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A Study of the Behavior of the GRP Hat-Stiffened

Panel Bondline Under High Strain Rate Loading

by

Michael Ziv

Submitted to the Department of Ocean Engineering and the Department of Mechanical
Engineering on May 30, 1995 in partial fulfillment of the requirements for the Degrees of

Naval Engineer and Master of Science in Mechanical Engineering

ABSTRACT

The effects of strain rate on the large strain compressive behavior of polymer
blends is investigated using Dow Chemical Derakane 8084 rubber toughened vinyl ester
and Scott Bader Crestomer 1080 as constituent materials. The goal is to evaluate their
suitability for use in the stiffener/panel bondline of GRP minsweeping vessels which need
to be able to continue their mission in the event of a near field mine detonation.

The experimental procedure involved the testing of five blends ranging from 0-100
percent Derakane 8084 by weight at 25 percent increments under compressive loading in a
hydraulic testing machine at constant loading rates of 0.01, 0.10, 1.00 and 2.50 mm/sec.
These test results were then used to generate a predictive model for the lower yield stress
as a function of the applied strain rate which was used to predict the yield stress of each
of the blends as well as the pure Derakane 8084 material out to strain rates on the order of
103 sec-. The prediction was then compared against results experimentally obtained using
a Hopkinson bar. The correlation between the predicted and experimental values was
generally good, although universally low by about 10-18% when the Crestomer 1080
concentration was less than 50%. The cause of this deviation is not known, but is likely
due to an inertial effect. At concentrations of Crestomer higher than 50%, the rate
dependency of the elastic modulus becomes significant due to the viscoelastic nature of
Crestomer 1080. Since the model does not account for rate dependency in the elastic
modulus, these results are not as accurate.

Thesis Advisor: Dr. Alan J. Brown

Title: Professor of Ocean Engineering

Thesis Advisor: David M. Parks

Title: Professor of Mechanical Engineering
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1.0 INTRODUCTION

In naval warship applications such as minehunting vessels, particularly under

impact and shock loading, frame to shell connections may be exposed to substantial

through-thickness tensile stresses. These stresses are primarily due to initial tensile

loading and subsequent peel caused by shock concentration at the frame to shell interface.

They are further aggravated by severe frame inertia loading.' The current practice is to

assume that the resistance of the joint to failure under shock loading may be improved by

increasing the pull-off strength under quasi-static loading, in which a top-hat stiffener is

pulled from a base panel at a rate of approximately 1 mm/minute. Under these conditions

the secondary bond between the stiffener and the base panel is assumed to be isothermal

during the pull-off process, and any strain rate effects which may be present due to the

shock loading phenomena are ignored.

The assumption of strain rate independence of the bondline material cannot be

made without careful consideration of the nature of polymeric materials. Polymers are

rate dependent materials whose mechanical properties are often strongly effected by both

time and temperature. The strain rate corresponding to "static loads" may be taken to be

between 10'4 and 10'3 sec-'. Under conditions of structural vibration with frequencies in

the range of 10-50 Hz, strain rates of approximately 1.0 sec'1 occur while in the case of air

blast or hydrodynamic impact, strain rates as high as 10+3 sec' typically occur.2

A comprehensive investigation of improvements in stiffener-base plate secondary

bond interfaces has been conducted. The results of which may be found in Appendix A.

The failure to consider the effects of a six order of magnitude difference in strain rate

when using polymer materials represents the single largest deficiency in the study of these

interfaces.

The most recent studies indicate that the use of low modulus/high strength

materials in the bondline will provide the best stiffener to shell connection. The effects of

1 Michael Trimming, "Monocoque GRP Minehunters," The Royal Institution of Naval Architects
London International Symposium on Mine Warfare Vessels and Systems 1989.
2 C. S. Smith, Design of Marine Structures in Composite Materials (New York: Elsevier Applied
Science, 1990), pp. 95-96.
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strain rate on the proposed secondary bondline materials needs to be investigated to

ensure that they remain compliant at the higher loading rates.

In the most recent studies, Crestomer 1080, a compliant urethane acrylate

produced by Scott Bader, was proposed for this application. Due the large strain to

failure of this material, which often exceeds 150% true strain, a dramatic increase in the

load to failure during quasi-static pull-off testing was achieved as compared to previous

testing which used polyester and acrylic materials in the bondline.

Crestomer 1080 is often blended with a vinyl ester to increase its stiffness to a

desired level. The most commonly used vinyl ester for this application is Derakane 8084,

which is a rubber-toughed variant produced by Dow Chemical. The purpose of this thesis

is to investigate the effects of strain rate on the behavior of several blends of these

materials and draw conclusions related to their use in this application.

1.10 Scope of the Project

Chapters 2-6 will develop the theoretical background needed to study high strain

rate behavior in polymers. Chapter 2 will give a brief introduction to the mechanical

behavior of polymers including a review of the so called "four regions of mechanical

equivalence" which define the behavior of a polymers over a wide range of temperatures

and loading rates. Chapters 3 through 5 will discuss the theory and implications of the

three regions of mechanical equivalence which are important in this study. These include

linear elasticity, finite-strain elasticity and viscoelaticity. Chapter 6 will describe a model

and methodology for analyzing the yield behavior of these blends when they are subjected

to high strain-rate loading. Only compressive loading behavior will be investigated. This

will eliminate the complexities inherent in tensile testing which include crazing and

fracture, and allow for the large plastic strain behavior of the materials to be studied.

The remaining chapters will discuss the experimental procedure and results.

Chapter 7 outlines the specimen fabrication procedure, including resin formulation, mold

selection, and the machining processes. Chapter 8 introduces the process of Dynamic

Mechanical Analysis (DMA), which was used in this project to determine the glass

transition temperature of each of the blends. This parameter is often viewed as one of the

most important in the study of polymer materials. Chapter 9 discusses the initial

10



compression tests which were conducted using an hydraulic Instron testing machine. The

tests, which spanned more than three orders of magnitude of strain rate, were used to

formulate a model which was used to extrapolate the yield stress corresponding to strain

rates on the order of 1000 sec' l. In Chapter 10, the results of several tests conducted at

strain rates of approximately 3x10' 3 sec using a Hopkinson Bar are presented and

compared with the results from the slower strain rate Instron tests including an evaluation

of the agreement between the predicted and measured values. Chapter 11 will conclude

with a discussion of the results and their implications along with suggestions for future

study in this area.

11
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2.0 MECHANICAL BEHAVIOR OF POLYMERS

To understand the effects of strain rate on the behavior of either a single polymer

or a mixture of several polymers, it is first necessary to review some of the relevant topics

in the study of polymer material behavior. There are several ways in which polymers can

be grouped. In one typical grouping, they are classified as either thermoplastic or

thermosetting. The thermoplastic polymers are those which soften and eventually flow as

a viscous liquid when heated. They consist of linear branched-chain molecules with strong

intramolecular (within the molecular chain) and weak intermolecular (between chain)

bonding. Melting and solidification of these polymers is reversible, and they can be

reshaped by the application of heat and pressure. Thermosetting polymers, by contrast,

have a highly crosslinked or network structure with strong covalent bonds between chains,

which form during the curing process. These crosslinks inhibit flow and, as a

consequence, thermosets do not undergo liquid flow but decompose when heated to

sufficiently high temperatures. Examples of thermosets include polyester, epoxy, vinyl

ester, and phenolics.

As a result of cost and production constraints, virtually all marine composites

utilize thermosetting polymers. Thermosets always have an amorphous structure, so only

this class will be considered in this study. The next section will discuss the assumptions

made in the idealized modeling of amorphous macromolecular chains.

2.10 The Glass Transition Temperature

Polymer properties are known to be very sensitive to both temperature and load

rate, particularly near the glass transition temperature (Tg). An understanding of the

this material parameter is perhaps the most important piece of information when

considering the behavior of amorphous polymer materials.

The glass transition temperature separates the region of glassy behavior (below

Tg) from the region of elastomeric behavior (above Tg). In the temperature range very

near Tg, the polymer is in a state of transition, and it behaves in a viscoelastic manner. It

is in this region that temperature and strain rate effects have the greatest impact on the

mechanical behavior of polymer materials.

13



There is a dramatic change in most of the material properties of a polymer at the

glass transition temperature. For example, there is a sharp increase in modulus (about

three orders of magnitude) when the temperature is reduced from about 300 C above Tg to

300 C below Tg. There are also large changes in other physical properties such as the

specific volume, the heat capacity and the coefficient of thermal expansion.

The abrupt changes in physical properties have allowed for the development of a

wide variety of tests to measure the glass transition temperature. Among these tests are

Differential Scanning Calorimetry (DSC) which measures changes in heat capacity during

the transition from the glassy to the rubbery state, and Dynamic Mechanical Analysis

(DMA) which directly measures the modulus by loading a thin specimen sinusoidally in the

elastic range as the temperature is incrementally increased from a temperature below Tg to

above Tg.

In the case of thermoset materials, the crosslink density is very high and the change

in heat capacity during phase changes is difficult to detect using DSC techniques. For

these materials, the use of DMA allows for a clear, accurate and repeatable measurement

of Tg. DMA analysis will be discussed in greater detail in a later section.

2.11 Kinetic Versus Thermodynamic Interpretations of the Glass Transition Temperature

As a result of the abrupt changes in the some of the physical properties, attempts

have been made to analyze the glass transition temperature as either a first-order or

second-order thermodynamic transition process. In a first-order thermodynamic

transition, a sharp change occurs in one of the fundamental thermodynamic properties

such as enthalpy or volume, while a second-order transition is reflected by a sharp change

in the first derivative of one of these properties. Several investigators have shown a

connection between the glass transition temperature and second-order thermodynamic

properties such as the specific heat and the volume thermal expansion coefficient, but it

was later shown that the measured value of the glass transition temperature depends on

the rate at which the temperature is changed'. It was found that the lower the heating rate

used in raising the temperature from temperatures corresponding to the region of glassy

behavior, the lower the measured glass transition temperature.

'Kovacs, J. Polym. Sci., 30, (1958), 131.
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Because of the dependence on the cooling rate of the measured value of the glass

transition temperature, it cannot be strictly described as a thermodynamic transition event.

Thermodynamics considers steady state events which are assumed to be time invariant.

The glass transition is therefore generally accepted as a kinetic rather than a

thermodynamic event. It should be noted, however, that the change in Tg with decreasing

cooling rate is very slow, changing by only about 2-3 degrees Celcius when the cooling

rate is varied from 1°C/min to 1°C/day2, so it is possible to define a value of the glass

transition temperature which is nearly independent of the cooling rate. The glass

transition temperature will be discussed in a later section dealing with linear viscoelastic

theory.

2.12 Effects of Polymer Structure on the Glass Transition Temperature

The glass transition temperature (Tg) varies over a fairly wide range from one

polymer to another. These differences are due to the molecular differences between

polymers. A brief list is given below 3:

1. Inflexibility of the repeat unit of the macromolecule increases Tg. This is

related to the absence of hinges in the chain backbone.

2. The presence of atoms or groups of atoms in the repeat unit which participate

in dipolar or secondary interactions with segments of neighboring macromolecules tend to

increase Tg.

3. Tg increases with increasing average macromolecular weight.

4. As the degree of crosslinking increases, the glass transition temperature

increases slightly. This is an expected result, since crosslinking suppresses the large elastic

deformations typically associated with elastomeric materials.

Examples of the glass transition temperature for a variety of materials are shown in

Figure 2-1. Note that the presence of aromatic rings, bulky side groups, and cyanide

groups result in much larger values of Tg than in the linear chain molecules.

2 I.M. Ward, Mechanical Properties of Solid Polymers 2nd ed. (New York:John Wiley and Sons, 1990),
p. 150.
3 I.V. Yannas, Introduction to Polymer Science and Engineering: A Set of Lecture Notes, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1981, pp. 77-78.
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Approximate values of glass transition temperature, T,, for
various polymers

Repeat unit T,/K

--CHr--CH 2- 140-270
-- CHr--CH 2-O-- 206

D O 0- 357

--CH 2-- CH2 - 353

Side group (X)

--CH---CHX-- --CH 3 250
-- CH--CH 3 249
-- CH---CHT-CH 3 233
-- CHr-CH(CH 3) 2 323

373

-Cl 354
-OH 358
-CN 370

,,,, i i i i i . i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

R.J. Young and P.A. Lovell. Introduction to Polymers 2nd ed.
(New York:Chapman & Hall, 1992), p.296.

Figure 2-1
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2.20 Representation of Amorphous Polymers Using Modulus-Temperature Curves

Due to the strong temperature dependence on the behavior of polymeric materials,

the mechanical behavior of polymers subjected to small strain is often represented by plots

of temperature versus the logarithm of modulus (E-T curves). These curves are plotted

assuming a fixed strain rate since, in the case of amorphous polymers, an increase in strain

can be equated to a decrease in temperature. The equivalence of time and temperature for

an amorphous polymer under small strain will be discussed in Chapter 5.

The shape of the modulus-temperature curve is effected to a large extent by the

molecular details of the polymer in use and reflects the versatility offered by these

materials. As an example, Figure 2-2 shows the effect of increasing the polymer average

molecular weight and crosslink density. As the molecular weight of the polymer

macromolecule is increased, the elastomeric region is increased, while increasing the

density of crosslinks increases the modulus in the elastomeric region and also increases Tg

slightly. Recall that themosetting polymers typically have a very high crosslink density.

2.30 The Four Regions of Mechanical Eauivalence

The modulus-temperature (or modulus-time) diagram is typically divided into the

four regions of mechanical equivalence in which different constitutive laws apply. These

regions are known as glassy (Region I/below Tg), transition/leathery (Region II/near Tg),

rubbery/elastomeric (Region III/above Tg), and liquid flow (Region IV/well above Tg) as

shown in Figure 2-3. It was mentioned earlier that thermosetting polymers are highly

crosslinked and decompose rather than flow when heated, so they do not display region

IV behavior. Table 2-1 indicates, qualitatively, the time dependence, mechanical memory,

and the simplest applicable branch of mechanics which can apply to a crosslinked

amorphous polymer in the three applicable regions of mechanical equivalence. Time

dependency reflects how important the loading rate is in determining the mechanical

response, and mechanical memory indicates both how rapidly and how completely the

material regains its original shape following load removal.
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TABLE 2-1

REGION TIME MECHANICAL APPL. BRANCH

DEPENDENCE MEMORY OF MECHANICS

1 WEAK STRONG LINEAR ELASTICITY

2 STRONG MODERATE LINEAR

VISCOELASTICITY

3 WEAK STRONG RUBBER (LONG-

RANGE) ELASTICITY

The following sections will review the essential elements and limitations of material

behavior in the three regions of mechanical equivalence as indicated in table 1. The theory

of linear elasticity will be presented first, followed by the theory of rubber elasticity. This

is a convenient progression since rubber elasticity can be viewed macroscopically as an

extension of linear elasticity which accounts for finite strains. Phenomenologically,

however, linear elasticity models materials as "linear energy (Hookian) springs", while

rubber materials are modeled as "entropy springs". Finally the elements of the theory of

linear viscoelasticity will be presented. This theory is the only one which allows for rate

dependency in the modulus by the addition of viscous damping terms to the constitutive

relations.

2.40 Yielding. Crazing. and Fracture of Amorphous Polymers

The yielding behavior of metals has been widely studied and is well understood.

One of the main assumptions in these theories is that the yield stress is independent of

hydrostatic pressure. In contrast, yield in polymers is a strong function of the hydrostatic

pressure. It should be noted at this point that yield only occurs in polymers which are in

the glassy phase. This will be discussed in greater detail in Chapter 6. Recall that the

pressure is defined as:

P = -tr[a] = [C +2 + 3,]
3 3 L " J (2-1)

where: tr[a ] is the trace of the stress tensor
The effect of hydrostatic pressure on the yield stress is particularly significant in

amorphous polymers. This can be explained by viewing the yield stress as the point at

20



which the barriers to chain segment rotation have been overcome and the material is able

to flow.

Some of the barriers to chain segment rotation are configurational while others are

intermolecular. The configuratonal barriers are those which are due to the resistance of a

chain to rotation about its backbone, independent of its neighbors. These effects are not

strongly dependent on pressure.

The intermolecular barriers to chain segment rotation arise due to the interactions

between chains. It is reasonable to assume that the pressure contribution to the yield

stress results in a decreased distance between polymer chains. As a result, there is an

increase in the intermolecular barriers to chain segment rotation, and a higher yield stress

with increasing pressure.

Since the hydrostatic pressure level is higher in compression than in tension,

polymers often have a higher yield stress when tested in compression than when tested in

tension. This necessitates a modification of the applicable yield criteria before they can be

used to predict the yield stress.

One of the most commonly used criteria to predict yield is the Von Mises yield

criteria. This criteria is most easily implemented using principle stress values. Recall that

any stress tensor can be transformed into a stress tensor which only has terms on the

diagonal (no shear terms) by a transformation of coordinates. In terms of principle

stresses, and accounting for the pressure dependence of yield, the Von Mises yield criteria

is given as follows:

2(,c -oy)[al +a72 +a 3]+[( 1- 2 )2 +(a2-3) +(O -a3)2]= 2ca
where: a and a are the compressive and tensile yield stress (2-2)

a, I 2, and 3 are the three components of the principle stress tensor

Equation (2-2) reduces to the traditional pressure-independent Von Mises yield

criteria when the tensile and compressive yield stresses are equal.

Another effect of pressure on the behavior of a glassy polymer is the formation of

crazes. Crazes are a localized form of plastic deformation which occur when the polymer

is subjected to an overall hydrostatic tensile stress. This process, which occurs in the

elastic regime at approximately 1/2 the yield stress, results in a significant increase in

21
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volume as chain segments are separated from each other. In the process of chain segment

separation, regions of cavitated polymer are produced. This process does not usually

affect the modulus of the material, so the elastic response is not effected. The voids do,

however, serve as nucleation sites for cracks which can lead to failure by fracture prior to

the yield point.

This study will only consider the compressive behavior of a series of polymer

blends as a function of strain rate. This decision was motivated by the general lack of

information on the particular blends of interest. To begin to investigate the behavior of

these materials under high strain rate loading, it was necessary to minimize the number of

design variables. The choice of compressive loading eliminates the possibility of crazing

and fracture when the material undergoes homogeneous deformation.

22



3.0 LINEAR ELASTICITY

The theory of linear elasticity is important in the description of the small strain

behavior of glassy polymers. In this regime, the true-stress is linearly related to the true-

strain by a constant factor known as the modulus of elasticity which represents the rate-

independent stiffness of a glassy polymer. This important material parameter is

experimentally obtained in a simple compression or tension test as the slope of stress-

strain curve.

The theory of linear elasticity is represented by the well known generalized

Hooke's Law. This theory is a good approximation to the behavior of many materials

when the strains are small, typically on the order of 1%. Its simplicity of use makes it a

popular choice for the initial design of a wide variety of structures. There are, however,

some important limitations of the theory which limit its use, particularly in the study of

polymeric materials.

A primary assumption of the theory is that the material behaves like a

linear/Hookean spring. As a consequence, the deformations resulting from an applied load

are independent of the history or rate of loading. When a load or displacement is applied

to a linear elastic material, the load does not change as a function either of time or

temperature. When the load is removed, the material is assumed to return instantaneously

and completely to its original state.

The assumption of linearity in this theory indicates that the tensor components of

stress may be represented by a linear function of all the tensor components of strain and

vice versa. The stress can be computed by multiplying the strain tensor by a stiffness

matrix, which is a 6x6 matrix in the most general case of a fully anisotropic material. The

number of independent constants may be reduced when material symmetry exists. In the

limit, a material which has an infinite number of planes of symmetry such that its behavior

is independent of orientation is said to be isotropic. In this case, the slope of the tensile or

compressive stress strain curve is known as the modulus of elasticity or the Young's

Modulus.

This linear behavior is strictly applicable in polymeric materials only for very small

values of strain. When strained beyond this limit, known as the proportional limit, many

23



polymers behave in a non-linear fashion. It should be noted that unlike metals, in which

the yield point closely corresponds to the proportional limit, polymers are often capable of

considerable non-linear deformation without suffering any permanent deformation.

Time independent behavior is a reasonable assumption for glassy polymers when

the strains are small (on the order of 1% or less) and molecular motion is limited to only a

few segments of any macromolecular chain. The small strain behavior of real polymeric

materials is time dependent to a greater or lesser extent depending on the imposed

temperature and strain rate. This is particularly important in the vicinity of the glass

transition temperature (Tg), which defines the transition region between glassy and

elastomeric behavior. Linear elasticity is modified to account for the effects of time in the

theory of linear viscoelasticity, at the expense of a significant increase in computational

complexity. This theory, which is discussed in Chapter 5, incorporates time dependency

into the constitutive relationships by the addition of one or more viscous damping terms.

The assumption of small strain implies that any terms in the strain-displacement

equations which are of second order can be neglected. This theory fails when an

amorphous polymer is in the region of rubber elasticity where elastic strains on the order

of 300-700% are possible. Elastic strains on this level are unique to amorphous

polymers, and are modeled by the theory of finite strain elasticity, which will be discussed

in Chapter 4.

Despite the limitations of its use, the theory of linear elasticity is widely used in the

stress analysis of components constructed of polymeric materials particularly in defining

the behavior of glassy polymers prior to yield and is therefore worthy of some discussion.

24
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The generalized Hooke's law relating stresses to strains can be written in
contracted notation as follows:

ai = Cij * Ej ij = 1, 2,..., 6 (3-1)

where: Cij is the stiffness matix

or:

ei= Sij * i ij = 1,2, ....,6 (3-2)

where: Sij is the compliance matrix

a2 2 2 £2 £22

CY 4 23 = - 4 723

a 5 T 31 8, 7 31

C6 I 1 2 6 712

where: a j are normal stresses and 'j are shear stresses, and

E j are normal strains and y j are shear strains

note that strain notation in contracted notation is as follows:

a a v aw av aw
E - 2 =_ el - 23 '

ax ay aZ =Z +ay
av aw aw au au av

723 = -+ 31 = 12= +aZ ay ax az ay ax
where: u, v, and w are displacements in the x, y, and z directions

Note that both the stiffness and compliance matrices are represented by a 6 x 6

matrix and [Cij] = [Siji]1. These matrices are fully populated in the case of a fully

anisotropic material, but the number of independent coefficients can be reduced by noting

material planes of symmetry.
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For the most general case of an element of anisotropic material, also known as

one with triclinic symmetry, the 6 x 6 compliance matrix can be written as follows with 21

independent compliance coefficients since Sij = Sji:

Sij =

'S 1

Sl2

S 1 3

Sl4

S 15

S1 6

S12 S13

S22 S2 3

S23 S33

S24 S 34

S25 S 35

S26 S 36

S14

S 24

S 34

S44

S45

S 4 6

S15 S16

S 25 S26

S35 S36

S 45 S46

S5 S56

56 S66

(3-3)

If one plane of symmetry is present, in this case through thickness midplane

symmetry, monoclinic symmetry exists and the compliance matrix reduces to the

following 13 independent compliance coefficients:

sij =

'SnS1 1

S 12

S13

0

0

-S l6

S12

S 22

S23

0

0

S 26

S13

S23

S 3 3

0

0

S36

0

0

0

S 4 4

S45

0

o S16

o S26

o S36

S45 0

S5 0

0 S66

(3-4)

If there are two planes of material property symmetry then symmetry will also exist

on a third mutually orthotropic plane. A material displaying this form of symmetry is said

to be orthotropic with 9 independent constants. Note that there is no interaction between

normal stresses and shear strains for orthotropic materials aligned with the principal

material directions. These directions are parallel to the intersections of the three

orthogonal planes of material symmetry.
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The stiffness matrix in coordinates aligned with the principal material directions is

as follows:

S 11 S12 S13

S12 S22 S23

S, 3 S 23 S 3 3

0 0 0

0 O 0
0 O 0
O O O

S44 0 0

0 S55 0

0 0 S66

The elements of the compliance matrix are related by simple relationships to the

engineering constants Young's modulus (E), Poisson's ratio(v), and shear modulus(G).

The compliance matrix (Sij) for an orthotropic material in terms of engineering constants

is can be represented as follows:

E11
-V

21

E11
-V

31

El11

0 0 0

-v
12

E22

1

E22
-V

32

22

-V
13

E33
-V

23

E33

1

E33

O O 0

O O 0

0 0 0

1
0 0

1
0 0 0 0

G13

0 0 0 0 0

0

G
12.-

27

23

Sij = (3-5)

S =
ij (3-6)



In a wide variety of materials under small strain, the material properties do not

vary significantly with orientation. This is true of amorphous polymers under small strain

due to the lack of significant chain alignment. In this case, an infinite number of planes of

material symmetry exist. The number of independent constants reduces to 2, and the

material is said to be isotropic. The compliance matrix for such a material is as follows:

S11 S12 S12

S12 S 11 S1 2

S12 S12 S11

0 O 0
0 O 0
0 O 0

0

0

0

2 (S,, -S1 2 )

0

0O
O

0

0

0

0

2 (S 1 , -S 12 )

0

0

0

0

0

0

2 (S n1 -S 2 )

For an isotropic material, the compliance matrix (Sij)

single value of Young's modulus (E), Poisson's ratio(v),

follows:

can be written in terms of a

and shear modulus (G) as

1

E
-V

E
-v

-V

E
1

E
-v

-V

E
-V

E
1

E E E
0 0 -
0 00
0 00

O O O

0 0 0

0 0
1 0 0
G

10 -0
G

1
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From these relations, the well know stress-strain relationships for isotropic linear

elasticity can be written as follows:

E v£C = -- =- _- (% + a)
E E
1 v

Eyy = EqY - E (ox- + Mr)
= =

zz 1 v ( + y

~~~~E ~~~~(3-9)
Zxz

Exz = 
G

n yz

G
txy

Exy =-
G

The isotropic shear modulus is related to the Young's modulus and Poisson's ratio

by the following expression:

E
G E (3-10)

2(1+v)

Another basic quantity which is of importance in linear elasticity, particularly in the

case of polymers, is the bulk modulus (K), which determines the dilation (A) produced by

a uniform hydrostatic pressure (p):

K=P
A (3-11)

where: A = ord + £e + m

Using the isotropic linear elastic stress strain relationships it can be shown that the

strains produced by a uniform hydrostatic pressure (p) are as follows:

.S = ,yy = = (S11+ 2Sl2)p (3-12)
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Then the bulk modulus is equal can be written as:

1 EK = P = E (3-13)
A 3(Sii + 2S12) 3(1- 2u)

Table 3-11 is an order of magnitude comparison of the elastic engineering

constants for an isotropic amorphous polymer in each of the three relevant regions of

mechanical equivalence, showing a difference in Young's modulus (E) of approximately

three orders of magnitude between the glassy and elastomeric regions. It should be noted

that the values given for the Young's modulus and the shear modulus (G) are represented

as a constant value. This is only strictly true when the stress strain behavior is linear, as

was assumed for glassy polymers. Viscoelastic materials are rate dependent so the

modulus values given represent a range from the glassy to the elastomeric values. In the

elastomeric region, the modulus is known as the rubbery modulus. This value represents

the elastic response which occurs when an elastomer is loaded at a high rate. It should be

noted that the bulk modulus of an elastomer is very large resulting in Poisson ratio very

close to 0.50, indicating that elastomeric materials are essentially incompressible. The

assumption of incompressibility is important in the development of constitutive models for

the finite strain elasticity of elastomeric materials.

TABLE 3-1

REGION E (Pa) G (Pa) K (Pa) v

1 109 -10 1° 109 109 -10 ° 0.33

2 106- 109 -10 10- 10 0.40 - 0.45

3 10s- 1 0 6 104-105 oc 0.50

1 I.V. Yannas, "Introduction to Polymer Science and Engineering: A Set of Lecture Notes," Deformation
and Fracture of Polymers. Massachusetts Institute of Technology, 1994, 101.
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4.0 FINITE STRAIN / RUBBER ELASTICITY

Finite strain behavior is important in the large deformation behavior of amorphous

polymers. The premise behind this behavior is that large strain results in a decrease in the

configurational entropy of the material which gives rise to a stiffening effect. Most of the

work in the area of entropic response has been directed towards the development of

predictive models for the behavior of elastomeric materials, so this is the primary focus of

this section. The theories have also been use to model the entropic resistance to plastic

deformation in glassy polymers.

Elastomeric material behavior (also known as rubber elasticity, finite strain

elasticity, and long-range elasticity) is unique to crosslinked amorphous polymers which

have an average macromolecular weight greater than approximately 10,000 and have been

heated to temperatures of Tg + 30°C or greater. Elastomers meeting these requirements

are capable of non-linear elastic strains on the order of 300-700%. Polymers with an

average macromolecular weight significantly less than 10,000, semicrystalline polymers,

and uncrosslinked polymers do not exhibit characteristic rubberlike behavior.

In addition to the large elastic strain limits exhibited by elastomers, several other

unusual characteristics have been observed. As an example, it has been observed by many

investigators that the modulus of an elastomer increases with increasing temperature. This

is in contrast to what is seen in nearly all other engineering materials which soften with

increasing temperature. An understanding of this unusual behavior begins with the

thermodynamics of elastomeric behavior.

4.10 Thermodynamics of Elastomeric Behavior

The thermodynamic properties of interest in the study of elastomeric material

behavior depend on the conditions under which the material parameters in the constitutive

equations are experimentally obtained.

Recall that the first law of thermodynamics states:

dW =dU- dQ (4-1)

where: dW is the work done on the material

dU is the increase in internal energy

dQ is the heat supplied to the material
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For an adiabatic experiment conducted at constant volume (V), the work done on

the material is equal to the increase in internal energy (U). In this case,

dQ = 0 and dW = dU (4-2)

For an adiabatic experiment conducted under constant pressure (P), the work done

on the material is equal to the enthalpy (H), where H=U+PV. In this case,

dQ = O and dW = dU + PdV = d(U+PV)p = dH (4-3)

For an isothermal experiment conducted at constant volume, the work done on the

material is equal to the Helmholtz free energy (A), where A = U - TS. The variable (T) is

the absolute temperature, and (S) is the entropy. In this case,

dQ = TdS and dW = dU-TdS = d(U-TS)t,v = dA (4-4)

Finally, for an experiment conducted at constant temperature (T) and pressure

(P), the work done on the material is equal to the Gibbs free energy (G), where G = U +

PV - TS = H - TS. In this case,

dQ = TdS and dW = dU + PdV - TdS = d(U+PV-TS)t,p = dG (4-5)

Most of the experimental observations in the study of elastomers have been made

under conditions of constant pressure. This indicates that work done on an element of

material is best represented by the Gibbs free energy. Several investigators have used the

simplified Helmholts free energy equation which differs from the Gibbs free energy by the

single differential term PdV. This simplification can often be made in the case of

elastomers since they behave in a nearly incompressible manner, so the change in volume

(dV) is nearly zero.

The work done on an elastomeric material (dW), originally of length (1), when it is

extended under the action of a tensile force (f) is given as:

dW = f dl (4-6)

Using the first law of thermodynamics and setting the work done on the material

equal to the Helmholtz free energy gives:

fdl = dU - TdS (4-7)
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At constant volume the tensile force can be written as:

(a =) (au T a (4-8)

The entropy term cannot be measured directly by any known experimental method,

so a further manipulation is required. The Helmholtz free energy in its most general form

is:

dA = dU - TdS - SdT (4-9)

From equation (4.9),

aA = f and = -S
a IT Di 

but,

(DA a (A) (4-10)

which gives,

(as -(afA
al a

Combining equations (4.8) and (4.10) gives the following expression for the tensile

force:

( a u j+ T (a (4-11)

It was shown by Meyer and Ferri' (1935) and later by Gee2 (1946) that the tensile

force of a rubber specimen at constant length is almost linearly proportional to the

absolute temperature and the force can be extrapolated nearly to zero tension at absolute

zero. This was an early indication that the contribution of the internal energy to the tensile

force is small.

Although when modeling elastomeric behavior, the internal energy contribution to

the tensile force is typically neglected, its contribution is not always insignificant. As an

1K.H. Meyer and C. Ferri, Helv. Chim. Acta, 18, (1935), 570.
2 G. Gee, Trans. Faraday Soc., 42, (1946), 585.
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example, it was shown3 that, for the case of natural rubber at room temperature, the

internal energy contribution dominates at true strains below about 40% at which point the

energy and entropy contributions were nearly equal. At larger values of strain, the entropy

term dominates. For strain values greater than 150%, the force could be explained almost

completely on the basis of entropy changes. In the case of natural rubber, the contribution

of the internal energy to the force is about 15% of the total. Other studies4 5 (1961, 1962)

confirmed these results, claiming that the internal energy contribution to the total tensile

force is approximately 20% of the total force at room temperature. Although these values

are not trivial, the internal energy contributions to the deformation of elastomeric materials

are neglected in most of the commonly used constitutive modes. The result is that while

the constitutive models in linear elasticity consider a material to behave like a linear

(Hookian) energy spring, rubber elasticity considers the material to act like an entropy

spring. The models which completely neglect the contribution of internal energy are

known as ideal rubber models.

It has been observed that the temperature of some elastomers increase when

stretched to very high values of strain. This behavior can be partly due to crystallization

which can occur in some amorphous polymers at very large values of strain. Recall the

Gibbs free energy (G):

dG = dH - TdS (4-12)

A system is in a state of thermodynamic equilibrium when the Gibbs free energy is

at a minimum. In the case of semi-crystalline polymers (which do not display any

elastomeric behavior), the temperature at which phase equilibrium exists between the

crystalline form and the amorphous form is known as the melting point (Tm). Above this

temperature the polymer is in the amorphous phase and below it is semi-crystalline. The

melting point occurs when the Gibbs free energy difference between phases is equal to

zero.

3 I.V. Yannas, "Introduction to Polymer Science and Engineering: A Set of Lecture Notes," Deformation
and Fracture of Polymers. Massachusetts Institute of Technology, 1994, p. 149.
4 G. Allen, U. Bianchi and C.Price, Trans. Faraday Soc., 59, (1963), 2492.
5 A. Ciferri, Makromolek. Chem., 43, (1961), 152.
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From (4-12), the following expression is obtained for the melting point:

T AH
AS

where: A H is the enthalpy of fusion (4-13)

A S is the entropy of fusion

Strain crystallization occurs in some amorphous polymers at large values of strain

because, as polymer chains are stretched, they become more highly aligned. In this highly

aligned state, the entropy associated with the chain is very low. The entropy of a polymer

can be calculated using the Boltzmann relationship from statistical thermodynamics as

follows:

S = klnf2

where: k is Boltzmann's constant (1.38066 x 10' 23 J /K) (4-14)

l2 is the number of possible confomations which a polymer chain can adopt

The entropy of a polymer chain in a highly extended state is low by equation (4-

14) because the number of possible configurations is small. This is offset somewhat by the

large decrease in enthalpy which occurs during crystallization. If the change in enthalpy

(latent heat) is greater than the product of the melting temperature and the entropy

change, crystallization is thermodynamically favored since this phase has a lower value of

the Gibbs free energy. The formation of crystals results in an increase in modulus. An

increase in temperature which occurs in strain crystallizing elastomers is due to the change

in enthalpy which occurs during the change in phase from the amorphous to crystalline

state.

The degree and rate of crystallization depends on the extension of the material and

the length of time the extension is maintained. As an example, natural rubber at strains of

300-400% crystallizes very rapidly to a degree of crystallinity of over 30%6. By contrast,

experiments on butadiene rubbers7 show that these materials do not crystallize at all when

6R.J. Young and P.A. Lovell, Introduction to Polymers Second Edition (London: Chapman and Hall,
1994), p. 303.
7 W.O.S. Doherty, K.L. Lee and L.R.G. Treloar, Brit. Polymer J., 12, (1980), 19.
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extended. These and other elastomers which do not crystallize at large values of strain

still demonstrate a temperature increase when stretched at high strain rates.

The increase in temperature due to high strain rate loading can be explained by

looking at the adiabatic extension of an elastomer8 . When the load is applied very rapidly,

there is not enough time for the material to reach thermal equilibrium with the

environment. This behavior can be modeled as an adiabatic process (dQ = 0), which is

also isentropic (dS = 0). The rise in temperature as the length is increased in this process

can be written as:

= -

S C i T

where: C is the heat capacity of the elastomer held at constant length (4-15)

X is the extension ratio (1 / )

Using equation (4-10), this relationship can be rewritten as:

(aT) T (af')
a )s C 1 aT 1 (4-16)

where: C, is the heat capacity of the elastomer held at constant length

It can be concluded from equation (4-16) that the temperature of an elastomer will

rise when it is stretched adiabatically as long as the derivative of force with respect to

temperature for a specimen held at a fixed length is positive. The earlier discussion shows

that this is usually the case. The temperature rise resulting from the adiabatic extension of

natural rubber is shown in Figure 4-1. It should be noted that this material crystallizes at

large values of strain, which likely accounts for the increase in slope at strains greater than

about 300%.

The key observation of this section is that the deformation is assumed to be

controlled almost entirely by changes in entropy for large strain as a randomly oriented

macromolecular chain undergoes deformation. The next section will look at the entropy

of an individual chain, and how this type of model can be used to model the deformation

of an elastomeric material.

8 R.J. Young and P.A. Lovell, Introduction to Polymers Second Editon (London: Chapman and Hall,
1994), p. 349.
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Increase in temperature, AT, upon the adiabatic extension of an elastomer (vulcan
ized natural rubber) (data of Dart, Anthony and Guth reported by Treloar).

R.J. Young and P.A. Lovell. Introduction to Polymers 2nd ed. Figure 4-1
(New York:Chapman & Hall, 1992), p.349.
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4.20 EntroDv of a Sinele Polymer Chain

The entropy of a polymer chain was derived based on a mathematical model

known as the "random walk" by Kuhn9 (1939) and Guth and Mark l° (1934). The model

used in this analysis was a freely joined chain composed of (N) links, each of length (1). In

a freely joined chain, each link is allowed to freely rotate and pivot without restriction

relative to its neighbor. The chain end-to-end distance (r) is the distance from point (P),

located at the origin to point (Q) located at a point in space as shown in Figure 4-2. If the

end-to-end distance is much less than the fully extended chain length (N1), the probability

that (Q) lies within an elemental volume dx dy dz at a distance (r) from the origin is given

represented by a Gaussian function as follows:

b3

p( dr = exp[-b2r2 ] dr
tl7r~~ Y2 ~~~(4-17)

3
where: b = 

2N1

This vector probability can be expressed as a scalar probability, P(r) dr, by noting

that the set of all possible values of the vector probability described above would trace out

a spherical shell of radius (r) and thickness (dr). In other words, the scalar probability,

(P(r)dr) that the scalar value of (r) lies between position r and r+dr is:

P(r)dr = 4 r2 * p(?)dr

so, (4-18)

P(r)dr = ) exp[-b2r2]dr

The number of possible conformations is proportional to the probability, P(r),

defined above. The entropy of a single macromolecular chain can be expressed as:

s = c - kb2 r 2 = c - kb2(X2 +y 2 +z2) (4-19)

where: c is an arbitrary constant

This entropy equation is based on the assumption that the chain end-to-end

distance (r) can be represented by a Gaussian function. A chain which conforms to these

9 W. Kuhn, killoidzeitschrift, 76, (1936), 258; 87, (1939), 3.
'OE. Guth and H. Mark, Lit. Chem., 65, (1934),93.
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Freely jointed chain made of (N) identical links, each of
length (1).

I.M. Ward, Mechanical Properties of Solid Polymers 2nd ed. (New Fire 4-2
York:John Wiley and Sons, 1990), p. 66.
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assumptions is known as a Gaussian chain, and the bulk materials are known as neo-

Hookian.

The elasticity of a molecular network can be derived directly from the equation for

the entropy of a single macromolecular chain. This analysis will consider the deformation

of a chain from point (Q) to (Q') as shown in Figure 4-3.

In finite strain elasticity, the deformations are typically defined in terms of

extension ratios. These extension ratios, designated X, are the ratios of the deformed to

undeformed lengths in the three principal directions and are given as:

,12= 1+2ex,

A22 = 1+2eyy

A32 = 1+2ez
(4-20)

and eyz = e, = exy =0

At large values of strain, the second order effects in the strain-displacement

equations which are typically ignored in the case of small strain elasticity (linear elasticity)

become significant and need to be reintroduced.
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z

The end of the chain Q (x, y, z) is
displaced to Q (x', y', z').

I.M. Ward, Mechanical Properties of Solid Polymers 2nd ed. (New
York:John Wiley and Sons, 1990), p. 68.
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The six components of finite strain are given by the following equations:

%= ay 2',ay) (ay) kay) J

aw 1 2 2 21

u aw av auu avav awaw

e = -- + + (4-21)
az ax az ax azax az ax
av au auau avav awaw

ey ay a xay axay axa 

where: x, eyy, and e, are the normal finite strain components

in the x, y, and z directions respectively

eyz, ez, and exy, are the shear finite strain components

The system of equations has been simplified by considering an isotropic element of

material subjected to homogeneous pure strain. In this state, the three mutually

orthogonal axis known as the principal strain directions are not rotated during

deformation. As a consequence, the displacements can be represented by three normal

strains known as the principal strain components oriented in a set of three mutually

orthogonal directions known as the principal strain directions. In this case, all of the

shear strain components are identically zero. Any mutually orthogonal material

orientation system can be transformed into the principal strain orientation by the well

known eigenvalue/eigenvector transformation. As a consequence, the remainder of this

discussion will only consider a state of homogeneous pure strain with no loss in generality.

42



When a chain end is deformed from point (Q) to (Q') it moves from point (x,y,z)

to point (x',y',z'), where:

X' = X1x

Y = 2 y (4-22)

Xi = 3 Z

The change in entropy when the chain deforms from (Q) to (Q') can be expressed

as follows:

As = -kb2[(,2 - l)x2)+(X 2
2 - l)y2)+(X 3

2 - 1)z2)] (4-23)

After summing the contribution of all chains in a network, the following expression

is obtained for the total change in entropy as the entire chain network is deformed:

As = - I nk(k 2 + 12 + 1 2 3) (4-24)
2 1 (4-24)

where: n is the number of chains per unit volume in a network

Recalling the change in Helmholtz free energy:

A = AU- TAS (4-9)

Assuming the change in internal energy is negligible gives:

AA = -TAS so,

AA= nkT 2 + 12 + 12 -3) (4-25)
~' 2 2 +)1 1

The strain tensor (a second-rank tensor) possesses three quantities known as strain

invariants which are independent of the choice of coordinate system. These strain

invarients are, in general, functions of both normal and shear components of strain. In the

case of homogeneous pure strain, the three strain invarients I1, 12, and 13 can be reduced to

principal extension values as follows:

I 1 = 2+A.22+ 2

12 = ,12 22+A,2x32+A 22,32 (4-26)

13 = 12,22,32

As a simplifying assumption, elastomeric materials are often assumed to be

incompressible so the strain invariant I3 is approximately equal to 1.0.
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The change in Helmholtz free energy can be expressed in terms of strain invariants

as follows:

AA = nkT(I, -3) (4-27)
2

The stress-strain relationships in rubber elasticity are most often defined in terms of

a strain-energy functions which are given the symbol (U). This strain energy function is

actually one of several thermodynamic quantities with experimentally determined

constants, the choice of which depends on the conditions under which the experimental

constants were determined. Four strain-energy functions are typically defined which are

numerically equal to either the internal energy, the enthalpy, the Helmholtz free energy, or

the Gibbs free energy.

In the case of the Gaussian chain network, the strain-energy function is equal to

the change in Helmholtz free energy if the strain-energy function is assigned a value of

zero in the undeformed state as follows:

U =AA = 1nkT(I, -3) (4-28)
2

The constant nkT is equal to the shear modulus (G) of the material. It can also be

represented in terms of the density of the material as follows:

Gwhere: p is nkTy of the material (4-29)
Mc

where: p is the density of the material (4-29)

R is the universal gas constant

M, is mean molecular weight of the chains

It can be shown that the true stresses which result from the deformation of an

incompressible material in the pricipal directions can be given in indicial notation as:

ai 2a 1 aU] +; i 0o[ 1 Xi2 a I,1
where: p is an arbitrary hydrostatic pressure and, (4-30)

i, j = 1, 2, and 3
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The principal stresses are only determinant to within an arbitrary hydrostatic

pressure. As a consequence, the stresses are sometimes represented as the differences

between principal stresses.

As an example, consider the case of uniaxial tension or compression of a specimen

made of a Gaussian elastomer loaded in the 1-direction,

au G aU= - - = 0
aIl 2 ' aI 2

p =- -2 2aU

and:

2F, 2 1_ 2 a llU] a IIa11 ' 2L= 'I - 2 ai11 = 2ai ,[2-X] = G[X12- 2]

incompressibility gives, , 1, 2, = 1 and since 2 = X3 for a specimen

loaded uniaxially:

1 1

1 = 2 2
,2 3

which gives:

a, = G[X 1X 1] (4-31)

The neo-Hookian form of the strain energy function is the simplest function which

can be used to describe the deformation of a polymer chain and is limited by the

assumption that the chain end-to-end distance (r) is much less than the fully extended

length (N1). A more general description based on Langevin statistics which allows for the

modeling of large stretch behavior will be discussed in the next section.

4.30 Non-Gaussian Finite Strain Models

The Gaussian model mentioned in the previous section is a simple representation

of an amorphous polymer based on the assumption that the chain end-to-end distance (r) is

small relative to the fully extended or locking stretch of the chain (N1). A modification to
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the Gaussian theory to allow for accurate modeling of the large stretch behavior of

elastomers was initially developed by Kuhn and Grun1 (1942). The modification began

with the introduction of the Langevin probability distribution denoted by the symbol (,)

which led to the following probability distribution for a freely joined chain:

Inp(r) =c- n +ln sinh ()

( ) [ r i 1 5
where: () = = cothi3 1

so the inverse Langevin funtion (1) is given as: (4-32)

P = z" (M)

and the entropy can be expressed as:

s = k [n p(r)] = kN[ 13 + In h (

When expanded into an infinite series, the probability distribution In p(r) and the

entropy equation can be expressed as follows:

ln p(r) = c - 3( 9(r) + 99 + ...
L2 N1 ~ / 20 350

so the entropy of a single chain can be expressed as:

Sc-{(±) + 9{r)42 + 99 (r) +...
kN + 20 350

I
(4-33)

" Kuhn, W. and Grun, F., Killoid Z 101, (1942), 248.
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The first term of the series representing the entropy for the Langevin distribution

recovers the Gaussian distribution. This can be shown as follows:

recall, from equation (17):

3
b2 3 (4-34)

2N12

so:

s = c - kb2 r2

which is the entropy of a single Gaussian chain given in equation (4-19)

The Langevin probability distribution has been used by several investigators in

multiple chain models to predict the large stretch behavior of elastomers. These models

include a three chain model developed by Wang and Guth' 2 (1952), and a tetrahedal

model developed by Flory and Rehner 3 (1943). In a recent study, an eight chain model

was developed by Boyce and Arruda14 (1993) as shown in Figure 4-4. In this model, it is

assumed that the material behaves incompressibly and the sides of the element shown in

Figure 4-4 remain aligned with the principal stretch directions during deformation. The

unstretched network contains eight chains, each of length r = N 1 in a cube of

2
dimension ao = 2 ro. Following a development similar to that for the Gaussian chain, the

strain energy potential for this eight chain model can be expressed as a function of the first

strain invariant as follows:

2N 1050N2U = nkT 1) 519 (435)
7000N3 (I'4 -81)+_ 4 (II -243)...

12 Wang, M.C. and Guth, E., J. Chem. Phys. 20, (1952), 1144.
' 3 Flory, P,J. and Reiner, J., J. Chem. Phys. 11, (1943) 512.
' 4 Boyce, M.C. and Arruda, E.M., J. Mech. Phys. Solids 41, (1993) 389.
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4.40 Phenomenoloeical Invariant-Based Models

Phenomenological invariant based models attempt to model the strain energy

potential of an elastomer as a function of the first two strain invariants (I and 12),

assuming the materials are incompressible and initially isotropic. Several of these theories

including those of Mooney s (1940), Rivlen' 6 (1948), Valanis and Landel1 7 (1967) and

Ogden s8 (1972) are discussed in two articles by Treloar 19 20 (1975, 1976). These models

are essentially curve fits to experimentally obtained data.

The most commonly used representations are the Ogden and the so called

Polynomial representations. The polynomial representation for the strain-energy function

is expressed as follows:

U = XZCij(II-3)i'(I2 -3) j

i= , j = 0

where: C ij are experimentaly determined and describe (4-36)

the shear behavior of the material

The neo-hookian form presented earlier is the first term in the polynomial series,

and can be obtained by setting i=l and j=0. This model may be viewed as a full

generalization of the relationship derived by Mooney in 1940.

Mooney derived his strain energy potential relationship under the assumption of a

linear stress-strain relationship in shear. The Mooney equation can be expressed as

follows:

U = C1(I, -3) + C2(I 2 -3) (4-37)

The Mooney equation is therefore the simplest version of the polynomial

representation which contains both the first and second strain invariant, and is obtained by

setting both i=l and j=l.

5 Mooney, M., J. app. Phys, 11, (1940), 582.
16 Rivlin, R.S., Phil. Trans. R. Soc. Lond. A. 241, (1948), 565.
17 Valanis, K.C. and Landel, R.F., J. appl. Phys. 38, (1967), 2997.
s Ogdon, R.W., Proc. R. Soc. Lond. A 326, (1972), 565.
9 Treloar, L.R.G., The Physics of Rubber Elasticity. Oxford University Press. Oxford. 1975.

20Treloar, L.R.G., Proc. R. Soc. Locnd. A. 351, (1976), 301.
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The Ogden strain-energy function of order, N, is of the form:

U = A - a + X , + %3'-3)
U =la n (4-38)

where: n and a n are expermentally determined constants

The stresses in the principal coordinate system, resulting from the use of the

Ogden strain-energy function is represented in indicial notation as follows:
N

ii = i. - p (4-39)
n= 1

4.5 Further Uses of Finite Strain Elasticity

The finite strain theories presented in this chapter were developed to model the

behavior of elastomeric materials, but they can be used to model the entropic component

of any amorphous polymer finite strain event.

Finite strain elasticity is often used in the modeling of finite strain plastic

deformation in glassy polymers. After the yield stress is reached, a polymer begins to flow

as plastic deformation occurs. During this process, the polymer chains become

increasingly more aligned, thereby decreasing their configurational entropy. The decrease

in configurational entropy results in a significant increase in modulus as the plastic strain

becomes large. This change in entropy of the polymer can be viewed as a component of

the total plastic work which is stored and therefore not dissipated during plastic

deformation. Eventually the alignment reaches a point where nearly all of the plastic work

goes to stored energy and plastic deformation cannot occur. This point is reached near

the locking stretch of the material. The use of finite strain elasticity in the modeling of the

yield process will be discussed in greater detail in Chapter 6.
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5.0 LINEAR VISCOELASTIC BEHAVIOR

This section will review the basic underpinnings of linear visoelastic theory, which

introduces rate dependence to small strain theory. Visoelastic effects are important in

polymer materials because the measured value of the modulus of elasticity is often rate-

dependent. This rate dependency can only be quantified by the inclusion of a viscous term

in the constitutive equations.

Linear viscoelastic behavior is exhibited by polymer materials subjected to small

strain at temperatures within approximately 30° C of the glass transition temperature (Tg).

This theory can be viewed as the counterpart of the small strain elastic model (Hooke's

Law), which is modified to account for time-dependent behavior. The effects of time are

not included either in linear or finite strain elasticity. Viscoelastic theory strictly applies

only to the case of very small strain. Reasonable limits of linear viscoelastic theory for

amorphous polymers vary by region of mechanical equivalence as follows':

TABLE 5-1

REGION STRAIN (%)

1-Glassy 1

2-Visocelastic 5

3-Rubbery 50

When these strain limits are exceeded, the stress/strain relationships become

nonlinear, and the theoretical analysis becomes significantly more complex.. As a

consequence, the analysis of real polymers in the non-linear visoelastic region is typically

handled by means of numerical, empirical or semi-empirical methods.

The most important practical use of linear viscoelastic theory lies in the

experimental determination of phase transformations, such as the glass transition

temperature (Tg), by means of Dynamic Mechanical Analysis (DMA). In DMA, a

'I.V. Yannas, "Introduction to Polymer Science and Engineering: A set of Lecture Notes," Deformation
and Fracture of Polymers, Massachusetts Institute of Technology, 1994, p. 127.
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specimen is subjected to a small amplitude sinusoidal load, so the assumptions made in

linear visoelastic theory are valid. DMA will be discussed in greater detail in Chapter 8.

The following sections outline the basic mechanical models used to describe

viscoelastic behavior including creep and stress relaxation, the Boltzmann integral, and the

time-temperature superposition principle.

5.10 Mechanical Analogies Renresenting Linear Visoelastic Behavior

The three most common models used to describe linear viscoelastic behavior are

the Kelvin-Voight, Maxwell, and Standard linear solid models (see Figure 5-1). These

models contain various combinations of Hookian springs and Newtonian dampers, and

form the fundamental basis for more complex visoelastic models used to describe the time

dependent behavior of materials subjected to small strain.

The two most common experiments used in the description of viscoelastic material

behavior are stress relaxation and creep. In a stress relaxation experiment, a material is

subjected to a constant strain, and the stress decreases over time with a characteristic time

constant. In a creep experiment, a constant stress is applied and the strain increases

exponentially with time at the same characteristic time constant.

The Maxwell model consists of one Hookian spring and one Newtonian damper in

series and is the simplest model which can be used to describe stress relaxation. When

loaded under a uniform axial stress, a, the total stress and strain in the system is given by:

a = as = aD
£ = Es + ED

where: a s and £ sare the stress and strain in. the spring

D and D are the stress and strain in the spring

The stress in the spring and the damper are given by the following:

dED

dt (5-2)
where: E is the modulus of elasticity

rlD is the viscosity
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Mechanical models used to represent tile viscoelastic behaviour of polymers. (a)
Max.rwell model, (b) Voigt model. (c) Standard linear solid.

R.J. Young and P.A. Lovell. Introduction to Polymers 2nd ed.
(New York:Chapman & Hall, 1992), p.32 5. Figure 5-1
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Combining equations (5-1) and (5-2) gives the following linear ordinary differential

equation representing the response of a Maxwell model under an applied stress:

d 1 doa a
= (5-3)

dt E dt "1

In the case of stress relaxation, the stress is given as:

a(t) = a exp(-t/ro )

where: a is the inital stress at t = 0 (5-4)

0 = rl/E is the relaxation time

The negative exponential term in the stress relaxation equation gives an indication

as to how quickly the stress will relax to a steady state value. The most common

definition of the relaxation time, known as the characteristic relaxation time (CRT), is

the time required for the stress to reduce to 63% of its original value. Small values of

CRT indicate a material which relaxes quickly, while large values result in behavior which

approaches linear elastic material behavior in the limit of an infinitely large relaxation time.

The Kevin-Voight model consists of a Hookian spring and a Newtonian damper

in parallel and represents the simplest model which can adequately describe creep

behavior. Under the action of a uniform strain (), the total stress and strain in the system

is given as follows:

£ Es = ED

a = as + aD
(5-5)

where: a s and e s are the stress and strain in the spring

a D and E D are the stress and strain in the spring

The behavior of the Kelvin-Voight model is represented by the following ordinary

differential equation:

-+E = (5-6)
dt 11 xl

In the case of creep, the strain decays with time as follows:

E(t) = E [- exp(-t/ (5-7)

The Maxwell and Kelvin-Voight models represent first order approximations of

stress relaxation and creep behavior respectively. Neither is capable of adequately
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describing both of these important phenomenon. Figure 5-2 shows the stress relaxation

and creep behavior of both the Kelvin-Voight and Maxwell models. Note that the Kelvin-

Voight model displays no stress relaxation, and the Maxwell model shows a linear increase

in strain with time. Both of these are clearly non-physical.

To capture the exponential response both in stress relaxation and creep, a model

known as a standard linear solid was developed2. It consists of a Maxwell element in

parallel with a Hookian spring. It can be shown that the differential equation for this

model can be expressed as:

+ ( dda = Ea + (Em + Ea( d
dt dt

where: 1lm and Em are the elements of the Maxwell model (5-8)

E, is the parallel spring element

This model adequately represents the qualitative behavior of a polymer under both

stress relaxation and creep. The behavior in the case of creep is shown below to

demonstrate the increase in complexity as compared with either the Maxwell or Kelvin-

Voight models. The solution of (5-8) in the case of creep is given as follows:

E(t) = o ]ex(t/)]

(5-9)

where: (Ea +Eml

The standard linear solid can be used to qualitatively represent the behavior of a

polymer, with a significant increase in complexity as compared to either the Maxwell or

Kelvin-Voight models. In order to quantify the viscoelastic response of a real polymer, a

large number of series and parallel spring/damper combinations are required, a process

which can quickly become computationally intractable. A more usable approach involves

the use of combinations of empirically obtained data, and curve fitting techniques, at the

expense of physical significance. These approaches require the introduction of the

Boltzmann integral and the Boltzmann superposition principle.

2 C. Zener, Elasticity and Anelasticity of Metals, Chicago University Press, Chicago, 1948.
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Tile behaviour of the Maxwell and Voigt models during different types of loading. (a)
Creep (constant stress o), (b) Relaxation (constant strain e,) (after Williams).

R.J. Young and P.A. LoveU. Introduction to Polymers 2nd ed.
(New York:Chapman & Hall, 1992), p.326. Figure 5-2
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5.20 The Boltzmann Integral and the Boltzmann Superosition Principle

The assumption that the relationship between stress and strain is linear allows for

the definition of two important quantities in the study of linear viscoelastic behavior: the

creep compliance J(t) and the stress relaxation modulus E(t). These quantities are

defined as follows:

J E(t)J(t) =
(5-10)

E(t) =
co

The Boltzmann superposition principle states that the strain (i) at any time (t)

due to an increment in stress (Aa) applied at time (ri ) is given as follows:

Ei(t) = (Acxi)J(t-'r i) (5-11)

An important premise in the theory is that all previous loadings effect the state of

stress. In practice, the effects of all previous loading histories can be eliminated from a

polymer by raising the temperature to approximately 30-40 degrees Celcius above the

glass transition temperature in a process which is similar to annealing. The sum of all the

loadings can be expressed as:

E(t) = X(Aa)J(t-t ) (5-12)
n=O

In integral form, the Boltzmann integral takes the form of a Duhamel integral as

follows:

E(t) = J(t-') d()d (5-13)

The Boltzmann integral can also be expressed in terms of the stress relaxation

modulus as:

a(t) = jE(t-r) d()d (5-14)
.~nlo dxr
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An exact relationship can be derived between creep compliance and stress

relaxation using Boltzmann integrals and convolution as follows:
t t

j E (r)J(t -)d'c = J( r)E(t - )dx = t (5-15)
0 0

The exact relationship is often implemented in numerical codes. An approximate

relationship between the stress relaxation and creep compliance is given as3 :

sin(mir) 1

mir E(t)

where: m is the negative slope of the stress (5-16)

relaxation curve at t

In the case of linear and finite strain elasticity, the compliance is the inverse of the

modulus. Equation (5-16) can be used to qualitatively estimate the effect of neglecting

viscous effects from the slope of the relaxation modulus master curve. Since the sine(O) is

approximately equal to 0 when 0 is small, a relatively small error is incurred when

neglecting viscous effects near the beginning of the sloping regions of the stress relaxation

curve. As an example, the error when the slope is 20 degrees from horizontal is only 2%.

The production of the stress relaxation master curve will be discussed in a later section.

The Boltzmann integral can be used to obtain a qualitative description of the

viscoelastic response of a real polymer based on relaxation and retardation time spectra.

The interested reader is referred to any standard text on the mechanics of solid polymers

for more information on these topics. The next section will focus on numerical

approximations used by several finite element codes such as ABAQUS4 to describe the

viscoelastic response of real polymers.

Most finite element codes use experimentally obtained data and curve fitting

methods to approximate visoelastic behavior. Often, the codes split the problem into

deviatoric and volumetric components which are solved in separate operations. The

3 I.V. Yannas, "Introduction to Polymer Science and Engineering: A set of Lecture Notes," Deformation
and Fracture of Polymers, Massachusetts Institute of Technology, 1994, p. 127.
4 Hibbitt, Karlsson, and Sorenson, eds., Analysis of Viscoelastic Problems with ABAQUS, (1994), pp.3-1 -
3-23.
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deviatoric component of the stress tensor is obtained by subtracting the hydrostatic

pressure from the stress tensor. The pressure is defined as one third of the trace of the

stress tensor. For simplicity, an explanation of semi-empirical methods will be presented

assuming incompressible material behavior. In this case, the bulk modulus is assumed to

be infinitely large and the volumetric effects can be neglected.

5.30 Semi-Empirical Methods Used in Modeling Viscoelasticitvy

In most of the numerical approximations of linear viscoelatic behavior, the

Boltzmann integral for stress relaxation is rewritten entirely in terms of stress. This is

done to allow the same form to be used for finite strain viscoelasticity, which will be

discussed shortly. Using integration by parts, equation (5-14) can be written as follows:

a(t) = a 0(t) + 1 dG(z) a(t-)d (5-17)
Go d (5-17)

where: G o is the instantanous elastic shear modulus

The relaxation modulus can be determined using a Prony series, which is given as

follows:

G(t) = Go 1--
i=l )

where: g P is obtained by applying several stress levels,

measuring the relaxation time, and curve fitting the results (5-18)

X is the time, and X iG is the characteristic relaxation time

N is the number of terms in the Prony series

This procedure uses a set of experimentally obtained relaxation times and curve fits

the results to within a default (or user-defined) average RMS error in the non-linear least

squares estimate. Once obtained, the Prony series is used with concepts from the most

elementary models of viscoelasticity to quantify the visoelastic response of real polymers.

The same numerical procedure can be used to add rate dependency to isotropic

finite strain viscoelasticity. Although viscoelasticity strictly applies only to small strain

time-dependent behavior, finite strain visoelasticity of elastomers can be analyzed utilizing

a Prony series as described in the small strain viscoelastic case.

Equations (4-36 to 4-39) described the Polynomial and Ogden functions, two of

the phenomenological models used to describe the strain energy potential for the finite
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strain behavior of elastomers. Rate-dependency is added to these models by means of a

Prony series modification of the elastic constants.

The Polynomial form is given as:

U = Cij(I1-3)i(I2-3)
i =0o,j = 0

where: C ij are experimentaly determined and describe (4-36)

the shear behavior of the material

The Ogden form is given as:

N

U = 20"+ X 3'- 3)
n=lan (4-38)

where: jg and an are expermentally determined constants

Time-dependency is introduced by modifying the coefficients Cij in the Polynomial

form and gn in the Ogden form using a Prony series as follows:

Cij) = Cj °1-Jgi -e )

tn (=) p n(1 E (1- e /P 1 i )1) (5-19)

where: C j and g.0 are the instantanuous values (at t = 0)

5.40 The Time-Temperature Superposition Principle

The assumption of linear viscoelasticity allows for the production of a master

stress relaxation (or creep compliance curve) for amorphous polymers based on an

extrapolation procedure developed by Williams, Landel, and Ferry5. These curves are

expressed as log(time) versus log(creep compliance or stress relaxation). An example

stress relaxation curve for polyisobutylene is shown in Figure 5-3. The theory states that a

master curve can be obtained which spans many decades in time from data obtained over a

much narrower range of time. The extrapolation is performed using a shift factor which

equates the effect of time and temperature on the behavior of an amorphous polymer.

This is known as the time-temperature superposition principle. The creep test is easier

5 Ferry, J.D., Viscoelastic Properties of Polymers, Wiley, New York, 1961, Chapter 11.
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to perform than stress relaxation, and the curve can be transformed into a master stress

relaxation curve using equation (5-15).

The first step in the production of a master curve is to perform a series of creep or

stress relaxation tests over a relatively short but fixed time interval (usually between one

hour and one day) at a variety of temperatures. The range of test temperatures should be

wide enough to capture the glassy behavior at the lowest temperatures as well as the

elastomeric behavior at the highest temperatures. The master curve will represent the

behavior of an amorphous polymer over many decades of time at a desired temperature.

The temperature corresponding to a master curve is the experimentally determined

temperature which is not shifted. The curve can be obtained by shifting the curves taken

above the desired temperature to the right (forward in time), and those taken below the

test temperature to the left (backward in time) along the horizontal (time) axis. Once

completed, the entire master curve can be shifted to represent any temperature. The

horizontal shift has been shown to be nearly identical for all amorphous polymers and can

be defined by a quantity known as shift factor.

The shift factor, denoted by the symbol aT, which was determined experimentally

by Williams, Landel, and Ferry can be expressed as follows:

17.44(T - T,) (5-20)

51.6 + (T - T)

The shift factor is used to equate the effect of time and temperature in °C. The

time variable can take on any of the following forms, representing effects of time directly,

as well as changes in frequency, or changes in strain rate. The effect of an increase in one

of the time variables can be represented as a decrease in temperature as follows:

log(a) ]= lo = log log
Tt2 ]2 [2] (5-21)

Using equations (5-20) and (5-21), it can be shown that a increase of one decade

in one of the time variables, results in an upward shift of 3.14 degrees in Tg.
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Although this expression was obtained experimentally, it is often given physical

significance based on arguments related to fractional free volume6. Figure 5-4 shows the

specific volume versus temperature for a typical amorphous polymer. Below Tg, the free

volume (volume occupied by voids) is constant and begins to increase at temperatures

above Tg. The occupied volume (the volume which is occupied by the polymer

macromolecules themselves), increases linearly with increasing temperature.

The fractional free volume which can be expressed as follows:

f = fg + af (T - Tg)

where: f = vf /v is the fractional free volume

fg is the fractional free volume at Tg

v f is the free volume (5-22)

v is the total volume

a f = a solid - a liquid is the coefficient of

expansion of the free volume

The Doolittle viscosity equation is used to relate viscosity to free volume as

follows:

i = aexp(b(v-vf)/vf) or

In(j) = Iln(a) + b(l / f -1) (5-23)

where: a and b are experimentally obtained constants

A shift factor (aT) can be defined by assuming that the polymer behaves as a

viscoelastic material with a characteristic relaxation time (). Recall from the Maxwell

model, that the relaxation time is given as the ratio of the viscosity to the material modulus

of elasticity.

6 Williams, M.L., R.F. Landel and J.D. Ferry, J. Amer. Chem. Soc., 77, 3701 (1955).
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Assuming the temperature sensitivity of the viscosity is much greater than the

change in modulus, the shift factor can be expressed as:

'rT = T
aT= T

where: 11T is the viscosity at the temperature T (5-24)

T Tg is the viscosity at the temperature Tg

Using equations (5-17) and (5-18), the shift factor can be expressed as:

(b/2.303fg XT- Tg )

fg,/af +(T-Tg)

From equations (5-15) and (5-19), it can be seen that the f = 0.025 so the glass

transition temperature is reached when the fractional free volume reaches 2.5% and of =

4.85 x 104 degC-'. It has been shown experimentally that the fractional free volume for

most amorphous polymers at Tg is 0.025 + 0.003 and the coefficient of thermal expansion

has a "universal average" value of 4.8 x 10-4 C'. 7

7 I.M. Ward, Mechanical Properties of Solid Polymers,(New York: John Wiley and Sons, 1983), p.152.
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6.0 YIELD AND POST-YIELD BEHAVIOR OF GLASSY POLYMERS UNDER
COMPRESSIVE LOADING

The previous chapters have discussed the small strain behavior of amorphous

polymers in the elastic and viscoelastic regime, as well as the finite strain behavior of

elastomeric materials. This chapter will utilize and expand on the concepts developed in

chapters 2-5 in the presentation of a 3-D coupled thermal-displacement viscoplastic

constitutive model which has been used successfully to describe the temperature and rate

dependent plastic deformation of glassy polymers. The theory will be reduced to the case

of uniaxial compression, therefore crazing and fracture will not be discussed. The

interested reader is referred to one of the many texts on polymer material mechanics for

information on these topics. The uniaxial compression model will be further reduced to

model the yield stress as function of strain rate.

6.10 Description of the Stress-Strain Curve

The stress-strain curve for an amorphous polymer loaded isothermally in

compression has a characteristic shape which is shown in Figure 6-1. In the glassy regime,

the small strain behavior is modeled using the theory of linear elasticity, which is used to

determine the modulus of elasticity of a glassy polymer. When strained beyond the limits

of linear elasticity, the slope of the stress/strain curve decreases until it reaches a maxima.

The stress at that point is known as the yield stress, which typically occurs between 5 and

10 percent true strain.

Following yield, glassy polymers undergo strain softening. This is seen in the

stress/strain curve as a significant drop in load as further strain is applied beyond yield

point. This behavior is a global response to microscale inhomogeneous deformation

mechanisms such as shear banding. As the polymer continues to be strained, the stress

reaches a steady state value where it remains until alignment of the macromolecular chains

results in strain hardening.

Strain hardening occurs as the chains within the plastically flowing polymer

becomes increasingly more aligned. This increase in alignment results in a decrease in

configurational entropy, which can be equated to an increase in the modulus of the

material. As a consequence, strain hardening results in an increasing barrier to plastic
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deformation with increasing strain. This effect is primarily entropic and can be modeled

using Langevin statistical finite strain theory.

The yield stress is a strong function of both temperature and the strain rate. It

generally decreases with increasing temperature and decreasing strain rate, eventually

decreasing to zero as the polymer approaches the glass transition temperature. As a

result, the process of yielding only occurs in polymers which are in the glassy region. The

remainder of this chapter will discuss the constitutive modeling of the yield and post-yield

behavior of glassy amorphous polymers as a function of temperature and strain rate.

6.20 Constitutive Modeline

The constitutive modeling of the yield and post-yield behavior of glassy polymers

is a relatively new endeavor. To capture the effects of temperature and load rate, the

model must consider the temperature and displacement components in a fully coupled

form. A successful approach was developed by Boyce' et.al. (1988) based on a model

originally proposed by Argon2 (1973). A physically-based three dimensional approach is

used, which includes a fully coupled temperature-displacement viscoplastic model.

Following the presentation of the complete theory, the model will be reduced to the case

of uniaxial compression in a somewhat simplified form for use in this study.

The model is based on the assumption that the total resistance to plastic

deformation in a glassy polymer is due to two distinct physical barriers as described by

Boyce and Arruda (1995)3. The first of these is an isotropic barrier to chain segment

rotation, and the second is an anisotropic resistance to chain alignment. This implies that

some of the total plastic work is dissipated during plastic deformation, and the remainder

is stored, providing additional resistance to further plastic deformation.

'Boyce, M.C., D.M. Parks and A.S. Argon (1988), Large Inelastic Deformation in Glassy Polymers, Part
1: Rate Dependent Constitutive Model, Mech. Mater 7, pp. 15-33.
2 Argon, A.S. (1973), A Theory for the Low Temperature Plastic Deformation of Glassy Polymers, Philos.
Mag. 28, pp 839-865.
3 Arruda, E.M., M.C. Boyce, and R. Jayachandran (1995), Effects of strain rate, temperature and
thermomechanical coupling on the finite strain deformation of glassy polymers, Mech. Mater. 19, pp.193-
212.
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The force which drives the plastic deformation in a glassy polymer is the effective

equivalent shear stress (the shear flow stress), which is given as follows:

= (s+ap) 1+ A'kBO In (
A(s +o p)

where: s is the athermal shear strength

a is the pressure coefficient

p is the pressure

kB is the Boltzmann constant

O) is the Absolute temperatue (6-1)

A(s + a p) is the zero stress level activation energy

modified to include pressure effects

o is the pre - exponential factor proportional to the

attempt frequency

P is the applied shear strain rate

The athermal shear strength is assumed to be constant prior to the onset of plastic

deformation, and evolves following yield as follows:

0.077gt
(1 -v)(l-v)

where: pt is the elastic shear modulus

v is the Poisson ratio

s = h( l- }P (6-2)

where: h is the softening slope

s. is the preferred state of the material associated

with a completely de - aged condition

The shear modulus has a strong dependence on temperature. This dependency is

quantified by generating a series of isothermal stress/strain curves at a loading rate which

is slow enough to ensure that no temperature rise occurs during the deformation process.

The results are curve fitted using a logarithmic function to obtain the temperature

dependent shear modulus.
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The stored portion of the plastic work provides an increasing resistance to plastic

deformation with increasing strain, an effect is captured using a second-order tensor

known as the back stress. The back stress can be modeled using equations (4-30) and (4-

35) which were developed to model the finite strain behavior of rubber elastic materials

assuming that the back stress evolves with increasing chain alignment. Combining

equations (4-30) and (4-35), the back stress can be written as follows:

B1 nk0 N -1 fAP (A i - AI

where: nkBO is the rubbery shear modulus

vN¶ represents the limiting chain extensibility

N is the number of statistically rigid links

- { chain }is the inverse Langevin funtion (6-3)

APi is the applied plastic principal stretch of

component i

APcha i is the strech on any chain in the 8- chain

network

I, is the first stetch invariant

The first stretch invariant is given as:

II = (AP1 )2 +(AP2) 2 +(AP3) 2 (6-4)

Using the first stretch invariant, AP bi. can be expressed in terms of the plastic

stretch components as follows:

AP ain = - J(APi ) + (AP2)2 +(AP3) = a2 ' (6-5)
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The strain chain density (n) in equation (6-3) is actually a function of the absolute

temperature due to chain dissociation4 :

(-E.)n(O) = B- De R

where: B and D represents the portion of the network which

non - dissociating, and dissociating respectively (6-6)

Ea is the thermal dissocitating energy

R is the universal gas constant (0.001695 kcal / mol K)

It has been shown that the thermally evolving chain density results in an increase in

the number of statistically rigid links (N) due to conservation of mass 5. The chain density

and the number of statistically rigid links are related as follows:

n(O)N(O) = constant (6-7)

The kinetics of deformation of a glassy polymer begins with the polar

decomposition of the deformation gradient into elastic, thermal and plastic components6

which are used to define the components of the plastic velocity gradient as follows:

F = FFthFP

where: Fe,F*,FP are the elastic, thermal, and plastic

components of the total deformation gradient

L = F-' = L' +F[L +FFthLP(Fth)-](Fe) -

where: L is the plastic deformation velocity gradient

L= Fe(F)eI Lth = tt(Fth)-, L p = FP(Fp)

4 Raha, S. and P.B. Bowden (1972), Birefringence of plastically deformed polymethylmethacrylate,
Polymer 13, 174-183.
5 Boyce, M.C. (1986) Large inelastic deformation of glassy polymers, Ph.D. thesis, The Massachusetts
Institute of Technology.
6 Lee, E.H. (1969), "Elasto-plastic deformation at finite strains". ASME J. App. Mech. 36, 1.
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The thermal and plastic components of the deformation and velocity gradient are

typically grouped together as follows:

FtP = FF p

and,

LtP = DhP + WP = FthP (FP)-

where: WthP is known as the spin and is often

set equal to zero

DthP is the deformation rate (6-9)

DtP = DP + o(O)I6

where: DP is the plastic stetch

a(O) is the temperature dependent coefficient

of thermal expansion

The plastic stretch tensor is given in terms of the applied shear strain rate as

follows:

DP = - PN

where: N is the normalized tensorial direction

of the shape change

N -
N = -- T*'

and, (6-10)

T*I = [RmTTRe] '-B

where: T*' is the deviatoric component of the driving

stress state

R' is the rotation matix to priciple strain

space

The quantity (T) in equation (6-10) is the Cauchy (true) stress and T* represents

the portion of the stress which continues to activate plastic flow and is the tensorial

difference between the Cauchy stress deviator and the convected back stress.
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The shear stress from equation (6-1) can be expressed as follows:

= -T*'.T*' (6-11)

The kinematic relationship from equation (6-11) is set equal to the rate and

temperature dependent flow stress equation (6-1) to quantify the plastic deformation

process.

The elastic constitutive relationship is given by:

T= Le[ln V ]

where: J is the volume change (6-12)

V"' is the Hencky strain

6.30 Heat Generation Due to Plastic Deformation

To adequately capture the thermomechanical interaction at high strain rates, the

effect of internal heat generation due to plastic deformation must be included. The general

energy balance equation can be written as:

p c-div(k grad 0)= q

where: p is the density

c is the specific heat (6-13)
k is the thermal conductivity

4 is the rate of heat generation

The rate of heat generation due to plastic flow can be determined using the

following equation:

4 = [tr(T*'IP)] (6-14)

The heat generation can result in a temperature rise in the material if the heat is not

allowed sufficient time to be conducted away. By comparing the time scale of the test to

the thermal diffusion time, the deformation process may be classified as adiabatic,

isothermal, or fully coupled.
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The thermal diffusion time is given as:

L2

td =2a

where: L is the distance from the center of the (6-15)

specimen to the nearest heat sink

a is the thermal diffusivity

A dimensionless thermal time parameter can be defined as:

ttWt
td

where: >> 1 indicates an isothermal process (6-16)

: = 1 indicates fully coupled thermal - displacement

<< 1 indicates an adiabatic process

The temperature rise during plastic deformation contributes an additional thermal

component to the strain softening of the material. When the test is conducted at a very

slow rate, the deformation process is nearly isothermal (no thermal softening occurs). As

the strain rate is increased, the softening effect becomes increasingly more pronounced.

6.40 Experimental Methods for Determining Material Properties

This section will discuss some of the possible methods which could be used to

determine the material properties required to conduct the analysis procedure. The first

step is to conduct a series of stress-strain experiments at several strain rates and a constant

ambient temperature. The value of the compressive yield stress resulting from an applied

strain rate as well as the athermal shear stress can be determined directly from the

experimental results. When attempting to predict the yield stress, the temperature can be

taken as a constant equal to the ambient temperature for the entire range of strain-rates.

This is a valid assumption since the plastic deformation is negligibly small and equation (6-

14) indicates that the heat generation is also small.

The value of the pressure coefficient can be determined directly by conducting

tests in both tension and compression, since these tests contain different pressure levels.

The pressure coefficient is the slope of the curve of the peak yield stress versus the applied

pressure.
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Once the pressure coefficient is known, the value of the constant A and 0 can be

determined. Rewriting equation (6-1) in terms of the applied shear strain rate gives:

P( ) A(s +a p) , +I ' J[n -peak 
in kBe (s+a pp)

ln[r + L A(s+a p) t peakln( p) = l )A(s + p) I + I
kBO kBEO (s +ap)(6-17)

[~ (s + As )) (s + p)

The reduced form of equation (6-17) is the equation of a straight line. By plotting

the values of In[ p ] as a function of ((s + a ) , the value of A/kB can be determined

directly from the slope (C). With A/kB known, the value of 0 can be determined from

the intercept (B). Note that equation (6-17) could also be used to determine the lower

yield stress. If tensile test data is not available, a value of the pressure coefficent can be

estimated between the values of 0.10 and 0.30. The constant A/kB is generally in the

range of 100-175 MPa/K.

To quantify the strain softening behavior, the softening slope (h) and the value of

s/s, needs to be determined. It has been shown 7 that the an amorphous polymer in the

glassy phase has a relatively constant value of s/s,,. This value can be estimated as the

ratio of the maximum peak yield stress to the minimum value of the stress obtained after

softening has occurred.

7 Boyce, M.C., D.M. Parks and A.S. Argon (1988), Large Inelastic Deformation in Glassy Polymers, Part
1: Rate Dependent Constitutive Model, Mech. Mater 7, pp. 15-33.
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The softening slope can be estimated from the plot of true stress versus true strain

using the following equation:

As 1-[

where: As =s-ss (6-18)

Ay P is the increment in plastic strain

over which As occurs

The strain hardening properties require the experimental determination of the

rubbery shear modulus as a function of temperature, GR(O)=nkBO. The rubbery

modulus can be estimated by heating the polymer to a few degrees above the glass

transition temperature, and conducting a compression or tension test at a high loading

rate. The initial slope of the true stress-true strain curve is the rubbery shear modulus at

the test temperature. The value of the rubbery shear modulus at a desired temperature can

be obtained using the following expression:

GR (O) = GR (oke{ ] (6-19)

The final piece of information required is the number of rigid links between

entanglements (N). Using Langevin statistics, N is defined as the square of the locking

stretch. The locking stretch can be determined from a plot of true stress versus true strain

as the asymptotically approached value of true strain reached during the strain hardening

process. The locking stretch is the exponential of the limiting value of the true strain.
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6.50 Uniaxial Compression

This section will reduce the general tensorial equations given in the previous

section to the simplified case of uniaxial compression. The Cauchy stress tensor for

uniaxial compression is given as:

T=0 0 0

° 0 0 Oj

where: a is the applied compressive true (6-20)

stress, a > 0

The deviatoric component of the stress tensor is given as:

2/3 0 0

T' c0 -1/3 ] (6-21)

0 0 -1/3

It can be shown that the backstretch tensor is given as:

-1 0 0

B = - B, 1/2 0 (6-22)
L 0o 1/2

Using equation (6-10), the deviatoric component of the driving stress can be

expressed as:

T*'= T'-B

so, (6-23)

T'=

2
-- a C -Bl 0 0

3
1 Bc + l 

0 0 1 C + 0
3 2
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The shear stress can be found using equation (6-11) as follows:

1I- - i r1 3
r=X = T*T*1Z C +B I1] (6-24)

The shear stress from equation (6-24) can be compared to the result from the Von

Mises equation which predicts the compressive stress, neglecting the backstretch tensor, is

vr3 .

In uniaxial compression, the (1,1) matrix element is of primary concern. The (1,1)

components of the normalized tensorial direction of the shape change is given as follows:

1N,, = '2 T*

from (6- 23),

2
T*'1 = - -B u

so, (6-25)

+ 3 B 11]

The (1,1) component of the stretch tensor can be expressed as the sum of a plastic

and elastic components:

Dl, = DP, +Dll

DI ' can be appoximated by -E so, (6-26)
E

DPII s-i
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Using equations(6-10) and (6-25), the plastic component of the stretch tensor can

be given as:

F 2

+B 11

Combining equations (6-26) and (6-27) and simplifying gives the a relationship for

the shear strain rate in terms of the back stretch, strain rate, and compressive stress.

~P =2¢ [a c + (3/2)B (6-28)
[(2/3)a +B J (6-28)

where: £ is the compressive strain rate

Equation (6-28) can be combined with equation (6-1) to quantify the response of

an amorphous polymer subjected to a homogeneous compressive stress. These equations

will be used to predict the yield stress as a function of strain rate for a specific set of

polymer blends in Chapter 9.
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7.0 SPECIMEN FABRICATION

The production of high quality polymer test specimens is required to produce

repeatable test results. To this end, a great deal of time and effort must be directed

towards the fabrication process. The key concerns will be addressed in this chapter.

These include the resin catalyst and promoter selection and concentration, precautions

needed to produce void free specimens, the selection of appropriate test specimen

dimensions and the machining operations required to produce them.

7.10 Resin Formulation

Both the Derakane 8084 and Crestomer 1080 were obtained from the

manufacturer in an uncatalyzed and unpromoted form. The catalyst is the material which

initiates the crosslinking reaction, and the promoter is an additive which is used to speed

up and enhance both the degree and quality of the resin cure.

The amount of promoter and catalyst to use for a given formulation is, in general,

a weak function of relative humidity and a strong function of ambient temperature. As the

temperature drops, the required amount of the catalyst and promoter tends to increase. It

is often a difficult time consuming trial and error process to determine the correct resin

formulation for a particular thermoset polymer. The temperature and humidity were

measured using a digital hydrometer with the following specifications:

TABLE 7-1

Measuring Range: 10.0%-95.0% Rel. Hum.

32.0-140.0 Degrees F

Maximum Response time: 3.5 Minutes

Resolution: 0.10 % Rel. Humidity

0.10 % Farenheit

Accuracy: 1.5% Rel. Humidity

0.40 Farenheit
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When considering blends of two or more polymers, the determination of the

correct formulation becomes even more complex. The formulations are usually

proprietary and are therefore difficult to obtain.

Dow Chemical has produced a fabrication guide which outlines some catalyst and

promoter concentrations. The recommended formulation for Derakane 8084 was given as

a function of gel time and ambient temperature. The selected formulation will be

discussed.

It was also stated that the ratio of catalyst to promoter should be in the range of

3:1 to 10:1. These values served as a valuable guide in the resin formulation process. An

additional complication was introduced by a lack of information regarding atypical"

formulations for Crestomer 1080 due to its proprietary nature.

The first catalyst used in this study was Lupersol DHD-9 MEKP (Methyl Ethyl

Ketone Peroxide) with 9% active oxygen produced by Elf Atochem of North America.

This catalyst was recommended by Dow Chemical as a good general choice for vinyl ester

resins, however the use of this catalyst resulted in a slow exotherm development and a

poor cure in some of the test specimens containing more than 25% Crestomer. These

problems were attributed to the low ambient temperatures in the fabrication facility (58-

630 F). This problem was solved by changing the catalyst to Lupersol DELTA-X-9, which

is specifically formulated for use in ambient temperatures in range of 55-650 F. The

promoter used throughout this study was Cobalt Naphthenate with 6% cobalt content by

weight produced by Mooney Chemical.

The combination of Lupersol Delta-X-9 MEKP and Cobalt Naphthenate

(CONAP) was used as the catalyst/promoter combination throughout this study. The

concentration of MEKP was 3.0% by weight, and the concentration of CONAP was

0.60% by weight. Although recommended in the Dow fabrication guide, DMA (N,N-

Dimethylaniline) was not used due to the health risks involved. DMA is a resin cure

accelerator which is often used in very small quantities (approximately 0.10 % by weight)

to speed up the curing reaction. The specific gravity is important in the fabrication process

since the constituants are measured on a volumetric basis. The specific gravity along with

the viscosity may be found in Table 7-2.
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TABLE 7-2

MATERIAL SPECIFIC GRAVITY VISCOSITY (@ 770F)

DERAKANE 8084 1.02 350 cps

CRESTOMER 1080 1.04 900 cps

LUPERSOL DELTA-X-9 MEKP 1.15 15.8 cps

MOONE CHEMICALS CONAP 0.93 N/A

7.20 Preparation of Cylindrical Test Specimens

The preparation of test specimens requires a considerable amount of planning and

forethought in order to obtain repeatable experimental results. One of the key concerns in

the fabrication process was the production of a suitable mold. The key consideration in

the selection of the mold material is its ability to resist warping and deformation during the

curing exotherm, which typically exceeds 350F for approximately 10 minutes. In

addition, the free ions of metals such as copper and zinc have an adverse effect on the

curing process. Molds constructed of stainless steel and aluminum, as well as glass are

acceptable options.

Excellent results were obtained by pouring the resin into a test tube composed of

the "hard glass" variant (S-34) of KIMEX glassware, which was coated with several layers

of PVA (Poly-Vinyl Alcohol) mold release agent. When cheaper tubes of borosilicate

glass were used, the resin did not separate from the tube wall during the curing process.

This resulted in severe cavitation of the polymer as shrinkage occurred. This shrinkage,

which is on the order of 10%, begins as the crosslinking reaction and the corresponding

exotherm occurs, and is complete by the time the resin returns to room temperature.

A final issue in the fabrication process is the elimination of bubbles in the cured

resin. The bubbles were caused by entrained air which was trapped in the resin as it was

being blended, as well as by the foaming which occurs in the initial stages of the

crosslinking reaction. The elimination of these bubbles is a function viscosity which

strongly related to temperature as well as the aspect ratio of the container. If the aspect

ratio is too large, the rise of the bubbles will be slowed due to an interaction with the walls

of the container. As a result, the resin was mixed in a large beaker and allowed to sit for
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approximately 10 minutes. The resin was then drawn from the bottom of the beaker and

injected into the test tubes. The injection process was conducted very slowly, with the

test tubes tilted at a 45 degree angle. By allowing the resin to run down the tube in a thin

film, the remainder of the bubbles were liberated. The only blend which could not be

deairated in this manner was the 100% 1080, due to the high viscosity which was

approximately the consistency of molasses. Air removal could have been aided by the use

of a vacuum mixing apparatus, which was not available for this study.

The test tubes used had an outer diameter of 18 mm and a length of 150 mm. This

allowed for the production of approximately seven cylindrical test specimens with a length

to diameter ratio of 1.0. This ratio was chosen for the Instron testing to satisfy two

conflicting goals. The first is the need for sufficient cross-sectional area to minimize the

errors in the load cell force measurement. The second is to keep the cross sectional area

small enough to minimize the effects of friction which can result in inhomogeneous

deformation in the specimen.

The specimens were marked and cut using a band saw and left slightly oversized in

length (approximately 15%). They were then carefully centered in a lathe, and both sides

were faced until parallel. The specimens were each individually inspected to ensure that

the faces were parallel to within approximately 0.005 inches, to prevent shearing during

the loading process. Despite all these precautions, as well as liberal lubrication and the use

of Teflon sheets in the interface between the specimen and the compression plates,

approximately 5% of the specimens exhibited some degree of shearing during the tests. It

was later discovered that this was due to a misalignment between the compression plates

in the Instron machine.

Several other precautions were taken to ensure the repeatability of the results.

Prior to testing, the sharp edges of each specimen were removed with fine grit sandpaper

to minimize the possibility of tearing the Teflon sheets during testing. In addition, the

specimens were heated to 1800 F for 10 hours to ensure that all of the resin was fully

reacted prior to testing.

It was discovered during the testing process that the measured value of the peak

yield stress is a strong function of the imposed thermal history. These effects may be
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removed by raising the temperature of the material several degrees above the glass

transition temperature for several hours in a process similar to annealing. At the time the

tests were conducted, the glass transition temperatures were not known. Several attempts

were made to determine an upper-bound limiting temperature, beyond which the material

would be damaged. It became clear that a complete analysis of this type could quickly

become intractable and the 1800F value was adopted.

In addition to the compression specimens required for the Instron testing, several

specimens were required for the high strain-rate testing which was conducted using a

Hopkinson bar. The compression surfaces in the testing apparatus were only 0.75 inches

in diameter. To ensure that the specimens remained within these limits during the test, the

maximum allowable diameter of the specimens is only on the order of 8 mm.

The Hopkinson bar testing introduced several other issues which required the

specimens to have an aspect ratio of 0.5 to 0.75 (length/diameter ratio). Some of these

issues will be addressed in Chapter 10. The size made the fabrication of these specimens

particularly difficult. The resin rods were centered and machined down in a lathe to the

required diameter. The specimens which were produced measured approximately 8 mm in

diameter and, therefore needed to be approximately 4-6 mm in length. Specimens of this

length are difficult to face-off in a lathe. As a result, most of the specimens were close to

the imposed upper limiting aspect ration of 0.75.

Several other specimens were cut using a low speed diamond saw. This apparatus

produced high quality specimens of any desired length but required approximately 1 hour

per cut. The specimens containing more than 50% Crestomer 1080 could not be cut at

room temperature by this method. In order to cut these specimens, they were cooled in

liquid nitrogen for 10 minutes prior to cutting.

Chapters 9 and 10 describe the low and high strain rate testing which was

conducted using these specimens. These sections begin by presenting the relevant theory

and background, followed by the results and experimental observations. Chapter 8 will

present the theory and results of the DMA testing. The specimens used in these tests were

provided by the research staff of the NASA Langley Research Center.
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8.0 FREOUENCY DEPENDENT VISCOELASTIC BEHAVIOR AND DYNAMIC

MECHANICAL ANALYSIS (DMA)

The previous discussion of viscoelastic behavior considered the important

properties of stress relaxation and creep compliance. It was discussed earlier that the

determination of the glass transition temperature (Tg) is accomplished most effectively by

means of Dynamic Mechanical Analysis (DMA). This process involves loading a

specimen of a specific size with a sinusoidal loading program. The amplitude of the load

is small enough to ensure that the specimen remains in the elastic range. The test can be

conducted either at a fixed temperature over a range of frequencies or at a fixed frequency

with a varying temperature.

In the case of linear elastic or elastomeric materials, the stress applied on the

specimen is in phase with the strain. When viscoelastic effects are present, the strain lags

the stress by a phase angle . The stress and strain in a visoelastic material under

sinusoidal loading can be can be expressed most conveniently using complex notation as

follows:

£(t) = £ e i v
(t) = G+° (8-1)

c(t)= a0 e' (= +8>

The stress can be viewed as a phasor rotating counter clockwise at angular

frequency co composed of two orthogonal components. The first of these component is in

phase with the strain and the other component is 90 degrees out of phase. Dividing the

stress by the strain gives the following:

G = e' = a' (cos()+isin(8)) = G1 +iG 2
Eo Eo

where: G is the complex modulus (8-2)

G1 is the storage modulus

G 2 is the loss modulus

Using the definition of the of the complex modulus, the phase angle 6 can be found

as follows:

, tan~lG )(8-3)
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Viscoelasticity is associated with a coupled elastic and damping response. When a

polymer undergoes a phase transition, such as the transformation from glassy to rubbery

behavior, a change in damping occurs due to changes in molecular mobility. The damping

response of an amorphous polymer reaches a maximum at the glass transition temperature

which can be thought of as the natural frequency of the main chain rotation at the test

frequency. The damping component of the response is represented by the loss modulus

and reflects the dissipation of energy during a cycle. The energy loss per cycle (E) can

be expressed as follows:

AE = G2 0
2 (8-4)

The energy dissipation appears in the polymer in the form of internal heat

generation. If the loss modulus is large or the frequency is high, a significant temperature

rise can occur.

The next section will use the ideas presented in this section to predict the value of

the glass transition temperature resulting from the blending of two dissimilar materials.

8.10 Experimental Determination of the Glass Transition Temperature for Various

Blends of Derakane 8084 Vinyl Ester and Crestomer 1080 Urethane Acrvlate

The glass transition temperature for five blends of Dow Chemical Derakane 8084

rubber toughened vinyl ester and Scott Bader Crestomer 1080 Urethane Acrylate was

determined using DMA techniques. The testing was conducted at the Composites and

Polymers Branch of the NASA Langley Research Center in Hampton, Virginia on a

Polymer Labs MKII DMTA (Dynamic Mechanical Testing Apparatus). The test was

conducted using the parameters shown on Table 8-1.

TABLE 8-1

DMA test frequency: 10 Hz

Thermal Loading Rate 100C / minute

Testing Mode: Single Cantilever Beam
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Two runs were conducted for each of five compositions which ranged from 100%

8084 by weight to 100% 1080 by weight in 25% increments. The convention used in

defining the glass transition temperature from a DMA test varies from one investigator to

the next. In this case, the value was taken as the intercept of approximated lines drawn

through the glassy and viscous region regions. The results may be found in Figures 8-1

through 8-10 and are summarized in Table 8-2.

TABLE 8-2

% 8084 % 1080 Tg - Trial 1 (C) Tg - Trial 2 (C) Mean Tg (C) Stdev Tg C)

100 0 113 114 113.5 0.5

75 25 101 102 101.5 0.5

50 50 89 90 89.5 0.5

25 75 66 65 65.5 0.5

0 100 27 27 27.0 0.0

Using the information in Table 8-2, a predictive model for the glass transition

temperature as a function of the weight percentage of one of the constituents can be

developed. To this end, a curve of Tg versus the weight percentage of Crestomer 1080

was produced.

The form of the fitting equation is based on the premise that the value of the glass

transition temperature of a copolymer composed of two polymers can be calculated by the

following empirical relationship':

1 1 wI+ B*w 2

Tg w,+B*w 2 T. Tg2

where: w, w2 are the weight fractions of the individual polymers

as given in Table 8- 2 (8-5)

Tgl, T 2 are the glass transition temperatures of the individual polymers

B is a constant which is close to unity

L. Mandelkern, G.M. Martin and F. A. Quinn, J. Res. Natl Bur. Stand., 58, (1959) 137.
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Equation (8-5) was coded into a MATHCAD file which may be found in Appendix

B. The value of the parameter B was iterated until a reasonable fit was obtained. The

results of the final iteration are shown in Figure 8-11. Superimposed on the same graph is

a curve for a typical polymer in which B is 1.0. The value of B obtained in this study was

0.11. Most polymer blends obey what is essentially a series model in which a small

quantity of the softer material results in a rapid drop in stiffness of the blend. In this

material blend (B=0.11) the stiffness drops very slowly with increasing weight percentage

of the softer material (Crestomer).

The glass transition curve, which was obtained at a frequency of 10 Hz, was

extrapolated out to 100 Hz., 1,000 Hz., and 10,000 Hz using shift factorss and the WLF

equation, equations (5-20 and 5-21). These are shown in Figure 8-12.

The glass transition temperature can be used to make some general statements

about the response of the material under load. To first order, if the glass transition

temperature of a blend of two polymers is very close to one of the component

homopolymers, it is expected that the modulus of elasticity will also be similar. Since the

first three compositions are only separated by 200 C, it is expected that the mechanical

loading behavior of these compositions will not differ to any significant degree and it is

expected that the behavior will be dominated by the Derakane 8084 material. This

indicates that the rate dependency of the modulus is likely to be small. By contrast, the

blend consisting of 25% Derakane 8084 and 75% Crestomer 1080 shows a significantly

lower value of Tg. In this blend the Crestomer 1080 is exertion a considerable influence

on the blend. As a consequence, the loading behavior of this blend will likely be

significantly different than the previous three including a significant increase in rate

dependency of the modulus since the pure Crestomer 1080 will show a very strong

dependence on load rate at room temperature.

A key assumption in this analysis is that the polymer blends behave, to first order,

in a manner similar to a single homogeneous polymer with the estimated value of Tg. This

assumption requires further investigation. The assumption that an equivalent value of Tg

could be used to characterize the behavior of a polymer blend might begin to break down

when plastic deformation occurs. In particular, the initial stages of plastic deformation
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FIGURE 8-11

PLOT OF PREDICTED GLASS TRANSITION TEMPERATURE
VERSUS WEIGHT% CRESTOMER 1080:

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Weight % Crstomcr 1080

- Predicted Tg (C)
o Observed Tg (C); Triall
o Observed Tg (C); Trial2

- Typical Curve (B=1)
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FIGURE 8-12

PLOT OF THE GLASS TRANSITION TEMPERATURE VERSUS
WEIGHT %CRESTOMER 1080 EXTRAPOLATED TO VARIOUS FREQUENCIES

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Weight % Castomer 1080

- Predicted Tg (C) at f=10,000 Hz
- Fitted DMA curve of Tg (C) at measured frequency of 10 Hz
- - Predicted Tg (C) at f=1/1000 Hz
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following yield is represented by a softening effect. This effect is due to small-scale

inhomogeneous deformation mechanisms such as shear banding. At this scale, the

assumption that the polymer behaves in a homogeneous manner is in question, and a

composite material constitutive model should be used to describe the behavior.
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9.0 INSTRON TEST RESULTS

The purpose of this series of tests is to evaluate the behavior of the proposed

blends of Derakane 8084 and Crestomer 1080 under a variety of loading rates. The resets

of these tests were used to formulate a predictive model of the yield behavior as a function

of axial strain rate. The goal was to be able to extrapolate the yield stress out to strain

rates on the order of 1000 sec-i. The next chapter contains a comparison of the projected

and experimentally obtained values of the yield stress at these high strain rates.

The compressive stress-strain behavior of several blends of Derakane 8084 and

Crestomer 1080 were determined using an Instron hydraulic testing machine. The tests

were conducted at the Material Science and Testing Lab at MIT on an Instron Model

#8501 hydraulic testing machine. The data was obtained using and IBM compatible PC

with a Kiethley model 500 data acquisition board which had a maximum data acquisition

frequency of 500 Hz. The analysis was performed using LABTEC, a Windows based data

collection program.

The testing was conducted on each of the five blends of Derakane 8084 and

Crestomer 1080 which ranged from 100 wt.% 8084 to 100 wt.% 1080 in 25% increments.

The loading for the first four materials was applied at a constant crosshead velocity of

0.01, 0.10, 1.00, and 2.50 mm/sec, at data collection frequencies of 5 hz, 50 hz, 400 hz,

and 500 hz respectively. To minimize frictional effects during the loading process (such as

barreling), lubricated Teflon sheets were inserted between the specimen surfaces and the

compression plates. The 100 wt% 1080 specimen tests were only included for the first

three loading rates due to a lack of reliable (repeatable) specimens. The results, which may

be found in the Appendix C, are summarized in Table 9-1.

Appendix C contains a testing log which reflects all of the Instron testing which

was conducted in this study. Many of the tests produced poor results due to

manufacturing and resin formulation errors which were later resolved. The manufacturing

and testing lessons learned were discussed in Chapter 7.

The loading was conducted at a constant loading velocity, instead of a constant

strain rate. The strain rates shown below represent the initial (nominal) strain rate which

was determined as follows:
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vo
Cnom L

L0

where: V is the crosshead velocity (mm / sec) (9-1)

Lo is the inital length of the specimen (mm)

The true (instantaneous) strain rate is defined as follows:
VO

Li
where: V is the crosshead velocity (mm / sec) (9-2)

L i is the instantaneous length of the specimen (mm)

The true strain rate can be determined from the initial strain rate as follows:

Vo = VO Lo = .om

L i Lo L i X (9-3)

where: X is the extension ratio

Figure 9-1 shows the difference between the true strain rate and the nominal strain

rate for a specimen with an initial length of 15.5 mm subjected to a loading rate of 0.01

mm/sec to a true compressive strain of 150%. Note that this curve maintains the same

shape for all the applied load rates.

The deviation in strain rate shows approximately a four fold increase in strain rate

over the nominal value at 150% true compressive strain. These effects are minimal when

determining the yield stress which occurs at strains below 10% true strain. Another

observation is that the stress is generally assumed to be a function of log(i ), and the

difference in the logarithmic values is only on the order of 1.50 at 150% true compressive

strain. Because of these factors, substitution of the nominal strain rate for the true strain

rate is a valid assumption when attempting to predict the yield stress as a function of strain

rate, and an acceptable one up to the testing limits in this study.
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FIGURE 9-1

COMPARISON BETWEEN TRUE STRAIN RATE AND NOMINAL
STRAIN RATE AS A FUNCTION OF TRUE STRAIN

0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5

TRUE COMPRESSIE STRAIN
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TABLE 9-1

Initial Number Mean True Stdev. Mean Stdev.
Wt%8084/ Strain of Peak Yield True Peak True True
Wt% 1080 Rate Runs Stress Yield Peak Peak

(1/sec) (MPa) Stress Yield Yield
(MPa) Strain Strain

100/0 6.33x10 n 3 93.409 0.040 0.065 0.002
100/0 6.41x10-3 2 105.201 0.221 0.069 0.002
100/0 6.44x10- 2 3 118.436 0.740 0.071 0.003
100/0 1.64x10-1 3 123.647 0.517 0.073 0.002
75/25 6.66x10l4 3 67.997 0.154 0.068 0.002
75/25 6.68x10-3 3 81.961 1.719 0.065 0.002
75/25 6.68x10'2 3 95.180 0.599 0.070 0.003
75/25 1.70x10' 3 100.843 0.519 0.070 0.000
50/50 6.73x104 3 61.213 0.664 0.061 0.002
50/50 6.60x103 4 *74.165 *0.096 *0.062 *0.001
50/50 6.82x10-2 3 86.508 0.615 0.068 0.003
50/50 1.64x10'l 3 92.670 0.390 0.067 0.001
25/75 6.50x10l4 3 *22.445 *0.015 *0.0585 *0.005
25/75 6.38x10-3 3 30.087 1.279 0.067 0.001
25/75 6.42x10-2 4 49.841 0.698 0.065 0.001
25/75 1.59x10-' 4 57.367 2.419 0.066 0.002

these runs had an outlier

standard deviation. The

which was removed prior to the calculation of the

individual values of the peak yield stress and the

corresponding yield strain may be found on the stress-strain curves in Appendix C.

Figures 9-2 through 9-6 show a comparison of the true stress versus true strain

curves for each of the compositions showing the effect of strain rate on the behavior of the

blend. Figures 9-7 through 9-10 compare the behavior of each of the materials at a given

load rate. These traces shown in these plots correspond to a "typical" run, and not an

average response. This simplification can be made due the high degree of repeatability in

the experimentally obtained stress strain curves.

The 100% Derakane and 75% Derakane / 25% Crestomer blends failed by a

fracture mechanism when tested at relatively high loading rates. In the former, this

occurred at the two highest loading rates, and in the later fracture only occurred at the

highest loading rate of 2.5 mm/sec. None of the other specimens failed by this mechanism.
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Figure 9-2
100% 8084 / 0% 1080 at various load rates

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

TRUE SRAIN

- A = Load Rate = 0.01 mm/sec*
B = Load Rate = 0.10 mm/sec*
C = Load Rate = 1.00 mm/sec*
D = Load Rate = 2.50 mm/sec*

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01 / sec

Ust maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(e trueA) =0.759 max(& tr.eA) =110.58-MPa

max( trueB) = 0.761 max(a trueB) =106.084 MPa

aX(E eC) = 0.763 max( btueC) =117.63 MP a

ma( tueD) = 0.763 max(a trueD) = 123.683M a

o yA = 93.767 MPa E yA = 0.065

Co y =105.442 MPa yB = 0.071

a yC = 117.63 MPa yC = 0.073

a yD = 123.683-MPa yD = 0.073
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Figure 9-3
75% 8084 / 25% 1080 at various load rates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TRUE STRAIN

- A = Load Rate = 0.01 mm/sec*
- B = Load Rate = 0.10 mm/sec*
- C = Load Rate = 1.00 mm/sec*
- D = Load Rate = 2.50 mm/sec*

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec

2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec

4. A load rate of 2.50 mm/sec corresp9nds to an initial strain rate of 1.61 e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(F trueA) = 0.855 max( treA) = 103.201 MP a yA = 67.896 MPa e yA = 0.066

ma(E trueB) = 0.86 max (oa eB) = 104.253 MPa = 84.366 MPa yB = 0.064

max(e trueC) = 0.862 max(a oueC) = 101.544-MPa a C = 94.798-MPa EC = 0.071

max(E trueD) = 0864 max(a ueD) = 104.907 MPa a = 101.388 MPa yD = 0.07
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Figure 9-4

50% 8084 / 50% 1080 at various load rates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

TRUE STRAIN

- A = Load Rate = 0.01 mm/sec*
B = Load Rate = 0.10 mm/sec*
C = Load Rate = 1.00 mm/sec*
D = Load Rate = 2.50 mm/sec*

1. A load rate of 0.01 mm/sec corresponds to an

2. A load rate of 0.10 mm/sec corresponds to an
3. A load rate of 1.00 mm/sec corresponds to an
4. A load rate of 2.50 mm/sec corresponds to an

initial strain
initial strain
initial strain
initial strain

rate of 6.45e-04 / sec
rate of 6.45e-03 / sec
rate of 6.45e-02 / sec
rate of 1.61e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max( trueA) = 1.012 max(o trueA) = 104.044-MPa

max(etrueB) = 1.01 max(atrueB) =98.384 MPa

max(tC) = 1.012 max(ae) =94.066-MPa

max(e trueD) = 1.017 max(a trueD) = 00MPa

o yA = 62.089-MPa

a yB = 74.187 MPa

a yC = 87.054 MPa

a yD = 93.068 MPa
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Figure 9-5
25% 8084 / 75% 1080 at various load rates

100

90 -- - - - - - -- -
80

70 

60

40

30

20

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TRUE SIRAIN

A = Load Rate = 0.01 mm/sec*
B = Load Rate = 0.10 mm/sec*
C = Load Rate = 1.00 mm/sec*

- D = Load Rate = 2.50 mm/sec*

0.9

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61 e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(e trueA) = 1216 max( trueA) =85.539-MPa

max( trueB)= 1.222 max (y wtreB) =82.846MPa

max(etrueC) = 1.211 max(arueC) =89.4-Ma

max(e t,,ueD) = 1.212 max( trueD) = 94.333 MPa

a yA = 22.46-MPa

oy B = 30.551 MPa

a yC = 49.394MPa

o yD = 58.77MMPa
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Figure 9-6
0% 8084 / 100% 1080 at various load rates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

TRUE STRAIN

- A = Load Rate = 0.01 mm/sec*
- B = Load Rate = 0.10 mm/sec*

C = Load Rate = 1.00 mm/sec*

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max( rueA) = 1.529 max( trueA) =,60.495 MPa

max(e trueB) = 1.53 max(Q trueB) =63.194MPa

max(EtrueC) =1.506 max(atrueC) =73.66-MPa
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FIGURE 9-7

Plot of true stress (MPa) versus true strain for
a loading rate of 0.01 mm/sec for various compositions

120

100

80

60

40 d

20

0 0.2 0.4 0.6 0.8

TRUE STRAIN

A = Composition: 100% 8084 - 0% 1080
B = Composition: 75% 8084 - 25% 1080

- C = Composition: 50% 8084 - 50% 1080
- D = Composition: 25% 8084 - 75% 1080
- E = Composition: 0% 8084 - 100% 1080

1 1.2 1.4 1.6

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and
true strain at yield:

= 0.759

= 0.855

= 1.012

= 1.216

= 1.529

max(o trueA) =110.58MPa

max(a trueB) = 103.201 MPa

max ( trueC) = 104.044 MPa

max(o trueD) = 85.539 MPa

max(o trueE) = 60.495 MPa

a yA = 93.767 MPa

a yB = 67.896 MPa

a yC = 62.089 MPa

a yD = 22.46.MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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FIGURE 9-8

Plot of true stress (MPa) versus true strain for
a loading rate of 0.10 mm/sec for various compositions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

TRUE STRAIN

A = Composition: 100% 8084 - 0% 1080
B = ComposItion: 75% 8084 - 25% 1080
C = Composition: 50% 8084 - 50% 1080
D = Composition: 25% 8084 - 75% 1080
E = Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa),
yield stress (MPa) and true strain at yield:

max(e tueA) =0.761 max( trueA) =106.084 MPa yA = 105.442MPa

max( tueB) = 0.86 maxu(a B) = 104.253 MPa a = 84.366 MPa

ma(E trueC) = 1.01 max(aueC) =98.384MPa a yC =74.187MPa

max(E trueD) = 1.222 max(a trueD) =82.846 MPa oa yD= 30.551MPa

max(E tueE) = 1.53 max( tueE) = 63.194 MPa

yA = 0.071

yB = 0.064

E C = 0.063

yD = 0.068

The yield stress could not be defined for the 100% Crestomer 1080 sample
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FIGURE 9-9
Plot of true stress (MPa) versus true strain for
a loading rate of 1.00 mm/sec for various compositions
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TRUE STRAIN
- A = Composition: 100% 8084 - 0% 1080
- B = ComposItion: 75% 8084 - 25% 1080
- C = Composition: 50% 8084 - 50% 1080

D = Composition: 25% 8084 - 75% 1080
- E = Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa),
yield stress (MPa) and true strain at yield:

maX(£ tneA) = 0.763 max( A) = 117.63 MPa yA = 117.63 MPa

max(e trueB) =0.862 max(a trueB) = 101.544-MPa a yB =94.798 MPa

max(E trueC) = 1.012 max( t ) = 94.06 6MPa a = 87.054Pa

max(E trueD) = 1.211 max(a treD) = 89.4 a a D =49.394 Pa

max( tueE) = 1.506 max(a teE) =73.66MPa

£ yA = 0.073

yB =0.071

E yC = 0.067

yD = 0.066

The yield stress could not be defined for the 100% Crestomer 1080 sample
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FIGURE 9-10
Plot of true stress (MPa) versus true strain for
a loading rate of 2.50 mmlsec for various compositions

iO

K)

0 -
0 0.2 0.4 0.6 0.8 1 1.2

TRUE STRAIN

- A = Composition: 100% 8084 - 0% 1080
B = Composition: 75% 8084 - 25% 1080

- C = Composition: 50% 8084 - 50% 1080
- D = Composition: 25% 8084 - 75% 1080

List maximum true strain obtained and corresponding stress (MPa),
yield stress (MPa) and true strain at yield:

max(E trueA) = 0763 max( trueA) = 123.683 a a YA = 123.683 MPa

max(e trueB) = 0.864 max(C trueB) = 104.907MPa a yB = 101.388 MPa

max(rtueC) =1.017 maX(atueC) =00 MPa ay=93.068'MPa

max(E trueD) = 1.212 max( trueD) = 94.333 -MPa aD = 58.77Pa

max( trueE) =1.643 max(a trueE) =60.466 MPa

E yA = 0.073

E yB = 0.07

EyC = 0.067

£ yD = 0.069

The yield stress could not be defined for the 100% Crestomer 1080 sample

117

a1

4

1.4

15



The fracture always occurred in the hoop direction, usually along four radial lines which

were separated by 90 degrees. At the center, the material was usually crushed.

The cause of this behavior was attributed to frictional effects. At the highest

loading rates, the upper surface of the specimen would remain fixed resulting in barreling

of the specimen. The barreling resulted in the formation of a tensile hoop stress which,

under the applied loading, favored fracture to yield. Several attempts were made to

lubricate the interface, to avoid this problem. In all cases in which this fracture occurred,

the failure initiated at the upper compression plate of the testing machine which was

affixed to the anchored section. It is possible that the failure occurred due to some small

initial misalignment of the compression plates.

Another interesting observation was made concerning thermal softening effects in

each of the glassy materials (up to 50% Crestomer by weight). Following some degree of

plastic deformation, the true stress true strain curves are seen to cross one another. As an

example, the 50% Derakane / 50% Crestomer sample at the lowest load rate crossed the

curves for load rate 2, 3, and 4 at -0.45, -0.65, and -0.75 percent true strain respectively

as shown in Figure 9-4. This occurs due to thermal softening effects caused by a

temperature rise which occurred as the plastic work is dissipated during large strain

deformation. No temperature measurements were taken during the Instron testing phase

of this study, however, studies have been conducted' on PMMA at strain rates as high as

0.10 sec', which showed a temperature rise of approximately 180C above ambient.

Some in-situ temperature measurements were conducted during the high strain-

rate testing phase which will be discussed in the following chapter. The next section will

discuss the use of the plastic deformation model presented in Chapter 6 in the prediction

of the compressive yield stress of each of the blends as well as the pure Derakane 8084

material.

1Aruda, E.M., M.C. Boyce and R. Jayachandran (1995), "Effects of strain rate, temperature, and
thermomechanical coupling on the finite strain deformation of glassy polymers", Mech. Mater. 19,193-
212.
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9.10 Modification of the plastic deformation model

Section 6.50 presented a simplification of the visoplastic model proposed by Boyce

et al., which was reduced to represent the behavior of material under homogeneous

compression. This model will be used to predict the compressive yield stress for each of

the material blends in this study.

Recall from Chapter 6, the (1,1) component of the stretch tensor can be expressed

as the sum of a plastic and elastic components:

D,, = DP + D11e

If the loading is not applied at a constant strain rate,

but at a constant crosshead velocity(V) then,

V
L(t)

where: L(t) is the instantaneous length

Dlie can be appoximated by c so,
E

V
D Lt -=

where: L is the original length of the specimen

Using equations(6-10) and (6-25), the plastic component of the stretch tensor can

be given as:

DPt = - 3 + 3 (9-5)

2[ +2B]
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Combining equations (9-4) and (9-5) and simplifying gives the a relationship for the shear

strain rate in terms of the back stretch, loading velocity, and compressive stress.

P 2 V ao c + (3/2)B1]
3 Lo (I- aE) (2/3)ac + Bl 

P=21I a + (3/2)BI,23a 1 (9-6)
3 [(2/3)a +Bl] 

where: £ is the compressive strain rate

Equation (9-6) can be used to compute the yield stress as a function of strain rate.

At the yield point, the back stretch tensor is equal to zero. This is because no significant

chain rotation can occur until after the yield point, when the intermolecular barriers to

chain segment rotation are overcome. Setting B--=0 gives the following equation which is

consistent with the Von Mises yield equation:

3 (2/3)oc]a ; 3 [2 (9-6)

Recall the equation for the shear stress is given as follows:

Ir = (s + p) 1+ B+ p) o (6-1)

Rewriting equation (6-1) in terms of the compressive stress and compressive strain

rate, and combining the Boatsmann constant (kB) and A into a single constant denoted by

X gives:

= (s+ a _ __) + In (9-8)
(sJcz .) [1+ X(s +Cx J

Equation (9-8) will be used to predict the yield stress using the methods outlined in

Section 6.40. The results will include plots of compressive yield stress versus axial strain

rate for each of the first four compositions. The 100% Crestomer 1080 tests will not be

analyzed, as no clear yield behavior was observed during the Instron testing.

The analysis began with the prediction of the peak yield stress, which was

performed using MATHCAD. The complete files may be found in Appendix D. The
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required inputs were the mean and standard deviation of the peak compressive yield stress

found in Table 9-1. The average modulus of elasticity for each of the blends is listed in

Table 9-2.

TABLE 9-2

Composition Modulus of Elasticity

100% 8084 / 0% 1080 2020 MPa

75% 8084 / 25% 1080 1880 MPa

50% 8084 / 50% 1080 1680 MPa

25% 8084/ 75% 1080 1125 MPa

These values are used to calculate the athermal shear strength which represents the

behavior at 0 Kelvin. As a result, the modulus values used in this study were obtained

from the elastic response of each of the blends at the highest Instron loading rate of 2.5

mm/sec. An average specimen length was also provided.

The program assumes a constant value for the pressure coefficient of 0.20 for all

calculations in this study. The determination of the pressure coefficient requires a series of

tensile tests, which were not available. With an assumed pressure coefficient, the value of

'o and X can then be determined using equations (6-17). Note that there is one unique

solution to the model for a given pressure coefficient, but the resulting fitted curve is the

same for any reasonably selected value of the pressure coefficient. Since the values of 

and X do not effect the final shape of the fitted curve and therefore do not effect the

analysis, no attempt will be made to adjust the pressure coefficient to bring the other

values near the "typical" values given in Chapter 6.

The individual results for each of the material blends may be found in Appendix D.

Figure 9-11 shows a plot of the peak yield stress versus log(strain rate) for each of the

various compositions, and Figure 9-12 shows the effect of the weight percentage of

Crestomer 1080 on the peak yield stress for a series of strain rates.

Figure 9-12 indicates that there is a "jog" in the model, particularly at the lowest

strain rates. This indicates that the yield stress of the 50% Derakane / 50% Crestomer is

nearly the same at these rates as the 75% Derakane / 25% Crestomer material. This
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discrepancy could have been predicted from the composite Instron test results shown in

Figures 9-7 through 9-10, where the peak yield behavior of the 75% Derakane / 25%

Crestomer is clearly different from its neighbors.

This series of observations led a shift from the prediction of the peak yield stress to

that of the lower yield stress. It was observed2 in the testing of Polycarbonate, that

quenched specimens often displayed very little softening. When the same material was

annealed for several hours above its glass transition temperature prior to testing, a much

higher peak yield stress was observed with a corresponding increase in the degree of

softening. The surprising result of these tests was that the measured lower yield stress

was nearly independent of any previous thermal treatment. The lower yield point is a

strength level which is thought to be associated with a preferred structure which is reached

during plastic deformation, possibly due to a local increase in free volume associated with

small scale shear banding 3 .

These observations indicated that the lower yield stress was likely a better

indicator on which to build a predictive model. As a result, the model was rerun by

substituting the lower yield stress for the upper yield stress used in the previous iteration.

The lower stress values are listed in Table 9-3 and summarized in Table 9-4.

The results of the predictive model applied to the lower yield stress are given in

Figures 9-13 through 9-14. As in the previous case, the individual runs may be found in

Appendix D. A plot was included which compares the lower yield stress with the applied

strain rate as well as one which shows the effect of the weight percentage of Crestomer

1080 on the lower yield stress.

2 Hayward, R.N. (1980), "The effect of chain structure on the annealing and deformation behavior of
polymers," Coll. Poly. Sci. 258, 42.
3 Boyce, M.C., Parks, D.M. and A.S. Argon (1988), " Large inelastic deformation of glassy polymers. Part
1: Rate dependent constitutive model," Mechanics of Materials 7, 22.
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Table 9-3

100% Derakane / 0% Crestomer

Average
STDEV

75% Dera

Average
STDEV

Load Rate # 1
Stress Strain
71.420 0.279
72.340 0.277
72.250 0.275
72.003 0.277

0.507 0.002

Load Rate # 2
Stress Strain

75.290
75.380
75.335

0.064

0.360
0.347
0.354
0.009

kane / 25% Crestomer
Load Rate # 1 Load Rate # 2

Stress Strain Stress Strain
58.942 0.257 62.493 0.338
59.076 0.256 63.463 0.337
59.239 0.263 62.561 0.324
59.086 0.259 62.839 0.333
0.149 0.004 0.541 0.008

50% Derakane / 50% Crestomer

Average
STDEV

Load Rate # 3
Stress Strain
81.124 0.353
80.911 0.343
81.073 0.336
81.073 0.344
0.111 0.009

Load Rate # 4
Stress Strain
85.293 0.347
83.896 0.328
84.149 0.332
84.446 0.336
0.744 0.010

Load Rate # 3 Load Rate # 4
Stress Strain Stress Strain
67.741 0.391 70.725 0.395
68.938 0.380 71.552 0.404
68.342 0.390 71.260 0.385
68.340 0.387 71.179 0.395

0.599 0.006 0.419 0.010

Load Rate # 3 Load Rate # 4
Stress Strain Stress Strain
XXX XXX XXX XXX

54.608 0.457 57.399 0.401
55.161 0.437 57.851 0.432
54.555 0.440 56.423 0.411
54.775 0.445 57.224 0.415
0.336 0.011 0.730 0.016

25% Derakane / 75% Cre
Load Rate # 1

Stress Strain
XXX XXX

20.760 0.157
21.001 0.158
19.858 0.147
20.540 0.154
0.603 0.006

'4WI VI I IEw

Load ate # 2
Stress
XXX

25.208
26.432
27.295
26.312

1.049

Strain
XXX
0.210
0.213
0.212
0.212
0.002

Load Rate # 3
Stress
36.941
37.041
36.436
37.524
36.986

0.446

Strain
0.365
0.388
0.384
0.415
0.388
0.021

Load Rate # 4
Stress Strain
41.886 0.488
40.950 0.501
40.465 0.508
39.417 0.488
40.680 0.496

1.028 0.010

125

Load Rate # 1 Load Rate # 2
Stress Strain Stress Strain

50.641 0.361
47.137 0.249 50.536 0.366
48.015 0.240 50.391 0.332
47.045 0.247 49.646 0.347
47.399 0.245 50.304 0.352

0.535 0.005 0.450 0.015

Average
STDEV

: - - - -- -
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TABLE 9-4

Initial Number Mean True Stdev. Mean Stdev.
Wt%8084/ Strain of Lower True True True
Wt% 1080 Rate Runs Yield Lower Lower Lower

(1/sec) Stress Yield Yield Yield
(MPa) Stress Strain Strain

(MPa)
100/0 6.33x10 4 3 72.003 0.507 0.277 0.002
100/0 6.41x103 2 75.335 0.064 0.354 0.009
100/0 6.44x10- 2 3 81.073 0.111 0.344 0.009

100/0 1.64x10l 3 84.446 0.744 0.336 0.010
75/25 6.66x104 3 59.086 0.149 0.259 0.004
75/25 6.68x10-3 3 62.839 0.541 0.333 0.008
75/25 6.68x10-2 3 68.340 0.599 0.387 0.006
75/25 1.70xlO0 3 71.179 0.419 0.395 0.010
50/50 6.73xll0 4 3 47.399 0.535 0.245 0.005
50/50 6.60x10-3 4 50.304 0.450 0.352 0.015
50/50 6.82x10-2 3 54.775 0.336 0.445 0.011
50/50 1.64x10-' 3 57.224 0.730 0.415 0.016
25/75 6.50x10 4 3 20.540 0.603 0.154 0.006
25/75 6.38x10-3 3 26.312 1.049 0.212 0.002

25/75 6.42x102 4 36.986 0.446 0.388 0.021
25/75 1.59x10' 4 40.680 1.028 0.496 0.010

Figure 9-14 indicates that the behavior of the blends up to a Crestomer

concentration of 50% are a linear function of the weight percentage of Derakane 8084.

The curves for these blends are nearly parallel, which further supports the assumption that

they are dominated by the behavior of the Derakane. This behavior was supported by the

DMA results presented in Chapter 8, which showed the glass transition temperature of

these compositions to be nearly the same. By contrast, the 75% Crestomer 1080

composition shows a significant degree of rate dependency, indicating that the Crestomer

was exerting a significant influence on the blend. Recall that Crestomer 1080 has a glass

transition temperature of 270C, and is therefore viscoelastic (and highly rate dependent at

room temperature). This behavior also could have been foreseen from the measured glass

transition temperature of 670C, which is nearly midway between that of the two

constituent materials.
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10.0 THE COMPRESSION SPLIT HOPKINSON (KOLSKI) BAR

This section will describe the results of a series of high strain rate compression

tests of several blends of Derakane 8084 and Crestomer 1080. This chapter will begin

with the theoretical development of the relevant equations needed to obtain the true stress

and true strain results from a Hopkinson bar experiment. Subsequent sections will include

the experimental procedure as well as a MATHCAD data reduction program with the

corresponding results. The results of these experiments will be compared to the projected

values obtained from the Instron tests described in Chapter 9.

10.10 Theoretical Development

The Compression Split-Hopkinson Bar is shown schematically in Figure 10-1. The

technique involves impacting the incident bar with a striker bar at a known velocity (Vo) at

point A. The impact produces a longitudinal compressive stress wave in the incident bar

with a strain amplitude of ei(t). The pulse width of this wave can be estimated as twice the

time required for an elastic wave to travel the length of the striker bar. This assumes that

the striker bar is made of the same material and has the same diameter as the incident bar.

The compressive wave travels the length of the incident bar until it reaches the

specimen/bar interface at point B. At this point, part of the wave is reflected back down

the incident bar as a tensile wave with a strain amplitude of er(t), and part is transmitted

through the specimen to the transmitter bar with a strain amplitude of st(t). The strain is

measured using one strain gage located on the incident bar and one located on the

transmitter bar at locations S1 and S2 as shown on Figure 10-1.

The separation of the wave into a transmitted and reflected component is due to

differences in acoustic impedance at the bar/specimen interface. The acoustic impedance

(Zr) is defined as follows:

Z, = pAcL

where: p is the density (mass / volume)

A is the cross sectional area (10-1)

c L is the velocity of propagation of a

quasi - longitudinal (stress) wave
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Hopkinson Bar
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Marc A. Meyers, Dynamic Behavior of Materials (New York:John
Wiley and Sons, 1994), p. 306.

Figure 10-1
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The quasi-longitudinal (stress) wave speed can be determined using the following

equation:

CL =

where: E is the modulus of elasticity of (10-2)

the incident and transmitted bars

When an incident stress wave traveling in material A of cross sectional area, AA,

meets a boundary separating it from another material B of cross sectional area AB, the

transmitted and reflected stress components may be found as follows:

= ABp + A AP ACL 
L P BCLB +AAP A'cLA (10-3)

[ABp BCLB -AAP ACLA 1
r = Oi ABP BCLB +AAP ACLA

The transmitted and reflected strain amplitudes are given by the same relationship,

since the stress and strain values are related by the elastic modulus. From equation (10-3),

it can be seen that when the acoustic impedance of material B is greater than that of

material A, a pulse of the same sign as the incident pulse is reflected at the interface.

When the acoustic impedance of material B is less than that of material A, a reflected

pulse which is opposite in sign is created. When polymers are tested using a Hopkinson

bar, the acoustic impedance of the sample is much less than that of the steel used in the

incident and transmitter bars, so the incident wave which was initially compressive is

reflected from interface B as a tensile wave.
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The stress and strain in the specimen can be determined completely from the

transmitted and reflected strain traces. The derivation of the stress/strain relationships

begins with the definition of the axial strain, e, and the particle velocity, v, as follows:

au=ax
ax

auV= -
at

(10-4)

Taking the partial derivative of the strain with respect to time (t), and the velocity

with respect to x gives:

a e(t)

at
a v(t)

ax
(10-5)

The average strain rate in the deforming specimen can then be expressed as:

de (t) = VB(t)- vC(t)
dt L

where: v (t) is the particle velocity at point B

Vc (t) is the particle velocity at point C

L is the length of the test specimen

The strain at the interfaces B and C can be written as:

£B(t) = i(t) - r(t )

EC(t) = t(t)
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The particle velocity is related to the strain by the relation, v=cLe, so the particle

velocity at interfaces B and C can be written as:

vB(t) = CL(E i ( t) - cr ( t) )
(10-8)

Vc (t) = CLEt(t)

Combining equations (10-6) and (10-8) gives:

r(t) = CL[i(t)-Sr(t)-Et(t)] (10-9)
L

The average stress in the specimen can be expressed using Hook's Law as:

aCt) FB (t)+ FB F (t)

2A

where: FB (t) = E ( i (t)+ Er (t)) Ao

Fc(t) = E(e, (t)) A (10-10)

A is the cross sectional area of the specimen

Ao is the cross sectional area of the incident and transmitter bat

If the specimen undergoes homogeneous deformation, the stress at point B is equal

to the stress at point C. The assumption of homogeneous deformation in the specimen

results in force equilibrium across the specimen so FB(t)=Fc(t) and £i(t) + £r(t) = Et(t).

The stress, strain rate, and strain in the specimen can be expressed as follows:

(a) a(t) =E A° (t)
A

(b) (t) = L r(t) (10-11)

(c) (t) = fj(x)dl
0
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The stress-strain equations listed in equations (10-11) represent engineering stress

and engineering strain. In the study of polymer materials, the stresses and strains are more

appropriately given in terms of true stress and true (logarithmic) strain.

The true strain in the specimen is defined as:

e= L In[Xo]

where: Li is the instantaneous length (10-12)

Lo is the initial length

i is the extension ratio

The engineering strain can be expressed in terms of the extension ratio as:

Li - L L] 1
og Lo

so; (10-13)

1%i F_ mg + 1

Combining equations (10-12) and (10-13) gives the relationship between true

stress and engineering stress as follows:

eC = ln(E +1) (10-14)

Since most of the deformation occurs in the plastic region, the material is

considered to behave in an incompressible manner. Assuming incompressibility,

AL. = AiL

so;

A L i: L - (10-15)
Ai L

and;

atrue A
6, AA
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From equations (10-15), the true stress is related to the engineering stress as

follows:

true = X i[ag] (10-16)

There are three key assumptions made in the derivation of the stress-strain

relationships for the Hopkinson Bar. These are worthy of discussion and will be described

briefly.

(1) The incident, transmitter and striker bars remain elastic.

This is accomplished by ensuring that the material used for the transmitter and

incident bars has a much higher yield strength than the material to be tested. The most

common material used in the construction of these bars is maraging steel, which has a

yield strength of approximately 350 ksi (2500 Mpa). This is much higher than the yield

strength of most metals and all polymers.

(2) The wave propagation is one dimensional.

In the derivation of the Hopkinson bar equations, it was assumed that the impactor

creates a rectangular stress pulse which travels down the incident bar at the longitudinal

wave speed of the incident bar material (CL). In reality, the measured stress pulses show

significant fluctuations due to wave dispersion effects, which have a significant effect on

the interpretation of the stress/strain results obtained using this method.

When the striker bar impacts the incident bar, a very complex stress field is

established due to end effects. Within a distance of about 10 bar diameters, the end effects

essentially disappear, and the resulting pressure can be evaluated using the frequency or

dispersion equation. This problem was studied extensively by Pochhammer' and Chree2

who showed that the pressure pulse was actually composed of an infinite number of modes

1 Pochhammer,L., "On the Propagation Velocities of Small Oscillations in an Unlimited Isotropic Circular
Cylinder," Journalfur die Reine und Angewandte Mathematik, Vol. 81, 1876, pp. 324-326.
2 Chree, C., "The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Coordinates, Their
Solutions and Applications," Cambridge Philosophical Society, Transactions, Vol. 14, 1889, pp. 250-369.
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which correspond to solutions of the dispersion equation. The fundamental mode is

associated with the longest wavelengths which carry most of the wave energy and travel at

the highest speed which is equal to the bar longitudinal wave speed (cL). Higher order

modes are associated with higher frequency multiples of the fundamental frequency

(shorter wavelengths) which travel at slower speeds as compared to the lower modes.

These higher modes give rise to dispersion of the initially sharp pulse, causing oscillations

known as Pochhammer-Chree oscillations. For sufficiently long incident bars with lid

ratios of 20 or greater, the fundamental frequency dominates and the deformation process

is essentially one dimensional.

The above discussion related to the effects of dispersion in the incident pulse.

Some dispersion effects also occur in the reflected and transmitted pulse. The strain in the

specimen is assumed to be measured at the interfaces between the specimen and the bars.

The actual strain measurements are made some distance from these interfaces, resulting in

additional dispersion of the pulse as it travels from the specimen to the strain gage

location.

The effects of dispersion on the interpretation of split Hopkinson Bar data can be

minimized by applying a dispersion correction. Follansbee and Franz3 have demonstrated

that correcting for dispersion in the fundamental mode can remove most of the

fluctuations in the stress/strain curve. The process begins by performing a fourier

decomposition of the fundamental mode of the strain pulses measured at the strain gage

locations. After decomposition, the phase angle of each of the fourier components is

adjusted to account for the dispersion which occurs as the component travels from the

specimen/bar interface to the strain gage location. Once a sufficient number of

components are adjusted, the wave can be reconstructed at the specimen bar interface.

3Follansbee, P.S. and Franz, C., "Wave Propagation in the Split Hopkinson Bar," Journal of Engineering
Materials and Technology, Vol. 105, 1983, pp. 61-66.
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(3) The specimen undergoes homogeneous deformation.

When the stress pulse enters the sample, it undergoes deformation both axially and

radially. The resultant stress field is inhomogeneous in this region, but the stress

equilibrates and the deformation becomes essentially homogeneous after three transit times

in the sample. The equilibration time () which is actually equal to it transit times, can be

calculated using the following expression:

2 pL2

••E (10-18)

where: E, is the modulus of elasticity of the sample

In the acoustic analysis of polymers, the modulus of elasticity is represented by a

complex number, due to the presence of viscous damping. It was demonstrated in

Chapter 8 that when viscoelastic materials are loaded at high frequencies, they tend to

behave in a glassy manner. As a result, the equilibrium time in the specimens will be

determined using the glassy modulus of the material.

Equation (10-12) indicates that the results obtained in the initial part of the elastic

deformation phase may be in error when using the split-Hopkinson bar technique. The

effects of initial inhomogeneity in this study were minimized by using specimens with a

length/diameter ratio between 0.5 and 0.75. The effects of initial inhomogeneity were

minimized by reducing the slope of the rise time in the incident pulse in a process known

as pulse shaping. This was achieved by placing an interface material such as a few sheets

of paper or a soft metal such as copper between the striker bar and the incident bar at

interface A. The interfaces between the bar and the specimen were lubricated with

Molybdenum Disulfide grease to minimize the radial constraints and to prevent barreling

at large strains.
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10.20 Experimental Procedure

The high strain-rate testing was conducted at the California Institute of

Technology in Pasadena, California on a split compression Hopkinson bar which was built

by the staff. The incident, transmitter, and striker bars were composed of high strength

maraging steel with an outer diameter of 0.75 in. The striker bar was propelled using air

pressure which was provided by a low pressure air compressor and could be regulated

between 0-80 psi by a pressure control valve. The strain gage data was acquired using a

Nicolet 400 digital oscilloscope. The environmental conditions at the time of the test are

listed in Table 10-1.

TABLE 10-1

Start Date: 4/20/95

Finish Date: 4/21/95

Temperature: 71.6 F

Humidity: 32.3 %

The temperature and humidity were measured using a VWR Scientific digital

humidity and temperature meter. The specifications of the meter are listed in Table 7-1.

The desired strain rate and the desired strain can be estimated from the following

equations:

VO

L

£=2 = 2 (PD)
Co

where: V is the inital velocity of the striker bar

L is the inital length of the specimen

lo is the length of the stiker bar

c o is the longitudinal compressive wave speed

in the striker bar

PD is the duration of the compressive stress pulse
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The goal of the high strain rate test in this study was to obtain the greatest possible

true strain while maintaining a strain rate on the order of 1000 sec'. To achieve this goal,

the longest available striker bar (12 inch) was selected. The 12 inch bar was used to

provide the longest possible compressive pulse duration, resulting in the largest total

plastic strain in the specimen. The striker bar was propelled using the highest possible

pressure of 80 psi. Since the initial velocity is directly related to the propelling pressure,

higher pressure will result in higher strain rates in the specimen.

Some trial and error testing was required prior to this selection. Since the velocity

of the shorter striker bars will be greater than that of the longer ones for a given pressure,

the strain rate could have increased enough to compensate for the shorter pulse duration

resulting in a higher overall strain. The strain rate obtained using the shortest bar (4

inches) was approximately 4500 sec-1 , and the resulting engineering strain was

approximately 20%. Tests conducted with the longest bar (12 inch) resulted in a strain

rate of approximately 3000 sec-1 and the total strain was approximately 30-40%. As a

result, the 12 inch striker bar and a propelling pressure of 80 psi was selected.

Three to four runs were obtained using each of the five material compositions.

The data acquisition system generated separate files for each of the transmitted and

reflected strain histories. Each of these files contained 6000 data points, each taken at an

equal time interval of 0.1 microseconds.

10.21 Description of data reduction program

The first page of the reduction file translates the voltage signals to values of

reflected and transmitted strain using the following equation:

4(£ volt )

(GF)(V )
where: £ vo, is the strain gage voltage measured

by the occiliscope (10-20)

GF = 2.1 is the gage factor

V0 = 30 Volts is the reference voltage
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The next step in the analysis was to convert the reflected strain history into a strain

rate using equation (10-11(b)). This requires the user to input values for the initial

specimen length and diameter. The longitudinal wave speed in the steel bars is also

required. A value of 5000 m/sec will used throughout this study.

The portion of the trace which is needed in the analysis is the inverted section of

the transmitted pulse. This pulse was isolated and integrated over time using a midpoint-

rectangle rule using approximately 200-250 equal time increments. The integral of the

strain rate with respect to time over the duration of the inverted pulse gives the total

compressive engineering strain as shown in equation 10-11(c). This numerical integration

procedure was used to obtain values for the engineering strain over the entire range of

time defined by the pulse duration.

The engineering stress was obtained from the transmitted strain history using

equation 10-1 l(a). A value of 210 Gpa was assumed for the modulus of elasticity of the

steel bars. With the engineering stress and strain known over the range of time defined by

the reflected pulse, a plot of engineering stress versus engineering strain was drawn. The

true stress and true strain were computed using equations (10-14) and (10-16) and

plotted. Beneath each of these plots is the maximum value of stress which occurs at the

yield point. This value is obtained by locating the minimum value of the stress (most

negative value) since the compressive stresses are reflected as negative numbers.
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10.30 Results

The reduction files are organized by material composition. The compositions

range from 100% Derakane 8084 to 100% Crestomer 1080 at 25% intervals in

composition. The complete reduction files are included in Appendix E, and the results are

summarized in Table 10-2 below:

TABLE 10-2

%8084 %1080 Trial Strain Maximum True Maximum True

Number Rate(sec') Strain Stress (MPa)

100 0 1 of 4 -3000 -0.488 -189.806

100 0 2 of 4 -2500 -0.382 -200.044

100 0 3 of 4 -3200 -0.506 -208.491

100 0 4 of 4 -3200 -0.506 -203.560

75 25 1 of 3 -3000 -0.470 -179.287

75 25 2 of 3 -3600 -0.588 -187.317

75 25 3 of 3 -3000 -0.440 -182.353

50 50 1 of 3 -2500 -0.372 -171.791

50 50 2 of 3 -2500 -0.385 -174.609

50 50 3 of 3 -2100 -0.312 -176.762

25 75 1 of 4 -2800 -0.425 -145.159

25 75 2 of 4 -2600 -0.383 -140.000 (est)

25 75 3 of 4 -2900 -0.454 -137.791

25 75 4 of 4 -3000 -0.457 -147.004

0 100 1 of 3 -2000 -0.339 -88.720

0 100 2 of 3 -2200 -0.352 -85.937

0 100 3 of 3 -2200 -0.359 -87.000 (est)

The yield stress for two of the runs

because of voltage spikes in the signal which

were visually approximated from the curves

occurred near the yield point
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The data in Table 10-2 will be reduced by assuming that all runs for a given

material occur at the same strain rate. The strain rate will be taken as the mean value for

all runs on given material. This is a valid assumption since the stress is related to the

logarithm of the strain rate which varies very little over the range of concern. With this

assumption a mean value of the maximum true stress (yield stress) and a corresponding

standard deviation can be calculated. The results are given in Table 10-3.

TABLE 10-3

Strain Mean True Yield Stdev. True

%8084 %1080 Rate(sece) Stress (MPa) Yield Stress (MPa)

100 0 -2.97x10+ 3 -200.48 -6.85

75 25 -3.20x10+3 -182.99 -3.31

50 50 -2.37x10+3 -174.39 -2.04

25 75 -2.83x10+3 -142.49 -3.73

0 100 -2.13x10+3 -87.22 -1.15

The Hopkinson bar results in Table 10-3 can be compared to the peak yield stress

in Table 9-1 which were obtained using an Instron testing machine. Figures 10-2 through

10-6 superimposed a representative Hopkinson bar true stress/true strain on the Instron

machine testing results for each of five material blends. These curves show the dramatic

increase in the yield stress as a function of strain rate.

Of particular interest is the behavior of the pure Crestomer 1080. In all of the

Instron tests, which were conducted to true strains of 150%, the material never displayed

a clearly defined yield stress. This was not surprising since the glass transition

temperature of the material was determined to be 27°C at a DMA testing frequency of 10

Hertz. To first order, this is approximately one decade higher than that of the highest

loading rate Instron test. This places the glass transition temperature at approximately

230°C which was within a few degrees of the ambient temperature during the test. This

indicates that the material was in the viscoelastic regime. Since only glassy polymers

display true yield behavior, yield could not occur in these tests.
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FIGURE 10-2
100% 8084 / 0% 1080 at various loads

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

TRUE STRAIN

A = Load Rate = 0.01 rm/sec*
B = Load Rate = 0.10 mm/sec*
C = Load Rate = 1.00 mm/sec*
D = Load Rate = 2.50 mm/sec*
E = Hopkinson Bar Test; Strain Rate = 2.50e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate/initial specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61 e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(z trueA) =0.759 max( trueA) = 110.58 Ma

max(E trueB) = 0.761 max(a tueB) = 106.084MPa

max(s trueC) = 0.763 max( trueC) = 117.63 MPa

max( trueD) = 0.763 max(o trueD) = 123.683 a

max(e trueh)= 0.382 max(a ueh) = 200 MPa

a yA = 93.767 -MPa E yA = 0.065

a yB = 105.442 MPa e yB = 0.071

a = 117.63 MPa E yC = 0.073

a yD = 123.683 -MPa £ yD = 0.073

a yh = 200 MPa E y = 0.077
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FIGURE 10-3
75% 8084 / 25% 1080 at various load rates
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0 0.1 0.2 0.3 0.4 0.5

TRUE STRAIN

0.6 0.7 0.8 0.9

- A = Load Rate = 0.01 mm/sec*
- B = Load Rate = 0.10 mm/sec*
- C = Load Rate = 1.00 mm/sec*
- D = Load Rate = 2.50 mm/sec*
- E = Hopkinson Bar Test; Strain Rate = 3.00e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61 e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(E tmeA) =0.855 max (atrueA) = 103.201 -MPa

max( teB) = 0.86 max(atrueB) =104.253-MPa

max(trmeC) =0.862 max(teC) =101.544MPa

max(F trueD) = 0.864 max( trueD) = 104.907 MPa

max(e trueh) = 0.44 max( trueh) = 182.4 MPa

a yA = 67.896 -MP a A = 0.066

a yB = 84.366 MPa £ yB = 0.064

a yC = 94.798 -MPa E yC =0.071

a yD = 101.388 -MPa £ yD = 0.07

o yh = 182.4MPa £ y=0.077
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FIGURE 10-4
50% 8084 / 50% 1080 at various load rates:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

TRUE STRAIN

- A =Load Rate = 0.01 mm/sec*
B =Load Rate = 0.10 mm/sec*
C =Load Rate = 1.00 mm/sec*
D =Load Rate = 2.50 mm/sec*

- E = Hopkinson Bar Test; Strain Rate = 2.500e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61 e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(E trueA) = 1.012 max ( trueA) = 104.044 MPa

max(E trueB) = 1.01 max(C trueB) =98.384-MPa

max( trueC) = 1.012 max(a trueC) = 94.066-MPa

max(E trueD) = 1.017 max(a trueD)= 100'MPa

max( trueh) =0.385 max( tmueh) = 174.6 MPa

a yA = 62.089-MPa

o yB = 74.187 MPa

c yC = 87.054 MPa

a yD = 93.068 -MPa

o yh = 174.6MPa
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FIGURE 10-5
25% 8084 / 75% 1080 at various load rates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

TRUE STRAIN

A = Load Rate = 0.01 mm/sec*
B = Load Rate = 0.10 mm/sec*
C = Load Rate = 1.00 mm/sec*
D = Load Rate = 2.50 mm/sec*
E = Hopkinson Bar Test; Strain Rate = 3.00e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial
2. A load rate of 0.10 mm/sec corresponds to an initial
3. A load rate of 1.00 mm/sec corresponds to an initial

4. A load rate of 2.50 mm/sec corresponds to an initial

strain rate of 6.45e-04 / sec
strain rate of 6.45e-03 / sec
strain rate of 6.45e-02 / sec
strain rate of 1.61e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max( trueA) = 1.216 max(a trueA) =85.539 MPa

max(E trueB) = 1.222 max(a trueB) = 82.846 MPa

max( tueC) = 1.211 max( true) = 94. MPa

max(E trueD) = 1.212 max(c trueD) =94-333 MPa

max( trueh) = 0.425 max( (O trueh) =145.2 MPa

o yA = 22.46 MPa

a yB = 30.551 MPa

o yC = 49.394 'MPa

a yD = 58.77'MPa

o yh = 145.2 MPa
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FIGURE 10-6

0% 8084 / 100% 1080 at various load rates:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

TRUE SlRAIN

- A =Load Rate = 0.01 mm/sec*
B =Load Rate = 0.10 mm/sec*
C =Load Rate = 1.00 mm/sec*
D = Hopkinson Bar Test; Strain Rate = 2.00e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - C:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

* max(e tueA) = 1.529 max(O eA) =60.495 M Pa

max(e trueB) = 1.53 max(a trueB) =63.194-MPa

max( rueC) = 1.506 max(a treC) =73.66-MPa

max( trueh) = 0.339 max( teh) = 87.72 MPa a yh = 87.72MPa
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Since the frequency in Hertz is the inverse of the period, an average compressive

stress wave in a Hopkinson bar with an pulse duration of 100 microseconds can be

equated to a frequency of approximately 5000 Hz. Using the time-temperature

superposition principle the glass transition temperature has effectively increased by 10°C

over the DMA result to approximately 370C. This can be achieved either by shifting the

stress relaxation curve (DMA Figure 8-9) to the right or assuming that the ambient

temperature has decreased by the same amount. After performing this operation, it can be

seen that the material has not shifted completely into the glassy regime, however equation

(5-16) indicates that the material will behave essentially in a glassy manner. This was

borne out in the Hopkinson bar test.

Figures 10-7 through 10-10 show the plots of the predictive model of peak

compressive yield stress as a function of LOG(strain rate) which were previously

presented in Figures 9-11 and 9-12. To aid in the clarity of the presentation, each material

blend was plotted individually. The results of the comparison is summarized in Table 10-

4.

TABLE 10-4

MEAN PEAK PREDICTED VALUE DIFFERENCE

EXPERIMENTAL OF THE PEAK BETWEEN

COMPOSITION COMPRESSIVE COMPRESSIVE YIELD MEAN AND

YIELD STRESS (MPa) STRESS (MPa) PREDICTED

VALUES (MPa)

100% 8084 / 0% 1080 -200.48 -179.10 21.38

75% 8084/ 25% 1080 -182.99 -163.90 19.09

50% 8084/ 50% 1080 -174.39 -150.13 24.26

25% 8084/ 75% 1080 -142.49 -132.14 10.35

Table 10-4 indicates that the predictive equation underestimated the peak yield

stress in all cases. The first three values showed no obvious trend as a function of

composition, but instead maintained a steady value of approximately 20 Mpa.

The 25% 8084 / 75% 1080 blend showed much closer agreement with the

predicted value differing only by 10.35 Mpa. The estimated curve in this case was
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somewhat different than the others. All of the curves showed a slight upturn due to the

6/5 coefficient in the fitting equation. The curvature of the 25% 8084 / 75% 1080 blend

was much more pronounced. It was this extra curvature in the predictive model which

brought the experimental and predicted values into such close agreement. The curvature

is a strong function of the athermal shear strength. This value is calculated using the

elastic modulus of the material which corresponds to absolute zero (or a very high strain

rate). The assumption in the model is that the modulus is not a strong function of strain

rate. Clearly this blend shows a significant degree of rate dependent behavior, and

therefore cannot be adequately modeled using this procedure.

10.40 Temperature Rise During Plastic Deformation

As part of the high strain rate testing, an in-situ measurement of the temperature

rise was conducted for several of the specimens. The temperature rise was measured by

illuminating the test specimen with a Helium-Neon laser produced by Spectra-Physics. As

the temperature rises in the specimen, the emission of photons increases. This increase is

measured by a collector dish which results in a change in resistance (and a subsequent

voltage drop). The voltage time history was recorded by a Nicolet 400 digital

oscilloscope.

In order to translate these voltage signals to a corresponding temperature rise, a

calibration process was required. Due to time constraints, only the 100% Derakane

specimens were calibrated. The process involved imbedding a thermocouple into one of

the specimens, and heating it up to the highest temperature expected during the test. To

this end, the specimen was placed in boiling water for several minutes. When temperature

equilibrium was achieved (not very critical), the specimen was placed in the same location

as it was during the testing procedure and illuminated with the laser. The temperature was

then measured as a function of the voltage drop detected by the oscilloscope. The

specimen was then removed from the apparatus, reheated and the process was repeated to

obtain enough data points for a good fit.

In order to measure the voltage drop, a simulated AC signal was required. This

was accomplished by "chopping" the signal. In this process, the laser was alternately

blocked, by projecting it though a hole in a rotating disk. This produced a strobe effect,
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adequately simulating an AC signal. The disk was painted black to ensure a uniform

emmisivity and a stable zero reference for the voltage signal.

The calibration data was curve fitted using a quadratic function on a statistical

program called SPSS. The resulting calibration equation was:

Temp = 83.0073(Voltage)2 + 36.7420(Voltage) + 22.1931

where: Temp is the temperature in Celsius

Voltage is the measured voltage at the oscilloscope

Using this calibration curve, a typical temperature trace as a function of test time

can be generated. The temperature traces showed a very high degree of repeatability, and

a typical curve is shown in Figure 10-11. The average true strain at the end of the test

was approximately -0.40 to -0.50, at an average compressive yield stress of -200.48 Mpa.

The temperature rise was approximately 6-7 °C above ambient temperature. This

value can be used to estimate the maximum possible temperature rise in the specimens

(assuming adiabatic conditions) when tested at slower strain rates, since the temperature

rise is directly proportional to the plastic work which is the area under the true stress- true

strain curve. As a result, even if adiabatic conditions are assumed, it is expected that the

temperature rise in the slower strain rate specimens would be significantly less than in the

high strain rate testing case since the peak yield stress and the area under the stress strain

curve is much reduced.
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Figure 10-11

Temperature Rise to to High Strain
RatePlastic Deformation
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11.0 DISCUSSION AND CONCLUSIONS

The goal of this study was to investigate the compressive behavior of a series of

blends of Dow Chemical Derakane 8084 rubber toughened vinyl-ester and a urethane

acrylate called Crestomer 1080 produced by Scott Bader and to draw some conclusions

about the effects of strain rate on the expected performance of a typical GRP stiffener

panel bondline composed of blends of these materials.

A series of compression tests were conducted at strain rates ranging from 6.5x10-3

sec-1 to 1.3x10-l sec1 . Using these test results, a predictive trend for the lower yield stress

as a function of strain rate was established using a procedure which was developed for the

large strain viscoplastic analysis of glassy homopolyers. The lower yield stress is a more

consistent predictor of performance than the upper one, since the former is nearly

insensitive to any previous thermal treatment while the latter requires an annealing

procedure to produce consistent results. Annealing in these polymers is achieved by

raising the temperature 10-200C above the glass transition temperature for several hours.

The modeling procedure worked well for the blends containing less than 50%

Crestomer by weight. The stress value obtained from the model is a strong function of the

elastic modulus via the athermal shear strength. It works best when the elastic modulus

does not vary to any large degree as a function of strain rate. In the 75% Crestomer blend

and the 100% Crestomer material, a significant increase in the elastic modulus with strain

rate was seen. Further review of this model is required to account for the strongly rate-

dependent elastic response of these materials.

An attempt was made to extrapolate the Instron test results obtained for the lower

yield stress as a function of strain rate out to strain rates as high as 3500 sec-1 and compare

this prediction to actual test results obtained using a Hopkinson bar. The prediction

underestimated the experimental results by approximately 20 Mpa for all the blends up to

50% Crestomer by weight.

The cause of this discrepancy may be attributed to viscous or inertial effects. Both

of these would result in an increase in yield stress with increasing strain rate. The exact

mechanism of such an inertial effect in these materials is unknown. It was noted by
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Meyers' that a dividing line typically exists at a strain rate of approximately 5.0 sec '1 .

Below this value, inertial forces can be neglected and equilibrium can always be obtained.

At strain rates higher than 5.0 sec'l, inertial forces have an increasing effect due to wave

propagation effects. Further research is required to determine inertial mechanisms of this

type in polymer materials.

11.10 Modeling of Themoulastic Versus Thermoset Materials

The model presented for the prediction of the yield stress as a function of strain

rate was developed and tested using a variety of amorphous glassy polymers such as

PMMA (polymethylmethacrylate). This material is a thermoplastic which has strong

intramolecular and weak intermolecular bonds between chains. The intermolecular

interactions in thermoplastics occur primarily as a result of chain entanglements. It has

been observed that the thermally evolving chain density in PMMA exceeds the molecular

density by roughly an order of magnitude, indicating that the chain entanglement density in

PMMA is very high 2. An amorphous material such as PMMA can then be viewed as an

entangled network of long macromolecular chains. The effect of these entanglements will

likely become increasingly more important as the strain rate is increased, due to friction

between chains assuming that the temperature rise is not high enough to cause significant

thermally induced chain disassociation.

This concept forms a link between thermoplastics and the thermoset materials

studied here. The behavior observed for all of the glassy blends in this study was similar

to what was observed in the study of true amorphous materials. In particular, the material

exhibited a peak yield stress, followed by combined thermal and strain softening, and

finally entropic strain hardening. It is not immediately obvious that a highly crosslinked

network structure can produce an entropic hardening response, which is typically

associated with the straightening out of a chain or series of chains from their fully coiled

configuration.

'Marc A. Meyers, Dynamic Behavior of Materials (New York: John Wiley and Sons, 1994), pp. 298-299.
2 E.M. Arruda, M.C. Boyce, and R. Jayachandran "Effects of strain rate, temperature and
thermomechanical coupling on the finite strain deformation of glassy polymers," Mech. Mater. 19, (1995)
p. 196.
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In a thermoset, the network structure is formed during the curing process. This

crosslinked network can be viewed as a highly entangled network of chains. Since the

entanglement density is high, the observed locking stretch for these materials is often

smaller than in the case of true amorphous materials.

To address this issue, an experiment was conducted in which a sample of Derakane

8084, 15.5 mm long (length/diameter ratio of 1.0), was compressed at 0.01 mm/sec

(nearly isothermal) until failure. The material underwent plastic flow until a true strain of

approximately 0.80 was reached. By a true strain of approximately 0.90, the specimen

abruptly shattered. This corresponded to a locking stretch of approximately 2.0-2.5 at the

test temperature of approximately 298 K, which corresponds closely to the reported value

of 2.1 for PMMA3. This lends further evidence that the large stretch deformation

behavior of a thermoset could be modeled as a highly entangled amorphous material.

11.20 Modeling of Polymer Blends

Another important issue addressed in this study is the effect of the concentration of

constituent materials on the large strain plastic behavior of the blend. Most of the

experimental work to date on polymers under large strain has been concerned with a single

homopolymer. The material studied here is a blend of two distinct polymer constituents.

Not much is known about the structure of these materials, especially Crestomer. The

testing conducted in this study gives a fair amount of information about their macroscopic

behavior.

Crestomer 1080 is viscoelastic at room temperature with a glass transition

temperature of approximately 270 C at 10 Hz. It will therefore have a highly rate-

dependent elastic modulus. In addition, it is capable of large deformation without

undergoing yielding which indicates a low crosslink density and a large locking stretch.

The material behaves in many ways like a rate-dependent elastomer. No detectable

change in the specimen dimensions was observed as a result of any of the Instron testing

up to the maximum limit of 150% true compressive strain. This assumes that the loading

3E.M. Arruda, M.C. Boyce, and R. Jayachandran "Effects of strain rate, temperature and
thermomechanical coupling on the finite strain deformation of glassy polymers," Mech. Mater. 19, (1995)
p. 205.
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high strain rate testing, no change in specimen dimensions was detected down to the

resolution of the digital micrometer (0.001 inch). It appears that while the specimens

clearly underwent plastic deformation based on the measured stress history, the effects

were removed within a very short period of time. This may have been due in part to a

temperature rise of approximately 4-60C, which was measured during the high strain rate

testing. It should be noted that this material was not calibrated. If the emmisivity of all of

the materials is the approximately the same, then the calibration curve for the Derakane

8084 specimen can be used to interpret the temperature trace.

Derakane, in contrast to Crestomer, is a highly crosslinked vinyl-ester thermoset

with a glass transition temperature of 1150°C. Since the glass transition temperature is well

above room temperature, the material behaves in a glassy manner. As a consequence, the

elastic modulus is not highly rate dependent and the material undergoes shear yielding

when loaded in compression beyond a true strain of approximately 7%. Along with

yielding comes thermal and strain softening effects which become more pronounced as the

strain rate is increased.

11.30 Material Blend Morphologv

It is not clear what morphology occurs when these materials are blended. Since

both constituents are formed from an unpromoted resin in a liquid phase, blending can be

very complete. When the blended liquid resin containing a known weight percentage of

each of the constituents is promoted and catalyzed, the network of each of the materials

will be intimately interwoven.

One issue which is unresolved relates to how the materials combine. The

crosslinking reaction may occur by the formation of hybrid regions of material or it may be

possible that the each of the constituents reacts only with other material of the same type.

If hybrid chains do not form and the precatalyzed resin is thoroughly mixed, the structure

may be viewed as a parallel combination of the two materials. Derakane can be modeled

to first order as a large spring in series with a small viscous damper, while Crestomer is

better modeled as a large viscous damper in series with a small spring. The springs will

likely be nonlinear, especially if large stretch behavior is modeled.
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This model would lead to small a decrease in stiffness as Crestomer is added to the

higher modulus Derakane resin, assuming that the loading rate is low. This behavior was

observed both in the plot of glass transition temperature in Chapter 8, where the measured

value of Tg varied by only about 240C from 1009% Derakane up to a concentration of 50%

8084 / 50% 1080, and in the Instron testing.

Some valuable information can be obtained from the predicted glass transition

temperature as a function of Crestomer concentration. As mentioned, this curve is not

typical of what has been observed in the study of polymers to date. Typical polymer

blends follow a series type predictive model in which a small weight percentage of the

lower stiffness causes a rapid decrease in the stiffness of the blend. This can be viewed as

two springs in series, one of which is approximately three orders of magnitude greater

than the other.

It is thought that the blending of long chain thermoplastic materials cannot be very

thorough unless the materials are polymerized in-situ. This likely results in a morphology

in which regions of one material exist near regions of another, resulting is a blend only in

the macroscopic sense. Blending on a small-scale would appear to be very difficult. This

concept that thermoplastic polymer blends exist on small-scale as localized regions of the

constituents, lends itself well to a model which is primarily series in nature.

In the case of the thermoset materials used in this study, the morphology of the

structure is likely to be much closer to an idealized parallel model since the chains are

formed in-situ during the curing process. In a parallel model, a large quantity of the softer

material is required to result in any change in the stiffness of the blend.

The glass transition temperatures cited in this study were all obtained at a testing

frequency of 10 Hz. Some conclusions were drawn about the behavior of these blends

both at higher and lower load rates based on time-temperature equivalency. This

approach, which applies only when the theory of linear viscoelasticy is valid, was justified

by noting that the maximum strain imposed on the test specimens during DMA testing are

typically less than 1.0%. Nevertheless, actual testing at higher frequencies should be

conducted to determine if these extrapolated approximations are valid.
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If hybrid chain formation is possible, the next issue which needs to be addressed is

the preferred order in which these chains are formed. For example, the behavior of a chain

composed of long strings of Crestomer 1080 followed by long strings of Derakane 8084

will differ markedly from one composed of alternating shorter sections of the same

constituent materials. The morphological structure in this case would be a strong function

of the reaction kinetics of each of the constituents.

The issues relating to the precise morphology of the blends would provide valuable

information which could be used to minimize manufacturing variance and build better

models to predict the mechanical behavior of these materials under a wide variety of

loading conditions. The morphology could be determined by irradiating one of the

constituents with Deuterium. The blended material morphology could then be determined

using TEM (Transmission Election Microscope) techniques. The morphological

characterization of these blends should be a high priority if these materials are to be used

in critical structural applications.

11.40 Additional Reauired Testing

To complete the modeling of these materials under compressive loading using the

predictive model presented in this work, several additional material tests are required.

First, a series of tensile tests are needed to eliminate the ambiguity in the pressure

coefficient, which was assumed to be 0.20 throughout this study. In addition, if the

behavior beyond the lower yield stress is desired, the elements of the backstretch tensor

(Bij) are required. Recall that the backstretch tensor is assumed to be an entropic force

which is modeled using Langevin statistics and finite strain elasticity. To determine this

behavior, the rubbery (initial) modulus of the individual blends is required. This

information can be obtained by raising the temperature of the material to a few degrees

above the glass transition temperature, and loading the specimen at a high rate. The slope

of the initial portion of the true stress / true strain response is the rubbery modulus of the

material.

The final pieces of information required are the temperature dependence of both

the modulus and yield stress. This information is readily obtained from plots of true stress

versus true strain which are taken from compression or tension tests conducted at a series
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of test temperatures at a rate which is slow enough to ensure that isothermal conditions

are maintained.

11.50 Conclusions and Imnlications

The model predicted the behavior of the glassy materials to a high degree of

accuracy. In the 75% Crestomer 1080 / 25% Derakane 8084 blend, the Crestomer 1080

began to influence the behavior of the material. The stress levels are a strong function of

the athermal shear strength which is dependent on the assumed modulus of elasticity.

Some work is needed to implement rate dependency into the model to reflect the rate

dependent elastic response of these materials.

This project was motivated by the general lack of information concerning the high

strain rate behavior of amorphous polymers and thermosets which are used in critical

structural applications requiring a significant degree of high strain rate survivability

The example cited in this study was the secondary bondline between a stiffening

member and the hull shell of glass-reinforced plastic (GRP) minesweeping vessel. The

current measure of the effectiveness of a bondline improvement in this application is the

pull-off strength. These pull-off tests are conducted at very low rates (1.0 mm/sec is

typical). Recent increases in pull of strength have been accomplished by increasing the

strain to failure of the resins in the most critically stressed areas.

This study has concluded that pure Crestomer 1080 is capable of large

deformations without yielding for the observed strain rates which were as high as 0.13

sec-4 . When tested at strain rates on the order of 1000 sec-1, which are "typical" of

hydrodynamic and air blast, this material behaves in a glassy manner, showing a clearly

defined upper yield point as well as thermal and strain softening behavior.

Although most of the stresses in a stiffener pull-off test are tensile, the compressive

material behavior obtained in this study can be used to gain some insight into the high

strain rate tensile behavior of these blends. In general, fracture toughness decreases as

yield stress increases. The large increase in yield stress seen in these Derakane/Crestomer

blends will therefore likely lead to significantly lower pull off strength under high pull-off

rates as compared to the slow pull-off results. This effect will be especially significant

when the Crestomer 1080 concentration is greater than approximately 50% by weight.
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Further study of the blends between 50% and 75% Crestomer are required to determine

exactly when the rate dependency of the elastic modulus becomes most important.

Large Stiffener pull-off loads rely on the high compliance (low modulus) of the

materials in the bondline. If the modulus increases rapidly from the testing load rate to the

actual service load rate, all of the advantages of the compliant material will be lost and

failure will likely initiate much sooner than predicted.

This study has investigated the compressive behavior of a blend of two distinct

polymers as a function of strain rate. Further work is required to fully understand the

behavior of these materials. The next step must include some morphological studies to

determine both the mechanisms of the formation and final structure of these bends. The

other issues which have not been addressed relate to tensile loading and include crazing

verses yielding response. This will give some information relating to the determination of

the transition from brittle to ductile behavior as a function of strain rate. Crazing occurs in

the elastic response regime and the voids which are formed can serve as nucleation sites

for fracture to occur. Once these issues are understood, more accurate models can be

developed and eventually implemented into a numerical finite element code to model the

response of more complex "real world" structures.
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HISTORICAL OVERVIEW OF STIFFENER TO PANEL SECONDARY

BONDLINE IMPROVEMENTS

Introduction:

This section will present a chronological account of methods which have been

proposed to improve the stiffener to shell secondary bond. The earliest method involved

bolting the stiffener to the main hull laminate, a complicated process which added a great

deal of weight and cost to the ship's structure. The need to utilize bolts has been virtually

eliminated in the past few years by the use of highly compliant resins initially based on

acrylics, and most recently on urethane acrylates.

In addition to the effects of mechanical fastening and modification of bondline

materials on secondary bond strength, the effects of the loading mode on the stresses in

the bondline will be investigated. During an explosion, a stiffened panel is subjected to a

very complicated loading pattern. To simplify the experimental evaluation of a proposed

bond line improvement, a variety of clamping modes have been investigated. It was

determined that both the required stiffener pull-off load and the mode of failure are

strongly dependent on the loading mode used in the experiment.

The ultimate goal of the bondline material improvements is to prevent the

separation of top-hat stiffeners from the hull shell under explosive loading. The results

which will be presented in this section span approximately 25 years of research, mostly in

support of various minesweeper construction projects in the United Kingdom. The results

reflect static pull-off tests which are available in the open literature, but details relating to

the verification of these results in explosion trials is not available.

Mechanical fastening techniques:

Early frame to shell connection designs, which generally used an all polyester

matrix with E-glass woven reinforcement, were prone to failure at very low intensity

explosive loads. Initially, this problem was solved by bolting the stiffener to the base

panel. An increase in stiffener pull-off strength was obtained solely because the bolt head

needed to be pulled through the stiffener flange or base plate prior to final failure. As a

consequence, the presence of bolts served only to add damage tolerance to the structure
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by acting as crack arresters but did not prevent initial failure. In addition, the use of bolts

added considerable weight and cost. The bolts initially used were made of aluminum-

silicon-bronze and later titanium. These materials were chosen due to the non-magnetic

hull requirements of mine sweeping vessels, the corrosive environment, and fatigue and

vibration service requirements. Some of the early top-hat stiffener attachment methods

were presented, by C. S. Smith and are reproduced in Figure 1.1

An article written by Green, A.K. and Bowyer, W.H. in 1981 described alternative

mechanical fasteners.2 The requirement to maintain water tight integrity led to an

insertion scheme involving boring and counterboring of the hull laminate, the use of

sealant, as well as the need to manually torque tighten the bolts from both inside and

outside the hull following demoulding. The high cost associated with the fasteners and the

insertion procedure led to the study of other fabrication methods that could resist the

effects of shock loading. Green and Bowyer investigated the possibility of replacing the

titanium bolts with a relatively inexpensive commercially available mechanical fastener and

insertion technique using stainless steel screws. The screws were pneumatically driven

into holes filled with liquid polyester resin. It was noted once again that mechanical

fasteners were only a partial solution to the problem, since the bond failure initiates at the

stiffener web/flange corner, remote from the fastener, and the fastener acts only as a crack

arrester. To achieve a fundamental improvement in performance, it was necessary to

inhibit the crack initiation process. As a result, they investigated the use of internal flanges

produced using tough acrylic resins.

Internal flanging:

Green and Bowyer investigated the use of an internal flange, which is shown in the

Figures 1 and 2. This fabrication method is an attempt to utilize the redundant stiffener

base area and reduce the stress concentration in the stiffener web/flange corner by bridging

the angle between the stiffener web and the base panel with Kevlar fiber stitching. The use

of stitching was investigated using both polyester and tough acrylic matrix materials in the

'C. S. Smith, Design of Marine Structures in Composite Materials (New York: Elsevier Applied
Science, 1990), p. 289.
2 A.K. Green and W. H. Bowyer, 'The Development of Improved Attachment Methods for Stiffening
Frames on Large GRP Panels," Composites, Jan. 1981, pp. 49-55.
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bondline. Crack initiation in the secondary bond line at the stiffener flange occurred at

higher load levels in specimens incorporating an internal flange with stitched cloth

construction and acrylic matrix material in the bondline. In the stitched cloth construction

specimens fabricated with polyester resin, peak loads were only slightly higher than in the

unreinforced specimens. This indicates that the properties of the specimens are limited by

the fundamental interlaminar toughness of the glass/polyester laminate, known to be about

two orders of magnitude less than the translaminar (cross fiber) toughness in these

materials3 . In the acrylic stitched cloth specimens, the load bearing capability was

increased on the order of 30 percent due to the large strain to failure of the acrylic material

and subsequent improvement in load distribution in the secondary bond line. This was an

early indication that by increasing the strain to failure and the compliance of the material in

the bondline, the load distribution in this region could be improved significantly.

Clamping mode:

Green and Bowyer4 expanded their work to include the effects of the clamping

mode on the stress distribution and the final failure of a top-hat stiffener subjected to

quasi-static pull-off testing. The two clamping modes were termed centre clamp and two

clamp as shown in figure 3. This terminology has been used to describe the quasi-static

testing of top-hat stiffeners ever since. The nomenclature used in this and all future

studies is shown in figure 4. It was shown in earlier studies that the distribution of the

tensile and compressive stresses in the secondary bondline are very sensitive to the form of

the applied load.5 In particular, these stresses are sensitive to the magnitude of the

bending stresses present in the stiffener table and more importantly in the side web.

3 G. Smith, A.K. Green and W.H. Bowyer, "The Fracture Toughness of Glass Fabric-Reinforced

Polyester Resins," Proc Conf 'Fracture Mechanics in Engineering Practice'. Sheffield 1976, ed. P.

Stanley (London: Applied Science Publishers, 1977), p. 271.

4 A.K. Green and W.H. Bowyer, "The Testing and Analysis of Novel Top-Hat Stiffener Fabrication

Methods for Use in GRP Ships," Composite Structures, ed. I. H. Marshall (London: Applied Science

Publishers, 1981) pp. 195-201.

s Unpublished MOD data
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The stresses in the bondline were evaluated with the load uniformly applied across

the stiffener table for two clamp loading condition. The center clamp loading was applied

as shown in Figure 5 in which an additional strip of steel was placed between the loading

shackle and the stiffener table to concentrate the loading at the center of the stiffener table.

The centre clamp results were compared to previous work in which the load was applied

uniformly over the table. The results are presented in Figure 6.

It has been shown that failure of top-hat stiffened panels subjected to explosive

loading occurred by complete separation of the hat stiffener from the base panel. Failure is

caused by a crack originating at the heel of the side web which propagates through the

secondary bondline. As a consequence, the larger the tensile stress concentration at the

heel of the side web, the lower the load required to initiate failure. When the load was

applied over the entire table in the centre clamped case, bending stresses were present in

the side webs. These bending stresses are a result of a moment applied to the lower edge

of the side web due to the curvature of the base panel under load. As a consequence, both

tensile and compressive stresses were present in the secondary bondline. When the

loading was concentrated towards the center of the table, the bending stresses in the side

webs disappeared and only tensile stresses were present. This was due to the

compensating moment applied to the top of the side web by the curvature of the stiffener

table. When the bending stresses in the side webs are eliminated, the magnitude of the

tensile stress concentration at the heel of the side web is reduced significantly. In the two

clamp loading case, the stresses at the heel of the side web are compressive which

indicates that the propagation of a crack through the bondline is not likely to be the initial

failure event in this loading mode.

In order to determine the most severe loading case, it is important to know

whether a crack will continue to propagate or arrest. The balance between overall system

compliance and stored elastic energy in the deformed shape of the stiffener plate

combination will determine the outcome. System compliance increases as the crack

grows, along with a drop in the applied load, and stored elastic energy is released to

propagate the crack. The drop in applied load during crack growth occurs because the
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A.K. Green and W.H. Bowyer, "The Testing and Analysis of Novel
Top-Hat Stiffenener Fabrication Methods for Use in GRP Ships,"
Composites Structures, ed. I.H. Marshall (London: Applied Science
Publishers, 1981) , p.187.
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quasi-static pull-off process proceeds at such a slow rate that it is nearly analogous to

applying a fixed displacement.

The centre clamp loading mode is shown in Figure 3a. In principle, the base panel

acts as two cantilever beams fixed at the location of the centre clamp. The energy in the

system which is available for continued crack propagation is stored in the region of the

base panel under the top hat, the side webs, and the table. The initial system compliance is

high, and as a result the load drops at a low rate as a function of crack length. As a result,

a crack is likely to continue to propagate, and catastrophic failure in the form of the

complete separation of the stiffener from the top-hat occurs. The catastrophic nature of

the crack propagation and the high stress concentration at the heel of the side web result

in a very low load to failure and an event which closely resembles the failure observed in

panels subjected to explosive loads.

The failure sequence in the two clamped loading case is significantly than the

centre clamp case. In this loading mode, the elastic energy in general is contained within

the table (eliminated in this case due to the uniformly applied load), the side webs, and the

base panel similar to the centre clamped case. The flexed portion of the base panel is,

however, greater in this case. The initial failure event is the delamination of the outer ply

in the region of the flange root to relieve the bending stresses in the side web. Progressive

delamination occurs in subsequent plies, eventually forming a compliant hinge between the

side web and the base panel. As this process continues, the compressive stress in the

secondary bondline at the heel of the web disappears and a tensile stress builds up. When

the tensile stress builds to a sufficient level, rapid failure occurs by a cleavage mechanism.

The study concluded that the centre clamp loading condition was the most severe

and results in failure which most closely resembles what is observed in shock loaded

panels. This can be seen in figure 7, which shows the representative load versus

displacement curve for the two loading modes discussed. The centre clamp loading mode

is the most severe case because of the large amount of stored elastic energy and the high

tensile stress concentration at the heel of the side web. These factors initiated catastrophic

failure at very low loads. It was also concluded that the bending of the side web has a

profound effect on the stress distribution in the secondary bondline. This implies that
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Web Bending Stresses- Centre Clamp Loading.

Web Bending Stresses - Two Clamp Loading.

Stress distribution in stiffener flange region.

Figure 6A
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Stress distribution in stiffener flange region.

A.K. Green and W.H. Bowyer, "The Testing and Analysis of Novel
Top-Hat Stiffenener Fabrication Methods for Use in GRP Ships,"
Composites Structures, ed. I.H. Marshall (London: Applied Science
Publishers, 1981), p.196.

180

Figure 6B

_ _ _
... -



o.

i ,
i 

I.s 4 
0~·rrr~~~~~~'S

4,

oQ

' 4. 

4L.,

A *o

181

co

Ii

a)

U
O
NY r

U
E

0

C.

-41

c.

010t *o Dz

fiC

I .%

"I -.'.4. -*r -r,

4 -

co

Ma

Co. 00
GO;02z ixTo i <.s- . v

p. cX
e An- 

fi~~~~~~~~~~~~ ., I

M4 v

�1�1�--"1~ �

Us
mgJ

U').



increasing the compliance of the web/flange corner would reduce the bending stresses in

the side web, thereby increasing the pull-off strength of the stiffener. Improvements may

also be made by utilizing tough resins in the first few plies of the base panel in the most

highly stressed regions.

Use of compliant resins:

Several studies were conducted in an attempt to utilize tough resins based on

urethane acrylates as an alternative to the mechanical crack-stopping system and the other

methods discussed previously.6 The use of a fillet of resilient adhesive resin, with a strain

to failure of up to 100%, in the critical region of the bondline (under the heel of the web)

provided a frame/shell connection equivalent to or better than that provided by bolt-

reinforcement. This was demonstrated both by static tests, as well as explosion tests on

submerged panels and a large-scale floating hull-section. The details of the shock testing

results were not given, and could not be found anywhere in the open literature.

In 1992, a study was conducted to improve stiffener to shell bonding by

modification of the secondary bondline interface 7 . Several hull stiffener interfacial

secondary bond arrangements were analyzed experimentally and compared. The bolted

and screwed specimens are included for comparative purposes only.

a) Standard polyester resin only with woven roving glass (unmodified construction)

b) Standard polyester resin with titanium bolts

c) Standard polyester resin with stainless steel screws

d) Stitched cloth with polyester resin (internal flange)

e) Stitched cloth with acrylic matrix (internal flange)

f) Woven roving with chopped strand mat using polyester resin in bondline

g) Two-part elastomer modified acrylic system in bondline

h) Acrylic impregnated chopped strand mat in bondline

6 J. Bird and D. Bashford, "The Use of Flexible Resins to Improve Bond Connections in GRP Ship
Construction," Proc. Composites-1988 World Conference on Composite Structures. Nice. France, June
1988.

7 L.S. Norwood and C. Caulier, "Testing the Effectiveness of Tough Resin Systems for Improving
Structural Performance of Joints in GRP Ships Composite Materials," Nautical Construction with
Composite Materials: International Conference. Paris, ed. Peter Davies and Lional Lemoine (Paris:
Ifremer,1992), pp. 246-255.
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I) Urethane acrylate to wetout the woven roving reinforcement around the bond line

j) Standard polyester resin and lay-up, with a filled urethane acrylate fillet between the

top-hat and the base panel at the heel of the web

k) Reinforced urethane-acrylate layers around the bondline plus a filled urethane-acrylate

fillet at the heel of the web.

The slow pull-off testing of the above configurations was performed using center

clamping, which was shown by Green and Bowyer to result in the most severe loading

condition. The results of these tests are shown in figure 8-11. It should be noted that the

results of items a-e are identical to those obtained by Green and Bowyer in 1981.

Several conclusions can be drawn from the results.

1. The work necessary to fail toughened resin top-hat sections is similar to that necessary

to destroy bolted constructions, but the work input to initiate cracks is considerably higher

in the toughened resin structure.

2. The use of stitched cloth-polyester resin lay-up in the secondary bondline region

resulted in a load to failure 15% higher than the unmodified construction.

3. The use of chopped strand mat reinforcement with polyester resin at the bondline

resulted in a load to failure 20% lower than the unmodified construction, and the use of

acrylic impregnated chopped strand mat in the bondline resulted in inferior performance

compared with the use of acrylic matrix alone.

4. The use of the tough two-part elastomer modified acrylic matrix increased the

secondary bondline strength and the load for bondline crack initiation by allowing

redistribution of stresses away from the regions of stress concentration. In addition,

cracks starting in the bondline slowly, rather than catastrophically, opened up as the

displacement increased.

5. The use of a styrene crosslinked urethane acrylate resin capable of sustaining strains to

failure in excess of 100%, in the bondline resulted in an increase in the linear load region

of approximately 50% as compared to the unmodified structure. The use of urethane

acrylate resulted in the need for three times the work input to initiate a crack as compared

the standard unmodified structure. In addition, the web bending stresses are reduced as

the tensile stress concentration under the web/flange heel is reduced. This is a result of the
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fact that the urethane acrylate resin at the secondary bondline has the capability of

extending more than a rigid bond line, and can therefore store more elastic energy

resulting in higher work input.

6. The presence of a flexible fillet as shown in figure 12, based on thixotropic urethane

acrylate resin at the heel of the web significantly improved the performance of the

bondline, but fillet design was not a major contributor to the overall performance of the

bondline.

7. The use of a styrene crosslinked urethane acrylate in the last few layers of the main

laminate, with woven roving glass, and the first few layers of the stiffener resulted in a

significant increase in the linear load region as compared to the use of a urethane acrylate

fillet alone.

Preformed stiffeners:

The current production practice involves forming the top-hat stiffeners over a

foam former attached to the ship's hull. Often the hull shell is laminated many weeks prior

to stiffener attachment. Using this production method, the flange thickness is the same as

that of the stiffener web. The web thickness is determined by the stiffener's requirement

to act as a beam with the web supporting the shear loading as the beam is placed in

bending. This gives rise to an undesirable constraint that the web thickness drives the

flange thickness. A parametric study was performed to assess the feasibility of using

preformed top-hat stiffeners which would remove this constraint, and to determine the

effect of several different design parameters. 9 Figure 13 shows the typical configurations

for commercial and naval applications, along with the proposed alternative configuration.

The preformed stiffeners are to be produced by a process known as SCRIMP

(Seeman Composites Resin Injection Molding Process). It is essentially a modified form of

the vacuum-assisted resin transfer molding (VARTM) process, which produces laminates

of extremely high and consistent strength and quality. This process was conceived in the

United States by Seemann Composites, Inc., and developed extensively for large scale

8 A.R. Dodkins, R.A. Shenoi, and G.L. Hawkins, "Design of Joints and Attachments in FRP Ships'
Structuresk," Marine Structures, 7 (1994), pp. 365-398.
9 R. A. Shenoi, and J. F. Wellicome, eds., Composite Materials in Marine Structures: Volume 2 Practical
Considerations, (Cambridge: Cambridge University Press, 1993), pp. 77-82.
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Fillet radius undnefed
(Deterined from practical ccnsideradions)

Typical Configurations for Commercial Applications Foam former

Top-hat sectinc stiffener laminated

directly onto cured plaing 

Typical Configurations for Naval Applications

Light

Large
acryiat

"New" and Alterantive Configurations.

A.R. Dodkins, R.A. Shenoi and G.L. Hawkins, "Design of Joints
and Attachments in FRP Ships' Structures," Marine Structures, 7
(1994), p.367.

Figure 13
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production by Vosper Thorncraft in the United Kingdom. It allows for the production of

very large, high-quality FRP moldings in a cost effective manner.

This new production process has the following advantages over the traditional method:

1. High fiber volume fraction and low void content laminates can be produced, resulting

in stiffener laminate strength and modulus approaching twice that of the hand lay-up

procedure, using the same constituent materials.

2. Producing stiffeners separately from plating means that most of the laminating work

can take place in "ideal" workshop conditions rather than inside the hull where the access

is more difficult.

3. It is estimated that, if this approach was applied throughout the ship, a saving of 30%

in the weight of stiffeners could be achieved, including avoiding the need for foam formers

which become redundant once the laminate cures, but nevertheless have to remain built-in

the structure.

4. In this design, the compliance of the joint can be significantly improved over the

traditional fabrication method. This will serve as a good follow-on to the work of Green

and Bowyer who predicted that increasing the compliance of the web flange comer would

significantly improve the performance of the joint.

In the design study of the new stiffener, the following design parameters were

selected (see figure 14):

1. Radius of fillet (25-125 mm)

2. Backfill angle of fillet (0-45 degrees)

3. Fillet material (Urethane Acrylate only)

4. Thickness of overlaminate (1-12 laminates)

5. Overlaminate resin (Polyester resin only)

6. Gap between base panel and stiffener (10-50 mm)

Both the highest value of principal stress in the fillet and the through-thickness

stress in the overlaminate were considered using both centre clamp and 2 clamp loading.

The results are shown in figures 15-19.

The stresses arising in the new stiffener design were compared with those obtained

in a similar stiffener produced in the traditional way. In the new stiffener design under
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centre clamp loading, the through-thickness stress concentration which was present in the

traditional design is no longer in the region of the flange root, but are now in the web with

reduced magnitude. Note that these through-thickness stresses are compressive and do not

directly lead to any failure event. When the maximum principal stress in the fillet was

compared with the those obtained by the analysis of the traditional design, it was found

that the stresses were nearly the same. This would indicate that failure should occur at

nearly the same load level for both the traditional and the new production method in this

loading mode.

In the case of two-clamp loading, the through the thickness stresses in the new

design are reduced over those in the traditional design, which will delay the failure in this

mode until higher loads are applied. The load was redistributed to the fillet where the

maximum value in the new design was about 50 percent higher than in the traditional

design. This will likely lead to an increase in the applied load to failure over the traditional

design, since the fillet can withstand a higher stress level than the overlaminate.

Conclusion:

There have been many advances in composite secondary bondline interfaces in the

past 25 years. The evolution from bolted connections to adhesively bonded connections

has come about as a result of the rapidly growing interest in special purpose polymers.

With all the progress that has been made, there is a great deal which is still unknown about

these materials. As an example, the behavior of polymers under conditions of dynamic

loading is a complex subject which requires further study. Continued research in this and

other related areas continue to improve the design of structures made of polymers and

advanced composite materials.
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Appendix B
Glass Transistion Temperature Calculation File
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Input the observed values of Tg (Degrees C)

Note: The index is the equal to the weight percentage of Crestomer 1080

Tgobso :=114.0 Tgobs25:=101.0 Tgobs5o:=89.0 Tgobs 5 :=65.0 Tgobsl00:=27

Tgobs20 :=113.0 Tgobs225 :=102.0 Tgobs25 :=90.0 Tgobs275 :=66.0 Tgobs210:=27

Define an expression for the glass transtion temperature of the copolymer:

Tg 1 0 8 0 :=Tgbsoo Tg 80 8 4:=Tgbso W 1 W 80 8 4. := 1 - W 10 8 0
100 I

B.W 1080. + W 8084.

Tgi
B.W 1 08 0 W 80 84

+ I

Tg 1080 Tg 8084

i:=0.. 100
j :=0,25.. 100
k :=25,50.. 75
1 :=0, 10.. 100

W 10 8 0 .i W 8 08 4 .

'typi' IW1080 W 8084\
T + )

Tg 1080 Tg 8084

Calculate the percent difference between the observed Tg and the fitted value:

Tgk- Tgobsk
diffTg k :-= 100

Tgobs k

diffTgo :=0 diffTgloO := B =0.098 < B is the fitting factor >

j Tg. Tgobs

[ 114 1
j5 103.455 1

50 88.537 89
75 65.816 65

27 

diflTg.

0

2.431

0.52

1.256

O

Use WLF equation to predict Tog at higher frequencv:

ftest := 10Hz < enter test frequency >

n= 1 < enter desired increase in frequency over test frequency in decades >

f des := 10f test fdes = 100'Hz

Calculate the shift factor (aT) and constants for use in WLF equation:

(test 
C 2 :=51.6 C 1:=17.44

Calculate the change in Tg (Degrees C):

- log(a T) C 2
ATg:=

C tlog(aT)
ATg = 3.139 < Note an increase in frequency results in a

increase in Tg >
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Appendix C
Instron Testing Data

Instron Test Data Log 202

Compression Testing

100% Derakane / 0% Crestomer 208

75% Derakane / 25% Crestomer 230

50% Derakane / 50% Crestomer 252

25% Derakane / 75% Crestomer 273

0% Derakane / 100% Crestomer 296

Load Rate 1 - 0.01 mm/sec 310

Load Rate 2 - 0.10 mm/sec 314

Load Rate 3 - 1.00 mm/sec 318

Load Rate 4 - 2.50 mm/sec 322

Height/Diameter Input Files 326
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I . I

MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM

UNIAXIAL COMPRESSION TEST

Select specimens to be used: z :=1.. 4

DIM A := READPRN(COMP1B)

ORIGIN := 1

SPEC A := 3

L :=(DIMA <>)SE D := (DIM A )SPEC -r
01~ ~~~~~~~ <1 I:=E 

DIM B := READPRN(COMP1A)

L 02: = (DIM B<1 >)spC mm

DIM C := READPRN( COMPlB)

L 3:= (DIMC<>) SPEC c'mm

DIM D := READPRN(COMP1B)

L4 := (DIM D 1SPECr m

SPEC B := 24

D 2 := (DIM B SPEC B

SPEC C := 5

03:= (DIM )2>SPEC C' m

SPEC D : = 11

D 04 :=(DIMD <2>)ECDm

Calculate the initial cross sectional area (mmA2): A cso := (D o 2

ACSO =

191.38

192.854

193.346

189.911

2
'mm

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC1LR1T8)

B := READPRN(IC1LR2T5)

C := READPRN(IC1LR3T4)

D := READPRN(IC1LR4T3)

Note: Files A-E are only used for
tracking purposes. There is no relation
to the specimen position indicator.
Analysis slots not used read the default file
ICOLR1T1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

<1>load A := A< kNload B :=B *>kN

load:=C 1: = C > kN

<2>
displ A := A mm

<2>
displB :=B ramm

displ C :=C <2> mm

load D := DI>*kN displ D:=D <2 > .mm

Look at matrices and calculate
number of data points:

d :=1.. rows(D)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):

LiA := L - displ A
a 1 a

L iC :=L - displC

A CSol 1AiA
a LiA

a

A CSo3.L 03

A iC :=
C LLiC

LiB b :=L 0 2- displ Bb

LiD :L 04- displ Dd

MPa := 110 *Pa

A cso2.L 02
AiB =

b M

A cs04.L 04A iD 
AiD

LiD d

Calculate true stress (MPa) and true strain:

load A
a

C trueA =
a AiA

a

load B

trueBb =
b iB

load C
C

o trueC = 
c AiC

C

loadD

o trueD, := 
A iD

d

L iA) (
E trueA :=-In a1 EtrueB :=l In b

1 2

(Lic) ~ L
E trueC : = n E trueD : -l -n -

C d 4
Et~C :-lnLL4I EtT~~d3 044
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a:=1.. rows(A)

b :=1.. rows(B)

c := 1.. rows(C)

kN := 1000-newton



Calculate the yield stress (MPa) and corresponding true strain:

C yAcalc :=if(a1200, meA OM a)C oyA :m (cyAalc) NumA =if( trueA=ayAa 0)

C yBcalc, =if(bt1200 rueB0MPa) S yB:=max(yBcalc) NumBb:=if(CrUeBb=a yB bX 0)

:yCcaLc =if(cS1200a trueCc 0.MPa) a=max((yCcac) NUmCc :=if( tueC=C y2 c CO)

yDcald := if(d1200ca tueD dOMPa) ay:=max(ayDcalc) NumDd :=if( trueDd=c yD d 0)

yA := trueA (NuA) yB : trueBmax(NumB) yC tUeCmax( NumC) YD trueDmax(NumD)
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Generate a plot of true stress (MPa) versus true strain for 100% 8084 / 0% 1080 at various load
rates:

150

Inn

4
2

W 50

50

0 0.1 0.2 0.3 0.4
TRUE STRAIN

- A = 34-4-c (3); Load Rate = 0.01 mm/sec
- B = 27-4-c (24); Load Rate = 0.10 mm/sec*
- C = 344-e (5); Load Rate = 1.00 mm/sec
- D = 35-4-d (11); Load Rate = 2.50 mm/sec

0.5 0.6 0.7 0.8

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa)
and true strain at yield:

max(a trueA) = 110.58 MPa

max(a trueB) = 106.084 MPa

max(a rueC) =117.63 MPa

max(a trueD) = 123.683 *MPa

a yA = 93.767 MPa

a yB = 105.442 MPa

c yC = 117.63 MPa

o yD = 123.683 MPa
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max(E trueA)

max( trueB)

max(E trueC)

max(E trueD)

= 0.759

= 0.761

= 0.763

= 0.763

E yA = 0.065

E yB = 0.071

E y = 0.073

£ yD = 0.073
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Select specimens to be used: z := 1.. 8

DIM := READPRN(COMPLB)

3

4

SPEC:= L o :
15 z

16

1 Show initial leng

1 15.7

15.8

15.92

15.37

L = 15.54

15.67

15.37

15.37

Length/Diameter ratio(LDR):

L o
LDR :=- Z

D
Z0

LDR =

1.006

1.012

1.015

0.977

0.992

1.003

0.977

0.977

) m m

RIGIN := 1

D := (DM<1>)sPEc (z, l)mm
z(z)

Ith (mm): Show initial diameter (mm):

15.61

15.61

15.68

15.73
mm Do = 15.67 -m

15.63

15.73

15.73

Calculate the initial cross sectional area (mmA2):

A cso ( 
Z 4 Z) 2

A cso =

191.38

191.38

193.1

194.333

192.854

191.87

194.333

194.333

.mm2

Input maximum true strain (compressive values negative): Input loading head actuator speed (mm/sec):

E max :=

-0.75

-0.75

-0.75

-0.75

-0.75
-0.75

1

1

Load rate :=

0.01

0.01

0.01

1

0.10

0.10

1

O I

mm

sec

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.

212



Calculate the machine stroke (mm):
Assume true strain, calculate final specimen length (mm):

Lf :=L e
z z

Lf=

7.416

7.463

7.52

41.78

7.341

7.402

41.78

41.78

Stroke, :=Lf -Lo
z z

Stroke =

Input test type: Double-Ramp Loading

Calculate total machine stroke (mm):Stroke tot := 2-Strokez
z

Calculate the total time required for test: Stroke tot =

Stroke tot

time tLoad rate
z Load

Z

1656.769 

1667.322

1679.985

52.82

163.988

165.36

52.82

52.82

Isec time =tot 

27.613

27.789

28

0.88

2.733

2.756

0.88

0.88

time tot =

-8.2842

-8.337

-8.4

26.41

-8.199

-8.268

26.41

26.41

-mm

-16.673

-16.8

52.82

-16.399

-16.536

52.82

52.82

0.46

0.463

0.467

0.015

0.046

0.046

0.015

0.015

.hr

Input data aq. frequency rate (Hz), range: 0-500 Hz: Calculate approximate number of data points:

5 1 8283.845

5 8336.608

5 8399.924

1 52.82

Freq data : = 50 Hz NBR data :Freq data -time tot NBR data = 8199.424
50 at'z z

50 8268.016

~~~~~~~~~~1 ~~52.82
~~~~~~~~~~1 ~~52.82

Select a buffer size which is larger than
the number of data points !!
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Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC1LR1T7)

B := READPRN(IC1LR1T8)

C :=READPRN(IC1LR1T9)

D := READPRN( ICOLRIT1)

E :=READPRN(IC1LR2TS) Note: Files A-H are only used for

F :=READPRN(IC1LR2T6) tracking purposes. There is no relation
to the specimen position indicator.

G := READPRN(ICOLRT1 ) Analysis slots not used read the default file

H := READPRN(ICOLR1TI) ICOLR1T1 .pm.

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

load A A< l> kN

load B B<l>'kN

<1>
load C :=C <>kN

loadD :=D< kN

(2>displ A:= A<2 > rnmm

(2>displ B:=B mm

displ C := C<2 > mm

<2>
displ D:=D mm

(1>loadE :=E< >kN

load F:=F<l>kN

load G := G< > kN

load H :=H<l>kN

displ E:= E *mm

displ F:= F< > mm

(2>
displ G:= G < 2 > mm

displ H := H<2> rnm

Look at matrices and calculate
number of data points:

a:= .. rows(A)

b 1: .. rows(B)

c :=1 .. rows(C)

d :=1.. rows(D)

e := 1 .. rows(E)

f := 1.. rows(F)

g:=1.. rows(G)

h := 1.. rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec);

Load limit: max(load) < 100 kN

z

0 1 2 3 4 5 6 7 8 9

DISPLACEMENT (mm)

A = 34-4-b (2)
B = 34-4-c (3)
C = 34-4-d (4)

Maximum load (kN) and displacement (mm):

max(load A) =43.82-kN

max(load B) = 45.041 -kN

max(load C) =45.335-kN

max(displ A) = 8.327mm

max(displ B) = 8.401 -mm

max(displ C) = 8.451 mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kN

50

40

30

20

10

0 1 2 3 4 5 6 7 8 9

DISPLACEMENT (mm)

E = 27-4-c (15)
- F = 27-4-d (16)

Maximum load (kN) and displacement (mm):

max (load E) =43.674°kN

max (load F) = 43.722 kN

max (displ E) = 8.277 'mm

max(displ F) = 8.302mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):
MPa := l106-Pa

LiA a :=L - displ A

LiC :=L - displC
c 3 C

L E :=L0 - displE
e 5 e

L iG : = L - displ G
g 7 

A csoL o

AiA I
a LiA

a

A cs 'L03

A iC
c LiC

C

A csO5.L 05A L

A iG CS 7 07
g LiG

g

iB b 0 2 Bb

Li :=L0 - dispi BDLid :=L 4 - dip Dd

LiFf:=L 0 - displ Ff

LiHh:= - displ Hh

A cso.L 02
AiB = -

AiD d 4 L
iD

A CS6-L 6

A iFf 
iFf

A csoL o08
A iH= L8 8

h

Calculate true stress (MPa) and true strain:

load A

a trueA =
a AiA

a

load B
T beBb

b iB

load C

a trueC = 
c A iC

loadD

OtrueDd :A
iDt

EtrueA :=-ln ) EtrueBb : (In
a ~ ~ O)b 

iC 'D~~~~d
Et eC :=-In E tueD :-1n--d

c ~ - 0 d 4 

load E

trueE =
c AiE

load Ff

trueFf :=
AiFf

load G

trueG =
g A iG

g

load

trueH AHh
h A h

h

trueE :=-) IueF L)E~eE :== In e EtrueF :=' In f

0 5) 0

LiG

7 8hE

217



.1

Calculate the yield stress (MPa) and corresponding true strain:

a yAcalca :if (a1200a trueA OPa) :yA max( yAcc) NumA :=if trueA a yA a.O)

• yBcalcb :=if(b 1200 a utmueBb, O-NMPa) C yB mx(a Bcalc) NUBb if(a tueBb= yBb 0)

a ycalc :if(c1200,y meC·OMPa) yF:=max(a yCcalc) NumC :=if(a trueC yCC0O)

• yDcalcd := if(d1200,a trueDd' O-a) C yD = max(a yDcalc) NumDd := if(a tueDd= yD d0)

• yEcalc =if(e1200a trueE ,O-MPa) a yE max(a yEcac) NUmEI if( trueE ; yEe0)

•yFcalc f if(f_1200,a trueFfI0-MPa) aF max(ayFcalc) NumF: if(a tueFf=ayF f)

T yGcalc :if(g<1200a trueG ,O.MPa) a :max(ayGcalc) NumGg if(o rueG yG4g )

GyHcaIch =if(h<1200OaetrueHhO0-MPa) a max(ayHcalc) NUmHh =if(trueH,, =yHh0)

Ev.A=l.e ueA EyB trueB C E trueC EyD:F-tueD
max(NumA) m(NumB) truemaxNum) mx(NumD)

vE m£(NuE) m F)yF = £ lruF NumHF) rueHEVE: m u(um)mxEuF max(NwnG) max( Nun~I)
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Generate a plot of true stress (MPa) versus true strain for load rate 1 (0.01 mm/sec):

E
A

-

usr,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TRUE STRAIN

- A = 34-4-b (2)
- B = 34-4-c (3)
- C = 34-4-d (4)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at
yield:

max(c trueA) =0.756

max( trueB) =0.759

max(E rueC) =0.757

max(a trueA) = 107.533 MPa

max(o rueB) = 110.58 MPa

max(o trueC) = 110.146 MPa

a yA = 92.851 MPa

a yB = 93.767-MPa

a yC = 93.608 MPa
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E yA = 0.067

E yB = 0.065

e yC = 0.063



Generate a plot of true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TRUE STRAIN

- E=27-4-c(15)
- F = 27-4-d (25)

List maximum true strain obtained and corresponding
yield:

stress (MPa), yield stress (MPa) and true strain at

max(E trueE) =0.761

max( eF) =0.755

max(a rueE) = 106.084MPa

max( trueF) = 107.51 MPa

a yE = 105.442-MPa

a yF = 104.98 MPa
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Select specimens to be used: z : 1.. 8

DIM := READPRN(COMP1B)

5

6

7

SPEC := o := (D M¢ 1 >)sPsc(z

13 Show initial length (mm)

1 r 15.46]

Length/Diameter ratio(LDR):

UIGIN := 1

D := (DIMC>)SPEc(z.l).mm

Show initial diameter (mm):

15.42

15.68

15.37

15.27

15.37

15.21

15.37

15.69

15.74

15.76

15.73

15.55

15.57

15.6

15.73

-mm

Calculate the initial cross sectional area (mmn2):

Acso:=(Do2A := -(D0j
Zs 4~

A so =

Input maximum true strain (compressive values negative):

mx :=

-0.75

-0.75

-0.75

1

-0.75

-0.75

-0.75

1

Input loading head actuator speed (mm/sec):

Load rae :=

1.00

1.00

1.00

1

2.50

2.50

2.50

I

mm

sec

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.
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Lz
LDR := Z

Z D
0Z

LDR =

0.985

0.98

0.995

0.977

0:982

0.987

0.975

0.977

193346

194.581

195.075

194.333

189.911

190.4

191.134

194.333

2mm·mm

1) m

):



I .1

Assume true strain, calculate final specimen length (mm): Calculate the machine stroke (mm):

£ la 
Lf : L -e 7.303

7.284

7.407

41.78

7.213

7.26

7.185

41.78

Stroke z := L f - L o

Imm

Input test type: Double-Ramp Loading

Calculate total machine stroke (mm): Stroke tot:= 2-Stroke

Calculate the total time required for test:

Stroke to:
time tot := Load

time tot =

16.314

16.272

16.547

52.82

6.446

6.488

6.42

52.82

Isec

0.272

0.271

0.276

0.88

0.107

0.108

0.107

0.88

min

Stoke =

Stroke tot =

time tot =

Input data aq. frequency rate (Hz), range: 0-500 Hz:

NBR data := Freq data time tot

Calculate appro)mate number of data points:

NBR data =

6525.77

6508.886

6618.634

52.82

2578.228

2595.112

2568.098

52.82

Select a buffer size which is larger than
the number of data points !!
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-8.1572

-8.136

-8.273

26.41

-8.057

-8.11

-8.025

26.41

-16.314

-16.272

-16.547

52.82

-16.114

-16.219

-16.051

52.82

0.005

0.005

0.005

0.015

0.002

0.002

0.002

0.015

mm

*im

.hr

Freq data :

400

400

400

1

400

400

400

1

.Hz

.



Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC1LR3T4) E := READPRN(IC1LR4T3) Note: Files A-H are only used for
tracking purposes. There is no relation

B : READPRN(IC1LR3TS) F := READPRN(IC1LR4T4) to the specimen position indicator. Analysis

C := READPRN(IC1LR3T6) G:= READPRN(IC1LR4T5) slots not used read the default file
ICOLRT1 .pm.

D := READPRN(ICOLRT1) H:= READPRN(ICOLR1TI)

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000 newton

load A:= A<l >-kN

load B := B < >kN

load C := C < > kN

<1 >
load D :=D kN

<2>
displ A := A < mm

<2>

displC := C<2>mm

displ D :=D<2>displ D:= D mm

load E := E < >-kN

load F := F<1 >kN

load G := G < >kN

load H := H<' >-kN

displ E := E>-mm

displ F := F <2 > mm

displG := G >' mm

displ H := H < 2 > ' Mm

Look at matrices and calculate
number of data points:

a:= .. rows(A)

b := .. rows(B)

c := .. rows(C)

d := 1.. rows(D)

e := 1.. rows(E)

f:= .. rows(F)

g := 1..rows(G)

h:= .. rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 3 (1.00 mm/sec);

Load limit: max(load) < 100 kN

50

40

,30

20

10

A
0 1 2 3 4

DISPL

- A = 34-4-e (5)
B = 34-4-f (6)
C = 34-4-g (7)

Maximum load (kN) and displacement (mm):

max(load A) = 43.527 kN

max(load B) = 24.768-kN

max (load C) = 37.03kN

5 6 7 8 9
AACEMENT (mm)

max(displ A) = 8.252 mm

max(displ B) =8.178'mm

max(displ C) = 8.327-mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 4 (2.5 mm/sec);

Load limit: max(load) < 100 kN

30

25

20

a 15

10

5

0 1 2 3 4
DISPL

- E = 34-4-d(11)
- F = 34-4-e (12)
- G = 34-4-f (13)

Maximum load (kN) and displacement (mm):

max(load E) = 25.305 kN

max(load F) = 25.256 kN

max(load G) = 25.501 kN

5 6 7 8 9
ACEMENT (mm)

max(displ E) =8.153mm

max(displ F) =8.178 mm

max(displ G) = 8.078 mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmr2):

MPa := 1.106 Pa

L iA := L -displ A

LiCC :=LO -diSpl CCC L i C

LiE :=Lo -diSplEe 5 e

L iG := L 07 - displ G

A CSOl L 0
AiA =

a LiA
a

A cso 3 03

AiC =

C

A iE :=
e L iE

e

A csoL 0
CS0A7 7

AiG := L
g L iG

g

L i b := L 2 - displ Bb

LiD := L 0 -diSpl Dd
d 4 d

LiF := L 0 6 - displ Ff

L ih:= L 8 - displ Hh

A csoL 0
A iB :=

b LiB b

A s04 04

A iD
d L 

Dd

A csoL 0

A so 

h :L iH h

Calculate true stress (MPa) and true strain:

load A
a

C trueA A
a iA

a

load Bb

trueB Ai
b AiB

load CC

tru eC : =
c A iC

C

load D

C trueD :-
d AiD

iA) LE b ( )
E tueA :=-I ,trueB : I

a L 01) b L 0

(LiC cL iD
c trueC L rued '- 4 ]4

load E
e

trueE ALE

e

load Ff

o trueF A
f A iFf

load G

a tueG = g
g A iG

g

load Hh

aY trueH Aih A ~

/L iE S - Li
e L 05 L06
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Calculate the yield stress (MPa) and corresponding true strain:

• yAcalca if(a<1200,au tueAa ,OMPa) yA: max( yAcac) NUmAa if(C trueAa yAIa0O)

a yBcalcb := if(b1200,a tueBbOMPa) yB max(a yBcalc) NUmBb if(C trueBa yB b O)

aC yCcalc if(cS1200 trueCcOMPa) a yC max (a yCcac) Numc C ==if ( trueCc= c yCOc)

a yDcalcd if(d_1200 trueDd' OMPa) a yD:= max(a yDcalc) NUmDd if(a trueD CT yDdo)

ayEcalc if(e1200oa teE OMPa) a yE:= max(yEcalc) NU(mEa =ia( ueEa YEe,0)

• yFcalcf i(f200a teFf IOMPa) a yF:= max( yFcalc) NumFf if(a trueF= yF fo)

y Gcalc= if(g1200ra reG O.MPa) a yG max( yGcalc) NumGg if(a tueGga g0

C vHcalc= if(hS1200o y trueHh OMPa) a yHmax(yHcaEc) NUmHh if(a tueHa=C yHh)

yA CuueA E yB E trueB m EyC := E .teC SyD E treD
A : =

max(NumA) ymax(NumC) max(NumD)

EyE : E=tE E E yF := E trueF ) gyG trueGa yH : trueH
max(NumE) ((NumF) NumG) ma(NumH)
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Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

A

n

04

5%
I-

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
TRUE STRAIN

- A = 34-4-e (5)
- B = 34-4-f (6)
-C = 34-4-g (7)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max( tLrueA) =0.763

(a'x (EtrueB) =0.756

max( tru,,C) = 0.757

max(a trueA) = 117.63 MPa

max(a trueB) = 118.261-MPa

max( trueC)= 119.417 MPa

a yA = 117.63 MPa

ayB = 118.261 MPa

a yC = 119.417 MPa
yCe 
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£ yA = 0.073

SyB =0.074

yC =0.067



Generate a plot of true stress (MPa) versus true strain for load rate 4 (2.50 mm/sec):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
TRUE STRAIN

- E = 35-4-d(11)
- F = 35-4-e (12)
- G = 35-4-f (13)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

rnax(E = 0.763utrueE)

.: reF) = 0.759

max reG) =0.757

mnax(a tueE) = 123.683-MPa

max(a trueF) = 122.997-MPa

max(a trueG) = 124.261 MPa

a vE = 123.683 MPa

a yF = 122.997MPa

a G = 124.261 -MPa
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E yF = 0.076

yG = 0.071
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MICHAEL ZlV
THESIS DATA REDUCTION PROGRAM

UNIAXIAL COMPRESSION TEST

Select specimens to be used: z := 1 .. 4 ORIGIN := 1

DIM A := READPRN(COMP2B) SPEC A := 1

Lo := (DIM A<1>)SPECAmm

DIM B := READPRN(COMP2B)

L o 2 := (DIM B <1>)SPECB

DIM C := READPRN(COMP2B)

Lo := (DIM <1C >)SPEC 

DIM D := READPRN(COMP2B)

Lo= (DIM D<1>)SPECDm

D := (DIMA )SPECA m

SPEC B := 5

D ;= (D <2> *nmmDo 2 \(IB )SpEC B

SPEC C := 8

D := (DIM C<2>)SCC

SPEC D := 12

D = (DIM 2 >) 
O4 (D/M SPECD r a

Calculate the initial cross sectional area (mmA2):

183.374

183.374 2
A *mx

185.782

186.023

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC2LR1T5)

B := READPRN(IC2LR2T5)

C := READPRN(IC2LR3T5)

D := READPRN(IC2LR4T5)

Note: Files A-D are only used for
tracking purposes. There is no relation
to the specimen position indicator. Analysis
slots not used read the default file
ICOLR1T1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load A := A<I >-kN displ A := A<2 >nmm load D := D < l >kN
spl D :=D<2>diSplD :=D mm

load B := B< I >-kN displ B := B mm

load C := C < l >kN displ C := C>*mm

Look at matrices and calculate

number of data points:

a:= 1.. rows(A)

b := 1 .. rows(B)

c := 1.. rows(C)

d := 1.. rows(D)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mrnA2):
MPa:= 1.10 Pa

L iA := Ll - displ A
icc 3 aC

LiC :=L 0-diSpl Cc
Lc L3 c

A csol 'Lo
A iA :=

a iA a
iA a

A CSo'L 

A iC Lic
C

:=L - disp Bb
LiBb 2 Lo

iDd :=04 dispDd

A CSo2 02
A iB:=

b L iB
b

A cso'L
Ai CS04 04

AiD L
d iDd

Calculate true stress (MPa) and true strain:

load A
a

a trueA :=
a AiA

trueA :=-ln Le'-
F- 

load Bb

a trueB A=

trueB := -n )

load C

trueC :=

tE -C3'trueC /,%/c O- - -

load Dd

a tueD 
d A iD

d
L Dd

trueDd := L d L
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Calculate the yield stress (MPa) and corresponding true strain:

a yAcalc : if(a•1200, trueA ,OMPa) a yA: max(s yAcalc) NumA a= if(cr trueAI yAAaO)

yBcalcb if(b1200C trueBb OMPa) yB max(a yBcalc) NUmnBb if(a tueBbn yB bO0)

Q c trueCc O.MPa) a yC:= max(a yCcalc) NumC : if( br yCc,

C yDcalcdif(d1200, trueDd0MPa) s yD: max( yDcalc) NumDd: if(a trueDdina yDd,0)

EyA :=etrueA (NmA) yB trueB EyC tueC yD:=trueDmax(NumA) max(NunB) max(NumC) fmax(NumD)
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Generate a plot of true stress (MPa) versus true strain for 75% 8084 / 25% 1080 at various load rates:

120

100

80

| 60

40

20

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TRUE STRAIN

-A = 31-5-a (1); Load Rate = 0.01 mm/sec
- B = 31-5-e (5); Load Rate = 0.10 mm/sec

C = 32-5-a (8); Load Rate = 1.00 mm/sec
- D = 32-5-e (12); Load Rate = 2.50 mm/sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(E treA) =0.858

max(E trueB) = 0.861

max(E trueC) =0.862

max(£ trueD) =0.864

max(a tneA) = 104.291. MPa

max( trueB) = 102.532 MPa

max(0 trueC) = 101.544-MPa

max(a teD) = 104.907MPa

a yA = 68.214.MPa

a yB = 80.456-MPa

a yC = 94.798-MPa

a yD = 101.388-MPa
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EyA =0.071

E yB = 0.064

E yC =0.071

E yD = 0.07



I . I

Select specimens to be used: z := 1.. 8

DIM:= READPRN(COMP2B)

Lo := (DIM >)sPEC(zl).mm

Show initial length (mm):

Lo =

15.15

15.09

14.83

15.15

14.81

14.87

15.19

15.15

D := (DIM<2>)SPEC(zl)mm

Show initial diameter (mm):

D =

15.28

15.27

15.22

15.28

15.28

15.29

15.36

15.28

-mm

Length/Diameter ratio(LDR):

Lo
LDR := .z

D
0 z

LDR =

0.991

0.988

0.974

0.991

0.969

0.973

0.989

0.991

Calculate the initial cross sectional area (mm2):

Aso := -I(D o) 2

A cso

Input maximum true strain (compressive values negative):

max

-0.85

-0.85

-0.85

-0.85

-0.85

-0.85

1

Input loading head actuator speed (mm/sec):

Load rate :=
rate '

0.01

0.01

0.01

1

0.10

0.10

0.10

tI

mm
sec

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.
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ORIGIN := 1

SPEC :=

1

2

3

1

5

6

7

1

183.374

183.134

181.936

183.374

183.374

183.614

185.299

183.374

·mm 2

r _ _



Assume true strain, calculate final specimen length (mm):

emax
Lf :=Lo e

z z

Lf=

6.475

6.45
^ ??OU.DJ> 7

41.182

6.33

6.356

6.492

41.182

Strokez := L f - L O

.mm Stroke =

Input test type: Double-Ramp Loading

Calculate total machine stroke (mm): Stroke tot := 2 Strokez
Calculate the total time required or test:

Calculate the total time required for test: Stroke tot =

Stroke tot
z

time tot

ratez

time tot =

1734.933

1728.062

1698.287

52.064

169.6

170.287

173.951

52.064

Isec time tot =

28.9161

28.801

28.305

0.868

2.827

2.838

2.899

0.868

'min time tot =

Input data aq. frequency rate (Hz), range: 0-500 Hz:

rs 1

5

5

1
·HZ NBR data := Freq data timl

50 z z

50

50

Calculate approximate number of data points:

NBR data =

8674.664

8640.309

8491.437

52.064

8479.985

8514.34

8697.567

52.064

Select a buffer size which is larger than
the number of data points !!
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-8.675

-8.64

-8.491

26.032

-8.48

-8.514

-8.698

26.032

-17.349

-17.281

-16.983

52.064

-16.96

-17.029

-17.395

52.064

0.482

0.48

0.472

0.014

0.047

0.047

0.048

0.014

omm

-mm

hr

Freq data :

Calculate the machine stroke (mm):

1



Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.prn) extension

A := READPRN(IC2LRIT5)

B := READPRN(IC2LR1T6)

C := READPRN(IC2LR1T7)

D := READPRN(ICOLR1T1)

E := READPRN(IC2LR2TS) Note: Files A-H are only used for
tracking purposes. There is no relation

F : READPRN(IC2LR2T4) to the specimen position indicator. Analysis

G := READPRN(IC2LR2T6) slots not used read the default file
:= READPRN(ICOLR1T1 .pm.

H:= READPRN(ICOLR1T1)

Split matrix matrix into two vectors, load (kN) and displ (mm):

load A := A >kN

load B := B <l >-kN

load C := C<1 >kN

load D := D < >kN

<2>displ AA m:=A<>m

displ B := B >mm

displ C := C<>mm

<2>
diSpI D := D mm

load E : = E < * >kN

load F := F<l >.kN

load G := G >kN

load H := H<1 >kN

kN := 1000-newton

displ E := E2>'mm

displ F := F<2>mm

displ G := G<2>mm

displH := H><2>mm

Look at matrices and calculate
number of data points:

a:= .. rows(A)

b := 1.. rows(B)

c := .. rows(C)

d := .. rows(D)

e := 1.. rows(E)

f:= 1..rows(F)

g := 1..rows(G)

h := 1.. rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec);

Load limit: max(load) < 100 kN

50

40

30

20

10

0
0 1 2 3 4 5 6 7 8 9

DISPLACEMENT (mm)

- A= 31-5-a (1)
B = 31-5-b (2)
C = 31-5-c (3)

Maximum load (kN) and displacement (mm):

max (load A) =45.09- kN

max(load B) = 44.455-kN

max (load c) =45.139 kN

max(displ A) = 8.724 mm

max(displ B)= 8.675 mm

max(displ C) = 8.55-mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kN

50

40

a

.30

20

10

0
0 1 2 3 4 5 6 7 8 9

DISPLACEMENT (mm)

- E = 31-5-e (5)
F = 31-5-f (6)
G= 31-5-g (8)

Maximum load (kN) and displacement (mm):

max (load E) = 44.309 kN

max(load F) = 45.041 kN

max(load G) = 44.211 -kN

max(displ E) = 8.55 mm

max(displ F) = 8.575 mm

max(displ G) = 8.749 mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mrnm2):
MPa:= 106 Pa

L A : = L - displ A

L C :=Lo3 -dispC

iE Lo5 -dispEe

L iG = L - displ G
L i g

CSO 01
AA :=

LiA

A iA cso3L 03
A iC =

c L Lc

A cso5. L 

e LiE
¢

A cso 0
A iG =

g LiQ
iG

L iB b : L 02 -displ Bb

LiD L4 - displ Dd

L iFf := L o6 - displ Ff

L ih : Los - displ Hh

A cso' L 0,

A iB :=

LiD d

A i L

CSO6 L6A d: LiiFCS° 0

A iH =

A ALCSOL 0

h L iHh

Calculate true stress (MPa) and true strain:

load A
a

a trueA =trueA A iA

IL iA)

E neA := Lna, 1To 

load Bb

trueB A

b

load C
C 

trueC A

load Dd

a trueD
C iDd

(tLeC \ ( L iD\o
E tueC. :-In 1 j trueD lot-C \-E-o-_ d 0 /rueB,

load E

o rueE :=
e AiE

¢

load F

C5 ue =if

load G

a trueG= 
e A iG

g

load Hh

=trueH A ih A iH

E E : ntrueF :-e 0 f L06 tniE l'G = L E$ tmeH. .-In~tru e~G T ' L h Los/
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Calculate the yield stress (MPa) and corresponding true strain:

0 ycac if( 1200. trueA O. Mp) a yA: max(c yAcalc) NUmA ;= if(o treA 
~ yA : =max c~ y~cal Numa tueA yA' a,

0 Bcc := if(bt1200. rueBbO-MPa) yB:= max( yBc3lc) NumBb = if(a trueB. b= yB b )

yCcacc := if (c 1200, arueC OMPa) a yC := max(o yCcalc) NumCc:= if(a trueCc Y.C c0)

G yDcacd if (d_1200.0 trueDd° OMPa) oyD: max( yDcalc) NumDd if(o trueDd yDd)

G yEcal3ce if(e I2OO. trueE .O.MPa) a yE:= max(G yEcc) NumE:= if( trueE =G yEeO)

y vFcalc if(fS1_00a. G eFOMPa) yF: ma X( yFcalc) NumFf= if( trueF: yFf)

G if( -< 1200, trueG O MPY ac) NumG := if(oG yG' 0)G vGcalc (nieG .1) yG- y Nunc) : g 

• yHcalc h if(h < 1200 . teHh.O.MPa) yH: max(o yHcalc) NumHh: if(a trueHh0a yHhO0)

EyA := E E := E E := 
yA : rFeA axNumA) e yC trueC yDN trueD

mn(NumB) maxNumC ) maxfNumD)

yE ueE yF := E tUF : E yH := E trueH
maix(NunE) ax( NumF) maxf (NumG) mrx(uNumf-)
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Generate a plot of true stress (MPa) versus true strain for load rate 1 (0.01 mm/sec):

120

100

g, 80
L

' 40

20

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TRUE STRAIN

- A =31-5-a (1)
- B = 31-5-b (2)

C = 31-5-c (3)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max( trueA) =0.858

max(c tueB) =0.855

max(c tueC) =0.859

max(a trueA) = 104.291 MPa

max(a trueB) = 103.201 MPa

max( trueC) = 105.057-MPa

o yA = 68.214-MPa

o yB = 67.896 MPa

a yC = 67.881 MPa
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E yA =0.071

E yB = 0.066

£ yC = 0.066



Generate a plot of true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

120

100

i 80
a

P 60

40

20

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
TRUE STRAIN

E = 31-5-e (5)
F= 31-5-f(6)

- G = 31-5-g (7)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(E trueE) =0.861

max( trueF) =0.86

max(etrueG) =0.858

max(a trueE) = 102.532 MPa

max(o tueF) = 104.253 MPa

max( trueG) = 101.445,MPa

C yE = 80.456 MPa

a yF = 84.366 MPa

a yG = 81.06 MPa
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£ yE = 0.064

E yF = 0.064

E yG = 0.068



Select specimens to be used: z:= 1 .. 8

DIM := READPRN(COMP2B)

L o := (DIM < >) SPC(Z. 1) mm

Show initial length (mm):

14.89

15.17

14.84

15.15

14.61

14.74

14.69

15.15

D := (DIM<2>)SPEC(Z ,mm

Show initial diameter (mm):

'mm

15.38

15.37

15.38

15.28

15.41

15.39

15.43

15.28

Length/Diameter ratio(LDR):

L,

LDR :=-
Z D

z

LDR =

0.968

0.987

0.965

0.991

0.948

0.958

0.952

0.991

Calculate the initial cross sectional area (mmA2):

CS 4 ( oz)I
Z 4 

A so =

Input maximum true strain (compressive values negative):

E a max

-0.85

-0.85

-0.85

-0.85

-0.85

-0.85
-0.85

1

Input loading head actuator speed (mm/sec):

Load rate :=

1.00

1.00

1.00

1

2.50

2.50

2.50

1

mm

sec

NOTE: A default value of 1
which were not used.

with no trailing zeros is used as a place filler for vector locations
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ORIGIN := I

SPEC:=

8

9

10

11

12

13

I

185.782

185.54

185.782

183.374

186.507

186.023

186.991

183.374

.mm 2

D =



I .1

Assume true strain, calculate final specimen length (mm): Calculate the machine stroke (mm):

L axe
Lf := L e

z z

Lf=

6.364

6.484

6.343

41.182

6.245

6.3

6.279

41.182

Strokez := L f - L 
z z

·mm

Input test type: Double-Ramp Loading

Calculate total machine stroke (mm): Stroke tot := 2-Stroke z

Calculate the total time required for test:

Stroke =

Stroke tot 

Stroke tot

time to rate
Z odrate

Z

time =tor-

17.052

17.372

16.994

52.064

6.692

6.752

6.729

52.064

-sec time tot =

0.284

0.29

0.283

0.868

0.112

0.113

0.112

0.868

-min time tot

Input data aq. frequency rate (Hz), range: 0-500 Hz:

400

400

400

1

400

400

400

1

-Hz NBR data := Freq dataz time totZ

Calculate approximate number of data points:

NBR data =

6820.633

6948.892

6797.73

52.064

2676.95

2700.769

2691.608

52.064

Select a buffer size which is larger than
the number of data points !!
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-8.526

-8.686

-8.497

26.032

-8.365

-8.44

-8.411

26.032

-17.052

-17.372

-16.994

52.064

-16.731

-16.88

-16.823

52.064

'mm

'hr

0.005

0.005

0.005

0.014

0.002

0.002

0.002

0.014

Freq data :=

-



Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC2LR3T5)

B:= READPRN(IC2LR3T6)

C:= READPRN(IC2LR3T7)

D := READPRN(ICOLRlT1)

E := READPRN(IC2LR4T4) Note: Files A-H are only used for
tracking purposes. There is no relation
to the specimen position indicator. Analysis

G := READPRN(IC2LR4T6) slots not used read the default file
ICOLR1T1 .pm.

H:= READPRN(ICOLR1T1)

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

load AA := A < >kN

load B := B < I >kN

load C := C< > kN

load D := D < >kN

<2>displ A:= A := A<2>mm

<2>
displ :=B : mm

displ C := C<2>.mm

displ :=D D<2> mm

load E := E < >kN

load F := F<l >kN

load G := G < > kN

load H := H<l >,kN

displ E := E <2 > nmm

displ F := Fa<2 mm

displ G := G >mm

displ H := <> mm

Look at matrices and calculate
number of data points:

a := .. rows(A)

b = 1.. rows(B)

c := 1.. rows(C)

d := I.. rows(D)

e:= 1.. rows(E)

f := 1.. rows(F)

g := 1.. rows(G)

h := I .. rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 3 (1.00 mm/sec);

Load limit: max(load) < 100 kN

50

40

,30

20

10

0
o 1 2 3 4 5 6 7 8 9

DISPLACEMENT (mm)

A = 32-5-a (8)
-B = 32-5-b (9)

C = 32-5-c (10)

Maximum load (kN) and displacement (mm):

max (load A) = 44.455 kN

max(load B) =43.918'kN

max(load C) =45.383-kN

max(displ A) = 8.6 mm

max(displ B)= 8.749 mm

max(displ C) = 8.55 mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 4 (2.50 mm/sec):

Load limit: max(load) < 100 kN

50

40

30

20

10

A
0 1 2 3 4

DISPL

E = 32-5-d (11)
F = 32-5-e (12)

- G = 32-5-f (13)

Maximum load (kN) and displacement (mm):

max(load E) = 33.268-kN

max (load F) = 45.921 kN

max (load G) = 44.846 -kN

max (displ E) = 8.476 mm

max(displ F) =8.526mim

max(displG) = 8.501-mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):

MPa:= 1106.Pa

LiAa := L - displ A

L iC :=Lo -disp cc

L iEe := L -displ E
LiE L - displ G

LiG := Lo -displG
g 7 g

A ILCSO1 01

A cso

A 3 LiA

C

CS03 03A iCE =

CS 7 07

g L iG

g

L iBb = L 2 - displ Bb

LiD := L0 4 -diSP Dd

L iFf : L 6 - displ Ff

L iHh := L - displ H

A cso*L 

A iD L

A cso 6 06

A iFf: LiF

CSO8 L 
A iH := 

Calculate true stress (MPa) and true strain:

load A
a

o trueA A 

E =true-nl-1

FO I j

load E
e

a trueE =
e A iE

e

load Bb

Y trueB := iB

bILiBb

E trueB: -Inl(V)

load Ff

trueFf: = AiF
AFr

load c

0 trueC : =

¢ A iC
¢

load G

trueG := A
9 AiG g

load Dd

a trueD d AiDd

load Hh

a trueH =
A iH 
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EtueC := -In E tue 1 IC ~LO3) d L 04

E I=-n e E : -In f
trueEe= L( trueFf :-- L0 

IiG9 L 

EtrueG9: -n ~E-_ j tre h= In
7 08



Calculate the yield stress (MPa) and corresponding true strain:

• yAcalc := if(aS1200O trueA ,O.MPa) yA:=max( yAcalc ) N i trueA yA )

• yBcalcib = <1200 rueBb Mpa) CY yB max(5 yBcalc) NUmBb if(a trueBb = yB b )

a yCs := if (cSe1200 a C r ,OMPa) a yC:= max (a ycalc) NumCc :=if ( trueC C' C')

•yDcac: if(d'l200 rueD O-MPa) D =max(a yDcac) NuDd =if( trueD a yDd0)

Ecalc if(e1200a trueEOMpa) ayE max(yEcac) NumEe if trueE yE e)

• yfcalc= if (f 1200, a te. ,O MPa) a yF:= max(cr yFcalc) NumFf =if(a uueFf7- y Yf 0)

• vGcalc if(g 1200.C trueG ,O'MPa) a yG: max(a yGcalc) NumG: if trueG = yG '0

yHcalch if(hl2O trueHhOMPa) yH ma(yHcac) NUmHh if( eHa vHh)

EA := E (rurA EyB E := E E v UUC (NC' EyD EtrueD

A truemaNumA) yB treB Nu) := ma y(ma(NumD)

yE t= rueE £ yF - ucue Fu) yGC trueG yH matNum)rueH
(at NuniE) marx(N~lumF) max(NumG) max(Numl)
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Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

0 0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
TRUE STRAIN

- A = 32-5-a (8)
- B = 32-5-b (9)
-C = 32-5-c (10)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(E utueA) =0.862

max( trueB) =0.86

max(E ,,,C) =0.858

max(a trueA) = 101.544MPa

(ax(a TrueB) = 100.185 *MPa

max(C tueC) = 103.943 *MPa

o yA = 94.798 MPa

c yB = 94.716-MPa

a C = 96.025 -MPa
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£ yA = 0.071

£ yB = 0.073

yC = 0.066

v



Generate a plot of true stress (MPa) versus true strain for load rate 4 (2.50 mm/sec):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
TRUE STRAIN

- E = 32-5-d(11)
- F = 32-5-e (12)
- G = 32-5-f (13)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

rr.zxE E) = 0.868\trueE 1
maxQIE rueF) =0.864

max E e = 0.864n ueGi

max(c trueE) = 100.572-MPa

mX(C trueF) = 104.907-MPa

max(a rueG) = 102.739-MPa

a vE = 100.572-MPa

C yF = 101.388-MPa

a yG = 101.569-MPa
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yE =0.07

yF = 0.07

syG =0.07

1

. a
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MICHAEL ZIV

THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimens to be used: z := 1.. 4 ORIGIN := 1

DIM A := READPRN(COMP3B) SPEC A := 2

L := (DIM A< >)SpEc Amm

DIM B := READPRN(COMP3B)

Lo 2 := (DIM <1> )SPEC B
0= B JSPEC B

DIM C := READPRN(COMP3B)

Lo := (DM m)SPECC

DIM D := READPRN(COMP3B)

04 := (DIM D<1 SPECmm
4 PCD

01 := (DIM A )SPECAmm

SPEC B := 6

D 22=(DIM B<2 )SPEC B'

SPEC C := 10

D 0:= (DIM C<2>) SPECmm

SPEC D := 13

D := (DIM D 2>)SPEC D

Calculate the initial cross sectional area (mmA2): A cs := -(D 

181.697

184.335 2

183.374

183.134

Data file information:

The data file was created on the directory: D-:MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC3LR1T6)

B:= READPRN(IC3LR2T7)

C:= READPRN(IC3LR3T6)

D := READPRN(IC3LR4T6)

Note: Files A-D are only used for
tracking purposes. There is no relation
to the specimen position indicator. Analysis
slots not used read the default file
ICOLRlTl .pm.

252



Split matrix matrix into two vectors, load (kN) and displ (mm):

load A := A < > kN

load B := B < 1 >kN

load C := C < >kN

<2>
displA:= A : mm

<2>
displ B:= B <mm

displC := C<2>.mm

load D := D < l >kN
ispl:=<2>

displ D:= D *mm

Look at matrices and calculate
number of data points:

a:= 1.. rows(A)

b := 1.. rows(B)

c := 1 .. rows(C)

d := 1.. rows(D)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):
MPa := 1-106 Pa

L := L -dispIA

LiC :L -ispCic °3 c

A CSO L Ol

iA:= 
a LiA

A CSO3 Lo03
A- :=

Pc = L iC
C

LiB b:= L 0 2 -displ Bb

LiD d := L0 4 - dispDd

CS02 02

A 4 
CSo4 04

AiD =
d LiDd

Calculate true stress (MPa) and true strain:

load A
a

trueAa A iA
a

E trueA -In

load Bb

trueB =
rb A iB b

b

£ trueB = -Inb °2

load C

o trueC A iC
CC

L ic
tueC := -In L

trueC 3C

load Dd
a~e

d AD

trueD iDdI

£ aeD = -lnL \
d o
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kN := 1000-newton



Calculate the yield stress (MPa) and corresponding true strain:

a =ifla-<1200,aue ,OMPa\ YA: m xa I '1e 'y ·"OyAcalc if(a1200ctrueA OMPa) max (yAcac) NumAa := if a trueAa yA,a,

G yBcalcb (= if(b 
N 1200, a trueBb OMPa) yB max ( yBcalc) NumBb if trueBba yBb 0)

a 2 OacCOe 
tueC -aocCOayCcalc :if(ccl200, trueCC fcMPa) yC :=max(ayCcalc) NumC :=if a (trueC yCC0)

a yDcalcd if (d1200 a trueDd' oMPa) a yD max( yDcalc) NmDd. if(a trueDd- yD d, 0)

yA :=
: trueA yB := trueB
max(NumA) max(NumB) yC trueCmax(NumC) yD 5-trueDmax(NumA) n~~~~~~~~~~~~~ax(NumD)
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Generate a plot of true stress (MPa) versus true strain for 50% 8084 / 50% 1080 at various load rates:

120

100

80 A

60 =

40

20

O
0 0.2 0.4 0.6

TRUE STRAIN

- A = 28-5-b (2); Load Rate = 0.01 mm/sec
-B = 28-5-f (6); Load Rate = 0.10 mm/sec

- C = 29-5-c (10); Load Rate = 1.00 mm/sec
- D = 29-5-f (13); Load Rate = 2.50 mm/sec

0.8

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max( trueA) = 1.012

max( trueB) =1.01

max(E trueC) = 1.013

max(E trueD) = 1.017

max ( tueA) = 104.044-MPa

max ( trueB) = 98.384 MPa

max( trueC) = 97.772 MPa

max(a trueD) = 100 MPa

a yA = 62.089 MPa

a yB =74.187MPa

a yC = 86.821 MPa

a yD = 93.068 MPa
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m

la:ir
.

,-
Vr:

1 1.2

E =0.059

E yB = 0.063

c yC = 0.066

£ yD = 0.067

-



Select specimens to be used: z := I .. 8

DIM:= READPRN(COMP3B)

L := (DIM 1>)SPE(, )nm

Show initial length (mm):

D o := (DIMn >)sPsC(e mm

Show initial diameter (mm):

21 r14.671

15.15

14.78

14.67

14.53

14.35

15.58

15.26

Length/Diameter ratio(LDR):

Lo
LDR :=-Z

Z D
OZ

LDR =

0.956

0.996

0.967

0.956

0.95

0.937

1.015

0.998

1mm

15.35

15.21

15.28

15.35

15.29

15.32

15.35

15.29

Calculate the initial cross sectional area (mmrr2):

Ac = 4(D oz)2

Acs o =

Input maximum true strain (compressive values negative):

max

-1.00

-1.00

-1.00

1

-1.00

-1.00

-1.00

-1.00

Input loading head actuator speed (mm/sec):

Load rate :=

0.01

0.01

0.01

0.10

0.10

0.10

0.10

mm

sec

NOTE: A default value of 1
which were not used.

with no trailing zeros is used as a place filler for vector locations
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ORIGIN := 

I

2

3

1

5

6

7

SPEC :=

*mm

185.057

181.697

183.374

185.057

183.614

184.335

185.057

183.614

·Tm 2

D 0=



Assume true strain, calculate final specimen length (mm):

Lf :=Lo e
z z

Lf=

5.397

5.573

5.437

39.877

5.345

5.279

5.732

5.614

Stroke:= Lf - L
z z

Imm

Input test type: Double-Ramp Loading

Calculate total machine stroke (mm): Stroke tot := 2Strokez
z

Calculate the total time required for test: Stroke tot =tot-

Stroke tot
z

z Load rate

time tot =

1854.642

1915.325

1868.548

50.414

183.694

181.419

196.969

192.923

Isec time tot =tot 

30.911

31.922

31.142

0.84

3.062

3.024

3.283

3.215

min time tot =

Input data aq. frequency rate (Hz), range: 0-500 Hz: Calk

5

5
5

5

50
Hz NBR data := Freq data .time tot

culate approximate number of data points:

NBR data =

50

50

50

9273.209

9576.626

9342.742

50.414

9184.712

9070.93

9848.438

9646.16

Select a buffer size which is larger than
the number of data points !!
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Stroke =

-9.273

-9.577

-9.343

25.207

-9.185

-9.071

-9.848

-9.646

-18.546

-19.153

-18.685

50.414

-18.369

-18.142

-19.697

-19.292

-mm

.mm

0.515

0.532

0.519

0.014

0.051

0.05

0.055

0.054

bhr

Freq data :

Calculate the machine stroke (mm):



Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC3LR1TS)

B := READPRN(IC3LR1T6)

C:= READPRN(IC3LR1T7)

D := READPRN(ICOLR1T1)

E := READPRN(IC3LR2T6) Note: Files A-H are only used for
tracking purposes. There is no relation

*F : READPRN(]C3LR2T7) to the specimen position indicator. Analysis

G := READPRN(IC3LR2T8) slots not used read the default file
ICOLR1T1 .pm.

H:= READPRN(IC3LR2T5)

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000 newton

load A := A < >kN

load B := B< >kN

load C := C <1 > kN

load D := D< > kN

<2>displ:= A := A<>

<2>
displ B := B <2mm

displ C := C<2 >.mm

<2 >mm
dispIDD:=D *mrn

load E := E < > kN

load F := F < > kN

load G := G < > kN

load H := H<' >-kN

displ E := E >*mm

displ F : = F<2 > mm

displG := G<2>mm

displ H := H < 2>.m

Look at matrices and calculate
number of data points:

a := .. rows(A)

b = 1.. rows(B)

c = .. rows(C)

d := 1.. rows(D)

e :=1 .. rows(E)

f := 1.. rows(F)

g := 1..rows(G)

h := 1.. rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec);

Load limit: max(load) < 100 kN

60

50

40

= 30
0

20

10

0
0 2 4 6

DISPLACEMENT (mm)
8

- A = 28-5-a (1)
- B = 28-5-b (2)
- C = 28-5-c (3)

Maximum load (kN) and displacement (mm):

max(load A) =50.904-kN

max(load B) = 51.93 kN

max(load C) =50.318 ckN

max (displ A) = 9.346 mm

max(displ B) = 9.644 mm

max(displ C)= 9.42 mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kN

60

50

40

= 30
0

20

10

0
0 2 4 6

DISPLACEMENT (mm)
8 10

- E = 28-5-e (5)
F = 28-5-f (6)

- G = 28-5-g (7)
- H = 30-5-G (21)

Maximum load (kN) and displacement (mm):

max(load E) = 49.976 -kN

max (load F) =49.78kN

max(load G) = 50.708-kN

max(load H) =48.852kN

max(cispl E) =9.222mm

max(displ F) = 9.122 mm

max(displ G) = 9.893 mm

max(displ H) =9.719 mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):
IPa := 1 106.Pa

LiA := L - displ A

L iCc:= L - displ C

L := L5 - displE
d de

LiG>= L 07 - displ G
g 7 g

ACSOL 01
iA_ -

a a LiA LiB=b L2 -displ Bb
a

CSO3 03
A iC :=

c L i C

A CO Lo

AiE =

Acso o7
A iG =

g L iG

LiDd : L4 - displ Dd

LiFf := L 6 displFf

LiH h := L -diSplHh

A csoL,

A iB: L
L iBb

A cso4 o

AiD dd LiD

A L 6
CS6 06

A iFf L iFf

A CSO8-L 
A iH :=

h LiH

Calculate true stress (MPa) and true strain:

load A
~G :=~ ~a

ctrueA A
a A iA

a

a,

load Bb

trueB :=

s meBb

load C

G :eC A c

¢

L I b
:= -n b

0,

load Dd

trueD =
d AiDd

(LiiC / LiD
E nC : 1 In- eD

miec:=- trueD d: 
0 3 0 

load E
e

c-ueE

iE

nueE n:= LE

load Ff
trueF =

f A iFf

L iFf

tueF = -ln- L -
f L o6)

load G

atrueG g
g A iG

g

LiG

erueG '=- iLo
g I

load Ha

cue l i A iH h

£uueH := Iln L hLs ,
h 08
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Calculate the yield stress (MPa) and corresponding true strain:

a yAcc if(aS1200, trueA .MPa) c yA: max( yAcalc) NmAa : if( trueAa yAa'O)

yBcalcb := if(bS1200: a trueb . O.MPa) a yB :max(ayBca) NmBb if(a tueBba yB bO)

a yCcalc if(c1 20 0 ,au tneC MPa) y := ma (a yCcalc) NumCc : if(a ueC = Cc0)

ayDcalcd= if(d 1200, a teDd,0MPa) a D max(a yDcalc) NumDd = if(a trueDd yDdO)

a yEac if( e20a trueE 0MNa) a yE max( : ycalc) NumE if(a eE =a YE e)

ycalc if(fse1200o f eF O. MPa) : yF: max( yFcalc) NumFf: if( rueFf yFpf0)

a V =if(s if200otrueGg OMPa) ayG n(a yGcc) NumGg if(a eG yGo)

y true
E E mtruE E yF:= mxNumF E) yG := trueG £ yH truemaummu £ ax(Nu=E) £ xm) max(NumG) mx(NumH)

262



Generate a plot of true stress (MPa) versus true strain for load rate 1 (0.01 mm/sec):

120

10(

80

- 60
:,

. 40

20

0
0 0.2 0.4 0.6 0.8 1 1.2

TRUE STRAIN

- A=28-5-a(1)
- B = 28-5-b (2)
- C = 28-5-c (3)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(E trueA) = 1.014

max(E trueB) = 1.012

max( trueC) =1.014

max(a trueA) =99.832MPa

max(o trueB) = 104.044-MPa

max(o trueC) = 99.966 MPa

a yA = 60.483 MPa

a yB = 62.089 -MPa

a yC =61.068MPa
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EyA = 0.063

yB = 0.059

£ yC = 0.062
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Generate a plot o true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

120(

100

e 80

: 60

,

'40

20

A

0 0.2 0.4 0.6 0.8 1 1.2
TRUE STRAIN

- E = 28-5-e (5)
-F = 28-5-f (6)
- G = 28-5-g (7)
-H = 30-5-g (21)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

nax( trueE) = 1.007

max(E treF) = 1.01

max(E rueG) = 1.008

max(E tUe,,) = 1.013

max( trueE) = 99.44-MPa

max(o tueF) = 98.3g4 MPa

max(o teG)= 100.367 MPa

max(o treH) = 97.047-MPa

c yE = 74.038-MPa

a yF = 74.187 .MPa

ca G = 74.271 MPa

a yH = 69.146 MPa
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E yE = 0.062

E yF = 0.063

£ yG = 0.061

E yH = 0.067



Select specimens to be used: z

DIM := READPRN(COMP3B)

8

9

10

SPEC := 12 L := (D I M

12 z

13
14 Show initial lengi

1 [ 14.231

14.88

14.87

14.67
L o = 15.28

15.38

15.19

14.67

ratio(LDR):

LDR =

0.929

0.973

0.973

0.956

1.003

1.007

0.99

0.956

:= .. 8

)SPEC( z. ).)mm

lRGIN := I

Do = (DIM<2>)sPEc(z,) rnm m

Z ( ,1

:h (mm): Show initial diameter (mm):

15.31

15.29

15.28

15.35
m D = 15.24

15.27

15.34

15.35

Calculate the initial cross sectional area (mrrm2):

z 4( oz)

A CSO

184.094

183.614

183.374

185.057

182.415

183.134

184.816

185.057

· 2fM

Input maximum true strain (compressive values negative):

m- ax 

-1.00

-1.00

-1.00

-1.00

-1.00

-1.00

I

NOTE: A default value of 1 with no trailing zeros
which were not used.

Input loading head actuator speed (mm/sec):

Load rate :

1.00

1.00

1.00

1

2.50

2.50

2.50

1

mm

sec

is used as a place filler for vector locations
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Length/Diameter

Lo
LDR := Z

Z D
0Z



Assume true strain, calculate final specimen length (mm):

E max z

Lf := L e Z

Lf=

5.235

5.474

5.47

39.877

5.621

5.658

5.588

39.877

Stroke z := L f -L 

*mm

Input test type: Double-Ramp Loading

Calculate total machine stroke (mm): Stroke tot:= 2Stroke z

Calculate the total time required for test:

Stroke tot

time rate 

time tot

17.99

18.812

18.799

50.414

7.727

7.778

7.682

50.414

*sec time tot 

0.3 

0.314

0.313

0.84

0.129

0.13

0.128

0.84

-min time tot =

Input data aq. frequency rate (Hz), range: 0-500 Hz:

NBR data := Freq data time tot

Calculate approximate number of data points:

NBR data =

7196.06

7524.763

7519.706

50.414

3090.817

3111.045

3072.612

50.414

Select a buffer size which is larger than
the number of data points !!
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Stroke =

-8.995

-9.406

-9.4

25.207

-9.659

-9.722

-9.602

25.207

-17.99

-18.812

-18.799

50.414

-19.318

-19.444

-19.204

50.414

Stroke tot =tot 

'*imm

.mm

'hr

0.005

0.005

0.005

0.014

0.002

0.002

0.002

0.014

Freq data :=

400 1

400

400

1

400

400

400

!

I .1

Calculate the machine stroke (mm):

I
.Hz



Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC3LR3T4) E := READPRN(IC3LR4T5) Note: Files A-H are only used for
tracking purposes. There is no relationB = READPRN(IC3LR3T5) F= READPRN(IC3LR4T6) tacking purposes. There is no relatfon
to the specimen position indicator. Analysis

C := READPRN(IC3LR3T6) G:= READPRN(IC3LR4T7) slots not used read the default file
ICOLRlT1 .pm.

D := READPRN(ICOLRlT1) H READPRN(ICOLR1T1)

Split matrix matrix into two vectors, load (kN) and displ (mm):

load A := A > kN

load B := B < >kN

load C := C < ] >kN

<1 >
load D:= D *kN

<2>
displ A := A <2>mm

<2>
displ B:= B n<2>mm

displ C := C<2>' mm

<2>mm
disp D :=D mm

load E := E < > kN

load F := F<: >.kN

load G := G < 1 >kN

load H := l <l >-kN

kN := 1000. newton

displE := E <>mm

displ F := F < 2 > mm

displ G := G < 2 > m m

displH := H<2 >mm

Look at matrices and calculate
number of data points:

a:= .. rows(A)

b := .. rows(B)

c := 1 .. rows(C)

d := .. rows(D)

e := 1.. rows(E)

f := 1.. rows(F)

g := 1.. rows(G)

h:= .. rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 3 (1.00 mm/sec);

Load limit: max(load) < 100 kN

50

40

30

0
20

10

0
0 2 4 6 8

DISPLACEMENT (mm)

A = 29-5-a (8)
- B = 29-5-b (9)

C = 29-5-c (10)

Maximum load (kN) and displacement (mm):

max(load A) = 44.944-kN

max(load B) =47.386.kN

max(load C) =49.145-kN

max(displ A) = 9.047 mm

max(displ B) = 9.47 mm

max (displ C)= 9.47 mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 4 (2.50 mm/sec);

Load limit: max(load) < 100 kN

60

50

40

30

20

10

0
0 '2 4 6

DISPLACEMENT (nun)
8 10

E = 29-5-e (12)
F = 29-5-f (13)

-G = 29-5-g (13)

Maximum load (kN) and displacement (mm):

max(load E)= 44.797 kN

max(load F) =50.415 -kN

max(load G) = 46.849-kN

max(displ E) = 9.743 mm

max(displ F) = 9.818 mm

max(displ G) = 9.669-mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mrA2):
IPa := 1 I106 Pa

LiA ;= L ol I displ A

Li:= Lo, - displ E

L Ee 5 iEe

L iG := L 0 -displG
g g

A Cso L
A I IAiA =

a LiA
a

A L 0
A iC := 3 3

C LiC
C

A CSO 05
A E =

e LiE

A cso7 L o7
A iG :=

g LiG
g

L iBb := L 02 - disp Bb

LD := L 04- diSpl D
iDd °4 d

L iF := L 06 displ Ff

L iHh:= L 08 -displ Hh

A LA cs0,- L 

A iBa := L
iBb

A cs L 0
A i 4f 4
A iD L

d Li

A iF 6

A CS80 06

A A :=

h LiH

Calculate true stress (MPa) and true strain:

load A
a

C trueA A
a iA

.L iAa

a °l
trueA

load E
e

trueE 
1! A iE

LiEE l

aeE = -n L /

load Bb

a trueB A=

iB

b L 02 

load Ff

trueF := AiF

iFf
trueFf =- L )

load C
AC

trueC :=
c A iC

load Dd
:=

d AiDd

c ) d L iD)E In C E In d~ ~ ~

load G
g

a trueG :=
g A iG

g

load Hh

a tneH :=hrei A iH h
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Calculate the yield stress (MPa) and corresponding true strain:

a a <_ 120 .a a y :-maMpa) m; a NumnA (i a =a a°)

• yBcalcb= if(b 1200. trueB b OMPa) a yB = malx( yBca1c) NUmB b if(a rueB b= yB b o)

yCcaic if(c<1200,oo eC .oMPa) yC:; max(a yCcalc) NumC:= if(a trueC = ,c . o)

• yDc : if(_<1200. a trueDdOMPa) yD :-ax ( yDcalc) NumDd: if(a trueD= a d 0o)

G vEcal if(e 1200a EtrueEe O-IPa) a yE =L (a yEcalc) NUmEe if(a trueE =G yE e O)

• yFcalcl if(f 1200a trueFf O.MPa) a yF: max(a yFcalc) NumFf = if(a trueFf= yF f )

c; vGclc '-:. if g<1200, a ua G m.MPa a
vGcalc Cif(g1 rueG OMPa) asyG rn:x(a yGca lc) NumGgif ( trueG =a yG 

yHcalc :=if(h 200,( .o eH P) a yH: max( yHcalc) NumHh: if(a trueH YH. h.o)

:= EyA = LtrueAmx ( yB rueB trueC vD : = E trueD
yA eA (um) uemx(NumB) yC max(NumC) - max(NumD)

E vE:=wuE E yF := E l F yG FtrueG(F EvH := trueH
y : max(NuniE) max( NumF) max(NumG) mx(NumH)
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Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

120

100

,. 80

I 60
-,

- 40

20

0 0.2 0.4 0.6 0.8 1 1.2
TRUE STRAIN

-A = 29-5-a (8)
- B = 28-5-b (9)
-C = 28-5-c (10)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(~ trueA) = 1.01

max(: trueB) =1.012

max(E rueC) = 1.013

max( trueA) = 88.95 MPa

max(a meB) = 94.066-MPa

max(a trueC) = 97.772*MPa

o yA = 85.648 -MPa

a yB = 87.054-MPa

a yC = 86.821 MPa
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EyA = 0.072

yB = 0.067

E yC = 0.066



Generate a plot of true stress (MPa) versus true strain for load rate 4 (2.50 mm/sec):

0 0.2 0.4 0.6 0.8 1 1.2
TRUE STRAIN

- E = 29-5-e (12)
-F = 29-5-f (13)
- G = 29-5-g (14)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max( rueE) = 1.015

max(E trueF) = 1.017

m (E trueG) = 1.012

max(a trueE) = 92.802-MPa

max(a ureF) = 100MPa

max( true) =94.208 -MPa\trueG) 

a yE = 92.802-MPa

a yF = 93.068 MPa

a yG = 92.141 MPa
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EyE = 0.066

E yF = 0.067

E yG = 0.068
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MICHAEL ZIV

THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimens to be used: z:= 1.. 4 ORIGIN := 1

DIM A := READPRN(COMP4) SPEC A := 2

Lo := (DIM A< 1 )PECA

DIM B := READPRN(COMP4)

L 2 := (DIM B< 1 )PEC B

DIM C := READPRN(COMP4)

:= (DIM C<1 )SPEc mm

DIM D := READPRN(COMP4)

L04 := (DIM D <1>)SPEC Dmm

D := (DIMA )SPEC A'

SPEC B := 6

D 02 := (DIM B2 )SpcB

SPEC C := 9

D = (DIM C<2>)sPECCmm

SPEC D := 18

D := (DIMD<2>)SPEC Dm

Calculate the initial cross sectional area (mmA2):

190.645

191.134 2A ·m=
190.645

191.625

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC4LR1T2)

B:= READPRN(IC4LR2T2)

C:= READPRN(IC4LR3T2)

D := READPRN(IC4LR4T2)

Note: Files A-D are only used for
tracking purposes. There is no relation
to the specimen position indicator. Analysis
slots not used read the default file
ICOLR1T1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load A := A < ' >-kN

load B := B< > kN

load C := C < >kN

<2>
displ A:= A := A mm

<2>
displ :=B := B<>mm

displ C := C <2 >mm

load D := D < * >-kN
splD:= D<2>

diSplD :=D *mm

Look at matrices and calculate
number of data points:

a := 1.. rows(A)

b :=1..rows(B)

c := 1.. rows(C)

d := 1.. rows(D)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):
MPa := 1106 Pa

L Aa = L -displ A

L iCc := L -displ C
c

A cso. L O

a LiA
a

A cso3 03
A iC =

LiBb = L 02 -displ Bb

LiD d := L4 -spl Dd

Calculate true stress (MPa) and true strain:

load A
a

0 trueA =
a A iA

a

load Bb

a trueB:=
b AiB b

/ L i~~~a~ L iBbl ) E 2b L 0
truueA true m l-\I 0

load C

(Lic 
£ trueC= A i 

c L o 

load Dd

trueD =
d AiD \d

E (trueDd := In
d L
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A CSo2 02
A iB :=

b LiB b

A CSO4 L04
A iD = 

L iDd

kN := 1000-newton



Calculate the yield stress (MPa) and corresponding true strain:

yAcalca if (a1200,oa trueA O.MPa) a yA max(o yAcalc) NmA if trueA a Aa

a yBcalcb if(b1200 a trueBbmO0MPa) yB : max(a yBcalc) NmBb if( trueBb,: yB bO)

yCcalcC: if(c51200 atrueCCO.MPa) a yC:= max( yCcalc) NumC := if( trueCC- a, cO)

a yDcalc= if(d1200, a trueDO MPa) a yD := max(a yDcalc) NumDd =f if(a trueDd: yD d,0)

yA :=E trueA N mA yB:= £ trueB yC= trueC (N C) yD trueD (Nmax(NumA) nax(NumB) nax(NumC) iax(NumD)
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Generate a plot of true stress (MPa) versus true strain for 25% 8084 / 75% 1080 at various load rates:

100

680

40

20 ___ !__

0 0.2 0.4 0.6 0.1
TRUE STRAIN

- A = 14-3-b (2); Load Rate = 0.01 mm/sec
B = 14-3-f (6); Load Rate = 0.10 mm/sec

-C = 16-3-b (9); Load Rate = 1.00 mm/sec
D = 17-3-d (18); Load Rate = 2.50 mm/sec

.8 1 1.2 1.4

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max( rueA) = 1.216

max(E trueB) = 1.222

max( trueC) = 1.211

max(E trueD) = 1.212

max(o trueA)= 85.539 MPa

max(a trueB) = 82.846 -MPa

max(a trueC) = 89.4-MPa

max(a trueD) = 94.333 MPa

o yA = 22.46 -MPa

a yB = 30.551 -MPa

a yC = 49.394 MPa

a yD =58.77 MPa
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E yA = 0.059

E yB = 0.068

E C = 0.066

E yD = 0.069
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Select specimens to be used: z := .. 8

DIM := READPRN( COMP'4)

2

3

SPEC:= 5 Lo (DIM' >)sPc(z.

6[7 Show initial length (mm):

.~1 ~ 15.66

15.12

16.18

15.66
L= · 'mnu

15.87

15.4

15.75

15.66

Length/Diameter ratio(LDR): Calcula

L,

LDR :=
Do

Z

LDR =

1.004

0.97

1.037

1.004

1.016

0.987

1.01

1.004

Acso

RIGIN := 1

D O := (DIM<2>)SPEC(z .) m n

Show initial diameter (mm):

15.6

15.58

15.6

15.6

D o = 15.62

15.6

15.6

15.6

te the initial cross sectional area (mmA2):

= -(D o)2
4 (·$

A csoCsO 

191.134

190.645

191.134

191.134

191.625

191.134

191.134

191.134

Input maximum true strain (compressive values negative):

max

-1.20

-1.20

-1.20

1

-1.20

-1.20

-1.20

Input loading head actuator speed (mm/sec):

Load rae =

0.01

0.01

0.01

1

0.10

0.10

0.10

I

mm

sec

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.
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Assume true strain, calculate final specimen length (mm):

Lf :=L o e Z
z7 

4.717

4.554

4.873

42.568

4.78

4.638

4.744

42.568

Strokez := L - L Oz

.mm

Input test type: Double-Ramp Loading

Calculate total machine stroke (mm): Stroke tot := 2 Strokez

Calculate the total time required for test:

Stroke tot

time tot :=
Load rate

7

time tot =

2188.66

2113.189

2261.336

53.817

221.801

215.232

220.124

53.817

sec time tot =

36.478

35.22

37.689

0.897

3.697

3.587

3.669

0.897

-min

Stroke tot =

time tot =

Input data aq. frequency rate (Hz), range: 0-500 Hz:

NBR data := Freq data time tot
7 7 7

Calculate approxmate number of data points:

NBR data =

10943.299

10565.944

11306.678

53.817

11090.048

10761.609

11006.191

53.817

Select a buffer size which is larger than
the number of data points !!
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Stroke =

-10.943

-10.566

-11.307

26.908

-11.09

-10.762

-11.006

26.908

-21.887

-21.132

-22.613

53.817

-22.18

-21.523

-22.012

53.817

0.608

0.587

0.628

0.015

0.062

0.06

0.061

0.015

*mm

*mm

hr

Freq data :=

5

5

5

l

50

50

50

1

*Hz

Calculate the machine stroke (mm):



Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC4LR1T1) E := READPRN(IC4LR2T1) Note: Files A-H are only used for
B:= RADPRN(IC4LRIT2) F := READPN(IC4LR2T2) tracking purposes. There is no relation

to the specimen position indicator. Analysis
C := READPRN(IC4LR1T3) G := READPRN(IC4LR2T3) slots not used read the default file
n = 2 F A nDDT TTlT1 - DInc~A I) TT " T n. ICOLR1T1 .pm.
u - 4 .LJ[ nt .L% L I I I) ln ;= kLA JrtN IULK 1 1 )

Split matrix matrix into two vectors, load (kN) and displ (mm):

load A := A < >kN

load B := B<1 >kN

<1>load :=C := C < >kN

<1 >load D := D kN

displ A := A<2> mm

displ B B <2>mm

displ C := C<2>mm

displ D:= D := D <2>m

load E := E < > ' kN

load F := F < >-kN

loadG := G < >kN

load H := H<1 >.kN

kN := 1000-newton

displ E := E<2 > . mm

displF := F<2 >' mm

displ G := G < 2 > -mm

displ H := H<2>.mm

Look at matrices and calculate
number of data points:

a := 1 .. rows(A)

b := 1 .. rows(B)

c := 1 .. rows(C)

d := .. rows(D)

e := .. rows(E)

f := .. rows(F)

g := 1.. rows(G)

h := 1.. rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec);

Load limit: max(load) < 100 kN

60

50

40

0 30
0

20

10

0 2 4
DISPL

-A = 14-3-a (1)
- B= 14-3-b (2)

C = 14-3-c (3)

Maximum load (kN) and displacement (mm):

max(load A) = 50.024-kN

max(load B) = 54.714 kN

max(load C) =55.447 ckN

6 8 10 12
ACEMENT (mm)

max(displ A) = 10.986 mm

max(displ B) = 10.638-mm

max(displ C) = 11.384 mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kN

60

50

40

.2

r 30

20

10

0 
0 2 4 6

DISPLACEMENT (mm)
8 10 12

-E=14-3-e(5)
-F=14-3-f(6)

-G = 14-3-g (7)

Maximum load (kN) and displacement (mm):

max (load E) = 53.835 -kN

max (load F) = 53.444 kN

max (load G) = 59.99 kN

max(displ E)= 11.185-mm

max(disp] F) = 10.862 -mm

max(displ G) = 11.21 -mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmr2):

MPa ;= 1I106 .Pa

LiAa := L - displ A

L iCc : 3 -disp C
C :=L3

LiE := L -disp ELi5e e

L iG := L 07 -dipl G
g 7 g

A CSOl L 

AiA :=
ia LiA

A *LCSO3 03

A iC :=
c LiC

c

cso5L 0
A iE 

e LiE

A CS07 07

AiG = G
g L iG

g

LiBb := L 2 - displ Bb

LiD : L 0 -displDd
d 4 d

LiF:= L6 -displ Ff

L iHh := L 8 - displ Hh

cso, 2

A iB L b

A 4 CSo4 04

iDd LiD

A *L

CSo6 06

f := LiFf

A iH := 8 8
h L iH

Calculate true stress (MPa) and true strain:

load A
a

G trueA =

a

trueA = - A L

load E
e

a tueE 
e

load Bb

c rmeBb A iBb

EtrueBb

load Ff

C trueFf = A f
f A iFf

ILrue ~ iE IL itreF trueE i: - on E tueFf -I
e ~ _E 05) L 0 6 

load C

a trueC =
C AiCC c

load Dd
:=trueD

ILice) L / 
trueC -i trueD .- n L -n I

C d 04

load G

g A iG~ trueGg A iG
g

EtrueG := -In

9 0 

load -h

a treH :=
h iH h

trueH -in 
h: o 
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Calculate the yield stress (MPa) and corresponding true strain:

Y yAcalc =if(aS12ooo trueA o.-MPa) A:A =max(a Acac) NumAa if( trueA YA aO)

a a 0)cij uC~= trueC y'g '''yBcalcb if(b 1200 cr tueB0 MPa) : yB := max(OyBcalc) NmBb : =if Bb0)
yCcalcc if (c 600, tueC OMPa) ayC t:= max( NumyC: C )

yDcalc := if(d 1200. tueD O-MPa) a yD max(a yDcac) NumDd= if(a ueD yDd9O)

c yEcalc :=if(e1200a trueE OMPa) a yE max(yEcalc) NumEe :=if(a tueCEa YE e,

yFcalcf if(fS1200,a trueF, MPa) aYF:= max( Falc) NumFf= if(a trueFa Ff O)

•yGcalc if(gS600,a reG ,O-MPa) :=max( yGcalc) NuGg = if(a tueG a go)

yHcalch if(h 12o00, a trueHh O-MPa) yH : max( ycalc) NumHh= ifa tueH Hay h, 0)

yA tueA ( E yB:=E trueB (NB) yC E trueC max(yD F trueDaxNiyE(NumA) :=ErEEy e max(S yNumB) n(NumC) marx(NumD)
yE trueE (NuE) yF := E tueFmax(NumF) yG trueG (N yH trueH

n=(Num trueHax(NumH)
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Generate a plot of true stress (MPa) versus true strain for load rate 1 (0.01 mm/sec):

100

80so

2 60

I-

2O20

0 0.2 0.4 0.6 0.8 1 1.2 1.4
TRUE STRAIN

- A = 14-3-a (1)
- B = 14-3-b (2)
- C = 14-3-c (3)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(E trueA) = 1.209

max(E rueB) = 1.216

max(E trueC) = 1.216

max(a treA) = 80.979 -MPa

(ax(o trueB) = 85.539 MPa

max( trueC) = 86.435 MPa

c yA = 22.43 -MPa

c yB = 22.46-MPa

a yC = 20.63 -MPa
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yA = 0.058

E yB = 0.059

E yC = 0.063



Generate a plot of true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

0 0.2 0.4 0.6 0.8
TRUE STRAIN

1.2 1.4

- E= 14-3-e(5)
- F= 14-3-f(6)
- G = 14-3-g (7)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(E rueE) = 1.22

max(~ trueF) = 1.222

max(e treG) = 1.244

max(o trueE) = 83.298 MPa

max( trueF) = 82.846 MPa

max( trueG) = 90.472MPa

C yE = 28.342-MPa

a yF = 30.551 MPa

a yG = 31.369-MPa
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yE = 0.068

E yF = 0.068

E yG = 0.065
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Select specimens to be used: z :- 1.. 8

DIM:= READPRN(COMP4)

Lo := (DIMC1 >) SPEC(Z 1)mm

Show initial length (mm):

15.92

15.47

15.45

15.5

15.51

16.03

15.3

16.08

*mm

D Oz := (DIM<2>)SPlC(z,l)mm

Show initial diameter (mm):

15.59

15.58

15.63

15.62

15.6

15.62

15.6

15.62

Imm

Length/Diameter ratio(LDR):

Lo
OZ

LDR :-
z D

Z

LDR

1.021

0.993

0.988

0.992

0.994

1.026

0.981

1.029

Calculate the initial cross sectional area (mm"2):

A cs= -D 

A =cso 

190.89

tan SACIYU.04a

191.87

191.625

191.134

191.625

191.134

191.625

Input maximum true strain (compressive values negative):

max

-1.20

-1.20

-1.20

-1.20

-1.20

-1.20

-1.20

-1.20

Input loading head actuator speed (mm/sec):

Load rate :=

1.00

1.00

1.00

1.00

2.50

2.50

2.50

2.50

mm

sec

NOTE: A default value of 1
which were not used.

with no trailing zeros is used as a place filler for vector locations
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ORIGIN := 1

SPEC :=

8

9

10

16

17

18

19

20



Assume true strain, calculate final specimen length (mm):

Lf : Lo'e
1 z

Lf=

4.795

4.659

4.653

4.669

4.672

4.828

4.608

4.843

Strokez := L f - L O

Imm

Input test type: Double-Ramp Loading

Calculate total machine stroke (mm): Stroke tot := 2Stroke z

Calculate the total time required for test:

Stroke tot

time tot l o
rate

time tot =

22.25

21.621

21.593

21.663

8.671

8.961

8.553

8.989

I sec time tot =

0.371

0.36

0.36

0.361

0.145

0.149

0.143

0.15

-min

Input data aq. frequency rate (Hz), range: 0-500 Hz:

400

400

400

400

500

500

500

500

·.Hz NBR data := Freq data time tot

Calculate approximate number of data points:

NBRdata =

8899.991

8648.42

8637.24

8665.192

4335.391

4480.743

4276.691

4494.719

Select a buffer size which is larger than
the number of data points !!
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-11.125

-10.811

-10.797

-10.831

-10.838

-11.202

-10.692

-11.237

-22.25

-21.621

-21.593

-21.663

-21.677

-22.404

-21.383

-22.474

,mm

'mm

Stroke =

Stroke t =tot 

time tot

0.006

0.006

0.006

0.006

0.002

0.002

0.002

0.002

-hr

Freq data :=

I .. I

Calculate the machine stroke (mm):



Data file information:

The data file was created on the directory: D:MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC4LR3T1)

B := READPRN(IC4LR3T2)

C:= READPRN(IC4LR3T3)

D = READPRN(IC4LR3T4)

E := READPRN(IC4LR4TI) Note: Files A-H are only used for
tracking purposes. There is no relation

F := READPRN(IC4LR4T2) to the specimen position indicator. Analysis

G := READPRN(IC4LR4T3) slots not used read the default file
ICOLRIT1 .pm.

H:= READPRN(IC4LR4T4)

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

load A := A < l >kN

load B := B < >kN

load C := C < ] >kN

load D := D >kN

<2>
displA:= A : mm

<2>

displ C := C<>.mm

displ D := D<2 >'mm

load E := E < >kN

load F := F" >1kN

load G := G < > kN

load H := H<' >-kN

displE := E< >mm

displ F := F<2 > mm

displ G := G<2>mm

displ H := H<2>-mm

Look at matrices and calculate
number of data points:

a:= .. rows(A)

b := .. rows(B)

c := 1 .. rows(C)

d := 1.. rows(D)

e := 1.. rows(E)

f := 1.. rows(F)

g := 1 .. rows(G)

h := .. rows (H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 3 (1.00 mm/sec);

Load limit: max(load) c< 100 kN

80

60

Z 40
0

20

0
0 2 4 6

DISPLACEMENT (mnm)
8 10 12

A = 16-3-a (8)
B = 16-3-b (9)

- C= 16-3-c(10)
- D=17-3-b (16)

Maximum load (kN) and displacement (mm):

max(load A) = 45.872 kN

max (load B) = 56.913 kN

max(load C) =65.804 kN

max(load D) =55.984kN

max(displ A) = 10.862 mm

max(displ B) = 10.862 mm

max(displ C) = 11.061 mm

max(displ D) = 10.912.m
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Generate a plot of load (kN) versus displacement (mm) for load rate 4 (2.50 mm/sec);

Load limit: max(load) < 100 kN

80

60

M 40

20

n
0 2 4

DISPL

- E = 17-3-c (17)
-F= 17-3-d (18)

- G=17-3-e (19)
- H = 17-3-f (20)

Maximum load (kN) and displacement (mm):

max(load E) =60.918.kN

max(load F) = 60.43-kN

max(load G) =58.525 -kN

max(load H) = 57.206 -kN

6 8 10 12
ACEMENT (mm)

max(displ E) = 10.887 mm

max(displ F) = 11.26 mm

max(displ G) = 10.763num m

nmax(displ H) = 11.309mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):

MPa := 1106Pa

L A= L -displ A
Lia 3 CC

LiC :=Lo -disp IC
c 3C

LiE :Lo5 - displE
e 

L G := L - displ G
g 7 g

A cso L l

AiA : L
a LiAaia

A csoL o3

A iC : =
C L iC

A CSOs'L 0AE= 5 5
A i =

e L iE
e

CS07 07

A iG :=
g L iG

g

L iB = L2 -displ BbLib L2b

L iD d:= L 0 4 - displ Dd4 d

LiF := L6 displFf

LHh:= L8 -diplHh

A CSo2 02
AiB 

Ab :Li B b

A cso4 o4
A iD 

d L
iDd

A CS6 06

AFf: L iFf

A cso. os

A iHh LL iHh

Calculate true stress (MPa) and true strain:

load A
a

a trueA A
a AiA

a

load Bb

a "tueB :=trb A iBb

LfiA ) L uB bL
EtrueA := -In EtrueB := In b

a L 
· , ( 1F1l 2)

load C

trueC =-
C A ic C

E teC := -In3C 
oEO 

load Dd

a trueD :=
treDd A iD

|L iD d
£ D = E In

- -0 

load E
e

trueE =e A iE
e

E
trueEe= - L

o5 

load Ff
a trueF -

fA

f LiFf
EtreF =-InL

L06

load G
g

a tueG := t AiG
LiG

g L 07g
7

load Hh

trueH =-

trueH A iHh
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Calculate the yield stress (MPa) and corresponding true strain:

yAcalc :=if(a1200rueAO MPa) yA:max( yAcaic) NumA := if( true A a)

yBcalc if(b 1200,craueBbO.MPa) yB :maX(yBcalc) NumBb:=if( teBCYBbO)

yCcalc : if(c600as trueC O-MPa) yC := max( yCcac) NumC= if c tueC ' yC' c

0 yDcalcd = if(dS1200(T trueDd'O0MPa) a yD= ma(a yDcalc) NUmDd if( trueDd yD d0O)

yEcal if(e 12O reEeOM ) 0 yE ma((yEcalc) NumE :if(r trueEey e 0)

a yFcalcf:= if(fs1200, teFf OMPa) a yF max( yFcalc) NumFf if( treFf yF f 0)

• yGcalc if(g600,a tuteG ,O-MPa) c yG= max(5a yGcalc) NumG:= ifs a teG = yG90)

yHcalch : if(hs1200a teHh' OMPa) a yH :=nax( yHcalc) NumHh :if( trueH a yHho)

8yA : = truemax(Num EyB trueB EyC:= ueC EyD :=treuely£y tA :=Em) E A t x(NumB) emax(NumC) max(NumD)
yE :=£uE E yF = trueF N Fy yG:= trUeG E yH:= F ue m(N )

nm x(NumE) yFax(Nuf : %ue(NumG) nHe x(NumH)
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Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

q
r-3

7-

w

0 0.2 0.4 0.6 0.8 1 1.2 1.4
TRUE STRAIN

- A = 16-3-a (8)
- B = 16-3-b (9)
- C= 16-3-c (10)
- D= 17-3-b (16)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max( trueA) = 1.147

max(E rueB) = 1.211

max(E treC)= 1.258

max(s uueD) = 1.217

max(a trueA) = 76.723 *MPa

max(a trueB) = 89.4-MPa

max(o trueC) = 97.545 *MPa

max(a trueD) =87.116 MPa

o yA = 50.147 MPa

a yB = 49.394-MPa

a yC = 49.004MPa

a yD = 50.818 MPa
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E yA = 0.064

E yB = 0.066

E yC = 0.063

E yD = 0.066

v



Generate a plot of true stress (MPa) versus true strain for load rate 4 (2.50 mm/sec):

0 0.2 0.4 0.6 0.8 1 1.2 1.4
TRUE STRAIN

E = 17-3-c (17)
- F=17-3-d(18)
- G=17-3-e(19)
- H = 17-3-f (20)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(E trueE) = 1.21

max(s trueF) = 1.212

max( tueG) = 1.215

max(e trueH) = 1.215

max(a trueE) = 95.36 MPa

max(a tneF) =94.333MPa

max(a rueG)= 91.305 MPa

max(o teH) = 89.032-MPa

a yE = 60.246 MPa

c yF = 58.77 MPa

a yG = 56.638 MPa

C yH = 53.814*MPa
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yE = 0.063

yF = 0.069

£ yG = 0.067

e yH = 0.064
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I .1

MICHAEL ZIV

THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

z :=1.. 3 ORIGIN := I

DIM A := READPRN( COMP5)

01 <1 >) SPEC ALo := (DIMA A)SPEC

DIM B := READPRN( COMPS)

L 02 :=(DIMBB )SPECBmm

DIM C := READPRN( COMP5)

Lo3 = (DIM C<1>) SPEC C

SPEC A:=1

D0 :=(DIM A )SPEC A

SPEC B := 3

Do := (DIM B< )SPEC Bmm

SPEC C :=6

D 3 :=(DIMC )SEC Cmm

Calculate the initial cross sectional area (mmA2): A CSO (D o. 2

194.828

A cso = 193.346 'm
2

193.839

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC5LR1T1)

B := READPRN( IC5LR2T1 )

C := READPRN( IC5LR3T1 )

Note: Files A-E are only used for
tracking purposes. There is no relation
to the specimen position indicator.
Analysis slots not used read the default file
ICOLR1T1 .pm.
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Select specimens to be used:



Split matrix matrix into two vectors, load (kN) and displ (mm):

load A:=A = *kN

<1>
loadB := B< > kN

<1>
loadCC *kN

displ A:= A > *'mm

displ B :=B<2> *rm

displ C :=C rmm

Look at matrices and calculate
number of data points:

a :=1.. rows(A)

b :=1.. rows(B)

c := 1.. rows(C)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):
MPa := 1-106Pa

LiA :=Lo - displ A
a o I

A cLCSO1 '1

A iA
Ia ia LiA

a
LiB b :=L2- displ Bb

CS2 02
b LiB b

LiC :=L 0 - displ 
3 Cc

ACS03.L 03
AiC '- 

AiC -c
iC

Calculate true stress

load A

a AiA
a

E tueA :=-ln
a L0L

I 

(MPa) and true strain:

load Bb

C trueB =
b A iBb

bL b

trueB :-n
Lo2

load C

a trueC = -
C A iC

(Lic 
EtrueC :=-In c

C L

Calculate the yield stress (MPa) and corresponding true strain:

yAcalc:= if(aS1200, trueA O-aMPa ) yA :max(cyAcalc) NumAa: if( trueA yAaO0 )

09yBcalcb :=if(b•1200atrueBbOMPa) yB :=max(ayBcalc) NunmBb :=if(ateB :yBb0)

yCcac :=if(c<1200ctrueC.OMPa) aYC:=max(OyCcalc) NumCC =if( trueCw ~yC)

yA : mueA Nu yBA) E trueB N yC = trueC
yA := truemax( NumA) yB := truBmax(NumB) max(NumC)
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Generate a plot of true stress (MPa) versus true strain for 0% 8084 / 100% 1080 at various load
rates:

0 0.2 0.4 0.6 0.8

TRUE STRAIN

A- = 15-3-a (1); Load Rate = 0.01 mm/sec
- B = 15-3-c (3); Load Rate = 0.10 mm/sec
- C = 15-3-f (6); Load Rate = 1.00 mm/sec

1 1.2 1.4 1.6

List maximum true strain obtained and corresponding stress (MPa), the yield stress
could not be defined:

max(rA) = 1.529 max(o eA) = 60.495 MPa

max (E uB) = 1.53 max(aueB) = 63.194 MPa

max ( rueC) = 1.506 max(a teC) = 73.66 -MPa
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Select specimens to be used: z := 1.. 8 ORIGIN := 

DIM:= READPRN(COMP5)

Lo :--(DIM<1>)sPE(z, 1)mm

Show initial length (mm):

L, =

14

12

I J.,
I:1(

11
L,

4.85

5.02

5.83

5.88

5.94

5.49

4.85

4.85

omm

D := (DIM<2>)SPEC(z l).mm

Show initial diameter (mm):

15.75

15.68

15.69

15.7

15.71

15.75

15.75

15.75

omm

Length/Diameter ratio(LDR):

Lo
LDR= Z

Do
0 z

LDR =

0.943

1.022

1.009

1.011

1.015

1.047

0.943

0.943

Calculate the initial cross sectional area (mmA2):

A Cs= (Do2
CSZ 4 "·$

A cso =

Input maximum true strain (compressive values negative):

E max:=

-1.50

-1.50

-1.50

-1.50

-1.50

-1.50

Input loading head actuator speed (mm/sec):

Load rate :=

0.01

0.01

0.10

0.10

1.00

1.00

1

mm

sec

NOTE: A default value of 1
which were not used.

with no trailing zeros is used as a place filler for vector locations
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1

2

3

6

6

7

11

SPEC :=

194.828

193.1

193.346

193.593

193.839

194.828

194.828

194.828

·mm 2

V



Assume true strain, calculate final specimen length (mm):

E :=Lo .e
Lf := Loze

Lf=

3.313

3.575

3.532

3.543

3.557

3.679

40.366

40.366

Stroke z := L f- L O

-mm

Input test type: Double-Ramp Loading

Calculate total machine stroke (mm): Stroke tot := 2-Strokez
z

Calculate the total time required for test:

Stroke tot

time tot= oad
rate

time =tot 

2307.303

2489.091

245.957

246.734

24.767

25.621

51.033

51.033

Isec time tot =

38.455

41.485

4.099

4.112

0.413

0.427

0.851

0.851

-min

Stroke =

Stroke tot =

time tot =

Input data aq. frequency rate (Hz), range: 0-500 Hz:

NBR data := Freq data z.time totzz z z

Calculate approximate number of data points:

NBR data =

11536.517

12445.455

12297.85

12336.693
nn " AYYUO.O4

10248.467

51.033

51.033

Select a buffer size which is larger than
the number of data points !!

300

-11.537

-12.445

-12.298

-12.337

-12.383

-12.811

25.516

25.516

-23.073

-24.891

-24.596

-24.673

-24.767

-25.621

51.033

51.033

'mm

'nunm

-hr

0.641

0.691

0.068

0.069

0.007

0.007

0.014

0.014

Freq data :=

5

5

50

50

400

400

1

1

I 

Calculate the machine stroke (mm):

.Hz



Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC5LR1T1) E := READPRN(ICSLR3T1) Note: Files A-H are only used for
tracking purposes. There is no relation
to the specimen position indicator. Analysis

C := READPRN(ICSLR2T1) G:= READPRN(ICOLR1T1) slots not used read the default file..... .............................. .. ICOLR1Tl.pm.
1):= KAKDIN(ILU.LKZZ2) H := KA)PRKN(ICULK1T1)

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000newton

load A := A < l >.kN

load B := B < k >.N

load :=C '= >kN

load D = D < 1 >kN

<2>
displ A:=A mm

<2>
dispJ B:= B *mm

displ C := C> *mm

displ D:= D<>nnmm

load E := E < >kN

load F := F<1 >.kN

load G := G < > kN

load H := H< ' > 'k N

displ E := E 2>mm

displ F : FF <2 > -mm

displG := G <2>mm

displ H := H < 2 > -mm

Look at matrices and calculate
number of data points:

a := 1.. rows(A)

b := .. rows(B)

c := .. rows(C)

d := .. rows(D)

e := 1.. rows(E)

f := 1.. rows(F)

g := l..rows(G)

h :=1 .. rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec);

Load limit: max(load) < 100 kN

60

50

40

1 30

10

20

10

0

20F+~~ -A=15-3-a(1)A S~~~
I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- A= 15-3-a (1)
- B= 15-3-b (2)

Maximum load (kN) and displacement (mm):

max(load A) = 53.981 kN

max (load B) = 54.03 -kN

0 2 4 6 8
DISPLACEMENT (mm)

max(displ A) = 11.633mm

max(displ B) = 12.527 mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kN

80

60

M 40
0

20

A

0 2 4 6 8 10 12

DISPLACEMENT (nun)

- C = 15-3-c (3)
- D = 15-3-e (5)

Maximum load (kN) and displacement (mm):

max(load C) =56.033- kN

max(load D) =61.114. kN

max (displ C) = 12.403 rnm

max(displ D) = 12.478-mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 3 (1.00 mm/sec).

Load limit: max(load) < 100 kN

80

60

. 40
0

20

0 2 4 6 8 10 12 14
DISPLACEMENT (mm)

-E = 15-3-f (6)
-F = 15-3-g (7)

Maximum load (kN) and displacement (mm):

max (load E) = 63.898 kN

max(load F) = 66.487 kN

max(displ E) = 12.403nmm

max(displ F) = 12.875-mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):

MPa:= 110 6 .Pa

Li :=L ol-displ A

L iA := L 0 - displ Aa

iC 3 c

L iE := - displ E

L iGg := L7 -disp G

A *LACSO 01

AiA= 
a LiA

A *Lcs3 03
A iC 

C

A cso-L 5

AiE :=
c LiE

e

A cs L 0
CSo7 07A iG :=

iG
G

LiB b:=L02 -ispl Bb

LiD d := L 04 -diSpl Dd

L iF:= L 06 displ Ff

L iH := L -displ H
h 8 h

CSo2 02

b LiB b

ACS04L 0
A iD 4 4

iD

A cso 6 L 06

A iFf := L iF

A cso$.Lo
A iH := 8 

h

Calculate true stress (MPa) and true strain:

load A
a

a trueA A
A

load Bb

trueB =
b A iBb

load C

trueC :=
C

load Dd

O trueD = d
d AiDd

E uea L E ueBb (f )
a I _"I L 02 o 0 

tueC 1:= in E trueD .=_-I

load E

ctrueE :=
C AiE

E teE := -ln -)
e E_5 

load F.
a~~~~~~

a trueF =f AiFf
f

IL rf

E treF := -nFL6-

load G
g

C trueG : =

g A iG
g

load Hh

trueHh A iH

L iG = /Los/8 trueG := -nn e Ht u :=e ln
9 -E -_) Lo
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Calculate the yield stress (MPa) and corresponding true strain:

yAcalc :a if(a1200Oa teA O-MPa yA := ma(a yAcalc) NumA := if( trueA ' yA a O)

yBcaI:cb if(b1200, trueB. bOMPa) a yB:= max(yBcalc) NumBb. =if(tueB :YB b,0)

yCcalc : if(cs 600, eC O-MPa) a yC := max( yCcac) NumC := if( a trueC yC CO)

a yDcalcd if(dS1200 trueDd' 0.MPa) a yD max(a yDcalc) NU NDd:=if(a trueDa YDdo)

a yEcalce if(e1200,a trueE .O-MPa) a yE=max(ayEcalc) NumEe :=if(YueE =C YEe'CO)

a yFcalcf if(fS 1200, a tueFf 0.MPa) a yF =maX(ayFcalc) NumFf:= if(OaueF F f9°)

yGcalc if(g600,a tueG O-MPa) a yG= max(ayGcalc) NumGg := if(a tueG = yG 0)

a yHcalc := if(h1200,a t.ueH ,OMPa) a yH = max(ca yHcalc) NUnMHh= if(a tueH s YH h O)

E yA : = E trueAxNum yB := trueB(NumB) y trUeCmax(NumC) D m= t (NumD)

m£ax(NumE) aF eF (NumF) yG tueG (NumG) mx(NumH)
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Generate a plot of true stress (MPa) versus true strain for load rate (0.01 mm/sec):

80

60

AL

2 40

20

n
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

TRUE STRAIN

-A = 15-3-a (1)
B = 15-3-b (2)

List maximum true strain obtained and corresponding stress (MPa), no yield stress can be defined:

max( trueA) = 1.529

max(e trueB) = 1.523

max( trueA) = 60.495-MPa

max (a trueB)= 61.325 MPa
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Generate a plot of true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

80

60

3

20

A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
TRUE STRAIN

C = 15-3-c (3)
D = 15-3-e (5)

List maximum true strain obtained and corresponding stress (MPa), no yield stress can be defined:

max(E trueC) = 1.53

max(E trueD) = 1.541

max(a trueC) = 63.194 MPa

max(C trueD) = 67.635 MPa

308



Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

80

60

P40¢/,

03

20

A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
TRUE STRAIN

-E = 15-3-f (6)
-F = 15-3-g (7)

List maximum true strain obtained and corresponding stress (MPa), no yield stress can be defined:

max ( trueE) = 1.506 max ( trueE) =73.66-MPa

maX (E trueF) = 1.518 max trueF) =75 32MPa
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MICHAEL ZlV

THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimens to be used:

DIM A := READPRN(COMP1B)

z: 1= .. 5 ORIGIN := 1

SPEC A := 3

L := (DIM <>A mm D := (DM A

DIM B := READPRN(COMP2B) SPEC B := 2

L := (DIM B )SPEC B D 0:= (DIM B<2)SpC B

DIM C := READPRN(COMP3B)

L o := (DIM C<1 >)SPEC C'mm

DIM D := READPRN(COMP4)

Lo := (DIM D<1>)SPEC Dm

DIM E := READPRN(COMP5)

L := (DIM E<1 >)SPEC E

SPEC C := 2

D o := (DIM C<2 >)SPECCmm

SPEC D := 2

D o :=(DIM D )SPECDmm

SPEC E : = 1

D 5 := (DIM E>)SPECE

Calculate the initial cross sectional area (mmA2): cso 4 z
CSOz 4- 

191.38

183.134

A = 181.697 -.m*2

190.645

194.828

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.prn) extension

A := READPRN(IC1LR1T8)

B := READPRN(IC2LR1T6)

C:= READPRN(IC3LR1T6)

D := READPRN(IC4LR1T2)

E:= READPRN(IC5LR1T1)

Note: Files A-E are only used for
tracking purposes. There is no relation
to the specimen position indicator. Analysis
slots not used read the default file
ICOLR1T1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load A := A < ' >.kN

load B := B < >.kN

load C := C < > kN

displ A := A<2>mm

displ B := B<2 >mm

displ C := C<2>. *mm

load D := D<l >.kN

load E : = E< 1>-kN

<2>
displ :=D := D<>mm

displ E := E* >mm

Look at matrices and calculate
number of data points:

d:= 1..rows(D)

e := 1.. rows(E)

a := .. rows(A)

b := l1..rows(B)

c := 1 .. rows(C)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):
MPa := 1.106 Pa

L iA :o - displ A
L = L -displ C a

iC := L0 -displC

A CSo.L 

AiA =a La iA
a

CSo3 03
AiC =

c LiC
C

LiB b := L 0 2 -displ Bb

LiDd := L 04 - spl Dd

A CS2L 02

A B iB :=
2b L iBb

A *LCSO4 04

AiD := L
d LiD

LiEe i5 SplE

A OL
A iE :=

e LE
e

Calculate true stress (MPa) and true strain:

load A
a

trueA A iA

aeA

load Bb

o tNeB b A iBb

E trueB := In
b LO

load C
C

trueC 
c A iC

tueC = -In -
C , Lo3

load Dd

trueD AiD=

LiD

d L 04

load E
ffuueE =

trueE := -5
e
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Calculate the yield stress (MPa) and corresponding true strain:

a yAcalc = if(a1200. tueAOMPa) a yA max( yAcac)

O yBcalc.= if(b<1200 trueBbOMPa) oyB ma(ayBcac)

a yCcalc = if(c1200, trueCc MPa) a yC ( yCcalc)

a yDcalcd if(d1200, trueDdOMPa) yD :=maX( yDca1c)

ya Ecalcie (1 a trueEE .MPa) yE:= max(a yc)
e e~~~~~~~y £~~

NumAa := if trueA -a yA aO)

NumBb := f( trueBba yB b O)

NumCc := if(O ueC' yC O)

NumDd:= if( tueDa YD d, o)

NumEe := if(a tueEe a yEe )

E yA := £trueAmax(NumA) 
e yB trueB ax(N umB) eC (N C) yD= trueD (NmD)

yE := £ trueE (NumE)
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Generate a plot of true stress (MPa) versus true strain for a loading rate of 0.01 mm/sec for various
compositions:

0 0.i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
TRUE STRAIN

- A = 34-4-c (3); Composition: 100% 8084 - 0% 1080
- B = 31-5-b (2): Compostion: 75% 8084 - 25% 1080
- C = 25-5-b (2); Composition: 50% 8084 - 50% 1080
- D = 14-3-b (2); Composition: 25% 8084 - 75% 1080
- E = 15-3-a (1): Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

m.XE trueA) = 0.759

rmax( t/ c ) = 0.855\ tnieB/
matx[ x ) = 1.012( trueC)

X t rueD)= 1.216

ma;x (E '= 1.529k trueED

max(a trueA) = 110.58-MPa

max( trueB) = 103.201 MPa

max(o tmueC) = 104.044-MPa

max(a trueD) =85.539MlPa

max( trueE)= 60.495 MPa

a yA = 93.767 -MPa

a yB = 67.896-MPa

a vC = 62.089 -MPa

a yD = 22.46 -MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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E yA = 0.065

£ yB = 0.066

£ yC = 0.059

eyD = 0.059
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MICHAEL ZIV

THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimens to be used: z := 1.. 5

DIM A := READPRN(COMP1A)

Lo =(DIM A >)SPECA> mm

DIM B := READPRN(COMP2B)

L o 2 := (DIM B )SPEC B

DIM C := READPRN(COMP3B)

Lo := (DIM C<1 SPECmm

DIM D := READPRN(COMP4)

L = (DIM D< )SPEC Dmm04 SE

DIM E := READPRN(COMP5)

L 5 := (DIM E<1 )SPEC Emm
L ~ ~~ .ra

SPEC A := 24

D := (DIM A<2)SPEC A'mm

SPEC B := 6

Do:= (DIM B )SPECBm

SPEC C := 6

D o3 := (DIM <2>)SPECCmm

SPEC D := 6

D := (DIM D )SPECDmM

SPEC E := 3

D 5 := (DIM E )SPECE M

Calculate the initial cross sectional area (mm"2):

192.854

183.614

A cso = 184.335 .m 2

191.134

193.346

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC1LR2T5)

B := READPRN(IC2LR2T4)

C:= READPRN(IC3LR2T7)

D := READPRN(IC4LR2T2)

E:= READPRN(IC5LR2TI)

Note: Files A-E are only used for
tracking purposes. There is no relation
to the specimen position indicator. Analysis
slots not used read the default file
ICOLR1T1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load A : = A >.kN

<1>load B := B I>kN

load C := C <l >kN

displ A := A< mm

<2>
displ B := B <>mm

displC := C <2>mm

load D := D < >kN

loadE := E<1 >kN

<2>displ D:=D <>mm

displ E := E<> mm

Look at matrices and calculate
number of data points:

a:= .. rows(A)

b := 1.. rows(B)

c := 1.. rows(C)

d:= 1.. rows(D)

e := 1.. rows(E)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mrn2):
MPa := 1-106 Pa

LiA := L - displA
a 1 a

L C= L0 -displ CiC 3 c

A csO L CSOl,01

a LiA a

A L0
A iC :=

C

LiB b:= L 2 i s Bb

LiDd := L0 4 -displDd

A iB =

b LiB b

A csoL 0
CS04 04

AiD d = LiDd

L iE := Lo - disPlE

A cso L 0CS05 05
AiE := 

e LiE
e

Calculate true stress (MPa) and true strain:

load A
a

OtrueA :=
a AiA

a

load Bb

atmeB.b A iB

E rueA ttrueBb :=

load Ee
e

o trueE AiE

e

/'iE 
e Lo 

load C

trueC A iC

C

trueC:= -In

load Dd

a trueD 
AiD

tDd L trueD' :=l 4
4
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Calculate the yield stress (MPa) and corresponding true strain:

a yAcalca = if(a 1200, trueA OMPa) C yA max(CY yAcac)

a yBcalcb if(bs1200, tueBb O.MPa) a yB: max(C yBcalc)

aF yCcalcC : if(c1200,a trueCc O.MPa) a yC =max(C yCcalc)

a yDcalcd if(d•1200oa tueDd0 OMPa) a yD= max(a yDcalc)

a yEcac = if(eS1200 a trueE O MPa) a yE= max(a yEcalc)

NumAa:= if(cr trueA a yA aO)

NumBb := if(a trueBb yB 'O)

NumCc := if(C trueC C yC CO)

NumDd := if(a trueDdi a yD dO)

NumEe := if(a trueEe ca yE e O)

yA £ trueA mA) yB teB E yC= tueC yD := £ trueD
maxtrue(N ) max(NumB) max(NumC) max(NumD)

yE : = trueE (N)max(NumE)
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Generate a plot of true stress (MPa) versus true strain for a loading rate of 0.10 mm/sec for various

compositions:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TRUE STRAIN

- A = 27-4-c (24); Composition: 100% 8084 - 0% 1080
- B = 31-5-f (6); Compostion: 75% 8084 - 25% 1080
- C = 28-5-f (6); Composition: 50% 8084 - 50% 1080
- D = 14-3-f (6); Composition: 25% 8084 - 75% 1080
- E = 15-3-c (3); Composition: 0% 8084 - 100% 1080

1.1 1.2 1.3 1.4 1.5 1.6

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max( teA) = 0.761

max(E trueB) =0.86

max(E teC) = 1.01

ma(e trueD) = 1.222

max ( trueE) = 1.53

max(a trueA) = 106.084-MPa

max(a trueB) = 104.253 -MPa

max(a trueC) = 98.384.MPa

max( trueD) =82.846 MPa

max( tueE) = 63.194-MPa

a yA = 105.442 MPa

a yB = 84.366 -MPa

a yC =74.187MPa

a yD = 30.551 -MPa

The yield stress could not be defined for the 100%/ Crestomer 1080 sample
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yB = 0.064

E yC = 0.063

E yD = 0.068
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MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM

UNIAXIAL COMPRESSION TEST

Select specimens to be used: z:= .. 5

DIMA := READPRN(COMP1B)

Lo := (DIM A<1 )SPEC Am

DIMB := READPRN(COMP2B)

:= (DIM B<>)SPEC Bn

DIM C := READPRN(COMP3B)

L = (DIM C<1 SPEC Cmm

DIM D := READPRN(COMP4)

Lo4 = (DIM D >)SPECD

DIM E := READPRN(COMP5)

L := (DIM E<>)SPEC Em

SPEC A = 5

D := (DIM A >)S Amm

SPEC B := 8

D:= 2(DIM <>)SPEC Imm

SPEC C := 9

D 03:= (DIM C<2>)SPEC 

SPEC D := 9

D (DIM <2>)
SEC Dg.m

SPEC E := 6

D05 := (DIM 2>)SPECEmm

Calculate the initial cross sectional area (mmA2):

193.346

185.782

A cso = 183.614 -.mm 2

190.645

193.839

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC1LR3T4)

B := READPRN(IC2LR3T5)

C:= READPRN(IC3LR3T5)

D := READPRN(IC4LR3T2)

E:= READPRN(ICSLR3T1)

Note: Files A-E are only used for
tracking purposes. There is no relation
to the specimen position indicator. Analysis
slots not used read the default file
ICOLR1T1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load A := A < I >-kN

load B : = B < > kN

load C := C < > kN

Q>displ A:= A : mm

displ B := B2>-mm

displ C := C >mm

load D := D < >lkN

load E := E < >kN

<2>
displ D:= D := D<>mm

displ E := E<2>mm

Look at matrices and calculate
number of data points:

a := 1.. rows(A)

b :=1.. rows(B)

c := 1.. rows(C)

d := 1.. rows(D)

e :=1 .. rows(E)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmr2):
MPa := 1106-Pa

LiA := Lo - displA
a I a

LiC :=Lo3 dIC03d~l c

A cso Lo
CS= I 1i~a

a LiA
a

ACS3 03
A :=c LiCe

LiBb := Lo2 - displBb

LiDd := L4 -ispl Dd

A cs0L 
A iB :=

Db L B b

CS04 04

AiD iD
d LiDd

LiE := L -displEe S ~e

Calculate true stress (MPa) and true strain:

load A
a

a AiA

/LiAa
a Lo 

load Bb

a trueBb A
b A iB

b L °2

load C
C

a trueC A iC
C

trueC := - ln-3
C 0 

load Dd

r trueD =
d AiD

L iDd 
trueD = -n\ d

load E
e

e A iA

trueE := i
e /.o,5 )
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Calculate the yield stress (MPa) and corresponding true strain:

C yAcalc if(a<12o00o trueAOMPa) O yA max(a yAcalc)

a yBcalcb if(b1200, trueB bOMPa) < yB max(a yBcalc)

a yCcalc: if(cl200oo a treCc OMPa) a yC max(a yCcalc)

O yDcalcd if(d 1200a trueDd0 OMPa) a yD max(a yDcalc)

yEcalc := if(e 1200O treEeO MPa) a yE:= max( yEcalc)

NumAa : if( trueA u yA'aO)

NumBb := if( trueB a yBb,O)

NumCc := if(a trueCc= yC c,

NumDd : if(a tueD: yDd O)

NumEe := if(a trueEe yEe O)

E yA : = trueA E yB : = trueBmax(NumB) C EtueC (NumC)
max(NumA) max(NumC )

E yE := trueE
rax(NumE)

yD := trueD (NumD)
ma( NumD)
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Generate a plot of true stress (MPa) versus true strain for a loading rate of 1.00 mm/sec for various
compositions:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
TRUE STRAIN

- A = 22-4-d (11); Composition: 100% 8084 - 0% 1080
- B = 32-5-a (8); Compostion: 75% 8084 - 25% 1080
- C = 29-5-b (9); Composition: 50% 8084 - 50% 1080
- D = 16-3-b (9); Composition: 25% 8084 - 75% 1080
- E = 15-3-f (6): Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

mrnax E! 0.763rx* :rueA) = 0763

trueB) =0.862

ma.x ec)= 1.012\ trueC)
m ax (eD = 1.211(trueD)

I(E trueE) = 1.506\ truE)

max(a trueA) = 117.63 MPa

max(a trueB) = 10l1.S544IPa

max (a mleC) = 94.066 MPa

max(a trueD) = 89.4-IPa

max(a treE) = 73.66 -MPa

a yA = 117.63 MPa

a yB = 94.798 -MPa

a yC = 87.054-MPa

a yD = 49.394MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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MICHAEL ZIV

THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimens to be used: z := 1 . 5 ORIGIN := 1

DIM A := READPRN(COMP1B)

L o := (DIM A <)SPEC Am

DIM B := READPRN(COMP2B)

:= (DIM B <1>)SPEC B

DIM C := READPRN(COMP3B)

Lo 3:= (DIM C< >)SPEC C

DIM D : = READPRN(COMP4)

Lo4 := (DIM D )SPEC D

DIM E := READPRN(COMP5)

L o := (DIM E< )sPEC Em

SPEC A := 11

D := (DIM A>)SEc

SPEC B := 12

D := (DIM -mm

SPEC C := 13

D := (DIM C<2>)SPE cmm

SPEC D := 18

D := (DIM D<2>)SEC D mm

SPEC E := 20

D := (DIM E >)SPECEm

Calculate the initial cross sectional area (mmn2):

189.911

186.023

A 183.134 -. m 2

191.625

196.067

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC1LR4T3)

B:= READPRN(IC2LR4T5)

C:= READPRN(IC3LR4T6)

D := READPRN(IC4LR4T2)

E:= READPRN(IC5LR4T1)

Note: Files A-E are only used for
tracking purposes. There is no relation
to the specimen position indicator. Analysis
slots not used read the default file
ICOLR1T1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load A := A < >kN

load B := B < l >' kN

load C := C I >-kN

<2>
diSpl:= A := A< mm

displ:= B : mm

displ C := C >mm

load D := D >.kN

load E := E < >-kN

displ D := D<2>mm

displE := E<>mm

Look at matrices and calculate
number of data points:

a:= .. rows(A)

b := .. rows(B)

c := 1.. rows(C)

d := 1..rows(D)

e := 1.. rows(E)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mnmA2):
MPa := 110 6 Pa

LiA := L - displ A
a 1 a

:3 c

A C L
1 1AiA :=

a LiA
a

A s'L 0
A 3 03

AiC :=c L iC
C

LiB b := L02 - diSpl Bb

LiD d := L4 - displ Dd

A cso2 L 
AiB CSO 02

b LiB b

CSo4 04
A iD iD

LiE := L o -diSplE
e S e

CSo5 05

AiE :=
e L iE

e

Calculate true stress (MPa) and true strain:

load A
a

a
trueA 

load E

trueE 
iE

e

trueE := I 5n
oT5 

load Bb

Cy trueB =trb A iB

E trueB -2b:- LL~

load C

trueC = C

trueC := -C A iCEtruC :-1¢

load Dd

aY trueD =
d AiD

L iD

£trueD L /d 04
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Calculate the yield stress (MPa) and corresponding true strain:

yAcalca if(a 1200, a trueAaOMa ) yA max( yAcaic)

F yBcalc= if(b1200,cy tueB bO MPa) 0 yB max( yBcalc)

a yCcalcC := if(c1200 ,a trueC O MPa) yC = ma ( yCcalc)

yDcalcd if (dC120 trueDd OMPa) a yD max(a yDalc)

a yEcalc = if(e<1200Ea trueE O MPa) a yE max(a yEcalc)

NumAa := if(a trueAaa yAa 0)

NumBb := if( trueBba yBbO)

NumCc := if(C trueCc C yC )

NumDd := if( trueDd a yD'd0 )

NumEe := if(a trueEe c yEe 0)

EyA tueA E yB: E: : £trueCa yA := trueB max(NumB) E := max(NumC) = trueDmax(NumD)

E yE : = E trueE(NE)
max(NumE)
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Generate a plot of true stress (MPa) versus true strain for a loading rate of 2.50 mm/sec for various
compositions:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
TRUE STRAIN

A = 35-4-d (11); Composition: 100% 8084- 0% 1080
- B = 32-5-e (12); Compostion: 75% 8084 - 25% 1080

- C = 9-5-F (13); Composition: 50% 8084 - 50% 1080
- D = 17-3-d (18); Composition: 25% 8084 - 75% 1080
- E = 27-4-b (15); Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

, \eB
mrax: . ruej = 01367

;LX ' tr = 1.017trueC;

ra.x,c trueD) = 1.212

x . trueE= 1.643" ne~j

max(O trueA)= 123.683 .MPa

max ( trueB) = 104.907MIPa

max(, trueC) = 100 .IPa

maa trueD) =94.333-%MPa

max(a trueE) =60.466-MPa

A = 123.683--MPa

a vB = 101.388-NMPa

a vC = 93.068 MPa

o yD = 58.77 -MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample

325

e VA = 0.073

y vB = 0.07

E YC = 0.067

EyD = 0.069

· _ �_11�1 __11___

I

I

I

I

;-n
z
-4



I I:

Specimen

COMPlA:

dimension data file #1 (100% Derakane 8084 / 0 % Crestomer 1080)

14.03 15.53 1
Note: The first column is I
length and the second is tl

13.99 15.60 3 diameter.

15.20 15.55 4
File applies to specimen:

14.98 15.57 5

15.02 15.60 6

15.91 15.60 7

15.96 15.55 8

0 0 9

0 0 10

15.94 15.58 11

15.63 15.56 12

15.31 15.57 13

15.94 15.56 14
num:=

16.16 15.53 15

15.59 15.55 16

15.54 15.55 17

15.83 15.58 18

15.89 15.56 19

15.84 15.53 20

15.83 15.54 21

15.60 15.69 22

15.99 15.63 23

15.54 15.67 24

15.67 15.63 25

15.53 15.65 26

15.21 15.64 27

16.06 15.69 28

ORIGIN := 1

he specimen
he specimen

11, 22, 23, 26

WRITEPRN(COMP1A) :=COMP1A
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Specimen dimension data file #1 (100% Derakane 8084 / 0 % Crestomer 1080)

15.37 15.73

15.70 15.61

15.80 15.61

15.92 15.68

15.46 15.69

15.42 15.74

15.68 15.76

15.52 15.69
COMP1B := num :=

15.65 15.63

15.89 15.50

15.27 15.55

15.37 15.57

15.21 15.60

14.94 15.64

15.54 15.67

15.67 15.63

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Note: The first column is the specimen
length and the second is the specimen
diameter.

File applies to specimen: 34,35

WRITEPRN(COMP1B) := COMP1B

327

" �iu �i�·_i�iTl�j(*�ib�i IVIT��iQ9�9YEZY�Li�aYY-�II_

ORIGIN := 1



Specimen dimension data file #2 (75% Derakane 8084 / 25 % Crestomer 1080) ORIGIN:=1

15.90 15.63 1
Note: The first column iis the specimen
length and the second is the specimen

15.68 15.65 3 diameter.

15.61 15.68 4
File applies to specimen: 12, 20, 21

15.71 15.68 5

16.54 15.67 6

11.69 15.72 7

15.51 15.71 8

16.16 15.68 9

15.52 15.64 10

COMP2 := 0 0 num := 11

15.89 15.66 12

15.79 15.63 13

0 0 14

15.71 15.67 15

15.95 15.67 16

15.57 15.70 17

15.73 15.68 18

15.54 15.69 19

14.59 15.71 20

15.97 15.65 21

WRITEPRN( COMP2) := COMP2
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Specimen dimension data file

15.15 15.28

15.09 15.27

14.83 15.22

0 0

14.81 15.28

14.87 15.29

15.19 15.36

14.89 15.38

15.17 15.37

14.84 15.38

COMP2B := 14.61 15.41 nu

14.74 15.39

14.69 15.43

15.09 15.49

15.02 15.36

15.37 15.36

0 0

15.05 15.36

14.92 15.36

14.84 15.36

15.05 15.36

#2

m

(75% Derakane 8084 /25 % Crestomer 1080) ORIGIN := 1

1
Note: The first column iis the specimen
length and the second is the specimen

3 diameter.

4
File applies to specimen: 31,32,33

6

7

8

9

10

=11

12

13

14

15

16

17

18

19

20

21

WRITEPRN( COMP2B) := COMP2B
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Specimen dimension data file X

14.91 15.62

15.61 15.68

14.96 15.64

15.63 15.68

16.12 15.72

15.97 15.67

15.64 15.70

15.71 15.70

15.47 15.70

15.88 15.73

15.80 15.72
COMP3 : nuir

16.16 15.69

15.38 15.69

15.74 15.70

15.92 15.63

15.39 15.64

15.80 15.69

15.01 15.67

15.70 15.66

16.19 15.67

15.01 15.68

15.26 15.39

WRITEPRN(COMP3) := COMP3

k 3

(50% Derakane 8084 / 50 % Crestomer 1080) ORIGIN := 1

1

2 Note: The first column iis the specimen
3 length and the second is the specimen
4 diameter.

5 File applies to specimen: 13, 18, 19, 30

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
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Specimen dimension data file

14.67 15.35

15.15 15.21

14.78 15.28

15.10 15.28

14.53 15.29

14.35 15.32

15.58 15.35

14.23 15.31

14.88 15.29

14.87 15.28

COMP3B := 15.28 15.22 nu

15.28 15.24

15.38 15.27

15.19 15.34

15.33 15.32

15.24 15.31

14.93 15.33

15.23 15.33

14.50 15.34

15.45 15.33

15.26 15.29

#3

In:

(50% Derakane 8084 / 50 % Crestomer 1080) ORIGIN := 1

1
Note: The first column iis the specimen
length and the second is the specimen

3 diameter.

4
File applies to specimen: 28, 29 , 30

6

7

8

9

10

=11

12

13

14

15

16

17

18

19

20

21

WRITEPRN (COMP3B) := COMP3B
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Specimen dimension data file #4 (25% Derakane 8084 / 75 % Crestomer 1080) ORIGIN:= 1

15.66 15.60 1
Note: The first column iis the specimen
length and the second is the specimen

16.18 15.60 3 diameter.

15.88 15.59 4
15.87 15.62 5 File applies to specimen: 14, 16, 17

15.40 15.60 6

15.75 15.60 7

15.92 15.59 8

15.47 15.58 9

15.45 15.63 10

COMP4 := 15.77 15.61 num := 11

15.36 15.60 12

15.60 15.65 13

16.02 15.62 14

15.68 15.61 15

15.50 15.62 16

15.51 15.60 17

16.03 15.62 18

15.30 15.60 19

16.08 15.62 20

15.73 15.69 21

WRITEPRN(COMP4) :=COMP4
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Specimen dimension data file #5 (0% Derakane 8084 / 100 % Crestomer 1080) ORIGIN := 1

14.85 15.75 1
Note: The first column is the specimen

16.02 15.68 2 length and the second is the specimen

15.83 15.69 3 diameter.

15.91 15.71 4 File applies to specimen: 15, 24, 27
15.88 15.70 5

15.94 15.71 6

16.49 15.75 7

14.92 15.75 8

15.45 15.75 9

14.91 15.75 10
COMP5 := num:=

15.45 15.75 11

15.47 15.70 12

15.60 15.70 13

15.57 15.65 14

15.57 15.67 15

15.58 15.68 16

15.15 15.71 17

15.39 15.71 18

15.47 15.74 19

15.13 15.80 20

WRITEPRN(COMP5) := COMP5

333

_II_____CIII�IUUIIIIC-�



334

I I



Appendix D
Prediction of the Relationship Between Strain Rate and

Yield Stress

Upper Yield Stress Model

100% Derakane / 0% Crestomer 336

75% Derakane / 25% Crestomer 341

50% Derakane / 50% Crestomer 346

25% Derakane / 75% Crestomer 351

Lower Yield Stress Model

100% Derakane / 0% Crestomer 356

75% Derakane / 25% Crestomer 361

50% Derakane /50% Crestomer 366

25% Derakane / 75% Crestomer 371
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Input the loading velocity of the Instron head (Vel). the inital lenth of the specimens (Lo).
and the compressive flow stress obtained (cc):

MPa :=Pa 106 i :=1..4 ORIGIN :=1

0.01 15.80 93.409

I0.10 m L *15.54 105.201Vel := *5 4 L :=
1.00 sec 15.46 c 118.436

2.50 15.27 123.647

Composton: 100% 8084. 0% 1080

0.040

0.221
STDEV := MPa

0.740

0.517

Input the modulus of elasticity (E). the Poisson ration (v) and the ambient temperature () at the
time of the test. Using these values. calculate the shear modulus (u) and athermal shear stress (s)

E :=2020.MPa v :=0.33 :=298.K a :=0.20 << assume a = 0.20 >>

g :=- E = 759.398-MPa
2-(1 tv)

s := 0. 7 s = 87.274-MPa
1-v

Calculate the pressure (p) and the shear stress () corresponding to each of the data points:

oc
p c.

3

C.
I := I

i 

Define the applied pastic shear strain rate:

Pi ri

i MPa MPa

31.136 53.93

2 35.067 60.738
3 39.479 68.379

41.216 71.388

Input Hopkinson Bar data point:

3000

2500 
-hop := 3200 secL C hophop 3200

MEAN hop := mean( hop)

STDEVE hop := stdev( hop)

189.8

200.1
:= . MPa
208.5

203.6

Thop :='3- hop

MEANo hop := mean ( hop)

STDEVo hop :=stdev( hop)
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Calculate _dotO and A/k-= using eauation 6-17. assuming a = 0.2

5 0.632

'r equiv := ( p) r equiv = 0.693
s+p i 0.785

0.785

-6.769

-4.443
Ydotln= -2.129

-1.197

linreg := slope(Z equivYdotun) equiv + intercept(r equiv, dotln)

Plot ln(shear strain rate) (1/sec) versus
equivalent shear stress:

Calculate the slope. intercept, and correlation
coefficient for predictive line:

-1 

0 ,

corr(r equivYdotn) =1

C :=slope(equiv,dtln) C = 36.391

B :=intercept(r equivYdotln) B =-29.736

0.5 0.6 0.7 0.8 0.9

equivi

Solve for dotO and x:

YdotO:=eB Csec '

115.981

115.014 . K

113.948 MPa

113.533

ydot0 and are as follows:

YdotO = 776.106 sec-

K
X=114.619. K

MPa
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Y dotini

linrcgi

C-E

i ---
s -I (p i

X :=mean(X)

""II"~"~~"""~~"~""I--~-U~~-L-

-

v

Ydtpl 
'Ydotlui:= n 
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Using the values below, calculate the shear stress as a function of shear strain rate:

s = 87.274MPa a = 0.2 Z = 114.619 K O=298K Tdot0 =776.106sec-
MPa

Inut a guess forsolver: a c2 : = 50M Pa

Use the constants to aenerate a plot of compressive stress (MPa) versus shear strain
rate (1/sec):

Given

6

ac2
s+

5

1+ x+In 5o

X [s+ a ( 3c2] VrdotO

Stress(ydot) Find(; c2)

z :=1.. 9

Ydot ='az-'-3; cyc2 :=Stess(ydOt)

tdot T dotplEdot r £dotpl=

Input cofidence interval desired (1=67%. 2=95%. 3=99%): r :=2

WRITEPRN( Y1ELD6B) := augmentj - c2,-

seCI MPa/
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(ll/sec)
Composition: 100% 8084, 0% 1080

-4 -3. 3 -2.5 "2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

log (Strain Rate) (1/see)

Compare predicted compressive yield stress and exDerimentally obtained value:

179.186 189.8

~ :=Stress(E hop\ 0 hoppred 178.065 200.1
af hopprI :edi = St hop;) hoppred = 179.583 hop 208.5MPa

179.583 203.6

mean(O hoppred) = 179.104 MPa mean ( hop) = 200.5 MPa

stdev( hoppred) =0.622 MPa stdev(C hop) = 686 MPa
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Input the loading velocity of the Instron head (Vel}. the inital length of the specimens (Lo).
and the compressive flow stress obtained (oc):

MPa:PalO i:=11..4 ORIGIN := 1 Comooston: 75% 8084. 25% 1080

0.01 15.15

0.10 mm L :=14.81

1.00 sec ° 14.89

2.50] 14.74

67.997

81.961
C := -MPa95.180

100.843

0.154

1.719
STDEV := . MPa

0.599

0.519

Input the modulus of elasticity (E). the Poisson ration (v) and the ambient temperature (O) at the
time of the test. Using these values. calculate the shear modulus () and athermal shear stress (s)

E :=1880.MPa v :=0.33 8 :=298-K

g:= -E = 706.767-Pa
2.(1 +v)

0.077-

1-v

a :=0.20 << assume a = 0.20 >>

s = 81.225-MPa

Calculate the pressure (p) and the shear stress () corresponding to each of the data points:

: c.

i*I I,¥
C.

Pi 3

Define the applied plastic shear strain rate:

Ydotpl =f Vel.

Ydotpl i

0.001secl |
0.O01sec l

0.123.sec"
0.31sec

0.31. -sec' lI

Pi

i MPa1 22.666
237.32

3 31.727

33.614

i
MPa

39258
47.32
54.952

58.222

Input Hopkinson Bar data point:

3000 179.29

hop: = 3600 . sec C hop := 187.32 .MPa Yhop :=J. c hop

3000 182.35

MEANE hop ::mean( M AN hop) := mean (, hop)

STDEV hop := stdev( hop) STDEVa hop = stdev(c hop)
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Calculate dot and A/k=r using equation 6-17. assuming a =0.2

5 0.521

0.604
equiv s= a. equiv = 0678

0.709

do°tpli

Ydotn i := ln sec 

-6.737
-4.404

Ydodn = -2.099

-1.17

linreg :=slope( equivydotln) ' equiv + intercept( equivYdotln)

Plot In(shear strain rate) (1/sec) versus
equivalent shear stress:

Calculate the slope. intercept. and correlation
coefficient for predictive line:

0.5 0.6

corr(I equivldotln) =1

C := slope( eqiv,,Ydot) C = 29.763

B :=intercept(' equiv,ydotln) B =-22.298

0.7 0.8

Ydot0 :=eB C.sec '

103.424

102.314 K

101.284 MP an(

100.849

?dotO and X are as follows:

YdotO = 1746.306&sec - 1

K
X = 101.968' K

MPa
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7 dotln

linregi

-1

-1
n i

equivi

Solve for AdotO and :

-E)

si+ a-pi

u



Using the values below. calculate the shear stress as a function of shear strain rate:

s=81.225 MPa a =0.2 = 101.968 e = 298.K dot0 =1746.306sec
MPa

Input a guess for solver: c2 :=50.MPa

Use the constants to generate a plot of compressive stress (MPa) versus shear strain
rate (1/sec):

Given

6
5

c2
s + a- 1+

· 3 -

Stress(ydot) =Find(a c2)

z :=1..9

Ydot := Z-" s ec a c2 :=Stress(Ydotz )

Ydot YdotplEdot r£dotpl r
4; 4;

Input cofidence interval desired (1=67%. 2=95%. 3=99%): r:=2

WRITEPRN(YIELD7B) := augmen t ,c2
sec-' MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 75% 8084, 25% 1080
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230 -
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110 ------ 
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90-
800

70

60 

50

40
-4 -3.5 -3 -2.5 -1.5 -1 -0.5 0 0.5

log (Strain Rate) (l/sec)

1 1.5 2 2.5 3 3.5 4

Compare predicted compressive yield stress and experimentally obtained value: j := 1.. 3

7 hoppred :=Stress(E hop)

162.775

o hoppred = 164.032 J*MPa
162.775

179.29

a hop = 187.32 MPa

182.35

mean (a hoppred) = 163.194 M-Pa

stdev(a hoppred) = 0.593MPa

mean ( hop) = 182.987-MPa

stdev(a hop) = 3.309 MPa

344

P

.i

I1
U



Zn 
, D

,,mo

uo

00

LLr-

CnoJoo2 00c0 
I _

o

0 0 C)0 0 0 0C4 q q

\
IX1 I - I

I\ I '"i l Im I I I

~~~~~~~~~\?
I II1\1 1 I TI I 'N I 1 1\~~~~~~~~~~~~~~~

I I I . . I I . I I I . , I I - I - I . ., m I I I I .,,

0 0 0
co co o

(edW) ssOJIS Pla! aA!ss9Jdwo )leead

345

c

'-0

._
0

co

UTq 

----· -------------------------



Input the loading velocity of the Instron head (Vel). the inital length of the specimens (Lo).
and the compressive flow stress obtained (ac):

MPa:=Pa-10 i:=1..4 ORIGIN :=1 Compositon: 50% 8084. 50% 1080

0.01 15.15 61.213 0.664

:= 0.10 mm L 14.35 74.165 0.096
1.00 sec ° 14.87 86.508 0.615

2.50 15.38 92.670 0.390

Input the modulus of elasticity (E). the Poisson ration (v) and the ambient temperature (1) at the
time of the test. Using these values. calculate the shear modulus (U) and athermal shear stress (s)

E := 1680-MPa v :=0.33 e :=298-K a :=0.20 << assume a = 0.20 >>

-= E t = 631.579 M Pa
2-(1 +v)

s := 0.077g s = 72.584'MPa
1-v

Calculate the pressure (p) and the shear stress () corresponding to each of the data points:

ac. Cc.I:. '- .
3Pi TM 3

Define the applied plastic shear strain rate:

Pi Ti

i MPa MPa

2.404 5.341
24.722 .819

3 28.836 4 9 .9 4 5

30.89 53.503

Vel. 1
Ydotpli. i=i 1

Ydotpl

O.OO-sec - I

0.013-secI

0.123.sec-

0.298-secI

Input Hopkinson Bar data point:

2500 171.79

E hop= 2500 sec hop: 174.61 Pa Yhop :- hop

2100 176.76

MEANF hop := mean(E hop)

STDEVE hop := stdev(E hop)

MEANo hop := mean (o hop)

STDEVo hop := stdev(C hop)
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Calculate ydotO and A/k= using equation 6-17. assuming a =0.2

5 0.524

Zr~. s~0.61
equvi := is+ apj equiv = 0.687

~ e +quiv+ o'pi / 0.725

0.725

Ydotpli)
Ydotln. =In

-6.737

-4.372

don = -2.097

-1.211

linreg := slope(t equiv dotn). equivt intercePt( equiv, dotln)

Plot In(shear strain rate) (1/sec) versus
equivalent shear stress:

Calculate the slope. intercept. and correlation
coefficient for predictive line:

Ydotlnj

linregi

-1_____, ,1

10
0 _ _ _ _

0.5 0.6

corr(c equiv Ydotn) =1

C :=slope(r equiv'Ydotln) C = 27.93

B := intercept( equivdotn) B =-21.381

0.7 0.8

'c equivi

Solve for ydotO and X:

B +C -I
YdotO:=e .sec

108.564

107.355 K

X =106.227 MPa

105.673

pdotO and X are as follows:

YdotO =698.669-sec - 1

K= 106.955'_
MPa
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Using the values below. calculate the shear stress as a function of shear strain rate:

s = 72.584MPa a=0.2 X = 106.955- K = 298K Tdot0 =698.669'sec
MPa

Inoput a guess forsolver a c2 := 50-MPa

Use the constants to generate a plot of compressive stress (MPa) versus shear strain
rate (1/sec):

Given

6

ac2 ad1ot

z:=1..9

Ydot := 1C-5. -sec c2 :=Stress(ydot)

Ydot Ydo l
£ dot:= Edotpl

Input cofidence interval desired (1=67%. 2=95%. 3=99%): r :=2

WRITEPRN( YIELD8B) := augment(dot-,

sec- MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 50% 8084, 50% 1080

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
log (Suain Rate) (/sec)

Compare predicted compressive yield stress and experimentally obtained value: j := 1.. 3

a hoppred := Stress(E hopj)

( 150.514

o hoppred = 150.514 oMNPa

149.364

171.79

a hop = 174.61 NMPa

176.76

mean (a hoppred) = 150.131 MPa

stdev(a hoppred) = 0.542'MPa

mean (o hop) = 174.387 -MPa

stdev(a hop) = 2.035 MPa
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Input the loading velocity of the Instron head Vel). the inital length of the specimens (Lo).
and the compressive flow stress obtained (c):

MPa:=Pa10 6 i := 1..4 ORIGN := 1 Compositon: 25% 8084. 75% 1080

0.01

0.10 mm
Vel :=

1.00 sec

2.50

15.66

15.75

LO= 15.92

15.30

22.445 0.015

30.087 1.279
Ca := · IPa SllEV := WMPa

49.841 0.698

57.367 2.419

Input the modulus of elasticity (E). the Poisson ration (v) and the ambient temperature () at the
time of the test. Using these values. calculate the shear modulus (u) and athermal shear stress (sl

E:=1125MPa v:=0.33 :=298.K a :=0.20 << assume a = 0.20 >>

:= -E = 422.932 Pa
2 (1+v)

s = 0077 s = 48.606 MPa
1-v

Calculate the pressure (p) and the shear stress () corresponding to each of the data points:

oc.
I

o C.
!_ Pi

p l.5 i. i V

1 7.482

2 10.029
3 16.614

Define the applied plastic shear strain rate: 4 19.122

Ydotpl1 =3 1 |

Loi. -

7dotpli

0.00I secl

0.01l sec-

0.114 sec -

0.298 sec

MPa

17.371

28.776
33.121

Input Hopkinson Bar data point:

2800 145.16

2600 1 140.00
E hop 2900 Cse a hop :=137.79 MPa hop p: 3 hop

3000 147.00

MEANe hop := mean( hop) MEAN hop := mean ( hop)

STDEV hop := stdev(E hop) STDEVo hop : = stdev( hop)
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luation 6-17. assumin a=0

Calculate vdotO and Mak= using equation 6-17. assuming a =0.2

0.324

0.41

' equiv = 0.611

0.682

(Ydotpl. 
IYdotln. :=lnsec -1see

-6.787

-4.483

dod -2.173

-1.21

lireg slope ( equiv' ydotln) equiv intecet( equiv' dodtn)

Plot In(shear strain rate) (1/sec) versus
equivalent shear stress:

Calculate the slope. intercept. and correlation
coefficient for predictive line:

-1 -

Ydotii -6 
c -5g

hinreg --
- -3 

0.3 0.4 0.5 0.6 0.7

r quivi

corr(z equivYdotLn) =0.985

C :=slope((r equiv,y dotn) C =14.647

B :=intercept( equiv,¥Ydotn) B =-11.088

0.8

Solve for dotO and X:

C-

si - api
YdotO := e sec-

87.116

86.239 K e

84.052 MPa

83.248

IdotO and X are as follows:
"I _ C1 7o1

K
X = 85.164 

MPa
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Using the values below. calculate the shear stress as a function of shear strain rate:

s =48.606-MPa a =0.2 X =85.164- K =298'K Ydot0 =35.127sec-
MPa

Input a guess for solver: a c2 :=50.MPa

Use the constants to generate a plot of compressive stress (MPa) versus shear strain
rate (1/sec):

Given

6

[ In( 3 do

e[s+ a·~j~) i I dotO
4. + a.

Stress(ydot) Find( c2)

z :=1.. 9

'dot :=(0Iz5 -)sec& Cc2 =Stress (y dOt)

-Ydot Tddotpl
dot d- dotpl 

Input cofidence interval desired (1=67%. 2=95%. 3=99%): r :=2

WRITEPRN( YELD 10B) := augment E- dot ,-c2
se- MPa
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I II 'l

Compressive Flow Stress (MPa) versus Log(Strain Rate)(11sec)
Composition: 25% 8084, 75% 1080
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Compare predicted comrressive yield stress and experimentally obtained value:

Ohoppred:= Stress(8 hop,)

132.077

131.439
(3 hoppred--- °MPa

hopp d 132.38

132.672

mean(ahopred) = 132.142MPa

stdev(a hoppred) = 0.457'MPa

145.16

140
a hop = 137.79 *MPa

147

mean(a hop) = 142.488 MPa

stdev(o hop) = 3.734'MPa
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Inut the loading velocity of the Instron head (Vel. the inital length of the specimens (Lo).
and the compressive flow stress obtained (oc):

MPa :=Pa-106 i := 1..4 ORIGIN := 1

[0.01 15.80 72.00

W: 0.10 .m . 15.54 O 75.34

1.00 sec ° 15.46 c 81.07

2.50 15.27 84.45

Input the modulus of elasticity (E). the Poisson ration
time of the test. Using these values. calculate the st

E:=2020-MPa v:=0.33 :=298-K a:

Eg ':---p-, =!E =759.398 -MPa
2.(1+ v)

s := 0.077 s = 87.274.MPa
1-v

Calculate the pressure () and the shear stress (r) c

c. ac.
p. := ':=

3 

Define the applied plastic shear strain rate:

Vel. i

Ydopl.L I

,,0.296sec

356

Compositon: 100% 8084. 0% 1080

0.511

10.06
·MPa STDEV:= MPa

rI 10.11

0.74

() and the ambient temperature (O) at the
hear modulus (y) and athernal shear stress (s)

=0.20 << assume a = 0.20 >>

orresponding to each of the data points:

Pi Xi

MPa MPa

1 24 41.569
2 25.113 43.498

3 27.023 46.806
4 28.15 48.757



Calculate vdot0 and A/k= using eauation 6-17. assumin a = 0.2

s 0.515

I 2. \6 0.534
r equiv := 'r equiv = 0.566

0.584

-6.78

-4.459
'Ydo = -2.148

-1218

liUnreg : slope(I equiv'ydoun) c equiv+ intercept( equiv'Ydotn)

Plot In(shear strain rate) (1/sec) versus
equivalent shear stress:

Calculate the slope. intercept. and correlation
coefficient for predictive line:

1 -1 -- --9----
_,~~~~~ ~~~ __ , i

, -

n,

0.5 0.52 0.54 0.56

t equivi

corr( equiv,Tdotin) =0.987

C :=slope(reuivdotln) C =79.414

B :=intercept( equivYdot1n) B =-47.328

0.58 0.6

Solve for dot0 and :

C-O

X := -s + aPj
B+C -I

YdotO:=e *sec

257.024

256.404 K

255.347 MPa

254.728

x :=mean(X)

?dot0 and X are as follows:

YdotO = 8.603- 1013 sec - l

K
X = 255.876 K

MPa
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Using the values below. calculate the shear stress as a function of shear strain rate:

s = 87.274MPa a =0.2 =255.876 K e =298,K ydoto=8.603-1013 sec-
MPa

Input a guess for solver. a c2 : = 50M Pa.

Use the constants to generate a plot of comressive stress (MPa) versus shear strain
rate (1/sec):

Given

6

1 [i Inof Td

X~s+ l~j~~l YdotOit S+ a.(~f dt) 

Stress(YdOt) :=Find( c2)

z :=1..9

ydot ;= 1 0 z,5-se c2 :=Stress(Ydotz)

Ydot t _ Ydotpl
Edot rdotpl

Inout cofidence interval desired (1=67%. 2=95%. 3=99%): r :=2

WRITEPRN(YIELD6A) :=augment-c2
secI MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(11sec)
Composition: 100% 8084, 0% 1080
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Input the loading velocity of the Instron head (Vel). the inital length of the specimens (Lo).
and the compressive flow stress obtained (ac):

MPa:=Pa10 6 i:=1..4 ORIGIN :=1

0.01

0.10 mm

1.00 sec

2.50

Compositon: 75% 8084, 25% 1080

15.15 59.09 0.15

14.81 62.84 0.54
Lo:= . amm , := 'MPa STDEV := MPa

14.89 68.34 0.60

14.74 71.18 J 0.42

Input the modulus of elasticity (E). the Poisson ration (v) and the ambient temperature (0) at the
time of the test. Using these values. calculate the shear modulus () and athermal shear stress (s)

E :=1880.MPa v :=0.33 9 :=298-K a :=0.20 << assume a = 0.20 >>

t :=' -E =706.767oMPa
2.(1 +v)

s:= 0077 s = 81.225.MPa
1-v

Calculate the pressure (p) and the shear stress () corresrondina to each of the data points:

" C.
'T '

Pi
vi - 3 - _

3 i MPa

19.697
20.947

3 22.78

Define t he applied plastic shear strain rate: .727

7 dotpl i:=~'[ iVel.

MPa

36.281

39.456
41.096

T dotpl.

.001secI
0.012-sec-'

0.121-sec-

0.305.sec - I
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Calculate ydotO and A-/k= using equation 6-17. assuming a =0.2

5

' q Iv
x equiv .s + api

0.467

0.49
'c equiv = 0.524

0.541

¥dot pl.i

'dotln i=ln Sec,

-6.742

-4.415

¥dotln =-2.114

-1.186

linreg := slope ( equivYdotin) .' equiv + intercept(x equiv, Ydotln)

Plot In(shear strain rate) (1/sec) versus
eauivalent shear stress:

Calculate the slope. intercept. and correlation
coefficient for predictive line:

1
"8 

i i( , -7_ __,-4 - - -\

-3__-2 _ 1fi
-1n II

0.4 0.45 0.5

equivi

corr('r equiv, dotln) =0.994

C :=slope( eqviv,'dOln ) C =74.358

B :=intercept( quivdon) B =-41.176

0.55 0.6

Solve for 2dotO and v:

C.O

S + api
=B+C .sec-YdotO :=e

260.187

259.425 K

258.316 MPa

257.748

X :=mean(X)

ydotO and X are as follows:

dot = 2.575- 10 14 'sec -

X = 258.919. K
MPa
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Using the values below. calculate the shear stress as a function of shear strain rate:

s =81.225MPa a =0.2 X =258.919 - 0K=298K YdotO=2.5751014 sec
MPa

Input a guess for solver c2 :=SO-MPa

Use the constants to generate a plot of compressive stress (MPa) versus shear strain
rate (1/sec):

Given

6

a c2 '7 dot

Stress(ydot) Find( c2)

z:= 1.. 9

Ydot a=lC sec a c2 :=Stress(ydOtz)

do dot '._ Ydotpl
Edot tp

Input cofidence interval desired (1=67%. 2=95%. 3=99%) r :=2

WRITEPRN( YIELD7A) augment dot ,
sec - 1 MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 75% 8084, 25% 1080
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Input the loading velocity of the Instron head (Ve. the inital length of the specimens (Lo).
and the compressive flow stress obtained (rc):

MPa :=Pa 106 i : 1.. 4 ORIGIN := 1 Compositon 50% 8084. 50% 1080

0.01

0.10 mm
Vel := I -

1.00 sec

2.50

15.15

14.35
Lo := . mm

14.87

15.38

[47.40 0.54

.=[I 50.30 :=0.45C .7 .MPa STDEV a
54.77 I :0.34 

57.22 0.73

Input the modulus of elasticity (E). the Poisson ration (v) and the ambient temperature () at the
time of the test. Using these values, calculate the shear modulus (u) and athermal shear stress (s)

E := 1680-MPa v :=0.33 :=298-K a :=0.20 << assume a= 0.20 >>

R:= E i =631.579 MPa
2.(1 +v)

s := .77 s = 72.584'MPa
1-v

Calculate the pressure (p) and the shear stress () corresponding to each of the data points:

ac.
Pi := 3

ac.
.

i3

Define the applied lastic shear strain rate:

Pi ! i

i MPa MPa

1 15.8 27.366

2 16.767 29.041
3 18.257 31.621

4 19.073 33.036

T dotpl.

7dotpl

0.001 -sec-

0.012 sec;

=.12-sec-l

0.291-sec-
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Calculate vdotO and A/k-- using equation 6-17. assuming a = 0.2

5 0.428

r. Z 0.449 dotl.
'c equv= i eqquiv = 0.48 'Ydotln i := i s

0.497

linreg := sope(T equiv' dotn). equiv + intercept( equiv, dotln)

Plot In(shear strain rate) (1/sec) versus
equivalent shear stress:

Calculate the slope. intercept. and correlation
coefficient for predictive line:

-1I

-1

0.4 0.42 0.44 0.46

x equivi

corr(' equiv,Ydotln) =0.99

C :=slope( quivYdotln) C =78.82

B :=intercept(r eqiv'dotn) B =-40.165

0.48 0.5

Solve for ?dotO and :

C.e
i -pis t 'p i

dotO : e B +Csec 1

310.102

309.312 K
X = 308.103 * aa X :=mean(X)308.103 445a

307.445

?dotO and X are as follows:

ydot0 = 6.13 8 - l016 sec-

X = 308.74. K
MPa
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Using the values below. calculate the shear stress as a function of shear strain rate:

s = 72.584-NMPa a = 0.2 X = 308.74- K =298-K ¥dot =6.138 1016 sec
MPa

Input a guess for solver. c2 : = 50MPa

Use the constants to generate a plot of compressive stress (MPa) versus shear strain
rate (lsec):

Given

6

a c2

4; .
a( InC2)] dotO) 

x.IS+ 1·j~l dotO

Stress(YdOt) :=Fnd( c2)

z :=1..9

Tdot =1 5.N;.secS ac2 :=Stress(TdOt)

'Ydot Ydotpl
E dot dotpl

Input cofidence interval desired (1=67%. 2=95%. 3=99%): r :=2

WRITEPRN(YIELD8A) := augment dot 
sec- MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 50% 8084, 50% 1080

180 --
170 -

160

150

140

130 .

120 
.110

0100

90 -

a
50

40 

30 

20 --

10 

0
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

log (Strain Rate) (lsc)

1 1.5 2 2.5 3 3.5 4
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Input the loading velocity of the Instron head (Ve., the inital length of the specimens (Lo).
and the compressive flow stress obtained (ac):

Pa:=Pa-106 i:=1 .. 4 ORIGIN:=1 Compositon: 25% 8084. 75% 1080

0.01 15.66 20.54 0.60

0.10 mm 15.75 26.31 a SDEV 1.05
Vel := 0 15 .m c:= *MPa ST.DEV :=. *MPa1.00 sec ° 15.92 c 36.99 0.45

2.50 15.30 40.68 1.031

Input the modulus of elasticity (E). the Poisson ration () and the ambient temperature (8) at the
time of the test. Using these values, calculate the shear modulus (U) and athermal shear stress (s)

E :=1125.MPa v :=0.33 :=298K a :=0.20 <<assume a = 0.20 >>

E
At= E g =422.932 MPa

2.(1 +v)

s:= 0077- s = 48.606MPa
1-v

Calculate the pressure (p) and the shear stress () corresonding to each of the data points:

oc, ac. p. t.a C, CY i Pi oi
Pi 3 MPa MPa3 ·13 i MPa MPa

1 6.847 11.859
2 8.77 15.19

3 12.33 21.356

Define the applied plastic shear strain rate: 1 234871

Ydotpl :='

Ydotpl

0.001 seCC-

0.01 sec-

0.112.sec

0.294 sec- l
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Calculate ydotO and A/k=X using equation 6-17. assuming a =0.2

5 0.302

ii 0.368
equiv, := ( c +-pi ' equiv = 0.484

0.521

dotpli

dotlni :=n sec 

-6.789

-4.486

-2.185

-1 .2 2 5

liareg :=slope( equivYdodn) equiv + intercet('c pt( e I'Ydotln)

Plot In(shear strain rate) (1/sec) versus
equivalent shear stress:

Calculate the slope. intercept. and correlation
coefficient for predictive line:

dotgn

linregi

-1
-9

0.2 0.3 0.4 0.5 0.6

equivi

corr( euivi'don) = 0.993

C :=slope( equivdotdn) C = 24.312

B :=intercept( equiv, dotln) B =-13.851

Solve for ?dotO and X:

B+C -1se
YdotO:=e *sec

144.973

143.866 K
X = 141.86 ' X:=mean(X)

141.86 MPa

141.18

?dot0 and X are as follows:

YdotO = 34934.045-sec -

X = 142.97'
MPa

372
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Using the values below. calculate the shear stress as a function of shear strain rate:

s =48.606MPa a =0.2 X = 142.97- 298K do34344sec
MVPa

Input a guess for solver: a c2 :=50MP a

Use the constants to generate a plot of compressive stress (MPa) versus shear strain
rate (1/sec):

Given

6

a c2

=3 -

Stress(ydot) :=Find(a c2)

z :=1..9

Ydot :=10z-. F3 se' Oc2 :=Stress(ydot)

Ydot Ydotpl
£ dot E dotpl 

Input cofidence interval desired (1=67%. 2=95%. 3=99%): r :=2

(Edot °C2\
WRITEPRN( YELD 10OA) := augment - ,-

sec 1 MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 25% 8084, 75% 1080

-4 -3.5 '3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

log (Strain Rate) (l/sec)
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Appendix E
Hopkinson Bar Test Results

Testing

100% Derakane / 0% Crestomer 378

75% Derakane / 25% Crestomer 398

50% Derakane / 50% Crestomer 413

25% Derakane / 75% Crestomer 428

0% Derakane / 100% Crestomer 448

All Load Rates

100% Derakane / 0% Crestomer 463

75% Derakane / 25% Crestomer 467

50% Derakane / 50% Crestomer 471

25% Derakane / 75% Crestomer 475

0% Derakane / 100% Crestomer 479

377
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General Definitions:

ORIGIN:= 1 S :=sec. 1-6

% Derakane 8084: 100 %Crestomer 1080: 0 Trial: 1 of 4

L := 10 GPa :=Pa.109

GF:=2.1 V O:=30 Ebar:=210.GPa Dbar:=0. 75 -in

MPa := Pa- 106
bar 2

4
Abar = 285.023'mm 2

Read and calibrate reflected strain file:

refleted :=RADPRN(HDCOER) refl=reflet<1> timeer =2>refected ecEreflected :=READPRN(HD1C0ER) Srefl :Sreflected tmee reflected SeC

er :=1.. rows( refl) << set up range >>

4 E refl
refl 

GF.V O

<< apply calibration >>

reflr

g

2000
1500

1000

500

0

-s00
-1000(
-1500
-nrn

0 50 100 150 200 250 300 350

time
er.

Read and librate transmitted 

Read and calibrate transmitted strain file:

-
A

400 450 500 550 600

Etransmitted := READPRN(HD1COET) t

et := 1.. rows(£ trans) << set up range >>

tans := transmitted
<1> t<2>

time t:= e transmistted

-' C trans
E trans =

GF.V O
<< apply calibration >>

<< shift pre-reflected signal to a strain of zero >>

200 - - - -150
100 Z'
50
0 - -

-50
-100 -
-150 .
-200 

378

.sec

£ ransc

A

0 50 100 150 200 250 300 350 400 450 500 550 600

time ett

JAS

I

I

F i--
-r

1

1 . /f . ----
---- I . l ~t

I / i 3 i
. I \

_t I
%ltf -_

trans := trans - trans
1800



Calculate the strain rate in the sample:

m
C :=5000-- << longitudinal wave speed for,

sec
IC 2

L :=5.78-mm D :=7.77-mm A:=-.D 04 
-2-C 

E rate refi
a L 0 ar

a
-I

<< inital specimen length, diameter, and Acs >>

5000 - -

4000 - - -- .
3000 - .-
1000

-2000 --1OO \ '
-3000 --
-4000 -…

-5000 -.

0 50 100 150 200 250 300 350 400 450 500 550 600

time e

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=180 fin :=400 At :=O.I. S

Plot the selected reflected ulse below:

£ rate
ar

-1
sec

5000
4000
3000
2000
1000

0
-IUWIJ_Iuuu
-2000
-3000
-4000

180 200 220 240 260 280 300 320 340 360 380 400

timer
jCtS

379

E_

--

i

I
.

i

=i
E

I
I

14

I
- - I

--

--
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I 1:1

Convert above times to vector indices (data collected at 0.1uS intervals) and calculate max strain:

start :=start- 10 fin :=fin10

fin e rate + rate
E maxng ' - At. n+ =-0.386 <<max eng. strain >>

n = start

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start, start + index.. fin

i E rate rate

£eng:= 2 << numerical integration by rectangle rule >>
n = start

Plot the engineering strain with respect to the selected time index (). Each time index (i)

-2.77611{

E eng i

1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

i

Calculate the axial compressive engineering stress in the sample:

A bar
o eng ' A bar'- trans

O

0 50 100 150 200 250 300 350 400

time

380

450 500 550 600

z2o

eager

MPa

IUu

0

-100

-200

-300
~.t

represents 0.1 Il:

-
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Using the same index (i) from the enaineering strain calculation. draw a plot of engineering stress
versus enaineerina strain:

A bar
engi A 0a eg :=* AbE bar. trans, index- 10

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

=gi

The maximum compresssive stress is: min(a eng) =-205.176 *MPa

Calculate true (logaritmic) strain in the specimen:

true, :=n( eng i+ min( true) =-0.488 <<maximum compressive true strain>>

Calculate true stress in the specimen:

true :=engi enIT

NI

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

E truci

The maximum compresssive true stress is: min(a true) =-189806 MPa

381
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I 1.1

Supplemental note: This stress strain curve represents a specimen composed of 100% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester. The raw data was obtained on a
commpression split Hopkinson bar located at the California Institute of Technology in a testing
session from 4/20/95 to 4/21/95. The temperature at the time of the test was 71.6 F and the
relative humidity was 32.3%. The raw data files have been archived in compressed form under the
following names:

1. WAVE0054.WFT is the reflected pulse file.
2. WAVE0055.WFT is the transmitted pulse file.
3. WAVE0056.WFT is the measured temperature file.

Write true stress and strain data to a .m file:

D1COT1 :=augment(e true' a 

WRITEPRN(D1COT1) :=D1COT1
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% Derakane 8084: 100 %Crestomer 1080: 0 Trial: 2 of 4

ORIGIN:=1 pS:=sec 16 6 .:= 10 6

GF:=2.1 VO :=30 Ebar:=210.GPa

Read and calibrate reflected strain file:

reflected :=READPRN(HDLCOER2) reft

er :=1.. rows(E refl) << set up range >>

refler

Az

2000

1500

1000

500

0

-1006

-1500
__nnn

0 50

5

GPa :=Pa 109

D bar :=0.75-in

MPa :=Pa.l1O

Abar .Dbar
4

A bar = 285.023 'mm

=e <1> &WLE<2>
reflected time er = reflected Sec

e refl :- r << apply calibration >>
GF.V0

100 150 200 250 300

time ra
!IS

Read and calibrate transmitted strain file:

<1>
E transmitted := READPRN(HDICOET2) e trans := transmitted

4 e trans
et 1.. rowss << setup range>> trans ' 

S\E trans) this I- GFV 0

N
/

350 400 450 500 550 600

<2>
time et = e transmitted sec

<< apply calibration >>

trans :=E trans- trans 80 << shift pre-reflected signal to a strain of zero >>

EL

383

0 50 100 150 200 250 300 350 400 450 500 550 600
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Calculate the strain rate in the sample:

m
C := 5000- < longitudinal wave speed for steel>>

sec
:' 2

Lo:=6.80-mm D :=7.77-mm A :=-*D

-2-C o
£ rate := - refl

r Lo 

<< inital specimen length, diameter, and Acs >>

3000 -
2000

re 1000 -' 
0 -- -- -

1 -2000 ------' ' -
0 50 100 150 200 250 300 350

time

AS

400 450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=180 fin :=400 At :=O.I.pS

Plot the selected reflected pulse below:

5000
4000
3000
2000
1000
_ O

-1000
-zuw_,(J
-300a

-4Um

-sow
180 200 220

I

240 260 280 300 320

time

gs

340 360 380 400

384

Erate
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-1
Sec
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Convert above times to vector indices (data collected at 0.1lS intervals) and calculate max strain:

start :=start-10 fin :=fin.10

fin

£ maxeng = E
n = start

Erate + E rate
At- n n+

2
£ maexng =-0.317 << max eng. strain >>

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start,start+ index.. fin

i

e .- v At.' eng - L j
n = start

rate +I rate
a ni-i

2 << numerical integration by rectangle rule >>

Plot the engineering strain with respect to the selected time index (il. Each time index i)

-2.776'10

£ egi

0.1

-17_0.- == ' ,
-0.4 - --

1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Calculate the axial compressive engineering stress in the sample:

F eng A .E bar-' trans
O

200

100

0

-100

-200

-30C

fA Pt

0 50 100 150 200 250 300 350 400 450 500 550 600

time

ii
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Using the same index (i) from the engineering strain calculation. draw a Iot of ineering stress
versus engineering strain:

Abar 
aeng, := . bare trans. index = 10

0 -0.05 -0.1 -0.15 "0.2 -0.25 -0.3 -0.35 -0.4 0.45 -0.5

8eag i

The maximum compresssive stress is: min (o eg) =-216.076 -MPa

Calculate true (logaritmic) strain in the specimen:

ue=In(C eng + i) min(true)=-.382 <<maximum compressive true strain >>

Calculate true stress in the specimen:

atrue i :=eng (E eng+ I)I Id1

0 -0.05 -0.1 -0.15 "0.2 -0.25

True Strain

The maximum compresssive true stress is: minm( true) =-200.044 MPa

386
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Supplemental note: This stress strain curve represents a specimen composed of 100% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester. The raw data was obtained on a
commpression split Hopkinson bar located at the California Institute of Technology in a testing
session from 4/20/95 to 4/21/95. The temperature at the time of the test was 71.6 F and the
relative humidity was 32.3%. The raw data files have been archived in compressed form under the
following names:

1. WAVE0057.WFT is the reflected pulse file.
2. WAVE0058.WFT is the transmitted pulse file.
3. WAVE0059.WFT is the measured temperature file.

Write true stress and strain data to a p.m file:

a true
D1COT2 :=augment true, MPa /

WRITEPRN(D1COT2) :=D1COIT
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General Definitions:

ORIGIN:=1 pS :=sec 10 6

% Derakane 8084: 100 %Crestomer 1080: 0 Trial: 3 of 4

1:=1O 6 GPa:=Pa.10 9

GF:=2.1 V :=30 Ebar:=210.GPa Dbar:=0.75.in

MPa :=Pa-10
bar 2

Abar:=.D bar
4

Abar = 285.023 *mm

Read and calibrate reflected strain file:
<1>

Ereflected :=READPRN(BD1COER2) refl := reflected
<2>

time er := E reflected *sec

er :=..rows( refl) << set up range >>

4 e refl

Erefl =
GF.V O

<< apply calibration >>

5000 
4000 
3000 
2000 _- 
1000 

430 0 -

0 50 100 150 200 250 300 350

time

MS

Read and calibrate transmitted strain file:

400 450 500 550 600

£ transmitted = READPRN(BD1COET2) E trans : = E transmitted
<2>

time et : = transmitted *sec

et := .. rows( trans) << set up range >> e tran s
GF.V O

<< apply calibration >>

trans :=£ trans - trans 801800

E transc

et

500
400
300
200
100

0
-lUU

-200
-300
-400
-50

<< shift pre-reflected signal to a strain of zero >>

388
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Calculate the strain rate in the sample:

C :=5000- << longitudinal wave speed for
se

:- 2
L:=5.43'mm D :=8.02mm A :=-DO

-2-C o
rate := ref

er Lo 

<< inital specimen length, diameter, and Acs >>

8000 - - - - - - -

6000 -------

rater 4000 I --

a 2000 -

-1 1
°0 I 0 ' / I I 

-A°°°1, - - I~ ; ',, 
0 50 100 150 200 250 300 350 400

time
Cr

450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=230 fin :=410 At :=O.1-S

Plot the selected reflected pulse below:

1000
500

0
- 50

-1000
-1500
-200(
-250
-300(

3500
-ArM

/

230 250 270 290 310 330 350 370 390

time e

389S

389

410

£ rater

-1
sec

r
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Convert above times to vector indices (data collected at 0.1uS intervals) and calculate max strain:

start :=start 10 fin :=fin10O

fin

£ maxeng -= 

n = start

e rate t rate
2 n+1
2

E maxng =-0.396 << max eng. strain >>

Calculate the engineering strain vector by numerical integration of the strain rate:

i := stat,start+ index.. fin

i

£ eng := E At.

n = start

rate + rate

2 << numerical integration by rectangle rule >>

Plot the engineering strain with respect to the selected time index (i). Each time index (i)
represents 0.1 S:

engi

2300 2500 2700 2900 3100 3300 3500 3700 3900 4100

i

Calculate the axial compressive engineering stress in the sample:
A bar

CY eng A E A bar' E trans
0

0 50 100 150 200 250 300 350 400

time r
Qet

450 500 550 600

390
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Using the same index (i) from the engineerina strain calculation. draw a plot of engineering stress
versus engineering strain:

Abar
eng := A.E bar.0 trans

A 0 1A
index- 10

--M 1-220-200 ,_-1=0

C ngi l 4 0 
- 120 -- - -

MPa -100 -

-2 -
n~~ ~~ ~~ ~~~ ~~~ -, - - - - , - -

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

The maximum compresssive stress is: min(o eng) =-235.313 'MPa

Calculate true (loaaritmic) strain in the specimen:

Etrei :=n( engi ) min(E true) =-0.506 c<< maximum compressive true strain >>

Calculate true stress in the srecimen:

O true. := engi ( eng + )

/hU~

true. -

MPa

'180
-160
-140

'10C
-80
-6C

40
-20

t(

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

The maximum compresssive true stress is: min( true) =-208.491 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester. The raw data was obtained on a
commpression split Hopkinson bar located at the California Institute of Technology in a testing
session from 4/20/95 to 4/21/95. The temperature at the time of the test was 71.6 F and the
relative humidity was 32.3%. The raw data files have been archived in compressed form under the
following names:

1. WAVE0015.WFT is the reflected pulse file.
2. WAVE0016.WFT is the transmitted pulse file.
3. WAVE0017.WFT is the measured temperature file.

Write true stress and strain data to a .pm file:

a true
D1COT3 :=augment true, MPa 

WRITEPRN(D1COT3) :=D1COT3
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% Derakane 8084: 100 %Crestomer 1080: 0 Trial: 4 of 4

ORIGIN:= pS:=sec. 10 6 := 10

GF:=2.1 Vo:=30 Ebar:=210-GPa

GPa:=Pa-10 9 MPa :=Pa-106

D bar :=0.75-in
bar 2

Abar := .Dbar
4

A bar = 285.023 mm2

Read and calibrate reflected strain file:
<1> ime 2>

Ereflected :=READPRN(BD1COER3) re flecd he:=ectefid Sec

er :=1.. rows( refl) << set up range >>
4. refl

S refl
GF-V o0

<< apply calibration >>

5000

4000
3000 -

2000 -

Crefir 1000 …
_ _ ,- - - __ I- -2000 _ -----
-,;nnn 0 ~

Ct 4

0 50 100 150 200 250 300 350 400 450 500 550 600

time
er

pS

Read and calibrate transmitted strain file:

< >anstte R DR(
transmitted : = READPRN(BD1COET3) trans := Ftransmitted ime et = transmitted <2>secmet: Etransmitted *sec

et :=1.. rows(E trans) << set up range >>
4-E trans

E trans
GFV 0O

<< apply calibration >>

trans =trans- trans2300

500
400
300
200
100

0

-200
-300
-400

0

<< shift pre-reflected signal to a strain of zero >>
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Calculate the strain rate in the samrnple:

C := 5000-- << longitudinal wave speed for steel >>
Sec

1x 2
Lo:=5.46mm D o :=7.87-mm Ao :=-D 

4
-2.C o

e rate :=- £ refl
a L ro

<< inital specimen length, diameter, and Acs >>

8000 I - -
7000 -
6000 
5000 - -
4000 -_

E rater 3000

-1 1000 -sec 0

-100C --

-Alfit - - - - - - - - - - - -
0 50 100 150 200 250 300

time er
pS

350 400 450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start:=230 fin :=410 At :=O.lI.S

Plot the selected reflected pulse below:

I ou
500 ....

o -'- ----500
-1000 __

-1500

-2000

-3500 -7- I

230 250 270 290 310 330 350

time

AS

370 390 410

394

E rate
er

-I
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Convert above times to vector indices (data collected at 0.luS intervals) and calculate max strain:

start :=start-1O fin :=fin.1O

E rate t raten n+l
At. 

2
e maxeg =-0.396 << max eng. strain >>

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start, start+ index.. fin

-eng - Li t
n = start

E rate + e rate
n n+f

2 << nuhnerical integration by rectangle rule >>

Plot the engineering strain with respect to the selected time index (i). Each time index (i)
represents 0.1uS:

£eag i

2300 2500 2700 2900 3100 3300 3500 3700 3900 4100

Calculate the axial compressive enaineerina stress in the sampoie
Abar

eng A *E bar 'E trans
O

20C

15C

10

u

-5{

-10(

ao

)O )

- - -~~~~- --- - - - -3 0- -- --- -0I

0 50 100 150 200 250 300 350 400 450

time r

j.L

500 550 600
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Using the same index (i) from the engineering strain calculation draw a plot of engineering stress

versus engineering strain:

bar
aengi := bar' trans.

A0

Cngi

MPa

index 10

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

engi

The maximum compresssive stress is: min(a eng) =-226.244 MPa

Calculate true (logaritmic) strain in the specimen:

true. :=n( engi 1) min( true) =-0.506

Calculate true stress in the specimen:

<< maximum compressive true strain >>

aue. :=engi.( eng+ I)

-zU

-180
-rIx

-A1

a true.I

MPa

-60
-40
--,)

0
!i

0 -0.05 -0.1

The maximum compresssive true stress is: min(a true) =-203.56 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester. The raw data was obtained on a
commpression split Hopkinson bar located at the Califomia Institute of Technology in a testing
session from 4/20/95 to 4/21/95. The temperature at the time of the test was 71.6 F and the
relative humidity was 32.3%. The raw data files have been archived in compressed form under the
following names:

1. WAVE0018.WFT is the reflected pulse file.
2. WAVEOO1.WFT is the transmitted pulse file.
3. WAVE0020.WFT is the measured temperature file.

Write true stress and strain data to a .m file:

D1COT4 :=augment true' MPa 

WRITEPRN(DICOT4) :=D1COT4

397
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I 1.1

General Definitions: % Deraka

ORIGIN:=1 S :=sec-1( 6 p :=106

GF :=2.1 V O :=30 Eba r :=210.GPa

Read and calibrate reflected strain file:

reflected :=READPRN(HD7C2ER1) refl

er :=1.. rows( refl) << set up range >>

ne 8084: 75 %Crestomer 1080: 25 Trial: I of 3

GPa :=Pa 109

D bar :=0.75-in

MPa :=Pa.106

bar 2
Abar := .D bar

4
Aba = 285.023mm2

<1> <2>
=reflected timer := reflected sec

4 refi l
Eref :- << apply calibration >>

GF.V

U

0 50 100 150 200

-l
250 300 350 400 450

time

PS

500 550 600

Read and calibrate transmitted strain file:

E transmitted := READPRN(HD7C2ET1) trans := transmitted timeet := transmitted sec

trans.~ tasitd4 trans
et:= 1 . rows( trans) << set up range >> ts << apply calibration >>

£ tras = trans- « sans2 <<shift pre-reflected signal to a strain of zero >>'trans := trans-trans 2 000 << shift pre-reflected signal to a strain of zero >>

ZUU-

150 
100 -

50
50 …- . -. -0 - ______ -…

-5 -

-100

-200- -- --I - - -

50 100 150 200 250 300 350 400

time et

ls

450 500 550 600
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Calculate the strain rate in the sarnple:

C := 5000-- << longitudinal wave speed for;
Sec

IC 2
Lo:=5.63-mm D :=8.00m m A :=-.D 

4
-2-C 

Erate := E ref
r Lo L0

<< inital specimen length, diameter, and Acs >>

5000 

4000 -
3000
2000Erater 1000-- ---- - -

-10 000 -I- -

-400 - -7 7
-C.AM I I I

0 50 100 150 200 250 300

time
oa

350 400 450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=200 fin :=420 At :=O0.1.S

Plot the selected reflected pulse below:

N,

200 220 240 260 280 300 320 340 360 380 400 420

time 

PS
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I I

Convert above times to vector indices (data collected at 0.1uS intervals) and calculate max strain:

start :=start 10 fin :=fin10

fin crate + Erate
E maxg : = , tn at e =enI g =-0.375 << max eng. strain >>

n = start

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start, start + index.. fin

e rate + e rate

-engi:= t 2 << numerical integration by rectangle rule >>
n= start

Plot the engineering strain with respect to the selected time index (i). Each time index (i)
represents O.luS:

E ngi

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

i

Calculate the axial compressive engineering stress in the sample:
A bar

CY eng A *E bar' trans
o

100 150 200 250 300 350 400 450

time 

ii

500 550 600

400

200

100

0
MPa

0 50
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Using the same index (i) from the engineerin strain calculation, draw a plot of engineerin stress
versus engineeringa strain:

A bar
a eng i : .E bar-E trans.

A 0 1
index5 10

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

engi

The maximum compresssive stress is: min(a eng) =-195.363 MPa

Calculate true (logaritmic) strain in the specimen:

E truei :=ln( eng,+ 1) min( true) =-0.47 << maximum cor

Calculate true stress in the secimen:

true. engi ( engi )! \I

a

h

npressive true strain >>

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

£ ruci

The maximum compresssive true stress is:
min(a true) =-179.287 -MPa
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I .1

Supplemental note: This stress strain curve represents a specimen composed of 75% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 25% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0048.WFT is the reflected pulse file.
2. WAVE0049.WFT is the transmitted pulse file.
3. WAVE0050.WFT is the measured temperature file.

Write true stress and strain data to a .pm file:

D7C2T1 :=augment (eu, MPa e

WRITEPRN(D7C2T1) :=D7C2T1
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% Demakane 8084: 75 %Crtomer 1080 25 Trial: 2 of 3

ORIGIN :=1 S :=sec' 10 6 p := 10 6 GPa:=Pa-109

GF :=2.1 V O :=30 Ebar :=210-GPa Dbar :=0.75-in

MPa :=Pa 106A 2
Abar :=-D bar

4
A bar = 285.023 *mm2

Read and calibrate reflected strain file:
<1>

Zreflected :=READPRN(HD7C2ER2) rel:=<rcfec 1
time er:= ef e<2>timer :reflected sec

er := 1.. rows(E refl) << set up range >>
4- rei l

refl :=
GF.V0

<< apply calibration >>

2000- - --

1000- - --0 7 - - - _ 
-1w00I --- ==-- = -r

0 50 100 150 200 250 300 350 400

timc er

Read and calibrate transmitted strain file:

<1>
c transmitted := READPRN(HD7C2ET2) e trans := transmitted

450 500 550 600

<2>
time et = transmitted sc

et := 1.. rows(£ trans) << set up range >>
4-E trans

G trans G << apply calibration >>

£ trans : trans- trans 5 0 0 << shift pre-reflected signal to a strain of zero >>

50 100 150 200 250 300 350 400 450 500

time t

its
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Calculate the strain rate in the sample:

C := 5000.-- << longitudinal wave speed for steel >>
sec

x 2Lo :=4.49-mm D :=9.54-mm Ao :=-.D << inital specimen length, diameter, and Acs >>
4

-2-C O

Erate -: ' ref
r L eor

0 50 100 150 200 250 300 350 400 450 500 550 600
time

ar

Calculate the strain in the samle:
Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=150 fin :=370 At :=O.1.S

Plot the selected reflIcted pulse below:

404

130 170 190 210 230 250 270 290 310 330 350 370
time a
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Convert above times to vector indices (data collected at 0. 1uS intervals) and calculate max strain:

start :=start 10 fin :=fin-10

Crate +E rate

2
maxeng =-0.444 << max eng. strain >>

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start,start+ index.. fin

i

Ceng := At.

n= start

e rate + E rate2 ntl
2 << numerical integration by rectangle rule >>

Plot the enaineerina strain with
reoresents 0.1S:

respect to the selected time index (i). Each time index (i)

0.1

-8.32710 -

-0.

7

1

-U.2

-0.3

-0.4

-0.5

1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700

Calculate the axial compressive engineering stress in the sample:
Abar

eng A *E bare trans
O

200

100

0

-200

-300

-An'

0 50 100 150 200 250 300 350 400 450 500 550 600

time
4er
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Using the same index (i) from the engineering strain calculation. draw a plot of engineering stress
versus engineering strain:

Abar
engi:=A E bar '£ rans.

A 

index= 10

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

eg

The maximum compresssive stress is: min(a eng) =-211.812 *MPa

Calculate true (logaritmic) strain in the specimen:

tuei:=n ( eng ) min( rue) =-0.588 << maximum compressive true strain >>

Calculate true stress in the specimen:

true. := engi.( eng+ )

a

N

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

g true.

The maximum compresssive true stress is: min(otrue) =-187.317-MPa
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Supplemental note: This stress strain curve represents a specimen composed of 75% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 25% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the Califomrnia Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0051.WFT is the reflected pulse file.
2. WAVE0052.WFT is the transmitted pulse file.
3. WAVE0053.WFT is the measured temperature file.

Write true stress and strain data to a .mr file:

D7C2T2 := augment ue' MPa 

WRITEPRN(D7C212) :=D7C2T2
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General Definitions:

ORIGIN:=1 pS :sec-10 6 :=1 6

GF:=2.1 VO:=30 Ebar :=210.GPa

% Derakane 8084: 75 %Crestomer 1080: 25 Trial: 3 of 3

GPa:=Pa10 9 MPa:=Pa-10 6

D bar:= 0.75-in
bar 2

Aba D bar
4

A bar = 285.023 'mm

Read and calibrate reflected strain file:

reflected :=READPRN(BD7C2ER3) refl :=reflectd time er : reflecd sec

er:=1..rows( refl) << set up range >>
4-e reffl

flGFV 
<< apply calibration >>

Cr

0 50 100 150 200 250 300 350 400 450 500 550 600

time

SIS

Read and calibrate transmitted strain file:

E ttd := READPRN(BD7C2ET3) trans £ transmitted<1>S transmitted := READPRN( BD7C2ET3) E trans transmitted
<2>time et : transmitted 

time et := transmitted sec

et : 1.. rows(s trans) << set up range >>
4-E trans

trans :=
GF-V O

<< apply calibration >>

£ trans :=E trans- E trans 21 0 0

200

100

tran t
et

_"

0

-1oo

enD

<< shift pre-reflected signal to a strain of zero >>

0 50 100 150 200 250 300

time
et4
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Calculate the strain rate in the sample:

C 0:= 5000- << longitudinal wave speed for steel >>
SeC

Lo :=5.94mm D o:=8.03-mm

-2-C o
E rate :=- refl

r L 0 r

E rat
cr

-1
soc

1A 2
A :--'DA4 0 << inital specimen length, diameter, and Acs >>

50UO
5000
3000
2000
1000

- , , _ , , ,,,

-1000 _

-3000 5o0° _ I -__- _----_~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~ ......
0 50 100 150 200 250 300

time

iS

350 400 450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start:=210 fin :=430 At :=O.l.S

Plot the selected reflected pulse below:

210 230 250 270 290 310 330 350

time r

AS

- I

370 390 410 430

409
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I 1:rt1

Convert above times to vector indices (data collected at 0. gS intervals) and calculate max strain:

start :=start. 10 fin :=fin-10

fin re E rate 1trate

Emaxeng -t +1 -maxng =-0.355 << max eng.
n = start

Calculate the engineering strain vector by numerical integration of the strain rate:

strain >>

i := start, start+ index.. fin

rate + E rate
et- n nfi

5 eng=jht 2 << numerical integration by rectangle rule >>
n = start

Plot the engineering strain with respect to the selected time index (i). Each time index ((. Each ti)

represents 0.1 S:

Eengi

2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300

Calculate the axial com ressive engineering stress in the sample:

A bar
C eng = A Ebar£ trans

_

i

100 150 200 250

/
N

300 350 400

time
J r

AL

450 500 550 600
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Using the same index (i) from the engineering strain calculation. draw a plot of engineering stress
versus enaineering strain:

Abar
CY := A b~E bar. trans.engi AA0

index= 10

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4

engi

-0.45 -0.5

The maximum compresssive stress is: min(a eng) =-196.907 MPa

Calculate true (logaritmic) strain in the specimen:

true := n(E engi+ )I I~1
min(e true) = -0.44 < maximum compressive true strain >>

Calculate true stress in the specimen:

true. eng ( eng+ 1)! 

-0.05 -0. 1 -0.15 -0.2 -0.25 -0.3

true.
I

The maximum compresssive true stress is:

-0.35

min(a tue) =-182.353 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 75% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 25% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0045.WFT is the reflected pulse file.
2. WAVE0046.WFT is the transmitted pulse file.
3. WAVE0047.WFT is the measured temperature file.

Write true stress and strain data to a .ipm file:

a true
D7C2T3 := augment true MPa

WRITEPRN(D7C2T3) :=D7C2T3
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% Derakane 8084: 50 %Crestomer 1080: 50 Trial: 1 of 3

ORIGIN:=1 S :=sec. 10 6 :=10 6 GPa :Pa-10 9

GF:=2.1 VO:=30 Ebar :=210.GPa D bar :=0.75-i

Read and calibrate reflected strain file:
<1>

£reflected :=READPRN(HD5C5ER1) Ere := reflected

4-r
er:=1 . rows( refl) << set up range >> f 

rfer

P1

2000

1000

0

-1000

-200Cj

3000
-A flA-Io--2tO
-. fu,.n

r-

0 50 100 150 200

I

MPa :=Pa-106

A r 2
Abar:=-D bar

4
A bar = 285.023 *mm

<2>
timeer := reflected -sec

'refl
- << apply calibration >>
·VO

-I

t \

250 300 350 400 450 500 550 600

time

LS).15
p$~~~~~~~2

Read and calibrate transmitted strain file:

<1>
E :=ansmitted: READPRN(HD5C5ET1 ) trans := transmitted

et : 1 .. rows(£ trans) << set up range >> E trEs
trans - GF, O

<2>
time et = E transmitted Sec

<< apply calibration >>

trans :=e trans- trans240 0 << shift pre-reflected signal to a strain of zero >>

ZW

150 -

100 --
50 - -

-501 _ -__
-150

0 50 100 150 200 250 300 350 400

time tet

pLS

450 500 550 600
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Calculate the strain rate in the samole:

C :=51J ,, << longitudinal wave speed for
8sec

2 
L: = 6 '56mm D =8.80'mm AO:=--D

4
-2-C o

rate := ret
e, L c0

<< inital specimen length, diameter, and Acs >>

0 50 100 150 200 250 300 350 400 450 500 550 600

time 

As

Calculate the strain in the sample:

Input start and finish time of reflected ulse as well as the time interval for numerical integration in
units of microseconds:

start:=240 fin:=480 At:=O.1-pS

Plot the selected reflected ulse below:

Et£ rate
cr

-1
SM

5000 .
4000 
3000
2000
100 

0'-
-100-

240 260 280 300 320 340

[ ---I II I I I-I I
360

time c
er

As

380 400 420 440 460 480
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Convert above times to vector indices (data collected at 0.1uS intervals} and calculate max strain:

start := start 10 fin :=fin-10

fin e rate + erate
£ maxeng: = E At' 2 axg =-.311 << max eng. strain >>

n = start

Calculate the enaineering strain vector by numerical integration of the strain rate:

i := start, start + index.. fin

1 £ rate + rate

E engi:= At 2 << numerical integration by rectangle rule >>
n = start

Plot the engineering strain with respect to the selected time index (i). Each time index (i)

e egi

2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800

i

Calculate the axial compressive engineering stress in the sample:
Abar

o eng A .E baref trans
A

-_-

0 50 100 150 200 250 300 350 400

time

AL

����1

450 500 550

415

200

100

0
Mager

MPa

-IOU

--?n
600

W.-- 46-6. "' Lc� 1

I

i

i
-. M"-

e--

pi

I

= -===:= �Shh
j 

r6 ==

--------------- -· ----- --

.

i



Using the same index (i) from the engineering strain calculation. draw a plot of engineerina stress
versus engineering strain:

Abar
Creng, := E bar'- trans. index= 10

A0

CT oagi

MPa

'200
-18C
-16C
-140
-1 

-6C

-40
-0

'I
/

If

0 -0.05 -0.1 -0.15 -0.2 -0.25

e si

1

-0.3 -0.35 -0.4

The maximum compresssive stress is: min(a eng) =-184.45 'MPa

Calculate true (logaritmic) strain in the specimen:

E trume ( engi 1) min(true)=-.372 <<maximum compressivetruestrain>>

Calculate true stress in the specimen:

o truei engi .( eng+ 1)

0 truc.
IPa

MPa

0 -0.05 -0. 1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

E ruc i

The maximum compresssive true stress is: min(a tre) =-171.791 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 50% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 50% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4120/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0060.WFT is the reflected pulse file.
2. WAVE006.WFT is the transmitted pulse file.
3. WAVE0062.WFT is the measured temperature file.

Write true stress and strain data to a .pmr file:

D5C5T1 :=augment true' MPa 

WRITEPRN(D5C5T1) :=D5C5T1
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1 1.1

General Definitions:

ORIGIN:= 1 PS := sec 10 6

% Derakane 8084: 50 %Crestomer 1080: 50 Trial: 2 of 3

R := 1 6 GPa:=Pa-109

GF :=2.1 VO:=30 Eba r:=210.GPa D bar := 0.75in

MPa :=Pa.10

Aa = 2 85.023 mm2

Abar := bar A bar 285.023m
4

Read and calibrate reflected strain file:
<1>

s reflected := READPRN(HD5C5ER2) refl := ; reflected
<2>

time er := reflected -sec

er :=1.. rows( refl) << set up range >>
4-£ refl

refi :=
GF.V0

<< apply calibration >>

zooo

2'-4000- t 
3000

0 50 100 150 200 250 300 350

time

Read and calbrate transmitted strain file:
Read and calibrate transmitted-strain file:

<1>
E transmitted := EADPRN(HD5C5ET2) Etrans E transmitted

400 450 500 550 600

time et: = tnsmitted .sec

et := .. rows(£ trans) << set up range >>
4.£ trans

E trans 
GFV O

<< apply calibration >>

trans :=trans- E trans
2400

ct

...

<< shift pre-reflected signal to a strain of zero >>

200

150 

100 -- -

50 - -
-5 -#,.. - - - -- - - - - -

-5 0

1------ -- - -

150 L- - I - - - -- -

200 -… -_log ~~~~~~~~~~~1 ~ ~ ~ ~ ~ - "~+f
0 50 100 150 200 250 300

time t
et

S

350 400 450 500 550 600
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Calculate the strain rate in the sample:

C :=5000- << longitudinal wave speed for steel >>
SeC

1E 2
Lo :=6.44-mm D :=8.80mm A :=-.D 

4
-2.C 

rate := reflCr ~~~~cr

5000
4000
3000
2000

£ rate 1000
r 0

e-1 -1000sec
-2000
-3000
-4000

-nM0

<< inital specimen length, diameter, and Acs >>

N

0 50 100 150 200 250 300

time

As
UIS

350

/

5
i 

400 450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=240 fin :=480 At :=O.1 uS

Plot the selected reflected pulse below:

5000 1

4000 - -

3000
2000 --

1000 --

'1~ ~ ~ ~~...

240 260 280 300 320 340 360 380

time

RS

400 420 440 460 480
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Convert above times to vector indices (data collected at 0.1uS intervals) and calculate max strain:

start :=start 10 fin :=fin.10

fin

£ maxeng := 
n = start

Erate + rate
2n n+
2

maxeng =-0.319 << max eng. strain >>

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start, start + index.. fin

erate + e rate
n ni-i

2 << numerical integration by rectangle rule >>

Plot the engineering strain with respect to the selected time index (i). Each time index (i)

E cg

2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800

Calculate the axial compressive engineering stress in the sample:

A bar
eng .= E bar trans

A0

zoo - - -…- -

100

4P0 - . -- -
-100 : - --- - -

-. 0) Il I

0 50 100 150 200 250 300 350 400 450 500 550 600

time
eer
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Using the same index (i) from the engineering strain calculation. draw a plot of enaineerina stress
versus engineering strain:

engi A E bar ' trans. index = 10

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

engi

The maximum compresssive stress is: min(a eng) =-190.949 MPa

Calculate true (logaritmic) strain in the specimen:

true, = ln (E eng + 1) min(E tre) =-0.385 <<maximum cor

Calculate true stress in the specimen:

a true.:=a eng j (£ ngi 1)

true.
I

MPa

npressive true strain >>

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

true.

The maximum compresssive true stress is: min(a true) =-174.609-MPa
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Supplemental note: This stress strain curve represents a specimen composed of 50% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 50% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0063.WFT is the reflected pulse file.
2. WAVE0064.WFT is the transmitted pulse file.
3. WAVE0065.WFT is the measured temperature file.

Write true stress and strain data to a .m file:

D5C5T2 :=augment true /

WRITEPRN(D5C5T2) :=D5C5T2
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General Definitions:

ORIGIN:=1 iS :=sec-106

% Derakan 8084: 50 %Crestomer 1080: 50 Trial: 3 of 3

1:=106 GPa:=Pa10

GF:=2.1 V O :=30 Ebar:=210.GPa Dbar:=0.75-in

MPa :=Pa-10
Abar 2

Abar:.D bar
4

A ar = 285.023 mm2

Read and calibrate reflected strain file:
<1> <2>

£ reflected :=READPRN(HD5CSER3) refl :=Ereflcted time :=Erefected fsec

er :=1.. rows( refl) << set up range >>
4-£ refl

refl
GFV O

<< apply calibration >>

1000 ---

0 _ - -

2000 - - -

-AII

0 50 100 150 200 250 300 350

time

AtS

Read and calibrate transmitted strain file:

<1>
transmitted TM READPRN(HD5CSET3) gtrans : tramsmitred

400 450 500 550 600

<2>
time et := transmitted *sec

<< set up range >>
4- trans

trans =F
GFV 

<< apply calibration >>

E trans E trans- trans2 4 0 02400 << shift pre-reflected signal to a strain of zero >>

50 100 150 200 250 300 350

timeet

pS

400 450 500 550 600
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Calculate the strain rate in the sample:

m
C :=5000.- << longitudinal wave speed for

SeC
It 2

Lo :=7.29.mm D :=8.73-mm A :=-D 
4

-2-C o
Erate :=- *refl

r L ar

£ rate

-1
Sec

4000

3000

2000

1000
0

-11 Wnm

-2000
-3000
-Annn

.7-

<< inital specimen length, diameter, and Acs >>

N

0 50 100 150 200 250

\ ,.

-I

300

time r
r

S

350

/

400 450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in

units of microseconds:

start :=240 fin :=460 At :=0.1*US

Plot the selected reflected pulse below:

E rate
or

-1
Sec

4U -

3200 --

2400
1600 -
800

-80C - -
-1600 
-2400 -
-320 -

-40a.I00 II

240 258.333 276.667 295 313.333 331.661 350 368.333 386.667 405 423.333 441.667 460

time

As
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Convert above times to vector indices (data collected at 0.1uS intervals) and calculate max strain:

start :=start 10 fin :=fin-10

fin

rmaxeng = L t
n = start

Crate + rate
n n 1

2
e maxeng =-0.268 << max eng. strain >>

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start, start + index.. fin

i

eng = E At.

n = start

rate te rate
n nit

2 << numerical integration by rectangle rule >>

Plot the engineering strain with respect to the selected time index (i). Each time index (i)

'0.1

-17n

2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600

Calculate the axial compressive engineering stress in the sample:
A bar

o eng := .E bar.E trans
A00

200- ,- ,

100

100

0 50 100 150 200 250 300 350 400 450 500 550 600

time

425
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I 1.1

Using the same index (i) from the engineerina strain calculation. draw a plot of engineering stress

versus engineering strain:

aeng = A Ebar trans. indexla0

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -

e engi

The maximum compresssive stress is: min(a eng) =-191.991 MPa

Calculate true (logaritmic) strain in the srecimen:

tre :=In( eng + I) min(E te) =-.312 cmaximumcon

Calculate true stress in the specimen:

true := eng .(; eng 1)~~~~5 ~l

MPa

-0.35 -0.4 -0.45 -0.5

npressive true strain >>

0 -0.05 -0. 1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

E trueii

The maximum compresssive true stress is: min(a true) =-176.762 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 50% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 50% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0066.WFT is the reflected pulse file.
2. WAVE0067.WFT is the transmitted pulse file.
3. WAVE0068.WFT is the measured temperature file.

Write true stress and strain data to a .pm file:

D5CT3 := augment( true MPa 

WRITEPRN(D5CST3) :=D5C5T3
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General Definitions: % Derakane 8084:25 %Crestomer 1080: 75 Trial: 1 of 4

ORIGIN:=1 IS:=sec1.l 6 [i:=10 6 GPa:=Pa109 MPa:= Pa -10 6

GF:=2.1 VO:=30 Ebar:=210GPa Dbar:=0. 75in Abar .D bar A bar =285.023 m
4

Read and calibrate reflected strain file:
<1> <2>

r ictj :=READPRN(HD2C7ER1) refl :=Efle ctedmeer: reflc sec

4/- refl
er :=1. rows(re) set up range refl c< apply calibration >>

2
31

Ercflcr

CL

0 50 100 150 200

Read and calibrate transmitted strain file:

E transmitted := READPRN(HD2C7ET1 ) trans

et := 1.. rows( trans) << set up range >>

250 300 350 400 450 500 550 600

time

AS

<1>
:= transmitted

trans
E trans 

GF-V0o

<2>
time et : = transmitted sec

<< apply calibration >>

trans= trans- trans2 5 0 << shift pre-reflected signal to a strain of zero >>

0 50 100 150 200 250 300 350 400 450 500

time

gtS

428
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Calculate the strain rate in the sample:

C := 5000.- << longitudinal wave speed for steel >>
Sec

L o :=6.22-mm D := 8.29-mmO A :=-.DOA°4 0
<< inital specimen length, diameter, and Acs >>

Erate :=- 'efM
L o

I

0 50 100 150 200

I
/

250 300 350 400

time

AS

450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=250 fin :=450 At :=O.1j.S

Plot the selected reflected pulse below:

rate
er
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time r

429

429

E ratc

-1sec

5000
4000
3000
2000
1000

0
-1000

2000o
-3000
-4000
-sqnn

� A 4�h

- my

I
I

--fle-

f
I.. v a

II I , v 1

i1
k/\fV,. �cy�

I iI

I

v



I i.i

Convert above times to vector indices (data collected at 0.1uS intervals) and calculate max strain:

start :=start. 10 fin :=fin-10

fin

£ maxeng = At

n = start

E rate '+ rate
n n+l

2
£ maxing =-0.346 << max eng. strain >>maxeng

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start, start+ index.. fin

i

' eng i AJ
n = start

£ rate + t rate
n-I-

2 << numerical integration by rectangle rule >>

Plot the engineering strain with respect to the selected time index (i). Each time index (i)
represents 0.1 S:

engi

2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500

Calculate the axial compressive engineering stress in the sample:
A bar

eng= ,A *E bar- trans
0

0 

-100 

0 50 100 150 200 250 300 350 400 450 500 550 600

time r
er
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Using the same index (i) from the engineering strain calculation. draw a plot of engineering stress
versus engineering strain:

Abar
engi :=--E barE trans index 10

0 

aengi

MPa

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3

E Sc ng

The maximum compresssive stress is: min(a eng) =-157.15 *MPa

Calculate true (logaritmic) strain in the specimen:

-0.35 -0.4 -0.45 -0.5

true :=l In(E engi + 1) min(e true) =-0.425 << maximum compressive true strain >>

Calculate true stress in the specimen:

a true := engi ( engi+ 1)

-0. 1 -0.15 -0.2 -0.25 -0.3

g true

The maximum compresssive true stress is: min(a true) =-145.159-MPa
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I 1:1

Supplemental note: This stress strain curve represents a specimen composed of 25% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 75% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the Califomia Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0069.WFT is the reflected pulse file.
2. WAVE0070.WFT is the transmitted pulse file.
3. WAVE0071.WFT is the measured temperature file.

Write true stress and strain data to a .pm file:

D2C7T1 :=augmenti true' MPa 

WRITEPRN(D2C7T1) :=D2C7T1
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General Definitions: % Derakai

ORIGIN:= 1 pS :=sec. 10 6 :=10 6

GF:=2.1 VO:=30 Ebar:=210-GPa

Read and calibrate reflected strain file:

reflected :=READPRN(HD2C7ER2) reft

er:= .. rows( refl) << set up range >>

E renf

e 8084: 25 %Crestomer 080: 75 Trial: 2 of 4

GPa :=Pa-109

D bar :=0.75-in

MPa :=Pa-106

bar 2
Abar:=.D bar

4

2
A bar = 285.023 'mm

<1> <2>
:= reflected time : reflected *sec

4 E refl
£ refl ' V << apply calibration >>rft GF.V O

2000 -1000 -- ZZZ-
0 -

-1000

0 50 100 150 200 250 300 350 400 450 500 550 600

time
cr>

Read and calibrate transmitted strain file:

E transmitted : = READPRN(HD2C7ET2) c trans

et := 1.. rows(E trans) << set up range >>

<1>
:= transmitted

4E trans

E trans :-
GF.V 0

time et:= £ transmitted .sec

<< apply calibration >>

E trans = trans- £ trans26o << shift pre-reflected signal to a strain of zero >>

200

100

0

-lOU

-.- t '1

0 50 100 150 200 250 300 350

time tct

400 450 500 550 600
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Calculate the strain rate in the sample:

C :=5000.- << longitudinal wave speed for
sec

L :=6.78-mm D :=8.22-mm Ao :=- D 2
4

-2 C 

e L 0

<< inital specimen length, diameter, and Acs >>

0 50 100 150 200 250 300 350 400

time 

AS

450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected ulse as well as the time interval for numerical integration in
units of microseconds:

start :=260 fin :=460 At :=0.1.pS

Plot the selected reflected pulse below:
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I _
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time r
er3
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Convert above times to vector indices (data collected at 0.1uS intervals) and calculate max strain:

start :=start-10 fin :=fin-10

fin

maxcng .= E At

n = start

5 rate + raten +

2
maxeng = - 0.318 << max eng. strain >>

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start, start+ index.. fin

i

eng = E At.
n = start

e rate + raten nfl

2 << numerical integration by rectangle rule >>

Plot the engineering strain with respect to the selected time index (i). Each time index (i)
represents 0.1uS:

0.1

1-8.327o10- 1

'"0.

Ecgi
-O.: ..

-O.;
-0.1

2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

i

Calculate the axial compressive engineering stress in the sample:
A bar

C eng - A E bar-£ trans

Pa n
MPa

4600

0 50 100 150 200 250 300 350 400 450 500 550 600

time

A.
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I i.1

Using the same index (i) from the engineering strain calculation. draw a plot of engineering stress
versus engineerina strain:

Abar
a eng: = .*E bar trans.

A0

indexE 10

-0.05 -0.1 -0.15 -0.2 -0.25 -0.3

$engj

-0.35 -0.4 -0.45 -0.5

The maximum compresssive stress is: min(a eng) =-162.129 MPa

Calculate true (logaaritmic) strain in the specimen:

Etrie. := n( engi+ 1) min( tue) = -0.383 << maximum compressive true strain >>

Calculate true stress in the specimen:

a truei :=a eng.( engi I)

true
I

MPa

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

E true

The maximum compresssive true stress is: min(o true) =-148.8 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 25% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 75% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0072.WFT is the reflected pulse file.
2. WAVE0073.WFT is the transmitted pulse file.
3. WAVE0074.WFT is the measured temperature file.

Write true stress and strain data to a .opm file:

D2C7T2 := augment true, MPa )

WRITEPRN(D2C7T2) :=D2C7T2
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% Derakane 8084: 25 %Crestomer 1080: 75 Trial: 3 of 4

ORIGIN:=1 IS :=sec-10 6 :=10 6 GPa:=Pa-10

GF:=2.1 V O :=30 Ebar:=210.GPa Dbar:=0.75-in

Read and calibrate reflected strain file:
<1>

Ereflected := READPRN(HD2C7ER3) refl : = reflected

4erE1.. ( ) set up n
er:= .. rowsref << set up range >> - --

£,fl

jL

2000

1000

0

-2000

-3000

-Afn

/

0 50 100 150 200

I

MPa :=Pa.106

ar bar 2bar bar4
A bar = 285.023 *mm

<2>
time er := reflected *sec

" refl
<< apply calibration >>

V O

250 300 350 400 450 500 550 600

time re

eref ~ ~ ~ ~ ~ 2

Read and calibrate transmitted strain file:

transmitted := READPRN(HD2C7ET3) £ trans

et:= 1.. rows(e trans) <<set up range>>

lS

<1>
:=e transmitted

4 trans
E trans :-

GF.V O

<2>
time et := transmitted *sec

<< apply calibration >>

trans : = E trans - Etrans2550 << shift pre-reflected signal to a strain of zero >>

£trans

,t
C1

0 50 100 150 200 250 300 350 400 450 500 550 600
time t

etS
A~s
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Calculate the strain rate in the sample:

C o:= 5000- << longitudinal wave speed for 
sec

Lo:=6.03-m m D :=8.20,mm Ao :=-D 

-2-C o
c rate .= . refl

r L 0 erer

-rate

-1Soc

<< inital specimen length, diameter, and Acs >>

30uu - -

4000
3000 
2000 - -1000 - - --
5000 -- - I - - -r I - I- - - -

0 50 100 150 200 250 300 350

time
er

&LS

400 450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=255 fin :=475 At :=O.1*.S

Plot the selected reflected ulse below:

\
-l

255 275 295 315 335 355 375 395 415 435 455 475

imc e
cr

AS
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Convert above times to vector indices (data collected at 0.1S intervals) and calculate max strain:

start :=start-10 fin :=fin-10

fin rate + rate
E maxeng := E Ata maxeng =-0.366 << max eng. strain >>

2
n = start

Calculate the engineerina strain vector by numerical integration of the strain rate:

i := start, start + index.. fin

i rate + rate
e eng i At. , n+I

ieng, E d2t<< numerical integration by rectangle rule >>
n= start

Plot the engineerina strain with respect to the selected time index (i). Each time index (i)
represents 0.1 uS:

£ cngi

2550 2750 2950 3150 3350 3550 3750 3950 4150 4350 4550 4750

Calculate the axial compressive engineering stress in the sample:

Abar
C eng= A E bar.e trans

O

Mage

MPa

200 

100 …

0

-100 = =

0 50 100 150 200 250 300 350 400 450 500 550 600

time er

A.

440

---



Using the same index (i) from the engineerin strain calculation. draw a plot of engineering stress
versus engineering strain:

AA bar
egi :=EA bar'E tans.

0A 

C engi

MPa

-180
-160

-14C

-120

-100

-8C

-6C

-4c

-n
r,

0 -0.05 -0.1

index= 10

-0.15 -0.2 -0.25 -0.3

cengi

The maximum compresssive stress is: min(a eng) =-150.256 *MPa

Calculate true floaaritmic) strain in the specimen:

true i :=ln(E engi+ 1) min ( true) = -0.456 << maximum compressive true strain >>

Calculate true stress in the specimen:

true := engi.( engi+ )

-180

-160

-140

-120
- fin

-80
-60

-40
-,)

0
0 -0.05 -0.1 -0.15 -0.2 -0.25

etrue

The maximum compresssive true stress is:

-0.3 -0.35

min(a true) =-137.791 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 25% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 75% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0075.WFT is the reflected pulse file.
2. WAVE0076.WFT is the transmitted pulse file.
3. WAVE0077.WFT is the measured temperature file.

Write true stress and strain data to a .pm file:

D2C7T3 := augment(e ue taue

WRITEPRN(D2C7T3) :=D2C7T3
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% Derakane 8084: 25 %Crestomer 1080: 75 Trial: 4 of 4

ORIGIN:=1 pS:=sec-10 6 I:=10 6 GPa:=Pa.10 Ml

GF:=2.1 VO:=30 Ebar:=210.GPa Dbar:=0.75in At

Read and calibrate reflected strain file:
<1>

reflected :=READPRN(BD2C7ER1) ref := reflected

4e. refl
er := .. rowsy << set up range >> ere

"a :=Pa- l0
1t D 2)ar :=-. bar
4

A bar = 285.023 'm 2

time er:= £ reflected *sec

<< apply calibration >>

- 1
i

7 -=
0 50 100 150 200 250 300

time a

IS

350 400 450

Read and calibrate transmitted strain file:

<1>
£ transmitted := READPRN(BD2C7ET1) trans :=transmitted time et = £ 

trc trans
et := 1.. rows(E trans) << set up range >> E trans F << apply

GF.VO

trans := trans - trans2 100 << shift pre-reflected signal to a strain of zero >>

500 550 600

<2>
ransmitted .sec

calibration >>

0 50 100 150 200 250 300 350 400 450 500 550 600

time tet

PS
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2000

1000

0
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Calculate the strain rate in the sample:

m
C := 5000. < longitudinal wave speed for

Sec

Lo :=5.98-mm D :=8.19-mm A :=-D 
4 o

-2-C o
Erate = - .s refl

r L o or

ram .

E rate
Or

-1
Sec

<< inital specimen length, diameter, and Acs >>

0 50 100 150 200 250 300 350 400 450 500 550 600

time or
raS

s

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=210 fin :=430 At :=O.1.pS

Plot the selected reflected pulse below:

E rate

or
Soc

444

210 230 250 270 290 310 330 350 370 390 410 430

time er
cr

AS



Convert above times to vector indices (data collected at O.luS intervals) and calculate max strain:

start := start 10 fin :=fin10

fin Erate + E rate
maxeng At 2 nmaxng=-0.366 << max eng. strain >>

n = start

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start, start + index.. fin

i g rate + E rate
At.- n n-I

eng, = E At. 2 << numerical integration by rectangle rule >>
n = start

Plot the enaineering strain with respect to the selected time index (i). Each time index (i)

0.1
-1

-8.32710

-0.

Eengi
-n 

v1.;

-0.4

-n 

2100 2300 2500 2700 2900 3100 3300 3500

i
3700 3900 4100 4300

Calculate the axial compressive engineering stress in the sample:

eng A = E bar'k trans
O

100

200

20.. -.- .- - . . -

0 50 100 150 200 250 300 350

time

AL

400 450 500 550 600
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Using the same index (i) from the engaineering strain calculation, draw a plot of engineering stress
versus engineering strain:

A bar
O eng A := E bar-e trans.

a 
index- 10

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 0.45 -0.5

E megi

The maximum compresssive stress is: min(a eng) =-159.28 *MPa

Calculate true (loaaritmic) strain in the specimen:

£ true ln(E eng + 1) min(£ tue) =-0.457 << maximum compressive true strain >>

Calculate true stress in the specimen:

true :=engi ( eng 1)

true.
I

MPa

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5

etruei

The maximum compresssive true stress is: min(a true) =-147.004 -MPa
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Supplemental note: This stress strain curve represents a specimen composed of 25% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 75% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVE0030.WFT is the reflected pulse file.
2. WAVE0031 .WFT is the transmitted pulse file.
3. WAVE0032.WFT is the measured temperature file.

Write true stress and strain data to a .m file:

true
D2C7T4 := augment true'a 

WRrTEPRN(D2C7T4) :=D2C7T4
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General Definitions: % Deraka

ORIGIN:=1 pS:= sec-16 6 R :=106

GF:=2.1 VO:=30 Ebar:=210-.GPa

Read and calibrate reflected strain file:

reflected := READPRN(HDOC1ERI) refl

er := 1.. rows(e refl) << set up range >>

I tfl r

er

ne 8084: 0 %Crestomer 1080: 100 Trial: 1 of 3

GPa :=Pa.109

D bar :=0.75-in

MPa :=Pa.10
bar - 2 bar2

Abar .D bar
4

2
Abar = 285.023 -mm

<1> <2>
E= E reflected time er : E reflected *sec

£refl :- Gf << apply calibration >>
GF.V 

2000 - - -

1000

0

-1000

-3000- 

-4000 .- - .
0 50 100 150 200 250 300 350 400 450 500 550 600

time er
Sr

S

Read and calibrate transmitted strain file:

<1> <2>
E transmitted := READPRN(HDOCIET1) E transed time et := sec

4.£ trans
et:= . rows(£ trans) << set up range >> << trans apply calibration >>

£'F trans = ans) trans '- trans GF.V 0

trans := trans- trans2500 << shift pre-reflected signal to a strain of zero >>

E trase

P~

200 -

100….

-100

- - - -. I II I
0 50 100 150 200 250 300 350 400 450 500 550 600

time d

448S
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Calculate the strain rate in the sample:

m
C := 5000.- << longitudinal wave speed for 

Sec
1x 2

Lo:=7.53-mm D := 10.46-mm A :=-*D 
4

-2-C o

Erate a=- Etrefl

e rate
a

-1
soc

5000
4000
3000
2000
1000

0
-1000
zUUL
-3000
-4000
--innn

0 50 100 150 200

<< inital specimen length, diameter, and Acs >>

1 0-l

250 300

time r
aer

AS

/

=
_I

350 400 450 500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in
units of microseconds:

start :=250 fin :=450 At :=0.1.pS

Plot the selected reflected pulse below:

290 310 330 350

time r
AS

370 390 410

449

E rate
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5000
4000
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0
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Convert above times to vector indices (data collected at 0.1lS intervals) and calculate max strain:

start :=start-10 fin :=fin-10

fin
.- v It.rmaxeng '- , -"

n = start

rate + raten n + 1-

2
£ maxeng =-0.287 << max eng. strain >>maxeng

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start, start + index.. fin

i 8 rate + e rate

engi At 2

n = start
<< numerical integration by rectangle rule >>

Plot the engineering strain with respect to the selected time index (i). Each time index (i)

represents O. 1 S:

e i

0.1

-8.327,10 - 1

-O.:

-0.1

-0.2

2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500

Calculate the axial compressive engineering stress in the sample:

A bar
eng:= .E bar£ trans

AO

ngPa

MPa

0 50 100 150 200 250 300 350 400 450 500 550 600

time ler

450

7

3

4

5 = _ =
'I === I I I-
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Using the same index (i) from the engineering strain calculation. draw a plot of engineering stress
versus engineering strain:

A 0 vAbaro engi:= E bar. trans.
O

mngi

MPa

index- 10

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35

£ tag i

The maximum compresssive stress is:

Calculate true (loaaritmic) strain in the

min(a eng) =-97.294 MPa

snecimen:

£ true i:=ln(E engi+ 1) min( true) =-0.339 <<maximum compressive true strain>>

Calculate true stress in the specimen:

true := engi.( engi )

IPa

MPa

-70 . .

-30 . .i O-5- _ .-3 'i 7-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/v2 ....

0 -0.05 -0.1 -0.15

The maximum compresssive true stress is: min( true) =-87.72 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Scott
Bader Crestomer 1080. The raw data was obtained on a commpression split Hopkinson bar
located at the California Institute of Technology in a testing session from 4/20/95 to 4/21/95. The
temperature at the time of the test was 71.6 F and the relative humidity was 32.3%. The raw data
files have been archived in compressed form under the following names:

1. WAVE0078.WFT is the reflected pulse file.
2. WAVE0079.WFT is the transmitted pulse file.
3. WAVE0080.WFT is the measured temperature file.

Write true stress and strain data to a .pm file:

DOC1T1 :=augment( E true MPa

WRITEPRN(DOC1T1) :=DOC1T1
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% Derakane 8084: 0 %Crestomer 1080: 100 Trial: 2 of 3

ORIGIN:=1 pS :=sec-10 6 := 10

GF :=2.1 V O :=30 Eba r :=2 10-GPa

Read and calibrate reflected strain file:

e reflected :=READPRN(HDOC1ER2) refl

er := 1.. rows( refl) << set up range >>

GPa :=Pa-109

D bar :=0.75-in

MPa :=Pa. 106

bar 2
Abar :=.D bar

4

<1> <2>
:= reflected time er := refected *sec

4' r refl
e refl GF- 0 << apply calibration >>

1000

0

-Z I 0 I I1

-Annn ~~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~ i ,, ... .. I, 

0 50 100 150 200 250 300 350

time

9S

400 450 500 550 600

Read and calibrate transmitted strain file:

£transmitted tras transmitted:= REAPRN() £ timerans transmitted timeet := transmitted e

4.c_ trans
et:= 1.. rows trans) << set up range >> t < apply calibration >>

E rans EGF.V

trans := E trans - c tranS2 << shift pro-reflected signal to a strain of zero >>

200 - I --J - - -

-100

0 50 100 150 200 250 300 350 400 450 500 550 600

time ctet
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Calculate the strain rate in the S ~ J A E  
m c :=5000-- << longitudinal wave speed for steel >> 

sec 
X 2 

Lo :=6.99.mm D := 10.46+mm A :=--D << inital specimen length, diameter, and Acs >> 
4 O 

Calculate the strain in the sample; 

Input start and finish time . . . . of reflected ~ u l s e  as well as the t~me ~nterval for numerical Intearation in 
units of microseconds; 

start := 250 f in  := 450 At := 0.1 -jlS 

Plot the selected reflected ~ u l s e  below; 



Convert abov 
. . 

e times to vector rnd~ces (data collected at O.luS ntervals) and calculate max strairl; 

start :=starts10 fin :=fin.lO 

fin raten + rate 
I -  At- n + l  

maxeng * -  2 
E -eng =-0.297 << max eng. strain >> 

n= start 

Calculate the enaineerina strain vector bv nmer~cal intearation of the strain rate; . . 

i := start,start+ index.. fin 

n = start 

Plot the enain . . 
eerina strain wrth res~ect to the selected time index (i). Each tlm . . 

represents 0.1 US: 

Calculate the axial compressive enaineerina stress in the sam~le; 

A bar 
" eng :=-* bar'& trans 

MPa 

time 



Using the same index (i) from the engineering strain calculation. draw a plot of engineering stress

versus engineering strain:

eng A E bar trans. index = 10
e:= A r

a eg i

MPa

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35

e ngi

The maximum compresssive stress is: min(a eng) =-95.172 *MPa

Calculate true (logaritmic) strain in the specimen:

E truei :=l eng+ 1) min( te) =0.352 << maximum compressive true strain>>

Calculate true stress in the specimen:

0 true i := engi.(e eng + 1)

Paue

MPa

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35

E true.

The maximum compresssive true stress is: min( true) =-85.937 -ePa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Scott
Bader Crestomer 1080. The raw data was obtained on a commpression split Hopkinson bar
located at the California Institute of Technology in a testing session from 4/20/95 to 4/21/95. The
temperature at the time of the test was 71.6 F and the relative humidity was 32.3%. The raw data
files have been archived in compressed form under the following names:

1. WAVE0081.WFT is the reflected pulse file.
2. WAVE0082.WFT is the transmitted pulse file.
3. WAVE0083.WFT is the measured temperature file.

Write true stress and strain data to a .pm file:

DOC1T2 :=augment true Mp

WRITEPRN(DOC1T2) :=DOC1T2
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General Definitions: % Derakane 8084: 0 %Crestomer 1080: 100 Trial: 3 of 3

ORIGIN:= 1 AS := sec. 10 -6 := 16

GF :=2.1 VO := 30 Ebar :=210-GPa

Read and calibrate reflected strain file:

c reflected :=READPRN(HDOC1ER3) refl

er := 1.. rows(£ refl) << set up range >>

GPa :=Pa 109

D bar :=0.75-in

MPa :=Pa. 10

Abar D bar A bar = 285.023 rm

<1> <2>
= reflected ti er : = reflected .sec

4'£ refl
i ref : GFV 0 << apply calibration >>

2000 -. -- - - -I

1000-3000 -

0 50 100 150 200

Read and calibrate transmitted strain file:

250 300 350 400 450 500

time
ar

AS

<1>
E transmitted := READPRN(HDOC1ET3) trans := transmitted

et : 1 .. rows trans) << set up range >> e GV trans 
trn -GF-V 

550 600

<2>
time et :=E transmitted -sec

<< apply calibration >>

trans trans- £ trans2 50 0 << shift pre-reflected signal to a strain of zero >>

100

0

-lOU

0 50 100 150 200 250 300 350 400 450 500 550 600

time et

gss
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Calculate the strain rate in the sample:

C := 5000.- << longitudinal wave speed for
sec

L := 7.15-mm D := 1 0 .18-mm A :=-2Do

-2-C o

£ rate = . £ refL a0

£ rate

-1sec

<c< inital specimen length, diameter, and Acs >>

5000
4000 - - -

3000

1000 0 -oo - -

2000 -41

___n iI 
0 50 100 150 200 250 300 350 400 450

time

AS

500 550 600

Calculate the strain in the sample:

Input start and finish time of reflected pulse as well as the time interval for numerical integration in

units of microseconds:

start:=250 fin :=450 At :=O.1.-IS

Plot the selected reflected pulse below:

5000
4000
3000
2000
1000

0
-100O
-2000
-3000
-4000

250 268.182 286.364 304.545 322.727 340.909 359.091 377.273 395.455 413.636 431.818 450

time

459

459

£ rate
er

-1sec

i
--

I

i
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II
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I I

Convert above times to vector indices (data collected at 0.1 uS intervals) and calculate max strain:

start :=start. 10 fin :=fin- 10

fin

maxeg = E
n = start

Erate + eraten n+1

2
maxeng =-0.301 << max eng. strain >>

Calculate the engineering strain vector by numerical integration of the strain rate:

i := start,start+ index.. fin

c eng i L 
n = start

rate + raten-f-

2 << numerical integration by rectangle rule >>

Plot the engineering strain with respect to the selected time index (i). Each time index (i)
represents 0.1 S:

2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500

Calculate the axial comoressive engineering stress in the sample:

Abar
o eng A:= .E bar trans

v engr

MPa

100

0

-100

0 50 100 150 200 250 300 350 400 450 500 550 600

time
erA
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Using the same index (i) from the engineering strain calculation. draw a plot of engineering stress
versus engineerina strain:

AbA bar
=eng =*Ebartrans. index- 10

A 

eg i

MPa

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3

E engi

-0.35

The maximum compresssive stress is:

Calculate true (loaaritmic) strain in the

min(a eng) =-103.841 MPa

secimen:

E ( :=ln(eng i 1) (mine tue) = -0.359

Calculate true stress in the secimen:

<< maximum compressive true strain >>

true. :=o engi ( engi+ 1)
I

a a true.
I

MPa

0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3

£ truie

-0.35

The maximum compresssive true stress is: min(a true) =-93.227 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Scott
Bader Crestomer 1080. The raw data was obtained on a commpression split Hopkinson bar
located at the California Institute of Technology in a testing session from 4/20/95 to 4/21/95. The
temperature at the time of the test was 71.6 F and the relative humidity was 32.3%. The raw data
files have been archived in compressed form under the following names:

1. WAVE0084.WFT is the reflected pulse file.
2. WAVE0085.WFT is the transmitted pulse file.
3. WAVE0086.WFT is the measured temperature file.

Write true stress and strain data to a .pm file:

DOC1T3 :-augment( true,

WRITEPRN(DOC1T3) :=DOC1T3
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MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM

UNIAXIAL COMPRESSION TEST

Select specimens to be used: z :=1.. 4

DIM A := READPRN(COMP1B)

ORIGIN := 1

SPEC A := 3

L := (DIMA SPEC A D := (D A )SPEC A

DIM B := READPRN(COMP1A)

L02 :=(DIMB )SPC B

DIM C := READPRN(COMPIB)

SPEC B := 24

D 2 := (DIMB )SPEC B

SPEC C := 5

03 :=(DIM C )SPc D :=(DIM >)SPEC

DIM D := READPRN(COMP1B)

L := (DIMD<1>) SPECmm

SPECD := 11

D04 := MD D SPEC Dmm

Calculate the initial cross sectional area (mmA2): A :=- (D- o ) 2

4\Y O 4

191.38

192.854 2

CSO= 193.346

189.911

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC1LRTS8)

B := READPRN(IC1LR2T5)

C :=READPRN(IC1LR3T4)

D := READPRN( IC1LR4T3)

Note: Files A-D are only used for
tracking purposes. There is no relation
to the specimen position indicator.
Analysis slots not used read the default file
ICOLRIT1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load A=A A<> kN

loadB :=B kN

loadc:=C l>kN

displ A := A < > .mm

displB :=B<>mm

displC := C .mm

loadD=D = .kN displD :=D :=D>mm

Look at matrices and calculate
number of data points:

a:=1.. rows(A)

b :=1.. rows(B)

c :=1.. rows(C)

d :=1.. rows(D)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):
MPa := 1106 Pa

LiA := L - diSpl A
La 1 a

LiCc:=L - displc
3 C c

A L 

AiA -
a LiA

a

A cso3L 03

A iC '-
c AiC

LiB :=L 0 2 - displ Bb

LiDd :=L04- displ Dd

A L
A iB =

b LiB

A CSo4-L 04

AiD iD=

Calculate true stress (MPa) and true strain:

load A
a

a tueA =
a AiA

a

load B

ftrueBb =
ib

load C
C

o trueC 
c A iC

load D

trueDd :A
iDt

EtrueA =-In ) E trueB =-n trueC :=-In ) E trueD ln 
C LLO3 j d L 04
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Calculate the yield stress (MPa) and corresponding true strain:

a yAcalc. :=if(a<1200, trueAa OMPa) f yA :=am(GyAcalc) NumA. =f( rueAaa yAa0)

f yBcalcb :=if(b<1200 rueBb OMPa) yB =m(O yBcalc) NmBb =if( truyBb yb)

F yCcal :=if(cS1200,a C0e Ma) f IyC :=max( yCcalc) NumCc :=if( trueC=O yCCO)

a yDcaCd :=if(d<1200c tueDd .MPa) yD =maX( yDcaic) NUmDd :=f(O tUeDdn yDd,0)

E yA £ trueANUA) yB £ trueB(N, ) yC £ UeCt (NC) £ yD E trueDy:= matx(N~mA) y B r tc x(Nm ) mx(NaC) max(NumD)

Read the stress strain curve data from the Hopkinson Bar analysis:

i := 1800, 1810.. 4000

TRIAL := READPRN(D1COT2)

<1> <2>
trueh(RIAL) Ctrueeh =(-TRIAL) truh (-RIAL) MPa

f yh := max( trueh) NuHi:= if( tehi yhi, ) yh := uehmax(NumH)
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Generate a plot of true stress (MPa) versus true strain for 100% 8084 / 0% 1080 at various load
rates:

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

TRUE SIRAIN

A = 34-4-c (3); Load Rate = 0.01 mnm/sec*
- B = 27-4-c (24); Load Rate = 0.10 mm/sec*

C = 34-4-e (5); Load Rate = 1.00 mm/sec*
D = 35-4-d (11); Load Rate = 2.50 mm/sec*
E = Hopkinson Bar Test (1); Strain Rate = 2.50e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate/initial specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61 e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(E tueA) =0.759 max( treA) =110.58-MPa

max(e trueB) = 0.761 max( treB) = 106.084 MPa

max(E treC) =0.763 max( trmeC) =117.63 MPa

max(E trueD) =0.763 max(a trueD) = 123.683 Pa

max( trueh) =0.382 max(o trueh) =200MPa

o yA = 93.767 MPa £ yA = 0.065

a yB = 105.442 MPa e yB = 0.071

a C = 117.63 -MPa £ sC =0.073

a yD = 123.683 -MPa E D = 0.073

a yh = 200MPa E = 0.077
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MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM

UNIAXIAL COMPRESSION TEST

Select specimens to be used: z := 1.. 4

DIM A := READPRN(COMP2B)

L o(DIM A <SPEc A

DIM B := READPRN( COMP2B)

SPEC A := 2

D :=(DIMA )SPECA

SPEC B:=6

02 :(DIMB sPEC m D02 :=DIMB )spEcB

DIM C = READPRN( COMP2B) SPEC C :=8

L3:= DIM C>)SPECCm D03 :=(DIMC <>)SPEC cm03 DI C mmDc

DIM D := READPRN(COMP2B)

L04 : = (DIM D<1 SPEC Dmm

SPEC D := 12

D 04 := (DIM D 2>)SPEC D'mm

Calculate the initial cross sectional area (mmA2): A CSO :=-.(D 

183.134

183.614 2
A = omm

CSO = 185.782

186.023

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC2LR1T6)

B := READPRN( IC2LR2T4)

C := READPRN( IC2LR3T5)

D := READPRN( IC2LR4T5)

Note: Files A-E are only used for
tracking purposes. There is no relation
to the specimen position indicator.
Analysis slots not used read the default file
ICOLR1T1 .pm.
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I :.1

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

loadA :=A< >-kN

load B :=B<IkN

load C :=C<1 > kN

displ A:=A *mm

displB :=B < 2> -'n lm

displ C := C<> *mm

<1>
loadD:=D *kN displD:=D =D< mm

Look at matrices and calculate
number of data points:

a := 1.. rows(A)

b :=1.. rows(B)

c := 1.. rows(C)

d := 1.. rows(D)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):
MPa := 1106Pa

LiA :=L - displ A
iCa ° 1 a

LiC := L 0 - displ C
3 C

A 'L
AiA 

a LiA
a

A cs*L 
A CSO3 03

LiC
ic

LB :=LO - displBbLib 0 2 di

iDa °4 p Da

ACS°2L 02

A iBb A 
iBb

A cso4L 04

AiDd L
IDd

Calculate true stress (MPa) and true strain:

load A
a

GtrueA =
a A iA

a

load Bb

treBb A
iB

load C
CtrueC ' 

A iC
¢

load D

O trueDd :=
iD

E trueA :=InL) E trueB :=Iln 2) EtrueC :=-)ln 03 trUeD : '- l4n 
C L 03 1 d L 04
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Calculate the yield stress (MPa) and corresponding true strain:

a yAcalca :=if(aS12 , t"uA' a yA :=max(a yAcac) NumAa :=if( trueAcra yA·aO)

yBcalsc.:bf(b 12)O O caueBby ayBcal) NUmBbM:=)i=f() =B E

a yCcalc :=if(c1200, trueCOMPa) a yC:=max(yCca) NUmCC :=ff(UtueC= ycCO)

a yDcaIid ( i 1200, 1rueD 0 MPa) a yD :=max(ayDcalc) NUmDd :=if(tueD=ayDdO)

yA :=E tnueA x(NumA) yB y:= E m B NumB) yC trueCmax(N.mC) EyD ueDma( m NumD)

Read the stress strain curve data from the Hopkinson Bar analysis:

i :=2100,2110.. 4300

TRIAL := READPRN(D7C2T3)

Etrueh :=(-TRtrueh TRIAL)h MPa

o yh= max( trueh) NumHi := f( E truehmx y ) Ey e (Na H)
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Generate a plot of true stress (MPa) versus true strain for 75% 8084 125% 1080 at various load 
rates: 
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TRUESTRAIN 
- A = 31-5-b (2); Load Rate = 0.01 d s e c *  
- B = 31-5-f (6); Load Rate = 0.10 mdsec* - C = 32-5-a (8); Load Rate = 1.00 rnrnlsec* 
- D = 32-5-e (12); Load Rate = 2.50 d s e c *  - E = Hopkinson Bar Test (3); Strain Rate = 3.00e+03 Isec 

The lnstron tests were conducted at a constant loading rate. As a consequence, the strain 
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test, 
the inital strain rate can be estimated as the loading rate I inital specimen length. Assuming an 
average specimen length of 15.5 rnrn, the following inital strain rates apply to specimens A - D: 

1. A load rate of 0.01 mrnlsec corresponds to an initial strain rate of 6.45844 I sec 
2. A load rate of 0.10 mmlsec corresponds to an initial strain rate of 6.45843 I sec 
3. A load rate of 1 .OO mmlsec corresponds to an initial strain rate of 6.450-02 I sec 
4. A load rate of 2.50 rnrnlsec corresponds to an initial strain rate of 1.61 8-01 I sec 

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true 
strain at yield: 

max (E rrueA) = 0.855 max(o trueA) = 103.201 *MPa o y~ = 67.896-MPa E yA = 0.066 

max(~ trueB) = 0.86 max o  hue^ = 104.253 *MPa ( 1 o y~ = 84.366 *MPa e yB = 0.064 

-(E meC) = 0.862 max o true. = 101.544-MPa ( 1 a = 94.798 #MPa e fl = 0.071 

max(~ trueD) = 0.864 max a B,,D = 104.907 -MPa ( ) o y~ = 101.388 *MPa e yD = 0.07 

max (E rrueh) = 0.44 max o rmeh = 182.4 *MPa ( ) o = 182.4.MPa E = 0.077 



BalmwAY 
SIS DATA REDUCTION P R O G M  

COMPRESSION TFST 

Select specimens to be used: z := 1 .. 4 ORIGIN := 1 

DIM A := READPRN(COMP3B) SPEC A := 2 

<1> 
DIM L 0, := (DM A ) SPEC ;mm D ol := ( AQ>) ;mm 

DIM B := READPRN(COMP3B) SPEC B := 6 

DIM 
<1> 

DIM 
Q> 

<1> 
DIM 

Q> 
L03:=(DMC Do3:=( C 

DIM :=READPRN(COMP3B) SPEC := 13 

X 2 Calculate the initial cross sectional area (mmA2): A :=:.(I3 0,) 

. . 
Data flle ~nformatiom 

The data file was created on thidirectory: D:\MIKEDATl (on 1.307 hard drive), transfered to 
directory C:\winmcad (on home pc), file must have a (.pm) extension 

A := READPRN(IC3LRlT6) Note: Files A-E are only used for 

B := READPRN( IC3LR2T7) tracking purposes. There is no relation 
to the specimen position indicator. 

C :=READPRN(IC3LR3T5) Analysis slots not used read the default file 

D := READPRN(IC3LR4T6) ICoLRIT1 .pm. 



Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

<1>
load A := A ® -kN

loadB := B *kN

load C := C < > kN

displ A :=A mm

displ:=B mm

displC:=C C>mm

<1>
loadD:=D *kN displD :=D > rmm

Look at matrices and calculate
number of data points:

a:=1..rows(A)

b :=1.. rows(B)

c := 1.. rows(C)

d :=1.. rows(D)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mrnA2):
MPa :=1- 10 6 -Pa

LiA :=L - displ A
c :=L 3 - displ C

LiC :=L0 - displC
c 3 c

A L 

aA iA =

A CS03.L03
A iC :=

LiC
C

LiB b :=Lo2- displ Bb

LiD :=L04 -disp DLid 04 D d

A CSo2.L 2
AiB =

b LiB

A cso4L 04
AiD := 4 4

d LiD
iDd

Calculate true stress (MPa) and true strain:

load A
a

Y trueA =
a AiA

a

load Bb

trueBb A b
A iB

load C
c

trueC '-
C AiC

c

load D

trueDd A 
iDd

trueA : -In E tueBb =-InL)

a· 1) 0

EtrueC :=-In() E trueD ln(4 Id)
C L L03 I d L 04
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Calculate the yield stress (MPa) and corresponding true strain:

a yAcalc :=if(a1200Wa trueA M0 a) yA :=ma(a yAcaic) NumAf =if(aY treA ayA'aO)

yBclcb :=if(b•1200car teBbMa) as yB max(a yBcalc) NumBb :=if(a tuBba yBb0)

a yCcalc =if(c•1200a btruc0.Pa) a c =ma( yCcalc) NumCc:=if( trueC m= yCO )

yDcalcd =if(d<1200la trueD d? OPa) a yD =max( yc=c) NumDd :=if(a trueDd yDdDO)

EyA := trueAm(NumA) yB =trueB max(Num) max(NmC)D

Read the stress strain curve data from the Hopkinson Bar analysis:

i := 2650, 2660.. 4600

TRIAL := READPRN(D5C5T2)

<1>
trueh :=(-TRIAL) aueh :=(-TRIAL) *MPa

yh :=max(aotruh) NumH. :=if(atrueh.hiyh,i, O ) Eyh=Etrueh\ Imm( NumH)
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Generate a plot of true stress (MPa) versus true strain for 50% 8084 / 50% 1080 at various load
rates:
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TRUE STRAIN

- A = 25-5-b (2); Load Rate = 0.01 mm/sec*
B = 28-5-f (6); Load Rate = 0.10 mm/sec*
C = 29-5-b (9); Load Rate = 1.00 mm/sec*
D = 29-5-f (13); Load Rate = 2.50 mm/sec*

- E = Hopkinson Bar Test (2); Strain Rate = 2.500e+03 /sec

1 1.1 1.2

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61 e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(EA) = 1.0 12 max(a eA) = 104.044 MPa

max(e rueB) = 1.01 max(atrueB) =98.384-MPa

max(: trueC) = 1.012 max( trueC.) = 94.066 MPa

max(e trueD)= 1.017 maxi( trueD)= 100 MPa

MaX( tueh) = 0.385 max(a truh) = 174.6-MPa

a yA = 62.089-MPa

a yB = 74.187MPa

ao y = 87.054MPa

o yD = 93.068 -MPa

a yh = 174.6MPa
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E yA = 0.059

E yB = 0.063

yC = 0.067

E yD = 0.067

E yh = 0.074

v/

0



MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM

UNIAXIAL COMPRESSION TEST

Select specimens to be used: z :=1.. 4 ORIGIN := 1

DIM A := READPRN(COMP4)

Lo1:=(DIMA )SPEC A

DIM B := READPRN(COMP4)

L := (DnIMB ) SPEC B

DIM C : = READPRN(COMP4)

Lo3:=(D C )SPECC

DIM D := READPRN(COMP4)

L := (DM1 D<1 >) nSPEC D

SPEC A := 2

D o :=I (DIA )SPEC A m

SPEC B = 6

D 02 := (DMB )SPECB

SPEC C :=9

D o3 := (D C /)SPEC C MM

SPEC D := 18

D := (D <2l > SPEC Drm

Calculate the initial cross sectional area (mmrnA2): A cs:= .(D o)2

190.645

191.134 2

A cso = 190.645

191.625

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN( IC4LR1T2)

B := READPRN( IC4LR2T2)

C := READPRN(IC4LR3T2)

D := READPRN( IC4LR4T2)

Note: Files A-E are only used for
tracking purposes. There is no relation
to the specimen position indicator.
Analysis slots not used read the default file
ICOLR1T1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000.newton

<I>
loadA: A kN

loadB :=B <> kN

load C := C< > -kN

displ A:=A < > mm

displB B ' mm

displ C:= C <2> *mm

loadD:=D = kN displD :=D *mm

Look at matrices and calculate
number of data points:

a:= 1.. rows(A)

b :=1.. rows(B)

c := 1.. rows(C)

d :=1.. rows(D)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mrnmA2):
MPa :=1- 106-Pa

L iA :=L - displ A
a aC

c °3 Cc

A IL

a LiA
a

ACS03'L 03

A iC '=-
C Lic

C

LiB b :=L 2- displ Bb

LiD d :=L04- displ Dd

A cso 2.L 2

AiB :- L
iB b

CS04 04

A iDd =L
iDd

Calculate true stress (MPa) and true strain:

load A
a

a trueA '-
a AiA

a

load Bb

0 bA b
b

trueA :=-In ) E trueB :=In )

load C
C

o trueC '
c AiC

iC

trueC :=-n L 03 

load Dd

a trueD :=
AiD

d

LiDI
E treD =-Iln d

EtrueD L4
4O
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Calculate the yield stress (MPa) and corresponding true strain:

yAcalc :=if(aS1200a trueAaO.MPa) 0 yA :=ma( yAcac) NumAa :=ff(s tueA =a YA'aO)

yBcalcb :=if(b<1200,oO trueBb0MPa) y mt(u yBcalc) NmBb :1f( tnreBb yBb)

yA E:= tru (NmA ) yB E trueB yC eC E teD )
c<1 max( NumaB) x yCtrmuax(NiemC) := rmax(NumD)

Read the stress strain curve data from the Hopkinson Bar analysis:

i :=2500, 2510.. 4500

TRIAL := READPRN(D2C7T1)

trueh :=(TTRIAL) o treh :=(TRIAL) MPa

yh :max( trueh) NumHi:=if(O trueh 'yhi, yh truehi yhiH)) yh
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Generate a plot of true stress (MPa) versus true strain for 25% 8084 / 75% 1080 at various load
rates:
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TRUE STRAIN

A = 14-3-b (2); Load Rate = 0.01 mm/sec*
B = 14-3-f (6); Load Rate = 0.10 mm/sec*
C = 16-3-b (9); Load Rate = 1.00 mm/sec*
D = 17-3-d (18); Load Rate = 2.50 mm/sec*
E = Hopkinson Bar Test (3); Strain Rate = 3.00e+03 /sec

1.3 1.4

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61 e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(e tueA) =1.216

max( trueB) = 1.222

max( trueC)=1.211

max( tueD) = 1.212

max(E trueh) = 0.425

max(o rueA) =85.539-MPa

max(a trueB) = 82.846 MPa

max(a trueC) = 89.4-MPa

max(a trueD) = 94.333 MPa

max( trueh) = 145.2MPa

a yA = 22.46-MPa

a yB = 30.551 -MPa

a yC = 49.394 MPa

o yD = 58.77-MPa

a h = 145.2'MPa

yA = 0.059

eyB = 0.068

£ yC = 0.066

e yD = 0.069

E = 0.076
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MICHAEL ZV
THESIS DATA REDUCTION PROGRAM

UNIAXIAL COMPRESSION TEST

Select specimens to be used:

DIM A := READPRN(COMPS)

L :=(DIMA <)SPECA

DIM B := READPRN(COMP5)

o02 := SPEC B PE

DIM C := READPRN(COMPS)

L := (DIM C<>)SPEC cM

z :=1..3 ORIGIN := 1

SPEC A := 1

D := (DIM A<2>)SPEC A

SPECB := 3

D 02 := (DIM B )SPECBMM

SPEC C := 6

D := (DIM C<2>)SPE cc

Calculate the initial cross sectional area (mmA2): A cso:= (D o)2C \Y 4

194.828 2

A c=1O ~193.346 mm

193.839

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A := READPRN(IC5LR1T1 )

B := READPRN( IC5LR2T1)

C := READPRN( IC5LR3T1)

Note: Files A-E are only used for
tracking purposes. There is no relation
to the specimen position indicator.
Analysis slots not used read the default file
ICOLR1T1 .pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000newton

loadA:=A = >kN

load B :=B<*kN

load C :=C < 1> kN

displ A:=A .*mm

<2>
displB :=B *mm

displ C : = C <2> *mm

Look at matrices and calculate
number of data points:

a := 1.. rows(A)

b := 1.. rows(B)

c := 1.. rows(C)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mmA2):
MPa := 1106 Pa

L A := L - displ A
a 1

A .L

iA A
a a L iA

a

LiBb :=L2 - displ Bb
A CS2 °

AiB := 2 

LiB

L :=L 0 -displ C
c 3 c

A cso3'L 03
Aic =

C LiC

Calculate true stress (MPa) and true strain:

load A
a

o trueA =
a AiA

a

_n/LiAa)
trueA :=In

a L 0 

load B

5 trueB b =
AiB b

tueB := -ln (
b 

load C
C

o trueC =
A iC

trueC =- 1lc
03 
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Calculate the yield stress (MPa) and corresponding true strain:

o yAcalc :=if(a1200.otrueAaOMPa) yA:max(oAcac) NumAa :if(trueA = yAaO)

ayBcalcb :=if(b1200,c YtrueBbOM-a) ayB:=max(ayBcalc) NumBb:=if(a trueBj YBbO)

ycal :=if(c<1200a trueCc°OIa) c Y :=max(cyCcalc) NumC =if(a trUeC = c CO)

yA := trueA E yB := trueB yC := trueC

max( NumA) max(NumB) e ax(NumC)

Read the stress strain curve data from the Hopkinson Bar analysis:

i := 2500,2510.. 4500

TRIAL := READPRN(DOC1T1)

trueh :=(-TRIAL) atrueh :=(-TRIAL)<2> MPa

yh :=max(a trueh) NumHi: if( truehJ=-- yhiO) Eyh:= £E tehmax(NmH)
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Generate a plot of true stress (MPa) versus true strain for 0% 8084 / 100% 1080 at various load
rates:

V3
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TRUE STRAIN

- A = 15-3-a (1); Load Rate = 0.01 mm/sec*
B = 15-3-c (3); Load Rate= 0.10 mm/sec*
C = 15-3-f (6); Load Rate = 1.00 mm/sec*
D = Hopkinson Bar Test (1); Strain Rate = 2.00e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - C:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(e truA) = 1.529 max(o trueA) =60.495 MPa

max(E trueB) = 1.53 max(oa t,,B) =63.194 MPa

max( trueC)= 1.506 max( teC) = 73.66 MPa

max(e trueh) =0.339 max(a trueh) = 87.72 MPa o yh = 87.72 MPa

q t K . 4 
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E yh = 0.089
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