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Abstract

The pulmonary alveoli or 'air sacs' of thin tissue constitute the gas-blood interface for gas
exchange with blood in the alveolar septum - a network of compliant capillaries between
adjacent alveoli. Blood-flow through the septum is a function of septum physiology and
morphology, blood and alveolar pressures, blood rheology, and lung volume. The goal of
this thesis is to include these features to model blood-flow in the septum.

Two models that include the effects of breathing, blood rheology, spatial variability in sep-
tal compliance and septal height at zero transmural pressure (a and ho), were developed.
A previous model by Fung in which blood flow is simulated as occuring in the space
between two compliant sheets was extended to include breathing by transforming the
equations from an Eulerian to a Lagrangian frame; where breathing was assumed to
change the lateral dimensions of the septum isotropically, varied as the cube root of lung-
volume. A second model was developed to facilitate the analysis of red blood cell and
neutrophil transit through the pulmonary capillaries. The 'tube-model' was developed for
a square array (of side 75 gm) of 60 segments, 32 junctions, and 5x5 cylindrical, distensi-
ble 'posts'. The lateral septal (and post) dimensions were assumed to change isotropically
during breathing; post-height was varied assuming a constant post volume.Quasi-steady
inertia-free flow was assumed. Spatial variability in ho and a was imposed by a random
selection from a normal distribution. Pressure was imposed on the boundaries.Results
from the revised Fung's model compared well with earlier analytic predictions. Flow rates
from the 'tube-model' were in good agreement with Fung's model. A friction factor was
computed that was in good agreement with exact analysis by Weinbaum et. al. The model
was used to explore the effects of breathing and pulsatility in boundary pressures, the
effects of spatial variability in ho and ao, and the effects of capillary blockage. It was
shown that breathing had a significant impact on local capillary resistance, with oscilla-
tions as high as 45% of the mean value. Neither capillary blockage nor spatial variability,
coupled with breathing changed the nature of flow- oscillations in the capillaries, only the
mean values. Pulsatility in boundary pressures had little affect on the flow-rate oscilla-
tions. The static cases demonstrated that spatial variabilily in ho and a resulted in prefer-
entially perfused regions, with variability in ho dominating the effect of variability in a.
Capillary blockage resulted in local flow disturbances, with its effect diminishing with
increasing variability in ho and a. The study of RBC & PMN transit is therefore an impor-
tant application of the 'tube-model'.

Thesis Supervisor: Professor Roger D. Kamm.
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Overview

The human lung is a complex organ with over twenty-three generations of airway branch-

ing beginning at the trachea and culminating at the alveoli. The walls of the alveoli or "air-

sacs" (figure [1.1]) form a thin gas-blood across which oxygen and carbon-dioxide are

exchanged. A partial pressure-gradient across the interface drives the gas exchange by dif-

fusion and approximately 300 million alveoli provide over 100 square meters of surface

area for this exchange (West, 1974). A highly interconnected capillary network (figure

[1.1]) between adjacent alveoli conveys blood through the interface for gas exchange; the

focus of this thesis is to model the blood-flow in this network.

Figure 1.1: Connection between pulmonary artery (PA), capillary network(C) and alveo-
lar walls (A) in a perfusion-fixed rabbit lung. Scale marker:50 rm. Taken from "The

Lung, Scientific Foundations", [5].
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1.2 Pulmonary blood vessels

The anatomy of the capillary vessels (fig [1.2]) makes the lung an efficient organ for gas

exchange. Blood in the pulmonary capillary network is conveyed from the pulmonary

arterioles to the venules, with gas exchange occurring during this transit. The alveolar sep-

tum, which contains the microcapillary region, consists of a highly interconnected net-

work that lies in the plane of the septum. Separating the blood from alveolar gas are the

vascular endothelium, a narrow interstitial space, the alveolar epithelium, and the alveolar

liquid layer. This entire distance from blood to alveolar gas across the gas-blood barrier

may be as small as 0.5 gm, thus greatly enhancing the rate of gas exchange. Each red

blood cell spends about 3/4 sec in the capillary network, in which time it traverses about

two or three alveoli and achieves nearly complete equilibration of exchanged oxygen and

carbon-dioxide (West. 1974).

Figure 1.2: Scanning electron micrograph of the alveolar wall in the human lung. Scale
marker: 10 gm. (From ref. [5]).
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Since the pulmonary capillaries in the lung lack the surrounding tissue found in the

systemic vessels, the walls of the pulmonary vasculature are more compliant than those of

relatively high pressure systemic circulation [11]. As an example, while the blood capillar-

ies in the systemic blood vessels show a negligible change in diameter with changes in

pressure, the pulmonary capillary height varies linearly with changes in the transmural

pressure [12], changing approximately 0.1 gm for every 1 cm H20 change in transmural

pressure (based on compliance measurements, Fung & Sobin ([14]). This high compliance

causes the relationship between blood flow and arteriolar-venular pressure differences to

be non-linear.

The lung vasculature is a low pressure system, ranging from a right ventricular pres-

sure of about 12 mm Hg to a left atrial pressure of 2.5 mm Hg (Fung, 1984), and approxi-

mately 34% of this pressure difference is thought to occur across the pulmonary

capillaries (Hakim, 1981).The variability in capillary pressures can be considerable how-

ever, owing to such factors as hydrostatic gradients, viscous pressure drops, and breathing.

The flow per unit volume increases in the direction of gravity since gravity affects the

hydrostatic head of the blood pressure; gravity thus plays an important role in the blood

flow distribution in the lung (West, 1974).

Bhattacharya [3], in his editorial article, has discussed the issue of determination of

microvascular pressures in the lung. While it was earlier the belief that a single value for

the microvascular pressure was sufficient for the description of filtration data, Bhatta-

charya et al [4] and Kadowitz et al. [20] have shown that the pressure varies markedly

across the microvascular bed. One important aspect of the microvascular pressures con-

cerns the question of how these microvascular pressures are controlled. Bhattacharya [3]
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has pointed out that recent findings indicate that arterioles and venules vasoconstrict inde-

pendently, thus allowing for independent control of arteriolar and venular resistance to

flow.

1.2.1 Flow distribution in the whole lung

Gravity plays an important role in the distribution of pressures and flows in the entire

lung. The effect of the hydrostatic head due to gravity may be seen in figure [1.3])(taken

from West), that shows a vertical gradient of blood flow-rate within the lung.

Figure 1.3: The influence of gravity on the pressure distribution in the lung.Model to
explain the uneven distribution of blood flow in the lung, based on the vertical pressure-

gradient due to gravity.[ Taken from West, 1990].

Since the pressures in the upper regions of the lung are relatively lower than the pres-

sures in the lower regions (Figure [1.3]) due to the hydrostatic head, the upper regions are

less-perfused than the lower regions of the lung. Currently available data suggest that the

greater part of the cardiac output passes through the gravitationally dependent regions of

the lung ([19]; West 1990), thus leaving many of the upper lung capillaries unperfused
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or underperfused. Also, the capillary diameters in the upper regions of the lung are smaller

than the ones in the lower, more perfused regions of the lung. This variation in capillary

size and degree of perfusion is important for the transit of RBC's and other cells in the

blood (e.g. PMN's). It is known that a large vertical gradient of RBC transit times exits in

the lung, with the RBC's taking longer to traverse through regions of low perfusion ([40])

1.3 Blood flow in the pulmonary microvasculature

Blood is a suspension of cells in plasma. The plasma, a solution of proteins, electrolytes

and other substances, is an incompressible, virtually Newtonian fluid [41] with a viscosity

of approximately 1.2 cP. The cellular fraction contains red blood cells (erythrocytes),

white blood cells (leukocytes), and platelets. The volume fraction of red blood cells

(hematocrit) is about 45% in humans, and therefore has a key influence on the blood's

flow properties.

Mechanical and viscous properties of human red blood cells have been extensively

studied, and are probably known better than those of any other cell type (Skalak, 1976;

Hochmuth and Waugh, 1987). A thin membrane surrounds the cytoplasm and this mem-

brane exhibits viscoelastic properties. The elastic shear modulus is several orders of mag-

nitude lower than the modulus of isotropic dilation and this results in the membrane

shearing readily but resisting changes in area. Also, the bending resistance is small unless

very small radii of curvature are involved (Evans, 1983) and the membrane primarily

exhibits shear viscosity in transient deformation (Secomb, 1984).

In the absence of external stresses, a human RBC is a biconcave disk, approximately 8

microns in diameter and 2 microns thick. Due to the fluid interior of the cell, and the low

resistance of the membrane to shear and bending deformations, it is highly deformable, as

16



long as changes in surface area and volume are not required; this allows RBC's to pass

through capillaries with diameters as small as 2.8 microns (Halpern and Secomb, 1989).

The mechanical and viscous properties of blood are modified in several diseases,

including sickle cell anemia, malaria, and diabetes. Blood acidity and oxygenation also

influence the mechanical properties of blood. Perhaps one of the most extensively studied

mechanical property of blood is the viscosity of blood in different environments.

1.3.1 Blood Viscosity

The viscosity of blood traversing through a microvessel has been studied extensively.

Starting with Martini et al. (1930) and Lindqvist (1931), numerous studies have been

made regarding the viscosity of blood. Since blood does not behave as a continuum for

flows in vessels with diameters below 300 microns (Fahraeus Lindqvist effect), the viscos-

ity of blood depends on the size and shape of the vessel and is characterized by either the

'apparent viscosity, sapp', or the "relative apparent viscosity, rel", which are complex

functions of several parameters such as the flow hematocrit (% RBC content by volume),

size of the vessel etc. These parameters are described in relation to the pressure drop that

would occur in Poiseulle's Law for a tube of length L, and diameter, D, and are defined as:

nApD47rCpD4 (1.1)Papp 128L

-re = app (1.2)
P-plasma

The study of blood and blood viscosity in small capillaries and larger vessels has been

a subject of great interest. As stated earlier, blood is a suspension of cells in plasma. As the

size of vessels decrease (diameters < 300 microns), the apparent viscosity of blood at first
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decreases (Fahraeus-Lindqvist effect). However, a reversal of this trend occurs in very

small microvessels (< 5-7 microns in diameter), where the apparent viscosity of blood

tends to infinity as the diameter approaches a critical value of about 2.8 microns. Amongst

other things, blood hematocrit and shear-rate also influence apparent viscosity, but the

effects of shear-rate are usually small compared to those of vessel diameter and blood

hematocrit ([24]).

The direct measurement of apparent viscosity of blood in actual capillary beds, while

technically challenging, has been accomplished recently by Pries et. al. (1990). One

important finding from their work was that there was a large discrepancy between in-vivo

and in-vitro apparent viscosities of blood, and it was observed that the models (e.g. Pries,

1990) and experiments through glass tubes with corresponding diameters tend to under-

predict the resistance of the capillary bed.

In addition, Kiani et. al. [16] have shown that the axial diameter variability along a

microvessel has a large effect on the pressure drop calculation as opposed to calculating

the pressure drop based on a mean diameter; and that the effect is larger for smaller ves-

sels. All of the above considerations play a key role in the transit of RBC's through capil-

lary networks.

1.3.2 RBC transit through capillary networks: distinction between the Capillary flow

and Sheet flow approaches

The motion of blood cells through a network of microvessels is a complex problem. His-

torically, one of two approaches have been adopted for the treatment of RBC motion

through systemic capillaries, namely the tube-flow and the sheet-flow approaches. The

first treats the capillary network as a network of interconnected segments, while the latter
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treats the capillary blood flow as flow between as two compliant walls, incorporating the

effect of resistance due to connective tissue in terms of a net friction factor.

Capillarv flow aproach

The first approach has been to treat blood as suspension of cells in plasma (or as two

distinct phases); the plasma, a solution of proteins and other substances, and the cells such

as RBC's, WBC's (White blood cells), and platelets. However, as stated previously, since

normal human blood has about 45% RBC's by volume, they generally exert a dominant

influence on the flow properties of blood.

In the capillary flow model, the transit of blood 'suspension' is assumed to occur

through a network of cylindrical tubes. The work of Lighthill [28] and Barnard [2] on the

motion of axisymetric RBC's through capillaries using lubrication theory provided the

groundwork for this approach. These models were further developed by the work of others

(Secomb and Gross, 1983, Secomb et al, 1986, Zarda, Chien and Skalak, 1977). Under

these approaches, the RBC's are treated as a relatively flexible, highly deformable mem-

brane surrounding the cytoplasm. This deformability allows the RBC to pass through

tubes much smaller than its diameter, the minimum capillary diameter being 2.8 microns.

Models of flow through networks of such capillary segments require an expression for the

apparent viscosity of blood that accounts for dependence of blood viscosity on the capil-

lary diameter, and reflects the increase in viscosity as the capillary diameter approaches

the critical value of 2.8 microns.

Sheet flow approach

The second approach, the sheet-flow model developed by Fung & Sobin (1969) was

utilized to better capture the characteristics of flows through networks with a high degree
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of interconnectedness such as the ones in the lung or the retina. In this case, blood flow is

modelled as flow between two compliant "sheets" attached to each other by "posts" of

connective tissue. The interaction of the RBC's with the wall in this case is represented by

two parameters; one that accounts for the effect on flow-resistance due to the presence of

the posts (connective tissue between the sheets) and another representing the effect of the

confining of RBC's within the sheets. A separate parameter characterizes the mechanical

distensibility of the alveolar sheet, also known as the sheet compliance. This was deter-

mined experimentally by Fung and Sobin (1972a) [14]. Using the sheet-flow model, Fung

was able to make analytic predictions of flow velocities and pressure distributions in the

alveolar septum. The model was developed for the case of a stationary septal wall, thereby

neglecting the effect of septal wall motion due to breathing; further, in its present form, the

capillary networks are represented as having single-input single-output flow conditions

and uniform properties.

1.4 Solution methods for capillary network problems

Based on either approach taken in the two models described in the above sections, blood

flow in interconnected networks may be analyzed by developing computational models in

order to simulate blood-transit. While the behavior of blood in microvessels larger than 10

microns is a complex phenomenon, theoretical studies of the motion of cells through thin-

ner tubes will be useful to the modelling approach. Further, since there is a large degree of

heterogeneity in microvascular networks, simulations must be able to account for this.

In the past, network studies have been performed by taking into account the effects of

segments and bifurcations; at any junction of two or more segments, the distribution of

RBC content by volume (hematocrit) in the daughter segments has been derived as a func-
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tion of various parameters of the bifurcation and the parent hematocrit ([34] & [35]).

Under this approach, with mass being conserved at every junction and the flows being

specified in terms of segment pressures, a linear system of nodal pressures is obtained.

However, in a more rigorous approach, including the effect of bifurcations and relating the

resistances to the red cell content which in turn depends on the flows, one obtains either a

computationally intense problem or a non-linear problem that must be solved iteratively

([39], [35]). Pries et.al. (1990) made a comparison of hemodynamic properties between

results obtained experimentally and results from heterogenous network model; they made

the comparison for the hematocrits and velocities in networks of rat mesentry containing

383 to 913 segments. They concluded that the flow resistance was underpredicted by the

models and that the actual apparent viscosities were substantially higher than those

observed in glass tubes. The cause of this discrepancy is unknown, but several possible

explanations were offered: the effect of WBC resistance that are often removed from glass

tube experiments, a layer of macromolecules that line the inner lumen of the vessels which

might reduce the cross section available for flow, asymmetric radial distributions of red

cells within microvessels in vivo, and finally, the irregularity of the interior of the

microvessels in vivo.

Before proceeding to develop one such model, one needs to have an idea of the mor-

phology of the capillary network and its properties, knowledge of the behavior of blood in

small capillaries, and estimates of pressure (and flow) distributions within the lung.

1.5 Neutrophil (PMN) transit in the pulmonary microvasculature

Neutrophils are a type of leukocyte found in blood and are known to "reside" in the pul-

monary microvasculature; studies in several species indicate that the pulmonary microvas-
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culature is a large site of marginated or "stored" neutrophils ([1], [6]); the concentration of

neutrophils in the capillary network being 30-100 times higher than the concentration

found in larger systemic capillaries([4],[14]). The increased concentration of neutrophils

in the lung is thought to be the result of longer transit times required for the neutrophils

compared to the RBC's traversing the capillary network, where the capillary size is typi-

cally comparable to or smaller than the RBC and PMN diameters ([47]). It is believed that

this relatively longer PMN transit time may be due to two primary reasons; the difference

in deformability between RBC's and PMN's, and the ability of PMN's to behave actively

by a rearrangement of cytoskeletal components, cytoplasmic organelles, or action of adhe-

sion molecules on the endothelium, thereby changing viscoelastic properties.

The difference in deformability may be attributed to a difference in geometric and

mechanical properties of RBC's and PMN's. The RBC's are shaped as biconcave disks,

which makes them more deformable than spherical PMN's of comparable diameters. In

addition, PMN's are mechanically more rigid than RBC's and undergo mechanical defor-

mations less readily ([47]). Several investigators have pointed out that this difference in

deformability can explain why an RBC can enter smaller capillaries much more quickly

than the less deformable neutrophils [38].

Factors, other than deformability, also influence the tendency for PMN's to marginate

in the capillary network is their ability to behave actively (adhesion molecules on the cell

surface, rearrangement of cytoskeletal components etc.). These mechanisms are also

thought to alter the viscoelastic properties of the PMN's, thereby influencing the response

of neutrophils to external forces. As a result, time-dependent pressure gradients (due to

breathing) and viscous forces in the septum play a key role in the mechanics of neutrophil

transit through the capillary network.
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Some recent work on modelling neutrophil margination exists, and comparisons have

been made with experimental results; however, there are discrepancies between experi-

mental studies and predictions from computational models. For example, videomicro-

scopic studies by Lien et al.([24], [25]) showed that 40-45% of neutrophils were able to

pass through the pulmonary capillary bed with a transit time similar to that of RBC, while

the remaining 55-60% stopped at least once, and that the neutrophils had longer transit

times than RBC's. A computer simulation of PMN transit, however, predicted that 55-

60% of PMN's stop at least once if only 1-2% of the segments presented obstructions to

the PMN's ( [18], [29]); if a larger percentage (>1-2%) of capillaries provided obstruction

to PMN transit, the percentage of delayed neutrophils would be even more. Morphometric

measurements, however, reveal that more than 60% of capillary segments are narrower

than PMN's and would therefore obstruct the motion of a neutrophil. This discrepancy

between the computational prediction and videomicroscopic studies coupled with mor-

phometric measurements showing that more than 60% of the capillary segments are nar-

rower than a neutrophil diameter suggests that neutrophil transit must be facilitated in

some way in order to overcome the obstruction due to capillary size.

While PMN's are less easily deformed than RBC's, they can change shape. The defor-

mation of neutrophils while traversing the capillary bed was quantified by measuring the

longest diameter and the diameter perpendicular to the longest axis using intratracheal

instillation of glutaraldehyde; it was observed that while neutrophils in suspension were

close to spherical, the ones in the capillary network were elongated substantially ([8]). It is

believed that the neutrophils take longer to deform than do RBC's while entering capillary

segments with a diameter narrower than the neutrophil diameter ([8],[47]). Further, the
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multi-segmented geometry of the pulmonary bed provide several parallel pathways to

allow the faster moving RBC to stream around slowly deforming neutrophils that are tem-

porarily obstructing a capillary.

Pressure gradients across a neutrophil in a capillary segment will influence the time

required for neutrophil deformation and eventual passage through a narrower capillary as

has been shown in in-vitro experiments.([9],[38]). However, pressures used in these exper-

iments are considerably greater than those that would exist across a single capillary seg-

ment in the lung and the times for neutrophils to enter and traverse the micropipets are

therefore less than observed in vivo ([32]).

In summary, RBC and PMN transit in the septum needs to be addressed in order to

understand phenomena associated with their transit (margination, transit time etc.). The

first step in this direction is to develop a comprehensive model that incorporates the septal

anatomy and morphology, as well as blood rheology and neutrophil mechanics. The influ-

ence of the effects of breathing, the effects associated with anatomical and morphological

variability in septal properties on the pressures and perfusion patterns in the septum are

not well known.

The primary motivation for the current work is the simulation of RBC and neutrophil

transit through the pulmonary capillary bed in the lung. In particular, we seek to better

understand the role of neutrophil mechanics in determining transit times through a net-

work of capillaries, given a computed flow field and blood pressure distribution in the cap-

illary bed. We would like to be able to tie the mechanics of neutrophil transit with the fluid

mechanics of the capillary bed as well as the solid mechanics of the alveolar septum and

septal posts.
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1.6 Problem Statement

The goal of this thesis is to develop a computational model for pulmonary capillary blood-

flow that incorporates the morphometrics and the mechanical properties of the alveolar

septum and the viscous characteristics of blood in order to simulate flow through the sep-

tal capillary network. Subsequently, this study will address transport of RBC's and PMN's

through the capillary network. In particular, our aim is to the compute and quantify the

time-dependent pressure gradients and flow velocities that exist within the alveolar sep-

tum, taking into account the effects of septal stretching resulting from breathing.

This thesis presents two different approaches to the problem of blood flow through a

single septum. First, it looks at the sheet-flow model developed by Fung & Sobin, and

then modifies the equations to include the effects of breathing and variability in septal

properties. The solution under this approach is based on spatial finite-point discretization

and standard finite differencing methods for time integration.

In the second approach, a capillary network model is developed in which the alveolar

septum is represented as a dynamic network of collapsible tube segments. The effects of

breathing are still incorporated into the modelling; in addition, the model incorporates a

time dependent segment geometry and is capable of incorporating statistical variability in

the sheet properties. With the help of this model, we hope to be able to demonstrate the

effects of breathing on the flow in the capillary bed, the effect of statistical variability in

the properties of individual segments on the flow in the capillary bed, and also couple the

above in order to simulate a realistic scenario of blood flow in the septum. The solutions

obtained may then be used to simulate RBC transit times through the capillary bed.
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Chapter 2

The Sheet Flow Model

2.1 Introduction: Fungs sheet flow model

This Chapter presents the pulmonary microcirculation model developed by Fung ([13]). In

addition, modifications to Fung's sheet-flow model that incorporate the effects of breath-

ing are also described.

Fung's sheet-flow model views blood flow in the alveolar septum as passing between

two compliant membranes (of fixed overall dimensions) which are connected by 'posts' of

connective tissue (Figure [2.1]). The two membranes make up the space between adjacent

alveoli across which gas exchange takes place, the walls of each alveolus being shared by

a network of capillary blood vessels. Together these comprise the 'interalveolar septum', a

sheet of capillary blood vessels exposed to air on both sides.

Figure 2.1: Schematic of an 'Interalveolar Septum'

The membranes (alveolar septae i.e) continually undergo cycles of stretching and relax-

ation due to the expansion and contraction of the lung during a breathing cycle. Here I
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extend Fung's model to include the effects of breathing by allowing the septae to stretch

(and relax) due to the expansion (and contraction) of the lung during breathing.

In the sheet flow approach, Fung et al.(1969) incorporated the effects of the flow-pas-

sage geometry as well as the rheological characteristics of blood. Flow within the alveolar

septum with the exact geometries and mechanical properties of the septum is a complex

problem to characterize and solve. Fung's model incorporates the effect of the posts as a

lumped resistance friction factor. With these assumptions, Fung's model treats the flow in

the septum as the flow between two compliant membranes as shown in figure [2.2]. The

equations characterizing the flow are developed using dimensional analysis combined

with empirically-based laws describing mechanics of the septum.

INFLOW OUTFLOW

Compliant 'Septal Wall'

Figure 2.2: Simplified Sheet flow Model

This chapter presents Fung's model, and then revises it to incorporate the effects of

breathing. The revised equations utilize a coordinate transformation from an Eulerian to a

Lagrangian frame of reference. The transformation equations and boundary conditions are

derived and cast in non-dimensional form. The finite difference scheme and computational

procedure are then presented. Finally, Fung's sheet model is compared to the revised

model.
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2.2 Fungs sheet flow model

2.2.1 Pulmonary microvasculature in the sheet model

Fung's model idealized the pulmonary capillaries as two compliant membranes sepa-

rated by equally spaced "posts" depicted here as a collection of hexagonal elements with a

cylindrical post at the center of each (Figure [2.3]).

Figure 2.3: Sheet flow model: Septal geometry in the plane of the sheet

2.2.2 Development of Modelling equations

The geometry of the 'sheet' microvascular system and the mechanical properties of

the septum are described by the following parameters:

* The VSTR, or the vascular space to tissue ratio. This defines the ratio of Vascular
lumen volume to the volume of connective tissue between the connective tissue.The
VSTR is assumed to be independent of the sheet height, and reduces to the fractional
area occupied by blood in the XY cross sectional plane (Fig. [2.3]).

* The post diameter .

* The blood Hematocrit, H.

* The spacing between the posts, a

* The width of the sheet, w.
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* The red cell diameter, Dc

* The elastic modulus of the red cell membrane, Ec.

* The orientation of the mean flow with respect to a reference line (X axis) defining the
postal pattern, 0.

* The characteristic angular frequency of oscillation (breathing or heart rate) is given
by o.

* Blood viscosity given by go.

The variables of the sheet flow model are the local fluid pressure, P, the local fluid

velocity components U (in the x direction) and V (in the y direction), the local sheet

height, h.

Based on this set of variables and using results for viscous flow between parallel

plates, the following dimensionless groups may be obtained (Fung 1984).

VP = F h h Nr , , , 0, VSTR
9U VE h' E

Where:

hoo = Womersly number

L0 U
= cell strain parameter

C

Uhp = Nr (Reynolds number)
go

For blood flow in the septum, both the Reynolds number and the Wormersley number

are much smaller than 1, and thus inertial effects may be neglected (Fung 1984). This

implies that the density is unimportant and the flow is quasi-steady. In order to investigate

the function, F, Lee and Fung(1968), Lee(1969), Fung(1969), and Yen and Fung(1973)
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conducted theoretical and experimental studies on particulate flow in the alveolar sheet.

These papers argued that the dependence of F could be described as a product of three fac-

tors, namely, F', k, andf.

VP= g~'-OUF'!DC goVP = -F't , c ,U Hk(Xh 0 , VSTR) (2.1)

The function F' accounts for the RBC geometry and mechanical properties and their

net effect on the flow, k incorporates the effect of finite sheet width, whilef represents the

effects of septal geometry and flow orientation.

The above equation may be abbreviated as

U
VP =- appkf (2.2)

h1app

Where ,app stands for the apparent viscosity of whole blood. The function k is given

by the following expression (Purday, 1949).

12k -12 (2.3)

1 -0.63h

for h/w<0.2

The functionf is called the geometric friction factor and depends on the bed geometry,

the orientation of the flow, the distribution of the connective tissue 'posts' within the sep-

tum and the post geometry (Lee 1969).

2.2.3 Analytic Formulation of the modelling equations

Since the flow solution incorporating the individual posts, red cells, membrane deflections
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and other effects is difficult to solve, a simpler approach utilizing 'averaged' equations

was developed by Fung (1984). The idea behind this approach is to separate the flow field

into a local disturbance component and a relatively smooth "mean flow", and to incorpo-

rate the effect of the posts by a lumped resistance (f and k). Consider the cartesian frame

described in Figure [2.3]. The velocity field is integrated along the z direction (from limits

z=O to z=h) in order to yield a 2 dimensional velocity field.

The idea behind this formulation is to seek the local mean velocities and local mean

pressures (P(x,y)). Based on the dimensional analysis approach developed by Fung(1984)

in section [2.2.2], the following equations may be derived.

Conservation of Momentum

ax jkf (2.4)
ax h

aP = -kf (2.5)
ay h

These equations may be written in vector form as

P-( k) (in 2-D) (2.6)

Where is the gradient a two-dimensional operator given by (2.7)

V=i +Ja (2.8)
ax ay

Conservation of Mass (Equation of continuity)

Conserving the net mass inflow with the net mass outflow and the net mass stored in a

control volume of height h, one obtains the following (Fung 1984).
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y- (Uh) + -(Vh) = h (2.9)
3x TY at

assuming negligible mass flux through the alveolar septum.

Constitutive P-h relationship

The following linear constitutive P-h relationship, based on experimental data

obtained from cats, was introduced by Fung and Sobin (1972a,b),

h = ho +a(P- Po) (2.10)

Here, P is the local blood pressure, h is the local sheet height, PO is the alveolar gas pres-

sure, ho is the sheet height when the local blood pressure equals alveolar pressure, and a is

the compliance of the septum.

In reality, the compliance, a,is a function of location on the septal membrane, and also

a function of lung volume. Yen and Fung [41] determined the spatial variation of the com-

pliance of arterioles and venules in human lungs using silicone elastomer preparations,

indicating that venules ('venules' of order 1 fall in the 18 micron range for their work)

have a higher compliance than the arterioles of similar sizes. Fung and Sobin [14] have

derived the following expression for the dependence of a on the properties (geometric and

mechanical) and the tension, T, along the septal wall.

Ah 2

a 4rT(2K2 K3 -K2+AK2 K 3) (2.11)

Here hp is the height of the posts; c, K, K2, K3, A and r describe the sheet geometry and

size, and T is the membrane tension.(Note as T approaches infinity, the second term in eq

[2.11] approaches zero).

(for a full description of the variables of equation [2.11], refer to Fung and Sobin [14])
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Equation [2.11] shows that the sheet gets 'stiffer' to changes in height with increasing

tension (for example at high lung volumes). This equation, however, was never used in the

actual models of alveolar blood flow. Instead, the model relied on experimentally-deter-

mined values of sheet compliancel [12].

When the compliance is determined from experiments, equations [2.6]-[2.10] com-

pletely define the sheet flow model

2.3 Transformation of the sheet-flow equations

2.3.4 Coordinate transformation

Beginning with Fung's model for septal flow at a fixed lung volume, the equations may

now be modified to simulate breathing and other sources of time-dependent behavior. The

first stage is to model the septum as a square sheet of length L(t) (Fig [2.4]).

V2

-Vy , V1

_-V2

Figure 2.4: Septal sheet geometry and sheet motion

V1 and V2 are the velocities of the edges of the sheet in the x and y directions respec-

tively with respect to a fixed point at the origin (fig. [2.4]). L(t) is the length of the sheet.

The equations are transformed from the Eulerian coordinate system (x,y) to the

Lagrangian frame (,T1) fixed to the moving septum wall. The variables in these two

frames are related by the following

33



x=L(t)(

y=L(t)l (2.13)

(ax =
Tt 4 5= 4V,

(ax)

(2.14)

(2.15)= L(t)

Based on these equations, the partial derivative of any quantity Z(x,t) is:

(az = Laz
K t t "ax 

(az)
t 

(2.16)

(2.17)= (IX)t+ (3 tX

2.3.5 Transformation Equations

The equations are non-dimensionalized using the following parameters. Variables sub-

scripted 'c' imply characteristic values.

4=X/L(t) (2.18)

nr=Y/L(t) (2.19)

h*=h/hc (2.20)

u*=(U-4v,)/Uc (2.21)

V*=(V-rlV2 )/Uc

a*=/ac
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ho =hohc

P*=(ac/hc)P

Po*=(ac/hc)Po

t*=t/(Lc/Uc)

(2.25)

(2.26)

(2.27)

Note that the '*' quantities are non-dimensional,

2.3.6 Transformed Equations

The governing equations are transformed using equations [2.12]-[2.26]. The resulting

equations are given below.

Equation of continuity

Lc a
L2an (V*h) LI Lh* (2.28)a h*

At*

Equation of Conservation of Momentum

h3

TI~~~~~~ C r-U- =

By defining Uc and Vc appropriately (given by equation [2.31]), to be as follows:

Uc

3
C

a gkfLj

h3

Vc = C
acgkfL2

(2.31)

The momentum equation reduces to:
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(Uh*)

Li a4

UcacgkfLL a1

3

hC a
_ j~~~~

I - Vca cgkfL 2a

(2.29)

(2.30)

(2.24)

D*17* =



=* d *(2.32)

V* = -dP* (2.33)
dri

Constitutive law (Fungs P-h Law)

The dimensionless form of Fung's P-h las is

h* (5, 1, t) = h*o (, , t) + a c (4, , t) (P* - P*o) (2.34)

Equation [2.34] gives the generalized form of Fungs constitutive P-h law, and it allows

for ho and a to vary spatially and with time as will occur when breathing is simulated.

Equations [2.28]-[2.34] complete the formulation of the transformed dimensionless

equations.

Justification for a time-dependent h under the 'quasi-static' assumption: characteris-

tic time constant associated with the equilibration of a pressure disturbance.

Flow in the septum is 'quasi-static', which essentially means 'very slow'. We used this

assumption by neglecting the inertial in the momentum equation. The 'quasi-static'

assumption implies that at each time-step, the solution may be obtained by assuming the

flow to be 'static' at that step, meaning that the fluid acceleration is negligibly small (or

zero). Since our system is not rigid, the resulting velocities and pressures from the solution

of the 'static' momentum equation are integrated in time to obtain the updated displace-

ments; and this is the reason for the time-integration in the continuity equation even

though we have assumed a 'quasi-static' flow. In fact, a characteristic time constant, given

by the following equation, may be estimated based on scaling of the continuity equation.
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This time-constant represents the characteristic time for a pressure disturbance to equili-

brate.

L 2

= kfac C3 (2.35)

Using =0.02E-4 Cm(H 2 0)-sec (value for whole blood at large diameter - 6 gm),

k=12, f=2, ca=0.127 grm/cm(water), ho=3.5 jgm, and Lc=75 g, we obtain that r=2.7E-3 sec-

onds. This time constant is much smaller that the time scale associated with breathing (-5

seconds), thus the flow indeed is quasi-static. Further, the small time-constant would pre-

dict negligible phase-lags in pressures in the septum.

2.4 Parameters of the transformed sheet-flow model.

2.4.7 Viscosity

Blood viscosity, g, is a function of the local sheet height, and the discharge hematocrit

Hd (see figure [2.5]). The following expression has been proposed by Kiani, M [24]

g= - P (2.36)

gp = apparent viscosity of plasma in cP

gc=core apparent viscosity for a large tube (>300 microns)

A=width of marginal layer in microns (from marginal zone theory) ([24])

h=sheet height in microns

Dm = effective diameter of a single RBC in a small tube

Equations [2.37] & [2.38] are empirically determined curve-fits ([24]) with:
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A = 2.03 - 2 .OHd [gm]

l =e(0.48 + 2.35Hd) [cP]

gp = 1.7 Centipoise

D = 2.7 microns

A discharge hematocrit of 40%

in a male varies between 45-55%

-6
aI

EE-
n0O'J

oo)

is used. The Capillary hematocrit in peripheral blood

2.5 3 3.5 4 4.5 5
Sheet height (microns)

Figure 2.5: Viscosity as a function of local sheet height

2.4.8 Sheet Length, L(t)

The length of the sheet changes with time during breathing. The current model

assumes a 75 micron square sheet, with 5x5 posts evenly separated by a distance of 15
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microns. The length of the septum is assumed to vary as the cube root of the lung volume.

Therefore, if V(t) is the volume of lung given by the expression:

Then the sheet length

V
V(t) = V + sin (ot)

,is given by

= V( t 1/3
LV Lsin(ot))

Lung volume (in lits) vs time
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a)
I-

a)
E:
O
>,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (secs)

Sheet length (microns) vs time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (secs)

Sheet-edge velocity (microns/sec)
10 , , ,

. .. . . . _ 

1AnF .._

I I I

> 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (secs)

Figure 2.6: Phase relationship between lung volume, L(t) and sheet-edge velocity
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Figure [2.6] shows the phase relationship between lung volume and sheet length deter-

mined from the lung volume. The sheet is assumed to distend isotropically; this implies

that the change in length per unit length between any two points is constant.

2.4.9 Alveolar Pressure, Po(t)

Changes in alveolar pressure impose a pressure gradient for air-flow into and out of

the lung during inspiration and expiration; falling below atmospheric pressure during

inspiration and rising above atmospheric pressure during expiration. In normal subjects,

the change in alveolar pressure is only about 1 cm of water above and below atmospheric

pressure[45] (it may be many times that in patients with airway obstruction). Figure[2.7]

below (taken from West, 1990) shows the phase relationship between alveolar pressure

and breathing.

Alveolar pressure vs time

-

Su

oen0

-

e

a.

0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure 2.7: Alveolar pressure variation during breathing
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2.5 Computational Procedure

Equations ([2.28]-[2.34]) are solved numerically to simulate both static and time-varying

cases. The former is compared to Fung's solutions to validate the numerical procedure.

Computational grid

The transformation of coordinates to a Lagrangian or 'material' frame allows for a sta-

tionary computational grid, i.e. the set of coordinates (,T1) appear stationary in the

Lagrangian frame of reference. Figure [2.8] shows a schematic of the computational grid

in Lagrangian coordinates.

I I1-0.5

t.-O5 i g =O
_ =-0.5

4=-0.5 4-0 t4.5

Figure 2.8: Computational Grid

Numerical discretization

Second order accurate spatial finite differences

Bashforth scheme (for time integrations) is used.

a t ( i +1 -i+1 + 2 o(A 2 )

a4= 2A4 + 0 A 2

as}= 3~i-4 i+l+ +2o(d2 )= A2 5

and a third order accurate Adams -

Central difference

Forward difference

Backward difference
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Adams-Bashforth scheme:

For a system comprising of y'=f(y)

Yn+ 1= Yn+ ( )(55fn - 59n + 37fn 2 -9f 3) +O( t )

Boundary conditions

1=-0.5 defines boundary 1. =--0.5 defines boundary 2. T--0.5 defines boundary 3. 5=-

0.5 defines boundary 4.

Boundary conditions may either be specified in terms of pressure along the 4 edges or

a 'solid wall' condition of zero normal velocity at either of the edges, or a mix of the two.

Numerical Scheme

The procedure used in the calculations is as follows:

* The equation of continuity is used to update the sheet height at every location on the
grid. This is performed by time integration using a third-order Adams-Bashforth
scheme.

* The new sheet height values are then used to compute the local Pressures

* The updated pressures are then used in order to determine the local fluid velocities

* The sheet length, viscosity, alveolar pressure are then updated as the values of the
next time step.

* Boundary conditions are finally imposed and the process is repeated

2.6 Comparison of the Current model with Fungs sheet-flow model

The current model is essentially an enhancement of the model developed by

Fung(1984), with the differences summarized in Table [2.1].

Table 2.1: Comparison of Fungs sheet flow model with the current model

Current Model Fungs Model

Obtains a time dependent Static Analytic solution
solution
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Table 2.1: Comparison of Fungs sheet flow model with the current model

Current Model Fungs Model

Model capable of incorpo- Analysis limited to con-
rating time-varying ,xa,k,f stant values of g,a,k,f

Incorporates the effect of Applicable to a stationary
the motion of the septal septum sheet
walls.

Capable of incorporating a Constant alveolar pressure
time-varying alveolar pres-
sure.

The inlet and exit are along The flow inlet and exit are
the entire width of the assumed to be single open-
sheet. ings into/out of the septum

The current model is gen- Ignores the pulmonary pul-
eral purpose as far as satility in the arteriole and
boundary conditions are venule pressures.
concerned - it is also capa-
ble of handling pulsatile
arteriole and venule pres-
sures
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Chapter 3

The Tube Flow model

3.1 Introduction

While the sheet flow model provides useful insights into the fundamental aspects of pul-

monary capillary flow, some assumptions of the model limit its applicability. Although, as

shown in the previous chapter, the sheet-flow model can be revised to incorporate the

motion of the alveolar septum due to breathing, it fails to capture some physical details

that characterize the complexity of the septal bed. First, the sheet flow model incorporates

the effect of the posts as a 'lumped resistance' parameter in the form of the geometric fric-

tion factor, k. The resistance parameter should ideally change both spatially and with time

during a breathing cycle since the compliant sheet changes its dimensions; this variability

is not incorporated in the sheet flow model. Second, Kiani et al. [23] have demonstrated

that the diameter variability along a microvascular vessel has a significant effect on the

pressure drop within the vessel; consequently, we would like to develop a model that takes

into account this axial variability in diameter. Third, although we modified the sheet flow

model so as to incorporate spatial variability of parameters, specifying such variability

makes the problem computationally intense in terms of the density of discretization

required to capture the essential physical details. This problem is eliminated in the tube

model for reasons discussed later in this section.

Our ultimate objective in modelling flow through the alveolar septum is to demon-

strate the effect of spatial variability in the sheet parameters and to simulate RBC and

PMN transit times in the alveolar septum. While the sheet-flow model developed by Fung

[13] is capable of predicting RBC transit time distributions based on the computed veloc-
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ity of blood, the assumptions implicit in the sheet model preclude it from an accurate por-

trayal of important physical details. A more realistic transit time simulation depends on

the tortuous path and the dimensions of individual capillary segments that either a RBC or

a PMN would have to pass through while traversing the capillary bed. With this motiva-

tion in mind, the tube-flow (or capillary matrix) model was developed.

The capillary bed in the tube-flow model is modelled as a network of interconnected

distensible tubes. Based on this idea, the capillary bed is then divided into "segments" and

"junctions" (Figure [3.1]). The segments are the inter-connected capillaries, while a junc-

tion is defined as the region where three or more segments meet. The posts and the com-

pliant alveolar membrane essentially define the geometry of the segments. Since the

distance separating the alveolar septal walls and the post dimensions change continuously

with time, the geometry of the segments is time-dependent. This further causes the flow-

resistance, which depends upon such physical parameters as post and septal dimensions,

to vary as with time as well.

Controolulnme

Segmei.t Junct'on's''1''ms f -__

Figure 3.1: Segments and Junctions in the tube model

3.2 Derivation of tube flow equations

3.2.1 Assumptions of the model

As in the sheet flow model discussed in the previous chapter, the capillary network is
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assumed to span a square of side 75 microns, with junctions separated by a distance of 15

microns. Every half-segment is characterized by a distensibility (capacitance) and every

junction is characterized by a distensibility distinct from the adjoining half-segments. The

pressure within a given control volume is assumed to be uniform and distinct from the

pressure in adjacent control volumes. The local hematocrit is a function of the local septal

distension (hydraulic diameter). Since the Reynolds number and the Womersly number

are both much smaller than 1, a quasi-steady inertia-free flow approximation is used just

as in the sheet flow model. The dependence of hemodynamic properties on bifurcations at

junctions ([36] & [38]), for example the split of red cell flux at a bifurcation depending on

bifurcation geometry and bifurcation angle, are not incorporated in the current model.

3.2.2 Development of the modelling equations

A schematic of the tube network skeleton is represented in figure [3.2] below

Figure 3.2: Tube network skeleton

The tube network is analyzed by analogy to an RC network, the electrical circuit

parameters (R's and C's) corresponding to the fluidic system parameters (flow resistance

and distensibility). A control volume is defined that encompasses one junction and one-

half of each of the neighboring capillary segments. Flow passes between adjacent control

volumes through segments characterized by their flow-resistance. A uniform 'mean pres-
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sure' is assumed over the entire control volume for the purpose of determining junction

and segment dimensions; the pressure differences between adjacent junctions driving the

flow in the connecting segments. The final equations in the fluidic domain are derived

with junction pressure, volume flow rates and hydraulic diameters being the fluidic vari-

ables.

3.2.3 RC Circuit analogy.

Every junction and the adjacent 4 'half-segments' comprising of a control volume is

analyzed using an electrical analog.Each half-segment is characterized by a resistance and

a capacitance (distensibility).

umne

Junction (ij)

T

N-

-i_ E

5

Figure 3.3: RC circuit model for the tube network

Since one of the assumptions of the fluidic model is to work with a 'mean junction

pressure' which has an electrical analog of a junction voltage, all the capacitors within the

control volume are connected in parallel, as shown in figure [3.3] (between the junction

voltage and a voltage corressponding to the alveolar pressure). This provides a simplifica-

tion in the circuit analysis in that all the capacitors connected in parallel can then be
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reduced to a single capacitance C(i,j) at every junction. As a result, the junctional unit can

be reduced to the network of circuit elements in Figure [3.4].

InL(ij ) t

V(i- .1j )
I e(i -,j )
IrL(ij -1 )

v kLL -. L 

Figure 3.4: Equivalent RC circuit

The equivalent capacitance is then given by the following expression

C(i,j)=Cl(i,j)+C 2(i,j)+C 3 (i,j)+C 4(i,j)+CC(i,j) (3.1)

RS (ij )
I e(ij )

This simplification has important consequences since it allows us to collapse all the

capacitance (or compliance for the fluidic model) into the junction.

3.2.4 Equivalent fluidic model: Governing equations

Let Q1, Q2, Q3 and Q4 represent volume flow rates into and out of a control volume, as

defined in figure [3.5].

S.
U.

Q3

-. Q4

Qit

Figure 3.5: Conservation of mass for a given control-volume
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Conservation of Mass at a junction

Let Vc(i,j) be the volume of a given control volume. Then, by conservation of mass in the

control volume, we must have that:

dV
=l~el-e3-e4=;iic (3.2)Q1 + Q2-Q3-Q4 = TiC (3.2)

Segment Equation

Pulmonary capillary flow is modelled as inertia free (Fung, 1984), locally fully developed

flow through a pipe with variable hydraulic diameter,Dh

Q = 87 - (3.3)
8app 2

Where 's' is the coordinate direction parallel to the segment axis (See fig [3.7]),

Constitutive law for the Pressure-Volume relationship

An equation is required that relates the volume of the junctional unit, Vc, to the transmural

pressure. While the relationship has not been measured, Fungs P-h law can be used to

derive a P-V (transmural pressure - volume) law for purposes of the simulation. The sheet-

flow model describes Fungs linear P-h (transmural pressure - height) law. The capillary

matrix modelling equations and the RC circuit analogy allow for the entire compliance in

the control volume to be lumped and represented by a single value. As a result, we may

write Fungs linear p-h law for a given junction with the lumped compliance, aeff, in the

following way.

h(i,j)=ho(i,j)+aeff(i,j)(P(i,j)-Po) (3.4)

with h being the separation distance between the septal walls and P being the 'mean junc-

tion (transmural) pressure'.
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In order to be consistent with Fungs linear relationship that we have adapted for the

tube flow analysis, one may obtain a corresponding P-V law. The resulting equation has

the following form:

V(ij,t)=Vo(ij,t)+(ij,t)(P(ij,t)-Po(t)) (3.5)

The parameters Vo and are described later in this chapter.

Flow Resistance due to segments and junctions

Since the flow is inertia free, the locally-fully developed flow approximation may be used

in order to integrate equation [3.3] along the length of a segment in order to obtain a 'seg-

met resistance' (located between two junctions with pressures P1 and P2) defined by the

following expression

o(t)
R aAPsegment = 8 (x) P P2 (3.6)

segment Q - I- (Dh()4x )Q

2

where D(t) is the total length of a given segment. Note that viscosity is written as a func-

tion of axial distance because the hydraulic diameter (as well as the hematocrit) is a func-

tion of x.

The model must also account for the resistance to flow offered by a junction. An exact

expression for the flow resistance due to a junction,especially when statistical variability

is included, is too complex for this approximate analysis, the resistance is instead approxi-

mated by utilizing the expressions for flow between parallel plates. This may be demon-

strated in the following way. From theory for -D flow between parallel plates, one may

obtain the following expression for flow "resistance":

AP R = 12AxP =R 1gAx (3.7)
Q wh 3
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Where Q is the volume flow rate, g the fluid viscosity, h the channel height, w the channel

width, and Ax the channel length (see figure [3.6]).

I A_ I A

\\, . t\\- \\- \\\i

Figure 3.6: Estimation of junction resistance

Consider two cases: the first being that of 1-D flow from left to right, and the second

being a 2-D flow with the equal flows entering the left and lower sides, and leaving the

upper and right sides (as shown in fig [3.6]). The first case yields an upper bound on the

resistance to the flow. Therefore, R is an upper estimate for the total junction-flow resis-

tance. Under the second condition, one may deduce from the symmetry of inflow and out-

flow that the diagonal shown in the figure above is a "symmetry" streamline. Assuming

the resistance per unit length to be constant, one may obtain the mean resistance of each

"half junction" by integrating over the "half junction" divided by the symmetry streamline

approximately given by Rhaf=0.5*1.414R. This provides a lower bound for the'junction

resistance.

We would like to associate the total junction resistance with the resistances of the

neighboring capillaries by distributing it as a network shown by R 1, R2, R3, and R4 in Fig-

ure [3.6]. For the first case, we can assume the total 1-D resistance, R, to be equally dis-

tributed over two resistors R1 and R2; thus for the first case, R1=R2=0.5R. For the second

case, the approximate resistance of each half-junction may be distributed equally over
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each of the two resistors in the "half-junction". Thus, in this case,

R 2=R4=O.5Rhlf=Ri=R 2=0.35R. With upper and lower bound estimates for the junction

resistance, an arbitrary resistance of KpR (with 0.35R<KpR<0.5R) was assigned to each of

four resistors (R1, R2, R3 and R4). For the results presented in the thesis, Kp was set to 0.4

arbitrarily. Each of these four resistances were then combined in series with the resistances

of the four adjacent capillaries to give Re, RW R n, and Rs in equation [3.8] given below.

3.2.5 Tube network equation.

Based on the equations developed in section [3.2.4], the following expression may be

derived for a given junction:

DP f 1 1 1 Iap) Pe Pw Pn Ps a aVo
at - Re Rw Rs Rn at Re Rw Rn Rs A(P )- A (3.8)

Where P represents pressure in the (i,j)th junction, and R, resistances. The subscripts

e,w,n and s correspond to locations east, west, north, and south of the (i,j)th junction. Note

that the flow resistance in any segment is given by equation [3.6]. The system of equations

described collectively by equation [3.8] may be represented as a first order, non-linear,

ordinary differential system given by:

= A(Q) +B(, X) (3.9)

Where Q is a function of sheet geometry, viscosity and mechanical properties of the

septum. X in general depends on the boundary conditions imposed along the sheet; for the

present study, a pressure boundary condition is imposed along the edges of the sheet.

This completes the formulation of the tube-flow (capillary-matrix) model equations.
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3.3 Parameters of the Thbe-Flow model.

The parameters of the tube flow model for the simulation are obtained in the same way as

the parameters for the Sheet flow model. Segment and junction geometry is shown in fig-

ure [3.7].

Figure 3.7: Schematic of the septal geometry for the tube network

Viscosity

The viscosity is obtained in the same way as it was determined for the sheet- flow net-

work. However, using eq [2.38] based here on the local tube hydraulic diameter, Dh.

1 1 2 D

A = 2.03 - 2.OH

(3.10)

(3.11)a

(0.48 + 2 .3 5 Hd)
(3.12)

p = 1.7Centipoise (3.13)
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Dm = 2.7microns (3.14)

Hd is again the discharge hematocrit.

Septal-wall extension

Septal dimensions are assumed to change isotropically in the plane of the septum. This

implies that the change in length per unit length is a constant so that the actual distance

between any two material points located at (1,rl1) & (2,rl2) changes according to:

ax(t) = L (t)4 (3.15)

Ay (t) = L2 (t) An (3.16)

Where x(t)=tLl(t) and y(t)=rlL2 (t) (3.17)

The above expressions allow one to compute the segment lengths and post diameter, both

as functions of time during breathing. The cylindrical posts of connective tissue (assumed

to be incompressible connective tissue) are also assumed to expand and contract laterally

in an isotropic fashion.

Time-dependence of h(t)

The parameter ho in Fungs linear P-h law is the local 'sheet' separation distance when

alveolar pressure equals local blood pressure, and by analogy, may be viewed in the

present model as the height of the cylindrical posts at zero transmural pressure. On the

assumption of constant post-volume mentioned above, changes in ho result from changes

in lung volume (or L(t)) and can be described by:

d2 Ld o, nom o
ho(t) = o, nom (t) 2 o, nomL2 (t)d~t L t
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Where nominal values of ho and the post diameter, do, are given by ho,nom and do, nom

(ho,nom = 3.5 g.m (from Fung, 1972a), and Lo=75 gm). The parameter ho may also be

viewed as the 'sheet separation' distance at zero transmural pressure. The value of ho for

each junction in the tube model may then be associated with a distinct post in order to

approximate the spatial as well as time-dependence of ho at that junction.

Junction area. A.

The junction area Ac is approximated by the following expression (based on fig. [3.7]):

Ac(t) =Lp(t) 2 - d(t) 2 (3.19)

Y,(t) and the P-V compliance. B(t).

The theoretical P-V compliance is obtained using Fungs linear P-h law and the sheet

geometry. The theoretical expression for the sheet compliance is obtained by writing an

approximate expression for the volume of the control volume in terms of the sheet geome-

try and Fungs linear P-h law.

Figure 3.8: Control volume

Based on the control volume and directions shown in figure [3.8], the following

expression may be derived for the volume of the (i,j)th control-volume. Note that ho,

which refers to the junction height at any given junction, is assumed to be spatially invari-

ant for that control-volume.
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Vij = Voi, +ij .(Pi,-PO) (3.20)

Where

4

Vo(i, = hoAc+ 8d(2Lp-d)ho (3.21)
k= 1

(Note that ho,k(i,j) = ho(ij) in the current model)

4

= aAc + I k d (2L - d) a (3.22)
k=l 

The volumes of the 4 adjacent half-segments are each approximated by the volume of

a solid-cylinder with a variable elliptical cross sectional area.See Appendix [B.1]

Theoretical Beta (cubic microns/cms of water) vs time
50 ! · I
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35: ........
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (secs)
ho (microns) vs time
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Figure 3.9: Theoretical P, ho and VO as functions of time
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Figure [3.9] shows the variation of A, ho, and Vo with time (during a normal breathing

cycle). Although the volume-compliance is not a measured quantity that is available in the

literature, its behavior with breathing seems counter-intuitive, since one would expect the

compliance to decrease during inspiration (increasing resistance to increase in volume

with changes in pressure). While the current modelling technique predicts this behavior in

the compliance derived analytically, future work with the model will include experimental

data from morphometric measurements in order to incorporate the true nature of the vol-

ume compliance.

VO remains constant during a breathing cycle. This seems consistent with our model-

ling assumption of constant post-volume; however, morphometric measurements would

be needed to ascertain the true nature of the variation of Vo with breathing.

3.4 Determining segment geometry and segment flow-resistance

The geometry of a given segment and the dependence of the viscosity on the geometry

allows us to determine the resistance of that segment. Each segment is viewed in the

present model as the space between two adjacent posts, as shown in figure [3.7].Note that

in future work, the segment geometry will be dictated by morphometric studies and will

therefore be of arbitrary shape. With this in mind, we adopt the following procedure for

computing the segment resistance which can be applied to any segment geometry; any

given geometry may be divided discretely (stations 1-5,say) as shown in Fig [3.10]
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Figure 3.10: Capillary 'segment' geometry: discretization into 5 stations for resistance
computation

Each of the five stations (1 thru 5) is characterized by two orthogonal dimensions

along the y and the z directions (table [3.1]). These dimensions at each station further

characterize an elliptic cross section (of major and minor axis a and b, say). Based on

these axis dimensions, the hydraulic diameter, Dh, (at each of the five stations) is com-

puted using the following expression:

D = 4 (Area of cross section) 4ab (3.23)

Perimeter (0.5) (a + b)+ 0.5 a b2

a= major axis (along the z direction)

b=minor axis (along the y direction)

The major and minor axes are determined at each of the sections in the following way.

(hi is the y dimension at the ith station, determined by Fung's P-h law)

Table 3.1: Computation of Major and minor axis

2a 2b

station 1 Lp(t) h 1

station 2 (2Lp-d)/2 h2
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Table 3.1: Computation of Major and minor axis

2a 2b

station 3 Lp-d h2+h4

station 4 (2Lp-d)/2 h4

station 5 Lp(t) h5

Based on the local major and minor axis, a hydraulic diameter, Dh, is computed for

each of the five sections in every segment. Note that the expression for resistance is based

on the hydraulic diameter approximation for an ellipse which at high aspect ratios

becomes less good an approximation. Then, equations [3.10]-[3.12] are used to compute

the effective viscosities at each of the 5 stations. Finally, equation [3.6] is numerically

integrated in order to yield the resistance of an individual segment. The approximated

resistance of a junction, described in previous sections in this chapter as four resistors, is

incorporated by placing each of the four resistors in series with capillary resistances in

each of the four neighbouring capillaries for that junction.

3.5 Statistical spatial variability in ho and Sheet compliance, a.

The time dependence of ho has been discussed earlier in this chapter. One of the pri-

mary motives for developing the tube-flow model is to explore the effect of spatial statisti-

cal variability of the sheet parameters on the distribution of blood flow in the septum. In

order to achieve this, a random selection for the spatial distribution was made based on the

assumption that the variables (ho and a) were distributed normally, with specified means

and standard deviations. The extent of spatial variability in the sheet compliance is a quan-

tity that has not been explored experimentally in the past. As a result, we specified the nor-

mal distribution for the compliance by a mean value (experimentally determined, Sobin et

al. (1979)) and a standard deviation as being a fixed percentage of the mean. Somewhat
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better estimates for the spatial distribution in ho were available from experimental studies

(Doerschuk et.al,[8]) where means and standard distributions for capillary diameters were

obtained from experimental data. Although these were not experimentally determined dis-

tributions for ho, we used the percent variability in the capillary diameters and assumed it

to be representative of the percent variability in experimentally determined values for h o

(Sobin et. al (1979)). The justification for this assumption is that the capillary diameters

are closely related to ho, and that this seemed a reasonable estimate in view of the limited

amount of relevant morphometric data currently available.

While this approach of a specifying normal probability distribution yielded a random

selection with zero spatial correlation (by definition), it was also possible to specify a non-

zero covariance matrix in order to choose a random selection with a non-zero spatial cor-

relation. The non-zero spatial correlation is important since in reality, even though the

parameters of the sheet are randomly distributed, it is likely that some degree of spatial

correlation exists physiologically.

3.6 Boundary conditions and solution method

The boundary condition for the capillary-matrix is given in terms of a specified pressure

profile along the 4 boundaries of the septum. It is also possible to include a time-depen-

dent pressure boundary condition to simulate pulsatility. One such pressure profile is

shown in the figure [3.11]
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Figure 3.11: Typical pressure profile imposed for boundary condition. The septum is
shown with shading representing a typical set of computed pressures.

The dynamic system of first-order non-linear differential equations given by eq[3.9] is

numerically integrated on MATLAB, using 4th and 5th order accurate automatic step-size

Runge-Kutta algorithms. The MATLAB program written for the solution of this system

was designed to utilize several of the math subroutines available on MATLAB, and incor-

porate several user-defined subroutines to perform the integration. Further, the code was

completely vectorized, resulting in a drastic decrease in computational time. For a com-

plete description of the code, refer to Appendix[B.2]
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Chapter 4

Results and Discussion

4.1 Introduction

This chapter presents the computational results obtained from each of the two models dis-

cussed in the previous chapters, namely, Fungs sheet model (with the addition of the

effects of breathing) and the Tube-flow model.

The primary goal of this thesis is to develop a computational model for the pulmonary

capillary blood-flow in order to:

1. Simulate breathing by causing the septal dimensions to change with time, and dem-
onstrate the effect of breathing on the capillary blood flow. In particular, the objec-
tives are to:

* Quantify the dynamic blood-pressure changes induced as a result of breathing.

* Quantify the changes in blood flow-rates induced as a result of breathing.

We anticipate that these dynamic changes in blood-pressure and flow rates, induced

from breathing, will be important in determining the RBC (and PMN) transit times

2. Demonstrate the effect of spatial variability in the sheet compliance and ho to ask
the following questions:

* Does variability in the parameters play a key role in determining the blood-flow pat-
tern in the network? Does variability lead to the presence of 'preferential pathways'
for RBC transit through the septum?

* How sensitive is the blood-flow distribution to the degree of variability of each of the
parameters?

3. Explore the effect of segment blockage on the resulting flow-rate distribution. Seg-
ment blockages may be used to simulate the effect of missing capillary segments or
segments temporarily obstructed by PMN's.

4. Couple the dynamic effects induced from breathing with statistical spatial variabil-
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ity in the parameters with blockage to simulate a realistic scenario of blood flow in
the septum, and with the results obtained, move in the direction of calculating RBC
transit-times based on the computed flow-rates in the septum.

Computational results from Fungs model are first compared to theoretical results in

order to validate the numerical model.

4.2 Results for Fung's sheet-flow model

Fung has obtained the following analytic expressions for the sheet height profile, h(x), and

the volume flow-rate per unit width, Q, for -D flow between compliant sheets under static

conditions [ 12]; these results are used to validate the numerical scheme for the static case.

1

h (x) = [ha (h h)L (4.1)

a vJ j: = a (4.2)
48 efL

effa = f (4.3)

(Under the assumption that g,a.f,L being constant (f being the friction factor)).

Results from the numerical formulation of the sheet-flow model (see Chapter 2) for the

sheet height, h, and the volume flow rate per unit width, Q, were compared with the above

analytic expressions in order to validate the numerical scheme (Figure [4.1]). By imposing

a uniform pressure on the two opposite boundaries of the sheet, and by setting a zero nor-

mal velocity on the other two, -D flow was obtained. Sheet-height profiles were com-

puted for static cases under 3 different pressure conditions listed in table [4.1]. The

volume flow-rate comparison was made by keeping the inlet pressure fixed at 10 cm

(water) and varying the exit pressure for different cases listed in table [4.2].

63



Case Inlet pressure (cm H20 Exit Pressure (cm H2 0)

1 12.5 10.0

2 12.5 6.0

3 12.5 3.0

Table 4.1: Validation of numerical scheme. 3 test cases for sheet ht. comparison.

Piniet cm (water) Pexit (cm of water) PexitPin

10.0 9.5 0.95

10.0 8.0 0.8

10.0 6.0 0.6

10.0 4.0 0.4

10.0 2.0 0.2

Table 4.2: Numerical validation. 5 test cases for the flow-rate comparison

(f-4.0, x=0.0 1 86E-3 cm (H20)-sec, L=75 gm, and =0. 127 gm/cm (H20) were used).
Comparison of 1-D calculations with analytic results

5 .. ........... ......... t ............ ...... .......... ......... ........

4.8 ....... .. ...............
4 .6 .......... .... . ... 

4 . . .. . . .. .. . .. . . . .. .. .. . . .. . .. . . .. . .. . ... .. . .. . . . . ... . .. . . .. . . . . .. .. . . .. .

= 4.2

4

, 3.8

3.6

3.4

3.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized coordinate

Figure 4.1: Validation of numerical scheme for Fung's model: Comparison of numerical
results for h(x) with Fungs analytic solution for the 1-D static case
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Fung's analytic result for 1-D flow. 5 cases of inflow-outflow pressures.

The static results obtained from the numerical formulation of Fungs model show a

good comparison with the analytic expressions obtained by Fung for the 1-D case, as seen
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in figure [4.1]. The error in the sheet height was less than 1.5%, and the error in flow-rates

was less than 1% of the prediction from analytic results.

Despite this close agreement between our numerical formulation and the theoretical

predictions for Fung's model, and that we have incorporated the effects of breathing, for

reasons given below, Fungs sheet-flow model is not appropriate for our ultimate goal to

study phenomenon at the length scale of RBC's and capillaries, i.e. the phenomenon of

RBC and PMN transit as they take a tortuous path while traversing the septum.

First, we are interested in studying the transit of RBC's and PMN's through a capillary

bed composed of pathways (segments, junctions) and 'septal posts', and would like to

capture the physics (viscous friction between the plasma and the septal walls, effects due

to septal geometry, etc.) associated with the presence of these physical characteristics.

Second, our objective to study the effect of spatial variability in the parameters and

explore the presence of preferentially perfused pathways as a result of this variability is

not easily met by the sheet-model, which incorporates the effect of posts and channels by

a lumped resistance to flow. In addition, introducing a variability in the parameters for the

dynamic sheet-flow equations makes the equations computationally intense (the time step

being determined by the length scale of variability).

4.3 Results for the Tube-flow model.

4.3.1 Validation of the Tube-flow model: comparison with other models.

Comparison with Fung's sheet model

Fung has obtained an expression for the volume flow rate per unit width for a static

one dimensional case, given by equation [4.2]. Volume flow-rates are also obtained as a
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result of calculations from the tube-flow model. In order to make a comparison between

the calculations of the tube-flow model with the analytic 1-D results of Fung's model, we

simulated an "approximately I -D" flow in the tube model by imposing a uniform pressure

along 2 "opposite" edges of the network, and a linear pressure gradient along the adjacent

sides connecting the inflow (left edge) and outflow (right edge). Under this configuration

of boundary conditions, we observed that the flow was "approximately 1-D" (from left to

right), with less than 2% "flow-leakage" from the other two "farfield" edges (above and

below). Thus, with the dominant direction of flow being from left to right, we were able to

maintain one-dimensionality and compute the flow-rate to make the following compari-

son. (fl was used to compute the volume flow rate for Fung's model. This was estimated

from results obtained by Yen and Fung (1973) (corresponding to the ratio sheet ht/post

diameter-5/7 from the tube model)..

x 106 Fungs model and Capillary Network model: Flow rate comparison
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Figure 4.3: Volume flow-rate comparison: Fungs sheet model and Tube-flow model
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Figure [4.3] shows a comparison of the volume flow-rates calculated by the two mod-

els, which confirms the good agreement. The advantage for us being that the tube-flow

model is more appropriate for our objectives.

Friction factor comparison with Weinbaum's model.

Viscous flow is a channel with periodic cross-bridging fibres forming an infinite stag-

gered array has been analyzed by Tsay and Weinbaum ([44]), who have obtained exact

solutions for the flow-field in the array. While Lee and Fung (1969) developed theory for

flow around a single fible, Weinbaum's model was an extension of their work that success-

fully described the transition from the Hele-Shaw potential flow limit (aspect ratio B<<1)

to the viscous two-dimensional limiting case (B>>1, Sangani & Acrivos, 1982). Wein-

baum's model also proposed an interpolation formula for the drag coefficient,f, in order to

describe the transition of flow from the B<<1 case to the B>>1 case that successfully

described the flow in the B-O(1) regime. This section aims at making a comparison

between Weinbaum's ionterpolation formula and results for the drag coefficient for the

current model.

The geometry of the idealized tube-network is similar to the geometry of the channel

in Weinbaum's work, with the cylindrical posts of connective tissue being analogous to

the cross-bridging fibres; however, the networks are somewhat different since the channel

in Weinbaum's work is rigid with a staggered layout of 'cylindrical posts' with respect to

the flow direction, as opposed to the tube-model with compliant network with a uniform

layout of cylindrical posts (figure [4.4]). Nevertheless, it is possible to make a comparison

of the tube model by setting the compliance to a very small number (reduce by a factor of
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100, say) and by superimposing results obtained from the tube model in order to mimic

the staggerdness of Weinbaum's network..

Cn

Q · ·

Veinbaums staggered grid Tube model uniform grid

Figure 4.4: Schematic of Weinbaum's staggered grid and the tube-model's uniform grid

Flows at low Reynolds number are additive. Since the Reynold's number in the sep-

tum is of order 1, it is possible to add (as vectors) two solutions in order obtain a third

solution that also satisfies conservation of mass and momentum at low reynolds number.

We make use of this property to mimic Weinbaum's staggeredness from the uniform grid

of the tube model by summing two similar 1-D flows, one from left to right and the other

from bottom to top under the same pressure condition. It may be observed that summing

the two solutions vectorally, and viewing the resulting flow about the line nn' in figure

[4.4], one obtains the staggered-flow condition in Weinbaum's solution.

Weinbaum has obtained expressions for the drag coefficient,f, for a channel with stag-

gered layout of cross-bridging fibres. Since we were able to mimic the staggerdness, we

may computef from the tube model and compare it to Weinbaum's results.The drag coef-

ficient,f, is described by the following equations:

P = -3f - (4.4)
B'-
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Q 1 (4.5)
2B'WU

Where Q is the total flux and 2B' is the vertical separation (or post height) of the channel.

The overbar denotes an average over a region which is small compared with the macro-

scopic lengthscale, yet large enough to level off the microscopic hetrogeneity; for the

channel, the average is taken over one periodic unit.

Based on the above expressions, we may obtain modified "effective variables" and

compute the drag coefficient for the tube-model. Let Qt be flow-rate obtained from a 1-D

calculation (say in the left-right direction). Let Px be the pressure imposed for this 1-D cal-

culation. Similarly, let Py be the pressure gradient imposed on the tube-model to obtain a

1-D flow (in the bottom-top direction) in order to obtain the same mass flux Qt, now in the

bottom-top direction. Since Qtx=Qty=Qt, we must have that Px=Py in magnitude. Thus, if

we were to sum the two flow's, the total flow-rate across the nn' line would be 2Qt,. Simi-

larly, the magnitude of the pressure gradient would be the magnitude of the vector sum of

the gradients Px and Py,. Thus,

IVPefjl = 2Px = 2Py (4.6)

Qeff 2Qt (4.7)

Weff = L (4.8)

Thus, based on the above quantities and equations [4.9]-[4.10], one may obtain a value for

ffrom the tube model that mimics a staggered-grid in Weinbaum's model..

Qeff2 e = 1 (4.9)
eB'ff eff
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VPeffB' 2
f = (4.10)

3 g[ eff

In general, the drag coefficient,f, is computed as a function of fibre volume fraction S,

defined as the ratio of fibre volume to total volume, the aspect ratio B, given by the ratio of

the channel height to post diameter, and the flow configuration. Tsay and Weinbaum

(1991) have obtained an interpolation formula for the friction factor, f, described by the

following equations:

1

f= ( +4D) (4.11)

with

2 B' 2 54.95
f AB' 2 2.3 7 (4.12)

f3D = l+baS -2bll +(4.13)

where SA=S when 2A/d=2B, and

B
(0.1918 + 0.3308B) (4.14)

( 2B) (4.15)

Where Kn are modified Bessel functions of order n.

For the comparison, we set B=1 and 5, Lp=15 .m, Pinlet=1 0 cm(water), and Pexit=9.5

cm(water). Figure [4.5] shows a comparison for B=1 an B=5. The results show a reason-
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able agreement with Weinbaum's exact analysis, and the error was within 30% for mosr

cases.

.14 ~ Comparison of friction factor with Weinbaums result
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Figure 4.5: Friction factor comparison with Weinbaum's model

A note about the friction factor computation from the Tube-model

The exact analysis of Tsay and Weinbaum for a rigid cross-bridged fibre matrix pro-

vide a good test for comparing the capillary and junction resistance in the tube model.

While the results presented in this thesis were obtained using resistance estimates

described in chapter 3 (Kp=0.4 and estimation of hydraulic diameter assuming an elliptical

cross-section), we were able to improve the resistance estimate by setting Kp=0.25 and by

computing the capillary resistance by assuming a rectangular axial cross section in order

to determine the hydraulic diameter at locations along the capillary. This improved the

friction factor comparison with Weinbaum's results (Figure [4.5]), and thus allowed for a

better estimate of the junction and capillary resistance.
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We now proceed to present the results obtained from the tube-flow model. First,

results for the dynamics associated with breathing are presented, followed by results for

static cases under various conditions (spatial variability and capillary blockage).

4.3.2 The dynamics induced due to breathing.

Having established that the flow-rates obtained from the static sheet-flow model and

the static capillary-network model are in good agreement, we can now proceed to calcula-

tions pertaining to the dynamic effects associated with breathing.

Breathing is examined under 3 conditions, namely, (i) no statistical variability in ao and

ho, (ii) statistical variability in the parameters, and finally, (iii) no variability but with the

blockage of 2 capillaries. Our interest in is exploring the extent of pressure and flow-rate

oscillations induced within the septum resulting from time-dependent deformations of the

septum and variations in the volume compliance, 3(t) (see ch. 3), with breathing.

Since our interest lies in the flow-rates observed in capillaries and the pressure oscilla-

tions at the junctions, we have developed a method to conveniently represent all of the

time-varying flow-rates and pressures on a single chart. With this approach, flows in indi-

vidual capillaries are plotted vs time, and the plot for each capillary is placed at a location

corresponding to the location of the given capillary in the network. Similarly, pressures at

each of the junctions are represented by individual time history plots, and each time his-

tory plot is placed onto a location on the chart that corresponds to the physical location of

the given junction. The time-axis for each of the plots ranges from 0-5 seconds.
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Figure 4.6: Method to show time-dependent pressures and capillary flow-rates on a single
chart.Time-history plots are placed at every junction and capillary in the network.

The results in this section are presented in the following order

Table 4.3: Presentation of results for the dynamic cases

Note that the pressure gradient was increased for cases with low mean pressures. This

was done in order to maintain the same flow-rate through each septum. Approaching the

venular side from the arteriolar side, the local blood pressure decreases monotonically,
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thereby causing the capillaries toward the venular side to be less distended than those on

the arteriolar side. On average, however, they must carry the same flow rate and therefore

require a greater pressure drop at lower mean pressures.

Dynamic case with no spatial variability and no capillary blockage

We now proceed to present the results for the case with no spatial-variability. The

computations were done at two conditions of inlet-exit pressures (given in table [4.3]).

Figures [4.7] and [4.8] show the results obtained for these cases.
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Figures [4.7] and [4.8] show that the dynamics induced due to breathing have a signif-

icant influence on flow-rates but much less in pressures in the capillary bed. Figure [4.5]

indicates that in a homogenous sheet (no spatial variability), the flow rates within the cap-

illaries may oscillate by as much as 50% during a breathing cycle. The relatively large

oscillations in flow-rates is important, and will play a key role in determining the transit of

RBC's. Further, typical pressure oscillations at the junctions are relatively small. This may

be misleading, however, since it is largely due to the fact that the overall pressure-drop

across the capillary bed is fixed while the flow rate is allowed is allowed to vary. Con-

versely, if flow-rates were specified at the boundaries, the pressure fluctuations would be

greater by comparison. Perhaps a better way to view this result is in terms of segmental

resistance which changes due to the changing septal dimensions. Since the swings in the

junction-pressures are small, the resistance must vary significantly in order to produce the

observed changes in flow-rates. Therefore, both the geometry and viscosity of blood in the

capillary bed play a key role in determining plasma (and possibly RBC and PMN) transit.

This effect of viscosity is even more pronounced for the case of homogenous proper-

ties but a lower pressure range (1.0-0.0 cms of water, figure [4.8]), where the capillaries

are less distended. In this situation, since the low-pressures result in smaller capillary dis-

tensions, the overall dimensions of the capillaries remains small, allowing for the non-lin-

ear effects of the blood viscosity to become more prominent; these non-linear effects may

be observed in the behavior of junction pressures in figure [4.6]. This situation with lower

capillary distensions also results in a more pronounced time-dependent gradient in pres-

sures (say between adjacent junctions). Since the overall force on a cell (RBC or PMN

say) within a capillary depends on this gradient in pressure, these dynamic pressures will
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play a key role in mechanically mobilizing a PMN (or a capillary blocked by an RBC).

Pressure differences between junctions across a blocked capillary may be critical in either

mechanically mobilizing or activating a blocked PMN, depending on its sensitivity to

changes in surrounding pressures.

Dynamic cases with Spatial variability in parameters and with no capillary blockage

We now proceed to present results for the dynamic cases with spatial variability in

parameters. We are interested in looking at the spatial distribution of flow-rates as a result

of spatial variability in parameters, and also in making a comparison between how sensi-

tive the effect of spatial variability is on the values of inlet-exit pressures. Time and spa-

tially averaged flow-rates are compared in order to make this comparison.
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Statistical variability clearly plays an important role in determining the dynamics of

blood flow in the septum. Although the following sections will primarily deal with issues

such as the overall distribution of flows, a few observations from the previous two plots

may be made. Similar to previous observations, the non-linear effects become more prom-

inent for a lower range of pressure. The dynamics or "oscillations" in the capillary flow-

rates follow similar trends as the case with no variability, with an important difference

being in the extent of spatial distribution in the mean flow-rates. Even though introducing

randomness does not change the time-dependent flow rate wave forms (they appear simi-

lar to the case with no variability), a key aspect introduced as a result of spatial variability

is the spatial distribution of mean flows and flow-rate amplitudes; figures [4.9]and [4.10]

indicate the spatial discrepancies in flow-rates (magnitude of oscillations, range of oscilla-

tions etc.); see figures [4.9] and [4.10]

Dynamic cases to demonstrate the effect of capillary blockage under homogenous

and spatiallv variable sheet properties

The effect of capillary blockage coupled with the spatial variability in the parameters

is presented in this section. We are interested in understanding the effect of capillary

blockage on the overall flow distribution in the septum.
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Effect of pulsatilitv in boundary pressures
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Capillary blockage affects the distribution of flows predominantly in the immediate

vicinity the area of capillary blockage. The blockage of 2 capillaries introduces flow-rates

in neighboring capillaries that vary in the extent of oscillation, as well as in the mean val-

ues, even for the case of uniform properties. This effect is quantified in more detail in the

following two sections; however, the important point to note here is that capillary block-

age did not introduce any appreciable effects in the neighboring region. The non-lineari-

ties become prominent at the lower pressure range, just as in the previous cases.

One of the questions we were interested in pursuing was "does variability, capillary

blockage, or breathing introduce a condition of flow reversal during a breathing cycle?"

Certainly, one could imagine a situation where a physically feasible boundary condition

(pressure profile) coupled with blockage and variability would yield flow reversal in the

bed. "Flow-reversal" will be of interest in determining RBC transit and also in addressing

issues such as the transient force on a blocked PMN. However, for the cases considered,

with the linear drop in pressure as the boundary profile, we failed to observe a reversal in

flow.

Effect of pressure pulsatilitv

The pulsatile boundary pressures were imposed by using a mean profile of linear vari-

ation in pressures (as shown in figure [3.11]) and a 5% magnitude oscillation about the

mean pressures; the oscillations being imposed at the cardiac frequency and with no phase

lag around the boundary. A slight pulsatility in the boundary pressures at the cardiac fre-

quency caused the pressures in the septum to oscillate at the cardiac frequency. However,

the high-frequency oscillations induced in the septum were of a small magnitude com-

pared to the extent of oscillations in the capillary resistance (which mimics the frequency
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of sheet distension or the breathing frequency). As a result, capillary flow-rate waveforms

primarily followed the breathing frequency. The magnitude of pressure oscillation ampli-

tudes (-0.5 cm of water) are significantly larger than the pressure oscillation amplitudes

for the case with no pulsatility. These pressure oscillations will be important is mobilizing

RBC's and obstructing neutrophils in the capillary bed.

4.3.3 Results for static cases

Spatial variations in the sheet compliance, a, and the resting segment height represents

the heterogeneity found in the septal-bed, and play a key role in the overall distribution of

flows in the septal bed. In this section, we approach the problem with a more statistical

view, and present results for several static cases to demonstrate the effects of spatial vari-

ability. It should be noted that other factors too can influence the degree of randomness

seen physiologically. However, the extent to which these mimic the real variability seen in

of pulmonary-blood flow suggest that they may be the most important factors.

There is a point to be made about the justification for our choosing to do static runs to

study this phenomenon. We have seen from the dynamic cases discussed previously that

the effect of breathing is important in causing large flow-rate oscillations within capillar-

ies. However, we also observed that introducing randomness with the dynamic simula-

tions does not change the character of oscillations introduced earlier, it introduces a spatial

distribution in mean dynamic flows. Further, we obtained in chapter 2 that the time-scale

for the equilibration of pressures was of the order of 10-3 seconds, which is small com-

pared to the externally imposed time scales of the problem (-5 seconds for breathing or -1

sec for cardiac pulsatility). Therefore, for purposes of exploring just the degree of spatial

89



variability, it is appropriate to study the phenomenon with static runs - the effects are well

demonstrated in fig. [4.14].

The method adopted for choosing a random spatial distribution has been discussed

previously in chapter 3. However, since we want to specifically see the effect the degree of

randomness in ax, and how it couples with the effects associated with degree of random-

ness in hot, we made an initial selection of three spatially random distributions for each of

the two quantities in order to make a comparative study; in other words, an initial selec-

tion of 3 randomly selected spatial distributions for 0%, 15% and 30% variability in ho, in

conjunction with an initial selection of 3 randomly selected spatial distributions for 0%,

25%, and 50% variability in a was made. In order to study the effect of each of the param-

eters, combinations from this set of selections were explored. Further, in order to get an

idea for the overall distribution in the capillary flow-rates, we computed the overall spatial

mean and standard deviation of the capillary flow rates (obtained for static runs).

The method for presenting the results was chosen as follows. Static runs (no breath-

ing) result in steady state capillary and junction flow-rates. These flow-rates are then

mapped onto the physical geometry of the capillary bed, with the greyscale shading along

capillaries representing corresponding flow-rates. This method provides an easy way to

visualize the network and the overall flow-distribution. Figure [4.16] demonstrates this

method of visualization by showing a sample graph
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Figure 4.16: A Sample graph demonstrating the visualization of the capillary bed and the
flow-rate distribution in the network.

The effect of spatial variability in h. and c.

The above plot presents a sample calculation for the flow-rate distribution in a static

capillary network with statistical variability in h and c. Figure [4.17] presents a series of

plots showing the effect of increasing randomness in each of the two parameters. From the

figure, it is evident that the flow distributions are more sensitive to the degree of random-

ness in ho than the degree of randomness in c. This is easily seen by noting that of the two

terms in equation [3.4] that determine the vertical dimension h, the first term (ho) is typi-

cally about 3 times larger than the second (AP). Therefore, its effect on the flow distribu-

tion should be roughly three times as great.
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Table 4.4: Mean flow rates (spatial mean) in cubic microns/sec & associated standard
deviation of the flows

Variability h0=0% h0=15% h0=30%

alpha=0% 1.109e+04, 1.1057e+04 1.1159e+04
52.6963 1.9871e+03 2.5301e+03

alpha=25% 1.1601e+04 1.1664e+04 1.1559e+04
1.1063e+03 1.8868e+03 2.9998e+03

alpha=50% 1.0876e+04 1.0857e+04 1.0873E04
2.4100e+03 3.522e+03 4.3348E03

(* Values listed as (mean,std) in cubic-microns/sec)

Table 4.5: Coefficient of variation (std/mean)

Variability h0=0% h0=15% h0=30%

alpha=0% 0.0048 0.1797 0.2267

alpha=25% 0.0954 0.1618 0.2595

alpha=50% 0.2216 0.3244 0.3987

4.3.4 Effect of capillary blockage.

Capillary blockage, a condition of little or no flow through a capillary, may occur due

to several reasons in a capillary bed - there may be a region of collapsed capillaries or a

region where one or more capillaries have been blocked mechanically (RBC's, PMN's).

We are interested in how capillary blockage influences the overall distribution of flows

and pressures in the capillary bed, and also in how the blockage influences pressures and

flows in neighbouring capillaries. In addition, we would like to examine the coupled effect

of blockage and randomness in the parameters.
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This section presents the results in much the same way as in the previous section per-

taining to the effect of randomness. Figure [4.18] is a sample plot, demonstrating the

effect of segment blockage on flow-rates in a situation where the properties of the septum

are uniformly distributed.

15000

10000

5000

0

Figure 4.18: Example of a graph showing the flow-rate distribution in a case with uniform
properties but two capillary segments blocked. Flow rates in cubic-microns/sec

Statistically speaking, it is clear from the above figure that the blockage of capillaries

introduces an appreciable spatial distribution in the flow-rates (see also mean and standard

deviation values in table [4.6]). However, the disturbances introduced are mostly local to

the region of blockage. Introducing randomness in the variables coupled with capillary-

blockage increases the spatial variability in the computed flow-rates, as expected. Capil-
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lary blockage also couples with the effect of spatial variability to produce "patchy" flow-

regions, or, regions of high and low flow-rates (Figure [4.22]).

Table 4.6: Demonstration of the effect of capillary-blockage: Mean flow rates (spatial
mean) in cubic microns/sec & associated standard deviationof the flows

Vability h =0% h°=15% h°=30%
Variability

alpha=0% 1.0841E4 1.0987E04 1.0789E4
1.6518E3 2.6920E3 2.9659E3

alpha=25% 1.1101E4 1.1406E4 1.0846E4
1.9003E3 2.6508E3 3.2936E3

alpha=50% 1.0813E4 1.0914E4 1.0739E4
2.8949E3 3.9127E3 4.6209E3

(* Values listed as (mean,std))

Table 4.7: Coefficient of variation (std/mean)

Variability h=0% h=15% h=30%Variability 0h3
alpha=0% .1523 0.2450 0.2749

alpha=25% .1712 0.2324 0.3037

alpha=50% .2677 0.3585 0.4303

One method of quantitatively addressing the question of the spatial extent of capillary

blockage is to consider the following plots which make a comparison of flow rates in cap-

illaries in the 'blocked case' to the flow-rates in corresponding capillaries in the

'unblocked case' with the same degree of variability in ho and a. This comparison is made

by computing ing a 'relative deviation from the unblocked case,fr' for each capillary, and

plotting this fraction vs. the spatial separation of that capillary determined by the shortest

number of capillaries that need to be traversed from the 'blockage junction' in order to

reach the given capillary. These plots may be obtained for any of the 'blocked cases' (with
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different degrees of randomness). Figure [4.19] further illustrates how the plots are gener-

ated, based on the skeletal capillary network.

kI -

~ Blocked capillaries

---- -- "Blocking junction"

For each capillary, compute
fr=l(Qblocked-Qunblocked)/Qunblockedl=relative deviation
n=shortest number of capilleies to traverse from the

blocking junction to the given capillary

Figure 4.19: Demonstration of plots to show the spatial extent of capillary blockage.

Based on the above figure, the following plots were generated for the (i) No variability

case, (ii) the '15% ho and 25% a variability' case, and finally,(iii) the '30% ho and 50% a

variability' case. Figure [4.20] shows a plot of the parameterfr as a function of n (for the

blocking junction), the minimum number of capillary segments needed to traverse from

any given capillary segment to that "blocking junction".
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Based on the previous plot, we may also find the mean 'fr' for each n in every plot. The
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mean "for each n' would then represent the mean deviation of flow-rates for that value of

n (e.g. for n=2 capillaries away from the blocking junction, then mean (f) In=2 would indi-

cate the spatial extent of the capillary blockage at capillaries with n=2).The results are

shown in figure [4.21].
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It is clear from the above two plots that the extent of capillary blockage on the flow-

rates is a 'local phenomenon', with the spatial effect of capillary blockage (or ) diminish-

ing rapidly within 1-2 capillary segments away from the "blockage junction". Further, the

mean values of f for the 3 cases of "0", "mid", and "maximum" variability in ho and a

were almost identical, implying that spatial variability in ho and a does not significantly

influence the local effects associated with of capillary blockage (figure [4.21]).

It is interesting to point to a comparison of corresponding numbers in table [4.5] and

[4.7]. The similarity in the coefficient of variation between corressponding cases of ran-

domness increases, becoming almost identical for the case with maximum randomness.

This implies that capillary blockage has less of an effect on the overall flow as the degree

of randomness increases.

Tables [4.6] and [4.7] present the statistical description of results obtained by blocking

capillaries. From a statistical view, capillary blockage by itself gives rise to an appreciable

spatial distribution in perfusion (flow-rates) relative to a case with no-blockage but with

randomness (say ho=15%variable, alpha=0%variable in table [4.5]). However, the spatial

extent of this effect is clearly local, as seen in figure [4.18] and figure [4.22].

Further, a careful comparison between tables [4.5] and [4.7] shows that the effect of

capillary blockage on the spatial flow-distribution diminishes with an increase in random-

ness; this is seen by comparing minimum and maximum entries in the values of coefficient

of variation. While at low degree of randomness, there is a large difference in the coef. of

variations (indicating that blockage has a dominant effect), the coefficients of variations at

large degrees of randomness appear much more comparable, indicating that randomness is

more dominating effect than capillary blockage in determining overall perfusion patterns.
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Spatiallv correlated randomness

A random selection with a specified spatial correlation changes the distribution of

flows. Figure [4.23] shows a sample run to demonstrate the "patchiness" in flow-rates

resulting from a case with high spatial-correlation. The flow-rate distribution shows simi-

lar trends as the previous cases. Since our attempt here is to choose the randomness in a

manner that makes more sense physiologically, actual morphometric data for the compli-

ance and ho would be useful in exploring the effects of randomness, specifically, spatially-

correlated "randomness". In addition, this sample run for correlated randomness confirms

our earlier observation that the effect of randomness is to create preferentially perfused

regions in the septum (Figure [4.23]).
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Figure 4.23: Effect of spatially correlated randomness
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Chapter 5

Conclusions

5.1 Recapitulation of goals and findings

The primary goal of this thesis was to develop a computational model that would simulate

the dynamics of blood flow in the alveolar septum. With the help of this model, we aimed

at addressing the following questions: How does breathing affect the dynamics of blood

flow in the septum, and to what quantitative extent ? What is the effect of spatial variabil-

ity in ho and the compliance, a? What kind of flow patterns, if any, might such a variabil-

ity induce in the septum? What is the effect of capillary blockage in the septum? With

these questions as motivation, we sought to couple the essential physical elements to

obtain a realistic simulation of blood flow in the pulmonary microvessels. The underlying

goal behind the model development was to address the problem of RBC and PMN transit

in the septal capillary bed, and, as a first-step in this direction, quantify the general blood-

flow characteristics.

Our first approach was to develop an enhanced version of Fung's sheet-flow model to

incorporate breathing. While this was achieved, it was realized that although Fung's

model does an excellent job at predicting "bulk quantities" such as overall flow-rates and

pressure-flow behavior, the model was not appropriate for our goal of predicting RBC and

neutrophil transit along a tortuous path in the septum. As a result, the tube-flow model was

developed, which used some of the same underlying principles as Fung's model, but

which also captured the physical details at the spatial-scale of interest to us - the scale of

capillaries and RBC dimensions.
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The tube-model compared well with flow-rate predictions from Fung's model when

the friction factorf in Fung's model was set to one. It was also possible to compute a fric-

tion from the tube-model and make a comparison with the exact analysis for the friction

factor by Tsay and Weinbaum [44]; these results compared favourably, and further

allowed us to improve the method of junction and capillary resistance in the tube-model.

The dynamic simulations showed that breathing was important in describing the capil-

lary flow-rates, and resulted in capillary flow-rate oscillations as high as 40% about a

mean. Further, breathing also introduced pressure oscillations at the junctions, although

the magnitude of pressure oscillations was relatively small due to the way the boundary

conditions were imposed. The "true" boundary condition is probably between the two

extremes of constant flow-rate and constant-pressure, and the result of this 'true' boundary

condition is probably that breathing gives rise to variations in pressure and flow-rates of

comparable relative-magnitude. Just as expected, it was observed that the non-linear

effects became more noticeable at a lower range of boundary pressures, where the capil-

laries were less distended and the segmental resistances were more sensitive to small vari-

ations in h. Introducing a spatial variability in the compliance and ho (based on a random

selection from a normal distribution) with the dynamic effects of breathing resulted in a

spatial distribution of the mean flows, although the variability did not influence the capil-

lary flow-rate waveforms. As a result, it was deemed sufficient at this stage to perform

static-runs (no breathing) to study the effect of spatial variability in the parameters.

Spatial variability in the parameters had a drastic change on the overall flow-rate dis-

tribution, with the presence of "preferential pathways" being observed for several of the

cases presented. The variability also resulted in regions of high and low flow, giving the
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overall distribution of flows as "patchy". In addition, the flow-rate patterns were more sen-

sitive to variabiliy in ho than the variability in compliance, a.

Capillary blockage in itself changes the statistical distribution of flow-rates within the

septum, even for the case of no variability in parameters. However, the disturbances

remained relatively localized to the area of blockage, with its effect dropping to about

20% within capillaries that were a distance of one capillary from the blocked junction. An

increase in randomness in the parameters, coupled with blockage, resulted in well defined

"preferential pathways" and regions of low flow. However, it was observed that capillary

blockage has less of an effect on perfusion patterns than did the degree of randomness.

Therefore, some of the key features that influence the flow-distribution and the dynam-

ics of blood flow in the septum were identified. These findings will be useful in addressing

the problem of RBC and PMN transit in the septal bed.

5.2 Future considerations

The underlying motivation for this work is to develop a means of simulating RBC and

PMN transit through the alveolar capillary network with an aim toward understanding the

role of purely mechanical or geometrical effects on RBC or PMN transit times, and PMN

margination. Although the model developed in this thesis is more appropriate to blood-

flow, some of the aspects of RBC mechanics have been incorporated in the modelling.

The present model, however, represents an initial step towards our long-range goal and

will require further extensions. First, with the current model, it will be useful to utilize

some of the dynamic flow-rates to conduct numerical experiments that would allow the

simulation of RBC transit times. However, to do that requires a probability distribution to
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describe how a RBC chooses among several paths exiting from a bifurcation (or a junc-

tion).

The current model does not yet incorporate the change in hematocrit at a bifurcation

(or at a junction), and this would be required to obtain a more accurate description of

flows, and to make the model more representative of RBC motion. Morphometric mea-

surements of compliance (a or 3) and ho (or VO), if made available, are essential in speci-

fying a realistic distribution of spatial variability. The issue of morphometric

measurements raises the question of the degree of accuracy in measurements. The numer-

ical simulations indicate that the flow distributions are more sensitive to randomness in ho

than to randomness in the compliance; as a result, one would expect a higher level of

accuracy in the measurements for ho (or VO) than the measurements in cc (or 3). In addi-

tion, the time-dependence of these two quantities as functions of lung-volume (obtained

experimentally) would be extremely useful for the model under conditions of breathing

comparing static cases at different lung volumes or pressures. Although the current model

fails to incorporate the effect of variable capillary lengths, it could be modified within the

same basic framework in order to incorporate such effects. Eventually, the capillary

dimensions could be obtained from morphometric data in order to construct a more realis-

tic geometry of the capillary network.

A more accurate model for the transit of PMN's and RBC's through the capillaries is a

more complicated problem, one that requires a coupling between fluid-dynamic calcula-

tions and an accurate description of PMN (or RBC) mechanics. The present model gives

us useful information about the general behavior of the fluid-dynamics associated within

the septum.
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Appendix A

Sheet Flow model

A.1 FORTAN 77 Code for the solution of the transformed sheet-flow
equations
The following FORTRAN code for the dynamic solution of the transformed sheet-flow

equations was developed in order to integrate the equations anemically.

C REAL NAME: SOURCED FROM
C SHEET_1_3.f CHANGED CORNER POINT BC

C------------------------------------------------.................

C
C SHEET FLOW: OCT 21 1993

C A NUMERICAL COMPUTATION OF THE UNSTEADY EQUATIONS OF FLUID MOTION
C IN THE ALVEOLAR SEPTUM
C
C
C
C

AMIT S DHADWAL
MIT

C
C
C----------------------- .---------------

C -------------------------------------------------------------------

C
C VARIABLES USED IN THE CODE:
C
C AFTER THE EQNS HAVE BEEN TRANSFORMED (DROP THE STAR NOTATION)
C
C INDEX I: X DIRECTION
C INDEX J: Y DIRECTION
C INDEX K: TIME DERECTION
C
C THREE DIMENSIONAL VARIABLES

C X (I), Y(J) (TRANSFORMED, THUS NO TIME)
C U(I,J,K), V(I,J,K), P(I,J,K), H(I,J,K)
C
C USES 3RD ORDER ADAMS BASHFORTH FOR TIME INTEG.
C CODE USES CENTRAL, FORWARD AND BACKWARD DIFF EXPRESSIONS WITH
C SECOND ORDER ACCURACY (FOR THE SPATIAL DERIVATIVES)
C------------------------------------------------

PARAMETER (IMAX=6, JMAX=6, DX= 1.0/IMAX,DY=1.0/JMAX)
PARAMETER (KMAX 1=200,KMAX2=2*KMAX 1)
PARAMETER (KMAX=KMAX2)
PARAMETER( WR_STEP=I)
PARAMETER (DT1=0.00001,DT2=0.00001,KSTEP=KMAX /4)
PARAMETER (NCYCLES=3,KKMAX=(5*NCYCLES/(DT2*KMAX1 )))
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PARAMETER (AVS_STEP=KMAXI/1) !AVS TIME STEP TO WRITE
PARAMETER (AVS_STP=IMAX/5) !AVS NODE STEP (6x6 points)
PARAMETER (AVS_START=1.0*5.0) ! STARTING TIME FOR AVS (secs)
PARAMETER (AVS_CLK_STEP=.25) ! time (sec) step for avs

REAL U(0:IMAX,0:JMAX,O:KMAX+1), V(0:IMAX,0:JMAX,O:KMAX+I)
REAL X(0:IMAX),Y(0:JMAX)
REAL H(O:IMAX,0:JMAX,0:KMAX+I)
REAL P(O:IMAX,0:JMAX,O:KMAX+1)
REAL TIME,AVS_CLOCK

REAL G(O:IMAX,0:JMAX,0:KMAX+1) ! VARIABLE TO INTEGRATE USING ADAMS-BASH
REAL L1,L1D,L2,L2D
REAL ALPHA,MU,KE,F,VC,UC,H0,PO
REAL DP ! DELTA P ACROSS SHEET AS A FUNC OF TIME

REAL HEXIT,HINLET
REAL PINLET,PEXIT

REAL CENT,FORW,BACK,DELTA
REAL EULER,ADAMS

REAL D1,D2,D3,D4,D5,D6,D7,D8,D9,D10 ! DUMMY VARS
REAL C1,C2,C3,C4,C5,C6,C7,C8 ! DUMMY VARIABLES
REAL A1,A2,A3,A4,A5,A6 ! DUMMY VARIABLES
REAL E1,E2,E3,E4,E5 ! DUMMYS
REAL EU1,EU2,EU3,EU4
REAL CA 1,CA2,CA3,CA4

INTEGER 1,J,K,S 1,S2,S3
INTEGER I 1,J1,K1,NREC
INTEGER AVS_CTR

REAL HA,PA,IJA,VA
PI=4.000*ATAN(1.00)

OPEN(UNIT=2, FILE='H.DAT', STATUS='UNKNOWN')
OPEN(UNIT=3, FILE='U.DAT',STATUS='UNKNOWN')
OPEN(UNIT=4, FILE='V.DAT',STATUS='UNKNOWN')
OPEN(UNIT=5,FILE=' P.DAT',STATUS='UNKNOWN')
OPEN(UNIT=7,FILE=' BIN.OUT',STATUS='NEW',

+ ACCESS=' DIRECT',RECL=1 ,FORM='UNFORMATTED')
OPEN(UNIT=8, FILE='AVS.INFO',STATUS='UNKNOWN')
OPEN(UNIT=9, FILE='BEGIN_TIME',STATUS='UNKNOWN')

C---------------------------------

C DEFINE VARIABES & REF VALUES
C---------------------------------

KE=12.00
ALPHA=1 .29592E-10
HO=3.5E-6
HO=HO
UC=1.0
VC=1.0

PINLET= 12.5 ! CMSof water
PINLET=PINLET*98.00*ALPHA/H0

PEXIT=12.0 !cms of water
PEXIT=PEXIT*98.00*ALPHA/HO
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HINLET= 1.00+PINLET-PO(0)

HEXIT= 1.00+PEX1T-PO(0)

WRITE (*,*) PINLET,PEXIT,HINLET,HEX1T

WRITE (*,*) ' INPUT SCR,MAT,BIN'
READ(*,*) OUT_SCR,OUT_MAT,OUTBIN

C------------ -----
C GENERATE GRID X(I,J), Y(I,J)
C- ----------- ----------------

X(0)=-0.5
Y(O)=-0.5

DO 2 I=1,IMAX
X(I)=X(I-1)+DX

2 CONTINUE

DO 3 J=,JMAX
Y(J)=Y(J-l)+DY

3 CONTINUE

C END GRID GENERATION
C ----------- -----------------

r _ _
C SET INITIAL CONDITIONS
"I

DO 5 K=0,KMAX1
DO 5 J=0,JMAX
DO 4 I=0,IMAX

H(I,J,K)=HINLET-2.0*(HINLET-HEXIT)*X(I)
P(I,J,K)=PINLET-2.0*(PINLET-PEXIT)*X(I)
V(I,J,K)=0.0
U(I,J,K)=-(HO*HO*HO)*H(I,J,K)*H(I,J,K)*2.0*

+ (HEXIT-HINLET)/(ALPHA*MU(H(I,J,K))*KE*F(H(I,J,K)))

U(I,J,K)=2.OE-4

4 CONTINUE
5 CONTINUE

C
C
C

START MAIN PROGRAM

TIME=-dt
CTR=0
nrec=0
AVS_CLOCK=-DT

DO 3001 KK=O,KKMAX
DO 3000 K=KMAX1,KMAX2

CTR--CrR+l
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IF (CTR.LE.1000) THEN
DT=DT1

ENDIF

IF (CTR.GT. 1000) THEN
DT=DT2

ENDIF

TIME = TIME+DT
AVS_CLOCK=AVS_CLOCK+DT

C-------------------------- -------
C INTERIOR POINT COMPUTATION OF H
C---------------------------------------

DO 2000 J=I,JMAX-1
DO 1000 I=I,IMAX-1

A=H(I- 1,J,K)*U(I- 1 ,J,K)
B=H(I+ 1,J,K)*U(I+ 1 ,J,K)
DELTA=DX

D =(UC/Ll(TIME))*CENT(A,B,DELTA)

A=H(I,J- 1,K)*V(I,J- 1,K)
B=H(I,J+1,K)*V(I,J+1,K)
DELTA=DY
D2=(VC/L2(TIME))*CENT(A,B,DELTA)

C A=H(I-1,J,K)*X(I-1)
C B=H(I+1,J,K)*X(I+1)
C DELTA=DX

C D3=(L1D(TIME)/L1 (TIME))*CENT(A,B,DELTA)
D3=(L1D(TIME)/L1(TIME))*H(I,J,K)

C A=H(I,J-1,K)*Y(J-1)
C B=H(I,J+I,K)*Y(J+1)
C DELTA=DY
C D4=(L2D(TIME)/L2(TIME))*CENT(A,B,DELTA)

D4=(L2D(TIME)/L2(TIME))*H(I,J,K)

G(I,J,K)=-(D 1+D2+D3+D4)

IF (CTR.LE.4) THEN !(EULER SCHEME TO INTEGRATE)
H(I,J,K+I)=EULER(H(I,J,K),G(I,J,K),DT)

ENDIF

IF (CTR.GT.4) THEN ! ADAMS BASHFORTH METHOD
H(I,J,K+I)=ADAMS(H(I,J,K),G(I,J,K),G(I,J,K-1),DT)

ENDIF

1000 CONTINUE

2000 CONTINUE ! END GETING H(N+1) FOR INTERIOR POINTS

C ----------- - ----
C OBTAIN H ON THE BOUNDARY 1: OK

J=C
DO 2001 I=1,IMAX-1
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A=H(I-1,J,K)*U(I-1,J,K)
B=H(I+IJ,K)*U(I+ 1,J,K)
DELTA=DX

D l=(UC/L1 (IME))*CENT(A,B,DELTA)

A=H(I,J,K)*V(I,J,K)

B=H(I,J+I,K)*V(I,J+I,K)
C=H(I,J+2,K)*V(I,J+2,K)
DELTA=DY
D2=(VC/L2(TIME))*FORW(A,B,C,DELTA)

C A=H(I-1,J,K)*X(I-1)
C B=H(I+I,J,K)*X(I+I)
C DELTA=DX
C D3=(LID(TIME)/L1 (TIE))*CENT(A,B,DELTA)

D3=(L1D(TIME)/Ll(TIME))*H(I,J,K)

C A=H(I,J,K)*Y(J)
C B=H(I,J+I,K)*Y(J+I)
C C=H(I,J+2,K)*Y(J+2)
C DELTA=DY

C D4=(L2D(TIME)/L2(TIME))*FORW(A,B,C,DELTA)
D4=(L2D(TIME)/L2(TIME))*H(I,J,K)

G(I,J,K)=-(DI+D2+D3+D4)

IF (CTR.LE.4) THEN
H(I,J,K+ 1)=EULER(H(I,J,K),G(I,J,K),DT)

ENDIF

IF (CTR.GT.4) THEN ! ADAMS BASHFORTH
H(I,J,K+ 1)=ADAMS(H(I,J,K),G(I,J,K),G(I,J,K- 1),DT)

ENDIF

2001 CONTINUE

C------------------- ---------------.

C OBTAIN H ON BOUNDARY 3: OK
C-------------------- ---------------

J=JMAX

DO 2002 I=l,IMAX-1

A=H(I-1,J,K)*U(I-1,J,K)
B=H(I+I,J,K)*U(I+1 ,J,K)
DELTA=DX

D 1 =(UC/L 1 (TIME))*CENT(A,B,DELTA)

A=H(I,J-2,K)*V(I,J-2,K)
B=H(I,J-1,K)*V(I,J-1,K)
C=H(I,J,K)*V(I,J,K)
DELTA=DY
D2=(VCIL2(TIME))*BACK(A,B,C,DELTA)

C A=H(I-1,J,K)*X(I-1)
C B=H(I+I,J,K)*X(I+I)
C DELTA=DX
C D3=(L 1D(TIME)/L (TIME))*CENT(A,B,DELTA)
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D3=(LlD(TIME)/L1(TIME))*H(I,J,K)

C A=H(I,J-2,K)*Y(J-2)
C B=H(I,J-I,K)*Y(J-1)
C C=H(I,J,K)*Y(J)
C DELTA=DY
C D4=(L2D(TIME)/L2(TIME))*BACK(A,B,C,DELTA)

D4=(L2D(TIME)/L2(TIME))*H(I,J,K)

G(I,J,K)=-(D I+D2+D3+D4)

IF (CTR.LE.4) THEN
H(I,J,K+ 1)=EULER(H(I,J,K),G(I,J,K),DT)

ENDIF

IF (CTR.GT.4) THEN
H(I,J,K+1)=ADAMS(H(I,J,K),G(I,J,K),G(I,J,K- 1),DT)

ENDIF
2002 CONTINUE

C------------------------- --------------

C BOUNDARY CONDITIONS ON 1,2,3,4
C---------------------------------------

C BOUNDARY CONDITION ON 4
f_

I=0
DO 2005 J=0,JMAX
W=0.2*2.0*3.1416
P(I,J,K+I)=PINLET*(1.0+0.05*(SIN(5.0*W*TIME)))

2005 CONTINUE

C------------------------------- ------

C BOUNDARY CONDITION ON 2
C---------------------------------------

I=IMAX
DO 2006 J=O,JMAX
W=0.2*2.0*3.1416
P(I,J,K+1)=PEXIT*(1.0+0.05*(SIN(5.0*W*TIME)))

2006 CONTINUE

C---------------------------------------

C BOUNDARY CONDITION ON 1 (include comers)
C--------------------------------------

J=O
DO 2007 I=0,IMAX

V(I,J,K+1)=0.0
2007 CONTINUE

C --------------------------------

C BOUNDARY CONDITION ON 3
C-------------- ------------- ---------

J=JMAX
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DO 2008 I=0,IMAX
V(I,J,K+I)=-0.0

2008 CONTINUE

C-----------------------------------

C-----------------------------------

C NEW: FIND H ON THE INLET AND EXIT
C-------------------------------------

I=0
DO 2009 J=0,JMAX
H(I,J,K+1)=1.0+P(I,J,K+1)-PO(TIME+DT)

2009 CONTINUE

I=IMAX
DO 2010 J--=0,JMAX
H(I,J,K+1)= 1.0+P(I,J,K+1 )-PO(TIME+DT)

2010 CONTINUE

C-------------- ------------- ----------

C DONE WITH OBTAINING H(N+1) EVERYWHERE

C---------------------------------------

C----------------.-----------------------

C UPDATE U,V (N+1)'S FOR INTERIOR POINTS:OK
C------------ -------------

DO 2200 J=1,JMAX-1
DO 2300 I=1,IMAX-1

A=H(I-1,J,K+I)
B=H(I+I,J,K+I)
DELTA=DX
D1=H(I,J,K+1)*H(I,J,K+1)*CENT(A,B,DELTA)
CI=-L(TIME+DT) * ALPHA * MU(H(I,J,K+1))
C1=Cl* KE * F(H(I,J,K+I))*UC
U(I,J,K+I)=(D 1*HO*HO*HO)/(CI) - L1D(TIME+DT)*X(I)/UC

A=H(I,J-1,K+1)
B=H(I,J+I,K+1)
DELTA=DY

D I=H(I,J,K+I)*H(I,J,K+I)*CENT(A,B,DELTA)
C1=-L2(TIME+DT)*ALPHA*MU(H(I,J,K+1))*KE*F(H(I,J,K+ 1))*VC
V(I,J,K+1)=(HO*HO*HO*D1)/(C1) - L2D(TIME+DT)*Y(J)/VC

2300 CONTINUE
2200 CONTINUE

C-------------- --------------
C OBTAIN U,V ON BOUNDARY 1: OK
C-------------- ------------------------

J=0
DO 2201 I=I,IMAX-1

C V ON 1 IS SPECIFIED

A=H(I-1,J,K+I)
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B=H(I+I,J,K+1)
DELTA=DX

D 1 =H(I,J,K+ I )*H(I,J,K+1)*CENT(A,B,DELTA)
CI=-LI(TIME+DT)*ALPHA*MU(H(I,J,K+I))*KE*F(H(I,J,K+I))*UC

U(I,J,K+1)= (D1*H0*H0*H0)/(C1) - LID(TIME+DT)*X(I)/UC

2201 CONTINUE

C---- ----- -------------------
C OBTAIN U,V ON BOUNDARY 3: OK
C------ --------------------------------

C V ON 3 IS SPECIFIED

J=JMAX
DO 2202 I= ,IMAX-1

A=H(I-1,J,K+I)
B=H(I+I,J,K+1)
DELTA=DX

D1=H(I,J,K+I)*H(I,J,K+1)*CENT(A,B,DELTA)
C 1 =-L 1 (TIME+DT)*ALPHA*MU(H(I,J,K+ 1 ))*KE*F(H(I,J,K+ 1))*UC
U(I,J,K+ 1)=(D 1 *HO*H*H)/(C1) - L1D(TIME+DT)*X(I)/UC

2202 CONTINUE

C---------------------------------------

C OBTAIN U,V ON BOUNDARY 2
C-------------------------------------

I=IMAX
DO 2203 J=0,JMAX

C ------ U VELS. CORNERS OK --------

A=H(I-2,J,K+1 )
B=H(I-1,J,K+I)
C=H(I,J,K+I)
D 1 =H(I,J,K+1 )*H(I,J,K+1 )*BACK(A,B,C,DX)
C =-L1(TIME+DT)*ALPHA*MU(H(I,J,K+1))*KE*F(H(I,J,K+1))*UC

U(I,J,K+I)=(H0*H0*H0*D1)/(Cl)-L1D(TIME+DT)*X(I)/UC

C -----V VELOCITIES ---------------

C 1 =-L2(TIME+DT)*ALPHA*MU(H(I,J,K+1))*KE*F(H(I,J,K+1))*VC

IF (J.EQ.0) THEN
A=H(I,J,K+1)
B=H(I,J+I,K+1)
C=H(I,J+2,K+1)
D 1=H(I,J,K+1)*H(I,J,K+1)*FORW(A,B,C,DY)

ENDIF

IF (J.EQ.JMAX) THEN
A=H(I,J-2,K+I)
B=H(I,J-1,K+I)
C=H(I,J,K+I)
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D 1 =H(I,J,K+1)*H(I,J,K+1)*BACK(A,B,C,DY)
ENDIF

IF'(J.GT.0 .AND. J.LT.JMAX) THEN
A=H(I,J-1,K+1)
B=H(I,J+1,K+I)
DI=H(I,J,K+I)*H(I,J,K+I)*CENT(A,B,DY)

ENDIF

V I,J,K+1)=(H0*H0*HO*D1/C1)-L2D(TIME+DT)*Y(J)NC
C 
C ADD CORNER CONDITION
C 

IF (J.EQ.0.OR.J.EQ.JMAX) THEN
V(I,J,K+1)=0.0

ENDIF

2203 CONTINUE

C-------------------------- -----------

C OBTAIN U,V ON BOUNDARY 4
C- --------- ----- --

I=(0

DO 2204 J=0,JMAX

A:H(I,J,K+1)
B=-H(I+I,J,K+I)
C=:H(I+2,J,K+1)
D =H(I,J,K+1 )*H(I,J,K+ 1 )*FORW(A,B,C,DX)
C 1 =-L1 (TIME+DT)*ALPHA*MU(H(I,J,K+1))*KE*F(H(I,J,K+1))*UC
U(I,J,K+I)=(H0*H0*H0*D1/Cl)-L1D(TIME+DT)*X(I)iUC

C1=-L2(TIME+DT)*ALPHA*MU(H(I,J,K+I))*KE*F(H(I,J,K+I))*VC

IF (J.EQ.0) THEN
A=H(I,J,K+1)
B=H(I,J+I,K+1)
C=H(I,J+2,K+1)
D I=H(I,J,K+I )*H(I,J,K+1 )*FORW(A,B,C,DY)

ENDIF

IF (J.EQ.JMAX) THEN
A=H(I,J-2,K+I)
B=H(I,J-I,K+1)
C=H(I,J,K+1)
D 1=H(I,J,K+1)*H(I,J,K+I)*BACK(A,B,C,DY)

ENDIF

IF (J.GT.0 .AND. J.LT.JMAX) THEN
A=H(I,J-I,K+I)
B: =H(I,J+I,K+1)

DI=H(I,J,K+)*H(I,J,K+)*CENT(A,B,DY)
ENDIF

V( IJ,K+I )=(H0*H0*H0*D1/Cl)-L2D(TIME+DT)*Y(J)/VC

C ---
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C ADD CORNER CONDITIONS
C----

IF (J.EQ.0.OR.J.EQ.JMAX)THEN
V(I,J,K+l)=0.0

ENDIF

2204 CONTINUE

C-------------- ----------------------

C COMPUTE PRESSURE VALUES EXCEPT AT I=O,IMAX
C--------------------------------------

DO 2207 I= I,IMAX- 
DO 2207 J=0,JMAX

P(I,J,K+I)=H(I,J,K+ )+PO(TIME+DT)-1.00

IF (P(I,J,K+1).LT.PO(TIME+DT)) THEN
WRITE (*,*) 'ALARM....Po is too low: soln not possible'

WRITE(*,*) 'AT (I,J,K)',I,J,CTR
STOP

ENDIF

2207 CONTINUE

C---------------------------------------

C SWAP ARRAYS
C--------------------------------------

DO 2205 S l=0,KMAX 
DO 2205 S2=0,JMAX
DO 2205 S3=0,IMAX

U(S3,S2,S 1)=IJ(S3,S2,S 1 +KMAX+ )
V(S3,S2,S 1)=V(S3,S2,S +KMAXl+l)
H(S3,S2,S 1)=H(S3,S2,S +KMAXl+1)
P(S3,S2,S 1)=P(S3,S2,S 1+KMAXl+l)

2205 CONTINUE

C-------------------------------

C OUTPUT RESULTS
C------------------------------

IF (OUT_SCR.EQ. 1) THEN
WRITE(*,*) 'CTR= ',CTR

C WRITE (*,*) 'P VALUES
C DO 2400 J=JMAX,0,-WR_STEP
C WRITE(*,*) (P(I,3,K+l)*(HO/ALPHA)/98.0, I=0,IMAX,WRSTEP)
C WRITE(*,*) (H(I,J,K+I), I=0,IMAX,WRSTEP)
2400 CONTINUE,

WRITE (*,*) 'U VELOCITIES'
do 2401 j=jmax,0,-1
WRITE (*,*) (U(I,J,K+I) ,I=0,IMAX,WR_STEP)

2401 CONTINUE
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C WRITE(*,*) ' V VELOCITIES '
C DO 2402 J=JMAX,0,-1
C WRITE(*,*) (V(I,J,K+1), I=0,IMAX,2)
C 2402 CONTINUE

ENDIF

3000 CONTINUE

IF (OUTMAT.EQ.1) THEN
J=6
DO 2404 KUO=I,KMAX1,KSTEP
WRITE (*,*) KUO,CTR,TIME
WRITE(2,*) (H(I,J,KUO+I)*H0/(1.OE-6), I=0,IMAX,2)
WRITE(5,*) (P(I,J,KUO+l)*(HO/ALPHA)/98.00, I=0,IMAX,2)
WRITE(3,*) (U(I,J,KUO+1),I=0,IMAX,2)
WRITE(4,*) (V(I,J,KUO+I),I=0,IMAX,2)

2404 CONTINUE
ENDIF

IF (OUTBIN.EQ.1.AND.TIME.GT.AVS_START) THEN
IF (AVS_CLOCK.GE.AVS_CLK_STEP) THEN

AVS_CLOCK=0.0

write (8,*) TIME

DO 2405 Kl=O,KMAXI,AVS_STEP
AVS_CTR=AVS_CTR+l

c write (*,*) 'AVS-CTR',AVS_CTR
DO 2405 J1=0,JMAX,AVS_STP
DO 2405 I1=0,IMAX,AVSSTP

UA=U(I1,J1,K1)
VA=V(II,J1,K1)

HA=H(I1,J ,Kl)*H0/(I.OE-6)
PA=P(I1,J1,K1)*(H0/ALPHA)/98.00

nrec=nrec+ l
write(7,rec=nrec)UA
nrec=nrec+ 
write(7,rec=nrec)VA
nrec=nrec+ 
write(7,rec=nrec)HA
nrec=nrec+l 
write(7,rec=nrec)PA

2405 CONTINUE
ENDIF
ENDIF

3001 CONTINUE

WRITE (8,*) '# OF XxY POINTS',IMAX/(AVS_STP)+1
WRITE (8,*) '# OF TIME STEPS',AVS_CTR

CLOSE(2)
CLOSE(3)
CLOSE(4)
END
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C----------------------------- - ---- - ------- - -- - ----

C BEGIN FUNCTION DEFINITIONS
C---------------------------------- -----

C---------------------------------------
C DIFF. FUNCTIONS

C
C CONVENTION: THE LOWEST INDEX IS A
C THEN B AND THEN C
C---------------------- ---------------

REAL FUNCTION CENT(A,B,DELTA)
CENT = (B-A)/(2.0*DELTA)
RETURN
END

REAL FUNCTION FORW(A,B,C,DELTA)
FORW = (-3.0*A + 4.0*B - C) / (2.0*DELTA)
RETURN
END

REAL FUNCTION BACK(A,B,C,DELTA)
BACK=( 3.0*C -4.0*B + A) / (2.0*DELTA)
RETURN
END

REAL FUNCTION EULER(EU1,EU2,EU3)
EULER= EU1+EU2*EU3
RETURN
END

REAL FUNCTION ADAMS(CA1,CA2,CA3,CA4)
ADAMS=CA1+(CA4/2.0)*(3.0*CA2-CA3)
RETURN
END

C---------------------------------------

C BEGIN OTHER FUNCTIONS
C------------ --------------------------

REAL FUNCTION L1D(TIME)
W=0.2*2.0*3.1416

c L1D=0.5*(75.OE-6)*0.2*0.33*0.5*W*SIN(W*TIME)*
c + (0.5*(1.01-COS(W*TIME)))**(-0.66)

L 1D=(75.0E-6)*W*0. l*SIN(W*TIME)
C L1D=O.O
C WRITE (*,*) 'LID',L1D

RETURN
END

REAL FUNCTION L2D(TIME)
W=0.2*2.0*3.1416

c L2D=0.5*(75.OE-6)*0.2*0.33*0.5*W*SIN(W*TIME)*
c + (0.5*(1.01-COS(W*TIME)))**(-0.66)
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L2D=(75.0E-6)*0.1 *W*SIN(W*TIME)
C L2D=0.0
C WRITE(*,*) 'L2D',L2D

RETURN
END

REAL FUNCTION L(TIME)
W=0.2*2.0*3.1416

c L1=0.5*(75.OE- 6)*(1.00+0.2*(0.5*(1.01-COS(W*TIME)))**(0.33))
L1=(75.0E-6)*(1.00+0.1 *(1.0-COS(W*TIME)))

c L1=(75.0E-6)*0.5
C WRITE(*,*) 'L1',L1

RETURN
END

REAL FUNCTION L2(TIME)
W=0.2*2.0*3.1416

c L2=0.5*(75.0E-6)*(1.00+0.2*(0.5*(1.01-COS(W*TIME)))**(0.33))
L2=(75.OE-6)*(1.00+0.1*(1.0-COS(W*TIME)))

C L2=(75.0E-6)*0.5
C WRITE (*,*) 'L2',L2

RETURN
END

REAL FUNCTION PO(TIME)
REAL FACTOR,ALPHA,HO
HO=3.5E-6
ALPHA=1.2959E-10
FACTOR=98.0*ALPHA/HO
PO=1.0 ! 1 cm of water

c PO=PO*FACTOR
PO=-PO*(FACTOR)*SIN(0.2*2.0*3.141*TIME)

C THE AVLEOLAR PRESSURE IS OUT OF PHASE BY 180 DEG, THEREF THE - SIGN
RETURN
END

REAL FUNCTION F(C,D)
F=4.0
RETURN
END

REAL FUNCTION MU(DUMMY)

REAL MUR,MUP,HD,D,UUC,DELT,SAM1,SAM2,DM
Ho=3.5E-6
ALPHA=1.2959E-10
d=DUMMY
d=d*Ho ! change to real sheet ht
d=d/0.000001 ! convert to micron
Hd=.45
uuc=2.71828**(0.48+2.35*Hd)
delt=2.03-2.0*Hd
Mup=1.7
Dm=2.7
SAM 1=(1.0 - (1.0-mup/uuc)*((1-2.0*delt/d)**(4.0)))**(-1.0)

SAM2=(1.0-(Dm/d)**(4.0))**(- 1.0)
mur=SAMI *SAM2 ! Mu relative
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MU=mup*mur ! in Centippoise. Mup=1.7 cP

MU=MU/1000.00 ! in PA-SEC
RETURN
END
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Appendix B

Capillary-matrix Model

B.1 Segment geometry and segment-volume approximations

The volume of a given junction and the neighbouring 4 half-segments needs to be approx-

imated in order to determine an equivalent volume compliance, 3, and VO. This is done as

follows.

x

z

Figure 2.1: Volume approximation for half-segment

I

V = tcfx(z)y(z)dz (

0

V = [al1b2 + a2 b + 2 (alb 1 + a 2b2) ] (For one segment) (

but b =h 1, b2=h5 (]

Vegment = [h (a2 + 2al) + h2 (a + 2a2)] (

al=(Lp-d)/2, a2=Lp/2 (d=post diameter, Lp=spacing between center of posts) (]

also, h=ho+a(P-Po) (i=l or 2) (]

Using the above equations, we may derive the equavalent Volume-compliance law

B.1)

B.2)

B.3)

B.4)

B.5)

B.6)

122



4 4
d d

VCV = Aho + IH (2L - d) ho + AP (2L -d)a+aA (B.7)

j 1 _j = 1 -j=l =

(*Subscripts 'j'=1,2,3,4 represent the 4 directions (North, East, South & West) around

a junction)

B.2 MATLAB Code

The MATLAB code developed for the Capillary matrix model is structured to utilize sev-

eral user-defined subroutines; further, it was completely vectorized (all operations are per-

formed by manipulation of quantities represented in matrix form, as opposed to

manipulalation of each quantities individually; for e.g., the task of computing the resis-

tance of all the capillaries in the network is performed in one step as opposed to finding

the resistance of each of the individual capillaries in several steps). The figure below

describes the structure of the subroutines:

Compute the state

matrices (A(t), B(t) )

egrator)

iameter

non-lin

viscosity

C. profile

Figure B.1: Schematic of MATLAB Code subroutine layout

The following MATLAB code was used in order to make the computations.
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prog2.m

% MAIN PROGRAM THAT INITIATES THE TUBE MODEL clear all global

global ALPHA_RAND alphal X_X Y_Y alpha_save RE RW RN RS hbsave pin pout horand w hnoml

imax=4; jmax=4; ijmax=imax*jmax;

RAN=[1.1 1.0 0.1 0.2 1.2 1.1 0.05 0.3 0.3 0.1 0.9 1.0 0.25 0.11 1.2 0.8];

% Multiply random by p/50 where p=percent variation)

ask=input('Alpha random ? =yes, 25=25%, 50=50%, 100=max, 2=no')

if(ask=l) alphal=normmd(.127, 0.50*.127,4,4); ALPHA_RAND=(alphal-0.127*ones(4,4)) ./ (.127); elseif (ask=25)
load alpha25.dat alphal=alpha25; ALPHA_RAND=(alphal-0.127*ones(4,4)) ./(.127); elseif(ask=50) load alpha5O.dat
alphal=alpha5O; ALPHA_RAND=(alphal-0.127*ones(4,4)) ./(.127); elseif (ask=100) load alpha_max_corr.dat
alphal=alpha_max_corr; ALPHA_RAND=(alphal-0.127*ones(4,4)) ./(.127); else alphal=0.127 .* ones(4);
ALPHA_RAND=zeros(4); end

ask=input('Ho Rand ? l=yes, 15=15%, 30=30%,100=max, 2=no') if(ask=l) hnoml=normrnd(3.5,0.3*3.5,4,4);
%ho_rand=(rand(4)-0.5).*(40/50); foril=1:4, forjl=l:4, if(hnoml(iljl)<= 2.7) hnoml(il,jl)=2.75; end if
(hnoml(iljl) >= 6.55) hnoml(iljl)=6.55 end end end ho_rand=(hnoml-3.5.*ones(4)) ./(3.5);

elseif (ask=15) load hol5.dat hnoml=hol5; ho_rand=(hnoml-3.5.*ones(4)) ./(3.5); elseif (ask=30) load ho30.dat
hnoml=ho30; ho_rand=(hnoml-3.5.*ones(4)) J (3.5); elseif (ask=100) load ho_max_corr.dat hnoml=homax_corr;
ho_rand=(hnoml-3.5.*ones(4)) ./ (3.5); else hnoml=3.5.*ones(4,4); ho_rand=zeros(4); end

ALPHA_RAND,alphal ho_rand, hnoml

%ASSIGN TIME scale %w=0.2*2.0*3.1416; w=--0.0; dt=0.1; tO=0.0; tfinal=0.15;

pin=10.0; pout=9.5;

% ASSIGN GRID X_X=[-0.5:1/(imax+2-1):0.5]'; YY=[-0.5:1/(jmax+2-1):0.5]';

% Assign Initial Condition

for i=l:imax, forj=l:jmax, V(i,j)=(pin+pout)12; %V(i,j)=0.0; end end end

% CREATE LINEAR Initial VO Array for j=l :jmax, for i=l:imax, VO=[VO; V(ij)]; end end % END OF INITIAL CONDITION
tol=7.OE-7; tic [t,yl]=ode45('state',tO,tfinal,VO,tol,l); toc

% Done integration. Now Convert into a 6x6 array

yl=yl';
% RECONSTRUCT the BOUNDARY CONDITION IN ORDER TO % RUN THRU THE ENTIRE BC kmax=length(t);

sst=20;

for k= :kmax/sst:kmax

time=t(k, 1); VV=bc(pin,pout,X_X,imaxjmax,time,w);

for i=l:imax+2, forj=l:jmax+2,

if (i=l) P(ij)=VV(i,j); end
if (i=imax+2) P(i,j)=VV(i,j); end

if (j=l) P(ij)=VV(i,j); end
if (j=jmax+2) P(i,j)=VV(i,j); end

if (i>l & i<imax+2 &j>l & j<jmax+2) m=i-1+(j-2)*imax; P(ij)=yl(m,k); end

end end Pf=[Pf; P]; end

save Pf.dat Pf -ascii save P.dat P -ascii save time.dat t -ascii save alphasave.dat alphasave -ascii save hb_save.dat hb_save -ascii
save horand.dat horand -ascii

% FINISHED CREATING THE ENTIRE TIME HISTORY % NOW CREATE THE MOVIE

!zwrite adhadwal < done stop

ax=[1 6 1 6 0 2.0]'; axis(ax)

i=O; Mo=moviein(kmax/sst/3); for k=1:3*6:length(Pf), i=i+l; tmp=Pf(k:k+5,:); mesh (tmp) Mo(:,i)=getframe; end
!zwrite adhadwal < done

state.m

function ydot=state(t,yl) global alphal ALPHA_RAND X_X Y_Y alphasave RE RW RN RS hb_save pin pout ho_rand w
hnoml

% DETERMINE THE STATE MATRICES

imax=4; jmax=4; ijmax=imax*jmax;
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onn=ones(imax); oonn=ones(imax+2);

% PUT w in prog2.m %w=0.2*2.0*3.1416; w=0.0;

vmean=3.5; vtidal=1.0; kk=vtidal/(2.0*vmean); %vol=vmean-(vtidal/2).* cos(w .* t); lo=75; kkk=(1-kk)A(1/3); L=(lo/kkk) .* (1 -
kk .* cos(w .* t)).^(1/3); % Include the factor (1-kk) since we want L=75 microns at w=0 DLdt=(lo/kkk.*3).*((1 - kk .* cos(w .*
t)).^ (-2/3)) .* kk .* w.* sin(w .* t);

dx=(X_X(2)-XX(l))*L; % LENGTH OF A SEGMENT Ddxdt=(X_X(2)-X_X(1)).*DLdt;

% ASSIGN VARIABLES & DERIVATIVES %alpha=(onn + ALPHA_RAND).* 0.127; %alpha=0.127 .* onn; alpha=alphal;

do=7.5 .* onn; dok=7.5 .* oonn;

ddo=(dx/l 5) .* (do); Dddodt=(X_X(2)-X_X(1)) .* (do 1 15) .* DLdt; ddok=(dx/15) .* (dok);

%hnom=(onn+ho_rand).*3.5; %hnom=(onn).*3.5; hnom=hnoml;

dnom=do; ho=((hnom.*dnom.*dnom)./ (ddo .* ddo)) .* onn; Dhodt=(( -2*(hnom.*dnom.*dnom) .* (Dddodt)) ./ (ddo .* ddo .*
ddo)) .* onn;

%ho=hnom .* onn; %Dalphadt=0.0 .* onn: LATER.

Po=-sin(w*t) .* onn; DPodt= -w .* cos(w*t) .* onn;

Ac=(dx.*onn-ddo) .* (dx.*onn-ddo) .* onn; %DAcdt=(2.0*(1.0+0.2*(1-cos(w*t)))*0.2*w*sin(w*t)*dx*dx) .* onn
DAcdt=2.*(dx.*onn - ddo).*(Ddxdt.*onn - Dddodt); % do is the nominal post diameter. 15 is the 15 micron nominal spacing

V=reshape(yl,4,4);

% Assign Alpha and are Ac(ij) for sheet % then recompute Alpha at the center

k_c=l.0 .* onn; k_e=1.0 .* onn; k_w=l.0 .* onn; k_n=1.0 .* onn; k_s=1.0 .* onn;

alpha_c = alpha .* k_c; alpha_e = alpha .* k_e; alpha.w = alpha .* k_w; alpha_n = alpha .* k_n; alphas = alpha .* k_s;
alpha=alpha_c+alpha_e+alpha_w+alpha_n+alphas;

h=ho+alpha_c .* (V-Po);

onnb=ones(imax+2); alphab_c=l.0*.127 .* onnb; alphab_e=l.0*. 127 .* onnb; alphab_w=1.0*.127 .* onnb; alphab_n=1.0*.127 .*
onnb; alphabs=l.0*.127 .* onnb;

hob=3.5 .* onnb; Pob=-sin(w*t) .* onnb;

%alphab=alphab_c+alphab_e+alphab_w+alphab_n+alphab_s; alphab=alphab_c+alphab_e+alphab_w+alphab_n;

% Create *b for boundary value variables

%ASSIGN BOUNDARY CONDITIONS VV VV=bc(pin,pout,X_X,imaxjmax,tw);

% WAS .CHANGED BELOW. hb=hob+alphab_c .* (VV-Pob); hb=hob+alphab_c .* (VV-Pob);

% END BOUNDARY CONDITIONS % COMPUTE RESISTANCES: CREATE 6x6 ARRAY OF h FIRST (NOT 4x4) % CALL
THIS 6x6 ARRAYhk. Same for alphak_c, alphak_e,w,n,s strip=[l 1 1 ; 0 0 0 0 1; 1 0000 1; 1 0000 1;1 0 0 0 0 1; 1
I 11111];

hkl=zeros(imax+2); hkl(2:imax+1,2:jmax+l)=h; hk=hb.*strip+hkl;

alcl=zeros(imax+2); alcl(2:imax+1,2:jmax+l)=alpha_c; alphak_c=strip .* alphab_c + alcd;

alel=zeros(imax+2); alel(2:imax+1,2:jmax+ 1)=alpha_e; alphak_e=strip .* alphabe + alel;

alwl=zeros(imax+2); alwl(2:imax+1,2:jmax+l)=alpha_w; alphak_w=strip .* alphab_w + alwl;

alnl=zeros(imax+2); alnl(2:imax+1,2:jmax+l)=alpha_n; alphakn--strip .* alphabn + alnl;

alsl=zeros(imax+2); alsl(2:imax+1,2:jmax+l)=alpha_s; alphaks=strip .* alphabs + alsl;

all=zeros(imax+2); all(2:imax+1,2:jmax+ )=alpha; alphak=strip .* alphab + all;

Vkl=zeros(imax+2); Vkl(2:imax+l,2:jmax+l)=V; Vk=strip .* VV + Vkl;

Pol=zeros(imax+2); Pol(2:imax+l,2:jmax+l)=Po; Pok=strip .* Pob + Pol;

hol=zeros(imax+2); hol(2:imax+1,2:jmax+l)=ho; hok=strip .* hob + hol;

hk_c=hok+alphak_c .* (Vk-Pok); hkn=hok+alphak_n .* (Vk-Pok); hk_s=hok+alphaks .* (Vk-Pok); hk_e=hok+alphake .*
(Vk-Pok); hk_w=hok+alphakw .* (Vk-Pok);

alpha.save=alphak; hb_save=hk_c;

RE-zeros(4); RW=zeros(4); RN=zeros(4); RS=zeros(4); [RE,RW,RN,RS]=RR(hk_c,hk_e,hk_w,hk_n,hks,ddok,dx);

%RE(2,2)=1E2; %RW(3,2)=100; %RN(2,2)=1E2; %RS(2,3)=lE2;

% NOW DEFINE BETA, DBETADT, VO, DVODT: THE NEW STUFF %bet=Ac .* alpha; %C=bet; %Dbetdt=DAcdt .* alpha +
Ac .* Dalphadt; %Dvodt=DAcdt .* ho + Ac .* Dhodt

diam=ddo .* onn; leng=dx .* onn;

betc=Ac .* alpha_c; bet_e=(pi/8) .* (2 .* diam .* leng - diam .* diam) .* alpha_e; bet_w=(pi/8) .* (2 .* diam .* leng - diam .*
diam) .* alpha_w; betn=(pi/8) .* (2 .* diam .* leng - diam .* diam) .* alphan; bet_s=(pi/8) .* (2 .* diam .* leng - diam .* diam)
.* alphas; bet=bet_c + bet_e + bet_w + bet_n + bet_s; C=bet;

dl-diam; Ddl=Dddodt; dxl=leng; Ddxl=Ddxdt .* onn; Dalphadt=O.0 .* onn; Dbetf=(2.*dl.*dxl.*Dalphadt -
2.0.*dl.*alpha_c.*Ddl - dl.*dl .*Dalphadt);
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Dbet_c=DAcdt .* alpha_c + Ac .* Dalphadt; Dbet_e=(pi/8).*(Dbetf+2.*dl.*alpha_e.*Ddxl + 2.0.*dxl.*alpha_e.*Dd I);
Dbet_w=(pi/8).*(Dbetf+2.*dl.*alpha_w.*DdxI + 2.0.*dxl.*alpha_w.*Ddl); Dbetn=(pi/8).*(Dbetf+2.*dl.*alpha_n.*Ddxl +
2.0.*dxl.*alpha_n.*Ddl); Dbet_s=(pi/8).*(Dbetf+2.*dl.*alphas.*DdxI + 2.0.*dxl.*alphas.*Ddl);
Dbetdt=Dbet_c+Dbete+Dbet_w+Dbet_n+Dbet_s;

p8=pi/8; Dvodt_c=-DAcdt .* ho + Ac .* Dhodt; Dvodt_e=p8.*((2.*dxl.*ho-2.*ho.*dl).*Ddl+(2.*dl.*dxl-
dl.*dl).*Dhodt+2.*dl.*ho.*Ddxl); Dvodtw=p8.*((2.*dxl.*ho-2.*ho.*dl).*Ddl+(2.*dl.*dxl-
d .*d ).*Dhodt+2.*d 1 .*ho.*Ddxl); Dvodt_n=p8.*((2.*dxl.*ho-2.*ho.*dl).*Ddl+(2.*d1.*dx I -
dl.*dl).*Dhodt+2.*dl.*ho.*Ddxl); Dvodt_s=p8.*((2.*dxl.*ho-2.*ho.*dl).*Ddl+(2.*dl.*dxl-
d 1.*d1).*Dhodt+2.*d1.*ho.*Ddxl); Dvodt=Dvodt_c+Dvodt_e+Dvodt_w+Dvodt_n+Dvodt s;

% Assign Ak(i,k) for i=l to 4

al=-((l JRE) +(1 J RN) + (1 J RS) +(1 ./ RW) + Dbetdt); a2=1 ./ RW; a3=1 ./RE; a4=1 ./RS; a5=1 ./ RN; a6=zeros(imax);

b=zeros(imax);

iii=[l:imax]'; jjj=1 :jmax]'; ioi=ones(l,imax); joj=ones(l ,jmax);

a2(lj j)=0.0 .* ioi; a6(1,jjj)=l.0 .* joj; b(l,1:jmax)=(l J RW(1,1:jmax)) .* VV(1,2:jmax+l);

a3(imaxjjj)=--0.0 .* ioi; a6(imax,jjj)=l.0 .*joj; b(imax,l:jmax)=(l ./ RE(imax,l:jmax)) .* VV(imax+2,2:jmax+1);

a4(iii,l)--.0 .* ioi'; a6(iii,1)=l.0 .* ioi'; b(l:imax,l)=(l ./ RS(1:imax,l)) .* VV(2:imax+l1,);

a5(iiijmax)=--0.0 .* ioi'; a6(iiijmax)=1.0 .* ioi'; b(l:imaxjmax)=( 1 J RN(1:imaxjmax)) .* VV(2:imax+1jmax+2);

i=l;j=jmax; b(1,jmax)=(I1/RN(jmax))*VV(2jmax+2)+(1/RW(1jmax))*VV(1jmax+ );

i=imax; j=jmax; b(ij)=(1/RN(i,j))*W(imax+ ljmax+2)+(1/REi))*VV(imax+2jmax+l);

i=imax; j= I1; b(ij)=(I/RE(ij))*VV(imax+2,2)+(1/RS(ij))*VV(imax+ 1,1 );

i=l;j=l; b(ij)=(I/RW(ij))*VV(1,2)+(1/RS(ij))*VV(2,1);
temp=Po .* Dbetdt + bet .* DPodt - Dvodt + b .* a6;

bb=reshape(temp,imax*jmax, ); CC=reshape(C,imax*jmax,l); aal=reshape(al,imax*jmax,1); aa2=reshape(a2,imax*jmax,1);
aa3=reshape(a3,imax*jmax, 1); aa4-reshape(a4,imax*jmax, 1); aa5=reshape(a5,imax*jmax, 1);

MP=diag(l ./CC); aa2=aa2(2:ijmax, 1); aa3=aa3(1:ijmax- 1,); aa4=aa4(imax+l1 :ijmax,1); aa5=aa5(1:ijmax-imax,1); B=bb;

%THESE FORM THE DIAGONALS of the A matrix AT1=diag(aal); AT2=diag(aa2,-1); AT3=diag(aa3,1); AT4=diag(aa4,-
4); AT5=diag(aa5,4); A=ATI+AT2+AT3+AT4+AT5; %END FORMING A 16x16 A MATRIX

AA=MP*A; BB=MP*B;

ydot=AA*yl+BB;

RR.m

function [RE,RW,RN,RS]=RR(hk_c,hk_e,hk_w,hk_n,hk_s,ddok,dx);

%le=ddok=diameter of post %I=dx-ddo=hor spacing between the posts at the ctr %dxspacing between centers of posts

le=ddok; l=dx-ddok;

a=dx; b=hk_c; dh_c--hyd(a,b);

a=0.5 .* (dx+l); b=hk_e; dh_e=hyd(a,b);

a=0.5 .*(dx+l); b=hk_w; dhw=hyd(a,b);

a=0.5 .*(dx+l); b=hkn; dh_n=hyd(a,b);

a=0.5 .* (dx+l); b=hk_s; dh_s=hyd(a,b);

%xx=[0:dx/8.0:dx/2]; xx=[0:le/4.0:le]; %dh3 is a 4x4 matrix

dh3_e(1:4,1:4)=hyd(1(2:5,2:5),0.5*(hk_e(2:5,2:5)+hk_w(3:6,2:5)));
dh3_w(1:4,1:4)=hyd(1(2:5,2:5),0.5*(hk_w(2:5,2:5)+hke(1:4,2:5)));
dh3_n(1:4,1:4)=hyd(1(2:5,2:5),0.5*(hk_n(2:5,2:5)+hk_s(2:5,3:6)));
dh3_s(1:4,1:4)=hyd(1(2:5,2:5),0.5*(hk_s(2:5,2:5)+hk_n(2:5,1:4)));

func_c=integrand(dh_c); func_e=integrand(dh_e); func_w=integrand(dh_w); func_n=integrand(dh_n); func_s=integrand(dh_s);
func3_e=integrand(dh3_e); func3_w=integrand(dh3_w); func3_n=integrand(dh3_n); func3_s=integrand(dh3_s);

RC=integrand2(hk_c(2:5,2:5));

% CHECKED FOR VALIDITY WITH THE FOR_NEXT SCHEME ul=reshape(func_c(2:5,2:5),1,16);
u2=reshape(func_e(2:5,2:5),1,16); u3=reshape(func3_e(l:4,1:4),1,16); u4=reshape(func_w(3:6,2:5),1,16);
u5=reshape(func_c(3:6,2:5),1,16); fe=[ul' u2' u3' u4' u5']; %size(xx') %size(fe') RE=trapz(xx',fe');
RE--reshape(RE,4,4)+RC;

u l =reshape(func_c(2:5,2:5), 1,16); u2=reshape(func_w(2:5,2:5),1,16); u3=reshape(func3_w(1:4,1:4),1,16);
u4=reshape(func_e(1:4,2:5),1,16); u5=reshape(func_c(1:4,2:5),1,16); fe=[ul' u2' u3' u4' u5']; RW=trapz(xx',fe');
RW=reshape(RW,4,4)+RC;
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ul=reshape(func_c(2:5,2:5),1,16); u2=reshape(func_n(2:5,2:5),1,16); u3=reshape(func3_n(1:4,1:4),1,16);
u4=reshape(func_s(2:5,3:6),1,16); u5=reshape(func_c(2:5,3:6),1,16); fe=[ul' u2' u3' u4' u5']; RN=trapz(xx',fe');
RN=reshape(RN,4,4)+RC;

ul=reshape(func_c(2:5,2:5), 1,16); u2=reshape(funcs(2:5,2:5),1,16); u3=reshape(func3_s( 1:4,1:4),1,16);
u4-=reshape(func_n(2:5,1:4),1,16); u5=reshape(func_c(2:5,1:4),1,16); fe=[ul' u2' u3' u4' u5']; RS=trapz(xx',fe');
RS=reshape(RS,4,4)+RC;

bc.m

function WW=bc(pin,pout,X_X,imaxjmax,t,w); VV=zeros(imax+2);

dd=X_X';
%wp=5*w; wp=0.O; fac=1+(0.05/2)*sin(wp*t);

% BOUNDARY 4 %VV(I,:)=fac.*linear((pin+pout)/2,pin,d_d); VV(l,:)=linear(pin,pin,d_d);

% BOUNDARY 2 %VV(imax+2,:)=fac.*linear(pout,(pin+pout)/2,d_d); VV(imax+2,:)=linear(pout,pout.d_d);

d_d=X_X; %BOUNDARY 1 %VV(:,l)=fac.*linear(0.5*(pin+pout),pout,d_d); VV(:,l)=linear(pin,pout,d_d);

% BOUNDARY 3 %VV(:,jmax+2)=fac.*linear(pin,0.5*(pout+pin),d d); VV(:jmax+2)=linear(pin,pout,d_d);

WW=VV;

2.2.1 MATLAB codes for data processing and visualization.

Program to demonstrate the dynamic results: flowplot.m

clear all global !cv global DH_CT DH_ET DH_WT DH_NT DH_ST DH3_ET DH3_WT DH3_ST DH3_NT

rc=input('R Center ? l=yes, 2=no') block=input('Blocked ? I=yes, 2=no') imax=4; jmax-4; onn=ones(imax);
oonn=ones(imax+2);

ppat=path; path(ppat,'/mit/matlab/Matlab4.2/toolbox/contrib/graphics/plotyy');

X_X=[-0.5: 1/(imax+2-1):0.5]';

xax=X_X; yay=X_X; mes=meshdom(xax,yay);

xax=mes; yay=mes';

load Pfv.dat Pf=Pfv; load Pv.dat; P=Pv; load tv.dat; ti=tv; load alphav.dat load hov.dat

alpha=alphav; alp=alpha./4; alp(2:5,2:5)=alp(2:5,2:5) .* 4 ./ 5; alpha=alp;

hnom=(onn+hov).*3.5; hnom6=3.5 .*oonn; hnom6(2:5,2:5)=hnom; alpha, hnom,hnom6

sst=20; kmax=length(ti);

% -------- % SAMPLE THE TIME VECTOR for i= :kmax/sst:kmax tt=ti(i); time=[time; tt]; end %--------

% For now, keep only one alpha, and not alpha_ec etc etc %alpha= 0.127 .* ones(imax+2);

w=0.2*2.0*3.1416; %w=0.0;

vmean=3.5; vtidal=1.0; kk=vtidal/(2.0*vmean); kkk=(l-kk)A(1/3);

lo=75;

do=7.5 .* onn; dok=7.5 .* oonn; dnom=do; dnom6=dok;
% START MAIN CYCLE HERE

i=O; for ii=7:6:length(Pf), i=i+l; t=time(i);

PP=Pf(ii:ii+5,:); Po=-sin(w*t) .* ones(6);

% COMPUTE TOTAL LENGTH OF SHEET, L, Po,Dpodt L=(lo/kkk) .* (1 - kk .* cos(w .* t)).A(1/3); DLdt=(lo/kkk.*3).*((1 -
kk .* cos(w .* t)).A (-2/3)) .* kk .* w .* sin(w .* t);

dx-(X_X(2)-X_X(l))*L; %LENGTH OF A SEGMENT Ddxdt=(X_X(2)-X_X(1)).*DLdt;

ddo=(dx/15) .* (do); Dddodt=(X_X(2)-X_X(1)) .* (dok ./15) .* DLdt; ddok=(dx/15) .* (dok);
ho=((hnom*dnom*dnom)./ (ddo .* ddo)) .* onn; %CHANGE TO 6x6 ho=((hnom6.*dnom6.*dnom6)./ (ddok .* ddok)) .*
ones(6);

Dalphadt=0.0 .* oonn; Dhodt=(( -2*(hnom6.*dnom6.*dnom6) .* (Dddodt)) ./ (ddok .* ddok .* ddok)) .* oonn;
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Ac=(dx.*oonn-ddok) .* (dx.*oonn-ddok) .* oonn; DAcdt=2.*(dx.*oonn - ddok).*(Ddxdt.*oonn - Dddodt); h=ho+ alpha .* (PP-
Po); hsave=[hsave; h];

%plot3(xax,yay,PP','+')

hk_c=h; hk_n=h; hk_s=h; hk_e=h; hk_w=h;

[RE,RW,RN,RS]=RRflow(hk_c,hk_e,hk_w,hkn,hk_s,ddok,dx,rc);

if (block=l) RE(2,2)=1E2; RW(3,2)=100; RN(2,2)=IE2; RS(2,3)=1E2; end

RET=[RET; RE]; RWT=[RWT; RW]; RNT=[RNT; RN]; RST=[RST; RS];

for j=2:5, for iii=2:5,

il=iii-l;jl=jj-l;
%QE(i ,j 1)=(PP(iiijj)-PP(iii+ ,jj))./ RE(i 1,j 1); %QW(i I,j I)=(PP(iiijj)-PP(iii-,jj))./ RW(il ,j 1); %QN(i I ,j 1)=(PP(iii,jj)-
PP(iii,jj+ 1))./ RN(i I,j 1); %QS(i I ,j 1)=(PP(iii,jj)-PP(iii,jj- 1))./ RS(i ,j 1);

QE(i I ,j 1 )=(PP(iii,jj)-PP(iii+ I ,jj))./ (RE(i I j )); QW(i I ,j 1)=(PP(iii,jj)-PP(iii-1 ,jj))./ (RW(i I ,j 1 )); QN(i ,j l)=(PP(iii,jj)-
PP(iii,jj+ 1))./ (RN(i 1 j I )); QS(i 1 ,j 1 )=(PP(iii,jj)-PP(iii,j- 1))./ (RS(il ,j 1));

end end

for jj=1:4, for iii=1:4,

ka=iii+(jj-l)*(imax); qe(ka,i)=QE(iiijj); qw(ka,i)=QW(iii,jj); qn(ka,i)=QN(iiijj); qs(kai)=QS(iiijj); re(kai)=RE(iii,jj);
rn(ka,i)=RN(iii,jj); hs(ka,i)=h(iii+l,jj+l); ps(ka,i)=PP(iii+ljj+l); end end

end

m2=[11 13 15 17 29 31 33 35 47 49 51 53 65 67 69 71]; m2p=[65 67 69 71 47 49 51 53 29 31 33 35 11 13 15 17];
tit=time(l: 19,1);

for i= 1:1:16 ii=m2p(i);

subplot(9,9,ii) plot(tit,ps(i,:)) set(gca,'FontName','times','FontSize',8,'LineWidth',2.5,'XTickLabels',1) uu=get(gca,'YLim');
ul=uu(1); u3=uu(2); u2=(ul+u3)/2; u=[ul u2 u3]; set(gca,'YTickMode','manual','YTick',u,'LineStyleOrder','--'); grid

subplot(9,9,ii+); plot(tit,qe(i,:)); set(gca,'FontName','times','FontSize',8,'XTickLabels',) grid

subplot(9,9,ii+9); plot(tit,qs(i,:)); set(gca,'FontName','times','FontSize',8,'XTickLabels',[) grid

if (ii>=ll & ii<=17) subplot(9,9,ii-9); plot(tit,-qn(i,:)); set(gca,'FontName','times','FontSize',8,'XTickLabels',l) grid end

end

forj=1:4:16, ii=m2p():; subplot(9,9,ii-1); plot(tit,-qw(j,:)); set(gca,'FontName','times','FontSize',8,'XTickLabels',0) grid end

aa=input('TEXT PLEASE','s'); [ml m2]=ginput(1)

text(ml,m2,aa,'FontName','times','FontSize',9,'FontWeight','bold') orient landscape

Program to "visualize" the capillary bed with flow rates iunder static conditions:

flowmean.m

clear all global !cv global DH_CT DH_ET DH_WT DH_NT DH_ST DH3_ET DH3_WT DH3_ST DH3_NT

rc=input('R Center ? l=yes, 2=no')

imax=4; jmax=4; onn=ones(imax); oonn=ones(imax+2);

ppat=path; path(ppat,'/mit/matlab/Matlab4.2/toolbox/contrib/graphics/plotyy');

X_X=[-0.5: /(imax+2-1):0.5]';

xax=X_X; yay=X_X; mes=meshdom(xax,yay);

xax=mes; yay=mes';

load Pfv.dat Pf=Pfv; load Pv.dat; P=Pv; load tv.dat; ti=tv; load alphav.dat load hov.dat

ask=input('Blocked=l open=2')

alpha=alphav; alp=alpha./4; alp(2:5,2:5)=alp(2:5,2:5) .* 4 ./5; alpha=alp;

hnom=(onn+hov).*3.5; hnom6=3.5 .*oonn; hnom6(2:5,2:5)=hnom; alpha, hnom,hnom6

sst=20; kmax=length(ti);

%--------------------------- % SAMPLE THE TIME VECTOR for i=l :kmax/sst:kmax tt=ti(i); time=[time; tt]; end %--------- -----

% For now, keep only one alpha, and not alpha_c etc etc %alpha= 0.127 .* ones(imax+2);

%w=0.2*2.0*3.1416; w=0.0;

vmean=3.5; vtidal= 1.0; kk=vtidal/(2.0*vmean); kkk=(l-kk)A(l/3);

lo=75;
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do=7.5 .* onn; dok=7.5 .* oonn; dnom=do; dnom6=dok;

% START MAIN CYCLE HERE

i=O; for ii=7:6:1ength(Pf), i=i+l; t=time(i);

PP=Pf(ii:ii+5,:); Po=-sin(w*t) .* ones(6);

% COMPUTE TOTAL LENGTH OF SHEET, L, Po,Dpodt L=(lo/kkk) .* (1 - kk .* cos(w .* t)).A(1/3); DLdt=(lo/kkk.*3).*((l -
kk .* cos(w .* t)).A (-2/3)) .* kk .* w .* sin(w .* t);

dx=(X_X(2)-X_X( I))*L; %LENGTH OF A SEGMENT Ddxdt=(X_X(2)-X_X(1)).*DLdt;

ddo=(dx/15) .* (do); Dddodt=(X_X(2)-X_X(l)) .* (dok ./ 15) .* DLdt; ddok=(dx/15) .* (dok);

ho=((hnom*dnom*dnom)./ (ddo .* ddo)) .* onn; %CHANGE TO 6x6 ho=((hnom6.*dnom6.*dnom6)./ (ddok .* ddok)) .*
ones(6);

Dalphadt=0.0 .* oonn; Dhodt=(( -2*(hnom6.*dnom6.*dnom6) .* (Dddodt)) ./ (ddok .* ddok .* ddok)) .* oonn;

Ac=(dx.*oonn-ddok) .* (dx.*oonn-ddok) .* oonn; DAcdt=2.*(dx.*oonn - ddok).*(Ddxdt.*oonn - Dddodt); h=ho+ alpha .* (PP-
Po); hsave=[hsave; h];

%plot3(xax,yay,PP','+')

hkc=h; hk_n=h; hk_s=h; hk_e=h; hk_w=h;

[RE,RW,RN,RS]=RRflow(hk_c,hk_e,hk_w,hk_n,hk_s,ddok,dx,rc);

if (ask=l) RE(2,2)=1E2; RW(3,2)=100; RN(2,2)=1E2; RS(2,3)=1E2; end

RET=[RET; RE]; RWT=[RWT; RW]; RNT=[RNT; RN]; RST=[RST; RS];

forjj=2:5, for iii=2:5, il=iii-l; jl=jj-l; QE(iljl)=(PP(iiijj)-PP(iii+ljj))J (RE(il,jl)); QW(iljl)=(PP(iii,ij)-PP(iii-l,jj))./
(RW(i l ,j l)); QN(il,j 1l)=(PP(iiijj)-PP(iiijj+l))./(RN(i l j 1 )); QS(ilj 1 j l)=(PP(iiijj)-PP(iii--l))./(RS(i 1,j 1));
DPE(i 1,jl)=(PP(iiijj)-PP(iii+ljj)); DPW(ilj l)=(PP(iii,j)-PP(iii-l,jj)); DPN(i 1,j 1)=(PP(iii,jj)-PP(iii,jj+ 1));
DPS(i 1 ,j 1 )=(PP(iiijj)-PP(iii,jj- 1)); end end

for jj=l:4, for iii=l:4,

ka=iii+(jj- )*(imax);

qe(ka,i)=QE(iiijj); qw(kai)-QW(iii,jj); qn(ka,i)=QN(iii,jj); qs(ka,i)=QS(iii,jj);
qc(ka,i)=QE(iiijj)+QW+QN(j)+QN(iii jj)+QS(iiijj);

re(ka,i)=RE(iiijj); m(ka,i)=RN(iiijj); hs(kai)=h(iii+ljj+l); ps(ka,i)=PP(iii+ljj+l);

dps(ka,i)=DPS(iii); dpn(ka,i)=DPN(iii,jj); dpe(ka,i)=DPE(iii,jj); dpw(ka,i)=DPW(iiijj);

end end

end

m2=[11 13 15 17 29 31 33 35 47 49 51 53 65 67 69 71]; tit=time(l:19,1);

for jj=l:4, for ii=1:4,

k=ii+(ij-1)*4;

hm(ii,jj)=mean(hs(k,:)); pm(iijj)=mean(ps(k,:)); qem(ii,jj)=mean(qe(k,:)); qwm(ii,jj)=mean(qw(k,:)); qnm(ii,jj)=mean(qn(k,:));
qsm(iijj)=mean(qs(k,:)); qcm(iijj)=mean(qc(k,:));

end end

H=[]; for j=1:4 for i=1:4 al=abs(qwm(ij)); a3=abs(qnm(i,j)); a4=abs(qem(i,j)); a5=abs(qsm(i,j)); a6=0000.00; a2=mean([al a3
a4 aS]);

%al=al/abs(al); %a2=a2/abs(a2); %a3=a3/abs(a3); %a4=a4/abs(a4); %a5=a5/abs(a5); %a6=0.0;
%al=pm(i,j); %a3=pm(i,j); %a4=al; %a5=al; %a6=4.2; %a2=pm(i,j);

B=[alala2a2 alala2a2 a6a6a3a3 a6a6a3a3];ifi=-4B=[al ala2a2a4a4 alala2a2a4a4 a6a6a3a3a6a6
a6a6 a3a3a6a6];endifj=--4B=[a6a6a5a5 a6a6a5a5 alala2a2 alala2a2 a6a6a3a3 a6a6a3a3];if i--4
B=[a6 a6 a5 a5 a6a6 a6a6a5a5 a6a6 alala2a2a4 a4 alala2a2a4a4 a6 a6a3a3a6 a6 a6 a6a3a3a6 a6];
end end M=[ M B]; end H= [ M; H]; M=[] end x22=1:18; y2 2=1:18; x11--=0:.4:20; y11=0:.4 :2 0; [X1,Y1]=meshgrid(xll ,yll);
ZI =interp2(x22,y22,H,X I1,Yl,'linear');

%subplot(2, 1,1)

figure(l) 11=0:1/17:1; pcolor(ll,ll,H); shading interp colormap(hot(128)) set(gca,'FontName','times','FontSize',10)
set(gca,'XTick',0,'YTick',[]) mm=get(colorbar,'Ylim'); ma=mm(2); colorbar set(colorbar,'FontName','times','Fon-
tSize',10,'Ylim',[0; ma])

nn=length(Z1)

%subplot(2,1,2) %surfl(ZI) %shading interp %colormap(hot) %grid

%title('Time-averaged Volume flowrate (magnitude): Sample run')

figure(2) mm=input('Fig Number'); subplot(3,3,mm) pcolor(ll,ll,H); shading interp colormap(hot(128)) set(gca,'Font-
Name','times','FontSize',10) %mm=get(colorbar,'Ylim'); %ma=mm(2); colorbar %set(colorbar,'FontName','times','Fon-
tSize',9,'Ylim',[0; ma]) set(gca,'XTick',fl,'YTick',[]) hold
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Program to compute the statistical distributions in the flows: flow hist.m

clear all global !cv global DH_CT DH_ET DH_WT DH_NT DH_ST DH3_ET DH3_WT DH3_ST DH3NT

rc=input('R Center ? I=yes, 2=no')

imax=4; jmax=4; onn=ones(imax); oonn=ones(imax+2);

ppat=path; path(ppat,'/mit/matlab/Matlab4.2/toolbox/contrib/graphics/plotyy');

X_X=[-0.5:1/(imax+2-1):0.5]';

xax=X_X; yay=XX; mes=meshdom(xax,yay);

xax=mes; yay=mes';

load Pfv.dat Pf=Pfv; load Pv.dat; P=Pv; load tv.dat; ti=tv; load alphav.dat load hov.dat

alpha=alphav; alp=alpha./4; alp(2:5,2:5)=alp(2:5,2:5) .* 4 ./ 5; alpha=alp;

hnom=(onn+hov).*3.5; hnom6=3.5 .*oonn; hnom6(2:5,2:5)=hnom; alpha, hnom,hnom6

sst=20; kmax=length(ti);

%----------------------- % SAMPLE THE TIME VECTOR for i=l:kmax/sst:kmax tt=ti(i); time=[time; tt]; end %------------

% For now, keep only one alpha, and not alpha_c etc etc %alpha= 0.127 .* ones(imax+2);

%w=0.2*2.0*3.1416; w=0.O;

vmean=3.5; vtidal=1.0; kk=vtidal/(2.0*vmean); kkk=(1-kk)A(l/3);

lo=75;

do=7.5 .* onn; dok=7.5 .* oonn; dnom=do; dnom6=dok;

% START MAIN CYCLE HERE

i=O; for ii=7:6:length(Pf), i=i+l; t=time(i);

PP=Pf(ii:ii+5,:); Po=-sin(w*t) .* ones(6);

% COMPUTE TOTAL LENGTH OF SHEET, L, Po,Dpodt L=(lo/kkk) .* (1 - kk .* cos(w .* t)).A(1/3); DLdt=(lo/kkk.*3).*((l -
kk .* cos(w .* t)). (-2/3)) .* kk .* w .* sin(w .* t);
dx=(X_X(2)-X_X(l))*L; %LENGTH OF A SEGMENT Ddxdt=(X_X(2)-X_X(l)).*DLdt;

ddo=(dx/15) .* (do); Dddodt=(X_X(2)-X_X(1)) .* (dok ./ 15) .* DLdt; ddok=(dx/15) .* (dok);

ho=((hnom*dnom*dnom)./ (ddo .* ddo)) .* onn; %CHANGE TO 6x6 ho=((hnom6.*dnom6.*dnom6)./ (ddok .* ddok)) .*
ones(6);

Dalphadt=0.0 .* oonn; Dhodt=(( -2*(hnom6.*dnom6.*dnom6) .* (Dddodt)) ./ (ddok .* ddok .* ddok)) .* oonn;

Ac=(dx.*oonn-ddok) .* (dx.*oonn-ddok) .* oonn; DAcdt=2.*(dx.*oonn - ddok).*(Ddxdt.*oonn - Dddodt); h=ho+ alpha .* (PP-
Po); hsave=[hsave; h];

%plot3(xax,yay,PP','+')

hk_c--h; hk.n=h; hk s=h; hk_e=h; hk_w=h;

[RE,RW,RN,RS]=RRflow(hk_c ,hk_w,hk_,hk_nhs,ddok,dx,rc);

%RE(2,2)=IE2; %RW(3,2)=100; %RN(2,2)=1E2; %RS(2,3)=1E2;

RET=[RET; RE]; RWT=[RWT; RW]; RNT=[RNT; RN]; RST=[RST; RS];

for j=2:5, for iii=2:5, il=iii-l; jl=jj-1; QE(il,jl)=(PP(iii,jj)-PP(iii+l,jj))./(RE(il,jl)); QW(il,jl)=(PP(iii,jj)-PP(iii-l,j))./
(RW(il,j I)); QN(il,jl)=(PP(iii,j)-PP(iii,jj+l))./ (RN(il jl)); QS(il,jl)=(PP(iii,jj)-PP(iiijj-))./ (RS(il,j 1));
DPE(il,jl)=(PP(iii,jj)-PP(iii+l,jj)); DPW(iljl)=(PP(iii,jj)-PP(iii-l,jj)); DPN(iljl)=(PP(iii,jj)-PP(iii,jj+l));
DPS(il,jl)=(PP(iiijj)-PP(iii,jj-l)); end end

for jj=1:4, for iii=1:4,

ka=iii+(jj-l)*(imax);

qe(ka,i)=abs(QE(iii,jj)); qw(ka,i)=abs(QW(iii,jj)); qn(ka,i)=abs(QN(iii,jj)); qs(ka,i)=abs(QS(iiijj));
qc(ka,i)=abs(QE(iii,jj)+QW(iii,)+QN(iiii,jj)+QS (iiijj));

re(ka,i)=RE(iii,jj); rn(ka,i)=RN(iiijj); hs(ka,i)=h(iii+l ijj+l); ps(ka,i)=PP(iii+ljj+l);

dps(ka,i)=DPS(iii,j); dpn(ka,i)=DPN(iii,jj); dpe(kai)=DPE(iiiij); dpw(kai)=DPW(iiijj);
end end

end

tit=time(l: 19, 1);

for j=l:4, for ii=1:4,

k=ii+(jj-1)*4;

hm(ii,jj)=mean(hs(k,:)); pm(iijj)=mean(ps(k,:)); qem(ii,jj)=mean(qe(k,:)); qwm(iijj)=mean(qw(k,:)); qnm(ii,jj)=mean(qn(k,:));
qsm(iijj)=mean(qs(k,:)); qcm(ii,jj)=mean(qc(k,:));
end end
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HE=n; for jj=l:4, for ii=1:4,

a=qem(ii,jj); b=qnm(iijj);

ME=[a b]; HE--[ HE ME]; end end

for ii=1:4 jj=l; ME=qsm(iijj); HE=[HE ME]; end

for jj=l:4 ii=l; ME=qwm(ii,jj); HE=[HE ME]; end

size(HE)

mea=mean(HE) st=std(HE) va=st/mea

"Dynamic visualization" of the flow-rates in the septum: flowmovie.m

clear all global clear !cv global DH_CT DH_ET DHWT DH_NT DH_ST DH3_ET DH3_WT DH3_ST DH3_NT

rc=input('R Center ? 1=yes, 2=no')

imax=4; jmax=4; onn=ones(imax); oonn=ones(imax+2);

%ppat=path; %path(ppat,'/rmit/matlab/Matlab4.2/toolboxlcontrib/graphics/plotyy');

X_X=[-0.5:1/(imax+2-1):0.5]'; xax=X_X; yay=X_X; mes=meshdom(xax,yay);

xax=mes; yay=mes';

load Pfv.dat Pf=Pfv; load Pv.dat; P=Pv; load tv.dat; ti=tv; load alphav.dat load hov.dat

%hov=zeros(4); alpha=alphav; alp=alphal4; alp(2:5,2:5)=alp(2:5,2:5) .* 4 ./5; alpha=alp;

hnom=(onn+hov).*3.5; hnom6=3.5 .*oonn; hnom6(2:5,2:5)=hnom; alpha, hnom,hnom6

sst=20; kmax=length(ti); Moo=fl; Moo=moviein(sst-1); % ----------------- % SAMPLE THE TIME VECTOR for
i=l:kmax/sst:kmax tt=ti(i); time=[time; tt]; end %----------------------
% For now, keep only one alpha, and not alpha_c etc etc %alpha= 0.127 .* ones(imax+2);

w=0.2*2.0*3.1416; %w=--0.0;

vmean=3.5; vtidal=1.0; kk=vtidal/(2.0*vmean); kkk=(1-kk)A(1/3);

lo=75;

do=7.5 .* onn; dok=7.5 .* oonn; dnom=do; dnom6=dok;
% START MAIN CYCLE HERE

i=O; for ii=7:6:length(Pf), i=i+l; t=--time(i);

PP=Pf(ii:ii+5,:); Po=-sin(w*t) .* ones(6);
% COMPUTE TOTAL LENGTH OF SHEET, L, Po,Dpodt L=(lo/kkk) .* (I - kk .* cos(w .* t)).^(1/3); DLdt=(lo/kkk.*3).*((1 -
kk .* cos(w .* t)).A (-2/3)) .* kk .* w .* sin(w .* t);

dx=(X_X(2)-X_X( ))*L; %LENGTH OF A SEGMENT Ddxdt=(X_X(2)-X_X(1)).*DLdt;

ddo=(dx/15) .* (do); Dddodt=(X.X(2)-X_X(1)) .* (dok ./15) .* DLdt; ddok=(dx/15) .* (dok);

ho=((hnom*dnom*dnom)./ (ddo .* ddo)) .* onn; %CHANGE TO 6x6 ho=((hnom6.*dnom6.*dnom6)./ (ddok .* ddok)) .*
ones(6);

Dalphadt=0.0 .* oonn; Dhodt=(( -2*(hnom6.*dnom6.*dnom6) .* (Dddodt)) ./ (ddok .* ddok .* ddok)) .* oonn;

Ac=(dx.*oonn-ddok) .* (dx.*oonn-ddok) .* oonn; DAcdt=2.*(dx.*oonn - ddok).*(Ddxdt.*oonn - Dddodt); h=ho+ alpha .* (PP-
Po); hsave=[hsave; h];

%plot3(xax,yay,PP','+')

hk_c=h; hk_n=h; hks=h; hk_e=h; hk_w=h;

[RE,RW,RN,RS]=RRflow( hk_,hk_e ,hk_whk_nhk_s,ddok,dx,rc);

RE(2,2)=1E2; RW(3,2)=100; RN(2,2)=1E2; RS(2,3)=1E2;

for j=2:5, for iii=2:5, il=iii-l; jl=jj-1; QE(iljl)=(PP(iii,)-PP(iii+ljj))./(RE(iljl)); QW(il,jl)=(PP(iii,j)-PP(iii-l,jj))./
(RW(i l ,j 1)); QN(il,j 1l)=(PP(iiijj)-PP(iii,jj+ 1))./(RN(i I ,j 1l)); QS(i 1 ,j 1)=(PP(iiij)-PP(iiijj- 1))./(RS(i ,j I));
DPE(il,jl)-(PP(iii,jj)-PP(iii+l,j)); DPW(iljl)=(PP(iii,j)-PP(iii-1,j)); DPN(iljl)=(PP(iii,j)-PP(iii,jj+l1));
DPS(i I,jl)=(PP(iii,jj)-PP(iiijj-1)); end end

H=n;

for jj=1:4 for ii=1:4

al=abs(QW(ii,jj)); a3=abs(QN(iijj)); a4=abs(QE(iijj)); aS=abs(QS(ii,jj)); a6=0.0; a2=mean([al a3 a4 a5]);

B=[al al a2 a2; al al a2 a2; a6 a6 a3 a3; a6 a6 a3 a3 ]; ifii-4 B=[al al a2 a2 a4 a4; al al a2 a2 a4 a4; a6 a6 a3 a3 a6
a6; a6a6a3a3a6a6];endifjj--=4B=[a6a6a5a5; a6a6a5a5; alala2a2; alala2a2; a6a6a3a3; a6a6a3a3];end
if(ii+ij=8)B=[a6a6aSa5a6a6; a6a6a5aSa6a6; alala2a2a4a4; alala2a2a4a4; a6a6a3a3a6a6; a6a6a3a3
a6 a6]; end M=[ M B]; end H= [ M; H]; M=; end

11=0:1/17:1; pcolor(ll,ll,H); caxis([0 19000]) colorbar shading interp colormap(hot) set(gca,'FontName','times','FontSize',10)
logo; Moo(:,i)=getframe;
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