case - enabled(u'c.basic, task(stabilize))

[] case - enabled(u'c.basic, task(stabilize))

<> case - (- enabled(u'c.basic, task(stabilize)))

resume by =

<> #= subgoal
instantiate i by ic in *impliesHyp

[] 4= subgoal
[] case - (- enabled(u'c.basic, task(stabilize)))

[] A subgoal

[] case - (ic = ulc)
[] specialization subgoal

[] •= subgoal

[] basis subgoal
[] basis subgoal

[] basis subgoal

[] conjecture

qed

set log f2i

statistics

quit
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