
Hidden Markov Models

for Gesture Recognition

by

Donald O. Tanguay, Jr.

S.B. Computer Science
Massachusetts Institute of Technology, Cambridge, MA

June 1993

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF ENGINEERING
in Electrical Engineering and Computer Science

at the
Massachusetts Institute of Technology

August 1995

© Donald Tanguay, 1995. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute copies of this thesis document in whole or in part,

and to grant others the right to do so.

Department of ElctricaAngleering and Computer Science
August 25, 1995

.. //

Certified by
Aaron E Bobick

A II Assistant Professor of Computational Vision
'/ ( O P ogram in Media Arts and Sciences

Thesis Supervisor

y¢ . " '

AS;=ACi'USEfTTS INS 'ITUTL
OF TECHNOLO3GY

JAN 2 9 1996

F. R. Morgenthaler
Chairman, Department Committee on Graduate Theses

LIBRARIES

Author

Accepted by





Hidden Markov Models for
Gesture Recognition

by

Donald O. Tanguay, Jr.

Submitted to the
Department of Electrical Engineering and Computer Science

August 25, 1995

In Partial Fulfillment
of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Understanding human motions can be posed as a pattern recognition problem. Humans express
time-varying motion patterns (gestures), such as a wave, in order to convey a message to a recipi-
ent. If a computer can detect and distinguish these human motion patterns, the desired message can
be reconstructed, and the computer can respond appropriately. This thesis describes an approach to
recognize domain-dependent gestures using the statistical pattern recognition tool, the Hidden
Markov Model (HMM). Through several experiments with two-dimensional mouse gestures, this
thesis analyzes the behavior of HMM training and reports some important insights towards better
HMM performance.
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Chapter 1

Introduction

This thesis is a study of how Hidden Markov Models can be applied to recognize gestures. In order

to understand the behavior of Hidden Markov Models (HMMs), the work consists of the design,

implementation, and experimentation of a system for creating gestures, training HMMs, and rec-

ognizing gestures with the HMMs. Before describing those aspects, this section motivates the the-

sis topic and outlines its presentation.

1.1 Motivation

One person raises his flattened, vertical palm toward another, as if to assure the other that his

hands conceal nothing harmful. The other person replies similarly, and they smile. This wave ges-

ture has been learned from childhood to mean extension of friendship.

Understanding human motions can be posed as a pattern recognition problem. In order to con-

vey visual messages to a receiver, a human expresses motion patterns. Loosely called gestures,

these patterns are variable but distinct and have an associated meaning. The wave gesture is vari-

able because even the same person's hand position may be several inches away from the position

in a previous wave. It is distinct because it can be readily distinguished from a different gesture,

such as a beckoning or a shrug. Finally, it has the agreed meaning of "hello."



Research on gesture recognition has many motivations, all of which are related to improving

the interface between humans and computers. If a computer can detect and recognize a set of ges-

tures, it can infer the sender's message and respond appropriately. For example, a conductor can

control a "virtual orchestra" by gesturing commands to a video camera. The system responds by

appropriately varying the volume and tempo of the prerecorded music being played. As another

example, a system can annotate video clips of athletic events with meaningful descriptions. When

requested for an example of a triple salchow, another system responds by quickly finding the fig-

ure skating jump among an annotated database of video sequences. As a final example, a karate

instruction system can visually evaluate the performance of a student's kick.

This thesis attempts to help bridge the visual communication gap between computers and

humans by designing and implementing a gesture recognition system based on the semicontinuous

Hidden Markov Model. The HMM framework models the temporal behavior of gesture, and the

use of a global codebook allows the discovery of shared atomic pieces among different gestures,

leading to an "understanding" of gesture by identifying their similarities and differences.

1.2 Overview

Before describing the work of this thesis, Chapter 2 presents necessary background material. First,

Section 2.1 presents several topics in pattern recognition in order to provide context for the gesture

recognition problem. This exposition includes discussion of the general pattern recognition

approach, the clustering process, and the Hidden Markov Model. General pattern recognition pro-

vides terminology, clustering associates the observations, and Hidden Markov Models provide the

recognition framework. Second, Section 2.2 describes the gesture recognition problem as posed in

this thesis. An understanding is established by first defining gestures and gesture recognition and

then by reviewing previous work on the subject.



Chapter 3 presents the core of the thesis, Hidden Markov Models for gesture recognition.

First, Section 3.1 describes the approach of this thesis for recognizing gestures. Next, Section 3.2

details how this work relates to the previous work on the subject, including a description of influ-

ential papers. Section 3.3 describes the experiments performed, presents the empirical results of

each, and interprets the results by identifying and rationalizing the behaviors involved.

Chapter 4 concludes the thesis presentation. First, Section 4.1 summarizes the major results

and insights of the study. Then, Section 4.2 describes future extensions to the system, including

future experiments; for further HMM study and modifications for improving system performance

and accuracy.





Chapter 2

Background

Before presenting the core of this thesis, it is necessary to establish both terminology and an

understanding of the problems encountered in HMM gesture recognition. This background mate-

rial is divided into two major areas: pattern recognition and gesture recognition. First, the section

on pattern recognition gives the HMM gesture recognition problem a solid context by presenting

the pattern recognition approach, the clustering of data, and the Hidden Markov Model. Next, the

description of gesture recognition completes the background material and reviews some related

gesture recognition research.

2.1 Pattern Recognition

Pattern recognition forms the mathematical basis of gesture recognition in this thesis. First, a defi-

nition of pattern recognition establishes the necessary terminology. Next, clustering, a process for

grouping similar objects together, is described. Finally, the foundation of this thesis, the Hidden

Markov Model is presented.

2.1.1 Definition

Pattern recognition is a mathematically rigorous field with the purpose of classifying objects into

one of a number of classes. These objects of interest are generically termed patterns and include



printed characters, speech waveforms, textures, "states" of a system, and anything else one wishes

to classify. The pattern recognition process is generally implemented in a manner that allows auto-

matic recognition without human intervention. For example, a system may tell the credit card

company which transactions are likely the result of unauthorized credit card use.

Construction of a pattern recognition system involves learning from a set of example patterns.

This learning process has two forms. If the classes of the example patterns are already known, the

learning process is termed supervised pattern recognition. In such a case, the correct classification

of an individual pattern is used to evaluate the performance of the system. This feedback allows

the system to iteratively improve itself. On the other hand, if the classes are not known a priori,

then the unsupervised pattern recognition system must not only produce a classification procedure

but also define the classes themselves. Though this type of pattern recognition is much more diffi-

cult, useful algorithms have been developed that allow successful systems to be constructed.

The actual pattern recognition process is performed in two phases, the first of which is feature

extraction, where the observation k of a pattern is transformed into a vector 3, whose components

are called features. 3 is generally much more tractable for the system than ., but should contain

most of the information necessary for classification of the patterns. The procedures for feature

extraction may be based on intuition or physical considerations of the problem, or they may be

purely mathematical techniques for simply reducing the dimensionality of the observations.

The second phase of pattern recognition is classification of the feature vectors. A classifier

partitions the feature space of 3 into disjoint regions, each corresponding to a pattern class. If the

feature vector of a specific observation lies in the region Rk the observation is assigned to class

Ck. Thus, the partition specifies the class membership of the observations. Constructing the classi-

fier in a supervised pattern recognition system is relatively simple because the class membership

of a set of example patterns are known. As mentioned above, this knowledge is used to both train
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Figure 2.1 The pattern recognition process.

and test the classifier. If class membership is unknown, however, construction is much more diffi-

cult and involves clustering, which is described in the next section.

Figure 2.1 illustrates the pattern recognition process. First, an observation vector I is recorded

while observing a phenomenon. Feature extraction from k produces a smaller vector ) which

encapsulates the salient features of the original observation. Finally, classification determines the

best class label associated with . For example, J can be a video sequence, j can be a sequence of

hand parameters or other measured feature, and Ck can be the class of waving gestures. In this

way, a system can identify the phenomenon's class. In other words, the system recognizes the phe-

nomenon.

In the context of pattern recognition, this thesis is supervised pattern recognition of gestures

using an HMM-based classifier. First, example gestures (a sequence of observations) are trans-

formed into a sequence of feature vectors. Each sequence and its known class is used to train a

Hidden Markov Model for classification. The result is a system that classifies observation

sequences into gesture classes.

Because the observation is transformed into a sequence of feature vectors rather than a single

feature vector, the work presented here is actually a two-level pattern recognition system. While

the above describes the temporal pattern recognition (performed on a sequence), the Hidden

Markov Model component itself contains a subsystem for static, unsupervised pattern recognition

observation



(performed on individual observations). Training of the Hidden Markov Model includes cluster-

ing, which is described in the next section.

2.1.2 Clustering

Clustering is the process of constructing a classifier for unsupervised pattern recognition.

Here, the problem is not only to classify the given data, but also, at the same time, to define the

classes. In the general sense, clusters are defined as groups of similar points according to some

measure of similarity. Usually similarity is defined as proximity of the points as measured by a dis-

tance function, such as the Euclidean distance, of feature vectors in the feature space. However,

measures of other properties, such as vector direction, can also be used. The method of finding the

clusters may have a heuristic basis or may be dependent on minimization of a mathematical clus-

tering criterion.

In the field of digital signal processing, vector quantization is clustering using the Euclidean

distance measure; however, many new terms are used. The clusters of a classifier are now called

the quantization levels of a VQ code book. Furthermore, the distance of each sample to the mean

of its enclosing cluster is no longer a measure of similarity but rather a measure of distortion. The

goal of vector quantization is to find the set of quantization levels that minimizes the average dis-

tortion over all samples. However, finding the codebook with the minimal average distortion is

intractable. Nevertheless, given the number of clusters K, convergence to a local minimum can be

achieved through the simple K-means algorithm:

1. Randomly assign samples to clusters.

2. Compute the sample mean of each cluster.

3. Reassign each sample to the cluster with the nearest mean.

4. If classification of all samples is unchanged, stop.
Else, go to Step 2.
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Figure 2.2 Clustering of data. (a) collection of data, (b) vector quantization showing the
clusters and associated mean, and (c) estimation of Gaussian distributions.

In this thesis, the clustering method is as follows. First, all the data are collected into a single

set of observation vectors. Next, vector quantization groups the data points into clusters. Finally,

assuming a Gaussian distribution in each cluster, the estimated mean and covariance of each clus-

ter are computed.. The individual classes are then multivariate Gaussians with the estimated

parameters. Because these distributions will overlap, classifying is no longer a one-to-one map-

ping of pattern to class. Rather, a pattern is mapped to a set of classes, each with a probability that

it produced the sample. Figure 2.2 illustrates the clustering process. Section B.2 describes the

implementation of the code book in more detail.

2.1.3 Hidden Markov Models

Before describing the Hidden Markov Model, it is necessary to describe its foundation, the

Markov process. In any pattern there is usually sufficient structure to influence the probability of

the next event. For example, in the English language, the probability of detecting the letter u

depends very much on whether the letter q was last detected, since u almost always follows q. A

stochastic process is called a jth-order Markov process if the conditional probability density of the

current event, given all past and present events, depends only on the j most recent events.

A Hidden Markov Model (denoted X) is a doubly stochastic process. The first stochastic layer

is the underlying first-order Markov process, represented by the state transition diagram of Figure

2.3a. Each state is a possible observation of the Markov process, and a transition probability from
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Figure 2.3 Four types of Markov Models. (a) First-order Markov process, (b) Discrete
Hidden Markov Model (HMM), (c) Continuous HMM, and (d) Semi-continuous HMM.

state A to state B is P (s, + = BIs t = A) , the probability of going to state B at time t + 1 given that

the state at time t is A. The second stochastic layer of the HMM is the set of output probabilities

for each state. For example, the output probabilities of state A specifies the likelihood of seeing

certain observations, given the HMM is actually in state A . This second layer of probabilities cre-

ates a veil so that, given a sequence of observations, the actual sequence of states is ambiguous; it

is "hidden" from the observer.

Algorithms exist for both training and testing the HMMs. The goal of HMM training is to lift

the veil so that, with good probability, the actual sequence of states S can be determined from the

Codebook
cluster pdf

C2 0 1h



sequence of observations X. However, enough training data must be provided so that a good inter-

nal statistical model can be built. Proven to converge, the Baum-Welch reestimation procedure can

find locally optimal HMM parameters for a given set of training data. Reasonable initial estimates

can help the procedure find the globally optimal solution. For testing and recognition, the Viterbi

algorithm determines the state sequence S with the highest probability, given a particular observa-

tion sequence 2 (i.e., it maximizes P (S|I, k) ). Appendix A explains these procedures in more

detail.,

In the literature, there are three basic types of HMMs, differentiated by their method of model-

ing output probabilities. The observations of the discrete HMM are discrete symbols of a finite

alphabet that typically correspond to quantization levels (classes) of a vector quantization code-

book. Each state has a discrete probability mass function (PMF) for describing the probability that

the state would produce a certain symbol. Figure 2.3b shows an HMM with two output symbols;

state A is more likely to produce a "0" symbol than a "I", and B is more likely to produce a "I"

than a "0". The states of the continuous HMM each have a mixture of probability density functions

(pdf's) to represent the probability of observing certain multidimensional, continuous data. Mix-

tures of Gaussian (normal) pdf's are typically used to accurately model the state's membership in

the space of observation vectors. Figure 2.3c shows an HMM where each state has a single 1-D

pdf; state A is still more likely to produce a "0" than a "1", but quantization no longer distorts the

continuous I-D observations.

The semicontinuous HMM is a hybrid of the discrete and continuous HMMs. Like the discrete

HMM, the observation vectors are quantized into one of a finite set of classes, reducing the num-

ber of free parameters. However, like the continuous HMM, the observation classes are modeled

by a multivariate Gaussian pdf, removing the distortion due to quantization and effectively model-

ing the variance of an observation class. This formulation is similar to a continuous HMM with

parameter tying in which states are forced to share the same pdf's. Initially formed by clustering



the example data, the classes are reestimated along with the HMM parameters to form an inte-

grated model. Figure 2.3d shows a two-state HMM with a two-cluster code book; while the obser-

vations are still modeled by I-D pdf's, these pdf's are shared by all states'. The work presented

here uses the semicontinuous Hidden Markov Model.

2.2 Gesture Recognition

The goal of this thesis is recognition of gesture. This section provides the final background mate-

rial needed before presenting the procedure, experiments, and results of this thesis. First, gesture

and gesture recognition are defined. Then, previous works related to gesture recognition are sum-

marized.

2.2.1 Definition

Avoiding the semantic issues of gesture, this thesis defines gesture in a purely scientific manner.

Rather than defining a gesture based on its meaning to a receiver, this work bases a gesture only on

the behavior of sequences of scientific measurements obtained from gesture examples. The defini-

tion of gesture in the system then becomes a probabilistic definition relying on higher knowledge

outside of the system for defining gesture2. Explicitly, within the system gestures are defined as

sets of trajectories through a measurable gesture space.

The above definition relies on several severe assumptions. First, the feature space of the mea-

surements represents the entire space of gestures. Thus, the expressiveness of gesture space

depends highly on the features being used; if the features are inappropriate to the problem at hand

or if too few features are used, the system will not be able to distinguish different gestures. Sec-

ond, gestures are modal. Because an instance of a gesture is a trajectory through feature space,

modality means the set of trajectories for each gesture is mutually exclusive. This assumption also

1. In a multiple-HMM recognition system, the states of all HMMs share a single code book.
2. This higher knowledge is usually a human.



depends on the features chosen. Third, gestures can be statistically modeled as a sequence of tran-

sitions between perceptual states (states defined by feature measurements). The perceptual states

are clusters of observation vectors in the feature space. This assumption is due to the use of

HMMs, and is more of a problem for generating examples of gestures than for recognizing exam-

ples. For example, when trying to determine the type of gesture an HMM represents, a small tran-

sition probability may generate a prototype completely different from the typical example. This

problem is examined in Section 3.2.

2.2.2 Previous Work

There exist many reported research projects related to learning and recognizing visual behavior.

However, due to its recent introduction to the vision community, only a small number have been

reported which use Hidden Markov Models. A few of the interesting works related to this thesis

are summarized below.

Most of the early vision work using HMMs was limited to handwriting recognition, such as

[8]. More recently, Starner, et al [11] explicitly used an established HMM speech recognition

product for a real-time handwriting recognition system.

In work related to human gesture, Yamato, et al [13] used discrete HMMs to successfully rec-

ognize six different tennis swings among three subjects. Though the system used only 25x25-pixel

images as the feature vector, it could decently distinguish the different motions. However, in order

to use the discrete HMM, the domain was constrained enough to avoid the effects of vector quan-

tization distortion. Furthermore, the system performed only isolated gesture recognition, in which

gestures have already been temporally segmented from video.

Probably the most explicit example of human gesture is sign language, which has well-defined

vocabulary and grammar. Starner [10] reapplied the speech community's HMM methods to recog-

nize American Sign Language (ASL). Starner required the signer to sit in a particular position,



wear colored gloves, and refrain from finger signing. These requirements led to a single 8-dimen-

sional feature vector consisting of each hand's x and y position, angle of axis of least inertia, and

eccentricity of bounding ellipse. In order to achieve 97% accuracy with this simple feature vector,

he used a strong grammar as well.

The system described by Cui, Swets, and Weng [5] was "a self-organizing framework... for

learning and recognizing spatiotemporal events (or patterns) from intensity image sequences."

They applied this system to hand sign recognition of a single hand. Though they wisely distin-

guished between the most expressive and most discriminating features, all features were essen-

tially eigenvector coefficients. The example gestures were used to partition the visual space, where

each partition had its own eigenvectors. The gesture was assumed to have been isolated in a tem-

poral window from which 5 frames were sampled to represent the gesture. They claimed 96% rec-

ognition rate of a simple vocabulary; however, they also admitted to hand-tweaking a threshold to

achieve this. Though it is not based on HMMs, it is instructive to see how much complexity

HMMs incorporate by examining a system similar to this thesis that does not use them.

In an interesting application of HMMs, Bregler and Omohundro [4] presented a technique for

lip reading tasks. The significance of their work was the incorporation of both auditory and visual

features in an HMM system. To keep the vision task simple, their method was view-based. From

the images, the human lip was modeled by smooth nonlinear manifolds. They reported significant

improvements of continuous speech recognition in noisy environments by using the additional

visual information.

Two papers describe the research leading to the conception of this thesis. In the first paper,

Bobick and Wilson [3] defined a gesture to be a sequence of states in a measurement space. Unlike

HMMs, this model allowed the calculation of a prototype trajectory to represent the gesture. This

prototype was used to align the state pdf's along the most-likely direction by explicitly defining

two types of variance, the along-trajectory variance and the across-trajectory variance. This



approach is significantly different from HMMs because the prototype allowed tracking of the ges-

ture within a state, whereas HMMs cannot model the motion within a state.

In the second paper, Wilson and Bobick [12] used a state-membership measure to combine

multiple representations at each state. Reestimation of the HMM parameters via the Baum-Welch

algorithm was interleaved with reestimation of the representation parameters. By using the mea-

sure of state membership instead of the typical pdf's in HMMs, they were given more freedom in

defining the representations, such as the use of eigenimages. However, though it was not observed,

they state that this formulation may preclude convergence of the reestimated HMM parameters.

2.3 Summary

Pattern recognition forms the mathematical and procedural basis of this thesis. Feature extrac-

tion reduces raw observation vectors to feature vectors; clustering divides the feature space among

perceptual states; and Hidden Markov Models represent the temporal behavior between those

states.

Gesture recognition depends on the definition of gesture. In a scientific manner, this thesis

defines gesture solely on the basis of feature measurements. This causes system performance to

rely heavily on the quality of the features extracted but also allows reduction of gesture recogni-

tion to a purely computational form.





Chapter 3

Hidden Markov Models for Gesture
Recognition

This chapter describes the core of the thesis. First, the system used to recognize gesture is

described, followed by a discussion of how this work relates to previous research. Next, the exper-

imental results and their interpretation are presented.

3.1 Description

Studying the domain of 2-dimensional mouse gestures, the experimental setup for this thesis is

simple. First, a tool has been created for easily generating and modifying test suites of mouse data.

In a window environment, the user can add and remove gestures and examples of gestures. The

data, a four-feature vector of window-scaled position and velocity components sampled at approx-

imately 20 Hz, is saved to a file in a generic test suite format. This format allows test suites created

from other input devices, such as a program for extracting features from video, to be treated in the

same way by the HMM system.

After the training data has been generated and stored as a test suite, the HMM recognizer pro-

gram instantiates a new code book of specified size and a set of HMMs (one per gesture) with a

specified number of states. The code book is clustered on the observation vectors using a modified



K-means algorithm, and the HMMs are created with a choice of left-right or ergodic transition

matrix. The codebook implementation is described in more detail in Section B.2. After initializa-

tion, both the HMM and code book parameters are iteratively improved with a modified Baum-

Welch algorithm, described in Section A.I. Upon convergence of the system parameters, the

HMMs are immediately tested on the training data to verify the accuracy of training. At this point,

the recognizer can also be tested with previously unseen gesture examples. After a successful rec-

ognizer has been created, it can easily be applied to examples of unknown type - the ultimate

goal of pattern recognition.

3.2 Relation to Previous Work

This section describes how the work presented here is related to the previous work on the subject.

Not only is the system here compared to other systems, but also the ideas from the other works that

inspired this thesis are described.

Because the recognition system here is newly implemented with only initial experimentation,

the application of this system most closely resembles the efforts in handwriting recognition. The

domain of two-dimensional gestures is easy to implement but interesting and useful enough to be

valuable. However, on-line recognition, as in [ 11] is not currently supported. The most significant

difference between the methods of this thesis and these other 2-D gesture systems is the amount of

training data required for good results. This thesis asserts that the large, painfully-obtained

amounts of training data typical of the speech recognition methods is not required. Through future

work, we hope to show that modification of the codebook can lead to good results with much

smaller training sets.

Although the features are different and the observation vectors are reduced to discrete sym-

bols, the training philosophy here is similar to that of Yamato et. al. [13]. First, only a few (6) dis-

tinct gestures are recognized. Second, a small amount of data is used to train the system. Three



people performed the 6 tennis strokes 10 times each; while five examples of each gesture were

used for training, the other five were used for testing. The first major difference in the systems is

their use of a hand-clustered vector quantization code book; this thesis uses the automatic cluster-

ing algorithm of Section 2.1.2. The most significant difference is the large number of states (36)

they used to temporally represent each gesture. Considering that gesture examples had between 23

and 70 time steps, 36 states seems absurd. In the examples with 23 observation symbols, only two-

thirds of the states can possibly be visited; in the larger examples, each state has too little duration

to be significant. This paper reminds us that the results of HMM training do not necessarily make

intuitive sense. This thesis attempts to force training of HMMs that make intuitive sense by rea-

sonably limiting the number of states.

This thesis is different from Starner and Pentland [10] in two ways. First, for successful recog-

nition in the domain of American Sign Language, they used a strong grammar. This thesis does not

use a grammar to avoid both the dependency on any specific domain and the task of defining a

grammar. Second, while their system used continuous HMMs in which each HMM was indepen-

dently trained, this thesis uses semicontinuous HMMs, where the output classes must be shared by

all HMMs. We feel that the independent training method is an inaccurate model of gesture when

gestures are composed of similar atomic parts and that finding those common parts would lead to

an understanding of gesture. We study the effects of sharing output classes in this thesis.

The work by Bobick and Wilson ([3] and [12]) greatly influenced the ideas in this thesis. First,

they defined gesture as a trajectory in feature space and modeled it as such. This thesis uses the

same definition but instead models the trajectory as a transition sequence among control states,

allowing the use of established HMM procedures. Second, their use of the (observation) state-

membership measure allowed the use of very different models in the same framework. This led to

the ideas presented in Section 4.2 in which the feature space is divided into multiple independent

subspaces.



3.3 Experiments

In order to understand the behavior and limitations of Hidden Markov Models, a number of initial

experiments have been performed in the mouse gesture domain. This section describes the experi-

ments and interprets their results.

Because we worked in the domain of 2-D mouse gestures, the observation vectors were mouse

coordinates sampled at 20 Hz. Three types of feature vectors were used: position, velocity, and a

single vector of position and velocity. While position was specified in scaled absolute window

coordinates, velocity was represented by the difference of two temporally-adjacent position sam-

ples. The use of the absolute position feature depends on the presence of little positional variance

in the training and testing sets; we readily satisfied this criterion in order to remove the effects of

feature quality on HMM performance. However, for a real recognition system required to recog-

nize widely varied gestures, better features would be used. As examples, a relative position feature

allows recognition of gestures in very different positions, and normalized relative position allows

gestures to have both differing positions and sizes. Because we felt gestures should be modeled as

a pure sequence of conceptual states, the HMM transition matrices were forced to be strictly left to

right. Each state had only two transitions: a self-loop and a transition to the next state.

Artificial Experiments. The first set of experiments were artificially created, non-mouse test

suites designed to assure correct implementation of the reestimation procedures. The first test suite

had three clusters in a one-dimensional feature space. Three gestures were defined that traversed

the clusters in different orders. The code book clustering easily found the three distinct output

spaces, and each HMM was given three states. Given 5 variable-length examples of each gesture,

the recognizer converged in 8 iterations (2 seconds total execution time) and correctly recognized

100% of the examples. However, because of the random selection of initial codebook means,

many executions of this test occasionally resulted in a single misrecognized example (93.3% cor-



rect). The second test suite contained two clusters at opposite corners of a finite two-dimensional

feature space. 100% recognition of the training examples was always achieved on repeated execu-

tions.

Two conclusions were made regarding these experiments. First, we assumed the system was

implemented correctly after convergence of a successful recognizer. Second, and more impor-

tantly, we realized the inherent dependency of success on the initial random means of the cluster-

ing algorithm. Although reestimation of the codebook parameters alongside the HMM parameters

ensures an integrated system, the initial randomly selected means still influence the results on even

the simplest of cases. This serves as a reminder to perform several independent training runs for

any HMM.

Straight Lines. The first mouse-gesture test suite was a set of 8 different line gestures: horizontal,

vertical, and both diagonals, each with a twin having opposite direction. The recognizer was given

8 code book clusters and 5 states per HMM and trained on five examples of each gesture, where

the examples averaged 35 feature vectors (time samples) each. Each feature vector had 4 compo-

nents to represent position and velocity. Testing on the training data resulted in 39 correct labels

(97.5% correct), verifying successful training. A separate test suite was devised to show applica-

bility to previously unseen gestures. These gestures had 10 examples each and, unlike the training

examples, were in differing positions of the window. Still, 71 of the 80 examples were correctly

labeled (88.75% correct).

The experiments on the 8 straight lines are significant for several reasons. First, this was the

first experiment with "real" data, showing that the system worked for more complicated (and inter-

esting) gestures. Second, the surprising success of verification demonstrated that our simple fea-

tures (scaled window position and velocity) still gave the recognizer enough expression to

distinguish the gestures. Lastly, the respectable performance on previously unseen gestures in sig-

nificantly different positions from the training data showed that, as expected, in this experiment



position was not as important a feature as change in position. This leads to consideration of a sys-

tem with independent feature subspaces, as described in Section 4.2.

A and D. The third set of experiments consisted of two gestures, a lowercase "a" and a lowercase

"d." These two letters are very similar since "d" is really an "a" with an elongated vertical stroke.

A 5-cluster recognizer with two 5-state HMMs was trained on 10 examples of each letter. Verifica-

tion of the training showed that the Viterbi algorithm produced very similar scores for each HMM.

Regardless of those similarities, the system was still able to correctly distinguish all 20 letters in

the training set. When applied to an independent test set with 20 examples of each letter, only a

single letter is misclassified (97.5% correct).

This simple experiment is significant because it demonstrates the difference between repre-

sentative features and discriminating features. When the lowercase "a" and "d" are written in the

same manner (started at the top of a counter-clockwise loop), the only discriminating feature is the

length of the final vertical rise and fall. The trained HMM correctly found this difference and was

able to recognize the test set very well. However, unlike the previous experiment, the letters were

written with little positional variance. Because the Viterbi scores were so similar, if positional vari-

ance were present the slight effects of having or not having that feature would be lost in the deteri-

orated Viterbi scores, resulting in poor recognition. Further experimentation supported this claim.

Figure 3.1 shows that the discriminating feature corresponded to an output class used exclusively

by the "d" HMM, as one would hope. However, the strength of the feature was weakened because

the single "d" state using the output class had a mixture of three output classes. The other two

classes valid at that state blurred the distinction between an "a" and a "d". Furthermore, because

the first three states of each HMM are identical, the 5-state HMMs can be reduced to 3-state

HMMs in a canonical left-right form. It seems contradictory that the first three states are redundant

while the last state is overloaded. Repeated runs with the same number of clusters and states but

different features resulted in virtually the same HMM, suggesting that the Baum-Welch procedure



C2 03 04

C1 C1 C1 02 03 05

Figure 3.1 Inaccurate modeling of gesture. A mixture of Gaussians on the last state
implies an equivalence of the output clusters where a sequential relationship is actu-
ally present. While the mixture coefficients on the last state of the "a" HMM are 0.85
and 0.15, the coefficients in the last state of the "d" HMM are 0.4 and 0.6.

kept finding the same local extremum. Randomization of initial HMM parameters may help to

avoid this problem. This result is a reminder that HMMs statistically model patterns in any way

they can, many times finding an accurate recognition representation that is nevertheless a disturb-

ingly inaccurate model. The interesting behavior of this experiment led to further experimentation

described later.

A, B, C, D, and E. The next experiment involved distinction of the lowercase letters "a", "b", "c",

"d", and "e". Because the recognition task was difficult, we decided to try several recognizer archi-

tectures by varying the number of code book clusters and HMM states. Each experiment used five

examples of each letter for training and verification, and 10 other examples for recognition of pre-

viously unseen observations. Table 3.1 shows the results of these experiments, where N is the

C1 C, C,1

"d":



number of HMM states, K is the number of code book clusters, and the verification and test scores

are the percentage of correctly labeled examples.

Table 3.1: Recognition of A, B, C, D, & E

N K Verification Testing

4 5 88% 56%

4 10 96 66

5 4 76 54

5 5 100 72

5 6 80 56

5 7 84 64

5 10 96 62

6 5 100 58

The current system could not handle this experiment well. Though the recognizer learned the

example gestures fairly well, it had only mediocre performance on independent test sets. Though

we would like the HMMs to find the intuitively correct states and output classes, we see here that

in fact the HMMs only do their best at describing the training data. In this example, the distinction

between letters was very critically balanced so that the slightest variation in the test set resulted in

misclassification. This problem is likely caused by too few training examples (only five of each

letter were used here) and inadequacy of the features. From Table 3.1, we see that changing the

HMM structure and code book size does little to improve performance on the test set.

A and D, revisited. In order to understand the behavior of the earlier experiment for distinguish-

ing A and D, the experiment was repeated with different HMM architectures. Because we wanted

to remove the dependency of HMM performance on the quality of features while ensuring that the

features were expressive enough, the only feature used here was absolute scaled position, and each

example was written in approximately the same position at the same scale. The goal of this exper-
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Figure 3.2 Accurate modeling of gesture. The last few strokes of the gestures have been
divided among separate control states, accurately modeling the sequential behavior of the
strokes. C5 is the output cluster corresponding to the distinguishing feature.

iment was to identify a way of forcing the HMM to find the sequential relationship in the last few

strokes of the gestures, i.e., to find an accurate modeling of the gesture, rather than clumping the

critical sequential relationship on a single state. Varying the number of states from 4 to 10 was

unsuccessful in finding a better-converged canonical HMM. Finally, an HMM with 20 states found

the sequential relationship. The underlying canonical HMMs are pictured in Figure 3.2. However,

though the critical relationship was found and all tests were 100% accurate, the "a" HMM still

could not distinguish the letters as well as the "d" HMM.

This experiment provided significant insight into the training of left-right HMMs. First, in

order to find the important temporal relationships enough states must be used to avoid "undersam-

pling" of the pattern's temporal behavior. Second, the left-right model has a simple reduction to a

canonical form. Thus, a good strategy for ensuring accurate modeling is to train with a large num-

ber of states, followed by reduction to canonical form. Furthermore, the same performance of the

"a":



"a" HMM shows that not only does accurate recognition not imply accurate modeling but also

accurate modeling does not imply robust recognition, as previously thought.

3.4 Summary

A system for training and testing semicontinuous HMMs has been developed and applied to the

domain of 2-D mouse gestures. This system was compared to related works by other authors,

showing the ideas derived from previous work.

Initial experimentation has helped to identify several interesting and important behaviors of

HMMs. First, we are reminded that the initial random clustering of the code book forces us to con-

sider several training sessions before making conclusions. Second, we see that the system criti-

cally depends on the quality of the chosen features. In the simple experiments, absolute position

and velocity were sufficient for recognition; however, the slightly more complicated 5-letter rec-

ognition task could not be successfully applied to very similar independent test suites. Further-

more, the important distinction between representative and distinctive features requires us to

reevaluate the modeling of state output in the HMM formulation. In addition, we have seen that,

although an HMM system may have learned to recognize the training set, it has not necessarily

learned any underlying, intuitive traits for robustly classifying other observations. Instead, it may

be critically balanced on the assumption that there will be no variance it has not seen before.

Finally, even though the intuitively satisfying HMM may have been found, it may still not have the

robust performance we hope to find.



Chapter 4

Conclusion

This chapter summarizes the important empirical results and describes further experiments and

future improvements to the current gesture recognition system.

4.1 Summary

A system for gesture recognition has been designed and implemented. Though initial experimenta-

tion was simple, poor performance was observed on a modestly complicated task, and simple tasks

led to sufficient but inaccurate models. Rather than discouraging further studies, these experiments

demonstrate that many factors contribute to the success of an HMM recognition system. Further

experimentation will aid in identifying those factors.

In the statistically-based Hidden Markov Model, accurate recognition does not imply accurate

modeling. Oftentimes, the trained HMM does not make intuitive sense yet successfully recognizes

the training set and similar testing sets. However, these HMMs not only recognize many absurd

patterns as well as the real patterns but also fail miserably on slightly different test sets because of

a critical balance that fails with previously unseen variances. In order to stabilize this critical bal-

ance, many systems rely on large training sets for enumerating the variances; however, collection

and labeling of all the data is costly. Originally motivated by reducing the number of free HMM

parameters, Huang's semicontinuous HMM makes the similarities among patterns explicit. The



approach of this thesis has two key advantages over normal continuous HMMs. First, the accurate

modeling creates a robust, variance-insensitive HMM without the need for large amounts of data.

Second, the global codebook makes the similarities among gestures explicit, allowing an "under-

standing" of the gesture relationships. Through several experiments with 2-dimensional mouse

gestures, this thesis analyzed the behavior of HMM training and reported some important insights.

Mixtures of Gaussians provide a better representation of a control state's observation member-

ship; at the same time, it gives the Baum-Welch reestimation procedure more freedom to choose

an inaccurate model. Figure 4.1 shows three distinctly-behaving gesture segments that may be

confused as a mixture of Gaussians during training. In a left-right HMM, we found that we could

prevent this problem by providing enough states for training, followed by state merging to reduce

the HMM to a canonical form. Further thought should be directed at preventing this problem for

other HMM architectures.

In the course of this thesis, we have identified several important ideas on how HMMs should

be used. First, because training is a very expensive procedure, we feel every attempt should be

taken to minimize the amount of training data needed to obtain good results. This can be achieved

by better features and removal of similar examples. We would like to see experiments use smarter

data selection methods to show the minimal data set for a successful recognizer. Second, as ges-

tures become more complicated, inspecting the values of the system parameters becomes unman-

ageable. Observation of the system behavior will be facilitated by visualization, described in

Section 4.2. Finally, the quality of the features can sometimes solely determine the performance of

a recognition system. Instead of forcing the system to used bad features, we suggest a scheme for

breaking up the feature space into independent feature subspaces. This can be accomplished by

either hardcoding zeros in the covariance matrices of the code book to force statistical indepen-

dence, or by creating a separate code book for each feature subspace. To the author, the latter

approach seems most promising.
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Figure 4.1 Clonfusion of inequivalent HMM constructs. All three constructs, each with
very different behavior, can be confused as a single state with a mixture of Gaussians.
(a) shows a parallel (exclusive-or) relationship, (b) shows a sequential (juxtaposition)
relationship, and (c) shows a nondeterministic (equivalence) relationship. Only for (c)
is such a model accurate.

HMMs show potential, but they lack several useful traits. First, they have no notion of a proto-

type, disallowing the summarization of gesture. Rather than identifying an HMM with its given

name, it would be very useful to identify it with a typical gesture. Second, in the experiments here

we see a trade off between finding the representative features, resulting in an understanding of ges-

ture similarities, and finding the distinguishing features, resulting in distinction of gestures. Fur-

ther research should attend this problem and suggest ways to modify the HMM. Lastly, the

probabilistic nature of the state transitions allows gross errors, such as omission, to go undetected.

For example, an "a" is a "d" with a short stem, causing the "d" HMM to score well by simply tra-



versing a state transition quickly. Perhaps this type of problem can be avoided by introducing the

notion of state duration, as described in [9].

4.2 Future Work

As with any research project, many enhancements and extensions have become apparent through

the course of the work. First, in the domain of 2-D mouse gestures, more experiments should be

performed. Most importantly, more robust and useful features should be extracted, such as angle,

change in angle, and relative position of the mouse instead of absolute position. This will improve

recognition results. Furthermore, a very interesting extension to the system would allow indepen-

dence of feature subspaces. For example, keeping the position and velocity features separate will

reduce the number of system parameters (by removing entries in the code book's covariance matri-

ces) and perhaps lead to better convergence. Of course, asserting that two subspaces of the feature

space are orthogonal will have major repercussions, inviting experimentation on the subject. This

idea can be extended by creating two separate code books, one for each feature subspace. Finally,

other common extensions to the HMM framework may help performance, such as time duration

modeling and corrective training.

Second, to allow more interesting studies, the experimental setup should contain data collec-

tion more complex than 2-D mouse gestures. For example, by using video sequences, the system

can be applied to the more typical vision domains, allowing many more applications of the recog-

nition system. In addition, each NxM video frame is an NM-element observation vector, allowing

many more operators for feature extraction. This gives the system more freedom in choosing the

relevant features. Of course, larger feature vectors demand better execution performance.

Independent of processor speeds, execution performance can be improved in two ways. The

first method is to directly optimize the C++ program and use the compiler options for generating

optimized code. A second method is to simplify the problem. For example, large feature vectors



can be replaced by smaller ones; or observation sequences can be undersampled to halve the num-

ber of observation vectors. Another way of simplifying the problem is to use the discrete HMM

instead of the semicontinuous HMM. The discrete HMM reestimation equations are considerably

simpler than those for the semicontinuous. An interesting study would be to compare the trade-offs

between discrete HMM simplicity and semicontinuous HMM expressiveness.

A more practical extension with immediate need is to create tools for visualization of the

HMM procedures. Independent of the domain for which HMMs are being applied, visualization

would promote a much better understanding of the system dynamics. For example, if an experi-

menter notices that the HMM parameters have already converged, he can halt the training process.

This type of visualization can be achieved by displaying the parameter matrices as images, where

the brightness of an image location corresponds to the relative weight of an entry in the matrix. As

another example, when a human sees not only the strongest HMM for describing an example but

also its strength relative to other HMMs, the label assigned to the example in recognition can be

qualified. The code book, too, can be better understood through visualization. When a two-dimen-

sional code book can be used, a window can display the 2-D pdf's in the feature space. For exam-

ple, a two-codebook mouse gesture feature space can be represented in two windows, one with a

2-D subspace for position and one with a 2-D subspace for velocity. When 2-D features are not

present, simply displaying the covariance matrices can aid in deciding if an independent feature

subspace exists, where a separate code book may then be created.
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Appendix A

HMM Algorithms

This appendix provides a simplified description of the algorithms used for training and testing the

semicontinuous Hidden Markov Model. The first algorithm, the Baum-Welch procedure, is used to

reestimate the model parameters. The second algorithm, the Viterbi procedure, is used to evaluate

the ability of an HMM at describing a particular observation. For a much more detailed discussion

of these algorithms, [7] is recommended.

A.1 Parameter Reestimation

Given a set of examples I for a particular gesture, an ideal system will create the HMM X that

most likely (as opposed to other HMMs) generated those examples. In other words, it finds k such

that P (XI|) is maximized. Such a system seems intractable, however. Instead, given the examples

and a particular HMM, the Baum-Welch algorithm attempts to change the HMM parameters so

that the given HMM most likely generated the examples (as opposed to other examples), i.e., it

maximizes P (I k) . Although this procedure is far from ideal, it has been proven to converge to

locally optimal parameters. This section describes the extended Baum-Welch algorithm used to

reestimate both the HMM and codebook parameters. Table A. 1 lists the variables used to describe

the models and procedures.



Table A.1: Semicontinuous HMM Notation

In order to derive the equations for reestimating the model parameters, it is convenient to

define several intermediate probabilities. First, the forward probability a, (j) is defined as the joint

probability of observing the first t vectors and being in state j at time t. In other words,

a,(j) = P(•,, ..... ,, s, =jl ) . In an HMM model in which states I and N are nonemitting, the

forward probability is recursively calculated by the equation

t, (j) = I at -, (i) aii b (a) (A.1)

(j =2 b ( (A.1)

with initial conditions a, (1) = 1 and a, (j) = aljb i(t) for I <j<N and final condition

N-I
aT (N) = I = a(i) aiN. This recursion asserts that the probability of being in state j at time t

and seeing observation 1, can be calculated by adding the forward probabilities for all possible

predecessor states i weighted by the transition probability ai . In a similar but opposite manner,

Description

observation sequence

number of feature vectors in observation sequence

feature vector at time t

number of clusters in the codebook

k th cluster of the codebook

estimated mean of the cluster Ck

estimated covariance matrix of the cluster Ck

probability that t, was produced by cluster Ck

number of states in the HMM

state at time t

set of states in the HMM

transition probability from state i to state j

N x N matrix of state transition probabilities

probability that state j produced an observation from cluster Ck

N x M matrix of output probabilities



the backward probability 0, (i) = P ('•t , ... , •rs, = i, X) can be recursively computed using the

equation

N-1

0,(i) = _ aiib (1,+i) ,+ I (j) (A.2)
j = 2

with the initial condition PT (i) = aiN for I <i<N and the final condition

N-1

P1 (1) = •i 2a , bi (,t ) 1 (j) . Together, the two procedures form the forward-backward algo-

rithm. The forward and backward probabilities lead to a convenient method of finding the likeli-

hood of state occupation, y, (j) = P (s, = jk), X) . The equation is simply y, (j) = Ia, (j) Pt, (j),

where P is the probability of observing the sequence k given the model X:

P, = P (I 1) = aT,(N) . These intermediate probabilities are used to compute the reestimated

parameters. The details can be found in [9] and [7].

A.2 Recognition Algorithm

While training the HMM is an involved process, performing recognition is much simpler. Given

an observation, all HMMs are scored based on how well they describe the sequence. The HMM

with the highest score is chosen as the likely generator of the observation, resulting in a label of

that HMM's gesture.

The Viterbi algorithm finds the single best state sequence S = (s1, s2, ..., sT) for the observa-

tion sequence k = (t,, 212... ) . In this thesis, we only need the score of the state sequence

rather than the actual state sequence. The intermediate score is defined recursively as

8, (j) = max [t,_-i (i) ai] b, (j) (A.3)

with initial conditions 6, (1) = 1 and 8, (j) = aj.ib1 (j) for I <j < N and final condition

,T(N) = max[8,(i)aiN]. The score of the HMM for a particular observation is simply

P (lj X) = 8, (N) . To decide the gesture label of a particular observation, all HMMs go through

the Viterbi procedure. The example's classification is the gesture corresponding to the highest



scoring HMM. The implementation considerations of this procedure are detailed in Section B. 1,

which describes the implementation of the Hidden Markov Model algorithms.



Appendix B

Implementation

The entire system has been implemented in the C++ programming language for several reasons.

First, the ANSI C++ standards make the system (sans user interfaces) portable to other platforms

with an ANSI C++ compiler. The applications with user interfaces can be compiled for any

machine using the X Window System. Second, the C++ compilers generate highly efficient code,

reducing execution time of the training and recognition procedures. Finally, C++ classes provide a

very effective environment for managing system complexity and reusing code.

The bulk of the system relies on two portable libraries. The Matrix library provides a useful

matrix abstraction for all normal types (char, int, float, double). It has been optimized for

both matrix operations and memory management. Where possible, matrix operations are per-

formed with highly efficient pointer arithmetic. In a program with many allocations and dealloca-

tions of large objects, the program's memory segment becomes fragmented, causing significant

execution time to be spent on copying the objectsto fit compactly in memory. In the Matrix class,

normal allocation and deallocation of matrices has been overridden to allow reuse of pointers to

large matrix objects, easing the memory management task of the operating system. Both optimiza-

tions have demonstrated noticeable improvement in execution speeds.

The second portable library is the MotifApp library. Built on top of the X and Motif libraries,

the MotifApp library provides many classes for user interface components. For example, the



OptionMenu class allows for easy construction and use of an option menu. The MotifApp library

has proven to greatly simplify the complicated task of constructing a user interface. The Mouse

Gesture Creator has been implemented using this library.

The following sections describe in more detail the current implementations of the Hidden

Markov Models and Codebooks.

B.1 Hidden Markov Models

The Hmm class instantiates the semicontinuous Hidden Markov Models. Using the Matrix library,

the Hmm class represents each HMM by the three matrices A, B, and nt. Note that this is different

from the more general formulation described in Section A. 1, where each HMM has a single initial

and final state that produces no output. Because the more general representation facilitates contin-

uous recognition of gestures (recognition without requiring segmentation of gestures), the current

implementation will be replaced in the future.

Reestimating the HMM parameters is performed using the specifications described in Appen-

dix A. However, naively implementing the equations directly leads to very inefficient code.

Instead, the reestimation procedures have been partially optimized by removing needless interme-

diate values. For example, the denominator terms in the reestimation equations are used to enforce

the stochastic constraint that individual probabilities sum to 1. This computation is removed by

simply normalizing all the individual probabilities after all numerators have been accumulated.

Another problem with directly implementing the equations of Section A.1 is caused by the

finite precision of a computer's internal representation of numbers. In the forward-backward algo-

rithm, the intermediate probabilities fall quickly to zero. Even a gesture observation with just 50

time steps can result in arithmetic underflow. In severe situations, an entire row of the accumulator

becomes zero and normalization of that row leads to division by zero. Two solutions avoid this

N
problem. The first solution introduces a new intermediate value c (t) = cxa, (i), which is

i =



used to scale the a, (i) and P, (i) values. The new intermediate probabilities become

, (i) , (and (i) . When the scaling is performed during the forward-backward
c (t) c (t)

procedure, all intermediate values are safe from underflow. The downfall with this approach is that

normal computation of the scoring probability P ( lk) still leads to underflow, resulting in a loga-

rithmic computation. The second solution computes all probabilities in a log manner. All initial

values are replaced by their logarithm, and all multiplications become simple additions. The seri-

ous downfall with this approach is an inability to easily handle addition, which becomes a compli-

cated computation. In order to improve the addition performance, a complex procedure involving

lookup tables is described in [7]. Because the training process does not necessarily need to com-

pute the scoring probability, the current implementation uses the former approach for its simplic-

ity. Only for the Viterbi algorithm is the computation done with logarithms (an easy modification)

to prevent underflow.

Finally, the equations of Section A. I1 reestimate the parameters given only a single observation

sequence. To obtain any worthwhile results from an HMM, the accumulation process must be

extended. First, many example gestures must be used. Fortunately, directly extending the accumu-

lation process to all examples accomplishes multiple-example training. Second, any useful system

will require recognition of multiple gestures. The codebook accumulators are changed to accumu-

late values over all HMMs. Thus, for a multiple-gesture, multiple-example system the reestima-

tion procedure becomes

do until little change in parameters {
clear accumulators for code book;
for each gesture Gi I

clear accumulators for HMM Xi;
for each observation sequence k of Gi {

for each observation vector 1, {
accumulate values for ki;
accumulate code book values;

r
reestimate Xi parameters;



reestimate code book parameters;
)

B.2 Code Book

The CodeBook class implements the code book abstraction used for probabilistically classifying

the observation vectors.

Given a set of observation vectors, the code book is constructed in two steps: clustering and

estimating. The clustering procedure is a modified K-means algorithm. First, to ensure the initial

means are on the correct scale, the initial means are randomly selected observation vectors. All

observations are grouped with their closest mean, new means are computed for each group, and

the process is repeated until the computed means have converged. During these iterations, when-

ever a cluster has less than min elements, it is removed. In this way, the user-specified K is an

upper limit on the actual number of clusters in the code book. For all of the experiments presented

in this thesis, the value of min was 2, which is the smallest number of vectors for which a cluster

will have nonzero covariance. The second step, estimating the code book classes, assumes that

each cluster of observations can be probabilistically modeled by a multivariate Gaussian distribu-

tion. Using the means computed above as the estimated mean hi of cluster Ci, the estimated cova-

riance matrix of each distribution is found by 1i = E[ (k --i) (G - mi) ', VVk Ci, where E [x]

denotes the expectation of x.

After the code book has been constructed, the i~i and Yi parameters are reestimated alongside

the HMM parameters using the algorithm described in Section A. 1. Theoretically, this reestima-

tion customizes the code book for the HMMs, implying better recognition performance. However,

in the experiments presented here, this reestimation sometimes led to a cluster with an entire row

and column of zeros in the covariance matrix. This was caused by shifting, scaling, and rotating of

the pdf's until a dimension of the feature space no longer influenced representation of the cluster.

This problem manifests itself when computing the determinant of the singular covariance matrix



causes an error. It may be possible to avoid this by requiring min vectors in all clusters at all times,

removing those that do not, as in the initial code book clustering.
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