
Synchronous Communication Techniques for Rationally
Clocked Systems

by

Luis Francisco G. Sarmenta

B.S. Physics (1992)
B.S. Computer Engineering (1993)

Ateneo de Manila University

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

© Massachusetts Institute of Technology 1995. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

May 25, 1995

I
Certified by-- :..-.......... _

Pr'D Stephen A. Ward
Prfessor of Computer Science and Engineering

Thesis Supervisor

Accepted by -YV I *.g . ----'A cce ptd F. R. Morgenthaler
Chairman D partmental Co mittee on Graduate Students
MASSACHUE g INSTITUTE

OF TECHNQLOGY

JUL 1 7 1 99 .r Eng

LIBRARIES

� �I·_Y___IU·__YIIII__�-.- _

/ / 16'�

I

Synchronous Communication Techniques for Rationally Clocked Systems

by

Luis Francisco G. Sarmenta

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 1995, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

An increasingly common problem in designing high-performance computer systems today is
that of achieving efficient communication between systems running at different clock speeds.
This problem occurs, for example, in uniprocessor systems where the processor runs faster
than the bus, and in heterogenous multiprocessor systems where processors of different
kinds run at their own maximum speeds. Asynchronous solutions to this problem, which
assume the systems' clocks to be completely independent, are typically inefficient because
they must allow for sufficiently long synchronization delays to attain acceptable levels of
reliability. Synchronous solutions, on the other hand, though more efficient and reliable,
have traditionally lacked flexibility because they require the clock frequencies to be related
by integer factors.

An efficient and flexible synchronous solution, called rational clocking, has been proposed
that permits data to be transferred reliably and efficiently between two systems whose clock
frequencies are related by the ratio of two small integers. This rational frequency constraint
allows a wide variety of frequencies to be used, and at the same time assures a periodic
relationship between the two clocks that can be used to determine a schedule for data
transfers between the two systems.

In this thesis we present, improve, and test the rational clocking technique. We begin
with the original table-based implementation, where the communication schedules are pre-
computed and stored in lookup tables, and discuss some minor variations and improvements.
Then, we improve the throughput of this technique with a double-buffering technique that
guarantees 100% throughput efficiency for all frequency ratios and timing parameters. We
also improve the space-efficiency and flexibility of the scheduling hardware dramatically by
using a set of run-time scheduling algorithms that do not require lookup tables. Finally, we
test all these ideas using a combination of software and hardware tools, including scheduling
software, Verilog simulations, and a custom-designed CMOS VLSI chip.

Thesis Supervisor: Stephen A. Ward
Title: Professor of Computer Science and Engineering

4

Acknowledgments*

This thesis was made possible by the support of many people. To them, I would like to

express my deepest gratitude.

Thanks to the people I work with: my advisor, Prof. Steve Ward, for giving me a great

research topic, and for his kind support and help throughout the writing of my thesis; Prof.

Gill Pratt, whose remarkable insights helped lead my research in the right directions; and

all the members of the NuMesh group and the 6.004 staff, for their help and friendship.

Thanks also to the people at DOST and Ateneo who made it possible for me to go to

MIT, especially Fr. Ben Nebres and Mr. Arnie del Rosario.

Thanks to all my friends, who have in different ways made the stress of MIT life a little

more bearable. In particular, thanks to my friends in FSA and in the TCC choir, for making

me feel at-home halfway around the world from home, to my roommate Marc Ibafiez for

helping me relax after a long day's work, and to Cara Galang, for her prayers, and for giving

me occasion to go out of MIT once in a while. Special thanks to Victor Luchangco, who

not only gave me valuable feedback on my research and thesis, but also helped me with

all sorts of other problems, big and small. Finally, thanks to Ch6 Manua, whose faith and

dedication never cease to amaze and inspire me, and who, even though thousands of miles

away, is always there to cheer me up and make me smile.

Of course, I would not even be here without my family, whose love, guidance, and

encouragement have made all this possible. I would especially like to thank my parents,

who have taught me the important things in life. I appreciate them so much more now that

I am away from home.

Above all, I would like to thank God, who has been with me and sustained me through

all the ups and downs of life. He has made my dreams come true, but at the same time has

taught me that His plans for me are more wonderful than anything I can ever dream of.

*Financial support and equipment for the research in this thesis were provided in part by ARPA and MIT.
My studies at MIT were supported in part by an Engineering and Science Education Project scholarship
from the Philippine Department of Science and Technology, and by a Faculty Development Grant from
Ateneo de Manila University.

I 11

Contents

1 Introduction 13

1.1 Applications 13

1.1.1 Multiprocessor Systems 14

1.1.2 Uniprocessor Systems 15

1.2 Thesis Overview 15

2 Background and Previous Work 17

2.1 Synchronous Systems 17

2.1.1 The Communication Model 17

2.1.2 Timing Parameters 18

2.1.3 Timing Constraints 20

2.1.4 The Schedule Diagram 21

2.2 Using Different Clocks 23

2.2.1 Flow Control and Synchronization 24

2.2.2 Handshake Protocols 25

2.2.3 Synchronizers and Metastability 27

2.3 Previous Work 30

2.3.1 Pausable Clocks 30

2.3.2 The Periodic Synchronizer 31

2.3.3 Synchronous Solutions 32

3 Rational Clocking 36

3.1 Clock Generation 37

3.1.1 Clock Division 37

3.1.2 Clock Multiplication 38

5

I .1;1

6

3.1.3 Comparing Clock Division and Clock Multiplication

3.2 Table-Based Communication Control Hardware

3.3 Communication Scheduling .

3.4 Performance

3.5 Variations and Improvements

3.5.1 Generic Lookup Tables

3.5.2 Reducing the Generic Table Size

3.5.3 Programmable Lookup Tables

3.5.4 Reaction Latency Compensation

3.5.5 Non-coincident Clocks

4 Double-Buffering

4.1 Why Double-Buffering Works

4.2 Communication Scheduling

4.2.1 Slower Transmitter Case

4.2.2 Slower Receiver Case .

4.3 Hardware Implementation.

4.3.1 Register Selection.

4.3.2 Communication Scheduling

4.4 Variations

4.4.1 Triple and Quadruple Buffering

4.4.2 Using Double-Buffering for Out-of-Phase Communications .

5 Run-Time Communication Scheduling

5.1 The Basic Algorithm

5.1.1 Slower Transmitter Case

5.1.2 Computing yo and eo

5.1.3 Slower Receiver Case

5.1.4 Non-integer Timing Parameters

5.2 Hardware Implementation.

5.2.1 The R Gen Module

5.2.2 The E Gen Module

CONTENTS

39

40

42

44

45

45

47

48

48

50

52

54

57

57

58

60

60

61

62

62

64

66

67

67

70

71

.. 73

. . 73

. . 73

. . 74

5.2.3 The LD Gen Module. 76

CONTENTS

5.2.4 Computing Initial Values.

5.2.5 Performance Issues .

5.3 Generalized Run-Time Scheduling .

5.3.1 The Algorithm (Slower Transmitter Case) . . .

5.3.2 The Hardware.

5.3.3 Slower Receiver Case .

5.3.4 Choosing Pbegin

5.3.5 Generalizing to More Buffers

6 Simulation and Implementation

6.1 Communication Scheduling Software

6.1.1 Timing Parameter Units

6.1.2 Scheduling Algorithms.

6.1.3 Computation Modes

6.1.4 Output Formats and Options

6.1.5 Results and Recommendations

6.2 The Prototype Rational Clocking Chip .

6.2.1 The Counters.

6.2.2 The Lookup Tables

6.2.3 The Bootup Control Circuitry

6.2.4 Fabricating and Testing the Chip

6.3 The Demonstration Circuit

6.3.1 The Transmitter's Circuitry .

6.3.2 The Receiver's Circuitry

6.3.3

6.3.4

6.3.5

6.4 Verilog

6.4.1

6.4.2

6.4.3

Clock Generation and Reset Circuitry

The Communication Control Circuitry

Results and Recommendations

Modelling and Simulation

The Data Channel

The Scheduling Hardware

The Bootup Computation Circuitry

and

.. .

.. .

.. .

. .

. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

Lthe

.. .

.. .

. .

. ..

. ..

. ..

. ..

. ..

. ..

. ..

. ..

. ..

. ..

. ..

. ..

. ..

. ..

. ..

ROM

. .

. .

. .

. .

77

79

80

81

86

89

93

94

96

96

97

99

99

100

105

105

106

107

107

108

110

110

112

112

114

116

116

117

117

117

6.4.4 Results and Recommendations . . .

7

........................

............

............

............

............

............

............

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

118

I i111

8 CONTENTS

7 Conclusion 121

7.1 Putting It All Together 122

7.2 Future Research 124

7.3 Concluding Remarks 124

A Computing Timing Parameters 125

A.1 Effective Timing Parameters 125

A.1.1 Delayed Output 126

A.1.2 Delayed Input 126

A.1.3 Delayed Clock 126

A.1.4 Applications 127

A.2 The Demonstration Circuit 127

B The Scheduling Software 129

B.1 Representing Time with Integers 129

B.1.1 Using Fractions 130

B.1.2 Using Absolute Units with Clock Division 131

B.1.3 Using Absolute Units with Clock Multiplication 131

B.2 Scheduling Algorithms 132

B.3 Source Code 133

B.4 IATEX Support Files 165

C The Prototype Chip 167

D Verilog Source Code 169

D.1 Top-Level Modules 169

D.2 Schedulers and Data Channels 174

D.3 Scheduler Components 180

D.4 Bootup Computation Circuitry 190

D.5 Basic Components 194

Bibliography 203

List of Figures

1-1 A simple NuMesh system with processors of different speeds. 14

2-1 Communication in a synchronous system. 18

2-2 Synchronous data transfer and the timing parameters involved. 19

2-3 The schedule diagram of Figure 2-2. 21

2-4 Problems with using different clocks. (a) Flow control. (b) Synchronization. 24

2-5 A synchronizer. (a) Implementation. (b) Normal operation. (c) Metastability. 28

2-6 Ball and hill analogy for metastability. 29

3-1 Generating rationally-related clocks through clock division. 38

3-2 Clock multiplication. (a) A PLL. (b) A programmable clock multiplier. . . 39

3-3 Interface hardware for rational clocking. 41

3-4 Transmitting from system m to system n where M = 5 and N = 6 42

3-5 Throughput efficiency (in %) for different frequency combinations. 44

3-6 Equivalent ratios may not be equally efficient 45

3-7 Generic lookup tables. (a) Using two ROMs. (b) Using a single table. 46

3-8 Interface hardware with reaction latency compensation. 49

3-9 Using rational clocking with non-coincident clocks. 50

3-10 Using non-coincident clocks to increase throughput. 51

4-1 Throughput efficiency when the timing parameters are doubled 53

4-2 Getting 100% throughput efficiency using a second transmit register 53

4-3 Avoiding contamination by using a new register for every transmission. . . 54

4-4 Determining R in the slower transmitter case 55

4-5 Determining R in the slower receiver case 57

4-6 Scheduling for double-buffering 58

9

I J.1

LIST OF FIGURES

The greedy slower receiver algorithm

Double-buffered hardware.

Modified scheduling hardware

Using four buffers.

Using double-buffering for communication between out-of-phase systems..

59

60

62

64

64

5-1 A schedule plot for the case where M = 5 and N = 6. 68

Three cases in computing yo and e......................

Basic run-time scheduler

The E Gen module

Using a NOR module instead of a mux in computing the next eold.....

The LD Gen module

Computing mod and div. (a) The MOD module. (b) A sequential circuit.

Combinational circuit for computing yo and e................

Checking for contamination using e

Scheduling hardware for the faster system..

Scheduling hardware for the slower system

Checking for contamination in the slower receiver case............

Faster system's hardware for the greedy slower receiver algorithm.

Slower system's hardware for the greedy slower receiver algorithm.

Adjusting initial errors

71

74

75

75

76

77

79

82

87

88

89

91

92

92

The communication scheduling software's menu options 98

Sample text outputs in pair mode. 101

Sample text output in table mode. 101

A IATEX format schedule diagram. 103

IATEX format efficiency table for the demonstration circuit's timing parameters. 104

The prototype rational clocking chip 106

Measured and simulated clock-to-Q propagation delays of some chip outputs. 109

Measured and simulated rise and fall times of the chip's counter outputs. . 109

The transmitter's circuitry. 110

The receiver's circuitry. 112

The clocking and communication control circuitry. 113

10

4-7

4-8

4-9

4-10

4-11

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5-15

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

6-10

6-11

LIST OF FIGURES

6-12 The demonstration circuit's clock waveforms. 114

6-13 The ROM inputs and outputs. 115

6-14 Bit codes for different algorithms 115

6-15 Mapping between cycle number and ROM address 115

6-16 Slower transmitter case with no flow control. 118

6-17 Slower receiver case with no flow control. 119

6-18 Slower transmitter case with general run-time scheduling and double-buffering. 120

6-19 Slower receiver case with general run-time scheduling and double-buffering. 120

7-1 Putting it all together in a single circuit 123

A-1 Possible delay configurations. (a) Output. (b) Input. (c) Clock 125

A-2 The demonstration circuit's delays. (a) Transmit register. (b) Receive register. 127

A-3 Worst-case timing parameters of circuit components 128

C-1 Layout and pinout of the prototype rational clocking chip 168

11

12 LIST OF FIGURES

Chapter 1

Introduction

A common problem in designing computer systems today is that of enabling systems running

at different speeds to exchange data efficiently. This problem has traditionally been solved

by having each system treat the other as completely asynchronous, and applying appropriate

synchronization techniques. Such an approach, however, is needlessly inefficient. As long as

the frequencies and the phase relationship between the two system clocks are both known,

it becomes possible to predict their interactions and schedule communications efficiently

and reliably in a synchronous manner.

This thesis presents and further develops a systematic technique called rational clocking,

originally developed by Pratt and Ward [1, 2], that enables synchronous communication to

be used between two systems whose clock frequencies are related by some known rational

number. The rational frequency constraint assures the periodic relationship between the

clocks necessary to provide reliable communication, while still allowing the clock frequencies

to be chosen nearly independently of each other.

1.1 Applications

Rational clocking has many potential applications today, as more and more emphasis is

placed on high performance and flexibility.

13

CHAPTER 1. INTRODUCTION

Module Module Module Module

250MHz 60MHz 125MHz 25MHz

General Graphics General DSP
Processor Processor Processor Processor

I M I
CFSM CFSM CFSM CFSM

100 MHz Communications Substrate

Figure 1-1: A simple NuMesh system with processors of different speeds.

1.1.1 Multiprocessor Systems

Rational clocking would be most useful in multiprocessor systems where processors might

perform different functions or have different levels of performance that make it impractical

or impossible to require them to run at a single speed.

A good example of such a system is MIT's NuMesh[3]. This project seeks to define

a standardized communication substrate for heterogeneous parallel computers that would

support highly efficient communication between modules of arbitrary and varying com-

plexity. As shown in Figure 1-1, a NuMesh typically contains several different types of

processing elements. Each processing element is connected to a communication finite-state

machine (CFSM), which in turn is connected to other CFSMs in a near-neighbor mesh

configuration. Together, these CFSMs form the communication substrate through which

all inter-processor communication is done.

To achieve very high communication rates, the CFSMs are operated synchronously at

a high common frequency. The processing elements, however, are allowed to run at their

respective maximum frequencies in order to maximize the use of processors that can run

faster than the communication substrate while accommodating slower processors that can-

not run at the CFSM's frequency. The problem arises, therefore, of developing a mechanism

that allows these processors of varying speeds to communicate efficiently with the. CFSMs.

Rational clocking provides a nearly ideal solution to this problem. The processor clock

can be generated from the CFSM clock such that its frequency is some rational multiple of

14

1.2. THESIS OVERVIEW

the latter, close to the processor's maximum frequency. Then, a communication scheduler

circuit, possibly embedded in the CFSM itself, would generate control signals that prohibit

data from being transferred when timing violations would occur. In this way, flow control

and synchronization of data between the processor and the CFSM can be achieved without

resorting to inefficient and probabilistic asynchronous techniques such as handshaking and

synchronizers.

1.1.2 Uniprocessor Systems

Rational clocking also has applications in uniprocessor systems. While improvements in

technology are making it possible to develop processors of increasingly high maximum op-

erating speeds, physical constraints are making it impossible for motherboards to catch

up. Because of this, it is no longer reasonable to require the use of a single system clock

frequency as has been done in the past.

Recent processors have addressed this problem by employing clock multiplication, a

technique where the processor clock would be generated as an integer multiple of the moth-

erboard clock. An example is the PowerPC 603, which can be clocked internally at one,

two, three, or four times the system bus frequency [4].

Clock multiplication gives users the flexibility to scale systems to their own needs while

giving system designers the freedom the make processors as fast as possible without having

to worry as much about designing motherboards of the necessary speed. Rational clocking

provides even more flexibility to the clock multiplication technique by allowing the use of

non-integer factors.

1.2 Thesis Overview

This thesis is divided into seven chapters that discuss the concepts and techniques behind

rational clocking. This chapter has shown the motivations for rational clocking. Chapter 2

provides background information about the problems being addressed, and also discusses

previously proposed solutions to the problem and their shortcomings. Chapter 3 presents the

15

16 CHAPTER 1. INTRODUCTION

basic rational clocking technique and some straightforward improvements on it. Chapter 4

presents the double-buffering technique which both increases throughput, and simplifies the

communication scheduling algorithms. Chapter 5 discusses algorithms that allow commu-

nication to be scheduled by hardware at run-time, leading to a flexible and space-efficient

implementation that makes it easy to integrate rational clocking into many applications.

Chapter 6 describes the software and hardware tools used in for studying and verifying all

these techniques. Finally, Chapter 7 summarizes the results of the previous chapters, and

discusses possible directions for future research.

I ..1

Chapter 2

Background and Previous Work

2.1 Synchronous Systems

Digital systems can be classified into two main types according to the timing of their

signals: synchronous and asynchronous. In a synchronous system, all important events,

such as the movement of data and the changing of states, happen at known times relative

to a single periodic clock signal. This fixed relationship between events and the clock makes

synchronous systems much easier to design than asynchronous systems, which do not have

a coordinating signal like the clock. For this reason, a large majority of computer systems

today are based on synchronous systems.

2.1.1 The Communication Model

Figure 2-1 shows a model of how communication between two subsystems in a synchronous

system is typically done. In this model, the subsystems transfer data through modules

containing an edge-triggered register (R) and combinational logic (CL). Both subsystems'

clocks, Clkm and Clkn, are connected to a common clock, Clk, which is used to clock other

subsystems in the entire system as well.

To transmit data to subsystem n, subsystem m places data at the transmit module's

input, Din. At the active edge of the clock, the register latches this data and subsequently

17

18 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

Subsystem m Subsystem n

transmit module / receive module

Figure 2-1: Communication in a synchronous system.

passes its value to the combinational logic. The combinational logic then performs desired

computations on the data and places the result at the receive module's input. Finally, at

the next active clock edge, this data gets latched by the receive module and gets passed to

other parts of subsystem n.

Figure 2-2 shows an example of this data transfer process, where we assume the com-

binational logic blocks simply pass data without alteration. As shown, data placed at the

Dm input is latched at clock edge 0 and appears at the Qm output some time afterwards.

The data is then latched by the receive module at clock edge 1 and appears subsequently

at the Qn output.

2.1.2 Timing Parameters

In practice, the registers and combinational logic blocks used in our model have certain

timing properties that affect the way in which they can be used. A real module cannot in-

stantaneously latch its input when a clock edge occurs. Switching delays within the register

require us to hold the input signal stable for a certain minimum time in order for its value

to be stored properly. Similarly, the output of a module cannot appear instantaneously

after the clock edge either. Moreover, due to environmental factors, manufacturing varia-

tions, and data-dependent path differences through the circuitry, it is actually impossible

to predict the exact time at which the module's output becomes stable and valid.

We account for the latching delay of a register by defining its decision window. This is

I J11

2.1. SYNCHRONOUS SYSTEMS

tsh (decision window)

T
ts..... th T

Clk 0= I 2 3 I

X I
tcQ / E
tp _

tcp (transition window)

Figure 2-2: Synchronous data transfer and the timing parameters involved.

the time interval around the clock edge during which the input must be stable for correct

operation of the register. It is bounded by two timing parameters: setup time (t,) and hold

time (th). The setup time is the minimum amount of time before the clock edge during

which the input must be stable, while the hold time is the corresponding minimum amount

of time after the clock edge. The point in time marked by the setup time can also be seen as

the latest time that the input is allowed to be changing. The width of the decision window,

tsh, is equal to ts + th. When the input changes after the setup time, we say we have a setup

time violation. If it changes before the hold time, we say we have a hold time violation.

These two violations are equivalent, so we shall refer to them in this paper more generally

as decision window violations.

We account for the uncertainty in the output delay of a module by defining its transition

window.1 This is the time interval after the clock edge during which the output signal of a

module can change. It is bounded by two timing parameters: contamination delay (to) and

propagation delay (tp). The contamination delay is the earliest time that the output signal

can change, while the propagation delay is the latest time that the output can change. The

propagation delay can also be seen as the earliest time that we can safely assume the output

to contain its new value and be stable. The width of the transition window, tcp, is equal to

tp - tc.

1We must consider the whole module, not just the register, since the combinational logic is involved.

19

I fll

20 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

Figure 2-2 shows the effect of the timing parameters on the way data moves from one

system to another. First, data to be latched at a certain clock edge must be stable within

the decision window around that edge. This data then appears at the output some time

within the transition window after that clock edge. For simplicity, we have assumed here

that modules m and n have the same timing parameters.

2.1.3 Timing Constraints

In order for data to be transferred successfully in a synchronous system such as that in

Figure 2-1, certain constraints must apply to the timing parameters and the clock period,

T. First, the decision and transition windows must fit in one clock cycle. That is, for new

data to be transferred every clock cycle, there must be enough time within a clock cycle

for the transmitter's output signals to settle and for the receiver's register to latch these

signals afterwards. To ensure this, the following inequalities must be true:

t, <T, th < T, tsh < T (2.1)

t, < T, t < T, tc < T (2.2)

tsh + tcp < T (2.3)

where th is the decision window of the receiver, and tp is the transition window of the

transmitter.2 Second, the decision and transition windows must not overlap. If they do,

then the output of the transmitter might change while the receiver is trying to latch it,

resulting in a decision window violation. Thus, the following must be true as well:

tp < T - t (2.4)

tc > th (2.5)

The first of these two inequalities says that new data must be stable before the receiver

starts latching its inputs. If not, the new data may not be latched properly. The second says

that new data must not appear at the inputs of the receiver until data from the previous

2 For convenience, we do not explicitly indicate the subsystem to which a timing parameter applies. It is
important to remember, however, that setup and hold times are those of the receiver, while contamination
and propagations delays are those of the transmitter.

2.1. SYNCHRONOUS SYSTEMS

clock edge clock cycle
n2 \ 2

Q: 0 0 1 0 0

Clk n I o I 1 2 3
SO I HO S1 HI go AS S3 H3

co/---~ O --- P c2 --- I P2 C ,- ,P3
Clkm 0 I 2 3

Qm/D0 o 1 0 0 1
Xm 1 0 0 1 0

Figure 2-3: The schedule diagram of Figure 2-2.

cycle has been latched successfully. Otherwise, the old data may be lost or corrupted. When

this happens, we say that the new data contaminates the old data.

In practice, it is often difficult or impossible for us to control the timing parameters

of a system to meet these constraints. Instead, we usually control the clock period, T.

By slowing down the clock, we can make T large enough to satisfy inequalities 2.1 to

2.4. Inequality 2.5 is then easily enforced, if necessary, by adding a delay element to the

transmitter's output to increase t, and again extending the clock period to account for the

accompanying increase in tp. In this way, the timing parameters of a synchronous module

determine a maximum clock frequency beyond which the module cannot properly operate.

2.1.4 The Schedule Diagram

To make it easier to describe data transfers between two systems3 and detect violations of

the inequalities above, we can use a schedule diagram, such as that in Figure 2-3, which

depicts the data transfer operation in Figure 2-2.

In a schedule diagram, the clock cycles of each system are denoted by numbered boxes

bounded by the active edges of the the system's clock. We associate each clock cycle with

the active edge to its left, and refer to a specific cycle or edge of a system using the system's

3From here on, we shall use the term system to refer to subsystems as well as entire systems in general.
This term becomes more appropriate when we begin to discuss systems with the different clocks.

21

22 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

name and cycle number. Clock cycle n2 and its active edge are indicated in Figure 2-3 as

examples. Although the two clocks, Clkm and Clkn, are the same in this example, they do

not have to be so in general. In fact, as will be shown in Chapter 3, schedule diagrams are

most useful when used with systems having different clocks.

For each clock cycle, the final stable values of signals of interest are written under or

above the appropriate box. This makes it easy to see how data moves from one module

to another without having to show their actual waveforms. During clock cycle mo, for

example, Qm starts from 0 and changes to 1, so we write a 1 under clock cycle mo.

The setup (S) and hold (H) times of the receiver are indicated on the schedule diagram

by vertical lines surrounding each active edge of the receiver's clock. Similar lines denote the

contamination (C) and propagation (P) delay points after each active edge of the transmit-

ter's clock. We refer to these lines as the setup, hold, contamination, and propagation edges

of the systems. Each of these edges is associated with some clock cycle, and is numbered

accordingly as shown in Figure 3-4. The setup and hold edges define the decision window of

the receiver (system n), while the contamination and propagation edges define the transi-

tion window of the transmitter (system m). To avoid communication errors, transfers must

not be allowed to occur when these two windows overlap since this means that data at the

receiver's input would not be stable while the receiver is sampling it.

We indicate the transmission of data during a certain clock cycle i (of the transmitter)

in the schedule diagram by drawing an arrow from propagation edge Pi to the nearest setup

edge Sj (of some cycle j), at4 or after it. This allows us to identify the earliest clock edge

j (of the receiver) at which the receiver can safely latch the transmitter's outputs for clock

cycle i. The arrow from Po to S1, for example, says that module m's output during clock

cycle mo can be latched by module n at clock edge nl. We do this for all clock cycles

during which the transmitter presents new data at the transmit module's output. In Figure

2-3, arrows are drawn from all propagation edges since in this case, the transmitter always

transmits new data.

For each cycle j during which the receiver latches data, we also draw a line from hold

4In this paper, we say that some edge Pi is at another edge Sj if Pi coincides in time with Sj.

I 11

2.2. USING DIFFERENT CLOCKS

edge Hj to the nearest contamination edge Ci, at or after it. This line indicates the earliest

clock edge i' (of the transmitter) at which the transmitter can transmit new data without

contaminating the data being latched by the receiver at clock edge j. The line from H1 to

C1, for example, says that module m can transmit new data during clock cycle ml without

contaminating the data it transmitted during clock cycle mo, which is latched by module n

at clock edge n1.

Once these lines are drawn, communication errors such as timing violations are easily

detected. Violations of Inequalities 2.1 and 2.2 will cause the decision and transition win-

dows respectively to overlap with themselves, while violations of Inequalities 2.3 to 2.5, will

cause the decision and transition windows to overlap each other, and the arrows and lines

to cross each other.

Schedule diagrams are useful not only in detecting timing violations, but in avoiding

them as well. By carefully choosing to inhibit data transmissions or receptions on certain

cycles such that the arrows and lines from the remaining cycles will not cross each other, we

can avoid timing violations that would otherwise occur if data were transmitted on every

cycle. This idea of scheduling communication between the two systems is the the basis of

the rational clocking technique to be presented in succeeding chapters.

2.2 Using Different Clocks

The use of a single clock to coordinate data transfers in a synchronous system has many

advantages. As we have seen, it lets us characterize the timing of signals with only a few

parameters. It also allows us to avoid timing violations by simply making the clock period

long enough. This ease with which we can address timing issues in single-clock systems

enables us to concentrate on other aspects of system design, thus allowing us to develop

complex systems that would be practically impossible to build as asynchronous systems.

Using a single clock, however, also has its disadvantages. If the system contains several

modules, then the clock period must be long enough to accommodate the slowest module.

This is clearly a problem since it is unreasonable to slow down critical processing modules,

23

I i:

24 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

Qfi *.** 0 o o ? ?

Clkn 0 1 2 1 0 { 1 l

C H CP C C-- P C-CP C PcoP1
Clkm 0I o 1 1 2 1 3 1 4 1 5 0 I 1

Qm/D1 0 1 0 1 0 1 0

(a) (b)

Figure 2-4: Problems with using different clocks. (a) Flow control. (b) Synchronization.

such as the CPU, just for the sake of relatively unimportant modules, such as terminals or

printers. Also, it is often in fact impossible to slow down all the modules to the same speed.

Some modules such as CPUs and DRAMs, have dynamic memory elements that cannot be

clocked below a certain frequency without losing data. Other modules, such as monitors

and modems, have industry-specified operating frequencies that must be followed.

For these reasons, many complex computer systems today are designed not as a single

synchronous system driven by one clock, but as an ensemble of several synchronous subsys-

tems driven by different clocks. When a computer system is divided in this way, new issues

in how data is moved between systems arise and must be addressed.

2.2.1 Flow Control and Synchronization

There are two basic problems in establishing communication between two systems with

different clocks: flow control, and synchronization. Flow control is concerned with the

frequency difference between the two clocks. Synchronization is concerned with their phase

difference. Examples of these two problems are shown in Figure 2-4.

Figure 2-4(a) shows an example of a flow control problem. Here, the transmitter is

using a clock twice as fast as the receiver's clock. Although there are no decision window

violations, data is lost because the receiver cannot latch data at the rate that the transmitter

sends it. In this case, the 1's that system m sends on the even cycles are not received by

system n because they are overwritten by the O's sent on the odd cycles. Clearly, for data

2.2. USING DIFFERENT CLOCKS

not to be lost in this way, system m must occasionally wait for system n before proceeding

to send new data.

Figure 2-4(b) shows an example of a synchronization problem. In this example, both

clocks have the same frequency, but system m's clock edges arrive earlier than system n's.

As we can see, the difference in phase between the two clocks has caused the decision and

transition windows to overlap, making it possible for the data being transmitted by system

m to change while system n is latching it. The arrow from Po to S1, for example, crosses

the line from Ho to C1, indicating that the data system m is sending on cycle mo may

contaminate previously sent data that system n is latching on clock edge no.

In general, if the two clocks are independent, then the transmitted data's transition

window may occur anywhere within the receiver's clock cycle and may thus overlap with

the decision window. Signals that occur at unknown times in this way are said to be asyn-

chronous to the receiver. To ensure the proper latching of data, they must be synchronized

to the receiver. That is, they must be forced to follow the timing constraints of the receiver,

thus be converted into synchronous signals.

Although flow control and synchronization are fundamentally different problems, they

are very closely related. Two clocks with different frequencies, for example, will have a

time-varying phase difference, so synchronization must be addressed whenever flow control

is necessary. Also, flow control may be useful for solving synchronization problems even if

there is no frequency difference between the two systems. One way to solve the problem

in Figure 2-4(b), for example, is to have system m transmit only on even cycles and have

system n receive only on odd cycles. For these reasons, flow control and synchronization

issues are usually addressed together.

2.2.2 Handshake Protocols

Flow control and synchronization problems arise between two systems using different clocks

because each system does not know when data is latched or sent by the other system. An

obvious solution to these problems, then, is to have each system tell the other when these

events happen. This can be done with a handshake protocol.

25

26 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

A typical handshake protocol works as follows:

1. The transmitter places new data on the line going to the receiver.

2. After the data is stable, the transmitter asserts a signal, Q New, to tell the receiver

that new data is available for latching. The Q New signal may be sent in the same

clock cycle as the data if it is guaranteed not to go high before the data is stable.

3. At each clock edge, the receiver checks if Q New is asserted and latches the data if it

is.

4. After latching the data, the receiver asserts a signal, D Taken, to tell the transmitter

that the data has been latched and that new data may now be sent. The D Taken

signal may be sent in the same clock cycle that the data is being latched if it is

guaranteed not to go high before the latching process is over.

5. After seeing that the D Taken signal has been asserted, the transmitter then lowers

Q New, and waits for the receiver to lower D Taken.

6. When the receiver sees that Q New has been lowered, it lowers D Taken and prepares

to latch new data when Q New is asserted again.

7. When it sees the D Taken signal lowered, the transmitter can then send new data by

repeating the process from step 1.

This particular protocol is called a 4-phase handshake and is used in many computer

systems. 5 Another popular protocol is the 2-phase handshake, which uses transitions in

Q New and D Taken, rather than actual values, for signaling. This protocol is faster since

the systems do not have to wait for each other to lower their signals, but it is more difficult

to implement and less reliable since each system has to remember the previous values of

the handshake signals in order to interpret the transitions correctly.

Synchronous handshake protocols also exist for systems using the same clock. These

are used when it might take more than one clock cycle for data to be produced or read. If

5In the literature, the names REQ (request) and ACK (acknowledge) respectively are more commonly
used instead of Q New and D Taken.

I A],

2.2. USING DIFFERENT CLOCKS

a numeric coprocessor takes more than one cycle to produce the result of a floating-point

operation, for example, then handshaking can be used to make sure that the CPU only

reads the coprocessor output after the result comes out. Synchronous buses, such as the

NuBus [5], often use handshaking in this way. In a synchronous handshake protocol, a

system knows that its handshake signal will be received at the next clock edge and can

automatically lower the signal after one clock cycle. The synchronous handshake is thus

as fast as the 2-phase handshake, since it skips steps 6 and 7. At the same time, it is

easier to construct and more reliable, since it only needs to interpret voltage levels and not

transitions.

Whether synchronous or asynchronous, handshake protocols ensure proper flow control

between the two interacting systems. Since each system must wait for a signal from the

other before it latches or sends data, data is not lost or duplicated even if one system

produces or reads data faster than the other.

For the most part, handshake protocols also take care of synchronization. Since the

transmitter only raises Q New after the data is stable, and the receiver only raises D Taken

after it finishes latching the data, the data is guaranteed not to change while the receiver

is latching it. This reduces the synchronization problem to that of synchronizing Q New

and D Taken - a much easier problem both because we only need to do synchronization

for one signal at a time, and because we can take advantage of special properties of the

handshake signals.

2.2.3 Synchronizers and Metastability

Synchronization of the handshake signals is traditionally done with a synchronizer. This

is usually a simple flip-flop clocked by the system receiving the signal, as shown in Figure

2-5(a). The asynchronous input, D8 is fed into the input of the flip-flop. The value fed in

then comes out of the flip-flop in synchrony with the clock and thus becomes a synchronous

signal, Q8, which can be used safely by the receiving system. This is shown in Figure 2-5(b).

Such a synchronizer works because a flip-flop's feedback loop is only stable at the valid

high and low voltage levels, and not at invalid voltage levels. Thus, although the flip-flop

27

I :11

28 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

/ / S H S H

h i|\- Ds (2s -`\- Clk '

system m S system n Ds

Clkn

(a) (b) (c)

Figure 2-5: A synchronizer. (a) Implementation. (b) Normal operation. (c) Metastability.

might produce an invalid output voltage level if Ds changes within its decision window, its

feedback loop will eventually pull the output to some valid voltage level. The particular

value that the output falls to when this happens is not important because the handshake

signals we are synchronizing do not change until their receipt is acknowledged by the system

receiving them. If a handshake signal is misread the first time, it will simply remain at the

same level and be read correctly on the following clock edge instead.

Unfortunately, the synchronizer has one fundamental problem: there is no upper limit

to the time it takes for Qs to become valid. This is because the output can end up perfectly

balanced between the high and low voltage levels, such that pull of the feedback loop is

equal in both directions. Once in such a metastable state, the output can remain there for

an arbitrarily long amount of time until it is finally pushed away to either side by noise.

When this happens, the output waveform may look like that shown in Figure 2-5(c).

We can visualize this problem with the ball and hill system shown in Figure 2-6, where

we have a ball and a hill inside a well. Like a flip-flop, this system has two stable states,

one on each side of the hill. If a ball is placed on any point on the hill, it will fall to one of

the two stable points, and stay there. The exception is the point at the top of the hill. A

ball placed there can remain balanced for an arbitrarily long time until it is pushed away

by wind, earthquakes, or other random factors.

Metastability implies that no matter how much we extend the clock period, there is still

a finite probability that Qs will not be valid when the receiving system latches it at the

next clock edge. When that happens, we say that we have a synchronization failure. A

synchronization failure can cause problems because an invalid signal might be interpreted

2.2. USING DIFFERENT CLOCKS

metastable

Figure 2-6: Ball and hill analogy for metastability.

differently by different parts of the receiving system. If Q New is invalid when the receiver

checks it, for example, then it is possible for the part of the receiver that raises D Taken to

interpret Q New as a 1, while the part that latches data interprets it as a 0. The receiver

would then end up telling the transmitter that it has latched the data even if it has not

really done so. Problems like this have caused disastrous failures in many computer systems

in the past, and are still a present concern [6, 7].

There is no way to avoid landing in a metastable state other than to avoid causing

decision window violations in the first place - which is impossible if the systems are

asynchronous with each other. However, there are ways of reducing the probability of

a synchronization failure so as to make it effectively negligible.

One way is to increase the gain of the flip-flop to make it tend to exit the metastable

state faster, just like making the hill in Figure 2-6 steeper would make the ball on the top

tend to fall more easily. However, this is not easy and cannot usually be done by a system

designer. Typically, flip-flop manufacturers will specify the relevant characteristics of their

flip-flops, and all a designer can do is pick a flip-flop that would satisfy the requirements

of the system. In choosing a flip-flop, designers have to be very careful because a small

increase in operating frequency can increase the synchronizer's failure rate by several orders

of magnitude. In one case, it has been shown that the same flip-flop can have a mean-time-

between-failures (MTBF) of 3.6 x 1011 seconds at 10 MHz, but have an MTBF of only 3.1

seconds at 16 MHz [7].

An easier way to reduce the probability of synchronization failure is to give the syn-

chronizer more time to let metastable states settle to valid levels. It is known that the

29

30 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

probability of synchronization failure is a decreasing exponential function of time [8]. Thus,

given enough time, a metastable state can be resolved with high probability.

Extending a synchronizer's settling time can be done by either delaying observation

of the flip-flop's output, or cascading an appropriate number of flip-flops. With enough

delay or enough cascade stages, we can reduce the probability of synchronization failure to

an acceptably low level - e.g., lower than the probability of flip-flop failure due to other

causes. Thus, there is a trade-off between a synchronizer's reliability and its associated

synchronization latency.

2.3 Previous Work

The traditional solution just described suffers from a number of problems. First, it is

inefficient. The time needed for exchanging handshake signals and the time needed for

letting metastable states settle result in significant overhead latency. Thus, if a continuous

flow of data is to be transferred, having to handshake on every data transfer can significantly

reduce throughput. Second, it is probabilistic. The probability of failure can never be

completely reduced to zero. We can make the probability as small as we want, but we

have to take great pains to do so, and usually at the expense of increased latency. Many

improvements and alternative solutions have been proposed to get around these problems.

Some of these are described in this section.

2.3.1 Pausable Clocks

One class of solutions involves the use of a pausable clock - a clock that can be stopped

and restarted by an external signal. By strategically stopping the clock, these techniques

prevent the latching of metastable signals.

Two examples of such techniques are Pchoucek's "fundamental solutions" [9]. The first

uses a metastability detector connected to the synchronizer's output. When the synchronizer

enters a metastable state, the detector stops the receiver's clock until the synchronizer settles

into a stable state. This guarantees that the receiver does not read the synchronizer output

I .111

2.3. PREVIOUS WORK

while it is metastable. The second uses the handshake signals to stop and restart the clock

in such a way that no decision window violations are possible. Since it avoids decision

window violations altogether, this technique does not require the use of synchronizers and

is not probabilistic. Similar schemes are presented in [10, 11].

Unfortunately, pausable clock systems suffer from several problems. First, they are diffi-

cult to implement, since they require a pausable clock generator. In some implementations,

the complexity of a pausable clock system makes it even more inefficient than systems using

traditional handshaking [12]. Second, they cannot be used in systems that require a clock

with a constant frequency. Finally, since no other computations can be performed by a

system waiting for its clock to be restarted, pausable clock systems can waste the potential

capability of the faster system by effectively tying its clock to that of the slower while data

transfer is being performed.

2.3.2 The Periodic Synchronizer

A novel solution proposed by Stewart and Ward [13], called the periodic synchronizer, notes

that assuming complete asynchrony between the two system clocks is needlessly inefficient.

As long they have constant frequencies, the two clocks will have a periodic phase relationship

that would create repeating patterns in the positions of their interacting timing windows.

The periodicity of these patterns allows us to predict decision window violations ahead of

time and avoid them by disabling the latching of data when a violation is possible. This

makes it possible to design a circuit that, given the two clock frequencies, produces a signal

that identifies in advance the time intervals when a decision window violation can occur.

This signal can then be used to inhibit a register from latching data during those times,

thereby ensuring the integrity of data being passed through the register.

In such a circuit, the synchronization point is not eliminated but simply moved from the

the register latching the data to the circuit producing the inhibiting signal. However, since

the inhibiting signal is produced in advance, any metastable states that may result from

the synchronization are given time to settle before they are needed. In fact, the periodicity

of the patterns makes it possible to compute the inhibiting signal as far ahead in advance

31

32 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

as desired, allowing us to reduce the probability of synchronization failure to an arbitrarily

low level without incurring additional latency.

While conceptually promising, however, the periodic synchronizer unfortunately lacks

flexibility. Since it uses time delay elements whose values must be computed for a given

pair of frequencies, a particular periodic synchronizer circuit would be limited to work

only for a specific pair of frequencies at one time, and selecting these frequencies would

be a cumbersome process requiring the production of precise time delay elements with the

required values.

An adaptive periodic synchronizer, which does not require prior knowledge of the two

frequencies, has been proposed to solve this problem [14]. It attempts to determine the fre-

quency and phase relationships of the clocks using digital and analog techniques. However,

since it ultimately has to deal with a continuous range of possible frequencies and phases, it

makes use of several approximations and assumptions. Because of this, the implementation

is relatively complex and has subtle limitations that restrict its usefulness.

2.3.3 Synchronous Solutions

A limitation that has so far made flow control and synchronization difficult to solve is

our lack of control over the phase difference between the two systems. This means that

the receiver cannot know when signals from one system might change and must rely on

a synchronizer. For this reason, even the periodic synchronizer, which takes advantage of

knowledge about the frequencies of the two systems, uses a synchronizer at some point.

Often, this limitation is unnecessary. In many cases, we can satisfy the need for a vari-

ety of clock frequencies without using independent clocks by generating clocks of different

frequencies from a single source. Clocks generated in this way will have known frequency

and phase relationships, and events in one system will only occur at known times relative

to any other system's clock. In short, the systems will be synchronous with each other

even though they may be running at different frequencies. This synchronous relationship

makes it possible to establish efficient and reliable communication between the systems as

was done with the simple synchronous system of section 2.1.

I 1

2.3. PREVIOUS WORK

Harmonically Clocked Systems

The simplest systems that make use of this idea are harmonically clocked systems - systems

where the clock frequency of one system is an integer multiple, or harmonic, of the other.

System m might be, for example, some integer M times as fast as system n.

In such systems, proper flow control is easily achieved by limiting the faster system

(system m in this case) to transmit at most once every M cycles of its clock. This can be

done by making a counter that outputs a pulse every M system m clock cycles, and using

such a divide-by-M counter to trigger the sending of new data. Synchronization is then

achieved by selecting one cycle out of the M that can be used in such way that no timing

constraints would be violated. If none of the timing windows overlap, then flow control can

also be achieved by traditional handshaking. This may not be efficient because of overhead,

but it is at least non-probabilistic, and allows existing systems designed for handshaking to

be used without modification.

The example Figure 2-4(a) shows a harmonically clocked system with M = 2. Here,

a divide-by-2 counter (i.e., a toggle flip-flop) can be used to control the sending of data.

Depending on the initial value of the counter, system m would transmit only on odd cycles

or only on even cycles, but never both. In this case, the choice between odd and even does

not matter.

Today, many high-performance systems employ harmonically clocked systems where the

CPU chip runs at several times the speed of the motherboard. The ability to do this has

become critical as it is has become impractical, or even impossible, to require motherboards

to run at the CPU's desired speed.[15, 4]

Rationally Clocked Systems

Harmonically clocked systems form a small subset of the more general class of rationally

clocked systems - systems whose clock frequencies are rational multiples of each other. We

may have, for example, system m be MIN times as fast as system n, where M and N are

integers.

33

I .11

34 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

In such systems, flow control is achieved by making sure that the faster system transmits

data at most M - N times out of every M cycles (assuming M > N). Synchronization then

involves choosing which cycles to use and possibly inhibiting some of these as necessary to

avoid decision window violations. Again, if none of the timing windows overlap, then flow

control can be achieved reliably by handshaking. If some timing windows overlap, however,

then appropriate circuitry must be used to inhibit data transfer on problematic cycles.

If the integers M and N are small, and the timing parameters are specified, designing

such circuitry can be done easily on an ad hoc basis. Sometimes, it is also possible to

find a specific group of ratios which are easily handled by simple circuitry. For example,

if N = M - 1 and the timing windows are sufficiently small, a divide-by-M counter that

inhibits transmissions instead of allowing them can be used for flow control between two

systems with a frequency ratio of the general form M/(M - 1).

A number of recently-released processors already provide support for simple ratios such

as 3/2, 4/3, and 5/2 [16, 17]. Among these is a processor from HP that supports frequency

ratios of the form M/(M - 1) [17]. The techniques used by these processors are not well-

documented in current literature, but it is likely that they employ the ad hoc methods just

described, and cannot be generalized to work with arbitrary frequency ratios.

An interesting technique that attempts to describe a general approach that works for a

wide variety of frequency ratios has been proposed by IBM [18]. This technique is based

on the observation that the clock edges of two rationally clocked systems can only occur at

a finite number of positions relative to each other, and that these positions are spaced in

intervals of time a, where a is the greatest common factor of the two clock periods. This

makes it possible to shift the clock waveforms away from potential decision window viola-

tions by delaying one of the clocks any amount necessary up to a seconds. Unfortunately,

this technique only works for a restricted range of timing parameters (i.e., the widths of

the timing windows must be small). Also, like the period synchronizer, it requires delay

elements that must be changed for each frequency pair.

A simpler and more general technique, called rational clocking has been proposed by

Pratt and Ward [1, 2]. This technique uses lookup tables that are consulted on every cycle

2.3. PREVIOUS WORK 35

to determine whether it is safe or unsafe to transmit data on the next cycle. These lookup

tables can then be systematically programmed to handle any combination of frequency

ratios and timing parameters. Rational clocking is presented in full detail in the next

chapter, and developed further in the rest of this thesis.

I I

Chapter 3

Rational Clocking

The problems with providing communication between two systems running at different

speeds stem from the use of completely independent clocks and the resulting ignorance

of each system about its frequency and phase relationship with the other system. Since

a system does not know where in time the decision and transition windows of the other

system are relative to its own, it has no choice but to treat the signals from the other

system as purely asynchronous signals, and use inefficient and probabilistic asynchronous

communication methods. One of the key ideas in rational clocking is that the clocks do not

have to be independent. Well-known techniques can be used to generate the two clocks from

a single source so as to maintain a known frequency and phase relationship between them.

Knowledge of this relationship then makes it possible to avoid communication problems

using efficient and reliable synchronous techniques.

In rational clocking, we use two clocks, Clkm and Clk, with frequencies fm and fn

respectively, such that

m M (3.1)
N

where M and N are integers, and such that their active edges are known to coincide at some

point in time. The active edges of such clocks will coincide periodically with a coincidence

period, TMN, equal to:

TMN = MTM = NTN (3.2)

36

3.1. CLOCK GENERATION

where TM and TN are the two clocks' periods, and will define coincidence cycles equal in

length to an integer number of cycles on each system (i.e., M cycles on system m, and N

cycles on system n).

When the two clocks are related in this way, the frequency ratio MIN allows us to

predict the relative positions of the systems' clock edges within a coincidence cycle and

generate a schedule of safe and unsafe cycles for data transfers. This makes it possible to

ensure reliable communication by synchronously inhibiting data transfers during the pre-

determined unsafe cycles. Since the clock interactions are periodic, the same schedule can

be applied every M clock cycles on system m and N clock cycles on system n.

This chapter presents the basic techniques involved in rational clocking, starting with

techniques for generating clocks with the desired relationships. A table-based implementa-

tion of the rationally clocked communication hardware is then described, together with an

algorithm for determining the communication schedule to be programmed into the lookup

tables. Finally, the performance of the proposed circuit is evaluated and a number of minor

improvements and variations are presented.

3.1 Clock Generation

In generating clocks for rational clocking, we have a simple objective: to generate two clocks

that follow Equation 3.1 and have coinciding edges. This objective can be achieved by two

well-known techniques: clock division and clock multiplication.

3.1.1 Clock Division

Clock division involves deriving the two system clocks, Clkm and Clkn, as subharmonics of

a single clock of higher frequency, Clkhigh. This is done with frequency-dividing counters

- counters that receive an input clock and output a signal that pulses an integer number

of times slower than the input clock. Such counters are easily constructed using binary

counters with a presettable count limit and an output that emits a pulse whenever the

count wraps-around. For example, we can use an incrementing counter with a presettable

37

38 CHAPTER 3. RATIONAL CLOCKING

Clkhigh

N M

Figure 3-1: Generating rationally-related clocks through clock division.

terminal count and a zero output, Z, that goes high when the count value is 0 and stays

low otherwise. If we set the terminal count to N - 1, the Z output will emit a positive

edge every N cycles as the count wraps-around from N -1 to 0, and we have a divide-by-N

counter. Decrementing counters can also be used in a similar fashion. This is done in the

demonstration circuitry described in Chapter 6.

Figure 3-1 shows how frequency-dividing counters can be used to generate rationally-

related clocks. Here, we have

Nfm = Mfn = thigh (3.3)

which is equivalent to Equation 3.1. The desired phase relationship is achieved by assigning

appropriate initial values to the counters so as to force the counters to wrap-around at the

same time. If incrementing counters are used, initializing both counters to their terminal

counts, M- 1 and N- 1, would force both counters to wrap-around at the next active edge

of Clkhigh, and cause the Z outputs of the two counters to go from low to high at the same

time, generating coinciding positive edges on Clkm and Clk,. Once initialized this way, the

counters would continue to produce coinciding clock edges at the coincidence frequency.

3.1.2 Clock Multiplication

Clock multiplication involves generating one of the clocks from the other by multiplying the

latter by the desired frequency ratio. This is achieved using an analog device called a phase-

locked loop, or PLL. As shown in Figure 3-2(a), a PLL is composed of three components in

a feedback loop: a phase detector (PD), a low-pass filter (LPF), and a voltage-controlled

oscillator (VCO). The phase detector compares the frequency and phase of its two inputs,

3.1. CLOCK GENERATION

Clkl Clk2

IPII

I II~~~~~~ I
I_ ___ ___ I__ _____ Ij

(a) (b)

Figure 3-2: Clock multiplication. (a) A PLL. (b) A programmable clock multiplier.

Clkl and Clk2 , and outputs an appropriate error voltage which, after being filtered, adjusts

the VCO output in such a way as to eventually force Clk 2 to become identical to Clkl in

phase and frequency.

A PLL can be used for clock multiplication as shown in Figure 3-2(b). Here, the source

clock, Clkm, is frequency-divided by an integer M before being used as the PLL's Clkl

input. The VCO output is similarly divided by another integer N before being fed into

the Clk2 input. Clkn is then taken from the undivided VCO output. In this configuration,

the PLL will try to control the VCO output to force its inputs, Clkl and Clk2, to become

identical in phase and frequency. Since fi = fm/M and f2 = fn/N, we have

fm _ A (3.4)
M N

which is again equivalent to Equation 3.1. Furthermore, since Clkl and Clk 2 are forced by

the PLL to have coinciding edges, their multiples, Clkm and Clk,, have coinciding edges

as well, and the coincidence period, TMN, is given by Equation 3.2. Finally, by making M

and N loadable from outside the circuit, we get a programmable clock multiplier.

3.1.3 Comparing Clock Division and Clock Multiplication

Clock division has the significant advantage of being completely implementable using only

digital components. However, it requires that we generate a clock signal (Clkhigh) that

is several times faster than any of the clocks we will actually use in the system (Clkm

and Clk,), and that we design frequency-dividing counters that can operate at this high

39

40 CHAPTER 3. RATIONAL CLOCKING

frequency. In high-performance systems, where the frequencies of Clkm and Clkn would

typically be very close to the maximum possible clock frequency for the available technology,

this requirement is likely to be impossible to meet.

Clock multiplication avoids the problem of having to generate and use unnecessarily

high frequencies but introduces a number of new problems due to the analog nature of the

PLL. One problem is that the analog components of a PLL make designing an on-chip PLL

difficult in digital VLSI circuits. Another problem is that the feedback loop takes time to

stabilize. Thus, while the feedback loop is still unstable, the resulting Clkn output would

be invalid and should not be used. Still another problem is the limited range of frequencies

that a particular PLL can accept and generate.

Fortunately, many techniques have already been developed to address these problems

(for example [19, 20, 21, 22]), and clock-multiplying PLL's are fast becoming a standard

component in microprocessors today [15, 16, 4, 17]. In this paper, therefore, we will just

assume that adequate PLL technology is available for our clock generation needs.

3.2 Table-Based Communication Control Hardware

When the two clocks are generated using the techniques just described, it becomes possible

to determine ahead of time whether it is safe or unsafe to transfer data during a certain clock

cycle. Precomputing such information for each of the M system m and N system n cycles in

a coincidence cycle leads to the lookup-table-based communication control hardware shown

in Figure 3-3.

In this circuit, data to be transferred between the two systems is placed in a transmit

register by the transmitter and latched into a receive register by the receiver. Enable

controls on these registers allow us to inhibit transmission and reception of new data when

necessary. For simplicity, we show these registers as distinct components of each system.

In actual applications, these registers can be integrated into each system so that extra

communication latency is not incurred. We may, for example, replace these registers with

the modules of section 2.1.1 so that no opportunity to compute is lost even when data passes

I .1,1

3.2. TABLE-BASED COMMUNICATION CONTROL HARDWARE

Communication Scheduler

Figure 3-3: Interface hardware for rational clocking.

between systems.

As shown, Clk, is generated from Clkm through clock multiplication. In this configu-

ration, the count values of the counters used for frequency generation indicate the current

clock cycle (of their respective systems) within the coincidence cycle, and can be used to

index two lookup tables containing the schedule of data transfers.l For each clock cycle

number, each table generates two control signals: RE (Receive Enable) and TE (Transmit

Enable). RE controls the receive register, and is asserted on the receiver's side when valid

data can be received from the transmitter in the coming cycle. TE controls the transmit

register, and is asserted on the transmitter's side when it would be safe for new data to

appear at the output of the transmit register after the next clock edge. By programming

the lookup tables appropriately, we ensure that the transmitter's output never violates the

1If clock division is used instead of clock multiplication, separate counters clocked by Clk, and Clk,
must be used for indexing the tables.

41

fkn

CHAPTER 3. RATIONAL CLOCKING

not safe to
receive here

RE 1 1 0 i 1 1

Clkn 0 I 1 2 1 3 1 4 1 5
_ HO S sHI S2 2 S3 1 H3 ,S5 1 | H5 S

co PO C1 P1 C2P2 C3 1-P3 C4 P4

Clkm I 0 I 1 1 2 1 3 1 4

TErn 1 1 1 1

not safe to
transmit here

Figure 3-4: Transmitting from system m to system n where M = 5 and N = 6.

receiver's timing constraints, and effectively synchronize the transmitter's output to the

receiver's clock.

We can make existing systems that rely on handshaking more efficient by using this

circuit in place of synchronizers for exchanging handshake signals. Since timing violations

are now impossible, metastable states cannot occur anymore, and waiting for them to

settle becomes unnecessary. This can reduce handshaking latency significantly, especially

in high-speed systems where the required settling times are typically several clock periods

long. If it is not difficult to modify the systems' communication interfaces, we can improve

communication efficiency even more dramatically by using this circuit for transferring actual

data, and modifying each system to use its RE and TE signals instead of handshake signals

to determine when to read and write data. This eliminates the need to exchange handshake

signals between the systems every time data is to be transferred, and makes it possible to

achieve very high levels of throughput for continuous data transfers.

3.3 Communication Scheduling

The values of the lookup table entries are computed using knowledge of the clock frequencies

and the timing parameters of each system. These parameters are used to draw a schedule

diagram as described in section 2.1.4. Figure 3-4 shows a diagram depicting system m

transmitting data to system n, where M = 5 and N = 6.

42

3.3. COMMUNICATION SCHEDULING

The schedule diagram makes it easy to schedule data transfers between the two systems.

The following graphical algorithm describes one way to use the schedule diagram:

1. Draw a schedule diagram indicating the relevant timing windows of the two systems.

2. Start with some propagation edge Pi (of some cycle mi) and call this edge Pbegin.

3. Move from Pi to the nearest setup edge Sj (of some cycle nj) at or after it. Use

modular arithmetic when "moving" from one edge to another. That is, if you go past

the rightmost edge of the diagram, "wrap-around" to the leftmost edge. This reflects

the periodic nature of the communication patterns.

4. Move from Sj to its corresponding hold edge Hj.

5. Move from Hj to the nearest contamination edge Ci, at or after it.

6. Move from Ci, to its corresponding propagation edge Pi,.

7. If Pi, is past Pbegin (i.e., you passed over Pbegin in the process of moving from Pi to

Ci,), then the scheduling is done.

8. If Pi, is not past Pbegin, then it is safe to transmit data from Pi to Sj. Draw an

arrow from Pi to Sj (indicating that it is safe to transmit on cycle mi and receive

on cycle nj) and a line from Hj to Cit (indicating it is safe to transmit on cycle mi,

without contaminating the reception at clock edge nj). Then, set lookup table entries

TEm[(i - 1) mod M] and RE[(j - 1) mod N] to 1 to enable the transfer.

9. If Pi, = Pbegin, the scheduling is done. If not, make Pi, the new Pi and go back to

step 3.

To schedule data transfers in the reverse direction, repeat these steps with the roles of

systems m and n reversed.

Figure 3-4 shows the result of using this algorithm with Pbegin = Po. Sampling is

inhibited on clock edge n3 since the new data being transmitted during cycle m2 is not

yet stable by setup edge S3. Sampling can be done on clock edge n4, but transmission is

43

44 CHAPTER 3. RATIONAL CLOCKING

Transmit
Freq.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Receive Frequency
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 80 100 100 100 100 100 100 100 100 100 100
100 100 100 100 80 100 83 100 100 100 100 100 100 100 100 100
100 100 100 100 100 83 100 85 85 100 100 100 100 100 100 100
100 100 100 100 100 100 85 100 87 100 100 100 100 100 100 100
100 100 100 100 100 100 85 87 100 88 88 100 100 100 100 100
100 100 100 100 100 100 100 100 88 100 80 80 90 100 100 100
100 100 100 100 100 100 100 100 88 80 100 81 81 100 100 100
100 100 100 100 100 100 100 100 100 80 81 100 83 83 100 100
100 100 100 100 100 100 100 100 100 90 81 83 100 84 84 92
100 100 100 100 100 100 100 100 100 100 90 83 84 100 85 85
100 100 100 100 100 100 100 100 100 100 90 100 84 85 100 80
100 100 100 100 100 100 100 100 100 100 100 100 84 85 80 100

Figure 3-5: Throughput efficiency (in %) for different frequency combinations.

inhibited on clock edge ms3 to prevent the transmit register's output from changing while

system n is sampling data from cycle m2. Finally, sampling is inhibited on clock edge n5

since new data is not yet available by setup edge S5. The resulting schedule thus allows

four data transfers to be completed per coincidence cycle.

The choice of Pbegin can affect the throughput efficiency of the algorithm's result. A

choice of Pbegin = P3 in Figure 3-4, for example, would result in only three data transfers

per coincidence cycle. In generating schedules, therefore, we must execute the algorithm

for all possible choices of Pbegin and pick the best resulting schedule. Schedules chosen in

this way would then be optimally efficient because the algorithm we use is greedy. That

is, it always transfers data between the systems at the soonest possible time. Any other

algorithm would deviate from the greedy algorithm by postponing some data transfers, and

can only produce schedules which allow an equal or lesser number of data transfers per

coincidence cycle than the greedy algorithm.

3.4 Performance

The throughput efficiency of rationally clocked communications can be measured as the

ratio between the number of transfers performed in a coincidence cycle and the minimum

of M and N. In Figure 3-4, for example, the throughput efficiency was 4/5, or 80%. Figure

I 1i

3.5. VARIATIONS AND IMPROVEMENTS

RE n 0 1 0

Clkn I I I o I 1 1

ClkP,__ _ _ C P CHP CHP C P
Clkm o 0 1 1 2 3

TEm 0 0 0 0 0 1

(a) (b)

Figure 3-6: Equivalent ratios may not be equally efficient. (a) MIN = 2/1. (b) MIN = 4/2.

3-5 shows the throughput for different frequency pairs given the following typical timing

constraints: setup time (S) = 20%, hold time (H) = 10%, propagation delay (P) = 20%,

contamination delay (C) = 15%.

Although not apparent from Figure 3-5, equivalent frequency ratios do not necessarily

result in the same throughput efficiency. Figure 3-6 shows the resulting schedules for the

equivalent ratios 2/1 and 4/2 with the following timing constraints: S = 40%, H = 20%,

C = 30%, P = 40%. As shown, although communication from system M to system N is

impossible when M = 2 and N = 1, it becomes possible when we make M = 4 and N = 2

instead. In general, using a different but equivalent frequency ratio may enable more data

transfers to be achieved by providing extra opportunities for performing transfers. Inter-

estingly, however, making the numerator and denominator of the ratio larger is not always

appropriate. Figure 4-1 in the next chapter, for example, shows that using the ratio 6/3

would result in lower efficiency than using 4/2. To achieve maximum throughput, therefore,

we should compute the throughput efficiency of all equivalent ratios within the range of the

clock generating circuitry and use the ratio that results in the highest throughput efficiency.

3.5 Variations and Improvements

3.5.1 Generic Lookup Tables

When programming the lookup tables, it is useful to specify the timing parameters in

fractions of a clock cycle rather than in absolute time units. This makes it possible to create

45

46 CHAPTER 3. RATIONAL CLOCKING

REn

(a) (b)

Figure 3-7: Generic lookup tables. (a) Using two ROMs. (b) Using a single table.

lookup tables that are useful regardless of the actual frequencies being used, presuming

that the timing parameters scale with the minimum clock period. A single generic lookup

table might take M and N as inputs and produce the signals needed for the frequency

ratio M/N. This generic table can be used together with presettable frequency-dividing

counters to construct a single "off-the-shelf" rational clocking circuit that supports different

frequency ratios as needed in applications.

Figure 3-7 shows two possible implementations of this idea. In Figure 3-7(a), we use

two "generic" ROMs that take M, N, and the current cycle count as address inputs, and

output the corresponding control signals. If M and N are B-bit integers, then each ROM

would take 3B bits of address input and output 2 bits for TE and RE, and would thus have

2 x 23B bits of memory. If we assume that the timing parameters specifications of the two

systems are proportionally symmetric - that is, that the fraction of a system clock cycle

covered by each timing parameter is the same for the two systems (e.g., the setup times of

the two systems both represent 20% of their respective systems' clock periods) - then the

two ROMs would be exactly identical, and simply crossing the roles of M and N as shown

in the figure allows us to generate the control signals appropriate for each system.

Figure 3-7(b) shows an alternative circuit which uses a single generic table that takes

M and N as inputs and outputs the bits contained in the appropriate lookup tables. For

B-bit M and N values, this table would take 2B address input bits and output 4 x 2B

I .1.1

3.5. VARIATIONS AND IMPROVEMENTS

bits, and would have (4 x 2 B) x 2 2B = 4 x 2B bits of memory. The output bits are fed

into additional lookup circuitry that takes the count value and produces the desired TE

and RE signals for each system. This configuration may not be practical for board-level

implementations (because of the generic table's large number of outputs), but it becomes

useful for integrated implementations where it is possible to combine the generic table and

the lookup circuitry on one chip. By collecting all the scheduling information in a single

place, this configuration allows us to reduce redundancy in the generic tables in ways not

possible with the configuration in Figure 3-7(a).

3.5.2 Reducing the Generic Table Size

One way to reduce redundancy in the generic table is to note that if the timing parameters

are proportionally symmetric, then the table's output bits for reciprocal frequency ratios

(e.g., MIN = 5/6 and M/N = 6/5) would be exactly the same and would only differ in

which system gets which set of bits. Thus, it is possible to design the table to only accept

one of each pair of reciprocal ratios, and then use an extra bit to direct each set of bits to

the appropriate system. The generic table may, for example, be designed to produce the

appropriate bit patterns only for cases where M is less than N. Such a structure, when

implemented as a PLA instead of a ROM, would only be half (or even less) the size of the

original generic table since not all possible input addresses are used. To handle cases where

M is greater than N, an extra bit can be used to control selection circuitry that would

interchange the output bits as necessary.

The size of such selection circuitry grows linearly with the length of the lookup table,

while the amount of space it saves grows as the cube of the table's length. That is, for

numerators and denominators ranging from 1 to N, the size of the selection circuitry grows

as O(N), while the amount of space saved grows as O(N3). Thus, except when M and N are

limited to be very small, the use of the configuration in Figure 3-7(b) is more space-efficient

than the use of the two ROMs in Figure 3-7(a).

Another significant reduction in size can be achieved by noting that it is only necessary

to have one set of entries in the generic tables for all equivalent forms of a particular ratio.

47

48 CHAPTER 3. RATIONAL CLOCKING

Thus, we can choose the form which results in the highest throughput, and then design the

PLA to only accept this specified form. In the case where M and N range from 1 to 16, for

example, there are 159 distinct ratios out of 256. Thus, we only need a table 62% as large

as the original one. If the timing parameters are proportionally symmetric, we can further

cut the table size in half using the first technique, and get a table only 31% as large as the

original one.

3.5.3 Programmable Lookup Tables

Another way to support different frequency ratios is to use programmable lookup tables. We

might, for example, have RAM-based tables on-chip, and then have these loaded serially at

bootup time from an off-chip generic table. Such a setup requires very few pins and would

be useful in space-constrained applications. Furthermore, the small size of the RAM-based

tables compared to that of the generic table makes them capable of operating at higher

frequencies. Programmable tables also make it possible to forego the ROM altogether and

instead compute the lookup table contents at bootup using software or dedicated circuitry.

Chapter 6 describes a prototype rational clocking chip that implements this RAM-based

approach, and Chapter 5 proposes circuitry that can be used to compute the lookup tables

entries at bootup.

3.5.4 Reaction Latency Compensation

As described, the communication scheduler assumes that new data is made available at the

input of the transmit register in the same cycle that TE is enabled in order for the data to

be transmitted at the next clock edge. In practice, however, most systems require at least

one cycle to react to TE, and would thus need a time-advanced copy of TE. Fortunately,

the periodicity of TE allows us to generate this copy by simply rotating the lookup table

entries for TE by an appropriate amount. The same idea can also be applied to the RE

signal if necessary.

Figure 3-8 shows three ways to implement this reaction latency compensation. In Figure

3-8(a), we simply create two new lookup table outputs, Q New and D Taken, which are

I ' 'l

3.5. VARIATIONS AND IMPROVEMENTS

TEn Rn Dn Taken QNew

N - a N- aQD Q

TEn

Lookup RE
Table N

(a) (b) (c)

Figure 3-8: Interface hardware with reaction latency compensation.

time-rotated copies of RE and TE respectively. As their names imply, these signals serve

the same function as the handshaking signals described in section 2.2.2 - i.e., Q New

tells the receiver that new data is available, and D Taken tells the transmitter that the

receiver has received its previous transmission and that new data must now be transmitted.

Unlike in handshaking, however, these signals are synchronous and can be time advanced

as necessary. Thus, they do not incur any additional latency.

The disadvantage of the circuit in Figure 3-8(a) is that it requires two additional bits of

data in the ROM for each address. This results in an additional space requirement which

grows as O(N3). The circuit in Figure 3-8(b) avoids this problem by deriving RE and TE

from Q New and D Taken using shift registers. As shown, if aQ and aD are the number

of clock cycles that Q New and D Taken respectively are advanced, then we simply insert

aQ and aD flip-flops to the corresponding lookup table outputs to produce the RE and TE

signals respectively. This circuit is significantly more space-efficient than the previous one

since its space requirement only grows as O(N) instead of O(N 3). 2

Figure 3-8(c) shows an alternative circuit similar to Figure 3-8(b) but where Q New and

D Taken are derived from RE and TE instead. Here, we take advantage of the periodicity

of the signals to simulate the necessary advances using delays. As shown, advances of aQ

2Note that the worst-case magnitude that aD and aQ can have is N - 1 since a delay a with magnitude
greater than N is equivalent to a delay of a mod N cycles.

TE !

49

50 CHAPTER 3. RATIONAL CLOCKING

RSel n 1 0 0 1 0 1 0 0 1 0

Clk n, 0 1 2 3 1 4 0 1 1 2 3 4
SH-iH S S-IH S--IH SH-H S1 S--IH S[-H

c -P C&-]P c Cl- P P
Clkm 0 1 2 3 0 1 2 3

TSelm 0 1 0 1 0 1 0 1

(a) (b)

Figure 3-9: Using rational clocking with non-coincident clocks. (a) Clock skew can introduce
a phase difference. (b) Respecifying the timing parameters.

and aD are implemented as delays of N - aQ and N - aD respectively. This circuit has

the advantage that the lookup tables can be programmed without knowledge of how much

reaction latency compensation is needed by the target application. Different amounts of

delay needed for Q New and D Taken can be produced as necessary by tapping the shift

register at the appropriate points.

3.5.5 Non-coincident Clocks

In some applications, it may be not be possible to generate clocks that have exactly coincid-

ing edges. Clock skew, for example, can introduce a phase difference between the two clocks.

As long as the phase difference is known, however, rationally clocked communications can

still be achieved between the two systems by first respecifying the timing parameters, and

then applying the appropriate techniques as if the clocks had coinciding edges.

Figure 3-9 shows an example of this retiming procedure. Here, a simple shift in the

timing parameter specifications allows us to schedule communications as we would for clocks

with coinciding edges. If the phase difference is not exact as in Figure 3-9 but can take on

a range of values (as might happen if there is phase jitter due to the PLL), then retiming

would entail widening the timing windows to reflect the uncertainty introduced into the

clocks' phase relationship. Appendix A presents some general rules for retiming.

Retiming can occasionally result in unconventional timing parameter values - i.e., val-

ues that are negative or larger than the clock period. In Figure 3-9(b), for example, the

setup time has become negative. In some cases, it is possible to retime both systems, instead

I . 1

3.5. VARIATIONS AND IMPROVEMENTS

0 1 0 1 0

I o 1 1 2 I 3 4
0H S-- 1 0 1H

cCl0 C HP P C H HP
o 1 2 3

0 1 0 1

1 0 1 0 1

I0 oI 1 2 1 3 1 4 1
SH 1S V-IH S I HH

co P0 c cP-O p
0 | 1 1 2 1 3

1 0 1 1

(a) (b)

Figure 3-10: Using non-coincident clocks to increase throughput. (a) Throughput with
coincident clocks is 50%. (b) Throughput with one clock delayed appropriately is 75%.

of just one, so that the timing parameters of each system remain within conventional con-

straints. If this is not possible, however, then we must make sure that our implementation of

the scheduling algorithm works as described in section 3.3 even when given unconventional

timing parameters.

It is sometimes possible to increase throughput efficiency by adding an appropriate phase

difference and then retiming as necessary. For example, in Figure 3-10, the throughput

efficiency is raised from 50% to 75% by delaying Clk, enough to move S1 past Po. This

technique is similar to the IBM approach described in section 2.3.3, and is useful when

accurately delaying one of the clocks is not difficult to do.

RSeln

Clk

Clkm

TSelm

51

I ilil

Chapter 4

Double-Buffering

As Figure 3-5 shows, rational clocking works quite well given "typical" timing constraints.

However, as shown in Figure 4-1, doubling the timing parameters (i.e., S = 40%, H = 20%,

C = 30%, P = 40%) results in a significant drop in efficiency for a number of frequency

pairs. This problem becomes relevant in high-speed systems where the timing margins are

intentionally made narrow to get as much performance as possible. In these systems, the

"typical" constraints would be considerably tighter than we have initially assumed and the

efficiency of the current implementation may deteriorate significantly.

Since one system is faster than the other, it may seem that the slower one should never

have to skip (i.e., not transmit or receive on) any cycles since the faster one can always

"catch-up". The problem is that the non-zero widths of the transition and decision windows

make it possible for one transmission to contaminate a previous transmission. This happens

in Figure 3-4, for example, where system m cannot transmit on clock edge m3 because doing

so results in contaminating the data transmitted on clock edge m2.

Fortunately, this problem can be solved with a simple hardware extension: a second

transmit register. Whenever transmitting during the current cycle would result in contami-

nation of the transmission from the previous cycle, we place the data in the second transmit

register. When the receiver is ready to receive the new data, it then reads from the second

register as well. Though simple, this double-buffering technique, is highly effective and, in

almost all cases, guarantees 100% throughput efficiency regardless of the specific frequency

52

53

Receive Frequency
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100 100
100 100
66 100
75 100

100 60
60 100
60 66
60 66
80 100
40 66
80 83

100 50
80 83

100 100
100 100
100 100

100 100
100 100
100 100
100 100
80 80
66 66

100 71
71 100
71 62
57 75
57 62
71 100
85 62
42 75
85 75
71 50

100 100 100 100 100 100 100
100 100 100 100 100 100 100
100 100 100 100 100 100 100
100 100 100 100 100 100 100
100 100 100 100 100 100 100
100 66 100 100 100 100 100
71 71 71 100 100 100 100
75 75 62 100 87 100 100

100 66 77 66 77 77 66
66 100 70 60 70 80 100
66 60 100 63 63 72 63
66 60 63 100 66 66 75
55 70 63 66 100 69 69
55 60 72 66 69 100 64
66 100 63 75 61 64 100
77 60 54 66 61 71 66

100 100 100 100
0 100 100 100

100 100 100 66
100 50 66 100
100 100 66 75
100 100 33 100
100 100 100 75
100 100 100 50
100 100 100 75
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100

16
100
100
100
100
100
100
100
100
100
80
72
66
76
71
66

100

Figure 4-1: Throughput efficiency when the timing parameters are doubled.

RSeln

REn

0 0

1 1

* o

0 1

1

1

0

1

0 I 1 I 2 1 3 1 4 5s 1

c I p C 2 3 I 4 IP
I 0 1 1 1 2 1 3 4 1

1

0

1

0

use register 1

1

0

I

0

1I

I

to transmit here

Figure 4-2: Getting 100% throughput efficiency using a second transmit register.

ratios and timing parameters.

Figure 4-2 shows how double-buffering can be used to achieve 100% throughput efficiency

in the example from Figure 3-4. Here the dashed arrow from P3 to S5 shows that a second

register can be used to transmit on clock edge ms3 and receive on clock edge n5. This register

is selected by two new control signals from the lookup tables, RSel and TSel. As shown,

TSelm[2] is set to 1 to tell the interface hardware to use register 1, instead of register 0, for

transmitting on clock edge ms. Correspondingly, RSeln[4] is set to 1 as well.

This chapter discusses the double-buffering technique in detail, beginning with a proof

of its effectivity. New scheduling algorithms are discussed, followed by their hardware

implementations. A few variations on double-buffering are also presented.

Transmit
Freq.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Clkm

TEmrn

TSel,n

- -

- s

I I ! I II I

- . - a - a - & - g

I

54 CHAPTER 4. DOUBLE-BUFFERING

RSel n 4 0 * 1 2 3

RE n 1 1 0 1 1 1

Clkn I 0] 1 1 2 1 3 1 4 I 5
-H S H S~4 H S I-H S H H S

4 0 1 2

C P C P C P C C P

Clkm [0 [1 1 2 1 3 1 4

TErm 1 1 1 1 1

TSel m 0 1 2 3 4

Figure 4-3: Avoiding contamination by using a new register for every transmission.

4.1 Why Double-Buffering Works

It is easy to show that double-buffering provides 100% throughput efficiency in almost all

practical applications. Consider first the case where the transmitter, system m, is slower

than the receiver, system n. If we have an unlimited supply of registers, we can eliminate

the possibility of contamination by using a new register for each transmission, as shown in

Figure 4-3 (the register used is indicated beside each arrow). Since the clock period of the

receiver is shorter than that of the transmitter, there will always be a setup edge between

any two propagation edges. Thus, the transmitter can transmit on every cycle and the

receiver can always receive the transmission without losing data - that is, we can always

achieve 100% throughput efficiency.

We can get the same result with a limited number of registers by reusing registers. In

general, if R registers are used in sequence and then reused in the same sequence, there

would be R system m clock cycles between when a register is used and when it is reused.

Thus, by making R large enough to guarantee that a data transfer using a register will

always complete within R TM seconds, we can successfully emulate an unlimited supply of

registers and achieve 100% throughput efficiency.

Figure 4-4 shows how we determine a sufficiently large value of R. In this figure, tp is

the maximum amount of time that a register can take to complete a data transfer without

being contaminated by a new transmission using the same register. As shown in the figure,

it is the time between the propagation edge of a cycle when a register is used and the

I .il

4.1. WHY DOUBLE-BUFFERING WORKS 55

RSel n 0 0 * 1 0 1

RE n 1 1 0 1 1 1

Clk I 0 _ 1 2 i 3 1 4 1 5

--IH SH -- S IH ,. _V--4,--H -\

Clkml o I 1 I

TEm 1 1

TSelm 0 1

2 I

1

o

3

1

1

thnMn

tpcPC

4

1

t tps cpm

Figure 4-4: Determining R in the slower transmitter case.

contamination edge of the cycle when the register is reused. That is,

tpc = R TM - tcpm (4.1)

where tpm is the width of the transition window of system m. The actual time that a

register takes to complete a data transfer is given by tp, + tshn, where tp, is the time

between the propagation edge used for the first transmission and the next available setup

edge, and tshn is the width of the decision window of system n.

In order simulate an unlimited supply of registers, we must ensure that contamination

is not possible. That is, that

tpC > tps + thn (4.2)

Substituting the definition of tp, from Equation 4.1, and rearranging terms, we get:

R TM > tps + tshn + tcpm (4.3)

We can simplify this by noting that even though tp, changes from cycle to cycle, it is always

less than TN. Thus, we have

tps < TN < TM (4.4)

and Inequality 4.3 will be satisfied if

R TM TM + tshn + tcpm

r--- -- ----
c- - -- ---�

-t4- p \- .c /P C- WP

=4
i

I

I
=I- �31

(4.5)

I 1I

56 CHAPTER 4. DOUBLE-BUFFERING

Rearranging terms, we get the following master inequality for determining R:

R tshn + tp + 1 (4.6)
- TM

The master inequality shows that R depends directly on the restrictions placed on the

widths of the decision and transition windows. In the ideal case, we have

tshn = tcpm = 0 (4.7)

and one register would be sufficient. In the worst case, we know that these windows cannot

be wider than the clock periods of the systems they belong to - otherwise, communication

will not be possible even within the systems themselves. Thus, we have:

tshn < TN < TM, tcpm < TM (4.8)

and three registers would be needed to eliminate contamination. In most cases, however, the

timing parameters of the registers would be such that if we clock system n with system m's

clock, the two systems would be able to transfer data through the registers in a conventional

synchronous manner. Specifically, the transmitter's transition window and the receiver's

decision window would both fit in one clock period of the slower system, giving us

tshn + tcpm • TM (4.9)

and allowing us to guarantee 100% throughput efficiency with only two transmit registers.

The analysis for the case where the receiver is slower (i.e., system m is receiving) is

similar. The time intervals involved are shown in Figure 4-5. Instead of tpc, we now consider

ths, the maximum amount of time that the transmitter can take to put new data in the

register and allow the data to settle before the receiver expects new data to be available

(i.e., if the new data is not available and stable within ths seconds, the receiver will have

to skip a cycle and will thus not get 100% throughput). Using the actual time taken by

the transmitter, the + tpn, and similar steps, we arrive at a master inequality analogous

to Inequality 4.6, and the conclusion that two transmit registers are enough to guarantee

100% throughput efficiency in the slower receiver case as well.

4.2. COMMUNICATION SCHEDULING 57

TSel n * 0 1 0 0 1

TE n 0 1 1 1 1 1

Clk I 0 I 1 1 2 1 3 1 4 1 5
c --C P -1k cP/ -kc H4-

I ° I

REm 1

RSelm 0

1'

1

1

c)-

_~

t_tcpn

2

1

0

ths

I?N~ "'~

3 1 4 1

1 1

1 0

_

the tshm

Figure 4-5: Determining R in the slower receiver case.

4.2 Communication Scheduling

One way to schedule double-buffered communications is to first use the algorithm for the

single-buffered hardware, and then do a second pass through the cycles that failed to check

if data transfer is possible using a second transmit register. This was done in Figure 4-

2. The elimination of contamination problems through double buffering, however, creates

a new possibility: if we set RSel and TSel to alternate between using the two registers,

then scheduling each transaction on the slower system can be done independently of the

transaction immediately following it. A number of such contamination-free algorithms are

discussed in this section.

4.2.1 Slower Transmitter Case

For the slower transmitter case, the algorithm is simple: we draw arrows from each prop-

agation edge Pi to the next setup edge Si at or after it, and then set TSel and RSel so

that the two registers are used alternatingly. Figure 4-6(a) shows an example where M = 4

and N = 5. (In this figure RE and TE are 1 except during cycles where RSel and TSel

respectively are marked with an asterisk.)

Note a potential problem in scheduling communications with double-buffering - if M

Clkm :I
-- ('H 'r

58 CHAPTER 4. DOUBLE-BUFFERING

RSel n * 0 1 0 1 TSeln * 0 1 0 1

Clk, 0 1 2 3 4 0 1 1 2 3 1 4
Sn -CSk-IH c~-- F-]RP

Clkm 0 I 1 I 2 1 0 1 1 I 2 | 3

TSelm 0 1 0 1 RSelm 0 1 0 1

(a) (b)

Figure 4-6: Scheduling for double-buffering. (a) Slower transmitter case. (b) Slower receiver
case (lazy algorithm).

is odd, we cannot alternate perfectly between the two registers. This problem occurs in

Figure 4-4. This is important to note since double-buffering is only guaranteed to work if

no register is ever used for two consecutive cycles. Otherwise, simply scheduling transactions

independently from one another may result in contamination. Fortunately, as in the case

shown in Figure 4-4, contamination does not always occur, and we can often get away

with scheduling transactions independently even if M is odd. If contamination does occur,

however, the problem is easily solved by multiplying both M and N by two and making

lookup tables based on the resulting equivalent ratio instead. 1

4.2.2 Slower Receiver Case

For the slower receiver case, there are two basic algorithms: the lazy and greedy algorithms.

The lazy algorithm is similar to the slower transmitter algorithm except that it uses the

H and C edges instead of the P and S edges respectively. That is, we draw a line from

some edge Hi of the receiver to the next available edge Cj and then set the lookup tables to

tell the transmitter to transmit at clock edge nj using the same register used in receiving

at clock edge mi. Since RSelm is always alternating, we then know that we will receive

the data on edge mi+2. We call this a "lazy" algorithm since although it provides 100%

throughput efficiency, it can introduce unwanted latency because the receiver always waits

until clock edge mi+2 to receive even if it can already receive at clock edge mi+l. This

'Multiplying M and N by two may make the PLL less stable. In this case, it may be good to use separate
counters for clock generation and for indexing the lookup tables.

I .1

4.2. COMMUNICATION SCHEDULING

TSel n 1 0 * 1 0

Clkn, 0 1 2 1 3 1 4
c i c- - c cl IP CF- 1P

H S H)- -4H H -
Clkm 0 I 1 1 2 1 3

RSelm 0 1 0 1

1 0 * 1 0

o0 1 2 13 4
c PC d"*Cd P d-IP

O-H S H ate H AH SX
o0 I 1 2 3

0 1 0 1

(a) (b)

Figure 4-7: The greedy slower receiver algorithm. (a) In reverse time. (b) In normal time.

algorithm was used in Figure 4-5. An example of this algorithm being used is shown in

Figure 4-6(b).

The greedy algorithm is the opposite of the lazy algorithm - it produces a schedule

where the receiver gets new data as soon as possible after the transmitter sends it. If we

are allowed to work in reverse time, then this algorithm is easy to describe - we simply

draw reverse arrows from an S edge to the nearest P edge at or before it. If reverse time

scheduling is not possible, as with the run-time methods to be presented in the next chapter,

then implementing the greedy algorithm becomes slightly more complicated. First, we draw

temporary arrows from each setup edge Si of the receiver to the nearest propagation edge

Pj of the transmitter after but not at it. Then, we schedule a transfer from Pj-1 to Si.

Since Pj was chosen to be the nearest edge after Si, then Pj-_ must be the nearest edge at

or before Si. Thus, this implementation is exactly equivalent to the reverse time version,

but has the advantage of only requiring a time shift instead of a complete time reversal.

Figure 4-7 shows the two ways to implement the greedy algorithm. In Figure 4-7(b), the

temporary arrows are indicated by thin arrows, while the actual transfers are indicated by

the thick arrows.

Note that the greedy algorithm is actually only "greedy" from the receiver's perspective.

It is not greedy from the transmitter's view because it does not always let the transmitter

transmit data at the earliest possible time. In fact, given the choice of several system n

clock edges from which to transmit data that is to be received at a particular system m

clock edge, the greedy algorithm would always choose the latest of these edges since this

results in the receiver receiving the data the soonest after it has been transmitted. This

59

I l111

60 CHAPTER 4. DOUBLE-BUFFERING

Figure 4-8: Double-buffered hardware (only one direction shown).

extra latency, however, is actually an advantage rather than a disadvantage, since it allows

the transmitter more time to perform computation before being required to produce the

next piece of data to be passed to the receiver.

If ease-of-implementation is not an issue, then it is generally better to use the greedy

algorithm than the lazy algorithm. Aside from having lower latency for the receiver and

allowing greater compute time for the transmitter, the greedy algorithm is also more likely

to work in situations where M (the slower system's frequency) is odd. Although neither

algorithm is guaranteed by the proof in section 4.1 to work correctly if M is odd, the lazy

algorithm is more likely to fail because it explicitly assumes that RSel always alternates.

4.3 Hardware Implementation

4.3.1 Register Selection

Figure 4-8 shows one way to implement double-buffering in hardware (only one direction

is shown in this figure). Data to. be transmitted is fed into the inputs of two transmit

registers, but only at most one of these registers latches the data at a particular clock edge.

The transmit register to be used is specified by the TSel control signal from the lookup

table. TSel controls a demultiplexer that passes the value of TE to the desired register

I
. I

I

I

I

I

I

I

I

I

I

L

4.3. HARDWARE IMPLEMENTATION

and disables the other. As in the original hardware of Figure 3-3, the registers here may

be replaced by the modules of section 2.1 if reducing latency is important. Note, however,

that any combinational logic in the modules must be duplicated.

The transmit register from which the receiver will sample data is selected by having

RSel control a multiplexer placed before the input of the receive register. This multiplexer

is built within the transmitter (system m), as shown in the figure, in order to avoid having

to run two sets of data wires between the two systems. (Alternatively, we can build the

two transmit registers into the receiver.) Note that the effective setup and hold times of

the receiver are affected by the delay through the multiplexer, and must be recomputed

accordingly. Also note that when implementing this circuit, it is important to constrain

RSel not to change in such a way that would cause a setup or hold time violation in the

receive register that would not have otherwise happened in the single-buffered configuration.

Fortunately, since RSel is synchronous with the receiver's clock, this restriction is not hard

to meet.

4.3.2 Communication Scheduling

Double-buffering allows us to make some simplifications in the scheduling hardware for the

slower system. First, since the slower system (assume that it is system m) never has to skip

any cycles, TErn and REm are always equal to 1 and need not be taken from a lookup table.

Similarly, the RSelm and TSelm signals system are both simple alternating sequences of

1's and O's and can be derived from the least significant bit (LSB) of the cycle count value.

Thus, as shown in Figure 4-9, lookup tables are unnecessary for the slower system.

If we further assume that the slower system always has an even number of clock cycles

within a coincidence cycle (i.e., M is even), then we can simplify the faster system's hardware

as well by using a toggle (T) flip-flop to generate TSel, and RSel,, as shown in Figure 4-9.

In this configuration, REn controls the enable input of the T flip-flop such that the

flip-flop only toggles after the register indicated by the current value is used. The flip-flop

is initialized to the precomputed value of RSel[1] through a synchronous load controlled by

the Z output of the index counter. This value is either fed directly by the user, or taken

61

CHAPTER 4. DOUBLE-BUFFERING

Clk,

M

N

Clk n

Figure 4-9: Modified scheduling hardware (only one direction shown).

from a table containing corresponding RSel[1] values for different frequency ratios. (Note

that if RE[1] is 0, then RSel[1] must be made equal to RSel[2].) Alternatively, we can

assume that RSel[1] is always 0, and then adjust TSel if necessary by taking it from the

negation of the LSB. In this way, the T flip-flop need only support synchronous clear, which

is simpler to implement than synchronous load.

Note that if M is not even, the circuit shown may not produce the correct sequence

because of the forced discontinuity in the LSB sequence that occurs when the index counter

wraps-around. The sequence for TSeln in Figure 4-5, for example, cannot be produced by

the hardware in Figure 4-9. If desired, this problem can be solved by using a T flip-flop for

the slower system as well. However, the best solution is still to multiply M and N by two

to make M even.

4.4 Variations

4.4.1 Triple and Quadruple Buffering

As shown in section 4.1, some applications may require three transmit registers to eliminate

contamination. The same scheduling algorithms can still be used for these cases except

I :1.1

62

4.4. VARIATIONS

that TSel and RSel must now repeatedly cycle from 0 to 2, instead of just alternating

between 0 and 1. This means that these signals must each be made two bits wide, and

must be generated using modulo-3 counters. Also, M must be a multiple of three to strictly

guarantee that contamination is eliminated.

A more interesting variation of the double-buffering technique uses four transmit reg-

isters. Although the analysis in section 4.1 shows that we never actually need more that

three buffers to guarantee 100% throughput efficiency, having four buffers becomes useful

if the timing parameters of the systems are unknown. In particular, it allows us to generate

a "generic" schedule that works with different timing parameters by allowing us to assume

worst-case values for the timing parameters - that is, by allowing us to specify timing

parameters that are conservative enough to cover the timing parameters of any real system.

Consider, for example, the slower transmitter case where system M is transmitting to

system N. The worst-case values of the four timing parameters in this case are:

tsn = TN, thn = TN (4.10)

tC= , t = TM (4.11)

where tn and thn are the setup and hold times of system n, and tcm and tpm are the

contamination and propagation delays of system m. Given these parameters, we have

tshn = 2Tn < 2Tm (4.12)

tcpm =Tm (4.13)

Substituting these into the master inequality (4.6), we see that in this case, four transmit

registers are needed to eliminate the possibility of contamination. A similar argument with

the same result can be made for the slower receiver case.

This result means that given four transmit registers, we can generate a single schedule

that will work regardless of the actual systems' timing parameters. Figure 4-10 shows an

example of such a schedule for M = 4 and N = 5. In this figure, the register used by a

data transfer operation is indicated beside the arrow corresponding to the operation.

63

CHAPTER 4. DOUBLE-BUFFERING

RSel n 2 * 3 0 1

Clk I 0 I 1 2 1 3 1 4
sil S2 I S S S SiA

1P3 0/3 f0 1P3
Clkm I 0 I 1 1 2 1 3

TSel m 0 1 2 3

(a)

TSel n 2 3

I I 1

I 01 1

RSelm

RSelm O

*

I 2

1 I

1

0 1

- 3 1 i
soP23 IP3

3

So

2 1 3

2 3

(b)

Figure 4-10: Using four buffers.
(greedy algorithm).

(a) Slower transmitter case. (b) Slower receiver case

RSeln

Clk

0 1 0 1

- -+_1 J \F-- _
Clkm I I I I

TSelm 1 0 1 0

Figure 4-11: Using double-buffering for communication between out-of-phase systems.

4.4.2 Using Double-Buffering for Out-of-Phase Communications

Another interesting application of double-buffering is in providing communications between

two systems that are running at the same frequency but cannot otherwise communicate

because of a phase difference between their clocks. Since we allowed tp, to assume any

value from 0 to TN in Inequality 4.4, the analysis in section 4.1 applies regardless of the

phase difference between the two clocks.

One possible application is the case shown in Figure 2-4(b). As previously discussed,

the phase difference between the two clocks in this example prevents the systems from

performing data transfers every clock cycle. Blindly transmitting and sampling every cycle

results in contamination, while employing flow control results in 50% throughput efficiency.

With double-buffering, however, the problem disappears and 100% throughput efficiency

can be achieved as shown in Figure 4-11.

Note that double-buffering does not solve the synchronization problem. The problem

has just been converted to that of assigning the right values of TSel and RSel for each

I
I P4

Si I

I

4

I :1.1

64

4.4. VARIATIONS

cycle. If the phase difference is known, then these values can easily be precomputed. 2

If the phase difference is unknown, then determining these values requires some form of

synchronization. We may perhaps be able to take advantage of the fact that there are

only two possible functionally-distinct assignments and at least one of these is guaranteed

to work. Since this paper is concerned primarily with synchronous techniques, we do not

develop this idea further. It may be worthwhile, however, to make this idea a subject of

future research since it provides an alternative to conventional techniques which force the

clocks to have coinciding edges. Similar ideas are described in [23, 24, 25].

2It is only necessary to compute the values of TSel and RSel for one particular clock cycle on each
system. These values are used to initialize a T flip-flop that will generate the desired alternating sequence
of 1's and O's.

65

I iliI

Chapter 5

Run-Time Communication

Scheduling

The table-based implementation of rational clocking suffers a major drawback: it requires

a large amount of space. A lookup table for a particular ratio M/N and a given set of

timing parameters needs O(max(M,N)) bits of memory. A generic lookup table which

allows the frequency ratio numerator and denominator to vary from 1 to N needs O(N 3)

bits. A generic lookup table which further allows the four timing parameters to be varied

independently needs as much as O(N 7) bits. This tremendous growth rate makes generic

table-based implementations impractically slow, costly, and inflexible.

Fortunately, it is possible to exploit the regularity of the clocks' interactions to produce

the appropriate control signals using significantly less space. Since the difference between

the two clock frequencies is constant, the interacting timing windows will move relative to

each other at a constant rate. Thus, it is only necessary to compute their initial positions

- from there, subsequent positions can be computed on-the-fly using counters.

This chapter discusses how run-time scheduling can be implemented. We begin with the

algorithms and hardware for the simpler case of contamination-free (i.e., double-buffered)

communications, and move on to a general algorithm that accounts for contamination. This

leads to a general hardware scheduler capable of producing schedules for both single and

66

5.1. THE BASIC ALGORITHM

double-buffered communication.

5.1 The Basic Algorithm

The algorithms used for run-time scheduling are based on a graphical algorithm similar to

Bresenham 's algorithm for drawing lines on raster displays [26]. In this section, we describe

a basic algorithm for the simpler task of scheduling contamination-free (i.e., double or

triple-buffered) communication. In section 5.3, we modify this algorithm and come up with

a general algorithm that works for single-buffered communication as well.

5.1.1 Slower Transmitter Case

The run-time scheduling algorithm makes use of a two-dimensional version of the schedule

diagram called the schedule plot. Figure 5-1 shows a schedule plot being used to schedule

receptions on system n in the double-buffered slower transmitter case.

The schedule plot is drawn on a grid with axes spaced in units of time At = TMN/MN.

The occurrences of system m's and system n's clock edges are indicated on the y and x

axes respectively by horizontal and vertical lines spaced N and M grid units apart, as

shown. (The spacing is derived from Equation 3.2.) The function, f(t), equal to the time

that system m's transmit register must clock-in new data in order for system n to properly

sample the data by clocking the receive register at time t, is plotted on the grid. As shown,

f(t) = t- (Pm + Sn) (5.1)

where Pm and Sn are the propagation and setup times expressed in units of At. This is

because system n must wait Pm time units for the receive register's input to stabilize after

system m clocks data into the transmit register, and an additional Sn time units of setup

time before it can clock its receive register. The example in Figure 5-1 has both Pm and Sn

equal to 2, and thus has f(t) = t - 4.

With the schedule plot, determining the clock edges on which system n can receive new

data is straightforward: for each vertical line x, we plot a dot on the nearest horizontal line

67

68 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

TN -, f(t) = t- (Pm + Sn)

Y 5

(system m's
clock edges)

4

3

.M 2

I

vn - n

I I \

-J-I At

eol 0/ 1 2 3 4 5 6

t
xo x (system n's clock edges)

Figure 5-1: A schedule plot for the case where M = 5 and N = 6.

at or below f(t = M x). This dot indicates the last system m clock edge, y, whose data

system n can safely receive at time t. If the dot moves up, system n can receive new data.

If the dot stays on the same line, then no new data is available yet, and system n should

inhibit reception.

By thus identifying the earliest x at which f(t) is at or above the horizontal line y, we

effectively identify the nearest system n setup edge S, at or after each system m propagation

edge Py. That is, this algorithm is equivalent to the greedy slower transmitter algorithm

from section 4.2, and can be used to schedule communications in the slower transmitter

case. The following algorithm shows how this is done:

1. Initialize all entries of TSelm, TEm, RSeln, and REn to 0.

2. x =1 1 > o =1

3. fo = L-(Pm + Sn)] > get f(t) at clock edge xo - 1

4. y = fo div N D Yo = first line above fo

. . .

. ...
. .. .

. . . .

. . . .

. . . .
- - -

. . .
. . . :
. . . .

. . . .

. . . .

. . . . i

. . . .

. . .

. . . :�

. . . .

I I I I I
. . . .

. . . .

. . . .

. . . .

. . . :

. . . .

I ' ' '
. . . .
. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . .

I. . . .
. . .

. . . .
i

. . . .

. . .

.......

. . . .

. . . .

. . . .

.
N

- " -1

/i
,v - A V ~

I I - III
I ~~~~~~~~- +

5.1. THE BASIC ALGORITHM

5. if (fo > O) or (fomodN=0) then

y=y+ 1

6. eold =(fo mod N) - N

7. R=O

8. do N times

9. e = eold + M

10. if (e > 0) then

11. TSelm[(y- 1) mod M] = R

12. TEm[(y - 1) mod M] = 1

13. RSel[(x - 1) mod N] = R

14. REn[(x - 1) mod N] = 1

15. R= R
16. y=y+1

17. e= e-N
18. x=x+1

19. eold = e

D adjust y

> eo = distance from line y to fo

D use register 0 first

I> compute error term for current x

D is new data available?

I yes, transmit data

D use other register next time

D wait for next system m clock edge

I> make e relative to new y

D get next x

D get next eld

Here, the variable x indicates the system n clock edge (vertical line) currently being

considered. It is initialized to xo = 1 in line 2, and incremented at the end of each loop

iteration. 1 The variable y indicates the nearest system m clock edge (horizontal line) from

which data has not yet been received. It is initialized in lines 4 and 5 so that it points to the

first horizontal line above f(t = 0), and incremented in line 16 after a system n clock edge

that can receive the data has been found. In terms of the graphical algorithm, y indicates

the nearest horizontal line which does not have a dot plotted on it yet.

For each x, the availability of new data can be determined by checking the error term,

e, equal to the distance from the horizontal line y to f(t = M x). This error term is equal

to the time difference between setup edge S. and propagation edge Py, and indicates how

early or late system n would be if it tries to receive data from clock edge my on clock edge

1The choice of xo = 1 means that the case for x = 0 is not considered until the last iteration of the
loop, when x = N. Although seemingly unintuitive, this choice, as will be shown in section 5.1.2, simplifies
analysis and implementation by allowing us to use f(t = O0) in computing eo and yo.

69

I .121

70 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

n,. If e is zero, then system n would be exactly on time, and the transmitted data would

be stable just at the setup edge of clock edge nx. If e is positive, then system n would be

late, and the data would be stable for eat seconds before the setup edge. If e is negative,

then system n would be too early, and the data would not be stable until lelAt seconds

after the setup edge. Being late is not a problem (at least not with contamination-free

communication), but being too early requires reception to be postponed by at least lelAt

seconds to give data enough time to be available and stable.

The initial error, eo, is computed in line 6 relative to Yo, the first horizontal line above

f(t = 0). Then, at each iteration, the current error e is computed incrementally by adding

M (i.e., the length of time between system n clock edges) to the previous error, eold. As

soon as e becomes nonnegative, data transfer is enabled from clock edge my to clock edge

nx by setting the appropriate entries of RE and TE to 1, and setting RSel and TSel to use

the register indicated in the variable R. After these signals are set, R is toggled to avoid

contamination, and y is incremented so that it indicates the next system m clock edge. To

make it relative to the new y, eld is then set to e - N. This adjustment also keeps the

value of eold negative and ensures that the condition in line 10 is satisfied if and only if the

current S. is the nearest setup edge at or after Py.

5.1.2 Computing yo and eo

Given an initial system n clock edge, xo, the initial values of y and eld must be computed

such that eold is negative and equal to the error term at vertical line x0o - 1. This can be

done by first computing the initial function value, fo = [f(t = M. (xo - 1))J, equal to

f 0o = [M (0 - 1) - (Pm + Sn)J (5.2)

(where the floor function is used to accommodate non-integer timing parameters as will be

discussed in the next section), and then choosing y to be the first horizontal line above fo,

and e to be the distance from line y to fo.

Figure 5-2 shows the three possible cases that need to be considered. (Note that the

vertical and horizontal lines in this figure are spaced at intervals of MAt and NAt units

5.1. THE BASIC ALGORITHM

xo- I xo xo-I x0

(a) (b)

Figure 5-2: Three cases in computing Yo and eo. (a) fo < 0. (b) (fo

(c)

mod N) = 0. (c) fo > 0

respectively.) If fo < 0, and fo does not land exactly on a horizontal line, then Yo is simply

Yo = fo div N (5.3)

If fo is negative but lands exactly on a horizontal line, then we must add 1 to y to make

it point to the line above fo. Finally, if fo > 0, then we must also add 1 to y since

the div operator will give us the line below fo. Considering these cases leads to the two-

step computation done in lines 4 and 5 of the basic algorithm, where yo is first computed

according to Equation 5.3 and then adjusted as necessary. Computing eo is simpler - in

all three cases, the following formula correctly computes eo:

eo = (fo mod N) - N (5.4)

As will be shown in section 5.2.4, although Yo and eo can be computed in this way for

any given xo, choosing xo = 1 limits the range of fo, and makes it easier to compute yo and

e0 in hardware.

5.1.3 Slower Receiver Case

The slower transmitter algorithm can be used to implement the lazy slower receiver algo-

rithm if we appropriately change the names of the control signals being set, and make the

following transformations:

71

-m

I III

72 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

Pm + Hm (5.5)

Sn + -Cn

where Hm and Cn are the hold and contamination times expressed in units of At. These

transformations give us

f (t) = t- (Hm - Cn) (5.6)

and enable the algorithm to determine the nearest contamination edge Cx at or after each

hold edge H,. The assignments in lines 11 to 14 (with the appropriate name changes)

correctly set the control signals so that system n transmits at clock edge ny using the same

register used in receiving at clock edge m,.

The normal-time greedy algorithm can also be implemented by using similar but slightly

more complicated transformations. First, we use the transformations

Pm + -Sm (5.7)

Sn - -Pn

to get

f(t) = t + (Sm + Pn) (5.8)

and have the algorithm determine the temporary arrows to be drawn from the system m

setup edges to the system n propagation edges: Then, since the data transfer corresponding

to a temporary arrow drawn from some edge Sy to some edge Px actually transmits data on

Px- 1 instead of Px, we initialize x to x0 - 1 to get a one-cycle time-advance in the signals

computed for system n.

We must also change the condition in line 10 to (e > 0), to cover cases where a propa-

gation edge Pj coincides exactly with a setup edge Si. That is, we must make sure that in

such cases, the greedy algorithm does not draw a temporary arrow from Si to Pj yet, but

draws one from Si to Pj+l instead.

Finally, we must make yo and eo consistent with this new condition by making yo indicate

the line at or above fo, and allowing eo to be zero. This entails modifying the conditions

in line 5 appropriately, and having an adjustment for eold after line 6 that would set eId to

zero if it turns out to be -N.

5.2. HARDWARE IMPLEMENTATION

Note that the modified condition may be harder to check for since we cannot simply

look at the sign bit anymore. Thus, a hardware implementation of a strict greedy slower

receiver algorithm may be slightly more complex than that for the lazy algorithm. If strict

greediness is not necessary, however, then the original condition in line 10 can be kept so

as to avoid the additional cost.

5.1.4 Non-integer Timing Parameters

In concept, the run-time scheduling algorithm itself does not place any restrictions on the

values that can be taken on by the timing parameters. In practice, however, the hard-

ware used to implement the algorithm would only be able to handle integers and would

thus require that yo and eo both be integers, or equivalently, that fo be an integer. Fortu-

nately, any non-integer fo will have a corresponding fo that will produce exactly the same

communication schedule.

To see this, note that adding a small number, , such that 0 < < 1, to some integer

value of fo does not change the resulting pattern of dots and its corresponding schedule.

Thus, if fo is not an integer, we can still produce a correct schedule by simply taking

the floor of fo (i.e., the greatest integer less than or equal to fo) as done in line 3. This

rounding step is equivalent to adjusting the timing parameters conservatively so as to make

the resulting fo an integer while ensuring that the original timing windows are covered by

the new ones.

5.2 Hardware Implementation

Figure 5-3 shows a circuit that implements the basic algorithm in hardware. It uses three

different modules: R Gen, E Gen, and LD Gen.

5.2.1 The R Gen Module

The R Gen module stores the value R, which is used to set TSel and RSel. It is simply a

T flip-flop with enable (E) and clear (Clr) inputs. The E input is used to prevent R from

73

CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

yo -1

Clk0

Clkn

e0

x -1

-Clkn

Figure 5-3: Basic run-time scheduler. (Only one direction shown.)

being toggled when no data transfer is being done. The Clr input is used to initialize R.

It is a synchronous input which, when asserted, clears the flip-flop on the next clock edge.

5.2.2 The E Gen Module

The E Gen module generates the REn and TEn signals for the faster system (in the slower

system, these signals are simply tied to logical 1). As shown in Figure 5-4, this module is

a direct implementation of the loop in lines 8 to 19 of the algorithm. 2 A register stores the

value of eold, which is used to compute the new values of e and RE,. The LD input is used

for initialization and causes eold to be set to eo at the clock edge after LD is asserted.

In actual applications, we can make the last two stages of the E Gen module more

space-efficient and possibly faster by replacing them with the circuit shown in Figure 5-

5(a), where the NOR module is an array of NOR gates that NOR each bit of N with the

2 The E Gen module shown works for both the slower transmitter algorithm and the lazy slower receiver
algorithm. Section 5.3.3 shows the modifications necessary to make it implement the greedy slower receiver
algorithm.

I .1!I

74

5.2. HARDWARE IMPLEMENTATION

REn

ign bit

Figure 5-4: The E Gen module.

N

e)

(b)

Figure 5-5: Using a NOR module instead of a mux in computing the next eold.

(a)

75

e

e<O

CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

i

count m

Figure 5-6: The LD Gen module.

sign bit of e, as shown in Figure 5-5(b). In this circuit, the adder will subtract N from e if

e is nonnegative, and add 0 otherwise.

It is interesting to note that the E Gen module is actually a rate multiplier - a spe-

cial counter that when clocked at one frequency, produces a sequence of pulses at a lower

frequency by appropriately skipping cycles. Rate multipliers are commonly used in appli-

cations such as line drawing and digital wave synthesis. Oberman [27, 28] provides a good

discussion of different ways to implement rate multipliers.

5.2.3 The LD Gen Module

The LD Gen module is used for periodically initializing the R Gen and E Gen modules

in a way that causes the control signals to be generated at the correct times. It takes an

input i and outputs a load signal (LD) that causes the connected components to initialize

at the ith clock edge of every coincidence cycle. If we are using incrementing counters,

then this can be done with a comparator that checks if the index counter value is equal to

(i - 1) mod M, as shown in Figure 5-6 (for system n, N is used instead).

As shown in Figure 5-3, the LD Gen modules of systems m and n are set to initialize

on clock cycles yo - 1 and xo - 1 respectively. On system m, for example, i = yo - 1 would

normally be -1, so LD Gen M causes the R Gen module to initialize (i.e., set R to 0) on

clock edge M - 1. This then tells system m to use register 0 when transmitting on edge

mo. The LD Gen module can also be used for reaction latency compensation by adjusting

x0 and yo to reflect the necessary time advance.

76

- I - 11 � - . - .-. .1-1-1 1- - . -1__-._'._.. . .% ------ � -, -, - _-�_ = _ '__ - "'.

5.2. HARDWARE IMPLEMENTATION

(a) (b)

Figure 5-7: Computing mod and div. (a) The MOD module. (b) A sequential circuit.

5.2.4 Computing Initial Values

The scheduling hardware expects the values eo, (o - 2) mod M, and (o - 2) mod N to

be available as constants. In the simplest implementation, these constants can be taken as

external inputs which the system designer must compute manually for a certain configura-

tion. It is not difficult, however, to design a more user-friendly circuit that takes M, N,

and the timing parameters as inputs and uses these to computes the required constants in

hardware.

The main problem in computing these constants is that of performing the mod and div

operations. These operations can be done with the combinational MOD module shown in

Figure 5-7(a). This module subtracts or adds b from or to a in an attempt to change a's sign

(i.e., it subtracts if a is nonnegative, and adds if a is negative). If the sign changes, it sets

the mod output to the value of a before the subtraction or addition, and sets div to divold.

Otherwise, it passes the new value mod', to mod, and sets div to diVold + 1. Assuming that

-2b < a < 2b, the mod output would be equal to

(a mod b), if a > 0 (5.9)

(amodb)-b, ifa<O

77

I I

78 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

and the div output would be

(a div b), if a > 0 (5.10)

-(a div b), if (a < 0) and (a mod b 0)

-(a div b)-1, if (a < 0) and (a mod b = 0)

These outputs can then be converted into a mod b, and a div b using appropriate circuitry.

The sequential circuit shown in Figure 5-7(b), which uses registered feedback paths from

the MOD module's mod and div outputs to its (original) a and divold inputs respectively,

allows us to perform these operations for a wider range of inputs. After the registers are

initialized by the START signal, this circuit proceeds to subtract b from (or add it to) the

register's contents until the sign of the adder's output, mod, changes sign. Then, the DONE

line goes high, causing the register's contents to be fed back unchanged into the register,

and holding the register's contents constant at its last value before the sign change. This

holds the DONE line high indefinitely, and holds the mod and div outputs constant at

values given by Equations 5.9 and 5.10 respectively.

If there is a known limit to how large a can be with respect to b, then it is also possible

to unroll the loop and make a combinational circuit by cascading several MOD modules.

A cascade of k MOD modules would work for any integer a in the range -(k + 1)b < a <

(k + 1)b. If xo = 1, for example, then we would have -2N < fo < 2N for both slower

transmitter and slower receiver cases, and would need a cascade of two MOD modules with

initial inputs a = fo and b = N.

Such a cascade is shown in Figure 5-8, together with additional circuitry that derives

eo and yo from mod and div. In this circuit, the two MOD modules produce final mod and

div outputs given by Equations 5.9 and 5.10 (with a = fo and b = N), and the circuitry in

the dashed box computes eo and yo from mod and div depending on the original sign of fo.

If fo is nonnegative, the circuit computes eo as mod - N, and computes yo by forming a 1

at the left input of the adder and adding it to div to get (fo div N) + 1. If fo is negative,

the circuit simply uses mod for eo, and computes yo by subtracting div from zero to get

(fo div N) + 1 if (fo mod N = 0), and (fo div N) otherwise.

5.2. HARDWARE IMPLEMENTATION 79

--- I

sgn(fd)

I

I

I

I

I

I

I

I

L

Figure 5-8: Combinational circuit for computing Yo and eo.

So far, the constants needed by the run-time scheduling hardware can all be computed

combinationally. In section 5.3, however, the computation of some constants involve div

and mod operations where the dividend (a) is not bounded with respect to the divisor (b).

In these cases, the constants must be computed at bootup with a sequential circuit, and any

circuitry that depends on the values of these constants must wait until the DONE signal

goes high before using them.

5.2.5 Performance Issues

The run-time scheduling hardware is remarkably space-efficient. It requires only O(lg N)

bits of memory instead of the O(N7) required by the table-based hardware to handle dif-

I I'1

80 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

ferent frequency ratios and timing parameters. This makes the run-time scheduler very

flexible, and makes it ideal for designing an "off-the-shelf" rational clocking chip, or for

integrating rational clocking capability directly into the application chips themselves.

One drawback of the run-time scheduler, however, is its speed, which is limited by the

delay required to compute the next value of eold in the E Gen module. Though usually

small enough not to matter in typical applications, this delay may be critical in very high

performance systems. In such systems, the best solution is probably to have fast RAM-based

tables that are loaded at bootup by run-time scheduling hardware clocked at a sufficiently

small fraction of the desired frequency.

5.3 Generalized Run-Time Scheduling

The basic algorithm makes two assumptions. First, it assumes that communication is

contamination-free so transmissions can be scheduled independently of each other. Then,

it assumes that two buffers are sufficient to guarantee this first assumption.

The second assumption is made only for convenience and simplicity. The basic algorithm

can easily be made to work with applications requiring more buffers by assigning more bits

to R and having its value cycle through the available buffers instead of just being toggled

between 1 and 0. In hardware, this is done by replacing the T flip-flop in the R Gen module

with a mod-r counter, where r is the number of buffers available.

The first assumption, on the other hand, is a necessity, and changing the algorithm to

make it work even when this assumption is not valid (e.g., as with single-buffered hardware)

is not as easy. To avoid contamination, the algorithm must be modified to keep track of

the amount of time that has passed since the last data transfer, and make sure that data is

only transferred again after enough time has passed. Furthermore, the slower system would

now also need scheduling hardware since it cannot just transmit on every cycle anymore.

In this section, we develop a general algorithm that detects contamination and, depend-

ing on the available resources, either disables data transfer, or uses a second register to

avoid contamination. With this algorithm, it becomes possible to develop a single circuit

5.3. GENERALIZED RUN-TIME SCHEDULING

that can be used for scheduling both single-buffered and double-buffered communication.

5.3.1 The Algorithm (Slower Transmitter Case)

As mentioned in section 5.1.1, the error term e at some x indicates how early or late system

n would be if it tries to receive data from system m on clock edge n,. In the basic algorithm,

we were only concerned about prohibiting system n from receiving when it was too early,

and assumed that receiving late would not pose a problem. This assumption, however, is

only valid if contamination-free communication is guaranteed. Otherwise, it is possible for

system n to be too late such that it would not be able to finish latching the data by the

time the next transmission from system m contaminates the receive register's input.

As discussed in section 4.1, such a contamination problem would occur if the condition

tpC > tps + tshn (5.11)

(from Inequality 4.2) is violated. For the single buffered case, t = TM - tcpm, and this

inequality can be restated as

tps < TM - (tcpm + tshn) (5.12)

Recalling from section 5.1.1 that the error term e is the time difference between edge S.

and edge P,, we can replace tp, with e, and express this inequality in units of At as

e < N - (CPm + SH,) (5.13)

where CPm = (Pm - Cm) and SHn = (Sn + Hn). Thus, potential contamination problems

can be detected at each x by checking if e is greater than the maximum safe value, ema,

equal to

emax = N - (CPm + SHn) (5.14)

Figure 5-9 shows two examples from the case being scheduled in Figure 5-1. Here, the

schedule diagram has been marked in units of At to make the lengths of the time intervals

easier to read. As shown in this figure, there is no contamination problem involving the

81

I 1.1

82 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

RSel

REn
Clk

Clkm

TEmrn

TSel,

e max CPm emax CPm

Figure 5-9: Checking for contamination using e.

transmission from Po to S1, since el is less than ea. The transmission from P2 to S4,

however, can be contaminated by that from P3 to S5 since e3 is greater than emax.

By checking if e > emax each time we transmit data from some clock edge my, we can

determine if transmitting on clock edge my+1 would result in contamination, and disable

transmission on my+l accordingly. Alternatively, instead of simply disabling the offending

transmission, we can set RSel and TSel so that the transmission on edge my+l uses a

second register. This produces a schedule that can be used by both single-buffered and

double-buffered systems. A double-buffered system would simply use the control signals as

they are, while a single-buffered system would disable any transmission using the second

register. In Figure 5-9, for example, a double-buffered system would use register 1 to

transmit from P3 to S5 to avoid contamination. A single-buffered system would simply

disable this transmission, and get the same schedule shown in the example in Figure 3-4.

Implementing these ideas into the basic algorithm gives us a set of two general algo-

rithms: one for the faster system, and another for the slower system.

Algorithm for the Faster System

The general algorithm for the faster system can be described as follows:

5.3. GENERALIZED RUN-TIME SCHEDULING

1. Initialize all entries of TSelm, TErn, RSel,,

2. ema = N- (CPm + SHn)

3. x=

4. fo = L-(Pm + Sn)J

5. y= fodivN
6. if (fo > 0) or (fo modN= 0) then

y=y+l1

7. eold= (fo mod N) - N

8. R=0

9. do N times

10. e = eold + M

11. if (e > 0) then

12. TSelm[(y - 1) mod M] = R

13. TEm[(y - 1) mod M] = (R < regs)

14. RSel[(x- 1) mod N] = R

15. RE,[(x - 1) mod N] = (R < regs)

16. if (R=0) then

17. R = (e < ema,,)

18.

19.

20.

21.

22.

23.

else

R=0
y=y+1

e = e-N

x=x+l
eold = e

and RE, to 0.

I> get largest safe value of e

>D x =1

1 get f(t) at clock edge xo - 1

I> Y0 = first line above fo

I> adjust y

D eo = distance from line y to fo

D use register 0 by default

> compute error term for current x

> is new data available?

I yes, transmit data using reg R

D but, only if reg R exists

D if we're using reg 0,

D use reg 1 if necessary

> if we're using reg 1,

p use reg 0 next time

D wait for next system m clock edge

I make e relative to new y

D get next x

D get next eold

This algorithm uses register 0 by default, and only uses register 1 if using register 0

would lead to contamination. Every time register 0 is used to transmit data, the current

e is compared with emaz to check for contamination. If e > emax, then contamination is

avoided by setting R to 1 to let the next transmission use register 1. Otherwise, R is set

to 0 so that register 0 is used again. Every time register 1 is used, R is simply set back

83

84 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

to 0 - whether or not e > emax. Checking e is unnecessary in this case because assuming

double-buffering to be sufficient (i.e., assuming Inequality 4.9), we know from Inequality

4.6 that register 0 can always be safely reused after two clock cycles. The value of regs in

lines 13 and 15 indicates the number of registers available and allows the algorithm to be

used for both double-buffered and single-buffered systems. When regs = 1, lines 13 and 15

only enable data transfers that use register 0, and disable data transfers using register 1.

Given the same parameters, this generalized slower transmitter algorithm and the origi-

nal graphical algorithm in section 3.3 generate exactly the same schedule on a single-buffered

system. To see this, first note that since both algorithms match propagation edges with

the nearest setup edge, any arrows they draw (i.e., transmissions they allow) are all chosen

from the same set of P to S pairs. That is, if Sj is the nearest setup edge at or after Pi,

then a transmission from clock edge mi, if any is allowed at all, would always be matched

with a reception on clock cycle nj, regardless of which of the two algorithms is used. Note

further that given a successful transmission from clock edge mi to nj, the original algorithm

disables transmission on the next clock edge, mi+l, if and only if the hold edge Hj is past

the next contamination edge Ci+l, while the generalized algorithm disables transmission on

clock edge mi+l if and only if e > emax during cycle mi. Since these two conditions (i.e.,

e > emax, and Hj being past Ci+l) are equivalent, we can conclude that both algorithms

skip exactly the same transmissions and produce the same schedule.

Algorithm for the Slower System

The slower system can detect and avoid contamination in the same way as the faster system,

but needs to keep track of e in a different way. The following algorithm, written from the

point-of-view of the slower system, m, shows how this is done:

1. Initialize all variables and compute constants as before

2. ANM = N mod M D ANM = rate of change of e

3. e = eo mod M > get e of first transmission

4. R = O > use register 0 first

I I:

5.3. GENERALIZED RUN-TIME SCHEDULING

5. do M times

6. TSelm[(y - 1) mod M] = R

7. TEm[(y - 1) mod M] = (R < regs)

8. if (R = 0) then

9. R = (e < emax)

10. else

11. R=0

12. e = e- ANM

13. if (e < O0) then

e = e+M

14. y=y+1

> yes, transmit data using reg R

D but, only if reg R exists

D if we're using reg 0,

1 use reg 1 if necessary

D if we're using reg 1,

t use reg 0 next time

> compute next error (e - N) mod M

D by computing

> (e - ANM) mod M

1> consider next system m clock edge

In this algorithm, each iteration in the loop moves us from one horizontal line (system

m clock edge) y to the next, and considers the times when e becomes nonnegative and the

condition in line 11 of the faster system's algorithm is satisfied.

The initial value of e in this algorithm represents the first nonnegative value that results

from repeatedly adding M to the negative number eo, and can be computed as eo mod M as

done in line 3. Similarly, the value of e at the next iteration represents the next nonnegative

value of e after repeated addition of M to (e-N), and o can be computed as (e-N) mod M.

This latter modulo operation can further be simplified if the condition 0 < e < M is

maintained through the course of the algorithm. Then, (e - N) mod M can be expressed

as (e - ANM) mod M, where ANM = N mod M, and can be computed by the two-step

process in lines 12 and 13. This simplification is necessary when implementing the algorithm

in hardware since the size of (e - N) relative to M is not restricted, and so prevents

the mod operation from being done combinationally using the techniques of section 5.2.4.

Unrestricted modulo operations are still necessary for computing the constants ANM and

(eo mod M), but these are one-time computations that can be done off-line by the user, or

computed iteratively at bootup using a sequential modulo circuit.

85

86 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

Non-Integer Timing Parameters

The generalized algorithms shown assume that the timing parameters are all integer mul-

tiples of At. If they are not, then they are rounded conservatively to the nearest integer

- i.e., S, H, and P are rounded up, while C is rounded down. Unfortunately, rounding

the parameters in this way can result in lower throughput efficiency, since doing so widens

the timing windows, decreasing emax and increasing emin. One solution would be to use a

sufficiently small fraction of At as the unit of time instead of At. For example, we can use

units of At/4 by making the components two bits wider, and by replacing N and M in the

algorithm by 4N and 4M respectively. Another potential solution is to first compute emax

and emin using unrounded parameters, adjust their values appropriately depending on the

fractional part of the initial value of e, and round the result conservatively to the nearest

integer. The details of this latter approach still need to be worked out, but the approach

seems plausible and not exceedingly complex.

5.3.2 The Hardware

The hardware for the two algorithms are shown in Figures 5-10 and 5-11. Like the original

E Gen module on which they are based, they are straightforward implementations of their

respective algorithms. In both systems, the T flip-flop in the R Gen module has been

replaced by a D flip-flop with enable (E) and clear (Clr) controls. In this configuration,

the new value of R is computed according to the algorithm, and latched at the next clock

edge every time e becomes nonnegative. The input signal SB is used to indicate that the

target application is single-buffered. When SB is set to 1, data transfers attempting to use

register 1 are disabled by setting RE and TE to 0.

Note that there are only three structural differences between the two circuits: the source

of e, the source of the E input of the D flip-flop, and the use of an inverter on the control

for the last multiplexer. Thus, by adding a multiplexer and a few appropriate gates, we

can come up with a single circuit that can be used by either system. The only difference

between the systems would then be in the input values fed into the circuit.

I 1.1

5.3. GENERALIZED RUN-TIME SCHEDULING 87

SB

LD

emax

Figure 5-10: Scheduling hardware for the faster system.

CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

Figure 5-11: Scheduling hardware for the slower system.

I 11

88

LD

Clk

SB

LD

emax

5.3. GENERALIZED RUN-TIME SCHEDULING 89

CPnM-e2 e2 CPn es

TSel n 1

TE n 1

Clk,

0

1

1 I

cl I

*

0

1

i 1 I
_ __ I I _ _

0

1

A

c:-:z >

I I I IJi X I

7;7?C r-
7

P3 C4-P4 7iT

[HO S H I H 2 H3 S4t< H4 SO
I I I-. I I I . *. I I I I I .. .I I . I T-A

REm 1 1 1

RSelm O 1 0 0 0

N N

SH m, em in = SHm emin

M-N+(Cn + S n)
Figure 5-12: Checking for contamination in the slower receiver case.

5.3.3 Slower Receiver Case

The Algorithms

The general algorithms for the slower receiver case are based on the greedy slower receiver

algorithm. Section 5.1.3 discusses how the greedy slower receiver algorithm can be imple-

mented. To generalize this algorithm, we first apply the changes discussed in that section

to the general algorithms of section 5.3.1. We then modify the slower system's algorithm

by changing the condition in line 13 to (e < 0), and adding M to the initial e after line 3 if

(eo mod M) is equal to zero. These changes are necessary since changing the condition in

line 11 of the faster system's algorithm to (e > 0) implies that e must be positive (not 0)

during the course of the slower system's algorithm.

Figure 5-12 shows how contamination is detected and avoided in the slower receiver

case. Here, the meaning of the error term e has changed. It is now M - e which indicates

how early or late system n would be if it tries to transmit data to be received at clock edge

my. Correspondingly, the contamination condition is now

M- e < N - (CPn + SHm)

I . .0. .
- I - I -

I 11 1 l -
, I I Ii

I - _ . __ __

< �3-

(5.15)

I 1.1

90 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

This indicates when system n is transmitting data too early such that it would contaminate

data being received by system m during the previous cycle, myl. To detect contamination,

therefore, we check if e is less than the minimum safe value, emin, equal to

emin = M - N + (CPn + SHI) (5.16)

In Figure 5-12, for example, there is no contamination problem involving the transmission

from P4 to S4, where M - e5 = 0, since e5 is greater than emin. The transmission from P1

to S2, however, can contaminate that from Po to S1 since e2 is greater than emin.3

When contamination is detected, it can be avoided by disabling the current data transfer,

or using a second register for it as done in the slower transmitter algorithms. Since the

original algorithms disable the next data transfer, however, we must modify them by moving

the calculations for R ahead of the control signal assignments. Then, to ensure that the first

data transfer is done using register 0, we initialize R to 1 instead of 0. In hardware, these

changes mean taking RSeln from the output of the NOR gate instead of the D flip-flop,

and having LD set the flip-flop instead of clear it.

Unlike the slower transmitter algorithm described in 5.3.1, this slower receiver algo-

rithm does not necessarily produce the same single-buffered schedules as the algorithm of

section 3.3. As discussed in section 4.2.2, the greedy slower receiver algorithm, on which this

generalized algorithm is based, lets the transmitter transmit data at the latest possible time

before a setup edge. The algorithm of section 3.3, on the other hand, lets the transmitter

transmit at the earliest possible time after the preceding hold edge.

Fortunately, this difference in scheduling strategy does not affect throughput efficiency

- like the algorithm of section 3.3, the generalized slower receiver algorithm is optimally

efficient. This is because it considers all possible occasions for transferring data (i.e., it

goes through all of the slower system's setup edges one-by-one without skipping), and only

disables a data transfer if transmitting at the latest possible time results contamination. It

may be possible to transmit data at an earlier time without causing contamination, but if

3It is interesting to note that if emin is negative, then contamination cannot occur. Thus, a sufficient
(but not necessary) condition for guaranteeing 100% throughput efficiency on a single-buffered system is:
N - M > CP, + SH,

5.3. GENERALIZED RUN-TIME SCHEDULING

SB

LD

e min

Figure 5-13: Faster system's hardware for the greedy slower receiver algorithm.

transmitting at the latest possible time causes contamination, then transmitting any earlier

will also cause contamination.

The Hardware

Figures 5-13 and 5-14 show the hardware for general run-time scheduling in the slower

receiver case. As shown, the circuitry that controls the multiplexer which selects the next

eold has been modified to implement the necessary transformations. Similarly, the eo and

(eo mod M) inputs to the top multiplexer of both circuits are first passed through adjust

modules to adjust their values as required by the transformations. These adjust modules

are slightly different from each other, and are shown in Figure 5-15. Note that the slower

system's adjust module takes e mod M as input, where e is the output of the faster

system's adjust module.

91

I lii

CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

SB

LD

e min

Figure 5-14: Slower system's hardware for the greedy slower receiver algorithm.

N

(a)

e,

(b)

Figure 5-15: Adjusting initial errors. (a) For the faster system. (b) For the slower system.

92

5.3. GENERALIZED RUN-TIME SCHEDULING

As shown, the two circuits are still sufficiently similar to each other and to those for the

slower transmitter case that it is still possible to come up with a single circuit that can be

used for any of the four roles by simply feeding it the right inputs.

5.3.4 Choosing Pbegin

By initializing R to 0 in the general algorithms presented, we guarantee that the first data

transfer will not be disabled. This is equivalent to choosing a specific Pbegin in the scheduling

algorithm of section 3.3. For the slower transmitter case, Pbegin = Pyo, while for the slower

receiver case Pbegin = P:o = Po0 .

While choosing Pbegin in this way works in many cases, there are some potential prob-

lems. One problem, as mentioned in section 3.3, is that the choice of Pbegin can affect

throughput efficiency. Thus, it may occasionally be better to choose a different Pbegin. This

can be done by changing x0 to achieve the desired starting point, and then applying the

techniques discussed in 5.1.2. This can also be done with less hardware by precomputing

the schedule for a desired Pbegin, and initializing R to the value it would have during cycle

myro, for the slower transmitter case, and cycle nx0, for the slower receiver case.

A worse problem is that forcing register 0 to be used for the first data transfer may cause

contamination problems with the last data transfer in the coincidence cycle. This would

happen if the last transfer incorrectly assumes that it can safely use register 0. Ideally, this

problem can be avoided by initializing R once, and then never again forcing a particular data

transfer to use register 0. However, this approach is not reliable since the communication

schedule can easily be broken if one of the flip-flops flips erroneously due to noise. A more

practical solution is again to initialize R to a value that is known not to cause this kind of

contamination problem.

Although initializing R to an appropriate value solves these problems, it requires precom-

putation and defeats the purpose of run-time scheduling. One way to avoid precomputation

is to make hardware that detects, before initializing R, if a transmission on first cycle would

contaminate a transmission from the last cycle, and initializes R to 1 if contamination is

possible, so that the transmission from the first cycle uses register 1 instead of register 0.

93

I 1:1

94 CHAPTER 5. RUN-TIME COMMUNICATION SCHEDULING

There are two related problems with this approach, however. First, if single-buffering

is being used, then throughput efficiency would become sub-optimal in the case where the

transmission from the last cycle ends up being disabled, since the transmission from the

first cycle would then be disabled unnecessarily. Second, if double-buffering is being used,

then it is possible that the algorithm could incorrectly assume that the transmission from

the last cycle can safely use register 1, and thus cause contamination problems with the

transmission from the first cycle. That is, we could just get the original problem back in a

different form.

This problem of initializing R to an appropriate value has not yet been solved, and

should be a subject of future research. Meanwhile, the solution just described can be used

for single-buffering if getting guaranteed optimal performance is not a requirement. For

double-buffering, we can simply use the basic algorithm, which has none of these problems.

5.3.5 Generalizing to More Buffers

The algorithms and hardware presented in this section can be extended to work with more

buffers by providing some means to keep track of which buffers are available for use at

a certain time. Using these means, the algorithm would schedule communications on the

lowest numbered buffer available at any time.

Unfortunately, while this idea is conceptually simple, its implementation is dispropor-

tionately complex. In the double-buffering case presented, a single variable, R, was sufficient

to keep track of buffer usage because we assumed that a buffer cannot be in use for more

than two cycles. Thus, if one register is used to transmit data on some clock edge mi, then

we know that the other register can be used to transmit data on edge mi+1 regardless of

which register was used to transmit on edge mi-1. In triple-buffering, there are now three

possible buffers, and each buffer can be in use for three cycles. A general algorithm for this

case would require considerably more variables, more comparisons, and more computations

than before. This disproportionate complexity quickly offsets any advantages gained from

the convenience of having a single generalized circuit. Since only a small fraction of appli-

cations are expected to require three buffers, it is probably more practical to just use the

5.3. GENERALIZED RUN-TIME SCHEDULING 95

two-buffer-capable generalized circuit most of the time, and then use the basic circuit with

triple-buffering when necessary.

I I:1

Chapter 6

Simulation and Implementation

The techniques and ideas presented in this thesis were developed and tested with the help

of different software and hardware tools. First, communication scheduling software was

written to generate lookup tables for different frequency ratios, timing parameters, and

scheduling algorithms. This software was used to measure throughput and to test the

different algorithms. Then, a CMOS VLSI integrated circuit using programmable lookup

tables was designed and fabricated to facilitate actual testing of the rational clocking tech-

nique. This chip was used in a breadboard-based circuit that verified and demonstrated

the usefulness of the rational clocking techniques and algorithms. Finally, a model of the

run-time scheduling was constructed and simulated using Verilog to verify the correctness

of the proposed hardware.

This chapter provides functional descriptions of these tools, and discusses various issues

that came up during their development and use. Further details about their implementation,

including source code and a VLSI layout, are provided in the Appendices.

6.1 Communication Scheduling Software

The communication scheduling software is a text-based menu-driven program written in C

that takes timing parameters and frequency ratios as inputs, and produces corresponding

96

6.1. COMMUNICATION SCHEDULING SOFTWARE

data transfer schedules. It can be used for studying scheduling algorithms, and for generat-

ing source files for the lookup table ROMs. This section provides a functional description

of the different features of the software, and presents some recommendations for improve-

ments. A complete listing of the source code and more detailed discussion about different

issues involving the design of the software are available in Appendix B.

Figure 6-1 shows the scheduling software's menu tree. At the top level, the user can

either enter the timing parameters, generate output, or change the program options. The

meaning of the timing parameters in the first case, and the format of the output generated

in the second case, are determined by the options available under the Options Menu. These

options are discussed in the following subsections.

6.1.1 Timing Parameter Units

In the scheduling software, time is expressed in integer units of dt, defined as:

dt = At/d (6.1)

where

At = TMN/MN (6.2)

as defined in Chapter 5, and d is some integer specified by the user. Using these units and

a sufficiently large value for d, we can express time with arbitrarily fine precision without

the use of floating-point numbers (assuming d does not get so large that the times we want

to express do not fit in a 32-bit "long" integer). As discussed further in Appendix B, this

not only allows us to avoid rounding-errors associated with floating-point numbers, but also

makes it easier to implement the scheduling algorithms.

As Figure 6-1 shows, the software allows the user to express the timing parameters

in five different ways. The first two ways (dt and At) are self-explanatory. The third

(1/dt) allows the user to express the timing parameters as fractions of a clock period. For

example, if system m's propagation delay, Pm, is 20% of the minimum clock period, and

d is equal to its default value of 1000, then the user should enter 200 when asked for Pm.

As discussed in section 3.5.1, expressing the timing parameters in this way is useful if we

97

1 11

98 CHAPTER 6. SIMULATION AND IMPLEMENTATION

Main Menu

* Enter Parameters

* Generate Output

* Options Menu

Options Menu

· Parameter Units

- dt
- At
- lid of a clock period

- Absolute Units with Clock Division

- Absolute Units with Clock Multiplication

· Scheduling Algorithm

- Original Single-Buffered

- Generalized Run-Time (2 buffers)

- Basic Run-Time Double-Buffered (Greedy)

- Basic Run-Time Double-Buffered (Lazy)

* Compute Mode

- Pair
- Table

* Output Format

- Text

- IATEX schedule diagram

- TEX schedule plot (not implemented)

-ROM

* Output Options

- Log file name

- Show intermediate results?

- Draw text schedule diagram?

- Use with prototype chip?

Figure 6-1: The communication scheduling software's menu options.

6.1. COMMUNICATION SCHEDULING SOFTWARE

assume that rational clocking will be used with systems whose timing parameters scale with

their minimum clock periods.

The last two ways to express timing parameters, are useful when the timing param-

eters are fixed, or absolute, and do not scale with the clock period. The fourth option

assumes that clock division is being used, and asks the user for integers representing the

timing parameters and the generating clock's period, Thigh, in some base unit of time (e.g.,

picoseconds, nanoseconds, etc.). The fifth assumes that clock multiplication is used, and

asks the user for TM instead of Thigh, where TM is assumed to be the generating clock's

period (i.e., we assume that Clkn is generated from Clkm so that TM remains fixed while

TN varies). These two ways of expressing the timing parameters are useful in situations

where the same hardware is to be used at different frequencies. In programming the ROM

used in the demonstration circuit of section 6.3, for example, the timing parameters were

specified using absolute units with clock division.

6.1.2 Scheduling Algorithms

Four scheduling algorithms were implemented in the program: the original greedy algorithm

for single-buffering, the greedy and lazy versions of the run-time scheduling algorithm for

double-buffering, and the generalized run-time scheduling algorithm. These algorithms were

slightly modified to make them work better with the software's representation scheme for

time. More details regarding these modifications can be found in the discussion and source

code contained in Appendix B.

6.1.3 Computation Modes

The scheduling software works in one of two computation modes: pair, and table. In pair

mode, the software simply uses the currently selected algorithm to generate bidirectional

schedules (i.e., two schedules, one for each direction) for the frequency ratio specified by the

user through the variables M and N. In table mode, the software computes schedules for

all frequency ratios with numerators and denominators ranging from 1 to max(M, N), and

outputs the throughput efficiency in percent for each of these ratios in a two-dimensional

99

I 11

100 CHAPTER 6. SIMULATION AND IMPLEMENTATION

table format. Table mode is also used to generate object code files for programming ROMs

that work with different frequency ratios.

6.1.4 Output Formats and Options

The scheduling software can produce output in a number of formats, and has a few options

available for each of these formats.

Text Output

The simplest output format is text, where the program just emits text to the standard

output. This provides a quick and portable (i.e., it works on standard TTY terminals) way

to look at the generated output. When using this format, the program also allows the user

to keep a log of all generated text output in a separate file. This makes it possible for

the user to do several computations in one run through the program, and then review the

results at a later time by looking at the log file.

When using text format in pair computation mode, the program shows the schedules for

both directions by listing the values of the control signals for each clock cycle, as shown in

Figure 6-2. The user has the option of displaying these control signals in a simple character

string format as in Figure 6-2(a), or in a formatted text version of a schedule diagram as

in Figure 6-2(b). The latter gives a better sense of the timing relationship between the two

systems, and is preferable to the former as long as M and N are not so large that the text

schedule diagrams become wider than the screen. The program also reports the throughput

efficiency in each of the two directions, although this is not shown in Figure 6-2.

Since we cannot draw arrows to explicitly indicate data transfers, we instead show the

values of two data lines in the circuit, TD (transmitted data) and RQ (received data).

The value of TD during a certain cycle is the value presented by the transmitter at the

input of the transmit register during that cycle. If TE is also 1 during that cycle, then TD

gets latched into the transmit register at the next clock edge, and gets transmitted to the

receiver. The value of RQ during a certain cycle is the value at the output of the receive

6.1. COMMUNICATION SCHEDULING SOFTWARE

M -> N

N.RE : 110101

M.TE : 11011

N.Rsel : OOxOx0

M.Tsel : OOxO0

N.RQ : 301x2x

M.TD : 12x30

N -> M

N.TE : 010111

M.RE : 10111

N.Tsel : xOxO00

M.Rsel : OxO00

N.TD : x1x230.

M.RQ : 30x12

M -> N

N.RE : I 1 1 0 0 1

M.TE : 1 i 1 I 0 I 1 I 1 I

N.Rsel : 0 0 x I 0 I x I 0 I

M.Tsel : 0 I 0 I x I 0 0 I

N.RQ :1 31 01 11 xl 21 xl
M.TD : I 1 I 2 I x 3 0

N -> M

N.TE : 0 1 0 1 1 11

M.RE : I 1 I 0 I 1 1 1 I

N.Tsel : x I 0 I x I 0 I 0 0 I

M.Rsel : 0 I x I 0 0 I 0

N.TD : I x 1 x 2 3 0!
M.RQ : 1 3 I 0 I x 1 1 I 2

(a) (b)

Figure 6-2: Sample text outputs in pair mode. (a) Without text schedule diagrams. (b)
With text schedule diagrams.

Freq.
1

2
3
4
5
6

1

0
0
0

100
100
100i0

2
0
50
50

100
100
100

3
0
50

33
66
66
100

4
100
100
66
100
75
100

5
100
100
66
75
100
80

6
100
100
100
100
80
100

Figure 6-3: Sample text output in table mode.

101

102 CHAPTER 6. SIMULATION AND IMPLEMENTATION

register. If RE was 1 during the previous cycle, then RQ represents new data just latched

into the transmit register at the most recent clock edge. As with determining RE and TE,

we use modulo arithmetic when determining which clock cycle receives the transmitted

data. That is, the data transfers "wrap-around" the right edge of the diagram.

When using text format in table computation mode, the program generates a simple

table of throughput efficiency values with M designating the rows and N designating the

columns. The throughput efficiency reported is the throughput efficiency when transmitting

data from system m to system n. Figure 6-3 shows an example where the timing parameters

are defined as S = 1, H = 1, C = 1, and P = 3, in units of At.1 Note that since units of At

are being used here, the fraction of the clock cycle covered by a timing parameter actually

becomes larger as M and N become smaller. That is why the throughput efficiency starts

out low with small values of M and N and becomes higher as M and N increases. A similar

effect can be seen when using absolute units with clock division.

In both pair or table computation modes, the user has the option of looking at the results

of intermediate computations while the program is running. This is useful for debugging

code, and also for just gaining a better understanding of how the algorithm works. When

using this "peek mode", a log file can become useful since the intermediate computations

usually generate a large amount of output.

LATEX Output

The scheduling software also allows the user to generate files that can be formatted by the

IATEX document preparation system [29]. It can generate graphical schedule diagrams in

pair computation mode, and formatted throughput efficiency tables in table computation

mode.

In pair computation mode, the program generates a ITEX file, sched.tex, which when

compiled, produces schedule diagrams such as that in Figure 6-4.2 Unfortunately, arrows

1These are the same parameters used in the original example in section 3.3, in the examples in Chapter 5,
and in the example in Figure 6-2. These are not the same as the parameters used in Figures 3-5 and 4-1.

2The figure only shows one direction of data transfer. The actual sched.tex file contains a separate
schedule diagram for each of the directions.

1.

6.1. COMMUNICATION SCHEDULING SOFTWARE

RQ
Rsel
RE

3 0 1 * 2 *

0 0 * 0 * 0

1 1 0 1 0 1

0 1 2 3 L4 S 5
H S H S H H 8~ H S H S i H S_

c -- p cI p c-1 p c-j p cH-i P

I0 1 2 41
TE 1 1 0 1 1

Tsel 0 0 * 0 0

TD 1 2 * 3 0

Figure 6-4: A ATEX format schedule diagram.

cannot be drawn in the schedule diagram because LATEX's picture environment, which is

used to generate these diagrams, has no provision for drawing lines of arbitrary slope.

In table computation mode, the program generates a IATEX tabular environment which

can be inserted into LATEX documents to produce tables such as those in Figures 3-5 and 4-1.

Figure 6-5 shows another table generated using the timing parameters of the demonstration

circuit discussed in section 6.3.

Since generating schedule diagrams in pair computation mode and generating text out-

put can be done independently, the software does both. That is, it displays the results in

text format on the standard output, and at the same time generates sched.tex. Similarly,

when computing in table mode, the program uses text format for the standard output, while

using LATEX format for the output file. In this case, however, the output file is simply the

log file, so the user may first have to clip the desired tabular environment from the log file

and save it into a separate file before being able to use it.

One feature that was planned but not yet implemented is the ability to generate LATEX

format schedule plots such as the one in Figure 5-1. This feature can be implemented using

the same techniques used to implement the LATEX schedule diagrams are implemented.

103

CHAPTER 6. SIMULATION AND IMPLEMENTATION

Receive Frequency
1 2 3 4 5 6 7 8 9 10

100 100 100 100 100 100
50 100 100 100 100 100

100 66 100 100 100 100
66 100 75 100 100 100

100 75 100 80 100 100
100 100 80 100 83 100
100 100 100 83 100 85
100 100 100 100 85 100
100 100 100 100 100 87
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100

11 12 13 14 15 16
100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100
87 100 100 100 100 100 100 100

100 88 100 100 100 100 100 100
88 100 90 100 100 100 100 100

100 90 100 90 100 100 100 100
100 100 90 100 91 100 100 100
100 100 100 91 100 92 100 100
100 100 100 100 92 100 92 100
100 100 100 100 100 92 100 93
100 100 100 100 100 100 93 100

Figure 6-5: ITEJX format efficiency table for the demonstration circuit's timing parameters.

ROM Output

The scheduling software provides the capability to generate output in the Intel MCS-86

16-bit Hexadecimal Object file record format [30]. To produce an object file for a "generic"

ROM similar to that described in section 3.5.1, the user simply specifies table computation

mode and ROM Output format together. This tells the program to output an object file

containing not only the appropriate lookup table contents for different frequency ratios,

but also those for different algorithms. In this way, the user can specify the scheduling

algorithm using the most significant address bits of the ROM. The program also gives the

user the option to generate a ROM file specifically for use with the prototype rational

clocking chip. When this option is used, the program automatically remaps the ROM to

account for certain idiosyncrasies of the rational clocking chip. More details on the address

mapping of the ROM, as well as its output format, are provided in section 6.3.4.

When using ROM output format, the program writes the output to both the standard

output and to the log file. The ROM format is a text file, not a binary file, so the user can

easily edit the log file as necessary. Furthermore, the object file is generated in such a way

that the tables produced by different algorithms are stored under separate segments [30].

This makes it easy for the user to select only desired algorithms when all of them together

would not fit in the ROM.

I li

104

Transmit
Freq.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

0 0
0 50

100 50
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100

6.2. THE PROTOTYPE RATIONAL CLOCKING CHIP

6.1.5 Results and Recommendations

The communication scheduling software successfully generated correct schedules for different

timing parameters, frequency ratios, and algorithms, and gave valuable insights that helped

refine the scheduling algorithms. Furthermore, it was successfully used to generate a ROM

for use with the prototype rational clocking chip in the demonstration circuit.

Despite its usefulness, however, the software can still benefit from several improve-

ments. Improved graphical output, for example, would be very useful in helping users

visualize the communication schedules. This can be achieved by using Postscript instead

of the IlTEX picture environment. Automatic conversion between different timing param-

eter units would be another useful feature. Ideally, the user should just be able to enter

numbers taken from a data book, and then have the software automatically perform such

computations as finding appropriate values for d, and performing conservative rounding

when necessary.

Perhaps the most useful feature to have at this point, however, would be the capability

to check the correctness of the generated schedules. Right now, the program does not

actually check that the schedule generated by an algorithm is error-free. Using the run-

time double-buffered lazy algorithm for the slower receiver case, for example, frequently

results in erroneous data transfers being done when the smaller of M and N is not even To

detect these problems, we might write an independent function that takes a given schedule,

attempts to perform data transfers according to it, and reports problems such as setup and

hold time violations.

6.2 The Prototype Rational Clocking Chip

The prototype rational clocking chip is a full-custom CMOS VLSI circuit that implements

the RAM-based scheduler described in section 3.5.3, and is designed to be flexible enough

to be used in a number of experimental configurations. A block diagram of the prototype

chip is shown in Figure 6-6. The chip contains three major components: the counters,

the lookup tables, and the circuitry for loading the tables on bootup. This section gives a

105

CHAPTER 6. SIMULATION AND IMPLEMENTATION

CLR

-RDY

REn
En

D;n

M-1 Zm Zn N-i

Figure 6-6: The prototype rational clocking chip.

functional description of these components, and presents the results of the fabrication and

testing process. A layout of the chip can be found in Appendix C.

6.2.1 The Counters

Each counter in the chip is a 4-bit negative edge-triggered decrementing counter with a

terminal count input, and a combinational active-low zero output, Z, which goes low when-

ever the count value is zero. To use it as a divide-by-N counter, we set its terminal count

to N - 1. This makes the counter count down from N - 1 to zero, and causes it to emit a

one cycle pulse on Z once every N cycles. We can then implement clock multiplication by

connecting the counters to an external PLL as in Figure 3-2. We can also use the chip with

clock division by simply taking the clock inputs from an external clock division circuit like

that in Figure 3-1, and ignoring the Z outputs. The external clock division circuit in turn

can be implemented using another rational clocking chip.

The counters can be used to generate rationally related clocks with ratios where M and

N range from 2 to 16. They cannot be used for ratios where either M or N is 1, however,

since the Z output would then stay low and not pulse. This problem can be solved easily

I 1.1

106

6.2. THE PROTOTYPE RATIONAL CLOCKING CHIP

by either manually connecting the undivided clock directly to the appropriate system, or

doubling both M and N.

6.2.2 The Lookup Tables

Within the chip, each counter is used to index a 16-entry, 3-bit wide lookup table. The

tables are only 3 bits wide instead of the ideal 4 bits for double buffering (i.e., one bit each

for TE, TSel, RE, and RSel) because the chip was designed before double-buffering was

developed. Thus, it only has bits for TE and RE, plus an extra bit for a time-advanced copy

of TE should reaction latency compensation be necessary. Fortunately, for experimentation

purposes, we can easily get 4 bits by using two copies of the rational clocking chip.

The lookup tables are implemented as serial-in parallel-out (SIPO) shift registers that

are loaded at bootup time with the appropriate entries by shifting-in values from a 3-bit

input. With the appropriate interface, the lookup tables can be used with a serial ROM,

a combinational ROM, a processor running scheduling software, or a run-time scheduling

circuit.

6.2.3 The Bootup Control Circuitry

The chip has an asynchronous active-low reset line, CLR, which clears the tables and

counters, and signals the start of the bootup sequence. The chip waits until CLR goes

high, then proceeds to load the lookup tables on the following 16 clock edges, shifting-in

entry 15 first and entry 0 last. The lookup table outputs are invalid during these first 16

cycles, and should not be used. A ready signal, RDY, goes high after the last entry has

been loaded to indicate when we can start using the lookup tables.

The lookup tables and the bootup control circuitry use a "bootup" clock, Clkb, which is

independent of the two system clocks. This separate clock allows us to load both systems'

lookup tables from a single ROM. It also allows us to load the lookup tables at a slower

rate, as may be required if we have a slow ROM, slow run-time scheduling hardware, or are

using software to load the lookup table.

107

108 CHAPTER 6. SIMULATION AND IMPLEMENTATION

Using an independent bootup clock has the disadvantage of making the RDY signal

asynchronous to the two system clocks. This problem is easily solved by ignoring RDY

altogether, and instead manually determining some minimum number of equivalent system

clocks it takes to load the tables and making sure that the systems wait at least that long

before attempting to transfer data. Alternatively, a better solution is to use the Z output of

one of the counters as the bootup clock. This clock would run at the coincidence frequency,

and would be synchronous to both systems. We can also use a frequency-divider on the Z

output if a slower bootup clock is desired.

To make the chip easy to use with conventional, combinational ROM chips, an on-

chip bootup counter, B, is provided. This counter, which uses the bootup clock, emits

a decreasing 4-bit number that can be used to index a combinational ROM, allowing the

ROM to output the appropriate entries as the lookup table is loaded.: Ideally, the bootup

counter should count from 15 to 0 during the first 16 clock cycles so that the lookup table

entries are loaded in the proper sequence. However, since the counter is cleared on reset 3 it

actually starts at 0 first before going to 15 and counting down, causing a shift in the lookup

table entry sequence. That is, entry 15 of the lookup table would be loaded with entry 0

from the ROM, entry 14 loaded with entry 15 from the ROM, and so on. This shift is easily

accounted for, however, by having the software that programs the ROM store the intended

contents for lookup table entry x in ROM entry (x + 1) mod 16 (for some x).

6.2.4 Fabricating and Testing the Chip

The prototype chip was designed using Mentor Graphics' GDT CAD tools. After extensive

simulation, the chip design was sent to MOSIS for fabrication and packaging. Approximately

two months later, MOSIS sent back four copies of the chip, each packaged in a 40-pin DIP.

These chips were then tested on a breadboard under two configurations.

The first test configuration was simple: the three clocks were connected together to a

pulse generator, and the lookup table inputs were connected to the bootup counter outputs.

In this way, the lookup tables and counters could be tested without the need for other chips.

3The bootup counter and the index counters are built from the same design.

11

6.2. THE PROTOTYPE RATIONAL CLOCKING CHIP

Measured (ns) Simulated (ns)
rising falling rising falling

REm 28 28 16 21
Zm 24 35 12 20
bit 0 of countB 22 22 10 10

Figure 6-7: Measured and simulated clock-to-Q propagation delays of some chip outputs.

Measured from Measured (ns) Simulated (ns)
Rise time 0 V to 3.2 V 4 3

0.5 V to 4.5 V 4 1.7
0 V to 5 V 15 4

Fall time 5 V to 1.8 V 3 3.7
4.5 V to 0.5 V 3.5 3.7
5Vto0V 5 4.3

Figure 6-8: Measured and simulated rise and fall times of the chip's counter outputs.

A second test configuration involved two copies of the chip, with the first copy generating

the two system clocks of the second copy through clock division. In this way, any unwanted

glitches on the Z output of the first chip would be detected, and the ability of the second

chip to take three independent clocks would be tested.

Of the four chips, one was damaged by a human error during testing, while the rest

worked as expected. Timing measurements were taken using one of the chips, and were

compared with the simulation results. As shown in Figure 6-7, the measured propagation

delays were generally higher than their simulated values, but are roughly within a factor

of two of their simulated values. This is not abnormal for prototype chips fabricated by

MOSIS. The measured and simulated rise and fall times are shown in Figure 6-8. Comparing

these values, however, would probably not be meaningful since the simulated times were

taken from inside the chip (i.e., without including the pin driving circuitry), and thus does

not necessarily represent the rise and fall times outside the chip.

The chip was able to operate successfully in the lab at clock speeds up to 25 MHz. It

could not be tested above this frequency because the available pulse generator could not

go faster. From the timing measurements in Figure 6-7, however, it seems unlikely that

the chip's actual maximum frequency would be significantly higher than 25 MHz. Since

the chip uses dynamic memory elements, it was also tested at low frequencies. It operated

109

I 1.1

110 CHAPTER 6. SIMULATION AND IMPLEMENTATION

TEOm TElm Clkm

Figure 6-9: The transmitter's circuitry.

successfully at 333 Hz, the pulse generator's lower limit.

6.3 The Demonstration Circuit

A demonstration circuit using the prototype chip was built to test the rational clocking

technique and demonstrate its usefulness. This circuit was built on a breadboard and uses

off-the-shelf digital components from the 74Fxx family. It employs clock division to generate

the system clocks, and implements a unidirectional 4-bit double-buffered data channel from

system M to system N. The lookup tables are loaded from a single ROM large enough

to allow the user to choose among different tables generated by several algorithms. This

section describes the various parts of the demonstration circuit as well as the results of the

experiments done on it.

6.3.1 The Transmitter's Circuitry

In the demonstration circuit, system M transmits to system N using a double-buffered

data channel. Figure 6-9 shows the transmitter's circuitry. As shown, two 4-bit transmit

registers (74F378) are used as in the double-buffered hardware shown in Figure 4-8. Instead

of using TSel and TE, however, we use two separate enable signals, TEO and TEl, defined

6.3. THE DEMONSTRATION CIRCUIT

as follows:

TEO = TE TSel (6.3)

TE1 = TE TSel

By programming the lookup tables to generate these signals instead of TSel and TE, we

avoid the need for a demultiplexer, and save on hardware and wiring.

For a data source, we use a 4-bit counter (74F163) with its enable control connected to

the TE signal derived by ORing TEO and TE1. Configured in this way, the counter uses

TE as the D Taken signal. That is, whenever TE is 1, the counter knows that its current

value will be latched by one of the transmit registers on the coming clock edge, and that

it is thus safe to place the next value on Dm during the next cycle. Thus, in this case,

reaction latency compensation is unnecessary.

Using the manufacturer's specifications for the different components, and making the

necessary adjustments to account for the delay through the clock's inverter, we arrive at the

following propagation and contamination delays for the two transmit registers (see Appendix

A for more details):

tc, = 4.5ns (6.4)

tpr = 15.5ns

To make decision window violations more detectable, we connect the LSB of the transmit

register's 4-bit output to a 200 ns delay element. This widens the transition window by

increasing tpm while keeping tn the same. That is, we now have:

tcm = 4.5ns (6.5)

tpm = 215.5ns

Furthermore, this scheme makes it possible to simulate the effect of metastable states,

which are very hard to catch in practice. By delaying the LSB, we cause an out-of-sequence

number to appear at the receiver's input during the transition window. Thus, if the receiver

tries to latch its inputs any time during the transition window, it would get a wrong value

- even if no metastable states are actually generated.

111

I II

112 CHAPTER 6. SIMULATION AND IMPLEMENTATION

Valid

RSel n REn Clkn

Figure 6-10: The receiver's circuitry.

6.3.2 The Receiver's Circuitry

The receiver's circuitry, shown in Figure 6-10, is simply a direct implementation of the

receiver's circuitry in Figure 4-8. An additional register (74F74) is used to latch RE to pro-

duce a "valid" bit that tells the receiving system whether the current value of Q, represents

new data, or if it is old and should be ignored.

To calculate the equivalent setup and hold times of the receiver, we must take account

not only of the delay through the clock inverter, but also of the additional delay through

the multiplexer. Using the information in Appendix A, we arrive at the following setup and

hold times:

t,, = 9.5ns (6.6)

thn = 4.0ns

6.3.3 Clock Generation and Reset Circuitry

For simplicity, the demonstration circuit uses clock division instead of clock multiplication.

This allows us to avoid using a PLL and having to deal with its analog requirements. As

shown in Figure 6-11, we implement clock division by taking both system clocks of a rational

clocking chip, RCC A, from a single clock, Clkhigh, and using the Zm and Z, outputs of

6.3. THE DEMONSTRATION CIRCUIT

Figure 6-11: The clocking and communication control circuitry.

this chip as the Clkn and Clkm inputs respectively of a second rational clocking chip, RCC

B.4 In the lab, Clkhigh was taken from a pulse generator running at 10 MHz. The timing

relationships of the resulting clock waveforms are shown in Figure 6-12. For clarity, the

counter values that determine each Z output are also shown. Note that by clearing all the

counters simultaneously, the asynchronous CLR input makes the active edges of the two

clocks, Clkm and Clk,, coincide naturally when clock division is implemented.

A reset signal for the two rational clocking chips is generated by a TTL R-S flip-flop

(74LS279) acting as a debounced switch [31]. To reset the circuit, the user first grounds the

R input, then disconnects it and grounds the S input. This has the effect of first clearing,

then setting the flip-flop without generating glitches due to switching mechanics. A TTL

chip is required here so as to guarantee that an unconnected input is read as a logical 1.

This prevents both R and S from being 0 at the same time.

4In the circuit diagram, a bar over a signal name indicates that the signal is active low. For clock signals,
this means that the negative edge is considered to be the active edge.

113

114 CHAPTER 6. SIMULATION AND IMPLEMENTATION

Clkhigh

RCC A Zm/Clk n 0 1 0 1 0 1 0 1 0 1

Zn/Clk 1 2 1 0 2 1 0

RCC B Zn 2

Zm o- I
Figure 6-12: The demonstration circuit's clock waveforms.

6.3.4 The Communication Control Circuitry and the ROM

A second copy of the rational clocking chip, RCC B, is used to generate the control signals.

As shown in Figure 6-11, RCC B generates the control signals needed to allow system M

to transmit to system N. To implement bidirectional transfer, we can simply use a third

copy of the chip to generate the other set of control signals.

RCC B is loaded from a combinational ROM (27C512) which is programmed by the

communication scheduling software. It takes 15 bits of address input and outputs 8 bits,

as shown in Figure 6-13. The lowest-order 4 bits of the address are taken from RCC B's

bootup counter, and indicate the current clock cycle whose corresponding control signals

are to be read. The next 8 bits specify M and N. The highest order 3 bits allow the user

to switch between tables generated by different algorithms. At least one of the 8 possible

settings corresponds to having no flow control at all - i.e., TE and RE are fixed at 1,

and TSel and RSel are fixed at 0. This allows us to demonstrate clearly the need for flow

control. Figure 6-14 shows the bit encoding actually used in the demonstration circuit.

Programming the ROM for use with the rational clocking chips requires some remapping

of the lookup tables. First, we must account for the fact that the chip counters decrement

instead of increment, as we have assumed so far in this paper and in the communication

scheduling software. Then, we must fix the shift caused by the chip's bootup counter.

Figure 6-15 shows the relationship between the cycle number (cycle,), the counter value

for the cycle count, and the ROM address (i) where the control signals for this cycle

should be stored. From this table, we can determine what goes into some ROM address i

1 1.1

6.3. THE DEMONSTRATION CIRCUIT

algo Mr-1 N-1 B

l l l

i . . 4 I _
RSel mREmTEln TEOn RSel n REnTElm TEOm

Figure 6-13: The ROM inputs and outputs.

Code
000
001
010
011
100

other

Algorithm
No Flow Control
Original Single-Buffered
Generalized Run-Time
Greedy Double-Buffered
Lazy Double-Buffered
undefined

Figure 6-14: Bit codes for different algorithms.

cyclem
0
1

2
3
.. .

countm
0

M-1
M-2
M-3

.. .

i
1

0
M-1
M-2

Figure 6-15: Mapping between cycle number and ROM address (for system m).

14... 12 11...8 7...4 3...0

27C512
EPROM

7 6 5 4 3 2 1 0

i _· ·

_

115

116 CHAPTER 6. SIMULATION AND IMPLEMENTATION

as follows:

ROM[i] +- Table[(M - i + 1) mod M] (6.7)

where Table[x] for some x represents lookup table entry x if we are using an incrementing

counter.

6.3.5 Results and Recommendations

The demonstration circuit was tested using different frequency ratios and scheduling al-

gorithms. It performed as expected, and provided a better feel for how rational clocking

solves the flow control and synchronization problem. It was especially interesting to see

how double-buffering allowed 100% throughput to be achieved where it could not be done

with single-buffering. The waveforms produced by this circuit were very similar to those

produced by the Verilog simulations shown in the next section.

In order to provide a more realistic demonstration of how rational clocking would ac-

tually be implemented in applications, the demonstration circuit should be modified in the

future to use clock multiplication instead of clock division. Among other things, this would

allow the user to test the robustness of the rational clocking circuitry in the presence of

phase jitter and other possible problems involving the PLL.

6.4 Verilog Modelling and Simulation

The prototype chip and the demonstration circuit tested the rational clocking technique

with a simple table-based implementation. To test the more complex run-time implemen-

tation, a model using the Verilog hardware description language [32] was constructed and

simulated using Cadence Systems' Verilog tools. This model included a bidirectional double-

buffered data channel, three versions of the run-time scheduling hardware, and circuitry for

computing constants such as eo and yo at bootup. The complete source code is listed in

Appendix D.

11

6.4. VERILOG MODELLING AND SIMULATION

6.4.1 The Data Channel

The Verilog model contains two double-buffered data channels (one for each direction)

implementing the original double-buffered configuration shown in Figure 4-8. The transmit

registers in these channels, unlike those in the demonstration circuit, are controlled by TE

and TSel, instead of TEO and TEl. As with the demonstration circuit, counters with

enable inputs are used as data sources, and an extra 1-bit register is used by the receiver

for the valid bit.

This model does not use a delay element to increase propagation delay as done in the

demonstration circuit, but instead uses Verilog features to simulate contamination and prop-

agation delays in the transmit registers, and setup and hold times in the receive registers.

These timing parameters can be specified by the user in units of At.

6.4.2 The Scheduling Hardware

The Verilog model implements three different versions of the scheduling hardware: the lazy

and greedy basic run-time schedulers of section 5.2, and the generalized run-time scheduler

of section 5.3. Conditional compilation directives allow the user to select between these

versions by simply defining the appropriate names using the 'define compiler directive.

6.4.3 The Bootup Computation Circuitry

In order to work properly, the scheduling hardware requires precomputed values of certain

constants such as e and yo. In the Verilog model, we compute most of these constants at

bootup time using the circuits described in section 5.2.4.

The model uses both combinational and sequential versions of the modulo circuit. The

combinational version is used for computing e, yo, and the value of (i - 1) mod M in the

LD Gen module. The sequential version is used for computing ANM, and e mod M.

Each of the three scheduling hardware implementations uses its own version of the

bootup computation circuitry. Some versions use additional circuitry to perform necessary

117

I 1:1

CHAPTER 6. SIMULATION AND IMPLEMENTATION

N
I

118

cntN

qinN

validN

REN'

RSelN'

qM

qOM

qlM

TSelM

TEM

dM

cntM

Figure 6-16: Slower transmitter case with no flow control.

adjustments to eo and yo as discussed in Chapter 5. The generalized run-time scheduler

also uses extra circuitry for computing emax and emin.

6.4.4 Results and Recommendations

The three versions of the scheduling hardware were each simulated using several sets of

timing parameters and frequency ratios, and the resulting schedules were compared with

the schedules generated by the communication scheduling software. All the versions worked

as expected, thus proving the correctness of the various run-time scheduling circuits.

Figures 6-16 to 6-19 show sample outputs from the Verilog simulator for the case where

M = 5, and N = 6, and the timing parameters are S = 1, H = 1, C = 1, and P = 3,

for both systems. In each of these figures, cntM and cntN indicate the index counters'

outputs, d represents data at the input of the transmit register, qO and ql are the outputs

of the two transmit registers, q is the output of the multiplexer, and qin is the output of

the receive register. (Note each of these signal names are followed by N or M in the figure,

depending on the system they belong to.) Shaded areas represent unknown values, and

occur during the transition windows of the transmit registers and when the receive register

suffers a decision window violation.

I

6.4. VERILOG MODELLING AND SIMULATION

A 3000

II
cntN

dN

TEN

TSelN

qN

qON

qlN

RSelM'

REM'

validM

qinM

cntM

id

Id

Figure 6-17: Slower receiver case with no flow control.

Figures 6-16 and 6-17 show the result of not using any flow control at all. It is clear

from these figures that we not only suffer data loss as the faster system outruns the slower

one, we also encounter a lot of decision window violations. Figures 6-18 and 6-19 show

the result of using the generalized run-time scheduler with double-buffering. As shown, by

emitting the right control signals at the right times, we successfully solve the flow control

and synchronization problems. Furthermore, by using double-buffering, we are able to

achieve 100% throughput where it would otherwise not have been possible.

There are still many ways to improve the Verilog model. It may be useful, for example,

to modify the generalized run-time scheduler to work with timing parameters that are not

integer multiples of At. This can be done by making the appropriate registers and multi-

plexers wider. Most efforts at improving this Verilog model, however, should be directed

towards developing and simulating appropriate interfaces for real applications. It would

particularly be useful, for example, to start integrating the Verilog model built for this

thesis, with the Verilog model of the current NuMesh CFSM.

I

119

I 1.1

120 CHAPTER 6. SIMULATION AND IMPLEMENTATION

U

=;

Z

_Z

Figure 6-18: Slower transmitter case with generalized run-time scheduling and double-
buffering.

1

Figure 6-19: Slower receiver case with generalized run-time scheduling and double-buffering.

13

io

13

I
I
I
I

Chapter 7

Conclusion

Rational clocking addresses the increasingly common problem of providing efficient com-

munication between two systems running at different clock speeds. Traditional solutions

to this problem have generally lacked either efficiency or flexibility, and leave much to be

desired. Rational clocking provides both efficiency and flexibility by requiring a rational

relationship between the two clock frequencies. This rational frequency constraint makes

it possible to achieve communication without handshaking and synchronizers for a wide

variety of frequency pairs.

The most straightforward way to implement rational clocking is to use lookup tables

that generate flow control signals according to a precomputed communication schedule. This

schedule is determined given the frequency ratio and the two systems' timing parameters

using a simple greedy algorithm which selectively enables and disables data transfers in

such a way that timing violations are avoided. The table-based hardware can be made

more versatile by using the algorithm on several different frequency ratios and then storing

the resulting schedules into a single generic table.

Although the straightforward implementation of rational clocking provides high levels

of throughput efficiency for different frequency ratios given typical timing constraints, it

cannot maintain this high efficiency given the tighter timing constraints typical in high-

performance systems. The double-buffering technique, which uses two transmit registers

instead of one, solves this problem by providing a data channel where the possibility of

121

122 CHAPTER 7. CONCLUSION

contamination between successive data transfers is eliminated. This contamination-free

data channel simplifies the scheduling requirements, and can be proven to guarantee 100%

throughput for the slower system in most applications, regardless of frequency ratio and

timing parameter values.

The table-based implementation has the disadvantage of trading-off space for flexibility.

A generic table accommodating different frequency ratios and timing parameters, for ex-

ample, requires as much as O(N 7) bits of memory, where N is the maximum possible value

for the frequency ratio numerator and denominator. This problem can be solved by avoid-

ing precomputation altogether and taking advantage of the clocks' regularity to schedule

communications at run-time using specialized rate multipliers. This run-time scheduling

hardware only requires O(lgN) bits to handle all possible ratios and timing parameters.

Two major variants of run-time scheduling have been presented. The basic algorithm works

with contamination-free data channels, and is easy to implement. The general algorithm

extends the basic algorithm to cases where contamination is possible, and makes it possible

to design run-time scheduling hardware that can be used on single-buffered systems, but

take advantage of double-buffering when available.

All these techniques were studied and tested using a combination of software, hardware,

and simulations. Communication scheduling software was written for testing and using the

different scheduling algorithms. A VLSI prototype chip employing programmable lookup

tables was fabricated and used in a circuit that demonstrates double-buffering. The different

run-time scheduling circuits were modelled and simulated in Verilog. These different tools

successfully demonstrated the correctness and usefulness of rational clocking, and provide

a base for future research in applying rational clocking to real systems.

7.1 Putting It All Together

The ideas and techniques presented in this thesis each have their own advantages and dis-

advantages, and can be used together when applying rational clocking on high-performance

and high-flexibility systems. Figure 7-1 shows a single circuit that integrates these different

techniques to achieve efficiency, flexibility, and cost-effectiveness.

I 1.1

7.1. PUTTING IT ALL TOGETHER

System m System n

Figure 7-1: Putting it all together in a single circuit.

This circuit provides 100% throughput efficiency for all frequency ratios and timing pa-

rameters by using double-buffered data channels. The use of double-buffering also simplifies

communication scheduling, and in particular, allows us to use the basic run-time scheduling

algorithm, which is easier to implement than the general algorithm and less sensitive to

variations in the timing parameter values. Run-time scheduling hardware allows maximum

flexibility in choosing frequency ratios and timing parameters without taking-up a large

amount of space. It can be used alone to generate control signals continuously, but in very

high-performance systems where the computation delay through the run-time scheduler lim-

its the maximum clock speed, is better used together with programmable tables as shown

in the figure. These tables would not be unreasonably large or expensive - they need only

around 4N bits each, where N is typically less than 16 - and thus can be made extremely

fast. By loading these tables from the run-time scheduling hardware using a slow bootup

clock, we can combine the flexibility of the run-time scheduler with the speed of the small

lookup tables.

123

I 1.1

124 CHAPTER 7. CONCLUSION

7.2 Future Research

There is still a significant amount of research, both theoretical and practical, that can be

done on various aspects of the rational clocking technique.

On the theoretical side, the properties of the single-buffered algorithms - the original

greedy algorithm of section 3.3 and the generalized algorithm of section 5.3 - can be studied

further. In particular, it would be useful to determine the exact conditions that lead to

sub-optimal throughput efficiency given a certain choice for Pbegin, and to develop a way

to choose the optimal Pbegin without having to run through all the possibilities. It may be

possible to solve this problem by unrolling the loop in the run-time scheduling algorithms

and deriving an analytic expression of the control signals as a function of M, N, the timing

parameters, and the current clock cycle number. Another good subject for future research is

the application of double-buffering to out-of-phase communication. As discussed in section

4.4.2, this can be valuable in multiprocessor systems and should be studied further.

On the practical side, research can be directed towards applying rational clocking in

real multiprocessor and uniprocessor systems. This would involve improving the scheduling

software, performing more hardware experiments, and developing interfaces. It would also

be useful to develop a standard "off-the-shelf" rational clocking chip that would allow system

designers to easily incorporate rational clocking into their systems. This circuit would use

run-time scheduling, either alone or with programmable lookup tables, to provide flexibility

without requiring a large amount of space.

7.3 Concluding Remarks

In this thesis, we presented the rational clocking technique and improved it significantly,

making its application in real systems not only more promising, but more feasible as well.

More research should now be directed towards actually implementing rational clocking, and

making it a standard part of existing and future high-performance computer systems.

Appendix A

Computing Timing Parameters

In computing the timing parameters of a system, it is not enough to consider only the

parameters of the transmit and receive registers. The inputs, outputs, and clocks of these

registers may suffer additional delays that can change their effective timing parameters.

This appendix discusses general rules for handling these delays, and then applies these

rules to the computation of the demonstration circuit's timing parameters.

A.1 Effective Timing Parameters

Figure A-1 shows three possible ways in which additional delays can affect a register's timing

parameters. In general, delays can occur at a register's data output, data input, or clock

input. As shown in the figure, we can model these delays with a buffer having contamination

and propagation delays tB and tpB. Taking the register and the buffer together as a single

module, we can then use tcB, tpB, and the register's timing parameters, t, th, tc, and tp,

II(a) (b) I

(a) (b) (c)

Figure A-1: Possible delay configurations. (a) Output. (b) Input. (c) Clock.

125

126 APPENDIX A. COMPUTING TIMING PARAMETERS

to compute the module's effective timing parameters, t/, t, t/, and t, in different ways

depending on the delay configuration.

A.1.1 Delayed Output

The simplest case is that of a delay connected to the register's output, shown in Figure A-

1(a), where the delays of the buffer simply add to the output delays of the register, giving

the following effective timing parameters:

t= t,, t= th (A.1)

tc = tc + tcB, t = tp + tpB (A.2)

A.1.2 Delayed Input

The next case is that of a delayed input, shown in Figure A-1(b). Here, the delays of the

buffer affect the input timing constraints of the module enclosed in the dashed box. The

propagation delay through the buffer requires us to present data at the module's input tpB

before the setup time, while the contamination delay allows us to change the module's input

tcB before the hold time without violating the register's timing constraints. This leads to

the following effective timing parameters:

t's = t + tpB, t = t - tcB (A.3)

t' = t tp = tp (A.4)

A.1.3 Delayed Clock

In the last case of a delayed clock, shown in Figure A-1(c), both the input timing constraints

and the output delays are affected. The propagation delay through the buffer requires us to

hold the register's inputs stable tpB after the register's hold time, while the contamination

delay allows us to delay the input by an extra tcB without violating the setup time. These

I L..

A.2. THE DEMONSTRATION CIRCUIT

. ' ,7

'378

(a) (b)

Figure A-2: The demonstration circuit's delays. (a) Transmit register. (b) Receive register.

delays also cause latching to be delayed, and thereby add to the output delays of the register.

Thus, we have the following effective timing parameters:

t = sttcB, th = th + tpB (A.5)

t' = t + tcB, t = tp+ tpB (A.6)

A.1.4 Applications

Delays at the outputs usually represent combinational logic processing the register's out-

put, as in the case of the transmit modules of Figure 2-1. Similarly, delays at the inputs

represent logic processing the register's inputs, such as the receiver's multiplexer in the

double-buffered hardware of Figure 4-8. Delays at the clock input can be due to clock skew,

phase jitter, or both. In a typical system, these three delay configurations often occur to

gether in a single module. In these cases, the effective timing parameters can be computed

by successively applying the appropriate equations.

A.2 The Demonstration Circuit

The relevant circuitry for computing the effective timing parameters of the transmit and

receive registers in the demonstration circuit are shown in Figure A-2. (These are taken

127

128 APPENDIX A. COMPUTING TIMING PARAMETERS

74F378 74F04 74F257
Setup time of D input (ns) 4.0 N/A N/A
Hold time of D input (ns) 0.0 N/A N/A
Contamination delay (ns) 3.0 1.5 2.0
Propagation delay (ns) 9.5 6.0 7.0

Figure A-3: Worst-case timing parameters of circuit components.

from Figures 6-9 and 6-10.) The components in these circuits are all from the 74Fxx family,

and have the worst-case timing parameters shown in Figure A-3 [33].

The transmit register has a delayed clock, so its effective contamination and propagation

delays can be computed as follows using Equation A.6:

t = 3.0 ns + 1.5 ns = 4.5 ns (A.7)

tp = 9.5 ns + 6.0 ns = 15.5 ns

The receive register has a delayed clock and a delayed input, so its effective parameters are

computed using Equations A.6 and A.3 successively as follows:

t' = (4.0 ns - 1.5 ns) + 7.0 ns = 9.5 ns (A.8)

t' = (0.0 ns + 6.0 ns)-2.0 ns = 4.0 ns

The other effective timing parameters can be computed in a similar manner, but only the

ones computed here are relevant for determining communication schedules.

1

Appendix B

The Scheduling Software

This appendix presents the details of the scheduling software, starting with a discussion of

the integer-based time representation scheme mentioned in Chapter 6, and some schedul-

ing algorithm implementation details. A complete listing of the C source code and the

IATEXsupport files are then provided.

B.1 Representing Time with Integers

The original communication scheduler used for generating the data presented in [1] and [2],

computed the throughput efficiency of the original algorithm in section 3.3 given M and

N as integers and the timing parameters as floating-point numbers equal to the fraction of

a clock cycle they represent (e.g., P = 0.20 would mean that the propagation edge occurs

20% of a clock cycle after the clock edge). This program was simple and worked well in

most cases, but had an unfortunate limitation: it was prone to occasional floating-point

rounding errors. These errors caused the program to prohibit data transfers unnecessarily,

and resulted in reduced throughput efficiency. If we compare the throughput efficiency table

shown in Figure 3-5 with the original one in [2], for example, we would see that even though

the timing parameters used are the same, the table in [2] only claims 50% throughput for

a transmit-receive ratio of 3/2, instead of the actual 100% throughput.

129

130 APPENDIX B. THE SCHEDULING SOFTWARE

To avoid this problem, the software used in this thesis performs all computations using

only integers. Time is expressed in integer units of dt, defined as:

dt = At/d (B.1)

where At = TMN/MN as defined in Chapter 5, and d is some integer specified by the user.

These units are useful because they allow the positions of the two systems' clocks to be

represented by exact integers. That is, substituting the definitions of dt and At into the

formula for the coincidence period, Equation 3.2, we get:

TM = NAt = (N d) . dt, (B.2)

TN = MAt = (M d) dt

Furthermore, by making d large, we can express arbitrarily small units of time (as long as d

does not get so large that the times we want to express do not fit in a 32-bit "long" integer).

Although the software performs all computations internally using units of dt, it allows

the user to specify timing parameters in other units as well. As mentioned in section 6.1,

the user has a choice of expressing timing parameters in units of dt, in units of At, as

fractions of a clock cycle, or in absolute units. When expressing time in absolute units, the

user has the further choice between using these units with clock division or clock multipli-

cation. Converting timing parameters expressed in units of dt and At is straightforward,

but converting parameters expressed as fractions or in absolute units requires additional

analysis, and is discussed in the following sections.

B.1.1 Using Fractions

As discussed in section 3.5.1, it is useful to specify the timing parameters as fractions of a

clock cycle if we presume that our target systems have timing parameters that scale with

their minimum clock periods. If a timing parameter P of system m is equal to some fraction

x of the system clock edge TM, and we choose d such that x = p/d for some integer p, then

we can express P in units of dt as follows:

P= TM = (N. d) =pN (B.3)

I L..

B.1. REPRESENTING TIME WITH INTEGERS

For example, if M = 5, N = 6, d = 1000, and P = 0.20TM, then p = 200, and P =

200 6 = 1200 time units. Note that this representation scheme limits us to using rational

numbers for the timing parameters. This is not a problem, however, since we can make

these parameters sufficiently close to their actual value by making d large enough.

B.1.2 Using Absolute Units with Clock Division

It may occasionally be desirable to use the same piece of hardware at different frequencies

and frequency ratios. In this case, the timing parameters would not scale with the clock

period but would be fixed at some value while the clock period changes.

If we are using clock division, then converting the timing parameters into units of dt is

easy. Using the clock division circuit from Figure 3-1, we get (from Equations 3.3 and 6.2):

At = 1/fhigh = Thigh (B.4)

where Thigh is the period of Clkhigh in seconds. Thus, if a timing parameter P, on either

system, is equal to tp seconds, we can express it in units of dt as follows:

p= tp d= tp d (B.5)At Thigh

where we choose d such that P is an integer.

When taking timing parameters in this mode, the program asks the user to enter tp and

Thigh as integers. Although it is convenient to use standard time units such as picoseconds

or nanoseconds in giving these values, any units that allow tp and Thigh to be expressed

as integers can be used. This is because it is the ratio of t to Thigh that is important,

rather than their actual values. In fact, it is preferable to make tp and Thigh small integers

whenever possible in order to avoid causing overflows during computation.

B.1.3 Using Absolute Units with Clock Multiplication

Using absolute units with clock multiplication is slightly more difficult. Here, the program

assumes that Clkn is being generated from Clkm using the circuit in Figure 3-2, and asks

131

132 APPENDIX B. THE SCHEDULING SOFTWARE

the user to enter tp and TM as integers. From Equation B.3, we have

At = TM/N (B.6)

Thus, if a timing parameter P, on either system, is equal to tp seconds, we can express it

in units of dt as

P= tP d= t d (B.7)
At TM

again choosing d to make sure that P is an integer. Note that the specific value of N is

used here, and that this equation applies to timing parameters of both systems m and n.

The asymmetry arises because we assume Clkm to be the source clock and generate Clk,

from it. Thus, TM is fixed, while TN changes.

B.2 Scheduling Algorithms

Four scheduling algorithms were implemented in the program: the original greedy algorithm

for single-buffering, the greedy and lazy versions of the run-time scheduling algorithm for

double-buffering, and the generalized run-time scheduling algorithm. As can be seen from

the source code in the next section, these algorithms were not implemented exactly as they

have been described in the text of this thesis.

In implementing the original algorithm from section 3.3, for example, the program does

not use "wrap-around" modulo arithmetic. That is, to check if it has passed Pbegin on system

m, it actually checks if it has passed Pbegin+M. This makes the algorithm code simpler, and

also makes it easier to correctly handle situations with abnormal timing parameters (i.e.,

timing parameters that are negative or are larger than a clock period).

Some minor modifications were also made to the three run-time scheduling algorithms.

Instead of using units of At to represent timing parameters as done in Chapter 5, the

program uses units of dt. Consequently, whenever M or N are used in the algorithms in

Chapter 5 to represent the clock periods of the systems, they are replaced by M d, and

N d respectively. Instead of adding M to eold in line 9 of the basic algorithm in section 5.1,

for example, the program would add M. d. Representing the timing parameters in this way

1 11

B.3. SOURCE CODE 133

makes it possible to correctly handle non-integer (in terms of At) timing parameters in the

generalized algorithm.

B.3 Source Code

This section contains the complete C source code for the scheduling software.

* rcsched.c

* Scheduler for Rational Clocking,
* by Luis F. G. Sarmenta

integer version

* thesis version, 950525

* Notes: 1) Here, coincidence cycles are called "beat" cycles, as they
* are in Pratt and Ward's original paper.

2) All timing parameters are treated internally as offsets

in the positive time direction from the clock edge they belong
to. Thus, setup times are internally negative.

However, the user can still enter positive_ setup times as

these get converted automatically.

#include <stdio.h>

#include <stdarg.h>

#include <stdlib.h>

#include <math.h>

/* standard min and max definitions */

#define min(a,b)

#define max(a,b)

((a) < (b) ? (a) : (b))

((a) > (b) ? (a) : (b))

* modulo and div operators modified to work correctly
* with negative numbers
*
* This code was developed on a Sun (mont-blanc.lcs.mit.edu) with gcc.
* Under this system type, the / and operators work as follows:

* 22 / 7 = 3; 22 % 7 = 1; 22 / -7 = -3; 22 % -7 = 1;
* -22 / 7 = -3; -22 % 7 = -i; -22 / -7 = 3; -22 --7 = -1;

* The way it handles the mod of negative numbers allows us to
* define a correct mod operator as follows:

*/

*
*
*
*

134 APPENDIX B. THE SCHEDULING SOFTWARE

long mod(long a,

{
long temp;

temp = a b;
if (temp < 0)

temp += b;

return(temp);

}

long ndiv(long a, long b) /* ndiv(a,b)*b + mod(a,b) = a */

return((a < 0) ? ((a-(b--1))/b) : (a/b));

#define ndivup(a,b) ((ndiv((a)+((b)-1), (b)))) /* ndiv then round-up */

long gcd(long a, long b)

{
if (!b)

return(a);
else

return(gcd(b, a % b));

}

* Some Global Constants

*/

#define MAXMN

#define ROM_B

#define ROM_N

long d = 1000;

long Tref;

64

4
(1< <ROM_B)

/* Max. value for M and N. */
/* bits for specifying M and N to ROM */
/* equivalent max M and N for ROM */

/* smallest unit of time = (delta T) / d */

/* reference clock's period in picoseconds.

This will be initialized properly later. */

/* Options Variables

*/

/* Show intermediate results? */

int DRAWSCHEDS = 1;

#define

#define

#define

#define

#define

/* Draw text schedule diagrams? */

DTUNITS 1

DLUNITS 2

FRUNITS 3

CDIVPS 4

CMULPS 5

int paramunits = DLUNITS;

long b)

}

int PEEK = 0;

I LI.

/* Parameter Units */

B.3. SOURCE CODE

#define PAIR 1

#define TABLE 2

int compmode = PAIR;

#define

#define

#define

#define

#define

#define

/* Compute Mode */

NONE 0
ORIG 1

GBUFF2 2

DBUFFG 3

DBUFFL 4

MAXALGO 4

int algorithm = 1;

#define

#define

#define

#define

/* Scheduling Algorithm */

TEXT 1

LDIAG 2

LPLOT 3

ROM 4

int outmode = LDIAG;

int usewithchip = 0;

char outfilename[4i] = "rcsched.

/* Output format */

/* Use with prototype chip */

,log"; /* Log file name */

FILE *outfile;

* Primitive operations ('P' stands for primitive)
*
* These operations assume that M and N are integers representing
* the normalized frequencies.

* Most of these operations work in units of dt = (delta t) / d.

*/

/* The following macros are self-explanatory. */

#define Pbeatperiod(M,N)

#define Pperiod(M,N)

#define Pfreq(M,N)

#define Pdeltat(M,N)

((M)*(N)*d)
((N)*d)
(1 / Pperiod((M),(N))

d

/* Pclockedge gets ith clock edge of system M */

#define Pclockedge(M,N,i) ((i)*(N)*d)

/* Pcycle returns the cycle which time t belongs to

* Pupcycle returns the next cycle at or after time t
* note that if t is exactly at some edge, then Pcycle and Pupcycle

* return the same cycle.

,/

135

)

136 APPENDIX B. THE SCHEDULING SOFTWARE

#define Pcycle(M,N,t) (ndiv((t), (d*(N))))

#define Pupcycle(M,N,t) (ndivup((t), (d*(N))))

/* Pshcycle gets the current cycle if t is a timing param edge that is dt

* units away from its clock edge.

*/

#define Pshcycle(M,N,t,dt) (Pcycle((M), (N), (t)-(dt)))

/* Pfracttodt converts from a timing param in the fractional form num/d

* to its equivalent value in units of dt.

* (Move this somewhere else?)

*/

#define Pfractodt(M,N,num) ((num) * (Pperiod((M),(N)) / d))
#define Pdelttodt(M,N,num) ((num) * (Pdeltat((M),(N))))

/* The following macros convert from a timing param in units of

* picoseconds to its equivalent in units of dt, using the reference

* clock period, Tref. Pmpstodt is used for clock multiplication,

* where Tref is the clock period of M. Pdpstodt is used for

* clock division, where Tref is Thigh.
*

* Note that for now, these macros round _down_ to the nearest integer.

* If you want to be conservative, you should really round _down_
* if the value is contamination delay, but round _up_ otherwise.
* Possibly fix this later. For now, just pick d and Tref such that

* the result is an integer anyway.
$

*/

#define Pmpstodt(M,N,num) (((num) * (N) * d) / Tref)
#define Pdpstodt(M,N,num) (((num) * d) / Tref)

/* Ptptodt converts the value tp to units of dt according to the

* current units used for specifying tp.

* This allows the units of tp to change without changing the macros.

* It also has the nice property that the appropriate scaling rule

* for different M and N is naturally taken care of.

* Note that in these macros, parameters called 'dt' are in units

* of dt, while parameters called 'tp' are in whatever units the scaling

* rule specifies.

*/

long Ptptodt(long M, long N, long tp)

switch (paramunits) {

case DTUNITS : return(tp);

case FRUNITS : return(Pfractodt(M, N, tp));

case DLUNITS : return(Pdelttodt(M, N, tp));

case CULPS : return(Pmpstodt(M, N, tp));

I 11

----- _... - ---- ' � - - -- - - --- ,--. 7� I- - 1-- -- ___ ,

B.3. SOURCE CODE

case CDIVPS : return(Pdpstodt(M, N, tp));
default: {

fprintf(stderr,"Invalid Param Units ... using dt ...\n");

return(tp);

}

/* Now we use Ptptodt in Pshedge, which gives timing edge i if

* timing param is tp away from edge.

*/

fine Pshedge(M,N,i,tp) (Pclockedge((M), (N), (i)) + Ptptodt(M,N,tp))

/*
* The following macros return the appropriate cycle of the _other_ clock

* (Note the switch in M and N.)

#define PnxtOcycle(M,N,t)

*define PprvOcycle(M,N,t)

#define PnxtOshcycle(M,N,t,dt)

#define PprvOshcycle(M,N,t,dt)

Pupcycle((N), (M), (t))
Pcycle((N), (M), (t))

Pupcycle((N), (M), (t)-(dt))

Pshcycle((N), (M), (t), (dt))

* Data Structures

*/

typedef int sched[MAXMN]; /* Schedule table */

typedef struct systype {

long f; /* frequency = cycles per beat */
long S,H,C,P; /* timing params in units of dt = (delta t) / d */

sched TE, Tsel; /* transmit register control signals */

sched TD; /* input to transmit register */

sched Tto; /* cycle to transmit to (mod beat period) */

sched RE, Rsel; /* receive register control signals */

sched RQ; /* output of receive register */
sched Rfrom; /* cycle to receive from (mod beat period) */

sched cnt; /* counter value */

sched checked; /* Flag to tell if cycle has already been tried. */

int perf; /* Performance as a transmitter. */

struct systype *other; /* pointer to the other system */

} systype;

/* These macros are the same as the primitive macros but

* work with systype structs instead. Note the capitalization of the names.

}
}

137

#de:

/
;.

I I

APPENDIX B. THE SCHEDULING SOFTWARE138

#define Mf(M)

#define Nf(M)

#define

#define

#define

#define

#define

#define

#define

(M->f)
((M->other)->f)

Beatperiod(M)

Period(M)

Freq(M)

DeltaT(M)

Clockedge(M,i)

Cycle(M,t)

SHcycle(M,t,dt)

#define Fractodt(M,num)

#define Delttodt(M,num)

#define Tptodt(M,tp)

#define SHedge(M,i,tp)

#define

#define

#define

#define

NxtOcycle(M,t)

PrvOcycle(M,t)

NxtOshcycle(M,t,dt)

PrvOshcycle(M,t,dt)

Pbeatperiod(Mf(M), Nf(M))

Pperiod(Mf(M), Nf(M))
Pfreq(Mf(M), Nf(M))

PdeltaT(Mf(M), Nf(M))

Pclockedge(Mf(M), Nf(M), (i))
Pcycle(Mf(M), Nf(M), (t))

Pshcycle(Mf(M), Nf(M), (t), (dt))

Pfractodt(Mf(M), Nf(M), (num))
Pdelttodt(Mf(M), Nf(M), (num))

Ptptodt(Mf(M), Nf(M), (tp))
Pshedge(Mf(M), Nf(M), (i), (tp))

PnxtOcycle(Mf(M), Nf(M), (t))
PprvOcycle(Mf(M), Nf(M), (t))
PnxtOshcycle(Mf(M), Nf(M), (t),

PprvOshcycle(Mf(M), Nf(M), (t),

(dt))
(dt))

/* The following macros allow us to access the different timing params

* by name. ('TP' stands for timing parameter.) Valid values for S are

* S, H, C, and P. Note that these operations won't work as desired
* if implemented as functions, and not macros.

*/

#define TP(M,S)

#define TPedge(M,i,S)

#define TPcycle(M,t,S)

Tptodt(M, (M-->S))
SHedge(M, (i), (M->S))
SHcycle(M, (t), TP(M,S))

/* These macros find the appropriate cycle corresponding to time t if

* t is a timing parameter edge S.

#define _NxtOTPcycle(M,t,S)

#define _PrvOTPcycle(M,t,S)

NxtOshcycle(M, (t), TP((M->other),S))

PrvOshcycle(M, (t), TP((M-->other),S))

/* NxtOTPcycle returns j when asked to find the next Sn edge j of the

* other system at or after the Sm edge i of the original system (M).
* PrvOTPcycle is similar but returns the edge at or _before_.

*/

#define NxtOTPcycle(M,i,Sm,Sn)

#define PrvOTPcycle(M,i,Sm,Sn)

_NxtOTPcycle(M, TPedge(M,i,Sm), Sn)
_PrvOTPcycle(M, TPedge(M,i,Sm), Sn)

* Global Variables
*

B.3. SOURCE CODE

*/

systype M, N;

long fM, fN;

long Sm, Hm, Cm, Pm;

long Sn, Hn, Cn, Pn;

int quit = 0;

unsigned char ROMimage[65536];

/*
* Basic Output Routines
*

void change_outfile(char *filename)

{
fclose(outfile);

outfile = fopen(filename, "wt");

}

void show(char *fmt, ...)

{
va_list args;

va_start(args, fmt);

vprintf(fmt, args);

if ((outmode == TEXT) ij (outmode == ROM)) {

vfprintf(outfile, fmt, args);

}
va_end(args);

void fshow(char *fmt, ...)

{
va_list args;

va_start(args, fmt);

vfprintf(outfile, fmt,

va_end(args);

args);

void show2(char *fmt, ...)

{
va_list args;

va_start(args, fmt);

vprintf(fmt, args);

vfprintf(outfile, fmt,

va_end(args);

args);

139

}

}

APPENDIX B. THE SCHEDULING SOFTWARE

* Initialization Routines

void ClearRO/(

{
long i;

for (i=O; i < 65536; i++)
ROMimage[i] = OxFF;

for (i=O; i < (1 << 12); i++)
ROMimage[i] = 0x55;

/*
* ClearSched clears the schedule tables used for

* transmitting from M to N.

*/

void ClearSched(systype *M, systype *N)

{
int i;

for (i=O; i < MAXMN;

M-->TE[i] = 0;
N- >RE[i] = 0;
M->checked[i] = (
N->checked[i] = (

}

i++) {
M->Tsel[i] = -1;
N->Rsel[i] = -1;

M->TD[i = -1;
N->RQCi] = -1;

/*
* initcnt fills the cnt array with the proper counter values
*/

void initcnt(systype *M)

{
int i;

for (i=O; i < MAXMN; i++) {
M->cnt[i] = i (M->f);

}
}

void initMN(systype *M, long fM, long Sm, long Hm, long Cm, long Pm,

systype *N, long fN, long Sn, long Hn, long Cn, long Pn)

{
int i;

M->f = fM;
M->other = N;

}

I 1..

140

B.3. SOURCE CODE

M->S
M->H
M->C
M-->P

= -Sm;
= m;

= Cm;
= Pm;

N->f = fN;

N-->other = M;

N->S
N->H
N->C
N-->P

- -Sn;

= n;

= Cn;
= Pn;

ClearSched(M, N);

initcnt(H);
ClearSched(N, M);

initcnt(N);

* Scheduler Algorithms

/* No Flo Control. lays use register

/* No Flow Control. Always use register O. */

int UnctlTransmit(systype *M, systype *N)

{
int i;

for (i = O; i < M->f; i++) {

M->TE[i] = i;

M->Tsel[Ci = 0;

for (i = O; i < N->f; i++) {

N->RE[i] = i;

N-->Rsel i] = 0;

return(0);

* Original single-buffer greedy algorithm.

* This is adapted from Pratt and Ward's original algorithm, described

* in section 3.3 of my thesis.
*
*l

int _OrigTransmit(systype *M, systype *N, int begin)

{
long i, j;

long ii, ji, nexti;

141

}

}

I 1:1

142 APPENDIX B. THE SCHEDULING SOFTWARE

int count = O;

long Pi, Sj, Hj, Ci;

long tcur, tbegin;

/* STEP 2: Begin at Pbegin.

*/

i = begin;

Pi = TPedge(M,i,P);

Ci = TPedge(M,i,C);
tbegin = Pi + Beatperiod(M); /*

tcur = Pi;

if (PEEK) {

show("\nBEGIN: i = ld, Ci

}

Note that we're _not_ using modulo math */

= %ld, Pi = %ld \n", i, Ci, Pi);

do {

/* STEP 3: Pi -> Sj. Go to next Sj.

*/

j = NxtOTPcycle(M,i,P,S);

Sj = TPedge(N,j,S);
tcur = Sj;

if (PEEK) {

Hj = TPedge(N,j,H);

show("j = %ld, Sj =

}

,ld, Hj = %ld \n", j, Sj, Hj);

/* STEP 4: Go to Hj.

*/

Hj = TPedge(N,j,H);
tcur = Hj;

/* STEP 5: Hj -> Ci'. Go to next Ci.

nexti = NxtOTPcycle(N,j,H,C);

Ci = TPedge(M,nexti,C);
tcur = Ci;

if (PEEK) {

Pi = TPedge(M,nexti,P);
show("i' = %ld, Ci' = %ld, Pi' = %ld \n", nexti, Ci, Pi);

}

/* STEP 6: Go to next Pi and check.

*/

Pi = TPedge(M,nexti,P);
tcur = Pi;

/* STEP 8: If Pbegin is not passed, mark the appropriate

* schedule entries.

B.3. SOURCE CODE

if (tcur < tbegin) {
ii = mod(i-l,->f); ji = mod(j-i,N->f);

M->TE[il] = 1;
M->Tsel[il] = 0;
M->TD[ii] count OxlO;
M->Tto[mod(i,M->f)] = mod(j,N->f);

N->RE[jll = 1;
N-->Rsel[jl] = 0;
N-->RQ[mod(j,N->f)] = count % OxlO;
N->Rfrom[mod(j,N-->f)] mod(i,N-->f);

count++;

if (PEEK) {
show("TE/%d] and RE[%'/d] set. \n",

mod(i-1,M->f), mod(j-i,N->f));
}

/* STEPS 7 and 9: If you pass or hit Pbegin,

* make i = nexti and repeat the process.

then quit, else

i = nexti;

} while (tcur < tbegin);

return(count);

}

/* _Transmit schedules a transmission from H -> N and returns
* the number of successful transmissions in a coincidence cycle.

,/

int _Transmit(systype *M, systype *N)

{
int count, begin;

int bestcount, bestbegin;

int best;

int found;

best min(M->f, N->f);

bestcount = 0;
bestbegin = 0;
begin = 0;

while ((bestcount != best) & (begin < ->f)) (
ClearSched(M, N);

count = _OrigTransmit(M, N, begin);

if (count > bestcount) {

bestcount count;

bestbegin = begin;

143

144

}

APPENDIX B. THE SCHEDULING SOFTWARE

begin++;

/* get lowest bestbegin. (if bestcount=best, then bestbegin

* will also be the lowest bestbegin.)

*/

if (bestcount != best) {

ClearSched(M, N);

count = _OrigTransmit(

}

M, N, bestbegin);

return count;

/*
* Lazy Double-Buffered Algorithm

*/

int _DBuffLTransmit(systype *M, systype *N)

{
long x, y;

long eold, e;

long fO;

int R;

long i, j, il, j;

long P, S, H, C;

long m, n;

int c, count = 0;
int slowtx;

slowtx = M->f <= N->f;

if (slowtx) {
m = Period(N);
n = Period(M);

} else {
m = Period(M);

n = Period(N);

}

P = Tptodt(M, M-->P); C = Tptodt(M, M-->C);

S = Tptodt(N, N->S); H = Tptodt(N, N->H);

x = 1;
if (slowtx)

fO = -(P - S); /* Remember that S here is -S of S in the paper. */

else

fO = -(H - C);
y = ndiv(fO, n) + 1;

eold = mod(fO, n) - n;

R = O;
if (PEEK) {

I 1.:

B.3. SOURCE CODE

show("fO: 'ld, eO: Y.ld, xO: .ld, yO: %ld\n", fO, eold, x, y);

I
for (c=O; c < max(M->f,N->f); c++) {

e = eold + m;

if (PEEK) {

show("eold: ld, e: %ld, x: /ld, y: %Xld\n", eold, e, x, y);

I
if (e >= O) {

if (slowtx) {

i = y; j = x;
} else {

i = x; j = y;

}

I

il = mod(i--,M->f); j = mod(j-1,N->f);

M->TE[il] = 1;

M->Tsel[il] R;

M-->TD[il] = count OxlO;

M->Tto[mod(i,M->f)] = mod(j+2,N->f);

N->RE[jl] = 1;
N->Rsel[jl] = R;

N->RQ[mod(j+2,N->f)] = count h OxlO;
N->Rfrom[mod(j+2,N->f)] = mod(i,M->f);

R = (R) & 1;
y = y + 1;

e = e - n;

count++;

x = x + 1;
eold = e;

return(count);

* Lazy Double-Buffered Algorithm
*

int _DBuffGTransmit(systype *M, systype *N)

{
long x, y;

long eold, e;

long fO;

int R;
long i, j, il, jl;

long P, S, H, C;

long m, n;

145

}

APPENDIX B. THE SCHEDULING SOFTWARE

int c, count = 0;

int slowtx;

slowtx = M->f <= N->f;

if (slowtx) {

m = Period(N);

n = Period(M);

} else {
m = Period(M);

n = Period(N);

}

P = Tptodt(M, M->P); C = Tptodt(M, M->C);

S = Tptodt(N, N->S); H = Tptodt(N, N->H);

x = 1;
if (!slowtx)

x = x - 1; /* For greedy algo, x = x_O - i = O */
if (slowtx)

fo = -(P - S);

else

fO = -(S - P); /* The greedy algo transformation */

y = ndiv(fO, n) + 1;
eold = mod(fO, n) - n;

if (!slowtx) { /* Adjust eO and yO for greedy algo */
if (mod(fO,n) == 0)

y = y - 1;
if (eold == -n)

eold = 0; /*******/

}
R = 0;

if (PEEK) {

show("fO: %ld, eO: %ld, xO: %ld, yO: %ld\n", fO, eold, x, y);

}
for (c=O; c < max(M->f,N->f); c++) {

e = eold + m;

if (PEEK) {

show("eold: %,ld, e: ,ld, x: %ld, y: ld\n", eold, e, x, y);

}
if ((slowtx && (e >= 0)) II (!slowtx && (e > 0))) {

if (slowtx) {
i = y; j = x;

} else {

i = x; j = y;

}

il = mod(i-1,M->f); ji = mod(j-1,N->f);

M->TE[il] = 1;
M->Tsel[il] = R;

M->TD[il] = count OxlO;

M->Tto[mod(i,M-->f)] = mod(j,N->f);

N->RE[jl] = 1;

I I

146

B.3. SOURCE CODE 147

N-->Rsel[jl] = R;
N-->RQ[mod(j,N->f)] = count % OxIO;
N->Rfrom[mod(j,N->f)] = mod(i,M->f);

R = (R) & 1;
y = y + 1;
e e - n;

count++;

}
x = x + 1;
eold = e;

}

return(count);

/*
* Generalized Algorithm
*

int _GBuff2Transmit(systype *M, systype *N)
{

long x, y;

long eold, e, emax, emin;

long fO;
int R;

long i, j, il, jl;

long P, S, H, C;

long m, n;

int c, count = O;

int slowtx;

slovtx = M->f <= N->f;

/* Uncomment this to test slower system's algo.
if (slovtx)

_slowGBuff2Transmit(M, N);

else {

*/
if (slovtx)

m = Period(N);
n = Period(M);

} else {
m = Period(M);

n = Period(N);

}

P = Tptodt(M, M-->P); C = Tptodt(M, ->C);

S = Tptodt(N, N->S); H = Tptodt(N, N->H);

emax = n - ((P-C) + (H-S));
emin = m - n + ((P-C) + (H-S));

I 1..1

APPENDIX B. THE SCHEDULING SOFTWARE148

x = 1;
if (!slowtx)

x = x - i;.
if (slowtx)

fo = -(P - S);
else

fO = -(S - P);
y = ndiv(fO, n) + 1;
eold = mod(fO, n) - n;

if (!slowtx) {

if (mod(fO,n) == 0)

y =y- i;
if (eold == -n)

eold = 0; /*****

}

/* For greedy algo, x = x_O - = 0 */

/* The greedy algo transformation */

/* Adjust eO and yO for greedy algo */

R = (slowtx ? 0 :);

for (c=0; c < max(M->f,N->f);
e = eold + m;
if ((slowtx && (e >= 0)) II

if (slowtx) {

i = y; j = x;
} else {

i = x; j = y;

}

c++) {

(!slowtx && (e > 0))) {

ii = mod(i-1,M->f); j = mod(j-i,N->f);

if (!slowtx)

if (R ==)
R = ((e < emin) ? : 0);

else

R = 0;

M->TE[il = i;
M->Tsel[il] = R;
M-->TD[il] = count % OxlO;
M->Tto[mod(i,M->f)] = mod(j,N->f);

N->RE[j] - i;
N->Rsel[jl] = R;
N-->RQ[mod(j,N->f)] = count % OxiO;
N-->Rfrom[mod(j,N->f)] = mod(i,M->f);

/* Adjust count only to measure single-buffered performance.

* Note that as a consequence of this, TD would not be incremented
* whenever TSel is 1.

*/
if (R ==)

count++;

if (slowtx)
if (R == 0)

,****/

B.3. SOURCE CODE

R = ((e > emax) ? 1 : 0);
else

R = O;

y = y + 1;
e = e - n;

}

x = x + 1;
eold = e;

}

} Uncomment this to test slower system's algo.

return(count);

}

/*
* Slower system's algorithm
*

int _slowGBuff2Transmit(systype *M, systype *N)

{
long

long

long

int

long

long

long

int

int

long

x, y;
eold, e, emax, emin;

fO;

R;
i, j, i, ji;

P, S, H, C;

m, n;

c, count = 0;

slowtx;

dMN;

/* assume M < N */

m = Period(N);
n = Period(M);

dMN = n m;

P = Tptodt(M, M->P);

S = Tptodt(N, N->S);

C = Tptodt(M, M->C);

H = Tptodt(N, N->H);

emax = n - ((P-C) + (H-S));
emin = m - n + ((P-C) + (H-S));

fO = -(P - S);
y = ndiv(fO, n) + 1;

eold = mod(fO, n)
e = mod(eold,m);

R = 0;

for (c=O; c < M->f; c++) {

149

- n;

I 1.1

APPENDIX B. THE SCHEDULING SOFTWARE

i = y; j = x;

il = mod(i-1,M->f); jl = mod(j-1,N->f);

M-->TE[il] = 1;

M->Tsel[il] = R;

M-->TD[il] = count % OxlO;

M->Tto[mod(i,M->f)] = mod(j,N->f);

if (R == O)
count++;

if (slowtx)
if (R == O)

R = ((e >

else

R = 0;

e = e - dMN;

if (e <O)

e = e + m;

y = y + 1;

emax) ? 1 : 0);

I
return(count);

* Higher-level Scheduling Routines
*

int Transmit(systype *M, systype *N)

{
ClearSched(M, N);

switch(algorithm) {

case NONE : return(UnctlTransmit(M, N));

case ORIG : return(_Transmit(M, N));

case DBUFFL : return(_DBuffLTransmit(M, N)
case DBUFFG : return(_DBuffGTransmit(M, N)

case GBUFF2 : return(_GBuff2Transmit(M, N)

default : return(O);

int MakeSched(systype *M, systype *N)

{
int a, b, c, opt;

opt = min(M->f, N->f);

if (PEEK) {
show("M -> N\n");

}

150

}

B.3. SOURCE CODE 151

a = Transmit(M, N);

if (PEEK) {

show("\nN -> M\n");

}
b = Transmit(N, M);

M->perf = ((double) a / (double) opt) * 100;

N->perf = ((double) b / (double) opt) * 100;

c = min(M->perf, N->perf);

return(c);

* Display Routines

void PlainSched(systype *M, int *schedptr)

{
int i;

for (i=O; i < M->f; i++)

if (schedptr[i] == (-1))

show("x");
else

show("/X" ,schedptr[i]);

show("\n");

I

void DrawSched(systype *M, int *schedptr)

{
int i, j;

long Mw, Nw, MNgcd;

Mw = Nf(M);

Nw = Mf(M);

MNgcd = gcd(Mw, Nw);

Mw /= MNgcd;

Nv /= MNgcd;

if ((Mw == 1) I (Nw == 1))

Mw = 2*Mw;

show("l");

for(i = O; i < M->f; i++) {

for(j = O; j < Mw-1; j++) {

if (j == (Mw-1)/2)

if (schedptr[i] == (-1))

show("x");
else

APPENDIX B. THE SCHEDULING SOFTWARE

show("YX", schedptr[i]);
else

show(" ");

}
show("I");

}
show("\n");

#define PrintSched(M,sptr) ((DRAWSCHEDS) ? DrawSched(M,sptr) : \
PlainSched(M,sptr))

void ShowTimes(systype *M, systype *N)

{
show("\n");

show("Tref = ld\n", Tref);

show("TM: TM.= Kld, tS = ,ld, tH = ld, tC = ld, tP = Zld\n",

Period(M), TP(M,S), TP(M,H), TP(M,C), TP(M,P));

show("TN: TN = ld, tS = ld, tH = lid, tC = ld, tP = ld\n",

Period(N), TP(N,S), TP(N,H), TP(N,C), TP(N,P));

show("\n");

void ShowSched(systype *M, systype *N)

{
int i;

show("\n");
show("M: f = Kld, S = Kld, H = Kld, C = Kld,

M->f, M->S, M->H, M->C, M->P);
show("N: f = Kld, S = Kld, H %ld, C = lid,

N->f, N->S, N->H, N->C, N->P);
show("\n");

show("M -> N\n");

show("- - ---- \n");
show("N.RE ");
PrintSched(N, N->RE);

show("M.TE : ");

PrintSched(M, M-->TE);

show("--- ----- -\n");
show("N.Rsel : ");

PrintSched(N, N->Rsel);

show("M.Tsel : ");

PrintSched(M, M-->Tsel);

show("- - .----\n");
show("N.RQ
PrintSched(N, N->RQ);

show("M.TD : ");
PrintSched(M, M->TD);

show("\n");

P = Kld\n",

P = ld\n",

show("N -> \n");

152

B.3. SOURCE CODE 153

show(" … \n");
show("N.TE : ");
PrintSched(N, N->TE);

show("M.RE : ");

PrintSched(M, M->RE);

show("- ----- -\n");
show("N.Tsel : ");

PrintSched(N, N->Tsel);

show("M.Rsel : ");

PrintSched(M, M->Rsel);

show("- --- -- -\n");
show("N.TD : ");

PrintSched(N, N->TD);

show("M.RQ : ");

PrintSched(M, M->RQ);

show("- -- --- -\n");

show("Performance: M->N = .d%.., N->M = %dY.%% \n", M->perf, N->perf);

}

void ROMsched(systype *M, systype *N)

{
long baseaddr, offs;

long Mi, Nj;

int REM, RselM, TEOM, TEIM;

int REN, RselN, TEON, TEIN;

#define nneg(x) (((x) < 0) ? 0 : x)

#define bit0(x) ((x) & 1)

baseaddr = ((Mf(M)-1) << (ROM_B*2)) + ((Mf(N)-1) << ROM_B);

for (offs=O; offs < ROM_N; offs++) {

Mi = (usewithchip ? (Mf(M) - offs + 1) : offs);

Nj = (usewithchip ? (Mf(N) - offs + 1) : offs);

Mi = mod(Mi, Mf(M));

Nj = mod(Nj, Mf(N));

TEOM = bitO(M-->TE[Mi] & (nneg(M->TselMi])));

TE1M = bitO(M-->TE[Mi] & nneg(M->Tsel[Mi]));

REM = bitO(M->RE[Mi]);

RselM = bitO(nneg(M-->Rsel[Mi]));

TEON = bitO(N->TE[Nj] & (nneg(N->Tsel[Nj])));

TEIN = bitO(N->TE[Nj] & nneg(N->Tsel[Nj]));

REN = bitO(N->RE[Nj]);

RselN = bitO(nneg(N-->Rsel[Nj]));

ROMimage[baseaddr+offs] = TEOM + (TE1M << 1)

+ (REN << 2) + (RselN << 3)

+ (TEON << 4) + (TE1N << 5)

+ (REM << 6) + (RselM << 7);

I I

APPENDIX B. THE SCHEDULING SOFTWARE

void IntelMCS(systype *M, systype *N)

{
long baseaddr, offs;

long chksum = 0;

baseaddr = ((Mf(M)-1) << (ROMB*2)) + ((Mf(N)-1) << ROM_B);

show(":%02X%04X00", ROM_N, baseaddr);

chksum = ROM_N + (baseaddr >> 8) + (baseaddr & OxFF);

for (offs=O; offs < ROM_N; offs++) {

show("%02X", ROMimage[baseaddr+offs]);

chksum += ROMimage[baseaddr+offs];

}
chksum = (-chksum) & OxFF;

show(".02X\n", chksum);

void LaTeXsched(systype *M, int *schedptr, int ypos)

{
int i;

char s[10];

#define entry(x,y,s) fshow("\\put(%d,Yd){\\makebox(%.d,2){7.s}}\n", x, y, \

M->other->f, s)

for (i=O; i < M->f; i++) {

if (schedptr[i] == (-1))
strcpy(s, "*");

else

sprintf(s, "%d", schedptr[i]);

entry(i*(M->other->f), ypos, s);

}

void LaTeXvals(systype *M, systype *N)

{

#define label(y,s) fshow("\\put(-1,%d){\\makebox(O,O) Or] {$%s$}}\n", y, s)

#define Lsched(y, sys, S) label((y+l), #S); LaTeXsched(sys, sys->S, y);

Lsched(

Lsched(

Lsched(

13, N, RE);

15, N, Rsel);

17, N, RQ);

Lsched(-4,

Lsched(-6,

Lsched(-8,

M, TE);

M, Tsel);

M, TD);

154

}

}

}

}

B.3. SOURCE CODE

void LaTeXparams(systype *M, systype *N)

{
double Mf = M->f;

double Nf = N->f;

#define set(x, v) fshow("\\renewcommand{\\" #x "}{g}\n", v)

#define gdttodelt(x) ((double)(x) / (double) d)

set(M, Mf);

set(Mo, Mf+1);

set(nM, -Mf);

set(N, Nf);

set(No, Nf+1);

set(nN, -Nf);

set(MN, Mf*Nf);

set(CM, gdttodelt(TP(M,C)));

set(PM, gdttodelt(TP(M,P)));

set(CPM, gdttodelt(TP(M,P) - TP(M,C)));

set(SN, gdttodelt(-TP(N,S)));

set(NSN, Mf+gdttodelt((TP(N,S))));

set(HN, gdttodelt(TP(N,H)));

void LaTeXdiag(systype *M, systype *N)

{
/* Note: This will fclose the current outfile. */

changeoutfile("sched.tex");

fshow("\\documentstyle{article}\n"

"\\begin{document}\n"

"\\setlength{\\unitlength}{.lin}\n"

"\\newcounter{cM}\n"

"\\newcounter{cN}\n"

"\\input{setup}\n");
LaTeXparams(M, N);

fshow("\\begin{picture}((%d,31)(-11,-9)\n"

"\\input{clocks}\n",
(M->f)*(N->f)+11);

LaTeXvals(M, N);

fshow("\\end{picture}\n"

"\n");

LaTeXparams(N, M);
fshow("\\begin{picture} (/d,27) (-11,-7)\n"

"\\input{clocks}\n",

(M->f)*(N->f)+11);

LaTeXvals(N, M);

fshow("\\end{picture}\n"

"\\end{document}\n");
fclose(outfile);

155

I i I

156 APPENDIX B. THE SCHEDULING SOFTWARE

/* Use "at" here to resume writing log file. */

outfile = fopen(outfilename, "at");

}

void singlesched(systype *M, systype *N)

{
MakeSched(M, N);

ShowSched(M, N);

if (outmode == LDIAG)

LaTeXdiag(M, N);

else if (outmode == ROM) {

ROMsched(M, N);

IntelMCS(M, N);

}

void tablesched(systype *M, systype *N)

{
int oldM, oldN;

int tx, rx, maxfreq;

int LaTeX = ((outmode == LDIAG) II (outmode == LPLOT));

oldM = M->f; oldN = N->f;

maxfreq = max(oldM, oldN);

if (LaTeX) {

fshow("{\\scriptsize\n");

fshow("\\begin{tabular}{l|");

for (rx=l ;rx<=maxfreq;rx++)

fshow("r");

fshow("}\nTransmit & \\multicolumn{'hd}{c}{Receive Frequency} \\\\ \n",

maxfreq);

} else

show("Transmit\tReceive Frequency\n");

show2("Freq.");

for (rx=l;rx<=maxfreq;rx++) {

if (LaTeX)

fshow(")
show("\t");

show2("d", rx);

}
if (LaTeX)

fshow(" \\\\ \\hline");
show2("\n");

for (tx = 1; tx <= maxfreq; tx++) {

show2("'.d", tx);

if (LaTeX)

fshow(" &);

show("\t");

for (rx = 1; rx <= maxfreq; rx++) {

M->f = tx; N->f =rx;

MakeSched(M, N);

show2("%d", M->perf);

if (rx < maxfreq) {

B.3. SOURCE CODE 157

if (LaTeX)

fshow(' & ");
show("\t");

} else {

if (LaTeX)

fshow(" \\\\\n");

show("\n");

}

}

}
if (LaTeX)

fshow("\\end{tabular}\n}");
show("\n");

M->f = oldM; N->f = oldN;

void ROMtable(systype *M, systype *N, long seg)

{
int oldM, oldN;

int tx, rx, maxfreq;

long chksum;

oldM = M->f; oldN = N->f;

maxfreq = max(oldM, oldN);

chksum = 2 + 2 + (seg >> 8) + (seg & OxFF);

chksum = (-chksum) & OxFF;

show(":02000002%04X%02X\n", seg, chksum);

for (tx = 1; tx <= maxfreq; tx++) {

for (rx = 1; rx <= maxfreq; rx++) {

M->f = tx; N->f =rx;

MakeSched(M, N);

ROMsched(M, N);

IntelMCS(M, N);

}

show(":00000001FF\n");

}

void bigROMtable(systype *M, systype *N)

{
int algo;

int oldalgo = algorithm;

for (algo = 0; algo <= MAXALGO; algo++) {

algorithm = algo;

ROMtable(M, N, (algo << (3*ROM_B - 4)));

a
algorithm = oldalgo;

}

I li.l

158 APPENDIX B. THE SCHEDULING SOFTWARE

I*
* User Interface (Menu) Data Structures and Routines
*
* This is a very simple menu system. I'm tempted to use C++

* here, but I'll keep it simple to make it portable.
*

#define MAXNAME 50

#define MAXITEMS 9

typedef struct procitem {

char name[MAXNAME]; /* name of the item */

char value[MAXNAME]; /* string to be printed beside the name */

void (*proc)(char *); /* procedure to execute when the item is chosen */
} procitem;

typedef struct procmenu {

char name[MAXNAME]; /* name of menu */
int numitems; /* number of items in menu */

procitem *item[MAXITEMS]; /* array of pointers to items */

} procmenu;

typedef char valitem[MAXNAME]; /* valitem is just a string with the name */

typedef struct valmenu {
char name[MAXNAME];
int *variable;
int numitems;
valitem item[MAXITEMS];

} valmenu;

/* name of menu */
/* pointer to the variable to be changed */

/* number of items in.menu */

/* array of valitems (array of strings) */

/*
* General ValMenu Routine

*

void do_valmenu(valmenu *M)

{
char siO];
int i, choice;

int quit = 0;

printf("\nYs\n\n", M->name);

for (i=O; i < (M->numitems); i++)
printf("%d) %s\n", i+1, M->item[i]);

do {

choice = *(M->variable);
printf("\nEnter your choice (1-%d) [%d]: ", M->numitems+1,

choice);
gets(s);
sscanf(s, "d", &choice);

} while ((choice < 1) (choice > (M->numitems)));

*(M->variable) = choice;

B.3. SOURCE CODE

I

* ValMenu definitions

*
*/

valmenu PUnits = { "Units for Timing Parameters", paramunits, 5,
{ "dt",

"delta t",

"/d of clock period",

"Absolute units (clk div)",
"Absolute units (clk mul)",
I I I ..

}

valmenu CompMode = { "Compute Mode",
{ "Pair",

"Table",
.l'

&compmode, 2,

It!i toif t i 11 11 t of If.... 9.. 9g9 g,,,..
, . . .

valmenu OutMode = {

valmenu Algo = {

"Output Format", &outmode, 4,

{ "Text",

"LaTeX schedule diagram",

"LaTeX schedule plot",

"ROM",
I 11 Iti t it 1 t In

}

"Scheduling Algorithm", &algorithm, 4,

{ "Single Buffered",

"Gen. Online (2 buffers)",

"Double Buffered (Greedy)",
"Double Buffered (Lazy)",
I . .

* General ProcMenu Routine
*
*/

void doprocmenu(procmenu *M)

{
char s[1O];
int i, choice;

int quit = 0;

159

}

I i I

160

do {
printf("\n>>> s <<<\n\n", M->name);
for (i=O; i < (M->numitems); i++) {

printf("d) %s", i+1, M->item[i]->name);
if (M->item[i] ->value[O] != 0)

printf("[%s]", M->item[i]->value);

printf("\n");

}
do {

printf("\nEnter your choice (1-d, <cr> to go back) : "

M-->numitems);

gets(s);

if ((s[0] == 0))
choice = (M->numitems+l);

else

sscanf(s, "d", &choice);

} while ((choice < 1) II (choice > (M->numitems+l)));

printf ("\n\n");
if (choice != M-->numitems+1)

(*(M->item[choice-1] ->proc))(M->item[choice-1] -->value);
} while (choice != M->numitems+l);

* Input Routines
*
* These routines as

* old value.
*

the user for input. Pressing CR keeps the variable's

char YN[2] = "ny";

void getYN(char *s, int *x)

{
char temp[20];

temp[0] = 0;

printf("X.s (y/n)?

gets(temp);

if (temp[0] == 'y'

*x = 1;
else if (temp [0]

*x = 0;
}

[%c] ", s, YN[*x]);

== n')

int askYN(char *s, int defval)

{
int x = defval;

getYN(s, &x);

return(x);

APPENDIX B. THE SCHEDULING SOFTWARE

}

161B.3. SOURCE CODE

I

void getstring(char *msg, char *s)

{
char temp[40];

printf("s [%s]: ", msg, s);
gets(temp);
if (temp[0] !- 0)

strcpy(s, temp);

void getlong(long *x)

{
char temp[20);

}

gets(temp);

sscanf(temp, ".ld", x);

#define getTP(x) printf(#x " [Y.ld] : ", x); \
getlong(&x);

* Menu item procedures
*

void do_Params(char *s)

{
getTP(d);

printf("\nM, N M.ld, Xld] : ", fM, fN);

gets(s);

sscanf(s, "%ld, Y.ld", &fM, &fN);

printf("\nEnter the following timing parameters in units of %s:\n\n",

PUnits. item[paramunits-1);

if ((paramunits == CMULPS) II (paramunits == CDIVPS)) {

getTP(Tref);
}

getTP(Sm); getTP(Hm); getTP(Cm); getTP(Pm);
getTP(Sn); getTP(Hn); getTP(Cn); getTP(Pn);

/* Note: this call uses the _global_ variables M and N. */

initNN(kM, fM, Sm, Hm, Cm, Pm, &N, fN, Sn, Hn, Cn, Pn);

if (PEEK) {
ShowTimes(&M, &N);

s [O = 0;

I

162 APPENDIX B. THE SCHEDULING SOFTWARE

void converttodt(systype *M, systype *N, int oldunits)

{
paramunits = oldunits;

Sm = -TP(M,S);

Sn = -TP(N,S);

Hm = TP(M,H);
Hn = TP(N,H);

Cm = TP(M,C);

Cn = TP(N,C);

Pm = TP(M,P);

Pn = TP(N,P);

paramunits = DTUNITS;

initMN(M, fM, Sm, Hm, Cm, Pm, N, fN, Sn, Hn, Cn, Pn);

if (PEEK) {

ShowTimes(M, N);

}

void doPUnits(char *s)

{
int oldunits = paramunits;

do_valmenu(&PUnits);

if ((paramunits != oldunits)) {
if (paramunits == DTUNITS) {

if (askYN("Convert to dt units?", 0)) (

printf("\nConverting to dt units ... ");

converttodt(&M, &N, oldunits);

printf("\n\n");

}
}

s [0] = O;

void doCompMode(char *s)

{
do_valmenu(&CompMode);

s[O] = O;

}

void do_OutMode(char *s)

{

}

do_valmenu(

s [O] = 0;
&OutMode);

void doAlgo(char *s)

{
do_valmenu(&Algo);

s[O] = 0;

I

void do_Output(char *s)

}

}

I I

B.3. SOURCE CODE

{

}

if (compmode == TABLE) {

if (outmode == ROM)
bigROMtable(&M, &N);

else

tablesched(&M, &N);

}
else

singlesched(&M, &N);

s[O] = 0;

fflush(outfile);

void do_OutOpts(char *s)

{
char temp[41];

strcpy(temp, outfilename);

getstring("Enter Log File Name",

if (strcmp(outfilename, temp)) {

change_outfile(outfilename);

}

outfilename);

getYN("Show intermediate results", &PEEK);

getYN("Draw text schedule diagram", &DRAWSCHEDS);

getYN("Use with prototype chip", &usewithchip);

s [O] = 0;

* ProcItem definitions
*

procitem I_PUnits = { "Parameter Units", "", do_PUnits };

procitem I_Algo = { "Scheduling Algorithm", "", doAlgo };

procitem I_CompMode = { "Compute Mode", "", doCompMode };

procitem I_OutMode = { "Output Format", "", do_OutMode };

procitem I_OutOpts = { "Output Options", "", do_OutOpts };

/* Hmm ... this is messy but I need to define this before defining

* do_Options.

*/

procmenu OptionsMenu = { "Options Menu", 5,

{ &I_PUnits, &I_Algo, &ICompMode,

&I_OutMode, &I_OutOpts, NULL,

NULL, NULL, NULL

}
};

void do_Options(char *s)

{
doprocmenu(&OptionsMenu);

163

I

APPENDIX B. THE SCHEDULING SOFTWARE

s[O] = o;

* ProcMenu definitions
*

procitem

procitem

procitem

I_Params

I_Output

I_Options

procmenu MainMenu =

= "Enter Parameters", "", doParams };
= "Generate Output", "", do_Output };

= "Options", "", do_Options);

{ "Main Menu", 3,

{ &I_Params, &I_Output, &I_Options,

NULL, NULL, NULL, NULL, NULL, NULL

}

* Main Program Routines
*

void initdisplay()

{
ClearROM();

outfile = fopen(

I
outfilename, "wt");

void shutdown()

{
fclose(outfile);

I

main()

initdisplay();

do

do-procmenu(&MainMenu);

getYN("Do you really want to quit", &quit);

} while (!quit);
shutdown();

}

}

I i I

164

B.4. IATjX SUPPORT FILES 165

B.4 lITEX Support Files

The sched.tex file produced by the scheduling software requires two support files: setup.tex

and clocks. tex.

% setup.tex

\newcommand\M}{5}%
\newcommand{\Mo}{6}Y,

\newcommand{\nM}{-51

\newcommand{\N}{6}%

\newcommand{\No}{7}

\newcommand{\nN}{-6}Y.

\newcommand{\MN}{30}.

/.
\newcommand{\CM}{i}X
\newcommand{\PM}{3}X

\newcommand{\CPM}{2}1

\newcommand{\SN}{1}Y

\newcommand{\NSN}{4} % >>>> Don't forget this! Set to (M-SN)

\newcommand{\HN}{1}Y

% clocks.tex

\setcounter{cM}{0}
\setcounter{cN}{0}

'h Draw M cycles
\multiput (0,-i) (0,3){2}{\line(1, 0) {\MN}}

\multiput (0,-i) (\N,O) {\Mo}{\line (0,1){3}}

\multiput(O,1.5)(1,0){\MN}{\line(0,1){.5}}

\multiput (0,-i) (\N,O){\M}{\makebox(\N,2.5) {\arabic{cM}}\addtocounter{cM}{1}}

X Draw C edges
\multiput(\CM,3) (\N,O){\M}{\line(O,1){1}}

% Draw P edges
\multiput(\PM,3) (\N,O){\M}{\line(0,){1}}

% Draw C-P lines

\multiput(\CM,3.5)(\N,O){\M}{\line(1,0){\CPM}}

'A Draw C's
\multiput(\CM,3) (\N,O){\M}{\makebox(O,O)r]{\tiny C\,}}

'A Draw P's
\multiput(\PM,3) (\N,O){\M}{\makebox(O,O) l{\tiny \,P}}

' Draw N cycles

I i:1

166 APPENDIX B. THE SCHEDULING SOFTWARE

\multiput(0,9)(0,3){2}{\line(1,0){\MN}}

\multiput(O,9)(\M,O){\No}{\line(0,1){3}}

\multiput(O,9)(1,0){\MN}{\line(0,1){.5}}

\multiput(0,9.5) (\M,O){\N}{\makebox(\M,2.5) (\arabic{cN}}\addtocounter{cN}{1}}

I Draw S edges

\multiput(\NSN,7)(\M,O) {\N}{\line(0,1){1}}

, Draw H edges

\multiput(\HN,7)(\M,O){\N}{\line(0,1){1}}

% Draw S

\multiput(\NSN,8) (\M,O){\N}{\makebox(O,O)r]{\tiny S\,}}

% Draw S-Clk lines

\multiput(\NSN,7.5)(\M,O){\N}{\line(1,0){\SN}}

% Draw H

\multiput(\HN,8) (\M,O){\N}{\makebox(O,O) [l]{\tiny \,H}}

% Draw H-Clk lines

\multiput(\HN, 7.5) (\M,0){\N}{\line(-1,0){\HN}}

Appendix C

The Prototype Chip

Figure C-1 shows the layout and pin assignments of the prototype rational clocking chip.

Details of its features and its intended use are provided in Chapter 6.

1e

167

·M ·ru u
H cH o*

.~~JI (fl ~ C H 0)

CD -

Figure C-1: Layout

co Ch C

and pinout of the

and pinout of the

APPENDIX C. THE PROTOTYPE CHIP

u i ¢'
oN co - %0

)5 VDD

)4 DTNin

)3 NC

)2 TENout

)1 RENout

40 DTNout

19 ReadyN

18 ZN

17 ZM

16 ReadyM

5 GND

m m m

prototype rational

prototype rational

m

clocking chip.

168

VDD 15

DTMin 16

B[0] 17

B[1] 18

B[2] 19

B[3] 20

RDY 21

DTMout 22

REMout 23

TEMout 24

GND 25

Appendix D

Verilog Source Code

This appendix contains the complete Verilog source code of the run-time scheduling hard-

ware model. The code is divided into five sections of descending hierarchical order. The

top-level modules are presented first, followed by the high-level communication scheduling

hardware modules. The components that make up the scheduling hardware are presented

next, followed by the circuits that compute the constants used by these components. The

listing ends with the basic components, such as registers and multiplexers, which are used

by all the other higher-level modules.

D.1 Top-Level Modules
/* params.vh

* This file contains the timing parameters in units of Delta t.

* It is included in a number of modules. Modify this file to modify

* the timing parameters.
*
*/

'define

'define

'define

'define

'define
'define

'define

M 5'd5

N 5'd6

CM 5'di

PM 5'd3

SM 5'di

HM 5'dl

CN 5'di

169

I II

170

'define PN 5'd3

'define SN 5'dl

'define HN 5'dl

/* driver.v

*
* Driver / Test Module
*
* Luis F. G. Sarmenta 950514
*

/* Define the algorithm/hardware to use */

'define GENB

/* Define which wave forms to view */

'define VIEW M TO N

module driver;

parameter width = 5;

reg clkhi, clr;

wire clkM, clkN;

wire [width-1:0] cntM, cntN, dM, dN, qM, qN, qinM, qinN;

wire TEM,TSelM,REN,RSelN,TEN,TSelN,REM,RSelM;

wire validN, validM;

wire dlyREM, dlyREN, dlyRSelM, dlyRSelN;

'include "params.vh"

parameter SB = 1'bO;

parameter M = 'M;

parameter N = 'N;

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

CM = CM;

PM = 'PM;

SM = 6SM;

HM = 'HM;

CN = 'CN;
PN = 'PN;
SN = 'SN;

HN = 'HN;

APPENDIX D. VERILOG SOURCE CODE

D.1. TOP-LEVEL MODULES

* Clock Generation (Clock Division) Counters
*

fdiv #(width) genclkM(clkM, , clkhi, N, 'bO, clr);

fdiv #(width) genclkN(clkN, , clkhi, M, l'bO, clr);

* Scheduling Hardware

'ifdef NOCNTL /* No flow control */

/* Index Counters (the other hardware options have built-in

index counters) */

fdiv #(width) fdivM(zM, cntM, clkM, M, l'bO, clr);

fdiv #(width) fdivN(zN, cntN, clkN, N, 'bO, clr);

assign TEM = 1'bl;

assign TSelM = 'bl;

assign REN = 1'bl;

assign RSelN = 1'bl;

assign TEN = 1'bl;

assign TSelN = 1'bl;

assign REM = i'bl;

assign RSelM = 1'bl;
'endif

'ifdef DBLAZY /* Double-buffered Lazy */

dbstfrl #(width) stfr(zM, cntM, TEM, TSelM, zN, cntN, REN, RSelN,

/* clkhi, */ clkM, clkN, clr, M, N,

CM, PM, SM, HM, CN, PN, SN, HN

/* SB */);

dbftsrl #(width) ftsr(, , REM, RSelM, , , TEN, TSelN,
/* clkhi, */ clkM, clkN, clr, M, N,

CM, PM, SM, HM, CN, PN, SN, HN

/* SB */);
'endif

'ifdef DBGREEDY /* Double-buffered Greedy */

dbstfrg #(width) stfr(zM, cntM, TEM, TSelM, zN, cntN, REN, RSelN,

/* clkhi, */ clkM, clkN, clr, M, N,

CM, PM, SM, HM, CN, PN, SN, HN

/* SB */);

dbftsrg #(width) ftsr(

'endif

, , REM, RSelM, , , TEN, TSelN,

/* clkhi, */ clkM, clkN, clr, M, N,

CM, PM, SM, HM, CN, PN, SN, HN

/* SB */);

'ifdef GENB /* Generalized Scheduling */
gbstfr #(width) stfr(zM, cntM, TEM, TSelM, zN, cntN, REN, RSelN,

clkhi, clkM, clkN, clr, M, N,

171

APPENDIX D. VERILOG SOURCE CODE

CM, PM, SM, HM, CN, PN, SN, HN,

SB);

gbftsr #(width) ftsr(,

'endif

/* Data Channels
* Data Channels

, REM, RSelM, , , TEN, TSelN,

clkhi, clkM, clkN, clr, M, N,

CM, PM, SM, HM, CN, PN, SN, HN,

SB);

/* M to N */

counten #(width) dataM(, dM, clkM, TEM, clr);

/* Note: Here we delay RSel by the receiver's C

* from causing a hold time violation. */

assign

assign

dbout

#(CN*100) dlyRSelN = RSelN;

#(CN*100) dlyREN = REN;

#(width,CM*100,PM*100) outM(qM, clkM, d

delay to prevent RSel

.M, TEM, TSelM, dlyRSelN);

rxregN #(width) inN(qinN, clkN, qM, dlyREN);

regen vN(validN, clkN, REN, 'bl);

/* N to M */

counten #(width) dataN(, dN, clkN, TEN, clr);

#(CM*100) dlyRSelM = RSelM;

#(CM*100) dlyREM = REM;

#(width,CN*100,PN*100) outN(qN, clkN, dN, TEN, TSelN, dlyRSelM);

rxregM #(width) inM(qinM, clkM, qN, dlyREM);

regen vM(validM, clkM, REM, 1'bl);

Clkhi and Reset Generators

/* clock period = 100 */

initial

forever

begin

clkhi = 1;

#50;
clkhi = 0;

#50;

I I1

172

assign

assign

dbout

*
*
*

D.1. TOP-LEVEL MODULES 173

end

/* reset on start */

initial
begin

clr = O ;
#150;

clr = 1 ;
#100;

clr = 0 ;
end

/*
* Display Routines

*

/* Primitive text output for non-graphics terminals

always (cntM)

$strobe("cM=%d, %b/.b %b%b", cntM[width-1:0],

TEM, TSelM, REM, RSelM);

always (cntN)
$strobe("\t\tcN=%d, %b/.b %b%b", cntN[width-1:0],

REN, RSelN, TEN, TSelN,);

*/

/* Graphical Output */

initial

begin

$gr_waves(

'ifdef VIEW M TO N

"cntN", cntN[width-:0],

"qinN", qinN[width-1:0],

"validN", validN,

"REN"', dlyREN,

"RSelN'", dlyRSelN,

"qM", qM[width-1:0],

"qOM", outM.qO[width-1:0],

"qiM", outM.ql[width-1:0],

"TSelM", TSelM,

"TEM", TEM,

"dM", dM[width-1:0],

"cntM", cntM[width-1:0]

'endif

'ifdef VIEW N TO M

"cntN", cntN[width-1:0],

"dN", dN[width-1:0],

"TEN", TEN,

"TSelN", TSelN,

"qON", outN.qO[width-1:0],

174 APPENDIX D. VERILOG SOURCE CODE

"qiN", outN.ql [width-1:01],
"qN", qN[width-1:0],

"RSelM'", dlyRSelM,

"REM'", dlyREM,

"validM", validM,

"qinM", qinM[width-1:0],
"cntM", cntM[width--1:0]

'endif

end

endmodule

D.2 Schedulers and Data Channels
/* dbstfrl.v

* Controller for double-buffering, slower transmitter case (lazy algo)
*(assumes M < N)

*/

module dbstfrl(zM, cntM, TEM, TSelM, zN, cntN, REN, RSelN,

clkM, clkN, clr,

M, N, CM, PM, SM, HM, CN, PN, SN, HN);

parameter width = 5;

output zM, TEM, TSelM, zN, REN, RSelN;

output [width-1:0] cntM, cntN;

input clkM, clkN, clr;

input [width-1:0] M, N, CM, PM, SM, HM, CN, PN, SN, HN;

wire [width-i:O] fO, eO, xO, yO;

wire [width-1:0 divst, modst;

assign xO = 1;

assign fO = -(PM+SN);

commoddiv #(width) compeOyOst(divst, modst, , fO, N);

forme0 #(width) compe0st(eO, modst, N, f0[width-1);

formy0 #(width) compy0st(yO, divst, f0[width-1);

fdiv #(width) fdivM(zM, cntM, clkM, M, 'bO, clr);

fdiv #(width) fdivN(zN, cntN, clkN, N, 'bO, clr);

schdbstl #(width) schM(TEM, TSelM, clkM, cntM, M, N, eO, yO);

schdbfrl #(width) schN(REN, RSelN, clkN, cntN, M, N, eO, xO);

endmodule

1 11.1

D.2. SCHEDULERS AND DATA CHANNELS 175

/* dbftsrl.v

* Controller for double-buffering, slower receiver case (lazy algo)
*(assumes M < N)
*
*/

module dbftsrl(zM, cntM, REM, RSelM, zN, cntN, TEN, TSelN,

clkM, clkN, clr,
M, N, CM, PM, SM, HM, CN, PN, SN, HN);

parameter width = 5;

output zM, REM, RSelM, zN, TEN, TSelN;

output [width-1:0] cntM, cntN;

input clkM, clkN, clr;

input [width-1:0] M, N, CM, PM, SM, HM, CN, PN, SN, HN;

wire [width-1:0 fO, eO, xO, yO;

wire [width-1:0] divst, modst;

assign xO = 1;
assign fO = CN-HM;

commoddiv (width) compeOyOst(divst, modst, , fO, N);
forme0 *(width) compeOst(eO, modst, N, fO[width-1]);

formyO #(width) compy0st(yO, divst, fO[width-]);

fdiv (width) fdivM(zM, cntM, clkM, M, 'bO, clr);
fdiv (width) fdivN(zN, cntN, clkN, N, 'bO, clr);

schdbsrl #(width) schM(REM, RSelM, clkM, cntM, M, N, eO, yO);

schdbftl #(width) schN(TEN, TSelN, clkN, cntN, M, N, eO, xO);

endmodule

/* dbstfrg.v
*
* Controller for double-buffering, slower transmitter case (greedy algo)
*(assumes M < N)
*

module dbstfrg(zM, cntM, TEM, TSelM, zN, cntN, REN, RSelN,

clkM, clkN, clr,
M, N, CM, PM, SM, HM, CN, PN, SN, HN);

parameter width = 5;

output zM, TEM, TSelM, zN, REN, RSelN;

output [width-1:0 cntM, cntN;

input clkM, clkN, clr;

I 11

176 APPENDIX D. VERILOG SOURCE CODE

input [width-i:O M, N, CM, PM, SM, HM, CN, PN, SN, HN;

dbstfrl #(width) schMN(zM, cntM, TEM, TSelM, zN, cntN, REN, RSelN,

clkM, clkN, clr,

M, N, CM, PM, SM, HM, CN, PN, SN, HN);

endmodule

/* dbftsrg.v

*
* Controller for double-buffering, slower receiver case (greedy algo)

* (assumes M < N)
*
*,

module dbftsrg(zM, cntM, REM, RSelM, zN, cntN, TEN, TSelN,

clkM, clkN, clr,

M, N, CM, PM, SM, HM, CN, PN, SN, HN);

parameter width = 5;

output zM, REM, RSelM, zN, TEN, TSelN;

output [width-1:O0 cntM, cntN;

input clkM, clkN, clr;

input [width-i:O0 M, N, CM, PM, SM, HM, CN, PN, SN, HN;

wire [width-1:O0 fO, eO, adjeO, xO, yO, adjyO;

wire [width-i:O divsr, modsr;

assign xO = 1;
assign fO = SM+PN;

commoddiv #(width) compeOyOsr(divsr, modsr, , fO, N);

formeO #(width) compe0sr(eO, modsr, N, fO[width-1]);

adjuste0 #(width) adjuste0(adjeO, eO, N);

formyO # (width) compy0sr(yO, divsr, f [width-I]);

assign adjyO = (adjeO == 0) ? (yO-1) : yO;

fdiv #(width) fdivM(zM, cntM, clkM, M, 'bO, clr);
fdiv #(width) fdivN(zN, cntN, clkN, N, 'bO, clr);

schdbsrg #(width) schM(REM, RSelM, clkM, cntM, M, N, adje0, adjy0);

schdbftg #(width) schN(TEN, TSelN, clkN, cntN, M, N, adje0, xO);

endmodule

/* gbstfr.v

** Controller for generalized scheduling, slower transmitter case

* (assumes M < N)

,/

177D.2. SCHEDULERS AND DATA CHANNELS

module gbstfr(zM, cntM, TEM, TSelM, zN, cntN, REN, RSelN,

clkS, clkM, clkN, clr,

M, N, CM, PM, SM, HM, CN, PN, SN, HN,

SB);

parameter width 5;

output zM, TEM, TSelM, zN, REN, RSelN;

output [width-1: 0 cntM, cntN;

input clkS, clkM, clkN, clr;

input [width-1:0 M, N, CM, PM, SM, HM, CN, PN, SN, HN;

input SB;

wire [width-1:0] fO, eO, xO, yO, DMN, negDMHN, eOM, emax;

wire width-1:0 divst, modst;

wire doneeOM, doneDMN;

seqmod *(width) cDMN(DMN, doneDMN, clkS, N, M, clr);

neg #(width) cnDMN(negDMN, DMN);

assign xO = 1;
assign fO = -(PM+SN);

commoddiv #(width) compeOyOst(divst, modst, , fO, N);

formeO #(width) compeOst(e0, modst, N, fOw[idth-1]);

formyO #(width) compy0st(yO, divst, fO[width-1]);

seqmod *(width) ceOMst(eOM, doneeON, clkS, eO, , clr);

assign emax = N - ((PM-CM) + (SN+HN));

fdiv #(width) fdivM(zM, cntM, clkM, M, 'bO, clr);

fdiv #(width) fdivN(zN, cntN, clkN, N, i'bO, clr);

schdgst *(width) schM(TEM, TSelM, clkM, cntM,

M, negDMN, eOM, yO, emax, SB);

schdgfr *(width) schN(REN, RSelN, clkN, cntN,

M, N, eO, xO, emax, SB);

endmodule

/* gbftsr.v

* Controller for generalized scheduling, slower receiver case (greedy algo)

* (assumes M < N)

/

module gbftsr(zM, cntM, REM, RSelM, zN, cntN, TEN, TSelN,

clkS, clkM, clkN, clr,

M, N, CM, PM, SM, HM, CN, PN, SN, HN,

SB);

parameter width = 5;

APPENDIX D. VEMLOG SOURCE CODE

output zM, REM, RSelM, zN, TEN, TSelN;
output [width-1 : 01 cntM, cntN;
input clkS, clkM, clkN, c l r ;
input [width-1:Ol M , N , CM, PM, SM, HM, CN, PN, SN, HN;
input SB ;

wire [width-1:Ol fO, eO, adje0, xO, yo, adjy0;
wire [width-1:Ol DMN, negDMN, eOM, adjeOM, emin;
wire [width- 1 : 01 d i v s r , modsr ;
wire doneeOM, doneDMN;

seqmod #(width) cDMN(DMN, doneDMN, clkS, N, M , c l r 1;
neg # (width) cnDMN (negDMN, DMN) ;

ass ign xO = 1;
a s s i gn fO = SM+PN;

commoddiv #(width) compeOy0sr (d i v s r , modsr, , f 0 , N) ;
f orme0 #(width) compe0sr (eO, modsr, N, f 0 [width-11) ;
adjusteO #(width) adjusteO(adje0, eO, N 1;

f ormy0 #(width) compy0sr (yo, d i v s r , f 0 [width-11) ;
ass ign adjyO = (adjeO == 0) ? (yo-1) : yo;

seqmod #(width) ceOMsr(eOM, doneeon, clkS, adje0, M , c l r);
adjusteOM #(width) adjusteOM(adjeOM, eOM, M);

ass ign emin = M + ((PN-CN) + (SM+HM)) - N;

f d i v #(width) fdivM(zM, cntM, clkM, M, l'bO, c l r 1;
f d i v #(width) fdivN(zN, cntN, clkN, N, l'bO, c l r) ;

schdgsr #(width) schM(REM, RSelM, clkM, cntM,
M , negDMN, adjeOM, adjy0, emin, SB 1;

schdgf t #(width) schN(TEN, TSelN, clkN, cntN,
M, N , adje0, xO, emin, SB 1;

endmodule

/* dbout . v
*
* Double-buf f e rd output hardware
*
* This module conta ins two t ransmi t r e g i s t e r s a s e l e c t i n g demux.
* It takes t h e t r an smi t t e r ' s C and P de lays a s parameters
* and passes them t o tx reg .
*
*/

module dbout (q, c l k , d , TE, TSel , RSel) ;

parameter u id th = 1 ;
parameter C = 0;
parameter P = 0;

0.2. SCHEDULERS AND DATA CHANNELS

output [width- 1 : 01 q;
input clk;
input [width- 1 : 01 d ;
input TE, TSel, RSel;

wire enO, enl;
wire [width-1:Ol qO, q1;
wire dlyRSel;

txreg #(width,C,P) rO(qO, elk, d, en0 1;
txreg #(width,C,P) r1(q1, clk, d, en1 1;
demuxito2 seldemux(enO, enl, TE, TSel 1;

muxlof 2 #(width) qmux(q, qO, q1, RSel) ;

endmodule

/* rxregM.v
*
* Receive Register with Enable and specifiable S and H times
* <<< For System M >>>
*
* Note: S and H times are specified by modifying params.vh
*
* /

module rxregM(q, clk, dB en) ;

parameter width = 1;

output [width- 1 : 01 q;
input clk;
input [width- 1 : 01 d;
input en;

reg [width-1:Ol q;
wire [width-1 : O] q1;
reg flag;

' include "params. vh"

specify
specparam S = ('SM*IOO), H = ('HM*IOO) ;

$setuphold(posedge clk &&& en, dB S, H, flag);
endspecify

always O (posedge clk)
begin

if (en)
q = d;

end

APPENDIX D. VERTLOG SOURCE CODE

always Q(f lag) q = q + 1'bx;

endmodule

/* rxregN.v
*
* Receive Register with Enable and specifiable S and H times
* <<< For System N >>>
*
* Note: S and H times are specified by modifying params.vh
*
* /

module rxregN (q, clk, d, en) ;

parameter width = 1;

output [width-1 : 01 q;
input clk;
input [width- 1 : Ol d ;
input en;

reg [width-1:Ol q;
wire [width- 1 : Ol q1;
reg flag;

' include "params. vh"

specify
specparam S = ('SN*100) , H = ('HN*~OO) ;

$setuphold(posedge clk &&& en, d, S, H, flag) ;
endspecify

always O (posedge clk)
begin

if (en)
q = d;

end

always Q (f lag) q = q + 1 'bx;

endmodule

D.3 Scheduler Components

/* schdbfrg.~
*
* Scheduling hardware for double-buffering, faster receiver, greedy algo
* (assumes M < N, and cnt is the N counter)
*

D.3. SCHEDULER COMPONENTS

module schdbfrg(RE, RSel, clk, cnt, M, N, e0, zO);

parameter width = 1;

output RE, RSel;

input clk;

input [width-1:0] M, N, cnt, e0, O;

schdbfrl (width) sch(RE, RSel, clk, cnt, M, N, e0, xO);

endmodule

/* schdbfrl.v
*
* Scheduling hardware for double-buffering, faster receiver, lazy algo
* (assumes M < N, and cnt is the N counter)

*

module schdbfrl(RE, RSel, clk, ct, M, N, eO, xO);

parameter width = 1;

output RE, RSel;

input clk;

input [width-i:O] M, N, cnt, e0, O;

wire ld;

wire [width-1:0 xO_i;

assign xO_i - xO - 1;

ldgen #(width) ldgenN(ld, cnt, xO_, N);

egendb #(width) egenN(RE, , clk, ld, M, N, e0, l'b0);

rgendb rgenN(RSel, clk, RE, ld);

endmodule

/* schdbftg.v
*
* Scheduling hardware for double-buffering, faster
* (assumes M < N, and ct is the N counter)
*

transmitter, greedy algo

module schdbftg(TE, TSel, clk, cnt, M, N, adjeO, xO);

parameter width = 1;

output TE, TSel;

input clk;

181

I I!I

182 APPENDIX D. VERILOG SOURCE CODE

input width-1:O0 M, N, cnt, adjeO, xO;

wire ld;

wire [width-1:O0 x0_2;

assign x0_2 = xO - 2;

ldgen #(width) ldgenN(ld, cnt, x0_2, N);

egendbg #(width) egenN(TE, , clk, ld, M, N, adjeO, 'bO);

rgendb rgenN(TSel, clk, TE, ld);

endmodule

/* schdbftl.v

*
* Scheduling hardware for double-buffering, faster transmitter, lazy algo

* (assumes M < N, and cnt is the N counter)
*
*/

module schdbftl(TE, TSel, clk, cnt, M, N, eO, xO);

parameter width = 1;

output TE, TSel;

input clk;

input [width-1:O0 M, N, cnt, eO, xO;

schdbfrl #(width) sch(TE, TSel, clk, cnt, M, N, eO, xO);

endmodule

/* schdbsrg.v
*
* Scheduling hardware for double-buffering, slower receiver, greedy algo

* (assumes M < N, and cnt is the M counter)

*/

module schdbsrg(RE, RSel, clk, cnt, M, N, eO, yO);

parameter width = 1;

output RE, RSel;

input clk;

input [width-1:O0 M, N, cnt, eO, yO;

schdbstl #(width) sch(RE, RSel, clk, cnt, M, N, eO, yO);

endmodule

/* schdbsrl.v

D.3. SCHEDULER COMPONENTS

* Scheduling hardware for double-buffering, slower receiver, lazy algo

* (assumes M < N, and cnt is the M counter)

module schdbsrl(RE, RSel, clk, cnt, M, N, eO, yO);

parameter width = 1;

output RE, RSel;

input clk;

input [width-1:0 M, N, cnt, eO, yO;

schdbstl #(width) sch(RE, RSel, clk, cnt, M, N, eO, yO);

endmodule

/* schdbstg.v

* Scheduling hardware for double-buffering, slower transmitter, greedy algo

* (assumes M < N, and cnt is the M counter)
*

module schdbstg(TE, TSel, clk, cnt, M, N, eO, yO);

parameter width = 1;

output TE, TSel;

input clk;

input [width-1:0 M, N, cnt, eO, yO;

schdbstl #(width) sch (TE, TSel, clk, cnt, M, N, e0, yO);

endmodule

/* schdbstl.v

*
* Scheduling hardware for double-buffering, slower transmitter, lazy algo

* (assumes M < N, and cut is the M counter)

module schdbstl(TE, TSel, clk, cnt, M, N, eO, yO);

parameter width = 1;

output TE, TSel;

input clk;

input [width-1:0O M, N, cnt, eO, yO;

wire TE;

183

I li.lI

APPENDIX D. VERILOG SOURCE CODE184

wire ld;

wire width-1:O0 yO_l;

assign TE = 'bl;

assign yOl = yO - 1;

ldgen #(width) ldgenM(ld, cnt, y_l, M);

rgendb rgenM(TSel, clk, TE, ld);

endmodule

/* schdgfr.v

* Scheduling hardware for generalized scheduling,

* (assumes M < N, and cnt is the N counter)
*

faster receiver

module schdgfr(RE, RSel, clk, cnt, M, N, eO, xO, emax, SB);

parameter width = 1;

output RE, RSel;

input clk;

input [width-:O] M, N,

input SB;

cnt, eO, xO, emax;

wire ld;

wire [width-l':0] xO_l;

wire preRE;

wire [width-:O] e;

assign xO_l = xO - 1;

ldgen (width) ldgenN(ld, cnt, xO_l, N);

egendb #(width) egenN(preRE, e, clk, ld, M, N, eO, 'bO);

rgengbst (width) rgenN(RSel, clk, preRE, ld, e, emax);

nand nandl(noregs, SB, RSel);

and andl(RE, preRE, noregs);

endmodule

/* schdgft.v

* Scheduling hardware for generalized scheduling, faster transmitter
* (assumes N < N, and cnt is the N counter)
*

module schdgft(TE, TSel, clk, cnt, M, N, adjeO, xO, emin, SB);

D.3. SCHEDULER COMPONENTS 185

parameter width = 1;

output TE, TSel;

input clk;

input [width-1:O] H, N, cnt, adjeO, O, emin;

input SB;

wire ld;

wire width-i:O xO_2;
wire preTE;

wire width-1:O e;

assign x2 = xO - 2;

ldgen #(width) ldgenN(ld, cnt, xO2, N);

egendbg #(width) egenN(preTE, e, clk, ld, M, N, adjeO, l'bO);

rgengbsr #(width) rgenN(TSel, clk, preTE, ld, e, emin);

nand nandl(noregs, SB, TSel);

and andl(TE, preTE, noregs);

endmodule

/* schdgsr.v
*
* Scheduling hardware for generalized scheduling, slower receiver
* (assumes M < N, and cnt is the M counter)

module shdgsr(RE, RSel, lk, t, M, egDMN, adje , y, emin, S

module schdgsr(RE, RSel, clk, cnt, M, negDMN, adjeON, yO, emin, SB);

parameter width = 1;

output RE, RSel;

input clk;

input width-1:O] M, negDMN, cnt, adjeOM, yO, emin;

input SB;

wire preRE;

wire ld;

wire [width-1:O] yO_1;

wire [width-1:O] negM, e;

assign preRE = l'bl;

assign yO_1 = yO - 1;

assign negM = -M;

ldgen #(width) ldgenN(ld, cnt, yO_1, M);

egendbg #(width) egenM(, e, clk, ld, negDMN, negM, adjeOM, 'bl);

rgengbsr #(width) rgenM(RSel, clk, preRE, ld, e, emin);

I 11.1

186 APPENDIX D. VERILOG SOURCE CODE

nand nandl(noregs, SB, RSel);

and andl(RE, preRE, noregs);

endmodule

/* schdgst.v

.,*

* Scheduling hardware for generalized scheduling, slower transmitter
* (assumes M < N, and cnt is the M counter)

*

module schdgst(TE, TSel, clk, cnt, M, negDMN, eOM, yO, emax, SB);

parameter width = 1;

output TE, TSel;

input clk;

input [width-1:0] M, negDMN, cnt, eOM, yO, emax;

input SB;

wire preTE;

wire ld;

wire [width-1:0 yO_1;

wire [width-1:0 negM, e;

assign preTE = 1'bl;
assign yO_1 = yO - 1;

assign negM = -M;

ldgen #(width) ldgenN(ld, cnt, yO_1, M);

egendb #(width) egenN(, e, clk, ld, negDMN, negM, eOM, 'bl);

rgengbst #(width) rgenN(TSel, clk, preTE, ld, e, emax);

nand nandl(noregs, SB, TSel);

and andl(TE, preTE, noregs);

endmodule

/* egendb.v

* The EGen module, slower transmitter case
.*

* This module works as the EGen module for double-buffering when gb is O,
* and works as the modified EGen module in the slower system's
* generalized schedling hardware for the slower transmitter case.
*

module egendb(E, eout, clk, ld, M, N, eO, gb);

D.3. SCHEDULER COMPONENTS 187

parameter width = 1;

output E;

output [width-1:0] eout;

input clk;

input d;

input [width-1:0] M, N, eO;

input gb;

wire E;

wire width-1:0 eout, negN, eold, e, eN, nxteold;

wire sgne;

wire muxsel;

assign negN = -N;

muxreg #(width) eoldreg(eold, clk, nxteold, e0, ld);

adder #(width) eoplusM(e, eold, N, 'bO);

adder (width) esubN(eN, e, negN, 'bO);

assign sgne = ewidth-1];
assign E = sgne;

xor xi(muxsel, sgne, gb);

muxlof2 #(width) neomux(nxteold, eN, e, muxsel);

muxlof2 #(width) eoutmux(eout, e, old, gb);

endmodule

/* egendbg.v

* The EGen module for double-buffering greedy slower receiver algo
*

module egendbg(E, eout, clk, ld, M, N, eO, gb);

parameter width = i;

output E;

output width-1:0] eout;

input clk;

input ld;

input width-1:0 M, N, eO;

input gb;

wire E, notE;

wire [width-i:0 eout, negN, eold, e, eN, nxteold;

wire sgne, z;

wire muxsel;

assign negN = -N;

1 1.1

188 APPENDIX D. VERILOG SOURCE CODE

muxreg #(width) eoldreg(eold, clk, nxteold, eO, ld);

adder #(width) eoplusM(e, eold, M, l'bO);

adder #(width) esubN(eN, e, negN, 'bO);

zero #(width) ez(z, e);

assign sgne = ewidth-1];

nor gtz(E, z, sgne);

assign notE = -E;

xor xl(muxsel, notE, gb);

muxlof2 #(width) neomux(nxteold, eN, e, muxsel);

muxiof2 #(width) eoutmux(eout, e, eold, gb);

endmodule

/* ldgen.v

* LD Gen module

* (checks if count == (i-i) mod M and generates LD signal)
.

*l

module ldgen(ld, count, i,);

parameter width = 1;

output ld;

input [width-1:O] count, i, M;

wire [width-1:O] i_1, al, iMo;

assign ai = 1;

addsub #(width) subi(i_i, i, al, i'bl);

commod #(width) domod(iMo, i_i, M);

assign ld = (count == iMo);

endmodule

/* rgendb.v

*
* The RGen module for double-buffering
*

module rgendb(r, clk, en, ld);

output r;

input clk;

189D.3. SCHEDULER COMPONENTS

input en, ld;

tflopenld rtflop(r, clk, 'bO, en, ld);

endmodule

/* rgengbsr.v

* The RGen module for generalized run-time scheduling, slower receiver case
*

module rgengbsr(r, clk, en, ld, e, emin);

parameter width = 1;

output r;

input clk;

input en, ld;

input [width-1:O] e, emin;

wire ge, q;

leq #(width) egeqemin(ge, emin, e);

nor nrl(r, ge, q);

regencs rreg(q, clk, r, en, l'bO, ld);

endmodule

/* rgengbst.v

* The RGen module for generalized scheduling, slower transmitter case

*
*/

module rgengbst(r, clk, en, ld, e, emax);

parameter width = 1;

output r;

input clk;

input en, ld;

input [width-1:O] e, emax;

wire le, d;

leq #(width) eleqemax(le, e, emax);

nor nrl(d, le, r);

regencs rreg(r, clk, d, en, ld, l'bO);

endmodule

I 11.1

190 APPENDIX D. VERILOG SOURCE CODE

D.4 Bootup Computation Circuitry
/* commod.v

* combinational mod module

*
* This module computes:
* mod = (a mod b) for -3b < a < 3b
*

module commod(modout, a, b);

parameter width = 1;

output [width-1: O modout;

input [width-1:O] a, b;

wire [width-1:OJ mod, modprime;

commoddiv #(width) cmd(, mod, modprime, a, b);
muxlof2 #(width) outmux(modout, mod, modprime, a[width-1]);

endmodule

/* commoddiv.v

*
* combinational mod / div module -- cascaded twice

*
* (see moddiv.v for more details)

module commoddiv(div, mod, modprime, a, b);

parameter width = 1;

output [width-1:O] div, mod, modprime;

input [width-1:O] a, b;

wire [width-1:0] nxtmod, nxtdiv, divO;

assign divO = 0;

moddiv #(width) ml(nxtdiv, nxtmod, , , a, b, divO);

moddiv #(width) m2(div, mod, modprime, , nxtmod, b, nxtdiv);

endmodule

/* moddiv.v

* mod / div module
*

D.4. BOOTUP COMPUTATION CIRCUITRY

* This module computes:
* if a >= O

mod (a mod b)

div = (a div b)

if a < 0

mod = (a mod b) - b

mod' = (a mod b)
div = -(a div b)

= -(a div b) - 1

if (a mod b ! O0)
if (a mod b - O)

* This module can be cascaded by connecting mod to a and div to divin.
* sgnchg would then indicate when the operation is done.

module moddiv(div, mod, modprime, sgnchg, a, b, divin);

parameter width 1;

output [width-1:0 div, mod, modprime;

output sgnchg;

input [width-1:0 a, b, divin;

wire [width-1:O0 div, mod, modprime;

wire sgna, nsgna, sgnchg;

assign sgna = a[width-1];
assign nsgna -= sgna;

addsub (width) addl(modprime, a, b, nsgna);

xor x(sgnchg, modprime[width-1], sgna);

muxlof2 #(width) modmux(mod, modprime, a, sgnchg);

incinh #(width) divinc(div, divin, sgnchg);

endmodule

/* seqmod.v

* sequential mod module

* This module computes:
* mod = (a mod b)

*l

module seqmod(modout, done, clk, a, b, start);

parameter width = 1;

output [width-1:0] modout;

output done;

input clk;

input width-i:0 a, b;

input start;

*
*
*
*
*
*
*

191

192

wire [width--i:O] mod, modprime, nxtmod;

seqmoddiv #(width) smd(, mod, modprime, done, clk, a, b, start);

muxiof2 #(width) outmux(modout, mod, modprime, a[width-1);

endmodule

/* seqmoddiv.v

* sequential mod / div module

* (see moddiv.v)

*/

module seqmoddiv(div, mod, modprime, done, clk, a, b, start);

parameter width = 1;

output [width-1:0] div, mod, modprime;

output done;

input clk;

input [width-1:0] a, b;

input start;

wire [width-1-:0] div, mod, nxtmod, nxtdiv;

regencs #(width) curdiv(div, clk, nxtdiv, 'bl, start, 'bO);

muxreg #(width) curmod(mod, clk, nxtmod, a, start);

moddiv #(width) compute(nxtdiv, nxtmod, modprime, done, mod, b, div);

endmodule

/* adjusteO.v

*
* Adjust module for eO for greedy slower receiver algo

module adjusteO(neweO, eO, N);

parameter width = 1;

output [width-1:O0 neweO;

input [width-1:O eO, N;

wire [width-1:0 eplusN;

wire z;

adder #(width) ein(eplusN, eO, N, i'bO);

zero #(width) zcheck(z, eplusN);

muxlof2 #(width) emux(neweO, eO, eplusN, z);

APPENDIX D. VERTLOG SOURCE CODE

1 11.1

D.4. BOOTUP COMPUTATION CIRCUITRY

endmodule

/* adjusteOM.v

* Adjust module for eO mod M for generalized slower receiver algo
*

module adjusteOM(neweOM, eOM, M);

parameter width = 1;

output [width-:O] neweOM;

input [width-1:O0 eOM, M;

wire [width-1:01 eplusM;

wire z;

adder #(width) ein(eplusM, eOM, M, 'bO);

zero #(width) zcheck(z, eOM);

muxlof2 #(width) emux(newe0M, eOM, eplusM, z);

endmodule

/* formeO.v

* Module to form eO = (fO mod N) - N

* from the output of the mod/div module
*

module forme0(eO, modin, N, sgnfO);

parameter width = 1;

output

input

input

[width-i:O] eO;

[width-1:O] modin, N;

sgnf0;

wire [width-l:O] eO, eN;

addsub #(width) addl(eN, modin, N, l'bl);

muxlof2 #(width) outmux(eO, eN, modin, sgnf0);

endmodule

/* formyO.v

* Module to form yO
* from the output of the mod/div module
*

193

194 APPENDIX D. VERILOG SOURCE CODE

module formyO(yO, divin, sgnfO);

parameter width = 1;

output [width-1:O] yO;

input [width-1:O] divin;

input sgnfO;

wire nsgnfO;

wire [width-1:0] zorl;

assign nsgnfO = sgnfO;

assign zorl = 0 nsgnfO;

addsub #(width) addl(yO, zorl, divin, sgnfO);

endmodule

D.5 Basic Components
/* adder.v

* variable width adder with cin

module adder(sum, a, b, cin);

parameter width = 1;

output [width-l:0] sum;

input [width-1: O] a, b;

input cin;

assign sum = a + b + cin;

endmodule

/* addsub.v

* variable width adder/subtractor with carry-in

module addsub(sum, a, b, sub);

parameter width = 1;

I il

195D.5. BASIC COMPONENTS

output [width-1:O0 sum;

input [width-1:0] a, b;

input sub;

assign sum = sub ? (a-b) : (a+b);

endmodule

/* counten.v

* countup timer with enable, Asynchronous clear

module counten(z

module counten(z, q, clk, en, clr);

parameter width = 1;

output z;

output [width-1:O q;

input clk;

input en, clr;

reg [width-1:O q;

assign z = (q == 0);

always (clr)

if (clr)

q = O;

always (posedge clk)

if (clr)

q = O;
else

if (en)

q = q + i;

endmodule

/* countup.v

*
* countup timer with terminal count (tc), Asynchronous clear and set (to tc)

*
*/

module countup(z, q, clk, tc, clr, set);

parameter width = 1;

output z;

output [width-1:0 q;

input clk;

196 APPENDIX D. VERILOG SOURCE CODE

input [width-1:O] tc;

input clr, set;

reg [width-1:O] q;

assign z = (q == 0);

always (clr or set)

if (clr)

q = 0;
else

if (set)

q = tc;

always (posedge clk)

if (clr)

q = 0;
else

if (set)

q = tc;

else

q = (q == tc) ? 0 : (q + 1);

endmodule

/* demuxlto2.v

* 1-to-2 demux

module demuxlto2(qO, qi, d, sel);

parameter width = 1;

output [width-:O] qO, qi;

input [width-1:O] d;

input sel;

assign qO = sel ? 0 : d;
assign qi = sel ? d : 0;

endmodule

/* fdiv.v

* Frequency divider, divides by M

* (Note: fdiv currently doesn't work for M = 1)

*l

module fdiv(clkout, q, clkin, M, clr, set);

I i]

197D.5. BASIC COMPONENTS

parameter width = 1;

output clkout;

output width-1:O q;

input clkin;

input [width-1:O] M;

input clr, set;

wire z;
wire width-1:0 tc;

wire clkout;

assign tc = M-i;

countup #(width) cnt (z, q, clkin, tc, clr, set);

assign clkout = z;

endmodule

/* incinh.v
*
* Combinational increment with Inhibit

module incinh(res, a, inh);

parameter width = 1;

output width-1:0 res;

input [width-1i:O a;

input inh;

assign res = inh ? a : (a+i);

endmodule

/* leq.v
*
* Less-than-or-equal-to comparator
* (checks if a <= b)

* Note that this version assumes Verilog treats the numbers as

* unsigned numbers and does its own signed version of leq.

* Luis F. G. Sarmenta 950409.2128

module leq(res, a, b);

198 APPENDIX D. VERILOG SOURCE CODE

parameter width = 1;

output res;

input [width-1:O] a, b;

assign res = (a[width-1]

? (b[width-1]

? (a >= b)

: i
)

: (!b[width-1]

? (a <= b)

: 0

)

endmodule

/* muxlof2.v

* 1-of-2 mux

*

module muxlof2(q, dO, di, sel);

parameter width = 1;

output [width-i:O] q;

input [width-i:O] dO, di;

input sel;

assign q = sel ? di : dO;

endmodule

/* muxreg.v

* i-of-2 mux with storage

module muxreg(q, clk, dO, di, sel);

parameter width = 1;

output [width-:O] q;

input clk;

input [width--:0] dO, dl;

input sel;

reg [width-l:0] q;

always (posedge clk)

I 'i I

D.5. BASIC COMPONENTS 199

begin

case (sel)

o q = dO;

1 : q = dl;
endcase

end

endmodule

/* neg.v

* Arithmetic Negator

*

module neg(nega, a);

parameter width = 1;

output [width-1:O0 nega;
input [width-1:0] a;

assign nega = -a;

endmodule

/* regen.v

* Register with Enable

module regen(q, clk, d, en);

parameter width = 1;

output [width-1:0] q;
input clk;

input [width-1:0] d;
input en;

reg [width-1:0 q;

always (posedge clk)
begin

if (en)

q = d;
end

endmodule

/* regencs.v

APPENDIX D. VERILOG SOURCE CODE

* Register with Enable

* (Clr overrides Set)

*l

and Synchronous Clear and Set

module regencs(q, clk, d, en, clr, set);

parameter width = 1;

output [width-:0 q;

input clk;

input [width-i:0] d;

input en, clr, set;

reg [width-:0 q;

always (posedge clk)

begin

if (en)

if (clr)

q = 0;
else

if (set)

q = 1;
else

q = d;
end

endmodule

/* tflopenld.v
*
* a T flip--flop with Enable and Load

.* (ld overrides en)

*l

module tflopenld(q, clk, d, en, ld);

parameter width = 1;

output width-:0] q;

input clk;

input [width--'l:O d;

input en, ld;

reg [width-:0] q;

always G(posedge clk)

begin

case (ld)
0 : q = en ? q : q;
1 q =d;

200

D.5. BASIC COMPONENTS 201

endcase

end

endmodule

/* zero.v

* Zero check

*

module zero(z, a);

parameter width = 1;

output z;

input [width-1:0] a;

assign z = (a == 0);

endmodule

202 APPENDIX D. VERILOG SOURCE CODE

Bibliography

[1] G. A. Pratt and S. A. Ward. Rationally clocked communication. Unpublished

Manuscript, MIT Computer Architecture Group, October 1992.

[2] MIT Computer Architecture Group. Rationally clocked communication. In Progress

Report 29, pages 101-107. MIT Laboratory for Computer Science, June 1992.

[3] S. A. Ward et al. The NuMesh: A modular, scalable communication substrate. In

Proceedings of the International Conference on Supercomputing, 1993.

[4] B. Burgess et al. The PowerPC 603 microprocessor. Communications of the ACM,

June 1994.

[5] IEEE standard for a simple 32-bit backplane bus: NuBus. ANSI/IEEE Std 1196-1987,

IEEE, 1988.

[6] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and arbiter

circuits. IEEE Transactions on Computers, April 1973.

[7] J. F. Wakerly. A designer's guide to synchronizers and metastability. Technical report,

Center for Reliable Computing, Stanford University, February 1988.

[8] G. R. Couranz and D. F. Wann. Theoretical and experimental behavior of synchronizers

operating in the metastable region. IEEE Transactions on Computers, June 1975.

[9] M. Pchoutek. Anomalous response times of input synchronizers. IEEE Transactions

on Computers, February 1976.

203

204 BIBLIOGRAPHY

[10] C. A. Mead and L. Conway. Introduction to VLSI Systems, chapter 7. Addison-Wesley,

Reading, Mass., 1980.

[11] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,

Stanford University, October 1984.

[12] M. Afghahi and C. Svensson. Performance of synchronous and asynchronous schemes

for vlsi systems. IEEE Transactions on Computers, July 1992.

[13] W. K. Stewart and S. A. Ward. A solution to a special case of the synchronization

problem. IEEE Transactions on Computers, January 1988.

[14] R. C. Swiston. An adaptive periodic synchronizer circuit. Bachelor's thesis, MIT, May

1988.

[15] K. Suzuki et al. A 500MHz 32b 0.4um CMOS RISC Processor LSI. In IEEE Inter-

national Solid-State Circuits Conference Digest of Technical Papers, pages 214-215,

1994.

[16] J. Schutz. A 3.3v 0.6im BiCMOS superscalar microprocessor. In IEEE International

Solid-State Circuits Conference Digest of Technical Papers, pages 202-203, 1994.

[17] E. Rashid et al. A CMOS RISC CPU with on-chip parallel cache. In IEEE International

Solid-State Circuits Conference Digest of Technical Papers, pages 210-211, 1994.

[18] D. C. Flemming. Data transfer apparatus. European Patent Application 81102943.8,

Publication number 004294, 1982.

[19] F. Gardner. Phaselock Techniques. John Wiley & Sons, New York, 2nd edition, 1979.

[20] D. K. Jeong et al. Design of PLL-based clock generation circuits. IEEE Journal of

Solid-State Circuits, April 1987.

[21] I. A. Young et al. A PLL clock generator with 5-110 MHz of lock range for micropro-

cessors. IEEE Journal of Solid-State Circuits, November 1992.

[22] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design: A System

Perspective. Addison-Wesley Publishing Company, Reading, Mass., 2nd edition, 1993.

I il.l

BIBLIOGRAPHY

[23] D. G. Messerschmitt. Synchronization in digital system design. IEEE Journal on

Selected Areas in Communications, October 1990.

[24] L. R. Dennison, W. J. Daily, and D. Xanthopoulos. Low-latency plesiochronous data

retiming. In Proceedings of the 16th Conference on Advanced Research in VLSI. IEEE

Computer Society, March 1995.

[25] R. D. Rettberg and L. A. Glasser. U. S. Patent 4,700,347, October 1987.

[26] David F. Rogers. Procedural Elements for Computer Graphics. McGraw-Hill Book

Company, New York, 1985. pages 34-42.

[27] R. M. M. Oberman. A flexible rate multiplier circuit with uniform pulse distribution

outputs. IEEE Transactions on Computers, August 1972.

[28] R. M. M. Oberman. Counting and Counters. John Wiley & Sons, New York, 1981.

[29] Leslie Lamport. IATEX : A Document Preparation System. Addison-Wesley Publishing

Company, Reading, Mass., 1986.

[30] Data I/O Corporation, Redmond, Washington. UniSite User Manual, 1992. page 7-25.

[31] M. Morris Mano. Digital Design. Prentice-Hall, Englewood Cliffs, N.J., 1984. pages

356-357.

[32] D. E. Thomas and Philip R. Moorby. The Verilog Hardware Description Language.

Kluwer Academic Publishers, Boston, 1991.

[33] Signetics Company, Sunnyvale, California. Signetics FAST Logic Data Handbook, 1989.

205

