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A Study of the Behavior of the GRP Hat-Stiffened

Panel Bondline Under High Strain Rate Loading

by
Michael Ziv

Submitted to the Department of Ocean Engineering and the Department of Mechanical
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Naval Engineer and Master of Science in Mechanical Engineering

ABSTRACT

The effects of strain rate on the large strain compressive behavior of polymer
blends is investigated using Dow Chemical Derakane 8084 rubber toughened vinyl ester
and Scott Bader Crestomer 1080 as constituent materials. The goal is to evaluate their
suitability for use in the stiffener/panel bondline of GRP minsweeping vessels which need
to be able to continue their mission in the event of a near field mine detonation.

The experimental procedure involved the testing of five blends ranging from 0-100
percent Derakane 8084 by weight at 25 percent increments under compressive loading in a
hydraulic testing machine at constant loading rates of 0.01, 0.10, 1.00 and 2.50 mm/sec.
These test results were then used to generate a predictive model for the lower yield stress
as a function of the applied strain rate which was used to predict the yield stress of each
of the blends as well as the pure Derakane 8084 material out to strain rates on the order of
10° sec™’. The prediction was then compared against results experimentally obtained using
a Hopkinson bar. The correlation between the predicted and experimental values was
generally good, although universally low by about 10-18% when the Crestomer 1080
concentration was less than 50%. The cause of this deviation is not known, but is likely
due to an inertial effect. At concentrations of Crestomer higher than 50%, the rate
dependency of the elastic modulus becomes significant due to the viscoelastic nature of
Crestomer 1080. Since the model does not account for rate dependency in the elastic
modulus, these results are not as accurate.
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1.0 INTRODU

In naval warship applications such as minehunting vessels, particularly under
impact and shock loading, frame to shell connections may be exposed to substantial
through-thickness tensile stresses. These stresses are primarily due to initial tensile
loading and subsequent peel caused by shock concentration at the frame to shell interface.
They are further aggravated by severe frame inertia loading." The current practice is to
assume that the resistance of the joint to failure under shock loading may be improved by
increasing the pull-off strength under quasi-static loading, in which a top-hat stiffener is
pulled from a base panel at a rate of approximately 1 mm/minute. Under these conditions
the secondary bond between the stiffener and the base panel is assumed to be isothermal
during the pull-off process, and any strain rate effects which may be present due to the
shock loading phenomena are ignored.

The assumption of strain rate independence of the bondline material cannot be
made without careful consideration of the nature of polymeric materials. Polymers are
rate dependent materials whose mechanical properties are often strongly effected by both
time and temperature. The strain rate corresponding to “‘static loads” may be taken to be
between 10* and 10™ sec™. Under conditions of structural vibration with frequencies in
the range of 10-50 Hz, strain rates of approximately 1.0 sec” occur while in the case of air
blast or hydrodynamic impact, strain rates as high as 10** sec™ typically occur.”

A comprehensive investigation of improvements in stiffener-base plate secondary
bond interfaces has been conducted. The results of which may be found in Appendix A.
The failure to consider the effects of a six order of magnitude difference in strain rate
when using polymer materials represents the single largest deficiency in the study of these
interfaces.

The most recent studies indicate that the use of low modulus/high strength
materials in the bondline will provide the best stiffener to shell connection. The effects of

! Michael Trimming, “Monocoque GRP Minehunters,” The Royal Institution of Naval Architects
London International Symposium on Mine Warfare Vessels and Systems 1989.

2C. S. Smith, Design of Marine Structures in Composite Materials (New York: Elsevier Applied
Science, 1990), pp. 95-96.



strain rate on the proposed secondary bondline materials needs to be investigated to
ensure that they remain compliant at the higher loading rates. |

In the most recent studies, Crestomer 1080, a compliant urethane acrylate
produced by Scott Bader, was proposed for this application. Due the large strain to
failure of this material, which often exceeds 150% true strain, a dramatic increase in the
load to failure during quasi-static pull-off testing was achieved as compared to previous
testing which used polyester and acrylic materials in the bondline.

Crestomer 1080 is often blended with a vinyl ester to increase its stiffness to a
desired level. The most commonly used vinyl ester for this application is Derakane 8084,
which is a rubber-toughed variant produced by Dow Chemical. The purpose of this thesis
is to investigate the effects of strain rate on the behavior of several blends of these
materials and draw conclusions related to their use in this application.

1.10 Scope of the Project

Chapters 2-6 will develop the theoretical background needed to study high strain
rate behavior in polymers. Chapter 2 will give a brief introduction to the mechanical
behavior of polymers including a review of the so called “four regions of mechanical
equivalence” which define the behavior of a polymers over a wide range of temperatures
and loading rates. Chapters 3 through 5 will discuss the theory and implications of the
three regions of mechanical equivalence which are important in this study. These include
linear elasticity, finite-strain elasticity and viscoelaticity. Chapter 6 will describe a model
and methodology for analyzing the yield behavior of these blends when they are subjected
to high strain-rate loading. Only compressive loading behavior will be investigated. This
will eliminate the complexities inherent in tensile testing which include crazing and
fracture, and allow for the large plastic strain behavior of the materials to be studied.

The remaining chapters will discuss the experimental procedure and results.
Chapter 7 outlines the specimen fabrication procedure, including resin formulation, mold
selection, and the machining processes. Chapter 8 introduces the process of Dynamic
Mechanical Analysis (DMA), which was used in this project to determine the glass
transition temperature of each of the blends. This parameter is often viewed as one of the
most important in the study of polymer materials. Chapter 9 discusses the initial

10



compression tests which were conducted using an hydraulic Instron testing machine. The |
tests, which spanned more than three orders of magnitude of strain rate, were used to
formulate a model which was used to extrapolate the yield stress corresponding to strain
rates on the order of 1000 sec’. In Chapter 10, the results of several tests conducted at
strain rates of approximately 3x10*® sec” using a Hopkinson Bar are presented and
compared with the results from the slower strain rate Instrbn tests including an evaluation
of the agreement between the predicted and measured values. Chapter 11 will conclude
with a discussion of the results and their implications along with suggestions for future

study in this area.
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2.0 ME NICAL BEHA E

To understand the effects of strain rate on the behavior of either a single polymer
or a mixture of several polymers, it is first necessary to review some of the relevant topics
in the study of polymer material behavior. There are several ways in which polymers can
be grouped. In one typical grouping, they are classified as either thermoplastic or
thermosetting. The thermoplastic polymers are those which soften and eventually flow as
a viscous liquid when heated. They consist of linear branched-chain molecules with strong
intramolecular (within the molecular chain) and weak intermolecular (between chain)
bonding. Melting and solidification of these polymers is reversible, and they can be
reshaped by the application of heat and pressure. Thermosetting polymers, by contrast,
have a highly crosslinked or network structure with strong covalent bonds between chains,
which form during the curing process. These crosslinks inhibit flow and, as a
consequence, thermosets do not undergo liquid flow but decompose when heated to
sufficiently high temperatures. Examples of thermosets include polyester, epoxy, vinyl
ester, and phenolics.

As a result of cost and production constraints, virtually all marine composites
utilize thermosetting polymers. Thermosets always have an amorphous structure, so only
this class will be considered in this study. The next section will discuss the assumptions
made in the idealized modeling of amorphous macromolecular chains.

2.10 The Glass Transition Temperature

Polymer properties are known to be very sensitive to both temperature and load
rate, particularly near the glass transition temperature (Tg). An understanding of the
this material parameter is perhaps the most important piece of information when
considering the behavior of amorphous polymer materials.

The glass transition temperature separates the region of glassy behavior (below
Tg) from the region of elastomeric behavior (above Tg). In the temperature range very
near Tg, the polymer is in a state of transition, and it behaves in a viscoelastic manner. It
is in this region that temperature and strain rate effects have the greatest impact on the

mechanical behavior of polymer materials.
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There is a dramatic change in most of the material properties of a polymer at the
glass transition temperature. For example, there is a sharp increase in modulus (about
three orders of magnitude) when the temperature is reduced from about 30°C above Tg to
30° C below Tg. There are also large changes in other physical properties such as the
specific volume, the heat capacity and the coefficient of thermal expansion.

The abrupt changes in physical properties have allowed for the development of a
wide variety of tests to measure the glass transition temperature. Among these tests are
Differential Scanning Calorimetry (DSC) which measures changes in heat capacity during
the transition from the glassy to the rubbery state, and Dynamic Mechanical Analysis
(DMA) which directly measures the modulus by loading a thin specimen sinusoidally in the
elastic range as the temperature is incrementally increased from a temperature below Tg to
above Tg.

In the case of thermoset materials, the crosslink density is very high and the change
in heat capacity during phase changes is difficult to detect using DSC techniques. For
these materials, the use of DMA allows for a clear, accurate and repeatable measurement
of Tg. DMA analysis will be discussed in greater detail in a later section.

2.11 Kinetic Versus Thermo icIn i lass Transition Temperatur

As a result of the abrupt changes in the some of the physical properties, attempts
have been made to analyze the glass transition temperature as either a first-order or
second-order thermodynamic transition process. In a first-order thermodynamic
transition, a sharp change occurs in one of the fundamental thermodynamic properties
such as enthalpy or volume, while a second-order transition is reflected by a sharp change
in the first derivative of one of these properties. Several investigators have shown a
connection between the glass transition temperature and second-order thermodynamic
properties such as the specific heat and the volume thermal expansion coefficient, but it
was later shown that the measured value of the glass transition temperature depends on
the rate at which the temperature is changed’ . It was found that the lower the heating rate
used in raising the temperature from temperatures corresponding to the region of glassy

behavior, the lower the measured glass transition temperature.

! Kovacs, J. Polym. Sci., 30, (1958), 131.
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Because of the dependence on the cooling rate of the measured value of the glass
transition temperature, it cannot be strictly described as a thermodynamic transition event.
Thermodynamics considers steady state events which are assumed to be time invariant.
The glass transition is therefore generally accepted as a kinetic rather than a
thermodynamic event. It should be noted, however, that the change in Tg with decreasing
cooling rate is very slow, changing by only about 2-3 degrees Celcius when the cooling
rate is varied from 1°C/min to 1°C/day?, so it is possible to define a value of the glass
transition temperature which is nearly independent of the cooling rate. The glass
transition temperature will be discussed in a later section dealing with linear viscoelastic
theory.

2.12 Effec Polymer Structure on the Glass Transitio

The glass transition temperature (Tg) varies over a fairly wide range from one
polymer to another. These differences are due to the molecular differences between
polymers. A brief list is given below *:

1. Inflexibility of the repeat unit of the macromolecule increases Tg. This is
related to the absence of hinges in the chain backbone.

2. The presence of atoms or groups of atoms in the repeat unit which participate
in dipolar or secondary interactions with segments of neighboring macromolecules tend to
increase Tg.

3. Tg increases with increasing average macromolecular weight.

4. As the degree of crosslinking increases, the glass transition temperature
increases slightly. This is an expected result, since crosslinking suppresses the large elastic
deformations typically associated with elastomeric materials.

Examples of the glass transition temperature for a variety of materials are shown in
Figure 2-1. Note that the presence of aromatic rings, bulky side groups, and cyanide

groups result in much larger values of Tg than in the linear chain molecules.

21.M. Ward, Mechanical Properties of Solid Polymers 2nd ed. (New York:John Wiley and Sons, 1990),
p. 150.

*1.V. Yannas, Introduction to Polymer Science and Engineering: A Set of Lecture Notes, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1981, pp. 77-78.
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Approximate values of glass transition temperature, Ty, for
various polymers

Repeat unit T,/K
—CH—~CH— -~ 140-270
—CH,—~CH—0— 206

—@-o—— 357
—CH,~O)~CHr— 353

Side group (X) .

—CH,—CHX— —CHa 250
—CH,—CH; 249
—CH,—CH~—CH; 233
—CH—CH(CH.), 323
— : ) 373
—Cl 354
—OH 358
—CN 370

R.J. Young and P.A. Lovell. Introduction to Polymers 2nd ed.
(New York:Chapman & Hall, 1992), p.296.

Figure 2-1
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2.20 Representation of Amorphous Polymers Using Modulus-Temperature Curves

Due to the strong temperature dependence on the behavior of polymeric materials,
the mechanical behavior of polymers subjected to small strain is often represented by plots
of temperature versus the logarithm of modulus (E-T curves). These curves are plotted
assuming a fixed strain rate since, in the case of amorphous polymers, an increase in strain
can be equated to a decrease in temperature. The equivalence of time and temperature for
an amorphous polymer under small strain will be discussed in Chapter 5.

The shape of the modulus-temperature curve is effected to a large extent by the
molecular details of the polymer in use and reflects the versatility offered by these
materials. As an example, Figure 2-2 shows the effect of increasing the polymer average
molecular weight and crosslink density. As the molecular weight of the polymer
macromolecule is increased, the elastomeric region is increased, while increasing the
density of crosslinks increases the modulus in the elastomeric region and also increases Tg
slightly. Recall that themosetting polymers typically have a very high crosslink density.
2.30 The Four Regions of Mechanical Equivalence

The modulus-temperature (or modulus-time) diagram is typically divided into the
four regions of mechanical equivalence in which different constitutive laws apply. These
regions are known as glassy (Region I/below Tg), transition/leathery (Region Il/near Tg),
rubbery/elastomeric (Region Ill/above Tg), and liquid flow (Region IV/well above Tg) as
shown in Figure 2-3. It was mentioned earlier that thermosetting polymers are highly
crosslinked and decompose rather than flow when heated, so they do not display region
IV behavior. Table 2-1 indicates, qualitatively, the time dependence, mechanical memory,
and the simplest applicable branch of mechanics which can apply to a crosslinked
amorphous polymer in the three applicable regions of mechanical equivalence. Time
dependency reflects how important the loading rate is in determining the mechanical
response, and mechanical memory indicates both how rapidly and how completely the

material regains its original shape following load removal.
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Richard W. Hertzberg, Deformation and Fracture Mechanics of

Engineering Materials 2nd ed. (New York:John Wiley and Sons,
1983), p. 205.

Figure 2-2
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Richard W. Hertzberg, Deformation and Fracture Mechanics of
Engineering Materials 2nd ed. (New York:John Wiley and Sons,
1983), p. 203.

Figure 2-3
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TABLE 2-1

REGION TIME MECHANICAL APPL. BRANCH
DEPENDENCE MEMORY OF MECHANICS
1 WEAK STRONG LINEAR ELASTICITY
2 STRONG MODERATE LINEAR
VISCOELASTICITY
3 WEAK STRONG RUBBER (LONG-
RANGE) ELASTICITY

The following sections will review the essential elements and limitations of material
behavior in the three regions of mechanical equivalence as indicated in table 1. The theory
of linear elasticity will be presented first, followed by the theory of rubber elasticity. This
is a convenient progression since rubber elasticity can be viewed macroscopically as an
extension of linear elasticity which accounts for finite strains. Phenomenologically,
however, linear elasticity models materials as “linear energy (Hookian) springs”, while
rubber materials are modeled as “entropy springs”. Finally the elements of the theory of
linear viscoelasticity will be presented. This theory is the only one which allows for rate
dependency in the modulus by the addition of viscous damping terms to the constitutive
relations.

2.40 Yielding, Crazing. and Fracture of Amorphous Polymers

The yielding behavior of metals has been widely studied and is well understood.
One of the main assumptions in these theories is that the yield stress is independent of
hydrostatic pressure. In contrast, yield in polymers is a strong function of the hydrostatic
pressure. It should be noted at this point that yield only occurs in polymers which are in
the glassy phase. This will be discussed in greater detail in Chapter 6. Recall that the

pressure is defined as:

1 1
P=--tfo] = Z[o,+0, +0
3 [ ] 3 [ 1 2 3 ] (2_ 1)
where: tr{o ]is the trace of the stress tensor
The effect of hydrostatic pressure on the yield stress is particularly significant in

amorphous polymers. This can be explained by viewing the yield stress as the point at
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which the barriers to chain segment rotation have been overcome and the material is able
to flow.

Some of the barriers to chain segment rotation are configurational while others are
intermolecular. The configuratonal barriers are those which are due to the resistance of a
chain to rotation about its backbone, independent of its neighbors. These effects are not
strongly dependent on pressure.

The intermolecular barriers to chain segment rotation arise due to the interactions
between chains. It is reasonable to assume that the pressure contribution to the yield
stress results in a decreased distance between polymer chains. As a result, there is an
increase in the intermolecular barriers to chain segment rotation, and a higher yield stress
with increasing pressure.

Since the hydrostatic pressure level is higher in compression than in tension,
polymers often have a higher yield stress when tested in compression than when tested in
tension. This necessitates a modification of the applicable yield criteria before they can be
used to predict the yield stress.

One of the most commonly used criteria to predict yield is the Von Mises yield
criteria. This criteria is most easily implemented using principle stress values. Recall that
any stress tensor can be transformed into a stress tensor which only has terms on the
diagonal (no shear terms) by a transformation of coordinates. In terms of principle
stresses, and accounting for the pressure dependence of yield, the Von Mises yield criteria

is given as follows:

2(6,. -6 )0, +0, +c_,,]+[(o'1 ~6,) +(0,~0,) +(o, —53)2] =26,0,
where: 0, and 0, are the compressive and tensile yield stress 2-2)
G,,0,, and G, are the three components of the principle stress tensor
Equation (2-2) reduces to the traditional pressure-independent Von Mises yield
criteria when the tensile and compressive yield stresses are equal.
Another effect of pressure on the behavior of a glassy polymer is the formation of
crazes. Crazes are a localized form of plastic deformation which occur when the polymer
is subjected to an overall hydrostatic tensile stress. This process, which occurs in the

elastic regime at approximately 1/2 the yield stress, results in a significant increase in
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volume as chain segments are separated from each other. In the process of chain segment
separation, regions of cavitated polymer are produced. This process does not usually
affect the modulus of the material, so the elastic response is not effected. The voids do,
however, serve as nucleation sites for cracks which can lead to failure by fracture prior to
the yield point.

This study will only consider the compressive behavior of a series of polymer
blends as a function of strain rate. This decision was motivated by the general lack of
information on the particular blends of interest. To begin to investigate the behavior of
these materials under high strain rate loading, it was necessary to minimize the number of
design variables. The choice of compressive loading eliminates the possibility of crazing

and fracture when the material undergoes homogeneous deformation.
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3.0 LINEAR ELASTICITY

The theory of linear elasticity is important in the description of the small strain
behavior of glassy polymers. In this regime, the true-stress is linearly related to the true-
strain by a constant factor known as the modulus of elasticity which represents the rate-
independent stiffness of a glassy polymer. This important material parameter is
experimentally obtained in a simple compression or tension test as the slope of stress-
strain curve.

The theory of linear elasticity is represented by the well known generalized
Hooke’s Law. This theory is a good approximation to the behavior of many materials
when the strains are small, typically on the order of 1%. Its simplicity of use makes it a
popular choice for the initial design of a wide variety of structures. There are, however,
some important limitations of the theory which limit its use, particularly in the study of
polymeric materials.

A primary assumption of the theory is that the material behaves like a
linear/Hookean spring. As a consequence, the deformations resulting from an applied load
are independent of the history or rate of loading. When a load or displacement is applied
to a linear elastic material, the load does not change as a function either of time or
temperature. When the load is removed, the material is assumed to return instantaneously
and completely to its original state.

The assumption of linearity in this theory indicates that the tensor components of
stress may be represented by a linear function of all the tensor components of strain and
vice versa. The stress can be computed by multiplying the strain tensor by a stiffness
matrix, which is a 6x6 matrix in the most general case of a fully anisotropic material. The
number of independent constants may be reduced when material symmetry exists. In the
limit, a material which has an infinite number of planes of symmetry such that its behavior
is independent of orientation is said to be isotropic. In this case, the slope of the tensile or
compressive stress strain curve is known as the modulus of elasticity or the Young’s
Modulus.

This linear behavior is strictly applicable in polymeric materials only for very small
values of strain. Whén strained beyond this limit, known as the proportional limit, many

23



polymers behave in a non-linear fashion. It should be noted that unlike metals, in which
the yield point closely corresponds to the proportional limit, polymers are often capable of
considerable non-linear deformation without suffering any permanent deformation.

Time independent behavior is a reasonable assumption for glassy polymers when
the strains are small (on the order of 1% or less) and molecular motion is limited to only a
few segments of any macromolecular chain. The small strain behavior of real polymeric
materials is time dependent to a greater or lesser extent depending on the imposed
temperature and strain rate. This is particularly important in the vicinity of the glass
transition temperature (Tg), which defines the tramsition region between glassy and
elastomeric behavior. Linear elasticity is modified to account for the effects of time in the
theory of linear viscoelasticity, at the expense of a significant increase in computational
complexity. This theory, which is discussed in Chapter 5, incorporates time dependency
into the constitutive relationships by the addition of one or more viscous damping terms.

The assumption of small strain implies that any terms in the strain-displacement
equations which are of second order can be neglected. This theory fails when an
amorphous polymer is in the region of rubber elasticity where elastic strains on the order
of 300-700% are possible. Elastic strains on this level are unique to amorphous
polymers, and are modeled by the theory of finite strain elasticity, which will be discussed
in Chapter 4.

Despite the limitations of its use, the theory of linear elasticity is widely used in the
stress analysis of components constructed of polymeric materials particularly in defining

the behavior of glassy polymers prior to yield and is therefore worthy of some discussion.



The generalized Hooke’s law relating stresses to strains can be written in
contracted notation as follows:
6i=Cjj*g ij=1,2,..,6 (3-1

where: C;; is the stiffness matix
or:
g= Sij*o; i,j=12,..,6 : (3-2)

where: S;; is the compliance matrix

o, Oun €, €,

G, Cxn €, €

O, O3 €, €33
o'ij = = 8ij = =

o, Ty €, Y

Cs Ta € Y

1O6] [T12] €6 Y12

where: ©; are normal stresses and T ; are shear stresses, and

g; are normal strains and 7y, are shear strains

note that strain notation in contracted notation is as follows:

g 2908w . _9v o _dw _dv dw
'"9x * 9y ' 9z Tz dz dy
A A ow du du dv

= — = e e e = e o e
223779y T2 T9x Taz 72Ty Tax
where: u, v, and w are displacements in the x, y, and z directions

Note that both the stiffness and compliance matrices are represented by a 6 x 6
matrix and [Cy] = [Si,-]'l. These matrices are fully populated in the case of a fully
anisotropic material, but the number of independent coefficients can be reduced by noting

material planes of symmetry.
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For the most general case of an element of anisotropic material, also known as
one with triclinic symmetry, the 6 x 6 compliance matrix can be written as follows with 21

independent compliance coefficients since Sy = Sji:

rSll SIZ SIS sl4 SIS SlG
SIZ SZZ SZS S24 S?.S S26
S.. = SIB SZS SBS S34 S35 SSG (3_3)
Y Sl4 S24 SS4 S44 S4S S46
SlS SZS S3S S45 SSS SS6
S S Si Se Sss Ses

If one plane of symmetry is present, in this case through thickness midplane
symmetry, monoclinic symmetry exists and the compliance matrix reduces to the

following 13 independent compliance coefficients:

Su S S 0 0 8]
S Su S 0 0 Sy
S = Sis S S;i 0 0 Sy (3-4)
iTlo 0 0 S, Ss O
0 0 0 Ss S O

Sl6 SZG S36 0 0 866_

If there are two planes of material property symmetry then symmetry will also exist
on a third mutually orthotropic plane. A material displaying this form of symmetry is said
to be orthotropic with 9 independent constants. Note that there is no interaction between
normal stresses and shear strains for orthotropic materials aligned with the principal
material directions. These directions are parallel to the intersections of the three
orthogonal planes of material symmetry.



The stiffness matrix in coordinates aligned with the principal material directions is

as follows:
S, S, S, 0 0 O
s, = S; S, S, 0 0 O 3-5)
) 0o 0 o0 S, O O
0O 0 0 0 S, O
0 0 0 0 0 S,

The elements of the compliance matrix are related by simple relationships to the
engineering constants Young’s modulus (E), Poisson’s ratio(v), and shear modulus(G).
The compliance matrix (Sij) for an orthotropic material in terms of engineering constants

is can be represented as follows:

1 —V -V
12 B3 4 o o
By Eyp Ey
Vo1 1 Vo3
0o 0 o0
By By Ey
-V -V
1
E31 E32 - o o o
Sij = 11 22 33 (3-6)
1
0 0 0 — o0 o
G
23
1
0 0 0 0 — 0
Ci3
1
0 0 0 o o0 —
L 12
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In a wide variety of materials under small strain, the material properties do not
vary significantly with orientation. This is true of amorphous polymers under small strain
due to the lack of significant chain alignment. In this case, an infinite number of planes of
material symmetry exist. The number of independent constants reduces to 2, and the

material is said to be isotropic. The compliance matrix for such a material is as follows:

Sy Su Su 0 0 0 ]
S Sy Sy 0 0 0
Sz S Sy -0 0 0
S.. = -‘7
i 0 0 0 2(S,-S;,) 0 0 7
0 0 0 0 2(S,-S1n) 0
0 0 0 0 0 2(S, —Su)d

For an isotropic material, the compliance matrix (Sij) can be written in terms of a

single value of Young’s modulus (E), Poisson’s ratio(v), and shear modulus (G) as

follows:
122 g0 o0
E lli’ E
X2 X o o0 o0
E E E
S, = . (3-8)
0 0 0 — 0 O
G
0 0 0 OlO
G
0 0 0 OOl
L G




From these relations, the well know stress-strain relationships for isotropic linear

elasticity can be written as follows:

Exx:iau-l(oyy'l'ﬁz)
E E

Syy=—é~0yy-‘\é'(ﬁu+®)

Ez.z="1‘ﬁz—l(&x+oyy)
E E

(3-9)
Txz
€xz = —
€z = E
T
E€xy = '(';2

The isotropic shear modulus is related to the Young’s modulus and Poisson’s ratio

by the following expression:

G= E
2(1+v)

(3-10)

Another basic quantity which is of importance in linear elasticity, particularly in the
case of polymers, is the bulk modulus (K), which determines the dilation (A) produced by

a uniform hydrostatic pressure (p):

k=L
A (3-11)
where:A = ex+Ey+ €z

Using the isotropic linear elastic stress strain relationships it can be shown that the

strains produced by a uniform hydrostatic pressure (p) are as follows:
& = &y =€z = (Su+2512)p (3-12)
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Then the bulk modulus is equal can be written as:

1 _ E
3(Su+281) 3(1-2v)

14
K=~= 3-13
A (3-13)

Table 3-1' is an order of magnitude comparison of the elastic engineering
constants for an isotropic amorphous polymer in each of the three relevant regions of
mechanical equivalence, showing a difference in Young’s modulus (E) of approximately
three orders of magnitude between the glassy and elastomeric regions. It should be noted
that the values given for the Young’s modulus and the shear modulus (G) are represented
as a constant value. This is only strictly true when the stress strain behavior is linear, as
was assumed for glassy polymers. Viscoelastic materials are rate dependent so the
modulus values given represent a range from the glassy to the elastomeric values. In the
elastomeric region, the modulus is known as the rubbery modulus. This value represents
the elastic response which occurs when an elastomer is loaded at a high rate. It should be
noted that the bulk modulus of an elastomer is very large resulting in Poisson ratio very
close to 0.50, indicating that elastomeric materials are essentially incompressible. The
assumption of incompressibility is important in the development of constitutive models for

the finite strain elasticity of elastomeric materials.

TABLE 3-1
REGION E (Pa) G (Pa) K (Pa) v
1 10°-107 10° 10°-10% 033
2 10°- 10° 10°- 10° 10°-10° 0.40 - 0.45
3 10°-10° 10°-10° oc 0.50

'LV. Yannas, “Introduction to Polymer Science and Engineering: A Set of Lecture Notes,” Deformation
and Fracture of Polymers. Massachusetts Institute of Technology, 1994, 101.
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4 IN / RUBBER ELASTICIT

Finite strain behavior is important in the large deformation behavior of amorphous
polymers. The premise behind this behavior is that large strain results in a decrease in the
configurational entropy of the material which gives rise to a stiffening effect. Most of the
work in the area of entropic response has been directed towards the development of
predictive models for the behavior of elastomeric materials, so this is the primary focus of
this section. The theories have also been use to model the entropic resistance to plastic
deformation in glassy polymers.

Elastomeric material behavior (also known as rubber elasticity, finite strain
elasticity, and long-range elasticity) is unique to crosslinked amorphous polymers which
have an average macromolecular weight greater than approximately 10,000 and have been
heated to temperatures of T, + 30°C or greater. Elastomers meeting these requirements
are capable of non-linear elastic strains on the order of 300-700%. Polymers with an
average macromolecular weight significantly less than 10,000, semicrystalline polymers,
and uncrosslinked polymers do not exhibit characteristic rubberlike behavior.

In addition to the large elastic strain limits exhibited by elastomers, several other
unusual characteristics have been observed. As an example, it has been observed by many
investigators that the modulus of an elastomer increases with increasing temperature. This
is in contrast to what is seen in nearly all other engineering materials which soften with
increasing temperature. An understanding of this unusual behavior begins with the
thermodynamics of elastomeric behavior.

4.10 Thermodynamics of Elastomeric Behavior

The thermodynamic properties of interest in the study of elastomeric material
behavior depend on the conditions under which the material parameters in the constitutive
equations are experimentally obtained.

Recall that the first law of thermodynamics states:

dW =dU-dQ 4-1)
where: dW is the work done on the material
dU is the increase in internal energy

dQ is the heat supplied to the material
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For an adiabatic experiment conducted at constant volume (V), the work done on
the material is equal to the increase in internal energy (U). In this case,
dQ=0and dW =dU 4-2)
For an adiabatic experiment conducted under constant pressure (P), the work done
on the material is equal to the enthalpy (H), where H=U+PV. In this case,
dQ=0and dW =dU + PdV =d(U+PV)p =dH 4-3)

For an isothermal experiment conducted at constant volume, the work done on the
material is equal to the Helmholtz free energy (A), where A = U - TS. The variable (T) is
the absolute temperature, and (S) is the entropy. In this case,

dQ = TdS and dW = dU-TdS = d(U-TS)t,v =dA (4-4)

Finally, for an experiment conducted at constant temperature (T) and pressure
(P), the work done on the material is equal to the Gibbs free energy (G), where G = U +
PV -TS =H - TS. In this case,

dQ =TdS and dW =dU + PdV - TdS = d(U+PV-TS)t,p = dG 4-5)

Most of the experimental observations in the study of elastomers have been made
under conditions of constant pressure. This indicates that work done on an element of
material is best represented by the Gibbs free energy. Several investigators have used the
simplified Helmholts free energy equation which differs from the Gibbs free energy by the
single differential term PdV. This simplification can often be made in the case of
elastomers since they behave in a nearly incompressible manner, so the change in volume
(dV) is nearly zero.

The work done on an elastomeric material (dW), originally of length (1), when it is
extended under the action of a tensile force (f) is given as:

dw =fdl (4-6)

Using the first law of thermodynamics and setting the work done on the material

equal to the Helmholtz free energy gives:
fdl=dU - TdS 4-7)
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At constant volume the tensile force can be written as:

A U 38
=) ={=| -T|= 4-8
=5, - (53, (3 .

The entropy term cannot be measured directly by any known experimental method,
so a further manipulation is required. The Helmholtz free energy in its most general form

is:
dA =dU - TdS - SdT 49
From equation (4.9),
(QA) = f and (?_é_) - .S
but,
i(ié) - _a_(ﬁé) 4-10)
01\0T), T\ dl J;
which gives,
(5 - G0
al J; 0T/,
Combining equations (4.8) and (4.10) gives the following expression for the tensile
force:

oU of
=), - ) =

It was shown by Meyer and Ferri' (1935) and later by Gee? (1946) that the tensile
force of a rubber specimen at constant length is almost linearly proportional to the
absolute temperature and the force can be extrapolated nearly to zero tension at absolute
zero. This was an early indication that the contribution of the internal energy to the tensile
force is small..

Although when modeling elastomeric behavior, the internal energy contribution to
the tensile force is typically neglected, its contribution is not always insignificant. As an

! K.H. Meyer and C. Ferri, Helv. Chim. Acta, 18, (1935), 570.
1G. Gee, Trans. Faraday Soc., 42, (1946), 585.
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example, it was shown’ that, for the case of natural rubber at room temperature, the
internal energy contribution dominates at true strains below about 40% at which point the
energy and entropy contributions were nearly equal. At larger values of strain, the entropy
term dominates. For strain values greater than 150%, the force could be explained almost
completely on the basis of entropy changes. In the case of natural rubber, the contribution
of the internal energy to the force is about 15% of the total. Other studies** (1961, 1962)
confirmed these results, claiming that the internal energy contribution to the total tensile
force is approximately 20% of the total force at room temperature. Although these values
are not trivial, the internal energy contributions to the deformation of elastomeric materials
are neglected in most of the commonly used constitutive modes. The result is that while
the constitutive models in linear elasticity consider a material to behave like a linear
(Hookian) energy spring, rubber elasticity considers the material to act like an entropy
spring. The models which completely neglect the contribution of internal energy are
known as ideal rubber models.

It has been observed that the temperature of some elastomers increase when
stretched to very high values of strain. This behavior can be partly due to crystallization
which can occur in some amorphous polymers at very large values of strain. Recall the
Gibbs free energy (G):

dG =dH - TdS 4-12)

A system is in a state of thermodynamic equilibrium when the Gibbs free energy is
at a minimum. In the case of semi-crystalline polymers (which do not display any
elastomeric behavior), the temperature at which phase equilibrium exists between the
crystalline form and the amorphous form is known as the melting point (Tm). Above this
temperature the polymer is in the amorphous phase and below it is semi-crystalline. The
melting point occurs when the Gibbs free energy difference between phases is equal to

ZCro.

*1.V. Yannas, “Introduction to Polymer Science and Engineering: A Set of Lecture Notes,” Deformation
and Fracture of Polymers. Massachusetts Institute of Technology, 1994, p. 149.

“G. Allen, U. Bianchi and C.Price, Trans. Faraday Soc., 59, (1963), 2492.

% A. Ciferri, Makromolek. Chem., 43, (1961), 152.
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From (4-12), the following expression is obtained for the melting point:

1 - AH
AS

where: A H is the enthalpy of fusion 4-13)
A S is the entropy of fusion

Strain crystallization occurs in some amorphous polymers at large values of strain
because, as polymer chains are stretched, they become more highly aligned. In this highly
aligned state, the entropy associated with the chain is very low. The entropy of a polymer
can be calculated using the Boltzmann relationship from statistical thermodynamics as

follows:
S=klnQ
where: k is Boltzmann's constant (1.38066 x 102 J/K) 4-14)

€ is the number of possible confomations which a polymer chain can adopt

The entropy of a polymer chain in a highly extended state is low by equation (4-
14) because the number of possible configurations is small. This is offset somewhat by the
large decrease in enthalpy which occurs during crystallization. If the change in enthalpy
(latent heat) is greater than the product of the melting temperature and the entropy
change, crystallization is thermodynamically favored since this phase has a lower value of
the Gibbs free energy. The formation of crystals results in an increase in modulus. An
increase in temperature which occurs in strain crystallizing elastomers is due to the change
in enthalpy which occurs during the change in phase from the amorphous to crystalline
state.

The degree and rate of crystallization depends on the extension of the material and
the length of time the extension is maintained. As an example, natural rubber at strains of
300-400% crystallizes very rapidly to a degree of crystallinity of over 30%°. By contrast,
experiments on butadiene rubbers’ show that these materials do not crystallize at all when

SR.J. Young and P.A. vaell, Introduction to Polymers Second Edition (London: Chapman and Hall,
1994), p. 303.
"W.0.S. Doherty, K.L. Lee and L.R.G. Treloar, Brit. Polymer J., 12, (1980), 19.
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extended. These and other elastomers which do not crystallize at large values of strain
still demonstrate a temperature increase when stretched at high strain rates.

The increase in temperature due to high strain rate loading can be explained by
looking at the adiabatic extension of an elastomer®. When the load is applied very rapidly,
there is not enough time for the material to reach thermal equilibrium with the
environment. This behavior can be modeled as an adiabatic process (dQ = 0), which is
also isentropic (dS = 0). The rise in temperature as the length is increased in this process

can be written as:

(Q_T.) I (Qé)
dAJs C, \dA);
where: C, is the heat capacity of the elastomer held at constant length (4-15)

A is the extension ratio (1/1,)

Using equation (4-10), this relationship can be rewritten as:

o) - I
A Js C, \0T), (4-16)
where: C, is the heat capacity of the elastomer held at constant length

It can be concluded from equation (4-16) that the temperature of an elastomer will
rise when it is stretched adiabatically as long as the derivative of force with respect to
temperature for a specimen held at a fixed length is positive. The earlier discussion shows
that this is usually the case. The temperature rise resulting from the adiabatic extension of
natural rubber is shown in Figure 4-1. It should be noted that this material crystallizes at
large values of strain, which likely accounts for the increase in slope at strains greater than
about 300%.

The key observation of this section is that the deformation is assumed to be
controlled almost entirely by changes in entropy for large strain as a randomly oriented
macromolecular chain undergoes deformation. The next section will look at the entropy
of an individual chain, and how this type of model can be used to model the deformation

of an elastomeric material.

¥R.J. Young and P.A. Lovell, Introduction to Polymers Second Editon (London: Chapman and Hall,
1994), p. 349.
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Increase in temperature, AT, upon the adiabatic extension of an elastomer (vulcan-
ized natural rubber) (data of Dart, Anthony and Guth reported by Treloar).

R.J. Young and P.A. Lovell. Introduction to Polymers 2nd ed.

Figure 4-]
(New York:Chapman & Hall, 1992), p.349.
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4.20 Entropy of a Single Polymer Chain
The entropy of a polymer chain was derived based on a mathematical model
known as the “random walk” by Kuhn’ (1939) and Guth and Mark'®(1934). The model
used in this analysis was a freely joined chain composed of (N) links, each of length (1). In
a freely joined chain, each link is allowed to freely rotate and pivot without restriction
relative to its neighbor. The chain end-to-end distance (r) is the distance from point (P),
located at the origin to point (Q) located at a point in space as shown in Figure 4-2. If the
end-to-end distance is much less than the fully extended chain length (N1), the probability
that (Q) lies within an elemental volume dx dy dz at a distance (r) from the origin is given

represented by a Gaussian function as follows:
p@dr = ;:%exp[-bzr2 Jar

(4-17)
3

2N12
This vector probability can be expressed as a scalar probability, P(r) dr, by noting

where: b? =

that the set of all possible values of the vector probability described above would trace out
a spherical shell of radius (r) and thickness (dr). In other words, the scalar probability,
(P(r)dr) that the scalar value of (r) lies between position r and r+dr is:

P(r)dr = 4n r** p@)dr
50, (4-18)

P(r)dr = (ﬂi)rz exp -bzrz] dr
Jn

The number of possible conformations is proportional to the probability, P(r),
defined above. The entropy of a single macromolecular chain can be expressed as:
s=c-kb’* =c- kbz(x2+y2+z2)

where: c is an arbitrary constant

(4-19)

This entropy equation is based on the assumption that the chain end-to-end

distance (r) can be represented by a Gaussian function. A chain which conforms to these

W. Kuhn, killoidzeitschrift, 76, (1936), 258; 87, (1939), 3 .
°E, Guth and H. Mark, Lit. Chem., 65, (1934),93.
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Freely jointed chain made of (N) identical links, each of
length (D). '

LM. Ward, Mechanical Properties of Solid Polymers 2nd ed (N
; . (New :
York:John Wiley and Sons, 1990), p. 66. Figure 42
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assumptions is known as a Gaussian chain, and the bulk materials are known as neo-
Hookian.

The elasticity of a molecular network can be derived directly from the equation for
the entropy of a single macromolecular chain. This analysis will consider the deformation
of a chain from point (Q) to (Q’) as shown in Figure 4-3.

In finite strain elasticity, the deformations are typically defined in terms of
extension ratios. These extension ratios, designated A, are the ratios of the deformed to

undeformed lengths in the three principal directions and are given as:

A2 = 142e,,
A2 = 142e,
and e, = e, =¢, =0

At large values of strain, the second order effects in the strain-displacement
equations which are typically ignored in the case of small strain elasticity (linear elasticity)

become significant and need to be reintroduced. |



e QX Y1 20)

Q (x5, 2"

The end of the chain Q (x, y, 2) is
displaced to Q (x', y’, z').

LM. Ward, Mechanical Properties of Solid Polymers 2nd ed, (New
York:John Wiley and Sons, 1990), p. 68.
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The six components of finite strain are given by the following equations:
o o u, 1ffouY (v (3w)
=7 9x 2|loax) (9x) \ox
o, = v, 1ffou fov) (owY
» 9y 2[\ay) \ay) \ay
o = 2w, 1[(3uY (3v) (3w
®  dz 2|\oz dz) \ 0z

odw Jdv oudu ovov dwow

e, = —d— e —p— — e —_——e

¥ 9y 0z dydz dyodz 0y 9z
ou Ow odudu Ovov Jdwaiw

= —tp—t——p——— o — —— 4-21
°n az+8x+azax+azax+az 0x (4-21)
oL v, du dudu vdv dwdw

¥ 9x 0y 0Jxody 9Jx0dy OJx dy
and e, , are the normal finite strain components

where: e, , e, ,

in the X, y, and z directions respectively

e, €, , and e, , are the shear finite strain components

The system of equations has been simplified by considering an isotropic element of
material subjected to homogeneous pure strain. In this state, the three mutually
orthogonal axis known as the principal strain directions are not rotated during
deformation. As a consequence, the displacements can be represented by three normal
strains known as the principal strain components oriented in a set of three mutually
orthogonal directions known as the principal strain directions. In this case, all of the
shear strain components are identically zero. Any mutually orthogonal material
orientation system can be transformed into the principal strain orientation by the well
known eigenvalue/eigenvector transformation. As a consequence, the remainder of this

discussion will only consider a state of homogeneous pure strain with no loss in generality.
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When a chain end is deformed from point (Q) to (Q’) it moves from point (x,y,z)

to point (x’,y’,z’), where:

X = A X
y =A,y (4-22)
XX =A,z

The change in entropy when the chain deforms from (Q) to (Q’) can be expressed

as follows:
As = -k?[(A7 - Dx?)+(h,7 - Dy?)+(As” - 1z*) (4-23)

After summing the contribution of all chains in a network, the following expression

is obtained for the total change in entropy as the entire chain network is deformed:

1
As = -—2-nk(k,2+x12+112—3) @28)

where: n is the number of chains per unit volume in a network
Recalling the change in Helmholtz free energy:
AA = AU - TAS 4-9)
Assuming the change in internal energy is negligible gives:
AA = -TAS so,

1 4-25)
EnkT(k 2 H+A 2N -3)

AA

The strain tensor (a second-rank tensor) possesses three quantities known as strain
invariants which are independent of the choice of coordinate system. These strain
invarients are, in general, functions of both normal and shear components of strain. In the
case of homogeneous pure strain, the three strain invarients Iy, I, and I; can be reduced to
principal extension values as follows:

I, = A24h,244,2
I, = A2A 240 20,240 ,720,2 (4-26)
I, = 2,202

As a simplifying assumption, elastomeric materials are often assumed to be

incompressible so the strain invariant I5 is approximately equal to 1.0.
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The change in Helmholtz free energy can be expressed in terms of strain invariants

as follows:

1
2
The stress-strain relationships in rubber elasticity are most often defined in terms of

AA = —nkT(I,-3) (4-27)

a strain-energy functions which are given the symbol (U). This strain energy function is
actually one of several thermodynamic quantities with experimentally determined
constants, the choice of which depends on the conditions under which the experimental
constants were determined. Four strain-energy functions are typically defined which are
numerically equal to either the internal energy, the enthalpy, the Helmholtz free energy, or
the Gibbs free energy.

In the case of the Gaussian chain network, the strain-energy function is equal to
the change in Helmholtz free energy if the strain-energy function is assigned a value of

zero in the undeformed state as follows:
1
U=AA = 5nLkT(Il -3) (4-28)

The constant nkT is equal to the shear modulus (G) of the material. It can also be
represented in terms of the density of the material as follows:

G = nkT = (pRT]
M

c

where: p is the density of the material (4-29)
R is the universal gas constant
M, is mean molecular weight of the chains

It can be shown that the true stresses which result from the deformation of an

incompressible material in the pricipal directions can be given in indicial notation as:

o, =2[x?aU- ! aU]+p; G, =0

‘oI, AZOl,
where: p is an arbitrary hydrostatic pressure and, (4-30)
i,j=1,2,and3



The principal stresses are only determinant to within an arbitrary hydrostatic
pressure. As a consequence, the stresses are sometimes represented as the differences
between principal stresses.

As an example, consider the case of uniaxial tension or compression of a specimen

made of a Gaussian elastomer loaded in the 1-direction,

U _ G au _
oI, 2’ 9L,
[, ;90U U
6, =2 -}ulza—ll_"i'p;czz = Oy 2[ 225-1:]+p =0
sO:
[, ,aU]
= -2{A—
p L 2 aII-
and:
[ U] au U
6, = 2|A—|-2|A 2 —| = 2—[A =01 2] = G[A 2-A 2
s =218l 028 - 220 ) = op-a )
incompressibility gives, A A,A, = 1andsince A, = A, for a specimen
loaded uniaxially:
1 1
A = o—— = ——
S W A2
which gives:
o, = G[xﬁ- i] @31)
Ay

The neo-Hookian form of the strain energy function is the simplest function which
can be used to describe the deformation of a polymer chain and is limited by the
assumption that the chain end-to-end distance (r) is much less than the fully extended
length (NI). A more general description based on Langevin statistics which allows for the
modeling of large stretch behavior will be discussed in the next section.

4.30 Non-Gaussian Finite Strain Models

The Gaussian model mentioned in the previous section is a simple representation

of an amorphous polymer based on the assumption that the chain end-to-end distance (r) is

small relative to the fully extended or locking stretch of the chain (N1). A modification to
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the Gaussian theory to allow for accurate modeling of the large stretch behavior of
elastomers was initially developed by Kuhn and Grun'' (1942). The modification began
with the introduction of the Langevin probability distribution denoted by the symbol (Z,)
which led to the following probability distribution for a freely joined chain:

lnp(r)=c-n[-—r—B +In—P ]

Nl sinh (B)
r 1
here: £(B) = — = cothP - —
so the inverse Langevin funtion (B) is given as: 4-32)

.1_1'_
p =1 (Nl)

and the entropy can be expressed as:

s = k[lnp@] = kN[ﬁﬁ +in sinllxa(ﬁ)]

When expanded into an infinite series, the probability distribution In p(r) and the

entropy equation can be expressed as follows:

_ 3(rY . 9(r) . 9(rY
lnp(r)—c-N[Z(Nl) + ZO(Nl) +§56(]—\ﬂ—) +:|

so the entropy of a single chain can be expressed as: (4-33)

3(r)2 9(r)“ 99(r)6
s=c-kN={—]| + —|—]| + —|—| +...
2 N1 20 \ N1 350 \ N1

1 guhn, W. and Grun, F., Killoid Z. 101, (1942), 248.
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The first term of the series representing the entropy for the Langevin distribution

recovers the Gaussian distribution. This can be shown as follows:
2
s = ¢ - kN 3 (__r_)
2\ Nl
recall, from equation (17):

3
b? = (4-34)
N1

so:
s = ¢ - kb*r?
which is the entropy of a single Gaussian chain given in equation (4 - 19)

The Langevin probability distribution has been used by several investigators in
multiple chain models to predict the large stretch behavior of elastomers. These models
include a three chain model developed by Wang and Guth' (1952), and a tetrahedal
model developed by Flory and Rehner' (1943). In a recent study, an eight chain model
was developed by Boyce and Arruda' (1993) as shown in Figure 4-4. In this model, it is
assumed that the material behaves incompressibly and the sides of the element shown in

Figure 4-4 remain aligned with the principal stretch directions during deformation. The

unstretched network contains eight chains, each of length r, = v/N1 in a cube of
2
dimension a, = 7.3— r,. Following a development similar to that for the Gaussian chain, the

strain energy potential for this eight chain model can be expressed as a function of the first

strain invariant as follows:

1 1 11
=, -3)+—1,2 -9+ (L —27)4+...
v=mr|® 2N o (4-35)
ot I,* -81)+——c (I, —243)+...
7000N3(l ) 673750N‘*(l »

2 Wang, M.C. and Guth, E., J. Chem. Phys. 20, (1952), 1144.
 Flory, P,J. and Rehner, J., J. Chem. Phys. 11, (1943) 512.
4 Boyce, M.C. and Arruda, E.M., J. Mech. Phys. Solids 41, (1993) 389.
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Ellen M.Arruda and Mary C. Boyce, “A Three-Dimensional
Constitutive Model for the Large Strech Behavior of Rubber Elastic Fieure 4-4
Materials,” J. Mech. Phys. Solid, Vol.41, No.2,(1993), 395-396. 1gur
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4.40 Phenomenological Invariant-Based Model

Phenomenological invariant based models attempt to model the strain energy
potential of an elastomer as a function of the first two strain invariants (I; and L),
assuming the materials are incompressible and initially isotropic. Several of these theories
including those of Mooney'® (1940), Rivien'® (1948), Valanis and Landel’ (1967) and
Ogden'® (1972) are discussed in two articles by Treloar”*® (1975, 1976). These models
are essentially curve fits to experimentally obtained data.

The most commonly used representations are the Ogden and the so called
Polynomial representations. The polynomial representation for the strain-energy function
is expressed as follows:

u= 3c,a-3d-3

i=0,j=0
where: C; are experimentaly determined and describe (4-36)
the shear behavior of the material

The neo-hookian form presented earlier is the first term in the polynomial series,
and can be obtained by setting i=1 and j=0. This model may be viewed as a full
generalization of the relationship derived by Mooney in 1940.

Mooney derived his strain energy potential relationship under the assumption of a
linear stress-strain relationship in shear. The Mooney equation can be expressed as
follows:

U=0C(-3)+C,{d,-3) (4-37)

The Mooney equation is therefore the simplest version of the polynomial
representation which contains both the first and second strain invariant, and is obtained by

setting both i=1 and j=1.

1S Mooney, M., J. app. Phys, 11, (1940), 582.

16 Rivlin, R.S., Phil. Trans. R. Soc. Lond. A. 241, (1948), 565.

Y Valanis, K.C. and Landel, R.F., J. appl. Phys. 38, (1967), 2997.

18 Ogdon, R.W., Proc. R. Soc. Lond. A 326, (1972), 565.

1 Treloar, L.R.G., The Physics of Rubber Elasticity. Oxford University Press. Oxford. 1975.
2 Treloar, LR.G., Proc. R. Soc. Locnd. A. 351, (1976), 301.
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The Ogden strain-énergy function of order, N, is of the form:

. |
—_ _l{'j_ Oy o, Cx__
U= Ean(xl +A, 541 5= 3) @38)

where: |, and o are expermentally determined constants
The stresses in the principal coordinate system, resulting from the use of the

Ogden strain-energy function is represented in indicial notation as follows:

N
o5 = Y H,A% - p (4-39)
a=1

4.5 Further Uses of Finite Strain Elasticity
The finite strain theories presented in this chapter were developed to model the

behavior of elastomeric materials, but they can be used to model the entropic component
of any amorphous polymer finite strain event.

Finite strain elasticity is often used in the modeling of finite strain plastic
deformation in glassy polymers. After the yield stress is reached, a polymer begins to flow
as plastic deformation occurs. During this process, the polymer chains become
increasingly more aligned, thereby decreasing their configurational entropy. The decrease
in configurational entropy results in a significant increase in modulus as the plastic strain
becomes large. This change in entropy of the polymer can be viewed as a component of
the total plastic work which is stored and therefore not dissipated during plastic
deformation. Eventually the alignment reaches a point where nearly all of the plastic work
goes to stored energy and plastic deformation cannot occur. This point is reached near
the locking stretch of the material. The use of finite strain elasticity in the modeling of the
yield process will be discussed in greater detail in Chapter 6.
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5.0 LINEAR VISCOELASTIC BEHAVIOR

This section will review the basic underpinnings of linear visoelastic theory, which
introduces rate dependence to small strain theory. Visoelastic effects are important in
polymer materials because the measured value of the modulus of elasticity is often rate-
dependent. This rate dependency can only be quantified by the inclusion of a viscous term
in the constitutive equations.

Linear viscoelastic behavior is exhibited by polymer materials subjected to small
strain at temperatures within approximately 30°C of the glass transition temperature (Tg).
This theory can be viewed as the counterpart of the small strain elastic model (Hooke’s
Law), which is modified to account for time-dependent behavior. The effects of time are
not included either in linear or finite strain elasticity. Viscoelastic theory strictly applies
only to the case of very small strain. Reasonable limits of linear viscoelastic theory for

amorphous polymers vary by region of mechanical equivalence as follows' :

TABLE 5-1
REGION STRAIN (%)
1-Glassy 1
2-Visocelastic 5
3-Rubbery 50

When these strain limits are exceeded, the stress/strain relationships become
nonlinear, and the theoretical analysis becomes significantly more complex.. As a
consequence, the analysis of real polymers in the non-linear visoelastic region is typically
handled by means of numerical, empirical or semi-empirical methods.

The most important practical use of linear viscoelastic theory lies in the
experimental determination of phase transformations, such as the glass transition

temperature (Tg), by means of Dynamic Mechanical Analysis (DMA). In DMA, a

'1.V. Yannas, “Introduction to Polymer Science and Engineering: A set of Lecture Notes,” Deformation
and Fracture of Polymers, Massachusetts Institute of Technology, 1994, p. 127.
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specimen is subjected to a small amplitude sinusoidal load, so the assumptions made in
linear visoelastic theory are valid. DMA will be discussed in greater detail in Chapter 8. |

The following sections outline the basic mechanical models used to describe
viscoelastic behavior including creep and stress relaxation, the Boltzmann integral, and the
time-temperature superposition principle.

5.10 Mechanical Analogies Representing Linear Visoelastic Behavior

The three most common models used to describe linear viscoelastic behavior are
the Kelvin-Voight, Maxwell, and Standard linear solid models (see Figure 5-1). These
models contain various combinations of Hookian springs and Newtonian dampers, and
form the fundamental basis for more complex visoelastic models used to describe the time
dependent behavior of materials subjected to small strain.

The two most common experiments used in the description of viscoelastic material
behavior are stress relaxation and creep. In a stress relaxation experiment, a material is
subjected to a constant strain, and the stress decreases over time with a characteristic time
constant. In a creep experiment, a constant stress is applied and the strain increases
exponentially with time at the same characteristic time constant.

The Maxwell model consists of one Hookian spring and one Newtonian damper in
series and is the simplest model which can be used to describe stress relaxation. When
loaded under a uniform axial stress, G, the total stress and strain in the system is given by:

6 =05 =0p
€ =¢gg + &

5-1
where: G g and € are the stress and strain in.the spring 6-D
G, and £, are the stress and strain in the spring
The stress in the spring and the damper are given by the following:
o = Egg
de,

(v} =

o =1 (5-2)

where: E is the modulus of elasticity
T is the viscosity
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R.J. Young and P.A. Lovell. Introduction to Polymers 2nd ed. .
(New York:Chapman & Hall, 1992), p.325. Figure 5-1
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Combining equations (5-1) and (5-2) gives the following linear ordinary differential
equation representing the response of a Maxwell model under an applied stress:

d_a ldo o© (5-3)

dt Edt n
In the case of stress relaxation, the stress is given as:
6(t) = o,exp(-1/1,)
where: G, is the inital stress att =0 (5-4)
T, = N/E is the relaxation time
The negative exponential term in the stress relaxation equation gives an indication
as to how quickly the stress will relax to a steady state value. The most common
definition of the relaxation time, known as the characteristic relaxation time (CRT), is
the time required for the stress to reduce to 63% of its original value. Small values of
CRT indicate a material which relaxes quickly, while large values result in behavior which
approaches linear elastic material behavior in the limit of an infinitely large relaxation time.
The Kevin-Voight model consists of a Hookian spring and a Newtonian damper
in parallel and represents the simplest model which can adequately describe creep
behavior. Under the action of a uniform strain (g), the total stress and strain in the system
is given as follows:
€ =€ =¢&p
6 =065 + Op
where: © and £ are the stress and strain in the spring
O p and €, are the stress and strain in the spring

(5-5)

The behavior of the Kelvin-Voight model is represented by the following ordinary

differential equation:
de Ee o,
—_— — = — 5'6
TR (5-6)
In the case of creep, the strain decays with time as follows:
c
e = —E"— [1-exp(-1/7,))] (5-7)

The Maxwell and Kelvin-Voight models represent first order approximations of

stress relaxation and creep behavior respectively. Neither is capable of adequately
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describing both of these important phenomenon. Figure 5-2 shows the stress relaxation
and creep behavior of both the Kelvin-Voight and Maxwell models. Note that the Kelvin-
Voight model displays no stress relaxation, and the Maxwell model shows a linear increase
in strain with time. Both of these are clearly non-physical.

To capture the exponential response both in stress relaxation and creep, a model
known as a standard linear solid was developed®. It consists of a Maxwell element in
parallel with a Hookian spring. It can be shown that the differential equation for this
model can be expressed as:

c+ Nu |90 =E,e+ (E,+E, Nw |de
E,)dt E, )dt

m

where: m, and E | are the elements of the Maxwell model (5-8)
E, is the parallel spring element
This model adequately represents the qualitative behavior of a polymer under both
stress relaxation and creep. The behavior in the case of creep is shown below to
demonstrate the increase in complexity as compared with either the Maxwell or Kelvin-
Voight models. The solution of (5-8) in the case of creep is given as follows:

e = GOIiEl -{E :E --El—:lexp(-t/«‘;)]

al a

(5-9)

The standard linear solid can be used to qualitatively represent the behavior of a
polymer, with a significant increase in complexity as compared to either the Maxwell or
Kelvin-Voight models. In order to quantify the viscoelastic response of a real polymer, a
large number of series and parallel spring/damper combinations are required, a process
which can quickly become computationally intractable. A more usable approach involves
the use of combinations of empirically obtained data, and curve fitting techniques, at the
expense of physical significance. These approaches require the introduction of the

Boltzmann integral and the Boltzmann superposition principle.

%C. Zener, Elasticity and Anelasticity of Metals, Chicago University Press, Chicago, 1948.
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R.J. Young and P.A. Lovell. Introduction to Polymers 2nd ed. _ 5
(New York:Chapman & Hall, 1992), p.326. Figure 5-
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5.20 The Bo Inte nd the Boltzmann € ition Principle

The assumption that the relationship between stress and strain is linear allows for
the definition of two important quantities in the study of linear viscoelastic behavior: the
creep compliance J(t) and the stress relaxation modulus E(t). These quantities are
defined as follows:

o = %Q
0
(5-10)
E() = 103)

0
The Boltzmann superposition principle states that the strain (g;) at any time (t)
due to an increment in stress (AG) applied at time (T; ) is given as follows:
e, (t) = (AG;)It-T,) (5-11)
An important premise in the theory is that all previous loadings effect the state of
stress. In practice, the effects of all previous loading histories can be eliminated from a
polymer by raising the temperature to approximately 30-40 degrees Celcius above the
glass transition temperature in a process which is similar to annealing. The sum of all the
loadings can be expressed as:
et) = Y, (Ac,)J@-1,) (5-12)
=0
In integral form, the Boltzmann integral takes the form of a Duhamel integral as
follows:
do
et) = J’ Je-1) =y (T) (5-13)
The Boltzmann integral can also be expressed in terms of the stress relaxation

modulus as:

o) = j E(t- 1)95(1)4 (5-14)
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An exact relationship can be derived between creep compliance and stress

relaxation using Boltzmann integrals and convolution as follows:

J)E(-1)dt =t (5-15)

O.——.u

jE(T)J(t—‘L‘)dT =
1]

The exact relationship is often implemented in numerical codes. An approximate

relationship between the stress relaxation and creep compliance is given as®:

I = sin(m~) __1__
mn  E(t)
where: m is the negative slope of the stress (5-16)
relaxation curve at t

In the case of linear and finite strain elasticity, the compliance is the inverse of the
modulus. Equation (5-16) can be used to qualitatively estimate the effect of neglecting
viscous effects from the slope of the relaxation modulus master curve. Since the sine(0) is
approximately equal to 6 when 0 is small, a relatively small error is incurred when
neglecting viscous effects near the beginning of the sloping regions of the stress relaxation
curve. As an example, the error when the slope is 20 degrees from horizontal is only 2%.
The production of the stress relaxation master curve will be discussed in a later section.

The Boltzmann integral can be used to obtain a qualitative description of the
viscoelastic response of a real polymer based on relaxation and retardation time spectra.
The interested reader is referred to any standard text on the | mechanics of solid polymers
for more information on these topics. The next section will focus on numerical
approximations used by several finite element codes such as ABAQUS* to describe the
viscoelastic response of real polymers.

Most finite element codes use experimentally obtained data and curve fitting
methods to approximate visoelastic behavior. Often, the codes split the problem into

deviatoric and volumetric components which are solved in separate operations. The

*1.V. Yannas, “Introduction to Polymer Science and Engineering: A set of Lecture Notes,” Deformation
and Fracture of Polymers, Massachusetts Institute of Technology, 1994, p. 127.

* Hibbitt, Karlsson, and Sorenson, eds., Analysis of Viscoelastic Problems with ABAQUS, (1994), pp.3-1-
3-23.
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deviatoric component of the stress tensor is obtained by subtracting the hydrostatic
pressure from the stress tensor. The pressure is defined as one third of the trace of the
stress tensor. For simplicity, an explanation of semi-empirical methods will be presented
assuming incompressible material behavior. In this case, the bulk modulus is assumed to
be infinitely large and the volumetric effects can be neglected.
5.30 Semi-Empirical Methods Used in Modeling Viscoelasticity

In most of the numerical approximations of linear viscoelatic behavior, the
Boltzmann integral for stress relaxation is rewritten entirely in terms of stress. This is
done to allow the same form to be used for finite strain viscoelasticity, which will be
discussed shortly. Using integration by parts, equation (5-14) can be written as follows:
diit) c,(t-1)dr (5-17)
where: G| is the instantanous elastic shear modulus

1 t
G(t) = 6,(t) + G—0£

The relaxation modulus can be determined using a Prony series, which is given as

follows:

N
G) = Go (l_z-g-il’(l_e't/tic )J
i=1

where: g.” is obtained by applying several stress levels,
measuring the relaxation time, and curve fitting the results (5-18)
T is the time, and t,° is the characteristic relaxation time
N is the number of terms in the Prony series
This procedure uses a set of experimentally obtained relaxation times and curve fits
the results to within a default (or user-defined) average RMS error in the non-linear least
squares estimate. Once obtained, the Prony series is used with concepts from the most
elementary models of viscoelasticity to quantify the visoelastic response of real polymers.
The same numerical procedure can be used to add rate dependency to isotropic
finite strain viscoelasticity. Although viscoelasticity strictly applies only to small strain
time-dependent behavior, finite strain visoelasticity of elastomers can be analyzed utilizing
a Prony series as described in the small strain viscoelastic case.
Equations (4—36 to 4-39) described the Polynomial and Ogden functions, two of

the phenomenological models used to describe the strain energy potential for the finite
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strain behavior of elastomers. Rate-dependency is added to these models by means of a
Prony series modification of the elastic constants.
The Polynomial form is given as:

U= Yc,a,-3da,-3

i=0,j=0
where: C; are experimentaly determined and describe (4-36)

the shear behavior of the material
The Ogden form is given as:

U= S B o o d o)

n=1 n

where: [, and o, are expermentally determined constants

(4-38)

Time-dependency is introduced by modifying the coefficients C;; in the Polynomial

form and , in the Ogden form using a Prony series as follows:

€@ = Cijo(l-i'gip(l—.e'dna ))
i=1

M, () = uf(l-i'gi"(l—e""'“ )) (5-19)

i=1

where: C,° and p,° are the instantanuous values (at t = 0)

5.40 The Time-Temperature Superposition Principle
The assumption of linear viscoelasticity allows for the production of a master

stress relaxation (or creep compliance curve) for amorphous polymers based on an
extrapolation procedure developed by Williams, Landel, and Ferry’. These curves are
expressed as log(time) versus log(creep compliance or stress relaxation). An example
stress relaxation curve for polyisobutylene is shown in Figure 5-3. The theory states that a
master curve can be obtained which spans many decades in time from data obtained over a
much narrower range of time. The extrapolation is performed using a shift factor which
equates the effect of time and temperature on the behavior of an amorphous polymer.

This is known as the time-temperature superposition principle. The creep test is easier

3Ferry, 1.D., Viscoelastic Properties of Polymers, Wiley, New York, 1961, Chapter 11.
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to perform than stress relaxation, and the curve can be transformed into a master stress
relaxation curve using equation (5-15).

The first step in the production of a master curve is to perform a series of creep or
stress relaxation tests over a relatively short but fixed time interval (usually between one
hour and one day) at a variety of temperatures. The range of test temperatures should be
wide enough to capture the glassy behavior at the lowest temperatures as well as the
elastomeric behavior at the highest temperatures. The master curve will represent the
behavior of an amorphous polymer over many decades of time at a desired temperature.

The temperature corresponding to a master curve is the experimentally determined
temperature which is not shifted. The curve can be obtained by shifting the curves taken
above the desired temperature to the right (forward in time), and those taken below the
test temperature to the left (backward in time) along the horizontal (time) axis. Once
completed, the entire master curve can be shifted to represent any temperature. The
horizontal shift has been shown to be nearly identical for all amorphous polymers and can
be defined by a quantity known as shift factor.

The shift factor, denoted by the symbol at, which was determined experimentally
by Williams, Landel, and Ferry can be expressed as follows:

17.44 (T - T,)
516 + (T - T,)

log(a;) = (5-20)

The shift factor is used to equate the effect of time and temperature in °C. The
time variable can take on any of the following forms, representing effects of time directly,
as well as changes in frequency, or changes in strain rate. The effect of an increase in one

of the time variables can be represented as a decrease in temperature as follows:

= log] 1| = 1og 21| = 1og £L |
log(ay) -log[tz] log[mz] log[éz] (5-21)

Using equations (5-20) and (5-21), it can be shown that a increase of one decade

in one of the time variables, results in an upward shift of 3.14 degrees in Tg.
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Although this expression was obtained experimentally, it is often given physical
significance based on arguments related to fractional free volume®. Figure 5-4 shows the
specific volume versus temperature for a typical amorphous polymer. Below Tg, the free
volume (volume occupied by voids) is constant and begins to increase at temperatures
above Tg. The occupied volume (the volume which is occupied by the polymer
macromolecules themselves), increases linearly with increasing temperature.

The fractional free volume which can be expressed as follows:

f=1f +0,(T-T,)
where: f = v, /v is the fractional free volume
f, is the fractional free volume at Tg

v, is the free volume (5-22)
v is the total volume
O = Ol -0y 18 the coefficient of

expansion of the free volume

The Doolittle viscosity equation i1s used to relate viscosity to free volume as
follows:
n = aexp(b(v-v,)/v,) or
In(n) =In(a)+b(1/£f-1) (5-23)
where: a and b are experimentally obtained constants
A shift factor (ar) can be defined by assuming that the polymer behaves as a
viscoelastic material with a characteristic relaxation time (t). Recall from the Maxwell
model, that the relaxation time is given as the ratio of the viscosity to the material modulus

of elasticity.

Williams, M.L., R.F. Landel and J.D. Ferry, J. Amer. Chem. Soc., 77, 3701 (1955).
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Assuming the temperature sensitivity of the viscosity is much greater than the

change in modulus, the shift factor can be expressed as:

T
ap = —L = Nz
T TG n Tg
where: 1, is the viscosity at the temperature T (5-24)

TNy, i the viscosity at the temperature Tg

Using equations (5-17) and (5-18), the shift factor can be expressed as:

(b/2303£, T-T, ) 525
f, oo, +(T-T,)

From equations (5-15) and (5-19), it can be seen that the f; = 0.025 so the glass

loga; =

transition temperature is reached when the fractional free volume reaches 2.5% and o; =
4.85 x 10 degC™. It has been shown experimentally that the fractional free volume for

most amorphous polymers at Tg is 0.025+0.003 and the coefficient of thermal expansion
has a “universal average” value of 4.8 x 10-4 C"./

"1.M. Ward, Mechanical Properties of Solid Polymers,(New York: John Wiley and Sons, 1983), p.152.
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6.0 YIELD AND POST-YIELD BEHAVIOR OF GLASSY POLYMERS UNDER
COMPRESSIVE LOADING

The previous chapters have discussed the small strain behavior of amorphous
polymers in the elastic and viscoelastic regime, as well as the finite strain behavior of
elastomeric materials. This chapter will utilize and expand on the concepts developed in
chapters 2-5 in the presentation of a 3-D coupled thermal-displacement viscoplastic
constitutive model which has been used successfully to describe the temperature and rate
dependent plastic deformation of glassy polymers. The theory will be reduced to the case
of uniaxial compression, therefore crazing and fracture will not be discussed. The
interested reader is referred to one of the many texts on polymer material mechanics for
information on these topics. The uniaxial compression model will be further reduced to
model the yield stress as function of strain rate.

6.10 Description of the Stress-Strain Curve

The stress-strain curve for an amorphous polymer loaded isothermally in
compression has a characteristic shape which is shown in Figure 6-1. In the glassy regime,
the small strain behavior is modeled using the theory of linear elasticity, which is used to
determine the modulus of elasticity of a glassy polymer. When strained beyond the limits
of linear elasticity, the slope of the stress/strain curve decreases until it reaches a maxima.
The stress at that point is known as the yield stress, which typically occurs between 5 and
10 percent true strain.

Following yield, glassy polymers undergo strain softening. This is seen in the
stress/strain curve as a significant drop in load as further strain is applied beyond yield
point. This behavior is a global response to microscale inhomogeneous deformation
mechanisms such as shear banding. As the polymer continues to be strained, the stress
reaches a steady state value where it remains until alignment of the macromolecular chains
results in strain hardening.

Strain hardening occurs as the chains within the plastically flowing polymer
becomes increasingly more aligned. This increase in alignment results in a decrease in
configurational entropy, which can be equated to an increase in the modulus of the

material. As a consequence, strain hardening results in an increasing barrier to plastic
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deformation with increasing strain. This effect is primarily entropic and can be modeled
using Langevin statistical finite strain theory.

The yield stress is a strong function of both temperature and the strain rate. It
generally decreases with increasing temperature and decreasing strain rate, eventually
decreasing to zero as the polymer approaches the glass transition temperature. As a
result, the process of yielding only occurs in polymers which are in the glassy region. The
remainder of this chapter will discuss the constitutive modeling of the yield and post-yield
behavior of glassy amorphous polymers as a function of temperature and strain rate.

The constitutive modeling of the yield and post-yield behavior of glassy polymers
is a relatively new endeavor. To capture the effects of temperature and load rate, the
model must consider the temperature and displacement components in a fully coupled
form. A successful approach was developed by Boyce' et.al. (1988) based on a model
originally proposed by Argon® (1973). A physically-based three dimensional approach is
used, which includes a fully coupled temperature-displacement viscoplastic model.
Following the presentation of the complete theory, the model will be reduced to the case
of uniaxial compression in a somewhat simplified form for use in this study.

The model is based on the assumption that the total resistance to plastic
deformation in a glassy polymer is due to two distinct physical barriers as described by
Boyce and Arruda (1995)°. The first of these is an isotropic barrier to chain segment
rotation, and the second is an anisotropic resistance to chain alignment. This implies that
some of the total plastic work is dissipated during plastic deformation, and the remainder

is stored, providing additional resistance to further plastic deformation.

! Boyce, M.C., D.M. Parks and A.S. Argon (1988), Large Inelastic Deformation in Glassy Polymers, Part
1: Rate Dependent Constitutive Model, Mech. Mater 7, pp. 15-33.

2 Argon, A.S. (1973), A Theory for the Low Temperature Plastic Deformation of Glassy Polymers, Philos.
Mag. 28, pp 839-865.

* Arruda, EM., M.C. Boyce, and R. Jayachandran (1995), Effects of strain rate, temperature and
thermomechanical coupling on the finite strain deformation of glassy polymers, Mech. Mater. 19, pp.193-
212.
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The force which drives the plastic deformation in a glassy polymer is the effective

equivalent shear stress (the shear flow stress), which is given as follows:

%, 0 7\
T = (S+(lp) [l+m In (y,—o')]

where: sis the athermal shear strength
o is the pressure coefficient
p is the pressure
ky is the Boltzmann constant
O is the Absolute temperatue (6-1)
A(s +a p) is the zero stress level activation energy
modified to include pressure effects
v . is the pre - exponential factor proportional to the
attempt frequency
v P is the applied shear strain rate

The athermal shear strength is assumed to be constant prior to the onset of plastic

deformation, and evolves following yield as follows:

_0.077u
S -
where: | is the elastic shear modulus
v is the Poisson ratio

§ = h(l f‘—)y*’ (6-2)

where: h is the softening slope
s, is the preferred state of the material associated
with a completely de - aged condition
The shear modulus has a strong dependence on temperature. This dependency is
quantified by generating a series of isothermal stress/strain curves at a loading rate which
is slow enough to ensure that no temperature rise occurs during the deformation process.
The results are curve fitted using a logarithmic function to obtain the temperature

dependent shear modulus.
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The stored portion of the plastic work provides an increasing resistance to plastic
deformation with increasing strain, an effect is captured using a second-order tensor
known as the back stress. The back stress can be modeled using equations (4-30) and (4-
35) which were developed to model the finite strain behavior of rubber elastic materials
assuming that the back stress evolves with increasing chain alignment. Combining

equations (4-30) and (4-35), the back stress can be written as follows:

B, = —nkT"g-«/ﬁ L'I{Apﬂ}("p‘)z'%lx

i JN AP cain
where: nk;0 is the rubbery shear modulus

VN represents the limiting chain extensibility
N is the number of statistically rigid links

.1 Apclnin . . . . 6'3
21{—="1 is the inverse Langevin funtion (6-3)

N

AP; is the applied plastic principal stretch of
component i

AP i is the strech on any chain in the 8 - chain
network

I, is the first stetch invariant

The first stretch invariant is given as:
I, = (Apx )2 + (Apz )2 + (Aps )2 (6-4)
Using the first stretch invariant, A’«i can be expressed in terms of the plastic

stretch components as follows:

1 2 2 2
Ko = (80 (a0 4 (a0) = T 6-5)
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The strain chain density (n) in equation (6-3) is actually a function of the absolute

temperature due to chain dissociation® :

E,
n(®)=B- De(i'é)
where: B and D represents the portion of the network which
non - dissociating, and dissociating respectively (6-6)
E, is the thermal dissocitating energy
R is the universal gas constant (0.001695 kcal / mol K)

It has been shown that the thermally evolving chain density results in an increase in
the number of statistically rigid links (N) due to conservation of mass’. The chain density
and the number of statistically rigid links are related as follows:

n(O)N(O) = constant 6-7)

The kinetics of deformation of a glassy polymer begins with the polar
decomposition of the deformation gradient into elastic, thermal and plastic components®
which are used to define the components of the plastic velocity gradient as follows:

F = F°F*F?

where: F¢,F", FP are the elastic, thermal, and plastic
components of the total deformation gradient

L = FF' = L°+F*[L" +F*L*F*)" | F*)™

where: L is the plastic deformation velocity gradient
L = I':c(Fe)-l’ Lt = I.:'h(Fﬂ‘)'l, P = Fp(Fp)-l

(6-8)

*Raha, S. and P.B. Bowden (1972), Birefringence of plastically deformed polymethylmethacrylate,
Polymer 13, 174-183.

3 Boyce, M.C. (1986) Large inelastic deformation of glassy polymers, Ph.D. thesis, The Massachusetts
Institute of Technology.

®Lee, E.-H. (1969), “Elasto-plastic deformation at finite strains”. ASME J. App. Mech. 36, 1.
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The thermal and plastic components of the deformation and velocity gradient are
typically grouped together as follows:
F® = F"F*?
and,
Lﬂlp = Dﬂlp + wlhp = Fﬂlp (Fﬂ!p )-1
where: W™ is known as the spin and is often
set equal to zero
D®P js the deformation rate (6-9)

D* =D? +a(0)I0
where: DP is the plastic stetch
0.(©) is the temperature dependent coefficient
of thermal expansion

The plastic stretch tensor is given in terms of the applied shear strain rate as

follows:
— 1.
D = —v°N
,/EY
where: N is the normalized tensorial direction
of the shape change
N= ! T
J2t?
and, (6-10)

T*=[R"TR*]'-B
where: T*' is the deviatoric component of the driving
stress state
R° is the rotation matix to priciple strain
space
The quantity (T) in equation (6-10) is the Cauchy (true) stress and T* represents
the portion of the stress which continues to activate plastic flow and is the tensorial

difference between the Cauchy stress deviator and the convected back stress.
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The shear stress from equation (6-1) can be expressed as follows:

1= J%T*'-’T*' (6-11)

The kinematic relationship from equation (6-11) is set equal to the rate and
temperature dependent flow stress equation (6-1) to quantify the plastic deformation
process.

The elastic constitutive relationship is given by:
1 ]
=—L°|ln V*©
yL [ V]
where: J is the volume change (6-12)
V* is the Hencky strain
6.30 Heat Generation Due to Plastic Deformation
To adequately capture the thermomechanical interaction at high strain rates, the
effect of internal heat generation due to plastic deformation must be included. The general
energy balance equation can be written as:
p cO-div(k grad ©) =q
where: p is the density
c is the specific heat (6-13)

k is the thermal conductivity
q is the rate of heat generation

The rate of heat generation due to plastic flow can be determined using the
following equation:

g = [(T* p*)] (6-14)

The heat generation can result in a temperature rise in the material if the heat is not

allowed sufficient time to be conducted away. By comparing the time scale of the test to

the thermal diffusion time, the deformation process may be classified as adiabatic,

isothermal, or fully coupled.
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The thermal diffusion time is given as:

LZ
t, = —
¢ 20
where: L is the distance from the center of the (6-15)

specimen to the nearest heat sink
o is the thermal diffusivity

A dimensionless thermal time parameter can be defined as:

where: T >> 1 indicates an isothermal process (6-16)
T =1 indicates fully coupled thermal - displacement
T <<1indicates an adiabatic process

The temperature rise during plastic deformation contributes an additional thermal
component to the strain softening of the material. When the test is conducted at a very
slow rate, the deformation process is nearly isothermal (no thermal softening occurs). As
the strain rate is increased, the softening effect becomes increasingly more pronounced.
6.40 Experimental Methods for Determining Material Properties

This section will discuss some of the possible methods which could be used to
determine the material properties required to conduct the analysis procedure. The first
step is to conduct a series of stress-strain experiments at several strain rates and a constant
ambient temperature. The value of the compressive yield stress resulting from an applied
strain rate as well as the athermal shear stress can be determined directly from the
experimental results. When attempting to predict the yield stress, the temperature can be
taken as a constant equal to the ambient temperature for the entire range of strain-rates.
This is a valid assumption since the plastic deformation is negligibly small and equation (6-
14) indicates that the heat generation is also small.

The value of the pressure coefficient can be determined directly by conducting
tests in both tension and compression, since these tests contain different pressure levels.
The pressure coefficient is the slope of the curve of the peak yield stress versus the applied

pressure.

75



Once the pressure coefficient is known, the value of the constant A andy , can be

determined. Rewriting equation (6-1) in terms of the applied shear strain rate gives:

¥ A(s+op) T peak %
el e
['Y o] k;© (s+op)

i %
1n(7p)=[ln(yo)_A(S+“P)]+ A(S+0Lp)][[ T penk ) ]

k;© k,© (s+op) (6-17)

Setting B=[ln(w] 0)_M mdc:[wjl gives

k0 k,©

%
ln['?p]=B+C( Lok )

(s+op)

The reduced form of equation (6-17) is the equation of a straight line. By plotting

%

T

the values of ln[? p] as a function of peek , the value of A/kg can be determined
(s+ap)

directly from the slope (C). With A/kg known, the value of ¥ , can be determined from

the intercept (B). Note that equation (6-17) could also be used to determine the lower
yield stress. If tensile test data is not available, a value of the pressure coefficent can be
estimated between the values of 0.10 and 0.30. The constant A/kg is generally in the
range of 100-175 MPa/K.

To quantify the strain softening behavior, the softening slope (h) and the value of
s/s, needs to be determined. It has been shown’ that the an amorphous polymer in the

glassy phase has a relatively constant value of s/s, . This value can be estimated as the

ratio of the maximum peak yield stress to the minimum value of the stress obtained after

softening has occurred.

"Boyce, M.C., D.M. Parks and A.S. Argon (1988), Large Inelastic Deformation in Glassy Polymers, Part
1: Rate Dependent Constitutive Model, Mech. Mater 7, pp. 15-33,
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The softening slope can be estimated from the plot of true stress versus true strain

using the following equation:

b= As 1
Ay?|1-s/s,

where: As=s-§_ (6-18)
Ay ? is the increment in plastic strain
over which As occurs

The strain hardening properties require the experimental determination of the
rubbery shear modulus as a function of temperature, G(©)=nk;©. The rubbery

modulus can be estimated by heating the polymer to a few degrees above the glass
transition temperature, and conducting a compression or tension test at a high loading
rate. The initial slope of the true stress-true strain curve is the rubbery shear modulus at
the test temperature. The value of the rubbery shear modulus at a desired temperature can

be obtained using the following expression:

G (©)=Gp (O )[—69—] (6-19)

The final piece of information required is the number of rigid links between
entanglements (N). Using Langevin statistics, N is defined as the square of the locking
stretch. The locking stretch can be determined from a plot of true stress versus true strain
as the asymptotically approached value of true strain reached during the strain hardening
process. The locking stretch is the exponential of the limiting value of the true strain.
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6.50 Uniaxial Compression
This section will reduce the general tensorial equations given in the previous

section to the simplified case of uniaxial compression. The Cauchy stress tensor for

uniaxial compression is given as:

<., 00
T=]10 00
0 00
where: ©_ is the applied compressive true (6-20)
stress, 6, >0

The deviatoric component of the stress tensor is given as:

23 0 0
T = -6,/0 -3 0 (6-21)
0 0 -I3

It can be shown that the backstretch tensor is given as:

-1 0 0
B=-B,0 12 0 (6-22)
0 0 12

Using equation (6-10), the deviatoric component of the driving stress can be

expressed as:
T+ =T-B
SO, . (6-23)
—%cc -B, 0 0
ool 0 loaBu
0 0 -l-cc +—1
5 3 J
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The shear stress can be found using equation (6-11) as follows:

’1— = 1 3
T=,[-T*T* =t=—%|0 . +=-B 6-24

The shear stress from equation (6-24) can be compared to the result from the Von
Mises equation which predicts the compressive stress, neglecting the backstretch tensor, is

Ve

~ In uniaxial compression, the (1,1) matrix element is of primary concern. The (1,1)
components of the normalized tensorial direction of the shape change is given as follows:
1

J2t?

from (6 - 23),

N, = ™ 11

=, 2
™), = --gcc -B;

$0, (6-25)
32
'\E[‘g“c*B"]
N, =t =

117 3
[Gc +§'B”:|

The (1,1) component of the stretch tensor can be expressed as the sum of a plastic

and elastic components:

D, = D™ +D,,°

. : 6
D,,° can be appoximated by —ET°— s0, (6-26)
Bpll gé
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Using equations(6-10) and (6-25), the plastic component of the stretch tensor can

*/5['2‘0,; + B"]
[P 5 — (6-27)

3
2[6‘: +—2'B11:|

Combining equations (6-26) and (6-27) and simplifying gives the a relationship for

be given as:

the shear strain rate in terms of the back stretch, strain rate, and compressive stress.

¥P =2 \/Ié [&_4-_(3/_2)_1&]
3 [ (2/35.+B,, (6-28)
where: € is the compressive strain rate
Equation (6-28) can be combined with equation (6-1) to quantify the response of
an amorphous polymer subjected to a homogeneous compressive stress. These equations

will be used to predict the yield stress as a function of strain rate for a specific set of
polymer blends in Chapter 9.
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7.0 SPECIMEN FABRICATION

The production of high quality polymer test specimens is required to produce
repeatable test results. To this end, a great deal of time and effort must be directed
towards the fabrication process. The key concerns will be addressed in this chapter.
These include the resin catalyst and promoter selection and concentration, precautions
needed to produce void free specimens, the selection of appropriate test specimen
dimensions and the machining operations required to produce them.

7.10 Resin Formulation
Both the Derakane 8084 and Crestomer 1080 were obtained from the

manufacturer in an uncatalyzed and unpromoted form. The catalyst is the material which
initiates the crosslinking reaction, and the promoter is an additive which is used to speed
up and enhance both the degree and quality of the resin cure.

The amount of promoter and catalyst to use for a given formulation is, in general,
a weak function of relative humidity and a strong function of ambient temperature. As the
temperature drops, the required amount of the catalyst and promoter tends to increase. It
is often a difficult time consuming trial and error process to determine the correct resin
formulation for a particular thermoset polymer. The temperature and humidity were
measured using a digital hydrometer with the following specifications:

TABLE 7-1

Measuring Range: 10.0%-95.0% Rel. Hum.
32.0-140.0 Degrees F

Maximum Response time: | 3.5 Minutes

Resolution: 0.10 % Rel. Humidity
0.10 % Farenheit

Accuracy: 1.5% Rel. Humidity
0.40 Farenheit
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When considering blends of two or more polymers, the determination of the
correct formulation becomes even more complex. The formulations are usually
proprietary and are therefore difficult to obtain.

Dow Chemical has produced a fabrication guide which outlines some catalyst and
promoter concentrations. The recommended formulation for Derakane 8084 was given as
a function of gel time and ambient temperature. The selected formulation will be
discussed.

It was also stated that the ratio of catalyst to promoter should be in the range of
3:1to 10:1. These values served as a valuable guide in the resin formulation process. An
additional complication was introduced by a lack of information regarding “typical”
formulations for Crestomer 1080 due to its proprietary nature.

The first catalyst used in this study was Lupersol DHD-9 MEKP (Methyl Ethyl
Ketone Peroxide) with 9% active oxygen produced by Elf Atochem of North America.
This catalyst was recommended by Dow Chemical as a good general choice for vinyl ester
resins, however the use of this catalyst resulted in a slow exotherm development and a
poor cure in some of the test specimens containing more than 25% Crestomer. These
problems were attributed to the low ambient temperatures in the fabrication facility (58-
63°F). This problem was solved by changing the catalyst to Lupersol DELTA-X-9, which
is specifically formulated for use in ambient temperatures in range of 55-65°F. The
promoter used throughout this study was Cobalt Naphthenate with 6% cobalt content by
weight produced by Mooney Chemical.

The combination of Lupersol Delta-X-9 MEKP and Cobalt Naphthenate
(CONAP) was used as the catalyst/promoter combination throughout this study. The
concentration of MEKP was 3.0% by weight, and the concentration of CONAP was
0.60% by weight. Although recommended in the Dow fabrication guide, DMA (N,N-
Dimethylaniline) was not used due to the health risks involved. DMA is a resin cure
accelerator which is often used in very small quantities (approximately 0.10 % by weight)
to speed up the curing reaction. The specific gravity is important in the fabrication process
since the constituants are measured on a volumetric basis. The specific gravity along with

the viscosity may be found in Table 7-2.
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TABLE 7-2

MATERIAL SPECIFIC GRAVITY VISCOSITY (@ 77°F)
DERAKANE 8084 1.02 350 cps

CRESTOMER 1080 1.04 900 cps

LUPERSOL DELTA-X-9MEKP | 1.15 15.8 cps

MOONE CHEMICALS CONAP | 0.93 N/A

7.20 Preparation of Cylindrical Test Specimens
The preparation of test specimens requires a considerable amount of planning and

forethought in order to obtain repeatable experimental results. One of the key concerns in
the fabrication process was the production of a suitable mold. The key consideration in
the selection of the mold material is its ability to resist warping and deformation during the
curing exotherm, which typically exceeds 350°F for approximately 10 minutes. In
addition, the free ions of metals such as copper and zinc have an adverse effect on the
curing process. Molds constructed of stainless steel and aluminum, as well as glass are
acceptable options.

Excellent results were obtained by pouring the resin into a test tube composed of
the "hard glass" variant (S-34) of KIMEX glassware, which was coated with several layers
of PVA (Poly-Vinyl Alcohol) mold release agent. When cheaper tubes of borosilicate
glass were used, the resin did not separate from the tube wall during the curing process.
This resulted in severe cavitation of the polymer as shrinkage occurred. This shrinkage,
which is on the order of 10%, begins as the crosslinking reaction and the corresponding
exotherm occurs, and is complete by the time the resin returns to room temperature.

A final issue in the fabrication process is the elimination of bubbles in the cured
resin. The bubbles were caused by entrained air which was trapped in the resin as it was
being blended, as well as by the foaming which occurs in the initial stages of the
crosslinking reaction. The elimination of these bubbles is a function viscosity which
strongly related to temperature as well as the aspect ratio of the container. If the aspect
ratio is too large, the rise of the bubbles will be slowed due to an interaction with the walls

of the container. As a result, the resin was mixed in a large beaker and allowed to sit for
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approximately 10 minutes. The resin was then drawn from the bottom of the beaker and
injected into the test tubes. The injection process was conducted very slowly, with the
test tubes tilted at a 45 degree angle. By allowing the resin to run down the tube in a thin
film, the remainder of the bubbles were liberated. The only blend which could not be
deairated in this manner was the 100% 1080, due to the high viscosity which was
approximately the consistency of molasses. Air removal could have been aided by the use
of a vacuum mixing apparatus, which was not available for this study.

The test tubés used had an outer diameter of 18 mm and a length of 150 mm. This
allowed for the production of approximately seven cylindrical test specimens with a length
to diameter ratio of 1.0. This ratio was chosen for the Instron testing to satisfy two
conflicting goals. The first is the need for sufficient cross-sectional area to minimize the
errors in the load cell force measurement. The second is to keep the cross sectional area
small enough to minimize the effects of friction which can result in inhomogeneous
deformation in the specimen.

The specimens were marked and cut using a band saw and left slightly oversized in
length (approximately 15%). They were then carefully centered in a lathe, and both sides
were faced until parallel. The specimens were each individually inspected to ensure that
the faces were parallel to within approximately 0.005 inches, to prevent shearing during
the loading process. Despite all these precautions, as well as liberal lubrication and the use
of Teflon sheets in the interface between the specimen and the compression plates,
approximately 5% of the specimens exhibited some degree of shearing during the tests. It
was later discovered that this was due to a misalignment between the compression plates
in the Instron machine.

Several other precautions were taken to ensure the repeatability of the results.
Prior to testing, the sharp edges of each specimen were removed with fine grit sandpaper
to minimize the possibility of tearing the Teflon sheets during testing. In addition, the
specimens were heated to 180°F for 10 hours to ensure that all of the resin was fully
reacted prior to testing.

It was discovered during the testing process that the measured value of the peak
yield stress is a strohg function of the imposed thermal history. These effects may be



removed by raising the temperature of the material several degrees above the glass
transition temperature for several hours in a process similar to annealing. At the time the
tests were conducted, the glass transition temperatures were not known. Several attempts
were made to determine an upper-bound limiting temperature, beyond which the material
would be damaged. It became clear that a complete analysis of this type could quickly
become intractable and the 180°F value was adopted.

In addition to the compression specimens required for the Instron testing, several
specimens were required for the high strain-rate testing which was conducted using a
Hopkinson bar. The compression surfaces in the testing apparatus were only 0.75 inches
in diameter. To ensure that the specimens remained within these limits during the test, the
maximum allowable diameter of the specimens is only on the order of 8 mm.

The Hopkinson bar testing introduced several other issues which required the
specimens to have an aspect ratio of 0.5 to 0.75 (length/diameter ratio). Some of these
issues will be addressed in Chapter 10. The size made the fabrication of these specimens
particularly difficult. The resin rods were centered and machined down in a lathe to the
required diameter. The specimens which were produced measured approximately 8§ mm in
diameter and, therefore needed to be approximately 4-6 mm in length. Specimens of this
length are difficult to face-off in a lathe. As a result, most of the specimens were close to
the imposed upper limiting aspect ration of 0.75.

Several other specimens were cut using a low speed diamond saw. This apparatus
produced high quality specimens of any desired length but required approximately 1 hour
per cut. The specimens containing more than 50% Crestomer 1080 could not be cut at
room temperature by this method. In order to cut these specimens, they were cooled in
liquid nitrogen for 10 minutes prior to cutting.

Chapters 9 and 10 describe the low and high strain rate testing which was
conducted using these specimens. These sections begin by presenting the relevant theory
and background, followed by the results and experimental observations. Chapter 8 will
present the theory and results of the DMA testing. The specimens used in these tests were
provided by the research staff of the NASA Langley Research Center.
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8.0 FREQUENCY DEPENDENT VISCOELASTIC BEHAVIOR AND DYNAMIC
MECHANICAL ANALYSIS (DMA)

The previous discussion of viscoelastic behavior considered the important
properties of stress relaxation and creep compliance. It was discussed earlier that the
determination of the glass transition temperature (Tg) is accomplished most effectively by
means of Dynamic Mechanical Analysis (DMA). This process involves loading a
specimen of a specific size with a sinusoidal loading program. The amplitude of the load
is small enough to .ensure that the specimen remains in the elastic range. The test can be
conducted either at a fixed temperature over a range of frequencies or at a fixed frequency
with a varying temperature.

In the case of linear elastic or elastomeric materials, the stress applied on the
specimen is in phase with the strain. When viscoelastic effects are present, the strain lags
the stress by a phase angle 8. The stress and strain in a visoelastic material under
sinusoidal loading can be can be expressed most conveniently using complex notation as

follows:

e(t) = g,
O'((t)) = <: ,ei@®) @1
The stress can be viewed as a phasor rotating counter clockwise at angular
frequency @ composed of two orthogonal components. The first of these component is in
phase with the strain and the other component is 90 degrees out of phase. Dividing the

stress by the strain gives the following:

. O, . 1] . . .
G = —2e® = —%(cos(d)+isin@®)) = G, +iG,
€ €
where: G” is the complex modulus (8-2)

G, is the storage modulus
G, is the loss modulus

Using the definition of the of the complex modulus, the phase angle 6 can be found

as follows:

= w2
S-wn(GJ (8-3)

1
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Viscoelasticity is associated with a coupled elastic and damping response. When a
polymer undergoes a phase transition, such as the transformation from glassy to rubbery
behavior, a change in damping occurs due to changes in molecular mobility. The damping
response of an amorphous polymer reaches a maximum at the glass transition temperature
which can be thought of as the natural frequency of the main chain rotation at the test
frequency. The damping component of the response is represented by the loss modulus
and reflects the dissipation of energy during a cycle. The energy loss per cycle (AE) can
be expressed as follows:

AE = 1t G,e,’ (8-4)

The energy dissipation appears in the polymer in the form of internal heat
generation. If the loss modulus is large or the frequency is high, a significant temperature
rise can occur.

The next section will use the ideas presented in this section to predict the value of

the glass transition temperature resulting from the blending of two dissimilar materials.

8.10 Experimental Determination of the Glass Transition Temperature for Various
Blends of Derakane 8084 Vinyl Ester and Crestomer 1080 Urethane Acrylate

The glass transition temperature for five blends of Dow Chemical Derakane 8084
rubber toughened vinyl ester and Scott Bader Crestomer 1080 Urethane Acrylate was
determined using DMA techniques. The testing was conducted at the Composites and
Polymers Branch of the NASA Langley Research Center in Hampton, Virginia on a
Polymer Labs MKII DMTA (Dynamic Mechanical Testing Apparatus). The test was
conducted using the parameters shown on Table 8-1.

TABLE 8-1
DMA test frequency: 10Hz
Thermal Loading Rate 10°C / minute

Testing Mode: Single Cantilever Beam
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Two runs were conducted for each of five compositions which ranged from 100%

8084 by weight to 100% 1080 by weight in 25% increments. The convention used in

defining the glass transition temperature from a DMA test varies from one investigator to

the next. In this case, the value was taken as the intercept of approximated lines drawn

through the glassy and viscous region regions. The results may be found in Figures 8-1

through 8-10 and are summarized in Table 8-2.

TABLE 8-2
% 8084 | % 1080 | Tg- Trial 1 (C) | Tg - Trial 2(C) | Mean Tg (C) | StdevTgC)
100 0 113 114 113.5 0.5
75 25 101 102 101.5 0.5
50 50 89 90 89.5 0.5
25 75 66 65 65.5 0.5
0 100 27 27 27.0 0.0

Using the information in Table 8-2, a predictive model for the glass transition

temperature as a function of the weight percentage of one of the constituents can be

developed. To this end, a curve of Tg versus the weight percentage of Crestomer 1080

was produced.

The form of the fitting equation is based on the premise that the value of the glass

transition temperature of a copolymer composed of two polymers can be calculated by the

following empirical relationship' :

1

T

1

*%*
w, +B*w,

l:wl B*wz]
— . c—
T, T,

where: w,, w, are the weight fractions of the individual polymers
as given in Table 8-2
T;,, T, are the glass transition temperatures of the individual polymers
B is a constant which is close to unity

L. Mandelkern, G.M. Martin and F. A, Quinn, J. Res. Natl Bur. Stand., 58, (1959) 137.
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Equation (8-5) was coded into a MATHCAD file which may be found in Appendix
B. The value of the parameter B was iterated until a reasonable fit was obtained. The
results of the final iteration are shown in Figure 8-11. Superimposed on the same graph is
a curve for a typical polymer in which B is 1.0. The value of B obtained in this study was
0.11. Most polymer blends obey what is essentially a series model in which a small
quantity of the softer material results in a rapid drop in stiffness of the blend. In this
material blend (B=0.11) the stiffness drops very slowly with increasing weight percentage
of the softer material (Crestomer).

The glass transition curve, which was obtained at a frequency of 10 Hz, was
extrapolated out to 100 Hz., 1,000 Hz., and 10,000 Hz using shift factorss and the WLF
equation, equations (5-20 and 5-21). These are shown in Figure 8-12.

The glass transition temperature can be used to make some general statements
about the response of the material under load. To first order, if the glass transition
temperature of a blend of two polymers is very close to one of the component
homopolymers, it is expected that the modulus of elasticity will also be similar. Since the
first three compositions are only separated by 20°C, it is expected that the mechanical
loading behavior of these compositions will not differ to any significant degree and it is
expected that the behavior will be dominated by the Derakane 8084 material. This
indicates that the rate dependency of the modulus is likely to be small. By contrast, the
blend consisting of 25% Derakane 8084 and 75% Crestomer 1080 shows a significantly
lower value of Tg. In this blend the Crestomer 1080 is exertion a considerable influence
on the blend. As a consequence, the loading behavior of this blend will likely be
significantly different than the previous three including a significant increase in rate
dependency of the modulus since the pure Crestomer 1080 will show a very strong
dependence on load rate at room temperature.

A key assumption in this analysis is that the polymer blends behave, to first order,
in a manner similar to a single homogeneous polymer with the estimated value of Tg. This
assumption requires further investigation. The assumption that an equivalent value of Tg
could be used to characterize the behavior of a polymer blend might begin to break down

when plastic deformation occurs. In particular, the initial stages of plastic deformation
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FIGURE 8-12
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following yield is represented by a softening effect. This effect is due to small-scale
inhomogeneous deformation mechanisms such as shear banding. At this scale, the
assumption that the polymer behaves in a homogeneous manner is in question, and a

composite material constitutive model should be used to describe the behavior.
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9.0 INSTRON TEST RESULTS

The purpose of this series of tests is to evaluate the behavior of the proposed
blends of Derakane 8084 and Crestomer 1080 under a variety of loading rates. The resets
of these tests were used to formulate a predictive model of the yield behavior as a function
of axial strain rate. The goal was to be able to extrapolate the yield stress out to strain
rates on the order of 1000 sec-1. The next chapter contains a comparison of the projected
and experimentally obtained values of the yield stress at these high strain rates.

The compressive stress-strain behavior of several blends of Derakane 8084 and
Crestomer 1080 were determined using an Instron hydraulic testing machine. The tests
were conducted at the Material Science and Testing Lab at MIT on an Instron Model
#8501 hydraulic testing machine. The data was obtained using and IBM compatible PC
with a Kiethley model 500 data acquisition board which had a maximum data acquisition
frequency of 500 Hz. The analysis was performed using LABTEC, a Windows based data
collection program.

The testing was conducted on each of the five blends of Derakane 8084 and
Crestomer 1080 which ranged from 100 wt.% 8084 to 100 wt.% 1080 in 25% increments.
The loading for the first four materials was applied at a constant crosshead velocity of
0.01, 0.10, 1.00, and 2.50 mm/sec, at data collection frequencies of 5 hz, 50 hz, 400 hz,
and 500 hz respectively. To minimize frictional effects during the loading process (such as
barreling), lubricated Teflon sheets were inserted between the specimen surfaces and the
compression plates. The 100 wt% 1080 specimen tests were only included for the first
three loading rates due to a lack of reliable (repeatable) specimens. The results, which may
be found in the Appendix C, are summarized in Table 9-1.

Appendix C contains a testing log which reflects all of the Instron testing which
was conducted in this study. Many of the tests produced poor results due to
manufacturing and resin formulation errors which were later resolved. The manufacturing
and testing lessons learned were discussed in Chapter 7.

The loading was conducted at a constant loading velocity, instead of a constant
strain rate. The strain rates shown below represent the initial (nominal) strain rate which

was determined as follows:
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where: Vi, is the crosshead velocity (mm / sec) ©-1)
L, is the inital length of the specimen (mm)

The true (instantaneous) strain rate is defined as follows:

. V,
€ = 1—:’-
where: V, is the crosshead velocity (mm / sec) 9-2)

L, is the instantaneous length of the specimen (mm)

The true strain rate can be determined from the initial strain rate as follows:

A 9-3)
where: A is the extension ratio

Figure 9-1 shows the difference between the true strain rate and the nominal strain
rate for a specimen with an initial length of 15.5 mm subjected to a loading rate of 0.01
mm/sec to a true compressive strain of 150%. Note that this curve maintains the same
shape for all the applied load rates.

The deviation in strain rate shows approximately a four fold increase in strain rate
over the nominal value at 150% true compressive strain. These effects are minimal when
determining the yield stress which occurs at strains below 10% true strain. Another
observation is that the stress is generally assumed to be a function of log(€ ), and the

difference in the logarithmic values is only on the order of 1.50 at 150% true compressive
strain. Because of these factors, substitution of the nominal strain rate for the true strain
rate is a valid assumption when attempting to predict the yield stress as a function of strain
rate, and an acceptable one up to the testing limits in this study.
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FIGURE 9-1

COMPARISON BETWEEN TRUE STRAIN RATE AND NOMINAL
STRAIN RATE AS A FUNCTION OF TRUE STRAIN
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B -1

Initial Number | Mean True Stdev. Mean Stdev.

Wt%8084/ Strain of Peak Yield | True Peak True True
Wt%1080 Rate Runs Stress Yield Peak Peak
(1/sec) (MPa) Stress Yield Yield

(MPa) Strain Strain

100/0 6.33x10™ 3 93.409 0.040 0.065 0.002
100/0 6.41x10> 2 105.201 0.221 0.069 0.002
100/0 6.44x10° 3 118.436 0.740 0.071 0.003
100/0 1.64x10" 3 123.647 0.517 0.073 0.002
75125 6.66x10™ 3 67.997 0.154 0.068 0.002
75/25 6.68x10° 3 81.961 1.719 0.065 0.002
75125 6.68x10™ 3 95.180 0.599 0.070 0.003
75125 1.70x10™ 3 100.843 0.519 0.070 0.000
50/50 6.73x10™ 3 61.213 0.664 0.061 0.002
50/50 6.60x10° 4 *74.165 *0.096 | *0.062 | *0.001
50/50 6.82x10? 3 86.508 0.615 0.068 0.003
50/50 1.64x10" 3 92.670 0.390 0.067 0.001
25/75 6.50x10* 3 *22 445 *0.015 [ *0.0585 | *0.005
25/75 6.38x10° 3 30.087 1.279 0.067 0.001
25/75 6.42x1072 4 49.841 0.698 0.065 0.001
25/75 1.59x10" 4 57.367 2.419 0.066 0.002

* Each of these runs had an outlier which was removed prior to the calculation of the
mean and standard deviation. The individual values of the peak yield stress and the
corresponding yield strain may be found on the stress-strain curves in Appendix C.

Figures 9-2 through 9-6 show a comparison of the true stress versus true strain
curves for each of the compositions showing the effect of strain rate on the behavior of the
blend. Figures 9-7 through 9-10 compare the behavior of each of the materials at a given
load rate. These traces shown in these plots correspond to a "typical" run, and not an
average response. This simplification can be made due the high degree of repeatability in
the experimentally obtained stress strain curves.

The 100% Derakane and 75% Derakane / 25% Crestomer blends failed by a
fracture mechanism when tested at relatively high loading rates. In the former, this
occurred at the two highest loading rates, and in the later fracture only occurred at the
highest loading rate of 2.5 mm/sec. None of the other specimens failed by this mechanism.
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Figure 9-2
100% 8084 / 0% 1080 at various load rates

150
140
130
FAN
120 \\
110
i I AN \N
= N
g 5 _— \\‘\\
>~ ~— —
2 80 N\\ :—.:======
E S~—t
wn 70
g 60 Y
50 \
40 C
30 I
20 I \\;%__
10 /J
0
0 005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08

TRUE STRAIN
— A =Load Rate = 0.01 mm/sec*
B = Load Rate = 0.10 mm/sec*
C =Load Rate = 1.00 mm/sec*
D =Load Rate = 2.50 mm/sec*

1. Aload rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. Aload rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true

strain at yield:

max(G yrycp) =110.58"MPa
max(G yyop) =106.084°MPa
max(G i) =117.63 "MPa
max(G yrycpy) =123.683 *MPa
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OyA= 93.767MPa €yA =0.065
Cyg= 105442°MPa ¢ B =0.071
Oyc= 117.63*MPa ey =0.073
Oyp= 123.683*MPa ¢ D = 0.073



Figure 9-3
75% 8084 / 25% 1080 at various load rates
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TRUE STRAIN

— A =Load Rate = 0.01 mm/sec*

— B =Load Rate = 0.10 mm/sec*

— C=Load Rate = 1.00 mm/sec*

— D=Load Rate = 2.50 mm/sec*

1. Aload rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(e ycp) =0855  max(0 yep) =103.201°MPa 6 yp =67.896"MPa €5 =0.066
104.253"MPa G y5 =84.366°MPa & p =0.064

01.544°MPa G, =94.798°MPa & =0.071

04.907*MPa 0 yp, = 101.388°MPa € py =0.07

=1
1
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Figure 94

50% 8084 / 50% 1080 at various load rates
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TRUE STRAIN
— A =Load Rate = 0.01 mm/sec*
— B =Load Rate = 0.10 mm/sec*
= C =Load Rate = 1.00 mm/sec*
— D =Load Rate = 2.50 mm/sec*

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true

strain at yield:

ma"(f— uueA) =1.012 mﬂ"(" u-ueA) =104.044 ‘MPa G ya =62.089°MPa
max e uueB) =101 ma"(“ uueB) =98.384°MPa G yp =74.187"MPa
max (& pryec) =1.012  max(6 o) =94.066 "MPa 6 4 =87.054:MPa
max (& gyep) =1.017  max(0 () =100°MPa o yp =93.068 *MPa
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€ ya =0.059
EyB = 0.063
Eyc= 0.067
€ yD =0.067



Figure 9-5
25% 8084 / 75% 1080 at various load rates
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TRUE STRAIN

= A =Load Rate = 0.01 mm/sec*

— B =Load Rate = 0.10 mm/sec*

— C=Load Rate = 1.00 mm/sec*

— D =Load Rate = 2.50 mm/sec*

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(e yyep) =1216  max(0 ep) =85.539°MPa Gya=2246"MPa €5 =0059
| max(e ruep) =122 max(0 ryep) =82.846°MPa 0yg=30551'MPa &5 =0.068
max(e rec) <1211 max(0 o) =89.4°MPa Oyc=49394°MPa &, =0.066
max(€ yryep) =1212  max(0 gyep) =94.333 MPa Oyp=58T1"MPa &, =0069
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léigure 9-6
0% 8084 / 100% 1080 at various load rates

80

70

3

[
=]
N

TRUE STRESS (MPa)
\\,.
"

[~ |

\

\

ok

A\
AN

|
20 — g Ve 4
/ ""M V’
a1 e
=
0
0 01 02 03 04 05 O©06 07 08 09 d 12 13 14 15 16
TRUE STRAIN
— A =Load Rate = 0.01 mm/sec*

— B =Load Rate = 0.10 mm/sec*
— C =Load Rate = 1.00 mm/sec*

Rl

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(€ rycp) =1-529  max(6 gyes) =60.495MPa
max (€ ryep) =153 max(6 o) =63.194MPa
max (€ ryec) =1.506  max(6 o) =73.66°MPa
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FIGURE 9-7
Plot of true stress (MPa) versus true strain for
a loading rate of 0.01 mm/sec for various compositions
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TRUE STRAIN

A = Composition
B = Composition
C = Composition
D = Composition
E = Composition

: 100% 8084 - 0% 1080
. 75% 8084 - 25% 1080
: 50% 8084 - 50% 1080
1 25% 8084 - 75% 1080
: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and

true strain at yield:

max(e ) =0.759  max(0yep) =110.58"MPa G yp =93.767°MPa &y, =0.065
max(e rycp) =0.855  max(0 ep) =103.201°MPa o 5 =67.896"MPa & g =0.066
max(€ rec) =1012  max(0 ec) =104044MPa 0,0 =62089'MPa &y =0.059
mﬂx(e uueD) =1216 max(ﬁ trucD) =85.539 *MPa G yp =22.46*MPa e yp =0.059
max (& ) =1.529  max(0 gyep) =60.495MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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FIGURE 9-8
Plot of true stress (MPa) versus true strain for
a loading rate of 0.10 mm/sec for various compositions
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TRUE STRAIN

~— A =Composition: 100% 8084 - 0% 1080

— B = Composltion: 75% 8084 - 25% 1080

— C=Composition: 50% 8084 - 50% 1080

— . D =Composition: 25% 8084 - 75% 1080

— E =Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa),
yield stress (MPa) and true strain at yield:

max(e rep) <0761 max(0 rep) =106.084°MPa 0 s =105442MPa € 55 =0.071

max (€ o) =0.86 max( rcp) =104.253°MPa 05 =84.366°MPa & yp =0.064
max (€ yryoc) =1.01 max(0 yec) =98.384°MPa 0, =74.187°MPa &, =0.063
max(e puep) =1222  max(0 ryep) =82846°MPa 0y =30.551°MPa & p, =0.068
max(e ryep) =1.53 max(0 yryeg) =63.194 ‘MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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FIGURE 9-9
Plot of true stress (MPa) versus true strain for
a loading rate of 1.00 mm/sec for various compositions
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TRUE STRAIN

—— A =Composition: 100% 8084 - 0% 1080
~— B =Composltion: 75% 8084 - 25% 1080
= C=Composition: 50% 8084 - 50% 1080
— D =Composition: 25% 8084 - 75% 1080
— E=Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa),
yield stress (MPa) and true strain at yield:

max (& rycp) <0.763  max(0 (yep) =117.63MPa Oya=11763MPa &, =0.073
max(€ ryep) <0862  max(o n,p) =101.544°MPa Gy =94.798°MPa €5 =0.071
max (& gryec) =1.012  max(0 o) =94.066°MPa G yc=87.054"MPa &, =0067
max (€ gyep) =1211  max(0 pryepy) =89.4°MPa Oyp=49394'MPa &, =0066

max (& gye) =1.506  max(0 gyep) =73.66°MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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FIGURE 9-10
Plot of true stress (MPa) versus true strain for
a loading rate of 2.50 mm/sec for various compositions
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TRUE STRAIN

— A =Composition: 100% 8084 - 0% 1080

— B = Composition: 75% 8084 - 25% 1080

— C=Composition: 50% 8084 - 50% 1080
— D =Composition: 25% 8084 - 75% 1080
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List maximum true strain obtained and corresponding stress (MPa),
yield stress (MPa) and true strain at yield:

max (€ ryca) =0.763  max(0 rep) =123.683°MPa G yp =123.683MPa &y, =0.073
max(e ycp) <0864 max( o) =104.907°MPa G ;5 =101388°MPa & 5 =007
max(e trucC) =1.017 max(o trueC) =100MPa S\c= 93.068 *“MPa EyC =0.067
max (& yryep) <1212 max(0 yrep) =94333°MPa Oy =5877°MPa €5, =0.069
max (& pryop) =1.643  max(6 gyc) =60.466 MPa

. The yield stress could not be defined for the 100% Crestomer 1080 sample
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The fracture always occurred in the hoop direction, usually along four radial lines which
were separated by 90 degrees. At the center, the material was usually crushed.

The cause of this behavior was attributed to frictional effects. At the highest
loading rates, the upper surface of the specimen would remain fixed resulting in barreling
of the specimen. The barreling resulted in the formation of a tensile hoop stress which,
under the applied loading, favored fracture to yield. Several attempts were made to
lubricate the interface, to avoid this problem. In all cases in which this fracture occurred,
the failure initiated at the upper compression plate of the testing machine which was
affixed to the anchored section. It is possible that the failure occurred due to some small
initial misalignment of the compression plates.

Another interesting observation was made concerning thermal softening effects in
each of the glassy materials (up to 50% Crestomer by weight). Following some degree of
plastic deformation, the true stress true strain curves are seen to cross one another. As an
example, the 50% Derakane / 50% Crestomer sample at the lowest load rate crossed the
curves for load rate 2, 3, and 4 at -0.45, -0.65, and -0.75 percent true strain respectively
as shown in Figure 9-4. This occurs due to thermal softening effects caused by a
temperature rise which occurred as the plastic work is dissipated during large strain
deformation. No temperature measurements were taken during the Instron testing phase
of this study, however, studies have been conducted' on PMMA at strain rates as high as
0.10 sec™, which showed a temperature rise of approximately 18°C above ambient.

Some in-situ temperature measurements were conducted during the high strain-
rate testing phase which will be discussed in the following chapter. The next section will
discuss the use of the plastic deformation model presented in Chapter 6 in the prediction
of the compressive yield stress of each of the blends as well as the pure Derakane 8084

material.

! Arruda, EM., M.C. Boyce and R. Jayachandran (1995), "Effects of strain rate, temperature, and
thermomechanical coupling on the finite strain deformation of glassy polymers”, Mech. Mater. 19,193-
212.
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9.10 Modi ion of the plastic deformation model
Section 6.50 presented a simplification of the visoplastic model proposed by Boyce
et al., which was reduced to represent the behavior of material under homogeneous
compression. This model will be used to predict the compressive yield stress for each of
the material blends in this study.
Recall from Chapter 6, the (1,1) component of the stretch tensor can be expressed
as the sum of a plastic and elastic components:
D,, =D’u+D,°
If the loading is not applied at a constant strain rate,
but at a constant crosshead velocity(V) then,
where: L(t) is the instantaneous length (9-4)
D,,° can be appoximated by -%f- SO,

1%
E

where: L, is the original length of the specimen

Using equations(6-10) and (6-25), the plastic component of the stretch tensor can

be given as:
2
NE] 3°- +B,,

Du = -‘Y'p——-——g—-—
2[0'c +EB11]

9-5)
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Combining equations (9-4) and (9-5) and simplifying gives the a relationship for the shear
strain rate in terms of the back stretch, loading velocity, and compressive stress.

v =2 Jj \' o, +(3/2)B,
3| L,(1-c./B) || (2/3)0.+B,,

.? P — 2J_T_8 o+ (3/2)Bll (9-6)
3 [(2/3)0,+B,,

where: € is the compressive strain rate

Equation (9-6) can be used to compute the yield stress as a function of strain rate.
At the yield point, the back stretch tensor is equal to zero. This is because no significant
chain rotation can occur until after the yield point, when the intermolecular barriers to
chain segment rotation are overcome. Setting B;;=0 gives the following equation which is

consistent with the Von Mises yield equation:

TINDY 0% - P A P S ) By i
¥ —2\/—3-8[(2/3)%] 2J;e[2] NES 9-6)

Recall the equation for the shear stress is given as follows:

ko . (i"\*
T = (s+op) [l+m In (‘Yo):l (6-1)

Rewriting equation (6-1) in terms of the compressive stress and compressive strain

rate, and combining the Boatsmann constant (kg) and A into a single constant denoted by

X gives:
%
c c 3
_J% = (s+0 —32-) 1+ © S In (ﬁe) (9-8)
X(s+o —2) Yo

Equation (9-8) will be used to predict the yield stress using the methods outlined in
Section 6.40. The results will include plots of compressive yield stress versus axial strain
rate for each of the first four compositions. The 100% Crestomer 1080 tests will not be
analyzed, as no clear yield behavior was observed during the Instron testing.

The analysis began with the prediction of the peak yield stress, which was
performed using MATHCAD. The complete files may be found in Appendix D. The
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required inputs were the mean and standard deviation of the peak compressive yield stress
found in Table 9-1. The average modulus of elasticity for each of the blends is listed in
Table 9-2.

TABLE 9-2
Composition Modulus of Elasticity
100% 8084 / 0% 1080 2020 MPa
75% 8084 / 25% 1080 1880 MPa
50% 8084 / 50% 1080 1680 MPa
25% 8084 / 75% 1080 1125 MPa

These values are used to calculate the athermal shear strength which represents the
behavior at 0 Kelvin. As a result, the modulus values used in this study were obtained
from the elastic response of each of the blends at the highest Instron loading rate of 2.5
mm/sec. An average specimen length was also provided.

The program assumes a constant value for the pressure coefficient of 0.20 for all

calculations in this study. The determination of the pressure coefficient requires a series of
tensile tests, which were not available. With an assumed pressure coefficient, the value of

¥, and X can then be determined using equations (6-17). Note that there is one unique

solution to the model for a given pressure coefficient, but the resulting fitted curve is the

same for any reasonably selected value of the pressure coefficient. Since the values of ¥,

and X do not effect the final shape of the fitted curve and therefore do not effect the
analysis, no attempt will be made to adjust the pressure coefficient to bring the other
values near the "typical” values given in Chapter 6.

The individual results for each of the material blends may be found in Appendix D.
Figure 9-11 shows a plot of the peak yield stress versus log(strain rate) for each of the
various compositions, and Figure 9-12 shows the effect of the weight percentage of
Crestomer 1080 on the peak yield stress for a series of strain rates.

Figure 9-12 indicates that there is a "jog" in the model, particularly at the lowest
strain rates. This indicates that the yield stress of the 50% Derakane / 50% Crestomer is
nearly the same at these rates as the 75% Derakane / 25% Crestomer material. This
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discrepancy could have been predicted from the composite Instron test results shown in
Figures 9-7 through 9-10, where the peak yield behavior of the 75% Derakane / 25%
Crestomer is clearly different from its neighbors.

This series of observations led a shift from the prediction of the peak yield stress to
that of the lower yield stress. It was observed’in the testing of Polycarbonate, that
quenched specimens often displayed very little softening. When the same material was
annealed for several hours above its glass transition temperature prior to testing, a much
higher peak yield stress was observed with a corresponding increase in the degree of
softening. The surprising result of these tests was that the measured lower yield stress
was nearly independent of any previous thermal treatment. The lower yield point is a
strength level which is thought to be associated with a preferred structure which is reached
during plastic deformation, possibly due to a local increase in free volume associated with
small scale shear banding®.

These observations indicated that the lower yield stress was likely a better
indicator on which to build a predictive model. As a result, the model was rerun by
substituting the lower yield stress for the upper yield stress used in the previous iteration.
The lower stress values are listed in Table 9-3 and summarized in Table 9-4.

The results of the predictive model applied to the lower yield stress are given in
Figures 9-13 through 9-14. As in the previous case, the individual runs may be found in
Appendix D. A plot was included which compares the lower yield stress with the applied
strain rate as well as one which shows the effect of the weight percentage of Crestomer

1080 on the lower yield stress.

2Hayward, R.N. (1980), "The effect of chain structure on the annealing and deformation behavior of
polymers," Coll. Poly. Sci. 258, 42.

*Boyce, M.C., Parks, D.M. and A.S. Argon (1988), " Large inelastic deformation of glassy polymers, Part
1: Rate dependent constitutive model,” Mechanics of Materials 7, 22.
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Table 9-3

100% Derakane / 0% Crestomer

Load Rate # 1
Stress  Strain

Load Rate # 2
Stress  Strain

Load Rate # 3
Stress  Strain

Load Rate # 4
Stress Strain

71420 0.279 81.124 0.353] | 85.293 0.347
72340 0.277 75290 0.360 80.911 0.343] | 83.896 0.328
72250 0.275| | 75.380 0.347 81.073 0.336] | 84.149 0.332
Average| 72.003 0277 75335 0.354 81.073 0.344| | 84.446 0.336
STDEV|{ 0.507 0.002 0.064 0.009 0.111  0.009 0.744 0.010
75% Derakane / 25% Crestomer
Load Rate # 1 Load Rate # 2 Load Rate # 3 Load Rate # 4
Stress  Strain Stress  Strain Stress  Strain Stress Strain
58.942 0.257 62.493 0.338 67.741 0.391 70.725 0.395
59.076 0.256 63.463 0.337 68.938 0.380 71.652 0.404
59.239 0.263 62.561 0.324 68.342 0.390 71.260 0.385
Average| 59.086 0.259 62.839 0.333 68.340 0.387 71179 0.395
STDEV| 0.149 0.004 0.541 0.008 0.599 0.006 0.418 0.010
50% Derakane / 50% Crestomer
Load Rate # 1 Load Rate # 2 Load Rate # 3 Load Rate # 4
Stress  Strain Stress  Strain Stress  Strain Stress  Strain
50.641 0.361 XXX XXX XXX XXX
47.137 0.249 50.536 0.366 54.608 0.457 57.399 0.401
48.015 0.240 50.391 0.332 55.161 0.437 57.851 0.432
47.045 0.247| | 49646 0.347| | 54.555 0.440| | 56.423 0.411
Average| 47.399 0.245 50.304 0.352 54.775 0.445| | 57.224 0.415
STDEV| 0.535 0.005 0450 0.015 0.336 0.011 0.730 0.016
25% Derakane / 75% Crestomer
Load Rate # 1 Load Rate # 2 Load Rate # 3 Load Rate # 4
Stress  Strain Stress  Strain Stress  Strain Stress Strain
XXX XXX XXX XXX 36.941 0.365 41.886 0.488
20.760 0.157 25.208 0.210 37.041 0.388 40.950 0.501
21.001 0.158 26.432 0.213 36.436 0.384 40.465 0.508
19858 0.147] | 27295 0.212| | 37524 0415| | 30.417 0.488
Average| 20.540 0.154 26.312 0.212 36.986 0.388 40.680 0.496
STDEV| 0.603 0.006 1.049 0.002 0.446 0.021 1.028 0.010
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TABLE 9-4

: Initial Number | Mean True Stdev. Mean Stdev.
Wt%8084/ Strain of Lower True True True
Wt%1080 Rate Runs Yield Lower Lower Lower

(1/sec) Stress Yield- Yield Yield
(MPa) Stress Strain Strain
MPa)

100/0 6.33x10™ 3 72.003 0.507 0.277 | '0.002

100/0 6.41x10° 2 75.335 0.064 0.354 0.009

100/0 6.44x10 3. 81.073 0.111 0.344 0.009

100/0 1.64x10™ 3 84.446 0.744 0.336 0.010

75/25 6.66x10" 3 59.086 0.149 0.259 0.004

75/25 6.68x10° 3 62.839 0.541 0.333 0.008

7525 6.68x107 3 68.340 0.599 0.387 0.006

75125 1.70x10™ 3 71.179 0.419 0.395 0.010

50/50 6.73x10™ 3 47.399 0.535 0.245 0.005

50/50 6.60x107 4 50.304 0.450 0.352 0.015

50/50 6.82x10° 3 54.775 0.336 0.445 0.011

50/50 1.64x10™ 3 57.224 0.730 0.415 0.016

25/75 6.50x10™ 3 20.540 0.603 0.154 0.006

25/75 6.38x10” 3 26.312 1.049 0.212 0.002

25175 6.42x10 4 36.986 0.446 0.388 0.021

25/75 1.59x10™ 4 40.680 1.028 0.496 0.010

Figure 9-14 indicates that the behavior of the blends up to a Crestomer
concentration of 50% are a linear function of the weight percentage of Derakane 8084.
The curves for these blends are nearly parallel, which further supports the assumption that
they are dominated by the behavior of the Derakane. This behavior was supported by the
DMA results presented in Chapter 8, which showed the glass transition temperature of
these compositions to be nearly the same. By contrast, the 75% Crestomer 1080
composition shows a significant degree of rate deperidency, indicating that the Crestomer
was exerting a significant influence on the blend. Recall that Crestomer 1080 has a glass
transition temperature of 27°C, and is therefore viscoelastic (and highly rate dependent at
room temperature). This behavior also could have been foreseen from the measured glass

transition temperature of 67°C, which is nearly midway between that of the two

constituent materials.
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10.0 THE COMPRESSION SPLIT HOPKINSON (KOLSKI) BAR

This section will describe the results of a series of high strain rate compression
tests of several blends of Derakane 8084 and Crestomer 1080. This chapter will begin
with the theoretical development of the relevant equations needed to obtain the true stress
and true strain results from a Hopkinson bar experiment. Subsequent sections will include
the experimental procedure as well as a MATHCAD data reduction program with the
corresponding results. The results of these experiments will be compared to the projected
values obtained from the Instron tests described in Chapter 9.

10.10 Theoretical Development

The Compression Split-Hopkinson Bar is shown schematically in Figure 10-1. The
techniQue involves impacting the incident bar with a striker bar at a known velocity (Vo) at
point A. The impact produces a longitudinal compressive stress wave in the incident bar
with a strain amplitude of €;(t). The pulse width of this wave can be estimated as twice the
time required for an elastic wave to travel the length of the striker bar. This assumes that
the striker bar is made of the same material and has the same diameter as the incident bar.
The compressive wave travels the length of the incident bar until it reaches the
specimen/bar interface at point B. At this point, part of the wave is reflected back down
the incident bar as a tensile wave with a strain amplitude of &(t), and part is transmitted
through the specimen to the transmitter bar with a strain amplitude of €(t). The strain is
measured using one strain gage located on the incident bar and one located on the
transmitter bar at locations S; and S, as shown on Figure 10-1.

The separation of the wave into a transmitted and reflected component is due to
differences in acoustic impedance at the bar/specimen interface. The acoustic impedance
(Z,.) is defined as follows:

Z, = pAc,
where: p is the density (mass / volume)
A is the cross sectional area (10-1)
c, is the velocity of propagation of a
quasi - longitudinal (stress) wave
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Figure 10-1
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The quasi-longitudinal (stress) wave speed can be determined using the following

equation:

o - [E
" \p
where: E is the modulus of elasticity of (10-2)

the incident and transmitted bars

When an incident stress wave traveling in material A of cross sectional area, A,,
meets a boundary separating it from another material B of cross sectional area Ag, the

transmitted and reflected stress components may be found as follows:

o, = 0| ubatn
c c
LA38P Cs F AP 4011 ] (10-3)
G, =0, ApP 5Cip —AAP AC1a
| ApP 5Cis + AP ACLx

The transmitted and reflected strain amplitudes are given by the same relationship,
since the stress and strain values are related by the elastic modulus. From equation (10-3),
it can be seen that when the acoustic impedance of material B is greater than that of
material A, a pulse of the same sign as the incident pulse is reflected at the interface.
When the acoustic impedance of material B is less than that of material A, a reflected
pulse which is opposite in sign is created. When polymers are tested using a Hopkinson
bar, the acoustic impedance of the sample is much less than that of the steel used in the
incident and transmitter bars, so the incident wave which was initially compressive is

reflected from interface B as a tensile wave.
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The stress and strain in the specimen can be determined completely from the
transmitted and reflected strain traces. The derivation of the stress/strain relationships
begins with the definition of the axial strain, €, and the particle velocity, v, as follows:

e=d8 ,_ 08 (10-4)

Taking the partial derivative of the strain with respect to time (t), and the velopity

with respect to x gives:

oe(t) _ o v(t) (10-5)
ot ox

The average strain rate in the deforming specimen can then be expressed as:

de@®) _ vp(t)-ve(Y)

e L
where: vy (t) is the particle velocity at point B (10-6)
v (t) is the particle velocity at point C

E(t) =

L is the length of the test specimen

The strain at the interfaces B and C can be written as:

sg(t) = Si(t) - 5,(‘)
(10-7)
sc(t) = 3;“)
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The particle velocity is related to the strain by the relation, v=c.€, so the particle

velocity at interfaces B and C can be written as:

Vg (t) = CL (81 (t)y- Er(t))

(10-8)
ve(t) = cLg (1)
Combining equations (10-6) and (10-8) gives:
&) = %-[ei ®-¢,(®-¢,(0)] (10-9)
The average stress in the specimen can be expressed using Hook’s Law as:
ot = BO+F®
2A
where: Fy(t) = E (g,(D)+¢,(1) A,
E.(1) = E (g, (1)) A, (10-10)

A is the cross sectional area of the specimen

A, is the cross sectional area of the incident and transmitter bar

If the specimen undergoes homogeneous deformation, the stress at point B is equal
to the stress at point C. The assumption of homogeneous deformation in the specimen
results in force equilibrium across the specimen so Fg(t)=Fc(t) and &;(t) + e(t) = &(t).

The stress, strain rate, and strain in the specimen can be expressed as follows:

@ o) = E%em

-2C,
L

©)e(t) = j £(t)dt

(b) £(t) €. (V) (10-11)

Il
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The stress-strain equations listed in equations (10-11) represent engineering stress
and engineering strain. In the study of polymer materials, the stresses and strains are more
appropriately given in terms of true stress and true (logarithmic) strain.

The true strain in the specimen is defined as:

e = 1n[11:-‘-] = In[A, ]

where: L, is the instantaneous length (10-12)
L, is the initial length
A , is the extension ratio

The engineering strain can be expressed in terms of the extension ratio as:

L.-L L.

= | S|z 2L i1 =A, -1
w = [Bte] - a1,
SO; (10-13)
Ai=¢g, +1

Combining equations (10-12) and (10-13) gives the relationship between true

stress and engineering stress as follows:

Ere = In(e g, +1) (10-14)

Since most of the deformation occurs in the plastic region, the material is

considered to behave in an incompressible manner. Assuming incompressibility,

AL, = AL,

SO;

A L,

-Ki* = 'L—o = A, (10-15)
and;

Cwe. _ A

o Tk
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From equations (10-15), the true stress is related to the engineering stress as
follows:

Cre = A i[04 ] (10-16)

There are three key assumptions made in the derivation of the stress-strain
relationships for the Hopkinson Bar. These are worthy of discussion and will be described
briefly.

(1) The incident, transmitter and striker bars remain elastic.

This is accomplished by eﬁsuring that the material used for the transmitter and
incident bars has a much higher yield strength than the material to be tested. The most
common material used in the construction of these bars is maraging steel, which has a
yield strength of approximately 350 ksi (2500 Mpa). This is much higher than the yield
strength of most metals and all polymers.

(2) The wave propagation is one dimensional.
In the derivation of the Hopkinson bar equations, it was assumed that the impactor

creates a rectangular stress pulse which travels down the incident bar at the longitudinal
wave speed of the incident bar material (c.). In reality, the measured stress pulses show
significant fluctuations due to wave dispersion effects, which have a significant effect on
the interpretation of the stress/strain results obtained using this method.

When the striker bar impacts the incident bar, a very complex stress field is
established due to end effects. Within a distance of about 10 bar diameters, the end effects
essentially disappear, and the resulting pressure can be evaluated using the frequency or
dispersion equation. This problem was studied extensively by Pochhammer’ and Chree?

who showed that the pressure pulse was actually composed of an infinite number of modes

' Pochhammer,L., “On the Propagation Velocities of Small Oscillations in an Unlimited Isotropic Circular
Cylinder,” Journal fur die Reine und Angewandte Mathematik, Vol. 81, 1876, pp. 324-326.

?Chree, C., “The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Coordinates, Their
Solutions and Applications,” Cambridge Philosophical Society, Transactions, Vol. 14, 1889, pp. 250-369.
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which correspond to solutions of the dispersion equation. The fundamental mode is
associated with the longest wavelengths which carry most of the wave energy and travel at
the highest speed which is equal to the bar longitudinal wave speed (cL). Higher order
modes are associated with higher frequency multiples of the fundamental frequency
(shorter wavelengths) which travel at slower speeds as compared to the lower modes.
These higher modes give rise to dispersion of the initially sharp pulse, causing oscillations
known as Pochhammer-Chree oscillations. For sufficiently long incident bars with 1/d
ratios of 20 or greater, the fundamental frequency dominates and the deformation process
is essentially one dimensional.

The above discussion related to the effects of dispersion in the incident pulse.
Some dispersion effects also occur in the reflected and transmitted pulse. The strain in the
specimen is assumed to be measured at the interfaces between the specimen and the bars.
The actual strain measurements are made some distance from these interfaces, resulting in
additional disper;ion of the pulse as it travels from the specimen to the strain gage
location.

The effects of dispersion on the interpretation of split Hopkinson Bar data can be
minimized by applying a dispersion correction. Follansbee and Franz’ have demonstrated
that correcting for dispersion in the fundamental mode can remove most of the
fluctuations in the stress/strain curve. The process begins by performing a fourier
decomposition of the fundamental mode of the strain pulses measured at the strain gage
locations. After decomposition, the phase angle of each of the fourier components is
adjusted to account for the dispersion which occurs as the component travels from the
specimen/bar interface to the strain gage location. Once a sufficient number of

components are adjusted, the wave can be reconstructed at the specimen bar interface.

*Follansbee, P.S. and Franz, C., “Wave Propagation in the Split Hopkinson Bar,” Journal of Engineering
Materials and Technology, Vol. 105, 1983, pp. 61-66.
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(3) The specimen undergoes homogeneous def ion

When the stress pulse enters the sample, it undergoes deformation both axially and
radially. The resultant stress field is inhomogeneous in this region, but the stress
equilibrates and the deformation becomes essentially homogeneous after three transit times
in the sample. The equilibration time (t) which is actually equal to 7 transit times, can be
calculated using the following expression:

n2pL?
E
where: E, is the modulus of elasticity of the sample

(10-18)

In the acoustic analysis of polymers, the modulus of elasticity is represented by a
complex number, due to the presence of viscous damping. It was demonstrated in
Chapter 8 that when viscoelastic materials are loaded at high frequencies, they tend to
behave in a glassy manner. As a result, the equilibrium time in the specimens will be
determined using the glassy modulus of the material.

Equation (10-12) indicates that the results obtained in the initial part of the elastic
deformation phase may be in error when using the split-Hopkinson bar technique. The
effects of initial inhomogeneity in this study were minimized by using specimens with a
length/diameter ratio between 0.5 and 0.75. The effects of initial inhomogeneity were
minimized by reducing the slope of the rise time in the incident pulse in a process known
as pulse shaping. This was achieved by placing an interface material such as a few sheets
of paper or a soft metal such as copper between the striker bar and the incident bar at
interface A. The interfaces between the bar and the specimen were lubricated with
Molybdenum Disulfide grease to minimize the radial constraints and to prevent barreling
at large strains.

137



10.20 Experimental Procedure

The high strain-rate testing' was conducted at the California Institute of
Technology in Pasadena, California on a split compression Hopkinson bar which was built
by the staff. The incident, transmitter, and striker bars were composed of high strength
maraging steel with an outer diameter of 0.75 in. The striker bar was propelled using air
pressure which was provided by a low pressure air compressor and could be regulated
between 0-80 psi by a pressure control valve. The strain gage data was acquired using a
Nicolet 400 digital oscilloscope. The environmental conditions at the time of the test are
listed in Table 10-1.

TABLE 10-1
Start Date: 4/20/95
Finish Date: 4/21/95

Temperature: | 71.6 F
Humidity: 323 %

The temperature and humidity were measured using a VWR Scientific digital
humidity and temperature meter. The specifications of the meter are listed in Table 7-1.
The desired strain rate and the desired strain can be estimated from the following

equations:
g<—=2
L
e=2¢ L £(PD)
Co
where: V, is the inital velocity of the striker bar
L is the inital length of the specimen
1, is the length of the stiker bar
c, is the longitudinal compressive wave speed
in the striker bar
PD is the duration of the compressive stress pulse

(10-19)
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The goal of the high strain rate test in this study was to obtain the greatest possible
true strain while maintaining a strain rate on the order of 1000 sec”. To achieve this goal,
the longest available striker bar (12 inch) was selected. The 12 inch bar was used to
provide the longest possible compressive pulse duration, resulting in the largest total
plastic strain in the specimen. The striker bar was propelled using the highest possible
pressure of 80 psi. Since the initial velocity is directly related to the propelling pressure,
higher pressure will result in higher strain rates in the specimen.

Some trial and error testing was required prior to this selection. Since the velocity
of the shorter striker bars will be greater than that of the longer ones for a given pressure,
the strain rate could have increased enough to compensate for the shorter pulse duration
resulting in a higher overall strain. The strain rate obtained using the shortest bar (4
inches) was approximately 4500 sec”, and the resulting engineering strain was
approximately 20%. Tests conducted with the longest bar (12 inch) resulted in a strain
rate of approximately 3000 sec” and the total strain was approximately 30-40%. As a
result, the 12 inch striker bar and a propelling pressure of 80 psi was selected.

Three to four runs were obtained using each of the five material compositions.
The data acquisition system generated separate files for each of the transmitted and
reflected strain histories. Each of these files contained 6000 data points, each taken at an
equal time interval of 0.1 microseconds.

10.21 Description of data reduction program
The first page of the reduction file translates the voltage signals to values of

reflected and transmitted strain using the following equation:

£ = 4(€ o)
(GF)(Vy)
where: €, is the strain gage voltage measured
by the occiliscope (10-20)

GF = 2.1 is the gage factor
V, =30 Volts is the reference voltage
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The next step in the analysis was to convert the reflected strain history into a strain
rate using equation (10-11(b)). This requires the user to input values for the initial
specimen length and diameter. The longitudinal wave speed in the steel bars is also
required. A value of 5000 m/sec will used throughout this study.

The portion of the trace which is needed in the analysis is the inverted section of
the transmitted pulse. This pulse was isolated and integrated over time using a midpoint-
rectangle rule using approximately 200-250 equal time increments. The integral of the
strain rate with respect to time over the duration of the inverted pulse gives the total
compressive engineering strain as shown in equation 10-11(c). This numerical integration
procedure was used to obtain values for the engineering strain over the entire range of
time defined by the pulse duration.

The engineering stress was obtained from the transmitted strain history using
equation 10-11(a). A value of 210 Gpa was assumed for the modulus of elasticity of the
steel bars. With the engineering stress and strain known over the range of time defined by
the reflected pulse, a plot of engineering stress versus engineering strain was drawn. The
true stress and true strain were computed using equations (10-14) and (10-16) and
plotted. Beneath each of these plots is the maximum value of stress which occurs at the
yield point. This value is obtained by locating the minimum value of the stress (most

negative value) since the compressive stresses are reflected as negative numbers.
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10.30 Results

The reduction files are organized by material composition.

The compositions

range from 100% Derakane 8084 to 100% Crestomer 1080 at 25% intervals in

composition. The complete reduction files are included in Appendix E, and the results are

summarized in Table 10-2 below:

TABLE 10-2
%8084 | %1080 Trial Strain Maximum True Maximum True
Number | Rate(sec™) Strain Stress (MPa)
100 0 1of4 -3000 -0.488 -189.806
100 0 20f4 -2500 -0.382 -200.044
100 0 30f4 -3200 -0.506 -208.491
100 0 40f 4 -3200 -0.506 -203.560
75 25 lof3 -3000 -0.470 -179.287
75 25 20f3 -3600 -0.588 -187.317
75 25 30f3 -3000 -0.440 -182.353
50 50 1of3 -2500 -0.372 -171.791
50 50 20f3 -2500 -0.385 -174.609
50 50 30f3 -2100 -0.312 -176.762
25 75 l1of4 -2800 -0.425 -145.159
25 75 20f4 -2600 -0.383 -140.000 (est)
25 75 | 3of4 -2900 20454 “137.791
25 75 40f 4 -3000 -0.457 -147.004
0 100 1of3 -2000 -0.339 -88.720
0 100 20f3 -2200 -0.352 -85.937
0 100 30f3 -2200 -0.359 -87.000 (est)

The yield stress for two of the runs were visually approximated from the curves

because of voltage spikes in the signal which occurred near the yield point.
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The data in Table 10-2 will be reduced by assuming that all runs for a given
material occur at the same strain rate. The strain rate will be taken as the mean value for
all runs on given material. This is a valid assumption since the stress is related to the
logarithm of the strain rate which varies very little over the range of concern. With this
assumption a mean value of the maximum true stress (yield stress) and a corresponding

standard deviation can be calculated. The results are given in Table 10-3.

TABLE 10-3
Strain Mean True Yield Stdev. True

%8084 | %1080 Rate(sec™) Stress (MPa) Yield Stress (MPa)
100 0 -2.97x10" -200.48 -6.85
75 25 -3.20x10" -182.99 -3.31
50 50 -2.37x10" -174.39 -2.04
25 75 -2.83x10% [ -142.49 -3.73
0 100 -2.13x10* -87.22 -1.15

The Hopkinson bar results in Table 10-3 can be compared to the peak yield stress
in Table 9-1 which were obtained using an Instron testing machine. Figures 10-2 through
10-6 superimposed a representative Hopkinson bar true stress/true strain on the Instron
machine testing results for each of five material blends. These curves show the dramatic
increase in the yield stress as a function of strain rate.

Of particular interest is the behavior of the pure Crestomer 1080. In all of the
Instron tests, which were conducted to true strains of 150%, the material never displayed
a clearly defined yield stress. This was not surprising since the glass transition
temperature of the material was determined to be 27°C at a DMA testing frequency of 10
Hertz. To first order, this is approximately one decade higher than that of the highest

_loading rate Instron test. This places the glass transition temperature at approximately
23°C which was within a few degrees of the ambient temperature during the test. This
indicates that the material was in the viscoelastic regime. Since only glassy polymers

display true yield behavior, yield could not occur in these tests.
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FIGURE 10-2
100% 8084 / 0% 1080 at various loads
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* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate/initial specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. Aload rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02/ sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and comresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max (€ ea) <0759 max(0 ncp) = 110.58"MPa Gya=93767-MPa & =0.065
max & trueB) <0761 max(o trueB) = 106.084 *MPa o g =105442'MPa &5 =0071
max(€ yec) =0.763 max(0 yyeC) =117.63MPa Oyc=11763"MPa &, =0073
max (& ep) =0.763  max(0 yryep) =123.683 "MPa o,p=123683MP2 ¢, =0073
max(s tmch) =0.382 max(o trueh) =200"MPa O yp =200-MPa € 4 =0077
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FIGURE 10-3
75% 8084 / 25% 1080 at various load rates
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— A =Load Rate = 0.01 mm/sec*
— B =Load Rate = 0.10 mm/sec*
— C=Load Rate = 1.00 mm/sec*
— D =Load Rate = 2.50 mm/sec*
— E =Hopkinson Bar Test; Strain Rate = 3.00e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain

rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max (€ yea) 0855 max( gyea) =103.201 “MPa G ya=67896"MPa &5 =0.066
max (€ o) =0.86 max(o tmeB) =104.253 *MPa Cyp=84366'MPa & p =0.064
m‘”‘(s tmeC) =0862 max(" trueC) =101.544 "MPa Oyc=94798"MPa &, =0071
max (& yryep) <0864  max( ,opy) =104.907 “MPa G yp=101388°MPa &5, =007
max(€ pryen) =044 max(0 yyep) =182.4-MPa Oy =1824'MPa &y =0.077
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FIGURE 104
50% 8084 / 50% 1080 at various load rates:
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TRUE STRAIN

— A =Load Rate = 0.01 mm/sec*
— B =Load Rate = 0.10 mm/sec*
— C =Load Rate = 1.00 mm/sec*
— D =Load Rate = 2.50 mm/sec*
— E = Hopkinson Bar Test; Strain Rate = 2.500e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain

rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. Aload rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max (e ep) =1012 max(6 gyop) =104.044-MPa O yp=62089:MPa &y =0.059
max(e ep) =101 max(0 gyop) =98.384°MPa oyg=74187"MPa &5 =0063
max (& ) =1.012  max(0 () =94.066 "MPa Oy =87.054'MPa &, =0.067
max (& gryep) =1.017  max( o) =100"MPa O yp=93.068°MPa &5, =0.067
max (€ gryen) =0.385  max(0 gyeh) =174.6°MPa Oy, =1746"MPa & =0.074
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FIGURE 10-5
25% 8084 / 75% 1080 at various load rates
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TRUE STRAIN

— A =Load Rate = 0.01 mm/sec*
— B =Load Rate = 0.10 mm/sec*
— C =Load Rate = 1.00 mm/sec*
— D =Load Rate = 2.50 mm/sec*
— E =Hopkinson Bar Test; Strain Rate = 3.00e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain

rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. Aload rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate ot 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(e ryep) =1216  max(0 rep) =85.539-MPa Gya=2246"MPa €, =0.059
max (€ ) =1222  max(0 ,ep) =82.846 "MPa o yg=30.551"MPa &5 =0.068
max (& ryec) = 1211 max(0 o) =89.4°MPa Oy =49394'MPa €. =0.066
max(a trueD) =1.212 max(c trueD> =94.333 *MPa G yD = 58.77°MPa € yD =0.069
max(€ ryen) =0425  max(6 yrep) =145.2-MPa Gy =145.2-MPa €y =0.076
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FIGURE 10-6
0% 8084 / 100% 1080 at various load rates:
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TRUE STRAIN

~— A =Load Rate = 0.01 mm/sec*
— B =Load Rate = 0.10 mm/sec*
— C =Load Rate = 1.00 mm/sec*
— D =Hopkinson Bar Test; Strain Rate = 2.00e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain

rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - C:

1. Aload rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

. max(e =1.529 max({c =60.495 *MPa
( trucA) u-ueA)

(
max (& yryep) =153 max(o yep) =63.194-MPa
max(e mch) =1.506 max(o tmeC) =73.66"MPa
max( (

€ truch) =0339  max(0 ) =87.72°MPa Oy =87.72°MPa & =0.089
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Since the frequency in Hertz is the inverse of the period, an average compressivé
stress wave in a Hopkinson bar with an pulse duration of 100 microseconds can be
equated to a frequency of approximately 5000 Hz. Using the time-temperature
superposition principle the glass transition temperature has effectively increased by 10°C
over the DMA result to approximately 37°C. This can be achieved either by shifting the
stress relaxation curve (DMA Figure 8-9) to the right or assuming that the ambient
temperature has decreased by the same amount. After performing this operation, it can be
seen that the material has not shifted completely into the glassy regime, however equation
(5-16) indicates that the material will behave essentially in a glassy manner. This was
bome out in the Hopkinson bar test.

Figures 10-7 through 10-10 show the plots of the predictive model of peak
compressive yield stress as a function of LOG(strain rate) which were previously
presented in Figures 9-11 and 9-12. To aid in the clarity of the presentation, each material
blend was plotted individually. The results of the comparison is summarized in Table 10-
4,

TABLE 10-4
MEAN PEAK PREDICTED VALUE DIFFERENCE
EXPERIMENTAL OF THE PEAK BETWEEN
COMPOSITION COMPRESSIVE COMPRESSIVE YIELD MEAN AND
YIELD STRESS (MPa) STRESS (MPa) PREDICTED
VALUES (MPa)
100% 8084 / 0% 1080 -200.48 -179.10 21.38
75% 8084 / 25% 1080 -182.99 -163.90 19.09
50% 8084 / 50% 1080 -174.39 -150.13 24.26
25% 8084 / 75% 1080 -142.49 -132.14 10.35

Table 10-4 indicates that the predictive equation underestimated the peak yield
stress in all cases. The first three values showed no obvious trend as a function of
composition, but instead maintained a steady value of approximately 20 Mpa.

The 25% 8084 / 75% 1080 blend showed much closer agreement with the
predicted value differing only by 10.35 Mpa. The estimated curve in this case was
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somewhat different than the others. All of the curves showed a slight upturn due to the
6/5 coefficient in the fitting equation. The curvature of the 25% 8084 / 75% 1080 blend
was much more pronounced. It was this extra curvature in the predictive model which
brought the experimental and predicted values into such close agreement. The curvature
is a strong function of the athermal shear strength. This value is calculated using the
elastic modulus of the material which corresponds to absolute zero (or a very high strain
rate). The assumption in the model is that the modulus is not a strong function of strain
rate. Clearly this blend shows a significant degree of rate dependent behavior, and
therefore cannot be adequately modeled using this procedure.

10.40 Temperature Rise During Plastic Deformation

As part of the high strain rate testing, an in-situ measurement of the temperature
rise was conducted for several of the specimens. The temperature rise was measured by
illuminating the test specimen with a Helium-Neon laser produced by Spectra-Physics. As
the temperature rises in the specimen, the emission of photons increases. This increase is
measured by a collector dish which results in a change in resistance (and a subsequent
voltage drop). The voltage time history was recorded by a Nicolet 400 digital
oscilloscope.

In order to translate these voltage signals to a corresponding temperature rise, a
calibration process was required. Due to time constraints, only the 100% Derakane
specimens were calibrated. The process involved imbedding a thermocouple into one of
the specimens, and heating it up to the highest temperature expected during the test. To
this end, the specimen was placed in boiling water for several minutes. When temperature
equilibrium was achieved (not very critical), the specimen was placed in the same location
as it was during the testing procedure and illuminated with the laser. The temperature was
then measured as a function of the voltage drop detected by the oscilloscope. The
specimen was then removed from the apparatus, reheated and the process was repeated to
obtain enough data points for a good fit.

In order to measure the voltage drop, a simulated AC signal was required. This
was accomplished by "chopping" the signal. In this process, the laser was alternately
blocked, by projecting it though a hole in a rotating disk. This produced a strobe effect,
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adequately simulating an AC signal. The disk was painted black to ensure a uniform
emmisivity and a stable zero reference for the voltage signal. |

The calibration data was curve fitted using a quadratic function on a statistical
program called SPSS. The resulting calibration equation was:

Temp = 83.0073(Voltage)® + 36.7420(Voltage) + 22.1931

where: Temp is the temperature in Celsius

Voltage is the measured voltage at the oscilloscope

Using this calibration curve, a typical temperature trace as a function of test time
can be generated. The temperature traces showed a very high degree of repeatability, and
a typical curve is shown in Figure 10-11. The average true strain at the end of the test
was appfoximately -0.40 to -0.50, at an average compressive yield stress of -200.48 Mpa.

The temperature rise was approximately 6-7 °C above ambient temperature. This
value can be used to estimate the maximum possible temperature rise in the specimens
(assuming adiabatic conditions) when tested at slower strain rates, since the temperature
rise is directly proportional to the plastic work which is the area under the true stress- true
strain curve. As a result, even if adiabatic conditions are assumed, it is expected that the
temperature rise in the slower strain rate specimens would be significantly less than in the
high strain rate testing case since the peak yield stress and the area under the stress strain

curve is much reduced.
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Figure 10-11
Temperature Rise to to High Strain
RatePlastic Deformation
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11.0 DISCUSSION AND CONCLUSIONS

The goal of this study was to investigate the compressive behavior of a series of
blends of Dow Chemical Derakane 8084 rubber toughened vinyl-ester and a urethane
acrylate called Crestomer 1080 produced by Scott Bader and to draw some conclusions
about the effects of strain rate on the expected performance of a typical GRP stiffener
panel bondline composed of blends of these materials.

A series of compression tests were conducted at strain rates ranging from 6.5x10°
sec? to 1.3x107 sec’’. Using these test results, a prediétive trend for the lower yield stress
as a function of strain rate was established using a procedure which was developed for the
large strain viscoplastic analysis of glassy homopolyers. The lower yield stress is a more
consistent predictor of performance than the upper one, since the former is nearly
insensitive to any previous thermal treatment while the latter requires an annealing
procedure to produce consistent results. Annealing in these polymers is achieved by
raising the temperature 10-20°C above the glass transition temperature for several hours.

The modeling procedure worked well for the blends containing less than 50%
Crestomer by weight. The stress value obtained from the model is a strong function of the
elastic modulus via the athermal shear strength. It works best when the elastic modulus
does not vary to any large degree as a function of strain rate. In the 75% Crestomer blend
and the 100% Crestomer material, a significant increase in the elastic modulus with strain
rate was seen. Further review of this model is required to account for the strongly rate-
dependent elastic response of these materials.

An attempt was made to extrapolate the Instron test results obtained for the lower
yield stress as a function of strain rate out to strain rates as high as 3500 sec™ and compare
this prediction to actual test results obtained using a Hopkinson bar. The prediction
underestimated the experimental results by approximately 20 Mpa for all the blends up to
50% Crestomer by weight.

' The cause of this discrepancy may be attributed to viscous or inertial effects. Both
of these would result in an increase in yield stress with increasing strain rate. The exact

mechanism of such an inertial effect in these materials is unknown. It was noted by
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Meyers' that a dividing line typically exists at a strain rate of approximately 5.0 sec™.
Below this value, inertial forces can be neglected and equilibrium can always be obtained.
At strain rates higher than 5.0 sec”, inertial forces have an increasing effect due to wave
propagation effects. Further research is required to determine inertial mechanisms of this
type in polymer materials.

11.10 Modeling of Themoplastic Versus Thermoset Materials

The model presented for the prediction of the yield stress as a function of strain
rate was developed and tested using a variety of amorphous glassy polymers such as
PMMA (polymethylmethacrylate). This material is a thermoplastic which has strong
intramolecular and weak intermolecular bonds between chains. The intermolecular
interactions in thermoplastics occur primarily as a result of chain entanglements. It has
been observed that the thermally evolving chain density in PMMA exceeds the molecular
density by roughly an order of magnitude, indicating that the chain entanglement density in
PMMA is very high>. An amorphous material such as PMMA can then be viewed as an
entangled network of long macromolecular chains. The effect of these entanglements will
likely become increasingly more important as the strain rate is increased, due to friction
between chains assuming that the temperature rise is not high enough to cause significant
thermally induced chain disassociation.

This concept forms a link between thermoplastics and the thermoset materials
studied here. The behavior observed for all of the glassy blends in this study was similar
to what was observed in the study of true amorphous materials. In particular, the material
exhibited a peak yield stress, followed by combined thermal and strain softening, and
ﬁhally entropic strain hardening. It is not immediately obvious that a highly crosslinked
network structure can produce an entropic hardening response, which is typically
associated with the straightening out of a chain or series of chains from their fully coiled

configuration.

! Marc A. Meyers, Dynamic Behavior of Materials (New York: John Wiley and Sons, 1994), pp. 298-299.
E.M. Arruda, M.C. Boyce, and R. Jayachandran "Effects of strain rate, temperature and
thermomechanical coupling on the finite strain deformation of glassy polymers,” Mech. Mater. 19, (1995)
p. 196.
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In a thermoset, the network structure is formed during the curing process. This
crosslinked network can-be viewed as a highly entangled network of chains. Since the
entanglement density is high, the observed locking stretch for these materials is often
smaller than in the case of true amorphous materials.

To address this issue, an experiment was conducted in which a sample of Derakane
8084, 15.5 mm long (length/diameter ratio of 1.0), was compressed at 0.01 mm/sec
(nearly isothermal) until failure. The material underwent plastic flow until a true strain of
approximately 0.80 was reached. By a true strain of approximately 0.90, the specimen
abruptly shattered. This corresponded to a locking stretch of approximately 2.0-2.5 at the
test temperature of approximately 298 K, which corresponds closely to the reported value
of 2.1 for PMMA®. This lends further evidence that the large stretch deformation
behavior of a thermoset could be modeled as a highly entangled amorphous material.

11.20 Modeling of Polvmer Blends

Another important issue addressed in this study is the effect of the concentration of
constituent materials on the large strain plastic behavior of the blend. Most of the
experimental work to date on polymers under large strain has been concerned with a single
homopolymer. The material studied here is a blend of two distinct polymer constituents.
Not much is known about the structure of these materials, especially Crestomer. The
testing conducted in this study gives a fair amount of information about their macroscopic
behavior.

Crestomer 1080 is viscoelastic at room temperature with a glass transition
temperature of approximately 27°C at 10 Hz. It will therefore have a highly rate-
dependent elastic modulus. In addition, it is capable of large deformation without
undergoing yielding which indicates a low crosslink density and a large locking stretch.

The material behaves in many ways like a rate-dependent elastomer. No detectable
change in the specimen dimensions was observed as a result of any of the Instron testing

up to the maximum limit of 150% true compressive strain. This assumes that the loading

*E.M. Arruda, M.C. Boyce, and R. Jayachandran "Effects of strain rate, temperature and
thermomechanical coupling on the finite strain deformation of glassy polymers," Mech. Mater. 19, (1995)
p. 205.
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high strain rate testing, no change in specimen dimensions was detected down to the
resolution of the digital- micrometer (0.001 inch). It appears that while the specimens
clearly underwent plastic deformation based on the measured stress history, the effects
were removed within a very short period of ume This may have been due in part to a
temperaturé rise of approximately 4-6°C, which was measured during the high strain rate
testing. It should be noted that this material was not calibrated. If the emmisivity of all of
the materials is the approximately the same, then the calibration curve for the Derakane
8084 specimen can be used to interpret the temperature trace.

Derakane, in contrast to Crestomer, is a highly crosslinked vinyl-ester thermoset
with a glass transition temperature of 115°C. Since the glass transition temperature is well
above room temperature, the material behaves in a glassy manner. As a consequence, the
elastic modulus is not highly rate dependent and the material undergoes shear yielding
when loaded in compression beyond a true strain of approximately 7%. Along with
yielding comes thermal and strain softening effects which become more pronounced as the
strain rate is increased.

11.30 Material Blend Morphology

It is not clear what morphology occurs when these materials are blended. Since
both constituents are formed from an unpromoted resin in a liquid phase, blending can be
very complete. When the blended liquid resin containing a known weight percentage of
each of the constituents is promoted and catalyzed, the network of each of the materials
will be intimately interwoven.

_ One issue which is unresolved relates to how the materials combine. The
crosslinking reaction may occur by the formation of hybrid regions of material or it may be
possible that the each of the constituents reacts only with other material of the same type.
If hybrid chains do not form and the precatalyzed resin is thoroughly mixed, the structure
may be viewed as a parallel combination of the two materials. Derakane can be modeled
to first order as a large spring in series with a small viscous damper, while Crestomer is
better modeled as a large viscous damper in series with a small spring. The springs will

likely be nonlinear, especially if large stretch behavior is modeled.

160



This model would lead to small a decrease in stiffness as Crestomer is added to the
higher modulus Derakane resin, assuming that the loading rate is low. This behavior was
observed both in the plot of glass transition temperature in Chapter 8, where the measured
value of Tg varied by only about 24°C from 100% Derakane up to a concentration of 50%
8084 / 50% 1080, and in the Instron testing.

Some valuable information can be obtained from the predicted glass transition
temperature as a function of Crestomer concentration. As mentioned, this curve is not
typical of what has been observed in the study of polymers to date. Typical polymer
blends follow a series type predictive model in which a small weight percentage of the
lower stiffness causes a rapid decrease in the stiffness of the blend. This can be viewed as
two springs in series, one of which is approximately three orders of magnitude greater
than the other.

It is thought that the blending of long chain thermoplastic materials cannot be very
thorough unless the materials are polymerized in-situ. This likely results in a morphology
in which regions of one material exist near regions of another, resulting is a blend only in
the macroscopic sense. Blending on a small-scale would appear to be very difficult. This
concept that thermoplastic polymer blends exist on small-scale as localized regions of the
constituents, lends itself well to a model which is primarily series in nature.

In the case of the thermoset materials used in this study, the morphology of the
structure is likely to be much closer to an idealized parallel model since the chains are
formed in-situ during the curing process. In a parallel model, a large quantity of the softer
material is required to result in any change in the stiffness of the blend.

The glass transition temperatures cited in this study were all obtained at a testing
frequency of 10 Hz. Some conclusions were drawn about the behavior of these blends
both at higher and lower load rates based on time-temperature equivalency. This
approach, which applies only when the theory of linear viscoelasticy is valid, was justified
by noting that the maximum strain imposed on the test specimens during DMA testing are
typically less than 1.0%. Nevertheless, actual testing at higher frequencies should be

conducted to determine if these extrapolated approximations are valid.
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If hybrid chain formation is possible, the next issue which needs to be addressed is
the preferred order in which these chains are formed. For example, the behavior of a chain
composed of long strings of Crestomer 1080 followed by long strings of Derakane 8084
will differ markedly from one composed of alternating shorter sections of the same
constituent materials. The morphological structure in this case would be a strong function
of the reaction kinetics of each of the constituents.

The issues relating to the precise morphology of the blends would provide valuable
information which could be used to minimize manufacturing variance and build better
models to predict the mechanical behavior of these materials under a wide variety of
loading conditions. The morphology could be determined by irradiating one of the
constituents with Deuterium. The blended material morphology could then be determined
using TEM (Transmission Election Microscope) techniques. The morphological
characterization of these blends should be a high priority if these materials are to be used
in critical structural applications.

11.40 Additional Required Testing

To complete the modeling of these materials under compressive loading using the
predictive model presented in this work, several additional material tests are required.
First, a series of tensile tests are needed to eliminate the ambiguity in the pressure
coefficient, which was assumed to be 0.20 throughout this study. In addition, if the
behavior beyond the lower yield stress is desired, the elements of the backstretch tensor
(Bij) are required. Recall that the backstretch tensor is assumed to be an entropic force
which is modeled using Langevin statistics and finite strain elasticity. To determine this
behavior, the rubbery (initial) modulus of the individual blends is required. This
information can be obtained by raising the temperature of the material to a few degrees
above the glass transition temperature, and loading the specimen at a high rate. The slope
of the initial portion of the true stress / true strain response is the rubbery modulus of the
material.

The final pieces of information required are the temperature dependence of both
the modulus and yield stress. This information is readily obtained from plots of true stress

versus true strain which are taken from compression or tension tests conducted at a series
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of test temperatures at a rate which is slow enough to ensure that isothermal conditions
are maintained.
11.50 Conclusions and Implications

The model predicted the behavior of the glassy materials to a high degree of
accuracy. In the 75% Crestomer 1080 / 25% Derakane 8084 blend, the Crestomer 1080
began to influence the behavior of the material. The stress levels are a strong function of
the athermal shear strength which is dependent on the assumed modulus of elasticity.
Some work is needed to implement rate dependency into the model to reflect the rate
dependent elastic response of these materials.

This project was motivated by the general lack of information concerning the high
strain rate behavior of amorphous polymers and thermosets which are used in critical
structural applications requiring a significant degree of high strain rate survivability

The example cited in this study was the secondary bondline between a stiffening
member and the hull shell of glass-reinforced plastic (GRP) minesweeping vessel. The
current measure of the effectiveness of a bondline improvement in this application is the
pull-off strength. These pull-off tests are conducted at very low rates (1.0 mm/sec is
typical). Recent increases in pull of strength have been accomplished by increasing the
strain to failure of the resins in the most critically stressed areas.

This study has concluded that pure Crestomer 1080 is capable of large
deformations without yielding for the observed strain rates which were as high as 0.13
sec’. When tested at strain rates on the order of 1000 sec”, which are "typical" of
hydrodynamic and air blast, this material behaves in a glassy manner, showing a clearly
defined upper yield point as well as thermal and strain softening behavior.

Although most of the stresses in a stiffener pull-off test are tensile, the compressive
material behavior obtained in this study can be used to gain some insight into the high
strain rate tensile behavior of these blends. In general, fracture toughness decreases as
yield stress increases. The large increase in yield stress seen in these Derakane/Crestomer
blends will therefore likely lead to significantly lower pull off strength under high pull-off
rates as compared to the slow pull-off results. This effect will be especially significant
when the Crestomer 1080 concentration is greater than approximately 50% by weight.
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Further study of the blends between 50% and 75% Crestomer are required to determine
exactly when the rate dependency of the elastic modulus becomes most important.

Large Stiffener pull-off loads rely on the high compliance (low modulus) of the
materials in the bondline. If the modulus increases rapidly from the testing load rate to the
actual service load rate, all of the advantages of the compliant material will be lost and
failure will likely initiate much sooner than predicted.

This study has investigated the compressive behavior of a blend of two distinct
polymers as a function of strain rate. Further work is required to fully understand the
behavior of these materials. The next step must include some morphological studies to
determine both the mechanisms of the formation and final structure of these bends. The
other issﬁes which have not been addressed relate to tensile loading and include crazing
verses yielding response. This will give some information relating to the determination of
the transition from brittle to ductile behavior as a function of strain rate. Crazing occurs in
the elastic response regime and the voids which are formed can serve as nucleation sites
for fracture to occur. Once these issues are understood, more accurate models can be
developed and eventually implemented into a numerical finite element code to model the

response of more complex "real world" structures.
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HISTORICAL OVERVIEW OF STIFFENER TO PANEL SECONDARY
BONDLINE IMPROVEMENTS

Introduction:

This section will present a chronological account of methods which have been
proposed to improve the stiffener to shell secondary bond. The earliest method involved
bolting the stiffener to the main hull laminate, a complicated process which added a great
deal of weight and cost to the ship’s structure. The need to utilize bolts has been virtually
eliminated in the past few years by the use of highly compliant resins initially based on
acrylics, and most recently on urethane acrylates.

In addition to the effects of mechanical fastening and modification of bondline
materials on secondary bond strength, the effects of the loading mode on the stresses in
the bondline will be investigated. During an expldsion, a stiffened panel is subjected to a
very complicated loading pattern. To simplify the experimental evaluation of a proposed
bond line improvement, a variety of clamping modes have been investigated. It was
determined that both the required stiffener pull-off load and the mode of failure are
strongly dependent on the loading mode used in the experiment.

The ultimate goal of the bondline material improvements is to prevent the
separation of top-hat stiffeners from the hull shell under explosive loading. The results
which will be presented in this section span approximately 25 years of research, mostly in
support of various minesweeper construction projects in the United Kingdom. The results
reflect static pull-off tests which are available in the open literature, but details relating to
the verification of these results in explosion trials is not available.

Mechanical fastening techniques:

Early frame to shell connection designs, which generally used an all polyester
matrix with E-glass woven reinforcement, were prone to failure at very low intensity
explosive loads. Initially, this problem was solved by bolting the stiffener to the base
panel. An increase in stiffener pull-off strength was obtained solely because the bolt head
needed to be pulled through the stiffener flange or base plate prior to final failure. As a
consequence, the presence of bolts served only to add damage tolerance to the structure
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by acting as crack arresters but did not prevent initial failure. In addition, the use of bolts
added considerable weight and cost. The bolts initially used were made of aluminum-
silicon-bronze and later titanium. These materials were chosen due to the non-magnetic
hull requirements of mine sweeping vessels, the corrosive environment, and fatigue and
vibration service requirements. Some of the early top-hat stiffener attachment methods
were presented, by C. S. Smith and are reproduced in Figure 1.!

An article written by Green, A.K. and Bowyer, W.H. in 1981 described alternative
mechanical fasteners.”> The requirement to maintain water tight integrity led to an
insertion scheme involving boring and counterboring of the hull laminate, the use of
sealant, as well as the need to manually torque tighten the bolts from both inside and
outside the hull following demoulding. The high cost associated with the fasteners and the
insertion procedure led to the study of other fabrication methods that could resist the
effects of shock loading. Green and Bowyer investigated the possibility of replacing the
titanium bolts with a relatively inexpensive commercially available mechanical fastener and
insertion technique using stainless steel screws. The screws were pneumatically driven
into holes filled with liquid polyester resin. It was noted once again that mechanical
fasteners were only a partial solution to the problem, since the bond failure initiates at the
stiffener web/flange corner, remote from the fastener, and the fastener acts only as a crack
arrester.  To achieve a fundamental improvement in performance, it was necessary to
inhibit the crack initiation process. As a result, they investigated the use of internal flanges
produced using tough acrylic resins.

Internal flanging:

Green and Bowyer investigated the use of an internal flange, which is shown in the
Figures 1 and 2. This fabrication method is an attempt to utilize the redundant stiffener
base area and reduce the stress concentration in the stiffener web/flange comer by bridging
the angle between the stiffener web and the base panel with Kevlar fiber stitching. The use

of stitching was investigated using both polyester and tough acrylic matrix materials in the

' C. S. Smith, Design of Marine Structures in Composite Materials (New York: Elsevier Applied
Science, 1990), p. 289.

* AK. Greenand W. H. Bowyer, “The Development of Improved Attachment Methods for Stiffening
Frames on Large GRP Panels,” Composites, Jan. 1981, pp. 49-55.
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C.S. Smith, Design of Marine Composite Materials (New
York:Elsevier Applied Science, 1990), p.289.
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bondline. Crack initiation in the secondary bond line at the stiffener flange occurred at
higher load levels in specimens incorporating an internal flange with stitched cloth
construction and acrylic matrix material in the bondline. In the stitched cloth ;:onstruction
specimens fabricated with polyester resin, peak loads were only slightly higher than in the
unreinforced specimens. This indicates that the properties of the specimens are limited by
the fundamental interlaminar toughness of the glass/polyester laminate, known to be about
two orders of magnitude less than the translaminar (cross fiber) toughness in these
materials®. In the acrylic stitched cloth specimens, the load bearing capability was
increased on the order of 30 percent due to the large strain to failure of the acrylic material
and subsequent improvement in load distribution in the secondary bond line. This was an
early indication that by increasing the strain to failure and the compliance of the material in
the bondline, the load distribution in this region could be improved significantly.

Clamping mode: »

Green and Bowyer* expanded their work to include the effects of the clamping
mode on the stress distribution and the final failure of a top-hat stiffener subjected to
quasi-static pull-off testing. The two clamping modes were termed centre clamp and two
clamp as shown in figure 3. This terminology has been used to describe the quési-static
testing of top-hat stiffeners ever since. The nomenclature used in this and all future
studies is shown in figure 4. It was shown in earlier studies that the distribution of the
tensile and compressive stresses in the secondary bondline are very sensitive to the form of
the applied load.’ In particular, these stresses are sensitive to the magnitude of the

bending stresses present in the stiffener table and more importantly in the side web.

3 G. Smith, A.K. Green and W.H. Bowyer, “The Fracture Toughness of Glass Fabric-Reinforced
Polyester Resins,” Proc Conf ‘Fracture Mechanics in Engineering Practice’, Sheffield 1976, ed. P.
Stanley (London: Applied Science Publishers, 1977), p. 271.

* AK. Green and W .H. Bowyer, “The Testing and Analysis of Novel Top-Hat Stiffener Fabrication
Methods for Use in GRP Ships,” Composite Structures, ed. I. H. Marshall (London: Applied Science
Publishers, 1981) pp. 195-201.

* Unpublished MOD data
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The stresses in the bondline were evaluated with the load uniformly applied across
the stiffener table for two clamp loading condition. The center clamp loading was applied
as shown in Figure 5 in which an additional strip of steel was placed between the loading
shackle and the stiffener table to concentrate the loading at the center of the stiffener table.
The centre clamp results were compared to previous work in which the load was applied
uniformly over the table. The results are presented in Figure 6.

It has been shown that failure of top-hat stiffened panels subjected to explosive
loading occurred by complete separation of the hat stiffener from the base panel. Failure is
caused by a crack originating at the heel of the side web which propagates through the
secondary bondline. As a consequence, the larger the tensile stress concentration at the
heel of the side web, the lower the load required to initiate failure. When the load was
applied over the entire table in the centre clamped case, bending stresses were present in
the side webs. These bending stresses are a result of a moment applied to the lower edge
of the side web due to the curvature of the base panel under load. As a consequence, both
tensile and compressive stresses were present in the secondary bondline. When the
loading was concentrated towards the center of the table, the bending stresses in the side
webs disappeared and only tensile stresses were present. This was due to the
compensating moment applied to the top of the side web by the curvature of the stiffener
table. When the bending stresses in the side webs are eliminated, the magnitude of the
tensile stress concentration at the heel of the side web is reduced significantly. In the two
clamp loading case, the stresses at the heel of the side web are compressive which
indicates that the propagation of a crack through the bondline is not likely to be the initial
failure event in this loading mode.

In order to determine the most severe loading case, it is important to know
whether a crack will continue to propagate or arrest. The balance between overall system
compliance and stored elastic energy in the deformed shape of the stiffener plate
combination will determine the outcome. System compliance increases as the crack
grows, along with a drop in the applied load, and stored elastic energy is released to

propagate the crack. The drop in applied load during crack growth occurs because the
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Schematic loading arrangement, centre clamped.

A.K. Green and W.H. Bowyer, “The Testing and Analysis of Novel
Top-Hat Stiffenener Fabrication Methods for Use in GRP Ships,”
Composites Structures, ed. I.LH. Marshall (London: Applied Science
Publishers, 1981) , p.187.

Figure 5
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quasi-static pull-off process proceeds at such a slow rate that it is nearly analogous to
applying a fixed displacement.

The centre clamp loading mode is shown in Figure 3a. In principle, the base panel
acts as two cantilever beams fixed at the location of the centre clamp. The energy in the
system which is available for continued crack propagation is stored in the region of the
base panel under the top hat, the side webs, and the table. The initial system compliance is
high, and as a result the load drops at a low rate as a function of crack length. As a result,
a crack is likely to continue to propagate, and catastrophic failure in the form of the
complete separation of the stiffener from the top-hat occurs. The catastrophic nature of
the crack propagation and the high stress concentration at the heel of the side web result
ina very- low load to failure and an event which closely resembles the failure observed in
panels subjected to explosive loads.

The failure sequence in the two clamped loading case is significantly than the
centre clamp case. In this loading mode, the elastic energy in general is contained within
the table (eliminated in this case due to the uniformly applied load), the side webs, and the
base panel similar to the centre clamped case. The flexed portion of the base panel is,
however, greater in this case. The initial failure event is the delamination of the outer ply
in the region of the flange root to relieve the bending stresses in the side web. Progressive
delamination occurs in subsequent plies, eventually forming a compliant hinge between the
side web and the base panel. As this process continues, the compressive stress in the
secondary bondline at the heel of the web disappears and a tensile stress builds up. When
the tensile stress builds to a sufficient level, rapid failure occurs by a cleavage mechanism.

The study concluded that the centre clamp loading condition was the most severe
and results in failure which most closely resembles what is observed in shock loaded
panels. This can be seen in figure 7, which shows the representative load versus
displacement curve for the two loading modes discussed. The centre clamp loading mode
is the most severe case because of the large amount of stored elastic energy and the high
tensile stress concentration at the heel of the side web. These factors initiated catastrophic
failure at very low loads. It was also concluded that the bending of the side web has a
profound effect on the stress distribution in the secondary bondline. This implies that
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A K. Green and W.H. Bowyer, “The Testing and Analysis of Novel
Top-Hat Stiffenener Fabrication Methods for Use in GRP Ships,”

Composites Structures, ed. 1.H. Marshall (London: Applied Science Figure 6B
Publishers, 1981) , p.196.
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increasing the compliance of the web/flange corner would reduce the bending stresses in
~ the side web, thereby increasing the pull-off strength of the stiffener. Improvements may
also be made by utilizing tough resins in the first few plies of the base panel in the most
highly stressed regions.

Use of compliant resins:

Several studies were conducted in an attempt to utilize tough resins based on
urethane acrylates as an alternative to the mechanical crack-stopping system and the other
methods discussed previously.® The use of a fillet of resilient adhesive resin, with a strain
to failure of up to 100%, in the critical region of the bondline (under the heel of the web)
provided a frame/shell connection equivalent to or better than that provided by bolt-
reinforcement. This was demonstrated both by static tests, as well as explosion tests on
submerged panels and a large-scale floating hull-section. The details of the shock testing
results were not given, and could not be found anywhere in the open literature.

In 1992, a study was conducted to improve stiffener to shell bonding by
modification of the secondary bondline interface’. Several hull stiffener interfacial
secondary bond arrangements were analyzed experimentally and compared. The bolted
and screwed specimens are included for comparative purposes only.

a) Standard polyester resin only with woven roving glass (unmodified construction)
b) Standard polyester resin with titanium bolts

c¢) Standard polyester resin with stainless steel screws

d) Stitched cloth with polyester resin (internal flange)

e) Stitched cloth with acrylic matrix (internal flange) |

f) Woven roving with chopped strand mat using polyester resin in bondline

g) Two-part elastomer modified acrylic system in bondline

h) Acrylic impregnated chopped strand mat in bondline

¢ J. Bird and D. Bashford, “The Use of Flexible Resins to Improve Bond Connections in GRP Ship
Construction,” Proc. Composites-1988 World Conference on Composite Structures, Nice, France, June
1988.

7 L.S. Norwood and C. Caulier, “Testing the Effectiveness of Tough Resin Systems for Improving
Structural Performance of Joints in GRP Ships Composite Materials,” Nautical Construction with
Composite Materials: International Conference, Paris, ed. Peter Davies and Lional Lemoine (Paris:
Ifremer,1992), pp. 246-255.
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I) Urethane acrylate to wetout the woven roving reinforcement around the bond line

j) Standard polyester resin and lay-up, with a filled urethane acrylate fillet between the
top-hat and the base panel at the heel of the web

k) Reinforced urethane-acrylate layers around the bondline plus a filled urethane-acrylate
fillet at the heel of the web.

The slow pull-off testing of the above configurations was performed using center
clamping, which was shown by Green and Bowyer to result in the most severe loading
condition. The results of these tests are shown in figure 8-11. It should be noted that the
results of items a-e are identical to those obtained by Green and Bowyer in 1981.

Several conclusions can be drawn from the results.

1. The work necessary to fail toughened resin top-hat sections is similar to that necessary
to destroy bolted constructions, but the work input to initiate cracks is considerably higher
in the toughened resin structure.

2. The use of stitched cloth-polyester resin lay-up in the secondary bondline region
resulted in a load to failure 15% higher than the unmodified construction.

3. The use of chopped strand mat reinforcement with polyester resin at the bondline
resulted in a load to failure 20% lower than the unmodified construction, and the use of
acrylic impregnated chopped strand mat in the bondline resulted in inferior performance
compared with the use of acrylic matrix alone.

4. The use of the tough two-part elastomer modified acrylic matrix increased the
secondary bondline strength and the load for bondline crack initiation by allowing
redistribution of stresses away from the regions of stress concentration. In addition,
cracks starting in the bondline slowly, rather than catastrophically, opened up as the
displacement increased.

5. The use of a styrene crosslinked urethane acrylate resin capable of sustaining strains to
failure in excess of 100%, in the bondline resulted in an increase in the linear load region
of approximately 50% as compared to the unmodified structure. The use of urethane
acrylate resulted in the need for three times the work input to initiate a crack as compared
the standard unmodified structure. In addition, the web bending stresses are reduced as

the tensile stress concentration under the web/flange heel is reduced. This is a result of the
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fact that the urethane acrylate resin at the secondary bondline has the capability of
extending more than a rigid bond line, and can therefore store more elastic energy
resulting in higher work input.

6. The presence of a flexible fillet as shown in figure 12, based on thixotropic urethane
acrylate resin at the heel of the web significantly improved the performance of the
bondline, but fillet design was not a major contributor to the overall performance of the
bondline.

7. The use of a styrene crosslinked urethane acrylate in the last few layers of the main
laminate, with woven roving glass, and the first few layers of the stiffener resulted in a
significant increase in the linear load region as compared to the use of a urethane acrylate
fillet alone.

Preformed stiffeners:

The current production practice involves forming the top-hat stiffeners over a
foam former attached to the ship’s hull. Often the hull shell is laminated many weeks prior
to stiffener attachment. Using this production method, the flange thickness is the same as
that of the stiffener web. The web thickness is determined by the stiffener’s requirement
to act as a beam with the web supporting the shear loading as the beam is placed in
bending. This gives rise to an undesirable constraint that the web thickness drives the
flange thickness. A parametric study was performed to assess the feasibility of using
preformed top-hat stiffeners which would remove this constraint, and to determine the
effect of several different design parameters.®® Figure 13 shows the typical configurations
for commercial and naval applications, along with the proposed alternative configuration.

The preformed stiffeners are to be produced by a process known as SCRIMP
(Seeman Composites Resin Injection Molding Process). It is essentially a modified form of
the vacuum-assisted resin transfer molding (VARTM) process, which produces laminates
of extremely high and consistent strength and quality. This process was conceived in the

United States by Seemann Composites, Inc., and developed extensively for large scale

¥ AR. Dodkins, R.A. Shenoi, and G.L. Hawkins, “Design of Joints and Attachments in FRP Ships’
Structuresk,” Marine Structures, 7 (1994), pp. 365-398.

® R. A. Shenoi, and J. F. Wellicome, eds., Composite Materials in Marine Structures; Volume 2 Practical
Considerations, (Cambridge: Cambridge University Press, 1993), pp. 77-82.
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Fillet radius undefined

(Determined from practical considerations) \

( \\ 1
Typical Configurations for Commercial Applications Foam former
Top-hat secticn sﬁffenq laminated
directly onto cured plating
r ]
Typical Configuraticns for Naval Applicanons
U-section pre-formed stiffener
Light overlaminare e.g. 2WR
Large radius (@ 75mm) urethane
acrylate resin fillet
[ N .
Gap c} pre-determined size
"New" and Altemanve Configurations.
A.R. Dodkins, R.A. Shenoi and G.L. Hawkins, “Design of Joints
and Attachments in FRP Ships’ Structures,” Marine Structures, 7
(1994), p.367.
Figure 13
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production by Vosper Thorncraft in the United Kingdom. It allows for the production of
very large, high-quality FRP moldings in a cost effective manner.

This new production process has the following advantages over the traditional method:

1. High fiber volume fraction and low void content laminates can be produced, resulting
in stiffener laminate strength and modulus approaching twice that of the hand lay-up
procedure, using the same constituent materials.

2. Producing stiffeners separately from plating means that most of the laminating work
can take place in “ideal” workshop conditions rather than inside the hull where the access
is more difficult.

3. It is estimated that, if this approach was applied throughout the ship, a saving of 30%
in the weight of stiffeners could be achieved, including avoiding the need for foam formers
which become redundant once the laminate cures, but nevertheless have to remain built-in
the structure.

4. In this design, the compliance of the joint can be significantly improved over the
traditional fabrication method. This will serve as a good follow-on to the work of Green
and Bowyer who predicted that increasing the compliance of the web flange corner would
significantly improve the performance of the joint.

In the design study of the new stiffener, the following design parameters were
selected (see figure 14):

1. Radius of fillet (25-125 mm)

2. Backfill angle of fillet (0-45 degrees)

3. Fillet material (Urethane Acrylate only)

4. Thickness of overlaminate (1-12 laminates)

5. Overlaminate resin (Polyester resin only)

6. Gap between base panel and stiffener (10-50 mm)

Both the highest value of principal stress in the fillet and the through-thickness
stress in the overlaminate were considered using both centre clamp and 2 clamp loading.
The results are shown in figures 15-19.

The stresses arising in the new stiffener design were compared with those obtained

in a similar stiffener produced in the traditional way. In the new stiffener design under
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'A.R. Dodkins, R.A. Shenoi and G.L. Hawkins, “Design of Joints
and Attachments in FRP Ships’ Structures,” Marine Structures, 7
(1994), p.387.

Figure 14
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centre clamp loading, the through-thickness stress concentration which was present in the
traditional design is no longer in the region of the flange root, but are now in the web with
reduced magnitude. Note that these through-thickness stresses are compressive and do not
directly lead to any failure event. When the maximum principal stress in the fillet was
compared with the those obtained by the analysis of the traditional design, it was found
that the stresses were nearly the same. This would indicate that failure should occur at
nearly the same load level for both the traditional and the new production method in this
loading mode.

In the case of two-clamp loading, the through the thickness stresses in the new
design are reduced over those in the traditional design, which will delay the failure in this
mode until higher loads are applied. The load was redistributed to the fillet where the
maximum value in the new design was about 50 percent higher than in the traditional
design. This will likely lead to an increase in the applied load to failure over the traditional
design, since the fillet can withstand a higher stress level than the overlaminate.
Conclusion:

There have been many advances in composite secondary bondline interfaces in the
past 25 years. The evolution from bolted connections to adhesively bonded connections
has come about as a result of the rapidly growing interest in special purpose polymers.
With all the progress that has been made, there is a great deal which is still unknown about
these materials. As an example, the behavior of polymers under conditions of dynamic
loading is a complex subject which requires further study. Continued research in this and
other related areas continue to improve the design of structures made of polymers and

advanced composite materials.
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Input the observed values of Tg (Degrees C) i:=0..100
L . j=0,25..100
Note: The index is the equal to the weight percentage of Crestomer 1080 k:=25.50..75
Tgobs,, := 1140 Tgobs,, = 101.0 Tgobs,, := 89.0 Tgobs,, := 65.0 Tgobs, o, = 27 1:=0,10..100
Tgobs2o :=1130 Tgobs225 =102.0 Tgobs250 =900 Tgobs275 =660 Tgobs2100 =27
Define an expression for the glass transtion tempera of the copolvm
- | =
Tg 1080 =Teobs,oo  TBgogs =Toobs, Wiogo =7~  Wsgos4, =1-W 1080,
B-W 1080, + W 8084, W 1080, + W 8084,
Tgi = Tg typ. =
B-Wi0s0, Wso0ss, © [Wioso, Wso0s4,
+ +
Tg1080 T8g084 Tg1080 TE8084
Tgk— Tgobsk )
diffTg, :=———100 diffTg,:=0  diffTg, =0 B=0.098 < B is the fitting factor >
Tgobs,
j Tgi Tgobs.i diffTg
0 114 114 0

25 103.4551 }101 2.431
50 88.537 | | 89 -0.52
75 65.816 | | 65 1.256
100 27 27 0

Use WLE tion ¢ lict Tq at higher f .
fiest = 10-Hz < enter test frequency >

n=1 < enter desired increase in frequency over test frequency in decades >
e 10 _ R

fges =10 f tegt f ges = 100°Hz

Calculate the shift f @T.and [ in WLE .

f
aTzz(—fEﬂ) ar=01 C,:=516 C:=1744
des

Calculate the change in Tg (Degrees C):
T log(a T) -C 2

ATg'=————— — ATg =3.139 < Note an increase in frequency results in a
Cr+ log(a T) increase in Tg >
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Appendix C
Instron Testing Data

Instron Test Data Log 202

Compression Testing
100% Derakane / 0% Crestomer 208
75% Derakane / 25% Crestomer 230
50% Derakane / 50% Crestomer 252
25% Derakane / 75% Crestomer 273
0% Derakane / 100% Crestomer 296

Load Rate 1 - 0.01 mm/sec 310

Load Rate 2 - 0.10 mm/sec 314

Load Rate 3 - 1.00 mm/sec 318

Load Rate 4 - 2.50 mm/sec 322

Height/Diameter Input Files 326
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MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimens to be used: z:=1..4 ORIGIN :=1

DIM , :=READPRN(COMPIB) SPEC  :=3

- <1> __ <K2> .
L01 = (DIMA )SPECA-mm D01 .—(DIMA )SPECAmm
DM g = READPRN(COMP1A) SPEC g :=24

._ <1> W <K2> .
Loz.- (DIMB )SPECB-mm D02 .—(DIMB )SPECB mm
DIM (- :=READPRN(COMPI1B) SPEC =5

— <1> — Q> .
L03 = (DIMC )SPECC-mm D o, = (DIMC )SPEchm
DIM p :=READPRN(COMPI1B) SPECp, :=11

. <1> ) — <> .
Lo, .-(DIMD )SPECDmm Dy, (DIMD )SPECDmm

I . T
Caiculate the initial cross sectional area (mm*2): A 50 :=z- (D o )2
z

191.38
192854 |
A = .
cs0 = | 193346 | T
189.911
ata file info ion;

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A :=READPRN(ICILRITS) Note: Files A-E are only used for

B := READPRN(ICILR2TS) tracking purposes. T!\erg ls. no relation
to the specimen position indicator.
C :=READPRN(ICILR3T4) Analysis slots not used read the default file

D :=READPRN(ICILR4T3) ICOLR1T1.pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load , =A" kN displ 5 :=A%”-mm  loadp =D~ kN

load g :=B<l>-kN displ g ‘= B<2> ‘mm

load ¢ := C<I>-kN displ = :=C<2> -mm

Look at matrices and calculate
number of data points:

a:=1..rows(A) d:=1..rows(D)
b:=1..rows(B)
c:=1..rows(C)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mm*2):

cso, "o,
L. =L - displ Aip = Lip =L, - displ
A, 7o PLA, A, Lia B, ~~o,” WP'B,
a
Acsos'L03
L.~ =L . - displ A.~ = L.y =L, - displ
iC_ "o, P C, ic Lo iD,~*o, P D,

Calculate true stress (MPa) and true strain:

loadA loadB loadc
c A T : © B, = = O trueC = :
trueA - trueB, '~ tru =

a AiA b AiB [+ AIC
a b c
Lia LiBb Lic

€ =-In € =-In € ‘=-In
trueA, L, trucBb L, x:rueCc R
1 2 3
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kN :=1000-newton

displ p =D .mm

MPa :=1-10%Pa




Calculate the yield stress (MPa) and corresponding true strain:

S yAcalc, 1f(a £1200,6 yreA - OMPa) OyA: —max( yAca,c NumA (cuueAfoyA,a,O)

yBcalc lf(b <1200,c trueB .O-MPa) ] yB = max(o ) lf(c trueBb=° yB,b,O)
(4] yCcalc 1f(c <1200,0 tmec ,0- MPa) (4] yC = max(o yCcalc) NumC ﬁ(a trueC =0 yc,c,O)
c
% yDealc, lf( <1200,0 m_,eDd,O‘MPa) 6 ,p =max(o yDeal) NumD =if(0' trueD, =0 yD,d,o)
3 =g =g €y =E =
YA TEUCA sy TYBTEMUEB o EYCTEmUEC | oo EyDEE trueD | NumD)

210



Generate a plot of true stress (MPa) versus true strain for 100% 8084 / 0% 1080 at various load
rates:

150

100 ﬁ \\ FRACTURE
; e
2
" 50 S

0
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8
TRUE STRAIN

— A =34-4c (3); Load Rate = 0.01 mm/sec
— B =27-4-¢ (24); Load Rate = 0.10 mm/sec*
— C=234-4-¢(5); Load Rate = 1.00 mm/sec
— D=135-4-d (11); Load Rate = 2.50 mm/sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa)
and true strain at yield:

max (€ ryep) =0.759  max(6 ryea) =110.58 MPa Oya=93.767MPa €5 =0.065
max(€ ryep) =0.761  max(6 ryep) = 106.084 *MPa o yg=105442'MPa &5 =0.071
max (& gryec) =0.763  max(0 ryec) =117.63-MPa Oyc=11763'MPa €, =0073
max(e ep) =0.763  max(0 gep) =123.683°MPa 0y =123.683'MPa & ypy =0.073
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Select specimens to be used: z:=1..8 ORIGIN =1
DIM :=READPRN(COMP1B)

o]
3
4
SPEC = 115 Loz = (DIM<1>>SPEC( z'n.mm D 0, = (DMQ>)spgc(z.l).mm
16
1 Show initial length (mm): Show initial diameter (mm):
1 (157 ] 1561
o 158 15.61
15.92 15.68
1537 15.73
Lo=| 554 | ™™ Do=| 567 |™®
15.67 15.63
15.37 15.73
| 15.37 | | 15.73 |

Length/Diameter ratio(LDRY): Calculate the initial cross sectional area (mm”2):
L -
0

. ) .
LDR_:= z 1.006 Acso ::E-(D o )2 191.38
D o, 1.012 z 4\ % 191.38
1.015 193.1
0977 A 194.333 )
LDR =) 1992 cs0=| 192854 [ 0
1.003 191.87
0.977 194.333
| 0.977 | | 194333 |

Input maximum true strain (compressive values negative): Input loading head actuator speed (mm/sec):

[-0.75] [0.01]

-0.75 0.01

-0.75 0.01
- 1 —_ 1 mm
Emax 7| (95 Load ryre = 0.10 | sec.

-0.75 0.10

1 1
L 1 4 - 1 -

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.
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Assume true strain, calculate final specimen length (mm):

[ 7.416 ]

L¢i=Lg-e z Strokez:=Lf:-L

z 2 7463
7.52

41.78
=l 7341
7.402
41.78
| 41.78 |

Input test type: Double-Ramp Loading

Q
z

Calculate total machine stroke (mm):Stroke ., :=2-Stroke,
z

Calculate the total time required for test:

Stroke tot,
time

ot T
z L°adratez

[ 1656.769 ]
1667.322
1679.985
, 52.82 _
Ume ot 7| 163,088 | O Hme tor =
165.36
52.82
| 52.82

input data aq. frequency rate (Hz), range: 0-500 Hz:

s ]
5
5
1

Freq gaa = ‘Hz NBR data, :=Freq dataz'ﬁme tot,

50
50
1
1 4

[27.613 ]
27.789
28

0.88
2.733
2.756
0.88

| 0.88

*min

Calculate the machine stroke (mm):

-8.4

Stroke =

-16.8

Stroke ot = -16.3

0.463
0467
0.015
0.046
0.046
0.015

tume ot =

.

NBR gy, =

Select a butfer size which is larger than

the number of data points !!
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-8.284 ]
-8.337

26.41
-8.199
-8.268
26.41
| 2641 |

[-16.568 ]
-16.673

52.82

-16.536
52.82
[ 52.82 |

[0.46 ]

| 0.015 |

| 52.82

‘mm

99

*hr

Calculate approximate number of data points:

8283.845 |
8336.608
8399.924
52.82
8199.424
8268.016
52.82




Data file information:
The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A :=READPRN(ICILRIT7) E :=READPRN(ICILR2T5) Note: Files A-H are only used for
B :=READPRN(ICILRIT8) F:=READPRN(ICILR2T6) \racking purposes. There is no relation
to the specimen position indicator.
C '=READPRN(ICILRIT9) G :=READPRN(ICOLRITI) Analysis slots not used read the default file

D :=READPRN(ICOLRIT1) H :=READPRN(ICOLRITI) |COLR1T1.pm.

Split matrix matrix into two vectors, load (kN) and displ (mm): kN :=1000-newton

load , :=A%'” kN displ o =A% -mm  load g :=E<'” kN displ g :=E<” -mm
load g :=B<'” kN displg :=B”-mm  load g :=F"'” kN displ g :=F~~ -mm
load - :=C~'> kN displ 0 :=C*”mm  load g =G~ kN displ =G~ -mm
load p :=D'” kN displp :=D”mm  load i :=H"'” kN displ gy :=H™” -mm

Look at matrices and calculate
number of data points:

a:=1l..rows(A) e:=1..rows(E)
b :=1.rows(B) f:=1. rows(F)
c=l.rows(C) g:=1..rows(G)
d:=1l.rows(D) h:=1.rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec).

Load limit: max(load) < 100 kN

50

40

LOAD (kN)
w
o

//

[
(=]

10

s 1 2 3 4 5 6 7 8
DISPLACEMENT (mm)
— A=34-4b(2)
—— B=34-4-c(3)
— C=34-4-d(4)

Maximum load (kN) and displacement (mm):

max load 5) =43.82°kN max (displ ) =8.327mm
max (load ) =45.041 kN max(displ g) =8.401 ‘mm
max (load () =45.335 kN max (displ ) =8.451 *mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kN

50

P,

40

30
g /
2 P
10
0
0 1 2 3 4 5 6 7 8
DISPLACEMENT (mm)
— E=27-4-c(15)
— F=27-4-d (16)

Maximum load (kN) and displacement (mm):

max(load ) =43.674 *kN max (displ ) =8.277 'mm
max (load ) =43.722 kN max(displ ) = 8.302-mm

216



Calculate true stress and true strain (assume incompressibility): MPa :=1-10%Pa
Calculate instantaneous length (mm) and cross sectional area (mmA2):
A csol'L 0, L disol A A cso.,'L 0,
L:, =L, - displ Aip = m =L - dis o = =
iA, "0, T WA, iA, Lio B, "o~ WP'B, iB, Lip
a b
A <:so3'L 0, L L disal A A cso 4'L
L.~ =L, - displ A~ = N S - dis =
iC_ "o, P C. iC, Lo iD, " ™o, p D, iD, .
d
. A csos'L 0, ) A csmG'L c
Lig =L, —displg AEg E——— Lig =L, —displg Afg =
e 5 c e L iE f 6 f £ L iF
c f
A cs:;).,'L o, A csoS'L
L:~ =L, - displ A~ = L.y =L - displ Agy =
1Gg 0, PG 1Gg Lig iH, "o, P H iH, L
g h
Calculate true stress (MPa) and true strain:
load load load load
o A O rueB = By O rueC = & c I
trueA trueB. 7 trueC '~ trueD '~
a A . b A iBb c A ic d A iD
c d
Lia, Lip Lic Lip,
€ ueA =-In stmeBb::’m € rueC '=-In € trueD =-In T
a d
0, 0, ¢ o, o,
load load load load
G - Ec G — Ff - Gg - Hh
trueE -~ A u_ueFf.— - GUUCG = y GUUCH =
¢ 1}5e 11:f b4 iG h A iH
g h
L. L: L. L.
€ =-In __iE_e £ =] lFf =21 ng . 'I-Ih
trueE - truef T —— € rueG =-Mn € frueg. -=-1n
¢ L f g L h L
05 06 07 08
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Caicuiate the yield stress (MPa) and corresponding true strain:

CyAcalca = (a 1200,0 e OMPa) O yA :=ma"(°yAcalc) NumA_ :=if °tmeA"° yA 2 0)

—

S yBeale, = 1f b<1200,0 tryep ,0- MPa) S yp :=max(o yBca,c) mB, :'-‘if(a trueB, =0 yB.b,O)

c yCcalcc 1f(c <1200,0 trueC_» ,0- MPa) Oyc= max(c yCcaJc) NumC_:= if(c rueC =6 yC’C’O

S yDealc, 1f(d$ 1200.0 ryep .0 MPa) o= (o yDcalc) NumD  := if(o queD =0 yD,d,O)

o yEc a]Ce = lf(e 1200, trucE ,0- MPa) o yg = max(c yEcalc) NumE_:= if(o trucE =0 yE-€:0
=if{£<1200,0 yyep . 0- MPa) o yr = max(c chalc) NumF, := if(c IrueF. =0 yF - o)

c chalcg = xf( 200,06 trch ,0 MPa) OyG = max(o cha]c) NumGg = if(o WCG:G VG & 0)

S yHealc, 7 u( 1200, irucH, ,0- N[Pa) o yy = max(c yHcalc) NumH, := if(c trueH =0 yi- B o)

€ yA ““€rueA €yB =€ rueB € yC =€ rueC Eyp =E rueD v,

max{ NumA ) max( NumB ) ¢ max( NumC)

£ =E o g€ F::EU'U £ = £ =€
yE lrm'Emax( NumE) y c max{ NumF) yG tru‘:Gmax( NumG) yH mjt:Hmux( NumH)
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Generate a plot of true stress (MPa) versus true strain for load rate 1 (0.01 mm/sec):

120

H
et

TRUE STRESS (MPa)
]
-—“‘

&
o]
\‘

m /

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
TRUE STRAIN

— A=34-4-b(2)

— B=344-c(3)

— C=34-4-d(4)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at
yield:

max (€ e A) =0.756 max(c e, A) =107.533 “MPa Oya=92851"MPa €y =0.067
max (& ep) =0.759  max(0 gyep) = 110.58 "MPa O yp=93.767"MPa &y =0.065
max(s trueC> =0.757 rnax(o mlcC) =110.146 *"MPa oyc= 93.608 *MPa Eyc= 0.063
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Generate a plot of true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

120

o0
(=

TRUE STRESS (MPa)
3

a5
(=]
—e

A

0

0 0.1 02 0.3 04 05 0.6 0.7 0.8
TRUE STRAIN

—— E=274-c(15)

—— F=27-4-d (25)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at
yield:

max(e rcg) =0.761  max(0 ) = 106.084-MPa Oyg =105442°MPa &g =0071
max(e tmeF) =0.755 max(c r:meF) =107.51 'MPa O yr=10498"MPa &g =0.067
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Select specimenstobeused: z:=1.8 ORIGIN =1
DIM := READPRN(COMP1B)

3
6
7 .
' = (DM<!>) D, = (DM®>)seec,, | vmm
SPEC := 1" Loz =\D SPEC,, ;M 0,* (z.1)
12 )
13 Show initial length (mm): Show initial diameter (mm):
1] [ 15.46] [15.69]
15.42 15.74
15.68 15.76
1537 15.73
Lo= ‘mm Dy= *mm
15.27 15.55
15.37 15.57
15.21 15.6
| 1537 | 15.73 ]

Length/Diameter ratio(LDR): Calcuiate the initial cross sectional area (mm"2):

L
(o] . < T . o
ozt 0.985 = — 2 193.346
LDR, : Acso =7 (Doz)
o, 0.98 194.581
0.995 195.075
0.977 194.333
LDR = A= mm?
0:982 189.911
0.987 190.4
0.975 191.134
 0.977 | | 194.333 |
input maximum true strain (compressive valuss negative): Input loading head actuator speed (mm/sec):
[-0.75 ] 1.00 ]
-0.75 1.00
-0.75 1.00
1 I | mm
€ = Load = [—
max " 10,75 rale 12,50 | sec
-0.75 2.50
-0.75 2.50
[ 1] |1

NOTE: A detfault value of 1 with no trailing zeros is used as a place filler for vector locations
which wers not used.
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Assume true strain, calculate final specimen length (mm): Calculats the machine stroke (mm):

€ . o _ p
Le=Lg-e Mz 7303 Stroke_ =L =L -8.157
z 7.284 0 -8.136
7.407 -8.273
41.78 26.41
Lf= ‘mm Stroke = *mm
1213 -8.057
7.26 -8.11
7.185 -8.025
| 41.78 | | 26.41 |
t Double-Ramp Loadi -16314]
. Louble-Ham oadin
Input test type o] ing 16272
Calculate total machine stroke (mm): Swoke ,, = 2-Stroke, -16.547
zZ
52.82
Calculate the total time required for test: Stroke g = 16,114 ‘mm
Stroke o -16.219
ot Load oy, , -16.051
z | 52.82 |
[ 16.314 ] [ 0.272] [0.005 ]
16.272 0.271 0.005
16.547 0.276 0.005
52.82 e - 0.88 i i 0.015 o
ami = 3 e = . e - .
CtT| 6446 071 0.107 Wt 0.002
6.488 0.108 0.002
6.42 0.107 0.002
| 52.82 | | 0.88 | [ 0.015

Input data aq. frequency rate (Hz), range: 0-500 Hz: Calculate approximate number of data points:

[400 ] [ 6525.77 ]
400 6508.886
400 6618.634
1 ' 52.82
Freq garp = 400 ‘Bz NBR data, = Freq gaa z-u‘me tot, NBR (a5 = 2578.228
400 2595.112
400 2568.098
L L] | 52.82

Select a buffer size which is larger than
the number of data points !
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Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
diractory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(ICILR3T4) E := READPRN(ICILR4T3) Note: Files A-H are only used for

trackin ses. There is no relation
B := READPRN(ICILR3TS)  F:= READPRN(ICILRAT4) 4o sgpgléirr‘:\oen position indicator. Analysis

C := READPRN(ICILR3T6) G := READPRN(ICILR4TS) Slots not used read the default file

ICOLR1T1.pm.
D := READPRN(ICOLR1T!) H:= READPRN(ICOLRITI)
Split matrix matrix into two vectors, load (kN) and displ {mm): kN := 1000-newton
load , = A<! kN displ o = A®”mm  load = EV >N displ g *= E%”mm
load g := B<IZ.kN displ g := B<>.mm load g := FFI>.kN displ g = FZ>.mm
load -~ = c<I>.xN displ ¢ = Cc<>.mm load g = G1>.xN displ g := GZ”.mm
load py = D> kN displ py := D<”.mm load gy = B> kN displ i = HZ>.mm

Look at matrices and calculate
number of data points:

a:=l.rows(A) e:=1.rows(E)
b:=1.rows(B) f:=1. rows(F)
c:=1.rows(C) g:=1..rows(G)

d:=1l.rows(D) h:=1.rows(H)
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Generate a plot of load (kKN) versus displacement (mm) for load rate 3 (1.00 mm/sec);

Load limit: max(load) < 100 kN

50

40

w
(=]

N ESSSSS S —"

\V

—
(=]

T~ N

/
|
\
\
\
7\

(=]

0 1 2 3 4 5 6 7 8
DISPLACEMENT (tam)

— A=34-4¢(5)

— B =34-4-1 (6)

— C=34-4-g(7)

Maximum load (kKN) and displacement (mm):

max(load A) =43.527 kN max(displ A) =8.252°mm
max(load g) = 24.768-kN max (displ ) =8.178 *mm
max(load ) =37.03-kN max(displ ) =8.327 mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 4 (2.5 mm/sec);

Load limit: max(load) < 100 kN

30

[
(=]

LN LT
I

LOAD (kN)
7y

—
o

/
/ N

i |

0

0 1 2 3 4 5 6 7 8
DISPLACEMENT (mm)

— E=34-4-d(11)

— F=34-4-¢(12)

— G=34-4-£(13)

Maximum load (kN) and displacement (mm):

max (load g) = 25.305 kN max (displ g) =8.153*mm
max(load F) =25.256 *kN max(displ F) =8.178 *mm
max (load ) =25.501 kN max(displ ;) =8.078mm
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Calculate true stress and true strain (assume incompressibility): MPa = 1-10°-Pa

Calculate instantaneous length (mm) and cross sectional area (mm"2):

A cs0, Lo1 A csoz'Lo2
L., =L, -displ Ay = — L.p =L -displ A =
A7 7o Pa, iA, Lia B, ~ ~o, P'B, iB,, Lip
a b
A cso3'Lo3 A cso4'Lo4
L.~ =L, -displ A~ —— L:n =L, -displ A =
iC, = ~o, P C, iC, Lo iD, = *o, P D, iD, Lo
c d
A csos'Lo5 A cso6'Lo6
L.z =L, ~displ Ap 57—m—— L.x=L_ -displ A.p=
lEe 05 P Ee 1Ee LiE lFf 06 P Ff lFf LxF
e f
Acso7'Lo7 A csos'Los
L.~ =L, -displ A =——— L.y =L _. -displ Ay =—mm =
iG, o, p G, 1Gg Lg iH, = ~oq p H, iH, LiHh
g

Calculate true stress (MPa) and true strain:

load Aa load Bb load Cc load Dd
fo] = lo] - c = c =
trueA trueB trueC trueD
a A b Ap ¢ Aic, d AiD,
Lia, Lip Lic, Lip,
€ ruea =7In L € ueB, = -ln L €irueC_ =70 €rueD =10
a 0 b fe) [+ 0 d L 0
1 2 3 4
load Ee load Ff load Gg load Hh
c = c = o o =
trueE ] trueF trueG trueH
ASE i A, AiG “h A
g h
Lig Lie L iG, Lig,
€ rueg =710 8tmeFf: -In L EtmeGg =-ln €true[-lh' -In L
05 Og 0, Og
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Calculate the yield stress (MPa) and corresponding true strain:

S yacalc, if(aleOO.c meAa.O«MPa) o A= max(o yAca]C> NumA = if(c iueA =© yA.a,O)
S yBeal, = I <1200,0 me.o-MPa) o B = ma.x(o’ yBcalc) NumB, = if(c rueB, = yB ,b.o‘)
c yCealc_ = f( ¢<1200,0 tmeCc’O'MPa) Sy max(c yCcalc) NumC_ := if(c trueCfc yC'C’O

S yDealc, 1f(d$1200,6 [meDd,O-MPa) oyp = (c yDcalc) NumD, = if(c irueD, = yD,d,0>
o yEcalc, = ﬁ(es 1200,6 (1 1eE ,O~MPa> c yE = max(c yEca1c> NumE, = if(o trueE:G yE.e.O
S yFeal, - (<1200, 1oy -0 MPa) o 5= max(c chalc) NumF, = if(c (e =° yF,f,0>

(g 1200, e - OMPa) 0 (5 ycac) NGy = (% e =0 yG,g,0>
chalc < £1200,0 trueHh'O’MPa) Oy = max(c yHcalc) NumH, := if(c wrueH =C yH’h'O)

£, = E.p =€ € =€ €.~ =E
yA trueA max(NumA) yB trueB max(NumB) yC m]ecm.'xx( NumC) ybD trueD max(NumD)

£ o= € pi=E € ~i=E
yE 7 T rueE s NumE) yE T T rueF L vumE) ¥G T T rueG s NumG) max(NumH)
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Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

/\ N\, FRACTURE

1

/
i
J

L
. .‘3 [ ~— f<
ES
o
a .
ol
%
[43]
'2 50 \ f
=
0 —_—
¢} 0.1 0.2 0.3 04 0.5 0.6 07 0.8
TRUE STRAIN
™ A=34-4¢(5)
— B =234-4-f (6)
— C=3443 (D

List maximum true strain obtained and comesponding stress (MPa), yield stress (MPa) and true strain at yield:

max(€ eq) <0763 max(0 0n) =117.63+MPa Cya=11763MPa €, =0.073
max(€ pyep) <0756 max(0 o) = 118.261°MPa .5 =118261"MPa € 5 =0074
TAX(€ yryec) <0757 max(0 o) =119.417-MPa G yc=119.417-MPa €, =0.067
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Generate a plot of true stress (MPa) versus true strain for load rate 4 (2.50 mm/sec):

TRUE STRESS (MPa),

150
/\\ FRACTURE
00 - \
\%.‘_‘x\
50
[
0 0.1 0.2 0.3 04 0.5 0.6 0.7
TRUE STRAIN
— E=35-4-d(11)
— F=35-4-e(12)
— G=35-4£(13)

0.8

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

./
Max{

'n.'x.

mE)—o.m max (0 o) = 123.683-MPa o g =123.683-MPa
mF-»O 759 ( ek )-122.997-Mpa o 5 =122.997-MPa

’ max’s - . 14961 .
max e mG) 0757 max{S g )—124.261 MPa S G =124.261-MPa
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MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimenstobeused: z:=1.4 ORIGIN := 1
DIM , := READPRN(COMP2B) SPEC 5 =1

Lo, = (DM A¥”)gppe mm D = (DM 4 =7) ., mm

DIM g := READPRN(COMP2B) SPECg:=35

mm Dy = (DMp2?)

= -mm
SPEC ) SPECg

Lo, = (0Mp*?)

DIM (- := READPRN(COMP2B) SPEC =8

mm D = (DM P mm

Lo, = (oM >)SPECC

DIM , = READPRN(COMP2B)  SPECpy = 12

Lo, = (O p*) ppc jmm D = (DM p %) . mom

SPECp SPECp

n
Calculate the initial cross sectional area (mn2): A = Z- (D oz)z
z

183.374

183374

cs0 =\ 1gs782 |
186.023

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(IC2LRITS) Note: Files A-D are only used for

_ tracking purposes. There is no relation
B := READPRN(ICZLR2TS) to the specimen position indicator. Analysis
C := READPRN(IC2LR3TS5) slots not used read the default file

ICOLR1T1.pm.
D := READPRN(IC2LRA4TS)
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Split matrix matrix into two vectors, load (kN) and disp! (mm): kN := 1000-newton

load 5 = AS!> kN displ , = A<>mm  loadp = D'7:kN displ p := D%”:mm

load g = B<!”.kN displ g := B<*>.mm

load ¢~ = <1> kN displ ¢ = Cc<>.mm

Look at matrices and calculate

number of data points:

a:=1..rows(A) d:= 1..rows(D)

b:= 1..rows(B)

¢:=1..rows(C)

nd true strai i ibility):

Calculate true stress a train (assume incompressibility) MPa = 1-105-Pa

Calculate instantaneous length (mm) and cross sectional area (mm"2):

L.s =L, -displ A Fesoy o, Ly =L, -di B ooy o,
. = - dis : = . = ~ displ A T —
A, 770 P A, A Lia B, ~0,” TP'B, iB,, L

a b

. L disal A A cso3'L 0, L A c:so4'L04
ic = - dis iC = iy =L, - displ An =
ICC 03 P CC ICC L iC lDd 04 P Dd lDd L D

c d

Calculate true stress (MPa) and true strain:

load load load

5 i A, 5 B B, s ~ C, . load D,
trueA " a . trueB, T A . trueC_ "~ ", trueD,

2 A b A ¢ Aic, d Aip,
Lia, LiB, Lic Lip

€ i=-1n 14 = -1n £ =-In c € = -1 d

trueA trueB trueC L trueD ="l
a 0, b 0, c 0, d L 0,
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Calculate the yield stress (MPa) and cotresponding true strain:

c yAcalc, = if(a$1200.6 trueAa’O'MPa) c yA = max(c yAcalc NumA_ = i (c trueA:c yA,a,O)
] yBcalcb = if(bsl200,o n'ueBb'o'MPa) c B = max(o yBcalc) NumB, := if(c trueB
c yCcalcc : if(c51200,6 trueCc’o’MPa) ] yo = max(o yCcalc) NumCc = if(o trueCc'c yC'C’O

® yDealc, ™ if(d £1200,6 de,o-MPa) Syp* max(c yDeale) NumD = i (o wrueD =0 yD,d,O)
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Generate a plot of true stress (MPa) versus true strain for 75% 8084 / 25% 1080 at various load rates:

120

A

-]
[=3

144

A

TRUE STRESS (MPa)
o
S

H
o

ZOf
0

0.1

0.2 0.3 04 0.5
TRUE STRAIN

— A =31-5-a(l); Load Rate = 0.01 mmy/sec
" B=31-5-e (5); Load Rate = 0.10 mm/sec
— C=32-5-a(8); Load Rate = 1.00 mm/sec
— D=32-5-e (12); Load Rate = 2.50 mm/sec

0.7 0.8 0.9

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:
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°yA =68.214*MPa EyA =0.071
c B = 80.456*MPa € yB = 0.064
o yC = 94.798 *MPa € yC = 0.071

c yD = 101.388-MPa ¢ yD =0.07



Select specimenstobe used: z:=1..8 ORIGIN := 1
DIM := READPRN(COMP2B)

1
2
3
SPEC := ; Lo, = (oM< >)spsc( LR Do = (DM<2>)SPEC(Z'1)~mm
6 .
7 Show initial length (mm): Show initial diameter (mm):
1] [ 15.15] [ 15.28]
15.09 15.27
14.83 15.22
15.15 15.28
Fo=| jag | ™™ Po=| 508 ™™
14.87 15.29
15.19 15.36
| 15.15 | | 15.28 |

Length/Diameter ratio(LDRY): Calculate the initial cross sectional area (mm”2):

L
LDR, = D°z [0.991] A eso, = ;.(D o z)z [ 183.374]
9, 0.988 183.134
0.974 181.936
0.991 183.374 2
LDR = A= *mm
0.969 183.374
0.973 183.614
0.989 185.299
| 0.991 ] | 183.374 |
Input maximum true strain (compressive values negative): Input loading head actuator speed (mm/sec):
-0.85 | [0.01
-0.85 0.01
-0.85 0.01
1 1 | mm
Fmax 7| _g g5 Loxt rate =1 10 [ sec
-0.85 0.10
-0.85 0.10
L] 1

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which wers not used.
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Assume true strain, calculate final specimen length (mm):

6.45
6.339

6.356
6.492

[ 6.475 ]

41,182
6.33

| 41.182 ]

Input test type: Double-Ramp Loading

Swoke, =L - Ly

z

Calculate total machine stroke (mm):  Stroke ,, = 2'StrolceZ
z

Calculate the total time required for test:

ume o =
Y4

-

ume ot~

Input data aqg. frequency rate (Hz), range: 0-500 Hz:

Freq gata =

Stroke tot,

Load

1734.933 ]

1728.062
1698.287
52.064
169.6
170.287
173.951

| 52.064

(s
5
5
1
50
50

50
_1.

J

rate z

*SE€C

[ 28.916 ]
28.801
28.305
0.868
2.827
2.838
2.899

ume ;o =

| 0.868 |

*min

Calculate the machine stroke (mm):

-8.64
-8.49

Stroke =
-8.48

Stroke o, =

~17.0
~17.3

[ 0.482]
0.48
0.472
0.014
0.047
0.047
0.048
| 0.014 |

ime o =

-8.675 |

26.032

-8.514
-8.698
| 26.032 ]

[-17.349 ]
-17.281
-16.983
52.064
-16.96

| 52.064

1

29
95

Calculate approximate number of data points:

NBR data, = Freq data,’ time tot,

NBR a5 =

Select a buffer size which is larger than
the number of data points {!
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[ 8674.664 |

| 52.064

8640.309
8491.437
52.064
8479.985
8514.34
8697.567




Data file inf tion:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(IC2LRITS) E := READPRN(IC2LR2T5) Note: Files A-H are only used for

tracking purposes. There is no relation

B '= READPRN(IC2LRIT6) F:= READPRN(IC2LR2T4) 4 4o coecimen posttion indicator, Analysis
C = READPRN(IC2LRIT7) G := READPRN(IC2LR2T6) Slots not used read the default file

COLR1T1.pm.
D := READPRN(ICOLR1T1) H:= READPRN(ICOLRITI)
Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton
load 4 = A<I> kN displ p = A< . mm load f; := < >.kN displ g '= E<>.mm
load g = B! 7 kN displ g == B> -mm Joad g = F' kN displ g = FZ>.mm
load ¢~ = c<I> kN disp! ~ = C<>.mm load i := GP>N displ g = G<>.mm
load py = D<!”kN displ py := D<?>.mm load g = B> kN displ g = HZ>.mm

Look at matrices and calculate

number of data points:

a:=1.rows(A) e:=
b:=1.rows(B) f:=
c:=1l.rows(C) g:=

d:=1.rows(D) h:=

..Tows(E)
..rows(F)

..rows(G)
..rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec);

Load limit: max(load) < 100 kN

50
40 v
30 / '
2
3
-
20
10 4
0 /
0 1 2 3 4 5 7 8 9
DISPLACEMENT (mm)
— A=315-a(l)
— B=31-5-b(2)
—— C=31-5-¢c(3)

Maximum load (kN) and displacement (mm):

max (load 4 ) =45.09 kN
ma.x(load B) =44.455 kN
max(load C) =45.139kN

max(displ A) =8.724-mm
max(displ B) =8.675mm
max(’displ C) =8.55"mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kN

50
. //M
//f
30
5 /
<
Q
S /
10 [
0 /
0 1 2 3 4 5 7 8
DISPLACEMENT (mm)
— E=31-5-¢(5)
— F=31-5-f(6)
— G=31-5-g(8)

Maximum load (kN) and displacement (mm):

max(load ) =44.309 kN max(displ ) = 8.5 ‘mm
max(load F) =45.041 kN max(djspl F) =8.575"mm
max(load G) =44.211°kN max(displ G) =8.749 -mm
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Calculate true stress and true strain (assume incompressibility):

Caiculate instantaneous length (mm) and cross sectional area (mm~2):

Acsol’I-o1 Acso,'Lo,
.4 =L, -displ A, = L.p :=L . -displ A = s -
Lia, = Lo, ~disPla, WL, B, " -0, " BP'B, B, Lig,
a
Acso3'I"o3 . A cso4'[‘o
L.~ :=L . -displ A~ o= Lip ==L, -displ Ain =
iC, 04 P C. iC, Lic iD, o, ~ 4P D, iD LiDd
A cso<'Los A csoﬁ'Lo6
L.e :=L . -displ A = = L:p:=L_ -dispt A=
iE, o5 PE, iE, Le iF, = o, p F, iF, L F,
e
A csc7'Lo7 A csos'Lo
L.~ =L . =-displ A.~ = L.y =L, -displ Ay =
iG, = ~0, " PG, G, " g iH, = o, T @RI iH, L,
g
Calculate true stress (MPa) and true strain:
load 5 load Bb load c load D
a [
[e} = o = [ = o] =
trueA . trueB . trueC . trueD
s Aja b A ¢ Aic AiD,
Lia, Lip, Lic, Lip,
ELrueAa =-In En,ueBb2= -In T EtrueC =-In EU‘UCDd =-1n T
0, 0, 0, o,
load load load load
G Ec . Ff p W Gg p oa Hh
trueE _ trueF, = trueG_ "~ rueH, ©
e AE, £OAE g A iG, Al
(L iE, LiF, /LiGg Lig,
€ queg_ =710 L € truefF, = ~ln|— €rueG_"°In € rueyg, =10
e \ 0, f 04 H \ Lo., h r"08
1

239

MPa:= |-10%-Pa




Calculate the yield stress (MPa) and corresponding true strain:
S yacac, if(aSIZOO.c meAa.OMPa) S yp = max(S ) Nu
S yBealc, xf( b<1200, ome,o-Mpa) o g = max(0 ypoyyc) NumB, := if(c rueB. =0 yB.b.O)
= xf( <1200 trueC .0 MPa> Oy max(a yCcalc) Nuch = ir(o’ trueC = yC'c'O)
= |f(d£ 12006 ep, .0 MPa) o yp = max(S o) NumD, = if(c rueD =© yD.d.O>
yEc:ﬂc = xf(e 1200 E .0 MPa) GyE = max(o‘ yEca.\c) NumEe = if(c wrueE =S yE,e.O
S yeeac, xf( 1200.6 e .0 MPa) o g = max(S yp oy ) NumF,:= if(c (e 2y F o)
e, xf< £1200, cmGg,OMPa) oG max(c chalc) NumG, := if(c ueG =GyG,g.O)
(

yHc.alc <h 1200,0 eHh.O-MPa) o] yH = mzn:(o' yHcalc) NumH, :=if( ¢ wrueH =C yH,h,O)

~——

€ = E € =g
Lru‘:An'mx( NumA) yB rueB max{ NumB) yC [mecmax(NumC)

€ =€ € i€ _ 3 =€
yE [mcEmax( NumE) yF [mLFmax( NumF) yG mmcmax( NumG)

240



Generate a plot of true stress (MPa) versus true strain for load rate 1 (0.01 mm/sec):

120

TRUE STRESS (MPa)
o0
o

e
S—

&
N

: /
o /

0 0.1 02 03 04 0.5 0.6 0.7 0.8 0.9
TRUE STRAIN

— A=31-5-a(l)

— B=31-5-b(2)

— C=31-5<¢(3)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(a trueA) =0.858 max(c tmeA) =104.291 -MPa Sya= 68.214*MPa Eya =0.071
max(s trueB) =0.855 rnax(c t.rueB) =103.201°MPa G yB =67.896 *MPa € yB =0.066
max(e lrueC) =0.859 max(o ru eC) = 105.057-MPa OyC=67881°MPa &, =0.066
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Generate a plot of true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

120

/
|

TRUE STRESS (MPa)
3
M

&
M

4

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
TRUE STRAIN

— E=31-5-e(5)

— F=31-5-f(6)

— G=31-5-g()

List maximum true strain obtained and cotresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(£ tmeE) =0.861 max(o trueE) =102.532*MPa c yE = 80.456 *MPa £ yE =0.064

max (€ =0.86 max( o =104.253 -MPa O = 84.366°MPa € - =0.064
trueF trueF, yF yF

mAX(S U'UCG) =0.858 max(o’ UUCG) =101.445MPa c yG =81.06 *MPa € yG =0.068
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Select specimens to be used:
DIM := READPRN(COMP2B)

z:= 1.

8

Calculate the initial cross sectional area (mm"2):

[ 8 )
9
10
1 L, = (o) -mm
SPEC = 1 0, SPEC., 1y
12
13 Show initial length (mm):
(1] [14.89]
15.17
14.84
15.15
Ly= *mm
14.61
14.74
14.69
| 15.15 ]
Length/Diameter ratio(LDR):
Lo . | .
LDR = z 0.968 A = —{D 2
Z D Csoz 4 0
o, 0.987
0.965
0.991
LDR =
0.948
0.958
0.952
| 0.991 ]

Input maximum true strain (compressive values negative):

[-0.85 ]
-0.85
-0.85
1
-0.85
-0.85
-0.85

1

D, = (DIM<*>)spec

ORIGIN := |

z

r

15.38 ]
15.37
15.38
15.28
15.41
15.39
15.43
| 15.28 ]

r

185.782
185.54

185.782
183.374
186.507
186.023
186.991

cso =

Load ¢ :=

-

| 183.374 |

(2.1) TR

Show initial diameter (mm):

[1.00 ]
1.00
1.00
1
2.50
2.50
2.50

| 1

Input loading head actuator speed (mm/sec):

sec

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.
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Assume true strain, calculate final specimen length (mm): Calculate the machine stroke (mm):

€ - ] 3
L¢=Lg-e " 6.364 Stroke, :=Lf -L, -8.526
2 6.484 =t ~ |-8.686
6.343 -8.497
41.182 26.032
L¢= *mm Stroke = *mm
6.245 -8.365
6.3 -8.44
6.279 -8.411
| 41.182 | | 26.032 ]
Input test type: Double-Ramp Loadi -17.052]
ut tes : Double-Ramp Loadin
nput test type p Hoading 17372
Calculate total machine stroke (mm): Stroke g, = 2: Strokez ~16.994
z
. X 52.064
Caiculate the total time required for test: Stroke 4 = 16731 *mm
Stroke tot, -16.88
time = |—
ot, ” I 'Load cate ~16.823
z | 52.064 ]
[ 17.052] [ 0.284] : [ 0.005 |
17.372 0.29 0.005
16.994 0.283 0.005
. 52064 i 0.868 - § 0.014 o
ume = S me = ‘min me = M
0t 6,692 ot 0,112 ot~ 0.002
6.752 0.113 0.002
6.729 0.112 0.002
| 52.064 | | 0.868 | | 0.014 |
Input data aq. frequency rate (Hz), range: 0-500 Hz: Calculate approximate number of data points:
[ 400 ] [ 6820.633 ]
400 6948.892
400 6797.73
1 , 52.064
Fred gaa =1 , 9 ‘Hz NBR gata_ = 18 gata M€ 101, NBR ga1a = 2676.95
400 2700.769
400 2691.608
L1 | 52.064

Select a buffer size which is larger than
the number of data points !!

244



Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(IC2LR3TS5) E := READPRN(IC2LR4T4) Note: Files A-H are only used for

B := READPRN(IC2LR3Té6) F := READPRN(IC2LR4TS)

tracking purposes. There is no relation
to the specimen position indicator. Analysis

C = READPRN(IC2LR3T7) G:= READPRN(IC2LR4T6) Slots not used read the default file
D := READPRN(ICOLRIT1) H:= READPRN(ICOLRITI)

Split matrix matrix into two vectors, ioad (kN) and displ (mm):

load 4 = AT N displ ‘= A<>.mm
load g := B!~ .xN displ g := B<>.mm
load ¢~ = c<'>.xN displ ¢~ = C>.mm
load py := D<!>.kN displ y = D<*>.mm

Look at matrices and calculate
number of data points:

a=1.rows(A) e:=1.rows(E)
b:=1..rows(B) f:=1..rows(F)
c:=1.rows(C) g:=1..rows(G)
d:=1.rows(D) h:=1.rows(H)

ICOLR1T1.pm.

load g := E<! > kN
load g := 17N
load g = G~ .kN

load gy = H' > kN
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kN := 1000-newton

displ g := E<>.mm

displ g := F2>.mm

displ g = G=>.mm

displ f = HZ>.mm



Generate a plot of load (kN) versus displacement (mm) for load rate 3 (1.00 mm/sec);

Load limit: max(load) < 100 kN

50

Vil

) //

\\

/

LOAD (kN)

\
\

10

o .
0 1 2 3 4 5 6 7

8
DISPLACEMENT (mm)
— A=32-5-a(8)
— B=32-5-b(9)
— C=32-5-c(10)

Maximum load (kN) and displacement (mm):

max(load A) =44.455°kN max(displ A) =8.6°mm
max(load B) =43.918 kN max(displ B) =8.749 -mm
max(load ) =45.383 kN max(displ ) = 8.55 ‘mm



Generate a plot of load (KN) versus displacement (mm) for load rate 4 (2.50 mm/sec);

Load limit: max(load) < 100 kN

50

N

40

=

N

LOAD (kN)

\

10

0

0 1 2 3 4 5 6 7 8
DISPLACEMENT (mm)

— E=32-5-d(11)

— F=32-5-e(12)

— G=32-5-f(13)

Maximum load (kN) and displacement (mm):

max (load ) =33.268-kN max displ g) =8.476*mm
max (load ) =45.921 kN max (displ ) =8.526 *mm
max(load G) =44.846 kN max(displ G) =8.501 'mm
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Calculate true stress and true strain (assume incompressibility): MPa := 1.10%-Pa
Calculate instantaneous length (mm) and cross sectional area (mmA2):
Ac:sol'Lol L A cso.‘,'L 0,
L., =L, -displ Ay = q =L -displ A:.p =
lAa o, P Aa an LiA le 0, P Bb le L iBb
a
Acso3'L03 . , A cso4'Lo4
L.~ =L, -displ A~ L.n =L, -displ Ann =
iC, 04 P C, iC, Lo iD, = *o, P D, iD, LiDd
A csos'L 0g A c:sos'L 04
L.z =L, ~displ Ap = — L.z =L -disp! Aip =
iE, "~ " og PE, iE, Lig iF, ™ =04 P'F, iFy Lip
e f
A cso7'I-'o7 A csos'L Og
L.~ =L, -displ An m—m—o—— Ly =L -displ Ay =
iG, " ~o, p Gg 1Gg Lig iH, = ~oq 12 H iH, L H,
g
Calculate true stress (MPa) and true strain:
load 5 load Bb load c load D
a [+
(o] = [e} = (e} = C =
trueAa A iA ﬂ'ueBb A B U'UCCC A ic trueDd A iD
a b c d
Lia, Lip, Lic Lip,
€ rueA =-In € rueB =-In L € e =-In 3 .EtrueD =-In L
a o b ) c 0 d 0
1 2 3 4
load load load load
c = Ee o] Ff c = Gg c = Hh
trueE trueF, '~ trueG_ -
e A, f AR e Ag e Ay
g h
Lie Lir Lic Lig
£ =-In < £ =-ln{— 3 =~In & € =-1 b
wueE trueF, ' trueG trueH, ="M\ T
¢ 05 f O 0, B Og
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Calculate the vield stress (MPa) and corresponding true strain:

o] yAcalc, = if<a$l200,c tmeAa’O‘MPa) S yA* max<0 yAcalc) NumA = if(c wrueA =9 yA,a,O)

S yBealc, - if<b51200,c me,o-MPa) o= max( yBeale) NumBy xf(c rucB, =C yB.b.O)
yCealc, lf(CS 1200,0 LrueCc.o-Mpa> (c yCCajc) NumC_ := 1f<c ueC = yC c,O)

S yDealc, - m(asuoo S treD,*0 MPa> D (o chalC) 11‘(0 trueD,=° yD,d,O)

S vEcale 1f<e51200 S ek -0 MPa) o g max(o yEcalc) NumE, := xf<c rueE O yE+© o)

S yFeac, = I ££1200,0 F -0 MPa) o = (c ymm) NumF, := 1f(c rueE =0 yE+ o)

S yGeale - 1f(g.<_l200,c5 trueGg.o MPa) (o chalc> NumG, := m(o rueG =© VG,g,O>

S yHale, if(ns 1200,6 trueHh,o MPa> S \q max(c yﬁca]c) NumH, = xf(c ek, =0 yH h 0)

EyA TEUueA L umay VB OB um) ©¥C T E el ey YD 09D umpy

EVE TR meE L numEy RN T S £yG T E rueG e NumG) EyH " CuwveH i
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Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

120
100
BEAN
% \ R
g 60
~ 40
20
. u A
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9
TRUE STRAIN
— A=32-5-a(8)
— B=32-5-b(9)
~— C=32-5-c(10)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(€ ren) <0862 max(0 ) = 101.544-MPa Oyp=94798'MPa &, =0.07)
mas (£ ep) =086 max( cp) =100.185-MPa ' ©,p=94716'MPa & p =0073
M (€ oc) <0858 max(6 o) =103.943-MPa Oy =96025-MPa . =0.066
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Generate a plot of true stress (MPa) versus true strain for load rate 4 (2.50 mm/sec):

120 l

A FRACTURE

S

100

//
/ —]
N

(e
o

RUL STRESS (MPa)

o2

o

ot
—~——

~.

&

S —
-
\—\\‘\\

/

N

; _
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
TRUE STRAIN
E=32-5-d(1])
T F=32-3-e(12)
G =32-5-f(13)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max/ s mE\ 0.868 max(c mE) =100.572*MPa o g =100572'MPa & g =0.07

max/e trueF) 0.864 max(c LmeF) =104.907-MPa o] JE = 101.388 *MPa
max! E G\ =0.864 max(c

£ yE = 0.07

uuec) =102.739 *MPa O \G=101.569"MPa & 5 =0.07
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MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimenstobe used: z:=1..4 ORIGIN := 1
DIM 4 := READPRN(COMP3B) ~ SPEC p =2

Lo, = (DM A'”) e ;mm Dy = (DM 2 27) e, e

DIM g := READPRN(COMP3B) SPECg:=6

Lo, = (o >)SPECB~mm Dy, = (DM B<2>)spsc5’mm

DIM (- := READPRN(COMP3B) SPEC = 10

Lo, = (oM™ *)spscmm Do, = (DM ) g mom

DIM p, := READPRN(COMP3B) SPEC py = 13

Lo, = (DM p<'”)gpge jmm D = (P ) g mm

T
Calculate the initial cross sectional area (mm*2): A .o, = ” (D 02)2

181.697
A 184335 |
S0 7 183,374
183.134
ata file i tion:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(IC3LRITS) Note: Files A-D are only used for

a tracking purposes. There is no relation
B := READPRN(IC3LR2T7) to the specimen position indicator. Analysis
C := READPRN(IC3LR3T6) slots not used read the default file

ICOLR1T1.pm.
D := READPRN(IC3LR4T6)
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

load 4 = A7 kN displ 5 := A<>.mm load py := D12 .kN
load B = B<1 >.kN displ B = B<2>_mm
1(Jadc = C<‘l >.kN displ c= C<2>.mm

Look at matrices and calculate
number of data points:
a:=1..rows(A) d:=1..rows(D)
b:=1..rows(B)

c:=1..rows(C)

displ py = D<>.mm

Calculate true stress and true strain (assume incompressibility): MPa := 1-10°-Pa
Calculate instantaneous length (mm) and cross sectional area (mm/2):
A csol'L 0, A csoz'L 0,
L. ==L, -displ Ay =—m8Mm—— L.g =L, - displ Ag =
1Aa o P Aa 1Aa I‘iA lBh 0, P Bb 1Bb LiB
a b
N . A A csos‘l-'o3 L A cso4'Lo4
T - displ i = Lip = - displ Aip =
iC, 0y P C, iC, Lo iD, = *o, P: D, iD, Lo
c d

Caiculate true stress (MPa) and true strain:

load A load B load c
a c

(o) = (¢} : (o) =

trueA trueB trueC

a A lAa b A le < A iC
L iA L iB b L iC

€ =~-1n £ = -In € =-In

lrueAa L 0, trueBb L o, trueCc o,
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load D
c = d
trueD i A D
d
L.
€ =-In lDd
u'ueDd L 04



Calculate the yield stress (MPa) and corresponding true strain:
c yAcalca = if(aSIZOO,c LrueAa’O'MPa> o vA = max(c yAcalc) Nu
© yBealc, = ¥ (“12"0"’ trueB, +OMP a) Oyp = m‘”‘( yBcalc) “H(C rueB = yB 'bs")

S yCee, if(cSIZOO,c {rueC ,0~MPa) Sy (c yCca]C) Numcc = if(o trueC_ O yC+©- 0)

Di
"
-y
a
8
>
Q
>
»
=

 yDeale, = 1f<d<1200 % rueD 0 MPa) yD = Max yDcalC) mD, = if(o trueD, O yD,d,O>

EyA = Eiruea €yB = € rueB

€ yC'
max(NumA ) max(NumB) max(NumC)
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Generate a plot of true stress (MPa) versus true strain for 50% 8084 / 50% 1080 at various load rates:

120

1a Wi
N

-3
<

TRUE STRESS (MPa)
o
=)

&>
(=

20

—,
0 0.2 04 0.6 0.8 1 12
TRUE STRAIN

— A=28-5-b (2); Load Rate = 0.01 mm/sec
— B =28-5-f(6); Load Rate =0.10 mm/sec
— C=29-5-¢(10); Load Rate = 1.00 mm/sec
— D =29-5-f(13); Load Rate = 2.50 mm/sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

“‘f"‘(E trueA) =1012 “‘a"(" trueA) =104.044-MPa Cya =62089'MPa & , =0059
m“(€ n-ueB) =101 ma"(" trueB) =98.384-MPa oyp=74187-MPa e p =0.063
ma.x(e mc) =1.013 max(c mc) =97.772"MPa OS82 MPa e =006
max(e ep) <1017 max( o) = 100-MPa ©yp=93.068MPa &, =0067
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Select specimenstobe used: z:=1..8 ORIGIN = |
DIM := READPRN(COMP3B)

IR
2
3
T L. = (oMe>) . D, = (DIM®>)spec,. . .mm
SPEC := 5 0, SPEC(, ;y'mm 0, = (2.1)
6
7 Show initial length (mm): Show initial diameter (mm):
21 | [ 14.67] [ 15.35 ]
15.15 15.21
14.78 15.28
14.67 1535
Ly= *mm D 0= *mm
14.53 15.29
14.35 15.32
15.58 15.35
| 15.26 | | 15.29

Length/Diameter ratio(LDR): Calculate the initial cross sectional area (mm"2):

LDR, = = %, [0956] A eso, = ;_ (D . 7)2 [ 185.057]
o, 0.996 181.697
0.967 183.374
0.956 185.057 2
LDR = A= *mm
0.95 183.614
0.937 184.335
1.015 185.057
| 0.998 | | 183.614 |
input maximum true strain (compressive values negative): Input loading head actuator speed (mm/sec):
-1.00 ] 1001 ]
-1.00 : 0.01
-1.00 0.01
1 1 | mm
fmax 7|y 0o P2 rae = 10 e
-1.00 0.10
-1.00 0.10
| -1.00 | [0.10 |

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.
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Assume true strain, calculate final specimen length (mm):

5.573
5.437
39.877
5.345
5.279
5.732

5.397 ]

| 5.614 |

input test type: Double-Ramp Loading

Su'okez =L rz -L o

Calculate total machine stroke (mm): Stroke ot T 2~Strokez
z

Calculate the total time required for test:

time =
tot,

ume tol =

Input data aq. frequency rate (Hz), range: 0-500 Hz:

Freq gy

Stroke tor,

1915.325
1868.548
50.414
183.6%94
181.419
196.969

Y
n
;

= ‘Hz

[ 1854.642 ]

| 192.923 |

Load raxez

*Sec

ume tot =

[30.911]
31.922
31.142
0.84
3.062
3.024
3.283

| 3.215 |

*min

z

NBR data, = Freq dataz“ime tot,

Calculate the machine stroke (mm):

Stroke

Stroke tot

ume =

NBR

Select a buffer size which is larger than
the number of data points !!
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[-9.273 ]
-9.577

-9.343

25.207

= *mm
-9.185
-9.071
-9.848

~9.646 |

-18.546 |
-19.153
-18.685
50.414
-18.369
-18.142
-19.697
-19.292 |

[ 0.515]
0.532
0.519
0.014
0.051
0.05
0.055
| 0.054 |

Calculate approximate number of data points:

[ 9273.209 |
9576.626
9342.742
50.414
9184.712
9070.93
9848.438

| 9646.16 |

data =




Data file information;

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(IC3LR1TS5) E := READPRN(IC3LR2T6) Note: Files A-H are only used for

trackin ses. There is no relation
B = READPRN(IC3LRIT6) F = READPRN(ICSLR2TT) sy sgpgud?en Sosition indicator. Analysis

C:= READPRN(IC3LRIT7) G := READPRN(IC3LR2T8) Slots not used read the default file

ICOLR1T1.pm.
D := READPRN(ICOLRIT1) H:= READPRN(IC3LR2TS)
Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton
load p = ASI>N displ p = A<>.mm load  := ESI>kN displ g := E<>.mm ,
load g = B<!” kN displ g := B<>.mm load g = F<!>.xN displ g := FZ>.mm
load ¢~ = c<I> kN displ ¢ = Cc>.mm load g = G<1> kN displ G = G2 .mm
load py = D> kN displ py := D>.mm load g = B> kN displ gy = HZ>.mm

Look at matrices and calculate
number of data points:

a:=1l.rows(A) e:=1.rows(E)
b:=1.rows(B) f:=1. rows(F)
c:=1.rows(C) g:=1.rows(G)
d:=1..rows(D) h:=1.rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec);

Load limit: max(load) < 100 kN

60

m -

YAl
320 74 ///

N I )/

A

0 2 4 6 8 10
DISPLACEMENT (mm)

— A=285-a(l)

— B=28-5-b(2)

— C=28-5-c(3)

Maximum load (KN) and displacement (mm):

max (load 4 ) =50.904 *kN max (displ ») =9.346 *mm
max(load B) =51.93 kN max(displ B) =9.644*mm
max (load ) =50.318 kN max (displ ¢) =9.42*mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kN

Z I
/i

[
o

ﬁ /
m /M
0
0 2 4 6 8 10
DISPLACEMENT (mm)
—— E=28-5-¢(5)
— F=28-5-f(6)
— G=285g(7)
— H=30-5-G (21)

Maximum load (KN) and displacement (mm):

max (load g) =49.976 kN
max (load ) =49.78 kN

max(load G> =50.708 -kN
max (load ) =48.852kN
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mm~2):

MPa:= 1-10%Pa

Acsol'r"o1 Acsoz‘[‘o:
., =L . ~-displ A = L.p =L, -disp! Ap =
L‘Aa 0y Pa, A, Lia L P'B, : L’LBb
a
Acso3'[‘o1 : Acsou"['o4
.~ =L . -displ A~ o= - L:n :=L . -displ An =
Llcc 03 P Cc lCc LiC lDd 04 P Dd 1Dd LiDd
Acs~r:5‘L<). Ac:so("[‘o6
L.r =L, -displ A o= L.p =L -displ Ap =
E, " 705 PE, iE, Lig iFg ™ ~og PF, iFy LiFf
<
A cso.l'Lo_. A csos'L 0g
L.~ =L, -displ An o= Lig =Lg -displ Ay =
iG, 0, b Gg ng LiGg iH, og p B, iH, LiHb
Calculate true stress (MPa) and true strain:
load Aa load Bb load Cc load Dd
G = c = G = c
trueA trueB trueC trueD
2 AjA b A e Aic, ¢ A,
Lia, Li, Lic Lip,
€ leA COID L ‘EU'ueBb:'ln €iuec =70 € e, =710 L
a 0, 0, c 0, d o,
load Ee load E load Gg load Hh
c = z c = G =
E trueF
Tue A iEe e 3 A LFf [rueGg A lG m]eHh A lH
g h
[Li, LiF,) [Lic Lin,
EU’UEE =-1In| erueF = -0 —— EtrueG = -1n T EtrueH = -In L
\ o5 f % R R h Og
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Calculate the yield stress (MPa) and cormresponding true strain:
c yAcalc, = if(aSlZOO.c t“.m,_/,‘a.o'MPa) OyA = max(c yAcalc )

= 1f(b £1200,0 meBb‘O-MPa) o yp = max(G ypoy ) NumB, = if(c rueB, = yB ,b,O)
c yCeale_ 1f(c 1200,0 trueCc'o'MPa) Syc = max( yCcalc) NumC_ := if(c r.rueCc:G yC,c,())
S yDeaie, w(a 1200,0 eDd,O-MPa) 6 yp = max(0 ypoyyc) NumD, = if(c rueD = yD,d,O)

1f(e 1200.c trueE .O-MPa) O pi= ma.x(c yEcalc NumEc = i (o wueE =©

yBcalc

o] yFeale, if(f<1200,6 tmeF .0 MPa) c yE = max(o chalc) NumF, := if(cr trueF =C yF,f,O)
c chach = 1f( £1200,0 eGg'O'MPa) 0 G = max(o chalc) NumGg =if{o trueG:c yG,g.O)

S yhica, = if(hSllO().O' tmeHh.O-MPa) o = max(a ychlc) NumH, := if(c e, = yH,n.o)

€ =€ € =g € =& € =

yA u'lmAm.'::(( NumA) yB ‘meBmax( NumB) yC Lmecm.u( NumC) b D m"eDm:xx( NumD)
E g =t E pi=€ PS> € gyi= € '

yE ‘mCEmu( NumE) yF u.m"Fma.x( NumF) yG uueGm( NumG) y H trueH
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Generate a plot of true stress (MPa) versus true strain for load rate 1 (0.01 mm/sec):

7"" /
]

o
k=4

TRUE STRESS (MPa)
3
p

/\

H
o

20

0 0.2 04 0.6 08 1 12
TRUE STRAIN

— A=28-5-a(l)

~ B=28-5-b(2)

— C=28-5-¢c(3)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(s rue A) =1.014 max(c e A) =99.832-MPa Oya =60483MPa &, =0.063
max(e ) =1012 max( o) =104.044-MPa ©yp =62089-MPa & p =0.059
max (€ ec) <1014 max( o) =99.966-MPa Cyc=6l068-MPa & =006
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Generate a plot of true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

120

TRUE STRESS (MPa)
o (-2

o o
e

f \
0 0.2 04 0.6 0.8 1 1.2
TRUE STRAIN

H
o

]
=]
[ ———

— E=28-5-¢(5)
— F=28-5-£(6)
— G=285g(7
— H=305-g(21)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

m( trueE) =1.007 max(c trueE) =99.44°-MPa c yE = 74.038 *MPa e JE =0.062
ma (e mF) =101 max(o, ¢F) =98.384-MPa Cp=74.187"MPa & p=0063
max & trueG/ =1.008 (" xmeG) 100.367"MPa C\G=T4271'MPa € =0.06]
max (& o) <1013 max(o er1) =97.047-MPa O y=69.146°MPa &y =0.067



Select specimens to be used:

DIM := READPRN(COMP3B)

SPEC = L,
12 z

= (DM >)spec

[14.23]
14.88
14.87
14.67
0 11528
15.38
15.19

| 14.67 |

Length/Diameter ratio(LDR):

Lo

z

LDR_:=
YA

¢}
z

LDR =

Input maximum true strain (compressive vaiues negative):

[0.929]
0.973
0.973
0.956
1.003
1.007
0.99

| 0.956 |

-1.00 ]
-1.00
-1.00
1
-1.00
-1.00
-1.00

1

z:= 1.8

Show initial length (mm):

‘mm

Cailcuiate the initial cross sectional area (mm*2):

2yymm Dy o= (DIM<*>)spec

ORIGIN = ]

z

(z,

n-mm

Show initial diameter (mm):

[ 15.31]
15.29
15.28
15.35
0 | 1524
15.27
15.34
| 15.35 |

[ 184.094
183.614
183.374
185.057
182.415
183.134
184.816

Load 15 =

185.057 |

[1.00]
1.00
1.00
1
2.50
2.50
2.50

L1

Input loading head actuator speed (mm/sec):

sec

NOTE: A default value of 1 with no trailing zeros i$ used as a place filler for vector locations
which were not used.

265



Assume true strain, calculate final specimen length (mmj. Calculate the machine stroke (mm):

Loslge ™2  [525]  swoke =L L, -8.995 |
ek 5.474 2 ~9.406
5.47 -9.4
L= 39877) ' Stroke = 25207
5.621 -9.659
5.658 -9.722
5.588 -9.602
| 39.877 [ 25.207 |
, [-17.99 ]
input test type: Double-Ramp Loading 18812
Calculate total machine stroke {mm): Stroke tot, i= 2-Stroke,, -18.799
Calculate the total time required for test: Stroke (5, = _51:;11: *mm
Stroke tot, -19.444
U ot ™ | Toad e -19.204
z | 50.414
[17.99 ] (03 ] [ 0.005]
18.812 0314 0.005
18.799 0313 0.005
_ 50.414 _ 084 | . 0.014
uime o = 7727 *Sec time ¢, = 0.129 *min time ¢ = 0.002 *hr
7.778 0.13 0.002
7.682 0.128 0.002
| 50.414 | | 0.84 | | 0.014 ]

input data aq. frequency rate (Hz), range: 0-500 Hz: Calculate approximate number of data points:

(400 ] [ 7196.06 ]
400 7524.763
400 7519.706
1 . 50.414
Freq g1 = 400 ‘Hz NBR data, = Freq dataz'“me tot, NBR g1, = 3090.817
400 3111.045
400 3072.612
1) | 50414 |

Select a butfer size which is larger than
the number of data points !!
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Data file information;

The data file was created on the directory: D:X\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(IC3LR3T4) E = READPRN(IC3LR4TS) Note: Files A-H are only used for

trackin ses. There is no relation
B := READPRN(IC3LR3TS)  F := READPRN(IC3LR4TG6) to the sgpguar;oen position indicator. Analysis

C := READPRN(IC3LR3T6) G := READPRN(IC3LR4T7) s(':%ti notT used read the default file
ICOLR1T1.pm.
D := READPRN(ICOLRIT1) H:= READPRN(ICOLRIT1) P

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

load p = A<I? kN displ p = A<®”.mm load g := E<I>.xN displ g := E<>.mm
load g := B! kN displ g := B<>.mm load = F<'>kN displ  := F<>.mm
load ¢ = cI> N displ ¢ = c<>.mm load = G kN displ g = GZ”.mm
load y = D! kN displp = D%”-mm  load = H' kN displ gy = H?> mm

Look at matrices and calculate
number of data points:

l1..rows(A) e:=1..rows(E)

n
W

b:=1.rows(B) f:=1.rows(F)

o
W

1.rows(C) g:=1.rows(Q)
I.rows(D) h:=1.rows(H)

o
W
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Generate a plot of load (kN) versus displacement (mm) for load rate 3 (1.00 mm/sec);

Load limit: max(load) < 100 kN

50

40

30 7

LOAD (kN)

20 =
I
10 /

0 1 /
0 2 4 6 8 10
DISPLACEMENT (mm)
— A=29-5-a(8)
— B=29-5-b(9)
— C=29-5-¢c(10)

Maximum load (kN) and displacement (mm):

max(load o) =44.944 kN max(displ 5 ) =9.047 mm
max(load g) =47.386 kN max(displ g) =9.47 mm
max(load ) =49.145kN max(displ ) =9.47 *mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 4 (2.50 mm/sec);

Load limit: max(load) < 100 kN

60

50

FN
o

LOAD (kN)
w
(=]

\

10

0 T2 4 6
DISPLACEMENT (mm)

— E=29-5-¢ (12)

— F=29-5-f(13)

— G=29-5-g(13)

Maximum load (kN) and displacement (mm):

max(load E) =44.797 kN max(displ E) =9.743°mm
max (load ) = 50.415 kN max(displ ) =9.818 *mm
max (load G5) =46.849 kN max(displ ;) = 9.669mm
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Calculate true stress and true strain (assume incompressibility): MPa = 1-10°-Pa
Calculate instantaneous length (mm) and cross sectional area (mm~2):
Acsol'Lol Acsoz'[-'oﬁ
R - displ A = L.g =L, - displ Ag =
LlAu LOI 1P Aa lAa LiA 1'Bb 02 P Bb LBb Lle
a
Acso3'L03 : Acsoﬂ‘o4
i~ IS - displ A~ om— L:n =L, -disp! An =
Lic = Lo, ~disPic T TG iD, Lo, ~displp_ iD, Lo,
Acsos'Lo5 A csoé'Lo(7
.~ =L - displ Ap = L.z =L, -displ A.p =
Lig =Lo ~displg BT iF, = Lo, ~dsplg, iF, ST F,
<
A cso7'L 0, A c508‘L 0g
L.~ =L, -displ A 2— Ly =L, -displ Ay =
iG, 0, p Gg ng Lo iH, = *~o, P B, iH, LiHh
8
Calculate true stress (MPa) and true strain:
load Aa load Bb load Cc load Dd
fel = g = (o] (o}
LrueAa A rrue:Bb A g trueC A trueDd A iDd
a b
Lia Lip, Lic, Lip,
€ lruea 710 errueBb =-ln L € uec = 7In €rueD, =710
a 0, 0, c 0, d o,
load load load load
. i E, i F, s Gg 5 _ H,
trueE trueF, "~ rueG tueH, "~
AE fOAE, Aig “h A
g h
L iE_ Lip ( L G, L H
ErrueEe =-ln| EuueFf"z In| — Etmer =-In T gtrueHh in T
o/ 0 8 \ 0, | "0/
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Calculate the yield stress (MPa) and corresponding true strain:

c yAcale, = if(aSI?.O0.0' trueAa'O'Mpa) c yA max(o' yAcalc) NumA_:= if(c LrueA:c yA'a'O)
S yBealc, if<b51200‘c tmeBb.o-Mpa) o g = ma.x(c ychc) NumB, = if(c rueB, = yB .b.O)
S yeale if(cs 1200,0 mcc.ompa) o= max(c ycwc) NumC_:= ﬂ(c irueC, =S yc.c.o)
9 yDealc, = if<d51200‘° LrueDd’O'MPa> SyD max(c yDcaJc) NumD ;= if<° Imech yD'd'O)

S yBeac, if(es 1200.0 [meEe.OMPa) o g max(c ygcmc) NumE, := 'xf(o‘ rueE,=° JE-€-0

S yFeate, I ££1200,6 me,o-MPa> o F = max(c ych) NumF, := if(c rueE =C yF,f,O)

S yGeac if(gsl?.O0.0' trueGg'O'MPa> S\G = mzm(c chalc) NumG, = if(c: meG:c yG,g,())
S yeteaie, * if(hs 1200.0 meHh,OMPa) S g max(c yﬁcmc) NumH, := if(c rueH, = yH,h.o>
Eya TR umeA L uma FyBE rueB < NumB) fycEE rUeC x(NumC) €yD 7 FrueD | Numy
Eyg = eE ) E=E T2 S, EyG=E rueG s umGy Eyy=E e Numiy
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Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

120

100

= 80 ﬂ\

£ i

<

Eéo o ——— /
4]

o}

o

-

s

” /

0 1 v,
0 0.2 04 0.6 0.8 1 1.2
TRUE STRAIN
— A=29-5-a(8)
~—— B=28-5-b(9)
— C=28-5-c(10)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(e e A) =1.01 max(c e A) = 88.95-MPa Oyp =85.648°MPa £y =0072
max(s ru cB) =1.012 max(o trueB) =94.066-MPa Oyg= 87.054°MPa Eyp = 0.067
max(€ nec) <1013 max(0 1 oc) =97.772+MPa o ,c=86821'MPa €, =0.066
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Generate a plot of true stress (MPa) versus true strain for load rate 4 (2.50 mm/sec):

120

100
=80 {\
A
g 6 \‘a d,‘/ /}(
(%]

4=
o
P———

m Vi
Pz

0 0.2 04 0.6 0.8 1 1.2
TRUE STRAIN

— E=29-5-e(12)

— F=29-5-f(13)

— G=29-5-g(14)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(e ep) <1015 max( o) =92.802-MPa - 0,p=92802'MPa &g =0.066
max(e o) = 1017 max(0 o) = 100-MPa G ,p=93.068"MPa & g =0.067
max(e eg) = 1012 max(o o) =94.208-MPa C,G=92141'MPa  €,;=0068
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MICHAEL ZIV

THESIS DATA REDUCTION PROGRAM
UNIAXI]AL COMPRESSION TEST
Select specimenstobe used: z:=1..4 ORIGIN = 1
DIM p = READPRN(COMP4) SPEC A=2
Lo, = (DIM A" >)SPEC ,mm Dy = (DIM A<2>)SPEC A m
DIM g := READPRN(COMP4) SPEC g = 6
Lo, = (DIM B >)sp5c5'mm Do, = (DIM B<2>)spsc g
DIM - = READPRN(COMP4) SPEC =9
Lo, = (D]M c” >)sp5cc'mm Dy, = (DIM CQ))SPECC'mm
DIM py = READPRN(COMP4) ~ SPEC = 18
Lo, = (D Mp* >)SPBC o Do = (D ™M D<2>)SPEC p
Calculate the initial cross sectional area (mm*2): A eso, = ;(D 02)2
190.645
PR R 200
€501 190.645
191.625
Data file information:

The data file was created on the directory: D:\\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(IC4LRIT2) Note: Files A-D are only used for

~ tracking purposes. There is no relation
B := READPRN(ICALR2T2) to the specimen position indicator. Analysis
C := READPRN(IC4LR3T2) slots not used read the default file

ICOLR1T1.pm.
D := READPRN(IC4LR4T2)
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

load 5 := A<I> kN displ , =A<?”-mm  loadp = D' > kN displ py := D*”-mm
load g i= B<!>.kN displ g = B<>.mm
load ¢ = C'>.kN displ ¢ = Cc<>.mm

Look at matrices and calculate
number of data points:
a:=1..rows(A) d:=1..rows(D)
b= 1..rows(B)

c:= 1..rows(C)

Calculate true stress and true strain (assume incompressibility): MPa = 1.105-Pa
Calculate instantaneous length (mm) and cross sectional area (mm~2):
Acsol'Lo1 Acsoz'Loz
L., =L _ -displ Ay =—m————— Lig =L, - displ Aqp =
iA, = =0, T HRA, 1A, Lia B, ~0,” TP'B, iB,, Lip
a b
A<:.s031"03 Acso4'Lo4
L.~ =L, -displ A~ o= — L:n =L, - displ Ap =
iC, = ~o, Plc, iC, Lo iD= %o, " WPID iD, Lo
c d
Calcuiate true stress (MPa) and true strain:
load load load 1
P - Aa . - Bb c _ Cc p - 0ad Dd
trueAa A iA trueBb A B trueCc A ic [ruch : A D
a b c d
Lia, Lip, Lic, Lip,
EtrueAa =-1n s‘meBb:-ln EtrueCc = -1n EtrueDd =-In
1 02 03 04
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Calculate the yield stress (MPa) and cotresponding true strain:

c yBcaJcb = if(b51200,c tmeBb'O'MPa) c yB = max(c yBcalc) Nume = if(c wueB, ™S yB ,b,O)

if(c51200,c tmeCC.O-MPa) Sy max(c yCcalc) NumC_:= if(c trueC_ = yC+C+0

© yCealc_*
c yDealc, = if<d51200,0 trueDd'O'MPa) Oyp = max(c yDcalc) NumD, := i (o trueD ™ yD,d,O)

Eyp =E Eyp =€ By i=E €y = E
YA TR s uma)y B TUeB L NumBy  YC T MUeC o numey YD tUeD vy
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Generate a plot of true stress (MPa) versus true strain for 25% 8084 / 75% 1080 at various load rates:

100

” Vi

=
=60 . >
E * T ‘///
20 ] /
0 ) _/ .
0 0.2 04 0.6 0.8 1 1.2 14
TRUE STRAIN

— A= 14-3-b (2); Load Rate = 0.01 mm/sec
— B =14-3-f(6); Load Rate = 0.10 mm/sec
== C=16-3-b (9); Load Rate = 1.00 mm/sec
— D= 17-3-d (18); Load Rate = 2.50 mm/sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(€ pep) <1216 max(0 ., ) =85.539MPa O, =2246'MPa &, =0059
max(€ o) =122 max(o yep) =82.846-MPa o,p=30551"MPa & p=0068
max(e poc) <1211 max(0 ) =89.4°MPa C,c=49.394'MPa & =0066
MaX(€ ryep) <1212 max(0 ) =94.333 -MPa O p=5871-MPa &, =0069
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Select specimens to be used:  z:=]..8 ORIGIN = ]

DIM = READPRN(COMP4)

R
2
3
1 <1> - <>
SPEC := s Loz = (DIM )SPEC(ZJ)-mm D oz = (D]M )SPEC(Z‘”-mm
6
7 Show initial length (mm): Show initial diameter (mm):
1] [15.66 | [15.6 |
15.12 15.58
16.18 15.6
15.66 15.6
Ly= *mm Dy= ‘mm
15.87 15.62
15.4 15.6
15.75 15.6
| 15.66 | | 15.6 |
Length/Diameter ratio(LDR): Calculate the initial cross sectional area (mm”"2):
L0 , - b4 - -
LDR = —2 1.004 A == (D . \? 191.134
1" D cso, "7 |70
o, 0.97 190.645
1.037 191.134
1.004 191.134 2
LDR = cso = *mm
1.016 191.625
0.987 191.134
1.01 191.134
| 1.004 ) | 191.134 ]

Input maximum true strain (compressive values negative):

[-1.20 ]
-1.20
-1.20
]
-1.20
-1.20
-1.20

1

J

Input loading head actuator speed (mm/sec):

Load ;¢ =

[0.01 ]
0.01
0.01
1
0.10
0.10
0.10

[ 1]

sec

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.
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Assume true strain, calculate final specimen length (mm):

Tl a8

4117 ]
4.554
4.873
42.568 |

4.638
4.744

| 42.568 |

Input test type: Double-Ramp Loading

Strokez =L fz -L o

z

Calculate total machine stroke (mm): Stroke tot = 2-Strokez
Z

Calculate the total time required for test:

time ., =
wot,

ume ot=

Stroke tot,

Load
rate,

[ 2188.66 ]

2113.189
2261.336
53.817
221.801
215.232

220.124

| 53.817

*SecC

ume tot =

[ 36.478 ]
35.22
37.689
0.897
3.697
3.587
3.669

| 0.897 |

Input data aq. frequency rate (Hz), range: 0-500 Hz:

Freq gars =

5
5
5
1
50

50
- 1 -

NBR data, Freg data,’ time

Calculate

Stroke =

Stroke oL =

ume ot =

the machine stroke (mm):

[-10.943 ]
-10.566
-11.307
26.908 |
-11.09
-10.762
-11.006
| 26.908 |

[-21.887 ]
-21.132
-22.613
53817 |
-22.18
-21.523
-22.012
| 53.817 ]

0.608 ]
0.587
0.628
0.015
0.062
0.06
0.061
0.015 |

*hr

Caiculate approximate number of data points:

ot
2

NBR g1, =

Select a buffer size which is larger than
the number of data points !!
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10565.944
11306.678
53.817
11090.048
10761.609
11006.191
| 53.817




Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(IC4LRIT1) E:= READPRN(IC4LR2T1) Note: Files A-H are only used for

- o tracking purposes. There is no relation
B = READPRN(ICALRIT2)  F:= READPRN(IC4LR2T2) to the specimen position indicator. Analysis
C:= READPRN(ICALRIT3) G := READPRN(IC4LR2T3) slotls- 301 used read the default file
ICOLR1T1.pm.
D := READPRN(ICOLRIT1) H:= READPRN(ICOLRIT1) P

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

load 4 = ASI>xN displ p := A<Z>.mm load g := E<>.kN _ displg := E<>.mm
load g := B<!> kN displ g := B<>.mm load g := F'>.xN displ g := FZ>.mm
load ¢~ = Cc<'>.kN displ = C2>.mm load g = G kN displ g = G2>.mm
load 1y := D! > kN disply :=D*”.mm  load g=H">xN displ g = H?>.mm

Look at matrices and calculate
number of data points:

a=1.rows(A) e:=1.rows(E)
b:=1.rows(B) f:=1. rows(F)
c:=1.rows(C) g:=1.rows(G)
d:=1.rows(D) h:=1.rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec);

Load limit: max(load) < 100 kN

60

5 |
il

H
(=]

LOAD (kN)
g
&

10 /

\
INA S

0 2 4 6 8 1
DISPLACEMENT (mm)

— A=14-3-a(l)

— B=14-3-b(2)

—— C=14-3-c(3)

Maximum load (kN) and displacement (mm):

max(load ») =50.024 *kN max (displ 5 ) =10.986mm
max(load B) =54.714°kN max(displ B) = 10.638 -mm
max (load ) =55.447-kN max (displ ¢) = 11.384*mm

281



Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kKN

60

S

50

LOAD (kN)
w
o

\
\

N 3
eSS

10 ———
0 2 4 6 8 10 12
DISPLACEMENT (mm)
— E=143-¢(5)
— F=143-£(6)
— G=143-g(7)

Maximum load (kN) and displacement (mm):

max (load g) =53.835 kN max (displ g) = 11.185mm
max (load ) =53.444 kN max displ ) = 10.862mm
max (load i) =59.99 kN max displ ) = 11.21-mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mm*2):

LI.A :=Lo 'dJSplA
a 1 a

L.~ =L _. -displ
iC, 0, Pcc

Lig =L, -displg
e 5 e

L.~ =L _ -displ
1Gg 0, pGg

loadA
a
s _
trueA
a A A,
Lia
- _1 a
€truea =710
a 01
load E
G - [
e
L.
£ =-] Fe
trueg T iR
[ 05

A

A =
iA
2 L

-L
Cso, ~o0,

AIC VR e————— LlDd = L04‘diSp1Dd

cso. 0
Ap =——= Lip =L, - disp!
iE iF, = “ o p F,

L

CSC)7 07

8

load Bb load cc
c c
mJeBb A B trueC A i
b c
Lip, Lic,
UUeBb =-1ln L Emec =-1n L £
02 € 03
load F, load Gg
trueF, = S rueG c
f g
LiE, LiG,
trueFf =-ln| —— EtrueG =-In I3
06 g 07
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L. =L, -displ
iB,” ~o, P'B,

Ly =L, -displ
H, " ~oq P'H,

MPa = 1-10%-Pa

A L

cso, ’ o,

Ajg =
b LLBb




Calculate the yield stress (MPa) and corresponding true strain:

S yAclc, = if(a51200.6 U Aa.O-MPa)

= if(b$1200,6 O-MPa)

c *
yBcalcb trueB,

© yCeale, = if(c$600 'S trec 10 MPa) Sy

S yDealc 1f(d 1200,6 O-MPa)
d

trueD '

0 MPa)

yD

trueE * yE

= if{ £<1200,0

trueF, ,0- MPa)

c yGealc, = 1f< g<600,6 rueG, ,0- MPa)
S yHcalc, = (h51200,6 trueHh,o-MPa)

E)/A:Em.xeA yB~E trueB

max(NumA)

€ yE = € trueE eyF:zstrueF

max( NumE)

GyA:=

Cyg =

max(NumB)

max( NumF)

max(© ypcar)
m‘”‘(" yBcalc)
(° yoeue)
(

= max GyDcalc) Nude: i

= max (c yEcaic

13 =€
yC tmecnmx( NumC)

€vG = EirueG

max(NumG)
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Generate a piot of true stress (MPa) versus true strain for load rate 1 (0.01 mm/sec):

80

(=
(=]

TRUE STRESS (MPa)
H
(<)

’ /

0 0.2 0.4 0.6 0.8 1 1.2 14
TRUE STRAIN

— A=143-a(l)

— B=143-b(2)

— C=14-3-c(3)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

Max(€ ryep) = 1209 max(0 0n) =80.979°MPa Oyp=2243-MPa &, =0058
max(€ ) =1.216  max(0 op) =85.539MPa ©,p=2246"MPa €5 =0.059
max (€ ryec) <1216 max(0 o) =86.435-MPa Oy,c=2063'MPa £, =0063
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Generate a plot of true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

100

80

[
o

TRUE STRESS (MPa)
>
=)

L=
/

0 iy

0 0.2 04 0.6 0.8 1 1.2 14
TRUE STRAIN

— E=143-e(5)

— F=14-31(6)

— G=143-g(M

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(e ep) =122 max(0 y p) =83.298-MPa oyg=28342'MPa & p =0.068

max (€ =1.222 max({G =82.846°MPa 0 = =30.551-MPa € = =0.068
trueF, trueF, yF yF

max(e u'ueG) =1.244 max(o‘ trueG) =90.472 *MPa c YG =31.369-MPa € /G =0.065
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Select specimenstobe used: z:=1.8 ORIGIN = 1
DIM := READPRN(COMP4)

10
SPEC = i: Lo, = (oM<>)seec, ,ymm D, = (DM<®>)seec, | -mm
18
19 Show initial length (mm): Show initial diameter (mm):
20 | [ 15.92] [15.59]
15.47 15.58
15.45 15.63
L,= 15.5 o D, = 15.62 omm
15.51 156
16.03 15.62
153 15.6
| 16.08 | | 15.62
Length/Diameter ratio(LDR): Calculate the initial cross sectional area (mm"2):
L o, - ] T N - ;
LDR, := = 1.021 A cs0, = Z(D Ol) 190.89
o, 0.993 190.645
0.988 191.87
0.992 191.625 2
LDR = A= *mm
0.994 191.134
1.026 191.625
0.981 191.134
| 1.029 ] | 191.625 |
Input maximurmn true strain (compressive values negative): Input loading head actuator speed (mm/sec):
[-1.20] [1.00 ]
-1.20 1.00
-1.20 1.00
-1.20 1.00 | mm
fmax 7)) 9 Lo rate =1 5 50 [ sec
-1.20 2.50
-1.20 2.50
-1.20 | 2.50 |

NOTE: A default vaiue of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.
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Assume true strain, calculate final specimen length (mm): Calculate the machine stroke (mm):

L¢ =L,y .ce " [ 4-7951 Strokel =L¢ - Lo [~11.125]
z z 4.659 z 2 -10.811
4.653 -10.797
4.669 -10.831
Le=| 4o | ™™ Swoke =\ jos3s| ™
4828 -11.202
4.608 -10.692
[ 4.843 ] -11.237 |
_ [-22.25 ]
Input test type: Double-Ramp Loading 21621
Calculate total machine stroke (mm): Stroke tot, i= 2-Stroke,, -21.593
Calculate the total time required for test: Stroke ,, = :;i:: -mm
Stroke ot -22.404
time tot, = m: -21.383
z -22.474 |
[22.25 | [0.371] [ 0.006 ]
21.621 0.36 0.006
21.593 0.36 0.006
, 21.663 _ 0361 . , 0.006
ume 4, = 8671 *Sec time 4o, = 0.145 *min time ., = 0,002 *hr
8.961 0.149 0.002
8.553 0.143 0.002
| 8.989 | | 0.15 | | 0.002
Input data aq. frequency rate (Hz), range: 0-500 Hz: Calculate approximate number of data points:
[400 ] [ 8899.991 ]
400 8648.42
400 8637.24
4
Freq yara = 522 ‘Hz NBR data, Freq data’ time tot, NBR ga1a = i;:j;:?
500 4480.743
500 4276.691
1500 | | 4494.719 |

Select a buffer size which is larger than
the number of data points !!
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Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:winmcad (on home pc), file must have a (.pm) extension

A = READPRN(IC4LR3T1) E := READPRN(IC4LR4T1) Note: Files A-H are only used for

trackin: ses. There is no relation
B = READPRN(ICALR3T2) F := READPRN(ICALRAT2) oy sgp';‘g,';"en Sosition Indicator. Analysis

C:= READPRN(IC4LR3T3) G := READPRN(ICALR4T3) slots not used read the default file

ICOLR1T1.pm.
D := READPRN(IC4LR3T4) H := READPRN(IC4LR4T4)
Split matrix matrix into two vectors, load (kN) and disp! (mm): kN := 1000-newton
load = A< kN displ p = A<>.mm load g := E<!>kN displ g = E<>.mm
load g := B<!>.kN displ g := B<>.mm load g = FK1>.xN displ g = FZ>.mm
load ~ = c'> kN displ ¢~ := c2>.mm load = GI> kN displ g = G=”.mm
load py := D<I”.kN displ y = D<*.mm load g = H'> kN displ g = HZ>.mm
Look at matrices and calculate
number of data points:
a:=1.rows(A) e:=1.rows(E)
b:=1.rows(B) f:=1. rows(F)
c:=1.rows(C) g:= 1. rows(G)
d:=1.rows(D) h:=1.rows(H)
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Generate a plot of load (kN) versus displacement (mm) for load rate 3 (1.00 mm/sec);

Load limit: max(load) < 100 kN

80
60
g
240
<
=
20
0
0 2 4 6
DISPLACEMENT (mm)
— A=16-3-2(8)
— B=16-3-b(9)
~— C=16-3-c(10)
— D=17-3-b (16)

Maximum load (kN) and displacement (mm):

max(load ) 45.872 kN max(displ ) =10.862°mm
max(load B) =56.913 kN max )

max(load C) =65.804 kN max
max( max

load py) =55.984 kN
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Generate a plot of load (kN) versus displacement (mm) for load rate 4 (2.50 mm/sec);

Load limit: max(load) < 100 kN

80
60
)
240
S 7
20 >
w/
0
0 2 4 6 8 10
DISPLACEMENT (mm)
— E=17-3-c(17)
— F=17-3-d (18)
— G=17-3-e(19)
—— H=17-3-f (20)

Maximum load (kN) and displacement (mm):

max (load ) =60.918 kN max(displ g) = 10.887 -mm
max load ) =60.43 *kN max (displ ) = 11.26 mm

max(load G =58.525kN max(displ G) =10.763 *mm
max(load H) 57.206 °kN max(dlspl H) =11.309*mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mm"2):

cso, 1
L., =L _ -displ A:p =
lAa 0l p Aa lAa LIA
a
A cso3'l"o3
L.~ =L_, ~displ A~ o=
1Cc 04 p Cc iC Lic
c
A csos'['o5
L.y =L, -displ Ap o=
1‘Ee 05 P Ee lEe L iE
<]
) A cso.,'I‘o7
LIG = L07- dlSplG AXG = L
g 8 g ’Gg

Calculate true stress (MPa) and true strain:

load load B
a b
[o} = (o3 12—
tmeAa A A U'UeBb A B
a b
Lia Lig
€ =-In 2 e =-1n b
m}eAa L o trUeBb L 0
1 2
load g load E
p _ e G . f
trueE A trueFf A F
e f
Lig_ LiF,
€ rueg, =710 € rueE, =10
¢ O f O

MPa := 1-10°-Pa
A csoz’L 0,
L.p =L -disp! Ap =
iB," "o, P'B, iB,, LiBb
A c:so4'Lo4
L.n =L, -displ A.n =
iD, o, P D, iD, Lo
d
A csoé'L 06
L:.r =L, -displ A=
iFy ™ ~og P'F; iF Lip
f
A csog'Lo8
L.y =L, -displ A gy =
iH, " " oq P'H, iHy Lig
h
loadc load D
c d
[0 = (o}
trueC trueD
¢ Aic, d A
Lic, Lip,
EU‘UCC =-ln L EU‘UCD -ln L
c 0 d 0
3 4
load load
c rueG Gg c H = I-Ih
e tru '
AiG “h Ap
EneGg '='1n EtrueHh 'ln
0, Og
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Calculate the yield stress (MPa) and corresponding true strain:

S yacale, ™ if(as 1200,6 -, Aa.O-MPa)
© yBealc, = if(bSIZOO.G u'ueBb‘O'MPa)

S yCeale, = 1f(cs600 .G trueCc’o'MPa)

® yDealc, = ﬁ(d <1200, ode.o-Mpa)

© yEele, u‘(e £1200,6 g ,O-MPa)

G yFeale, ™ 1f( £1200,6 trueF, ,0- MPa)

c chalcg 1f(g <600,0 meGg,O-MPa)
S yHicae, = if(hsl200,o tmeHh,o-rvipa)

€., =¢
YA TIUEA  (NumA)

€ i€ E =€
yE trueme(Nu mE) yF trueF

EyB =€ trueB

CyA ™ “’a"( yAcalc

max( NumF)

max(NumB)

eyG:etrueG
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Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

100

80

A

20 béf

H
o

TRUE STRESS (MPa)
3
‘:n.._‘_%m
——

0 51k
0.2 0.4 0.6 0.8 1 12 14
TRUE STRAIN
— A=16-3-a(8)
™ B=16-3-b(9)
— C=16-3-c(10)
— D=17-3-b(16)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(e ea) = L1147 max(0 ) =76.723MPa O ya =S0.47MPa &, =0.064
max(e ) = 1211 max(0 o) =89.4MPa G,p=49.394'MPa & p =0.066
max(a LrueC) =1.258 max(c trueC) =97.545 -MPa G = 49.004*MPa € = 0.063
max(a trueD) =1.217 max(c trueD) =87.116 *‘MPa c yD =50.818*MPa € yD =0.066

294



Generate a plot of true stress (MPa) versus true strain for load rate 4 (2.50 mm/sec):

100

80

o
(=]
=

TRUE STRESS (MPa)
N
=]

20

0 0.2 0.4 0.6 0.8 1 1.2 14
TRUE STRAIN

— E=17-3<(17)

— F=17-3-d (18)

— G=17-3-¢(19)

— H=17-3-£(20)

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(e ep) =121 max(o y p) =95.36-MPa O g =60246"MPa & g =0.063

max(€ =1212 max(o =94.333-MPa O, =58.77-MPa € g =0.069
trueF trueF, yF yF

max(e oq) =1215  max(o i) =91305-MPa O \G=56.638-MPa & ;=0.067

max(e o) = 1215 max(o gpy) =89.032-MPa Oyy=53814-MPa & g =0064
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MICHAEL ZIV

THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST
Select specimens to be used: z:=1..3 ORIGIN := |
DIM 4 := READPRN(COMPS) SPEC 5 :=1
Lo = (DIM A<l>) spEC 4 D 0, = (DIM A<2>)s1>gc A
DM g := READPRN(COMPS) SPEC g :=3
Lo, = (DIM B<l>) spEcp 0 Do, = (DIM B<2>) spcg T
DM ¢ = READPRN(COMPS5) SPEC c =6
Lo, = (DIM C<l>) spECc O D 0, (DIM C<2>)spsc o

T
Calculate the initial cross sectional area (mm”2): A .o, :=z- (D oz)z
. z

194.828
A igo = | 193.346 |mm
193.839

2

Data file information:
The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A =READPRN(IC5LRITI1) Note: Files A-E are only used for

B :=READPRN(IC5LR2T1) tracking pu'rposes. '!'}_wrg is.no relation
to the specimen position indicator.

C :=READPRN(IC5LR3T1) Analysis slots not used read the default file
ICOLR1T1.pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN :=1000-newton

load 5 = A7 kN displ p := A< .mm
load g :=B<'”-kN displ g :=B<*> .mm
load ¢ :=C<'” kN displ ¢ :=C*” -mm

Look at matrices and calculate
number of data points:
a:=1..rows(A)

b:=1..rows(B)

c:=1..rows(C)

Calculate true stress and true strain (assume incompressibility): MPa :=1.10°Pa
Calculate instantaneous length (mm) and cross sectional area (mm/2):
L L - displ A Boso, ™o L L, - displ A Roso, o,

A L= - dis A = n = - dis n =

iA, "o, T TRA iA, Lia iB, " "0,” ®P'B, iB, Lig

a b
_ A cso, ‘L 0,
LIC -=L0 - dlsplc AlC =
c 3 c c L ic

Calculate true stress (MPa) and true strain:

load 5 load g load
o = 2 c = L c = <
u-ueAa An trueBb Ag trucCc A
a b c
Lia LiBb Lic
EtrucAa:z'm schb'=—ln T stmeCc '=-In
o 0, 0,

Calculate the yield stress (MPa) and corresponding true strain:
o yAcalca = if(a51200,o trueAa'o'MPa) O vA :=max(o yAcalc) NumA8 = if(o tmeA:G yA,a,O)
® yBalc, if(bSIZOO,c tnme,o-MPa) S8 :=max(o yBca,c) NumB, := if(o trueB, O yB:b- 0)

S yCealc, :=if(c.<_1200,cn,uecc,0-IVIPa) cyci=max(oycca]c) NumC,_ :=f(owacc=oyc,c,o)

€ =g € =£ € =g
A trueA tru yC trueC
M e max( NumA ) yB CBmax( NumB) max( NumC)
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Generate a plot of true stress (MPa) versus true strain for 0% 8084 / 100% 1080 at various load
rates:

80

TRUE STRESS (MPa)
8

74

/ /
/ /
/ /
Sy /
R
0 0 0.2 04 0.6 0.8 1 1.2 14 1.6

TRUE STRAIN
— A=15-3-a(1); Load Rate = 0.01 mm/sec
— B=15-3¢(3); Load Rate = 0.10 mm/sec
— C=15-3-f(6); Load Rate = 1.00 mm/sec

List maximum true strain obtained and corresponding stress (MPa), the vield stress
could not be defined:

max (€ rep) =1529  max(o e A) =60.495MPa

max (€ ryep) =153 max(0 yep) =63.194*MPa
max (€ jrec) =1506  max(0 ) =73.66"MPa
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Select specimenstobeused:  z:=1..8 ORIGIN := 1
DIM := READPRN(COMPS)

_

1
2
3
SPEC = 2 Lo, = (D! >)svsc(z’ pmm D = (Dm‘z”)sysc(z_ yTm
7
1 Show initial length (mm): Show initial diameter (mm):
1] [ 14.85] [15.75 ]
16.02 15.68
15.83 15.69
L= 15.88 omm D, = 15.7 omm
15.94 15.71
16.49 15.75
14.85 15.75
| 14.85 | | 15.75 ]
Length/Diameter ratio(LDR): Calculate the initial cross sectional area (mm"2):
L Oz . - T 2 . -
LDR := = 0.943 A cso, = 7 (D oz) 194.828
0, 1.022 193.1
1.009 193.346
1.011 193.593 2
LDR = A= ‘mm
1.015 193.839
1.047 194.828
0.943 194.828
| 0.943 | { 194.828 |
Input maximum true strain (compressive values negative): Input loading head actuator speed (mm/sec):
-1.50 ] [0.01 }
-1.50 0.0t
-1.50 0.10
-1.50 0.10 | mm
max 7| 50 Yoo rate = 00 [ sec
-1.50 1.00
1 1
L | 1

NOTE: A default value of 1 with no trailing zeros is used as a place filler for vector locations
which were not used.
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Assume true strain, calculate final specimen length (mm):

| 3.557

3.575
3.532
3.543

3.679
40.366

| 40.366 |

Input test type: Double-Ramp Loading

3313 ] Stroke,=L¢ - Lg

z 2

Calculate total machine stroke (mm): Stroke ,, := 2-Stroke,
z

Calculate the total time required for test:

Stroke tot,

time =
tot,

[ 2307.303 ]
2489.091
245.957
246.734
24.767
25.621
51.033

| 51.033 |

ume o =

Input data aq. frequency rate (Hz), range: 0-500 Hz:

F s
5
50
50
Freq ga1a = 400 -Hz

400

Load rate,

*sec

[ 38.455 ]
41.485
4.099
4.112
0.413
0.427
0.851

time tot =

| 0.851

*min

Calculate the machine stroke (mm):

[-11.537]
-12.445
-12.298
-12.337
Stroke = 'mm
-12.383
-12.811

25516

| 25.516J

[-23.073]
-24.891
-24.596
-24.673
Stroke tot = *mm
-24.767

-25.621

51.033

| 51.033 |

[ 0.641]
0.691
0.068
. 0.069
e t0r=| 0007 | "
0.007
0.014

| 0.014 ]

Calculate approximate number of data points:

NBR data, = Freq dataz"ime tot,

[ 11536.517 ]
12445.455
12297.85
12336.693
9906.644
10248.467
51.033

| 51.033

NBR 15 =

Select a buffer size which is larger than
the number of data points !!
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Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(ICSLRIT1) E:=READPRN(ICSLR3T1) Note: Files A-H are only used for

_ _ tracking purposes. There is no relation
B := READPRN(ICS5LR1IT2) F:= READPRN(ICSLR3T2) to the specimen position indicator. Analysis
C := READPRN(ICSLR2T1) G := READPRN(ICOLRIT1) sloti rgofr used read the default file
ICOLR1T1.pm.
D := READPRN(ICSLR2T2) H:= READPRN(ICOLRIT1) P

Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

load  := ASI>xN displ  := A<”.mm load g := E<1” kN displ g := EZ>.mm
load g := B<'>.kN displ g *= B<>.mm load g := F1>.xN displ g = FZ>.mm
load ¢~ = c<I> kN displ ¢ = CcZ>.mm load G = G<1> kN displ G = G*>.mm
load py = D<!> kN displ y = DZ>.mm load g = B> kN displ p = H>.mm

Look at matrices and calculate
number of data points:

o
W

1..rows(A) e:=1..rows(E)
l.rows(B) f:=1..rows(F)
I.rows(C) g:=1..rows(G)
=1.rows(D) h:=1.rows(H)

o o
[T

Q.
i
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Generate a plot of load (kN) versus displacement (mm) for load rate 1 (0.01 mm/sec);

Load limit: max(load) < 100 kN

50

w |
/]
]

LOAD (kN)
3
\

~——]

. )78

0 e
0 2 4 6 8 10 12 14
DISPLACEMENT (mm)
— A=15-3-a(1)
— B=15-3-b(2)

Maximum load (kN) and displacement (mm):

max (load 5) =53.981 kN max(displ ») =11.633-mm
max(load B) =54.03:kN max(displ B) =12.527'mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 2 (0.10 mm/sec);

Load limit: max(load) < 100 kKN

80

60

LOAD (kN)
H
o

20 /
/

=]
0 =
0 2 4 6 8 10 12 14
DISPLACEMENT (mm)
— C=15-3-c(3)
— D=15-3-e(5)

Maximum load (kN) and displacement (mm):

max(load C) =56.033 kN max(displ C) =12.403*mm
max(load py) =61.114 kN max displ p) = 12.478 *mm
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Generate a plot of load (kN) versus displacement (mm) for load rate 3 (1.00 mm/sec);

Load limit: max(ioad) < 100 kN

80

LOAD (kN)
H
o

? Z

/
0
0 2 4 6 8 10 12 14
DISPLACEMENT (mm)
— E=15-3-(6)
— F=15-3-g(7)

Maximum load (kN) and displacement (mm):

max (load ) =63.898+kN max (displ g) = 12.403 *mm
max (load ) = 66.487 kN max (displ g) = 12.875 *mm
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Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mn2):

L.x =L _ - displ
lAa 01 P Aa

L.~ =L _ - displ
iC, = ™o, PlC,

L.z =L, ~displ
iE, = "o P E,

L.~ =L, -displ
1Gg o, pGg

Calculate true stress (MPa) and true strain:

loadA
a
c =
trueA
a A A,
L iAa
€yea =0
a 01
load E
[
(o3 =
rmeEe A g
[
L iEe
E n,ueE - ln
[ 05

Aja =

A
1CC

A

CsO 1

LiAa

A .
_ Cs0 5

A

e
ng

Lo

L
e
cso.,'

Lic

LiBb = Loz— displ Bb

L.y :=L, -displ
iD, = ~o, de

LiFf = L°6 - displ Ff

L.y =L, -displ
iH, ™~ ~og PH,

305

IOB.dC
c
% trueC_= A
¢ ch
Lic,
€ truec =10
c 03
loadG
C trueG_ = £
Aig
Lig
€ =-In
trueG
3 Lo_,

MPa:= 1-10%-Pa




Calculate the yield stress (MPa) and corresponding true strain:
c yAcalc_ = if(aSIZO0.0' tmeAa’OMPa) c yA = max(o yAcalc
c yBcalc, = if(bslzoo.c trueBb'O'MPa) = max(c yBcalc)

O yCeale, if(cs600,0' u.uecc.O-MPa) 6 y¢ = max(0 yoyc) NumC, = if(c ueC =6 yc,c,o)

= if(dSIZOO,c O-MPa) 6 yp = max(6 ey ) NumD, = if(c rueD =C yD.d.o)

~
y4
:
1
—
(=]
]
>
R
Q
>
»
A

trueD d

S yealc, = if{£51200,0 tmeFf,o-MPa) o g ma.x(c chalc) NumF, := if(c rueF =0 yF,f,O)
c chalcg = if(g £600,0 tmeGg,O-MPa) o vG = max(c chalc) NumG8 =if{C trueG:o yG.g,O)

o] yHealc, = if(hslzoo.c trueHh'O'MPa) Oyy= max(c yHcalc) NumH, := it'(o truel. =C yH'h'O)

h

€, =€ €.p = €. ~i=E €. i=E
YA TUueA o Numay B WUeB o numpy YO UUeC inumey VP T tueD i NumD)

€ pi=€ E.pi=€ £ =€ €. =€
YET TwueE | onumey  YF WUeF nummy YO TG inumey VB WUeH L numm
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Generate a plot of true stress (MPa) versus true strain for load rate 1 (0.01 mm/sec):

80

-
(=]

TRUE STRESS (MPa)
N
o

\

_-/
o ——
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
TRUE STRAIN
— A=153-a(l)
— B=153-b(2)

List maximum true strain obtained and corresponding stress (MPa), no yield stress can be defined:

max (€ A) =1.529 max(c

true

(
€ xrueB) =1.523 max(o

ea) =60.495-MPa
eB) =61.325°MPa

tru
max

NN

tru
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Generate a plot of true stress (MPa) versus true strain for load rate 2 (0.10 mm/sec):

80

=
o

TRUE STRESS (MPa)
ES
<3

\

//
e |
0 ——::"/
0 0.2 04 0.6 0.8 1 1.2 14 1.6
TRUE STRAIN
— C=15-3<c(3)
— D=15-3-e(5)

List maximum true strain obtained and corresponding stress (MPa), no yield stress can be defined:

max (€ o) =153 max(0 o) =63.194°MPa
max(€ pop) =1.541  max(0 ) =67.635-MPa
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Generate a plot of true stress (MPa) versus true strain for load rate 3 (1.00 mm/sec):

80

60

-

2 e
1LY

TRUE STRESS (MPa)
H
<3

0 0.2 04 0.6 0.8 2 14 1.6
TRUE STRAIN

— E=15-3-f(6)

— F=153-g(7)

List maximum true strain obtained and corresponding stress (MPa), no yield stress can be defined:

max (& p) =1.506  max(6 o p) =73.66"MPa
max (& o op) <1518 max(0 pop) =7532-MPa
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MICHAEL ZIV
THES!S DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST
Select specimenstobe used: z:=1..5 ORIGIN := 1

DIM 4 := READPRN(COMP1B) SPEC 4 =3

— <1> . = LL> .
Lo, = (DIMA )SPECAm Do, (DIMA )SPECAmm
DM g = READPRN(COMP2B) SPEC B=2

- <1> . - <> i
Lo, = (DM )SPECBmm Dy, (DM )SPECB mm
DIM c= READPRN(COMP3B) SPEC ¢ = 2

- <1> _ - <2> _
L03 = (DIMC )SPECCmm D°3' (DIMC )SPECCmm
DIM y :- READPRN(COMP4) ~ SPECp, =2

- <1> . - <> )
Lo, = (DIMD )SPECDmm Do, (DIMD )SPECDm
DIM g, := READPRN(COMPS) SPEC g = 1

- <1> ) - <> _
Lo = (DIM E )SPECE mm D : (DIM E )SPECE mm

4
Calculate the initial cross sectional area (MM"2): A .o = e (D 01)2
¥4
[ 191.38 ]
183.134
2
A= 181.697 [*mm
190.645
| 194.828 |

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(ICILRI1T8) Note: Files A-E are only used for

_ tracking purposes. There is no relation
B := READPRN(IC2LRIT6) to the specimen position indicator. Analysis
C := READPRN(IC3LRI1T6) slots not used read the default file

ICOLR1T1.pm.
D := READPRN(IC4LRIT2)

E := READPRN(IC5LR1T1)
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

. . <>
load  := <I>.kN displ p = A<?”.mm load y = D<!”.kN displ p :==D~""-mm
load g := B! > kN displ g = B?”:mm  loadg:= E' 7 kN displ g == E%” mm
load ¢ = c<1>xN displ ¢ = c<2>.mm
Look at matrices and calculate
number of data points:
= 1..rows(A) d:=1..rows(D)
b:= 1..rows(B) e:=1..rows(E)
c:=1..rows(C)
Calculate true stress and true strain (assume incompressibility): MPa = 1-105-Pa
Calculate instantaneous length (mm) and cross sectional area (mm”2):
A csol'Lo1 A csoz'Lo2
L. =L _. -displ Ay = L:p =L - displ A g —m—m———=
iA, = ~o, T TPA, iA, Lia B, = ~0, " WPB, iBy, Lip
a ) b
Acsoz'Lo3 A cso4'Lo4
L,c =L, - displ Ac = L;p =L, - displ Ap s ——————
iC, = o, P C, iC, L iD,= %o, P'D, iD, Lo
[4 d
A csos'L 0
Lig =L, -displg Agp =———
e 5 (3 e L iE
-]
Calculate true stress (MPa) and true strain:
load load load load )
s ) A, 5 _ B o _ C. 5 ~ D,
U'UCAa A iA trueBb A iB trueC A ic trueDd ' A D
a b c d
L iA L iB L iC L lDd
€ =-In € =-In £ =-ln € =-In
trueA trueB trueC trueD
’ % ° Lo, ¢ Lo, ¢ %4
load
c E
LrueEe A
€
Lig
=-In =
€ trueE
0
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Calculate the yield stress (MPa) and corresponding true strain:

c yAcale_ = if(aSIZOO,G trueAa’O'MPa) S yA = max(o yAcalc) NumA = if(o U’ueAa-c yA.a,o)

S yBealc, if(b51200,0 tmeBb,o-MPa) 6 yp = max(0 ypcy) NumB, = if(c rueB.™C yB ,b,())

S yCoalc if(cSIZOO,c WCCC,O-MPa) oy max(c yCca]c) NumC, := if(c trueC,"® yc,c.O)
c yDealc = ﬁ(dsuoo,o trueDd,O-MPa) c yD = max(c yDcalc) NumD = if(c trueD ™ yD,d,O)
c yEcalc, = if(eSIZOO,G tmeEe’O'MPa) O yE " max(o yEcalc) NumE_ := if(o trueEe-c yE,e,O

€ 4 =E Epi=E
yA trueAm(NumA) yB tmeBrmx

€ =E
yE mwEmax( NumE)
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Generate a plot of true stress (MPa) versus true strain for a loading rate ot 0.01 mm/sec for various
compositions:

A

1:;’ AN é/ /Jr
*[7Y PaADARN'
£ It W1/
NN dA'4dIAN VS
N T T I T TP LA
=] EPZINTiNDS
BEAIIRAPAY
N 1] / / f// 3
. [T/

1 I/ V I/l A 1

0 0! 02 03 04 05 06 07 08 09 1 Ll 12 13 14 15 1.6
TRUE STRAIN

34-4-¢ (3); Composition: 100% 8084 - 0% 1080
31-5-b (2):; Compostion: 75% 8084 - 25% 1080
25-5-b (2); Composition: 50% 8084 - 50% 1080
14-3-b (2): Composition: 25% 8084 - 75% 1080
15-3-a (1); Composition: 0% 8084 - 100% 1080

NERE
monw>

List maximum true strain obtained and cormresponding stress (MPa), yield stress (MPa) and true strain at yield:

m;m{ € e A) =0.759 max(c e A) =110.58*MPa Cya=93767TMPa &, =0.065
max ( &y es) =0.855 max(c mB) =103.201*MPa o g =67.896"MPa & p =0.066
max : 3 mc) =1.012 max(c mc) = 104.044 -MPa O\ =62089'MPa & =009
maxf‘/\ g mD) =1.216 ma.x(c mD) =85.539+-MPa G ,p =22.46"MPa € ,p =0.059
m;u(e mE} =1.529 max(o WE) =60.495-MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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U 0] S
Select specimenstobe used: z:=1.5 ORIGIN = 1

DIM , := READPRN(COMP1A)  SPEC , = 24

- <1> . . <> .
Lo, = (DIMA )SPECAmm Do, (DIMA )SPECAmm
DIM g := READPRN(COMP2B) SPECg:=6

. <1> . < <> :
Lo, = (DIM B )SPECB mm D (mMB )SPECB mm
DM = READPRN(COMP3B) SPEC =6

- <1> ) - <2> _
Lo, = (DM Jsprcmm Do (o )Smcmm
DIM p := READPRN(COMP4) SPECp =6

- <1> . - <> .
Lo, = (oM, )SPECDmm Do, (oM )SPECDmm
DIM g := READPRN(COMPS) SPECg =3

- <1> ) - <> _
L05 = (DIME )SPECEmm Dos. (DIME )SPECEmm

A . . _r 2
Calculate the initial cross sectional area (mmA2): A cs0, = Z-(D 01)
[192.854 ]
183.614
A (oo =| 184335 ~mm?
191.134
| 193.346 |

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(ICILR2T5) Note: Files A-E are only used for

_ tracking purposes. There is no relation
B = READPRN(IC2LR2T4) to the spacimen position indicator. Analysis
C := READPRN(IC3LR2T7) slots not used read the default file

ICOLR1T1.pm.
D := READPRN(IC4LR2T2)

E := READPRN(IC5LR2T1)
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

DQ>.

load = A<'> kN displ = A<>.mm load ) = D<!>.kN displ p = mm
load g := B> .kN displ g := B<>.mm load g = EST? kN displ g := E<”.mm
load ¢~ = c<1 kN displ ¢~ := c<”.mm
Look at matrices and calculate
number of data points:
a:= 1. rows(A) d:=1l..rows(D)
b= 1..rows(B) e:=1..rows(E)
¢:=1..rows(C)
Calculate true stress and true strain (assume incompressibility): MPa = 1-105-Pa
Calculate instantaneous length (mm) and cross sectional area (mm~2):
Acsol'l'o1 L A csoz'Lo2
L., :=L . -displ Ay m————— g =L, -displ Axgp =
A, 770 Pa, iA, Lia B, ~o, " UP'B, i, Lip
a b
A cso3'Lo3 L A cso4‘Lo4
L =L _ - displ A = iy =L - displ A.n o=
iC_ = o0, T PIC iC Lic iD= ~o, " “SPID iD, Lo
[ d
A csoS'L 05
L. =L, -displ A o=
lEe 05 P Ee lEe LiE
[
Calculate true stress (MPa) and true strain:
load load load load
c i c T c I c "
trueA T T4 . trueB. "4 . trueC trueD ™
s A b Ap ¢ Aic, d Aip,
Lia, Lip, Lic Lip,
€ trueA, =-lni— € trueB, =-lm— stmeCc =-In EtrueDd =-In
Ol 02 03 04
load g
e
trueE 7
€. e A iEe
Lig
[4
€ tmeE - ln
o
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Calculate the yield stress (MPa) and corresponding true strain:
c yAcalc_ = if(a$1200,6 trueAa'O'MPa) O yA = max(c yAcalc) NumA_ = if(o trueAa-c yA.a.0>

c yBeale, = if(bSIZOO.o trueBb,O-MPa> OB = max(o yBcalc> NumB, = if(o trueB_ ™S yB ,b,O)

S yCedle, if<c51200,c U,ueCC,O‘MPa> oy max(c yCCa,C) NumC, := if(cs rueC =S yC,c,o)

S yDeale, if(d 1200,6 m,eDd,o-MPa> S yp = max(c yDcalc) NumbD, = if(c irueD ™S yD,d,o)

<
S yEeale, if(eSIZOO,G tmeEe,O-MPa> o g = max(c yEcalc> NumE,_ = if(o trueE ™ yE+¢+0

= € trueA €yB = € trueB

£
yA max(NumA)

€ =&
YE T wueE  (NumE)

316



Generate a plot of true stress (MPa) versus true strain for a loading rate of 0.10 mm/sec for various
compositions:

120
110
- ,)? /
A\ ALV A

[ d
=80 ,\\ M’/]/
MIANE i }
WA A 4
AES EelEN4r N
[ { Ho 1A
- T
20 ] lﬁL"/
10 ""'7[_%

—] /W VLA
0 0 01 02 03 04 05 06 07 038 09 1 1.1 12 13 14 15 16

TRUE STRAIN

~— A =27-4-¢ (24); Composition: 100% 8084 - 0% 1080
~— B =31-5-f (6); Compostion: 75% 8084 - 25% 1080
— C =28-5-f (6): Composition: 50% 8084 - 50% 1080
— D = 14-3-f (6); Composition: 25% 8084 - 75% 1080
~ E = 15-3-~¢ (3); Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

max(s LrueA) =0.761 max( trueA) = 106.084 *MPa Oya= 105.442 °MPa ¢ JA =0.071
max(e y0p) =086 max(0 yp) =104.253-MPa o ,p=84366'MPa € g =0064
max(s lmeC) =101 max(c eC =98.384"MPa G ¥C =74.187+MPa £ < =0.063
max(e ep) <1222 max(0 . p) =82.846-MPa o,p=30S51-MPa &g =0068
max(e trueE) =153 max{ G u'ueE) =63.194°-MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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(0]
THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimenstobeused: z:=1.5 ORIGIN =1

DIM , := READPRN(COMPIB) SPEC =5

- <1> . - <> )
Lo, = (DM Ao smm D (Dmv Jsprc,mm
DM B~ READPRN(COMP2B) SPEC B= 8

= <1> . o <> .
L02 = (DIMB )SPECBmm Doz. (DIMB )SPECBmm
DIM ok READPRN(COMP3B) SPEC ok 9

- <1> . - <2> )
Lo, = (oM ¢ )SPBCCmm Dy, (oM )SPECCm
DIM D= READPRN(COMP4) SPEC D=9

_ <1> ) - <> )
L04 = (DIMD )SPECDmm Do4‘ (DIMD )SP’ECDmm
DIM E= READPRN(COMPS5) SPEC E=6

- <1> . = <> .
L05 = (DIME )SPECEmm Dos. (DIME )SPECEmm

n .
Calculate the initial cross sectional area (Mm*2): A o = e (D o )2
A Z,
[ 193.346 ]
185.782
2
A (50 =| 183.614 |*mm
190.645
| 193.839 |

Data file information;

The data file was created on the directory: D:MIKEDAT?1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(ICILR3T4) Note: Files A-E are only used for

_ tracking purposes. There is no relation
B := READPRN(IC2LR3TS) to the specimen position indicator. Analysis

C := READPRN(IC3LR3T5) slots not used read the detault file
ICOLR1T1.pm.

D := READPRN(IC4LR3T2)

E := READPRN(IC5LR3T1)
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Split matrix matrix into two vectors, load (kN) and disp! (mm): kN := 1000-newton

load p = A<'> kN displ p = A< mm load y == D<!”.kN displ p = D<”.mm
load g i= B! kN displ g := B<>.mm load g := ES'> kN displ g ‘= E<”.mm
load ¢ = CX' kN displ ¢ := C<>.mm
Look at matrices and calculate
number of data points:
a:=1.rows(A) d:=1..rows(D)
b= 1..rows(B) e:=1..rows(E)
¢c:=1..rows(C)
Calculate true stress and true strain (assume incompressibility): MPa = 1105-Pa
Calculate instantaneous length (mm) and cross sectional area (mm*2):
A c:sol'l“o1 L A csoz'L 0,

L:o =L, -displ Ay =————— q =L -displ A:p =

A, 7o PA, iA, Lia B, = o, " “P'B, B, Lip

a b
A cso3'L 0y L A cso‘,"l-'o4

L.~ =L, -displ A:riz—m—= .y =L . ~displ A:n =

iC, = ~o, PlC, iC, Lic iD,*= ~o, P'D, iD, Lp

c d
A 5o s'L 0g
Lig =L, -displg Ag =————
e 5 e e L iE
€
Calculate true stress (MPa) and true strain:
load 5 load Bb load C load
a c d

c = c = c = c =

trueA trueB trueC trueD

2 Aja b Ap ¢ Ajc o Ap,
L iA, L iB,, L iC, L iD,
EtrueAa =-In Eu'ueBb =-In Et.rueCc =-~-In L EtrueDd =-In T
0.l 02 03 04
load

o = e

lrueEe A iE

€
L iEc
€ trueE =-In L
[ 05
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Calculate the yield stress (MPa) and corresponding true strain:

S yacalc, = if(a.<.120().6 t.rueAa’O'MPa> O ya = max(c yAcalc) NumA_ = if(c irueA, =© yA,a,O)

S yBealc, = if(b<1200,6 me,o-MPa) oyp = max(c yBcalc) NumB, = if(o rueB. ™S yB ,b,O)

b
c yCealc, = if(cslzoo,c trueCc’O’MPa) S yC = max(c yCcalc) NumC_ := if(c trueCC"G yc,c,o)
S yDeale, if(d<1200,0 mleDd,O'MPa) oy (o yDcalc) NumD = if(o trueD O yD.d,0>

S yBealc = 1f<e£1200,6 U.ueEe,UMPa) oy ma.x(c yEcalc) NumE,_:= if(c irueE = yE-€:0

€ p T g g =t
yA trucaAnm(Nu mA) yB trueB

£ =
yE tmeEma:l&( NumE)
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Generate a plot of true stress (MPa) versus true strain for a loading rate of 1.00 mm/sec for various
compositions:

120
110 {\ \
/ 4
100
% f/\.\\ i //]
~ 80 h AN e S g f f/ ;
§ o LA \\ ] /y / ; K]
(LA ]
EGO ~—____ — d
Z [l f {
=350 b ¥
20 /\\ L f f /
. s
20 = —’L/?V / /j'
< I—
1o L — | [) {/ / / //j
0 01 02 03 04 05 06 07 08 09 1 LI 12 13 14 15 16
TRUE STRAIN
— A =22-4-d (11); Composition: 100% 8084 - 0% 1080
— B =32-5-a(8); Compostion: 75% 8084 - 25% 1080
— C=29-3-b (9); Composition: 50% 8084 - 50% 1080
— D= 16-3-b (9): Composition: 25% 8084 - 75% 1080
— E = 15-3-f (6). Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true strain at yield:

(2 ey) 0763 max(0 ) = 117.63-MPa Oy =117.63'MPa €, =0073
MX(€ 1 op) 0862 max(S o .p) = 101.544-MPa Oyp =94798-MPa & 5 =001
max(e pec) = 1012 max(6 ) =94.066-MPa Oyc=87054MPa & =006
max(e p.p) =121 max(o ) =89.4-MPa Oyp=49394-MPa & =0.066
max(e g} = 1506 max(s o op) =73.66-MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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UNIAXIAL COMPRESSION TEST
Select specimenstobeused: z:i=1.5 ORIGIN =1
DIM , := READPRN(COMP1B) SPEC , =11

Lo, = (DM o) gppe mm D = (DM 4 2>) e mm

SPEC 5 SPEC 5

. DIM g := READPRN(COMP2B) SPEC g = 12

Lo, = (mM gl >) mm D, = (DIM " mm

SPECp )SPECB'

DIM - = READPRN(COMP3B) SPEC =13

Lo, = (DIM c >)sx>1-:c cmm Do = (DIM C<2>)SPBC o

DIM py := READPRN(COMP4) SPECp =18

mm D, = (DMp??) . mm

L 0, = (DIM D<1 >)SPEC D .

SPECp’
DIM g := READPRN(COMP5) SPEC g =20

Lo, = (DME"”)gpge mm D= (DM E2>) . mm

SPECE SPECE

s
Calculate the initial cross sectional area (mm2): A o, := Z(D o )2
z Z,

[ 189.911]
186.023
2
A oo =| 183.134
191.625
| 196.067 |

:

Data file information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A = READPRN(ICILR4T3) Note: Files A-E are only used for

3 tracking purposes. There is no relation
B := READPRN(IC2LR4TS) to the specimen position indicator. Analysis
C := READPRN(IC3LR4T6) slots not used read the default file

ICOLR1T1.pm.
D := READPRN(IC4LR4T2)

E := READPRN(IC5LR4T1)
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load , := A<'> kN displ , = A?”mm  loadp = D' > kN

load g := B kN displ g := B<>.mm load g = E<!”kN

load ¢ = <1>kN displ ¢ = Cc<2>.mm

Look at matrices and calculate

number of data points:
= 1..rows(A) d:=1..rows(D)
b= 1..rows(B) e:= 1..rows(E)

1..rows(C)

e}
[

diSp] D

kN := 1000-newton

= D<%”.mm

displ g := E<>.mm

Calculate true stress and true strain (assume incompressibility): MPa = 1-105-Pa
Calculate instantaneous length (mm) and cross sectional area (mm"2):
Lis =L, - displ Aip = Fesoy oy L =L, - displ Ag = Roso b,
A, 7o A, iA, Lia By~ ~o, B, By, Lig
a b
A cs<>3'L 0, A cso‘,'Lo4
L =L - displ Ap F—— L.n =L, -displ Ain =
iC 0, P C, iC, L iD, 0, P D 4 iD, Lp
< d
A csos'L Og
L.g =L, -displ A me——
l'Et: 05 P Ee 1Ee Li.E
e
Calculate true stress (MPa) and true strain:
load load g load c load
a c d
o = H [ = =
U'UCAa A iA trueBb A le trueCc A ic trueDd A lDd
a
Lia, Lig, Lic Lip,
strueAa =-ln t7'trueBb =-In L EtrueCc =-ln etrueDd =-In
0 ) 04 04
load E
G [
!.I'U(:Ee A lE
[
Lie
€ =-1n 2
trueE
c 05
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Calculate the yield stress (MPa) and corresponding true strain:

S yBeale, if(b51200,0 tme,(nviPa)

if{c<1200,0

{

c O-MPa>
e<1200,6 tmeEe,o-MPa)

c yCcalc ’ trueC -
[ c

d<1200,6 0-MPa>

o : ,
yDcalc 4 trueD p

S yEcale_ = if(

g =&
yA mleAmax( NumA)

£ =&
yvE trueEm(NumE)

z‘:yB = € trueB

max(NumB)
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Generate a plot of true stress (MPa) versus true strain for a loading rate of 2.50 mm/sec for various

compositions:

130

120 =2

110 | FRACTURE

o L\\ 4

90 f/\‘ \ /] { /7 h
::-fso \\ - /// g,/ /
2170 \ I~ Ar :
MNIRNEEN=ELIIN AN B
5 <« 'f\\ ’}/,/] Z-}
z30 ~ s
Y o S N T B oo / 1
. ST VLA S

N /17 L

20 ——

0 o s /7 /1 /,/

o / . Zy// / Lt

0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 1.6 L7138

TRUE STRAIN

™ A =33-4-d (11): Composition: 100% 8084 - 0% 1080

™ B =32-3-¢ (12); Compostion: 75% 8084 - 25% 1080

— C=129-3-f(13); Composition: 50% 8084 - 50% 1080
— D= 17-3-d (18); Composition: 25% 8084 - 75% 1080
E = 27-4b (15): Composition: 0% 8084 - 100% 1080

List maximum true strain obtained and comresponding stress (MPa), yield stress (MPa) and true strain at yield:

4

max "me-\\ =0.763
r".:u trueB/ =0.364
max € tmcC' =1.017
zm:c(\ LmeD) =1.212
mzuf':a wu eE) =1.643

/—\/\/—\f"\r"\

5 5

muea) =1
)
)

eC

D)
ruee) =

23.683 -MPa
104.907 -MPa
100 -MPa
=94.333 -MPa
=60.466MPa

O ya = 123.683-MPa
o g = 101.383-MPa
S ¢ =93.068-MPa
G ,p =38.77-MPa

The yield stress could not be defined for the 100% Crestomer 1080 sample
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Specimen dimension data file #1 (100% Derakane 8084 / 0 % Crestomer 1080) ORIGIN :=1

[14.03 15.53]
1527 15.56
13.99 15.60
1520 15.55
14.98 15.57
1502 15.60
1591 15.60
15.96 15.55
0 0

0 o

1594 15.58
1563 15.56
1531 15.57
COMPLA = 15.94 15.56 e
16.16 15.53
15.59 15.55
15.54 15.55
15.83 15.58
15.89 15.56
15.84 15.53
15.83 15.54
15.60 15.69
15.99 15.63
15.54 15.67
15.67 15.63
15.53 15.65
15.21 15.64
16.06 15.69 |

WRITEPRN(COMP1A) :=COMP1A

1

O 00 N N bW

PN DR DN DD
loo\:ou-AuN»-oE;:S\‘G:GS:S
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Note: The first column is the specimen
length and the second is the specimen
diameter.

File applies to specimen: 11, 22, 23, 26



Specimen dimension data file #1 (100% Derakane 8084 / 0 % Crestomer 1080) ORIGIN :=1

(1537 15.73]
15.70 15.61
15.80 15.61
15.92 15.68
15.46 15.69
15.42 15.74
15.68 15.76
15.52 15.69
COMPIB=| 1565 1563 ™™~
15.89 15.50
1527 15.55
1537 15.57
1521 15.60
14.94 15.64
15.54 15.67
| 15.67 15.63

WRITEPRN(COMP1B) = COMPI1B

'b-db—-l)-‘)——k—lb-—‘l—‘
AN U A WD -~ O

O 0 1 N b W)
s
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Note: The first column is the spacimen
length and the second is the specimen
diameter.

File applies to specimen: 34,35



Specimen dimension data file #2 (75% Derakane 8084 / 25 % Crestomer 1080) ORIGIN :=1

[15.90 15.63 ] 1 . ) _
5o 15| |2 ot The st ol i e specimen
15.68 15.65 3 diameter.
1561 15.68 4
1571 15.68 s File applies to specimen: 12, 20, 21
16.54 15.67 6
11.69 15.72 7
1551 1571 8
16.16 15.68 9
1552 15.64 10
CoMP2 = 0 0 num ={ 11
1589 15.66 12
1579 15.63 13
0 0 14
15.71 15.67 15
1595 15.67 16
15.57 15.70 17
15.73 15.68 18
15.54 15.69 19
1459 15.71 20
1597 15.65 | 21

WRITEPRN(COMP2) := COMP2
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Specimen dimension data file #2 (75% Derakane 8084 / 25 % Crestomer 1080) ORIGIN :=1

15.15 1528 1 . ) .
T B E Bttt
14.83 1522 3 diameter.
0 0 4
1481 1528 5 File applies to specimen: 31,32,33
14.87 15.29 6
15.19 15.36 7
1489 1538 8
15.17 1537 9
1484 15.38 10
COMP2B '=| 14,61 15.41 |num :=|11
14.74 15.39 12
14.69 1543 13
15.09 1549 14
15.02 15.36 15
1537 15.36 16
0 0 17
15.05 15.36 18
1492 15.36 19
14.84 15.36 20
| 15.05 15.36 | 21 |

WRITEPRN(COMP2B) := COMP2B
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Specimen dimension data file #3 (50% Derakane 8084 / 50 % Crestomer 1080) ORIGIN :=1

[14.91
15.61
14.96
15.63
16.12
15.97
15.64
15.71
1547
15.88
15.80
16.16
15.38
15.74
15.92
15.39
15.80
15.01
15.70
16.19
15.01
11526

COMP3 =

15.62
15.68
15.64
15.68
15.72
15.67
15.70
15.70
15.70
15.73
1572
15.69
15.69
15.70
15.63
15.64
15.69
15.67
15.66
15.67
15.68
15.39

4

num =

WRITEPRN(COMP3) := COMP3

1

L= - = NV R N U 8

BN N N = e e s
N =~ S 0o ® J & s o oS

Note: The first column iis the specimen
length and the second is the specimen
diameter.

File applies to specimen: 13, 18, 19, 30
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Specimen dimension data file #3 (50% Derakane 8084 / 50 % Crestomer 1080) ORIGIN =1

(14.67
15.15
14.78
15.10
14.53
1435
15.58
14.23
14.88
14.87
COMP3B :=|15.28
1528
15.38
15.19
15.33
15.24
14.93
1523
14.50
15.45
1526

WRITEPRN(COMP3B) := COMP3B

15.35 ]
1521
15.28
15.28
15.29
1532
1535
1531
15.29
15.28
1522
15.24
1527
15.34
15.32
15.31
1533
1533
1534
15.33

15.29 |

r

[ I S e R e T O S
— QO 0 W 3 O W S W N = O

AT-T - S - T V. D L I ]

Note: The first column iis the specimen
length and the second is the specimen
diameter.

File applies to specimen: 28, 29 , 30
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Specimen dimension data file #4 (25% Derakane 8084 / 75 % Crestomer 1080) ORIGIN :=1

[15.66
15.12
16.18
15.88
1587
15.40
15.75
15.92
1547
1545
COMP4 :={15.77
15.36
15.60
16.02
15.68
15.50
15.51
16.03
15.30
16.08
1573

15.60 ]

15.58
15.60
15.59
15.62
15.60
15.60
15.59
15.58
15.63
15.61
15.60
15.65
15.62
15.61
15.62
15.60
15.62
15.60
15.62

15.69 |

WRITEPRN(COMP4) := COMP4

1

O 00 93 O vt Hh W N

DD et et et e et e
S © ® J ot BER DS

[ ]
—
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Note: The first column iis the specimen
length and the second is the specimen
diameter.

File applies to specimen: 14, 16, 17



Specimen dimension data file #5 (0% Derakane 8084 / 100 % Crestomer 1080) ORIGIN :=1

[ 14.85
16.02
15.83
1591
15.88
15.94
16.49
14.92
1545
1491
15.45
15.47
15.60
15.57
15.57
15.58
15.15
15.39
15.47
| 15.13

COMPS :=

15.75

15.68
15.69
15.71
15.70
15.71
15.75
15.75
15.75
15.75
15.75
15.70
15.70
15.65
15.67
15.68
15.71
15.71
15.74

15.80

num .=

WRITEPRN(COMPS) :=COMPS

r

DY ket et et et et ek pmd et bt e
S WO 00 9N VT H W N = O

O 00 3 QN W B W
:

Note: The first column is the specimen
length and the second is the specimen
diameter.

File applies to specimen: 15, 24, 27
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Appendix D
Prediction of the Relationship Between Strain Rate and
Yield Stress

Upper Yield Stress Model
100% Derakane / 0% Crestomer 336
75% Derakane / 25% Crestomer 341
50% Derakane / 50% Crestomer 346
25% Derakane / 75% Crestomer 351

Lower Yield Stress Model
100% Derakane / 0% Crestomer 356
75% Derakane / 25% Crestomer 361
50% Derakane / 50% Crestomer 366
25% Derakane / 75% Crestomer 371
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MPa :=Pa10° i:=1.4 ORIGIN:=1 Compositon: 100% 8084, 0% 1080

0.01 15.80 93.409 0.040
0.10 15.54 105201 0221

Vel = B L= mm o= ‘MPa STDEV := ‘MPa
sec 15.46 118.436 0.740
2.50 15.27 123.647 0517

E :=2020-MPa v :=0.33 © :=298.K 0:=020 <<assume a=0.20>>

pi=—2 1 =759.398MPa
2-:(1+v)

5= 20778 87274°MPa
1-v

Cc Cc p. T,
pi=—t =i —_ i
i 3 i J’; 1 MPa MPa
31.136| | 53.93
35.067] [60.738
39.479] [68.379
‘ . , . 4] [41.216] [71.388
Detine the applied plastic shear strain rate:
‘\/; [ Veli
Y B K e E— Input Hopkinson Bar data point:
dotpli o
L, 1--;:-& 3000 189.8
' |2s00| {2001 -
Ydotpl. “hop 7| 3900 [*° Thop | 985 | MP2 Yhop =3 pop
1
S 3200 203.6
0.012-s6c- ! MEAN:-:hOp :=mean(shop) MEANc:Imp :=mean(ch0p)
-1
0.119-sec STDEVe jop, =stdev(e pop) STDEVO pyy, :=stdev (o bop)
0.302-sec”
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5 0.632 ~6.769
6
T, 0.693 " Ydotp1 ~4.443
T equiv = Tdotln, = v
WY Nsrap) TV fose| oMo dotln ™ 129
0.785 -1.197

lireg :=510pe (% oquiy»Y dottn) ¥ equiv + IMeroeP(¥ equiv+Y dotin)

Plot In(st train rate) (1/sec) Calculate the s} int L and lati
valent st tress: ficient f lictive line:
-1;‘[ c0rr(% equiv» ¥ dotin) =1
I - C :=sl0pe(T eqyiy Ydotn) € =36.391
Y dotln; -
AN .
X -5 B :=intercept(% . yiv»Y B =-29.736
linreg; =4 Y < cep( equiv dotln)
~1
0
05 0.6 0.7 038 0.9
Teqnivi
Solve for ydot0 and x:
115.981
c-e B4C -1 115014 | g
= =g S€C = —_— ‘=mean(y)
5, 1400 %= 113948 | Mpa * x
113.533
dot0 and y are as follows:
Ydot0 = 776.106*sec |
x=114619—5
MPa
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s=87274'MPa =02 x= 114.619;!’-;- 8 =298K 7450 =776.1065ec "
a

Input a guess for solver: o :=50-MPa

WRITEPRN( YIELD6B) := augment|
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 100% 8084, 0% 1080

4 35 T3 725 =2 15 -1 0S5 0 0.5 1 1.5 2 2.5 3 35
log (Strain Rate) (1/sec)

179.186 189.8

et 1=S““S(€h0p> S hoppred = 178.065 | o _|2001
i ; P 179.583 hop =} 908 5
179.583 203.6

mean (6 oporeq) = 179.104°MPa  mean (0 hop) =200.5°MPa

stdev(0 popprea) = 0:622°MPa stdev(0 p) = 6.86*MPa
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0.01 15.15 67.997 0.154

0.10 | mm 1481 81.961 1.719
Vel := — L= ‘mm G = ‘MPa STDEV = .

1.00 | sec 14.89 95.180 0.599

2.50 14.74 100.843 0.519

E '=1880-MPa v :=0.33 © :=298-K ®:=020 <<assume a=0.20>>
o E

B iF——

2-(1+vV)

jL =706.767 *MPa

0.077-
§:= a

s =81.225°MPa

1-v

Vel
Ydotp!. =3 : Input Hopkinson Bar data point:
1 [+] c.
Lo\1- !
; E 3000 179.29
— -1 — —
Y dopl € hop = 3600 |-sec O hop = 187.32 |-MPa Yhop .—'\/—3:'8 hop
i 3000 182.35
0.001-sec”
T MEANe oy, :=mean(e o)  MEANG pqp :=mean (o hop)
0.123-sec”' STDEVE gy, =stdev(e pop) STDEVG by, =stdev(0 pp)
0.31-sec’!

341



Calculate ydot0 and Ak=y, using equation 6-17. assuming =02

3 0.521 -6.737
z \° 0604 . dotpl, ; ~4.404

s = T e, = = =
"eqmvi s+ 0P, equiv 1 0,678 dotlni sec-! dotln ™ _» 099
0.709 -1.17

linreg :=slope (‘t equiv’ Y doﬂn) T equiv intercept(': equiv’ 'Ydotln)

Plot in(shear strain rate) (1/sec) versus Calculate the slope. intercept. and correlation
equivalent shear stress: coefficient for predictive line:
-1 corr (“ equiv'ydoﬂn) =1
E"ZI — C :=s10pe(7 equiy:Ydom) € =29.763
Ydotlni
I m— B :=intercept(% oquiy-dotn) B =22.298
lmngi o R
2 =
0
0.5 0.6 0.7 0.8
Tequivi
Ve 10r yao n
103.424
102314 | x
- = uB+C -1 —
= Y =€ ‘sec = — ‘=mean
St ap, dot0 x 101.284 | MPa x X
100.849
ydot0 and x are as follows:
¥ gorg = 1746.306°sec *
x =101.968
MPa

342



s=81225'MPa  «a=02 % =101.968 -é—- © =298'K 74,0 =1746.306"sec |
a

Input & guess for solver: & 5 i=50-MPa

Strcss(y dot) = Find(c 02)

z:=1..9

= 123 - -
Ydotz" 10° .,\/;.sec ! oczz.—Sums(ydotl)

Ydot _Ydotp1

E 4o == € =
dot J; dotpl »\/5

0y ) O,

= = = S

"
N

k3

WRITEPRN( YIELD7B) :=augment
sec-! MPa

€dot © CZ)
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 75% 8084, 25% 1080

230

220

4 T35 "3 |25 |2 15 1 05 0 0.5 1 1.5 2 25 3 35
log (Strain Rate) (1/sec)

.3
162.775 17929

@ hoppred, = S‘“"ss(e hop).) O hoppred =| 164.032 |*"MPa O hop =| 187.32 |*"MPa
162.775 182.35

mean(0 1 ppreq) = 163.194 *MPa mean (6 pqp) =182.987“MPa

stdev(0 oppreg) = 0.593°MPa stdev(o o) =3.309°MPa
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E :=1680-MPa v :=0.33 ©:=298.K

biE—  u=631.579°MPa
2:(1+v)

¢:= Q07T 5 584°MPa
1-v

0.:=020 <<assume ot=0.20>>

Vel.

'ydomli ::,\/5. _r

LO.
i

Oc
N b pe—
E)

'Ydotpli

0.001-sec”!
0.013-sec”!
0.123-sec”’
0.298-sec”!

b; 5
1 MPa MPa
20.404] 135.341

Input Hopki Bar daia point:
2500 171.79

€ hop 1= | 2500 sec”! O hop = {174.61 |-MPa 7 hop :=«/§-shop
2100 176.76

MEANe ;. = man(s hop) MEANG 1., := mean(c hop)

STDEVE j5p :=stdev(e pop)  STDEVG py, = stdev (6 pop)
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Calculate ydot0 and A/k=x using equation 6-17, assuming o =02

2 0.524 ~6.737
6
A 0.61 I Ydotpli -4372
T . = 1T . = =
equv; s+ o-p, equiv 1 0.687 7dotlni sec-! ¥dotln -2.097
0.725 -1.211
linreg :=slope (T equiv'ydoﬂn) T equiv + intercept(t equiv"Y dotln)

Plot In(shear strain rate) (1/sec) versus Calculate the slope. intercept. and correlation
valent st tress: tficient { fictive line:
-1; CO!T(‘C equiv’ydotln) =]

3 — C :=slope(T oquiy-Yaotln) € =27.93
Ydotlni
. .
X 5 ~ B :=intercept(T . iy Y B =-21.381
fnreg, ~4 x\ ( equiv dotln)
— 3 ~<
-1
0
05 0.6 07 038
tequivi
Solve a
108.564
107.355
= = aB+C __ -1 K .
1= Y =e T esec = *—— % :=mean
Yos+ . dot0 x 106.227 | MPa X 2
105.673
dot0 and x are as follows:
¥ got = 698.669-sec
% =106.955 —
MPa
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$s=72584°MPa =02 x=106.955-—£- © =208"K o0 =698.669"scc |
a

Input a guess for solver. ¢ 5 :=50-MPa

Stress('y dot) = Fmd(c c2)

z:=1..9

12—~ -1 o
'Ydotz" 10 -'\/;-sec cczz.—Stms(ydotz)

. Y dot . . Vdotpl
dot dotpl '~
3 3
i i =67%, 2=95%. 3=09%): r:.=2

4 [+}
WRITEPRN( YIELDSB) := augment| —>% — 2
sec’l MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 50% 8084, 50% 1080

230

220

210

g

[
o
o

—
o0
o

Pa)
~3

(=1
p+d

2

-
w
()

N
=3

ive Yicld Stress

\

(E_oml'r_r_ess
s 8
\

8
\
\

A

]
\

y

¥

W
[~

40

-4 =35 "3 725 T2 ~15 "1 05 0 0.5 1 1.5 2 25 3 35

log (Strain Rate) (1/sec)

150.514 171.79
S noppred. = Stress(a hop_) O hoppred = | 150.514 |*MPa O hop =| 17461 |*MPa
J J.
149364 176.76

mean (0 oporeg) =150.131°MPa mean(o hop) = 174.387 MPa

stdev (c hoppred) =0.542*MPa stdev(c hop

) =2.035"MPa
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MPa:=P2-10° i:=1.4 ORIGIN:=1 Compositon: 25% 8084, 75% 1080

0.01 15.66 22.445 0.015
0.10 | mm 15.75 30.087 1.279
Vel = — L0:= ‘mm © = -MPa STDEV = .
1.00 | sec 15.92 49.841 0.698
2.50 15.30 57.367 2419

E =1125-MPa v =033 © :=298.K 0:=020 <<assume o =0.20>>

— E
“’ = ———
2(1+Vv)
s :=0.077-u

N =422.932 *MPa

5§ =48.606 *"MPa

l1-v

Vel.
Y dotp! =43 ' Input Hopkinson Bar data point:
1 G C_
L, |1-— 2800 145.16
0i E
. 2600 _, 140.00 - JE
= -Sec [+ = . = .
Vdotpl, Bop | 2900 hop | 43779 | @ Thop € hop
O‘wl -SGC“ 3m 147.%
0.011-sec’?
0.114-sec™" MEANe qp :=mean(e jop) - MEANG pop 1= mean(G )
~1
0.298-sec STDEVe p, = stdev(s hop) STDEVG p, 1= stdev(c hop)
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3 0.324 -6.787

7 \° 0.41 e ~4.483
T s = o= = =
o, s rap) Y| o6l Ydotin, =B Vdotin =) 173
0.682 -121

linreg :=slope (’c equiv’ Y dotln) "% equiv interccm('t equivddOﬂB)

Mmmw X Wﬂmwﬁ. iont { lictive line:
_19? corr(‘: equiv"ydotln) =0.985
i " _ .
. C :=slope(t equiy: Tgotln)  C =14647
dotln; —6—
X 5 B :=intercept(T o110 Y B =-11.088
freg, =4 O — ( equiv dotln)
— = \
- IS
%63 04 05 06 o7 o8
tequivi
Solve for ydot0 and x:
87.116
86239 | K
- —aB+C -1 =
= Y =¢ -sec = .. ‘=mean
oo, dot0 X=\ 84052 | MPa * &
83.248
ydot0 and y are as follows:
Y dot0 =35.127sec
x =85.164
MPa
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$=48606'MPa =02 % =85.164'—£—- 0 =298K gy =35.12Tsec "
a

Input a guess for solver, ¢ 5 :=50-MPa

Stress(y dot) :=Find(0 c2)
z:=1.9
'Ydotz = (10"‘ S-Jg)-sec'l c 2, = Strcss(’ydotz)

__Ydot Y dotpl

€ E— 3 'S ——
dot ,JS dotpl J;

WRITEPRN( YIELD10B) :=augmem( e

€dot Oc2
sec-! MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 25% 8084, 75% 1080

-
W
<

-
[
(=]

—
[
o

\

(=]

= o
(=]

Compressive Yi_eld Stress (MPa)
8

A

-4 -3 -2 -1 0 1 2 3 4

log (Strain Rate) (1/sec)

132.077 145.16
. o | 131.439 140
hoppred, ™ ess(e h°Pi> O hoppred =| 135 33 |"™MF2 Chop ={ 13779 [MP2
132.672 147

mean(6 hoporeq) = 132.142°MPa mean (0 o)) = 142.488 “MPa

$t9eV(G popreg) = 0.457°MPa stdev(o 1,op) =3.734"MPa
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E =2020-MPa v :=0.33 © :=298.K 0:=020 <<assume a=0.20>>

piE— 2 1=759398MPa
2:(1+v)

5:= 20778 g72749MPa
1-v

(s (¢}
P :___ci T :_‘?_i ._.l_).l_ ._..TL.
'3 i J; 1 MPa MPa
24 | [41.569
25.113( {43.498
27.023] {46.806
) i . . ﬂ 28.15 | {48.757
Define the applied plastic shear strain rate:
Vel.
'Ydotpl. ::,\E. L S
1 GC_
L.|1-—1
l)i E )
Ydotpli
0.001-sec™!
0.012-sec”!
0.117-sec”}
0.296-sec™”
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Calculate ydotO and Ak=y using equation 6-17, assuming =02

s 0.515 -6.78
6
T, 0.534 ; " Ydotpl, . -4.459
T .= T e, = = =
oM\ srap) O |osee| U\ o dotln =5 148
0.584 -1218

equivalent shear stress: coefficient for predictive line:
—-lgT corr (t equiv"Ydoﬂn) =0.987
Y o :8 X — C ifbpe(r equiv"Ydoﬂn) C =79.414
uf,,si _;. 3 S— B '—mtercept(t equiv,ydoﬂn) B =-47.328
— : -
0

equiv

Solve forydot0 and x:

257.024
. Cc.e ...B4C -1 256.404 K
= = Sec = - ‘=mean

LR op, ¥dot0 X=1 255347 | MPa X R
254.728

ydot0 and x are as follows:

¥ got0 = 8:603-10" =sec !

X =255.876 K

MPa
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s=87274"MPa =02 x=255876 ;-E- © =298'K ¥ 4oy =8.603-10" -sec”!
a

Input a guess for solver. ¢ 5 i=50-MPa.

Stress('y dot) :=Find(0‘ 02)

z:=1..9

R ] - =
YdOlz =10° .,\/g.sec 1 (4] czz --Sﬂ'eSS(Ydotz)

Tdot ._ Ydotpl

€ S — £ R —

cofi i i =67%, 2=95%. 3=99%): r:

1]
N

£ (¢}
WRITEPRN( YIELD6A ) := augment| o2, — 2
sec-! MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 100% 8084, 0% 1080

180
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MPa =Pa-10° i:=1.4

0.01

0.10
Vel :=

1.00

2.50

E :=1880-MPa v :=0.33 © :=298-K

o E
Pim———
2-(1+v)
(20077

ORIGIN :=1
15.15 59.09
1481 62.84
R ‘mm o=
sec 14.89 68.34
14.74 71.18

j =706.767 “MPa

s =81.225*MPa

a:=020 <<assume a=0.20>>

Ydotpli

0.001-sec”!

0.012-sec”!

0.121-sec!

0.305-sec”!
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equivalent shear stress officient [ l i I"

-—lq corr (T equiv,'f dotln) =0.994
—8 - -
= " C :=slope(T iy Ydotn)  C =74358
'Ydoﬂni 6 \\
X & -5 B :=intercept(T aqyivs B =-41.176
foreg, 4 ercep( equiv Ydotln)
- \\1
0
0.4 0.45 0.5 0.55 0.6
chuivi
Solve for ydot0 and x:
260.187
259425 |
- = aB+C -1 =
L= =€ -S€C = b =mean
" s+ap, ¥dot0 *= 258316 | MPa W
257.748
ydot0 and x are as follows:

SV O
Yot =2-57510% =sec

X =258.919-—I-<—
MPa
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s=81225MPa =02 % =258.919-—£;- O =298K gy =2-57510% ssec”
a

1

Input a guess for solver: © .5 :=50-MPa

Given
s
5
YY) Oc2 2) Ydot
—=ls 4 o —] {1+ In
A3 3 { (°c2 ] ¥dot0
X s+ 0| —

Ydot _Ydorpl

£ S — £ =
dot }\/; dotpl \/3

€dot 9c2
sec! MPa

WRITEPRN(YIELD7A) = augmem( y—
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 75% 8084, 25% 1080
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MPa:=P2-10° i:=1.4 ORIGIN:=1 Compositon; 50% 8084, 50% 1080

0.01 15.15 4740 0.54
0.10 | mm 1435 50.30
Vel := — L= ‘mm O = -MPa STDEV = MPa
1.00 | sec 14.87 54.77
2.50 15.38 5722 0.73

E '=1680-MPa v :=0.33 ©:=298.K 0:=020 <<assume a=0.20>>

__ E
p_ e
2.(1+v)
o= 0.077-p

it =631.579 *MPa

s =72.584*MPa
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El 0.428 -6.745
3 0.449 " ¥ dotp1 ; -4.387

T = iv = Ydotln, = dotln =
A s+ ap, equiv 1 0.48 otin sec! 012117
0.497 -1.233

linreg :=slope (’t equiv’ Y doﬂn) “Tequivt intel'C@Pt(“ equiv’ Y dotln)

Plot In(st train rate) (1/sec) Calculate the s int I | lati
val : ) Hicient f lictive line:
-—1,;I CO!T(T equiv’Ydoﬂn) =0.99
-9
= " C :=slope(T equiy:Ydotin)  C =78.82
¥ dotin; -
x 5 B :=intercept(T .. \iv0 Y B =-40.165
liveg, 4 S ( equiv dotln)
- l
0
04 042 044 046 048 0S5
chuivi
Solve for ydot0 and x:
310.102
309312 |
- =B +C -1 =
= =e -Sec = — ‘=mean(y)
w900 =1 308.103 | 'Mpa * x
307.445
dot0 and  are as follows:
Y doto =6-138° 10" *sec” !
x =308.74—_
MPa
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§=72.584°MPa =02 % =308.74'——
MPa

Input a guess for solver. o .5 i=50-MPa

©=298K 4o =6.138"10"°-

StreSS(‘Y dot) = Find(a c2)

z:=1.9

Taor =16° T35 0 :=Sms(7d°tz)
z

_Ydot _Ydotp1

E S —_— € =
dot 5 dotpl 5

WRITEPRN(YIELDSA) :=augment| ——0~ ——
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Compaosition: 50% 8084, 50% 1080
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MPa:=Pa-10° i:=1.4 ORIGIN:=1

0.01 15.66 20.54
0.10 15.75 26.31
Vel = E o = .mm O c = .
sec 15.92 36.99
2.50 15.30 40.68

E:=1125-MPa v :=0.33 © :=298-K

BiE—E  1=422932°MPa
2-(1+v)

§:i= 0.077 4 s =48.606 *MPa
1-v

0:=0.20 <<assume a=0.20>>

0.294-sec™!
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- — cort(% equiy»¥ dotin) =0-993
:g[ C :=sl0pe(% oquiy+Tdottn) € =24312
¥ dotln; -6 < .
x-S PN B :=intercept(t oquiy-Ton) B =~13.851
linreg; 4 AN
— o ]
3 ™
0
0.2 0.3 04 0.5 0.6
T equiv;
Solve for ydot0 and x:
144.973
143866 | K
— . B4C -1 ——
= =e -SEC = *——— ¥ :=mean
'os+ a-p, ¥dot0 X 14186 | MPa x @
141.18
ydot0 and y are as follows:
Y got = 34934.045+sec !
y =14297 2
MPa
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§=48.606°MPa o =02 y=14297 _N-I_I;T“ © =298'K v g4n0 =34934.045° sec !
a

Input a guess for solver. © . i=50-MPa

Slress('y dot) = Find(c c2)

z:=1..9

Ydot = IOZ'S-Jg-sw'l S :=Stress(ydot)
FA z Z,

Ydat ._Ydotpl
€ dot = — sdotpl -
\3 \3
i i i ri=2
14 (4]
WRITEPRN( YIELD10A) := augment —d—°5,-f—2—
sec'l MPa
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Compressive Flow Stress (MPa) versus Log(Strain Rate)(1/sec)
Composition: 25% 8084, 75% 1080
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Appendix E
Hopkinson Bar Test Results

Testing
100% Derakane / 0% Crestomer 378
75% Derakane / 25% Crestomer 398
50% Derakane / 50% Crestomer 413
25% Derakane / 75% Crestomer 428
0% Derakane / 100% Crestomer 448
All Load Rates
100% Derakane / 0% Crestomer 463
75% Derakane / 25% Crestomer 467
50% Derakane / 50% Crestomer 471
25% Derakane / 75% Crestomer 475
0% Derakane / 100% Crestomer 479
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: | Definitions:

ORIGIN:=1 pS:=sec-10°  p:=10° GPa:=Pa10’ MPa:=Pa-10°
I 2
GFi=21 V(=30 By i=210GPa Dy =075 Apgi=-D bar. Apar =285.023 mm

<1> . o <>
€ reflected :=READPRN(HDI1COER) ¢ refl ‘= € reflected ime o ‘=€ rofjacted ‘sec
4€ reft .
er:=1.. rows(a ,eﬂ) << set up range >> € ref] T << apply calibration >>
GF-V
2000 frrm—
1500
1000 / A
/ |
€ refl 500
T 0 —=
3 —-500 \
T ~1000
1500k \ /
e [ D M g
0 50 100 150 200 250 300 350 400 450 500 550 600
time T
S
Read and calibrate transmitted strain file:
_ __ <1> . L <>
€ transmitted '~ READPRN(HDICOET) € yrang =€ yransmitted Ume o ‘=€ ransmitted ~ "S€C
4°€ trans _
et:=1.. rows(e mms) << set up range >> € yrans = ———— << apply calibration >>
GE-V 0

€ =& - & . . .
trans * = trans  ~ wans, ., << shift pre-reflected signal to a strain of zero >>

200

0 50 100 150 200 250 300 350 400 450 500 550 600

time
et‘:t

™
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alculate the strain rate in f le:

Co'= 5000 << longitudinal wave speed for steel >>
sec
L,=5.78mm D ;:=7.77mm A, :=§-D 02 << inital specimen length, diameter, and Acs >>
-2.C,

L

€ = €
rate reﬂer

0

5000 i
4000

3000 ===k = ~:
2000 X

0 50 100 150 200 250 300 350 400 450 500 550 600

180 200 220 240 260 280 300 320 340 360 380 400
time

us
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— n n+1 - .
€ maxeng = Z At € maxeng =0-386 << max eng. strain >>

0.1
—2.776°10 1 -
. -0.1 \\
eng; o \ L
—_ 2 ~—
-03 [~

1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

A

_‘‘bar
Oeng = L "E bar '€ trans
0

200

100 //"\v\f‘
0 -
o cng,, 100 \ /—-"-f—'l

—300
—400

0 50 100 150 200 250 300 350 400 450 500 550 600
time
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—22

—160 ~ ~y
5 140 / \\7}
eng; =120

=100
17

MPa

~40—

0 =0.05 -0.1 —0.15 -0.2 —0.25 =03 -0.35 04 ~045 0S5

The maximum compresssive stress is: min(c cng) =-205.176 *MPa

Salculate true (logaritmic) steain in t N

€ true, =10 (s eng, * 1) min (a true) =-0.488 << maximum compressive true strain >>
salcul nt -

G true, =0 engi'(e eng * 1)

~180
~160 VAR SN
/

—140, <7
=120
c true; ~100 / T~ \

MPa -8

44—

(=]

=0.05 —0.1 —0.15 -0.2 —0.25 —0.3 ~0.35 —0.4 —045 05

etmei

The maximum compresssive true stress is: min (5 tme) =-189.806 *"MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester. The raw data was obtained on a
commpression split Hopkinson bar located at the Califomia Institute of Technology in a testing
session from 4/20/95 to 4/21/95. The temperature at the time of the test was 71.6 F and the .
reiative humidity was 32.3%. The raw data files have been archived in compressed form under the
following names:

1. WAVEQ054.WFT is the reflected pulse file.

2. WAVEOQO055.WFT is the transmitted pulse file.
3. WAVEO0056.WFT is the measured temperature file.

(¢}
D1COT1 = augment(s ﬁue’—g)
a

WRITEPRN(D1COT1) :=D1C0T1
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: | Definitions:

ORIGIN:=1 pS:=sec-10°  p:=10® GPa:=Pa10’ MPa:=Pa-10°
n
GF:=21 V(=30 EBp, =210GPa Dy, :=0.75in ;s‘,,,,,:=:‘--nba,[2 A pr = 285.023 °mm”

Bead and callibrate reflected strain file:
>

<1 , <>
€ reflected -~ READPRN(HD1COER2) € pefy ‘=€ reflected Hme o '=€ roflected  “SEC
4-¢
er:=1.. rows(s mﬂ) <<setuprange>> £ T << apply calibration >>
0
2000
1500 IM X
Emﬂ 500 \
|- 4 0 | 2 -
B \ :
s ] \ 7
2000 — J/ A~ ee—r”
0 50 100 150 200 250 300 350 400 450 500 S50 600
time oo
us
Read and calibrate 1 itted strain file:
_ . <> a <>

€ transmitted '~ READPRN(HD1COET2) € yra55 =€ transmitted Ume et ‘=€ yransmitted ~ 'S€€
4€ trans

et:=1. rows(s n'ans) << set up range >> € frans = << apply calibration >>
GRV ¢

A =€ -~ & o N .
trans* " trans " wrans, ... << shift pre-reflected signal to a strain of zero >>

200
150
100 A= — g N

50 /[
e g - /
-5 A\ VA

T -100 A

-150 \ \;r_-a:y

=200

0 50 100 150 200 250 300 350 400 450 500 550 600
time

rans

et“

mny
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Salculate ft . in lo:

Co =5000— << longitudinal wave speed for steel >>

sec
L 0= 680mm D 0= 7.77-mm

-2.C,
L

€ = ‘€
rate o rcﬂer

0

A, :=1:-.D 02 << inital specimen length, diameter, and Acs >>

=&-\

50 100

150 200 250 300

time
Ter

350 450 500 550 600

us

180 200 220

260 280 300

time
ﬂ'“

320 360 380

us
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start :=start-10  fin :=fin-10

fin €rate +E
= A at e =-0317 <<max eng. strain >>
€ maxeng ‘= 2 maxeng = V- .
n= start

i := start, start+ index.. fin
i €rate +E
_ 2 At raten raten +1
€eng, " 2

n= start

<< humerical integration by rectangle rule >>

-2.776"10 V7

-0.1 [~

—_— ‘ =0.2 = \
—-03 [~

N 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

200

100 // S
. X 4

o ~100 <

_hfP 2 =200 \‘_‘f""“‘\:/

=300

—400

0 50 100 150 200 250 300 350 400 450 500 550 600
time Tor
"
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=220

&
-180 7 I BN . e S
—160 / \

O cng, ::g [ 1
-~ 1 00p—rt-
L
/

-4
o
2
0

0 -0.05 —0.1 —0.15 -0.2 -0.25 -03 —0.35 —04 -045 05

& eng;
The maximum compresssive stress is: min(c eng) =-216.076 *MPa

Saloulate true (logaritmic) strain in t o

£ tye, =10 (s eng. * 1) min(e tme) =-0.382 << maximum compressive true strain >>
~alculate trus siress it .

O true, =0 cngi'(s eng, * 1)

=220

—200

- 2N
?:2[0; - =
2'140 / ""\."‘""\Q\
43-120
E100 /

True
A o
\\\

o}
Q'\\

-0.05 -0.1 =0.15 ~0.2 -0.25 -0.3 —0.35 0.4 ~045 05
True Strain

The maximum compresssive true stress is: min (0' m,e) =-200.044 *MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester. The raw data was obtained on a
commpression split Hopkinson bar located at the Califomia Institute of Technology in a testing
session from 4/20/95 to 4/21/95. The temperature at the time of the test was 71.6 F and the

relative humidity was 32.3%. The raw data files have been archived in compressed form under the
following names:

1. WAVEO057.WFT is the reflected pulse file.
2. WAVEO0058. WFT is the transmitted puise file.
3. WAVEO0059.WFT is the measured temperature file.

Wite true st | strain data t fle:

o
D1C0T2 :=augment(£ true’ Mt;uc)
a

WRITEPRN(D1C0T2) :=D1C0T2
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E | Definitions:

ORIGIN:=1 S :=sec-10°  p:=16° GPa:=Pa10° MPa:=Pa-10°
© 2
GF:=21 V(=30 E,,1=210GPa Dy =0754n }\bmzz--nbar2 A, =285.023°mm

Read and calibrate reflected strain file:

<> . . <>
€ reflected -~ READPRN(BD1COER2) € ;of) ‘=€ reflected tme or ‘=€ raflected " S€€

4.¢ refl . .
er=l.rows(e o) <<setuprange>> &g = << apply calibration >>
GEV
5000
4000
3000
2000 N
€refl 1000
TFer 0 [_/ AN ~
B 1000,
- —2000 \v,\ % l
—3000 I I
—4000 o4
—5000
0 50 100 150 200 250 300 350 400 450 500 550 600
time ey
us
Read and calibrat itted strain file:
. <i> . i <>
€ transmitted '~ READPRN(BDICOET2) € tran =€ rangmitted Ume e =€ ransmitted ~ "S€C
4°€ trans
et:=1.. rows(e Hans) << set up range >> € trans S << apply calibration >>
GFV

€ =€ - £ . . .
trans = = trans "~ wans, .., << shift pre-reflected signal to a strain of zero >>

500

400

300

200

€ wrans ‘°8 _— il

w100 \\M I S
— 200 A——

-300

~400

=500

0 50 100 150 200 250 300 350 400 450 500 550 600

time
°‘ct

ps
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Calculate the sirain rate in t le:
C, =5000— << longitudinal wave speed for steel >>
sec
L,=543mm D ,:=8.02mm A°:=-E--D o <<inital specimen length, diameter, and Acs >>
-2C,

£ = €
rate Lo reﬂer

8000 -
<00 |

e VTN

0 50 100 150 200 250 300 350 400 450 500 550 600

| lecte

230 250 270 290 310 330 350 370 390 410
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—.776°10

Der
MPa

1500

1000
500

atl =-0.396 << max eng. strain >>

0.1
7

-0.1

=0.2

2700 2900 3100 3300 3500 3700 3900 4100

—500
—1000

50

100

150 200 250 300 350 400 450 500 550 600
time
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4
o ™
\\

—0.05 —0.1 -0.15 0.2 -0.25 —-0.3 —0.35 —0.4 —045 0S5

€ eng;
The maximum compresssive stress is: min (0 ¢g) ==235.313 *MPa

calcul logaritmic) strain in N

€ trye, =10 (e eng, * 1) min (e tme) =-0.506 << maximum compressive true strain >>
~aicul ross it o

o true, =0 cngi'(e eng, * 1)

—220

—200

- ARE AN
160 ~—
- /] M Ak N

9 wruc, —120

0 —0.05 —0.1 —0.15 =0.2 ~0.25 =0.3 —0.35 -0.4 —045 05

€
n-uci

The maximum compresssive true stress is: min (o tmc) =-208.491 *MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester. The raw data was obtained on a
commpression split Hopkinson bar located at the Califomia Institute of Technology in a testing
session from 4/20/95 to 4/21/95. The temperature at the time of the test was 71.6 F and the
relative humidity was 32.3%. The raw data files have been archived in compressed form under the
following names:

1. WAVEOQ015.WFT is the reflected pulse file.

2. WAVEOO016.WFT is the transmitted pulse file.
3. WAVEO0017.WFT is the measured temperature file.

o
DI1COT3 = augment(e true’ Mt;ue)
a

WRITEPRN(D1CO0T3) :=D1C0T3
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: | Definitions:

ORIGIN:=1 pS:=sec10®  p:=10° GPa:=Pa-10’ MPa:=Pa:10°
T
GFi=21 V(=30 By, i=210GPa Dy, :=075in Aba,:z-l)m,2 A por =285.023 *mm”

<1> . <>
€ reflected = READPRN(BD1COER3) € ef ‘=€ reflected time o '=€ peflacted  "S€C
4-¢
er:=1.. rows(s reﬂ) << set up range >> € refl = << apply calibration >>
GEV o
5000
4000
3000
2000 =
E“ﬂer 1000 J/' \\
0 L N
L A 4 -
2 7
Il
=4000
~5000
0 50 100 150 200 250 300 350 400 450 500 550 600
time e
[T
Read and calibrate t itted strain file:
o o <1> . L <2>
€ yransmitted -~ READPRN(BD1COET3) € yran5 =€ yransmitted UME o ‘=€ ransmitted 'S¢
4°€ trans I
et :=1..rows (s u.ans) << set up range >> € rans -~ << apply calibration >>
GF-V g

€ ‘=€ b . . .
rans * " trans  ~ rams,,., << shift pre-reflected signal to a strain of zero >>

500

400

300

200

€ wrans,, log — 1
g 100 N — ——
—300,

—400

=500

0 50 100 150 200 250 300 350 400 450 500 550 600
time

pus
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iculate t in rate in t lo:

Co= 5000--Pi << longitudinal wave speed for steel >>
sec

" _®_ 2

L,=546mm D, =787mm A, .--Z- o

-2.C,

<< inital specimen length, diameter, and Acs >>

0 50 100 150 200 250 300 350 400 450 500 550 600

start :=230 fin :=410 At:=0.1-uS

P e selected refle e
1000
500
0
=500 “'\\ ]
Crate. -1 \\ L
- /
15
-1 —2000 N L
—_— —2500/ \
:3 < \\ =
35 —
—~4
230 250 270 290 310 330 350 370 390 410
time o
us
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start :=start-10  fin :=fin-10

fin

Eraten‘*' € rate_
€ maxeng ‘= Z At

+1

€ maxeng =-0.396 << max eng. strain >>

i :=start, start + index.. fin
i 3 +€
3 Z A rate, * “rate +1
& eng, 2

n = start

<< numerical integration by rectangle rule >>

0.1

—-2.776%10 V'
-0.1 [~

eng; \\

— -0.2
-03 [~

2300 2500 2700 2900 3100 3300 3500 3700 3900 4100

2000
1500
1000
O cog
o 500
MPa k
=500,
1000
0 50 100 150 200 250 300 350 400 450 500 550 600
time T
In
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0 -0.05 —0.1 =0.15 ~0.2 —0.25 —0.3 =035 —0.4 -045 05

Gmsi

The maximum compresssive stress is: min (o cng) =-226.244 *MPa

~alcul logaritmic) strain in t N

€ true, =ln (e engi+ 1) min (s tme) =-0.506 << maximum compressive true strain >>
cul it N

c true, =C engi'(‘: eng, + 1)

=220
:?gg 7/AVW\\
Do — ~7 —
true. -120 \{ Wf \
l— / 'l
wpa 10—

][‘
-
0

~0.05 —0.1 —0.15 -0.2 =0.25 -0.3 -0.35 -04 —045 0S5

The maximum compresssive true stress is: min (a true) =-203.56 "MPa
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. This stress strain curve represents a specimen composed of 100% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester. The raw data was obtained on a
commpression split Hopkinson bar located at the Califomia Institute of Technology in a testing
session from 4/20/95 to 4/21/95. The temperature at the time of the test was 71.6 F and the
relative humidity was 32.3%. The raw data files have been archived in compressed form under the
following names:

1. WAVEOQO18.WFT is the reflected pulse file.

2. WAVEOQ019.WFT is the transmitted pulse file.

3. WAVEQ0020.WFT is the measured temperature file.
Write t I | strain data t fle:

° true)

D1C0T4 = augment(s true’

WRITEPRN(D1C0T4) :=D1C0T4

397



; | Definitions:

ORIGIN:=1 pS:=sec-10°  p:=10° GPa:=Pa10° MPa:=Pa-10°

GF=21 V(=30 Ep,:=210GPa D, =0.75in Apy :=-:-:--D bar. A par =285.023°mm’

Read and calibrate reflected strain file:

<> ) <>
€ reflected -~ READPRN(HD7C2ER1) € 1o ‘=€ reflected time o, '=€ reflocted  "SEC
4 refl
eri=1. rows(a reﬂ) << set up range >> €refl = v << apply calibration >>
0]
2000
1000 F
0 P———
& refl, -1 / \
o VA
3
—4000
0 50 100 150 200 250 300 350 400 450 S00 550 600
time oo
us
Read and calibrate t itted strain file:
:= READPRN(HD7C2 = > time,,:= <>
€ transmitted = (HD7C2ET!) € trans ‘=€ gransmitted UMe ¢y ‘=€ pransmitted  'SE€
4€ trans
et:=1.. rows(s mms) << set up range >> € trans \= << apply calibration >>
GF-V

£ =g -E . . .
trans * - trans - trans,, ., << shift pre-reflected signal to a strain of zero >>

200
150
100

50 /
trans
et 0

Boo-s ) .,-.,—/
T -100 N _,/
—150 |
—200

0 50 100 150 200 250 300 350 400 450 500 550

time et
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Calculate the strain rate in i le:
Co :=5000-.E. << longitudinal wave speed for steel >>
S

cC
L,=563mm D ,:=800mm A, :=%~D 02 << inital specimen length, diameter, and Acs >>
-2.C,
€ rate,_ = L

"€ refl
0 er

5000
4000 _,\/4\
] T

0 50 100 150 200 250 300 350 400 450 500 550 600

time
Ter

us

200 220 240 260 280 300 320 340 360 380 400 420
time

us
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i := start, start + index.. fin

i

€rate T €rate
n n

+1

€ maxeng =-0.375

<< max eng. strain >>

<< numerical integration by rectangle rule >>

—.776°10

0.1

17

-0.1

—0.2

—

«t

\\

2000 2200 2400

2600

2800 3000 3200 3400

3600 3800 4000 4200

200
100 JASE e
© eng, oL -
MPa \\ N_/
-100 /’
. \ ]~
0 50 106 150 200 250 300 350 400 450 500 550 600

time




=220r
—2
180 / o ny_S———
=160 y,
5 1o} 7
MPa %0 /
/
e,
-
ol
0 =005 —01 <015 <02 025 <03 —035 —04 —045 =05
 cog;
The maximum compresssive siress is: min(o eng) =-195.363 *"MPa
Calculate true ( itmic) strain in i N
£ true, =1 (e eng, + l) min(e rye) =-047 << maximum compressive true strain >>
Calculate ! it L

O true, =0 cngi'(e eng * 1)

—200
~180
<
=160 // \"‘-\\
~140 D——
=120 —=
o
true; 100 / ]
MPa -, / ‘
—— 8 ] T
- //
-
okl
0 -0.05 =01 -0.15 0.2 -025  ~03 -0.35 ~0.4 045 —05
€
tnlei
The maximum compresssive true stress is: min(o u.ue) =-179.287 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 75% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 25% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the Califomia Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVEOO48.WFT is the reflected pulse file.

2. WAVEOO049.WFT is the transmitted pulse file.
3. WAVEO0050.WFT is the measured temperature file.

o}
D7C2T1 = augment(e rue- Mﬂ:e)
a

WRITEPRN(D7C2T1) :=D7C2T1
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; | Definitions:

ORIGIN:=1 pS:=sec10° p:=10° GPa:=Pa10’ MPa:=Pa10°

~

T
GF=21 V(=30 Epyi=210GPa Dy =075 Apyi= D par. A pgr =285.023°mm

Mead ang canpiale refeciod o F.I [11e:
) - <1> . . <>
€ reflected = READPRN(HD7C2ER2) € 1o =€ refiected time op ‘=€ reflected  *SEC
4'ereﬂ )
er:=1.. rows(a reﬂ) << set up range >> € refl = v << apply calibration >>
(0]
2000
10 1T I
Erefl
1 er 0
: [ N /[
— . /
20005 ———
0 50 100 150 200 250 300 350 400 450 500 550 600
time ..
-3
us
Read and calibrate 1 itted strain file:
. = <1> . — <>
€ transmitted -~ READPRN(HD7C2ET2) € yrang =€ gransmitted Ume o ‘=€ transmitted S
4-€ trans
et:=1., rows(a uans) << set up range >> € trans -~ << apply calibration >>
GFV o

£ =€ - & . . .
rans © ~ wrans  ~trans, ... << shift pre-reflected signal to a strain of zero >>

200
v—'—/ ’-‘\\
100 /\.n
€ 0 \k
”"loc \
00 ~]
—300
—400
0 50 100 150 200 250 300 350 400 450 500 550 600
tim
© ety
us
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Salculate the strain rate in t lo:

C,.:= 5000-2_ << longitudinal wave speed for steel >>

sCC
Ly=449mm D ;:=9.54mm A, :=;-D 02 << inital specimen length, diameter, and Acs >>
-2-C,
€ =
rateq L

o

‘€ refl
) er

4000 "\
A

\
2000

I
o
N

0 50 100 150 200 250 300 350 400 450 500 550 600
tme .

start :=150 fin :=370 At:=0.1-uS

5000

3000

—1000 AN <

€rate_ 1000
o

—3000 < L
—4000
=5000

150 170 190 210 230 250 270 290 310 330 350 370




0.1
-8.32710 17
.. \
~0.1 .
0.2 ‘\
eng,
! -0.3 .
-04
-0.5
71500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700
i
200
100 P i BN aph
o 0 Y
g“"lOC \ "-‘-—/
MP L
—_— a -200 \[ v/"
~300
—400
0 50 100 150 200 250 300 350 400 450 500 S50 600
time e
M
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42

=180, / ih_“_\‘{__‘ﬁ__ =
160
—140
engi 120 17
MPa 100
a /

0 —0.05 -0.1 ~0.15 -0.2 —0.25 -03 =0.35 =04 045 0S5

The maximum compresssive stress is: min(c eng) =-211.812 *MPa

I logaritmic) strain in t —

€ tmye, =In (e eng, + 1) min (e ,me) =-0.588 << maximum compressive true strain >>
~alcul tross in t L

] true, =0 engi'(s eng, + 1)

—200,

—180

e 7 T

~140,
O gue, 120 /

——L1-100
L B

—4

I~
L\\

0 —0.05 -0.1 =0.15 -0.2 -0.25 -0.3 -0.35 ~0.4 ~045 05

The maximum compresssive true stress is; min(c true) =-187.317 °MPa
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Supplemental note: This stress strain curve represents a specimen composed of 75% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 25% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the Califonia Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVEO051.WFT is the reflected pulse file.

2. WAVE0052.WFT is the transmitted pulse file.
3. WAVEOO053.WFT is the measured temperature file.

Write | strain data t flo:

c
D7C2T2 = augmcnt(s true’ l\::e)
a

WRITEPRN(D7C2T2) :=D7C2T2
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; | Definitions:

- ~ 6
ORIGIN:=1 uS:=sec-10° p:=10° GPa:=Pa-10’ MPa:=Pa-10

. T 2 2
GFi=21 V(=30 By =210GPa Dy =075 Apyr =7 Dy Apg=285023'mm

Read and calibrat flected strain file;
<1> ] <>
€ reflected :=READPRN(BD7C2ER3) € (o] ‘=€ reflected time o =€ foflected  "S€
4'€reﬂ b
=1.. € << set up range >> £ = << calibration >>
er :=1...rows ) p rang o " Gy o apply
2000

1000 f
ereﬂ“ 0 \
_» S

~1000
~2000 o —
0 50 100 150 200 250 300 350 400 450 500 550 600
time T
us
Read and calibrate ! itted strain file:
<1> . o <>
£ transmitted '~ READPRN( BD?CZE“) € trans -~ € transmitted time et~ € transmitted *Sec
4°€ rans
et:=1.. rows(t: tmns) << set up range >> € trans ::_GE—{’_ << apply calibration >>
Yo

€ =g -t . . .
trans " trans "~ trans, .. << shift pre-reflected signal to a strain of zero >>

200
100 7~
£
trans,, N I\
0 \
m
T -100 \ e
=200
0 50 100 150 200 250 300 350 400 450 500 550 600
tim
© et
us
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culate t in rate in lo:

Co'= 50002 << longitudinal wave speed for steel >>
s€C
Ly,=594mm D :=8.03mm A, :=%D 02 << inital specimen length, diameter, and Acs >>
-2:C,
3 =
rate, "

"€ refl
) [ ¢

0 50 100 150 200 250 300 350 400 450 500 550 600

210 230 250 270 290 310 330 350 370 390 410 430
time .

us



€ maxeng =-0.355

<< max eng. strain >>

0.1

-832710 17

—0.1 \ [~
\ -
€ —0.2 T —
eng;
— ~0.3 o —]
—0.4}
—0.5
—0.6
2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100° 4300
i
200
(4]
cog,, I 1
MPa \ k
—~100 /‘/
\/4 i ""\1?\/
—200
0 50 100 150 200 250 300 350 400 450 500 550 600
time et
1)
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0 =0.05 —0.1 —0.15 -0.2 —0.25 -0.3 -0.35 04 045 0S5

Emgi

The maximum compresssive stress is: min(o eng) =-196.907 *MPa

Calculate true (logaritmic) strain in t N

£ ue. =10 (s eng, + 1) min (e tme) =-044 << maximum compressive true strain >>
A i

© trye, =0 engi'(s eng, * 1)

~200
-180 _—
160 // ——
~140 P
c =120 =3
true. /
! =100 /
MPa 7
oL
0
0 -005 -01  —015 02 =025 —03 035 —04  —045 —05
Elruc.
1
The maximum compraesssive true stress is: min (a m,e) =-182.353 *MPa

411



Supplemental note: This stress strain curve represents a spacimen composed of 75% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 25% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVEO0045.WFT is the reflected puise file.
2. WAVEO0046.WFT is the transmitted pulse file.
3. WAVEQ047.WFT is the measured temperature file.

c true)

D7C2T13 := augment(x—: true’

WRITEPRN(D7C2T3) :=D7C2T3
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: | Definitions:

p:i=10° GPa:=Pa10’ MPa:=Pa-10°
s T 2 2
GF:=21 V(i=30 Bpg=210GPa Dy =075 Apyri= Dpy Apg =285023'mm

ORIGIN:=1 pS:=sec-10°

Read and calibrate reflected strain file:

<1> <2>
€ reflected :=READPRN(HDS5CSER1) sreﬂ:":ereﬂected time“:=srcﬂecwd -sec
4'Ereﬂ
er:=1.. rows(e mﬂ) << set up range >> € refl i= << apply calibration >>
GRV o
2000
o —~ AN
0
S - A
~3000
—=4000
0 S0 100 150 200 250 300 350 400 450 500 550 600
time er
pSs
Read and calibrate itted strai fil:
<>

_ ~ <1>
€ transmitted -~ READPRN(HDSCSET1) € 1 ‘=€ gransmitted

4-€ trans

et:=1.. rows(s trans) << set up range >> € (rans ::—Gﬁa

Ume ot ‘=& yransmitted  'SEC

<< apply calibration >>

£ =g -€ . . .
rans* " trans “wans,,.. << shift pre-reflected signal to a strain of zero >>

200
150
€ 50
et 0 p=—birt » - j v bt
H -5 -\ ¥

=100 ﬁb—‘-l/

=200
0 50 100 150 200 250 300 350 400 450 500 550 600
time ety
us
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calculate the strain rate in f le:
Co= 5000-I—n- << longitudinal wave speed for steel >>
sec

L,=656mm D  '=880mm A, :=§-D 02 << inital specimen length, diameter, and Acs >>

. ‘-_-2'C o
rate, L

€ refl
) or

0 50 100 150 200 250 300 350 400 450 500 550 600
time

us

start :=240 fin :=480 At:=0.1-uS

Plot the selected refiected pulse below:

5000

5000

240 260 280 300 320 340 360 380 400 420 440 460 480
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start :=start-10  fin :=fin-10

fin

PR

€rate T Erate
n n

+1

i :=start, start + index.. fin

0.1
~17
—2.776°10 —~]
-0.1 \
~]
€ cng,  ——_
—_ =-0.2 \\
-0.3 —
—-0.4
2400 2600

i

Eengi = Z At

€rate t Erate
n n

+1

<< numerical integration by rectangle rule >>

€ maxeng = 0311 << max eng. strain >>

2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800

200
100 PaX
y
O cag /
0 [ttt - P otbivg
MPa ”/
-100 ‘*d/
\_—1? g
-200
0 50 100 150 200 250 300 350 400 450 500 S50

time
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= ‘E har'€ trans index=10
i i

=220

~180 <
=160 //
. "lff =TT AN
eng; —120 7 \
MPa 100

0 —0.05 -0.1 —0.15 -0.2 —0.25 —0.3 ~0.35 —04 -045 0S5

The maximum compresssive stress is: min (o g) =-184.45 ‘MPa

aloul logaritmic) strain in o

€ e, =10 (e eng, + 1) min (s tme) =-0.372 << maximum compressive true strain >>
I resa in .

c true, =g Cngi'(a eng, * 1)

0 —0.05 ~0.1 —0.15 —0.2 —0.25 —0.3 -0.35 —0.4 —045 05

The maximum compresssive true stress is: min (o ,me) =-171.791 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 50% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 50% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following hames:

1. WAVEO060.WFT is the reflected pulse file.

2. WAVEO061.WFT is the transmitted pulse file.
3. WAVEQ062.WFT is the measured temperature file.

c
D3C5T1 :=augment(e true’ h;ue)
a

WRITEPRN(DS5CS5T1) :=DSC5T1
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: | Definitions:

ORIGIN:=1 pS:=sec-10° p:=10° GPa:=Pa10° MPa:=Pa-10°

. n 2 2
GF:=2.1 Vv o) =30 Ebar :=210-GPa D bar :=0.75-in Abar :-_-I'D bar Abar =285.023 *mm

<1> . . <>
€ reflected '~ READPRN(HDS5CSER2) € 1ol ‘=€ reflected Ume o ‘=€ reflected  "SSC

4-¢
er:=1.. rows(e refl) << set up range >> €ref] = << apply calibration >>
GF-V
2000 [~
1000 A

, AR AN

\]
ko, N | N
—3000
-4000 .
0 50 100 150 200 250 300 350 400 450 500 550 600
time oo
us
Read and calibrate t itted strain file:
. . <1> ) . <2>
€ ransmitted -~ READPRN(HD5CSET2) € (o0 i=€ transmitted tme oy ‘=€ pranemitted  "S€C
4-€ trans
et:=1.. rows(s trans) << set up range >> € trans :=—GF—V—- << apply calibration >>
¢

E =g —~€ . . .
rans ° “ftrans trans,,,, << shift pre-reflected signal to a strain of zero >>

200
150
100
Coans, 0 a
o or b
1] -5 /--'J'A/'
~100
-150 \/J L
-200
0 50 100 150 200 250 300 350 400 450 500 550 600
tim
e"‘ct
us
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~alculate the strain rate in { lo:

Co= 5000-—31— << longitudinal wave speed for steel >>
sec
L,'=644mm D, :=880mm A, :=§-D 02 << inital specimen length, diameter, and Acs >>

-2C,

€ rate *€ refl
er [- 4

(o]

0 50 100 150 200 250 300 350 400 450 500 550 600
time o,

us

(4]
-1 b | \\ /—/

I
™

240 260 280 300 320 340 360 380 400 420 440 460 480
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start :=start-10  fin :=fin-10

€ maxeng = Z At

fin

4 +E
raten raten +1

) € maxeng = 0319 <<maxeng. strain >>

0.1
—2.776°10 17 ——
\ -
-0.1 -
€ eag, \\
— -02 -
-03 S

200
100 7
0 [ ey S - /
. ]
prpr—an
=200
0 S0 100 150 200 250 300 350 400 450 500 550
time o
u

420




=220

—200
i
~140 / AW AL

O eng; —120 i

MPa _1:(; /

- /
-6
-4 //
-

("%
0
0 -005 —01  ~015 —02  —025 —03 =035 =04  —045 —05

emgi

The maximum compresssive stress is: min (o eng) =-190.949 MPa

€ true. =In (e eng. + 1) min (s true) =-0.385 << maximum compressive true strain >>
Calculate true stress in the specimen:

c true, =0 engi‘(e eng, + 1)

—180,
—160 7

-140 A \\—\
-120 A A~
e, —

0 —0.05 =0.1 —0.15 —0.2 —0.25 -0.3 —0.35 0.4 ~0.45 —0.5

The maximum compresssive true stress is: min (c; true) ==174.609 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 50% Dow
Chemical Derakane 8084 rubber-toughened vinyi ester and 50% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVEO063.WFT is the reflected pulse file.

2. WAVE0064.WFT is the transmitted pulss file.

3. WAVEQ0065.WFT is the measured temperature file.
Wiite ¢ ! | strain dat fle:

c truc)

DSC5T2 = augment(z true’

WRITEPRN(DS5SCST2) :=D5C5T2
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; | Definitions:

ORIGIN'=1 pS:=sec10® p:=10° GPa:=Pa10’ MPa:=Pa-10°

. T 2 2
GF=21 V(=30 Byy=210GPa Dy =075in Apg= Dy Apg =285.023mm

Read and calibrate reflected strain file:

<1> . — <>
€ reflected -~ READPRN(HDSCSER3) € ref) ‘=€ reflected UmMe e ‘=€ yeflected  S€

4-€ ref] .
er=l.rows(ere) <<setuprange>>  Erep it << apply calibration >>
R
2000
1000 / P
0 —
- J
—
3
~4000
0 50 100 150 200 250 300 350 400 450 500 550 600
time o
us
Read and calibrate t itted strain file: ‘
— <1> . - <>
€ transmitted -~ READPRN(HDS5CSET3) € y1an¢ =€ transmitted UMe o ‘=€ gancmitted  'S€C
4°€ trans _
et:=1.. rows(s mms) << set up range >> € rans == << apply calibration >>
GF-V o

€ =E b s N .
rans * - trans " wrams, ., << shift pre-reflected signal to a strain of zero >>

-
100 /

0 50 100 150 200 250 300 350 400 450 500 550 600

time
Clet

s

423



alculate f in rate in i lo:

Co :=5000-£— << longitudinal wave speed for steel >>

s€C
"2 - . .
L,=729mm D, :=873mm A, :=Z-D o << inital specimen length, diameter, and Acs >>
-2-C,
Erate = "€ refl
er cr
0
4000
3000
4 —
€ 1000 /s \ f
micg 1007 ~ 7
- \.
-3
—4000'
0 50 100 150 200 250 300 350 400 450 500 550 600
time o
pus

start :=240 fin :=460 At:=0.1-uS

P e e

240 258.333 276.667 295 313.333 331.667 350 368.333 386.667 405 423.333 441.667 460

time
Ter

T8
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€ maxeng

=-0.268

<< max eng. strain >>

0.1
—2.776°10 1 —
\\

-0.1
€
— -02 1

\1\
-03
2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600

200
100 //\‘”
o
mger PO [ Y - [
"> e v\P—y ' ot
Mpa \ pt/
—_— v
-100 f
M’_'Vr
=200
0 50 100 150 200 250 300 350 400 450 500 550
time o
B
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=00
i — e —
-140 A Ao,

eng; —120
MPa -1
— -8
-6

-4 //
-

0

()

\[\\

0 —0.05 —0.1 =0.15 —0.2 —0.25 —0.3 —0.35 ~-0.4 045 0.5
€

eng;
The maximum compresssive stress is: min(c eng) =-191.991 *‘MPa

g II l ! ! [Io -! . ] I . . “ . .

€ e, i ln(s eng, * 1) min(s ,me) =-0312 << maximum compressive true strain >>
cul 0t .

o true, =0 engi'(s engi"' 1)

=200
~180
AN
AN

(o] true. 120 / o
'-100 =]
MPa -8 /

1

0 —0.05 —0.1 —0.15 —0.2 —0.25 —0.3 —0.35 —04 —0.45 —0.5

The maximum compresssive true stress is: min (o tme) =-176.762 ‘MPa

426



Supplemental note: This stress strain curve represents a specimen composed of 50% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 50% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVEQ066.WFT is the reflected pulse file.
2. WAVEQ0067.WFT is the transmitted pulse file.
3. WAVEO0068.WFT is the measured temperature file.

[+}
D5CST3 = augment(s irue N;“e)
a

WRITEPRN(DS5C5T3) :=D5C5T3
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: | Definitions:

ORIGIN:=1 pS:=sec10® p:=10° GPa:=Pa10’ MPa:=Pa-10°
T 2
GFi=21 V(=30 Epy i=210GPa Dy i=0.75in Abar:z-nba,’ A gr =285.023°mm

<1> <>

€ reflected ‘=READPRN(HD2C7ER1) € of] ‘=€ reflected time o, '=€ poflected  "S€C
4t refl
er=l.rows(eren) <<setuprange>> €y << apply calibration >>
GF-V o
4000
2000 A
cnt, / \_

0 e A
" *\‘ / \
N y.
Z000 T—

—4000
0 50 100 150 200 250 300 350 400 450 500 550 600
time o
us
Read and calibrat itted strain file:
:= READPRN(HD2C7ET = 1> time ., = <>

€ transmitted ‘= ( 1) € trans ‘=€ transmitted Ume of ‘=€ gransmitted €€
4-€ rans

et:=1.. rows(s u.ans) << set up range >> € rans = XY << apply calibration >>

)

€ =€ - & N . .
rans © “lrans "~ trans,.., << shift pre-reflected signal to a strain of zero >>

200
100 J\V\'ﬂ
€ gans /
et 0 == éV —— TV Ala. el
# J'f* M""/
-100 = -
=200
0 50 100 150 200 250 300 350 400 450 500 550 600
timi
© ety
us
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Calculate the strain rate in t le:
Co= 5000-£ << longitudinal wave speed for steel >>
sec
L,=622mm D  :=829mm A, :=14‘-D 02 << inital spacimen length, diameter, and Acs >>
-2.C,

€ rate € refl
e er

[o)

/]
I
/

v

0 50 100 150 200 250 300 350 400 450 500 550 600

start :=250 fin :=450 At:=0.1-uS

e seje

250 270 290 310 330 350 370 390 410 430 450
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— +1 _ .
€ maxeng = Z At € maxeng =0-346 << max eng. strain >>

i :=start, start + index.. fin

i € +€
_ At raten b ¢ aten +1
€eng, ~ 2

n= start

<< numerical integration by rectangle rule >>

0.1
—17
—8.327°10

_ \\
01 \\

een =0.2| ———

g;

_ —-0.3
0.4
—o.sr
—0.6

2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500
i
Calculat
. A bar E
Oeng = o bar € trans
o)
200
100 'ﬂ
[+
cng“ 0 b A .:A tadhe /

0 50 100 150 200 250 300 350 400 450 500 550 600
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~1805
~160,
- N\
- \p/\
=120 7 wv‘v”‘ﬁ“"v
Geng‘ =100 J
MPa 8 /
— £
& l//
0
0 -0.05 =01 -015 02 <025 <03 <035 —04 —045 05
Smgi
The maximum compresssive stress is: min(c eng) =-157.15*MPa
Calculat i itrnic) strain in i . .
€ true, =In (s eng, * 1) min (e true) =-0.425 << maximum compressive true strain >>
calculat : in t . .
S true, =0 engi'(s eng, + 1)
~180
~160)
- Lo
i .
4 N
O true, ~100 ]
Mre 7
-4 ~ =
-
0
0 -005 -0l =015  —02 =025 03 =035 —0.4 045 —05
Emi
The maximum compresssive true stress is: min(c n.ue) =-145.159 MPa
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Supplemental note: This stress strain curve represents a specimen composed of 25% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 75% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the Califomia Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVEO0069.WFT is the reflected pulse file.

2. WAVEO0070.WFT is the transmitted pulse file.

3. WAVEQ071.WFT is the measured temperature file.
Wri e i (o)

c tme)

D2C7T1 = augment(s true’

WRITEPRN(D2C7T1) :=D2C7T1
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: | Definitions:

- - 6
ORIGIN:=1 pS:=sec-10® p:=10° GPa:=Pal0’ MPa:=Pa'10

T 2 2
GFi=21 V(=30 Epyi=210GPa Dy i=0751n Apgi= Dpg Apy=285.023'mm
Read and calirate reflected strain fl;

<1> . a <>
€ reflected ‘= READPRN(HD2CTER2) € refl ‘=€ reflected tMe or =€ reflocted  “SEC

4-g
er:=1.. rows(s reﬂ) << set up range >> Erefl o < apply calibration >>
(0}
2000
Y 1T N\
1000

; 7 AN
fler ~1000 \ / [ \

(]

N
— -2000 A ’\V/ ]
3000
—4000 .
0 50 100 150 200 250 300 350 400 450 500 S50 600
time T
HS
Read and cali itted strain file:
- ™ ,_ <1> , o <>
€ ransmitted = READPRN(HD2CTET2) € tra55 *=€ ransmitted UME e ‘=€ transmitted ~ 'S€
4°€ trans
et:= 1..rows(£ mms) << set up range >> € trans :=EFT << apply calibration >>
Vo

€ =g -£ . . .
trans rans — " trans, .. << shift pre-reflected signal to a strain of zero >>

200
100 /N
E
mct 0 Y o s bt V.
e A4 v L
[ \ ,—-hﬂh v'/
4 N e
100 >l
=200
0 50 100 150 200 250 300 350 400 450 500 550 600
time
elet
us
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Calculate the strain rate n lo:

Co, 5000 << longitudinal wave speed for steel >>
sec

L,=678mm D ,:=822mm A o :=§~D 02 << inital specimen length, diameter, and Acs >>

. _-2C °
rate“ ! L

€
refler
o

—5000
0 50 100 150 200 250 300 350 400 450 500 550 600

nme“

us

start :=260 fin :=460 At:=0.1-uS

the s e C b

260 280 300 320 340 360 380 400 420 440 460
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<< max eng. strain >>

€ maxeng =-0.318

i !=start, start+ index.. fin

i

= Z At

€ + &
raten raten +1

<< numerical integration by rectangle rule >>

0.1
-g327°10 V'
. o —
—_
-0.1 o —
—o- \\
o ke T —
e"‘gi -0.3 \\
~0.4]
-0.5
-0.6
2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600
i
200
100 A
o /
cog ] -
T 0 bl * /
MPa \
~100 v-..v.?r"
-200
0 50 100 150 200 250 300 350 400 450 500 550 600
time et
n
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-180
-160
~140 ;N\«\ﬁv\_\
cengi -1
/ ]
MPa 8 7 |
7
~17
0 -
0 =~005 —01 <015 <02 <025 <03 <035 04 —045 05
 eng;
The maximum compresssive stress is: min(o eng) =-162.129 *MPa
Calculate irue (1 fimic) strain in -
€ true, =In (e eng, * 1) min (s tme) =-0.383 << maximum compressive true strain >>
C te

c true, =g engi'(s engii- 1)

~180
~160
140 MVA \.&_\A
120 - ];/J
9 true; ~100 7 s N -
MPa 8 7 o w‘"\\
ced—L 1
17
0
0 -0.05 —0.1 —0.15 =02 -025  -03 -0.35 —0.4 045 05
€ rue,
The maximum compresssive true stress is: min (o true) =-148.8 "MPa
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. This stress strain curve represents a specimen composed of 25% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 75% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in

compressed form under the following names:

1. WAVEQ072.WFT is the reflected pulse file.
2. WAVEO0073.WFT is the transmitted pulse file.
3. WAVEO0074 . WFT is the measured temperature file.

c
D2CTT2 = augment(e true’ L::e)
a

WRITEPRN(D2C7T2) :=D2C7T2
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; | Definitions:

ORIGIN:=1 pS:=sec-10® p:=10° GPa:=Pa-10° MPa:=Pa10°

T
GFi=21 V(=30 By =210GPa Dy =075 Apg =D bar Abar =285.023°mm’
Read and calibrate reflected strain file:
<> . . <>
€ reflected -~ READPRN(HD2C7ER3) € 1. ‘=€ reflected ime o ‘=€ roflocted  "SEC
4'8reﬂ
er:=1.. rows(s reﬂ) << set up range >> € ref] = << apply calibration >>
GR.V
2000
[Y \

1000
, /

“-1
T Y ]
3000
—4000
0 50 100 150 200 250 300 350 400 450 500 550 600
time
s

Read and cali : itted strain file:

. . <> . <>

€ ransmitted -~ READPRN(HD2C7ET3) € trans ‘= € transmitted time o '=€ ganemitted  "S€C
4€ trang

et:=1.. rows(s uans) << set up range >> € trans = << apply calibration >>
GF-V o .

€ =g — & . . '
trans = - trans " trans, .o, << shift pre-reflected signal to a strain of zero >>

200
100 7~
£
o —
K \ M
~100| \/ ‘“"‘
=200
0 50 100 150 200 250 300 350 400 450 500 550 600
timi
® et
us
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calculate the strain rate in 1 le:
Co =5000— << longitudinal wave speed for steel >>
sec
L,=6.03mm D :=820mm A, :=§-D 02 << inital specimen length, diameter, and Acs >>
-2:C,

€ : £
ratea reﬂ“

0

5000
N
3000 —— -
e 2000 /" AY [/‘
rate er 1008 ~7
T o0 ~
= X 7
~3000 <

—~ AN

—5000

0 50 100 150 200 250 300 350 400 450 500 550 600
time

us

units of mi

€rate_ 1000

¥

255 275 295 315 335 355 375 395 415 435 455 475
time .

us
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0.1

"E bar'€ trans

-g32710 V'
-0.1
-0.2
€ cng,
— -03
-0.4
-0.5
-0.6
cul
o Apar
Seng = A
0
200
100
(o
on;
S
MPa
-100
200




0 —~0.05 -0.1 -0.15 =02 -0.25 —0.3 =0.35 —04 045 05

The maximum compresssive stress is: min(o eng) =-150.256 *MPa
Calculate true ( itmic) strain in t L

€ tye, =0 (s eng. 1) min (e tme) =-0.456 << maximum compressive true strain >>
i i
I in . .

c true, =0 eng, (e eng, * 1)

—180,
~160

o =

c true, -100

MPa 8 [ s

i - \,ﬁ]

-

0 -0.05 —0.1 —0.15 =0.2 =0.25 —-0.3 =0.35 -0.4 045 05

The maximum compresssive true stress is: min (c true) =-137.791 ‘MPa
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Supplemental note: This stress strain curve represents a specimen composed of 25% Dow
Chemical Derakane 8084 rubber-toughened viny!l ester and 75% Scott Bader Crestomer 1080. The
raw data was obtained on a commprassion split Hopkinson bar located at the California Institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVEQ075.WFT is the reflected pulse file.

2. WAVEO076.WFT is the transmitted pulse file.
3. WAVEO0Q77.WFT is the measured temperature file.

[+
D2CTT3 = augmcnt(s rues L;“")
a

WRITEPRN(D2C7T3) :=D2C7T3
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| Definitions:

ORIGIN :=1

uS =sec-10°°

R:=10° GPa:=Pa10’ MPa:=Pa-10°
T
GF:=21 V(=30 Bpyi=210GPa Dyy =075 Ay =, Dy

ar

2

A bar = 285.023 *mm

2

<1> ) <>
€ reflected '=READPRN(BD2C7ER1) € refl =€ reflected time er =g reflected *S€C
4-€ refl
er:=1.. rows(e mﬂ) << set up range >> € refl i= << apply calibration >>
GEV g
2000
1000 4
0 s J
Emfler -1000 [‘/ \
_H -2ooo¥‘*-_ / [
3000,
—4000
0 50 100 150 200 250 300 350 400 450 500 550 600
time o
us
Read and calibrate t itted strain file:
- ,_ <1> , - <>
€ transmitted ‘= READPRN(BD2C7ET!) € yran ‘=€ grangmitted Ume e ‘=€ pansmitted  "S6C
4-€ trans
et:=1., rows(e u,ans) << set up range >> € trans ‘=———— << apply calibration >>
GFV

£ =E - & . . .
rans rans  “tranms, ., << shift pre-reflected signal to a strain of zero >>

100
W
¢ 0 Powrdipriorugr ﬁwvv“v
mc‘
_IJ 100 V M
=200
0 50 100 150 200 250 300 350 400 450 500 550 600
tim:
e ety
us
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C, =5000— << longitudinal wave speed for steel >>
s€C ’

L,=598mm D, :=8.19mm A, :=i‘--D 02 << inital specimen length, diameter, and Acs >>

-2.C,
€ =
rath L

‘€ reﬂa
0

]
4000

0 50 100 150 200 250 300 350 400 450 500 550 600

nput start and finish time
units of microseconds:
start :=210 fin :=430 At:=0.1-uS

Plot the selected reflected pulse below:

210 230 250 270 290 310 330 350 370 390 410 430
time

us



,onvert above imes to vecto

start :=start-10  fin :=fin-10

0.1

-8327°10 1/ —

~0.1 —

=0.2
£ o=
eng; ~0.3 T~
—0.4
=0.5

&

2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300

200
100
(o]
en;
Ber 0 et g
MPa K
~100 e
~200
0 50 100 150 200 250 300 350 400 450 500 550 600
time et
m
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—180,

—160
/"\'\ N

—140 v
1 W A Woan A

~120 -y B N
o eng; ~100 fv‘/ ﬁ
Mpa 8 I T

[ —0.05 —0.1 —0.15 -0.2 =0.25 =0.3 —0.35 —0.4 —045 0S5

€ eng;

The maximum compresssive stress is: min(o eng) =-159.28 *MPa

el logaritmic) strain in N

£ true, =In (s eng, + 1) min (e m]e) =-0457 << maximum compressive true strain >>
Calul I in t .

] rue. =0 engi'<5 engi*' 1)

~180
—160
—140
—120 “

G - A AA
frue; 100 A 1 W 1]

= /’l, il

0 —0.05 0.1 —0.15 —0.2 —0.25 —0.3 —0.35 —0.4 —045 0.5

The maximum compresssive true stress is: min (a lrue) =-147.004 -MPa

446



: This stress strain curve represents a specimen composed of 25% Dow
Chemical Derakane 8084 rubber-toughened vinyl ester and 75% Scott Bader Crestomer 1080. The
raw data was obtained on a commpression split Hopkinson bar located at the California institute of
Technology in a testing session from 4/20/95 to 4/21/95. The temperature at the time of the test
was 71.6 F and the relative humidity was 32.3%. The raw data files have been archived in
compressed form under the following names:

1. WAVEOO030.WFT is the reflected pulse file.
2. WAVEQ0031.WFT is the transmitted pulse file.
3. WAVEQ032.WFT is the measursed temperature file.

c tmc)

MPa

D2C7T4 := augment(s true’

WRITEPRN(D2C7T4) :=D2C7T4
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: | Definitions:

_ - 6
ORIGIN:=1 pS:=sec10®  p:=10° GPa:=Pa-10° MPa:=Pa-10
. n 2 2
GF:=21 V(=30 Ep,=210.GPa D e i=075in Apy :=—4—-D bar  Apar =285.023°mm
<1> . <>
€ reflected -= READPRN(HDOCIER1) € o) '€ refiected time o ‘=€ eflected  'SE€
4-€ ref
er:=1.. rows(a reﬂ) << set up range >> € refl = << apply calibration >>
GF.V g
2000 7 y
1000 f
S BB / \
=000 N B o
~3000
—4000
0 50 100 150 200 250 300 350 400 450 500 550 600
time ..
[~ ¢
us
Read and cali l itted strain file:
= — <1> . — <2>
€ ransmitted -~ READPRN(HDOCI1ET1) € 1356 *=€ transmitted Ume o; *=€ ransmitted 'S¢
4°€ trans
et :=1..rows (a mms) << set up range >> € trans -~ << apply calibration >>
GF-V o

€ =g - . . .
trans - trans " trams,.., << shift pre-reflected signal to a strain of zero >>

200
100
Elra.n.s j/w
N e s L N wler
n \ s
~100 N I' _;*ﬂ!"
—200 :
0 50 100 150 200 250 300 350 400 450 500 550 600
tim
e"ct
KS



~alculate the strain rate in { lo:

Co= 50002 << longitudinal wave speed for steel >>
sec

L,=7.53mm D ,:=1046-mm A4 :=;-D 02 << inital specimen length, diameter, and Acs >>
-2.C,

€ =
rateu L

€ refl
er

0 50 100 150 200 250 300 350 400 450 500 550 600

start :=250 fin =450 At:=0.1-puS

Plot the se flec

250 270 290 310 330 350 370 390 410 430 450
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atl =-0.287 <<max eng. strain >>

€ maxeng

i := start, start 4+ index.. fin

Erate T Erate
n n+

1
Eengi: Z At

0.1

7

-8327°10 |

—0.1

—0.2
eng.

—_— -0.3

—0.4f

g

.

—0.6

2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500
i
100
50 Waat
[
B Y N T LAl e - sﬂr\ /
MPa w/

100 150 200 250 300 350 400 450 500 550 600
time

450



0 —0.05 =0.1 —0.15 —0.2 —0.25 —03 =0.35

€

mgi
The maximum compresssive stress is: min(cr eng) =-97.294 *MPa

el logaritmic) strain in N

€ e, =1 (s eng, *+ 1) min (e mm) =-0.339 << maximum compressive true strain >>
| wrees in i .

G true. =0 engi'(a engi*' 1)

—100

-8

—_ / PaVAVY e V.

e e o

O, Z/ AN

MPa _

—_ _: 7 l‘*—'
/

-1

NV

0 —0.05 0.1 =0.15 —0.2 =0.25 —0.3 —0.35

The maximum compresssive true stress is: min (c true) =-87.72 ‘MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Scott
Bader Crestomer 1080. The raw data was obtained on a commpression split Hopkinson bar
located at the Califomia Institute of Technology in a testing session from 4/20/95 to 4/21/95. The
temperature at the time of the test was 71.6 F and the relative humidity was 32.3%. The raw data
files have been archived in compressed form under the following names:

1. WAVEO078.WFT is the reflected pulse file.

2. WAVEO0079.WFT is the transmitted pulse file.
3. WAVEO080.WFT is the measured temperature file.

Wiite t I | strain data t  file:
o

DOCIT1 = augment(e true'_M?)

a

WRITEPRN(DOCI1T1) :=D0C1T1
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: | Definitions:

ORIGIN:=1 S :=sec-10°®

p:=10° GPa:=Pa10° MPa:=Pa-10°

GF:=21 V(=30 Ep,i=210GPa Dy, :=075in Ay :=§-D bar Apgr =285.023'mm’

Read and calibrate reflected strain file:

<> _ <>
£ reflected :=READPRN(HDOCI1ER2) ¢ refl ‘=€ reflected time er '~ € reflected *S€C
4-€ e
eri=1.. rows(e reﬂ) << set up range >> € ref] = << apply calibration >>
GF-V o
2000 -
or g ASN
0
Erolle oo X‘ / \\
' —2000 1V =
300
4000
0 50 100 150 200 250 300 350 400 450 SO0 550 600
time e
us
Read and calibrate t ited strain file:
<>

_ _ <1>
€ transmitted -~ READPRN(HDOCIET2) € yryp6 =€ transmitted

— A€ rans
et:=1. rows(e trans) << set up range >>

€ e
trans
GF-V g

Ume ¢ ‘=€ gansmitted  "S6€

<< apply calibration >>

£ =g - . . .
rans trans - wrans,s,, << shift pre-reflected signal to a strain of zero >>

200
100
- /‘ﬂz
ct 0 P % hac -~ . ol _/
. 2 N 'y
s \ r”'.
- ~100 N M
M
=200
0 50 100 150 200 250 300 350 400 450 500 550 600
tim
© elﬂ
[T
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C, 1=5000— << longitudinal wave speed for steel >>
sec
L,=699mm D ;:=1046mm A, :=§-D 02 << inital specimen length, diameter, and Acs >>

-2:.C,

"€ refl
er

0 50 100 150 200 250 300 350 400 450 500 550 600
time

us

Calcula strain i

I a d finish time of re as a ime i ical i ratio
units of mi conds:
start :=250 fin :=450 At :=0.1-uS

Plot the selected reflected pulse below:

5000
4000
3000
2000
rate 1000
T o
-1 -1000 -
—  —2000 = <
-3000
—4000
=5000

250 268.182 286.364 304.545 322.727 340.909 359.091 377.273 395.455 413.636 431.818 450

time
Ter

us
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start :=start-10  fin :=fin-10

fin € rate_ tEe rate | .
€ maxeng = Z At 5 € maxeng =-0297 << max eng. strain >>
n= start

1 :=start, start + index.. fin

€
raten +1

€rate t
= Z At n . . .
& eng, 2 << numerical integration by rectangle rule >>
n= start

0.1
17

-8.327°10
-01

=0.2
— —0.3

—0.4

—0.5

2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500

Calculate the axial co e

._Abm
Ceng = "E bar'€ trans
Ao
100
50 //*\.
O eng,_ o bk m L /

MPa ,/"’T‘)/
-5

-100

0 50 100 150 200 250 300 350 400 450 500 550 600
time
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% 4 /f
=2 /
0 —0.05 -0.1 =0.15 -0.2 -0.25 =03 —0.35

emgi

The maximum compresssive stress is: min (c g) =-95.172 *"MPa

Cal
€ e, 10 (s eng, + 1) min(a mm) =-0.352 << maximum compressive true strain >>
alcul ross in { -

o true. =g Cﬂgi'(e eng, * 1)

-100

-8 V1% na
\—J\/\A
M/\,—\/\,\/\
_ 1
S ue /
1
MPa —4 [f
-2 /
0
(1] -0.05 =0.1 -0.15 —-0.2 =0.25 =0.3 —0.35
€ tuc;
The maximum compresssive true stress is: min (0' lrue) =-85.937 -MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Scott
Bader Crestomer 1080. The raw data was obtained on a commpression split Hopkinson bar
located at the California Institute of Technology in a testing session from 4/20/95 to 4/21/95. The
temperature at the time of the test was 71.6 F and the relative humidity was 32.3%. The raw data
files have been archived in compressed form under the following names:

1. WAVEO0081.WFT is the reflected pulse file.

2. WAVEO082.WFT is the transmitted pulse file.
3. WAVEO0083.WFT is the measured temperature file.

[+)
DOCIT2 := augment(s tme"g)
a

WRITEPRN(DOC1T2) :=D0OC1T2
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| Definitions:

ORIGIN:=1 pS:=sec10° p:=10° GPa:=Pa10’ MPa:=Pa10°
. T 2 2
GFi=21 V(i=30 Epy=210GPa Do =075in Apgi= Dpg Apg =285023'mm

Read and calibrate reflected sirain fil:

<t> . o <>
€ reflected ‘= READPRN(HDOCIER3) € ref] *=€ reflected time o '€ reflected  *SEC
4-e el __
er:=1. rows(e reﬂ) << set up range >> € refl = << apply calibration >>
GEV g
2000
A N
1000 \
£ 0 —
er_ A\ yl N\
o N I 4 T
¥ =000
—3000|
—4000
0 50 100 150 200 250 300 350 400 450 500 550 600
time ..
er
us
ad ibr.
. _ <1> , __ <>
€ ransmitted -~ READPRN(HDOCIET3) € rang ‘=€ transmitted Hme o =€ ransmitted  "S€C
4€ trans _
et:=1.. rows(e uans) << set up range >> € trans ‘= ———— << apply calibration >>
GFV g

€ =€ — & . . .
trans trans "~ trans,.,, << shift pre-reflected signal to a strain of zero >>

100

L v
€ s, 0 w—:iv-w“-w w\

o N

- T

0 50 100 150 200 250 300 350 400 450 500 550 600
time

et ot

us
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Salculate the strain rate in t lo:

Co= 5000-—'5- << longitudinal wave speed for steel >>
sec

L,=7.15mm D ,:=10.18-mm A, :=§-D 02 << inital specimen length, diameter, and Acs >>

-2.C,

£ = 3
rate“ rcﬂ“

[s]

3000 /-‘§='ﬂ\

Frateg 10007 ~[— 7

0 50 100 150 200 250 300 350 400 450 500 556 600

start :=250 fin :=450 At:=0.1-uS

Plot the selected reflected pulse below:

rate_ 1000

|§L
é
[
\

250 268.182 286.364 304.545 322.727 340.909 359.091 377.273 395.455 413.636 431.818 450

time
Ter

s
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i :=start, start+ index.. fin

i
eengi = Z At

n = start

<< max eng. strain >>

€rate T Erate
n n

<< numerical integration by rectangle rule >>

-8.327°10

eng

—200




0 —0.05 -0.1 =0.15 0.2 —0.25 =0.3 -0.35

€

eng;

The maximum compresssive stress is: min(c eng) =-103.841 *MPa

alculate true (logaritmic) strain in o

€ trye. :=ln(e eng. * 1) mine yrye) =—0.359 << maximum compressive true strain >>
1 1

Calculate true stress in the specimen:

c true, =0 cngi'(g cngi‘" 1)

~100

0 —0.05 -0.1 —0.15 —0.2 —0.25 -0.3 —0.35

The maximum compresssive true stress is: min (c ,me) =-93.227 *MPa
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Supplemental note: This stress strain curve represents a specimen composed of 100% Scott
Bader Crestomer 1080. The raw data was obtained on a commpression split Hopkinson bar
located at the Califomnia Institute of Technology in a testing session from 4/20/95 to 4/21/95. The
temperature at the time of the test was 71.6 F and the relative humidity was 32.3%. The raw data
files have been archived in compressed form under the following names:

1. WAVE0084.WFT is the reflected pulse file.
2. WAVE0085.WFT is the transmitted pulse file.
3. WAVEO0086.WFT is the measured temperature file.

c true)

DOCIT3 = augmcnt(e true’

WRITEPRN(DOC1T3) :=D0CIT3
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MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST
Select specimens to be used: z:=1..4 ORIGIN :=1
DIM , :=READPRN(COMP1B) SPEC p :=3

._ <1> — <> .
Lol -—(DIMA ) PE A-mm Dol .—(DMA )SPBCAmm

DIM  :=READPRN(COMP1A)  SPECp =24

—_ <>
‘mm D ) -—(DMB )

Lo, = (DIM B“’) seec ' seac ;T
DIM (- :=READPRN(COMP1B)  SPEC( =5
Lo, = (DM ™) e jmm D = (DMC<Z>)SPECC.mm
DIM p, :=READPRN(COMP1B)  SPECp, =11
Lo, = (DIM D“’) sppc ™ Do = (D]MD°>) sprc

T
Calculate the initial cross sectional area (mm"2): A .o, :=Z- (D o )2
z Z

191.38
192854 |
Aeso=| 193346 | ™™
189.911
Data il information:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A :=READPRN(ICILRIT8) Note: Files A-D are only used for

B := READPRN(ICILR2TS) tracking purposes. Tl.mre. |s.no relation
to the specimen position indicator.
C '=READPRN(ICILR3T4) Analysis slots not used read the detault file

D :=READPRN(ICILR4T3)  ICOLR1T1.pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm):

load 5 :=A"'” KN

load  :=B"'” kN

load ¢ :=C kN

aispl A= AQ> -mm
displ g := B .mm

displ ¢ :=C” -mm

Look at matrices and calculate

load py ;=D kN

kN :=1000-newton

displ D :=DQ> ‘mm

number of data points:
a:=1..rows(A) d:=1..rows(D)
b :=1..rows(B)
c:=1..rows(C)
Calculate true stress and true strain (assume incompressibility): MPa :=1.10%Pa
Calculate instantaneous length (mm) and cross sectional area (mmA2):
Acso . ‘L 0, A csoz'L 0,
Lia =L, —displ p Ajp = L;g =L, ~displg A =
a 1 a a L iA b 2 b b LiB
a b
Acso3'L 0, A cso“'L o,
L.~ =L, — displ A:n = L.y =L, - displ Amn =
iC_ " *o, PlC, iC L. iD, "o, P'D, iD, L.
1Cc iD A

Calculate true stress (MPa) and true strain:

loadA
a
(o] =
l;meA‘I AiA
a
Lia
— a
€ trueA =-In
a LO

1

load load
c S o S
trueB, '~ trueC_ '~
® A c Ajc
<
Lig, Lic,
Eu.ueBb:=-ln L EU'UCC =-In
) ¢ )
2 3

loadD
d
c =
trueD
d AiD
d
Lip
d
€ =-In
trueDd Lo
4



Calculate the yield stress (MPa) and corresponding true strain:

o] yAcalc :-—-lf( <1200,6 trueA 0 MPa) yA max( yAcalc NumA (0' uueA =0 yA,a,O)

cychb 1f(b £1200,0 gyep - OMPa) 6 yB =mzx(0 ypcaic) NumB 1f(a trueB, =0 yB- b,O)
(O‘ yCcalc) NumC 1f(c trueC =0 yc ,C,0

S yDealc, lf( 4<1200, yryep .0 MPa) 6 yp =max(6 ypeac) NumD, :—1f(o trueD =0 yD,d,o)

EyA SE E\g =€ £ =€ € =€
YA TEUCA L Namay VB VB nampy YO TUEC Numey P VD D)
Read the stress strain curve data from the Hopkinson Bar analysis:
i:=1800,1810..4000
TRIAL := READPRN(D1C0T2)
1>
€ tryey = (- TRIAL)"~ 0y 1=(-TRIAL) > -MPa
O 4 ‘=max(c NumH. =if( ¢ =0 01,0} €, =€
yh (trueh) i (u'uehi yh ) yh Uuehm(m)
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Generate a plot of true stress (MPa) versus true strain for 100% 8084 / 0% 1080 at various load
rates:

200
190 // A
180

AN
170 <

160
150
|

140 ! \”\-\/ b~

Si20
éuo ——}-v‘/\\“\\ \\

¥

97
[V
‘(/
p
I

\

50 ” \ 1‘
10 H g |
1 L~

005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08
TRUE STRAIN
— A =34-4-¢ (3); Load Rate = 0.01 mm/sec*
— B =27-4-c (24); Load Rate = 0.10 mm/sec*
— C=344-¢(5); Load Rate = 1.00 mm/sec*
— D=35-4-d (11); Load Rate = 2.50 mm/sec*
— E =Hopkinson Bar Test (1); Strain Rate = 2.50e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain
rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate/initial specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(e ryea) =0.759  max(0 yycp) =110.58-MPa Cya=93767"MPa &y, =0.065
max (& ryep) =0.761  max(0 gyep) =106.084 *MPa 0 ,p=105442'MPa &5 =0.071
max (& ec) =0.763  max(0 pyec) =117.63-MPa Cyc=11763"MPa &, =0073
max(e yryepy) =0.763  max(0 pyepy) = 123.683 °MPa G yp=123.683"MPa &5, =0.073
max (€ yryen) =0382  max(0 ryep) =200°MPa O ypp =200°MPa € yy =0.077
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MICHAEL ZIV
THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimens to be used: z:=1..4 ORIGIN :=1

DIM , :=READPRN(COMP2B)  SPEC p =2

Lo, = (DIM A“’) sec,™ Do :=(D1M AQ))spp,c mm
DIM g :=READPRN(COMP2B)  SPECp =6
L02 = <DMB<I>)SPECB-mm D 0, = (DIMB<2>)SPECB~mm
DIM (- :=READPRN(COMP2B)  SPEC( =8
Lo, = (DIM C<1>) spec, M@ Do :=(DIM c<2>> spmc 0

DIM [ :=READPRN(COMP2B) ~ SPECp :=12

<1>)
mm

,__ <>
LO4:: (DIMD -mm DO —(DMD )

SPEC A SPEC

- . T 2
Calculate the initial cross sectional area (Mm"2): A o, ::Z- (D 0)
z Z

183.134
183614 |

Acso=| 15782 | ™™
186.023

Data fle information.

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A :=READPRN(IC2LR1T6) Note: Files A-E are only used for

B := READPRN(IC2LR2T4) tracking purposes. '!T\erc? |s.no relation
to the specimen position indicator.
C :=READPRN(IC2LR3T5)  Analysis slots not used read the default file

D :=READPRN(IC2LR4T5)  ICOLR1T1.pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN := 1000-newton

. <2
load , :=A"” kN displ , =A% -mm  loady :=D"" kN displ py ;=D -mm
load g :=B~' kN displ g :=B<"” -mm
load ¢ :=C<l>-kN displ o :=C<2>-mm
Look at matrices and calculate
number of data points:
a:=1..rows(A) d:=1..rows(D)
b :=1..rows(B)
c:=1..rows(C)
Calculate true stress and true strain (assume incompressibility): MPa :=1-10°Pa
Calculate instantaneous length (mm) and cross sectional area (mm"2):
Acsol'L o, Acsoz'L 0,
LlA :=LO —dlSplA AlA S — LlB :=L0 —dxsplB AIB =
a 1 a 3 L iA b 2 b b L iB
a b
L L Acso_,)'Lo3 Acso4Lo4
.~ =L _ — displ A Ee—— " L.y =L - displ Am =
iC, "o, P'C, iC, Lic iD, =*o, P'D, iD, Lo
c d
Calculate true stress (MPa) and true strain:
load load load load
o S c T c e c S
> trueA_ T trueB, '~ trueC '~ trueD ™
a A i'Aa b A iBb c A iC d A
c d
L. . L. L. ,
— lAan — 1Bb — lCc L’Dd

€ rueA =-in € trueB, ‘=" 10 € ryeC_+=-1n € tryeD, -=-In

a o b L o c o d L

1 2 3 04



Calculate the yield stress (MPa) and corresponding true strain:
=if]
(s yBcalc) Nllme =]

=if

Q
ES
£
%Q
g
U
1
i i

c yAcalca = if(aSIZOO,c true Aa,O~MPa)

Femp
S

O trueA =0 ya-3,0

N
~—

S trueB, = yB-0-0

z
2
U]

—_

S

[+ u-ueccgc y(:vcao

o yBcalcb = if(b.<.1200,6 tmeBb’o'MPa) ] B ‘=max
c yCealc_ :

if(c<1200,6 ,00MPa) © .~ :=max(c
trueCc yC yCcalc

o yDcalcd :=if{ d<1200,6 m,eDd,O-MPa) c yD :=max(o yDca.lc) NumD A =if]

—
=

(¢ u-ueDdsa yD, d,

E A TE £ =& EyC T E\yp TE
yA tmeAm(” A) yB nueBm(NmB) yC trueCw(ch) yD trueDm(” D)
Read the stress strain curve data from the Hopkinson Bar analysis:
i:=2100,2110..4300
TRIAL :=READPRN(D7C2T3)
1>
€ yueh = (- TRIAL)Y'” 6 =(-TRIAL)®” -MPa
°yh:=max(“tmeh) NumHi:=xf(cu.uehi=cyh,1,0) eyh:etruehm( ,
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Generate a plot of true stress (MPa) versus true strain for 75% 8084 / 25% 1080 at various load
rates:

200
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10—\
160 [ L
150 / A
140 | AN
=130 | SN
) l \/uv\q
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©110 | N
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ST /ﬂ
LY —— ———— 7
[——
Zg / //\\ —— —— /4
50

30

20 y
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TRUE STRAIN

— A=31-5-b (2); Load Rate = 0.01 mm/sec*

— B=31-5-f (6); Load Rate =0.10 mm/sec*

— C=32-5-a(8); Load Rate = 1.00 mm/sec*

— D =32-5-e¢ (12); Load Rate = 2.50 mm/sec*

— E =Hopkinson Bar Test (3); Strain Rate = 3.00e+03 /sec

" The Instron tests were conducted at a constant loading rate. As a consequence, the strain

rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. Aload rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max (e ryca) 0855  max(o e A) =103.201-MPa Oy =67896"MPa & =0.066
max (€ yyep) =086 max(0 inyop) = 104.253-MPa o yp=84.366'MPa ¢, =0.064
max(€ yryec) <0862 max(0 ryec) = 101.544 °MPa Oy,c=94T98MPa &, =0071
max (& yryep) <0864 max(0 o) =104.907-MPa o ,p=101.388-MPa &, =0.07
max (€ ryep) =044 max(0 o) = 182.4°MPa Oy, = 182.4°MPa € yh =0.077

470



MICHAEL Z|V
THESIS DATA REDUCTION PROGRAM
UNIAXIAL COMPRESSION TEST

Select specimens to be used: z:=1..4 ORIGIN :=1

DIM j :=READPRN(COMP3B)  SPEC 5 :=2

<1>

. <> .
L01 .—(DIMA )SPECA-mm D 0, .—(DIMA )SPECA mm

DIM g := READPRN(COMP3B) SPECg =6

L ::(DMB<’>) mm

0,

. >
X ‘mm D 02 .—(DIMB )

SPEC g SPEC g

DIM (- :=READPRN(COMP3B)  SPEC (- :=9

. <1> . <>
L0 .—(DIMC ) ‘mm D03.-(DIMC ) mm

5 SPEC ¢

SPEC
DIM , :=READPRN(COMP3B) ~ SPECp :=13

o <>
‘mm Do.—(DlMD )

- <1>
Lo '"(DIMD )SPECD A

A sPECp

Calculate the initial cross sectional area (mm”2): A ., :=_-(D o )2
z

181.697
184.335
€S0 ™| 183.614
183.134

Data file inforrnation:
The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A =READPRN(IC3LRIT6) Note: Files A-E are only used for

B := READPRN(IC3LR2T7) tracking pumoses. There_ ls' no relation
to the specimen position indicator.

C :=READPRN(IC3LR3T5) Analysis slots not used read the default file
D :=READPRN(IC3LR4T6)  ICOLR1T1.pm.
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Split matrix matrix into two vectors, load (kN) and disp! (mm):

load 5 =A""” kN displ o :=A"”mm  loadpy =D~ kN

load g =B<'” kN displ g :=B%”.mm
load ¢ :=C~' kN displ ¢ :=C” -mm

Look at matrices and calculate
number of data points:

kN :=1000-newton

displ p =D mm

a:=1..rows(A) d:=1..rows(D)
b =1..rows(B)
c:=1..rows(C)
Calculate true stress and true strain (assume incompressibility): MPa :=1-10°-Pa
Calculate instantaneous length (mm) and cross sectional area (mm~"2):
Acsol'L 0, Acsoz‘L 0,
LiA 3=L0 —displA AlA = LIB :=L0 -displB AiB =
a 1 a a L iA b 2 b b L iB
a b

L, =L - displ A Posos o, L.y =L, - displ A Posoo,

. = - S . — . = — is . =

iC "o, PiC, iC, L. iD, "~ ™o, P'D, iD, L

iC iD
c d
Calculate true stress (MPa) and true strain:
load A, load Bb load Cc load Dd

) = c = (4] = G =

trueA‘l Ain trueB, Ag trueCc A trueD aTAp

a b c d
Lia, Lip, Lic Lip
‘=-In € ‘=-In € '=_In| —2° £ ‘=-In d
€ trueA trueB trueC trueD
» |Le b |\ L ¢ L, p
1 ) 3 04
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Calculate the yield stress (MPa) and corresponding true strain:

——

S yBealc, ’=if(5512°°-° trucBb'o'ma) ¢ yp =maX(C ypcalc) NomB,

O truea ™0 yA'a’O)

i

—

i(G yryep =0 y13,,b,0)

——

"yCcalcc :=if(c51200,0u-u eCc'o'MPa) Cyc’=m(5yCcalc) NumC_:=if]

. yDealc, :=if(d51200,0' ru eDd’O'MPa) O yp = (a yDcalc) NumbD ; :=if|

(o] m]ecc-c ﬂ,cro

———

O trueD d'c YD’d’O)

=g £.p =€ E T8 Eyp ‘=€
EYATEmUCA | sy VBT CUUEB iy YC T UEC L nmey VP UED Dy
Read the stress strain curve data from the Hopkinson Bar analysis:
i 1=2650,2660..4600
TRIAL :=READPRN(D5C5T2)
<1> <2>
€ yueh = (-TRIAL)"~ 6 (e *=(-TRIAL) ~ -MPa
O 4 '=max(c NumH. :=if( ¢ =G . ,i,0) £ e
vh (trueh) i (uuehi vh ) yh"Etrueh o
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Generate a plot of true stress (MPa) versus true strain for 50% 8084 / 50% 1080 at various load
rates:

200
190
180
170 /"
160 |—F
150
vaob—- \X
=130
S120
2110 Y
SN =
£ 90 ”("\
280 \\
70 H‘
o 7
sol = 7
40
30 1
20
10
0 : 3 j
©o o1 02 03 04 05 06 07 08 09 1 11 12

TRUE STRAIN
— A =25-5-b(2); Load Rate = 0.01 mm/sec*
— B =28-5-f(6); Load Rate = 0.10 mm/sec*
—— C=29-5-b (9); Load Rate = 1.00 mm/sec*
— D =29-5-f (13); Load Rate = 2.50 mm/sec*
— E = Hopkinson Bar Test (2); Strain Rate = 2.500e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain

rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. Aload rate of 0.01 mm/sec corresponds to an initial strain rate of 6.45e-04 / sec
2. A load rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true
strain at yield:

max(e rep) = 1012 max(0 yep) = 104.044 “MPa Oyp=62089"MPa &, =0.059
max(e yep) =101 max(0 (o) =98.384MPa oyg=74.187MPa &5 =0.063
max (& yec) =1012  max(0 ) =94.066 "MPa Oy =87.054"MPa & =0.067
max (& yryep) = 1017 max(0 ) = 100°MPa Cyp=93.068"MPa &, =0.067
max (£ yryen) =0.385  max( o) =174.6°MPa O yy =174.6°MPa &y =0.074
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Select specimens to be used: z:=1..4 ORIGIN :=1

DM , :=READPRN(COMP4)  SPEC  :=2

o <1> . = <> .
Lol"(DIMA )SPECAmm Dol. (DIMA )spEcAmm
DIM g :=READPRN(COMP4) SPECg =6

" <t> ) = <> .
Loz.-(DIMB )SPECBmm Doz. (DIMB )smnmm
DIM - :=READPRN(COMP4) SPEC =9

- <1> ) - <> )
Lo3.-(DIMC )SPECCmm D03.—(DIMC )SPECCmm
DIM , :=READPRN(COMP4) SPECp =18

o <1> . - <> .
Lo4.-(DlMD )SPECDmm D04. (DIMD )SPECDmm
Calculate the initial cross sectional area (mm"2): A ., :=§- (D o )2

z Z
190.645
191.134 ’
A o= .
cs0=| 190645 |
191.625
Data file inf tion:

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A :=READPRN(IC4LRI1T2) Note: Files A-E are only used for

B :=READPRN(ICALR2T2) tracking puposes. Tﬁere_ is'no relation
to the specimen position indicator.
C :=READPRN(IC4LR3T2)  Analysis slots not used read the defautt file

D :=READPRN(IC4LR4T2)  [COLR1T1.pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN :=1000-newton

<1> . <> <1 . >
load p =A™ " kN displ o :=A"" -mm loadpy =D " kN displp :=D " -mm
<1> . 2>
loadg =B " kN displ g ;=B -mm
load =C¥7 kN displ ¢~ = ¢ .mm

Look at matrices and calculate
number of data points:

a:=1..rows(A) d:=1..rows(D)

b :=1..rows(B)
c:=1..rows(C)
Calculate true stress and true strain (assume incompressibility): MPa :=1-10°-Pa

Calculate instantaneous length (mm) and cross sectional area (mm”2):

_ A <:sol'L 0, A csoz'L 0,
Lia =Lo -displa  Aja :=T Lip i=Lo -displg A = LiB
a b
) Acso3 Lo3 Acso“'Lo4
LiCc :=L03- displ C AiCc :=—i—i-(-:—-—- LiDd :=L04- displ D, AiDd = .

Calculate true stress (MPa) and true strain:

load load load load
G i Aa c — Bb G Cc S Dd
trueA '~ trueB, '~ trueC '~ trueD
Lia, Lip, Lic, Lip,
€ tryeA =1 € ryeB, =-1n € rueC_=-10 € rueD, ‘=10
a 01 b 02 c ° d L 0
3
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Calculate the yield stress (MPa) and corresponding true strain:

S yAcalc, :=if(a51200,a n.ueA‘,O-MPa) SyA :=max(c yAca.lc) NumA, :=if(c uueA:"“ yA,a,O)
(4] yBcalc) Nume :=if(0' u.ueBbgd' yB'b' 0)
S yCealc_ =i(c$1200,0 nuecc,O-MPa) 6 yC =max(G yCealc) NumC, :=if(c trueC, =0 yC,c,o)

® yDealc, :=if(d51200,0 m,eDd,O-MPa) 6 yp =max(G ypcg)c) NumD, = if(c trueD =0y 4. 0)

% yBeale, 1=if(b51200,6 tmeBb.O'MPa) G yp ‘= max

=g € =t €y TE € =g
£ yA mmAmax( NumA) yB trueB max( NumB ) yC tl.uccmax( NumC) yD mleDmax( NumD)
Read the stress strain curve data from the Hopkinson Bar analysis:
i :=2500,2510..4500
TRIAL := READPRN(D2C7T1)
1
€ ueh = TRIAL)Y'” 6 o =(-TRIAL)®” -MPa
Oy '=max{c NumH. =if{¢ =0 4,.1,0) € =¢
yh ( uueh) i ( trueh = yh ) "B rueh e
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Generate a plot of true stress (MPa) versus true strain for 25% 8084 / 75% 1080 at various load

rates:
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TRUE STRAIN

— A= 14-3-b (2); Load Rate = 0.01 mm/sec*
— B = 14-3-f (6); Load Rate = 0.10 mm/sec*
— C=16-3-b(9); Load Rate = 1.00 mm/sec*
— D= 17-3-d (18); Load Rate = 2.50 mm/sec*
— E = Hopkinson Bar Test (3); Strain Rate = 3.00e+03 /sec

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain

rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - D:

1. Aload rate of 0.01 mm/sec corrasponds to an initial strain rate of 6.45e-04 / sec
2. Aload rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. Aload rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec
4. A load rate of 2.50 mm/sec corresponds to an initial strain rate of 1.61e-01/ sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true

strain at yield:
max(e trucA) =1216

max(z—: trueB) =1.222
max (& iryec) =121
max(e yep) =1.212
max(e ryep, ) =0425

max(G yrca ) =85.539 °MPa
max( G trucB) =82.846-MPa
) =89.4-MPa
m,eD) =94.333"MPa
max(6 tryep) =145.2°MPa
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G ya =22.46°MPa
o yg =30.551"MPa
0y =49.394°MPa
o yp =58.77MPa
G yp =1452MPa

4 yA =0.059
€ yB =(.068
€ yC = 0.066
€D = 0.069
€ yh =0.076



Select specimensto be used: z:=1.3  ORIGIN:=1
DIM 4 = READPRN(COMPS) SPEC 5 =1

L, =

(DIM A<1 >
1

)SPECA-mm D 0, :=(DIMA

DIM g :=READPRN(COMPS) ~ SPECp ‘=3

— <1> — <> .
Loz.—-(DIMB )sms-mm Doz"(D]MB )spﬂcnmm
DM :=READPRN(COMPS5) SPEC =6

<1> W <>
Lo = (O ™) e Jmm Do = (DM %) e mm

Calculate the initial cross sectional area (MmA2): A o, =— (D o )2
z

194 828
=1 193.346 |omm>
193.839

A Cso

Data file inf -

The data file was created on the directory: D:\MIKEDAT1 (on 1.307 hard drive), transfered to
directory C:\winmcad (on home pc), file must have a (.pm) extension

A =READPRN(ICSLRITI1) Note: Files A-E are only used for

B :=READPRN(ICSLR2T1) tracking pu.rposes. "T!)erg is.no relation
to the specimen position indicator.

C :=READPRN(IC5LR3T1)  Analysis slots not used read the defautt file
ICOLR1T1.pm.
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Split matrix matrix into two vectors, load (kN) and displ (mm): kN :=1000-newton

load 5 =AS"” kN displ 5 1= A% .mm
load g =B~ kN displ g =B -mm
load =C7 kN displ ¢ := c<” .mm

Look at matrices and calculate
number of data points:
a:=1..rows(A)

b:=1.rows(B)

c:=1..rows(C)

Calculate true stress and true strain (assume incompressibility):

Calculate instantaneous length (mm) and cross sectional area (mm”2):

) csol' 0,
Lia =L, —displ o Ajp F———— L;g =L, - displg
a 1 a a LiA b 2 b
a
Acso3'Lo3
LiC —LO -—dlSplC AIC =
¢ ¢ Lic

Calculate true stress (MPa) and true strain:

load Aa load Bb load CC
] = o = ] =
trucA trueB trueC
a b
Lia Lip, Lic
€ trueA =-In € trueB =-In € trueC =-Inj—mo
a LO b LO c o
1 2 3
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Calculate the yield stress (MPa) and corresponding true strain:
c yAcalca = if(aSIZOO,G meAa’O'MPa) (o] yA = max(o yAC&lC) NumAa = if(G mleAa=C yA’ a,O)
S yBealc, = if(b <1200,0 mJ(,,Bb,o.lvn>a) oyB :=max(o yBcalc) NumB,_ :=if(c trueB =0 yB,b,O)

S yCeale, :=if(c51200,c u.uecc,O-MPa) S \C ::max(o yCcalc) NumC_ :=if(o m,ecc=c yC,c,O)

EyA ‘TE g =€ €y €
YA TEUeA L NumA) yB TF trueB, . NumB) yC T rueC s (NumC)

Read the stress strain curve data from the Hopkinson Bar analysis:
i :=2500,2510..4500
TRIAL := READPRN(DOCIT1)

. <1> , <2
€ yen = (-TRIAL)"~ G ryep = (- TRIAL) > MPa

S yh = ma.x(c trueh) NumHi = if(G truehi=° yh,i,0> € yh =€ U‘uehmax(w)
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Generate a plot of true stress (MPa) versus true strain for 0% 8084 / 100% 1080 at various load
rates:
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TRUE STRAIN

15-3-a (1); Load Rate = 0.01 mm/sec*

15-3¢ (3); Load Rate = 0.10 mm/sec*

15-3-f (6); Load Rate = 1.00 mm/sec*

Hopkinson Bar Test (1); Strain Rate = 2.00e+03 /sec

—
o

o

L1
DOow>

* The Instron tests were conducted at a constant loading rate. As a consequence, the strain

rate is not constant throughout the test. As a basis of comparison with the Hopkinson Bar test,
the inital strain rate can be estimated as the loading rate / inital specimen length. Assuming an
average specimen length of 15.5 mm, the following inital strain rates apply to specimens A - C:

1. A load rate of 0.01 mm/sec corresponds to an initial strain rate of 6.450-04 / sec
2. Aload rate of 0.10 mm/sec corresponds to an initial strain rate of 6.45e-03 / sec
3. A load rate of 1.00 mm/sec corresponds to an initial strain rate of 6.45e-02 / sec

List maximum true strain obtained and corresponding stress (MPa), yield stress (MPa) and true

strain at yield:

max (€ yryes) =1.529  max(0 yep) =60.495MPa

max(s trueB) =1.53 max(

max(& (ryec) =1.506  max(0 gyec) =73.66-MPa
( max(

max (& yryeh ) =0.339 O ruch) =87.72°MPa O yi =87.72°MPa € yh =0.089

N =L

P
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