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ABSTRACT
Lateral movements, settlements, and groundwater fluctuations resulting from

excavations for a project in Boston were measured with various types of geotechnical
instruments. The data collected from these instruments were studied in an attempt to relate the
measured movements and water fluctuations to construction activities, and to compare the
measurements with predictions from available empirically-based design charts. This study is one
component of a three-phase research project entitled "Design and Performance of Deep
Excavations", which is being conducted by MIT and aims to develop improved methods of
predicting ground movements associated with deep excavations in "soft" clays.

The research focused on a single, well-instrumented section near the west end of the
excavation under consideration. At this location, the excavation was about 40 feet deep and 200
feet wide, and the soil profile included an approximately 30-foot-thick layer of cohesive fill and
organic deposits and over 60 feet of Boston Blue Clay (BBC). The cut was supported by two
types of walls: a sheetpile wall on one side, and a concrete diaphragm wall on the other side,
where an adjacent structure needed to be protected. Both walls were supported by tiebacks.
Behind the sheetpile wall, the tiebacks were approximately 25 to 85 feet long and grouted in the
crust of the BBC. Behind the diaphragm wall, the tiebacks were about 125 to 170 feet long and
grouted in bedrock.

Construction records were used to define the history of construction at the chosen cross-
section as precisely and accurately as possible. This allowed geotechnical data to be correlated to
construction events that may have influenced soil movements and groundwater levels. Graphs
were prepared which plotted geotechnical data against time and graphically summarized the
schedule of excavation and tieback installation.

Existing design charts and the MOVEX computer program were used to compare
measured settlements and wall deflections to predicted movements, at each side of the
excavation. Although the deflection of the South (sheetpile) wall was underpredicted, the
settlements were slightly over-predicted, probably due to consolidation of the underlying soils
induced by deep pumping. The predictions failed to duplicate the behavior of the North
diaphragm wall, which was pulled back into the retained soil by the tiebacks. However,
settlements measured behind the North wall exceeded predictions, probably because of soil
consolidation in possible conjunction with disturbance of the BBC induced by tieback
installation.

Thesis Supervisor: Prof. Charles C. Ladd
Title: Edmund K. Turner Professor of Civil and Environmental Engineering
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CHAPTER 1

INTRODUCTION

1.1. BACKGROUND

Ground movements play an important role in the design of deep excavations in

cohesive soils. Although common engineering practice must design excavation support

systems to resist failure through the use of structural analysis procedures, greater damages

and consequent litigation expenses often arise from associated soil movements than from

overall system "failure" (Clough et al., 1989). The ability to make reliable predictions of

ground movements offers the following benefits. First, it provides a basis for defining

performance criteria, or acceptable levels of movement for the protection of adjacent

facilities. Second, it allows identification of areas requiring special construction methods,

and assists in choosing between various construction options. Third, it facilitates the

design and interpretation of a geotechnical field monitoring program.

This report is one component of a research effort entitled "Design and

Performance of Deep Excavations". The research is being conducted by MIT for a project

underway in Boston. The overall goal of the research is to develop improved methods for

predicting ground movements associated with deep excavations in "soft" clay (Ladd and

Whittle, 1993).

The research is being performed in three phases spanning a period of three years.

Tables 1.1, 1.2, and 1.3 provide an overview of the research time schedule. Phase I,

covering the first year, will compare ground movements predicted by existing empirical

techniques and advanced finite element analyses, to comprehensive records of actual

ground movements collected during construction of selected portions of the project. Phase

I will use the capabilities developed in Phase I to evaluate the principal factors that

influence ground movements and will develop a more reliable technique for analysis of

bottom heave stability. Phase HI will combine the results of the finite element and bottom

heave analyses with data from case studies such as this one, to develop improved semi-

empirical design charts for predicting ground movements.



1.2. OVERVIEW OF BRACED EXCAVATIONS

1.2.1. General

Excavations in soft soils require the use of a support system which consists of a

wall and bracing elements. The wall serves three principal functions. First, it physically

retains the soil and helps prevent instability due to basal heave. Second, the toe of the wall

(the portion of the wall which is embedded below excavation subgrade) receives passive

resisting force from soil on the inside of the excavation, further helping to hold the wall in

place. Third, it provides resistance to bending between the levels of bracing elements.

The bracing elements serve to resist active earth pressures which act on the wall.

Bracing elements can be divided into three basic types, according to the method by which

they resist active soil forces. Inclined beams called rakers transmit soil force to the

excavation subgrade, cross-lot struts extend across the excavation between the two

support walls, and tiebacks extend into stable soil or rock existing behind or below the

wall and resist active forces through tension.

Excavations change the stress state in the adjacent soil mass, causing movement of

the surrounding ground. The changed stress state causes both elastic and plastic

deformation of the soil; the adjacent retained soil mass moves laterally inward towards the

excavation and undergoes settlement, as indicated in Figure 1.1. At the same time, soil

within the excavation will heave upward in response to the reduced vertical stresses.

Support systems are intended to keep the sides of the excavation stable and safe

with respect to basal heave, and in so doing reduce the amount of ground movement, but

they can not eliminate movements altogether. Aside from the inevitable soil movements

that result from the changing stresses, construction activities can also play a large role in

causing deformations of walls and the ground surface (Clough and O'Rourke, 1990).

Dewatering is done to maintain a dry subgrade or relieve high pressures in underlying

pervious strata, but if pore pressures in the retained soil also become reduced, then

consolidation settlement can occur. Construction of the support walls and installation of

sheetpiles, soldier piles, or tiebacks can result in disturbance to the soil mass and possibly



loss of ground which contributes to ground settlement. Compliance of the bracing system

increases lateral wall movement.

The successful control of ground movements can be one of the most important

criteria in designing an effective excavation support system when the excavation is in close

proximity to existing structures. Expensive damage can occur even when ground

movements are small. For example, based on a statistical survey of structures built on

clays and sandy soils, Skempton and MacDonald (1956) suggest that cracking initiates in

typical structures when the angular ground distortion (differential settlement divided by

lateral distance) exceeds 1/300, and that "severe" structural damage can occur at a value

of 1/150.

1.2.2. Typical Support Methods and Construction Sequence

Braced excavations are made following the "top-down" procedure. The first step is

the installation of bracing walls before any soil is excavated. The installation technique

depends on the type of wall that is used.

One of the most common wall types consists of soldier piles and lagging. A series

of steel H- or I-beams (soldier piles) are driven into the soil, spaced several feet apart.

Timber planks (lagging) are placed horizontally between the vertical soldier piles as the

excavation proceeds, forming a soil-retaining wall.

Another typical wall type is the sheetpile wall. Sheetpile walls are composed of a

series of interlocked sections, usually made of steel. Each section is a few feet wide and

typically one-quarter to one inch thick, and sections are individually driven into the soil

like piles, and attached to adjacent sections by "thumb-and-finger", "ball-and-socket", or

"double-hook" type interlocks along the sections' lengths (Das, 1984, p.269). The result is

a continuous "wall" embedded in the soil. In general, each sheetpile section is bent such

that the resulting wall is corrugated for added resistance to bending.

A third type of support wall is the diaphragm (slurry) wall. Such a wall is created

by digging a trench, usually two to four feet in width, down to the level of the desired wall

base. The trench is held open by a water-bentonite slurry. Reinforcing steel is placed in the



trench, into which concrete is then poured. The concrete hardens to create a reinforced

concrete "wall" within the soil mass.

A fairly recent technology allows the creation of another type of diaphragm wall

known as a "soil-mix" wall. An arrangement of overlapping mixing augers is advanced

into the ground while cement grout is pumped into the soil through the tips of the auger

stems. Mixing paddles on the auger shafts help mix the soil with the cement grout as the

augers are advanced and then withdrawn. A series of auger runs creates a continuous line

of overlapping soil-mix "panels". Before the soil-grout mix sets up, I-beam soldier piles

are lowered vertically into the soil-mix columns to reinforce the wall. The hardened soil

cement resists earth pressures between the soldier piles through arching.

Once the support walls are in place, the excavation begins. Most excavations are

deep enough that the wall is unable to retain the soil through cantilever action alone

(Figure 1.2-a), therefore requiring additional support elements. The first supports are

generally placed either at the top of the wall before excavation starts, or when the cut

reaches a depth of six to ten feet. After the first level of supports is installed, the

excavation resumes until another support level is necessary or the final subgrade is

reached. Excavation stops temporarily as each required level of "bracing" elements is

installed in the cut, usually every eight to twelve vertical feet. This procedure is termed

"top-down" excavation.

As with walls, there are several types of bracing systems, as illustrated in Figure

1.2. Cross-lot struts (Figure 1.2-b) are the most common in narrow excavations. The

struts are beams made of wood or steel, which extend across the excavation from wall to

wall. Wider excavations requiring unreasonably long cross-lot struts can instead utilize

rakers, which are like inclined steel struts placed between the wall and the subgrade,

sometimes abutting earth berms left inside the cut (Figure 1.2-c).

Another option available for wide excavations is the use of tiebacks, which anchor

the walls to the retained soil mass (Figure 1.2-d). Steel strands extend from the wall back

into the soil, and the ends are grouted under pressure to form a bond with the soil mass or

underlying bedrock. Tiebacks were used sparingly in the 1960's, but became increasingly

common after the early 1970's as the technology proved its adequacy (Xanthakos, 1991).



They offer a distinct advantage over cross-lot braces or rakers in that they exist outside,

rather than inside, the excavation, thus leaving the interior unobstructed and easily

accessible to construction equipment.

In some cases, the permanent structure itself can provide the necessary excavation

support. Such was the case for the underground parking garage constructed at Post Office

Square in downtown Boston. The concrete slabs that formed each of seven parking decks

were cast on-grade, and upon set up, acted essentially as cross-lot struts, permitting

further excavation to the next subgrade level (Whittle et al., 1993).

1.3. SCOPE OF THESIS

This thesis represents the partial completion of Tasks 1 through 4 on the Phase I

schedule for the MIT research project "Design and Performance of Deep Excavations"

(See Table 1.1 and description of project in Section 1.1).

This thesis details information on the excavations performed for a construction

project in Boston. Excavations in this section were supported by tiebacks in conjunction

with both sheetpile and diaphragm walls. The project covers approximately 2500 feet of

depressed highway alignment, consisting of a combination of cut-and-cover tunnels and a

boat section. The organization of this thesis is as follows.

Chapter 2 reviews existing literature on the behavior of supported excavations and

accompanying soil movements. Emphasis is placed on available empirically-derived soil

movement prediction techniques. These techniques will be compared to monitoring data

from the construction project, which is described in Chapter 3, with emphasis on the

excavation support systems.

Discussion of the performance of the Boston excavation begins with Chapter 4,

which describes the instrumentation and reviews the soil movements measured throughout

the area. It also describes the basis for selecting one well-instrumented cross-section (ISS-

4) for more detailed study. Chapter 5 describes the distribution and selected engineering

properties of the soils at this cross-section, while Chapter 6 describes the careful

reconstruction of the time history of excavation events there. Chapter 7 presents and

discusses the data from geotechnical instrumentation at this location. In Chapter 8, the



measured soil movements are compared to those predicted by the techniques reviewed in

Chapter 2. Chapter 9 contains the summary and conclusions.

The main text is followed by several appendices. The first provides a more detailed

discussion of geotechnical instrumentation: how it is installed, how it is interpreted, and its

accuracy. Other appendices provide supplementary information on the support systems

used for the excavations under study, the sequencing of construction events, engineering

properties of the underlying soils, and analyses to compare predicted versus measured

performance.

This thesis was prepared in cooperation with the Massachusetts Highway

Department and the United States Department of Transportation, Federal Highway

Administration. The opinions expressed in the thesis are those of the author and do not

necessarily reflect those of the Massachusetts Highway Department.
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Figure 1.1. General Movement Trends Around Braced Cuts (Clough, 1985)
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CHAPTER 2

SOIL MOVEMENTS AND THEIR PREDICTION

2.1. INTRODUCTION

The ability to quantitatively predict ground movements around braced excavations

is not very well developed, and geotechnical engineers essentially have to rely on

engineering judgment and intelligent guesswork when estimating ground movements for a

given support system design. Guidance is provided by a number of existing design charts,

which are developed through the use of two possible sources of information. On one hand,

empirically-based design charts summarize ground deformation data collected from

specific excavation histories. On the other, mathematical modeling and computer

simulations allow a more theoretical analysis, usually via the "finite element" technique.

Finite element analysis uses mathematical soil models to predict soil deformations for

specific cases and allows an assessment of how the deformations relate to various

construction factors. Each methodology has strengths and weaknesses:

"...methods which are based on field data collected from case histories provide a

useful guide for estimating a likely range of movements, but cannot be used

reliably for site-specific predictions. Finite element methods have the ability to

analyze complex design problems, but have questionable accuracy due to one or

more of the following factors: inadequate site investigation to properly define

relevant soil properties; use of simplistic soil models that do not describe the

actual behavior of natural clays; and no consideration of changes in the

groundwater conditions during excavation" (Ladd and Whittle, 1993)

This chapter briefly reviews the development of soil movement prediction

techniques and design charts, with emphasis placed on braced excavations in soft clays

such as those that underlie the construction project in Boston. The discussion focuses on

the most relevant studies, and has been divided into three categories of prediction



methodology. First, design recommendations based solely on empirical charts developed

from a synthesis of case histories are reviewed. The second category is 'semi-empirical'

studies, which combine case history data with theoretical (e.g., finite-element) analyses to

make general recommendations. Finally, the third category is the use of the finite-element

technique for modeling and predicting deformations at specific excavations.

2.2. RECOMMENDATIONS FROM CASE STUDIES

Peck (1969) was the first to use a collection of existing data to develop an

empirical chart for estimating the magnitude and distribution of surface settlements behind

braced excavation walls. His chart, shown in Figure 2.1, summarizes the observed surface

settlements adjacent to a number of excavations in various soils which used sheetpile walls

or soldier piles and lagging. The resulting settlement troughs are divided into three

separate zones, which were distinguished by soil type and strength, quality of

workmanship, and stability against basal heave. His chart predicts that the maximum

settlement would most commonly occur at the wall and would generally equal one to two

percent of the excavation's depth. Settlements for the first two zones on the graph extend

to distances between two and four times the excavation depth.

Peck's compilation of soil deformation data has been supplemented by more recent

case studies. Goldberg et al. (1976) provided a more updated collection of data, which

included measurements of surface settlements and lateral wall deflections for excavations

supported by sheetpiles and concrete diaphragm walls. They found that maximum surface

settlements and lateral wall deflections were typically less than 0.35% of excavation depth

in granular soils and stiff to hard clays, regardless of wall type. In 'soft' clays, movements

higher than 1% were commonly seen when 'flexible' (i.e., sheetpile) walls were used;

behind 'stiff (braced diaphragm) walls, settlements and wall deflections were substantially

lower, usually less than 0.25% of excavation depth. Settlements troughs in granular soils

extended to no more than twice the excavation depth, in agreement with Peck, but

settlements sometimes extended farther for clays. They attributed this to consolidation in

the clay due to groundwater drawdown.



O'Rourke (1981) also studied ground movements caused by braced excavations in

sand and clay, and correlated surface displacements and wall deformations to support

design and construction techniques. Based on a survey of seven case studies of crosslot-

braced cuts in clay, he concluded that when braces are stiff and installed promptly, deep-

seated bulging occurs; when braces are inadequately stiff and are installed late, the wall

deflects in a cantilever mode. O'Rourke's review of case histories also allowed him to

assess the effectiveness of common excavation support techniques. He concluded that

preloading struts and using earth berms were only moderately effective in controlling soil

movements, and emphasized the importance of over-excavation below the lowest support

level by stating that wall deflections, on average, vary in proportion to the 4th power of

over-excavation depth.

Clough and O'Rourke (1990) provide a thorough review of the available

techniques for soil movement prediction, updated with more recent developments in

excavation support technology (such as tieback supports and soil cement walls). They

used case history data to develop settlement trough predictions for different soil types.

They recommend three different settlement profiles, shown in Figure 2.2, which apply to

excavations in different soil conditions. The triangular wedge for sands and hard clays

develops as the wall tends to deflect in a cantilever mode. The trapezoidal settlement

profile which characterizes soft to medium clays occurs as a result of deep-seated inward

soil movements and "bowing" of the wall into the excavation.

Clough and O'Rourke (1990) also reviewed the effects of construction techniques

and support system design on ground movements. An especially important parameter is

the depth of excavation below a given brace level. They cite the example of an excavation

in San Francisco Bay Mud, having a depth of 15 m and an average strut spacing of about

5 m. A location with a 10-meter initial excavation experienced 100% greater wall

movement than other locations without over-excavation. With regards to the design of the

support members themselves, they concluded that the spacing of excavation support

members has a greater effect on ground movements than does their stiffness. In addition,

the stiffness of the support wall reduces movements most effectively in soft soils when the

factor of safety against basal heave is low. They also stated that the use of earth berms



inside the excavation to counteract unbalanced soil forces is much more effective in 'stiff

soils than it is in soft to medium clays.

2.3. SEMI-EMPIRICAL DESIGN CHARTS

Although field data provide valuable information on "typical" measured soil

movements from specific sites, analytical studies and mathematical modeling can give a

deeper understanding of the parameters that affect soil movements in a great variety of

excavation scenarios. These two types of information can complement each other, and

some researchers have combined field information with theoretical analyses to create

"semi-empirical" design charts.

Mana and Clough (1981) developed such a chart for braced excavations in clays by

combining an evaluation of carefully selected case studies with finite element analyses. Out

of a total of about 130 case histories, they chose only the eleven that had sufficiently

'simple' histories, in which soil movements were "generated primarily by the excavation

stress relief', and not by any secondary construction factors. They found that the factor of

safety against basal heave, as originally defined by Terzaghi (1943), had a strong influence

on wall deflections. Their empirical correlation between lateral wall movements and basal

heave factor of safety is plotted in Figure 2.3 (a). Both the magnitude and rate of inward

wall movement were found to increase greatly as the factor of safety against basal heave

became lower than 1.5.

Mana and Clough (1981) continued their study by comparing the case history field

data with the results of finite element computer analyses using a non-linear, perfectly

plastic soil model. The empirical correlation between wall deflections and basal heave

factor of safety was verified, as indicated in Figure 2.3 (b). This analysis was extended by

Clough et al. (1989), who used additional finite element modeling to plot the combined

effects of basal heave stability and a "system stiffness" term which combines wall stiffness

(EI) and strut spacing (h). Their chart appears in Figure 2.4.

Design charts such as these either summarize information that was gathered from a

variety of different excavations, and lump all the data into one or a few simplified

categories, or assume "typical" ranges for several variables at once. For example, by



combining wall stiffness and strut spacing - which can be dealt with independently during

the design process - into one term, the Clough et al. (1989) chart masks the individual

effect of each. This adversely influences the applicability of the design chart to a specific

excavation scenario, since the chart can not distinguish the effects of different variables on

ground movements. Instead, a number of parameters that affect movements but are under

the control of the design engineer - such as wall stiffness, excavation geometry, and strut

spacing, stiffness, and preloading - have to be studied individually, so that the influence of

each can be assessed.

For this reason Mana and Clough (1981) devised a procedure to account for the

individual effects of a number of construction parameters in predicting soil and wall

movements. Their parametric analysis considered the following variables: wall and strut

stiffness, depth of underlying firm layer, excavation width, strut preloading, and soil

strength and modulus. The results of each individual parametric analysis was combined in

a single formula which provided a means of estimating maximum wall movement. Using

their formula requires finding a first estimate of wall movement based on a calculation of

basal heave factor of safety, and then modifying this first estimate through the use of

influence coefficients for each of the variables they considered.

In addition to dealing with predicted wall movements, Mana and Clough (1981)

also conducted a semi-empirical analysis of settlements, using their 11 selected case

studies and further use of finite element techniques. In general, maximum surface

settlements seen in the field equaled 0.5 to 1.0 times the maximum wall deflections, in

fairly good agreement with the conclusions of Goldberg et al.(1976). Computer models

allowed them to relate surficial settlement distribution to basal heave safety factor; the

resulting idealized settlement profiles are plotted in Figure 2.5. A narrower settlement

trough is seen for situations with lower factors of safety.

Milligan (1983) studied idealized soil deformation scenarios with the "velocity

field" analysis technique. This is a geometrical analysis which relates lateral wall

movements to surficial displacements of the retained soil body. Milligan stated that for a

retained soil that exhibits perfectly undrained behavior, like a low-permeability clay, "the



profile of the settlement of the surface behind the wall will be exactly the same as the

profile of the horizontal deflection of the wall".

2.4. STUDIES OF SPECIFIC EXCAVATIONS WITH THE FINITE-ELEMENT

TECHNIQUE

Finite element analyses involve recreating a construction activity and the affected

soil mass in a mathematical simulation; computers utilize pre-defined soil model

parameters and algorithms in conjunction with a carefully defined spatial geometry and

time history to iteratively calculate ground movements around the excavation. The

technique first became used for excavations in the early 1970's (Clough and Duncan,

1971) and has become increasingly powerful over the past twenty years as more realistic

soil models have been developed and numerous case studies have been used to 'calibrate'

the accuracy of the simulations.

To date, finite element analyses have been used mostly to make "after-the-fact"

predictions. In other words, these back-analyses modeled excavations that had already

occurred, and the results compared to actual soil deformation measurements made at the

site. Although such studies do not provide advance information on soil movements for that

excavation, they do allow for parametric analyses which can provide valuable design

guidelines for future work in similar soil conditions.

Perhaps the most challenging aspect of making accurate finite element analyses is

to realistically model the constitutive behavior of the soil. Early work, which usually

assumed elastic soil behavior, the Modified Cam Clay model, or variations thereof,

experienced problems with accurately predicting both wall movements and settlements.

While Mana and Clough (1981) used the SOILSTRUCT computer program and a non-

linear, perfectly plastic soil model to create general-use design recommendations, the

relative simplicity of their soil model made it less suited to studies of specific excavations.

Since then much progress has been made in finite-element analyses, through the

development and use of increasingly powerful soil models, and increased understanding of

significant modeling parameters. Finno and Harahap (1991) used an effective-stress,

anisotropic bounding surface soil model to study a 40-foot deep excavation through soft



clays in Chicago. They were able to obtain good agreement between measured and

predicted wall deflections, while predicted settlements agreed "reasonably well" with those

measured, until incipient shear surfaces developed behind the walls in the field. The effects

of sheetpile installation on soil movements were successfully modeled. The accuracy of

Finno and Harahap's predictions was attributed to their use of an anisotropic soil model

which included the effects of partial drainage and consolidation in the finite-element mesh,

the precise representation of excavation history, and the fact that they accounted for

displacements within the soil mass away from the walls in addition to those immediately

adjacent to the walls.

Recent efforts at MIT have led to development of even more accurate soil models.

The MIT-E3 model (Whittle and Kavvadas, 1994) describes most rate-independent

aspects of clay constitutive behavior, including anisotropy, small strain non-linearity, and

hysteresis associated with load reversals. This model was used to model ground

movements around the Post Office Square excavation in downtown Boston (Whittle et.

al., 1993). An underground parking garage was being constructed at this site; the eight

floor slabs acted as struts for the concrete diaphragm walls that framed the excavation.

Predicted movements matched the measured deformations reasonably well, when

temperature-induced shrinkage of the concrete floor slabs and effects of dewatering were

accounted for accurately.

An extension of this work with MIT-E3 was the development of design charts for

prediction of diaphragm wall deflection in Boston Blue Clay (Hashash and Whittle, 1994).

These charts, shown in Figure 2.6, resulted from a series of parametric analyses done with

the MIT-E3 model, which assessed the influence of wall length, support (cross-lot brace)

spacing, and stress history profile. All analyses used a symmetric excavation with a 20 m

half-width, a maximum depth of 40 m, and a "wished-in-place" 1-m thick wall. The

parametric analyses led to the following conclusions regarding excavation performance in

soft clays: 1. Wall length (and therefore embedment) was found to have a strong influence

on the potential for bottom instability. Although wall length has a minimal impact on pre-

failure deformations, short- to medium- length walls are susceptible to development of a

basal heave mechanism. 2. The FEM analyses indicated that the initial unsupported



excavation depth has only a "transient" effect on subsequent wall deflections and

settlements. This contradicts the conclusions of Clough and O'Rourke (1990), who

stressed the importance of these early deflections on later deflection magnitudes. 3. The

soil stress history was found to have a major impact on predicted deformations. As OCR

was increased, deformations reduced significantly and failure mechanisms were much less

likely to develop.
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CHAPTER 3

DESCRIPTION OF THE CONSTRUCTION PROJECT IN BOSTON

3.1. SITE LAYOUT

The Construction Project in Boston has been divided into numerous sections for

separate design and construction contracts. The section under study in this thesis is a 2500

ft-long stretch of highway. As shown in Figure 3.1, this section of highway begins

approximately at Sta. 70+50, the western end of the alignment, and terminates at Sta. 96,

the eastern end. The final roadway structure will consist of a depressed boat section

between Sta. 72+70 and 81+40, with cut-and-cover tunnels to the east and west. The

eastern terminus of the excavation is within a circular cofferdam with concrete diaphragm

walls, where a vent building is located.

The excavation for the project is about 200 ft wide at its western end (Sta. 70+50),

and gradually narrows toward the east, reaching a width of approximately 80 feet at the

eastern terminus (Sta. 96). At the west end of the alignment, the excavation is 41 ft deep;

the subgrade rises slightly to about El. 74 at Sta. 75+00 (excavation depth = 36 ft), and

then deepens toward the east as it approaches the terminus, where the depth reaches about

63 ft.

The alignment passes through land that was originally tidal flats and shallow

marine bays before being artificially filled in the nineteenth and twentieth centuries to its

current grade. The surface topography is therefore fairly flat, at an elevation of about 109

to 112 ft (project datum, which is 100 ft below National Geodetic Vertical Datum sea

level). South of the excavation and west of Sta. 76+00, the surface elevation was nearly

ten feet higher than the area's average elevation. A pre-excavated trench was made along

the south side of the excavation here to reduce the adjacent elevation to the typical value

of 110 ft. In this area, the north side was also pre-excavated, to El. 104 ft. This was done

to reduce earth pressures on the walls, since especially soft marine clay was presumed to

exist in this portion of the alignment (MHD, 1991b). The pre-excavated trenches on both

sides were no less than 30 ft wide, measured from the excavation's edge.



The alignment passes through an industrial area containing manufacturing buildings

and fisheries, several of which are in close proximity to the excavation. As Figure 3.1

illustrates, Buildings A (Sta.77), B (Sta.81-83), C (Sta.82), D (Sta.86), and E (Sta.92) all

come within 150 ft of the excavation.

Cross-section A-A, shown in Figure 3.2, is through the boat section and shows the

size, width, and depth of the cut at this location. This cross-section is particularly

informative because it provides a typical view of two different excavation support systems:

a diaphragm (slurry) wall on the north side and a sheetpile wall on the south. These

support systems are representative of excavation support at the cut-and-cover tunnels as

well, and are discussed further in Section 3.3.

3.2. SUBSURFACE SOIL PROFILE

A geotechnical consultant was contracted by the Massachusetts Highway

Department to perform an investigation of geotechnical characteristics of the site and to

provide recommendations associated with the planned construction. The results of this

investigation have been published in two reports: a Geotechnical Engineering Report

published in October 1991 (MHD Geotechnical Consultant, 1991b) and an accompanying

Geotechnical Data Report published in April 1991 (MHD Geotechnical Consultant,

199 la). The information in Section 3.2 is abstracted from these reports.

The soil profile for the entire alignment is shown in Figure 3.3. The profile is based

on a review of test borings performed by the MHD Geotechnical Consultant as part of

their subsurface investigation for the project. They performed sixty-two borings

throughout the project area, and their study included ten others which they had performed

for an investigation of the section immediately west of the project. They also gathered

available data from borings in the vicinity that had been done by other companies for

different projects.

As Figure 3.3 illustrates, the project site surface is everywhere underlain by a

deposit of recent fill. This combination of granular and cohesive fill is about 20 ft thick

throughout most of the alignment, but increases to as much as 50 ft at the eastern end,

where dredging activities were done earlier in the century. Below the fill, a layer of



organic silt exists throughout most of the alignment area, with a maximum thickness of 15

ft. This deposit represents the original tidal mud flats of Boston Harbor.

The organic stratum is underlain by a thick sequence of soils deposited as a result

of the Pleistocene glaciation. Its most prominent constituent is a layer of marine clay,

known locally as Boston Blue Clay (BBC), which extends throughout most of the Boston

area and plays a prominent role in almost all of the city's geotechnical design work. The

thickness of BBC reaches a maximum value of about 70 ft at the project's western

terminus. The deposit tapers toward the east (the direction of the harbor) due to a rise in

the underlying bedrock surface, as well as to the fact that much of the upper BBC was

removed during waterfront dredging operations. The thickness of BBC decreases to 10 ft

at the section's extreme eastern end. Under the BBC lies a largely granular glaciomarine

deposit and a veneer of glacial till covering argillitic bedrock.

The elevation of final subgrade along the excavation is also shown in Figure 3.3.

Throughout the alignment's western half, the final subgrade very nearly reaches the top of

the Boston Blue Clay or cuts into it by up to 10 ft. As the subgrade level slopes down

toward the eastern terminus, it cuts well into the clay deposit, eventually reaching the

underlying glacial till and bedrock.

The engineering properties of the different soils underlying the site are discussed in

detail in Chapter 5. Groundwater exists in two aquifers separated by the impermeable

BBC aquitard. Hydrostatic pressures exist in the upper aquifer, which consists of the fills

and organic deposits. The lower aquifer exists in the glacial deposits and fractured

bedrock underlying the clay, and is termed a "confined" aquifer due to its position

underneath the confining BBC layer (Fetter,1988). The piezometric elevation of the lower

aquifer is about five to ten feet lower than the water table in the upper aquifer. Section 5.2

details initial measurements of pore water pressures in both aquifers.

3.3. SUPPORT OF EXCAVATION

Figure 3.2 shows the cross-sectional view A-A (from Figure 3.1) along the project

alignment. This cross-section is located at Station 77+00, near building A. The figure

presents the soil profile, the size and depth of the final excavation, the support of



excavation walls (sheetpile and slurry walls), the tiebacks, and the completed boat section

structure. The following sections provide detailed descriptions of the features illustrated in

this figure.

3.3.1 Sheetpile and Diaphragm Walls

The design of support of excavation (SOE) walls accounts for the presence of the

nearby buildings that appear in Figure 3.1. The distribution of the two wall types along

both sides of the excavation is illustrated in Figures 3.3 (plan view) and 3.4 (face view of

walls).

The majority of the excavation is supported by sheetpile walls, embedded 10 to 25

ft below final subgrad,. An example of a sheetpile wall appears on the right (South) side

of the Figure 3.2 cross-section. Arbed AZ-18 sheeting was used throughout nearly the

entire area. The sheetpile walls are braced with a series of tiebacks grouted in the BBC

stratum.

Near adjacent buildings, the excavation is supported by reinforced concrete

diaphragm walls, which are substantially more rigid than the sheetpile walls and are

intended to prevent excessive soil movements. As Figure 3.1 shows, diaphragm walls are

located adjacent to Buildings A, B, D, and E. All four diaphragm walls are three feet thick

and consist of several separately contructed panels, each being 17 to 23 feet wide. Each

panel has a cage of reinforcing steel within the concrete. Unlike the sheetpiles, which are

embedded no more than 25 feet below subgrade, the diaphragm walls extend fully through

the clay deposit, and are keyed at least two feet into the bedrock..

Like the sheeting, the diaphragm walls are braced with tiebacks. However, the

tiebacks behind the diaphragm walls are longer and are inclined at a steeper angle, so that

they extend through the clay into the cohesionless glacial soils and bedrock beneath. These

tiebacks are grouted in the rock and are therefore commonly referred to as 'rock anchors',

in order to distinguish them from the clay-grouted tiebacks behind the sheeting. A

diaphragm wall and its rock anchors appears on the left (North) side of the cross-section

in Figure 3.2, next to Building A.



There is one area of the excavation where the SOE system is significantly different

from the wall-and-tieback arrangement described above. At the extreme eastern end of the

alignment, between about Sta. 90+50 and the circular cofferdam, the excavation's upper

bracing level consists of cross-lot pipe struts, arranged in triangular clusters of three,

rather than tiebacks. The locations of these struts are shown as the triangular symbols in

Figure 3.4. Additionally, in the immediate vicinity of Building E's northern corner, both

sides of the excavation are supported by "T"-buttressed concrete diaphragm walls, which

are structurally stiffer than the straight diaphragm walls used elsewhere along the

alignment. This especially stiff support design was used in this area because of the large

depth of excavtion (54 ft to 63 ft) and the need to protect Building E.

3.3.2. Tiebacks

The elevations of the tieback levels are shown for the entire excavation in Figure

3.4. Three levels of wale-and-tieback support are used throughout the western third of the

alignment, with four and five levels becoming necessary as the excavation deepens to the

east. The tiebacks are laterally distributed so as to provide the necessary amount of

resisting force per linear foot, while at the same time avoiding foundations for nearby

former and existing buildings.

The vertical downward inclinations of the tiebacks were selected by weighing

several competing requirements. According to Xanthakos (1991), increasing the

inclination angle of tiebacks offers the advantages of keeping the tiebacks below nearby

underground structures and utility pipes, as well as minimizing the length of tendon

required to reach depths with sufficient overburden stresses or a competent anchoring

stratum. However, larger angles of inclination require an increase in total anchor capacity

(to provide the same resistance to horizontal earth pressures) and also cause an increase in

the downward vertical force on the wall that must be resisted by wall friction and end

bearing. On the other hand, a minimum inclination of about 15 degrees is required to

facilitate installation of the tiebacks and the grout under gravity forces. Typical angles of

inclination in construction practice are 15 to 30 degrees; if a steeper angle is needed, 45

degrees is a common choice.



3.3.2.1. Sheetpile wall tiebacks

Along steel sheetpiles, the predominant wall types in the excavation, each tieback

is locked to a horizontal wale on the interior side of the sheeting. All sheetpile wall

tiebacks are installed at a average downward angle of 20 degrees. In general, tieback tiers

were vertically separated by 10 to 12 ft. The horizontal spacing of the tiebacks tended to

become smaller with depth: while the uppermost tier had tieback spacings ranging from

10.5 to 16.5 ft, the lowermost tier tiebacks were most frequently separated by five to nine

feet.

Typical sheetpile wall tiebacks are shown on the right side of Figure 3.2. These

tiebacks are anchored with grout in the upper ten to twenty feet of the Boston Blue Clay

deposit, taking advantage of the strength of the BBC's heavily overconsolidated crust (as

will be described in Section 5.4.3). The length of the bonded zone in the clay is at least 40

feet.

Before any excavation started, the design and performance of tiebacks grouted in

Boston Blue Clay was evaluated through the Tieback Installation and Test Program

(TITP), conducted by the contractor and its engineering consultants during the month of

August, 1992. The program took place near the center of the excavation alignment

between Sta. 72 and 73, as shown in Figure 3.5, and involved installation and grouting of

ten tiebacks, five each in an Upper and Lower row, as shown in Figure 3.6. The following

information is abstracted from a pair of reports by the Contractor's Geotechnical

Consultant (1992c) on the TITP results, one report for each row of test tiebacks.

All ten tiebacks had grouted bond lengths of 40 feet, unbonded lengths of 60 to 65

feet, and were inclined 30 degrees from horizontal; they were grouted in the upper 20 ft of

the marine clay in the overconsolidated crust. Tieback holes were drilled by advancing a 7-

inch-O.D. steel casing to the base of the organic layer (the top of the clay), drilling with a

rotary drag bit and flushing externally with water. A 6-inch-diameter hole was then drilled

without the casing in the marine clay. Upon completion of drilling, the hole was filled with

cement grout (0.5 water-cement ratio), and the strand assembly lowered into place. Each

tieback consisted of six to eight 0.6-inch diameter, seven-wire, 270 ksi strands, which



were attached to a tube-a-manchette for post-grouting. After emplacing the tieback

strands, the steel casing was withdrawn from the hole.

The tiebacks were postgrouted two or three times after installation. The first

postgrout was done 20 to 48 hours after tieback installation and primary grouting; ensuing

postgrouts were done on successive days. Each postgrout involved the injection of cement

grout (0.6 to 0.75 water-cement ratio) through a 'tube-a-manchette', a 1-inch diameter

PVC pipe with perforations at 2.5-foot centers. Each perforation was covered with a

rubber one-way valve sleeve which allowed post grout out only when the grout pressures

were high enough to displace the existing primary grout. A 'packer' was used in the tube

to permit passage of the grout from only one perforation at a time. Grout was injected

through each valve until either the pressures reached 800 psi or one full sack of cement

(1.6 cubic ft) had been added. This procedure was repeated until all valves were

postgrouted, except for two of the test tiebacks, for which the packer was not used and

instead the grout was pumped through all perforations at once. Table 3.1 is a summary of

the ten installations.

About one week after postgrouting, the tiebacks were tested by measuring anchor

elongation under different loads. According to the TITP specifications (Contractor's

Geotechnical Consultant, 1992a), tieback elongation was measured using dial gages which

were accurate to 0.001 inch. Loads were applied with a hydraulic jack, and a pressure

gage on the jack provided a measure of the load (See Figure 3.7). A second measure of

applied loads was provided by a load cell, placed in axial alignment with the bearing plate,

hydraulic jack, jack chair, and tieback tendon.

The two tiebacks at the ends of each wale were tested to failure in pull-out

capacity tests, in which the tieback loads were increased in 20-ton increments up to 100

tons and 10-ton increments thereafter. These tests defined the maximum pullout load for

the tiebacks in each row, and the design load was taken to be 50% of this load. The

remaining three tiebacks in each wale were performance and creep tested. A performance

test involves applying a cyclical progression of increasing loads, with each cycle reaching a

load that is higher than the previous one by 25% of the chosen design load, until 150% of

the design load is reached. The final maximum load is held for ten minutes. A creep test



involves loading the tieback in a monotonically increasing progression, again in increments

equal to 25% of the design load, and holding the load constant at each stage for

increasingly long periods of time. The last increment of the creep test is at 150% of the

design load, and is held for 100 minutes.

The results of the tieback tests are sumarized in Table 3.2. From the performance

of the end tiebacks in the capacity tests, the contractor selected 170 tons as the failure

load, based on the load cell values, which were generally lower and therefore considered

to be conservative. The design load was defined as one-half of the failure load, equaling 85

tons. Subsequent performance and creep tests verified that the remaining anchors could

hold up to 150% of the 85-ton design load, except for the two anchors for which a packer

was not used in the post-grout stage. Anchor number 9, in fact, failed during hold at 150%

design load.

Based on this testing program, it was concluded that the installation procedure

used for test tiebacks was appropriate for sheetpile wall tiebacks, and that 85-ton design

capacities could be achieved. The following recommendations were made: 1. Two post-

grouts be performed on each tieback, except for tiebacks with less than ten feet of bond

length in the clay's overconsolidated crust, which should be post-grouted three times. 2.

At least 12 hours should elapse between post grouts, and the packer system should be

used for the post-grouting. 3. Performance tests be conducted on the first three tiebacks

installed, and on ten percent of the remaining tiebacks. 4. Proof testing to 150% design

load be done on every tieback. A proof test is a relatively fast test in which the anchor is

loaded to 133% or 150% anchor design load, in increments of 25%. Each load increment

is held for no more than a minute, only long enough to obtain a reading of elongation. The

final load is then held for ten minutes.

The following Acceptance Criteria, from recommendations by the Post-Tensioning

Institute (1986), were applied to all tiebacks:

1. The total elastic movement obtained from a performance test should exceed 80

percent of the theoretical elastic elongation of the stressing length, but be less than the

theoretical elastic elongation of the stressing length plus 50 percent of the bond length.



2. The total movement obtained from a proof test, measured between 50 percent

of the design load and the test load, should exceed 80 percent of the theoretical elastic

elongation of the free stressing length for that respective load range.

3. The creep rate should not exceed 0.080 inches per log cycle during the final log

cycle of the performance test, proof test, and/or creep test -- regardless of tendon length

and load.

4. The initial lift-off reading, taken after lock-off of each tieback, should be within

five percent of the specified lock-off load.

3.3.2.2. Diaphragm wall tiebacks (rock anchors)

The tiebacks which hold the diaphragm walls are more steeply inclined than those

for the sheeting; they dip at an angle of 45 degrees, and are long enough to extend into the

upper part of the bedrock, thus being termed rock anchors. Refer to the left side of Figure

3.2 for an illustration of these tiebacks. The rock anchors were tremied with cement grout

(water/cement ratio = 0.4 to 0.45); no pressurized post grouting was done. The tremie

grout was allowed six days to cure before testing and stressing the anchor. Testing on the

Diaphragm Wall A anchors included performance tests on the first three anchors and 5%

of anchors thereafter, and proof tests to 133% design load on all anchors. (Design load

typically ranged from 227 to 440 kips at Building A.) Acceptance Criteria were in

accordance with PTI recommendations as listed in Section 3.3.2.1. Rock anchors, like the

sheetpile wall tiebacks, were spaced 10 to 12 ft vertically, and were more widely spaced in

the upper tier than in the lower tiers. Tier 1 horizontal spacings ranged from 8.5 to 12.75

ft, while spacings in the remaining tiers ranged between about six and seven feet. This

spacing distance is slightly lower than that for the sheetpile wall tiebacks (See Section

3.3.2.1).

The drilling procedure for rock anchor tiebacks behind slurry walls underwent

modification as excavation and construction work progressed along the alignment. Since

excavation started at the west end of the alignment and progressed east, the first location

at which rock anchors were installed was Diaphragm Wall A, the westernmost of the

slurry walls, adjacent to Building A. Here, initially, the length of each tieback hole was



drilled with a downhole hammer, using wash water and high pressure air to flush cuttings

out of the casing, a technique which is generally used for drilling in rock and hard till. 6-

inch-OD casing was advanced along with the drill bit, and was usually kept six inches

ahead of the bit, although the bit was occasionally allowed to protrude beyond the casing.

The air pressure was maintained below 200 psi. The tieback installation contractor used

this method through the overburden soils (fill, organics, marine clay, and glaciomarine

deposits) as well as in the glacial till and rock. With this method, there was no need for

drilling stoppages while the drill rods were pulled out and the drill bit replaced once the till

and rock was reached.

Certain events were observed when the tiebacks were being installed with this

approach in the lowe, part of Diaphragm Wall A and at Diaphragm Wall B. During

drilling, air and wash water were seen escaping from adjacent tieback holes and from

tieback holes in higher tiers, indicating communication of water and pressurized air

through the Boston Blue Clay. This communication was observed while the drill bit was

advancing through the clay deposit; since the clay is highly impermeable to air and water,

it was suspected that the clay was being fractured under pressure, and hence greatly

disturbed, by the use of the rock bit and pressurized air. Occasional fracture-inducing

build-ups of air pressure ahead of the casing might have been caused by clogging of the

casing by entrapped spoil, temporarily preventing the air flow from returning up the

casing. From time to time, field engineers noticed stoppages in the return flow of air,

which were frequently followed by sudden "bursts" of air as the flow through the casing

resumed.

Due to concerns about potential clay disturbance, the drilling procedure was

modified. First, the air flow used during drilling was reduced by about 40%, but when

communication between holes continued to be observed at Buildings A and B, it was

decided to use a drag bit to drill through the overburden soils, as was used for sheetpile

tiebacks at the south wall. Water, rather than pressurized air, was used to flush cuttings

out of the casing. This method permits a cleaner cut of soft and clayey soils, with much

less disturbance. The tieback installation contractor changed to this procedure on August

5, 1993, when most of the tiebacks at Building A were in place and installation at



Diaphragm Wall B was well underway. The new procedure was then used for all

subsequent drilling behind slurry walls.

3.3.3. Boat Section Structure and Tiedowns

The highway is founded on a ten- to twelve-foot-thick reinforced concrete slab.

Under the boat section base slab, a grid of tension piles, or "tiedowns", serve to resist

unbalanced hydrostatic uplift pressures. A total of 600 tiedowns are spaced 14 to 18 ft

apart in a grid containing 50 rows, each row spanning the width of the excavation and

containing 10 to 14 tiedowns. Using tiedowns allowed the thickness of the concrete base

slab to be reduced by approximately 15 feet, which substantially reduced the volume of

poured concrete and the depth of final excavation.

Figure 3.8 illustrates the structure of the tiedowns. Each tiedown consisted of an

assembly of seven 1-3/8-inch diameter DYWIDAG steel threaded bars inside of a 8-inch

I.D. HDPE corrugated sheath. Centralizers and spacers were used along the length of the

bars to keep them in the center of the borehole and separated from one another for

maximum contact with the grout.

The drilling technique for the tiedown boreholes underwent revision as the work

progressed through the boat section. If, as was frequently the case, the tiedown

installation was done before final subgrade was reached, a 15-inch diameter pipe sleeve

was installed into the soil down to the level of the eventual subgrade. The borehole drilling

plan involved creation of a continuous 2.5-foot diameter soilcrete column down to the top

of bedrock. A pilot hole was then drilled through the 15-inch pipe sleeve and on down to

the bedrock, using a four-inch diameter drill bit, and the soilcrete column was formed by

jet grouting the length of the hole. This jet grouted column was intended to serve in lieu of

a casing, holding the borehole open and preventing flow of pressurized water from the

lower aquifer. After the soilcrete set up, a 12-1/4-inch diameter bit was used to drill

through it and on into the bedrock, penetrating the rock by at least 25 feet. When the drill

rods were removed, the hole was grouted with a water-cement mixture (properties

unspecified). At this point the sheathed assembly of bars was lowered into a grouted



borehole; as the assembly was lowered into place, the inside of the HDPE sheath was filled

with grout as well.

The first tiedown installation activities took place at the southwestern end of the

boat section in July of 1993. In December of 1993, jet grouting was stopped after having

been completed throughout the western half of the boat section, through Row 34 (Sta.

77+00). Tiedown bars themselves had been installed only in the first few (westernmost)

tiedown rows.

Rather than attempting to install tieback bars in the completed soilcrete columns,

all tieback locations were redone by installing 15-inch ID permanent steel casings, each

offset about two feet from the existing soilcrete column locations. Initially, for

approximately the first two rows (near Sta. 73), the casings were "spun" into the soil all

the way down to bedrock using rotary drilling methods, but a slight 'wobbling' effect

resulted in a poor seal between the casing and the soil, allowing flow of pressurized water

from the lower aquifer up along the outside of the casing. For this reason, subsequent

casings were driven to bedrock.

The tiedown bars were long enough to extend above the ground surface after

installation, permitting later connection to bearing plates on the completed boat section

base slab. The tiedowns were post-tensioned after the base slab was constructed. Each

tiedown was designed to hold a load of 350 kips, except for those at the edges of the

structure, which had a 645-kip capacity in order to resist uplift forces arising from inward

bending of the boat section walls (Druss, 1994b). Tiedowns were not necessary under the

cut-and-cover tunnel slabs, which resisted unbalanced hydrostatic pressures through the

weight of the closed structure and the soil backfill above it.

3.4. EXCAVATION DEWATERING AND PRESSURE RELIEF

The presence of the water table only five to ten feet below ground surface in the

excavated area necessitated a dewatering and pressure relief program for the excavation.

Dewatering was required from both the upper aquifer, in order to maintain a dry working

subgrade, and from the lower aquifer, to relieve hydrostatic pressures acting upward on

the base of the clay layer.



A series of nearly 40 dewatering and pressure relief wells were installed after the

sheetpile walls were driven. As Figure 3.9 illustrates, the wells were placed throughout the

entire alignment, along the inside of the support walls on both sides of the cut, in spaces

between the sheeting and wales (as shown in Figure 3.10). Each well consisted of a 6-

inch-diameter PVC pipe which was screened throughout the fill and organics above the

clay and throughout the glacial deposits below the clay, extending about five feet into the

underlying bedrock. The well casing was solid through the BBC deposit. Figure 3.11

provides an elevation view of a typical dewatering/pressure relief well, showing the

screened lengths. A single submersible pump was placed in the well casing.

Pore water pressures in the permeable glacial deposits and weathered bedrock

underlying the clay were reduced in order to maintain a factor of safety against hydrostatic

uplift equal to or greater than 1.2 at each stage of the excavation (MHD, 1992). This

factor of safety is defined by the formula given in Figure 3.12, and is essentially a ratio

between the weight of soil above the glaciomarine deposit and the hydrostatic pressure

within that deposit. As overburden material was excavated, the weight of the soil and clay

counteracting the lower aquifer's hydrostatic pressure decreased, thus reducing the factor

of safety against hydrostatic uplift.

Because the sheetpiles penetrated only partially into the clay, pressure reductions

in the deep aquifer from wells within the excavation would result in pore pressure

drawdowns outside of the cut as well. Such external drawdowns were to be minimized so

that compression of the deep deposits and subsequent surface settlements would be as

small as possible. However, all of the wells shown on Figure 3.9 were screened in the

lower aquifer, like the "typical" well in Figure 3.11. Therefore pressure relief wells were

placed throughout the alignment. The initiation of pressure relief pumping in portions of

the alignment resulted in large pressure reductions in the lower aquifer. The subsequent

history of pressure relief pumping is discussed in Section 7.2.2.1, where it is related to

measured data from deep piezometers.
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Figure 3.5. Location of the Tieback Installation and Testing Program (Contractor's
Geotechnical Consultant, 1992a).

i

t



CK . a .U
~2

< . + . .+• + <o.+fac~

> I>-,- ,

CSxOCV a Vi14~XwO.

IQ u*"
04~

oz.t

7 Z
b'c

> 4L

ILIJ <4

C.)

S4J

C.~ C.-to C>

u70:

-o l

0.
.0



Hydraulic hollow ram-jack

Figure 3.7. Equipment Used for Applying Stresses to Tiebacks and for Measuring
Applied Loads (Xanthakos, 1991).
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Figure 3.10. Plan View of a Typical Dewatering and Pressure Relief Well, Showing its
Placement Relative to the Sheeting and Wale (Contractor's Geotechnical Consultant,
1992b).
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Figure 3.11. Elevation View of a Typical Dewatering and Pressure Relief Well, Showing
Screened Lengths in the Upper and Lower Aquifers (Contractor's Geotechnical
Consultant, 1992b).
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CHAPTER 4

GEOTECHNICAL INSTRUMENTATION AND SELECTION OF

TEST SECTION

4.1. GEOTECHNICAL INSTRUMENTATION

During construction of the contract area under study, soil movements and pore

pressures adjacent to the excavation were continuously monitored by an array of

geotechnical instruments located inside and outside of the cut. Figure 4.1 shows a

"typical" cross-section through the excavation, with the locations and depths of various

geotechnical instrument types that were used throughout the alignment. The following

quantities were measured:

1. Horizontal (lateral) deflections vs. depth were measured by Inclinometers

(labeled-INCL's in Figure 4.1) and Inclinometer/Probe Extensometers (IPE's). Lateral

deflections of SOE walls were measured by inclinometers placed against or just behind

sheetpile walls, or within diaphragm walls.

2. Surficial settlements were measured with Deflection Monitoring Points

(DMP's) which came in two types: Type 2 DMP's, placed on vertical surfaces of existing

structures such as building sides and sidewalk curbs, and Type 4 DMP's, placed on the

ground surface.

3. Vertical deformations (settlements or heave) vs. depth were measured with

Probe Extensometers (PBEX's and IPE's) outside of the excavation and with Multi-Point

Heave Gages (MPHG's) within the excavation.

4. Groundwater conditions were monitored with a variety of instruments at

different depths in the soil profile. Elevation of the water table was measured by

Observation Wells (OW's). Shallow porewater pressures were measured by Open

Standpipe Piezometers (OSPZ's). Deeper porewater pressures were measured by

Vibrating Wire Piezometers (VWPZ's).



Appendix A presents a more detailed discussion of the design and capabilities of

these geotechnical instruments.

Figure 4.2 shows the plan location of geotechnical instruments throughout the

project area. It can be seen from this figure that instruments are generally arranged in

clusters, or instrumented sections. The positioning of the instrumented sections included

all locations where buildings were adjacent to the alignment, in general accordance with

the recommendations of Dunnicliff (1988). For the purposes of this research, the

instrumented sections were assigned the labels ISS-1 through ISS-8.

4.2. SELECTION OF INSTRUMENTED SECTION FOR ANALYSIS

4.2.1. Selection Criteia

A single well-instrumented "test section" was chosen for detailed analysis. Soil

movements measured at this section would be compared to predictions based on existing

empirical and semi-empirical design methods (Chapter 2). Later, as part of Task 5 in Phase

I of the research project (Table 1.1), the soil movements, wall deflections, and pore

pressure changes measured at the selected test section are going to be compared with the

results of future Finite Element simulations using the MIT-E3 soil model (Jen, work in

progress). Three criteria were used in selecting the instrumented section that would be

best suited for this study. First, it needed to be sufficiently instrumented to allow a

complete record of soil movements and groundwater levels beside and within the cut.

Ideally the test section would have at least one inclinometer and two settlement points

behind both the North and South walls, one or more observation wells or piezometers on

each side, and some heave gages and additional piezometers within the excavation.

Second, the excavation sequence and geometry, the excavation support system, the soil

profile, and the soil movements recorded at the chosen section should be representative of

conditions along the alignment; i.e., they should not represent 'anomalous' behavior

relative to the rest of the area. Third, conditions to either side of the section along the

alignment should be fairly consistent so that the finite element analysis can reasonably

assume an infinitely long excavation (plane strain conditions).



4.2.2. Review of Available Instrumented Sections

The first step in choosing the most suitable instrumented section was to examine

the layout of instruments in the project area, as shown in Figure 4.2. This allowed some

instrumented sections to be immediately assigned less desirable status. Such sections

included: ISS-1 and ISS-6, which had few or no surface settlement points (DMP's); ISS-

2, which had no instrumentation inside the cut; and ISS-7 and 8, which were each lacking

inclinometers on one side. Because ISS-5 and 6 were close together and poorly defined as

individual sections, the possibility of combining these two instrumented sections into a

wider single section was considered.

The excavation geometry and distribution of wall types also provided a basis for

comparing instrumented sections. As shown in Figure 3.3, the soil profile along the

alignment remains fairly constant and therefore did not influence the selection process.

The width of the excavation decreased toward the east, such that ISS-1, at the west end,

was wider than the rest of the alignment, while ISS-8 was the narrowest section. In

addition, the excavation at ISS-8 was supported by a unique and much less flexible

support system than those used throughout the rest of the area: walls on both sides were

"T"-buttressed diaphragm walls, and triads of steel pipe were used as strong cross-lot

struts, emplaced to protect Building E on the South side. This anomalous support

geometry, which is diagrammed in Figure 4.3, made ISS-8 a poor choice for further study

and thus eliminated it from further consideration. Among the remaining sections, four

(ISS-4 through 7) were asymmetrical, having a combination of two wall types: a sheetpile

wall on one side and a slurry wall on the other. ISS-1 through 3, on the other hand, were

symmetrical sections with sheetpile walls on both sides.

This survey of the eight available instrumented sections is summarized in Table

4.1, which lists the positive and negative features of each section with respect to the

available instruments, the excavation geometry, and the support system at each.



4.2.3. Review of Construction Histories

The schedule of construction events was another important factor in selecting a

representative instrumented section. Figure 4.4 uses a graphincal format to show a

simplified version of the construction histories at each of the eight sections. The symbols

marked "TI", "T2", etc. show the dates of lock-off for different tieback levels. "EFS"

indicates the dates of excavation to final subgrade. Final subgrade was excavated twice at

ISS-2 because large soil movements measured in that area were countered by partially

backfilling the excavation for a number of months. The excavation histories at this location

was therefore anomalous.

4.2.4. Review of Soil Movements

Lateral deflections of the wall and adjacent soil mass, as well as surficial

settlement profiles throughout the alignment, were plotted so that soil movements along

the alignment could be readily viewed, thus facilitating the identification of representative

vs. anomalous movements. Summary plots of each variable were prepared by plotting wall

deflections and surface settlements versus station number. Each plot shows movements

that were measured on the date of excavation to the final subgrade level at each

instrumented section or individual instrument.

Lateral wall deflections measured by inclinometers within or immediately adjacent

to the support of excavation (SOE) walls, on the date of the final subgrade excavation, are

plotted against station number in Figure 4.5. Values of H (excavation depth) varied along

the alignment, and are summarized in Table 4.2. West of the boat section (Sta.70+50 to

73+50), the excavation depth ranged between 37 and 40 ft. Through the boat section, the

depth increased eastward from 32 ft (at Sta.73+50 along the North wall) to nearly 45 ft (at

Sta 81+00). East of the boat section, the excavation continued to deepen to the east,

reaching a maximum depth of 59 at the eastern terminus (Sta. 93+00).

Three sets of deflection values are plotted on the graphs in Figure 4.5: the wall

deflection measured at the final subgrade elevation, the deflection measured at the top of

the wall, and the overall maximum wall deflection. The graphs show the locations of the

diaphragm (slurry) walls, and it can be seen that these walls deflect in a much different



manner than do the sheetpile walls. The different behaviors of the two wall types is further

illustrated in Figure 4.6. First, the maximum wall deflections are lower for the diaphragm

walls than they are for the sheetpile walls, in accordance with the higher stiffness of 3 ft.-

wide reinforced concrete relative to thin (Arbed type AZ-18) steel sheeting. While

maximum outward wall deflections never exceed two inches at the slurry walls, they are

rarely less than five inches behind sheetpiles. Second, the tops of the slurry walls always

show an "inward" deflection (negative on the plots), meaning that the top of the wall has

been pulled back into the retained soil by the force from the tiebacks. Such deflections are

very rarely seen elsewhere at this construction project or in general practice.

Figure 4.5 shows wall deflections in excess of nine inches west of Sta. 74 along the

north wall. The wall movements in this region were well in excess of those seen elsewhere

along the alignment, and could be attributed to a number of possible factors including: 1.)

disturbance of the soil by tieback drilling with highly pressurized air and water, which was

done behind sheetpiles only at that location on the North side before lower pressures were

used for subsequent installations; 2.) the removal of existing foundation piles from the soil

just behind the North wall at that location, resulting in further disturbance; 3.) the

possibility of unusually low undrained strengths for the BBC in that area. As mentioned in

Section 4.2.3, the large movements that occurred in this area necessitated a partial

backfilling of the excavation, as well as a reduction of active earth pressures by removal of

soil from behind the sheeting. The large wall movements and disrupted excavation

schedule of this area of the excavation made sections ISS-1 and ISS-2 poor choices for

further consideration and analysis.

Interpretation of the wall movement data in Figure 4.5 is complicated by the fact

that many inclinometers were installed well after excavation started in their vicinity. Such

inclinometers therefore recorded only partial wall deflections, since some deflection must

have occurred before their installation. Table 4.2 provides inclinometer installation dates

relative to the start of excavation activities. This table lists only the inclinometers that

record wall, rather than soil mass, movements: that is, only those that are positioned

immediately behind the SOE walls (within two feet) or are actually on or inside the walls

(i.e., either welded on the excavation side of sheetpile walls, or within the concrete slurry



of diaphragm walls). Eight inclinometers were installed more than a month after

excavation started. Inclinometer INC-111 (North wall, Sta.78+65), for example, was

installed 99 days after excavation of the first lift, at which point the second tier of tiebacks

had already been drilled and installed. The deflection measured by this instrument at

excavation to final subgrade is 2.8 inches, which is an anomalously low number (especially

for sheetpiles - see Figure 4.5) but is well explained by the late installation date.

Surface settlements behind the SOE walls are plotted in Figure 4.7-a for the North

side and Figure 4.7-b for the South side. Settlement data measured on three (and, in one

case, four) dates are shown for each instrumented section that included DMP's or Probe

Extensometers (in IPE's). The three selected dates represent the following construction

events: excavation of the first lift, excavation to the final subgrade level, and the pouring

of the concrete invert. The plot for the North side of ISS-2 includes settlements from a

fourth date, representing the second excavation to final subgrade level, which followed the

partial backfilling that was done to control excessive soil movements at that location.

Plots for the North side of ISS-5 and the South side of ISS-6 are uninformative

due to the lack of DMP's at these sections. 'Typical' wedge-shaped settlement troughs are

seen for most of the other sections except for ISS-3 and 7 North. In addition to showing

the distribution of settlements with distance from the wall, the plots also give an idea of

how the settlements developed over time. Most settlement occurred during the process of

excavation, between excavation of the first lift and the excavation to final subgrade. In

general, less than one inch of settlement occurred between the excavation to final

subgrade and the invert pour.

Section 8.2.2 provides more discussion of these settlement profiles and how they

compare to empirically predicted settlement distributions.

4.2.5. Selection of ISS-4

Based on the criteria discussed above, ISS-3 and ISS-4 were judged to be the most

suitable instrumented sections for further study. These instrumented sections have the

following features:



1. Both were sufficiently instrumented, having full complements of instrumentation

types both inside the cut and outside the cut and on both sides (unlike all the other

sections).

2. Both experienced wall deflections and settlements that were judged

representative of those seen throughout the excavation (unlike ISS-1 and -2).

3. The inclinometers at both were installed before or within a few days of the start

of excavation activities (unlike ISS-7).

4. Excavations at bothwere carried out in a relatively simple manner, without any

backfilling or other special measures being necessary (unlike ISS-l and -2).

Of the two, ISS-4 was selected as the best section to be studied in detail, because,

unlike ISS-3, it offered the chance to study soil movements behind both types of SOE

walls: the slurry wall on the north side adjacent to Building A, and the sheetpile wall on

the south side. This provided the opportunity to analyze two very different types of wall

behavior at one section.

The remainder of this thesis will therefore focus on data and interpretations from

ISS-4. Instrument records from ISS-3 may be studied in the future, depending upon the

results of the planned finite element analysis at ISS-4.
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WALL DEFLECTIONS -- SUMMARY

NORTH WALL
Excav.
Depth

Inst. Sta. (H)

IPE-108 71.09 38
INC-502 72.5 37
IPE-110 73.25 37
IPE-105 74.25 32
INC-102 77.09 39
INC-111 78.65 41
INC-113 80.55 43
INC-104 82.02 47
IPE-111 83.46 50
INC-116 84.48 51
INC-117 86.22 53
INC-118 87.3 53
INC-120 88.76 54
INC-122 89.93 54

Subgrade
Wall

Deflect. *
Normal.
Defl.(%J

5.1 1.12
6.3 1.42
6.1 1.37
3.6 0.94
-0.6 -0.13
2.8 0.57
4.6 0.89
0.7 0.12
1.6 0.27
4.7 0.77
5.1 0.80
5.1 0.80

Top
Wall

Deflect.

(data not obtained)

Normal.
Defl. (%)

9.7 2.13
8.7 1.96
9.5 2.14
5.4 1.41
-5.3 -1.13
1.5 0.30
0.4 0.08
-2.3 -0.41
-0.5 -0.08
1.6 0.26

0.4 0.06

Max. inward
Wall

Deflect. *
Normal.
Defl. (%)

10.8 2.37
9.2 2.07
9.5 2.14
5.4 1.41
0.4 0.09
2.9 0.59
5.0 0.97
0.9 0.16
1.9 0.32
5.7 0.93
5.1 0.80
5.5 0.86

SOUTH WALL
Excav. Subgrade Top Max. inward
Depth Wall Normal, Wall Normal. Wall Normal.

Inst. Sta. (H) Deflect. * Def. (%) Deflect.* Defl. (%) Deflect. * Defi. (%)

IPE-107 71 40 3.2 0.67 4.6 0.96 5.4 1.13
INC-109 71.7 39 2.2 0.47 2.3 0.49 2.5 0.53
INC-501 72.33 38
IPE-109 73.25 38 4.4 0.96 4.3 0.94 5.5 1.21
IPE-104 74.25 36 5.6 1.30 3.8 0.88 5.8 1.34
INC-101 77.01 38 5.1 1.12 2.8 0.61 5.3 1.16
INC-110 78.31 40 2.5 0.52 1.2 0.25 2.6 0.54
INC-112 79.99 38 1.9 0.42 -0.7 -0.15 2.2 0.48
INC-103 81.94 45 4.6 0.85 0.5 0.09 5.2 0.96
INC-114 82.98 47 5.9 1.05 0.6 0.11 6.7 1.19
INC-115 83.52 48 4 0.69 1.9 0.33 5.9 1.02
INC-106 85.21 49 1.1 0.19 -2.5 -0.43 1.2 0.20
INC-119 88.59 53 (data not obtained)
INC-121 89.55 53
IPE-112 92 59

* Deflections were measured on date of excavation to final subgrade (EFS)
Deflections are in inches; depths are in feet
Normalized deflections equal wall deflection (i•ackrf) divided by H (as a %)

Table 4.2. Summary of Deflections and Installations for Near-wall Inclinometers (Page 1

of 2).

I . . I ..



NORTH WALL
Installed after excav. began?

Inst.
# days progress

yes / no after at inst.
On /in wall Wall

Type Comments
IPE-108 no no sp
INC-502 no no sp
IPE-110 no no sp
IPE-105 no no sp
INC-102 YES 1 Ex T1 YES d/w Bent inwards
INC-111 YES 99 In T2 YES sp
INC-113 YES 51 In T1 YES sp
INC-104 no YES d/w Bent inwards at top
IPE-111 no np d/w Zig-zag: due to grout?
INC-116 YES 86 In T1 YES sp Bent 3" by tractor
INC-117 YES 23 LO T1 YES sp Accidentally out 10' above s.g.
INC-118 YES 146 LO T2 YES sp Slight damage, well above s.g.
INC-120 YES sp
INC-122 YES sp

SOUTH WALL
Installed after excav. began?

# days progress On /in wall Wall

In = drill and install tiebacks d/w = diaphragm wall
LO = lock-off tiebacks

Table 4.2, Summary of Deflections and Installations for Near-wall Inclinometers,

continued (Page 2 of 2).
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CHAPTER 5

SOIL STRATIGRAPHY AND SOIL PROPERTIES AT ISS-4

In addition to their investigation of the project area's geology and stratigraphy

(discussed in Section 3.2), MHD's geotechnical consultant carried out a program of in-

situ and laboratory testing on the various soil units present in the area for the purpose of

defining their pertinent engineering properties, such as strength, compressibility, and

permeability. The geotechnical consultant also conducted a Special Testing Program for

the purpose of further evaluating the engineering properties of Boston Blue Clay in the

vicinity. The Special Test Program used a combination of special laboratory shear and

consolidation tests and several types of in-situ tests, as described more fully in Section

5.4.3.1.

Figure 5.1 shows the locations of exploratory borings conducted by MHD's

geotechnical consultant for their investigation of soil units in the project area. They

assigned each boring a number which was preceded by the prefix "B2-" to indicate the

most recent series of borings. For convenience, Figure 5.1 shows only the number of each

boring, without the prefix, and this text will henceforth refer to the borings by their

numbers only. Figure 5.1 also indicates the location of the Special Testing Program.

This chapter reviews the findings of the investigations by MHD's geotechnical

consultant for the overall project area. The presentation also includes results from further

analyses by MIT on the stress history, compressibility, flow, and undrained strength

properties of the cohesive soil units at the location of ISS-4.

5.1. SOIL STRATIGRAPHY

The selected soil profile at ISS-4 was developed using two sources of data:

selected borings from subsurface investigations, and instrument installation logs for nearby

inclinometers and deep piezometers. The locations of borings and instrumentation near the

ISS-4 cross-section which were used in developing the soil profile are shown in Figures

5.1 and 6.2, respectively. The installation logs were made by the instrumentation



subconsultant to the project contractor. The stratigraphic information from these two

sources is summarized in Figure 5.2-a and 5.2-c. A simplified, averaged soil profile was

produced from these data, and is shown in Figure 5.2-b. In selecting appropriate

thicknesses for the strata, elevations of soil unit interfaces from nearby borings were

averaged. Due to their greater variability and less precise nature, information from the

installation logs was used only to make a qualitative check of the selected average profile.

The soil profile consists primarily of a sequence of three cohesive soil layers

underlying 8.5 ft of granular fill: 15 ft of cohesive fill, 15 ft of an organic deposit, and 64.5

ft of Boston Blue Clay. The cohesive soils are underlain by glacial deposits and bedrock.

5.2. GROUNDWATERA REGIME

The average groundwater levels from eight observation wells installed in the upper

aquifer by MHD's geotechnical consultant are graphed against station number in Figure

5.3; they are the upper of the two curves. The observed water levels indicated water table

elevations of approximately 102 to 108 feet, generally decreasing eastward toward the

harbor (MHD Geotechnical Consultant, 199 1b). The sea level of Boston Harbor typically

ranges between Elevations 95.5 and 104.8 ft (project datum), but the tidal fluctuations

seen in the harbor were seen only in the easternmost of the observation wells, while little

or no tidal influence was seen elsewhere. Some of the water table variations between

different wells were attributed to the heterogeneous nature of the fill deposits and to the

presence of either impervious pavement or open ground surface at different locations.

Pore pressures measured in the lower aquifer by vibrating wire piezometers

indicated piezometric elevations between approximately 96 and 100 ft, i.e., five or more

feet lower than the levels in the upper aquifer. These water levels are shown as the lower

set of points in Figure 5.3.
Groundwater and piezometric levels were also measured at the Special Testing

Program Site. Here, one observation well and one vibrating wire piezometer was placed in

the upper and lower aquifers, respectively, while three piezometers were placed at

different depths within the Boston Blue Clay. The average measurements from the

instruments in the upper and lower aquifers are shown in Figure 5.3, along with the



instrument data from the project alignment. The groundwater level measured by the

Special Testing Program observation well was somewhat lower than levels measured in

the project alignment's observation wells. The piezometers in the clay indicated small

excess pore pressures which had not yet dissipated following the placement of overburden

fill materials (MHD Geotechnical Consultant, 1993).

Based on the piezometric data shown in Figure 5.3, best estimates for initial water

pressures at ISS-4 (Stations 76+50 to 78+00) are as follows:

Piezometric Elevation=106 ft in the upper aquifer.

Piezometric Elevation=100 ft in the lower aquifer.

5.3. OVERBURDEN STRESSES

In-situ vertical total stresses (avo), pore water pressures (uo), and effective vertical

stresses (a',o) were calculated for the selected ISS-4 profile, using the equation

avo' = avo - uo (5-1)

The average ISS-4 soil profile appears in Figure 5.2-b and the selected total unit weights

appear in Figure 5.4.

The selected initial piezometric water elevations (PWE's) for the upper and lower

aquifers are given in Section 5.2. The upper aquifer PWE of 106 ft was used to calculate

pore pressures in the miscellaneous and cohesive fills and the organic deposit. The lower

aquifer PWE of 100 ft was used to calculate uo in the glaciomarine deposit and glacial till

underlying the Boston Blue Clay. Pore pressures within the clay were assumed to vary

linearly from the top to the bottom of the deposit. The unit weight of water was assumed

to equal 63 pcf because of the presence of salt.

The following table summarizes the selected unit weights of the six soil units, and

the calculated values of oa, uo, and o've at the interfaces between the deposits. The

stresses are also shown graphically in Figure 5.4.



Stresses at base of deposit (psf)

Soil Unit yt (pcf) ovo U0  'vo

Misc. Fill (above WT) 110 440 0 440

Misc. Fill (below WT) 120 980 284 697

Cohesive Fill 110 2630 1229 1402

Organics 108 4250 2174 2077

Boston Blue Clay 116 11732 5859 5873

Glaciomarine 135 12677 6300 6377

Glacial Till 145 13982 6867 7115

Based on the values of effective stress at the top and bottom of the clay, and the clay's

64.5-ft thickness, the following equation gives a'v, in the clay as a function of elevation:

a'v (psf) = 6285 - 58.85 (Elev.) (5-2)

5.4. INDEX AND ENGINEERING PROPERTIES OF MAIN DEPOSITS

The following discussion provides a detailed review of laboratory and in-situ

testing conducted by MHD's geotechnical consultant for their geotechnical study of the

project area. Their recommendations provided a proper perspective on the overall

variability in properties along the alignment. For this discussion, only those soil strata that

are present at ISS-4 will be emphasized. These testing results and recommendations, as

well as values selected by MIT for its site-specific analysis of the ISS-4 cross-section, are

summarized in Tables 5.1 through 5.7.

5.4.1. Recent Fill Deposits

MHD's geotechnical consultant (1991) distinguished three different fill sub-units

along the project alignment. The first is Granular Fill, and is primarily composed of a

brown coarse to fine sand. The second, Miscellaneous Fill, is a mixture of brown sand and

grey-black silt containing a variety of construction debris like cinders, wood blocks, and



bricks. Both sub-units were considered to be non-cohesive. The third fill sub-unit is

Cohesive Fill, a mixture of clay and organic silt which was dredged from Boston Harbor.

5.4.1.1. Granular and Miscellaneous Fills

Granular Fill is infrequent at the ISS-4 section, but is predominant east of Sta. 87

and intermittently over the rest of the project area. As Figure 3.5 shows, the

Miscellaneous Fill is present only sporadically throughout the area. MHD's geotechnical

consultant did not go into much detail in their discussions of the Miscellaneous Fill. They

compared the Granular and Miscellaneous Fills west of Sta. 87 to the thicker,

predominantly Granular Fill deposits east of Sta. 87, stating that the former deposits are

"generally denser, consistent with [their] placement above sea level, proximity to vehicular

traffic, and the presence of oversized and miscellaneous materials" (p.34, MHI)

Geotechnical Consultant, 199 1b).

Table 5.1 lists the engineering properties of the Miscellaneous Fill according to the

study. In-situ permeability tests led MHD's geotechnical consultant to conclude that the

permeability of this deposit was "highly variable, and dependent on local conditions and

gradation" (p.35, MHD Geotechnical Consultant, 1991b).

Additional in-situ pump testing was conducted in October, 1991, after the initial

geotechnical exploration phase. Pumping Test Number 3 consisted of the installation of a

pumping well screened both in the upper fill and in the underlying bedrock (MHD

Geotechnical Consultant, 1992). The well was placed in the vicinity of Sta. 90, and several

observation wells and piezometers were installed around it for measurement of water

levels and pressures during pumping and subsequent recovery. This well was located in an

area where the Granular Fill, rather than the Miscellaneous Fill, was predominant, but the

resulting permeability is listed in Table 5.1 for the purposes of comparison.

5.4.1.2. Cohesive Fill

Due to its predominance throughout the project alignment, and to the fact that it is

locally very soft, the Cohesive Fill was an important deposit from a geotechnical point of

view. Therefore, MHD's geotechnical consultant presented a detailed discussion of this

soil layer. MIT carefully evaluated their laboratory and field data, with emphasis placed on



test results from undisturbed samples taken in the vicinity of ISS-4. The available data are

presented graphically in Sheets B 1, B2, and B3 in Appendix B, and are summarized along

with selected engineering properties of the Cohesive Fill in Table 5.2.

Unit weights, water contents, and Atterberg Limits were obtained from laboratory

tests conducted on undisturbed samples taken from nine different boreholes. Atterberg

Limits and water contents are presented graphically in Sheet Bl1. Table 5.2 lists average

values from all samples, as well as averages from only those samples collected at Borings

49, 60, and 61, which are in the vicinity of ISS-4. (Boring locations are shown in Figure

5.1.) Based on the data from these borings, a liquid limit (cao) of 50% and a plasticity index

(Ip) of 26.5% were selected as being most representative of cohesive fill at ISS-4, which

places the soil on the boundary between CL and CH clays on the standard Plasticity Chart.

According to MHD's geotechnical consultant, five of the eight CIUC tests

performed on Cohesive Fill used consolidation pressures that were 1.3 to 1.8 times higher

than the actual effective overburden stress, and consequently resulted in overly high

strengths. The higher pressures were used because, at the time of testing, the water table

in the fill was assumed to be at El. 100 ft, while in fact it was 4 to 8 feet higher as revealed

by observation well data collected later. Sheet B 1 summarizes additional strength data

from UU, torvane, and miniature lab vane testing; these data were used by MIT to select

the "best-estimate" undrained strengths given in Table 5.2.

Sheet B2 summarizes preconsolidation pressures interpreted by MIT from

oedometer tests conducted by MHD's geotechnical consultant for borings 40, 41, 60, and

61. Samples from borings 60 and 61 yielded substantially lower values of ap' than did

borings 40 and 41; the higher preconsolidation pressure at 40 may be due to the past

existence of salt stockpiles at that location (Figure 5.1). Overall, the deposit appears to be

overconsolidated, and a constant OCR of 1.7 was selected by MIT for the Cohesive Fill,

based on the samples from 60 and 61.

Table 5.2 lists values of c, (the coefficient of consolidation) estimated for different

loading stages in the oedometer tests. Further analysis by MIT of the lab tests and

variable-head field pumping tests resulted in two different estimates of c, for
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overconsolidated Cohesive Fill: 1.0 and 15.0 ft2/day. Due to uncertainty in the estimate, it

is recommended that both values be used in analysis.

Sheet B3 illustrates SPT-N values measured during drilling of several borings

throughout the project alignment. The somewhat higher N-values near the top of the

Cohesive Fill suggest the existence of a stronger crust. Among those borings near ISS-4,

the fill near the north side of the excavation (represented by borings 49, 52, 60, and 62)

appears to be weaker between depths of 11 and 16 ft than does the fill in the "middle" and

south areas of ISS-4.

5.4.2. Organic Deposits

The Organic stratum represents materials that were naturally deposited in the tidal

marsh environment which existed before filling activities began. The organic deposits exist

primarily west of Sta. 87 (as Figure 3.5 indicates). The deposit actually contains two sub-

units: a cohesive grey to black Organic Silt, which is by far the predominant component,

and a thin, intermittent layer of peat. For simplicity, the thin peat layer and the overlying

organic silt were considered to be a single organic layer in the selected ISS-4 soil profile.

Results of laboratory tests on the organic soils are summarized in Table 5.3. Sheet

B4 in Appendix B plots water contents and Atterberg Limits measured for samples from

ten different borings, most in the vicinity of ISS-4 (i.e., borings 49, 55, 59, 60, 61, and 62,

as shown in Figure 5.1). Although this deposit is termed an organic soil, the Atterberg

limits actually lie to either side of the A-line on the Plasticity Chart (Sheet BS), making it

more properly classified a CH-OH material.

MIT evaluated the stress history and undrained strength of the Organic deposits

using data from laboratory tests performed by MHD's geotechnical consultant. Maximum

past pressures (a'p) were determined mainly by the Casagrande technique. Section 5.4.3.4

provides more discussion of this method of analysis, which was also performed for the

Boston Blue Clay. Sheet B6 plots o'p data from three tests at ISS-4 (Borings 60 and 61),

one of which was highly disturbed, and one test each to the west (Boring 48) and east

(Boring 68) of ISS-4. These data indicated that the organic deposit was slightly

overconsolidated, with an average value of 3.5 ksf determined for o'p. Since
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precompression of tidal mud flat deposits probably occurs due to desiccation during

deposition, the assumption of a constant o'p is not unreasonable.

The SHANSEP equation was used to compute undrained shear strengths for the

deposit, assuming normalized parameters of S=0.25 and m=0.8 (which apply to the DSS

mode of shear). Refer to Section 5.4.3.7 for a more thorough discussion of this method.

The resulting calculated strengths plot slightly below, but in fairly good agreement with,

the trend of UU results measured by MHD's geotechnical consultant (Sheet B4).

MHD's geotechnical consultant did not perform any in-situ pumping tests in the

organic deposits, so the permeability estimates came from laboratory consolidation tests,

using the methodology described in Ladd et al. (1994).
)

5.4.3. Boston Blue Clay

5.4.3.1. General

The Boston Blue Clay is a deposit of great geotechnical importance throughout

most of the Boston area owing to its wide areal distribution, its thickness, and its low

overconsolidation ratio at depth. On this project, it is the most predominant of three

separate marine deposits, which together represent a period of time near the end of

Pleistocene glaciation, about 12,000 to 14,000 years ago, when continental glaciers were

retreating from the Boston region and sea levels were rising (Kaye, 1982). In addition to

the Marine Clay (BBC), the marine deposit sequence includes discontinuous, thin layers of

sand and silt. At ISS-4, the clay is the only substantial sub-unit of the three.

Because of its importance to geotechnical design issues, MHD's geotechnical

consultant devoted a large portion of their investigation to the Marine Clay deposit.

Consolidation properties and stress history profiles of the deposit were investigated with

numerous conventional, incremental-load oedometer tests and some Constant Rate of

Strain (CRS) tests. Undrained strengths were tested by UU and CIUC tests. Additional in-

situ tests, including piezocone and Menard pressuremeter tests, were also conducted.

In conjunction with the project's Geotechnical Investigation, MIT and others

collaborated on a Special Testing Program in Boston (MHD Geotechnical Consultant,

1993). The goal of the Special Testing Program was to evaluate the strength,
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compressibility, and flow properties of Boston Blue Clay deposits in the vicinity of the

Boston excavations, as well as to appraise the usefulness of advanced in-situ and

laboratory testing techniques for defining these properties. A variety of in-situ testing

devices were utilized, including the self-boring pressuremeter, the field vane, the

piezocone, the dilatometer, and the earth pressure cell. Undisturbed samples were

obtained using fixed-piston and block sampling techniques, and a comprehensive

laboratory program was performed using specialized testing techniques such as the lateral

stress oedometer, constant rate-of-strain consolidation, and computer-automated K.-

consolidated undrained triaxial compression and extension tests. Samples were taken from

a selected "Special Test Site", located about 500 ft from the western end of the project

alignment. The location of the Special Test Site is shown in Figure 5.1. Results from the

Special Testing Program are included with results from the project geotechnical

investigations in Table 5.4.

Results from laboratory and in-situ tests are summarized in Table 5.4, except for

stress history and undrained strength profiles developed by MH's geotechnical

consultant, which are shown in Figure 5.6.

5.4.3.2. Index Properties

Total unit weights, water contents, and Atterberg limits for Boston Blue Clay in

the vicinity of ISS-4 are plotted in Figure 5.5. The data were gathered from 23 selected

borings which were in the immediate vicinity of ISS-4 and within about 500 ft along the

alignment in both directions. This figure therefore provides a summary of how the unit

weight and index properties vary with elevation at and around ISS-4 (Also see Sheets B7

and BS). The natural water content (cs) range equaled 40 ± 4%. The range for liquid limit

(q)) equalled 51 ± 5%; the range for plasticity index (Ip) was 28.5 ± 4.5%.

Sheet B9 shows the values of 0i plotted against corresponding values of Ip, based

on the data provided in Figure 5.5 and Sheet B7. It can be seen that the data range plots

just above the A-line, as is typical for marine illitic clays.
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5.4.3.3. Stress History and Undrained Strength Profiles

Stress history and undrained strength profiles were developed by MHD's

geotechnical consultant for five zones along the project alignment as well as for the

Special Test Site. Undrained strengths were measured in the laboratory with UU and

CIUC tests and also calculated via the SHANSEP technique. The resulting

overconsolidation ratio (OCR) and strength profiles are shown in Figure 5.6. The plotted

strengths are from SHANSEP calculations, using the measured OCR's and normalized

strength parameters of S=0.20 and m=0.75 (values from MIT CKoU-DSS tests on

resedimented BBC). The solid lines labeled "1" through "4" represent OCR and strength

profiles from different zones along the alignment, each with distinct stress history and

strength characteristics. The labeling of the lines on Figure 5.6 corresponds to the labeled

groups of borings in Figure 5.1.

For the most part, the profiles are fairly typical for BBC in the Boston area: a stiff

overconsolidated crust overlies a softer, nearly normally consolidated clay at depth. In

general, undrained strengths decreased with depth in the crust, while increasing with depth

in the near-normally consolidated deeper region. However, substantial variations in stress

history and strength were found along the alignment, a phenomenon "not known to have

been observed previously in the Boston area" (p.54, MHD Geotechnical Consultant,

1991b). For example, the strength profile for area 3 is unique due to its lack of a stronger

crust in the upper part of the deposit. Profile number 1, from the region west of Sta. 74, is

also unique in that it features an unusually low OCR profile and is therefore substantially

weaker throughout much of its thickness than the other areas. However, undrained

strengths for Boring 40 (at Sta. 71) were anomalously high. Clearly, clay strengths

undergo great variations over relatively small distances, particularly within the western

half of the project area.

The "low" strengths seen at most locations in the western part of the area remain

unexplained. However, the anomalously high strengths seen at Boring 40 can be attributed

to consolidation under the weight of 30- to 40-foot-high salt stockpiles which existed in

the area until the early 1980's. The approximate location of the stockpiles is shown on

Figure 5.1 and appears to overlie Boring 40. Also, for a few years in the mid-80's,
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stockpiles of fill materials excavated from South Station were placed in the area indicated

on the figure. The fill in these piles was 'spread out' in 1987, forming a higher ground

elevation immediately southwest of the excavation. Although there is very little

information available on these stockpiles, they may well have influenced local clay

strengths.

Figure 5.6 includes, in dashed lines, OCR and undrained strength profiles at the

Special Test Site. The dashed line marked "SHANSEP DSS" was calculated using the

SHANSEP equation, normalized strength parameters as shown in Table 5.4, and the

measured stress history profile. The hatched zone labeled "STP Compression Tests"

covers the range of strengths measured by Recompression- and SHANSEP- type triaxial

compression tests in the Special Test Program.

The STP DSS profile agrees most closely with that from zone number 4,

representing the eastern part of the alignment where strengths were relatively high. The

Special Test Site stress history profile was obtained from preconsolidation pressure

measurements in "excellent" and "very good"-quality laboratory consolidation tests

(mostly CRS and Ko-triaxial). Compression curves from clay below El 40 were often S-

shaped, showing that the deeper clays are structured.

Results from the Special Test Program (MHD Geotechnical Consultant, 1993)

produced three conclusions that, in hindsight, could have affected the evaluation of

preconsolidation pressures obtained from incremental oedometer tests.

1. Sample extrusion: The STP showed that samples extruded from tubes in the

conventional manner can cause excessive disturbance, and hence lower values of op' than

samples that were pre-cut around the perimeter of the tube before extrusion.

2. Samples in the crust with very rounded compression curves: The STP showed

that the strain energy technique (Becker et al., 1987) usually produced more reliable

estimates of ap' than the conventional Casagrande technique (see Section 5.4.3.4).

3. Samples with S-shaped compression curves: The STP showed that continuous

loading (as done with CRS and K,-triaxial consolidation) is needed to obtain compression

curves having well-defined values of op' for the more structured clay.
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5.4.3.4. Stress History Developed by MIT

Preconsolidation pressure data estimated by MHD's geotechnical consultant from

laboratory consolidation testing had a great deal of scatter. In the crust, one of the major

reasons for the scatter was the fact that the compression curves were frequently very

rounded. MIT decided to re-evaluate the test data using two ap' estimation techniques.

The first technique, the Casagrande (1936) construction, is the most commonly used

method in geotechnical practice. It was used by MHD's geotechnical consultant for their

estimates of op' and also by MIT for comparison estimates. The second method used by

MIT was the Strain Energy technique, developed by Becker et al. (1987) and considered

by MIT to be generally more reliable.

Sheet B 10 in Appendix B shows a plot of ap' vs. elevation estimated by the

Casagrande method for BBC in zones 1, 2, and 3 in the vicinity of ISS-4. The plot

includes values selected by MHD's geotechnical consultant (solid symbols) and

independently by MIT (hollow symbols); the two sets of results commonly show

substantial differences. The values determined by both parties show considerable scatter,

making selection of a "best-fit" ap' profile difficult.

Sheets B 11 through B 16 in Appendix B show examples of MIT's Strain Energy

constructions compared to Casagrande constructions, for two tests having very rounded

compression curves. Strain Energy analyses were made for 17 oedometer tests run using

standard loading plotted at EOP (as shown in Sheets B 11 and B 14). The Strain Energy

estimates were done using tabulated void ratio data and computer-generated plots of SE

vs. o,.', with linear regression used to define slopes for initial reloading and virgin

compression (based on the maximum value of CR). Values of ap' were calculated from

the intersection of the two linear regression lines.

The results of the Strain Energy analyses are plotted against the Casagrande results

in Sheet B17. These data are from Borings 40, 48, 49, and 61, which are near ISS-4

(Figure 5.1). On average, the Strain Energy-based aop' values exceeded the MIT-selected

Casagrande values by about 10% and the MHD geotechnical consultant values by even

more.
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The selected op' profile from MIT's re-evaluation is shown in Figure 5.7. This

profile is based on consolidation test data from the three borings (49, 60, and 61; see

Figure 5.1) closest to ISS-4 and agrees very well with seven of the nine estimated values

of preconsolidation pressure. It is interesting to note that the two outliers are from boring

49, which MHD's geotechnical consultant (199 la) included with zone 2, whereas borings

60 and 61 are part of zone 3 (see Figure 5.1). However, the OCR profile for zone 3

corresponds to a linear increase in ap' with depth, whereas MIT's profile based on Strain

Energy analyses produces a decreasing aop' within the upper crust of the deposit.

Figure 5.7 also shows the preconsolidation pressure profile obtained from very

extensive consolidation tests for the Special Testing Program (MHD Geotechnical

Consultant, 1993). The difference again highlights the large spatial changes in stress

history within the BBC.

5.4.3.5. Compressibility Parameters

Figure 5.8 shows values of CRm.. (Virgin Compression Ratio at maximum slope)

and RR (Recompression Ratio) plotted against elevation. Additional data are plotted on

Sheet B7. The data in Figure 5.8 and Sheet B7 were obtained from oedometer and CRS

tests conducted on samples from eight borings located between Stations 71 and 86 along

the alignment. The RR values plotted in Figure 5.8 were obtained from unload-reload

cycles at stress levels less than the in situ ap'. The selected RR value of 0.025 - 0.010 also

considers unload-reload cycles from the virgin compression line and final unloading

curves. The selected values of each parameter are provided in Table 5.4, along with values

from the Special Test Program.

5.4.3.6. Coefficients of Consolidation and Permeability

The vertical coefficient of consolidation (c,) was measured using conventional

oedometer tests and CRS tests (see Sheet B7), and values of ch were estimated from in-

situ piezocone and dilatometer porewater dissipation tests done for the Special Test

Program (See Table 5.4). The ch values given by the piezocone tests were appreciably

higher than the laboratory results, which MHD's geotechnical consultant attributed to
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"horizontal drainage effects encountered in full-scale field conditions versus tests on small-

scale laboratory samples" (p.45, MHD Geotechnical Consultant, 1991b). Generally, it is

difficult to directly relate in-situ measurements of c, or ch to laboratory measurements, due

to the different flow regimes, loading systems, and stress histories. MHD's geotechnical

consultant recommended a range of c, equal to 50 to 300 x 104 cm2/sec, applicable to

one-dimensional analysis for BBC heave and recompression.

CRS testing done as part of the Special Test Program provided values of kvo, the

in-situ vertical permeability. Sheet B 18 shows a plot of kv. from CRS tests against

elevation; this plot appears as Figure 12 in the STP Report (MHD Geotechnical

Consultant, 1993). The average value of kvo is approximately 12.0x10 "8 cm/sec. Ladd et al.

(1994) summarized kg data for BBC under the 1-95 test embankment at Station 246 in

Saugus, MA. The 1-95 BBC appears to have a lower permeability below the crust.

5.4.3.7. Undrained Shear Strength

The stress history for the ISS-4 BBC profile was used to calculate undrained

strengths via the SHANSEP procedure (Ladd and Foott, 1974). This uses the following

equation:

su = S ovo' (OCR)m  (5-3)

where S and m are Normalized Strength Parameters which vary according to clay type and

shearing mode (i.e., compression, direct simple shear, or extension). The following table

summarizes the parameters which apply to BBC, as based on CKoU testing (Ladd, 1994).
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SShearing Mode S m
Compression 0.28 0.68

DSS 0.19 0.75

Extension 0.145 0.95

Average 0.205 0.77



The undrained strength profile shown in Figure 5.9 was computed using the average

parameters. This profile is typically about 30% higher than mean strengths measured in

laboratory UUC and miniature vane tests run on samples from borings near ISS-4.

5.4.3.8. Drained Shear Strength

The effective stress failure envelope was defined through a series of IK-

consolidated tests on BBC conducted for the Special Test Program (MHD Geotechnical

Consultant, 1993). Both SHANSEP and Recompression tests were performed. The

drained strength envelope is defined with the following parameters for drained

compression:

5.4.3.9. Coefficient of Earth Pressure at Rest (Ko)

Laboratory and in-situ tests (pressuremeter and earth pressure cell) conducted as

part of the Special Testing Program indicated decreasing values of KY with depth. A

relationship between I& and OCR is provided in Table 5.4.

5.4.4. Glacial Deposits

5.4.4.1. General

Underlying the Boston Blue Clay is a sequence of soils deposited during one or

possibly numerous episodes of continental glaciation, the latest of which ended about

12,000 years ago. The various deposits, which include Glaciomarine, Glaciolacustrine,

Glaciofluvial, and Glacial Till (lodgement and ablation types), represent different stages of

glacial advance and melting.

The Glaciolacustrine soils are the uppermost of the glacial deposits and lie to the

west of Sta.76 (Figure 5.1). Between Sta. 69 and 74, these deposits occasionally reach a
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thickness of nearly 30 feet. They were deposited in the relatively calm environment of

glacial meltwater ponds and lakes, and are accordingly more fine-grained than the other

"higher-energy" glacial deposits. The Glaciolacustrine deposit consists of fine sands, silts,

and interbedded clays.

Like the Glaciolacustrine deposits, the Glaciofluvial soils are present primarily

below the western end of the project alignment, west of Sta. 73. Since they were

deposited in the high-energy environment of meltwater rivers and torrents, they tend to be

better-sorted and coarser-grained than the finer Glaciolacustrine soils, and consist largely

of coarse to fine sand, with some gravel.

The Glaciolacustrine and Glaciofluvial deposits are not present in the vicinity of

ISS-4. Of the four glacially-deposited soil types, only the Glaciomarine and Glacial Till

deposits exist within the ISS-4 soil profile. Detailed summaries of the engineering

properties of these two deposits are provided in Tables 5.5 and 5.6, respectively. The

following is a brief discussion of each.

5.4.4.2. Glaciomarine Deposits

The Glaciomarine deposits overlie the Glacial Till throughout most of the project

area. They represent glacial outwash materials that were deposited in the newly formed

marine environment. The Glaciomarine soil has been described as "till-like", due to the

fact that it frequently appears as an unsorted mixture of gravel, coarse sand, fine sand, silt,

and clay.

Although most of the Glaciomarine deposit were characterized as cohesionless,

some zones within the deposit were more cohesive in nature. These cohesive zones existed

under the extreme eastern area of the alignment, but not at ISS-4. Table 5.5 therefore

presents properties of the cohesionless Glaciomarine materials.
Two pressuremeter tests were successfully completed in the Glaciomarine soils.

Although one in-situ pumping test was performed for the purpose of estimating

permeability, it was done at Boring 89, where the deposit is cohesive. Permeability values

for the cohesionless portion of the deposit were provided by correlations to grain-size

distributions and are listed in the table.
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5.4.4.3. Glacial Till

The movement of the continental glaciers over the landscape, and their tendency to

grind and scour the existing bedrock surface, left a heterogeneous, unsorted, and relatively

stiff deposit of Glacial Till over the bedrock surface. The till is essentially a mixture of all

grain sizes, from gravel to clay, and tends to have angular grains due to their origin in the

glacial 'grinding' action. According to MHD's geotechnical consultant, the till is generally

a mixture of two distinct components: a) a fine gravel and coarse to fine sand, and b) more

limited zones which consist largely of finer sand and silt. Permeabilities are expected to

undergo wide local variations, in accordance with the dichotomy of grain size

distributions.

5.4.5. Bedrock

The sequence of glacial soils is underlain by bedrock which is classified as part of

the Cambridge Formation, a thinly bedded argillite. The bedrock was found to have a

highly variable Rock Quality Designation (RQD), indicating widely varying degrees of

weathering and fracturing. Table 5.7 lists the results of in-situ tests performed in the

bedrock, using both Menard Pressuremeters for determining the rock's elastic modulus,

and borehole pumping tests conducted with the drill casing seated at the top of the rock.

Only initial moduli were determined from the pressuremeter tests because the rock

stiffniess exceeded the sensitivity of the measuring device. There appears to be a direct,

though non-linear, correlation between initial elastic modulus and RQD.

The in-situ permeability measurements are supplemented by a permeability

estimate provided by Pumping Test # 3 (MHD Geotechnical Consultant, 1992). This

Pumping Test was described in Section 5.4.1.1 (on the Granular and Miscellaneous Fills).



C4)N

00

.0

'44
H
4)

<C,

00

0

s a

4

U)

~0 11S
.

U04

CN

0026 zU) U

e a

0 0

--

0

Cor

US
U)4)

U)

LL 80.0O

cc
as

4)U)

34

112

0

0

4)

0
44

1~
§

4)
0

0

Ill



s

a)

0

0
COO

c

o•e8

0

0

00

ad

a)0
'-I

A.

+ -H

1 ol

#a

-H 0

0

a-

41
f~

t . Lc

La

oo4) Us)

o 0

.J ~

e~

.)I

LLI

MZ
19Z rA

113

S
5
0

.s ~

4J

r- r- r- I-



8

2. q
40,

0iii~iii

*c3

I
mA

U)
U

I
.0
U)
U)
4)

4)
4)

0

s -

00s -

00
T --

0 00

0

&.. c*~l

0
b.i

U)0

7o

z

I

.5

iU

o

4)

0

C) -

40- 0

~ Ii~
0 0

0.
0. sr~

0

F

~

0

60low

0

0-

4)

Q
. .
04)

u
4)

.0

04 e
U)E

U) UE

'U4

.0i

U)9

= U2

jiI'
'U

P 0!

4) - 'U"

114

o

.5
-

0

0

.- .- W-

" o .............. ..............li!iiiiiii
.............ii~i~iiii~ii

04 9 a



O034)
0

0
"0

o

0O

0O

*C40

.094
EO4)
.0

115



0

a)

0'0a)
C.)

F-4
a)

04

cn

W)Coo*cc(A c

c Elo

0

116



;p- cc

0 t:
4)

'0"aC

a15
0

00C.)

u

0

0

co

V-O

0
0

U)

4)
0
0

Co

C

.4

U)
4)

IE
U)..

'61

0

0C

- cy

a 9c

= 0.o

"s _
a o

U)

E

000~
0 0 0*

S........... .....

C.. ..
. . . . . . . . . .

C.

.4

0
C

'.4

,$
:4
>.

-4ii
I.

, ,

o o

* a0

02
-H

0
0 0

C' -

c

;.

C

C

F.
C

C
C
C'

C
a'

4

C
(~-.

C)

117

---m -7



a b

. a 4:*

U, Q

m

- a

6 r

0

0v

p
o4

000

00- 00 e'q666668 8"01C5 s

0

*0

a

W

C3

co 4-

0
Nz

0~

(U

CA

oE

N00

-H -H
en %o
00 C
c6

.~ CO

C
z

0

.~' er~hf~

S
r-~ -H

II

C'0

0

-H

0

118

r- r- P- r-

-- --- - --- 6- I--
I

7E

5



o to 1c n

r.'r

*00 00
CO *q/) CoN; N;.

8 "

O II

4)

'II~mi

0

-co .E

.o o

WOas a

2
80

v
4.)

04 I.

e a

119

a



~o.

U)
4)

I-
4)
4)

4)
4-

4)
p.4
4-

I

W o

aw i

00

!ii 'C il

c o!ii~i
.•m:q:

a 2e

c~ro e-~

- U)om
.... ....

o ..o..:mm ¸

4)

0

*. 6

U)

4)

0N
U)
U)

0U iii

:....o
0 '.'.'

o•,

U).8

-E

0. 1

.- e4

4)w

4'-

8 .D1

a
9

1W 1
U)g

4)1 4
: '8 .

120

0

C

C
0

I
C
1W

I.
C
U)

4)
C
1W

4)

U)
4)

0
N
U)
U)
4)

0
U)
4)

0
U

sr~

I-

a

.~j.

r- r- r- V- r-

.- .-



C

4;

I- .

4)

C
0
N
U,
C

U,

U,

0

0

0

121

.U.

U:' a4) q)UE
C

o

U,

4)

0

C

.5
I-.

4)
h..

C
4)

'4-
C
4)

C

C
I..

I-

4;

C

C
(ml'

C
C

4

U
g

I
C

I-
a
U

0

I

0
U,.4-

0
QC

4)

C

4o

'I

0

'I.

-4

C
I'

.4
C

F-

11 It 11



0

o -

, S -
t 0

00

-00%6",1
rt c)r- C4

122



I-
.

((
JQ

L
o

(D
 

(D
T

O
iO

o

C
A

-

00
 

cn
O

O
H0

(D
~

: 0 N
C

/
o•

o C
D

0
5

0
19

.

(D

0
C

:)

h
-.

 
o 

Q
O

c 
•

cn
 

C
-

C
 "

+
 

(D

(D
 

0

II

3c
0r

 
cr

4
•
O
 

o' ~0 '1

3 
3

>o 0

-
ee

0X
U

O
 

0
L

o 
E

D

0 
-:

E
D

co _0 (D C
)

0
.-

t

13
0

L
,



r--4



()UOTILAag~
cu C)C) C) C)CD 

DC) c:) 
M) N) C) C CD) )

-' -0' N D CD C D C) CI I I II N \

C)

0)

)CL

0

QI

-c C) CD D 4m C CD CD CD CD CD cuCX)N c.D V)r -%, )v c CU CD C

U..-

125

co

0

0

COl

k-4

a.

N
a.

N

N,
(L

N

a.
C.)

C.) 0

03-

CIS,

40

"70

C.

U,

iz

a)C/ 0

CQ

'uc

(u C

cu n

cuI
CUt

......... .

.......................... ..



EO

0

C\2

U)

0

m

4-ý

ý4-

4,
V)

4ýIc

uo

O 0 u) 0 I
A_1 •--0 0 Om

('•4) "^AG] 2iJ:~WOZeid -Jo elqoj JG•DM

126

o

Do .)

CO
4.d

0

0
I 0co UC

o"N0



0 N 0
0)

t('V 00 N

V

..
..
..
..
..
.

4i

0
N
N

4

/ 

0
CV
/

A

*W
G

IZ
:E

TT:::
:W

rT
&

G
Y

:M
egerw

--
 

- .
..
..
. 

.w.
..
..
..
..
.



I I I

0P
0o

cc

0
co

0)

mm
cc

0

0

4-4

4-j

0
Qý

(1J) UOT1hAIHq

128

0

o

0
O

o::,-

a)

&_ .. .. ....... . .... .. .. .. .. ... ...... - ...... ...... ............. ........ ..00 CDi
0 ..... ....... ..........................0 0  i 9o o 0

g * **_o 0

cii......... • .................................. ; ................................................................................

[ii

I O.............. ................._ ; . .... ..... .......... ....... ... ~ ~ ~ ~ ~ ~ ~ ..... .. ..... ..... . ... ... .. ... . ......... ..... .......... ...... ... ... ............ .. ...... . ........

.. . . . . . . . ... ......... .... .. . .. . . ..... .. ..... . .. ....... .. . ..

4U)

-4ý
4a)-o°-tI

a-)

0

4-j
ao

. ............. ...

0(10

0LC)

0

oq0
ro0N00

0

00

0
00

0
(C)

-I-)

°.4.-

0
E-

0O •

C5

Q

0

0

I-.

4-a

o

a.

.6-b

0

a..

Ea

vi

OPv

o 
oo

- A /



€)

!o

0\

al

CNaogo

-= .

CA

Q0 0

U"

0r0

DD

129



-J
qJ

130



0.01

80

70

60

50

40

30

20

10

o

©<>

OO

ol

I _ _ _ _ I-..-.. ........... .....

.O.. .. ..... .. .. . .. . .. .

................. .......................

%J0.02 0.030.02 0.03 0

Recompression Ratio (RR)

BBC-RRCR.SP5

K> 0
V

................... ...... ....... IN .......... ........ .......... .......... .........

b.'... .. .. ...... ................. i• ................ ............. .... ....... .......

0
..............~ .... • . .......... ' .............. . ............... ............ .... ...... ..........

Ol

..... . .. ...... ......, ..... ... ..... ...... ,.........

).0 0.1 0.2 0.3 0.4 0.5
Compression Ratio (CR)

Legend:
0 B2-48
0 B2-49 Hollow symbols: Oedometer Test
A B2-50 Filled symbols: CRS Test
V B2-60
0 B2-61

Figure 5.8. Elevation vs. CR (Compression Ratio) and RR (Recompression Ratio)
Measured by Consolidation Tests on BBC, by MHD Geotechnical Consultant
(1991a).
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CHAPTER 6

CONDITIONS AND CONSTRUCTION HISTORY AT ISS-4

6.1. OBJECTIVES

The first step in a careful study of instrumentation records from an excavation is

development of a thorough knowledge of the excavation's geometry, structure, soil

conditions, and construction history. Such knowledge is essential for an understanding of

parameters and events which can influence the measured soil movements and water

elevations. Pertinent information includes, as examples, the locations of instruments

relative to the excavation, the structure of the SOE walls, the depth of the cut at various

times, and the arrangement and load-carrying capacity of the tiebacks. This information

can then be used in estimating soil deformations from design charts (Chapter 2) and for

making an accurate two-dimensional reconstruction for finite-element modeling.

In addition to the original site geometry and layout, the sequence of construction

events at and around ISS-4 is reconstructed in detail. Making sense of geotechnical

instrumentation data for a project like this requires a careful definition of the changing

geometry of the excavation subgrade as a function of time. Finite element modeling

requires an even more extensive understanding of excavation history, since the exact

cross-sectional geometry of the cut needs to be recreated with an element mesh as

accurately as possible for all stages in the excavation process.

6.2. GEOMETRY AND STRUCTURAL FEATURES

Figure 6.1 represents the ISS-4 cross-section at approximately Sta. 77+20. This

cross-section shows all of the important spatial details of the excavation support structure

and the geotechnical instrumentation. A plan view of the ISS-4 area is provided in Figure

6.2.

The geometry shown in Figure 6.1 is intended to reflect representative conditions

in the vicinity of the instrumented section, and does not necessarily depict absolute
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dimensions precisely at Station 77+20. This is true for those dimensions that are spatially

variable, including the embedment depths of the walls, the tieback lengths, and the soil

profile. This "averaging" was done over a distance approximately 50 feet to either side of

Sta. 77+20.

6.2.1. SOE Walls and Tiebacks

ISS-4 is at a boat section, and is located at the same location as Section A-A in

Figure 3.1. As Figure 6.1 illustrates, there is a slurry wall (Diaphragm Wall A) on the

north side of the cut and a sheetpile wall on the south side. The length and inclination of

the tiebacks are different for the two wall types. A detailed description of the two types of

SOE walls and the tiebacks was presented in Section 3.3.

Diaphragm Wall A is intended to protect Building A from excessive settlements. It

is a 3-foot wide reinforced concrete wall, approximately 160 ft in length, and spans

between Stations 76+00 and 77+60. It was constructed in eight separate panels, each

about 17 or 21 feet long. The panels are reinforced by steel cages made of horizontal and

vertical bars which lie no less than three inches inside of the diaphragm wall faces.

Additional shear reinforcement is provided throughout by horizontal bars across the wall's

thickness, and there are extra steel reinforcements in the vicinity of anchor holes. Sheets

Cl and C2 show plan and elevation views of Diaphragm Wall A, respectively. The

reinforcing steel in the wall is diagrammed in Sheet C3. The concrete was poured for the

two end panels of the wall before the adjacent steel sheeting was driven; the sheetpiles

were then driven before the concrete set, with one end extending about one foot into the

fluid concrete.

The panels for Diaphragm Wall A are keyed two feet into the argillitic bedrock.

Sheet C4 illustrates the embedment depths of the eight panels and the dates on which

concrete was poured for each. Also shown in this figure are the three levels of tiebacks,

which have a vertical inclination of 45 degrees and are grouted in the glacial till and

bedrock. The free and grouted lengths of the three tieback tiers are listed in Table 6.1.

The sheetpile wall on the south side of ISS-4 is size AZ-18 steel sheeting. Figure

6.3 lists dimensions and engineering properties of AZ-18 sheet piles. The sheeting is
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embedded to a tip elevation of 55 feet in the section of interest (between Sta. 76 and 78),

which equals an embedment of 15 to 19 feet below subgrade. Like the north wall, there

are three levels of tiebacks supporting the south wall. The top two tiers have an inclination

of 22 degrees from horizontal, while the third tier is inclined 20 degrees (Table 6.1); all

tiebacks are grouted in the upper 15 feet of the clay, in the overconsolidated "crust".

Sheet C5 shows the section of the south wall between Stations 76 and 78.

6.2.2. Geotechnical Instrumentation

The entire set of geotechnical instrumentation in the region surrounding ISS-4 is

illustrated in Figure 6.2. (Even though they are considered to be part of the ISS-4 cluster,

instruments VWPZ-108, VWPZ-53, OW-02, and OW-17 are too far away from the cross

section to appear in Figure 6.1.) Table 6.2 lists all of the instruments at ISS-4. The

settlement points on the western side of Building A are not included in this list because of

their lateral distance from the ISS-4 centerline. VWPZ-53, however, is included, because

of the fact that deep piezometer readings are fairly independent of location (see Chapter

7).

Information on the individual instruments, such as their locations, depths, and

installation dates, is given in Tables A.1 through A.4 in Appendix A. All instruments were

installed before any activity started on the site, except for the inclinometers, which were

placed a day or two after excavation began on the first lift.

6.3. TIEBACK LOCK-OFF LOADS AND ELASTIC MODULI

The importance of the tiebacks as structural support members requires detailed

knowledge of their dimensions, locations, and installation and testing procedures. Section

3.3.2 presented a detailed discussion of the structure and installation of tiebacks

throughout the project alignment; this section will focus on key properties of the tiebacks

in the vicinity of ISS-4, particularly with respect to their lock-off loads and stress-strain

properties. Tiebacks between Sta. 76 and 78 were considered as being within the range of

ISS-4.
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6.3.1. Data Collection and Sources

MHD's Management Consultant provided data sheets for all tiebacks between Sta.

76+00 and 78+00, within approximately 100 ft of the ISS-4 centerline (Station 77+20).

These data sheets were created by the contractor's field engineers, who were present for

drilling, grouting, and locking off activities. Representatives from the drilling

subcontractor also filled out similar sheets for each installed tieback.

Every tieback data sheet included information on: stressing and bond lengths,

design and as-built lock-off loads, and load vs. deformation data for proof tests

(performed on every tieback) and performance tests (done on 5 to 10% of tiebacks). The

as-built data provided in these sheets were used for analyses of average load per unit

length and modulus of elasticity, which will be discussed in the next two sections. The free

and grouted lengths which appear in Table 6.1 were also obtained from the sheets, and

represent as-built values.

6.3.2. Equivalent Tieback Loads

Tieback lockoff loads were based on design assumptions of the earth pressures

that must be resisted by the wall. A line of tiebacks at a single elevation provides a

combined loading condition which approximates an equivalent linear load on the wall at

that level. Because the tiebacks do not have a uniform horizontal spacing, the magnitude

of individual lock-off loads differs from one anchor to the next. Although the lock-off load

of every individual tieback at ISS-4 was known from the data sheets, it is the equivalent

linear load, or load per unit length, which is needed for accurate two-dimensional

modeling of the cross section in finite element analyses.

The equivalent load per linear foot of wall was obtained from the lateral spacing of

the tiebacks and from the load that each one of them carries. Plotting the cumulative,

rather than the absolute, lock-off loads against station yields a nearly straight line, whose

slope equals the tieback load per unit length. This analysis was done for all three tieback

tiers on the North and South sides of ISS-4. The graphs are shown in Figures 6.4 and 6.5,

for the North and South walls, respectively. Linear regressions on the slopes gave the
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tieback loads per unit length, which are listed in Table 6.1 along with the correlation

coefficients from the regressions. It can be seen that the cumulative load vs. station lines

were extremely close to being linear.

6.3.3. Effective Moduli of Tiebacks

The load and elongation data from proof and performance tests done on each

anchor were included on the field data sheets. Loads (in kips) and elongations (in inches)

were converted to stress and strain so that an "effective" modulus could be computed for

the tiebacks. Figure 6.6 shows an example of a load-displacement plot for a series of

adjacent tiebacks in a single tier. Load was divided by the total cross-sectional area of the

tieback strands, given the number of individual strands in the tieback and a diameter of 0.6

inches for each strand. Elongation was converted to strain by dividing by the free

(unbonded) length of the tendon.

An "effective" modulus was defined for each tier of tiebacks by finding the average

slope of the stress-strain curves for all tiebacks in a given tier, within 100 feet of the ISS-4

centerline. The modulus was estimated graphically by choosing a "best-fit" slope through

the lines. Some judgement was required because the curves tended to be slightly rounded,

with a modulus that decreased at higher loads. Stress-strain curves for all three tiers on the

North and South sides of ISS-4, with "best-fit" lines included, are provided in Sheets C6

through C18 in Appendix C The effective moduli are listed in Table 6.1.

It should be noted that these moduli are based on elongation measurements that

combine the effects of tendon stretching and deformation of the grouted zone, and can

therefore be considered "effective" values. The contribution of grouted zone deformation

to the measured displacements explains the fact that these elastic moduli are lower than

typical modulus values for steel tendons, listed as 23,000 to 30,000 ksi by Xanthakos

(1991). This is especially true for the south wall tiebacks, which are grouted in stiff clay

rather than bedrock. Deformation of the grouted zone may also be the cause of the curves'

slightly rounded shapes.
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6.4. EXCAVATION HISTORY

6.4.1. Data Collection and Sources

Defining the excavation history at ISS-4 proved to be a time-consuming process,

as complete records of excavation progress in three spatial dimensions were scattered and

sometimes incomplete. While most of the time history was defined using information

contained in the weekly geotechnical reports submitted to MHD's Management

Consultant, field engineer reports and construction photographs were also necessary to

clarify ambiguities. Several sources of information were used in defining the excavation

history, in three spatial dimensions, at ISS-4. The following is a review of these sources

and the steps that wer5 taken to completely define the history at this section.

1. Dates of tier excavations, tieback installations, and lock-offs were obtained from

a construction activity table, provided in updated form in each weekly geotechnical

instrumentation report sent to and filed by MHD's Management Consultant. Dates in the

table pertained to events that occurred at the walls, immediately adjacent to inclinometers.

Sheets D1 and D2 in Appendix D are one of the last construction activity tables, which

contains a nearly complete listing of all pertinent dates.

2. The contractor provided large-sheet SOE wall plans, on which they had

distinguished individual excavated lifts and excavation dates for each. These drawings

showed the lateral extent of each lift along the walls. For convenience, the large-scale

sheets were recopied by hand onto more manageable 8.5 x 11-inch sheets. One of these

smaller sheets was made for each side of the excavation in the vicinity of ISS-4, and is

provided as Sheet D3.

3. Tieback installation records for the vicinity of ISS-4 were obtained from the

Management Consultant, as described in Section 6.3.1. Along with the lock-off loads,

these records included dates of tieback installation and lock-off. The dates of these events

could then be defined within approximately 50 feet to either side of ISS-4, ensuring

accurate two-dimensional modeling of installation history along the walls.

4. A photographer was hired to shoot a set of site photographs once a month.

These photos were usually taken from a helicopter and showed aerial views of selected
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areas. They were kept on file at the project field office and could be used to help define

subgrade geometry on certain dates. However, the photographs provided an incomplete

record of the construction sequence at ISS-4, given their once-a-month frequency and the

fact that the ISS-4 area was not photographed in every monthly set.

5. In addition to the construction activity tables, each weekly geotechnical

instrumentation report included a construction progress plan. This was a large-scale plan

drawing of the entire alignment, including instrument locations, on which the week's

excavated sections and tieback installations were sketched and labeled. These plans were

particularly helpful because, unlike the construction activity tables, they identified

excavation events that occurred in the center of the excavation. As was done with the

contractor's SOE wall plans, these large sheet plans were recopied onto more convenient

8.5 x 11-inch sheets. Several weeks' worth of progress plans were often copied onto a

single sheet for further convenience; an example of such a recopied sheet is provided in

Sheet D4. Not all of the progress plans were found, so only part of the excavation history

could be determined from them.

6. The previously mentioned sources allowed most details of the excavation time

history to be defined, but they still left some unanswered questions due to missing,

ambiguous, or conflicting data. Daily field engineer reports on file at the project field

office allowed confirmation or resolution of almost all information that was still unknown

or ambiguous. Each construction day, field engineers monitored site activities and

submitted individual reports. Usually, engineers were assigned to particular areas or

activity types for a period of a few weeks. For example, one engineer might be observing

spoil removal and transport, while another might be responsible for tieback installation

activities in the western third of the alignment. A few weeks later, they would generally be

reassigned to different areas. By knowing a range of dates to study and the name of the

engineer documenting the type of activity under consideration, the relevant field engineer

reports could be readily located, although it was still a rather time-consuming process.
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6.4.2. Finalized Excavation History

The end result of this information search was a complete time history of the ISS-4

cross-section, including all excavation steps, installation and lock-off dates for support

walls and tiebacks, and intermediate subgrade geometries. Table 6.3 presents a summary

of all construction events, listing the relevant dates in chronological order.

Figure 6.7 illustrates all construction activities that occurred as the final subgrade

was approached. This information will be used in re-creating the excavation's geometry

through time with a finite-element mesh. The step-by-step nature of the excavation can be

seen; it is clear that the excavation sequencing was much more complex than a simple

series of flat subgrades at increasing depth, which is what many previous finite element

simulations modeled. In addition to making cuts along either wall of the excavation for

tieback installation, lifts were also cut from the center of the cross-section, for the purpose

of laying down temporary haul roads for transportation of materials and spoil, to and from

other parts of the alignment.

Another important feature of the ISS-4 excavation history is the prolonged

suspension of excavation activity during the period when boat section tiedowns were

installed, followed by excavation to the final subgrade.
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Table 6.2. List of all Geotechnical Instruments Located at the ISS-4 Test Section.

Inclinometers

Deflection
(Settlement)

Monitoring Points

Heave
Measurements

(Spider Magnets)

Observation Wells

Piezometers

Load Cells

NORTH
SIDE

INC-102

INSIDE
EXCAVATION

SOUTH
SIDE

INC-101
IPE-113

DMP4-120
DMP2-006
DMP2-107
DMP2-105
DMP2-104
DMP2-070

DMP2-15 Instument

MPHG-110
MPHG-109
MPHG-501
MPHG-107

OW-002
OW-16

VWPZ-108
VWPZ-67
VWPZ-68
VWPZ-107

VPWZ-135
VPWZ-136
VPWZ-133
VWPZ-134
VWPZ-131
VWPZ-132
VWPZ-53
- none -
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Groundwater
Instruments

DMP4-118
DMP4-117
DMP4-116

IPE-113

VWPZ-106
OSPZ-106

-1"r-

I I II I I I

-Soff Movement
Insuuments



Table 6.3. Summary of Excavation History at ISS-4.

L .- ...
SUMMARY OF EXCAVATION EVENTS

. ..._,, _ . ..I S S -4
Sta. 77-78

EVENT
Date(s) North Wall Center South Wall

Install and Post-grout TTP anchors:
7/23 -8/1/92 Upper level, anchors 1 and 5.

S8/11 - 8/15/92 Upper level, anchors 2 through 4.
8/26 -8/30/92 All Lower level anchors

. ISS-4 Excavation:
12/'2 - 12/q/92 Drive Sheet Piles

3/22/93 Excavate Lift 1 (100')
S3/24 - 4/9/93 Excavate t,.A Slurry Wall
3/31 - 4/13/93 Pour concrete, ,aj A Slurry Wall

4/13/93 Install Tier 1 tiebacks
5/4- 5/5/93 Excavate Lift 1 (103')

5/17 -5/21/93 Excavate Uft 1, Center (94')
5/18 - 5/24/93 Install Tier 1 tiebacks
5/28 -6/1/93 Lock Off Tier 1 tiebacks
6/1 - 6/3/93 Excavate Lift 2 (92')

6/5/93 Lock Off Tier 1 tiebacks
6/7 -6/14/93 Install Tier 2 tiebacks

6/15/93 Excavate Uft 2 (89')
6/25/93 Excavate Uft 2, Center (85')

6/30 -7/1/93 Install Tier 2 tiebacks
7/1 - 7/2/93 Lock Off Tier 2 tiebacks ...

7/12 - 7/13/93 Excavate Lift 3 (80')
7/27 - 8/5/93 Install Tier 3 tiebacks

7/30 - 7/31/93 Lock Off Tier 2 tiebacks
8/11 -8/16/93 Excavate Lift 3 (partial, 80')
8/16 - 8/17/93 Install Tier 3 tiebacks

8/20/93 Lock Off Tier 3 tiebacks I
9/17 - 9/20/93 Lock Off Tier 3 tiebacks
9/28 - 9/30/93 Excavate Uff 3, Center (78')

10/13 - 10/14/93 Grade Haul Road (78')
Rock Anchors (tiedowns):

1/29 -2/8/94 Install anchors, North and Center
2/14 -2/22/94 Install anchors, South side

Completion of excavation:
3/2 - 3/4/94 . Excavate Final Subgrade

5/17/94 11Pour South Invert
5/26/94 . Pour North Invert -
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Figure 6.2. Plan View of the ISS-4 Area, showing Building A and Geotechnical
Instrumentation.
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Figure 6.3. Dimensions and Engineering Properties of Arbed AZ-18 Sheet Piling (ISPC,

1990).
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Profile S - Single pile Mass Sectional
D = Double pile pbeft in2

, ,, , ,

per S 50.00 14.69
per D 100.00 29.38
per ft of wall 24.17 7.08

The interlocking joints of AZ-profiles are made for mutual connections
For corner arrangements special connectors are in stock.
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Figure 6.6. Example of a Load-Elongation Plot for a Series of Adjacent Tiebacks in
a Single Tier. (Note: These plotted tiebacks are in the sheetpile wall
immediately east of Slurry Wall A, and were not considered in later analyses of
ISS-4.)
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CHAPTER 7

INSTRUMENT MONITORING DATA FROM ISS-4

7.1. PRESENTATION OF DATA

There were 33 geotechnical instruments monitored at the ISS-4 cross-section, and

complete records were gathered for this research from all of them. The data records were

provided by MHD's Management Consultant (MC) and existed in both printed and digital

form. Every week, a geotechnical data report was prepared by the primary construction

contractor and its instrumentation subcontractors. These weekly reports, in addition to

providing much of the excavation history information that was discussed in Section 6.4,

contained complete sets of data from every operating instrument in the project area.

Instrument data were graphed, usually against time, and listed in tables for some

instruments as well; every weekly report was a cumulative tabulation, such that the last

several months of data, or even the entire history of data for some instruments, were given

in each one. Appendix E provides examples of the graphs and tables in these weekly

reports.

The weekly reports were accompanied by data stored digitally on 3.5-inch

diskettes. All the disks were stored chronologically by the MC and copied into a

computerized memory system accessible through a users network.

Although instruments were read on a regular (usually weekly) basis by the

contractor via its instrumentation consultant, the MHD representative also performed

independent supplementary readings on a monthly basis, as "checks" on the contractor's

data. The two monitoring teams were distinguished by the initials "CC" and "MC". "CC"

means Construction Contractor and its instrumentation subcontractor, who installed the

instruments and did the weekly readings. "MC" in this context represents both the firm

acting as MHD's MC, and another firm responsible for all optical surveying work, such as

DMP (settlement) readings. In general, the data from the two groups were in close



agreement, and this report deals mostly with the more frequent CC readings. MC readings

are, however, combined with the CC data for DMP's (settlements).

MIT prepared a new set of data plots which facilitate the process of interpreting

soil and groundwater behavior during the excavation process. The data are plotted in two

ways: the Figure 7A series presents plots of data versus time, and the Figure 7B series

presents "Time Period Summaries" showing construction activities, wall movements, and

surface settlements over selected time intervals. The next two sections describe the

motivations and procedures that led to these two series of figures.

7.1.1. Data-vs.-Time Plots

The instrument-vs.-time plots provided in the geotechnical data reports, while very

informative, were not ideal for careful study and interpretation of data. MIT prepared a set

of new graphs which appear as Figures 7A.1 to 7A.17. Data plots from the contractor are

included in Appendix E (Note: These data plots are typical of geotechnical practice in the

U.S.). The MIT plots represent possible advantages in the following ways:

1. Contractor: The plots of instrument readings vs. time usually did not indicate

the times of excavation and construction events. MIT: The stepwise lowering of subgrade

by lift excavations and the times of tieback installations and lock-offs are depicted

graphically on a easily visualized timeline. The elevation of the subgrade as it changed with

time is represented by a line, and the dates of tieback installation and lockoff are marked

by the letters "I"' and "L", respectively.

2. Contractor: It was sometimes difficult to locate or define individual dates on the

time axes. MIT: All time axes are subdivided into a convenient time scale of months.

3. Contractor: A separate graph was often provided for each individual instrument.

MIT: The researchers feel that it would often be helpful to plot two or more associated

instruments on the same graph. Therefore, many of the MIT graphs combine two or more

instruments at once. This is true for two cases: 1. All settlement points at ISS-4 that were

on the same side of the cut are combined onto one MIT graph (Figures 7A.4 and 7A.5). 2.

Groundwater monitoring instruments that are located either at different depths in the same
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borehole or in similar locations or soil deposits, are shown together in the MIT graphs

(Figures 7A.7 through 7A.9 and Figures 7A.15 through 7A.17).

4. Contractor: Lateral movements measured with inclinometers were plotted

against time in the form of shear strain, defined as the relative lateral displacement

between two consecutive data points along the inclinometer length, divided by their two-

foot separation distance. This was done to facilitate assessment of the overall stability of

the excavation. Shear strains at two or three different depths were combined on the same

graph. MIT: Lateral displacements, rather than shear strains, are plotted against time,

because this variable was considered more informative for MIT's research. Displacements

measured at three to five different depths are included on each graph, which are presented

in Figures 7A.1 through 7A.3.

The seventeen data-vs.-time plots in the Figure 7A series are presented in

groupings based on instrument type and location. They are arranged in the same order as

they will be discussed in this chapter. Each of the seventeen graphs has the same format,

and all cover the same span of time: from August 1992 to the end of May 1994. These

limiting dates bracket all important construction activities that occurred at ISS-4, up to the

pouring of concrete invert slabs. August 1, 1992 is a logical starting point because almost

all of the instruments were installed and read for the first time after that date.

The first three figures plot lateral deflections measured by the three inclinometers.

These are followed by two figures (7A.4 and 7A.5) showing surface settlements measured

by Deformation Monitoring Points, to the north and south of the excavation, respectively.

Figure 7A.6 is a graph of settlements measured by the IPE-113 probe extensometer,

behind the south wall. The next four figures (7A.7 through 7A.10) present groundwater

levels and piezometric water elevations measured outside of the excavation and in the

lower aquifer beneath the Boston Blue Clay. The remaining seven figures are for

instruments located within the excavation. Figures 7A.11 through 7A.14 present clay

heave measured by four multi-point heave gages, and Figures 7A. 15 through 7A. 17 show

pore pressures within the clay recorded by three pairs of piezometers. Figure 7A. 18 plots

heave versus elevation at representative times for the multi-point heave gages.
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7.1.2. Presentation of Data in "Time Period Summaries"

The planned finite element analyses (Task 5 in Table 1.1) will recreate as

accurately as possible the geometry, soil properties, and excavation history of the ISS-4

cross-section, for comparison of numerically-predicted wall and surface movements and

pore pressure changes to those actually measured by the geotechnical instrumentation.

Therefore the ISS-4 instrumentation data should be presented in a way that will allow

convenient comparison to analysis results that apply to particular times in the excavation's

history. Such data presentations should show developments at the ISS-4 section for

specific time intervals: not only measured wall movements and settlements for each period,

but also any changes in the support system and excavation geometry that occurred due to

construction activities.

Inclinometer and settlement point measurements at ISS-4 were therefore combined

with the construction history in a series of "Time Period Summaries", which show

excavation progress and recorded movements for selected dates throughout the

excavation process. A total of eight Time Period Summaries were prepared, and are

shown in Figures 7B. 1 through 7B.8. Each summary figure consists of two sheets, labeled

(a) and (b). Sheet (a) shows the excavation's geometry on the pertinent date and indicates

the construction activities that occurred since the date of the previous summary. Sheet (b)

shows surface settlements and inclinometer deflections for the given date. The remaining

instrumentation data from heave gages, observation wells, and piezometers can be found

in the data-vs.-time plots presented in the Figure 7A series.

Each Time Period Summary, therefore, represents a single date in the excavation

history at ISS-4, and summarizes developments that occurred throughout a block, or

"step", of time between that date and the date of the previous Summary. The eight Time

Period Summaries together cover the entire sequence of construction events at ISS-4, up

to the pouring of the concrete invert slabs.

The dates that served as divisions between "Steps" were chosen carefully. Utilizing

arbitrary increments of time, such as two month periods, was initially considered but

eventually presented serious problems. It was desired to make Time Period Summaries

that were "self-contained". This means that each one would show changes that resulted
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only from the construction events that occurred during that "step" of time. As it turned

out, matching the instrumentation monitoring schedules to the construction sequence was

a complicated task. The problem was that most inclinometers and settlement points had

completely independent monitoring schedules, and the monitoring frequencies were quite

variable. Frequently, most of the instruments would be read shortly after a particular

excavation event, except for one or more which were not read until several days or even

weeks later, by which time another excavation event had occurred. The eight selected

dates provided readings from every inclinometer and DMP within a short enough period

of time that no excavation events occurred between monitoring dates for these

instruments. Thus all of the soil movements shown in a given summary were influenced

equally by only the )excavation events shown in that summary.

Together, Figures 7B.2-a and -b comprise a single Time Period Summary, and

serve to illustrate the major features of the summaries. Sheet (a) shows the condition of

the support system and excavation on June 29, 1993, which was selected as the final date

of the "Step 2.0" time period. The geometry of the subgrade as it existed on this date is

shown by the solid line inside the excavation. Dotted lines inside the excavation define

individual lifts that were excavated during the Step 2.0 time interval, between the end of

the Step 1.0 interval (May 7, 1993) and the end of Step 2.0. The inclined lines behind the

support walls and outside of the cut represent tiebacks. A single solid line indicates the

drilling of holes for that tier of tiebacks and the placement of steel tendons within the hole.

The presence of a thicker zone at the end of a tieback line indicates that the tiebacks at

that level have been grouted and locked off. All construction activities that took place

during the Step 2.0 time interval are listed in the box on the upper right-hand corner of

sheet (a). The sheet also includes the positions and depths of all geotechnical instruments

at the cross-section.

Sheet (b) presents surface settlements and lateral inclinometer deflections

measured during the Step 2.0 time interval. Settlements are plotted against distance from

the excavation's edge on the upper part of the sheet. The excavation depth and installed

tiebacks at the end of Step 2.0 are illustrated on the inclinometer plots.
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7.2. DISCUSSION OF INSTRUMENTATION DATA

This section will discuss the behavior of the ISS-4 excavation support system, the

soil movements around and inside the cut, and the changing groundwater conditions, as

measured by the geotechnical instruments emplaced in the area. The discussion is divided

into three subsections which deal with different instrument types, purposes, or locations.

The first part of the discussion deals with wall movements and surficial settlements at and

behind the SOE walls, and will focus first on the area north of the excavation, and then on

the area to the south. The second part deals with pore pressures and groundwater levels to

either side of the excavation and in the confined aquifer underneath it. Finally the third

part involves instrumentation inside of the cut, including heave gages and piezometers in

the clay. In each subsection, events will be described in roughly chronological order.

7.2.1. Settlements and Wall Movements

7.2.1.1. North side of excavation (behind concrete diaphragm wall)

Figure 7A. 1 shows lateral deflections plotted against time for the Building A slurry

wall, measured by Inclinometer INC-102, which exists within the wall. Settlements behind

slurry wall A, measured on and near Building A, are plotted against time in Figure 7A.4.

As shown in Table A.2, the first settlement measurements from three of the six

settlement points were taken in August and September of 1992. The other three DMP's

were not monitored until March 17, 1993, which was selected as the reference "zero"

reading for Figure 7A.4 because it was desired to reference all six DMP's to the same date

and this provided the first chance to do so. The figure shows that approximately one half

inch of settlement had occurred at DMP2-006 and DMP4-120 (the settlement points

closest to the excavation) before any construction work at ISS-4 had even started. Most

of this settlement appears to have occurred in late January 1993, which coincided with a

sharp drawdown of over 30 ft in the lower aquifer, shown in Figure 7A.7. This drawdown

resulted from the initiation of pressure relief dewatering activities, and is described further

in Section 7.2.2. Resulting minor compression of the granular glacial deposits comprising

the lower aquifer, in conjunction with partial consolidation near the bottom of the marine

clay, are possible causes of this early half-inch of settlement seen behind the north wall.
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While slight settlements were occurring over the long term before excavation

commenced, it can be seen from Figure 7A.4 that the installation of slurry wall A, in late

March and early April of 1993, resulted in little to no nearby settlement. Clough &

Davidson (1977) state that construction of a slurry wall can lead to nearby soil movements

resulting from loosening of soil at the sides of the trench. However, the construction of

this slurry wall resulted in little to no nearby ground losses and deformations.

The first reading of INC-102 was taken on 5/7/93, about two days after the first

lift along the wall was excavated. Figure 7B. 1-b, from Time Period Summary number 1.0,

shows that the slurry wall had not deflected appreciably by that date. A half inch of

deflection into the retained soil was measured along the entire wall, quickly sloping back

to zero below Elevation -1; this appears to be an artifact of either the data processing or

the concrete mix setting up, and is not considered to represent actual soil movements.

The excavation of the first lift at the north wall caused the slurry wall to deflect

inwards (meaning, in the direction of the excavation) by about one half inch on 5/25. The

inclinometer trace, illustrated in the Step 2.0 Time Period Summary (Figure 7B.2-b),

shows that slight cantilever movement occurred. By the time of the 6/29 reading at INC-

102, the first tier of tiebacks had been locked off, the second lift had been excavated (to

El. 92), and the second tier of tiebacks installed. The combined effect on the wall from all

these activities is revealed in the 6/29 trace, shown in the Step 2.0 summary. The top of

the wall had bent back into the retained soil by one inch, due to the force from the locked-

off first tier of tiebacks. The wall appears to have experienced an almost negligible inward

deflection of, at most, one quarter of an inch about twenty feet below the second lift

subgrade. This mode of deflection was representative of the slurry wall's behavior

throughout the rest of the excavation history: the wall experienced little to no deflection

inwards toward the cut, but instead was pulled back into the soil mass by tieback forces.

Time Period Summaries for Steps 2.0 through 6.0 show continued deflection of the top of

the wall back into the soil, reaching over two inches after lock-off of Tier 2, nearly four

inches after lock-off of Tier 3, and increasing to almost five inches by October 6 (Step 6.0,

in Figure 7B.6-b).
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Surface settlements had reached nearly two inches behind the North wall by 6/25.

As was true for the inclinometer data, the settlement distribution measured on 6/25 was

similar to those that were measured throughout the rest of the excavation process, a point

which is reinforced by the graph of settlements vs. time in Figure 7A.4. The settlement

trough on 6/25, illustrated in the Time Period Summary for Step 2.0 (Figure 7B.2-b),

tapers off from a two-inch maximum deflection measured by the DMP's closest to the

excavation's edge, to little or no settlements measured at the DMP's on the far side of

Building A. This settlement trough deepened as the excavation continued, until by Step

6.0, on October 5, the maximum measured settlement was in excess of four inches close to

the wall, tapering off to half an inch at the far side of the building, 150 feet from the

excavation's edge.

The combination of substantial surface settlements and negative wall deflections

(back into the retained soil mass) is not encountered in the existing literature. Case studies

reveal that positive settlements behind diaphragm walls are generally accompanied by

inward wall movements. Milligan (1983) used theoretical considerations to show that the

profiles of wall deflections and surface settlements would be equivalent for an undrained

(constant volume) excavation in soft, homogeneous clays. This leads to the expectation

that wall "pull-back", or negative deflection, would be accompanied by heave, rather than

settlement, behind the wall. The reason for the opposite occurring at slurry wall A must be

attributable to other 'construction factors'. Construction activities are well known to

contribute to soil movements, as much as or even more than the effects of excavation

unloading alone (Clough & Davidson, 1977; Clough & O'Rourke, 1990). In this case,

however, the tieback loads - which can be considered a 'construction factor' - were

enough to not only resist the soil pressures, but in fact reverse the direction of wall

movement.

The settlements might be attributed to two factors: first, groundwater drawdowns

in the upper and lower aquifers (discussed firther in Section 7.2.2), and second, soil

disturbance during drilling for tieback installation. Section 3.4.2.2 described field

observations of air and water escaping from adjacent tieback holes during drilling with a

down-hole hammer and pressurized air, indicating drilling-induced disturbance and
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fracturing of the Marine Clay. This disturbance could have induced sudden porewater

pressure increases, leading to consolidation settlements as the pressures subsequently

dissipated.

The plots of wall deflections and settlements against time suggest, to some extent,

a correlation between deformations and the cycles of tieback excavation, installation, and

lock-off. In the case of the wall movements, the correlation is fairly clear. Figure 7A.1

shows quick increases in 'pull-back' wall deflections of at least one inch occurring on

tieback lock-off dates for tiers 2 and 3. Similar movement is not seen for the Tier 1

lockoff, possibly because the effect was masked by other events (such as the excavation of

Lift 2) which occurred during the four week span between the consecutive monitoring

dates of 5/25 and 6/22. Before the Tier 2 lock-off, between the Tier 2 and Tier 3 lock-

offs, and following the Tier 3 lock-off, the wall continued to deflect, but at a slower rate.

These trends are more subtle for the surface settlements (Figure 7A.4), but are

discernible upon close study of the graphs. In this case, the settlement rate tended to

increase between tieback installation and lock-off, and then slow down after lock-off was

performed. The indication that accelerated settlements follow tieback installations, rather

than lift excavations, suggests that ground loss during drilling was the main cause of

settlements, rather than excavation-induced strains in the soil mass. The trend can be seen

faintly for the three DMP's nearest to the cut (DMP2-006, DMP2-107, and DMP4-120),

between Tier 1 installation in late May and Tier 2 lock-off at the start of July. The afore-

mentioned effect is not so apparent, however, for the Tier 3 events, during which the

settlements increased at a fairly consistent rate.

After Tier 3 lock-offs in August of 1993, excavation-related activity at ISS-4 was

halted for several months. The graphs of wall deformations and surface settlements against

time, however, show that deflections continued to occur during this time period, albeit at a

lessened rate. The top of the slurry wall continued to move gradually back into the soil; at

the elevation of Tier 1, the deflection increased from 4.6 inches on October 1, to 5.3

inches on March 1, 1994, when excavation resumed, reaching final subgrade. Lower

points on the wall underwent negligible deflections during this period.
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Meanwhile, Figure 7A.4 also shows continued movements of all six DMP's after

lock-off of Tier 3 was completed. During this period, settlements occurred at rates that

appear to decrease with distance from the wall, thus increasing the total differential

settlement experienced by the Building A. However, these differential settlements

increased at a slower rate than they did during the excavation phase. The latter part of the

graph shows settlement curves that appear to reflect exponential decay toward an

asymptote; suggesting the possibility that the continued settlements are the result of

consolidation in the clays, caused both by pumping from the lower aquifer and by

dissipation of disturbance-induced excess pore pressures in the drilled regions of the clay.

In summary, the settlement curves can be divided into three parts. The first part

covers the period of time preceding excavation, up until May of 1993. During that time,

very slight settlements developed equally at all six DMP's, not exceeding one half inch,

and which appear to be related to pumping from the deep aquifer. The second phase

occurred between the beginning of May and the end of September, when the first three

lifts were excavated. This period was distinguished by differential settlements, as points

close to the wall settled substantially faster than points far from the wall. Differential

settlements across Building A reached four inches by the start of October. This settlement

phase may be related to loss of ground caused by installation of the tiebacks. Finally, the

third settlement phase involved a gradual tapering off of settlement rates and a

substantially reduced rate of differential settlement which appears to be related to

consolidation-type settlements due to soil disturbance from tieback installation and to deep

pumping.

Excavation to the final subgrade elevation of 69 ft occurred on March 2, 1993.

The settlements were not visibly affected by this excavation, but Figure 7A. 1 shows that

there was a slight increase in inward wall movements at and below subgrade elevations.

This is indicative of very slight bowing of the slurry wall.

7.2.1.2. South side of excavation (behind sheetpile wall)

Two inclinometers were emplaced behind the south wall at ISS-4. One of them,

INC-101, was two feet behind the sheetpile wall, while the other, IPE-113, was about 26
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feet back from the wall. Graphs of lateral deflections vs. time as measured by each

instrument are shown in Figures 7A.2 and 7A.3, respectively. Since IPE-113 was also a

probe extensometer, it was capable of measuring settlements below the surface at a

number of different depths. Figure 7A.6 contains a graph of settlements vs. time for

selected IPE-113 spider magnets, at the top, middle, and base of the Boston Blue Clay

deposit. Figure 7A.5 shows surface settlements a three DMP's behind the south wall

plotted against time. All three were Type-4 DMP's, meaning that they were emplaced in

the ground surface rather than in building sides (See description in Appendix A).

In general, movements at and behind the South wall of ISS-4 were more complex

than those seen on the North side and discussed in Section 7.2.1.1. In fact, there are a few

instances of wall ad soil movements that are rather difficult to explain. The following

paragraphs will review the instrumentation measurements and discuss possible

explanations for what was seen.

The three DMP's, DMP4-116, 117, and 118, were all surveyed for the first time

on September 4, 1992. This date is therefore used as the reference 'time zero' on the

Figure 7A.5 graph. This graph shows the gradual development of approximately one inch

of settlement at all three DMP's before excavation began in late March of 1993, which is

similar to, but in excess of, initial settlements that occurred at Building A (Figure 7A.4). A

half inch of the south side's settlements occurred relatively quickly in mid-January of

1993, corresponding to a sudden drawdown of pore pressures in the lower aquifer (Figure

7A. 11). As was discussed for Building A, the pre-excavation settlements can be partially

attributed to consolidation and compression of the clay and underlying glacial soils.

The sheetpile wall at ISS-4 was driven in December, 1992, as indicated on the

timelines. The sheetpile driving activities appear to have had little effect on adjacent

settlements either at the surface (Figure 7A.5) or at depth, as indicated by IPE-113 spider

magnets (Figure 7A.6).

Excavation of the first lift along the South wall, to an elevation of 100 ft, caused

one inch of cantilever-type deflection at the top of the sheetpile wall. This is shown by the

INC-101 trace measured on 4/6 and illustrated in the Time Period Summary for Step 1.0

(Figure 7B.I-b). The actual deflection that occurred in response to this excavation



increment may have been greater than indicated by the 4/6 inclinometer trace, since the

instrument's formal initial reading was taken two days after the excavation was made.

Subsequent lock-off of Tier 1 tiebacks pulled the top of the wall back to its

original position, as can be seen on the 6/9 trace in the Step 2.0 plots (Figure 7B.2-b).

When the second lift was excavated, on June 15, INC-101 bulged outward about 1.5

inches at the second tier subgrade by 6/29. This change in deformation style from

'cantilever' to 'bulging' as the cut deepened was in accordance with trends for braced

excavations described by O'Rourke (1981) and Clough & O'Rourke (1990).

Meanwhile, by the time the second lift had been excavated, IPE-113 had moved

toward the excavation by about one inch at the top. In addition, the instrument had started

to experience a slight 'waviness', apparent in all three traces illustrated in Figure 7B.2-b.

Such a deflection pattern probably did not reflect soil movements, but was more likely a

byproduct of the instrument's installation. "Waviness" was frequently seen in the

Inclinometer/Probe Extensometers at this construction project. It was attributed to the

relatively soft annular grout in the borehole (as required by the installation specifications),

which allowed flexure of the inclinometer casing. Further discussion of the "warping"

phenomenon among the IPE's appears in Appendix A.

On 7/9, IPE-113 developed a pronounced 'kink', which, in this case, can be

attributed to construction activities rather than to characteristics of the instrument itself

The plot for IPE-113 which appears in the Step 3.0 Time Period Summary (Figure 7B.3-

b) includes locations of the tiebacks. It is apparent that the 1.5-inch kink at Elevation 80 is

aligned with the second level of tiebacks behind the sheetpile wall. The kink appeared

between the dates of 6/29 and 7/9, and the second tier of tiebacks was installed on 7/1, so

the kink probably reflects disturbance to the instrument caused by the drilling of a nearby

tieback hole. The IPE-113 probe extensometer (settlement measurements) showed a slight

effect from the second tier tieback installation, as well: a half inch of settlement occurred

at the top of the Marine Clay on the date of second tier installation (See Figure 7A.6).

This amount of settlement exceeds the downward component of the casing flexure at that

elevation, and can therefore be considered to represent "actual" soil settlement.
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Installation of the third tier of tiebacks did not cause any additional kinks in the

casing, as shown in the traces on the Step 5.0 Time Period Summary (Figure 7B.5-b). The

second and third tier tiebacks were placed in horizontal alignment, so the instrument was

theoretically equidistant from tiebacks in both. However, it is possible that the

advancement of casing for the Tier 2 tiebacks is what caused the kink at that time. Since

IPE-113 appears to "intersect" the third tier tiebacks near the top of the bonded zone (see

(a) sheets of the 7B. series), the casing would not have been advanced past the instrument

during installation of this tier. This may explain why a similar kink was not seen during

Tier 3 installation.

While no 'kinking' was seen, the probe extensometer did show developing

settlements at the top of the clay around the time of third tier tieback installation (Figure

7A.6). Settlement here increased by nearly a full inch, and by lesser amounts throughout

the deposit. It is hard to tell if these movements were responses to the tieback installation

or to the excavation of the third lift, since both events occurred within a few days of each

other.

The graph of wall deflections vs. time is characterized by two periods of

accelerated wall deflections, clearly shown in Figure 7A.2. The first event occurred in July

and saw the wall bow outward by a maximum of nearly 3.5 inches at the intermediate

subgrade level (El.90). See Step 4.0 (Figure 7B.4-b) for an illustration of the wall's

deflection on 7/21. The second deformation event occurred in late August, and involved

an increase in wall deflections to over five inches. This event appears from Figure 7A.2 to

be the more drastic of the two, since lateral deflections increased by as much as three

inches between consecutive readings. Figure 7B.5-b (the Step 5.0 Time Period Summary)

provides a clear illustration of the increased wall movement that occurred between 8/9 and

9/2.

Both deflection events started after excavation of a new lift and peaked before

lock-off of the tiebacks at that level. In both cases, consecutive inclinometer readings were

taken on dates before and after the lock-offs, and the measured deflections after the lock-

offs were nearly equal to or less than the deflections before. For example, the second tier

tiebacks were locked off on July 30 and 31, and the consecutive inclinometer data points
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from 7/21 and 8/5 indicate that the stressing of tiebacks reversed the direction of wall

deformation. In a similar fashion, the third tier lock-off period of September 17 through 20

was immediately followed by a reading on 9/21, which showed, once again, stoppage or

reversal of the previously developing deflections recorded on 9/2.

The fact that the increases in wall deflection for the second and third lifts correlate

with excavation events is evidence that they reflect the reaction of the retained soil mass to

excavation unloading. The continued, gradual development of lateral deflections which

peaked in late July may be indicative of time-dependent continuing 'creep'-like behavior.

The nature of movements leading up to and following the early September peak is more

difficult to determine due to the infrequency of inclinometer readings during this period,

but they may have been similar to events during the July event.

More information on the causes of these increased deflections is provided by study

of the other instruments. Some substantial and surprising differences are revealed between

the two wall deformation events. The July event was evident not only at INC-101, but also

in the lateral deflections of IPE-113 and the surface settlements (Figure 7A.3 and 7A.5,

respectively). IPE-113 moved an additional 1.5 inches toward the cut, while DMP-118

and 117 underwent a half inch of settlement. Such associated settlements and lateral

deformations adjacent to a deep excavation are consistent with large-scale movements

within the soil mass. The August deformation event, on the other hand, was curiously

"unrepresented" in the plots of surface settlements and IPE-113 lateral deflections, which

is especially surprising considering the magnitude of the event as measured at INC-102.

The IPE-113 probe extensometer magnets did show approximately one inch of added clay

settlement in late August; it is hard to explain why there were no accompanying large

surface settlements (e.g., Figure 7A.5) or increased movements at the rest of the

instruments, unless the apparent movement was due to data inaccuracy.

After excavation of the cut's central portion from El. 85 to El. 78 in late

September for regrading of a mid-excavation haul road (See Step 6.0, Figure 7B.6), about

five months passed without any further excavation or tieback installation occurring at ISS-

4. During this period, surface settlements continued to gradually increase at a constant

rate for all three DMP's, as Figure 7A.5 illustrates. While Building A experienced
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continued differential settlement at that time, the south side of the excavation was

experiencing "global" settlements. The continuing settlements were possibly the result of

ongoing compression and consolidation of the underlying soils from pumping-induced

pore pressure reductions and groundwater drawdown. The installation of the tiedowns,

which caused intermittent hydraulic depressurizations, also may have been a contributing

factor. The different settlement behaviors on the two sides of the excavation might be

attributable to the different degrees of soil disturbance induced in the overburden soils by

tieback drilling. Whereas the drilling of tiebacks at slurry wall A might have involved a

great deal of disturbance and fracturing within the organic and BBC deposits, the tieback

holes behind the south wall were drilled with a drag bit and water wash, which provided a

'cleaner' cut through the overburden soils and upper clay.

Meanwhile, the two inclinometers experienced slight to negligible deflection

through the last months of 1993. Following this period of low activity, the sheetpile wall

experienced increased movement during the first two months of 1994: as Figure 7A.2

shows, Inclinometer 101 moved an inch and a half at the elevation of the upper tiebacks

between late December of 1993 and early March of 1994, with appreciable but smaller

movements at the other levels as well. The increased movement appears to have started at

the very end of December 1993, but the rate of movement is difficult to define because of

the lack of data between early January and early March of 1994. In a similar fashion, IPE-

113 underwent an increased rate of movement beginning in mid-January of 1994 (Figure

7A.3). Both events occurred well before the final lift was excavated, and the only

construction activity that occurred at ISS-4 at the times of increased movements was the

driving of tiedown casings in December. However, anomalous inclinometer behavior (i.e.,

"spikes" of outward movement) was observed on numerous occasions during tiedown

installation. This behavior might have been caused by the observed artesian flow from the

tiedown holes prior to grouting and reduction of the water pressures acting on the passive

side of the retaining walls.

In March of 1994, INC-101 underwent approximately one inch of 'reversed'

movement back into the retained soil, at the elevation of Tier 1. Meanwhile, the other tiers

did not experience any further deflection. The 'reversed' movement of the uppermost tier
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is very odd; two possible causes - restressing of existing tiebacks or installation of new

tiebacks -- are ruled out because neither activity was performed at this time.

7.2.2. Groundwater Levels Around and Below Excavation

The soil profile at ISS-4 and throughout the project alignment contains two

aquifers separated by the highly impermeable aquitard of Boston Blue Clay (BBC). The

upper aquifer consists of granular and cohesive fills which overlie the organic and marine

deposits, while the lower aquifer is in the relatively permeable glacial deposits and

weathered bedrock underlying the marine clay. The initial piezometric level in the upper

aquifer was 106 ft, while in the lower aquifer, it was 100 ft. (See Section 5.2 for a more

detailed discussion of initial piezometric elevations.)

The locations, depths, and identification numbers of the groundwater monitoring

instruments are shown in the cross-section in Figure 6.1. This section will discuss

measurements by instruments that are either above or below the BBC and represent

groundwater conditions adjacent to and below the excavation. Figures 7A.7 through

7A. 10 show graphs versus time of piezometric elevation measured by these instruments. A

discussion of pore pressure measurements made within the clay on the inside of the

excavation follows in Section 7.2.3.

7.2.2.1. Pore Pressures in the Lower Aquifer

Piezometric pressures in the lower aquifer were measured by four independent

vibrating wire piezometers in the vicinity of ISS-4. Measurements from all four are plotted

against time in Figure 7A.7. It is clear from this graph that pressures were essentially the

same at all four piezometers, even though they were separated by an average distance of

over 200 feet. This indicates that pore pressure fluctuations in the lower aquifer were

transmitted rapidly throughout the area due to the high hydraulic diffusivities in the soils

and upper bedrock beneath the clay. Hydraulic diffusivity is a measure of the rate at which

a cone of pore pressure drawdown spreads radially outward from a point of pumping and

is equal to the permeability divided by the storage coefficient (Fetter, 1988).
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The high measured diffusivities had the important ramification of making it very

difficult to reduce pressures underneath the excavation without also causing large pressure

reductions over a large distance outside of the excavation. Given the lateral spacing of the

instruments, the pressure changes shown in Figure 7A.7 occurred over an area at least 400

ft wide. Therefore, they cover an area much larger than ISS-4 alone. They do not correlate

to any excavation or construction events at ISS-4 or the surrounding area. For example,

although the construction of Slurry Wall A involved penetration into the lower aquifer

soils, its effect on the deep piezometric pressures was slight, at best. The piezometric

pressures in the lower aquifer were instead most influenced by pumping of groundwater

from the glacial soils, which was done in order to relieve hydrostatic pressures below the

excavation (as discussed in Section 3.4). The pressure fluctuations reflect in a general

sense the history of dewatering and pressure relief activities.

The first noteworthy event on Figure 7A.7 is a large 30- to 35-foot drop in the

pore water elevation (PWE) to about 65 ft at the start of 1993. This drawdown was

caused by the initiation of pressure relief pumping. In response to the large drawdowns,

pressure relief pumping rates were reduced at the end of January, 1993. The reduction of

pumping rates apparently helped to recover some of the lowered pressures, but the

pressures remained depressed and continued to fluctuate erratically between PWE's of 75

and 90 ft, with sudden five- to ten-foot changes occurring frequently, for the rest of the

monitoring history.

An added cause of sustained pressure reductions in the lower aquifer was
"passive" flow from the upper well screens. This first occurred in early- to mid-1993,

when the excavation reached a depth below the piezometric elevation of the lower aquifer

(El. 100), allowing water from the lower aquifer to flow out of the exposed upper screens.

Refer to Figure 3.11 for a diagram of the screened sections of the wells. In August, the

contractor sealed off all exposed upper well screens with grout, thus stopping the
"passive" flow.
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7.2.2.2. GroundwaterLevels North of Excavation

Groundwater pressures in the upper aquifer north of Slurry Wall were monitored

at two depths. Observation Wells 002 and 016, plotted in Figure 7A.8, measured the

elevation of the actual water table. VWPZ-67 and -68 were emplaced just above the

Marine Clay, about 40 feet below the ground surface. These piezometers, plotted in

Figure 7A.9, were essentially duplicates of one another, since they were in the same

borehole and at the same elevation. The plots from the two are therefore equivalent.

The two observation well plots show that the water table was drawn down during

excavation activities. OW-016 was nearer to the excavation than OW-002, and displayed

three to four feet of drawdown, whereas OW-002 showed slightly less drawdown. The

fact that drawdowns increased closer to the excavation wall suggests that groundwater

may have been leaking into the cut. Project field engineers had observed slow leakage of

this sort; e.g., through tieback holes or sheetpile interlocks.

Disregarding the numerous temporary water level fluctuations, the graphs in

Figure 7A.8 can be divided roughly into three segments. The first segment precedes the

start of excavation in May, 1993, and features a fairly constant water table elevation.

Between May and the later months of 1993, the graphs slope downward as the water level

gradually dropped, as mentioned previously. After excavation had ceased for a while, the

water table reached a fairly constant value once again.

The graphs for VWPZ-67 and 68, the piezometers in the top of the clay (Figure

7A.9), underwent a similar history in which drawdowns occurred during the period of

excavation and tapered off later. However, the plots for these instruments differed from

the observation wells in that the total drawdown was substantially greater (11 feet by mid-

1994), and that the drawdown developed over a different time scale. By August of 1993,

the piezometers recorded a drawdown of about three to four feet, similar to what was

measured by the observation wells. However, pore water pressures jumped about three

feet in August, after which drawdown resumed along an exponentially decreasing curve.

This suggests the development of an increasing hydraulic gradient downward through the

upper aquifer, in response to the large pressure reductions that had occurred in the lower

aquifer. Section 8.1.1 presents the results of calculations done to determine if the
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drawdowns measured by VWPZ-67 and 68 could be attributed to drainage into the

depressurized lower aquifer.

The large temporary increase which peaked at the beginning of September is

difficult to explain. At its maximum value, the piezometric pressure increased by four or

five feet; it then underwent a six-foot reduction through September. There is no

comparable peak in the observation well measurements, which discounts the possibility of

increased precipitation. One explanation for this temporary increase is that it was caused

by the installation and grouting of nearby tiebacks. Immediately east of Slurry Wall A,

between August 30 and September 3, the third tier of tiebacks was installed through the

sheetpile wall. The sheetpile-wall tiebacks were pressure grouted in the upper part of the

Marine Clay, within 50 ft of VWPZ-67 and 68, and the resulting temporary increase in

local pore pressures may have influenced readings from these piezometers.

7.2.2.3. Groundwater Levels South of Excavation

Behind the south wall of ISS-4, there was only one instrument that monitored

water levels in the upper aquifer: Open Standpipe Piezometer (OSPZ) 106. Measurements

from OSPZ-106 are graphed in Figure 7A.10, and represent the elevation of the water

table.

This instrument recorded a four- to five-foot drawdown that occurred at the time

of the first lift excavation in late March of 1993. This event coincides with some larger,

more sudden fluctuations in data, on the order of eight to ten feet, which are considered to

be incorrect, anomalous data. After the four- to five-foot drawdown, water levels

continued to undergo occasional fluctuations, but overall stayed relatively constant at an

elevation of 102 feet. It is difficult to explain why there would be such a considerable

reaction to the first lift excavation, but no changes in response to subsequent excavation

events. One possibility is that excavation of the first lift exposed enough sheeting to permit

leakage of water, which initially caused a sudden drop in groundwater levels. When the

rate of leakage flow through the wall reached a steady value, the water levels could have

stabilized at their lower value. Also, the presence of relatively impermeable cohesive fill
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below about El. 100 could have limited the amount of groundwater drawdown resulting

from wall leakage.

The four foot drop in PWE recorded in February of 1994 is considered to be

anomalous.

7.2.3. Heave and Pore Pressures Within Excavation

The interior of the excavation at ISS-4 was instrumented with four multi-point

heave gages and three pairs of vibrating wire piezometers. These instruments were

installed to monitor pore pressure changes and heave in the basal soils in response to

excavation unloading and hydrostatic uplift from pressures in the lower aquifer. Figures

7A. 11 through 7A. 14 show graphs of settlements vs. time, measured by the heave gages at

three selected spider magnets located at the top, center, and bottom of the Boston Blue

Clay. Figure 7A.18 is a plot showing spider magnet heave vs. depth, and provides added

insight into the development of heave throughout the clay. Figures 7A.15 through 7A.17

are graphs of pore pressures in the clay as measured by the three pairs of piezometers.

Refer to Figure 6.1 for the locations, elevations, and identification numbers of these

instruments within the excavation.

The timelines below the instrumentation graphs illustrate the changing elevation of

excavation subgrade. As Figure 6.8 showed, the cut was excavated in three separate

zones, each covering approximately one-third of the total excavation width. Therefore

there were three separate excavation histories that could be shown in the timelines. The

histories that appear in each graph were chosen according to the positions of the

instruments within the cut, and for instruments such as MPHG-110 which straddled two

adjacent excavation zones, the timelines for both zones are provided.

The graphs from the four multi-point heave gages are all fairly similar, and show

similar responses to construction events within the excavation at ISS-4. The graphs from

the six piezometers are also quite similar to each other. Rather than presenting separate

descriptions of heave gage and piezometer data, this section will discuss the two types of

instruments together, which provides better insight into the reasons behind the soil's

behavior.
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Before excavation began in this area, there was little change in the spider magnet

elevations except for slowly developing settlements measured at three of the instruments.

By the time that the first lifts were excavated (between late March and mid-May), slightly

less than one half inch of settlement was measured in the upper clay by Heave Gages 109

and 501, while MPHG-107 experienced a bit more than three quarters of an inch of

settlement. These settlements were probably caused by ongoing consolidation of the BBC

due to reduction of pore pressures in the underlying confined aquifer. The data from

piezometers in the clay support the possibility of clay consolidation. The graphs for the

three VWPZ pairs show, first of all, slight and gradual pore pressure reductions of around

five feet before any excavation occurred; and second, a gradually increasing difference

between pressures measured in the upper and lower piezometers in each of the three sets.

Piezometric elevations in the upper piezometer exceeded those in the lower piezometer,

indicating a downward hydraulic gradient in the clay which increased as the differential

heads grew. This gradient would have developed as a response to the pressure reductions

in the lower aquifer, and the decreased pore pressures in the clay would cause

consolidation.

The MPHG's started to record heave in the clay once excavation commenced.

While the excavation deepened, the rate of heave increased, in response to reduction of

vertical overburden stresses in the clay. In a one-dimensional situation, a reduction of

vertical stress will initially induce excess negative pore pressures in the soil. These

negative pore pressures dissipate at water enters the soil matrix - essentially the reverse of

consolidation drainage. The effective stresses decrease as dissipation occurs, resulting in

expansion of the soil mass, or heave. The accelerated heave was particularly pronounced

for MPHG-110 (Figure 7A.11), when the third lift was excavated from the northern

portion of the cut, and for MPHG-501 (Figure 7A. 13) in July and August of 1993.

It appears, in fact, that heave at the top of the clay accelerated at all four locations

during July of 1993. This period coincides with lowered pumping rates from the lower

aquifer, as indicated by the increase in PWE from 75 to 90 ft, shown on Figure 7A.7.

While the excavation deepened, pore pressures in the clay dropped at an increased

rate, which is clearly reflected by the piezometer data. Such pressure reductions would be
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expected in such an unloading scenario, as explained in the previous paragraph. The pore

pressures appeared to undergo reductions whenever lifts were excavated, but remained

relatively constant between excavation events. Section 8.1.2 discusses these unloading-

induced pore pressure drawdowns in more detail.

The graphs of heave vs. time show a pair of sharp increases in heave rates in

September and December of 1993, which exceeded previous movements recorded by

these instruments. The first sharp increase was an inch to an inch and a half at the three

remaining MPHG's and occurred in mid- to late-September. The second was of a similar

or slightly greater magnitude and occurred in early- to mid-December. Meanwhile, pore

pressures in piezometers 135 and 136 (Figure 7A.15) underwent sudden increases of 25

feet in late September and over 40 feet in December, the same times as the increased

heave measurements.

These two instances of related clay heave and pore pressure increases can be

correlated to events involving installation of boat section tiedowns by two different

methods, as described in Section 3.4.3. The first event, in September, was very likely

caused by local jet grouting for the creation of soilcrete columns that were supposed to

serve in lieu of casings when tiedown holes were later drilled into bedrock. The injection

of high-pressure jet grout into the clay would be expected to cause considerable

disturbance to adjacent soils as well as immediate increases in pore pressure. The second

event, in December, can be attributed to the driving of casings in the area, which was done

after it was found that the jet-grouted columns were not functioning as well as originally

anticipated. A sudden "spike" in pore pressures, followed by a more gradual drop-off, and

a sharp increase in clay heave, are typical responses to pile-driving.

Although the tiedown installation activities affected all of the operating heave

gages, they only had an effect on piezometers 135 and 136, while the other four did not

record any similar pore pressure "spikes" (Figures 7A. 16 and 7A. 17). Whether or not the

tiedown activities resulted in pore pressure "signatures" was probably a function of the

proximity of the local tiedowns. The tiedowns were spaced 12 to 18 feet apart throughout

the boat section, which limits the distance between a given piezometer and the nearest
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tiedown. It seems likely that piezometers 131 through 134 just happened to lie far enough

away from jet grout or pipe driving operations to not show any response to them.

In summary, the soil movements and pore pressure changes that occurred inside

the clay and within the ISS-4 excavation were primarily influenced by three construction-

related factors. The first of these factors was groundwater pumping from the lower aquifer

by the contractor, which induced slight consolidation settlements in the BBC. The second

was the reduction of vertical total stress by excavation unloading, which induced sudden

pore pressure drops (or "increases in negative excess pore pressures") that were followed

by soil heave. The third factor was the preparation of tiedowns by two methods - jet

grouting and casing driving - both of which left marked signatures on the data recorded by

the heave gages and piezometers.

173



0 -- N" V) •- u

I I I O I

(s~q:DuI) s4uUJ9WAON• IIDM JID-IGD-

CDO

..... .... . . ...... ......... ..

......0 ...

CqlC'i
2

(0 ---

.... .......
... .... i...

....... .. .-.-+ .....• ......... •... m.

. ..... ......... ,

0oV) - -cl)
N • : ! i

.... - ..........i . .. ......... t •

...... o • ......... • ...... .... • ......... .....! '

zl
0 En

(3o
oi i i !

co
00

0000000

(C) -"3 MPo•Sqns

174

0

oa-)
-j ! i

0

0'T

O

a.



(12

<0 Sf. - M) N D 0

(S;Lqpu!) S•,UU@WAO•A IIDM Ij0Ja:D "1

! 4 o m 03• O - ýD

( l]t "3 aPoj~qns

175



ina.,

C-

o W -O0 o -N 0

(s~qpuI) s•,u•ýw•A I 11DM Iw-J•Ds

0

14

0

0

.0
w

I-

Um

- 0000000
I N - 00-) 00 .- 0

(u.) "!3 @pDoJqns

176



,-- O r i) 0 r-

~(s; ui)

0

0c

0

ccC4

0

z
0 4)
0

o

0

V
c4

4),

ty,C.

4)

o

0

00

000000
- 0 M0O rO- Qn

1) 13 iaPc)jbqns

177

00

ý44



0'

0Y)

a r00

Q.I

O4$

.4

4D

4$

0000000• -.- 0 OM M0 I-,- CO

(4.1) "13 aPcojbqnS(s;ug0ui) ,UGW9ul1qS

178



0 CN D 000
CN - 0

179

(D
,c

Q

0

4-k'04)

Q
c4

0

0S

Q
141

0

0
'-

4)
4)

0
o)

0000
O 0 t- )

rn

(saq:Dul) ýUawajjjqs
(Wt "13 apc)j6qns



0

U.O
M~

0.
0n

0 0 0 0 0 0
-0 *) 00 -- 0

(']J) UOI4DA@I3 O.J4wOozald

180

--ý

c'\

CN

I

00

Q

r o

r- W-

0o 4

00-C o *

0

C

O o:

N -c-0
ON

00

rl-.

-I-



CA

0

... I0

it

0

(5*.

4 Q 0o0 (O (\ C 0o 0000000
- -- 0 0 0 0 0 0 c ) --- 0•a do r o

('Ij) UOIDA91l3 31i4,aWozeid 0J) *13 aPDpjqns

181



(c

CO

C) NOO4 00 NO
0 0 0 0 0m 0 m 0m0

('I4) UOIIDA913 03!JI9wOZ~!d ( '13 j pojbqnS

182

I

00
0

I

CIS

0Y)

0)

c4 U-
0 0

E 2

0

46-

I-I

60

0

I
I -"i

I

I



0 0 0 0 0

('4j) UOq.DAj]3 OU4GLLuOZ&!d

co (D
0) 0,D

0000000
-00") M0 0 - 0

(.) "1 apohjqns

183

0

,0

'0

*C

ow

I-i
0.2

0

o

0



L(S :U) AD HN

00

Li

00aC-)

O -- 0000000
S•G- O om 00 r 0

"A@l13 apD.•6qn S

184

0O

'0"I=)

00

,0

C)oI-
s4,

4)



(SG(40UI) QAOaH

T-

0000000
I 0N - 0C00 to-Lo

Aa 3 epoJ6qnS

185

I n0

U4
'0

;4)



tI) N I o0 0N 000000
I I (N -O0co F--ILO

(ssqDuI) ADGH 'Ael3 epopDJbqnS

186



..... ................ ....... ............... ... .. .......... .. ........... ..

.............. ..... ......... ............. ........ ...... .......... .. ............). .... .......

.. . .. . . . . . . . .. . . . .............. . . . . . . . .. . . . . . . .. . . . . . .. . . . .. ...........

. . . . . . . . . . . . .. . . . . . ....... . ....... .. . . . . . . . . .. . . . . . . . . .... .... . . . . . . .

................ ...... ................... ......................./......

4.).. .4... .......

Vs m

SCN4 %- 0

(sMqcui) aADaH

...... ......F ...

C4

U0

00 ......

........N......

co ....~~~~.4. .... ......

(03)
o w)

0000000

-Ae C 00pobqnS

187



CG)

6

(in)

UII
4)

4.P

0 0 0 0 0 0 0 0 0 0000000
4 0") C4 Q- 0 o0 o4 t 0( 0 o>o 0--o(D

('j) UOIJDAeIj o3 1e-WOZOld -^A913 epoJbqns

188



0en

Imi

0

0

W

om
NO 0

0 '

Eg

o 0 0 0 0 0 • 0 0 0000000
n 04 0 o0 ) 00 r- 0 n - oo r,--.

('Ij) UOIIDA913 ouLeWOZeid "Ae93 epoj6qns

189



W-4

IAll

cis

ot U

Ni$ oa.O 0

N a

0 -'

"BI
*M1.i Ii1.

0 0 0 0 0 0 0 0 0 00o0oo000- r') N 0 ,0) 00 CO N ,-- ) 00 1' -(

('1.) UO!IDA913 0!J-9woZa!d A,13 gp)jbqns

190



I

0

LO0

to

'I
.1

0 0 0 0 0 0 00
00 LO 9 N N

- co

0Mo 4-)

N C0'II co

0CQ

0'

I a)C))

0~N0
N 

>

00

0

66,

0

0O toa

-O



0 u0
Eni Z

0

alla

o

0
u)

O °

0
42

0

U)

0

Q)
4 °

S

zo

coI:-)
C)

C) CD C) CD C) C) CD CDC" C cu
-- I 0o ,D 14- cu

I I I I I I I I I I I

Itta

0-a

8-
0-

EB
MG

InLA- uA

j Go 0)

2:f
IA 3

uII

0
-P
0

6 x

x x x x x :x~

K I I I I II

j

I I I I I
C) C)o J cu C~-4 --1 Vci

I I I I I I I I

od

a) D0 D C) C C

(q-aaj) UOI.;OAaI3

I I I

192

CDO
I

C I'

a) 0

u-Gi

U4o

Ip

.

, , , , : .

I I I I I I I I I

0

a)

I-

0

0

P"
7'

L
1 I

!

i



0

0

0

to
0

0

(N

o o 0 0 0 0 0 0 0) 0 0 0 0 000 0 0 0D~ 0 L 0 0 0')0N (

0 V (N V q* LO~) 07

(ui)

co)
mv

? r .L.

0

0

S If I

CO-N IV V •,0"00
Cul )

o o 0 00 0 0 0 0 0 0 0 0
0(4j) UODA1N3-

*- I I

co

W V

14.

(0
o o 0 0 0 0 0 0 000 00 0

-I I

(19) uOIoA913

193

___ -. 0 D,

6N 3Dcc

...... ........ .. .... ..
too4

I C\2

NL

z~

401

CA~

I

eI-

ON
ON
0

C,,

U

AA,

0 ,

vi1-ý M LO

I MR



00N ~

U '

QZlogoz' Zei'
U - -

Z C-4 eq~

Cx
W ~~

to **

**-V' S) N~o

0 ~. .
L, *- C4 vgaf V) V0.as

c8.I

0
C\2

Q)

ZAZ u&

'C
0
'-5Sf)
-~- -

0

NO

'&,d-oo

CY)

CIO

(0

-o

C C) C M C m*qT cu C) CO 110 .o z r cu

U: Oi

LA.

IA-

LA

I I

ulS3

0

0
m

a

,,,-,,:ooED i

U,: ,o
______. I I- I

it Q

Li
"o" U
du

r---r-iI x x x
K ILIK

C 0%

I I I
C Cu 0C

N\\

4-

xx

I I I I I I I
C C C C

C o 10 14- cu

(saaj) Uo0wAea)3

o oCD C)cu IV*
I

I I

0

(Uuu
WCS

I I

I I

194

*K^vMA,

-:;3 i

I I . . .• . -

I I

-4'

1 1



______C14

I I I I I1 1 "4

10

0 00000000000000
( U- • "-14 I

0 -- cN td • o, t

Cu)

C\2
U) C\

o 0 0 0 0 0 0 0 0 0 0 0 0 0
-0 O I ,to '•" • N - - N

I I

/
00/ -

I

VIp acN,CD9"

0
I,

co I

o •- 0o
C\2

O Z
_ NRR

0 ,. \
-.. ... ". . ... .z .
• (0

0-CN-O•I• O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-- 0 0 0 0 V n 4- - N

( •- - I
k I-,! (;) uooDAael3

195

0
to

C4

ILI
4)
S0

0

A

Q)'

.V^

0%
0%

0%

0
CA

4)

I-i
4)

2
0

IA

4-a

4)
2
4)

U)

0-110O



C C C C C
OD0 0 0 N

k+,-) UopUAa)3

196

C c~

0

0

0

.CE"a
0

.5

E0
F-**
C4.4

0

* a



coI I

I I I I I 1 0

00l)

C0)

00000 0 0 0 00000 C
"- 0" I I~ ~ 10 ~ t~ N

o 0 0 0 0 0 0 0 0 0 0 0 0 C
St0 0) O ) uo') ')

"- ""I I

(4j) UOI4DAa3

0

co00

0

0
0
tf

(Le)

P~)

0

9

I q)
U,
hi

0

~d)

U,

0
~D *~

H
'4-
0

A

ff15

0

J T
0 0 0 0 0 0 0 0 0 0 0 0 0 0

00- -- 0 It. I I

(1.) UO1oDAeJ3

197

co t-

-I - L I II f -

Ch
Ch
0

o
0,

0

I

I Rk



C0

0C,

Q

I-4,,co

'0
0

.C
V

04
-

-o

0 G 00

E
* 0

(::daj) UO!::ý%Aa)3

198

I



co 0

00 00000000 00 C
0 0 ~O N. LO in t K) C .J -

0 e.~ t'~ in I

(-Cu)

co:

0 0 0 0 0 0 0 0 0 c
- 0 0 M " "

()j) UOIjDAal3

0

0D

0

0

N

0

4)

tJ.)

0

0

0.1
4)

0.% ~%

ri

~ 0

.~ *4-h4) U
4)

4) 4)

(4-4 4)

0e.~

~
Wi

r') '4-.

~5 4)

0

I.

- I-N) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M- 0" 0) - o , io P C , -- ,-- (N

uII- - I
(' .) (11, ,, I,• ̂ --,

199

iz

I I

I

k4ý) uv'4u/NVI.J



0 0

0

CIS

S4

I-k 80

alcc

o:I
" • e

200

I
4( aaD 

uo!4cAag



I, I :I<:3010
111 N,< N

" r d) "- t 0 t

co

C\2

I I I

0

co

0o

0

CNO

O

0 0 0 0 0 0 0 0 0 0 0 0 00
0CD f- ID(0 if) K) N - - C

oo 0 0 0 0 0 C 0 0 0 0 0 0C
- 0( (0 0 0 0

(4j) -- I I(:j) UOi•DAeI3

0

0
0

O

0

0

0,

I0

on

-- N eo (D .- 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-- 0 (0 ( 0 n)N• - - - N

('ut) -(11')U0 1Oi A91)
-o o Iel

201

I,
/ r..s/r -

CO
CO

co to CO

U,

Pd) ~

0
U,

0*
Pd)

a)
U,

£

U, 0
U)

LD 00

I-
E 4)

0

U)

I

ý I I I I I- ý

k4ij %A w -4 w'%w 1.3



0~

0o

o

0
ci)

ci2ý
2CIOE

'~0E
0

2E

0

08
V--4
Q

202

t. j} ; U U!ý UAca)



CO,%

Ao

I I I I I I

O

0

0o0
00
oN

0 0 0 0 0 0 0 0 0 0 0 0 0 C
0q- O . O Ln It rn) (N - - C4

0- (N ?S) ~ LA CO I I

Cui)

CY)

0 0 0 0 0 0 00 0 0 0 0 0 C
-- 0 O l C w 0 LA n CI) (N -

(4j "I I
(:4) UOIoDAe3

S i I I I

0

0

0
CO

O
0

O

O
0t

0 - (' I") ~ LA) 0

(u)

~-co

j

0
• - "" .

( 14) UOoDA9I3

203

I

I-- I . I I I ! I

~d)

0
U

p1~

0

(0

0,
'0

0
4-'

0
C

~ 0

'0 ~
~ 0 0

0 U

~- 2
0

0

~
4-'

~O 0

0-~



CM t

0
C.

0

It:V

'0
0

12
a)E*M-
0

,=

1=-
=,.,

204

T.!

kC2=Z) uuI!- jAel3



0
g) C'.I

In-
N.- ~~I) oN. 0

>0 0
CD

0
~I) 0

0

0
c.,J

0
0 CN td) ~- ~

Qui)

o O 0 0 0 0 0 0 0 0 0 0 0 C
0" " CI I

o o oo ooo0 0 0 0 0 0oo

()U014OAal3

CD0

0o

04

o N PP ( I t" *- UIt

C(Ui

0

-\ °

t> 0 0

- ~ ~ r 00 n NvD A~ ' CN - - (

(11) UOIIOA813 I

205

* z I /I

.. .... ....

. 4.. - -......

o
.~ ~n

'~)

0

U,

CO

&

4.d4)
U,

t~) ~
U,

0

CD 4)

4)
2

0

U,

qO,

0%

0

0M

4)

4)
o-
4)
4)

14

J D-



C 0

0

0o40,

-oa)

t,~co0

0

499

(1-ýaaj UOJ:ýDAaJ I

206



00

I I I II I I

(C:)

.UiC

0

0 0 0 0 0 0 0 0 0 0 0 0 0 C
0 aC14 - N

0

(0

rJ)

0

tJ)

(0

0 0 0 0 0 0 0 0 0 0 0 0 0 c

(1) uoII^13
(4J) uoIgoAea

C
N

0

I I ~ ~

o K
I~u

I -- 0

C\2

C

Z

o X \. 00 -
10 I I I I"... i~~l I I I 1.0

1-- ) • qr. Lin-L•. 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0) 00 fl-r 0 LO IV rto N - - CN

Cul) - - (I) uo

(.u!)(11) uOIJOA913

06

*a

Go 0

rnI-

207

Pýl

d

• °



208



CHAPTER 8

FURTHER ANALYSES AND COMPARISON OF

DATA TO PREDICTIONS

8.1. FURTHER ANALYSIS OF INSTRUMENTATION DATA

Chapter 7 presented a thorough discussion of observed soil deformations and

groundwater changes as measured by geotechnical instrumentation at ISS-4. That

discussion described the measured trends, as well as possible causes for the trends that

were seen. Section 8.1 discusses additional calculations that were performed by MIT to

provide a better understanding of the causes of certain phenomena seen in the

instrumentation records.

8.1.1. Responses to Pressure Relief Drawdowns

Pore water pressures in the lower aquifer were reduced by the contractor so that

they would not exceed the overburden stress as soil was removed from the excavation

(discussed in Section 3.4). Drawdowns in the lower aquifer were in excess of 15 ft. for the

better part of 1993, causing consolidation of the overlying clay as pore pressures

dissipated into the underlying depressurized boundary. Calculations were performed to

quantify the amount of consolidation that might be expected to occur.

8.1.1.1. Pore Pressure Dissipation in BBC

Figure 8.1 (a) shows measured piezometric water elevations (PWE's) throughout

the soil profile at different times in the construction history. PWE's that appear in the

figure were measured by ISS-4 instruments at three elevations. (Most of these instruments

were north of the excavation.) Pore water elevations are shown for four different dates

which were selected to give an overall impression of the drawdown history: 9/92 (the

initial time), 7/93, 11/93, and 4/94 (representing "final" conditions). The elevation of the

shallow water table in the miscellaneous fill (base at El. 101.5) underwent about three to

four feet of reduction during this time period, as measured by OW-016 (Refer to Figure
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7A.8). The pore water elevation in the glacial deposits below the base of the BBC (at El.

7) underwent a mean reduction of about 20 feet, as measured by deep piezometers

VWPZ-107 and 106 (Figure 7A.7). These drawdowns formed the upper and lower limits

of a simplified wedge of excess head, as diagrammed in Figure 8.1 (b). Between the top

and bottom of this wedge, near the top of the Boston Blue Clay at El. 69.4, piezometers

VWPZ-67 and 68 recorded pore pressure reductions of 3 ft in July and 7 ft in November

of 1993 (Figure 7A.9).

The soils between El. 101.5 and El. 7, consisting of the Cohesive Fill, Organic Silt,

and BBC, was assumed to act as a single cohesive deposit with double drainage

conditions, for the purposes of this analysis. A consolidation analysis was performed to

evaluate whether the measured drawdowns within the 94.5-ft-thick cohesive layer were

consistent with consolidation analyses using a reasonable range of soil properties and the

drawdowns measured at the upper and lower boundaries of the deposit.

The analysis of cohesive layer consolidation assumed a bipartite excess pore

pressure wedge consisting of a rectangular distribution with a magnitude of 3.5 ft (due to

the lowered water table), and a triangular distribution with a magnitude of 15 ft (due to

deep pumping). Analyses were performed with a spreadsheet to facilitate variation of

certain parameters such as time, compression and recompression ratio, and consolidation

coefficient (c,). Based on measured and calculated soil properties presented in Tables 5.2,

5.3, and 5.4, reasonable c, values for recompression in the three cohesive units were

estimated as follows:

Selected Values of C,

Soil Layer (cm2/sec) (ft2/day)

Cohesive Fill 120 or 1600 x 10•-4 1.1 or 15

Organics 60 x 104  0.55
Boston Blue Clay 120 x 104  1.1

To simplify the analyses, the three-component cohesive soil layer was assigned a single c,

value of 120x10 cm2/sec to match that of the predominant BBC layer, and the

thicknesses of the Cohesive Fill and Organic layers were adjusted to account for their
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higher or lower c, values, as necessary (Ladd, 1994). The thickness of the Organic deposit

was increased from 15 to 21 ft because its c, was half that of the BBC. When the higher

Cohesive Fill c, was used, that layer's thickness was reduced from 15 to 4 ft.

The analysis was conducted for time durations of 200 and 320 days to match the

PWE measurement dates. The time of 200 days is equivalent to the middle of July while

320 days is equivalent to the middle of November, 1993.

The calculated and measured decreases in piezometric head near El. 70 are

summarized below.

Assumed c, in the Time

Cohesive Fill 200 days [ 320 days "infinity"

1.1 ft2/day 0.25 ft. 0.6 ft. 8.9 ft.
15 ft2/day 0.8 ft. 1.25 ft. 7.7 ft.

Measured in field 3 ft. 7 ft. -

Spreadsheets for t=320 days, using both values of c, in the Cohesive Fill, appear in

Appendix F.

In all cases, the analyses underpredict the drawdowns measured by VWPZ-67 and

68 at El. 69.4 ft. This suggests two possibilities: that the assumed values of c, are too low,

or that drainage in the clay near VWPZ-67 and 68 was enhanced by disturbance caused

during tieback drilling and installation procedures.

8.1.1.2. Settlements of Soil Layers

The calculations just described were carried a step further, by using the changes in

effective stress throughout the soil profile to compute total settlements resulting from the

predicted pore pressure dissipations. The previously described spreadsheet was extended

for this purpose, and settlements at the ground surface and at the top of the clay were

calculated for time=200, 320 days, and "infinity" (i.e. complete pore pressure dissipation).

As for the analysis of PWE drawdowns, two c, values of 1.1 and 15 ft2/day were applied

to the Cohesive Fill. Again, selected spreadsheet print-outs are provided in Appendix F.
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It is important to note that, for the settlement analyses, the thicknesses of the

Cohesive Fill and Organic layers were not adjusted when calculating the amount of

compression in each. Adjusting the layer thicknesses to account for different values of cv,

as described in Section 8.1.1.1, was only done for the calculation of pore pressure

dissipation, which equals changes in effective stress.

Figure 8.2 shows a plot of effective stresses versus elevation, both before, during,

and after consolidation of the cohesive soil layers, as well as the preconsolidation

pressures. It can be clearly seen that even after complete consolidation under these

conditions, the soil profile would remain overconsolidated throughout. Therefore, only

values of Recompression Ratio (RR) were needed to compute settlement. "Best estimate"

RR values were assigned according to the MIT recommendations given in Tables 5.2, 5.3,

and 5.4. The influence of varying RR was assessed by doing additional analyses with RR's

that were increased or decreased by 0.005. The following table provides the results of the

analyses, showing calculated settlements at the surface and at the top of the BBC (in

parentheses).

Time

Measured by DMP4-116

(See Figure 7A.5)

200 days

approx. 1.1"

320 days

approx. 1.6"

"infinity"

The predicted values of settlements (8v) are compared to the settlements measured at

DMP4-116, which lies about 85 ft from the south wall. This offset distance exceeds 2H,

where H is the depth of excavation (about 40 ft at this location). According to the design

chart of Clough and O'Rourke (1990) shown in Figure 8.6, DMP4-116 is outside of the

range of influence of wall movements, and should therefore record settlements that result
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only from consolidation. The table indicates that predicted settlements were only 20 to

30% lower than the field measurements. Varying RR by ±+0.005 induced changes of

approximately 20% in the final predicted 8, values, which is enough to account for much

of the differences between predicted and measured & .

Figure 8.3 presents measurements of settlement at different depths, from IPE-113

(which was 27 ft behind the South wall). These settlements were close to three inches in

November. Figure 8.3 indicates that most of the settlement occurred in the cohesive fill

layer and the very top of the clay. The calculated settlements, for comparison, indicate that

55 to 70% of the total 8v would occur within the BBC. As before, some of this settlement

can be attributed to deflection of the wall. However, it is also possible that installation of

the tiebacks could have disturbed the soil and increased the compressibility of the BBC

crust.

8.1.2. Pore Pressure Reductions due to Excavation Unloading

In an undrained, one-dimensional situation, unloading will result in negative pore

pressures which equal the decrease in vertical total stress (assuming 100% saturation).

These negative pore pressures develop because the undrained condition requires that the

effective stress be unchanged initially; changing only as drainage occurs and the excess

negative pore pressures dissipate.

This basic effect was the main cause of pore pressure reductions measured during

excavation events by the six VWPZ's inside of the excavation (as discussed in Section

7.2.3). Ideally, the sudden pore pressure drops that were recorded by the piezometers

(shown in Figures 7A. 15 through 7A. 17) would be equivalent to the total stress reduction

that resulted from excavation.

The measured reductions in pore water pressure were plotted against the

corresponding increments of excavation unloading to see how closely the two amounts

agreed, as predicted for an ideal 1-D case. The plot is presented in Figure 8.4. The pore

pressure reductions were consistently less than the total stress reductions (computed as

Aov = AHYt), plotting well below the line of equivalency. This is partly attributable to a

systematic overestimation of total stress reductions, caused by the fact that the excavation
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was a 2-D, rather than 1-D, unloading condition. Since excavation lifts were usually only

about one-third as wide as the excavation, higher subgrade elevations were generally left

to one or both sides of a newly excavated lift section, hence contributing to the total stress

state within the underlying soil and lessening the amount of total stress reduction. In a

two- or three-dimensional unloading situation such as this, the change in octahedral stress

[Aoaet = 1/3(Aa 1+Aa2+Aa3)], which incorporates the changes in all three principal stresses,

should provide a better representation than Aav of unload-induced stress reductions for

comparison to Au.

8.2. COMPARISON OF MOVEMENTS TO PREDICTION TECHNIQUES

8.2.1. Purpose and Objectives

As shown in Table 1.1, Task 4 of Phase I of this research project was the
"comparison of predicted and measured performance using design charts". Wall

movements and surface settlements measured at the project's excavations provide an

important source of data for assessment of the predictive ability of existing empirical and

semi-empirical techniques, toward the project's ultimate goal of producing improved

design charts via FEM analysis. This section will compare predicted wall and surface

movements to measurements from the project excavation in general and the ISS-4 cross-

section in particular.

8.2.2 Normalized Settlements

Peck's (1969) design chart for prediction of settlement distribution was presented

in Figure 2.1. Normalized settlements measured throughout the project area are plotted on

his chart in Figure 8.5. These settlements pertain to the date on which the concrete invert

was poured adjacent to each DMP - the last day on which the excavation existed at its

maximum depth. (These settlements are also shown as the lowermost points in the Figure

4.7 plots.)

The measured, normalized settlements all fall within zones II or III, which apply to

"very soft to soft clay". Zone III represents the settlements expected for excavations

underlain by a significant depth of soft clay, which is a reasonably accurate description of
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the project excavations. Settlements behind diaphragm walls (indicated by the hollow

symbols) tend to be lower and concentrate closer to zone II, due to the added support

provided by the stiffer wall. The largest values of 8, for sheetpile walls were measured

near the western end of the alignment (ISS-1 and 2) where anomalously large movements

were noted.

Settlements were normalized against excavation depth for comparison to the

suggested distributions proposed by Mana and Clough (1981), shown in Figure 2.5. The

plot of normalized settlements appears in Figure 8.6. The settlements behind the sheetpile

walls tend to exceed the suggested envelopes by extending farther from the excavation

wall than predicted. Settlements behind diaphragm walls were in closer agreement with the

suggested envelopes.

The results in Figure 8.6 indicate that the normalized settlements behind sheetpile

walls extend to much greater distances from the wall than predicted. This disagreement

might be a result of "extraneous" construction-related factors which could have

influenced and exacerbated soil movements: e.g., large pressure drawdowns in the lower

aquifer and perhaps disturbance of the soil from tieback drilling activities.

8.2.3. Prediction of Settlements and Wall Deflections using MOVEX

8.2.3.1. The MOVEX Computer Program

The computer program MOVEX calculates lateral wall deflections and surface

settlement distributions for braced excavations using the semi-empirical techniques

developed by Mana & Clough (1981) and Clough et al. (1989). The program, presented

by Smith (1987), accepts as input the undrained strength profile of the soil column,

stiffness terms for the support wall and members (struts or tiebacks), and the dimensions

of the excavation (including depth, width, and length, along with the vertical spacing of

the support members). Given these quantities, the program then outputs maximum lateral

wall deflections and surface settlement distributions for each time that the excavation

reaches a new strut or tieback level.

The following procedure is used by MOVEX to calculate wall and soil movements,

and is repeated by the program for each stage of the excavation. The first step undertaken
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by MOVEX is to compute the factor of safety against basal heave (FSBH) based on an

enhancement of the formula suggested by Terzaghi (1943). Figure 8.7 shows the formula

used by the program, which accounts for soil layers with varying strength characteristics.

(NOTE: The equation does not account for wall embedment depth.)

Next, MOVEX makes an initial estimate of maximum lateral wall movement by
"reading" the appropriate value from the design chart developed by Clough et al. (1989),

which is shown in Figure 2.4. This chart requires a "system stiffness" term which is

computed using the given value of wall stiffness and the average spacing of support

members at the given excavation stage. The initial estimate of wall movement is then

modified by applying a series of multipliers, or "alpha factors", as originally suggested by

Mana and Clough (1981). Three alpha factors are used:

Alpha Factor Approximate Range Parameter of

of Values Influence

as 0.75-1.2 Strut stiffness and spacing

aD 0.62-1.0 Depth to 'firm' layer

aBB 1.0-1.8 Excavation width

Figure 8.8 shows how these alpha factors vary with their respective parameters. The alpha

factors are applied to the maximum wall deflection obtained from Figure 2.4.

The maximum surface settlement is assumed to equal the final, modified estimate

of maximum wall deflection. The settlement trough profile is then developed according to

the suggested distribution by Mana and Clough (1981), shown in Figure 2.5.

The latest version of MOVEX which was completed by Smith (1987) also has two

additional features. First, it can account for initial cantilever movements of the wall, which

commonly occur before any support members are emplaced. The empirical methods used

by the program do not account for such movements, so if this option is to be used, the

user inputs the amount of cantilever deflection at the top of the wall and the depth to a

"hinge" point. MOVEX will then add these deflections to subsequently calculated

movements.
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The program also allows for consideration of strength anisotropy in soils. The user

can input an Anisotropic Strength Ratio (K.), equal to the undrained strength in extension

divided by the undrained strength in compression. The program then modifies its

computed FSBH according to the graph shown in Figure 8.9.

8.2.3.2. Results of MOVEXAnalyses

The MOVEX program was used to predict wall movements and surface

settlements on the North (diaphragm wall) side and South (sheetpile wall) side of the

excavation at ISS-4. Calculations required to define the input files are provided in Sheets

GI through G6 in Appendix G, and Sheets G10 through G15 provide two example output

files from the program: one each for analyses of the sheetpile wall and the diaphragm wall.

These output files used MIT's DSS undrained strength profiles in the BBC and overlying

layers, included corrections to the strut stiffness terms to account (theoretically) for the

downward inclination of the tiebacks, and assumed that the Glaciomarine and Glacial Till

strata underlying the BBC formed an underlying "firm" base.

Figure 8.10 compares the predicted wall movements and settlements to those

measured by geotechnical instrumentation between 10/93 and 4/94. During this period, the

excavation was completed. It can be seen from this figure that sheetpile wall deflections

were moderately underpredicted by MOVEX. In contrast, the behavior of Slurry Wall A -

which bent back into the retained soil - was not duplicated. This is not surprising, given

that the existing empirical and semi-empirical prediction methodologies do not account for

this type of wall movement.

The program underestimated settlements behind the north slurry wall, but matched

the settlements behind the south sheetpile wall fairly well (predicted settlements slightly

exceeded the field measurements). This might reflect the different degrees of soil

disturbance that occurred behind the walls in response to tieback drilling. Behind the

North wall, there was evidence of considerable disturbance to the soil mass, and the BBC

in particular (Section 3.4.2.2), which might have contributed to the large surface

settlements that occurred there. On the other side of the excavation, tiebacks were not

drilled as deep, and there was much less evidence of soil disturbance, so the "extraneous"
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effects of drilling were minimized. Moreover, MOVEX makes the generally conservative

assumption that the maximum vertical settlement equals the maximum lateral deflection.

Five different parametric analyses were performed with the program to gain

insights into the effects of certain variables on the program results. The parametric

analyses were conducted using the South sheetpile wall input file, which resulted in a

reference & of 4.6 in. Records from these program runs are provided on Sheets G8 and

G9. The following paragraphs discuss the results of the parametric analyses.

1. Depth to firm' layer. For the reference case, with the Glaciomarine layer

defined as the 'firm' layer, the maximum wall movement (and maximum settlement)

equaled 4.6 inches. When the bedrock was defined as the underlying 'firm' layer, and the

Glaciomarine and Till inits were included in the input profile, the movements decreased to

2.6 inches. The Glaciomarine and Glacial Till are high strength layers, which, when

included in the input, are factored into the average S. below excavation used to compute

FSBH (Figure 8.7). Their high strengths raise the average profile strength and the

movements consequently decrease.

2. Anisotropic Strength Ratio (ASR). The following table shows how movements

changed for different values of ASR, as Figure 8.9 indicates.

ASR Max. Movement

0.5 7.3"
1.0 4.6"

1.25 4.1"

Since the reference case used DSS strengths rather than triaxial compression, the analysis

with ASR=0.5 is not realistic.

3. Effective Strut Length (ESL). The "best estimate" of effective strut length for

the tiebacks was selected as the free length (FL) plus one-half the bonded length (BL).

This parameter was varied by using either none of the bonded length or all of it. This had

only a slight influence on predicted movements:

Definition of ESL Range of Stiffnesses (3 tiers) Max. movement

ESL = FL 24,000 to 157,100 4.3"

ESL = FL + 0.5(BL) 19,400 to 85,700 4.6"

ESL = FL + BL 16,300 to 58,900 4.8"
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4. Initial cantilever movement. Based on the initial cantilever-type movement of

the South sheetpile wall measured by INC-101, a cantilever deflection of one inch at the

top of the wall and a 25-foot-deep hinge point were input. The resulting maximum

movement was unaffected. As the sketch on Sheet G9 indicates, the input cantilever

deflection profile was added to the calculated wall deflections. This increased the

deflections at the top of the wall, but had no influence on the lower elevations where

maximum movement was predicted to occur.

5. Width of excavation. The table below shows how predicted movements varied

with the excavation width. (All analyses assumed an excavation length of 2000 ft.)

A narrower excavation is predicted to experience decreased movements, as a result of a

restraining influence from the other wall and supports. As the excavation widens, this

restraint becomes less and less effective, and larger movements are predicted to occur.

Eventually, as width continues to increase, additional gains in width have diminishing

effects and the soil movements tend to reach an asymptote. This effect is illustrated by the

hand-sketched graph at the bottom of Sheet G9. The program incorporates the effect of

excavation width through the N, factor, as defined on Figure 8.7.
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Excavation Width Max. Movement

50 ft. 2.9"

100 ft. 4.0"

200 ft. 4.6"

400 ft. 4.5"

1000 ft. 4.3"
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Before and After Consolidation of Cohesive Soil Layers.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

9.1. SUMMARY

Ground movements play an important role in the design of deep excavations in

cohesive soils. This thesis studies an excavation for a construction project in Boston,

Massachusetts which is up to 60 ft deep and extends through a deposit of Boston Blue

Clay which can be up to 100 ft thick. The presence of adjacent buildings makes the control

of ground movements a primary consideration in the design of earth support systems for

this excavation. This thesis focuses on ground movements and groundwater changes

occurring at an excavation monitored by a thorough program of geotechnical

instrumentation. An attempt is made to evaluate both the magnitudes and the causes of

measured soil movements and groundwater fluctuations, and the measurements are

compared to available empirically-based prediction techniques (reviewed in Chapter 2).

This study is one component of a three-phase research project entitled "Design and

Performance of Deep Excavations", which is being conducted by MIT for the

Massachusetts Highway Department (MHD) and aims to develop improved methods of

predicting ground movements associated with deep excavations in "soft" clays.

Chapter 3 provides a detailed description of the excavation and earth support

systems utilized for the construction project. The project is approximately 2500 ft long

and required an excavation which was 80 to 200 ft in width (widening towards the west)

and 36 to 63 ft deep (generally deepening towards the east). Figure 3.1 presents a plan

view of the excavation, and shows the locations of several pre-existing buildings adjacent

to the cut.

Figure 3.3 illustrates the soil profile along the alignment's centerline. The ground

surface is underlain by recent fill deposits. Beneath a surficial layer of Miscellaneous Fill

lie a sequence of three cohesive deposits: Cohesive Fill, Organics, and Boston Blue Clay

(BBC). These cohesive and largely "soft" soils are inherently unstable when excavated,

thus dictating the need for a support-of-excavation (SOE) system. The BBC deposit is the
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predominant soil type in the area, with a thickness ranging from about 40 to 70 feet,

thickest in the western half of the alignment. It has a relatively strong, overconsolidated

crust but is softer and less overconsolidated at depth. Under the BBC lie two stronger,

granular, glacially deposited strata, and then bedrock.

The excavation's large width made the use of tied-back walls, rather than cross-lot

struts, an economical choice for excavation support. Two types of walls were used:

sheetpile walls along the majority of the alignment, and stiffer diaphragm (slurry) walls

along sections that were immediately adjacent to buildings. Figure 3.2 shows a cross-

sectional view of the excavation at a location where both types of wall were used (due to

the presence of a building near one side). Behind the sheetpile walls, the tiebacks were

grouted in the stiff, overconsolidated crust of the Boston Blue Clay (BBC), while behind

the diaphragm walls, they extended at a steeper angle (45 degrees) into the underlying

bedrock.

The excavation was heavily instrumented by a variety of different types of

geotechnical instruments. Lateral deflections at or behind (to the retained side of) the walls

were measured with inclinometers (INC's). Surface settlements were measured with

Deflection Monitoring Points, (DMP's). Settlements at different depths within the soil

mass were measured with probe extensometers outside of the cut and Multi-Point Heave

Gages (MPHG's) within the cut. Inclinometers were commonly combined with probe

extensometers to form "IPE's". Groundwater elevation was measured with Observation

Wells (OW's) and Open Standpipe Piezometers (OSPZ's). Deeper piezometric pressures

Were monitored with Vibrating Wire Piezometers (VWPZ's). Appendix A presents a

detailed discussion of the design and capabilities of these instruments.

The layout of instruments throughout the project area is shown on Figure 4.2.

Instruments were generally arranged in clusters, or instrumented sections. A single well-

instrumented "test section" was selected for detailed analysis. The section labeled ISS-4,

at Sta. 77+20, was selected using criteria which are described in detail in Chapter 4. ISS-4

offered the following major advantages: 1. It was well instrumented on both sides of, and

within, the excavation. 2. It experienced soil movements and a construction history that

were considered representative of the entire area. 3. It had both types of support walls: a
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diaphragm wall on the north side (adjacent to Building "A") and a sheetpile wall on the

south side.

Chapter 5 presents the selected soil profile and engineering properties at ISS-4.

Information on the soil deposits came from two studies executed by MHD's Geotechnical

Consultants: a geotechnical engineering investigation for the project (MHD Geotechnical

Consultant, 1991a and 1991b), and a Special Testing Program, done in conjunction with

MIT and others, which evaluated the engineering properties of the BBC using a variety of

advanced laboratory and in-situ testing techniques (MHD Geotechnical Consultant, 1993).

Figure 5.2 shows the "best estimate" soil profile for ISS-4, based on a number of borings

conducted in the vicinity of the test section. Tables 5.1 through 5.7 provide summarized

information on soil)test results and selected engineering properties, while more detailed

soil property data are presented in Appendix B.

MIT carefully evaluated strength, flow, and compressibility properties of the three

cohesive soils at ISS-4, by applying various analytical techniques to available test data and

by using pertinent information on similar soils at other locations. The Strain Energy

technique (Becker et al., 1987) was used to estimate preconsolidation pressures from the

consolidation tests on BBC. This generally gave less scattered values than Casagrande's

(1936) technique, for the upper clay crust having rounded compression curves (compare

Sheet BO10 and Figure 5.7). Undrained strengths were estimated using the SHANSEP

method (Ladd and Foott, 1974).

The geometry, support systems, and construction history were defined for the ISS-

4 test section as precisely as possible, using construction data provided by two sources:

MHD's Management Consultant and the construction contractor. Chapter 6 describes the

use of construction records to define the geometry of the ISS-4 section, the tieback

lockoff loads and moduli, and the construction history. Tables 6.1 and 6.3 summarize the

ISS-4 tieback properties and construction history, respectively. Figure 6.1 shows a cross-

sectional view of ISS-4, and Figure 6.8 graphically summarizes the construction history at

that location.

Monitoring data from the geotechnical instruments at ISS-4 were provided by

MHD's Management Consultant. MIT created two types of data summary figures. First,
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the data were plotted against time; these graphs are the "7A" series of figures in Chapter

7. A key feature of the MIT graphs is that each includes a graphical representation of the

excavation history, for easy comparison to the geotechnical data. A total of seventeen

graphs were prepared for the 7A series: Figures 7A. 1 through 3 show lateral deflections of

the walls and soil; Figures 4 through 6 show settlements; Figures 7 through 10 show

groundwater levels and piezometric pressures around the excavation; Figures 11 through

14 show soil heave within the excavation; and Figures 15 through 17 show piezometric

pressures in the BBC within the cut.

The second type of data plot was a series of eight "Time Period Summaries", the

"7B" series of figures. Each Time Period Summary consists of a pair of sheets showing the

excavation's geometry, construction activities (i.e., tieback installation and lock-off),

surface settlements, and wall deflections for a particular time period.

Chapter 7 presents detailed discussions of the wall movements, settlements, and

groundwater changes that were observed at ISS-4 throughout the construction history.

This discussion attempts to define the causes of trends seen in the instrumentation data, by

relating observed soil and groundwater changes to construction events: namely,

excavation of lifts, installation of tiebacks, and groundwater pumping activities.

Additional calculations were done by MIT in an effort to better identify the causes

of certain phenomena seen in the instrumentation records. One set of calculations models

the consolidation behavior of cohesive soils at ISS-4 in response to groundwater

drawdowns observed in the upper fill and in the deeper glacially deposited soils. The

calculations predicted surface settlements and piezometric reductions within the cohesive

layers, for two different dates in the construction history. These calculations are discussed

in Section 8.1. Section 8.2 compares the observed wall and ground movements to

predictions from available empirical and semi-empirical techniques. In particular,

predictions made by the computer program MOVEX (Smith, 1987) were analyzed (Figure

8.10).
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9.2. CONCLUSIONS

9.2.1. Factors Influencing Wall and Soil Movements

In general, current methods of predicting wall and soil movements for braced

excavations make the assumption that the surface settlements (vertical deflections, 8v) are

directly relatable to the amount of horizontal wall deflection (Sh). A common approach is

that of Mana & Clough (1981) and Clough & O'Rourke (1990), which involves first

utilizing empirical data and analytical experience to estimate the maximum 8h, and then

predicting maximum 8 by assuming that it is approximately equal to the maximum 8 h. The

geometry of the settlement trough can then be readily developed by using charts such as

those presented in Figures 2.2 and 2.5.

Measurements from the geotechnical instruments at ISS-4 indicate that the actual

development of movements is not this simple and that a variety of additional factors can

significantly influence 8 h and 8v and the relationship between the two. In particular, this

research has identified three possible factors which could have influenced movements at

ISS-4; these factors are discussed as follows.

1. Pumping for dewatering and pressure-relief purposes caused large drawdowns

in the granular materials underlying the BBC. Piezometers placed in the relatively

permeable glacial deposits underlying the BBC recorded a rapid pressure head reduction

of 30 to 35 feet in January of 1993; PWE drawdowns remained between 10 and 20 feet

throughout the rest of the year (Figure 7A.7). These PWE reductions resulted from

pumping which was done to dewater the excavation and prevent hydrostatic uplift of soils

within the cut. Drilling of holes for installation of boat section tiedowns was another likely

cause of these large PWE fluctuations in the lower soil deposits.

These deep drawdowns, in conjunction with smaller drawdowns measured in the

overlying Miscellaneous Fill, promoted consolidation of the cohesive soils (Cohesive Fill,

Organics, and BBC) and hence surface settlements. PWE reductions within the cohesive

soils were recorded by VWPZ-67 and 68, which recorded drawdowns at the top of the

BBC of about 8 to 10 feet by the end of 1993 (Figure 7A.9). These drawdowns may

reflect ongoing pressure dissipation and consolidation of the cohesive soils. However,

consolidation calculations using reasonable estimates of consolidation coefficient (c,)
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underpredicted the degree of PWE reduction in these instruments (Section 8.1.1.1). This

suggests that the assumed values c, were too low, or possibly that drainage in the clay was

enhanced (on the north side) by disturbance from tieback drilling activities.

2. Observations by field engineers during drilling of tiebacks at the north

diaphragm wall (Slurry Wall A) suggested the possibility of disturbance to the cohesive

soils due to the use of high air and water pressures and a down-hole hammer. At the south

sheetpile wall, a drag bit was used, providing a cleaner cut and potentially less disturbance.

This factor, while somewhat speculative, does provide a means of explaining large

settlements behind Slurry Wall A, even though the wall was "pulled back" into the

retained soil.

3. This "pull back" deflection of Slurry Wall A was not predicted by any existing

design chart. The "pull back" was a result of high lock-off forces applied to the diaphragm

wall tiebacks, which was sufficient to not only resist the lateral earth pressures but to

reverse the direction of wall movement. Since the available design charts account for

bracing stiffness, not force, they cannot predict negative wall deflections.

9.2.2. Comparison of Measured Wall and Soil Movements to Predictions

9.2.2.1. North Side of Excavation (Slurry Wall A)

Although Slurry Wall A deflected back into the retained soil mass (due to the

tieback forces), positive (downward) settlements were measured behind the wall (Figure

7A.4). This behavior disagrees with common experience for excavations in cohesive soils,

which predicts that the maximum settlements should approach the maximum wall

deflection into the excavation, and therefore that soil heave should accompany wall "pull-

back". The downward settlements at Slurry Wall A could be caused by: 1. Consolidation

settlement of the BBC and possibly the other cohesive soils, due to the large drawdowns

in the underlying permeable soils and, to a lesser extent, the water table drawdowns in the

overlying Miscellaneous Fill; and 2. Disturbance to cohesive soil deposits (Figure 6.1)

from tieback drilling activities.

The computer program MOVEX was used to predict wall deformations and

surface settlements from the design charts of Mana & Clough (1981) and Clough et al.
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(1989). As expected, the program completely failed to predict the "pull-back" experienced

by Slurry Wall A. However, due to compensating "errors", the program slightly

underpredicted the settlements behind the north side of the excavation (Figure 8.10).

9.2.2.2. South Side of Excavation (Sheetpile Wall)

While MOVEX underpredicted the deflection of the south side sheetpile wall, it

nearly matched (but slightly exceeded) the amount of settlement behind the wall (Figure

8.10). These settlements appear to be the result of: 1. Motion of soil in toward the

excavation, as indicated by bowing of the sheetpile wall. 2. Consolidation of the clay and

cohesive soils, from the PWE drawdowns. Disturbance to the underlying soils was not as

likely behind the south wall as it was behind the north wall, since a different drilling

technique was used. The close agreement of predicted and measured settlements may be

due to the lesser influence of this factor on the south side.

9.2.2.3. Trends Common to Both Walls

Measured wall movements on both sides of ISS-4 seemed to correlate well with

construction activities. For the south wall (Figure 7A.2), excavation of lifts appeared to

cause accelerated wall movements, while the ensuing lock-off of tiebacks tended to stop,

slow down, or temporarily reverse the wall movements. The opposite was true for the

"pulled back" north wall (Figure 7A.1), which experienced brief increases in movement

when tiebacks were locked off, reflecting the added force of the added tieback tier.

Normalized settlements extended farther from the wall than was predicted by the

design chart of Clough & O'Rourke (1990) (Figure 8.6). This seems attributable to soil

consolidation from drawdowns in the lower aquifer.

9.2.3. Groundwater and Soil Movements Within the Excavation

Reductions in pore pressure measured by VWPZ's inside the cut correspond to

times of excavation unloading events (refer to Figures 7A. 15 through 7A. 17). The

decreases in PWE are a response to excavation unloading, but appear to be somewhat less

than would be expected in a 1-D unloading scenario. This is attributable to three-
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dimensional stress effects, from the added weight of berms that were commonly left to the

sides of newly excavated lifts. The dissipation of these excess negative pore pressures

caused heave of the soils within the excavation (see Figures 7A. 11 through 7A. 14).

9.3. RECOMMENDATIONS

This research involved a great deal of data collection and required careful study of

numerous construction records that were kept by MHD's Management Consultant and the

contractors. The experience of using these records to accurately recreate the construction

history and interpret geotechnical data led to the following recommendations for record

keeping on future projects involving deep excavations in cohesive soils.

9.3.1. Excavation Conditions and Construction History

An accurate understanding of the construction history of an excavation is essential

for proper interpretation of monitoring data. The success of reconstructing this history is

dependent on the quality and clarity of construction records. It can be greatly facilitated if

the contractor keeps updated summary tables which list the dates of lift excavations and of

all other construction activities such as tieback installation and lock-off The Construction

Activity Tables shown on Sheets D 1 and D2 served this purpose. However, the dates only

provide part of the story: the depth, geometry, and extent of each lift, including those that

occur near the center of the cut rather than at the sides, need to be properly defined as

well for a complete understanding of the construction sequence. Information on the time

history of subgrade geometry is essential for FEM (finite element) modeling.

Regular photographs of the site taken throughout the construction history are very

helpful in this regard, especially if they show wide views of the excavation, and not just

"close-ups". These photographs provide important information on the geometry of all

excavation lifts.

9.3.2. Presentation of Geotechnical Instrumentation Data

To facilitate the study and interpretation of monitoring data, plots should

incorporate the following features, all of which appear in the "7A" series of figures:
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1. They should use a convenient time scale, such as months.

2. The dates of construction events should be provided along with the geotechnical

data. This can be readily done with modem computer spreadsheet software. A graphical

time scale showing subgrade elevation vs. time is a particularly effective way of presenting

this information.

3. Data from associated instruments should be placed together on the same graph,

so their records can be easily compared.
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APPENDIX A

REVIEW OF GEOTECHNICAL INSTRUMENTATION

A.1. Purpose of Geotechnical Instrumentation

Large excavations, such as the one for the project under consideration, have the

potential to cause damage to adjacent facilities and adversely affect the excavation support

system due to excessive deformations in the surrounding soil and large changes in the

groundwater regime. Installation and careful monitoring of geotechnical instruments

allows measuremeit of wall deflections, surface settlements, loads on support members,

and changes in the pore water pressures. This has two major benefits. First, it can provide

forewarning of adverse behavior such as unacceptably large settlements or groundwater

drawdowns, thereby allowing remedial actions to be implemented before adjacent

structures are damaged. Second, even if problems do not arise, the project's quantitative

performance can be used to assess the effectiveness of the excavation and construction

techniques, thus providing helpful information and lessons for future work of a similar

nature.

Appendix A reviews the purpose, design, installation, and use of the various types

of geotechnical instrumentation that were studied in this report. Actual specifications for

instruments used in the construction project were obtained from a series of three

submittals done by MHD's Instrumentation Consultant (1992). General information on

the basis and design of geotechnical instruments has been abstracted from the writings of

Dunnicliff (1981, 1988).

Tables A. 1 through A.4 supply information on all geotechnical instruments which

were installed in the vicinity of ISS-4 and which provided the data that were evaluated.

A.2. Instruments Which Measure Lateral Deformations (Inclinometers)

Lateral deflections that occur within a soil profile or along a support wall can be

measured with an inclinometer. An inclinometer is in essence a pipe-like instrument which
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measures deformations normal to the axis of the pipe by means of a probe which is

lowered or raised through it (Dunnicliff, 1988). Figure A.1-a illustrates a typical

inclinometer design according to the project specifications. Although inclinometers are

most commonly installed vertically, as they were beside the project's braced excavation,

they can also be aligned horizontally for measurement of settlements beneath structures or

embankments.

An inclinometer consists of two main components. First is the guide casing, a

long tube made of plastic, fiberglass, aluminum, or steel, having an outside diameter of

two to 3-1/2 inches. 2.75-inch O.D. plastic casings were used at this project. Although

casings with square cross-sections are available, they are more frequently cylindrical, with

four orthogonal grooves along the length of the inside. These grooves serve as tracks for

the wheeled probe, as do the four inside corners of a square casing. The probe is the

second major component of an inclinometer. As it is pulled up through the guide casing, it

measures the degree of tilt at regularly-spaced points along the casing length, generally

with a force balance accelerometer, which was used for this project, or a potentiometric

transducer.

Depending on the strength and consistency of the soil profile, a vertical

inclinometer casing can be installed in a borehole that is either unsupported or supported

by drilling mud or a drill casing. The inclinometer casing should extend down into a layer

that will provide base fixity; Dunnicliff (1988) recommends a depth of 10 to 20 feet below

the expected active deformation zone, while MHD's standard specifications for this

project (1991) specify a depth of ten feet into the "fixed" stratum. The annular space

between the inclinometer casing and the boring wall is filled with grout or granular

material. If a drill casing was used to support the borehole, it must be removed once the

annular space has been filled. The backfill material should have approximately the same

shear strength and compressibility as the surrounding ground, as was required for the

grout mix used in this project's inclinometers.

Although many of the inclinometers within the project alignment were installed in

boreholes, the majority of inclinometers east of Sta. 78 were attached to the driven

sheetpiles on the side facing the interior of the cut. The inclinometer casings were placed
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in 5-inch O.D. steel pipes that were connected to the sheetpiles with welds and steel

brackets as the excavation proceeded. Because these instruments were not protected by

surrounding soil, they were more susceptible to damage from construction equipment.

For example, Inclinometer 117 (Sta. 86+22, North side) was cut off ten feet above the

final subgrade and Inclinometer 116 (Sta. 84+48, North side) was bent three inches, also

about ten feet above final subgrade.

Where the excavation was supported by slurry walls rather than sheetpiles,

inclinometers could conveniently be installed in the concrete mix during wall construction

before set up. Inclinometer 102, in Diaphragm Wall A, and inclinometer 104, in

Diaphragm Wall B, were installed in this way.

The principle of inclinometer measurement is illustrated in Figure A. 1-b. Lateral

deflections along the length of the inclinometer casing are measured by passing a level-

sensing probe through the casing. In a vertical inclinometer the probe is first lowered to

the fixed base of the casing, and as it is pulled back up, measurements of inclination are

taken at regular intervals. Dunnicliff (1988) recommends using a measurement interval

that is equal to the spacing between wheels on the probe; following this recommendation,

the inclinometers at this project had a reading interval of two feet.

A single monitoring session may require more than one set of probe runs. Probes

which measure only uniaxial tilt require a pair of runs in orthogonal casing grooves to

measure deflection in both vertical planes. The instrumentation specifications for this

construction project mandate the use of biaxial probes, which measure inclinations in both

planes at once. However, even a biaxial probe should be run through the casing an

additional time, rotated 180 degrees from its first orientation. This allows a convenient

assessment of systematic errors in the instrument or problems with the casing through the

calculation of "check-sums", the algebraic sums of the two readings taken at each depth

increment. Ideally, check-sums should remain fairly constant over the casing length. Specs

for this project required that the standard deviations of the check-sums not exceed 0.0005

feet. This project's inclinometers were manufactured by Slope Indicator Co., and had

accuracies of approximately 0.25 inches per 100 feet of casing (SINCO, 1991).
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Inclinometer data are processed through a series of simple but time-consuming

arithmetic steps, and since a single error can accumulate and produce completely

misleading results, this analysis should be automated. (A detailed discussion of the data

reduction process is not necessary for the purposes of this presentation.) Engineers on this

project utilized the GTILT computer program, by Mitre Software Corporation in

Edmonton, Alberta, to reduce raw inclinometer data and to create plots of deflections.

A number of inclinometer casings at the excavation under study were equipped

with spider magnets at various depths, which allowed measurement of settlements at

multiple points within the soil profile. These combined instruments are known as

Inclinometer/Probe Extensometers and are discussed further in Section A.3.2.

Table A. 1 contains information on the three inclinometers installed at ISS-4.

A.3. Instruments Which Measure Vertical Deformations

Generally, controlling surface settlements is more important than controlling

horizontal wall deflections, because settlements have the potential to directly harm

adjacent structures and utilities, whereas wall movements provide a less direct indication

of soil deformations that could cause damage. Thus it is important to monitor settlements

carefully. Various geotechnical instruments exist for the purpose of measuring settlements

not only at the surface or on structures, but also below the surface, at different points

within the soil profile. Measurement of settlements at different depths allows identification

of the soil strata that are compressing or heaving, thereby providing insight into the causes

of the surface movements.

A. 3.1. Deformation Monitoring Points

Monitoring surface settlements requires surveying the precise position of defined

points, relative to unmoving or "deep" benchmarks. MHD's Standard Special Provisions

for this project specify four different types of Deformation Monitoring Points, or DMP's,

for measurement of both vertical and horizontal displacements of points on the ground

surface and on structures. Figure A.2 shows drawings of the different DMP types.
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Types 1 and 4 are emplaced in the ground or in paved horizontal surfaces like

roads or sidewalks. Types 2 and 3 are mounted horizontally in vertical surfaces such as the

sides of buildings or curbs. Type 2 consists of a screw anchor into which a bolt is threaded

when surveying is being performed. Type 3 differs from Type 2 in that a shorter bolt is

permanently screwed into place.

At ISS-4, only DMP types 2 and 4 were installed, to measure settlements on

adjacent structures (Building A, in this case) and on the ground surface, respectively.

Although horizontal deflections of DMP's can be measured, this was not done at this

project. Only vertical positions, relative to deep benchmarks, were monitored. Dunnicliff

(1988) gives typical expected values for the precision of DMP measurements: within 0.01

ft. for elevation measurements (as specified for surveying on this project), or 0.001 ft. for

especially sensitive cases that require increased precision.

A listing of the nine DMP's used at the ISS-4 cross-section, as well as relevant

information on each, is provided in Table A.2.

A. 3.2. Probe Extensometers

Settlements at different depths beneath the ground surface can be monitored with

probe extensometers, which measure the distance between two or more points along a

common axis. For a vertical probe extensometer, measuring points are emplaced at

different depths, and their locations determined at different times with a probe that is

passed down an access tube.

A number of different types of probe extensometers exist, with a variety of

measurement point and probe designs. Measurement points can either be emplaced

directly in the soil, or can be attached to the access tube. The latter option requires that

the tube be adequately bonded to the surrounding soil and that it allow axial expansion or

compression, as can telescoping or corrugated pipes. The attached measurement points

will then be able to settle or heave with the soil mass.

There are basically three different methods for detection of measurement points

with a probe. They are diagrammed in Figure A.3. The first technique is mechanical. In

this case, the measurement points are bumps or knobs in the pipe, or simply the edges of
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the telescoping pipe sections, and the probe is equipped with latches that catch on the

points or with an electrical switch that closes mechanically, signaling arrival at the point

(Figure A.3-a). In the second method, the probe is equipped with a current-displacement

induction coil. The measurement points are steel rings wrapped around a corrugated

access tube at different locations along its length (Figure A.3-b). The electrical output

current from the probe is constantly monitored, and when the probe passes through one of

the steel rings, the current reaches an identifiable maximum due to induction.

The third method uses magnetic measurement points which are fixed in the soil

(Figure A.3-c), and was used in the design of probe extensometers at this project. The

operation principle of magnetic measurement points is illustrated in Figure A.4. The probe

contains a reed switch which closes twice as it passes through the magnets, once just

above and once just below each magnet's position, sending a pair of electric signals to the

output device. The magnetic rings were attached to leaf spring "legs" known as spider

magnets. After a borehole was drilled for the instrument, spider magnets were lowered in

retracted position to their appropriate depths, where the leaf springs were pneumatically

released, so that they caught in the sides of the borehole. A telescoping access tube was

then lowered into the borehole, through the spider magnets. Finally, the borehole was

filled with a grout mixture specified as "Type A", which had an unconfined compressive

strength between 500 and 1000 psi.

Accurate measurement of changing measurement point elevations requires all

depths to be referenced to a known or unchanging location, such as an external

benchmark, or more conveniently, to points in the probe extensometer that are fixed in a

rigid stratum. This project's Standard Special Provisions mandate a minimum ten foot

embedment into a fixed stratum, such as the glacial till or the underlying bedrock. In

accordance with Dunnicliff's recommendations, the probe extensometers used for this

project include, in addition to the spider magnets, a pair of datum magnets embedded in

the rigid stratum at the base of the instrument, which serve as the fixed reference points.

The Standard Special Provisions required an accuracy of about 0.1 inches for settlement

measurements. The spider magnets and probes used in the project permitted readings to

approximately the nearest 0.05 inches (MHD Instrumentation Consultant, 1992).
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Throughout the project alignment, and at ISS-4 in particular, the probe

extensometers were usually combined with inclinometers. The Inclinometer/Probe

Extensometer, or IPE, is illustrated in Figure A.5. The IPE makes use of the fact that both

the inclinometer and the probe exstensometer utilize a vertical access tube for probe

access and can therefore be easily combined, with a few adjustments to the design of each.

For example, an inclinometer casing has a larger diameter than a typical probe-

extensometer access tube requires, so the IPE requires larger diameter spider magnets

than a probe extensometer would. Also, project specifications require "Type A" grout to

fill IPE boreholes, which had to have a lower strength than the "Type B" grout used

inclinometers. The lower strength was specified to give the instrument sufficient flexibility

to accurately folldw the soil settlements. Unfortunately, the low-strength grout, in

combination with the larger borehole required to accommodate the spider magnets, led to

flexure of the inclinometer casing which appear as anomalous 'waviness' in many of the

IPE traces (discussed in section 7.2.1.2).

A.3.3. Heave Gages

Soil heave is an intrinsic response to the removal of overburden stresses as

overlying soil is removed, but it can also reflect developing instabilities in the soil mass

such a basal heave or bottom uplift from a pressurized underlying aquifer. A probe

extensometer can be used to monitor soil heave within an excavation, as long as its height

can be cut down as the excavation deepens. Such an instrument is known as a multi-point

heave gage (MIPHG) and is illustrated in Figure A.6.

The design of the MPHG is essentially the same as the Probe Extensometer.

Before excavating the area around the instrument, the top of the access tube is sealed with

a mechanical packer and an internal cutting tool is used to trim the access tube to an

elevation below the bottom of the subsequent excavation.

Table A.3 lists information on the one IPE and the four MPHG's installed beside

and within the excavation at ISS-4. The accuracy of MPHG readings was about 0.05 to

0.10 inches, as for the Probe Extensometers and IPE's.
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A.4. Instruments which Measure Groundwater Levels and Pore Pressures

Careful monitoring of the groundwater regime in and around an excavation

provides knowledge of the pressures and movements of pore water, and can be important

for the following reasons:

1. Water pressures can constitute a significant fraction of the earth forces that have

to be resisted by support walls, especially when the excavation reaches depths well below

the water table.

2. High pore pressures in a confined aquifer beneath an excavation can cause

bottom heave.

3. Pore pressure drawdowns can result in consolidation and therefore surface

settlements, particularly when clay is present in the soil profile.

4. The dissipation of excess negative pore pressures induced by excavation

unloading generally results in swelling of soils within the cut, which reduces strengths on

the passive side of the support wall.

There are essentially two types of groundwater monitoring instruments:

observation wells and piezometers. An observation well is simply an open vertical tube

which is screened over all or part of its length, allowing measurement of the surrounding

water table elevation. A piezometer, on the other hand, allows measurement of pore

pressures at a specific depth within the soil column.

This construction project utilized observation wells and two different types of

piezometer. The observation wells measured the elevation of the water table in the

granular and miscellaneous fill deposits which composed the area's upper aquifer. Open

standpipe piezometers (OSPZ's) were emplaced in the cohesive fill, a deeper component

of the upper aquifer. Pore pressures in the glacial deposits of the confined lower aquifer

and within the clay were measured by vibrating wire piezometers (VWPZ's).

Figure A.7 shows a diagram of an observation well, as installed along the project

alignment. A PVC riser pipe, slotted along a five foot length, was installed in an augered

borehole, and the annular space filled with 20-30 filter sand. The water level could be

measured in the riser with a water level indicator, which is a probe that is lowered through

the pipe by a graduated cable; when the probe contacts the water, electrical current is able
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to pass between a pair of terminals so that a light and buzzer inform the operator that

water has been reached. The depth of the probe can then be read from the cable. The

cables used for this project had gradations every 0.01 feet.

An open standpipe piezometer is similar to an observation well, since the water

level is measured by lowering a probe down a riser pipe. The difference is that the porous

tip is located in a zone that is sealed off from the rest of the strata. Figure A.8 illustrates

the OSPZ design used in the project area. 20 - 30 filter sand was used around the porous

point, and was overlain by a four-foot thick layer of granular bentonite which sealed the

porous tip from the rest of the soil profile. (Grout can also be used for this purpose.)

The design of vibrating wire piezometers used to monitor this excavation is shown

in Figure A.9-a. Like the OSPZ, a four-foot-thick layer of bentonite seals the piezometer

tip from the remaining soil column. The piezometer itself measures pore pressures

electronically; an electrical cable, rather than a riser pipe, connects the tip to the surface.

Details of the vibrating wire piezometer tip are illustrated in Figure A.9-b. The instrument

contains a thin steel wire connected to a diaphragm with deflects under the applied pore

pressure. This deflection applies a proportional tension to the wire. An electric pulse

applied by an adjacent coil 'plucks' the wire, and then measures the resonant frequency of

the resulting vibrations. The square of the vibration frequency is proportional to the wire

strain and therefore to the pressure existing outside of the diaphragm.

Vibrating wire piezometers are sensitive to the existing barometric pressure and, to

a lesser extent, the temperature. The manufacturer generally provides calibration

coefficients for both corrections. Piezometers for this project were provided by Geokon,

Inc., and had an accuracy of +0.025% full scale. VWPZ's with a 100 psi range were used

in the deep aquifer. The clay layer inside and below the excavation was instrumented with

50-psi-range VWPZ's, because initial pore pressures were lower and were expected to

undergo reductions in response to dewatering activities (MHD Instrumentation

Consultant, 1992).

The installation procedures for the three previously described instruments were

fairly similar. Project specifications prohibited the use of bentonite mud while drilling the

boreholes, because of the possibility of 'clogging' the surrounding soils. The hole was
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drilled with a casing, which was withdrawn incrementally as the hole was filled with lifts of

backfilling material such as sand, bentonite, and grout. The backfilling had to be done with

great care, since the adequacy of the instruments was dependent on forming an

impermeable seal around the riser pipes (Dunnicliff, 1981). The vibrating wire piezometer

was lowered in a water filled canvas sack into a water-filled borehole, in order to keep the

instrument fully saturated at all times. Formal initial readings on the groundwater

monitoring instruments involved taking the average of three successive, independent

readings.

Table A.4 provides a list of all the groundwater monitoring instruments at ISS-4,

including both observation wells and piezometers.
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INSTRNAME NORTHING EASTING STATION OFFSET rm

VWPZ-065 2951472 781168 8100 245

VWPZ-066 2951472 781168 8100 245

VWPZ-067 2951834 780773 7740 -115

VWPZ-068 2951834 780773 7740 -115

VWPZ-069 2952106 780041 6915 -120

VWPZ-070 2952106 780041 6915 -120

VWPZ-075 0 0 0 0

VWPZ-501 2951988 779919 6860 37

VWPZ-107A 0 0 9340 0

VWPZ-1078 0 0 9340 0

VWPZ-117 2951683 782138 8669 409

VWPZ-118 2951963 782309 9244 279

-PREX-501 2951747 780231 7240 116

PREX-502 2951954 780321 7240 110

INCL-501 2951744 780250 7258 111

INCL-502 2951948 780333 7253 109

IPE-116 2952070 780237 7109 -180

IPE-115 2951779 780096 7197 144

IPE-114 2951702 780204 7233 109

IPE-112 2952117 782141 9204 544

INCL-101 2951589 780697 7702 131

'NCL-102 2951495 780736 7709 -78

INCL-103 2951647 781222 8194 79

INCL-104 2951784 781205 8202 -59

INCL-105 2951748 781549 8521 75

INCL-109 2951778 780166 7170 115

INCL-110 2951579 780837 7831 125

INCL-111 2951776 780884 7865 -74

INCL-112 2951599 781018 7999 104

INCL-113 2951776 781064 8055 -70

INCL-114 2951674 781327 8298 75

INCL-115 2951689 781382 8352 74

INCL-117 2951909 781590 8622 -56

INCL-118 2951960 781684 8730 -57

INCL-120 2952025 781808 8876 -56

MPHG-101 2951863 780129 7102 54

MPHG -502 2951908 780153 7104 2

MPHG-102 2951912 780153 7102 -1

MPHG-103 2951947 780175 7107 -42

MPHG-104 2951725 780413 7411 -70

MPHG-105 2951779 780420 7400 17

MPHG-106 2951852 780463 7416 -66

MPHG-107 2951643 780701 7697 77

MPHG - 108 2951692 780708 7697 27

MPHG-109 2951722 780719 7703 -3

MPHG -110 2951741 780728 7709 -24

Table A.5. (page 1 of 6) Location Data for Geotechnical Instruments.
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INSTRNAME NORTHING EASTING STATION OFFSET

IPE- 101A 2951744 780250 7258 112

IPE-102 2951954 780321 7240 -110

IPE-103 2951975 780335 7244 -135

IPE-104 2951678 780401 7415 119

IPE-105 2951890 780486 7425 -110

IPE-106 2951906 780489 7423 -126

IPE-107 2951804 780109 7110 115

IPE-108 2952012 780207 7107 -115

IPE-109 2951716 780312 7323 114

IPE-110 2951921 780390 7320 -106

IPE-113 2951565 780687 7696 157
IPE-101B 2951747 780231 7240 116

IPE-111 2951831 781335 8346 -75

Table A.5. (page 2 of 6) Location Data for Geotechnical Instruments.
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INSTRNAME NORTHING EASTING STATION OFFSET
BPT-101 2951839 780651 7611 -106

BPT-102 2951834 781339 8351 -76

BPT-103 2951534 781221 8176 191

BPT-104 2951689 781521 8476 120

BPT-105 2952020 782039 9067 74

DMP4-101 2951632 780187 7246 240

DMP4-102 2951698 780210 7240 170

DMP4-103 2951725 780221 7240 140

DMP4-104 2951963 780325 7240 -120

DMP4-105 2951968 780327 7240 -125

DMP4-106 2951991 780337 7240 -150
DMP4-107 2952014 780348 7240 -175

DMP4-108 2952032 780354 7239 -195

DMP4-109 2951597 780368 7410 205

OMP4-110 2951636 780381 7410 165

DMP4-111 2951659 780389 7410 140

DMP4-112 2951904 780475 7410 -120

DMP4-113 2951938 780487 7410 -155

DMP4-114 2951953 780492 7410 -171

,DMP4-115 2951975 780500 7410 -195

DMP4-116 2951510 780672 7690 213

DMP4-117 2951388 780607 7703 180

DMP4-118 2951435 781367 7708 169

DMP4-119 2951839 780679 7612 -112

DMP4-120 2951151 781292 7730 -116

DMP4-121 2951549 781235 8195 183

DMP4-122 2951574 781230 8190 160
DMP4-123 2951613 781223 8107 126
DMP4-124 2951836 781341 8355 -78

DMP4-125 2951858 781075 8063 -145

DMP4-126 2951867 781359 8382 -102

DMP4-127 2951956 781384 8475 -163

DMP4-128 2951771 781662 8627 101

DMP4-129 2951749 781672 8618 87

DMP4-130 2951951 781570 8622 -103

DMP4-131 2951961 781559 8616 -117

DMP4-132 2951991 781549 8623 -145

DMP4-135 2952232 782069 9225 -68

DMP4-136 2952252 782048 9227 -83

DMP2-001 0 0 0 0

DMP2-069 0 0 0 0

DOMP2-070 0 0 0 0
DMP2-006 0 0 0 0

DMP2-022 0 0 0 0

DMP2-023 0 0 0 0

DMP2-026 0 0 0 0

DMP2-037 0 0 0 0

DMP2-024 0 0 0 0

DMP2-077 0 0 0 0

Instruments.
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INSTRNAME NORTHING EASTING STATION OFFSET

DMP2-078 0 0 0 0

DMP2-025 0 0 0 0

DMP2-027 0 0 0 0

DMP2-028 0 0 0 0

DMP2-029 0 0 0 0

DMP2-030 0 0 0 0

DMP2-031 0 0 0 0

DMP2-036 0 0 0 0

DMP2-038 0 0 0 0

DMP2-071 0 0 0 0

DMP2-035 0 0 0 0

DMP2-032 0 0 0 0

DMP2-033 0 0 0 0

DMP2-034 0 0 0 0

DMP2-014 0 0 0 0

DMP2-016 0 0 0 0

DMP2-018 0 0 0 0

DMP2-013 0 0 0 0

DMP2-015 0 0 0 0

DMP2-019 0 0 0 0

DMP2-020 0 0 0 0

DMP2-021 0 0 0 0

DMP2-039 0 0 0 0

DMP2-040 0 0 0 0

DMP2-041 0 0 0 0

DMP2-042 0 0 0 0

DMP2-043 0 0 0 0

DMP2-044 0 0 0 0

DMP2-045 0 0 0 0

DMP2-046 0 0 0 0

DMP2-059 0 0 0 0

DMP2-060 0 0 0 0

-DMP2-061 0 0 0 0

DMP2-062 0 0 0 0

•DMP2-063 0 0 0 0

DMP2-064 0 0 0 0

DMP2-065 0 0 0 0

•DMP2-066 0 0 0 0

DMP2-067 0 0 0 0

DMP2-068 0 0 0 0
DMP2-072 0 0 0 0

DMP2-073 0 0 0 0

DMP2-074 0 0 0 0

DMP2-075 0 0 0 0

DMP2-076 0 0 0 0

DMP4-137 0 0 7105 260

DMP4-138 2951905 780478 7247 -107

DMP4-139 2951963 780331 7246 -122

DMP4-140 2951949 780326 7413 -122

Table A.5. (page 4 of 6) Location Data for Geotechnical Instruments.
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INSTRNAME NORTHING EASTING STATION OFFSET
OMP2-017 0 0 0 0
DMP2-102 0 0 0 0
DMP2-104 0 0 0 0
DMP2-105 0 0 0 0
OMP2-107 0 0 0 0
DMP2-153 0 0 0 0
DMP2-154 0 0 0 0
DMP2-155 0 0 0 0
DMP2-156 0 0 0 0
DMP2-157 0 0 0 0
DMP2-158 0 0 0 0
DMP4-143 0 0 0 0
DMP4-145 0 0 0 0
DMP4-146 0 0 0 0
DMP4-150 0 0 0 0

. OSPZ-101 2951939 780096 7041 0

OSPZ-102 2951743 780256 7237 122
OSPZ-103 2951878 780409 7355 -72

MOSPZ-104 2951680 780393 7407 119
OSPZ-105 2951893 780476 7415 -109

OSPZ-106 2951569 780692 7700 151
OSPZ-108 2951289 781226 8148 432
OSPZ-109 2951538 781225 8180 186
OSPZ-110 2951585 781133 8104 126
OSPZ-111 2951826 781330 8340 -71
OSPZ-113 2951573 781741 8619 313
OSPZ-114 2951778 781641 8615 84
OSPZ-115 2951942 781575 6823 -92

OSPZ-116 2951666 782128 8954 418

OSPZ-117 2951945 782298 9226 286

OSPZ-119 2952224 782069 9224 -57
OW-001 2952260 780336 7100 -395
OW-002 2952047 780805 7755 -335
OW-003 2951228 780527 7595 535
OW-004 2951772 781201 8200 -45
OW-005 2951487 781395 8300 260
OW-006 2952161 782126 9230 80
OW-007 2951797 782206 9050 350
OW-008 2951765 781697 8650 150

OW-009 2951868 781376 8400 -105
OW-010 2951450 781666 8500 400
OW-01 12951596 781453 8385 175

OW-012 2952150 781488 8630 -320
OW-013 2952072 781221 8250 -340
OW-014 2951228 781224 8100 500

OW-015 2951472 781168 8100 245

OW-016 2951834 780773 7740 -115
OW-017 2951566 780633 7645 165

SOW-018 2952106 780041 6915 -120
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INSTRNAME NORTHING EASTING STATION OFFSET

,OW-019 0 0 9040 -44

OW-020 0 0 9060 -42

OW-021 0 0 9082 -42

OW-022 2951787 780363 7344 30

OW-023 2952189 782372 9440 132

OW-024 2951752 780006 0 0

OW-501 2951772 781201 8200 -45

VWPZ-102 2951739 780234 7246 122

VWPZ-103 2951960 780329 7245 -118

VWPZ-104 2951672 780400 7416 124

VWPZ-105 2951896 780469 7407 -110

VWPZ-106 2951572 780685 7693 150

VWPZ-107 2951816 780755 7726 -103

VWPZ-108 2951816 780802 7745 -332

VWPZ-109 2951292 781228 8150 430

VWPZ-110 2951530 781218 8173 194

VWPZ-111 2951585 781330 8101 -127

VWPZ-112 2951820 781326 8334 -67

VWPZ-113 2952091 781149 8205 -371

VWPZ-114 2951578 781733 8615 304

VWPZ-115 2951772 781650 8620 93

VWPZ-116 2951935 781581 8625 -84

VWPZ-120 2952224 782090 9227 -62

VWPZ-121 2951733 780419 7414 61

VWPZ-122 2951736 780414 7408 59

VWPZ-123 2951782 780429 7407 11

VWPZ-124 2951782 780429 7407 11

VWPZ-125 2951870 780465 7412 -84

VWPZ-126 2951870 780465 7412 -84

VWPZ-131 2951637 780706 7703 82

VWPZ-132 2951637 780706 7703 82

VWPZ-133 2951686 780717 7706 32

VWPZ-134 2951686 780717 7706 32

VWPZ-135 2951735 780728 7710 -18

VWPZ-136 2951735 780728 7706 -18

VWPZ-051 2951993 779907 6845 40

VWPZ-052 2952260 780336 7100 -395

VWPZ-053 2951691 780636 7630 40

VWPZ-054 2951487 781395 8300 260

VWPZ-055 2952161 782128 9230 60

VWPZ-056 2952161 782128 9230 60

VWPZ-057 2951765 781697 8650 150

SVWPZ-058 2951765 781697 8650 150

•VWPZ-059 2951868 781376 8400 -105

VWPZ-060 2951868 781376 8400 -105

VWPZ-061 2951868 781376 8400 -105

VWPZ-062 2951868 781376 8400 -105

VWPZ-063 2951596 781453 8385 175

VWPZ-064 2951596 781453 8385 175

Table A.5. (page 6 of 6) Location Data for Geotechnical Instruments.
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INCLINOMETER/PROBE EXTENSOMETER (IPE)
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Figure A.S5. Inclinometer/Probe Extensometer. From Project Standard
Drawings.
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MULTI-POINT HEAVE GAGE (MPHG)

r

E

COUPULING

AGNET

Figure A.6. Multi-Point Heave Gage. From Project Standard Drawings.
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OBSERVATION WELL (OW)
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Figure A.7. Observation Well. From Project Standard Drawings.
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OPEN STANDPIPE PIEZOMETER (OSPZ)
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Figure A.S8. Open Standpipe Piezometer. From Project Standard Drawings.
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Figure A.9. A. Vibrating Wire Piezometer Installation. From Project
Standard Drawings. B. Details of the Piezometer. From Geokon, Inc.
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Tes No. : OED14
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Wp:

lp:

50.2
23.8
26.4

Sample Desaiption : Gray green CLAY and Ail

Water

Iniktmal : 37.84
Final: 33.81

Preconolidation Pressure o ) :
Compresion aRto, CR :compression Ratio' RR :

29.J90 ; GDI20

1.210
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7.6
0.176
0.012
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APPENDIX C. Excavation Support System: SOE Walls and Tiebacks

Sheet C1. Plan View of Diaphragm Wall A and Building A ...................................... 296
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Embedment Depths of Wall Panels, and Dates of Concrete Pours....................... 299
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showing Tieback Locations and Embedment Depth ........................................... 300
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Anchors 1-16............................................. ................................................. 302
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page 1 of 3 ......................................................................................................... 3 10
Sheet C16. Stress-Strain Plot for Tieback Tier 3 on the South Sheetpile Wall,

page 2 of 3 ......................................................................................................... 3 11
Sheet C17. Stress-Strain Plot for Tieback Tier 3 on the South Sheetpile Wall,

page 3 of 3 ......................................................................................................... 3 12
Sheet C18. Tabulation of Two Independently Estimated Tieback Moduli, and

Selected V alues.................................................................................................313

295



z

N

Sheet C1

296



u Lu

-4 -J 

Lu

ck~~u

~ Lu Lu
0  I ~~ 0 0

-4 
~Z

Lu

- 0 0 ~ 0 O 0 o 0 o 0

Sheet C2

297



PANEL JOINTI SHEAR REINF.

WHERE REQUIRED
VERTICAL BARS .

1 J I I. I I . -- I 1 _

9" CL L HOjPINTAL BARS

MAX

L•PLAN vit4V

,ý-LEVATIOM DETAIL

r-- TOP OF
I ROCK

L . 6" CL

Sheet C3

298

GUIDE

b

-J

#11010"

4-#5
o18" I

TYPICAL
REINFOI

3 IS 3*-o" I

t-LEV 'TioN V IE'W



Sheet C4

299



0
U,

4-

Sheet C5

300



- C - t~4 ff~ ~ V~ ~O

- -- - - - - - - - - - - - - - - - - - -

Sheet C6

301

o
00N,
0

oil

0

Ir

[am]l susan



[.msl ssa3g

4C

Sheet C7

302

e4 eq C4e4 (4 0

-k

----------------------------------------------------------

o
0*

o

0

0

0

6

0
C;



I4

0 Ina

[hql m ans Sheet CS

303

CIA0 0

C-

----- -------

w

0

00
@0

0

c;T

C;



C
C
C
SE

0 qv~ %O

6i

[lux] sn Sheet C9

304

I'

oo
00

0

0CD

o

0

0

---------------------------------

I I i I .
[W4] • S 

Sheet C9

304



t- 00 0% 0 W-4 eq

- - Cl l CqCl(4

fn~

I I

I I
I I

I I
I I

\ I I II I
I I I

N
I I I

I I

I I

I I

I I
I I
I I

I I

I I
I I

-V I - - - -

tax assns

305

Sheet ClO

I

o

a,00e

C;

o

o.0

0



o 0 0 0 0 0
0 0 9 0 0 0

0 0 0 Q e

In g] g"IS Sheet Cl1

306

00 0hme. -m
w mA W Go W rb w l a CIO ca C4 0 % %a%

- - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - -

o

00

o

o.
a.0

0
0



C

0

0 0 0 O et1

Osl eaj Sheet C12

307

o o C#~ 4 'A %0 t- @00 0 4 ~ ~ '

Go DO[a a GoW

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0

00C•4

o

0

0
ca

0
0



bib

6

Ina 0S t1

[.oI "sswS Sheet C13

308

%A % 0 t- 00 0

"Con 0% 0CIO 0 - W

o r

0



~.9

0 0 0

d
[Ii] asmis Sheet C14

309

'aKgn

0

00

0

0
0



C
C
C

[IsU't sisan Sheet C15

310

0. 00 0 0 0 0 0 0
CI I I , '0

Jb

0

o

0*

0
00

o

o un

0

o

0

0
0

E I I I I
[.roll sr•S • Sheet C15 "

310 

\



C
C
C

0

0

0ag

'.4AoC;

.liml ssaqS Sheet C16

311

o 00

---------------------------------------------------------



U'
I'

C
I'

lm] ssals Sheet C17

312

'.0cI ~q ~ Cl Ci

0

0
0*

0

00

0

0

6

0

6

1ý4

[.unl] ssoz•S 
Sheet C17

312



Estimates of Tieback Modulus of Elasticity

Sheet C18

313

Tier Estimated E (ksi) Selected Value

by MPW by LCJ (ksi) (10 9' psf)
Norkh (Slury) Wall

1 22,000 22,500 22,200 3.20
2 21,200 21,000 21,100 3.04
3 20,500 20,000 20,200 2.91

South (Sheetpile) Wall
1 20,500 20,500 20,500 2.95
2 17,125 16,000 16,600 2.39
3 14,000 14,500 14,200 2.04
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APPENDIX D. Available Information on Excavation History

Sheet D1. Construction Activity Table, page 1 of 2 (from Weekly Geotechnical
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Sheet D2. Construction Activity Table, page 2 of 2................................................... 317
Sheet D3. Recopied Form of Large-Sheet SOE Wall Plans, provided by
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Sheet D4. Recopied Form of a Construction Progress Plan, showing dates of
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APPENDIX E. Data Plots Provided by Contractor

Sheet El. Inclinometer: Deflection vs. Depth, from GTILT...................................... 322
Sheet E2. Inclinometer: Shear Strain vs. Time, from GTILT .................................... 323
Sheet E3. DMP:Settlement vs. Time......................................................................... 324
Sheet E4. MPHG:Settlement / Heave vs. Depth........................................................ 325
Sheet ES. IPE:Settlement / Heave vs. Depth............................................................. 326
Sheet E6. Observation Well:Tabulated Data............................................................. 327
Sheet E7. Observation Well: Graph of Data vs. Time ............................................... 328
Sheet E8. VWPZ:Tabulated Data.............................................................................. 329
Sheet E9. VWPZ: Graph of Data vs. Time ................................................................ 330

321



Deflection (in)
-6 -3 0 3 6 i NrEGEn

Initial 16 Dec'92
0-----c 24 Feb'93

0 03 Aug'93' to00
.+ 29 Nov'93 ,

I. I Mar'94
14 Mar'94
21 Mar'94

Elev.
(f t)

Ref. Elevation 112.6
Skew = 2deg

Cumulative Deflection
Direction X

Incremental Deflection
Direction X

Inclinometer IPE113
South Wall Station: 77+00

Sheet E1

322

Deflection (in)
0

Elev.
(ft)

I•MR

Elev.fit)



CU

0

Ca

C
t--

.4-c .cui C-
C- cnSU)0c

Sheet E2

323



U

It

SNOILVA]713

324

00

I

N1

KC

\1

•oo

co

oo

00 Q,OO14

00

00

-4H~-

Z

i

Sheet E3

I I r I I



z ul- Z ~lU3-S-E

U -otolEU9
U -

5tLu

I,.•

SU.

0:2 Esa

12oi t__

0 +... z Z ~LLu-:: .. ,

o::I1
•  

• x,

~:2'i .e:::::::·: : I

h:il~l: t• -::::i•:i:

3:i. E.•.i::i

Y-4

C)

000rCNN
dddbddd

ddddddd

ddddbddd• 888 • ""

ddddddd088008i 0

dddoddd
Idooc~00d

0 0 0 40?-. 0 -0000r-0-

dddbdddI00000~c~D00~00rS800?-04r
S0000 dd

00 0 40? 0

0 00 00.r
jdo0do0

1 a'

(Js) (+) 3,AVHH / (-) JLNSU.LLSh

Sheet E4

325

L-J

,,.

1Lr

m

r
:0.

CL

tj

z
0

E0

Y4Y-4• " 1

.... •

:

• ":"". " •888808:
eddddddI

O00 000
8000r00ddddddd

I I

3888390--dddo'ddddd

V 0 In 1. 0- n4- NO h 400?

.1

m

t
8



wEwLLZ
Z

20a: uiC
UJ

LU

so 000-00-e ~c%lcy-m
00000~00000000rt~o;=

'cr w IL - I

0 .Z 0;

,, 858$8e-888 o oI i I II I

S000000000000

0

*u U)v>n

8888388 8oL 00o000---00 r
6z0N0000 0

o 0
U..

000 8 00008

o ucUl 000000~·~1Q 0 00 0 Id c 6 c c; 6c; C
U -U

0 .Z 0 I.NO< O~Nlt
m0 000000

ZO .>.. qLLZ
8i< 00000Q'0

LU
0

L1 0000 -cc-~0zop

0 0 0 00CY0,0

IU-

C~~~j 4", v- -e- P. " C-Tc

Q4 z<~i ur I

LLU
-J

0
CL

Ul
-J

LL

ýr

(1229) (+) aAVRH ILgNSP "LLUS

Sheet E5

326

I911

Ia~

z
0
2

H
bz~10
>

8

~ 0 M -Nmv0 Nw -0ý-NC2
0

":'



09W231 10:52 10

10/22/91 07"9 48

06104192 10:30 274

08431/92 10:45 382

001042 07:15 306

0/11/92 15:50 373

0919/92 07:15 351

OW2Q92 15:36 387

10/02/92 12:50 304

1006M92 09022 398

10/12/92 08:58 404

10/20/92 08:33 412

1012o92 10:22 418

11803/92 10:30 426

11/09892 07:56 432

11/1692 07:40 439

11/23/92 08:36 446

11/30/92 08:31 453

12/07/92 10:43 480

12/14/92 07:26 467

12/21/92 09:58 474

12/28/92 09:02 481

014/93A 08:43 488

01111193 09:00 498

01/18/93 10:25 502

01/2593 10.08 509

02/01/93 08:04 516

02/09/93 11:02 524

02/16/93 09:32 531

02/22/93 10:52 537

03104/93 09:54 547

03/10/93 08:31 553

03/17/93 10:33 560

03/25/93 10:28 568

04/01/93 12:28 575

04/07/93 09:58 581

04/15s93 09:58 58

04/22/93 10:15 596

04/26/93 12:30 600

0503/93 12:37 807
05/11/93 09:48 615

0517/93 12:45 621

106.30

100.10

106.00

106.55

106.43

106.52

108.08

106.40

100.71

106.52

106.62

106.27

106.30

105.79

105.64

105.63

105.87

105.67

105.77

107.18

106.02

105.75

105.80

106.26

106.03

106.11

105.53

105.47

105.81

105.48

105.63

105.63

108.26

108.38

106.58
106.88

106.75

106.50

106.18

105.72

105.53

HNA

H&A

H&A
BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR

BWR
BWR

TJC

TJC

TRJ

TJC
BWRSWR
BWR

TJC
TJC

Covered wice

Sheet E6

327

TABLE FOR OPEN STAND PIPE PIEZOMETERS
FILE NO. 12974Project

Boston, Massachusetts
GENERAL PIEZOMETER INFORMATION FIELD DATA INITIAL PEZOMETER VALUES
Instament No. OW-o1e Top of SP sv(It tso InsIntallaton:
Lo. Coords. N 2961334 RESPONSE VALUES Date 0904/91

E 780773 Threshold Time 14:52

Station I Offset 77.40.0/115.0 It ULimiting Zero R•ad 3.0

GENERAL GROUND WATER DATA PERSONNELJRIAARKS
Depth to Water Ground Water Read

Date Time Elapsed Below Ref. Polnt eton By Remarks

Days () (t11 (init

I II



WIU

a"0

a:
0

L-I0wa-0NC,,

zw
0i
0

cr0U.z
cc

0

328

wW
_J

a
w.4c
-.

(0

0u)

cai--

ww

0z

.J

a-

LUIL.

z

cc

wZ

-j2'"0

zLU

E

i I

0o o 0 0 0 0
N -0 0 so

Sheet E7
NouIYATi3 O V3flOZ31d

0

C)

0
115
(0

U
0m

0

0

0.CLL

V0

o

In1%
0\
PO

w0

w

<00
Z0 I-
0

z
a
<

K)0 w3'0

(1
0

0

--



08ilm 10:02 1133

0=17/3 13:03 1130

061261 07.65 1144

0652083 13:10 1156

0651050 07:20 1163

0t65l6 03:44 11600

0612U 11:28 1176

07101103 10:4 114

07107M13 11'07 1190

07112m1a 0:.14 1196

07/20/A1 11:30 1•03

07o251 0 00:86 1200

0602123 11:03 1216

0610 3 13:46 1223

0s18i3 12:49 1230

06121m 0:20 1237

006IS0 13:14 1247

0107563 09:02 1252

0051313 11:12 1268

001o2e3 oo:01 t1
0o67lm3 0:.10 1272

10504193 09:19 1279

105110 00:34 1230

1oMI9S13 11:54 1294

1012188 08:61 1300

11/01m3 0P:13 1307

111908/83 O:06 1314

IiS61 1 06:42 1321

111223 13:07 11032

1112655 0:0N 1336

121019 08:36 1342

2121I3 09:13 1349

1la23 06:26 1358

12127103 00:32 1303

01in30 10:13 1370

01/10/ 03:25 1377

01/17549 08:43 1384

01ta4/4 10:10 1361

02101/8 10:27 1306

02507m4 10:18 1405

02)1Al 08•31 1414

02 M18 06:10 1420

0212616 10:40 1426

0300714 0:26 1433

aW1419 06:44 1440

0321/94 11:36 1447

7324 11.3 3L67 82.2 63.7 TJi

7341 11.3 35.38 81.8 8.0 TJc

MEV

MEV

7346 11.3 3531 61.3 62.6 MEV

7263 11.4 36.67 4.5 6.0 MEV

7435 11.3 33.66 78.0 78.5 MEV

7400 11.4 32.94 76.9 77.4 MWV

7402 11.3 34.36 79.2 60.7 MEV

?728 11.3 38.31 83.7 85.2 aW

7168 11.3 38.23 63.1 69.6 MEV

7132 11.4 3.L82 80.4 90.9 mWR

7070 11.4 3.84 91.8 6 0.3 WR

7142 11.3 36.1 89.1 90.6 WR

7244 11.2 368 U8.2 • 8.7 SW

7328 11.3 38.44 82.1 683.

713I 11.2 35.71 .2 10.7 BWR

7136 11.2 38.71 86.2 90.7 MEV

713 11t2 38.71 48.2 10.? MEV

7126 11.5 38.42 86.5 90.0 MEV

7218 12.1 37.38 8.2 87.7 MEV

7291 12.1 36.20 .4 64.9 MEV

7242 12.1 37.00 65.2 86.7 MEV

7267 12.i2 3.6 4.3 8.8 MEV

7370 1.0 34.89 60.4 81.9 MEV

7426 12.2 310 78.3 70.4 MEV

736 12.0 36.15 1.0 AL2. MEV

7063 12.1 3.468 00.0 2.4 MEV

7182 12.1 37.06 87.5 86.0 MEV

7223 12.1 37.31 88.0 87.5 MEV

7172 12.0 36.15 87.9 80.4 MEV

7177 12.2 3.06 67.7 66.2 MEV

7104 12.1 3.26 10.5 92.0 MEV

7103 12.1 3.28 90.5 I.0 MEV

MeV

710 12.1 3.18 90.3 91.8 MEV

MEV

MEV

MEV

MEV

MEV

MEV

MEV

MEV
Me/

TABLE FOR VIBRATING WIRE PIEZOMETERS
Project: . . FILE NO. 12974

Boston, Massachusetts
GENERAL PIEZOMETER INFORMATION VIBRATING WIRE TRANSDUCER DATA INITIAL PIEZOMETER VALUES
Inktument No. VWPZ-053 Cal Faolo(C) 0.01641 psuldiglt instaagson:

PIz Seraw N 11473 Themal Fatr (K) -. 01805 psUC •ie Dae 0410t490

Loo. Coord.. N 2961691 Thmreold Time 07:50

E 780M6 Limiting Zemn Read 03s

Staton Offet () 78.1 0.0 I. Pies Tip Elev (t) 1.5 Temp (C) 6.4

GENERAL VIBRATING WIRE TRANSDUCER PERSONNELREMARKS
Plea Pies P•e• Read

Dae TIme Elaped Tram Temp. Proe Head Elev of teartks

DIye Reading *C (pai) (It) (t (Int)

Buihd

UnderBuried
iured

Decommiationed

Deosmmiseined

Decommsmseaed

Deememneeloned

Deoemmissoned

Decommisioned

Sheet E8

329



0

wa:

0L

cc

2o

0U-
4CD_0
w
a:

o

dz
w

4
0w

ql:UAI-J

C')

w

wra4

0CLt;

w

w
tiltoz

u,w

z
a-

Wv,-w

zcc
4

w

Z0Co520I-4:0

z

I

aoS

a .

I, ̂ -

330

0

N
Q.

I

2

E
E

r

Ite0
-J

w
0i

0 0 0 0 0
0 - 0 0

Sheet E9
NouIIvA313 313rloz3Id

a)

U,
CU

d
ci
0

0

ErI
1 ---

~E1

V

0

0

in

Ina'

NO0
10

w

W

PI-
0
C,

z
4w

deN

\

oa'
o.

CL



APPENDIX F. Analysis of Consolidation and Settlement

Sheet Fl. Settlement Calculation Spreadsheet S320-O.WKS, page 1 of 3. ............... 332
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1 PROGRAM MOVEX

ISS-4 South Wall (Sheetpile)
The system of units used is English
The units of length are - feet
The units of stress are - psf
CONTROL DATA

Number of soil layers
Number of struts
Design Option
Anisotropic Strength Ratio

CANTILEVER EFFECT
1.000

No Cantilever Movements are Anticipated
SOIL LAYER DATA

0 Layer number 1
Thickness 4.00
Unit Weight 110.00

0 Layer number 2
Thickness 4.50
Unit Weight 120.00

0 Layer number 3
Thickness 15.00
Unit Weight 110.00

0 Layer number 4
Thickness 15.00
Unit Weight 108.00

0 Layer number 5
Thickness 6.50
Unit Weight 116.00

0 Layer number 6
Thickness 20.00
Unit Weight 116.00

0 Layer number 7
Thickness 20.00
Unit Weight 116.00

0 Layer number 8
Thickness 18.00
Unit Weight 116.00

Cohesion
Coh. Increase

Cohesion
Coh. Increase

Cohesion
Coh. Increase

Cohesion
Coh. Increase

.00
34.25

137.00
18.00

237.00
16.00

730.00
4.00

Cohesion 1645.00
Coh. Increase -14.62

Cohesion
Coh. Increase

Cohesion
Coh. Increase

Cohesion
Coh. Increase

1550.00
-2.50

1500.00
2.00

1540.00
5.28

Depth to firm layer from ground surface 103.000
WATER TABLE DATA

Unit weight of water
EXCAVATION GEOMETRY

Total width of excavation
Total length of excavation

63.00

200.00
2000.00
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Final depth of excavation 38.00
Surcharge next to excavation .00
Wall Stiffness (EI) .504E+08

0 STRUT DATA

0 Strut Depth Stiffness

1 8.00 .1940E+05
2 20.00 .5889E+05
3 32.00 .8568E+05

1 MOVEMENT CALCULATIONS

0 Average Strut Spacing = 10.00
Nondimensional System Stiffness = 80.00

0 Excavation stage 1

Height of excavation is 8.000
Factor of safety against basal heave is 6.8871
Minimum factor of safety between stages is 6.8871

0 Average Strut Stiffness = 19402.00
Alpha D = 1.00
Alpha B = 1.70
Alpha S = 1.27

0 Lateral Wall Movement at this Stage is .042
Overall Maximum Lateral Wall Movement is .042

0 Est. Distribution of Ground Surface Movement
0 Dist. fr. Wall Vert. Disp. Lat. Disp.

.00 .0418 .0150
4.00 .0418 .0301
8.00 .0397 .0384
12.00 .0313 .0409
16.00 .0251 .0393
20.00 .0188 .0342
24.00 .0125 .0271
28.00 .0104 .0209

0 Excavation stage 2

Height of excavation is 20.000
Factor of safety against basal heave is 3.1708
Minimum factor of safety between stages is 3.1708

0 Average Strut Stiffness = 39147.50
Alpha D = 1.00
Alpha B = 1.70
Alpha S = 1.32

0 Lateral Wall Movement at this Stage is .108
Overall Maximum Lateral Wall Movement is .108

0 Est. Distribution of Ground Surface Movement
0 Dist. fr. Wall Vert. Disp. Lat. Disp.

.00 .1083 .0390
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10.00 .1083 .0780
20.00 .1029 .0997
30.00 .0813 .1062
40.00 .0650 .1018
50.00 .0488 .0888
60.00 .0325 .0704
70.00 .0271 .0542

0 Excavation stage 3

Height of excavation is 32.000
Factor of safety against basal heave is 2.2374
Minimum factor of safety between stages is 2.2374

0 Average Strut Stiffness = 54659.33
Alpha D = 1.00
Alpha B = 1.70
Alpha S = 1.35

0 Lateral Wall Movement at this Stage is .283
Overall Maximum Lateral Wall Movement is .283

0 Est. Distribution of Ground Surface Movement
0 Dist. fr. Wall Vert. Disp. Lat. Disp.

.00 .2826 .0650
16.00 .2826 .1414
32.00 .2684 .2117
48.00 .2119 .2310
64.00 .1695 .1875
80.00 .1272 .1444
96.00 .0848 .1148
112.00 .0706 .0862

0 Excavation stage 4

Height of excavation is 38.000
Factor of safety against basal heave is 2.0027
Minimum factor of safety between stages is 2.0027

0 Average Strut Stiffness = 54659.33
Alpha D = 1.00
Alpha B =  1.70
Alpha S = 1.38

0 Lateral Wall Movement at this Stage is .384
Overall Maximum Lateral Wall Movement is .384

0 Est. Distribution of Ground Surface Movement
0 Dist. fr. Wall Vert. Disp. Lat. Disp.

.00 .3844 .0693
19.00 .3844 .1563
38.00 .3652 .2411
57.00 .2883 .2467
76.00 .2306 .1882
95.00 .1730 .1358
114.00 .1153 .1027
133.00 .0961 .0726
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1 PROGRAM MOVEX

ISS-4 North Wall (Diaphragm/Slurry)
The system of units used is English
The units of length are - feet
The units of stress are - psf
CONTROL DATA

Number of soil layers
Number of struts
Denfin O)ntinn

Anisotropic Strength Ratio
CANTILEVER EFFECT

1.000

No Cantilever Movements d

0 SOIL LAYER DATA
+

0 Layer number 1
Thickness
Unit Weight

0 Layer number 2
Thickness
Unit Weight

0 Layer number 3
Thickness
Unit Weight

0 Layer number 4
Thickness
Unit Weight

0 Layer number 5
Thickness
Unit Weight

0 Layer number 6
Thickness
Unit Weight

0 Layer number 7
Thickness

Unit Weight
0 Layer number 8

Thickness
Unit Weight

4.00 Cohesion
110.00 Coh. Increase

4.50 Cohesion
120.00 Coh. Increase

15.00 Cohesion
110.00 Coh. Increase

15.00 Cohesion
108.00 Coh. Increase

6.50 Cohesion
116.00 Coh. Increase

20.00 Cohesion
116.00 Coh. Increase

20.00 Cohesion
116.00 Coh. Increase

18.00 Cohesion
116.00 Coh. Increase

.00
34.25

137.00
18.00

237.00
16.00

730.00
4.00

1645.00
-14.62

1550.00
-2.50

1500.00
2.00

1540.00
5.28

Depth to firm layer from ground surface 103.000
WATER TABLE DATA

Unit weight of water
EXCAVATION GEOMETRY

Total width of excavation
Total length of excavation

63.00

200.00
2000.00
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Final depth of excavation 40.00
Surcharge next to excavation .00
Wall Stiffness (EI) .133E+10

0 STRUT DATA

0 Strut Depth Stiffness

1 4.00 .1693E+05
2 16.00 .3167E+05
3 28.00 .3830E+05

1 MOVEMENT CALCULATIONS

0 Average Strut Spacing = 12.00
Nondimensional System Stiffness = 1018.09

0 Excavation stage 1

Height of excvation is 4.000
Factor of safety against basal heave is 13.8337
Minimum factor of safety between stages is 13.8337

0 Average Strut Stiffness = 16932.00
Alpha D = 1.00
Alpha B = 1.70
Alpha S = 1.14

0 Lateral Wall Movement at this Stage is .014
Overall Maximum Lateral Wall Movement is .014

0 Est. Distribution of Ground Surface Movement
0 Dist. fr. Wall Vert. Disp. Lat. Disp.

.00 .0136 .0049
2.00 .0136 .0098
4.00 .0129 .0125
6.00 .0102 .0133
8.00 .0081 .0128
10.00 .0061 .0111
12.00 .0041 .0088
14.00 .0034 .0068

0 Excavation stage 2

Height of excavation is 16.000
Factor of safety against basal heave is 3.7947
Minimum factor of safety between stages is 3.7947

0 Average Strut Stiffness = 24300.00
Alpha D = 1.00
Alpha B = 1.70
Alpha S = 1.37

0 Lateral Wall Movement at this Stage is .065
Overall Maximum Lateral Wall Movement is .065

0 Est. Distribution of Ground Surface Movement
0 Dist. fr. Wall Vert. Disp. Lat. Disp.

.00 .0650 .0234
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8.00 .0650 .0468
16.00 .0618 .0598
24.00 .0488 .0637
32.00 .0390 .0611
40.00 .0293 .0533
48.00 .0195 .0423
56.00 .0163 .0325

0 Excavation stage 3

Height of excavation is 28.000
Factor of safety against basal heave is 2.4580
Minimum factor of safety between stages is 2.4580

0 Average Strut Stiffness = 28966.00
Alpha D = 1.00
Alpha B = 1.70
Alpha S = 1.45

0 Lateral Wall Movement at this Stage is .149
Overall Maximum Lateral Wall Movement is .149

0 Est. Distribution of Ground Surface Movement
0 Dist. fr. Wall Vert. Disp. Lat. Disp.

.00 .1487 .0535
14.00 .1487 .1071
28.00 .1413 .1368
42.00 .1115 .1457
56.00 .0892 .1398
70.00 .0669 .1219
84.00 .0446 .0967
98.00 .0372 .0744

0 Excavation stage 4

Height of excavation is 40.000
Factor of safety against basal heave is 1.9223
Minimum factor of safety between stages is 1.9223

0 Average Strut Stiffness = 28966.00
Alpha D = 1.00
Alpha B = 1.70
Alpha S = 1.52

0 Lateral Wall Movement at this Stage is .275
Overall Maximum Lateral Wall Movement is .275

0 Est. Distribution of Ground Surface Movement
0 Dist. fr. Wall Vert. Disp. Lat. Disp.

.00 .2749 .0473
20.00 .2749 .1069
40.00 .2612 .1631
60.00 .2062 .1610
80.00 .1649 .1222
100.00 .1237 .0874
120.00 .0825 .0642
140.00 .0687 .0440
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