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Abstract

The electronic properties of amorphous organic thin films are of great interest due
to their application in devices such as light emitting devices, solar cells, photode-
tectors, and lasers. Compared to conventional inorganic semiconductors, amorphous
organic thin films have the potential to enable entirely new functionality, larger areas,
higher efficiencies, flexible substrates, and inexpensive fabrication. The development
of amorphous organic electronic devices requires a deep understanding of the physics
of the underlying electronic processes, which are controlled by the behavior of po-
larons (charged molecular states), and excitons (neutral molecular excited states). In
this thesis we employ microscopic models of polaron and exciton processes to calcu-
late macroscale phenomena in amorphous small molecular weight organic thin films
using Monte Carlo (MC) simulations. The principle results that we report are: (1)
the experimental demonstration and theoretical analysis of the previously neglected
phenomenon of solid state solvation; (2) the identification of significant errors in ex-
isting models of molecular energy level disorder in polarizible media; (3) the most
rigorously self-consistent quantitative fit of a dispersive exciton diffusion model to
experimental data from a small molecular weight amorphous organic solid; (4) MC
simulations of equilibrium polaron mobilities in amorophous organic solids as a func-
tion of both field and carrier concentration; and (5) MC simulations of space charge
limited (SCL) currents through thin films as a function of voltage under typical op-
erating device conditions. To our knowledge, the simulations of polaron transport
reported here represent the most accurate calculations of equilibrium mobilities and
SCL currents based on modern models of polaron transport in disordered molecular
solids.

Thesis Supervisor: Vladimir Bulović
Title: Associate Professor
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by Dexter and Forster transfer in a cubic lattice. . . . . . . . . . . . . 256

5-6 Exciton diffusion simulations for Forster transfer in a random lattice

with Dmin = 0.8Dsite. . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

5-7 Analytic diffusion theory compared with MC simulation, for different

values of Rmin and ap. . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5-8 Analytic diffusion theory with optimized Rmin and ap, compared with

MC simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

5-9 Bulk PL and absorption spectra for 100 nm films of AlQ3 at temper-

atures of 295K, 180K, 75K, and 35K. . . . . . . . . . . . . . . . . . . 265
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Chapter 1

Introduction

1.1 Executive Summary

Over the last two decades, interest in the electronic properties of amorphous organic

thin films has risen dramatically, due in large part to their application in devices

such as light emitting devices (LEDs) (see e.g. [151, 152, 77, 150, 1, 55, 76, 83, 9]),

solar cells (see e.g. [116] and references therein), photodetectors (see e.g. [116] and

references therein), and lasers (see e.g. [78]). Such devices have the potential to

enable entirely new device functionality, to cover larger areas, to be more energy

efficient, to be constructed on flexible substrates, and be inexpensive to fabricate.

In addition, new organic optoelectronic devices are now being developed every day,

including chemical sensors (see e.g. [163, 136]), phototransistors (see e.g. [157]), and

polariton LEDs[153]. However, their implementation and optimization has result-

ingly become a complex and challenging task, one that increasingly requires a deep

understanding of the physics of the underlying electronic processes in amorphous or-

ganic thin films. Furthermore, molecular devices provide archetypal structures on

which to study nanoscale phenomena. At the same time, while many studies have

been reported on excitations in amorphous organic thin films, namely on electrons,

holes, and excitons (bound electron hole pairs), significant questions remain about
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the detailed microscopic processes and how to develop models capable of yielding

quantitative device properties on the macroscale.

Such questions are important as fundamental physical inquiries, but also because

they impact device optimization. As has been long understood in the inorganic semi-

conductor industry, it is far more efficient to design a device on paper and simulate it

using a computer than to design, fabricate and test a device. Soon further progress in

organic optoelectronics may very well rest on the availability and accuracy of device

simulation tools. This thesis describes a simple picture of small molecular weight

amorphous organic devices based on well known physical models, and an accompa-

nying Monte Carlo (MC) simulator capable of enabling exact device level simulations

based on those models. While the models used in this simulator are all based on

extensive existing theory, a number of important improvements were made in the

course of selecting and evaluating them, including:

• the experimental demonstration and theoretical analysis of the previously ne-

glected phenomenon of solid state solvation;

• the identification of significant errors in existing models of molecular energy

level disorder in polarizible media;

• the most rigorous, self-consistent, and quantitative treatment to date of dis-

persive exciton diffusion in a small molecular weight amorphous organic solid;

and,

• the first MC simulations of equilibrium polaron mobilities in amorophous or-

ganic solids as a function of both field and carrier concentration.

Furthermore, the simulator described here is to this author’s knowledge the most

flexible and sophisticated simulator in the literature of polaron and exciton behavior

in small molecular weight amorphous organic solids based on exact physical models,

and as an initial demonstration of its capabilities, a report is given of:

• the first MC simulations of space charge limited (SCL) currents through thin

films as a function of voltage under typical operating conditions.
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The simulations of polaron transport presented in this thesis represent the first cal-

culations of equilibrium mobilities and SCL currents in amorphous organic thin films

at typical fields and carrier concentrations that utilize modern models of polaron

transport in disordered molecular solids.

1.2 Amorphous Organic Thin Film Devices

To illustrate the physical processes relevant to amorphous organic electronic device

behavior, it is instructive to consider an example. The organic LED serves this

purpose well. The first OLEDs were reported by Tang and Van Slyke in the late

1980s[151, 152], and since their seminal work, an industry has formed around the

continued development and commercialization of OLED technology. Despite more

than fifteen years of research and dramatic gains in device performance, the basic

device structure remains quite simple: an OLED consists of a series of organic layers

— an electron (here referring to a negatively–charged molecular state formed by

adding an electron to the ground state) transporting layer, a hole (here referring to a

positively–charged molecular state formed by removing an electron from the ground

state) transporting layer, and in some instances an additional light emitting layer

between the two — sandwiched between two metallic electrodes. A classic example

is shown in Fig. 1-1, where the device has been frabricated on a glass substrate with

a transparent bottom electrode of indium tin oxide and a metal top electrode (e.g.

an alloy of magnesium and silver). In this structure, the 50 nm aluminum tris-(8-

hydroxyquinoline) (AlQ3) layer is the electron transporting and light emitting layer,

while the 50 nm (TPD) layer is the hole transporting layer.

When this device is forward biased (defined here so that holes are injected by the

ITO contact while electrons are injected by the metal contact) holes travel through

the TPD layer, and electrons through the AlQ3 layer, until they each reach the TPD-

AlQ3 interface. The electrons and holes then begin to build up at this interface,

for two reasons: (1) the interface presents an energy barrier to electron conduction

from AlQ3 to TPD and to hole conduction from TPD to AlQ3; and (2) TPD is a
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Figure 1-1: Device structure of an AlQ3/TPD OLED.

poor electron conductor, and AlQ3 is a poor hole conductor, so those electrons and

holes that do overcome the energy barrier will travel away from the interface only

very slowly. This build–up of electrons and holes causes the formation of electron-

hole pairs on individual molecules located near the interface. (While the detailed

physics of this process are complex, it is easy to see why this process is energetically

favorable, since just on the basis of electrostatics, combining an electron and hole onto

a single molecule one will usually yield a lower energy state.) These electron–hole

pairs comprise neutral molecular excitations which are known as excitons, and on

certain materials, when they relax they can emit a photon of light (with energy equal

to the electronic relaxation energy plus any change in the molecular thermal energy).

Both AlQ3 and TPD are efficient light emitters, the former emitting green light and

the latter emitting blue light. However, this device is a purely green emitting device,

showing only emission from AlQ3 excitons.

The color of the emitted light is in principle a complex function of electron, hole,

and exciton physics. However, a few basic principles are easily explained. First, de-

pending on the energetics (and the extent to which the electron and hole populations

22



extend through the interface), the formation of excitons will be faster on either TPD

or AlQ3, so that one might explain the fact that one only observes AlQ3 emission

in this device as evidence that the formation rate of AlQ3 excitons is much greater

than for TPD excitons. Second, it is known that excitons can efficiently transfer

from one molecule to another, and this process is more rapid when the final exciton

is lower in energy than the initial exciton. Thus because the green–emitting AlQ3

excitons are lower in energy than the blue emitting TPD excitons, the TPD excitons

will tend on average to transfer across the interface to become AlQ3 excitons, thus

weighting the observed emission towards AlQ3. The same exciton transfer process

that allows excitons to transfer between molecules of different species, also supports

transfer between like molecules, and so excitons are subject to diffusion. As a result,

if many TPD excitons diffuse sufficiently far from interface that they can no longer

transfer to an AlQ molecule, then TPD emission will be observed. Thus the pure

AlQ3 emission could also be explained as a reflection of the rapidity with which TPD

excitons are transfered to AlQ3 molecules relative to the rapidity with which they

diffuse away from the interface. For the AlQ3/TPD device, it is believed that this

second explanation is the correct one, and that the ratio of the exciton formation

rates is not critical since excitons created on both sides of the interface all end up on

AlQ3 molecules.

Another critical aspect of OLED behavior is the efficiency with which electrons

and holes injected into the device lead to emitted photons, a parameter known as

the internal quantum efficiency. For this device one typically finds that roughly

5 in 100 injected electrons emit a photon[27].1 There are many reasons for this,

which are again a complex function of the electron, hole, and exciton physics. First,

an exciton on a molecule in isolation does not relax emissively every time. If the

AlQ3 exciton is a “triplet” (which is an exciton having total electron spin of 1) it

will usually relax without emitting light.2 In the typical small molecular weight

1One also encounters the external quantum efficiency, which refers to the ratio of photons emitted
in the forward direction, through the planar glass substrate, to the injected electrons. The value
reported here is taken from the reported 1.3% external quantum efficiency divided by 0.25 to account
for the approximate light outcoupling efficiency[27].

2The exception to this case, known as phosphorescence, will be noted in the following chapter.
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OLED, three quarters of the excitons formed are triplets (based on the conventional

assumption that the electron and hole spins are uncorrellated when they combine

to form excitons). The remaining quarter of the excitons are known as “singlets”

(which have a total electron spin of 0), though even some of these singlets will not

relax emissively. The fraction of singlet excitons that emit light as they relax is

often referred to the photoluminescent (PL) efficiency, and for amorphous AlQ3 films,

experimental measurements yield a value of 0.32 ± 2[47]. Thus even presuming all

of the electron-hole pairs evetunally form AlQ3 excitons with 100 % efficiency, one

would only expect an efficiency of 0.25 ∗ 0.32 = 0.08. This value is already quite

close to the reported values of 0.05. The difference can be accounted for on the

basis of a variety of other loss processes involving interactions between the molecular

excitations, including exciton–exciton annihilation (where two excitons destroy each

other)[117], direct electron–holes recombination (where an electron and hole combine

directly to form the ground state)[117], and carrier-exciton annihilation (where an

electron or hole combines with an exciton to destroy the exciton)[117]. Since these

last processes all dependent on the concentrations of the relevant excitations (since

they involve excitation interactions), they are expected to increase with increasing

device currents, and this one of the reasons that the internal quantum efficiency

decreases with increasing current (e.g. [9]). Another important loss process is due

to electrode quenching, where excitons close to either electrode are captured by the

electrode and then relax non-emissively[117], and as a result of this process, efficient

OLEDs are designed to keep the exciton generation region sufficiently far from either

electrode to limit this loss mechanism (see e.g. [24]).

Finally, in addition to the color and quantum efficiency of the OLED, one is

also interested in the operating voltage of the device, because in conjunction with

the quantum efficiency this determines the device’s power efficiency. In general, the

operating voltage is a complex function of carrier transport within the organic layers

and carrier injection at the electrodes. For the most part, the materials used in

amorphous organic electronic devices are effectively insulators (and indeed one of the

principle reasons for employing such exceedingly thin films is to achieve operation
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at low voltages), on account of both low intrinsic carrier concentrations and low

carrier mobilities. As a result, they tend to be very resistive but just how resistive

requires a detailed investigation of the physics of electron and hole conduction in

amorphous organic thin films. In addition, it is known that many of the electrode

contacts employed in amorphous organic thin film devices are hardly ohmic, indicating

that one must also investigate the mechanisms of charge injection at the contacts to

understand the operating voltage.

The foregoing discussion is not exhaustive, but it does illustrate the general prin-

ciple that to explain the behavior of an OLED, we must explain the behavior of

electrons, holes, and excitons as they are created, moved, and destroyed in amor-

phous organic thin films. Similar processes operate in solar cells and photodectors,

except in reverse: excitons are formed by light absorption, and current is extracted

through the dissociation of those excitons. In fact, one can operate the very same

OLED structure introduced above, but biased in reverse, and instead of generating

light, the device absorbs incident light. The light is absorbed throughout the de-

vice (based on the absorption spectra of the film materials) which generates excitons

throughout the organic layers. These excitons then diffuse towards some internal

interface (the AlQ3-TPD interface in this example) where the exciton dissociation

process is energetically favorable, and the excitons dissociate into separate electrons

and holes, ideally such that the electron is on the electron transporting side of the in-

terface, and the hole is on the hole transporting side. In this example, this one would

ideally obtain holes on TPD molecules and electrons on AlQ3 molecules. At that

point the separated electrons and holes flow through the transport layers towards the

contacts, where they are harvested as current. While many factors control the device

performance, they are again all connected to the formation, movement, and relaxation

of electrons, holes, and excitons. Furthermore, just as for OLEDs very thin films are

typically employed in solar cellws and photodetectors, with total device thicknesses

typically between 40 nm and 100 nm[116]. One reason is that as indicated above,

the device efficiency of governing in part by how many excitons manage to diffuse to

the dissociation interface; since exciton diffusion lengths are typically 2- 20 nm[116],
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the absorbing region of the device is ideally limited to this value. Also, the trans-

port layers should be as thin as possible to minimize resistive losses during carrier

extraction, while still being sufficiently thick that electrode quenching is minimized.

This balance generally leads to transport layers of between 20 and 50 nm[116]. This

same type of analysis can be applied to the entire spectrum of existing amorphous

organic thin films devices: lasers, chemical sensors, phototransistors, etc.... The same

physical processes control their behavior, and in nearlly all cases, the same range of

film thicknesses are employed.

The purpose of this introduction to amorphous organic electronic devices is to

clarify the key physical models required to perform device simulations, and it is

clear that in the most general terms, one requires good models of electron, hole, and

exciton behavior. In the next section, these excitations are precisely defined, and the

processes that govern them detailed. This sets the foundation for the construction of

a complete model of device behavior.

1.3 Organic Electronic Excitations

Based on the previous section, it is evident that the amorphous organic thin film

device behavior is governed by electrons, holes, and excitons. In this section these

excitations are formally defined.

First, though it is often convenient to speak of electrons and holes, a different

terminology is more appropriate to amorphous organic thin films: electrons are here

referred to as negative polarons, and holes as positive polarons. A polaron refers in

general to an electron or hole which is both strongly localized in space and which

induced a surrounding polarization of the local environment. This contrasts with the

typical carrier in crystalline inorganic semiconductors like silicon, which are highly

delocalized, and largely for this reason do not cause appreciable local distortions in

the electronic structure of the crystal. Fig. 1-2 (a) diagrams a typical polaron, and

introduces a cartoon representation of a positive and negative polaron which will be

utilized in the remainder of this thesis.
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An exciton refers to a molecular excitation in which a single electron is displaced

from one of the electronic states (conventionally called “orbitals”) occupied in the

ground state into one of the orbitals unoccupied in the ground state. An exciton can

be equivalently viewed as a bound electron-hole pair (where the hole refers to the

electronic state vacated by the excited electron). There are many possible excitons,

depending on which molecular orbitals are occupied by the electron and hole respec-

tively, and also depending on the total spin of the exciton. Fig. 1-2 (b) diagrams a

typical exciton, and introduces a cartoon representation of a spin 0 (i.e. “singlet”)

and a spin 1 (i.e. “triplet”) exciton.

It is also necessary to formally introduce phonons, which refer to excitations of

nuclear vibrations, as they are found to have a profound impact on all the behavior of

polarons and excitons. Phonons are present at all times on all molecules for non-zero

temperatures, and lead to, among other things, the broad, smooth optical absorption

and emission spectra associated with most organic molecules at room temperature.

In addition, the presence of phonon states provides many different pathways for po-

laron and exciton processes to occur while still maintaining energy conservation. For

example, excited phonon modes can contribute their energy to processes in which ex-

citations having higher electronic energies are formed. Similarly, processes can occur

in which excitations having lower electronic energies are formed through the excita-

tion of new phonon modes. It is also common to refer to the ubiquitous presence of

phonons as the “thermal bath,” which can supply or absorb “heat” energy as needed.

With the needed terminology introduced, the important processes involving po-

larons and excitons can be outlined. As noted above, it is necessary to treat the

creation, destruction, and intervening movement and interactions of polarons and

excitons within amorphous organic thin films. Polarons can be formed either sponta-

neously (when a neutral molecule transfers an electron to another neutral molecule)

or by charge injection from an electron/hole resevoir, such as a metal electrode.3 Once

3Technically, a polaron can also be formed by a molecule spontaneously emitting an electron
into the vacuum level, however, it is energetically much more likely that the electron be transferred
to another molecule than it be sent directly into the vacuum level, and so one generally neglects
spontaneous electron emission.
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Polaron:

negative positive
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Exciton:

Spin 0 Spin 1

(b)

Figure 1-2: Diagrams of a polaron (a) and an exciton (b). Below the illustration
of each excitation within a molecular medium is a cartoon representation of each
excitation which will be used throughout this thesis. The arrow symbols represent
the electrons, with the direction refering to positive or negative spin. The horizontal
lines represent energy levels associated with molecular orbitals, with higher lines
reflecting higher energies.
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present in an amorphous organic solid, polarons can transfer to another molecule by

incoherent hopping. In addition, if two oppositely charged polarons reside on nearby

molecules, they may combine on a single molecule, either annihilating each other (in

which case the electron transfers directly into the unoccupied orbital of the hole, and

the excess energy is released as heat, or less frequently, light) or forming an exciton.

These various processes are illustrated in Fig. 1-3, where the terminology has been

introduced that for a transfer process, the relevant excitation (here, either an ex-

plicit exciton, or a polaron) is transferred from a “donor” molecule to an “acceptor”

molecule.

Excitons can be formed by absorption of a photon (of sufficient energy) or by

the meeting of a positive and negative polaron on the same molecule, as described

in the previous paragraph.4 The exciton can then relax either emissively, in which

case it emits a photon, or non-emissively, in which case no photon is emitted and

all the energy is released as heat. Alternatively, it can dissociate, in which case

an negative (positive) polaron is left behind on the initially excited molecule and a

positive (negative) polaron is transfered to some nearby molecule. Finally, the exciton

can also transfer to another molecule, by means of one of two mechanisms, known

as Förster and Dexter transfer respectively. These processes are illustrated in Fig.

1-4, where for transfer of a single exciton, the exciton is transferred from a “donor”

molecule to an “acceptor” molecule.

1.4 Defining the Material Space

In the above disucssion the concept of “amorphous organic thin films” has been

introduced. Furthermore, it has been noted that this thesis is specifically concerned

with small molecular weight amorphous molecular organic thin films. In this section,

the material space with which this thesis is concerned is precisely defined.

First, the material space of this thesis is focused on materials which are “perfectly”

4Technically, an exciton can also form spontaneously, through the conversion of a sufficient
amount of phonon energy, but as will be noted below, this process is exceedingly unlikely for typical
exciton energies even at room temperature, and is therefore generally neglected.
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Figure 1-3: Cartoon diagrams of relevant polaron processes. They are: (a) spon-
taneous formation; (b) injection from a charge resevoir (negative polaron injection
shown); (c) collection by a charge resevoir (negative polaron collection shown); (d)
polaron transfer (negative polaron transfer shown); (e) exciton formation; and, (f)
polaron annihilation.
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Figure 1-4: Cartoon diagrams of relevant exciton processes. They are: (a) opti-
cal formation (by photon absorption); (b) dissociation into two polarons; (c) Dexter
transfer (comprising two simultaneous electron transfers); (d) Förster transfer (com-
prising long range energy transfer by dipole-dipole coupling); and, (e) decay (either
emissive or non-emissive).
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amorphous, which refers to materials that are completely (or nearly completely) dis-

ordered at the molecular size scale. The key reason for building models based on such

materials is that the vast majority of organic electronic devices employ materials

which are well approximated by the “perfectly” amorphous limit. One reason for this

is that the techniques employed for depositing organic thin films usually yield amor-

phous films (see next section for more details). Another reason is that the formation

of local order (conventionally called “molecular aggregation”) often degrades opto-

electronic device performance by increasing the non-emissive decay of excitons (as

the aggregates provide exciton “quenching” sites.) There are important exceptions:

(1) in organic transistors the high carrier mobilities observed in some polycrystalline

organic materials compensates for the comparative fabrication difficulty and limited

range of compatible device structures; and (2) in some solar cell and photodetec-

tor structures, good performance has been realized using materials which naturally

form polycrystalline films. This thesis is not directly concerned with such materials,

though many of the essential physical models are similar and certainly some of the

results described here may be applicable to ordered materials as well.

Second, the material space is focused on thin films composed of small molecular

weight organic molecules held together by dipole-dipole forces. The purpose of the

first component of this restriction is that the physics of small molecular weight materi-

als can be analyzed with far fewer approximations than the physics of high molecular

weight materials (i.e. macromolecules and polymers). Thus a simpler theory can

be developed and evaluated with far fewer unknowns. It should be noted, however,

that though the models developed in this thesis are targeted towards small molecular

weight, much of it is still applicable to macromoloecular and polymeric materials (e.g.

by treating subunits of the macromolecules and polymer chains as individual small

molecular weight “molecules”), though these applications are not discussed further

in this thesis.5

5A fine point in this specification is that it also excludes films composed of individual molecules
that are sufficiently large that two size scales in excitation processes arise, those involving intramolec-
ular motion and those involving intermolecular motion. This is the effective meaning of restricting
the material space to small molecular weight materials.
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The second component of this restriction is based on the fact that the vast majority

of interesting organic electronic materials (and all of the ones discussed in this thesis)

are governed by dipole-dipole interactions. This class of materials is often referred

to as van der Waals solids, and essentially comprises all organic solids not subject to

hydrogen bonds. The key feature of van der Waals bonded versus other intermolecular

bonds is their weak, non-specific nature, in contrast with the much stronger hydrogen

bonds. The explain the importance of this specification it is necessary to briefly review

the nature of interatomic and intermolecular forces.

The two strongest forces acting between atoms are ionic and covalent bonds. In

both cases these bonds are referred to as chemical bonds, in that the formation of

such bonds leads to a fundamental chemical change in the resulting system. These

are precisely the types of bonds that hold the atoms in a molecule together and define

the chemical structure of that molecule. Thus by construction, when one speaks of

a solid composed of a particular kind of molecule, the intermolecular forces acting

between these molecules must be of a weaker sort.6 The most important of these

weaker interactions can be divided into two groups: dipole-dipole interactions and

hydrogen bonding.

Dipole-dipole interactions collectively refer to any interactions between the dipole

moments of two molecules. The interactions leading to bonding between molecules

are collectively referred to as van der Waals bonds, and arise from the lowering in

energy of two molecules through their respective polarizations by each other’s respec-

tive molecular charge distributions. For neutral molecules, the dominant multipole

component of the charge distribution is the dipole moment, and so the interaction

strength (for non-zero dipoles) is proportional to the dipole moments of the molecules,

as well as the polarizibilities. Such bonds can also form (though they are much weaker)

even in the absence of any static dipole moments, since quantum fluctuations in the

charge distributions effectively form fluctuating dipoles that can induce an energy-

6In some sense this is a matter of semantecs, in that if one does form a solid in which the chemical
composition of the molecules changes, in this construction, one would simply redefine the system as
composed of new “molecules” involving the new chemical bonds, and held together by any remaining,
weaker interactions.
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lowering interaction despite an average dipole moment of zero. In both cases, the

impact of these interactions is to lead to an attractive force at long distances which

leads to condensation in the solid phase (down to a certain intermolecular distance at

which point a repulsive term beings to dominate as the charge distributions effective

“bump” into each other). In addition to the van der Waals bond arising from induced

polarizations, the static dipoles themselves can also directly interact to change the

total energy of the system. For this interaction, however, the effect can be repulsive

or attractive depending on the alignment of the two static dipoles, and thus it is

not usually referred to as a “bond” in the manner of the van der Waals bond. The

critical feature of all dipole-dipole interactions is their exceedingly weak nature, and

can be approximated as only changing the electrostatic energy of the system without

significantly changing the charge distributions of the individual molecules.

Hydrogen bonding, in contrast to dipole-dipole interactions, arises from a sharing

of electrons between molecules, and thus is not well described in terms of simple calcu-

lation of the electrostatic interaction energy picture. This electron sharing also makes

hydrogen bonds much stronger than most van der Waals bonds, though hydrogren

bonds are still much weaker than a normal covalent bond. The origin of this type of

bond is the presence a hydrogen atom covalently bonded to a small highly electroneg-

ative atom (e.g. nitrogen, oxygen, flourine) on the exterior of a given molecule , which

causes the hydrogen atom to take on a partial positive charge and the electronegative

atom to take on a partial negative charge. One might expect to adequately describe

this situation within the dipole formalism, but the large magitude and strong spatial

localization of the dipole moment causes qualitatively different behavior, since the

partially positively charged hydrogen atom on one molecule can now form a partially

covalent bond with another electronegative atom on another molecule.

Hydrogen bondeded materials are explicitly excluded from the material of this

thesis because models used are based on an assumption that the intermolecular in-

teractions are weak in a technical sense that is satisfied by dipole-dipole interactions,

but not by hydrogen bonding.7

7As will be explained in the next chapter, a weak interaction is here defined as one that does not
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1.5 Depositing Amorphous Organic Thin Films

To this point, no mention has been made of how one forms the amorphous organic

thin films utilized in electronic devices. In this section, the most common methods

for fabricating such devices is described. The origin of the am,orphous nature of these

films is also discussed, along with some of the conditions under which the “perfect”

disorder assumption is likely to fail.

The standard technique for depositing thin films of organic small molecule mate-

rials is thermal evaporation in high vacuum. To perform this kind of deposition, one

requires a sealed chamber capable of being pumped down to pressures of < 1x10−5

Torr (or more commonly, < 1x10−6 Torr), in which is located an open resevoir of

material which can be heated sufficiently that the material either boils or sublimes.

At such low pressures, the mean free path of the evaporated material is generally

larger than the dimensions of the chamber, and so the material simply coats every

surface in line of site of the opening of the resevoir, since those surfaces (unless they

are being actively heated) are generally much colder than the boiling/sublimation

point of the evaporant. Thus to deposit a film of material onto a substrate (e.g. a

piece of glass or silicon), one need simply mount that substrate somewhere in line

of site of the resevoir opening, and then heat the resevoir up. Usually, one mounts

shutters inside the chamber so that one can quickly hide or expose the substrate to

the evaporant; in addition, one usually mounts a thickness monitor such that the

rate of film deposition can be actively monitored (after appropriate calibration). The

most common such monitors are quartz crystal thickness monitors, which provide a

film thickness resolution of 0.01 nm. Well controlled deposition rates are typically

achievable in the range of 0.01 to 1 nm/s. Combined with the aforementioned shut-

ters, which typically can be opened or closed in roughly a second, this deposition

technique is clearly well suited to the rapid growth of thin films in the range of 1 to

1000 nm, with thickness control as fine as 0.01 nm. A diagram of a simple thermal

significantly affect the molecular electronic wavefunctions. Clearly, hydrogen bonding, since it causes
a sharing of electrons between molecules, can not satisfy this requirement. In constrast, dipole-dipole
interactions are quite straightforwardly accounted for using a weak interaction formalism.
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Figure 1-5: Cartoon diagram of a high vacuum thermal evaporation system.

evaporation system is shown in Fig. 1-5.

Another important deposition technique is evaporative solution processing, in

which case the film material is dissolved in a solvent, spread onto the substrate,

and as the solvent evaporates, the material precipitates into the surface. Spin coating

is by far the most common such technique, in which case the solution is dropped onto

a rapidly spinning (e.g. 1000 rpm) substrate; the centrifugal forces cause the solution

to sheet out on the substrate, and as the solvent rapidly evaporates a uniform film can

be obtained. In addition to spinning, one can dip coat, in which case the substrate is

immersed into a solution, and then drawn out under controlled conditions, causing a
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film to coat the surface as the solvent dries on the substrate at the solvent-atmosphere

interface. Solution processing techniques are more often used for polymer based films

because polymers generally can not be thermally evaporated because at sufficiently

high temperatures to boil/sublime, the polymer will already be decomposing into its

monomer subunits. It is also important to keep in mind that the applicability of so-

lution processing is limited by the fact that one can only form multilayer structures if

the preexisting layers are all completely insoluble in the solvent being used to deposit

the new layer. Because one finds that most of the interesting materials are all at least

partially soluble in the same set of good solvents, this restriction effectively limits

solution processed devices to a single layer. Nevertheless, solution processing is still

useful is many instances.

There are other, less common techniques, but these two are by far the most widely

utilized, and in both cases the resulting thin films are usually amorphous. The reason

for this is that both techniques (usually) deposit the layers much too quickly for the

weak intermolecular forces to achieve any significant long range ordering. It is usually

possible, by other more complex techniques, to form crystals of these materials, but

such crystals are difficult to utilize in any device structures, in part because of their

inconvenient geometries and in part because they are too thick for most applications,

and are in any case often expensive and time consuming to fabricate. However, it is

important to observe that the existence of a crystalline phase indicates the implicit

instability of the amorphous phase: since the crystal phase is lower in energy (as

otherwise it wouldn’t form in the first place), then given sufficient time even a highly

stable amorphous solid should eventually transform into the crystal phase. In practice,

this rate is very slow (as one might expect, since the mobility of a molecule in a solid is

small), and under most circumstances, the amorphous films deposited using thermal

evaporation or solution processing are quite stable.8

Before moving on, it is worth asking if there might exist some kind of microscopic

ordering in such films, even if long-range crystallinity is absent. For instance, it is

8In the event that one heats the substrate during deposition, or employs a post processing anealing
step, one can sometimes obtain poly-crystaline thin films, as is the case for the transistor materials
pentacene and tetracene.
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well known that small molecular weight compounds can be recrystalized by precipita-

tion from solution, so one might expect the occasional formation of small crystalites

when spin coating films. Such small scale ordering is essentially the aggregation phe-

nomenon alluded to earlier, consisting of the presence of small collections of molecules

formed into ordered clusters surrounded by otherwise amorphous material. Aggrega-

tion occurs when two or more molecules are capable of arranging themselves in such

a way that a lower energy ordered structure is locally attained. At one extreme, this

structure might consist of just two molecules oriented together in a particularly rigid

way; on the other extreme, it might consist of a crystallite of hundreds of organized

molecules. While it is difficult to predict with certainty which materials will be sus-

ceptible to such aggregation, it is generally true that aggregation occurs more readily

when the molecule has a stronger dipole moment and when the molecule is planar.

The reason for the former is simply that stronger dipoles imply stronger intermolec-

ular forces which are then able to more forcefully drive the system into an ordered

state. The reason for the latter is that two planar molecules can more easily orient

themselves so that a large fraction of their surfaces are in close proximity, thereby fa-

cilitating a stronger interaction.9 In some cases, the bonds formed in an aggregate are

strong eneough to significantly alter the molecular properties of the constituents; in

the event that two molecules are involved, the combined molecular system is referred

to as a dimer. For three molecules, it is a trimer, etc.... In this thesis aggregates

will be treated as a kind of impurity, since for the most part they as associated with

molecular states that behave in a manner that is substantially different from the rest

of the film.

9This is illustrated by a simple geometric example. Consider how two planar surfaces can be
placed entirely in contact with each other, while two spherical surfaces are only able to make contact
at single point. As a result, two planar molecules in the proper orientation are in general able to
more strongly interact than two spherical molecules.

38



1.6 Challenges in Modelling Disordered Materials

Based on the preceeding sections, as relatively straightforward picture of small molec-

ular weight amorphous organic solids emerges: such solids consist of small organic

molecules weakly interacting with each other through dipole-dipole interactions and

randomly oriented and positioned with respect to each other. The properties of the

material are determined by a combining the properties of the individual molecules

with the intermolecular interactions, but because the interactions are weak, one can

reasonably expect the molecular character of the films constituents to be largely re-

tained. However, the presense of spatial and orientational disorder presents a special

challenge to the analysis polaron and exciton behavior.

The electronic properties of organic crystals have been studied since the 1960s,

and the analysis of such systems is greatly assisted by their crystallinity; by combining

the techniques of periodic boundary conditions and group theory, one can perform

quite detailed calculations of the properties of electrons, holes, and excitons in such

crystals by analyzing just one unit cell. While this task is by no means trivial, and

can still be computationally prohibitive for sufficiently complex molecules and crystal

structures, it is in every respect simpler than the task faced in studying amorphous

organic solids. In this case, to perform a similar analysis one must effectively extend

the unit cell to a region that is sufficiently large to capture the average behavior of the

system; whereas unit cells of crystals usually contain no more than a few molecules,

a “super” cell appropriate for analyzing the properties of an amorphous system often

requires the use of thousands (if not tens of thousands) of molecules.

Thus disorder is one of the primary challenge in realizing the principle objective

of this thesis, namely to enable simulations of device level properties based on real

physical models. Clearly it is necessary to break the system down into something that

is sufficiently simple that one can perform meaningful calculations in a reasonable time

over large numbers of molecules, but still sufficiently realistic that those calculations

are useful to the study of actual devices. The approach taken in this thesis is based

on models first developed in the early 1980s for studying exciton and polaron motion
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amorphous organic solids (see e.g. [10, 101]). The essense of the approach is to use

the fact the intermolecular interactions are sufficiently weak that one may treat the

solid as a collection of isolated molecules subject to slight perturbations resulting

from intermolecular interactions. Thus by analyzing the physics of individual organic

molecules detail, and then how the properties of those molecules are perturbed by

the presense of other molecules, one build up a model of the behavior of excitons and

polarons in such a solid. The film disorder in this approach manifests as variations

in the properties of the molecules and their interactions with other molecules. Once

this model is complete, the final step is the design and implementation of a computer

simulation sufficiently general that it can integrate all of the model components, and

fast enough to be practically useful.

1.7 Thesis Organization

This thesis is divided into seven chapters and five appendices. In the second chapter,

the basic physical model employed in this thesis for describing excitation behavior

in small molecular weight amorphous organic materials is described. In the third

chapter, theoretical calculations of the dominant source of disorder in the model –

the variations in the excitation energies – is presented, including a review of the

existing literature on this subject. In the fourth chapter, a computer simulation of

the previously introduced model is described and presented. In the fifth chapter,

the model and simulator are applied to the analysis of exciton motion, including a

review of the existing literature on exciton motion in organic materials. In the sixth

chapter, the model and simulator are applied to the analysis of polaron motion, and

in particular, the analysis of equilibrium mobilities and space charge limited currents,

including a review of the literature on the subject. Finally, in the seventh chapter,

the conclusions and future directions of this work are discussed. The first three

appendices address various physical and mathematical derivations relevant to this

thesis. In the first, the basic physics of electronic excitations on organic molecules

is described, including an analysis of the relevant intermolecular interactions. In the
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second, derivations relevant to the calculation of excitation density of states functions.

In the third, a derivation of an analytic treatment of exciton diffusion is given (after

[101]). The last appendix consists of a list of articles and patent applications for

which the author was a co-author.
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Chapter 2

A Simple Model of Amorphous

Molecular Solids

2.1 Introduction

In this chaper, the basic physical properties of organic molecules, including their in-

teractions with other molecules, are used to construct a basic model small molecular

weight amorphous organic solids that can be later employed to carry out simula-

tions of polaron and exciton behavior. (See Appendix A for a detailed review of the

relevant physics of organic molecules.) While building up this model a particular ma-

terial, tris-(8-hydroxyquinoline) (AlQ3), is used as an archetypal example of a small

molecular weight organic compound used in amorphous organic electronic devices.

For the remainder of this thesis, the properties of this material will be used to make

concrete the various principles of the model as they are introduced, and also to pro-

vide a reference for what kinds of information about typical organic molecules are

computationally or experimentally accessible. To this end, this chapter begins with

an analysis of AlQ3.
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2.2 AlQ3: A Case Study

This development begins by considering a specific organic molecule which will serve as

a model material for the remainder of this thesis: aluminum tris-(8-hydroxyquinoline)

(AlQ3). This material is one of the very first employed in a high efficiency OLED

[151], and is today one of the most widely studied organic optoelectronic materials. It

is integrated into existing devices in the form of an amorphous thin film, and employed

as an electron transporting material (because it transports negative polarons much

more efficiently than positive polarons), and as a green light emitting layer (because

it has a high photoluminscent quantum efficiency). In this section the molecular

structure of AlQ3 is introduced first, followed by a review of its molecular and bulk

film properties.

The chemical formula of AlQ3 is shown in Fig. 2-1 (a); it consists of a central

aluminum atom bonded to three quinolate ligands. AlQ3 forms two gometric iso-

mers, referred to as the meridinal (mer) and facial (fac) structures having C1 and

C3 symmetries, respectively.1 Numerous experimental and theoretical studies have

demonstrated that the mer-AlQ3 form is dominant in the amorphous solid state

[2, 79, 33], and therefore only the mer form of AlQ3 is considered below. A ball and

stick structure diagram of mer-AlQ3 is shown in Fig. 2-1 (a) for the ground state

geometry (from [54]).

Many groups have studied the ground state electronic structure of AlQ3, and com-

puted the associated HOMO and LUMO molecular orbitals. (As is conventional, all

of the ab initio calculations reported here are performed assuming classical, station-

ary nuclei.) In Fig. 2-2 are shown representative molecular orbital surfaces associated

with (a) the HOMO and (b) the LUMO. These orbitals serve to illustrate in part the

spatial distributions of the electronic states active in polaron and exciton processes.

Disregarding nuclear relaxation following excitation, the positive polaron consists of

an electron missing from the HOMO, the negative polaron consists an electron miss-

1In the facial form, the three quinolate groups are all oriented identically to each other, hence
yielding the C3 symmetry. In the meridinal form, one of the quinolate groups is twisted with respect
to the other two, thus eliminating the sole symmetry axis.
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~ 0.58 nm

(a) (b)

Figure 2-1: Chemical structure of AlQ3. The structural formula for AlQ3 is shown
(a), while the ball and stick representation of the mer-AlQ3 isomer in the ground
state is shown in (b), optimized at the HF/3-21+G** level of theory (reproduced
from [54]). The dimension showing the distance from the central Al atom to the edge
of the quinolate ligand is calculated based on the bond lengths reported in [54], as
described below.
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(a) (b)

HOMO: LUMO:

Change relative 
to ground state

(c)

S1 Exciton:
Figure 2-2: HOMO (a) and LUMO (b) of AlQ3, computed at the HF/3-21+G** level
of theory (reproduced from [54]).

ing from the LUMO, and the excitonic state consists of an electron promoted from

the HOMO to the LUMO. Of course, as noted in the introduction, disregarding the

nuclear relaxation is hardly accurate in detail, and ab initio studies of AlQ3 excited

states will be considered below.

For the ground state structure, a number of groups have reported calculations of

the dipole moment, with values ranging between 6.1 D and 4.3 D, of which the 5.3

D value reported by Martin et al. reflects the most advanced calculation to date,

employing the DFT-B3LYP/6-31G* theory[33, 54, 91].2 There are few reports of the

polarizibility of AlQ3, and the Martin et al.[91] value is again at the most advanced

level of theory; they obtain α = 4.8x10−23 cm3, and find that the polarizibility is

approximately isotropic.

Only a very limited number of reports exist of ab initio studies of the excited

states of AlQ3, because such calculations are much more difficult to perform. Curi-

oni et al.[33] and Martin et al.[91] both report DFT based studies of the positive and

2The various ab initio theories are generally identified by a set of abbreviations. In this case,
DFT refers to density functional theory, B3LYP refers to the Becke 3-parameter Lee-Yang-Parr
approximation, and 6-31G* specifies the particular basis set used to construct the electronic orbitals.
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negative polaron states of AlQ3, and report values for the Franck–Condon (FC) relax-

ation energies of each state. Specifically, Curioni reports a positive (negative) polaron

relaxation energy of 0.04 eV (0.06 eV)[33], and Martin reports 0.09 eV (0.11 eV)[91].

Again, the calculation by Martin et al.[91] is performed at a somewhat higher level

of theory. Dipole moments and polariziblities of the polaron states are not reported.

Only Halls et al.[54] report ab initio calculations involving a relaxed exciton state

(specifically, the S1 exciton state.) Because the dominant part of the charge distribu-

tion for the exciton is the dipole moment (as opposed to the polaron state, where the

non-zero charge is the dominant term), a first order treatment of the exciton charge

distribution requires knowledge of the dipole moment at the various stages of the

excitation/relaxation process. The important stages of this process were introduced

in the previous chapter when describing the basic electronic transition. Following the

numbering scheme used in that development (see Fig. A-2 (b)), the reported values

for the magnitudes of the dipole moments are[54]:

µ(1) = 6.1 D (2.1)

µ(2) = 2.7 D (2.2)

µ(3) = 3.0 D (2.3)

µ(4) = 6.4 D, (2.4)

and for the vector change in the dipole moment associated with the 1-2 and 3-4

transitions, they find that[54, 140],

∆~µ21 = (0.6, 0,−3.4) D (2.5)

∆~µ43 = (1.6, 0, 3.0) D. (2.6)

The vector change in the dipole moment is specified here in a reference frame in

which the initial state molecular dipole points along the z-axis and the rotation of
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the molecule about the z-axis is undetermined (i.e. these transition dipoles are only

specified to within an arbitary rotation about the z-axis). Both of these dipole tran-

sitions have magntiudes of 3.4 D. It is important to keep in mind that the nature

of electronic structure calculations is such that there are no external constraints on

the molecular orientation; as a result, the orientation of molecule as optimized in

the excited state is not necessarily the same as the orientation of the molecule as

optimized in the ground state, and therefore the vector changes in the dipole moment

over the 2-3 transition and 4-1 transition are not well defined quantities in this cal-

culation. That the magnitdues of the the dipoles in states 2 and 3 are similar, and

likewise for states 4 and 1, indicates that there is very little impact on the dipole

moment due to Franck-Condon relaxations, but in principle, reorientations that do

not change the magnitude of the dipole are invisible to this analysis. However, since

Franck-Condon relaxations are supposed to involve only minor rearrangements of the

charge distribution, it is generally accepted that such reorientations are small, and

one can usually assume that the dipole orientation remains unchanged over the 2-3

and 4-1 transitions, respectively.

Halls et al.[54] also report that the excited state FC relaxtion energy is 0.55 eV,

while the ground state FC relaxation energy is 0.56 eV. This study is performed at

a more primitive level of theory than the Curioni et al. and Martin et al. work,

employing the HF/3-21+G** theory for the ground state and the CIS/3-21+G** for

the excited state. The main reason for this is that it is more difficult to analyze the

minimum energy configuration of an exciton state than the ground state, and thus

a less computationally intensive theory is needed. (For the polaron states, although

they contain one more or one less electron than in the ground state, the resulting

system is still analyzed in the lowest energy configuration of those electrons, making

it is some ways simpler to analyze than the exciton state.) Nevertheless, the reported

ground state dipole moment is in reasonable agreement with the value reported by

Martin et al., and it is found that the reported relaxation energies are in reasonable

agreement with experimentally observed absorption and emission spectra. A value

for the polarizibility of AlQ3 in the S1 state is not reported.
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The solid state of AlQ3 can be either amorphous or crystalline, and the crystal

phases are considered first. To date, four different crystals phases have been iden-

tified: two composed of mer-AlQ3 (α and β), one of fac-AlQ3 (δ), and one that is

polymorphic (ε)[20, 32, 129]. The structures of the α and β phases are shown in

Fig. 2-3. Though the crystal phase is not a principle concern in this thesis, it is

worth noting the densities of the purely mer-AlQ3 structures: 1.37 g/cm3 and 1.42

g/cm3 for the α and β phases, respectively[20]. (The δ and ε phases have densities of

1.42 g/cm3 and 1.38 g/cm3, respectively.) Given an AlQ3 molecular weight of 459.4,

these crystals yield an average intermolecular spacing of 0.82 nm and 0.81 nm. The

α phase crystals were formed by vacuum sublimation in a quartz tube in which the

source material is heated, and the crystals recondense on the walls of the tube in a

region of the furnace maintained at a lower temperature. The β phase crystals were

then formed by a subsequent recrystalization in acetone.

In contrast, when thin films of AlQ3 are deposited by thermal evporation in the

manner described in the first chapter, the material is completely amorphous. A

diffraction analysis of the subsequent material shows no crystalline structure of any

kind, even for material deposited at elevated substrate temperatures[20], indicating

that in AlQ3, the amorphous phase is remarkably persistent in thin films. A directly

measured density of the amorphous phase is not reported in the literature (though

it is common to encounter a value of 1.1 g/cm3 for all organic thin film materials).

To directly measure this density, we performed a simultaneous deposition of AlQ3 by

high vacuum thermal evaporation onto a quartz crystal thickness monitor (QCTM)

and onto two silicon substrates mounted to the monitor housing. The arrangement of

this experimental setup is shown in Fig. 2-4. The deposition chamber pressure was

≤ 1.0x10−6 Torr, and the deposition rate was 0.1 - 0.2 nm/s. A QCTM operates by

monitoring the resonant frequency of vibration of a thin quartz crystal onto which

the film material is being deposited. As more and more material is deposited, the

crystal vibrations slow down due to two effects: (1) the crystal gets heavier; and (2)

the deposited material introduces a drag force. By properly assigning the density of

the material and the drag coefficient, one can reconstruct the thickness of material

49



ρα = 1.37 g/cm3 ρβ = 1.42 g/cm3 ρδ = 1.42 g/cm3

(a) (b) (c)

Figure 2-3: Crystal structure of (a) α and (b) β phases of AlQ3. Both phases consist
entirely of the mer-isomer. These figure are reproduced from [20].
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Figure 2-4: Experimental setup for measurement of AlQ3 thin film density using a
quartz crystal thickness monitor (QCTM).

deposited on the crystal from the changes in the resonant frequency. For standard

QCTMs, the drag coefficient is specified in terms of ratio of the acoustic impedences

of quartz and the deposition material. (This ratio is colloquially known as the “Z-

factor.”) One computes the acoustic impedence in this case by taking the product of

the material density and the accoustic velocity of shear waves (because QCTMs are

shear mode devices). The acoustic impedence of quartz is 8.83x106 kg/m2s; unfortu-

nately, this value is not known for very many organic solids. However, since sound

wave propagation is mainly determined by the density and ridigity of a material, we

may reasonably take polystyrene (PS) as typical of most organic compounds, and for

PS, the acoustic impedence is 1.19x106 kg/m2s, yielding a Z-ratio of 7.4.3

To perform our experiment, we set the Z-factor on the monitor to 7.4 ± 1.5, and

then assign the density to 1.0 g/cm3. We then grow our film, record the thickness, T ,

3This approximation should be quite good for most amorphous small molecule organic solids; the
main difficulties would arise when the material is very soft, as for rubbers or very soft polymers.
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measured by the QCTM and use ellipsometry to directly measure the film thicknesses,

Treal, grown on our substrates. The substrate positions were chosen so that by taking

the average value of the film thickness, we obtained the thickness grown directly on

the monitor crystal, corrected for any non-uniformity of the growth rate as a function

of position. The density of the material is then given by the average value of Treal

divided by T . In our experiment, we obtained T = 96.0 ± 3.0 nm4 and Treal = 83.1

± 2.0 nm, giving a density of 1.16 ± 0.06 g/cm3. This density yields an average

intermolecular spacing of 0.87 nm.

The importance of these densities is in characterizing the positional disorder

present in an AlQ3 film, for though the films are amorphous, and therefore char-

acterized by random positions and orientations, one must still observe the constraint

that no two molecules be so close to each other that their atoms coexist in the same

space (or form a chemical bond with each other). This minimum distance is here

identified by Dmin, and on the basis of the crystal phases of AlQ3, it is clear that it

can be at least as low as 0.81 nm. But this is hardly a lower bound, for the packing

of molecules in a crystal is restricted to only those arrangements which support long

range order. In an amorphous film, it is reasonable to assume that an individual pair

of molecules can come even closer together. While it is difficult to determine precisely

how close, one can approximate this distance by considering the bond lengths of the

ground state structure and then computing the distance from the central Al atom

to the edge of the quinolate ligands. The bond lengths reported by Halls et al. are

included on a diagram of the quinolate ligand in Fig. 2-5, along with a calculation

of the distance from the Al atom to the edge of the ligand (defined here as the line

connecting the two outer most hydrogen atoms). We find this distance to be equal

to 0.58 nm. (This distance is also represented in Fig. 2-1, where the reader may find

it easier to see its physical meaning.) Clearly, two AlQ3 molecules can not be any

closer than this distance, or their atoms will be literally coexist in the same space.

We thus conclude that while the positions of the AlQ3 molecules in an amorphous

film may be random, they are still governed by a minimum intersite distance which

4This uncertainty is due to the Z-factor uncertainty.
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~5.8 Å

Figure 2-5: Diagram of the quinolate ligand of AlQ3 with bond lengths indicated, as
obtained from [54]. Also shown is the distance (calculated from those bond lengths)
from the Al atom to the edge of the ligand (defined here as the line connecting the
two outer most hydrogen atoms).

is between 0.58 nm and 0.81 nm. Based on this analysis, we set Dmin ≈ 0.70nm.

One can obtain a great deal of information on the bulk electrical and optical prop-

erties of amorphous thin films of AlQ3 on the basis of a few simple measurements.

The same ellipsometry measurements performed above on AlQ3 films to determine

their thickness also yield the optical index of refraction, n, which we find is equal to

1.70 ± 0.02. (Note that in this thesis n is assumed to be obtained at optical wave-

lengths well above the highest wavelength for which significant absorption is observed,

so as to avoid the impact of electronic resonances.) One can also measure the low

frequency dielectric constant, ε, of AlQ3 thin films by measuring the capactance of

known thickness films, using the fact that the capacitance, C, is given by Aε/t where

A is the device area and t is the film thickness. We have performed this measurement

using a structure consisting of a 50 nm Al film for the bottom electrode, grown on a

glass substrate, a 128 nm AlQ3 film, and a 50 nm Al film for the top electrode. The

Al electrodes are used in this structure because they are known to be poor charge

injectors for AlQ3, thereby minimizing the current flow through the device during the

capacitance measurement, which tends to increase the noise in the measurement. The
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capacitance is measured on 0.031cm2 area devices, using an HP 4192A at zero bias

for a variety of frequencies. We find that ε = 3.55 ± 0.2 for all frequencies between

1 MHz and 1 kHz. In general, the index of refraction is a reflection of the electronic

contribution to the molecular polarizibility, because optical frequencies are of order

1x1015 Hz and only electrons can respond to such rapid oscillations in the electric

field.5 In contrast, the zero frequency dielectric constant includes both the electronic

polarizibility and any additional responses involving the nuclear motion. In general

these additional responses involve nuclear relaxations, and in some instances, gross

movement of entire molecules. However, in most molecular organic solids, gross move-

ment of the molecules is believed to be so restricted as to make this contribution to the

dielectric constant negligible. As a result, a measurement of the dielectric constant at

any frequency significantly below roughly 1x1013 Hz (i.e. the approximate frequency

of the intramolecular nuclear reorganizations) should be constant, and consist of only

the electronic and nuclear responses originating from molecules immobilized in the

solid. In other words, the response should be due only to the molecular polarizili-

bity (i.e. α from the previous chapter) associated with the isolated molecule. For a

single component material of this type, the Claussius–Mossotti relation connects the

macroscopic dielectric constant to the molecular polarizilibity through:

α =
ε− 1

ε+ 2

3Vm

4π
(2.7)

where,

Vm ≡ MW

NAρ
(2.8)

and MW is the molecular weight, NA is Avogadro’s number, ρ is the density in

g/cm3, and the resulting polarizibility is in units of cm3. (The meaning of Vm is

as the “molecular volume,” i.e., the volume associated with a single molecule in the

material.) This expression allows one to experimentally calculate α directely from our

5To calculate the frequency, one can use ν = E/h where E is the photon energy, which is between
1.5 and 3 eV for visibile wavelengths.
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measurement of ε, and plugging in our values of ρ and ε for an amorphous AlQ3 film,

we obtain α = 7.2x10−23 cm3. One can similarly calculate the purely electronic part

of the polarizibility, αel by replacing ε in the above expression with n2, and plugging

in for n we obtain αel = 6.1x10−23 cm3. While these values are both certainly larger

than the ab initio value of 4.8x10−23 cm3 reported by Martin et al., considering the

uncertainty of typical ab initio calculations, this actually represents quite reasonable

agreement. In general, the values derived from experimental measurements will be

used in this thesis.

One can also obtain the optical absorption spectrum, which probes the process

of exciton formation, and the PL emission spectrum, which probes the process of

exciton destruction. Since AlQ3 does not show significant singlet-triplet mixing, the

PL emission spectrum here only probes singlet exciton relaxation. In addition, all of

the reported PL spectra show a single peak structure that indicates that the emission

process is dominated by relaxation from the S1 state, even for excitation energies

sufficient to excite higher energy singlets. This suggests that all excitonic states with

higher energies than the S1 state rapidly relax into the S1 state on the time scale of

the radiative lifetime (as consistent with the expectation of rapid thermalization of

high energy excitations).6 Numerous measurements of both spectra are reported in

the literature. We have performed room temperature spectral measurements for an

amorphous thin film of AlQ3, as shown in Fig. 2-6 (a). The absorption spectra are

measured using a Cary 5E absorption spectrometer, while the emission spectra are

measured using a cooled CCD spectrometer following excitation by a 400 nm laser.

These spectra, however, do not directly represent the exciton transition spectra of an

individual molecule, because they are bulk measurements of the ensemble average all

of the different molecules in the system (and hence the “bulk” subscript in the figure

caption), which in principle each reside in a slightly different local environment (and

6To be more precise, since the reported AlQ3 PL spectra are all for excitation wavelengths ≥
337 nm (hν = 3.7 eV), technically one may only conclude on this basis that excitons that form
in the first few singlet states will rapidly relax into the S1 state. However, it is likely that even
higher energy excitons will relax in precisely the same way (and just as rapidly), and in any case, for
the typical processes that occur in organic electronic devices it is very unlikely that higher energy
excitons would ever form in the first place.
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hence have slightly different excitation creation and destruction energies.)

As noted in the introduction, Garbuzov et al.[47] report the PL quantum efficiency,

ηPL, of amorphous AlQ3 thin films at room temperature as 0.32 ± 0.02. Measure-

ments of the PL lifetime, τPL, are also reported in the literature by fitting a single

exponential function to the time decay of the PL intensity following excitation by a

pulsed light source. We have performed measurements of the time decay of the AlQ3

PL intensity, following excitation by a 100 fs, 400 nm laser pulse from a frequency

doubled Ti-Saphire laser, as shown in Fig. 2-6 (b). The PL signal was measured

using a Hammamatsu C4776 Picosecond Fluorescence Lifetime System (consisting of

a streak camera and cooled CCD spectrometer). As indicated in the figure, the time

decay of the PL intensity is well fit by a single exponential function, yielding τPL =

17.4 ± 0.2 ns.

To relate τPL to the radiative lifetime, τrad, of the exciton as derived in the previous

chapter, it is necessary to account for the fact that τPL arises from the combined

radiative and non-radiative decay rates. In analyzing this problem, one is intrinsically

concerned with the behavior of a statistical ensemble, and therefore one proceeds by

noting that the total rate of exciton decay, Ktot, is equal to the sum of the rates of

radiative decay, Kr, and non-radiative decay, Knr. Identifying the exciton population

by n, one obtains that Ktot = nktot, Kr = nkr, and Knr = nknr, where ktot, kr, and

knr are the molecular decay rates, so that,

ktot = kr + knr (2.9)

In the previous chapter it was shown that for a molecular process governed by an

exponential decay from the initial state to the final state, the molecular decay rate is

time-independent and equal to the “lifetime” of the transition. Since radiative decay

is just such a process, kr = 1/τrad.

In the event that the non-radiative decay rate is due simply to phonon-induced

coupling between electronic states, the rate should also be governed by the same type

of time-independent rate as kr. If, however, the decay is due to interactions between
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excitations (e.g. exciton-exciton or exciton-polaron interactions), then knr may be

a more complex function of time because the molecular decay rate will itself be a

function of the concentration of one or both of the interacting excitations, and those

concentrations evolve as a function of time. The most important such interaction

in PL measurements is exciton-exciton annihilation, and to avoid this effect, PL

lifetime measurements are generally performed at sufficiently low excitation intensities

that the exciton concentrations are too low to lead to exciton-exciton annihilation.

The best experimental indication that one has eliminated any time dependent decay

processes is the presense of a single–exponential time–decay of the PL intensity; if

this is obtained then one may assume that knr is indeed constant, in which case,

τrad = τPL/ηPL. (2.10)

This relationship is obtained by noting that in general,

ηPL =
kr

kr + knr

=
1/τrad

1/τrad + knr

(2.11)

which can be rearranged to yield,

knr =
1− ηPL

ηPL

(1/τrad) (2.12)

and noting that since the PL intensity is proportional to the exciton population,

1/τPL = ktot, one obtains the desired result by plugging this relationship and Eqn.

2.12 into Eqn. 2.9. Applying this analysis to AlQ3, τrad = 54 ± 2ns for the sin-

glet exciton state. (The distinction between the different exciton states is dropped

here because it is evident that for AlQ3 as far as the radiative process is concerned,

effectively all singlet excitons decay into the S1 state before radiating.)

Measurements of the bulk energy spectra associated with the formation of the

positive and negative polaron states are also reported in the literature, by means of
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Figure 2-6: In (a) is shown the absorption cross section (σ(E)) and normalized emis-
sion spectrum (Srad(E)) of an AlQ3 thin film grown by high vacuum thermal evap-
oration. In (b) is shown the time-decay of the PL a similar AlQ3 thin film, excited
by an ultrafast laser pulse at λ = 400 nm. Both the experimental PL data (grey
symbols) and a exp[−t/τPL] fit (black line) with τPL = 17.4 ns are shown.

ultraviolet photoemission spectroscopy (UPS) and inverse photoemission spectroscopy

(IPES). In the former technique, a monochromatic beam of photons (having energy

hνex) are incident on a film surface, and one measures the emission current, J , for a

particular electron energy Edet (measured relative to the vacuum level) as a function

of incident photon energy (or alternatively, the current as a function of the detected

electron energy for a fixed photon energy.) The energy required to release an electron

to the vacuum level gives the energy to form a positive ion, so the emission current, J ,

is proportional to the intensity of the bulk transition spectrum, S↑,p+
bulk (E), for forming

a positive polaron having transition energy equal to the incident photon energy minus

the detected electron energy. Specifically,

J(hνex) ∝ S↑,p+
bulk (hνex − Edet) (2.13)

The function S↑,p+
bulk (E) is just the ensemble average of all the individual molecular

positive polaron creation transition spectra. In typical UPS measurements, the reso-

lution of the measurement is between 0.1 eV and 0.2 eV. For IPES measurements, a

mono-energetic beam of electrons having energy Eex is incident on the film surface,
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and one measures the intensity of emitted photons at a particular photon energy,

hνdet. One then measures the emitted photon intensity as a function of the incident

electron energy for a fixed photon detection energy (or alternatively, as a function

of the photon detection energy for a fixed incident electron energy.) The emitted

photons arise from the relaxation of the incident electrons onto individual molecules,

thereby probing the energy of forming the negative polaron state. Thus, the emitted

photon intensity, I, is proportional to the intensity of the bulk transition spectrum,

S↑,p−
bulk (E), for forming a negative polaron for a transition energy equal to the the

detected photon energy minus the incident electron energy. In other words,

I(Eex) ∝ S↑,p−
bulk (hνdet − Eex) (2.14)

The function S↑,p−
bulk (E) is just the ensemble average of all the individual molecular

negative polaron creation transition spectra. In typical IPES measurements, the res-

olution of the measurement is between 0.1 eV and 0.5 eV. These measurements yield

transition energy spectra relative to the vacuum level (i.e. they probe the transition

between an electron at the vacuum level and on the molecule). When forming a

positive polaron an electron is promoted up or above the vacuum level, and so this

transition requires an introduction of energy into the system; as a result, it is conven-

tional to plot UPS data against negative transition energies relative to the vacuum

level. When forming a negative polaron an electron relaxes from equal to or above

the vacuum level into the molecular state, and so this transition requires a release of

energy from the system; as a result, to be consistent one then plots IPES data against

positive transition energies relative to the vacuum level. Measurements on AlQ3 re-

ported by Hill et al.[60] are reproduced in Fig. 2-7. Note that there are no reports of

experimental measurements of the positive and negative polaron destruction spectra,

which are essentially the polaron analogues to the exciton emission spectra. As noted

above regarding the absorption and emission spectra, these transition spectra are an

ensemble average over the different molecular transition spectra in the system.
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UPS IPES

Experiment

Theory

Figure 2-7: Example of UPS and IPES measurements performed on AlQ3 thin films
(from [60].) The top curves are the experimental measurements, while the bottom
curves represent a semi-empirical calculation of the polaron energy levels, with a 0.5
eV FHWM gaussian to smooth out the individual electronic transition energies.
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2.3 Overview of the Model

In Appendix A expressions are derived for the rates associated with various important

exciton and polaron processes occuring in small molecular weight amorphous organic

electronic solids. These rates in general depend on the intermolecular interaction

energy, and in the case of intermolecular transitions, the separation distances and

relative molecular orientations of the two molecules involved in the transition. These

rates are also dependent on functions that are referred to in this thesis as phonon

transition spectra (PTS’s). These spectra are the relative transition rates as a function

of the change in phonon energy during the transition. (A formal definition of the

PTS’s is given in Appendix A.) Furthermore, it is found that in van der Waals, small

molecular weight solids, one can employ a single, universal PTS function for each

type of molecule in the system and each type of molecular transition (see Appendix

A). These universal PTS functions effectively define the dependence of the transition

rates on the change in electronic energy of the system, and therefore prove to be a

critical component of the model.

In constructing the basic model, the first step is to reduce the relevant rates to a

small set of parameters that capture all of the important dependencies of the system.

In doing this below, it is again useful to use the language of the donor (D) and

acceptor (A) for describing intermolecular transfer rates. It is also useful to introduce

the concept of the “mean” transition energy, ∆Ēel, for all transitions between a given

pair of molecular types. In terms of this value, ∆Eel = ∆Ēel +∆Edev where ∆Edev is

the deviation from the mean value for the specific transition energy associated with a

given pair of molecules. The purpose of this construction is that in disordered systems

the molecules are subject to variations in their electronic transition energies, and it

is convenient to define these variations relative to the mean.

In Table 2.1 are written all of the important rate expressions in terms of con-

stant parameters and functions of the change in electronic energy, ∆Eel, and for the

intermolecular transition rates, the intermolecular distance, R, and relative orienta-

tion angles, φ and θ. Appearing in these rates are: (1) νhop
DA, νDex

DA , νFor
DA , which are
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Table 2.1: Summary of Electronic Processes and Rate Expressions.

Process Rate

Electron Hopping Γhop
DA(∆Eel

DA, R,Θ) = νhop
DA(Θ) exp

[
−γhop

DA(Θ)R
]
χhop

DA(∆Eel
DA)

Dexter Transfer ΓDex
DA (∆Eel

DA, R,Θ) = νDex
DA (Θ) exp

[
−γDex

DA (Θ)R
]
χDex

DA (∆Eel
DA)

Förster Transfer ΓFor
DA (∆Eel

DA, R,Θ) = νFor
DA (Θ)χFor

DA (∆Eel
DA)/R6

Absorption Γabs(hν,∆E
el) = σ(hν,∆Eel)I(ν)/h

Rad. Emission Γspon
rad (hν,∆Eel) = Srad(hν,∆Eel)/τrad

Non-Rad. Loss Γloss = (1− ηPL) /τrad

functions of a generalized orientation variable Θ; and (2) χhop
DA, χDex

DA , and χFor
DA , which

are functions of ∆Eel. The subscript “DA” indicates transfer from a donor molecule

of type “D ” to an acceptor molecules of type “A”. In addition, in these rates, the

parameters γhop
DA and γDex

DA are explicit functions of the relative orientations of the

molecules. Aside from the relatively minor approximation that the orbital overlap in

the electron hopping and Dexter transfer rates decays exponentially with distance,

these expressions are exact.

In this form, the dependence of the rate expressions on the position, orientation

and transition energies of each molecule is made expxlicit. Following the previous

discussion, the solid is assumed to be strictly amorphous, i.e. composed of molecules

having random orientations and positions, with sole restriction that no two molecules

can be closer than some minimum distance Dmin. For a film consisting of a single type

of molecule, one then characterizes the structural properties by: (1) a set of randomly

positioned and oriented molecular sites, (2) having an average density equal to V −1
m ,

and (3) having no two sites with and intermolecular separation of less than Dmin.

The sites are each spatially identified by a cartesian position vector, and by a set of

(in general three) orientation angles. For a film consisting of multiple components,

the specification is similar, but includes additional parameters to define the relative
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concentrations of the two components and different Dmin values for each distinct pair

of molecular types. Before moving on, it is helpful to introduce the value Dsite defined

such that D3
site = Vm; essentially Dsite has the meaning of the average intersite spacing

between molecules in the material.

The chief task in completing the physical model at this point is then: (1) to de-

termine the specific rate processes of interest; (2) to specify the associated electronic

transition energies; and (3) to specify the associated universal PTS functions. The

rate processes of interest will be a function of the specific problem being studied, but

for the most part, the only processes considered in this thesis are exciton absorption

and emission, and exciton and polaron intermolecular transfer. No exciton-exciton

or exciton-polaron interactions directly treated, and polaron-polaron interactions are

only treated in a very specific and limited way. This therefore confines the discussion

to polaron transport by hopping, exciton transport by Dexter and Förster transfer,

optical exciton formation, and exciton radiative and non-radiative decay. (See Ap-

pendix A for more details on the physical basis of these processes.) The purpose of

these restrictions is only to define a managable space for describing the basic princi-

ples of the model and subsequent simulator. However, both the model and simulator

are easily extended to include additional processes as needed.

Given these restrictions, it is helpful to simplify the notation by explicitly defining

(1) electron hopping as applying only to positive and negative polarons, and (2)

Förster and Dexter transfer, absorption, radiative emission, and non-radiative decay

as applying only to excitons. In this way, one make take the first rate in Table 2.1

to govern polaron behavior, and the remaining rates to govern exciton behavior. A

number of further simplifications are helpful in connecting the rate expressions to

physically intuitive quantiaties. In particular, the χDA(∆Eel) functions are defined

to yield a value of unity for ∆Eel = ∆Ēel. In this case one can write down explicit

expressions for the χDA(∆Eel) functions in terms of the PTS’s. For polaron hopping,

χhop,±
DA (∆Eel

DA) =
Φhop,±

DA (−∆Eel
DA)

Φhop,±
DA (−∆Ēel

DA)
(2.15)
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where,

Φhop,±
DA (E) =

∫ ∞

0

dE ′Φ↓,p±
D (E − E ′)Φ↑,p±

A (E ′), (2.16)

the destruction PTS for a polaron on the donor molecule is identified by Φ↓,p±
D (E),

the formation PTS for a polaron on the acceptor molecule is identified by Φ↑,p±
A (E),

and the ± refers to the positive or negative polaron hopping process, respectively.

From the analysis of Dexter and Förster transfer in the previous chapter, since they

each involve the same pair of molecular electronic transitions, χDex
DA (E) = χFor

DA (E),

and are given by,

χDex(∆Eel
DA) = χFor(∆Eel

DA) =
ΦDex/For(−∆Eel

DA)

ΦDex/For(−∆Ēel
DA)

(2.17)

where,

ΦDex/For(E) =

∫ ∞

−∞
dE ′Φ↓,ex

D (E − E ′)Φ↑,ex
A (E ′). (2.18)

and the exciton formation and destruction PTS’s are identified by by Φ↓,ex(E) and

Φ↑,ex(E), respectively.

Consistency with these definitions of χDA(∆Eel) implies a particular form for the

νDA(φ, θ). Specifically, for polaron hopping and Dexter transfer,

νhop
DA(Θ) =

1

τ̄hop,±
DA (Θ)

eγhop
DA (Θ)Dsite (2.19)

νDex
DA (Θ) =

1

τ̄Dex
DA (Θ)

eγDex
DA (Θ)Dsite (2.20)

where τhop,±
DA (Θ) and τDex

DA (Θ) are the “mean” transition lifetimes of their respective

transfer processes, i.e. the lifetimes for positive/negative polaron hopping and Dexter

transfer, respectively, for a donor and acceptor separated by a distance Dsite and

having ∆Eel
DA = ∆Ēel

DA. Using Eqn. A.106 as a guide, one obtains the following

relationship for Förster transfer,
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νFor
DA (φ, θ) =

1

τ̄For
DA

[Dsite]
6 (2.21)

=
1

τD

[
R̄F (Θ)

]6
(2.22)

where τ̄For
DA is the “mean” transition lifetime for Förster transfer (in analogy to the

mean transition lifetimes intrdocued above), and R̄F (Θ) is “mean” Förster radius, ob-

tained when ∆Eel
DA = ∆Ēel

DA. The absorption, radiative emission, and non-radiative

decay rates in Table 2.1 need no further refinement, with the absorption cross section,

normalized emission spectrum, PL lifetime, and PL quantum efficiency all having clear

physical interpretations.

In Appendix A, it is shown that the electronic energies of each molecule are de-

pendent on the universal electronic transition energy for an isolated molecule plus any

shifts due electrostatic interactions with the neighbors. In other words, if the univer-

sal transition energy is treated as a parameter of the model, the total energies are then

fully defined by the position, orientation, charge, dipole vector, and polarizibilities

of each molecule in each of the molecular states relevant to the processes operating

in the model. The important additional parameters of the model are therefore these

charge distribution terms, which one can, in principle, obtain from quantum chemical

calculations. The transition energies for each molecule in the system can then be

directly computed based on these values (and the spatial specification of the system).

The details of these calculations will be developed in the next chapter.

Finally, the PTS functions for each transition are treated as independent model

parameters. Ideally, these functions are obtained using experimental measurements,

but in cases where this is not possible, approximations can be employed instead.

Foremost among these approximations is the MA approximation, which does not

require any specific knowledge about the individual PTS functions.

To summarize then, the model consists of essentially two components: (1) a struc-

tural description of an amorphous molecular solid, and (2) a description of the physics

operating in that solid. The structural description consists of a set of randomly po-
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sitioned molecular sites, characterized by V −1
m and Dmin. The sites are further char-

acterized by angles specifying random orientations. The physics of the system are

summarized by the rate expressions (and associated universal PTS functions), along

with the ∆Eel values computed for each site.

By construction, this model only directly addresses the behavior of excitations

within a small molecular weight amorphous organic solid. As a result, it does not

directly describe all possible conditions by which excitations are formed or destroyed.

Specifically, it does not take into account the processes of polaron injection and col-

lection which act at the device contacts. Thus while this model describes all of the

processes involving excitation formation, destruction, and transport within the molec-

ular organic system, it may be necessary to introduced external elements to the model

to address specific operating conditions.

Before concluding it should be noted that none of the individual elements of this

model are unique. None of the rate expressions employed in this model reflect new

physical processes, nor is the concept of describing an amorphous molecular organic

solid as a collection of molecular sites subject to spatial, orientational, and energetic

disorder a new idea. Indeed, Movaghar, Bässler, and their coworkers began studying

the impact of various kinds of disorder on polaron and exciton processes in molecular

systems more than twenty years ago (see e.g. [10, 133, 101, 11, 96]), and their excellent

work has made it commonplace to model exciton diffusion and polaron transport in

amorphous molecular solids using models molecular sites subject to various kinds

of disorder. In short, all of the basic elements presented here already exist in the

literature.

However, one area in which the existing literature is somewhat lacking is in the

evaluation of rigorous self-consistency. Though parameterized rate expressions like

those developed in this section have all been applied to systems of molecular sites

having energetic disorder, these parameters have been treated as largely free parame-

ters, and the values obtained from fitting to experiment evaluated only based on their

qualitative plausibility. This is in large part a result of only individual components

of the model being used as any one time. In the model described here, the energy
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disorder is explicitly connected to the orientational and spatial disorder through the

determination of the ∆Eel values based on the electrostatic intermolecular interac-

tions. Furthermore, by linking all of the rates through the PTS functions, it is clear

precisely how the rates are related to each other and to experimental observables like

the the absorption and emission spectra (for excitons) and the UPS and IPES spectra

(for polarons). These connections are already well known, but are rarely applied rig-

orously to models of polaron and exciton processes in amorphous organic materials.

These features of this model thus extend the capacity for evaluating the quality of

the model by more explicitly expressing the connections between the different aspects

of the model.

Finally, this model described above is constructed in such a way that additional

processes are easily introduced. To add a new process, one simply computes another

set of ∆Eel values for each molecular site and then introduces another governing rate

expression. Such new processes could include exciton-exciton anihilation, exciton-

polaron anihilation, excitation dissociation, electrical exciton formation, etc.... While

the self-consistency of the parameters used to describe such rates might be more

difficult to assess that those involved in the basic model described in this section,

because the same principles still apply, there are no fundamental difficulties in adding

an arbitary collection of additional processes.

67



68



Chapter 3

Calculating the DOS

3.1 Introduction

In the last chapter it was shown that the specification of the electronic transition en-

ergies for each molecule is critical to properly modeling polaron and exciton behavior.

In appendix A it is shown that electrostatic interactions between the molecular charge

distributions lead to shifts in the electronic state energies. This thesis is concerned

with amorphous materials and the positional and orientational disorder present in

amorpohous materials naturally leads to variations in the shifts in the electronic state

energies arising from electrostatic interactions. This chapter details the theoretical

calculation of the electronic transition energies in small molecular weight amorphous

organic solids. The principle results of these calculations are: (1) the experimental

demonstration and theoretical analysis of the previously neglected phenomenon of

solid state solvation; and (2) the identification of significant errors in existing mod-

els of molecular energy level disorder in polarizible media. In addition, this chapter

introduces the concept of the density of states (DOS) of a transition, and details

the relationship between the DOS and the associated bulk transition spectra. For

further details on DOS calculations, including derivations of many of the expressions

employed in this chapter, the reader is referred to appendix B.
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3.2 Calculating Electronic Transition Energies

In appendix A, the electrostatic interaction energy of two molecular charge distri-

butions is calculated in terms of the charge, dipole moment, and polarizibility of

each molecule.1 To calculate the shift in electronic transition energy arising from in-

termolecular interactions one calculates the difference in the electrostatic interaction

energies before and after the electronic transition of interest. For these calculation the

system of interest consists of N molecules each assigned a unique index i. It is further

assumed that the electronic transition energies can be calculated without considering

interactions between excitations, which implies that every molecule except the one

undergoing the electronic transition is in the ground state at all times. This is known

as the “low excitation limit,” as it reflects the limit that only a single excitation is

present in the system at a given time.2 In the following, the molecule on which the

electronic transition occurs is referred to as the active molecule, while all of the other

molecules are referred to as passive molecules.

For each state k of the system, each molecule is described by its charge, Qi(k),

dipole moment, ~µi(k), electronic polarizibility, αel
i (k), and total polarizibility, αi(k).

In general, the procedure for calculating the energy of a given system state involves

first self-consistently interacting each molecular charge distribution with every other

to obtain the total field present (and hence the induced dipole) at each molecule, and

then calculating the total electrostatic interaction energy based on the total charge

and dipole (static plus induced) of each molecule, as well as any changes in the internal

molecular energy as a result of polarization effects.

This calculation involves some careful book-keeping, and a set of notation for

identifying the important molecular and system states is needed. The molecular

states are referred to here by the numbering scheme introduced in appendix A (see

Fig. A-2), i.e. they are referred to as: 1 (ground state in equilibrium), 2 (excited

1This approach is trivially extendible to higher order polarizibilities and multipole moments, as
shown in appendix A, in the unusual event that this approximate treatment of the charge distribu-
tions is not adequate.

2While the impact of inter-excitation interactions on electronic transition energies can be intro-
duced into the theory developed below, the corresponding expressions are much more complicated,
and at most practical excitation densities the resultant corrections are negligible.
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state immediately following excitation creation), 3 (excited state in equilibrium), and

4 (ground state immediately following excitation destruction). A corresponding set

of additional notation is employed to refer to the total state of the system where the

i’th molecule is “active” and in the j’th molecular state: jSi (where the “S” stands

for “system”). Depending on the context, the components of the molecular charge

distribution are identified either by their molecular state, which refers only to the

state of that particular molecule, or by the total system state. With this notation in

place, one can then introduce for the k’th state of the system: the total electrostatic

interaction energy, Eint(k), the local field at the i’th molecule, ~Fi(k), and the local

potential at the i’th molecule, φi(k).

The general expression for the total interaction energy in state k is given by (from

appendix B):

Eint(k) = −QA(k)
N∑

i6=A

~pi(k) · r̂iA

r2
iA

−
N∑
i

N∑
j>i

~pi(k) ·
3 (~pj(k) · r̂ij) r̂ij − ~pj(k)

r3
ij

+
1

2

N∑
i

αi(k)Fi(k)
2 (B.5)

where the sums are over the N molecules of the system, A denotes the index of

the active molecule, ~rij = ~ri − ~rj with ~ri being the position of the i’th molecules,

k ∈ {1SA, 2SA, 3SA, 4SA}, ~pi(k) is the total dipole of the i’th molecule in the k’th

state. Note that this expression holds even in the case that the induced dipoles on

each molecule are not in equilibrium with the applied fields, i.e. when ~pi 6= ~µi +αi
~Fi.

The change in the electronic transition energy, ∆Eint, due to electrostatic interac-

tions, is then given by the difference between the interaction energy in initial and final

states. The excitation creation and destruction transitions the associated changes in

electronic transition energy are given by (from appendix B),
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∆Eint
↑,A = Eint(2SA)− Eint(1SA) (B.8)

∆Eint
↓,A = Eint(4SA)− Eint(3SA), (B.9)

where the index of the active molecule is given by A and we have introduced the

notation that Eint
↑,A represents the 1SA to 2SA transition (i.e. the excitation cre-

ation transition) and Eint
↓,A represents the 3SA to 4SA transition (i.e. the excitation

destruction transition).

To evaluate Eqn. B.5 it is necessary to compute the fields, ~Fi(k), and total dipole

moments, ~pi(k), on each molecule in the k’th state. The needed field expression is

given by (from appendix B),

~Fi(k) =
N∑

j 6=i

Qj(k)r̂ij

r2
ij

+
M∑
j 6=i

3(~pj(k) · r̂ij)r̂ij − ~pj(k)

r3
ij

, (B.10)

where k ∈ {1SA, 2SA, 3SA, 4SA}. The relationship between the fields ~Fi(k) and the

total dipoles ~pi(k) is complicated by the presense of polarizibility in addition to the

electronic component, arising from nuclear motion. In short, the electronic polariz-

ibility responds immediately to an electronic transition, while the nuclear polarization

remains fixed on this time scale. For states 1SA and 3SA, the system is therefore in

equilibrium with the nuclear polarizibility, while in states 2SA and 4SA this is not

the case. The expressions for the total dipole are given by (from appendix B),

~pi(1SA) = ~µi(1SA) + αi(1SA)~Fi(1SA) (B.11)

~pi(2SA) = ~µi(2SA) + αel
i (2SA)~Fi(2SA) +

(
αi(1SA)− αel

i (1SA)
)
~Fi(1SA) (B.13)

~pi(3SA) = ~µi(3SA) + αi(3SA)~Fi(3SA) (B.12)

~pi(4SA) = ~µi(4SA) + αel
i (4SA)~Fi(4SA) +

(
αi(3SA)− αel

i (3SA)
)
~Fi(3SA) (B.14)

where ~µi(k) is the static dipole of the i’th molecule in the k’th state, and αel
i (k) αi(k)
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are the corresponding electronic and total polarizibilities, respectively.

To perform the above interaction energy calculations for the desired 1 to 2 and

3 to 4 transitions, it is necessary to specify the charge, dipole moment, and polar-

izibilities of each molecule in states 1SA, 2SA, 3SA, and 4SA, for all the values of

A for which the change in transition energy is desired. For any given value of A,

for every molecule but the A’th, the charge distribution is in the ground state, so

that the charge is zero and the dipole moment and polarizibilities are given by their

molecular state 1 values. For the A’th molecule, however, one must in theory specify

the charge, dipole moment, and polarizibilities in each of the states 1, 2, 3, and 4.

The charge is straightforward: for polaron transitions QA(k) is zero in states 1 and

4, and ±e in states 2 and 3, while for exciton transitions it is always zero. (Here e

is the fundamental electron charge.) The dipole moments are obtained from quan-

tum chemical calculations of the electronic structure in each state, as described in

the previous chapter for AlQ3. For polaron transitions, the dominant contribution

to the change in the electrostatic interaction energy is due to the change in charge,

and so the change in dipole moment is usually neglected, i.e. it is assumed that

~µ1 = ~µ2 = ~µ3 = ~µ4. For the polarizibilities, it is conventional to assume that they

are isotropic, and to obtain the ground state values the bulk low frequency dielectric

constant ε and the optical index of refraction n, as described in the previous section.

The polarizibilities of the other states, however, are not accessible through this tech-

nique, and no reports exist in the literature of quantum chemical calculations of the

polarizibilities of organic electronic molecules in these other states. For this reason,

it is common to either drop the polarizibility of the A’th molecule entirely, or leave

it at its ground state value, when performing interaction energy calculations.

Neglecting the nuclear component of the polarizibility, as is conventional, the

equation for ~pi(k) becomes:

~pi(k) = ~µi(k) + αel
i (k)~Fi(k), k ∈ {1SA, 2SA, 3SA, 4SA}. (B.15)
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This approximation greatly simplifies the interaction energy expressions, though it is

worth noting that the computational complexity of the problem is largely unchanged.

3.3 Solid State Solvation

In the previous section it was noted that is it conventional to neglect nuclear poliza-

tion, and that this leads to significantly simpler expressions for the interaction energy.

The implication of this approximation is that the molecules in the system are rigidly

fixed in place, as only under this condition are the nuclei sufficiently sterically con-

strained to eliminate a nuclear polarization response. As noted in previous chapter

(in the discussion of the properties of AlQ3), the electronic polarizibility can be ob-

tained from the index of refraction of the material (over wavelengths for which there

is negligible optical absorption) using the Claussius-Mossotti relation, while the total

polarizibility can be obtained from the dielectric constant measured at any frequency

below roughly 1x1013 Hz. To aid in this discussion a nuclear polarizibility, αnucl, is

introduced. This value comprises the polarizibility due to nuclear motion and satis-

fies the relationship α = αel + αnucl. In the case of AlQ3, αnucl = 1.1x10−23 cm3 and

αel = 6.1x10−23 cm3 based on the index of refraction and dielectric constant measure-

ments described in the previous chapter. These values indicate that neglecting the

nuclear polarizibility leads to an error of roughly 18% in the total polarizibility.

The small αnucl relative to αel observed in AlQ3 is considered typical of amorphous

organic solids, and the origin of this limited nuclear polarization is believed to be

small rearrangements of the nuclei due to local fields along the lines of the Franck-

Condon reorganization experienced following electronic transitions. The strong steric

constraints imposed on each molecule by its neighbors are assumed to make gross

reorientations of the molecules impossible. However, one can also envision systems

in which the molecules experience little steric hinderance due to their neighbors and

therefore yield a much larger αnucl. The extreme of such spatial freedom is the liquid

phase, where a molecule is largely free to completely reorient itself in response to the

local field.
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In van der Waals bonded solids, the interactions between molecules are suffi-

ciently weak that in certain systems the molecules may experience such limited steric

constraints that αnucl is comparable to or even greater than αel. The impact of inter-

molecular interactions on the electronic transition energies in such a system would be

substantially different than in systems in which αnucl was negligible. In addition, the

fact that physically each charge distribution induces significant nuclear reorganization

makes the polarization process in such systems far more like the solvation process that

occurs in liquids, in which solvent molecules routinely reorient in response to changes

in the solute electronic state. We refer to this solvation-like polarization in the solid

state as solid state solvation (SSS).

The most accessible and widely studied experimental measurement of the solva-

tion process is the phenomenon of solvatochromism, in which the absorption and PL

spectra of a solute shift in energy as a function of the dielectric properties of the sol-

vent. These shifts provide a direct measurement of the change in the exciton creation

and destruction energy due to solvation as a function of the dielectric properties. In

analyzing these shifts, it is typical to replace the individual molecular polarizibilities

of the surrounding molecules with a continuos dielectric medium characterized by di-

electric constant ε. One further surrounds the active molecule with a spherical cavity.

This approach is referred to here as the spherical cavity dielectric continuum model

(SC-DCM). In Appendix B are derived expressions for the polarization energy under

the SC-DCM: yielding Eqns. B.75 - B.78 derived in appendix B. (Note that since

solvatochromism involves exciton transitions, one may drop the terms in the solute

charge since for exciton transitions the molecular charge is always zero.) However,

while these expressions could be used without further modification, in practice one

usually uses simpler expressions obtained by setting the solute polarizibility to zero,

yielding Eqns. B.75 - B.78 (again derived in appendix B) with the solute charge set

to zero. At this point, it is also convenient to drop the explicit reference to the active

molecule index A, such that in the following it is implicit that the dipole moments

all refer to the active molecule. Using this simplified notation, the changes in the

transition energies are given by,
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∆Epol
↑ = −Λ

2
~µ(g) ·∆~µ− Λel

2
~µ(e) ·∆~µ (3.1)

∆Epol
↓ =

Λ

2
~µ(e) ·∆~µ+

Λel

2
~µ(g) ·∆~µ (3.2)

where ∆~µ = ~µ(e) − ~µ(g). In studying solvatochromic shifts, the experimental mea-

surements of interest are the energy shifts in the absorption and emission spectra,

and a detail regarding the signs of the transition energies requires some considera-

tion. For the absorption transition, the final solute state is higher in energy than the

initial solute state, and as a result, the absorption energy is just given by the final

state energy minus the initial state energy, and the change in this energy is given by

∆Epol
↑ . For the emission transition, the final state is lower in energy than the initial

state, and the emission spectrum actually probes the negative of this energy (since

measured energy is of the emitted photon). As a result, the shift in the emission

energy is given by −∆Epol
↓ . It is also common to express the difference in the two

shifts ∆Epol
↑↓ :

∆Epol
↑↓ ≡ ∆Epol

↑ + ∆Epol
↓ (3.3)

=
Λ− Λel

2
∆µ2. (3.4)

These simple expressions have been widely applied to experimental measurements

of shifts in absorption and emission spectra of organic molecules in organic solvents as

a function of the dielectric constant of the solvent, and are refered to here as the OLM

expressions after the researchers who first applied them to the experimental analysis of

solvation shifts[113, 82, 92] (see Appendix B for more details on the derivation of these

expressions). In the common case that the indices of refraction of the different solvents

are approximately equal (which is often the case since n = 1.45 ± 0.1 encompasses

very nearly every common organic solvent), one can rewrite these expressions in the

following manner:
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∆Epol
↑ = C↑L(ε) +B↑ (3.5)

∆Epol
↓ = C↓L(ε) +B↓ (3.6)

∆Epol
↑↓ = C↑↓L(ε) +B↑↓ (3.7)

where,

L(ε) =
2(ε− 1)

2ε+ 1
(3.8)

and C↑, C↓, C↑↓, B↑, B↓, B↑↓ are dependent on the molecular dipoles, the size of the

spherical cavity, and the index of refraction of the medium, but not dependent on

ε. The critical feature of these expressions, assuming the index of refraction remains

constant for each measurement and only ε changes, is the linear dependence of the

spectral shifts on L(ε).

While the simplicity of these expressions makes them quite useful for analyzing

experimental data, it is worth briefly considering the impact of the most serious

approximation of this theory, namely that the solute polarizibility has been neglected

entirely. Above it was found that for a typical organic molecule the impact of the

molecular polarizibility on the total polarization energy is roughly equal in magnitude

to the impact of the static dipole. This result suggests that setting α to zero will

lead to considerable errors. However, in the simplified expression derived here the key

feature is the linear dependence of the shifts on L(ε). (In principle one can also extract

information about ~µ(g) and ~µ(e) from the choice of the constant parameters, but

given the uncertainty regarding the choice of a, such calculations are not particularly

accurate.) From this linearity with L(ε), one can: (1) verify that the shifts are due to

solvation, and (2) predict the shifts for new solvents based on existing measurements.

In this respect, then, the main concern in ignoring the impact of α is whether or not

the linear dependence of the shift on L(ε) is destroyed.

This question can be addressed treating the case of AlQ3 dissolved in an organic
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solvent, based on the values for the dipole moments and molecular polarizibility re-

ported in the previous chapter. In this case, we take ~µ(g) = ~µ(1) = (0, 0, 6.1) D and

~µ(e) = ~µ(2) = (0.6, 0, 2.7) D (consistent with the values from refs. [54, 140]), where a

reference frame has been arbitrarily selected in which ~µ(g)||ẑ, and ~µ(e) is only speci-

fied to within an arbitary rotation about the z-axis (but such rotations have no impact

on the analysis). Assuming α = αel, and using the value obtained from the index of

refraction through the Claussius-Mossotti equation, one obtains α = 6.1x10−23 cm3.

For the solvent index of refraction, n = 1.45 is chosen to reflect a typical solvent, and

a range of ε between 1.0 and 10.0 is evaluated. In Fig. 3-1 ∆Epol
↑ , ∆Epol

↓ , and ∆Epol
↑↓

are plotted against L(ε), where Eqns. B.75 - B.78 are used to obtain the “Exact”

values, and Eqns. 3.1 - 3.4 are used to obtain the“OLM” values.

As expected, the OLM expressions yield perfectly linear plots; the “Exact” ex-

pressions, on the other hand, show a noticeable deviation from linear behavior, in

addition to yielding shifts that are substantially larger than the OLM values. How-

ever, for a rough calculation, even the “Exact” values can be roughly approximated

by a linear function over a wide range of ε values, and we have already noted that

the exact magnitudes of the slopes aren’t usually important. Thus it is evident that

the linear dependence on L(ε) observed in the OLM expressions can be expected to

roughly reflect the dependence on ε in the “Exact” expressions for typical experimen-

tal conditions (which here comprise the molecular dipoles and polarizibilities, and the

solvent dielectric constants).

To determine if similar solvation behavior could be observed in the solid-state,

ideally one would construct an experimental system which satisfies the same general

conditions of solvatochromism experiments in liquids, and then measure the spectral

shifts as a function of the dielectric constant of the medium. If the expected linear

dependence of the spectral shifts on L(ε) is observed, and the associated slope is sim-

ilar to the slope for that solute in organic solvents, where the solvation mechanism is

known to operate, then this would consistute excellent evidence of solid state solva-

tion. To carry out such an experiment then requires a solute demonstrating a strong

energy shift in absorption and/or PL spectra as a function of solvent dielectric con-
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Figure 3-1: Comparison between OLM Solvation theory (using Eqns. 3.1 and 3.4),
which neglects th esolute polariziblility, and the “Exact” theory (using Eqns. B.75
- B.78) which includes the solute polarizibility. In (a) are shown plots of ∆Epol

↑

(squares) and −∆Epol
↓ (circles) against L(ε) based on the “exact” calculation (black

symbols) and the simpler OLM calculation (grey symbols). Also shown are two red
straight lines to illustrate the extent to which the “exact” values retain their linear
dependence on L(ε). In (b) are shown plots ∆Epol

↑↓ for the “exact” (black squares) and
OLM (grey circles) calculations, along with a red straight line which again illustrates
the extent to which the “exact” values retain their linear dependence on L(ε).
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stant, as well as a solid state medium (within which the solute can be embeded) that

allows for substantial changes in the dielectric constant without significantly changing

the index of refraction or the solute cavity. Below just such a system is reported, as

well as the corresponding experiments clearly demonstrating solid-state solvation.

The selected experimental system is suggested in part by two reports by Bulović

et al.[25, 22] describing shifts in the emission spectra of the red laser dye DCM2 as

a function of DCM2 concentration in amorphous organic thin films. (See Fig. 3-2

for chemical structures of the new materials introduced in this section.) By changing

the mass fraction of DCM2 present in a film of AlQ3 from 1% to 10%, the peak

electroluminescence emission wavelength was shifted from 2.07 eV (λ=600 nm) to

1.90 eV (λ=650 nm) (see Fig. 3-3 (a)). (For these measurements, the DCM2:AlQ3

film comprised the active layer of an OLED.) Because DCM2 is a more polar molecule

(with µg ≈ 11 D) than AlQ3 (with µg = 6.1 D), increasing the DCM2 concentration

increases the strength of the local electric fields present in the film. The shift of

the emission spectra was then attributed to this increase in the strength of the local

fields, and it was argued that this process was simply a solid-state analogue of the

solvatochromism observed in liquids. To support this argument, literature values for

the peak wavelength of DCM2 PL spectra in different organic solvents were reported,

showing a strong solvatochromic shift to lower energies with increasing dielectric

constant: 2.20 eV (λ=565 nm) in benzene (n = 1.50, ε = 2.27), 2.09 eV (λ=595

nm) in chloroform (n = 1.45, ε = 4.81), 1.92 eV (λ=645 nm) in ethanol (n = 1.36,

ε = 24.3), and 1.84 eV (λ=675 nm) in dimethyl sulfoxide (n = 1.42, ε = 46.7). They

then reported values for the index of refraction of neat AlQ3 (n = 1.72), neat DCM2

(n = 2.0), and the DCM2:AlQ3 doped films (1% n = 1.72, 2% n = 1.73, 5% n = 1.73,

10% n = 1.75). They did not perform direct measurements of the dielectric constant,

and proposed that ε = n2. However, this decision presents two major difficulties.

First, on this basis ε is 2.96 for the 1% film and 3.06 for the 2% film, and yet the

DCM2 emission spectra shifts 0.17 eV, while in liquids, the DCM2 PL spectra shifts

just 0.11 eV for a change in ε from 2.27 to 4.81. As a result, either the strength of the

solvatochromism increases by at least an order of magnitude in the solid-state, which
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DCM2CAPS

Figure 3-2: Chemical structures of PS, CA, and DCM2.

is difficult to understand given the nearly identical densities of the two phases, or the

explanation for the data presented in the paper is incorrect. Direct measurements

of ε would clarify some of the confusion by demonstrating whether or not the shifts

could be due to nuclear reorganization of either DCM2 molecules or the surrounding

AlQ3 molecules. If such an increase in ε is not observed, however, these results would

appear to be inconsistent with the solid-state solvation mechanism.

In part because of these difficulties, it was argued in a subsequent report that the

spectral shifts are actually due to a progressive increase in the presence of clustered

dye molecules with increasing dye concentration[8]. The authors again studied the

electroluminescence of DCM2 doped into AlQ3 thin films in an OLED structure, and

saw that increasing the DCM2 concentration was correlated to a decrease in the quan-

tum efficiency of the device, which they attributed to the increased prevalence of ag-

gregated dye molecules (see Fig. 3-3 (b) and (c)). Since aggregated dye molecules are

generally thought to have a red-shifted emission compared to the monomer (due to the

reduced confinement of the exciton as it spreads between the aggregated molecules),

these authors correlated the red shift in photoluminescence of Alq3:DCM2 films to

the decrease in electroluminescent quantum efficiency as the DCM2 doping was in-

creased, and concluded that the red shifts simply reflected emission from aggregated

states, which increase in size and frequency with increasing DCM2 doping. The prin-

ciple difficulty with this explanation is that it is generally argued that aggregated
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(a)

(b)

(c)

Figure 3-3: Summary of studies by Bulović et al.[24, 22] and Baldo et al.[8] on spectral
shifts in DCM2 electroluminescence with DCM2 concentration. In (a) is shown the
shift in peak PL energy of DCM2 doped at different concentrations into thin films of
AlQ3 and TPD (after [22]). In (b) and (c) are shown, respectively, the shift in mean
PL energy and the change in PL quantum efficiency, η, of DCM2 doped into thin
films of AlQ3 (after [8]). Inset in (a) is also shown the chemical structure of TPD.
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states have dramatically reduced quantum efficiencies compared to the unaggregated

molecules, such that for practical purposes one assumes that aggregate states are

essentially exciton quenchers, and thus it would be surprising to observe significant

DCM2 emission from such states. Another difficulty is that aggregate states typically

have a substantially red-shifted emission spectra, even for a dimer, and so one would

not generally expect a continuous shift in the PL spectra (as is observed), but rather

a gradual decrease of the monomer PL peak and a gradual increase in a series of

aggregate PL peaks.

Thus while both of these studies demonstrate that DCM2 PL spectra shift as

a function of DCM2 concentration, the actual mechanism underlying these shifts is

not at all clear. Certainly neither study provides a strong case for the presense of

solid-state solvation of DCM2. We report an experimental system in which DCM2 is

again the “solute,” but doped at extremely low concentrations into films consisting

of a polystyrene (PS) matrix and different concentrations of the polar small molecu-

lar weight organic compound camphoric anhydride (CA)[88]. This three component

system allows one to keep the solute concentration constant and thereby fix any pos-

sible aggregation effects (and ideally eliminate them altogether), while employing the

remaining two film components to modify the dielectric properties of the film. The

choice of DCM2 is driven by three considerations: (1) it is a very well studied fluo-

rescent organic molecules, (2) it is widely used in organic optoelectronic devices and

therefore accorded technological significance, and (3) as noted above, it demonstrates

a strong solvatochromic shift in PL in organic solvents. The choice of the PS:CA

system is based on two considerations: (1) both materials are transparent over the

range of wavelengths needed to study DCM2 PL, and (2) PS is non-polar while CA

is highly polar (µg ≈ 6 D)3, allowing one to modify the strength of the local fields as

a function of the CA concentration.

We fabricated thin films of DCM2:PS:CA by spin casting from chloroform solution

at 2000 rpm. Each film was spun from a 30 mg/ml concentration solution, made by

3This dipole moment was obtained using the Chem3D semi-emperical quantum chemistry pack-
age. Such semi-empirical calculations are adequate for obtaining a rough estimate of the dipole
moment, but one should not expect an accuracy of much better than roughly ± 50%
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mixing together PS, 20 mg/ml CA solution, < 0.1 mg/ml DCM2 solution, and any

additional chloroform required to yield a total mass concentration in the final solution

of 30 mg/ml. For each film we measured the DCM2 PL, the index of refraction, and

the dielectric constant. For the PL measurements, we spun films onto cleaned glass

substrates; for the index of refraction measurements, we spun films onto cleaned sili-

con substrated (with only native oxide); for the dielectric constant measurements we

spun films on cleaned glass substrates having patterned alumnimum electrodes. The

substrate cleaning producedure consists of sonication in the Micro 90 detergent and

subsequent washes in DI water, acetone, and boiling isopropanol. The alumnimum

electrodes define a capacitor structure, with one set grown on the glass substrate

prior to spin coating the DCM2:PS:CA film, and a second perpendicular set grown

on top of the DCM2:PS:CA film. All of the films were spun inside an inert nitro-

gen environment, and the PL samples packaged under a second cleaned glass slide

sealed with UV cured epoxy. The index of refraction and capacitor samples were

left unpackaged. All measurements were performed on the same day that the films

were spun, but to verify that sample degradation did not play a role in the results,

selected measurements were repeated on the next day and no significant changes were

observed.

We measured the DCM2 PL spectra using a SPEX fluorimeter, with λ = 480 nm

wavelength excitation (generated by a lamp and monochrometer) and PL detection

by a second monochrometer and cooled photomultiplier tube. The λ = 480 nm light

is only absorbed by the DCM2 molecules in the film. We measured the index of

refraction by ellipsometry on films grown on silicon. And finally, we measured the

dielectric constant of the film in a capacitor structure using an HP 4192A impedance

analyzer at zero bias with a 5 mV rms ac test signal. For the capacitor structure,

the bottom aluminum contact is 30 nm thick and the top aluminum contact is 50

nm thick, both deposited by thermal evaporation at pressures of < 1x10−6 Torr. The

total device area is 0.025 cm2, measured by inspection of the final device under an

optical microscope. The DCM2:PS:CA film thicknesses are all between 220 nm and

320 nm, and were directly measured by profilometry (from the step height of a scratch
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through the film) on each capacitor sample.

For a fixed DCM2 concentration of 0.005%, the peak energy of the DCM2 PL

spectrum shifts continuously from 2.20 eV (λ = 563 nm) to 2.05 eV (λ = 605 nm)

for CA concentrations ranging from 0% to 24.5% (see Fig. 3-4 (a) and (b)). These

results show first that large shifts in emission spectra can be observed in films that

have negligible DCM2 aggregation, as the 0.005% concentrations employed in this

study are 200 times lower than the lowest concentrations reported by Baldo et al.[8],

for which the PL quantum efficiency is already nearly stabilized. To further confirm

that aggregation effects do not play a role in these results, we also performed the

same experiments with DCM2 concentrations up to 0.05%, and observed no change

in the results. Thus these spectral shifts are due in some way to interaction between

the DCM2 molecules and their environment, which differs between samples solely

through the different CA concentration.

Measurements of the index of refraction of the different fields yields values that

vary from n = 1.55 ± 0.1 for the pure PS film to n = 1.65 ± 0.1 for the 24.5% CA

doped film. These values are constant within the experimental errors, and in any

case, these changes in the electronic polarizibility of the medium are insufficient to

explain the large spectral shifts (just as was argued above regarding the similarly small

changes in the index of refraction in DCM2:AlQ3 films with DCM2 concentration).

We performed measurements of the capacitance of our capacitor structures at

frequencies of 10 kHz, 100 kHz, and 1 MHz. No significant change in the capacitance

was observed between the frequencies. In the previous chapter, we argued that for

immobile molecules, by measuring the capacitance at frequencies in this range, one

obtains the dielectric constant relevant to describing the combined effects of electronic

and nuclear polarization, because these frequencies are generally too high to capture

the slow dielectric responses associated with, for instance, ion motion, but are still

low enough to capture all of the responses due to nuclear reorganizations, which occur

on a time scale of roughly 100 fs. However, in a system in which the molecules can

literally reorient themselves, such as in liquids, the nuclear reorganizations are likely

to take longer than 100 fs to complete. Direct measurements of this process have been
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Figure 3-4: Solid state solvation of DCM2 doped into PS:CA thin films. In (a) is
shown the PL spectra of DCM2 doped at low concentration into PS:CA films for CA
concentrations ranging between 0% to 24.5%. In (b) is shown the evolution of the
peak PL energy of DCM2 doped into PS:CA films as a function CA concentration,
obtained from the data in (a). In (c) is shown the evolution with CA concentration
of the dielectric constant, ε, of PS:CA films, measured at 100 kHz. Also shown are a
linear fit to the data (grey line) and a fit using the Onsager dielectric theory (black
line), as described in the text. In (d) is shown the peak PL energy of the DCM2
doped in PS:CA films (solid circles) and dissolved in different organic solvents (solid
squares) as a function of L(ε). Also shown are linear fits (grey lines) based on the
solvation theory described in the text.
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performed on organic molecules in liquids, indicate that such molecular reorientations

occur on the 1 - 10 ps time scale (see e.g. [3, 156, 131]). Assuming the time scales are

similar in the solid state, all such responses would be captured in a dielectric constant

measured at 1 MHz. Thus even in cases where substantial nuclear reorganization is

expected, dielectric measurements at 1 MHz are still sufficient to capture all of the

nuclear polarization response.

It is worth pointing out, however, that as the dielectric responses become slower

and slower, they eventually become too slow to act within the lifetime of a given

excitation, in which case their contribution to the reaction field is constant and always

in equilibrium with the ground state molecular charge distribution. Typical radiative

lifetimes of organic molecules are greater than 100 ps, and for all of the emissive

materials considered in this thesis, the radiative lifetimes are greater than 1 ns. On

these times scales, molecular reorientations are expected to be completed long before

the exciton relaxes, and thus it is indeed appropriate to include their contribution

to the dielectric repsonse in our analysis. This argument, however, indicates that

any dielectric responses occuring at frequencies below 1/τrad should not be included,

and ideally one would perform dielectric constant measurements at frequencies in the

range of 100 MHz to 10 THz.

Performing capacitance easurements at such high frequencies is very difficult (if

not simply impossible) for the device geometries associated with organic thin films.

Measurements at 1 MHz, by contrast, are straightforward, and such measurements

provide no loss of accuracy so long as no new dielectric processes activate at frequen-

cies between 1 MHz and 1/τrad, and since the only other mechanisms for dielectric

responses (i.e. ion motion) have much lower typical turn on frequencies, this as-

sumption should hold quite generally. In cases where no slow dielectric responses of

any kind are present, which is often the case, one alternatively use the DC dielectric

constant.

The measured dielectric constant for each DCM2:PS:CA film is shown in Fig.

3-4 (c), calculated assuming the device structure is described by a parallel plate

capacitor. (Note that because the HP4192A measures both the capacitance and
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the conductance independently, by measuring both the magnitude and the phase of

the I-V response, the film need not be perfectly insulating, though the noise in the

capacitance measurement is lower when the film is more insulating. It is for this reason

that aluminum electrodes were used, as they are usually poor injectors of charge into

organic thin films.) We find that the dielectric constant increases markedly with

increasing CA concentration, following an approximately linear relationship given by

ε = 2.44 + 0.13(CA%). In performing our calculation of ε we have assumed that the

two plates of the capacitor are perfectly smooth. While this is true of the bottom

electrode, the top electrode is deposited onto the top of the spun DCM2:PA:CA

film which has noticeable roughness. In particular, profilometry measurements show

approximately sinusoidal oscillations in the DCM2:PA:CA thickness, with a lateral

period of ≈ 50 µm and a vertical peak-to-peak amplitude of ≈ 100 nm. Modified

calculations of ε taking this roughness into account yields a correction to ε of between

1% and 3%, and because other experimental errors account for larger uncertainty

than this correction, we have neglected it.

While the small changes in the index of refraction of the film can not explain the

shifts in the PL spectra, the changes in ε, from 2.5 for the pure PS film to 5.6 for

the 24.5% CA doped film, provide a reasonable explanation of the 0.15 eV shift in

the PL peak energy, based on a comparison of the solvatochromism of DCM2 PL in

organic solvents. As reported above in the discussion of the Bulović et al. study,

the DCM2 PL in organic solvents shows a 0.11 eV shift for a change in ε from 2.27

to 4.81. To evaluate more quantitatively how well the solvation theory applies to

the observed spectral shifts in DCM2 we employ the OLM expressions developed

above. Specifically, we fit Eqn. 3.6 to the shift in the DCM2 PL peak as a function

of the CA concentration, as shown in Fig. 3-4 (d). For C↓ = −0.58 ± 0.03 eV and

B↓ = 2.48±0.02 eV, an excellent fit to the data is obtained, indicating that the OLM

solvation theory developed for organic solvents applies well to the DCM2:PS:CA solid

state system as well.

It is also necessary to evaluate the quantitative plausibility of these values, but this

is difficult to do based solely on the definitions of C↓ and A↓, given the arbitrariness
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of a and the necessity of knowing ~µg and ~µe. However, we can look at the solvation

of DCM2 in solutions, where the solvation mechanism is known to operate, and then

compare the values of C↓ and B↓ obtained for solutions with the values obtained in

the DCM2:PS:CA system. We performed measurements of the DCM2 PL spectra

using the same measurement apparatus as described above for low concentration

solutions of DCM2 in benzene (ε = 2.28), toluene (ε =2.38), chloroform (ε = 4.81),

dichloromethane (ε = 8.93), acetone (ε = 21.0), methanol (ε = 33.0), and acetonitrile

(ε = 36.6). The resulting PL peak energies are plotted in Fig. 3-4 (d) along with a

fit using Eqn. 3.6 with C↓ = −0.55 ± 0.03 eV and B↓ = 2.44 ± 0.02 eV. Again, the

OLM theory provides a good fit to the data.

By comparing the two systems, we find nearly the same values for C↓ and B↓,

demonstrating that the solvation theory not only fits the observed shifts in DCM2

PL in the DCM2:PS:CA system, but does so with nearly identical parameters as

DCM2 in liquid solvents. This is the expected result if solvation indeed operates in

the DCM2:PS:CA system, as the similar densities of solid and liquid phases suggests

similar molecular volumes, and the weak intermolecular interactions that dominate

both systems would not be expected to noticeably change the ground or excited state

dipole moments. Together, this implies that the model parameters should be the

same for the solid and liquid systems (given that the only parameters relevant to the

SC-DCM used here are the molecular volume and the dipole moments), precisely as

we observe.

It should be recalled, however, that the solvation energy, which we more gener-

ally refer to as the polarization energy, contributes only part of the total interac-

tion energy; the interactions due to immobile, static dipoles can also contribute. To

determine the relative impact of these effects on the total interaction energy, how-

ever, requires careful consideration. For a system consisting of completely immobile

molecules, then the static dipole moments of each molecule contribute a static field

to the system, and for a purely amorphous system, this static field has no preferred

orientation from the perspective of another molecule in the system. As a result, as

one increases the magnitude of those static dipoles, no net shift in the state or tran-
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sition energies would be expected, rather one would simply expect the distribution of

the state energies to become broader. (While this statement is here made based on

the accurate intuition that randomly oriented dipole interactions do not lead to a net

shift in the interaction energy, this point is demonstrated quantiatively below.)

Polarization interactions, however, form in response to the local fields produced

by a given molecule’s charge distribution, and are therefore aligned relative to that

charge distribution. For this reason, the polarization interaction energy can support

a net shift among all the sites. Of course, as noted in the previous section, one should

also expect variations in the local polarizibility of the medium (as a result of spatial

disorder), and therefore there should be variations in the polarization energies as well,

but this is in addition to the mean shift in the energies. Thus one concludes that in

a perfectly amorphous systems, if one measures a shift in the energy of a particular

state or electronic transition arising from the local fields in the material, it must arise

as a result of polarization interactions.

Does this then imply that a similar solvation-like phenomenon must act in the

DCM2:AlQ3 system, if we suppose for the moment that aggregation is not the expla-

nation? Unfortunately, the situation is not so simple. It is only the perfect random-

ness of the static fields arising from the randomly oriented static dipoles that prevents

them from supporting a net shift in the excitation energies. If the molecular dipoles

are correllated with each other, then the static fields they produce could support a

net shift in the excitation energies of the constituent molecules, and that shift would

increase in magnitude as the strength of the local fields increased. How then does

one distinguish between the two mechanisms? The PS:CA:DCM2 experiment illus-

trates that the critical data are the n and ε of the material, which together indicate

if significant nuclear reorganization is possible. If ε ≈ n2, then nuclear reorganiza-

tions do not play a major role in the local polarization of the medium. If, however, ε

is substantially larger than n2, then significant nuclear polarization occurs, and one

must analyze the state energies using a polarization theory that takes the nuclear

polarizibility into account.

As a final note, it should be kept in mind that in the general case an organic

90



thin film contains both static field and polarization field contributions to the local

fields. Even in the PS:CA:DCM2 system, where it was found that the solid state

solvation mechanism can fully account for the observed spectral shifts in PL (and

which therefore implies that correllated static fields do not significantly contribute

to this shift), uncorrellated static fields are still likely present. This is based on the

assumption that the CA molecules are at least partially sterically constrained, as

would be expected in any solid state systems, because such contraints impose a net

orientation to the CA molecules (and about which they partially reorient to produce

the observed nuclear polarization response). In this general case it is difficult to

separate the relative local field contributions of static and polarization fields without

further assumptions.

The difficulty here is that the impact of steric constraints on the relationship

between the CA dipole concentration and the dielectric constant is unknown. In a

liquid, in which there are no steric constraints, models have been developed to esti-

mate the change in dielectric constant of a solution as a function of the concentration

and strength of the constituent dipoles. Onsager[112] developed such a theory under

the spherical cavity continuum approximation, for a system of molecules character-

ized by their polarizibility α and static dipole moment µ. For a single component

system, the following relationship was reported:

ε− 1 = 4πN

[
µ2

3kBT

ε(n2
int + 2)2(2ε+ 1)

3(2ε+ n2
int)

2
+
ε(n2

int + 2)

2ε+ n2
int

α

]
(3.9)

where N is the molecular density, given by,

N =
NAρ

MW

, (3.10)

nint is defined by,

α =
n2

int − 1

nint + 2

(
3

4πN

)
, (3.11)

NA is Avogadro’s number, MW is the molecular weight, and ρ is the mass density

of the medium. For a multicomponent system, the right hand side of Eqn. 3.9 is
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replaced by a sum over each component of the medium. In his analysis, Onsager

chose a to satisfy the requirement that the cavity volume be the same as the average

volume occupied by a single molecule in a single component medium, i.e.,

N
4πa3

3
= 1. (3.12)

where N is the molecular density in a pure medium. (As is the case with the spherical

cavity theory in general, the particular choice of a is somewhat arbitary, and therefore

a source of uncertainty in the analysis.) The reason for this choice of a is that

it accords nint the meaning of the index of refraction of a pure, single-component

medium made of that material.

In applying this analysis to the change in the dielectric constant of DCM2:PS:CA

films as a function of CA concentration, it is first assumed that since the DCM2 does

not contribute appreciably to the dielectric properties (due to its very low concen-

tration), i.e. the film is modelled as a two component system of PS and CA. For

simplicity, the total mass density of the film is assumed to be independent of the CA

concentration, and equal to 1.0 g/ml. This assumption is well founded because nearly

all amorphous organic solids have a mass density of roughly 1.0 g/ml, and any errors

due to this assumption are likely to be completely overwhelmed by the uncertainty

inherent in the spherical cavity model. In this case, Eqn. 3.9 can be written as,

ε− 1 =
∑

j

fj

[
4πNAρ

MW (j)

µ(j)2

3kBT

ε(nint(j)
2 + 2)2(2ε+ 1)

3(2ε+ nint(j)2)2

+
3ε(nint(j)

2 − 1)

2ε+ nint(j)2

]
(3.13)

where the sum is over the j components of the system, fj is the mass fraction of

the film consisting of the j’th film component, and in obtaining this expression α

has been replaced using Eqn. 3.11. To determine values for nint it is noted that

within the uncertainty of the ellipsometry measurements, all of the films have n =

1.6, regardless of CA concentration, and so nint is taken to be 1.6 for both PS and
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CA. It is also assumed that for PS µ = 0, consistent with the observation that for the

pure PS film, ε = n2 within the measurement uncertainty (and the fact that PS is a

non-polar material). Using these values, along with NA = 6.022x1023, ρ = 1.0 g/ml,

MW (CA) = 182.22 g/mol, and kBT = 4.14x10−14 ergs, and expressing µ2
CA in units

of Debye, one obtains:

ε− 1 = fCA0.335µ2
CA

6.93ε(2ε+ 1)

(2ε+ 2.56)(2ε+ 2.56)
+

3ε(1.56)

2ε+ 2.56
. (3.14)

This expression can be evaluated numerically and the value for µCA fit to the

experrimentally observed changes in the dielectric constant of the DCM2:PS:CA thin

films. The resulting fit is shown in Fig. 3-4(c), obtained for µCA = 3.65 ± 0.1 D. The

uncertainty in a makes this value quite uncertain, but it is notable that the value is

reasonably close to the 6 D estimate of the CA dipole moment, and so even based

on an assumption that the CA molecules are completely free to rotate the observed

changes in dielectric constant as a function of CA concentration are entirely plausible.

At present, there are no reports of studies of the relative strengths and effects

of polarization induced and static local fields in solid state media with substantial

nuclear polarization. Because of the many complexites such nuclear polarizations

introduce, it is assumed for the remainder of this thesis that such nuclear polarizations

can be neglected. In other words, it is assumed that α = αel. As discussed above,

this is a reasonable approximation for AlQ3, and is expected to hold for most small

molecular weight organic solids, where steric hiderances prevent significant molecular

reorientations. The matter of correllated static fields will also be left here as such

fields represent a violation of the restriction that the materials be purely amorphous.

Finally, before leaving the subject of solid-state solvation behind entirely, a brief

comment on its technological significance is in order. As noted above, most amor-

phous organic solids have roughly the same index of refraction, so that the magnitude

of the electronic polarization energy is roughly the same regardless of the host. As

a result, on the basis of electronic polarization alone, it would be difficult to signifi-
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cantly alter the energy of a particular state or transition by changing the mixture of

molecular components in a particular host material. On the other hand, as demon-

strated with the DCM2:PS:CA system, if significant nuclear polarizations are present,

then one can effect substantial changes in the solvation energy of a particular state

or transition at moderate doping levels. This indicates a method by which one can

engineer the energy levels of molecular states through doping by means of SSS. This

is technologically useful as a means of tuning, for instance, the exciton transition

energies in any optically active organic device, or the polaron transition energies in

any organic electronic device involving charge transport.

3.4 The Density of States

The remainder of this chapter is concerned with the direct calculation of the dis-

tribution of electronic transition energies, a distribution that is commonly called the

density of states (DOS), g(E), despite the slight misnomer that the density here refers

to a transition and not a particular state. For a system of N identical molecules, g(E)

is obtained for a particular transition by constructing a histogram (as a function of

energy) of the N transition energies associated with each molecule in our system, and

then normalizing the resulting function to integrate to unity. The function g(E) then

describes the probability per unit energy that a particular molecule chosen at random

will have transition energy E. For a multi-component system, one specifies a separate

g(E) for each type of molecule.

In the development described below, the total change in electronic energy, ∆Eel
k ,

associated with a particular transition on the k’th molecule consists of the intrinsic

transition energy, denoted here by ∆Eel,0
k , associated with the molecule in isolation,

plus the change in the transition energy due to intermolecular interactions, ∆Eint
k .

As discussed in appendix A, ∆Eel,0
k is here assumed to be a constant for all molecules

of a given type in van der Waals bonded solids, and for this reason in the following

the convention is adopted that g(E) refers only to the change in the transition energy

due to intermolecular interactions. In short, for a given molecular type, the energy
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argument is implicitly shifted by ∆Eel,0
k .

3.5 Background on DOS Calculations

The calculation of the DOS functions associated with electronic transitions in disor-

dered materials has been the subject of considerable research interest over the last

hundred years. Historically, these investigations have been largely devoted to the

calculation of the inhomogeous broadening of bulk transition spectra arising from

some kind of energetic disorder mechanism. (Inhomogeneous broadening refers to

any broadening of a particular transition spectrum due to ensemble effects, as op-

posed to homogeneous broadening, which acts equally on all the molecules of a given

type in the system.) Up until the early nineties, the principle method for performing

calculations of the inhomogeneous line shape was an analytic statistical averaging

method first developed by Markov in 1912[89]. A more recent review of the method

was provided by Stoneham[148], in which the author generalizes this so-called “sta-

tistical method” to any disorder mechanism which can be described in terms of a

linear sum of independent energy contributions. These energy contributions are de-

scribed in terms of the position of a given site and any internal parameters of the

site such as its orientation. The sense of the contributions being independent is that

they are not a function of the positions and orientations of the other sites in the

system. As a practical matter, this independence condition is satisfied by expressing

each contributions in terms of the pair interactions between a “center” site (which is

effectively the active molecule) and the surrounding sites (which are effectively the

passive molecules), with the positions and orientations of the surrounding sites de-

fined relative to the “center” site.4 This method is therefore limited to the case in

which the electronic transition on the center molecule has no impact on the inter-

4Although it is something of a fine point, it is also permissible to compute the distibution of some
alternate value instead of the energy, such as the magntiude of the field at the center site due to
pair contributions of the other sites, so long as the energy distribution can then be constructed from
this alternate value. This would be useful in the event that this alternate value but not the energy
itself, can be expressed as a sum of pair terms. However, there do not appear to be any instances of
this approach being utilized in the literature.
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actions between the surrounding molecules and each other (since those interactions

are not included in the calculation). For polarizibile molecules, however, changes on

the charge distribution of the center molecule lead to changes in the induced dipole

moment on the surrounding molecules, which in turn changes the interaction energies

of the surrounding molecules with each other. Thus it is implicit in this approach the

explicit polarizibilities of each molecule are neglected.

In some cases, the molecular polarizibilities are neglected without correction, but

more commonly an approximation referred to here as the uniform dielectric continuum

model (U-DCM) is employed. Under the U-DCM, the molecular polarizibilities are

all set to zero and the molecular charge distributions are treated as if they are all

immersed in a uniform continuous dielectric having a dielectric constant ε = n2. (The

neglect of solid state solvation is implicit in this approach.) The principle feature of

the U-DCM is that the charge distributions are treated as purely static and the

interacting fields are scaled by a factor of 1/ε. In appendix B it is shown that for an

electronic transition on the A’th molecule involving a change in charge of ∆Q and

a change in dipole moment of ∆~µ, the change in the electrostatic interaction energy

within the U-DCM is given by,

∆Eint
A (∆Q,∆~µ) = − ∆Q

ε

N∑
i6=A

~µi(1) · r̂iA

r2
iA

− 1

ε

N∑
i6=A

∆~µ · 3 (~µi(1) · r̂Ai) r̂Ai − ~µi(1)

r3
Ai

. (B.17)

Thus one finds that the interaction energy under the U-DCM can indeed be computed

in terms of a series of pair contributions between the center (i.e. active) molecule and

the surrounding (i.e. passive) molecules.

In the typical statistical analytic calculation it is further assumed that the param-

eters of the surrounding sites are completely uncorrellated with each other. Thus the

parameters of each site are all governed by an identical distribution function that is

independent of the parameters of the other sites. The simplest such distribution func-
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tion is the spatial distribution function, i.e. the local density function. For a material

with a uniform density, this distribution function is a constant, which immediately

illustrates one of the major shortcomings of the assumption that the site parameters

are uncorrellated: since only one site can occupy a particular region of space, there

is evidently a strong correllation between the spatial distribution of the sites, namely

that the presense of a site in a given region completely forbids the presense of an-

other site in that region. The approach of using an uncorrellated spatial distibution

is originally due to Holtzmark[62], and is rigorously correct only in the low density

limit (where particle correlations are small). However, it greatly simplifies the math-

ematical analysis and for many cases of interest the low density limit is adequately

achieved. More recently, a variety of modifications to the Holtzmark approximation

have been developed to account for spatial correllations, so that problems involving

dense collections of particles can be more accurately treated (see [145] and references

11 through 21 therein).

The physics of the electrostatic interaction are entirely contained by the expression

of this pair interaction energy, denoted here by E(z), where z is a generalized variable

describing the dependencies of the interaction. Most early calculations of energy

disorder were confined to the analysis of: (1) plasmas (see references 4 through 10

in [145]), and (2) crystals containing random imperfections such as point defects

and dislocations (see references 1 through 21 in [148]). More recently, the statistical

method outlined by Stoneham has also adapted to the study of a variety of disordered

organic materials, both in the liquid and solid state. This work is overwhelmingly

focused on the study exciton energy disorder, namely the inhomogeneous broadening

of absorption and emission spectra (see e.g. [80, 81, 86, 70, 69, 68, 142, 114, 111]). In

most cases, the pair interaction energy is assumed to have the form of either a van der

Waals or a Lennard-Jones dispersion interaction. For the van der Waals interaction,

E(z) is given by,

E(z) → EvdW (r) = −4ε
(σ
r

)6

(3.15)
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where σ and ε are parameters of the interaction and r is the interaction distance. For

the Lennard-Jones interaction,

E(z) → ELJ(r) =

 −4ε

[(
σ

r−R0

)12

−
(

σ
r−R0

)6
]

if r > R0

∞ if r ≤ R0

(3.16)

where the modified form proposed by Laird and Skinner[80] has been used, and

R0 + σ/2 can be interpreted as the radius of the center molecule. These interactions

describe the dispersion interactions that dominate in non-polar (or nearly non-polar)

materials, and lead to shifts in the exciton energy on the basis of a difference in

the interaction parameters (i.e. ε and σ) for the center molecule in the ground and

excitonic states.

Despite their significance in the existing literature on inhomogeneous broadening

of electronic transitions, no further consideration of dispersion interactions is given in

this thesis, since in most cases of interest the interactions arising from non-zero static

charge distributions will dominate these contributions. This is certainly true for all of

the materials discussed in this thesis, but is not necessarily true in general. However,

in the event that one encounters an electronic transition in which the interactions

arising from static charge distributions make a negligible contribution to the DOS,

one should revist this assumption to determine if the dispersion contributions are

important after all. (A note on terminology: dispersion interactions arise as a result of

the respectively self-induced polarization of the two interacting charge distributions,

and thus could certainly be termed polarization interactions. However, it is useful

to draw a distinction between self-induced polarizations, which are always called

“dispersion” interactions in this thesis, and induced polarizations that arise from the

presense of static charges and dipoles. In this thesis, “polarization” interactions refer

to only the polarization interactions arising from the static charge distributions.)

By comparison with the dispersion interactions, the impact of electrostatic in-

teractions on exciton transition energies has received comparatively little attention.

The principle interaction in this case is the dipole-dipole interaction, which has been

treated by[69], who used:
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E(z) → Edd(∆~µ, ~µs, r) =
∆~µ · ~µs − 3(∆~µ · r̂)(~µs · r̂)

r3
(3.17)

where ~µ is the dipole moment of an arbitary surrounding molecule and ∆~µ is the

change in dipole moment of the active molecule associated with the exciton transition.

However, Kador’s treatment, which is to our knowledge the only theoretical treatment

of the problem in the literature, is approximate since it is assumed (to simplify the

mathematics) that the surrounding dipoles are not statistically random but all point

radially away from the central site, so that Edd(∆~µ, ~µ, r) can be written as,

Edd(∆~µ, ~µ r) → Edd(r, θ) = −∆µµ

r3
cos θ (3.18)

Furthermore, in the Kador development, the polarizibilities are neglected without

correction, making the approach in this respect equivalent to using the U-DCM with

ε = 1. Kador further employs the approximation that the central molecule is in

a spherical cavity of radius Dmin, which sets the minimum interaction distance for

the calculation. (This assignment of nonzero Dmin is used to partially correct for the

neglect of spatial correllations between molecules in the basic Stoneham treatment by

preventing interactions at unphysically short distances.) Kador solved for the DOS

under two different limiting conditions, which he found yielded distinctly different

shapes. In the limit that the density of dipoles ρ surrounding the central molecule is

much less than D−3
min, the DOS is a Gaussian with zero mean, i.e. having the form,

g(E) =
1

σ
√

2π
e−E2/2σ2

(3.19)

where σ is the standard deviation of the distribution. In the limit that ρ >> D−3
min,

the DOS is nearly Lorentzian with zero mean, i.e. having the approximate form,

g(E) =
1

π

Γ/2

E2 + (Γ/2)2 (3.20)

where Γ is the half width of the distribution. (Note that the standard deviation of a

pure Lorentzian is undefined.) These two limits are useful for two different situations:
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the low density limit reflects the situation observed by polar molecules doped at low

concentration into a non-polar host; and, the high density limit reflects the situation

observed by a large organic molecule dissolved in a polar solvent. Unfortunately, for

the analysis of typical molecular organic films used in organic electronic applications,

it is far more typical to encounter the situation where the dipole density is roughly

equal to D−3
min, since this is the condition experienced in a single component amor-

phous solid. Though Kador does not directly address this intermediate regime, it

is reasonable to conclude that the proper distribution is bounded by the Gaussian

and Lorentzian forms. It should also be noted that given the assumption of radially

aligned surrounding dipoles, it is not clear that one can quantiatively apply Kador’s

results to the general case of randomly oriented dipoles; however, Kador argues that

“the physical situation is not affected to a large degree” by this approximation[69],

and so the standard deviation of the DOS in the Gaussian limit is here reported for

later comparison with our own calculations:

σ =
4

3

√
π

1

D3
site

[
Dsite

Dmin

]3/2

µg∆µ (3.21)

where the parameter Dsite is defined such that ρ = D3
site. In addition, in the

Lorentzian limit, Γ is given by,

Γ =
π2

3

1

D3
site

µ∆µ (3.22)

In obtaining these expressions for σ and Γ the original expressions have been converted

from units of wavenumbers to units of energy using c.g.s. units. It is useful to also

express these equations in terms of Å for distance, D for dipole moments, and eV for

energy, in which case:
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σ[eV] = 1.475
1(

Dsite[Å]
)3 [Dsite

Dmin

]3/2

µ[D]∆µ[D] (3.23)

Γ[eV] = 1.307
1(

Dsite[Å]
)3µ[D]∆µ[D] (3.24)

(3.25)

No other examples of statistical method calculations of the exciton DOS arising

from electrostatic interactions are reported in the literature. It is particularly notable

that the Kador treatment is only valid for the case where the molecular polarizibilities

are zero. Since this is not a realistic condition is practice, with molecular polariz-

ibilities generally sufficient to yield values of n2 of between 2 and 3 for most organic

solids, the absense of any treatment of polarization effects is a major limitation of

the existing statistical method treatments.

There are no examples in the literature of statistical method calculations of po-

laron energy disorder following the Stoneham development. However, Young[165]

reports a calculation under the U-DCM that is quite similar, for the specific case of

electrostatic charge-dipole interactions in a cubic lattice of randomly oriented dipoles.

In his analysis,

E(z) → Eqd(r, ~µs) = −q
ε

r̂ · ~µ
r2

(3.26)

where q is the polaron charge. Further, because his analysis employs an exact summa-

tion over the lattice site positions (as opposed to an integral over a spatial distribution

function), the difficulties associated with spatial correllations in the standard Stone-

ham approach are avoided. The key results of his calculations are that for an infinite

cubic lattice of sites each having point dipoles of magnitude µ, the DOS is Gaussian

with a mean energy of zero and a standard deviation of,

σ[eV] =
7.07

(Dsite[Å])2ε
µ[D].. (3.27)
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At this point it is worth considering the basic limitations of the statistical ap-

proach (and its variants) as regards the calculation of interaction energies within a

polarizible medium. Specifically, nonzero molecular polarizibility is fundamentally at

odds with this method, since polarizible charge distributions fails the independent

energy contribution requirement (as noted previously). In principle, one can address

these difficulties through the use of effective interaction terms which correct for the

neglect of the polarization (as done under the U-DCM), but it is shown below that

the U-DCM is an inadequate approximation, and at present no other approaches are

described in the literature.

During the last fifteen years computational resources have grown sufficiently to

support an alternative method for DOS computations: Monte Carlo calculations.

In this approach, an explicit lattice of molecular sites is constructed, with each site

having assigned to it any properties needed for computing the interaction energies.

The sites are assumed to reside inside a cube subject to periodic boundary conditions,

so that the space inside the lattice is effectively infinite. A maxmium interaction

distance Rint is employed such that only two site within that distance are allowed

to interact with each other, usually chosen to be just under half the length of the

lattice to prevent the multiple interactions between the same two sites. The principle

advantage of Monte Carlo calculations are that they yield exact results (within the

proposed model) in the limit of a sufficiently large statistical sample.

The earliest calculations of this kind are due to Sevian and Skinner[142], who an-

alyzed the variations in exciton transition energy of a solute surrounded by roughly

800 of randomly distributed solvent particles, subject to Lennard-Jones interaction

energies. (Arguably Simon et al.[145] reported the first calculations of this general

type, but in their work they calculated the variations in the local field at arbitary

points within a lattice of solvent molecules, assuming Lennard-Jones interactions, as

opposed to the variations in the interaction energy of an excitation.) Subsequently

Dieckmann et al.[37] reported calculations of the polaron DOS arising from static in-

teractions between the polaron charge and random dipoles under the U-DCM. In their

calculations a cubic lattice of 50x50x50 sites subject to periodic boundary conditions
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is used, in which a random fraction c of the sites have randomly oriented dipoles of

magnitude µ. (A value for Rint is not reported, but one can reasonably assume that

the calculation was performed to include only the interaction with each other site

yielding the shortest interaction distance.) They report that when there is a dipole

on every site in the lattice (i.e. c = 1.0), the DOS is indistinguishable from a gaussian

function having a mean energy of zero. They also find that the gaussian form holds

for concentrations down to 0.5, for lower concentrations noticeable deviations from

the gaussian form arise and the resulting DOS becomes to acquire the shape of a

Lorentzian. They report the following approximate empirical formula for σ:

σ[eV] =
3.06

(Dsite[Å])2ε
c2/3µg[D]. (3.28)

At the time that this work was published, it had become conventional to model the

polaron DOS in an amorphous organic solid by a Gaussian function, a model known

appropriately as the Gaussian Disorder Model (GDM). This approach was based on

an assumed similarity between the charge-dipole interaction governing polarons in

organic materials and the various energy disorder calculations performed using the

statistical method, which overwhelmingly predict approximately gaussian distribu-

tions for nearly all forms of the interaction energy. However, the Dieckmann et al.[37]

work provided the first precise calculations of the polaron DOS in amorphous organic

materials, and thus constitutes a historically important justification of the GDM. One

of the confusing aspects of the Dieckmann report, however, is the expression for σ

which differs from the value obtained in Young’s analysis case by a factor of roughly

1/2.3 for the c = 1.0 case. Even more perplexing is the subsequent appearance of

yet another expression for the polaron σ under the U-DCM, due to Novikov and

Vannikov[108],

σ[eV] =
2.35

(Dsite[Å])2ε
µg[D] (3.29)

which is exactly a factor of 3 smaller than the Young value. This descrepancy will be

revisted below, but at this point it is worth noting that the Novikov and Vannikov
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expression appears to be the one most frequently quoted in the literature.

Similar Monte Carlo calculations of the exciton DOS arising from electrostatic in-

teractions in amorphous materials have not been performed, though Sellars et al.[141]

reports a calculation of electrostatic dipole-dipole interactions in a lattice having the

crystallographic parameters of Y2SiO5 and having a small concentration of randomly

positioned and oriented dipoles. Unfortunately, the calculations and discussion are

very narrowly applied to the specific experimental system of interest (namely Eu3+

doped Y2SiO5), and it is not possible to draw any significant conclusions from their

work about the excitonic DOS arising from dipole-dipole interactions in the general

disordered case. (The authors also employ a simple the Lorentz local field correction

factor to their dipole-dipole interaction term (i.e. (ε+ 2) /3), as opposed to the 1/ε

factor suggested by the U-DCM, but since this choice is made without explanation

and does not have an obvious justification, it is difficult to evaluate its validity.)

At present, there are no direct self-consistent Monte Carlo calculations reported

in the literature of the polaron and exciton DOS arising from electrostatic interac-

tions between a system of polarizibile charge distributions. Indeed, the most advanced

calculations are all performed under the U-DCM, which suffers from two major short-

comings. First, the U-DCM correction to the neglect of the the molecular polarizibil-

ities is of uncertain validity, since at present there are no exact calculations against

which to compare the approximation. Second, the U-DCM does not account for the

interaction energy between each charge distribution and the induced polarization in

the surroundings.

The first shortcoming has not, to this author’s knowledge, been anywhere ad-

dressed in the literature. The second shortcoming has been only very crudely ad-

dressed using a method originally due to Silinsh[144]. The principle of the method

is to express the polarization energy associated with a charge (for the polaron tran-

sition) or a dipole (for the exciton transition) on a particular “center” site in terms

of the positions of the surrounding sites, and then evaluate how that energy varies

with random spatial fluctations in the site positions. In carrying out this calculation,

the principle approximation is to neglect interactions between induced dipoles. An-
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other key, though subtle, approximation is that the surrounding sites are all assumed

to have zero static charge and dipole moment. (This approximation is usually not

described as such, but because the internal polarization energy of a molecule is pro-

portional to the square of the local field, one can not obtain its contribution to the

total energy of the system simply by summing the contributions obtained for each

separately applied field. As a result, the method is only accurate if the static charge

distributions on the surrounding sites fail to induce any polarizations of their own,

which is equivalent in a random system to assuming that those static charge distribu-

tions are zero.) The approximate expressions for the polarization disorder that have

been previously derived using this approach are described in appendix B, and are

useful only for back–of–the–envelope estimates of the polarization disorder.5

One solution to all of these difficulties is to perform calculations using the Monte

Carlo method with explicitly polarizible molecular charge distributions instead of

static distributions with effective interaction energies. The sole approximation of

such calculations is the implicit approximation of the Monte Carlo approach, namely

that the results are only exact in the limit of infinitely large systems and infinitely

large statistical samples. The principle challenge of such a calculation is its compu-

tational difficulty, since to calculation requires self-consistently determining the fields

and induced dipoles on each molecule in the system. As a result, to calculate the

transition energy for a single site in a system of N molecules scales as N3, while the

corresponding calculation for a static lattice scales as N. For perspective, it would

take roughly the same amount of time to calculate the interaction energy of a site in a

static system of 125,000 sites (as reported by Dieckmann et al.[37]) as to perform the

same calculation in a polarizible system of just 50 sites. In other words, performing

calculations on meaningfully large systems of charge distributions requires far more

computing resources than needed by the U-DCM, and it is perhaps for this reason

5It is interesting to note that the fundamental approximations of this method, namely the po-
larization energy is constructed just of a sum of pair contributions between the excitation and the
surrounding sites, make it possible to use the more sophisticated statistical method to calculate the
DOS under this method much more accurate. Such calculations have not appeared in the literature,
though perhaps the basic approximations of the method introduce themselves sufficient error that a
more accurate calculation based on those assumptions is not useful.
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that such calculations have not yet been reported in the literature.

3.6 Spatial Correllations in the DOS

In the previous section, the calculation of the DOS functions was evaluated only

in terms of the g(E) associated with the bulk, and in this section, the additional

subtlety of spatial correllations in the interaction energies is addressed. Up to this

point, one would naturally assume that once g(E) is known for a particular system,

one can construct a representative system by randomly assigning the energies of the

sites in accordance with g(E). This is precisely the procedure used when employing

the GDM. However, this approach is valid only when the site energies have spatial

correllations, i.e. when the energies of nearby sights have no relationship with one

another. It is found that this condition does not always hold.

Specifically, it was demonstrated by Novikov and Vannikov[109] that the polaron

energy disorder arising from a lattice of randomly oriented dipoles is strongly spatially

correllated, such that sites that are closer together are more likely to have similiar

energies. Their model is now known as the correllated disorder model (CDM), which

differs from the GDM only in the spatial correllations between the energies; in both

models, the total DOS is Gaussian. For a cubic lattice, they obtain an approximate

analytic result for the correllation function, C(~r), defined as 〈E(0)E(~r)〉, where E(~r) is

the polaron energy of the site located at position ~r, measured relative to the reference

site at position 0, and the brackets denote an ensemble average. They report,

C(~r)

C(0)
= 0.74

Dsite

r
(3.30)

accurate to a few percent for all sites except the reference site. They argue that the

primary significance of this correllation is that the energies become clustered. They

represent this mathematically in terms of a conditional DOS function, gcor(E0|E),

given by,
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gcor(E0|E) =
1√

2πσcor(~r)
exp

[
− 1

2σcor(~r)2

(
E − C(~r)

C(0)
E0

)2
]

(3.31)

with,

σcor(~r)
2 =

C(0)2 − C(~r)2

C(0)
(3.32)

where gcor(E0|E) gives the probability distribution associated with sites located a

distance r relative to a reference site having energy E0. Noting that C(0) = 〈E2〉 = σ2

since the mean energy of the distribution is zero, and plugging in for C(0) and C(~r)

we can simplify our expressions to obtain,

gcor(E0|E) =
1√

2πσcor(~r)
exp

[
− 1

2σcor(~r)2

(
E − 0.74

Dsite

r
E0

)2
]

(3.33)

with,

σcor(~r)
2 =

(
1− 0.74

Dsite

r

)
σ2. (3.34)

Though these expressions were obtained for a cubic lattice, the authors[109] observe

that the same type of energy correllations should arise in any three-dimensional lat-

tices, though the exact value of the prefactor to C(~r)/C(0) may different for different

structural morphologies. Finally, the authors demonstrate an example of the energy

clustering structure for a 31x31x31 cubic lattice using a direct Monte Carlo calcula-

tion, though they do not provide Monte Carlo data for the C(r)/C(0) arising from this

Monte Carlo calculation, so a direct comparison between the Monte Carlo simlation

and their theoretical predictions is not made.

It is intuitive that such spatial correllations would impact any process involving

polaron transport between sites, given the strong dependence of such transfer rates

on the relative transition energies. Indeed, as will be discussed in greater detail in a

following chapter, the predictions for polaron transport are substantially different for

a DOS with a given σ depending on whether or not the GDM or the CDM is used. It
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is therefore critical to assess the spatial correllations of the energies in a given system

to determine the extent and character of any spatial correllations. At present, there

are no reports of spatial correllations in the exciton DOS arising from electrostatic

interactions.

3.7 Monte Carlo DOS Calculations: Overview

In the next two sections we report our Monte Carlo calculations of the polaron and

exciton DOS for a variety of different models. In all of these calculations a “lattice”

of sites is constructed in which each site has an associated position ~ri and ground

state dipole moment ~µi(1). It is assumed for simplicity that |~µi(1)| = µg for all i,

which is equivalent to assuming that each molecule in the system is of the same type.

An additional orientation term is also specified for each site; this term consists of

the angle of molecular “rotation” around the axis of the ground state dipole. This

rotation angle is needed to fully specify the orientation of the site in three-dimensions,

and it required to properly modify the dipole moment during an electronic transtion.

For the polaron transition, the change in dipole moment is assumed to be zero,

and the change in the charge assumed to be ±q. The neglect of the change in dipole

moment is based on the assumption that the contribution to the energy distorder

arising from this change is insigificant compared to the disorder arising from the

charge term. For the exciton transition, the charge remains unchanged (and equal

to zero) while the dipole moment is subject to a vector change equal to ∆~µi. It

is also assumed for simplicity that ∆~µi is the same for every molecule within the

orientational reference frame of that molecule, and given by ∆~µ, which is defined in

the reference frame in which the molecular dipole is aligned along ẑ and the molecular

rotation angle is zero. This is equivalent to assuming that each molecule in the system

is of the same type. To get ∆~µi from ∆~µ, the ∆~µ vector is rotated into the i’th site’s

orientational reference frame.

It is also assumed in all of these calculations that alpha = αel (or, equivalently,

for the U-DCM, that ε = n2). In other words, the effects of solid state solvation
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are neglected. As discussed above, for AlQ3 this is a good, if not perfect, assump-

tion, since the electronic poliarizibility is much larger than the nuclear polarizibility.

This assumption also has the considerable advantage of eliminating the complexi-

ties descriebd above (and in Appendix B) that arise from the nuclear polarizations.

However, while direct calculations taking SSS into account are not reported here, a

procedure for implementing such corrections along with their expected character, is

described at the conclusion of this chapter. Finally, it is assumed that the polarizibil-

ity does not change in the excited state, and is therefore always equal to its ground

state value. This simplification is a matter of practical necessity given that the values

for the polarizibility of molecules in their excited state are not, for the most part,

available.

The lattice used in each calculation is constructed by first generating a set of site

positions, forming either: (1) a cubic lattice; or, (2) a formally random lattice subject

to the restriction that no two sites can be separated by a distance of less than Dmin.

The lattice space consists of a cube having sides of equal length LDsite, where L is

an integer and Dsite is defined such that D3
site is the average volume assigned to an

individual molecule in the system. For this definition, each lattice always contains

precisely L3 sites; for the cubic lattice in particular, the lattice extends exactly L sites

in each direction.

The lattice space is subject to periodic boundary conditions to simulate an infinite

number of copies of the lattice filling all space. Specifically, the lattice space, S, is

defined by S ∈ [~r0, ~rL), where ~r0 is the origin and ~rL ≡ ~r0 + ~L with ~L containing the

lengths, Lx, Ly, and Lz, of S along each axis. The vector connecting any two points,

~r1 and ~r2 within the lattice, is by these definitions an infinity of vectors, ~r12:

~r12(i, j, k) = ~r1 − ~r2 + (iLx, jLy, kLz) · (x̂, ŷ, ẑ) (3.35)

where i, j, j ∈ Z. To perform a real calculation, is thus necessary to specify a pro-

cedure for selecting a finite subset of ~r12(i, j, k), and the procedure employed here is
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include interactions only between sites separated by a distance of less than Rint. In all

of the following calculations, Rint is always chosen to admit only a single interaction

for any given pair of sites, which practically means that Rint < LDsite/2.

Each site contains a randomly oriented dipole of magnitude µg. To construct these

random orientations, uniform random values between -1.0 and 1.0 are chosen for each

vector component of the dipole, and then the total dipole is scaled so that the resulting

vector has magnitude µg. This ensures that the dipoles are isotropically distributed

along each spatial direction. To obtain the molecular rotations about the dipole

uniformly random values over the range [0, 2π) are chosen. Each site is additionally

assigned a constant polarizibility α which is assumed to be purely electronic (so that

it is always in equililbrium with the charge distribution) and independent of the state

of the molecule.

For each DOS calculations, the electronic transition energy for a given excitation

is calculated for each site in the system. This transition energy is always the differ-

ence in the energy of the system in equilibrium before and after the transition. By

constructing a histogram of these transition energies, the DOS is obtained. The main

challenge (aside from computation time) in performing this calculation is in address-

ing the fact that the lattice is finite even though the properties of an infinite lattice

are desired. A second, related challenge is the necessity of performing the calculation

over a sufficiently large number of sites that the results are statistically significant.

The first challenge is of a fundamental nature and of considerable concern for two

reasons: (1) since the intermolecular interactions all theoretically extend to infinity,

any finite choice of Rint represents an approximation, and this value is restricted to

be less than half of L in our calculations; and (2), since at least one component of the

polaron interaction (namely the charge-dipole interaction) is known to lead to spatial

correlations, and these correlations lead to energy clustering, it is evident that to the

extent that those clusters have a fundamental size scale it is necessary to employ a

lattice that is larger than this size scale. For these reasons, significant attention is

given in the following to studying the impact of L and Rint on the DOS calculations,

so that any lattice size affects can be minimized or corrected as needed.

110



The second challenge is in trivially addressed by simply performing calculations

over more and more randomly generated lattices, until the statistical uncertainty of

the results is sufficiently small. It is found that adequate results about obtained by

performing each calculation over 5 different lattices and averaging the results. The

statistical uncertainties in the results reported below are obtained by taking twice

the standard deviation of the values obtained for the 5 different lattices.

In the first set of calculations, the charge distributions are static (i.e. α = 0).

These calculation are exact (in the Monte Carlo sense) for the case of non-polarizible

molecules, and can, in theory, approximate the case of non-zero molecular polariz-

ibilities through the use of an appropriate DCM, in terms of ε. Clearly, the U-DCM

indicates the simplest such approximate treatment, for which all of the interactions

are simply scaled by 1/ε. A more sophisticated alternative, referred to here as the

extended SC-DCM, is described in Appendix B.

In the second set of calculations, the charge distributions are polarizible. In this

case the equilibrium state of the system is obtained through a self-consistent calcula-

tion of the interacting fields. This radically increases the computational difficulty of

the problem, but with efficient calculation techniques and modern computers mean-

ingful results can still be obtained. Through these calculations a number of useful

and surprising results are obtained which impact all theoretical calculations of the

polaron and exciton DOS arising from electrostatic interactions.

3.8 Monte Carlo DOS Calculations I: Static Charge

Distributions

In this section DOS calculations are performed in which the charge distributions are

assumed to be static and in vacuum. In this case, the change in energy of a given

electronic transition is obtained from Eqn. B.16 by setting ε = 1. The change in po-

laron transition energy due to electrostatic interactions (neglecting ∆µ as previously

discussed) is then given by,
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∆Eint
p = ±∆Q

M∑
i6=A

~µi(1) · r̂iA

r2
iA

. (3.36)

where the reader is reminded that A is the index of the active molecule undergoing

the transition, and ∆Q is the change in the charge associated with the transition.

For the polaron creation transition, ∆Q = q, where q is the polaron charge, while for

the corresponding polaron destruction transition, ∆Q = −q. The change in exciton

transition energy is given by,

∆Eint
ex = −∆~µ ·

[
M∑

j 6=A

3 (~µj(1) · r̂Aj) r̂Aj − ~µj(1)

r3
Aj

]
(3.37)

where ∆~µ is the change in the dipole moment associated with the transition.

In the following calculations, the main variables are: (1) the lattice size L; (2) the

interaction radius Rint; and (3) the ratio ofDmin toDsite when performing calculations

on random (as opposed to cubic) lattices. The parameters ∆Q, µg, ∆µ, and Dsite

need not be explicitly varied, as a straightforward analysis of the governing equations

shows that the interaction energies all scale with these parameters in a simple way.

Specifically, for the polaron case, by inspection of Eqn. 3.36 one finds that the energies

scale as,

Σp = ∆Q
µg

D2
site

(3.38)

while for the exciton case, from inspection of Eqn. 3.37 one finds that the energies

scale as,

Σex =
µg∆µ

D3
site

. (3.39)

The values used in these calculations were: ∆Q = +e, µg = 2 D, ∆µ = 2 D,

and Dsite = 1 nm, where e is the fundamental electron charge. For ∆µ̂ a value
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Table 3.1: Summary of calculation are shown along with the corresponding model
parameters. As noted in the text, in these calculations: ∆Q = +e, µg = 2 D, and
Dsite = 1 nm.

L Rint [ Dsite ] σ [ eV ] Ē [ eV ]

20 4.9 0.1296 ± 0.002 0
30 4.9 0.1286 ± 0.002 0
40 4.9 0.1294 ± 0.002 0

30 9.9 0.1342 ± 0.003 0
40 9.9 0.1348 ± 0.003 0

30 14.9 0.1366 ± 0.003 0
40 14.9 0.1359 ± 0.003 0

40 19.9 0.1404 ± 0.003 0
50 19.9 0.1368 ± 0.003 0

50 24.9 0.1380 ± 0.003 0

of (1, 1, 1)/
√

3 is used except when otherwise specified; the reason this value is varied

is to illustrate a subtle dependence of the exciton DOS on the direction of the change

in dipole moment.

In Table 3.1 are listed the parameters for the polaron DOS calculations performed

on a cubic lattice, with the corresponding standard deviations and mean energies. In

Fig. 3-5 (a) and (b) are shown the DOS (in the form of the energy histogram) for the

L = 40 and Rint = 19.9Dsite case, along with a Gaussian function having the same

standard deviation and zero mean energy. The data clearly illustrate that the DOS

is indeed perfectly described by a gaussian function with zero mean energy to within

the statistical accuracy of the calculation, and this agreement is similarly observed in

each of the remaining polaron DOS calculations listed in Table 3.1.

It is found that for fixed Rint, there is little direct impact on σ due to L. There is,

however, a noticeable increase in σ as Rint is increased, with the results approaching

the theoretical value predicted by Young, which for these parameters is a value of

0.141 eV (from Eqn. 3.27.) For Rint ≥ 19.9Dsite, σ is within a few percent of the

theoretical value (and in some cases, is equal to the theoretical value within the

statistical error). Even for Rint = 4.9Dsite, however, the observed disorder is within
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Figure 3-5: Polaron DOS and normalized spatial correllation function for static charge
distributions in a cubic lattice. In (a) and (b) is shown the DOS (in the form of the
energy histogram) for L = 40, Rint = 19.9Dsite, along with a Gaussian fit (red line)
with the same standard deviation and mean energy as the raw energies. In (c) and
(d) are shown the normalized spatial correllation function for the L = 40 and L = 50
calculations, respectively, for a range of Rint values. As noted in the text, in these
calculations: ∆Q = +e, µg = 2 D, and Dsite = 1 nm.
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10% of the theoretical value, indicating that if necessary, reasonable results can be

obtained even for small Rint.

In addition to the σ values, it is necessary to assess the spatial correllations in

the polaron energies to determine if the calculation is consistent with the predic-

tions of Novikov and Vannikov, as these correllations are expected to have a depen-

dence on Rint (as discussed above). To evaluate these spatial correllations, statistical

calculations of C(r) are performed for each set of energies. This is done by divid-

ing the space of all possible intersite separation distances r (which spans the space

r ∈ [0,
√

3/4LDsite)) into a set of equally spaced discrete ranges of length ∆r. The

product of the site energies for each pair of sites is then computed, and this prod-

uct is averaged over all site pairs having r within the same range. The resulting

statical averages are then divided by σ2 (which, as noted above, is C(0) for a distri-

bution having zero mean energy). The resulting values yield a statistical calculation

of the normalized correllation function C(r)/C(0) for all the sites in the lattice. We

then plot these values against 1/r (where the value of r for each region is defined to

yield ranges of r±∆r/2), to evaluate whether or not the calculated site energies are

consistent with the theoretically predicted 0.74/r relationship.

In Fig. 3-5 (c) are shown the calculated C(r)/C(0) for L = 40, indicating the

impact of Rint. As one would expect, the correllations are reduced for shorter Rint,

and tend to zero for distances greater than Rint. It also found that for shorter Rint,

not only are the correllations for r > Rint lower than theoretically predicted by

Novikov and Vannikov, but there is a region of large r over which the correllations

are negative before approaching 0 at the longest distances. In general, however, good

aggreement with the theoretical correllations is observed for Rint = 19.9Dsite, with

deviations from the 0.74Dsite/r curve of no more than 0.04 for any one point. In

Fig. 3-5 (d) are shown the spatial correllations for the two L = 50 calculations,

indicating that increasing Rint from 19.9Dsite to 24.9Dsite does not noticeably impact

the spatial correllations and suggesting a convergence in the results as a function of

Rint by Rint = 19.9Dsite.

Based on this analysis of both σ and C(r)/C(0), it is evident that L = 40 and
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Rint = 19.9 provide a DOS calculation that very closely reproduces the behavior of an

infinite lattice, and this is therefore chosen as the standard size for the calculations

reported in the remainder of this section. In addition, it is found that the Young

expression for σ is the proper one, and should be used in place of the expressions

reported by Dieckmann et al.[37] (Eqn. 3.28) and Novikov and Vannikov[109] (Eqn.

3.29). The reason for this discrepancy is not clear, but it is possible to eliminate at

least one of the possibilities suggested by Young, namely that his calculation assumes

point dipoles while the Dieckmann calculation assumes finite size dipoles (described

a pair of point charges offset from one another along the dipole vector and having

opposite sign). Calculations identical to those performed above using finite dipoles

with charge separation distances of up to 0.9Dsite yield no change in the value of σ

to within the statistical errors. Thus this can not be the explanation for the different

expressions for σ. A possible explanation can be found in the fact that the Novikov

and Vannikov expression is precisely a factor of 3 too small, as this coincidence may

reflect the improper application of an orientational average. In any case, our results

demonstrate conclusively that the Young expression is the appropriate one.

In Table 3.2 are listed the parameters for the exciton DOS calculations performed

on a cubic lattice, with the corresponding standard deviations and mean energies. In

Fig. 3-6 is shown the DOS (again, in the form of the energy histogram) for the L = 40,

Rint = 19.9Dsite case, along with a Gaussian function having the same standard

deviation and zero mean energy. The data illustrate that the exciton DOS, like the

polaron DOS, is indeed described by a Gaussian function with zero mean energy to

within the statistical accuracy of the calculation. This agreement is similarly observed

for all of the other exciton DOS calculations reported in Table 3.2.

It is also found that σ here converges much more rapidly with increasing Rint than

for the polaron case, such that any value of Rint ≥ 4.9Dsite yields a converged result.

As discussed above, the only prior calculation in the literature directly applicable to

this case is the approximate statistical method calculation reported by Kador[69],

in which (for reasons of mathematical simplicity) the dipole arrangements do not
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Table 3.2: Summary of exciton DOS calculations for static charge distributions in
a cubic lattice. The standard deviation (σ) and mean energy (Ē) for each run are
shown along with the corresponding parameters used in performing the calculation.
Note that the standard deviations are here listed in meV (where in the polaron tables,
eV was used.) As noted in the text, in these calculations: ∆µ = 2 D, µg = 2 D, and
Dsite = 1 nm.

L Rint [ Dsite ] σ [ meV ] Ē [ eV ]

20 1.01 5.01 ± 0.1 0

20 4.9 5.90 ± 0.1 0

20 9.9 5.90 ± 0.1 0
30 9.9 5.90 ± 0.1 0
40 9.9 5.91 ± 0.02 0

40 14.9 5.89 ± 0.03 0

40 19.9 5.91 ± 0.03 0
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Figure 3-6: Exciton DOS for static charge distributions in a cubic lattice (in the
form of the energy histogram) for L = 40, Rint = 19.9Dsite (symbols), along with a
Gaussian fit (red line) with the same standard deviation and mean energy as the raw
energies. As noted in the text, in this calculation: ∆µ = 2 D, µg = 2 D, and Dsite =
1 nm.
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have a formally random structure. Because of this simplification, it is not clear that

this analysis is quantitatively applicable to the Monte Carlo calculations presented

here; nevertheless, the σ obtained from the Kador expressions (Eqn. 3.23) for the

Gaussian DOS limit with Dmin here set equal to Dsite (since in cubic lattice, that is

the minimum interaction distance) gives 5.90 meV, which is precisely the converged

value obtained in the Monte Carlo calculations. This remarkable agreement would

appear to confirm Kador’s claim that the approximations employed in his analysis do

not significantly affect the results.

There are no theoretical reports which describe spatial correllations in exciton

energies in a lattice of random dipoles, and on fairly general grounds, it would seem

that such correllations are impossible because the interaction energies for dipoles

are mediated by the dot product between the local field due to the surrounding

molecules and the (randomly oriented) transition dipole. Thus even if the local field

varys sufficiently smoothly that the fields at nearby molecules are similar, the fact

that the transition dipoles of nearby molecules are randomly oriented with respect

to each other will cause the signs of the energies to be entirely uncorrellated (though

it is worth noting that the magnitudes of the energies could still be correllated). To

confirm this interpretation of the system, the normalized spatial correllation function

C(r)/C(0) was computed for all of the exciton DOS calculations, and it was found

that C(r)/C(0) is always zero to within the statistical error except for the data point

corresponding to the nearest neighbor distance (i.e. r = Dsite). At this distance

a small correllation is observed which is dependent on the direction of ∆~µ. Thus

unexpected dependence on the direction of the transition dipole is a reflection of the

mechanism that underlies this nearest neighbor energy correllation.

To see how this correllation arises, consider two points, 1 and 2, in the lattice,

and then calculate the contribution to the exciton transition energy of site 1 due to

2, ∆E12, and then site 2 due to site 1, ∆E12. In general, these energy contributions

are given by,

∆Emn =
1

ε

1

R3
mn

{
∆~µm · ~µn − 3

[
(∆~µm · ˆRmn)(∆~µn · ˆRmn)

]}
(3.40)
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where ∆~µm is the change in dipole moment for the exciton transition on site m and

~µm is the dipole vector on site n. In the event that ∆~µm||~µm (i.e. the change in the

dipole moment is parallel to the original dipole), then this expression can be rewritten

as:

∆Emn = Enm =
1

ε

1

R3
mn

µ∆µ
{
µ̂m · ~µn − 3

[
(µ̂m · ˆRmn)(µ̂n · ˆRmn)

]}
(3.41)

in which case it is clear that every pair of points would share at least one contribution

to their transition energy exactly. In the limit that only the six nearest neighbor

contributions are included in the calculation of the exciton DOS for the cubic lattice,

then one would expect a value of C(r)/C(0) of precisely 1/6 = 0.17 for r = Dsite.

The L = 20 and Rint = 1.01 calculation reflects this extreme (since only the nearest

neighbor interactions are admitted), and indeed for ∆~µ = (0, 0, 1) a value of 0.17 ±

0.02 is obtained for C(Dsite)/C(0). Clearly this represents the maximum possible

correllation, and for ∆~µ with any other alignment relative to the original dipole, a

lower value of the r = Dsite correllation is obtained. For the cubic lattice calculation

with L = 40 and Rint = 19.9 and with ∆µ̂ = (1, 1, 1)/
√

3, the correllation at r = Dsite

is just 0.040±0.005, as a result of: (1) the fact that ∆µ̂ is no longer perfectly aligned

to the ground state dipole; and (2) the fact that the larger Rint reduces the impact of

any single energy contribution by increasing the total number of contributing terms.

These correllations are quite weak, and one expects that in most cases they can be

neglected, but their very existence is noteworthy.

In Table 3.3 are listed the parameters for the polaron DOS calculations performed

on spatially disordered lattices, with the corresponding values for Dmin, as well as the

standard deviations and mean energies. In these calculations the disorder arises from

both the variations in the relative site positions and the random dipole orientations.

All of these calculations were performed for L = 40 and Rint = 19.9Dsite, based on the

assumption that as in the cubic lattice case, these parameters will adequately yield the

characteristics of the infinite lattice limit. In Fig. 3-7 are shown the DOS obtained for
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Table 3.3: Summary of polaron DOS calculations for static charge distributions in
spatially disordered lattices having minimum intersite spacing Dmin. The standard
deviation (σ) and mean energy (Ē) for each run are shown along with the corre-
sponding parameters used in performing the calculation. As noted in the text, in
these calculations: ∆Q = +e, µg = 2 D, and Dsite = 1 nm.

L Rint [ Dsite ] Dmin [ Dsite ] σ [ eV ] Ē [ eV ]

40 19.9 0.8 0.1441 ± 0.002 0
40 19.9 0.5 0.1744 ± 0.002 0
40 19.9 0.1 0.3841 ± 0.003 0

each run, along with the corresponding Gaussian having the same standard deviation

and mean zero energy. For the Dmin = 0.1Dsite case a Lorentzian function is also

shown, for which Γ = 0.20± 0.02 as obtained by fitting the function to the peak and

full width half max of the calculated DOS.

For Dmin = 0.8Dsite, the Gaussian function perfectly fits the data to within the

statistical error. For the Dmin = 0.5Dsite case, the Gaussian function again provides a

good fit, though slight deviations are observed in the high and low energy tails, with

the calculated DOS spreading wider than the Gaussian distribution. For Dmin =

0.1Dsite the DOS is not well fit by the Gaussian distribution, nor is it well fit by the

Lorentzian distribution. Rather, the DOS appears to be intermediate between the

two. These results recall the work by Dieckman for lattices in which only a fraction

of the sites contain dipoles. There it was found that for decreasing concentrations of

dipoles, the distribution transitioned from Gaussian towards Lorentzian. The analogy

to our results is that as the dipole concentration decreases, it is much like the situation

encountered as Dmin is decreased, since a lower concentration allows a larger variation

in the spacing between dipoles. Specifically, the two cases should be nearly equivalent

if one scales Dsite by c−1/3 and then sets Dmin equal to c−1/3Dsite. The only difference

is the fact that in the Dieckman work the underlying lattice is still cubic, and therefore

discretized, while in these calculations the positions are continuous (to within the

processor’s floating point precision.)

In comparison to the cubic lattice, the random lattices all yield larger σ, with the

disorder increasing for lower Dmin. This is entirely expected, as a decrease in Dmin
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Figure 3-7: Polaron DOS and normalized spatial correllation function for static charge
distributions in spatially random lattices. In (a) - (c) are shown the DOS (in the form
of the energy histogram) calculations (symbols) for L = 40, Rint = 19.9Dsite with
Dmin equal to 0.8Dsite, 0.5Dsite, and 0.1Dsite respectively, along with Gaussian fits
(red lines) with the same standard deviation and mean energy as the raw energies.
In (c) is also shown a Lorentzian fit (blue line) with Γ = 0.20 ± 0.02 as obtained by
fitting the function to the peak and full width half max of the calculated DOS. In (d)
is shown the normalized spatial correllation function for each DOS calculation. As
noted in the text, in these calculations: ∆Q = +e, µg = 2 D, and Dsite = 1 nm.
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implies a greater degree of disorder in the lattice. The observed increase is moderate

for Dmin close to Dsite, with Dmin = 0.8Dsite yielding σ of 0.1441 eV , just 0.0037 eV

(roughly 3%) more than the cubic lattice case, which is nearly within the statistical

error of the two calculations. But this disorder increases more sharply for smaller

Dmin, and for the Dmin = 0.1Dsite case σ is 0.3841 eV .

The normalized spatial correllation functions of the polaron energies in the spa-

tially disordered lattice calculations are shown in Fig. 3-7 (d). It is found that the

slope of the correllation function decreases with decreasing Dmin. This phenomenon

is attributed to the fact that as Dmin decreases, the polaron energy of a given site

is increasingly likely to be dominated by interaction with a single anomalously close

site. Since the interaction energy goes as r−3, for even Dmin = 0.5Dsite, the inter-

action energy with a minimally distant site is on average a factor of 8 larger than

for sites an average distance away. For the Dmin = 0.1Dsite case, the minimally dis-

tant interaction is 1000 times larger than the average distance interation. For this

reason, the longer range correllations are increasingly masked by individual nearest

neighbor interactions arising from the pair of sites located closest to each other. How-

ever, it is found that for Dmin = 0.8Dsite, these effects are quite minimal, with the

observed correllation function only deviating appreciably from the 0.74Dsite/r curve

for r < 1.3Dsite, where the correllation rolls off and reaches a maximum of 0.71 for

r ≈ Dmin.

An important subtlety of spatially disordered lattices, however, is that it is not

possible to describe the correllated DOS function in terms of C(r)/C(0) as Novikov

and Vannikov[109] did for the cubic lattice (see Eqn. 3.33). The problem is that in

the cubic lattice, each site is spatially equivalent to every other, and so every site

in the system can be described by the same correllated DOS function; in a spatially

disordered lattice, each site is no longer spatially equivalent, with sites which have rel-

atively close nearest neighbors having a wider DOS than those with relatively distant

nearest neighbors (since the shorter interaction distances lead to larger interaction en-

ergies). Thus while it is still possible to compute C(r)/C(0) for a spatially disordered

lattice, and extract information about spatial correllations between site energies, con-
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Table 3.4: Summary of polaron DOS calculations under uniform dielectric continuum
approximation for spatially disordered lattices, with minimum intersite spacing Dmin.
The standard deviation (σ) and mean energy (Ē) for each run are shown along with
the corresponding parameters used in performing the calculation. As noted in the
text, in these calculations: ∆µ = 2 D, µg = 2 D, and Dsite = 1 nm.

L Rint [ Dsite ] Dmin [ Dsite ] σ [ meV ] Ē [ eV ]

40 19.9 0.8 6.77 ± 0.03 0
40 19.9 0.5 12.1 ± 0.1 0
40 19.9 0.1 130 ± 5 0

structing an analytic DOS is no longer as straightforward. In principle, such a DOS

must take into account not only the separation distance, but also the site density

function, and an appropriately modified treatment of the conditional DOS function

has not appeared in the literature. It is also worth noting that the normalized correl-

lation function C(r)/C(0) can now be greater than one for distances less than Dsite

because of the fact that sites that are located in regions of high density will have on

average larger interaction energies than sites located in regions of average density,

and the product of such energies, if highly correllated, can be higher on average that

the mean squared energy (i.e. C(0)).

In Table 3.4 are listed the parameters for the exciton DOS calculations performed

on spatially disordered lattices, along with the corresponding values for Dmin, as

well as the standard deviations and mean energies. All of these calculations were

performed for L = 40 and Rint = 19.9Dsite, though based on the analysis of the

cubic lattice it would likely have been sufficient to use L = 20 and Rint = 4.9Dsite to

reproduce the properties of the infinite lattice. (The larger values of L and Rint were

mainly chosen for consistency with the polaron DOS calculations.) In Fig. 3-8 (a) -

(c) are shown the DOS obtained for each run, along with the corresponding Gaussian

having the same standard deviation and mean zero energy. For the Dmin = 0.1Dsite

case a Lorentzian is also shown, with Γ = 0.008± .001 obtained by fitting to the peak

and full width half max of the DOS.

For Dmin = 0.8Dsite, the Gaussian fits the data perfectly to within the statistical

error. For the Dmin = 0.5Dsite case, the Gaussian fit is good over the central portion
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Figure 3-8: Exciton DOS for static charge distributions in spatially random lattices.
In (a) - (c) are shown the DOS (in the form of the energy histogram) calculations
(symbols) for L = 40, Rint = 19.9Dsite with Dmin equal to 0.8Dsite, 0.5Dsite, and
0.1Dsite respectively, along with Gaussian fits (red lines) with the same standard
deviation and mean energy as the raw energies. In (c) is also shown a Lorentzian fit
(blue line) with Γ = 0.008± .001 obtained by fitting to the peak and full width half
max of the DOS. As noted in the text, in these calculations: ∆µ = 2 D, µg = 2 D,
and Dsite = 1 nm.
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of the distribution, but noticeable deviations are observed in the high and low energy

tails, where the calculated DOS spreads wider than the Gaussian distribution. For

Dmin = 0.1Dsite the DOS is not well described by the Gaussian, but is well fit by

the Lorentzian distribution. This progression is similar to the polaron DOS, but the

transition from Gaussian to Lorentzian more pronounced. These results are consistent

with the analysis of Kador[69], who predicted a transition from Gaussian to Lorentzian

distributions with decreasing Dmin. In fact, the value for Γ predicted by the Kador

analysis in the Lorentzian limit is 0.0082, in perfect agreement (within the fitting

error) with the value of Γ obtained for the Lorentzian fit to the Dmin = 0.1Dsite

results. Again, the approximate Kador analysis is shown to be in excellent agreement

with our Monte Carlo results.

Somewhat stronger short–ranged spatial correllations are observed in the exciton

energies in spatially disordered lattices as compared to the cubic lattice. This reflects

the fact that impact of the single shared term becomes stronger whenever a pair of

terms are located very close together, particularly given the r−3 dependence of the

interaction energy for the dipole-dipole interaction. However, in all of these cases,

the correllations go to zero around r = Dsite, indicating as in the cubic lattice, these

interactions still impact at most the nearest neighbor sites. In addition, there is little

change observed for Dmin = 0.8Dsite, suggesting that for this case these correllations

can likely be neglected entirely.

These calculations comprise our investigation of Monte Carlo calculations of the

polaron and exciton DOS for static charge distributions. In general, the results shown

here are entirely consistent with the existing theoretical predicts, where such predic-

tions are available. Particularly notable are the agreement between these results

and the predictions of Young (for polarons) and Kador (for excitons), indicating the

strength of the statistical method for treating static charge distributions. Also notable

is the agreement between the shape of the polaron DOS in these calculations and the

Dieckmann calculations, with a proper reformulation of the low dipole concentration

case studied by Dieckmann into the spatially disordered lattice case studied here.

Finally, the parameters required in Monte Carlo DOS calculations for reproducing
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the properties of the infinite lattice have been extensively studied and the needed

parameters identified.

3.9 Monte Carlo DOS Calculations II: Polarizible

Charge Distributions

In this section DOS calculations are performed in which the charge distributions

are assumed to be dynamic, through their polarizibility, and otherwise in vacuum.

As discussed above, there are no similar DOS calculations presently reported in the

literature. The power of these calculations, as discussed above, is two fold: (1) these

calculations directly model the impact of polarization on the interaction between the

static part of the molecluar charge distributions, instead of resorting a DCM (and

an implicit local field approximation); (2) these calculations include the interaction

energy between each charge distribution and the surrounding polarization.

The challenge in carrying out these calculations, as discussed above, is mainly a

matter of computational resources (i.e. processor time and memory). The principle

task of the calculation is to self-consistently solve for the fields present on each site

in the lattice, which are coupled together through the molecular polarizibility. Given

that it is assumed that α = αel, this specifically consists of self-consistently solving

Eqns. B.10 and B.15 for the total dipoles ~pi(k) in a particular state k of the system,

where α is assumed to be independent of the molecular state. Having completed this

task, the calculation of the state energy is trivially evaluated using Eqn. B.5, and

the change in transition energy obtained by taking the difference between the state

energy with and without the relevent excitation on the active site.

These calculations are performed using precisely the same Monte Carlo lattices as

employed in the previous section. For each calculation, the equilibrium state of the

system with every site in the ground state is first determined. Then to obtain the

polaron or exciton transition energy for each site, the difference between this ground

state energy and the energy of system with the active molecule having either a polaron
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(i.e. a charge equal to q) or an exciton (i.e. a new dipole equal to the ground state

dipole plus ∆µ). For the change in energy of the excitation creation transition one

subtracts the ground state energy from the excited state energy; for the excitation

destruction transition, one subtracts the excited state energy from the ground state

energy. Without loss of generality, we assume in the following that the calculation

involves the excitation creation transition.

Two different methods were developed for calculating the self-consistent fields and

dipoles on each site given a particular state of the system. The first method is refered

to here as the convergent field (CF) method. In this approach, one first solves for the

fields when every site is in the ground state. This is done by initially setting the fields

~Fi at each site equal to zero. One then computes a field ~F ∗
i at each site that is due to

the total dipoles ~pi on each site based on the existing fields ~Fi (which are all at this

point zero). The ~F ∗
i represent the fields at each molecule assuming the total dipole

at each site is frozen at its current value. One then sets ~Fi = δ(~F ∗
i − ~Fi), where δ is a

constant between 0 and 1. The process is then repeated with the new set of fields ~Fi

until the fields are found to converge. This set of fields comprises the “initial fields”

of the system, which are used to initialize an identical calculation in the presense

of a polaron or exciton on one of the sites. For the calculations presented below,

δ = 0.05 and the convergance loop is repeated 20 times, which yields fields that are

converged to better than 0.01% of the asymptotic value (determined from the value

obtained after 1000 iterations, by which point there is no observable change in the

energy to within the computer’s floating point accuracy). As in the DOS calculations

in the previous section, a value for Rint is again specified, with interactions only being

included for pairs of sites separated by distances less than Rint.

The second calculation method is referred to here as the matrix decomposition

(MD) method. In this approach one converts the set of linear equations governing the

fields into a matrix equation, which can then be solved using an L-U decomposition

of a single matrix. The basic form of the matrix equation is obtained by writing out

an explicit equation for the fields:
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~Fn =
N∑

k 6=n

[
Qk

r2
nk

r̂nk + 3
r̂nk · ~µk

r3
nk

r̂nk −
~µk

r3
nk

+3αk
r̂nk · ~Fk

r3
nk

r̂nk − αk

~Fk

r3
nk

]
, (3.42)

where it is implicit that any interaction term for which rnk > Rint is neglected. This

expression can be rewritten in matrix form as:

M3F = M1Q + M2µ (3.43)

where,

Q ≡



Q0

Q0

Q0

...

QN−1

QN−1

QN−1


, µ ≡



µ0,x

µ0,y

µ0,z

...

µN−1,x

µN−1,y

µN−1,z


,F ≡



F0,x

F0,y

F0,z

...

FN−1,x

FN−1,y

FN−1,z


, (3.44)

using the notation that ~Fi = Fi,xx̂+Fi,yŷ+Fi,z ẑ and similarly ~µi = µi,xx̂+µi,yŷ+µi,z ẑ.

The matrices are then trivially constructed from Eqn. 3.42. For M1 we have,

M1 =


M0,0

1 · · · M0,N−1
1

...
. . .

MN−1,0
1 MN−1,N−1

1

 , (3.45)

where,
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M i,j
1 ≡




0 0 0

0 0 0

0 0 0

 if i = j

r̂ij

r2
ij
·


x̂ 0 0

0 ŷ 0

0 0 ẑ

 if i 6= j

. (3.46)

For M2 we have,

M2 =


M0,0

2 · · · M0,N−1
2

...
. . .

MN−1,0
2 MN−1,N−1

2

 , (3.47)

where,

M i,j
2 ≡




0 0 0

0 0 0

0 0 0

 if i = j

r̂ij

r3
ij
·


x̂ (3r̂ij · x̂− 1) x̂ (3r̂ij · ŷ) x̂ (3r̂ij · ẑ)

ŷ (3r̂ij · x̂) ŷ (3r̂ij · ŷ − 1) ŷ (3r̂ij · ẑ)

ẑ (3r̂ij · x̂) ẑ (3r̂ij · ŷ) ẑ (3r̂ij · ẑ − 1)

 if i 6= j

.

(3.48)

And finally, for M3 we have,

M3 = I− αM2 (3.49)

where I is here the 3N by 3N identity matrix. (Again, it should be understood that

any terms involving rij > Rint are actually set to zero, and condition that is not

included explicitly in the above expressions for simplicity.)

Once these matrices are built, an in-place L-U decomposition of M3 is performed,

which can then be used to solve for F given a particular solution vector, M1Q+M2µ,
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by sequential forward and backward substitution. To carry out the in-place L-U

decomposition the ludcmp() routine from Numerical Recipes in C [127] is used. To

obtain F by sequential forward and backward substitution the lubksb() routine from

the same text is used. Note that the L-U decomposition operation scales as N3, while

the forward and backward substitution operation scales as N2. Since one performs the

L-U decomposition once, and then performs N forward and backward substitutions

to obtain the fields for the excitation of interest is on the N different sites in the

system, the total calculation time scales as N3.

Once the fields have been found, either by the CF or MD methods, the total dipoles

~pi are directly obtained (from vecµi+α~Fi) and the total energy of the system evaluated

using Eqn. B.5 (an operation that scales as N2). The only differences between the

CF and MD methods is the computation time and memory usage, as both methods

produce identical results. Specifically, the CF method’s memeory requirements are

much smaller, and scale as N while the MD method’s memory requirements scale

as N2. However, when calculating the excitation transition energy for every site in

a particular system, the MD method is more time efficient (by a factor of roughly

4), and therefore is preferrable to the CF method in most instances. Unfortunately,

the MD memory requirements limit the method to lattices for which L ≤ 14 (i.e.

N ≤ 2, 477). For the L = 14 case, approximately 1.5 GB of RAM are required, and

the total computation time for a single lattice is approximately 3 hours.

By comparison, the CF method allows the use of much larger lattices, and in

principle a calculation is possible with the L = 40, Rint = 19.9Dsite parameters

determined in the last section to be necessary to reproduce the properties of the

infinite lattice for the polaron DOS calculation. However, the CF calculation time for

a given state of the system scales as N2, and the total time to calculate the transition

energies for the entire lattice therefore grows as N3 (just like the MD method). The

CF method takes roughly 14 hours to perform the energy calculation over every

point in an L = 14 lattice; for a L = 20 lattice, the calculation time balloons to

more than 350 hours (more than 2 weeks!). Clearly, a calculation with L = 40 is

out of the question. However, the CF method does have the attractive feature that
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the computation time is spent evenly on each point in the lattice, in contrast to

the MD method in which roughly half of the computation time is spent on the L-U

decomposition which must be completed before the fields for even a single state of the

system can be obtained. As a result, if one chooses a fixed number of lattice sites for

which the transition energy is to be calculated (as opposed to always calculating the

energy for every site in the lattice) then the growth of the computation time of the

CF method is reduced to N2, and it becomes possible to at least probe the energy

distribution of a subset of the points in larger lattices. For example, if the energy

of only a single site is needed, then even an L = 50 lattice can be analyzed; such a

calculation would require roughly 10 hours of computation time.

In Table 3.5 are summarized the parameters for the polaron DOS calculations

performed on a cubic lattice, with µg = 0 and ε = 3.0, along with the mean energy

of each “distribution.” (In this system, each site is formally identical to every other,

and so each site has the same energy and σ = 0.) This constitutes a calculation of the

polarization energy associated with a unit charge, and based on this energy one can

probe the impact of L and Rint on the calculation of charge polarization effects. While

it is self-evident that, as in the static charge dsitribution calculations, it is important

to evaluate any lattice size effects to determine the errors arising from the use of finite

L and Rint, in these calculations there is an additional concern missing from the static

systems. Here each site can interact with (and induce dipoles on) all the sites within

a distance Rint, and as a result one can actually induce a dipole an infinite distance

away even for finite Rint, by a cascade of induced dipoles causing yet more induced

dipoles on sites even father away. As a result, even by setting Rint < LDsite, an error

will be incurred solely as a result of the use of periodic boundary conditions, as the

polarization induced dipoles formed to either side of a particular charge or dipole run

into each other at the effective boundary of the lattice.

From the values listed in Table 3.5 two major trends are clear. The first trend

is that the charge polarization energy is weakly affected by the relative values of L

and Rint, with the Rint = 4.9Dsite case providing a good example. For L = 10, the
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Table 3.5: Summary of polaron DOS calculations for polarizible charge distrubutions
in a cubic lattice, with µg = 0 and α obtained from ε using the Claussius-Mossotti
equation. Since µg = 0, each site is formally identical to every other, and so each
site has precisely the same energy (i.e. σ = 0). The mean energy is just the charge
polarization energy. Each of these calculations was performed using the CF method.
As noted in the text, in these calculations: ∆Q = +e, Dsite = 1 nm, and ε = 3
(α = 9.55× 10−23 cm3). The uncertainty reported here is the purely the result of
rounding, as there is no statistical uncertainty given that every lattice point yields
precisely the same value.

L Rint [ Dsite ] ε Ē [ eV ]

10 4.9 3 -0.6057 ± 0.0001
14 4.9 3 -0.6100 ± 0.0001
20 4.9 3 -0.6103 ± 0.0001
30 4.9 3 -0.6103 ± 0.0001

14 6.9 3 -0.6297 ± 0.0001
20 6.9 3 -0.6332 ± 0.0001
30 6.9 3 -0.6333 ± 0.0001
40 6.9 3 -0.6333 ± 0.0001

20 9.9 3 -0.6478 ± 0.0001
30 9.9 3 -0.6504 ± 0.0001
40 9.9 3 -0.6505 ± 0.0001

30 14.9 3 -0.6617 ± 0.0001
40 14.9 3 -0.6633 ± 0.0001
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Figure 3-9: Convergence of polaron polarization energy as a function of Rint. The
calculated polarization energies (symbols) are the converged values, as explained in
the text. The linear fit (grey line) is given by: −0.6896 + 0.39 ∗ (Dsite/Rint) eV. As
noted in the text, in these calculations: ∆Q = +e, µg 0 D, Dsite = 1 nm, and ε = 3
(α = 9.55× 10−23 cm3).
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total energy is −0.6057 eV, and increasing L up to 30 yields a value of −0.6103 eV.

It is further found that the L = 10 value is nearly the same as the L = 20 value,

and the L = 20 and L = 30 values are equal to within the stated 0.0001 eV precision

of the calculation, from which one can conclude with reasonable confidence that the

L = 20 value is converged to the infinite L value. In these calculations it is evident

that the practice of utilizing Rint just slightly less than LDsite/2 leads to a slight

error in the polarization energy; in the case of Rint = 6.9Dsite, this error is 0.0036 eV

(as compared to the converged value, obtained here for L = 30), or roughly 0.5 %

of the total polarization energy. Similar magnitude errors are observed for other

Rint values, with the size of the error decreasing slightly for larger Rint. In general,

these results suggest that to avoid these errors entirely one should one should employ

L ≥ 4Rint/Dsite, though even for L ≈ 2Rint/Dsite the errors are quite small.

The second trend is that the charge polarization energy decreases with increasing

Rint. If one plots (see Fig. 3-9) the converged polarization energies for Rint equal to

4.9Dsite, 6.9Dsite, and 9.9Dsite, as well as the L = 40 and Rint = 14.9Dsite (which

should be within 0.0001 of the converged value based on the trends observed for

smaller Rint), against 1/Rint, the data form straight line, with a limiting energy for

L,Rint → ∞ of −0.6896 ± 0.0005 eV (obtained from the extension of the straight

line fit to 1/Rsite = 0). Clearly, it is impractical to use lattices large enough that the

full polarization energy is obtained with negligible error, since even the Rint = 14.9

calculation (for L = 40) is still 0.027 eV higher than the L,Rint →∞ value. Rather

these results demosntrate that it is necessary to perform calculations with as large L

and Rint as possible, and keep these errors in mind.

In Table 3.6 are summarized the parameters for the exciton DOS calculations

performed on a cubic lattice, with µg = 0 and ε = 3.0, along with the mean energy of

each “distribution.” (As in the corresponding polaron calculation, each site is formally

identical to every other, and so each site has the same energy and σ = 0.) This

constitutes a calculation of the dipole polarization energy, and based on this energy

one can probe the impact of L and Rint on our calculations of dipole polarization

effects. This calculation provides a companion to the calculation of the polaron
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Table 3.6: Summary of exciton DOS calculations for cubic lattice of polarizible sites
with µg = 0 and α obtained from ε using the Claussius-Mossotti equation. Since
µg = 0, each site is formally identical to every other, and so each site has precisely
the same energy (i.e. σ = 0). The mean energy is just the dipole polarization energy.
Each of these calculations was performed using the CF method. As noted in the text,
in these calculations: ∆Q = +e, Dsite = 1 nm, and ε = 3 (α = 9.55× 10−23 cm3).
The uncertainty reported here is the purely the result of rounding, as there is no
statistical uncertainty given that every lattice point yields precisely the same value.

L Rint [ Dsite ] ε Ē [ meV ]

10 4.9 3 -2.083 ± 0.001
14 4.9 3 -2.083 ± 0.001
20 4.9 3 -2.083 ± 0.001
30 4.9 3 -2.083 ± 0.001

14 6.9 3 -2.087 ± 0.001
20 6.9 3 -2.087 ± 0.001
30 6.9 3 -2.087 ± 0.001

20 9.9 3 -2.089 ± 0.001
30 9.9 3 -2.089 ± 0.001

30 14.9 3 -2.089 ± 0.001

polarization energy, as together these two calculations describe the polarization of

the only two elements of the charge distributions present in the system: charges and

dipoles. For these calculations ∆µ = 2 D and µ̂ = (1, 1, 1)/
√

3.

From the values listed in Table 3.6 it is clear for all of our calculations there is little

dependence of the polarization energy on L and Rint, with all of the values falling

within 0.006 meV of each other (which represents just 0.3% of the total polarization

energy). Furthermore, there is no discernable error incurred by using Rint just under

LDsite/2. To the extent that there is a slight trend in the polarization energy with

increasingt Rint, it is found the value is converged by Rint = 9.9Dsite at a value of

−2.089 ± 0.001 eV . From this we conclude that the L,Rint → ∞ limit is already

well approximated by even the L = 14 and Rint = 6.9Dsite case, which yields a total

polarization energy within 0.002 meV of the limiting value.

In Table 3.7 are summarized the parameters for the polaron DOS calculations

performed on a cubic lattice where µg = 2D, along with the associated standard

deviations and the mean energies. As indicated in the Table, all of the calculations
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Table 3.7: Summary of polaron DOS calculations for polarizible charge distributions
in a cubic lattice with µg = 2D and α obtained from ε using the Claussius-Mossotti
equation. Note that ε = 2 yields α = 5.97× 10−23 cm3 and ε = 3 yields α =
9.55× 10−23 cm3. For ε = 1, the calculation is performed assuming static charge
distributions (as described in the previous section); for ε > 1, the MD method is
used. As noted in the text, in these calculations: ∆Q = +e and Dsite = 1 nm. The
data are averaged over five different lattices; the uncertainty is equal to twice the
standard deviation across the five calculations.

L Rint [ Dsite ] ε σ [ eV ] Ē [ eV ]

14 6.9 1 0.129 ± 0.005 0
14 6.9 2 0.098 ± 0.008 -0.4542 ± 0.0001
14 6.9 3 0.085 ± 0.010 -0.6297 ± 0.0001

were performed for L = 14 and Rint = 6.9Dsite using the MD method, because of

the previously discussed computational limitations. This introduces two difficulties.

First, as demonstrated in the previous section, the total energy disorder for static

charge distributions does not converge adequately until Rint ≥ 19.9Dsite, and for

L = 14 and Rint = 6.9Dsite one would expect an underestimation of the total disor-

der of roughly 7%. This is a reflection of the long range nature of the charge-dipole

interaction. Second, as demonstrated above, the charge polarization energy is under-

estimated for these lattice parameters by roughly 13%. While these difficulties can

not be entirely resolved, the fact that the dipole polarization energy is entirely con-

verged for these lattice parameters indicates that the impact of polarization on the

dipole fields is adequately treated, and since the polaron energy disorder is due to the

charge-dipole interactions, one can reasonably expect those interactions to be prop-

erly calculated. Therefore, by comparing calculations for static charge distributions

with calculations for polarizible charge distributions, for the same lattice parameters,

one can obtain the relative impact of introducing non-zero α on the energy disorder,

without resorting to computationally impractical L and Rint. Furthermore, at the

worst these calculations underestimate the disorder by 13%, and thus even without

any corrections, the results still are quite good.

In Fig. 3-10 (a), (b), and (c) are shown the DOS (in the form of the energy

histogram) for ε equal to 1.0, 2.0, and 3.0 respectively. (The corresponding values of
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Figure 3-10: Polaron DOS for polarizible charge distributions in a cubic lattice. In (a)
- (c) are shown the DOS (in the form of the energy histogram) calculations (symbols)
for ε equal to 1, 2, and 3 respectively, with α obtained using the Claussius-Mossotti
equation. Also shown are Gaussian functions (red lines) with the same standard
deviation and mean energy as the raw energies. As noted in the text, in these calcu-
lations: ∆Q = +e, µg = 2 D, and Dsite = 1 nm. Note for reference that ε = 2 yields
α = 5.97× 10−23 cm3 and ε = 3 yields α = 9.55× 10−23 cm3. The data are averaged
over five different lattices; the uncertainty is equal to twice the standard deviation
across the five calculations.
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α are 0, 5.97x10−23 cm3, and 9.55x10−23 cm3 respectively.) Also shown in each plot is

a gaussian function having the same standard deviation and mean energy. The data

illustrate that the polaron DOS retains its Gaussian shape (to within the statistical

errors) for ε > 1. The σ values in Table 3.7 show that increasing ε decreases the

energy disorder, with scaling factors relative to the ε = 1 case of 0.76 ± 0.09 and

0.66 ± 0.10 for ε equal to 2 and 3, respectively. These values contrast markedly

with the scaling factors predicted by the U-DCM (for which the factors are 0.50 and

0.33, respectively), but are in agreement (within the statistical uncertainty) with the

extended SC-UCM presented in Appendix B (for which the factors are 0.74 and 0.72,

respectively). Based on these calculations, then, the extended SC-DCM is evidently

more accurate than the U-DCM at predicting the dependence of the polaron disorder

on ε. It is also found that as expected, increasing ε shifts the mean energy of the

distribution to lower and lower energies, and indeed, the mean energy of the ε = 3

distribution is precisely the value obtained above for the polarization energy when

µg = 2 D, indicating the presence of the static dipoles does not impact this value.

The normalized spatial correllation functions for each calculation are plotted in

Fig. 3-7. In calculating the spatial correllation function for the polarizibile charge

distributions, the mean energy of the distribution was first subtracted from each

energy. This allows C(r) to have the same physical interpretation as for the static

charge distributions, namely the correllations in the deviations of the energies from the

mean. (Without taking this step, C(r) provides little information for a distribution in

which the mean deviates from zero by an amount of comparable or larger magnitude

than σ. In the case here, where |Ē| >> σ, every pair of energies in the system has

nearly the same value of C(r)/C(0), since the deviations consistute a small fraction of

the total energy.) One of the difficulties in studying C(r)/C(0) in these calculations

is the need to use relatively small Rint, because, as demosntrated in the previous

section, this leads to noticeable deviations from the theoretical behavior. However,

these deviations are found to be systematic: as Rint is reduced, the correllations are

uniformly shifted down, while otherwise retaining the 1/r proportionality (see Fig.

3-5 (d)). One can then expect to assess the impact of polarizible charge distributions
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Figure 3-11: Normalized spatial correllation function of polaron energies for polar-
izible charge distributions in a cubic lattice. In (a) is shown the normalized spatial
correllation function for ε equal to 1, 2, and 3 without error bars, while in (b) is
shown the same data with error bars. The plots are separated to make clear both
the extent of the uncertainty as well as the raw values. Note for reference that ε = 2
yields α = 5.97× 10−23 cm3 and ε = 3 yields α = 9.55× 10−23 cm3. As noted in the
text, in these calculations: ∆Q = +e, µg = 2 D, and Dsite = 1 nm. The data are
averaged over five different lattices; the uncertainty is equal to twice the standard
deviation across the five calculations.

on the spatial correllations by simply comparing the ε = 2 and ε = 3 data to the

ε = 1 data. As demonstrated in the plots, increasing ε has no effect on the strength

of the correllations to within the statistical errors.

In Table 3.8 are summarized the parameters for the exciton DOS calculations

performed on a cubic lattice where µg = 2 D along with the associated standard

deviations and the mean energies. As indicated in the Table, all of the calculations

were again performed with L = 14 and Rint = 6.9Dsite using the MD method. Unlike

for the polaron calculations, this is not expected to produce any significant lattice

size errors because: (1) the calculations on static charge distributions show that

for Rint > 4.9Dsite, the total energy disorder is independent of Rint; and (2) the

calculations on the dipole polarization energy show that for Rint ≥ 6.9Dsite the total

polarization energy is within 0.2% of the fully converged value.

In Fig. 3-12 are shown the DOS for ε equal to 1.0, 2.0, and 3.0. The data illustrate
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Figure 3-12: Exciton DOS for polarizible charge distributions in a cubic lattice. In (a)
- (c) are shown the DOS (in the form of the energy histogram) calculations (symbols)
for ε equal to 1, 2, and 3 respectively, with α obtained using the Claussius-Mossotti
equation. Also shown are Gaussian functions (red lines) with the same standard
deviation and mean energy as the raw energies. As noted in the text, in these calcu-
lations: ∆µ = 2 D, µg = 2 D, and Dsite = 1 nm. Note for reference that ε = 2 yields
α = 5.97× 10−23 cm3 and ε = 3 yields α = 9.55× 10−23 cm3. The data are averaged
over five different lattices; the uncertainty is equal to twice the standard deviation
across the five calculations.

140



Table 3.8: Summary of exciton DOS calculations for polarizible charge distributions
in a cubic lattice with µg = 2 D and α obtained from ε using the Claussius-Mossotti
equation. Note for reference that ε = 2 yields α = 5.97× 10−23 cm3 and ε = 3 yields
α = 9.55× 10−23 cm3. For ε = 1, the calculation is performed assuming static charge
distributions (as described in the previous section); for ε > 1, the MD method is used.
As noted in the text, in these calculations: ∆µ = 2 D and Dsite = 1 nm. The data
are averaged over five different lattices; the uncertainty is equal to twice the standard
deviation across the five calculations.

L Rint [ Dsite ] ε σ [ meV ] Ē [ meV ]

14 6.9 1 5.86 ± 0.13 0
14 6.9 2 5.75 ± 0.13 -2.66 ± 0.06
14 6.9 3 6.54 ± 0.23 -4.63 ± 0.16

that the exciton DOS, like the polaron DOS, retains its Gaussian shape (to within the

statistical errors) for ε > 1. The σ values in Table 3.6 show that increasing ε has little

effect on the energy disorder, with the ε = 2 identical to the ε = 1 value within the

statistical errors, and the ε = 3 value showing a slight increase. The corresponding

scaling factors relative to the static charge distribution calculation are 0.98 ± 0.05

and 1.12 ± 0.06 for ε equal to 2 and 3 respectively. These results deviate markedly

from the predictions of both the U-DCM (for which the factors are 0.50 and 0.33,

respectively) and the extended SC-DCM (for which the factors are 1.98 and 3.60,

respectively), and indicate that while the U-DCM is inaccurate for predicting the

impact of ε on both the polaron and exciton energy disorder, even the SC-DCM is

not fully consistent, yielding good agreement only with the polaron energy disorder.

It is also found that increasing ε shifts to mean energy of the distribution to lower

and lower energies, which is as expected because for the chosen ∆µ̂ = (1, 1, 1)/
√

3,

the final dipole moment is larger than the initial dipole moment, and therefore the

change in the total polarization energy is negative. Specifically, the dipole in the final

state has magnitude 3.55D, compared to 2D for the initial state. If a value for ∆µ̂

was chosen for which the final dipole was smaller than the initial dipole, the mean

polarization energy would have been positive. As a result of this dependence on ∆µ̂,

the mean polarization energy for this and the following calculations in this section is

not a generally applicable value (since it changes with ∆µ̂), but it does provides a
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sense of the typical magnitudes of the mean energy shifts. The value of σ, however,

is independent of ∆µ̂, as is the shape of the DOS. Finally, no significant changes in

the spatial correllations of the exciton energies are observed in comparing the ε > 1

calculations to the ε = 1 calculations.

In the above calculations, a cubic lattice was used, first to probe lattice size effects

in a system in which it was only necessary to evaluate a single data point, and second

to probe the impact of non-zero molecular polarizibilities on the energy disorder aris-

ing from charge-dipole and dipole-dipole interactions, without the additional energy

disorder arising from polarization disorder. In the following calculations a spatially

disordered lattice is used, which allows for the calculation of energy disorder arising

not only from dipole interactions, but also from variations in the local polarizibility of

the environment. In the first set of calculations, µg = 0, to provide a DOS calculation

in which the energy vairations are due purely to polarization disorder. In the second

set of calculations, µg = 2D, to provide a calculation including the combined effects

of random dipole orientations and polarization disorder.

In these calculations a comment is required regarding the significance of Dmin.

In the previous section, calculations were performed for very small Dmin relative to

Dsite, a situation that arises in, for instance, a system of polar molecules doped into

a non-polar medium. The low concentration of dipoles leads to a larger Dsite, while

Dmin remains constant, such that relative to Dsite the value of Dmin can become

arbitarily small. Once polarization effects are included, however, the same simple

scaling rule is no longer applicable because a host medium always has ε > 1, so

the limit of a non-polarizible background is non-physical (at least in the solid state),

whereas a non-polar background presents no fundamental problem. As a result, it is

not meaningful to report calculations over a range of arbitarily small Dmin to Dsite

ratios. For this reason, in the following, the calculations are targeted towards the

analysis of single-component solids, and so for the spatially disordered lattice only

the Dmin = 0.8Dsite case is analyzed, since for a single-component solid, significantly

smaller Dmin relative to Dsite is largely unphysical.

In Table 3.9 are summarized the parameters for the polaron DOS calculations
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performed on a spatially disordered lattice with µg = 0, along with the associated

standard deviations and the mean energies. In Fig. 3-13 (a) and (b) are shown

the DOS functions obtained for L = 14, Rint = 6.9Dsite, for ε equal to 2 and 3,

respectively, along with a Gaussian with the same standard deviation and mean

energy. The Gaussian function, once again, provides a perfect fit to data within

the statistical uncertainty. This agreement was shared for the ε = 3 calculations

performed for Rint equal to 2.9Dsite and 4.9Dsite.

The data for ε = 3 in Table 3.9 show that σ is independent of Rint down to Rint

at least as small as 2.9Dsite, indicating that the polaron energy disorder arising from

the variations in the local polarizibility is an extremely short ranged effect. This

is confirmed by the normalized spatial correllation function, plotted in Fig. 3-13

(c) for the L = 14 and Rint = 6.9Dsite calculations at ε equal to 2 and 3. Both

calculations yield the same spatial correllations (within the statistical errors), which

are only non-zero for r less than roughly 2Dsite. However, it is notable that short

distance correllations are substantial: for sites separated by distances near to Dmin

the normalized correllation value is 0.76 ± 0.10. This is a manifestation of the fact

that two sites that are very close to each other contribute an equal, strong polarization

energy to a polaron located on either site, and this large shared term leads to a short-

range correllation in the energies.

The data in Table 3.9 also show that σ is substantial for the degree of spatial

disorder allowed by Dmin = 0.8Dsite, with σ within a factor of two of σ obtained

above for polaron disorder arising from solely dipole disorder (both for static and

polarizible charge distributions) with µg = 2D. This indicates that in general one

must consider both kinds of disorder when attempting to determine the total polaron

DOS for a given system. As expected, increasing ε increases σ. It is also found that in

the disordered lattice the mean polarization energy is decreased relative to the cubic

lattice, from −0.6297 eV to −0.722 eV. This occurs because the 1/r4 dependence of

the dominant charge-induced dipole interaction is skewed so that for equal positive

and negative changes in r, the negative r increases the interaction more than the
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Figure 3-13: Polaron DOS and normalized spatial correllation function for polarizible
charge distributions in a spatially disordered lattice with µg = 0 D and Dmin =
0.8Dsite. In (a) - (b) are shown the DOS (in the form of the energy histogram)
calculations (symbols) for ε equal to 2 and 3 respectively, with α obtained using the
Claussius-Mossotti equation. Also shown are Gaussian functions (red lines) with the
same standard deviation and mean energy as the raw energies. In (c) is shown the
normalized spatial correllation function for each calculation. As noted in the text, in
these calculations: ∆Q = +e and Dsite = 1 nm. Note for reference that ε = 2 yields
α = 5.97× 10−23 cm3 and ε = 3 yields α = 9.55× 10−23 cm3. The data are averaged
over five different lattices; the uncertainty is equal to twice the standard deviation
across the five calculations.
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Table 3.9: Summary of polaron DOS calculations for polarizible charge distributions
in spatially disordered lattices with µg = 0 D, Dmin = 0.8Dsite, and α obtained
from ε using the Claussius-Mossotti equation. Note for reference that ε = 2 yields
α = 5.97× 10−23 cm3 and ε = 3 yields α = 9.55× 10−23 cm3. For ε = 1, the
calculation is performed assuming static charge distributions (as described in the
previous section); for ε > 1, the MD method is used. As noted in the text, in
these calculations: ∆Q = +e and Dsite = 1 nm. The data are averaged over five
different lattices; the uncertainty is equal to twice the standard deviation across the
five calculations.

L Rint [ Dsite ] ε σ [ eV ] Ē [ eV ]

14 6.9 2 0.051 ± 0.003 -0.506 ± 0.002

14 2.9 3 0.075 ± 0.004 -0.649 ± 0.004
14 4.9 3 0.074 ± 0.004 -0.702 ± 0.004
14 6.9 3 0.074 ± 0.004 -0.722 ± 0.004

positive r decreases it. On this basis one would expect the mean polarization energy

to decrease further for even smaller Dmin.

It is somewhat awkward to make a direct comparison of these values to the crude

analysis of the polaron polarization energy disorder derived in Appendix B (i.e. Eqns.

B.113 and B.114)), because one must assign a value to the standard deviation, σr, of

the variation in position about a regular lattice, which is not well definined for random

lattices (since there is no regular lattice to use as a reference). However, σr should

scale roughly as Dsite −Dmin, and it is reasonable to choose σr = (Dsite −Dmin)/2.

For Dmin = 0.8Dsite, this gives σr ≈ 0.1Dsite, yielding σ = 0.196 eV (from Eqn.

B.114), which is a significant overestimation, but is at least of the proper order of

magnitude. If one instead uses the expression relating the disorder to the mean

polarization energy of the reference lattice (i.e. Eqn. B.113), and plugs in the limiting

value of the mean polarization energy previously obtained for the cubic lattice (i.e.

0.6896 eV), one obtains σ = 0.097 eV, which is a much closer estimate but still not

quantitatively accurate (and in any case requires that one have already performed

an accurate calculation the polarization energy for the reference lattice.) Overall, it

is found that while the simple polarization theory is adequate for getting order of

magnitude estimates of the disorder, it does not yield quantiative results (in addition

to the implicit uncertainty in the relationship between Dmin and σr). It is notable,
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however, that the simple theory predicts that the disorder is Gaussian, consistent

with our calculations.

In Table 3.10 are summarized the parameters for the exciton DOS calculations

performed on a spatially disordered lattice with µg = 0, along with the associated

standard deviations and the mean energies. In Fig. 3-14 (a) and (b) are shown

the DOS functions obtained for L = 14 and Rint = 6.9Dsite, with ε equal to 2 and

3 respectively. In these plots are also shown a Gaussian with the same standard

deviation and mean energy, along with exponential distributions to fit the low energy

side of the DOS. In the ε = 2 DOS, considerable deviations from the gaussian form are

apparent, with the distribution skewed towards lower energies, with the low energy

tail showing an approximately exponential decay. The same features are observed

in the ε = 3 DOS, except the skewing of the distribution is even more pronounced.

Finally, in Fig. 3-15 is shown the normalized correllation function obtained for the

L = 14 and Rint = 6.9Dsite calculations with ε equal to 2 and 3. It is found that

as in the corresponding polaron DOS calculations, both values of ε yield identical

short-ranged spatial correllations of substantial magnitude. Here the correllations

show approximately the same progression with distance as in the polaron case, but

with a slightly smaller magnitude (a peak value of 0.54 ± 0.08 compared to 0.76 ±

0.10 for the minimum distance interactions). We also note that unlike the short-

range correllations that arise from polaron interactions with static dipoles, these

correllations have no dependence on the direction of ∆~µ.

One can compare these results with the crude analysis of the exciton polarization

energy disorder derived in Appendix B (Eqns. B.126 and B.127)), as was done with

the polaron case. Using the same estimate for σr, one obtains from Eqn. B.127

that σ = 1.3 meV, which is actually remarkably good agreement with the calculated

values (though the semi-arbitary choice of σr makes this agreement at least partially

coincidental). Using instead eqn. B.126 and the converged polarization energy of the

cubic lattice (i.e. -2.089 meV) gives σ = 0.74 meV. Overall, this crude treatment, as

with the polaron case, is adequate for order of magnitude estimates of the disorder,

but not suited to accurate quantiative analysis. Furthermore, while the simple theory
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Table 3.10: Summary of exciton DOS calculations for polarizible charge distributions
in spatially disordered lattices with µg = 0 D, Dmin = 0.8Dsite, and α obtained
from ε using the Claussius-Mossotti equation. Note for reference that ε = 2 yields
α = 5.97× 10−23 cm3 and ε = 3 yields α = 9.55× 10−23 cm3. For ε = 1, the
calculation is performed assuming static charge distributions (as described in the
previous section); for ε > 1, the MD method is used. As noted in the text, in
these calculations: ∆µ = 2 D and Dsite = 1 nm. The data are averaged over five
different lattices; the uncertainty is equal to twice the standard deviation across the
five calculations.

L Rint [ Dsite ] ε σ [ meV ] Ē [ meV ]

14 6.9 2 0.50 ± 0.02 -1.64 ± 0.02

14 2.9 3 1.16 ± 0.03 -3.04 ± 0.06
14 4.9 3 1.18 ± 0.03 -3.07 ± 0.06
14 6.9 3 1.18 ± 0.03 -3.08 ± 0.06

predicts Gaussian disorder, and derives the associated standard deviation of the dis-

order on that assumption, the DOS obtained using the exact Monte Carlo calculation

indicates significant deviations from the Gaussian form.

In Table 3.11 are summarized the parameters for polaron the DOS calculations on

a spatially disordered lattice with µg = 2 D, along with the associated standard devi-

ations and the mean energies. In Fig. 3-16 (a) - (c) are shown the DOS (in the form

of the energy histogram) for ε equal to 1, 2, and 3 respectively, along with gaussian

functions with the same standard deviation and mean energy as the raw energies.

Within the statistical errors, the Gaussian function provides an excellent fit, which

is as expected given that both the random dipole orientations and the polarization

disorder were both found above to individually yield Gaussian DOS functions. In

Fig. 3-17 is shown the normalized spatial correllation function for each calculation

(in (a) the same data as in (b) is replotted, but without the error bars to make the

individual data points more clear.) It is found that there is a small, but statistically

significant reduction in the long range spatial correllations as ε increases; while the

minimal distance correllation is the same for each calculation, for larger ε, there is a

rapid drop in this correllation before the 1/r dependence becomes evident, and thus

for increasing ε the slope of this dependence is decreased. However, the change is
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Figure 3-14: Polaron DOS and normalized spatial correllation function for polarizible
charge distributions in a spatially disordered lattice with µg = 0 D and Dmin =
0.8Dsite. In (a) and (b) are shown the DOS (in the form of the energy histogram)
calculation (symbols) for ε equal to 2, along with a Gaussian function (red lines) with
the same standard deviation and mean energy as the raw energies, and an Exponential
fit (blue lines) to the low energy tail. In (c) and (d) are shown the corrsponding plots
for the ε = 3 DOS calculation. As noted in the text, in these calculations: ∆µ = 2
D and Dsite = 1 nm. Note for reference that ε = 2 yields α = 5.97× 10−23 cm3 and
ε = 3 yields α = 9.55× 10−23 cm3. The data are averaged over five different lattices;
the uncertainty is equal to twice the standard deviation across the five calculations.
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Figure 3-15: Normalized spatial correllation function of exciton energies for polarizible
charge distributions in a spatially disordered lattice with µg = 0 D and Dmin =
0.8Dsite. As noted in the text, in these calculations: ∆µ = 2 D and Dsite = 1 nm.
Note for reference that ε = 2 yields α = 5.97× 10−23 cm3 and ε = 3 yields α =
9.55× 10−23 cm3. The data are averaged over five different lattices; the uncertainty
is equal to twice the standard deviation across the five calculations.
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Table 3.11: Summary of polaron DOS calculations for polarizible charge distributions
in spatially disordered lattices with µg = 2 D, Dmin = 0.8Dsite, and α obtained
from ε using the Claussius-Mossotti equation. Note for reference that ε = 2 yields
α = 5.97× 10−23 cm3 and ε = 3 yields α = 9.55× 10−23 cm3. For ε = 1, the
calculation is performed assuming static charge distributions (as described in the
previous section); for ε > 1, the MD method is used. As noted in the text, in
these calculations: ∆Q = +e and Dsite = 1 nm. The data are averaged over five
different lattices; the uncertainty is equal to twice the standard deviation across the
five calculations.

L Rint [ Dsite ] ε σ [ eV ] Ē [ eV ]

14 6.9 1 0.136 ± 0.005 0

14 6.9 2 0.116 ± 0.005 -0.893 ± 0.002

14 6.9 3 0.123 ± 0.006 -1.276 ± 0.004

relatively small: compared to the 0.74Dsite/r dependence observed in the ε = 1 case,

a slope of 0.50Dsite/r is observed in the ε = 3 case. This modification of the spatial

correllations can be explained as simply the linear combination of the short range

correllations arising from the polarization disorder and the long range correllations

arising from the charge-dipole interactions.

The data in Table 3.11 show that σ changes only slightly with increasing ε, first

decreasing slightly and then increasing. This indicates the balance between the dipole

disorder component of the total energy disorder (arising from the random dipole ori-

entations), which decreases with increasing ε, and the component due to polarization

disorder, which increases with increasing ε. To evaluate the relative strength of the

two components, and their interaction, it is necessary to make a few assumptions. The

simplest such assumption is that the energy disorder due to dipole disorder scales with

ε the same in this spatially disordered lattice as in the cubic lattice, namely that for

ε = 2, the σ associated with just dipole disorder, here denoted by σd, is scaled by

0.76±0.09 relative to the ε = 1 value, while for ε = 3, the scaling factor is 0.66±0.10.

In this case, based on the fact that the ε = 1 calculation provides the needed reference

value for σd, one finds that that σd for ε = 2 is given by 0.103±0.01 eV, and for ε = 3

is given by 0.090±0.01 eV. At the same time, the σ associated with pure polarization

disorder, here denoted by σp, in a random lattice with Dmin = 0.8Dsite is obtained
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Figure 3-16: Polaron DOS for polarizible charge distributions in spatially disordered
lattices with µg = 2 D and Dmin = 0.8Dsite. In (a) - (c) are shown the DOS (in
the form of the energy histogram) calculations (symbols) for ε equal to 1, 2 and 3
respectively, with α obtained using the Claussius-Mossotti equation. Also shown are
Gaussian functions (red lines) with the same standard deviation and mean energy as
the raw energies. Note for reference that ε = 2 yields α = 5.97× 10−23 cm3 and ε = 3
yields α = 9.55× 10−23 cm3. As noted in the text, in these calculations: ∆Q = +e
and Dsite = 1 nm. The data are averaged over five different lattices; the uncertainty
is equal to twice the standard deviation across the five calculations.
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Figure 3-17: Normalized spatial correllation function of polaron energies for po-
larizible charge distributions a spatially disordered lattices with µg = 2 D and
Dmin = 0.8Dsite. In (a) is shown the normalized spatial correllation function for
ε equal to 1, 2, and 3 without error bars, while in (b) is shown the same data with
error bars. The plots are separated to make it clear both the extent of the uncertainty
as well as the raw values. Note for reference that ε = 2 yields α = 5.97× 10−23 cm3

and ε = 3 yields α = 9.55 × 10−23 cm3. As noted in the text, in these calculations:
∆Q = +e, µg = 2 D, and Dsite = 1 nm. The data are averaged over five differ-
ent lattices; the uncertainty is equal to twice the standard deviation across the five
calculations.
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from the calculations performed above with µg = 0. Specifically, from Table 3.9, for

ε = 2, σp = 0.051± 0.003 eV, and for ε = 3, σp = 0.075± 0.003 eV.

To obtain the total disorder, if one assumes (as is conventional) that the two

energy contributions are uncorrellated, then the total σ is given by
√
σ2

d + σ2
p. For

ε = 2, this yields 0.115 ± 0.01 eV, while for ε = 3, this yields 0.117 ± 0.01 eV.

For both values, perfect agreement with the value reported in Table 3.11 within

the statistical uncertainties is obtained, suggesting that both assumptions, namely

that the polarization and dipole contributions to the polaron energy disorder are

uncorrellated, and that the scaling of the dipole disorder with ε is the same in the

spatially disordered lattice as in the cubic lattice, are likely reasonable.

In Table 3.12 are summarized the parameters for the exciton DOS calculations

performed on spatially disordered lattices with µg = 2 D, along with the associated

standard deviations and the mean energies. In Fig. 3-18 (a) - (c) are shown the

DOS for ε equal to 1, 2, and 3, respectively, along with Gaussian functions having the

standard deviation and mean energy obtained from the calculated polaron energies.

While the ε = 1 case shows the expected gaussian form, for ε equal to 2 and 3,

statistically significant deviations are observed, with the DOS skewed towards lower

energies, and showing an approximately exponential low energy tail. These features

reflect the deviations from the Gaussian form observed for the exciton DOS calculated

for spatially disordered lattices with µg = 0 (see Fig. 3-14), though here the deviations

are much less pronounced (particularly on the high side of the DOS, which remains

consistent with the Gaussian fit). Since the exciton DOS arising from pure dipole

disorder in spatially disordered lattices, as calculated in the previous section (see

Fig. 3-12), is well described by a Gaussian function, it is apparent that this DOS

reflects the contributions of both sources of disorder. In Fig. 3-18 (d) is shown the

normalized spatial correllation function for each calculation. As indicated by the

data in the figure, there is no statistically significant change in the correllations as

a function of ε; rather, the correllations remain weak (with a maximum value of

roughly 0.15) and extremely short ranged (effectively zero for r = Dsite). Since much

stronger correllations were observed for the exciton polarization disorder (see. Fig.
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Table 3.12: Summary of exciton DOS calculations for polarizible charge distributions
in spatially disordered lattices with µg = 2 D, Dmin = 0.8Dsite, and α obtained
from ε using the Claussius-Mossotti equation. Note for reference that ε = 2 yields
α = 5.97× 10−23 cm3 and ε = 3 yields α = 9.55× 10−23 cm3. For ε = 1, the
calculation is performed assuming static charge distributions (as described in the
previous section); for ε > 1, the MD method is used. As noted in the text, in these
calculations Dsite = 1 nm. The data are averaged over five different lattices; the
uncertainty is equal to twice the standard deviation across the five calculations.

L Rint [ Dsite ] ε σ [ meV ] Ē [ meV ]

14 6.9 1 6.8 ± 0.2 0

14 6.9 2 7.0 ± 0.3 -3.7 ± 0.3

14 6.9 3 9.1 ± 0.3 -6.7 ± 0.5

3-15), these results indicate that the polarization disorder has little impact on the

spatial correllations of the exciton energies. This apparent contradiction, that the

polarization disorder seems to have a noticeable impact on the DOS itself, but not

on the spatial correllations, can be resolved by observing that fact that the spatial

correllations are calculated by averaging the energies for every pair of energies, while

the impact of the polarization disorder on the DOS is mainly to introduce a longer low

energy tail due to the appearance of a small (though statistically significant) number

of very low energy sites. Therefore, while these few low energy sites are clearly visible

in the DOS itself, it is not surprising that their contribution to the spatial correlations

is minimal by comparison.

The data in Table 3.12 show that σ is approximately unchanged for ε = 2, but

larger for ε = 3. As for the polaron case, it is instructive to attempt an evaluation

of the relative contributions of dipole disorder and polarization disorder to the total

energy disorder. Again, it is assumed that the energy disorder due to dipole disorder

is scales with ε the same for the spatially disordered lattice as for the cubic lattice,

namely that for ε = 2, σd is scaled by 0.98 ± 0.05 relative to the ε = 1 value, while

for ε = 3, the scaling factor is 1.11 ± 0.06. The needed reference value for σd is

obtained from the ε = 1 calculation, yielding σd = 6.8 ± 0.3 meV for ε = 2 , and

σp = 7.5 ± 0.3 meV for ε = 3. Taking σp from the calculations on spatially disordered
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Figure 3-18: Exciton DOS and normalized spatial correllation function for po-
larizible charge distributions in spatially disordered lattices with µg = 2 D and
Dmin = 0.8Dsite. In (a) - (c) are shown the DOS (in the form of the energy histogram)
calculations (symbols) for ε equal to 1, 2 and 3 respectively, with α obtained using the
Claussius-Mossotti equation. Also shown are Gaussian functions (red lines) with the
same standard deviation and mean energy as the raw energies, and, for ε equal to 2
and 3, an exponential fit to the low energy side of the distribution. Note for reference
that ε = 2 yields α = 5.97× 10−23 cm3 and ε = 3 yields α = 9.55× 10−23 cm3. As
noted in the text, in these calculations Dsite = 1 nm. The data are averaged over five
different lattices; the uncertainty is equal to twice the standard deviation across the
five calculations.
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lattices with µg = 0 gives (from Table 3.10) σp = 0.50 ± 0.02 meV for ε = 2, and

σp = 1.18± 0.03 meV for ε = 3.

Assuming that the two energy contributions are uncorrellated, σ is again given

by
√
σ2

d + σ2
p, yielding σ = 6.8 ± 0.3 meV for ε = 2, and σ = 7.6 ± 0.3 meV for

ε = 3. Here the agreement is good for the ε = 2 case, but poor for the ε = 3 case.

The source of this disagreement is not clear, but one possibility is evident: if one

assumes that the two energy contributions are perfectly correllated with each other,

in which case, σ = σd + σp, then the σ values obtained for ε equal to 2 and 3 are

given by 7.3± 0.3 meV and 8.7± 0.3 meV, respectively, which are in agreement with

the observed results within the statistical errors. However, it also possible that the

scaling factor of the dipole disorder resulting from the polarization effects is different

in the disordered lattice, as the needed change is relatively small, as for ε = 3 the

scaling factor would only have to change from 1.11 to 1.32. At this point, further

investigations are needed to properly unravel the potential interactions of the dipole

and polarization disorder contributions to the energy disorder.

As a final note, it should be kept in mind that in these last calculations, in which

both the polarization disorder and the dipole disorder are combined, the results are

inherently dependent on the relative strengths of the two energy disorder components,

with the polarization disorder mainly dependent on Q, α and Dsite (for a given lattice

structure), while the dipole disorder is mainly dependent on ∆µ, µg, α, andDsite, with

the proportionalities of each parameter in general different for the two components.

As a result, it is possible in an arbitary material to make one dominate over the

other. In typical molecular organic materials, the molecular size (and therefore Dsite)

is a relatively stable quantity, always roughly equal to 1 nm. The polaron charge

Q is always constant at ±e. The value for α is relatively stable as well, since most

organic materials have a similar molecular density (owing to the similar molecular

size) and similar index of refraction (n usually between 1.4 and 1.7, corresponding

to ε between 2 and 3). The values of ∆µ and µg, however, can vary from very small

(e.g. less than 1 D) to very large (e.g. 10 D). As a result, the magnitudes of these

values can be viewed as the key parameters governing the relative strength of the two
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disorder components. For polaron disorder, very large values of µg lead to a DOS in

which dipole disorder dominates, while very small values lead to a DOS dominated

by polarization disorder. For the exciton disorder, it is the ratio of µg to ∆µ this

is important, since the polarization disorder scales as approximately ∆µ2 while the

dipole disorder scales as approximately µg∆µ, so that for large µg/∆µ, the dipole

disorder will tend to dominate, while for small µg/∆µ, the polarization disorder will

tend to dominate. (The proportionalities here are all approximate because while

they describe the behavior of the dominant disorder terms, the exact dependancies

are more complex.)

3.10 Theoretical Calculations of AlQ3 DOS

While the preceeding calculations polaron and exciton energy disorder in amorphous

molecular organic materials are motivated by an interest in the fundamental sources of

energy disorder and their relationship to molecular parameters, they are also intended

as a basis for application to specific material systems. In accordance with the theme

of this thesis of bringing the theoretical discussion back to a practical calculation

by using AlQ3 as a canonical molecular organic electronic material, in this section

are described theoretical calculations of the exciton and polaron energy disorder in

amorphous AlQ3 solids. Using the techniques of the previous section for polarizible

charge distributions, calculations were performed using: µg = 5.3 D (from [91]), ∆µ =

3.4 D (from [54]), ε = n2 = (1.70)2 (from ellipsometry), Dsite = 0.87 nm (from density

measurements), and Dmin = 0.8Dsite = 0.70 nm (estimated from analysis of molecular

packing structures), and finally, ∆µ̂ = (0, 0,−1) (approximated from [54]).

In Table 3.13 are summarized the parameters the DOS calculations, along with

the associated standard deviations and the mean energies. Since these calculations

are performed using polarizible charge distributions, they are limited to L = 14 and

Rint = 6.9Dsite. While this does not impact the magnitude of the exciton σ and Ē

values, the same cannot be said for the polaron values. It was established above the

that energy disorder arising from dipole disorder is underestimated by roughly 7 %
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compared to the L,Rint → ∞ value in the ε = 1 case. If we assume that the same

underestimation persists for ε > 1, then the polaron σ obtained here for the cubic

lattice (which is solely due to dipole disorder) should be divided by 0.93 to correct for

this. For the random lattice case, the disorder arises from both polarization disorder

and dipole disorder, the latter of which is not impacted by the small lattice size,

and so this correction can not be applied directly to the total σ. However, since

the dipole disorder component in the spatially disorder lattice is at least as large

as the total disorder of the cubic lattice (which is entirely due to dipole disorder),

in the spatially disordered lattice one can conclude that σd > 0.30 ± 0.02 eV, and

since σ = 0.36 ± 0.02 eV, it is evident that in this system the dipole disorder is

much greater than the polarization disorder. Reference calculations of the polaron

disorder for static charge distributions (i.e. ε = 1) were also performed, and in those

calculations in the spatially disordered lattice the dipole disorder is scaled up by a

factor of 1.09 relative to the cubic lattice. Assuming the same scaling applies to the

ε > 1 case (which is an identical assumption to the one used in the previous section

that the scaling of the disorder as function of ε in the cubic lattice is the same as in the

spatially disordered lattice), this yields σd = 0.33± 0.03. This leaves just 0.03± 0.03

eV additional total disorder due to the polarization disorder. As a result, little error

is incurred by correcting for lattice size effects in the disordered lattice by dividing

σ by 0.93 since nearly all of the disorder is due to dipole disorder. These rescaled

values are shown in the Table in parentheses. Since this correction is in any case very

small (compared to the uncertainty of the model parameters obtained from ab initio

calculations), applying this correction is mainly a matter of padagogical completeness.

It is also noted that the total charge polarization energy is underestimated for this

small value of Rint, but since the mean shift in the DOS is not used for any of the

calculations performed in this thesis, a correction for this value is not needed here.

If this value is important, however, it was found that the use of Rint = 6.9Dsite

underestimated this energy by roughly 13% in the cubic lattice, so this value could

presumably be scaled up by a factor of 0.87.
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Table 3.13: Summary of polaron and exciton DOS calculations using molecular pa-
rameters of AlQ3. Calculations are shown for both a cubic lattice with Dsite = 0.87
nm (“Cubic”) and spatially disordered lattice with Dmin = 0.8Dsite (“Random”).
The former provides a lower limit for the energy disorder where only orientational
disorder is present, while the latter provide an upper limit where full spatial and
orientational disorder is prensent. The molecular polarizibility was obtained using
the Claussius-Mossotti equation from ε, which here is equal to 2.89, except for the
reference calculations, for which ε = 1. For the reference calculations the static charge
distribution method is used (as described in the previous section); for ε > 1, the MD
method is used. As noted in the text, in these calculations: L = 14, Rint = 6.9Dsite,
µg = 5.3 D, ∆µ = 3.4 D, and ∆µ̂ = (0, 0,−1). The data are averaged over five
different lattices; the uncertainty is equal to twice the standard deviation across the
five calculations.

Transition Lattice σ [ eV ] Ē [ eV ]

Polaron Cubic 0.30 (0.33) ± 0.02 -0.708 ± 0.001
Polaron Random 0.36 (0.40) ± 0.02 -0.808 ± 0.001

Exciton Cubic 0.044 ± 0.001 0.014 ± 0.002
Exciton Random 0.059 ± 0.003 0.027 ± 0.003

Polaron Reference (ε = 1) Cubic 0.45 ± 0.04 0
Polaron Reference (ε = 1) Random 0.49 ± 0.06 0

Exciton Reference (ε = 1) Cubic 0.040 ± 0.001 0
Exciton Reference (ε = 1) Random 0.047 ± 0.001 0
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Figure 3-19: Polaron DOS and normalized spatial correllation function for polarizible
charge distributions using AlQ3 material parameters, for both a cubic lattice and a
spatially disordered lattice. In (a) and (b) are shown the DOS (in the form of the
energy histogram) calculations (symbols) for the cubic and disordered lattices respec-
tively, along with Gaussian functions (red lines) with the same standard deviation
and mean energy as the raw energies. In (c) is shown the normalized spatial corrella-
tion function for each type of lattice, while in (b) is shown the same data with error
bars. The plots are separated to make it clear both the extent of the uncertainty as
well as the raw values. As noted in the text, in these calculations: ∆Q = +e, µg =
5.3 D, Dsite = 1 nm, and for the spatially disordered lattices, Dmin = 0.8Dsite. In
addition, ε = 2.89, which yields α = 6.08× 10−23 cm3. The data are averaged over
five different lattices; the uncertainty is equal to twice the standard deviation across
the five calculations.
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Figure 3-20: Exciton DOS and normalized spatial correllation function for polarizible
charge distributions using AlQ3 material parameters, for both a cubic lattice and a
spatially disordered lattice. In (a) and (b) are shown the DOS (in the form of the
energy histogram) calculations (symbols) for the cubic and disordered lattices respec-
tively, along with Gaussian functions (red lines) with the same standard deviation
and mean energy as the raw energies. In (c) is shown the normalized spatial corrella-
tion function for each type of lattice, while in (b) is shown the same data with error
bars. The plots are separated to make it clear both the extent of the uncertainty as
well as the raw values. As noted in the text, in these calculations: ∆µ = 2 D, µg =
5.3 D, Dsite = 1 nm, and for the spatially disordered latticesm, Dmin = 0.8Dsite. In
addition, ε = 2.89, which yields α = 6.08× 10−23 cm3. The data are averaged over
five different lattices; the uncertainty is equal to twice the standard deviation across
the five calculations.
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In Fig. 3-19 (a) and (b) are shown the polaron DOS for the cubic and disordered

lattices respectively, along with Gaussian functions having the standard deviation

and mean energy obtained from the calculated polaron energies. No significant de-

viations from the Gaussian form are observed. In Fig. 3-19 (c) and (d) are shown

the normalized spatial correlation functions for the polaron energies for the cubic

and disordered lattices. (The data in (d) is the same as in (c), but with errors bars

included; the plot without the error bars is shown because the actual data points are

difficult to discern when the error bars are included.) From this plot it is evident that

there is little difference between the two cases, indicating that for the AlQ3 system,

there is little reduction in the spatial correllations in the spatially disorderd lattice as

a result of the polarization disorder, consistent with the conclusion drawn above that

the polarization contribution to the total disorder is much smaller than the dipole

contribution. Note that the slight roll-off in the correllation function for r < Dsite

is consistent with the spatial correllations observed for static charge distributions in

the spatially disordered lattice with Dmin = 0.8Dsite (see Fig. 3-7 (d)).

In Fig. 3-20 (a) and (b) are shown the exciton DOS for the cubic and disordered

lattices respectively, along with Gaussian functions having the standard deviation

and mean energy obtained from the calculated polaron energies, and for the spatially

disordered lattice, an exponential fit to the low energy tail. For the cubic lattice

case, the expected Gaussian form is observed. For the disordered lattice, some de-

viations are observed for the low energy side of the distribution, which can be fit

approximately by an exponential decay, but these deviations are still (if only barely)

within the statistical errors of the Gaussian function, and the Gaussian function still

provides a good approximation to the DOS shape, at least over the range of energies

for which the calculation yields statistically significant results. In Fig. 3-19 (c) and

(d) are shown the normalized spatial correlation functions for the exciton energies for

the cubic and disordered lattices. (The data in (d) is the same as in (c), but with

errors bars included; the plot without the error bars is shown because the actual data

points are difficult to discern when the error bars are included.) From this plot it

is evident that in both systems the spatial correllations in the exicton energies are
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small and extremely short ranged. The only appreciable correlations are observed in

the spatially disordered lattice for the minimal distance interaction, where a value of

0.16 ± 0.08 is observed. These spatial correllations are consistent with an interpre-

tation that the disorder here is dominated by the dipole contribution for a system

in which ∆µ̂ parallel to the ground state dipole moment. In contrast, the spatial

correllations the arise from polarization disorder (see Fig. 3-15 (c)) are longer ranged

and have much larger peak values (0.54± 0.08 for the minimal distance interaction).

The data in Table 3.13 reveal that in AlQ3 the exciton and polaron energy disorder

are both quite large large. For the exciton case, σ ranges from 0.044 ± 0.001 eV

to 0.060 ± 0.003 eV, while for the polaron case σ ranges from 0.33 ± 0.02 eV to

0.40 ± 0.02 eV (where for both types of excitation the range of values describes the

value for the cubic and spatially disordered lattices respectively.) (Note that the

corrected values have been used for the polaron disorder.) Particularly striking is the

fact that the AlQ3 polaron σ is in the range of 12 to 15 kT at room temperature,

which makes it something of an extreme case for the polaron transport phenomena

analyzed later in this thesis. Based on the spatial correllations, it was argued that the

disorder in the spatially disordered lattices is dominated by the dipole contribution,

and that the polarization contribution is small by comparison. As discussed above,

this is also indicated in the polaron DOS based on the σ values. A similar analysis

can be performed for the exciton case using the same assumptions, namely that σd

can be obtained from the reference value in the spatially disordered lattice using

the same scaling factor that relates the values for the static and polarizible charge

distributions in the cubic lattice. The needed reference values are listed in Table 3.13,

and gives σd = 0.052± 0.002 eV. Since σ = 0.060 eV, it is again evident that dipole

disorder contributes the dominant contribution to the total disorder. This property

of the AlQ3 system is a function of the values of µg = 5.3 D and µg/∆µ = 1.6,

as compared to the µg = 2.0 D and µg/∆µ = 1.0 values used in previous section,

which yielded a more intermediate DOS. Finally, it should also be noted that the

mean energy of the exciton DOS is positive, as compared to the negative values

obtained in the calculations performed in the previous section. This is a consequence
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of using ∆µ̂ = (0, 0,−1), which yields a smaller dipole moment for the excited state

than the ground state, and thus an average change in transition energy arising from

polarization interactions is positive instead of negative.

3.11 The DOS and Bulk Transfer Spectra

In the previous sections were described the theory and basic methodologies for com-

puting the DOS associated with polaron and exciton transitions in amorphous molec-

ular organic solids where the energy disorder is dominated by electrostatic interactions

between the molecular charge distributions. Before concluding this chapter, it is use-

ful to briefly consider how the DOS influences the transition spectra associated with

an ensemble average over all of the molecules in the given system. This ensemble

average is often called a “bulk” transition spectrum, whereas the transition spectrum

associated with an individual molecule is called a “molecular” transition spectrum.

The importance of the bulk transition sectrum is in the application of theory to exper-

iment, because in most cases only a bulk measurement is experimentally accessible.

Key examples of such bulk measurements are optical absorption and emission

spectroscopy (to probe exciton transition spectra) and UPS and IPES (to probe

polaron transition spectra). These measurements can be straightforwardly connected

to the corresponding molecular spectra through the DOS by way of the appropriate

PTS. (Recall that the details of how the PTS is defined and related to transition rates

are given in Appendix A.) The key here is that under the model employed in this

thesis, the PTS is the same for each molecule of a given type, and the DOS simply

describes the distribution of shifts in the electronic transition energy. Furthermore,

since the the molecular transition spectrum of a given molecule is then uniquely

determined by the electronic transition energy and this universal PTS, it should be

possible to obtain the ensemble average by a simple convolution of g(E) with an

appropriate expression of the molecular transition spectrum in terms of this PTS.

For the case of optical absorption and emission, the relationship between the

transition spectrum of a given molecule is its associated PTS is given by Eqns. A.101
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and A.102. From these equations, one obtains for the normalized absorption and

emission spectra,

Sabs
bulk(E) =

∫∞
−∞ dE ′g(E − E ′)EΦ↑

mol(−∆Ēel,0 + E ′)∫∞
−∞ dE ′E ′Φ↑

mol(−∆Eel,0 + E ′)
dE ′ (3.50)

Srad
bulk(E) =

∫∞
−∞ dE ′g(E ′ − E)(E)3Φ↓

mol(−∆Eel,0 − E ′)dE ′∫∞
−∞ dE ′(E ′)3Φ↓

mol(−∆Eel,0 − E ′)dE ′
(3.51)

where the subscripts “bulk” and “mol” refer to bulk and molecular transition spectra

respectively, and ∆Eel,0 here replaces ∆Eel
fi in the original expressions, since the part

of ∆el
fi arising from electrostatic interactions is now contained within the variable E

over which the convolution with g(E) is performed. A more convenient expressions

is obtained if g(E) has zero mean, which can be accomplished by replacing ∆Eel,0

with a value equal to the electronic transition energy of the isolated molecule plus

the mean energy of the electrostatic contributions. This value is precisely the ∆Ēel

introduced in Chapter 3. In this case,

Sabs
bulk(E) =

∫∞
−∞ g0(E − E ′)EΦ↑

mol(−∆Ēel + E ′)dE ′∫∞
−∞ dE ′E ′Φ↑

mol(−∆Ēel + E ′)
(3.52)

Srad
bulk(E) =

∫∞
−∞ g0(E

′ − E)(E)3Φ↓
mol(−∆Ēel − E ′)dE ′∫∞

−∞ dE ′(E ′)3Φ↓
mol(−∆Ēel − E ′)

(3.53)

where g0(E) represents the DOS shifted to have zero mean. In this form, the following

definition for the molecular absorption and emission spectra, identified by Sabs
mol(E)

and Srad
mol(E) respectively , is suggested:

Sabs
mol(E) =

EΦ↑
mol(−∆Ēel + E)∫∞

−∞ dE ′E ′Φ↑
mol(−∆Ēel + E ′)

(3.54)

Srad
mol(E) =

(E)3Φ↓
mol(−∆Ēel − E)∫∞

−∞ dE ′(E ′)3Φ↓
mol(−∆Ēel − E ′)

(3.55)
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which accords to the molecular spectra the meaning of the transition spectra of

molecules with the mean electronic transition energy. Based on this definition of

the molecular spectra, one then finds that,

Sabs
bulk(E) =

∫ ∞

−∞
g0(E − E ′)

E

E ′S
abs
mol(E

′)dE ′ (3.56)

Srad
bulk(E) =

∫ ∞

−∞
g0(E − E ′)

[
E

E ′

]3

Srad
mol(E

′)dE ′. (3.57)

In the literature, it is conventional to neglect the E/E ′ and (E/E ′)3 terms so that,

Sabs
bulk(E) =

∫ ∞

−∞
g0(E − E ′)Sabs

mol(E
′)dE ′ (3.58)

Srad
bulk(E) =

∫ ∞

−∞
g0(E − E ′)Srad

mol(E
′)dE ′. (3.59)

This approximation is valid so long as the values of E over which g0(E) is appreciable

are small compared to the values of E over which Sabs
mol(E) and Srad

mol(E) are appreciable.

For a typical molecular organic excitonic transition, the absorption and emission

spectra are appreciable only for energies greater than roughly 1.5 eV. At the same

time, for typical exciton disorder (as represented by the values obtained for AlQ3

in the previous section), the exciton DOS is appreciable over a range of not more

than roughly ±0.2 eV. For these values, E/E ′ ≈ 1 for the range of E and E ′ that

contributes appreciably to the integral, thus justifying this approximation in this

typical example. As a final note, one can similarly express the molecular absorption

cross section, σmol(E), as,

σbulk(E) =

∫ ∞

−∞
g0(E − E ′)

E

E ′σ
abs
mol(E

′)dE ′ (3.60)

≈
∫ ∞

−∞
g0(E − E ′)σabs

mol(E
′)dE ′. (3.61)
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For the remainder of this thesis, the use of the approximate forms of the above

relationships will be referred to as the constant spectral shape approximation, as the

implication of neglecting the E/E ′ and (E/E ′)3 terms in the above epxressions is

that they do not appreciably alter the shape of the absorption and emission spectra

as a function of the energy shift, and this is equivalent to assuming that individual

spectra of each molecule in the system all have precisely the same shape.

In Chapter 3, it was explained that the UPS and IPES experiments yield spectra

proportional to the ensemble average of the positive and negative polaron creation

PTS, respectively. A logical definition of the molecular spectra in these experiments

is then:

S↑,p±
mol (E) = Φ↑,p+

bulk (−∆Ēel + E) (3.62)

S↓,p±
mol (E) = Φ↓,p+

bulk (−∆Ēel − E) (3.63)

where,

S↑,p±
bulk (E) =

∫ ∞

−∞
g0(E − E ′)S↑,p±

mol (E ′)dE ′ (3.64)

S↓,p±
bulk (E) =

∫ ∞

−∞
g0(E − E ′)S↓,p±

mol (E ′)dE ′. (3.65)

Here the molecular spectra again have the meaning of the spectra associated with a

molecule having the mean transition energy. Thus, if we assume that constant spectral

shape approximation holds for the absorption and emission spectra, one obtains that

in each of these cases, the bulk spectra are related to the corresponding molecular

spectra by a simple convolution, so that one may write in general:

Sbulk(E) =

∫ ∞

−∞
g0(E − E ′)Smol(E

′)dE ′. (3.66)

To illustrate the nature of this relationship more concretely the case of a Gaussian
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DOS is considered in more detail. (The Gaussian form is chosen consistent with the

findings of this chapter that in most cases the DOS is well described by such a

functional form.) Specifically, the effect of a Gaussian DOS on the optical emission

spectrum associated with the simple model system analyzed in Chapter 2. In Fig. 3-21

(a) is shown a Gaussian g0(E) having a full width at half maximum of wDOS = 0.05eV ,

and in (b) is shown the normalized Srad
mol at room temperature and the Srad

bulk obtained

for this pair of g0(E) and Srad
mol through a simple convolution. (The normalization of

Srad
mol means that the integral of Smol over its argument, here energy in eV, is equal to

unity.)

In Fig. 3-21 (c) are shown a comparison of the Srad
bulk spectra obtained for T =

301 K, 151 K, 75 K, and 4.7 K. One of the notable effects of even this relatively

narrow g(E) is that even at T = 4.7 K, one does not observe any of the structure

of the intramolecular vibrational modes. Indeed, there is almost no change in the

bulk spectrum below T = 75 K, despite the rather dramatic changes occuring in the

molecular spectrum (see the changes in the corresponding PTS illustrated in Fig. A-7

(a)). Another general effect of the DOS is to broaden the overall spectrum, but this

effect is only significant if the width of the DOS is similar to or larger than the width

of the PTS itself. In this case, the DOS is too narrow to induce significant overall

broadening.

From the Eqn. 3.66, it is evident that one can in principle calculate Smol(E) from

Sbulk and g(E) by a devolution, i.e.,

Smol(E) =

∫ ∞

∞

[
Ŝbulk(s)

ĝ(s)

]
ei2πsEds (3.67)

where we have introduced the notation that f̂(s) represents the Fourier transform of

f(E), i.e.,

f̂(s) =

∫ ∞

∞
f(E)e−i2πsEdE.. (3.68)

So long as |g(s)|2 is never zero, this deconvolution is mathematically well defined

(a condition which holds for a Gaussian g(E)). However, in practice, because Sbulk(E)
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Figure 3-21: Example of inhomogeneous broadening in primitive model molecule. In
(a) is shown the DOS, g0(E), and in (b) are shown the molecular emission spectrum,
Srad

mol(E), for T = 301 K, and the corresponding bulk emission spectrum, Srad
bulk(E),

obtained for the g0(E) in (a). In (c) are shown the bulk emission spectra for four
different temperatures: 301 K, 151 K, 75 K, 4.7 K.

is never known with infinite precision, there can be considerable error in the recon-

structed Smol(E), even assuming g(E) is known exactly. A hint of this difficulty is

evident in Fig. 3-21 (c): the spectra for T = 75 K and 4.7 K are nearly identi-

cal, and yet the molecular spectra, as suggested by the corresponding gfi(E) in A-7

(a), are quite different; thus to perform an accurate reconstruction in this case, one

would need to know the values of Sbulk(E) with very high precision. To illustrate this

point more quantitatively, a formal reconstruction of Smol(E) in our primitive model

molecule using Eqn. 3.67 is shown in Fig. 3-22 (a) and (b) for the T = 301 K and

4.7 K cases respectively, along with the exact Smol(E). (In this reconstruction, the

discrete form of g(E) is used, as opposed to the analytic expression.) It is clear that

considerable errors are acquired by virtue of the discrete nature of the spectral data,

which in this case consists of an energy spacing of 0.006 eV (i.e. a wavelength spacing

of roughly 2 nm in the visible spectrum). When one’s data also includes experimental

errors, the situation becomes even more challenging, and one must either adopt more

sophisticated procedures for processing one’s data (e.g. filtering of some of the com-
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Figure 3-22: Reconstruction of a discrete molecular spectrum from a Gaussian DOS
and a discrete bulk spectrum using Eqn. 3.67 for simple model molecule example. In
(a) is shown the result for T = 301 K, and in (b) is shown the result for T = 4.7 K.

ponents of Ŝbulk(s)) or assume a particular form for Smol(E) and iteratively adjust

the parameters of that form to fit Sbulk(E) through Eqn. 3.66.

3.12 Conclusion

In this chapter is detailed the theoretical calculation of the polaron and exciton den-

sity of states arising from variations in the electronic transition energies due to elec-

trostatic interactions, based on the the basic theory of electrostatic intermolecular

interactions (including the theory of various dielectric continuum models) described

in Appendix B. The phenomenon of solid state solvation (arising from nuclear po-

larization) is described and demonstrated experimentally. It was shown that one can

assess the importance of solid state solvation in a given system by measurements

of the index of refraction and the dielectric constant of the material. In the event

that nuclear polarization effects are not negligible, the calculation of the shift in elec-

tronic transition energies due to intermolecular interactions is made significantly more

complex (as described in detail in Appendix B). In AlQ3, it is found that nuclear

polarization is much weaker than electronic polarization, and thus is it argued that in

this material solid state solvation will not be a dominant contributor to the DOS, and
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indeed, it is expected that this is often the case on small molecular weight amorphous

organic solids, where steric constraints strongly limit nuclear motion.

The different methods of DOS calculation that presently exist in the literature

were reviewed, focusing on the statistical method and the more recent exact Monte

Carlo method. In all these calculations, the impact of solid state solvation is entirely

neglected. Extensive calculations of the polaron and exciton DOS using the exact

Monte Carlo method were described for both static and polarizible charge distribu-

tions in the limit that nuclear polarization is negligible, and our DOS calculations

with explicitly polarizible charge distributions are to our knowledge unique in the

literature on the subject. In all these calculations, consistent with convention, we

also neglect the impact of solid state solvation. However, it is worth noting that the

same calculation procedure described here could be adapted to include the effects of

solid state solvation, using the expressions for the fields at each molecule derived in

Appendix B. The principle impact on the DOS is that with solid state solvation, a

different DOS is needed to excitation creation and destruction. The differences in

the two DOS will be evident both in the mean energy and the extent of the disorder.

While the precise differences will depend on the specific model parameters used, one

can in general state that for polarons, creation always requires more energy than

destruction in the presense of solid state solvation, since the nuclear polarization of

polaron charge leads that polaron to achieve a lower energy state following the cre-

ation. Since this makes the polaron transfer process less energetically favorable, and

thus solid state solvation slows the hopping rate (see, for instance, the MA hopping

rate expression). For excitons, the mean energy for destruction will be lower if the

excited state dipole is larger than the ground state dipole, and higher otherwise, thus

solid state solvation can either assist or impede exciton transfer. In future stud-

ies we plan to introduce solid state solvation effects explicitly and determine more

quantiatively the validity of their neglect in typical amorphous organic materials.

We present a careful analysis of lattice size effects on our DOS calculations to

demonstrate that needed parameters to reproduce the properties of an infinite solid,

and also to illustrate the specific nature of the errors incurred by inadequate param-
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eters for use in cases where sufficiently large lattices and interactions lengths are not

feasible (specifically, in the polarizible charge distribution calculations). Both cubic

lattices and spatially random lattices were used. In the former, the only source of

disorder arises from the randomly oriented dipoles (“dipole disorder”). In the latter,

for static charge distributions, the disorder still entirely dipole disorder, while for po-

larizible charge distributions, both the dipole disorder and the disorder arising from

variations in the local polarizibility (“polarization disorder”) contribute.

The exact Monte Carlo results were compared against theory where possible, and

it was found that for static charge distributions the statistical method is found to quite

adequate, both in reproducing shape of the DOS and the associated σ values; however,

there are no existing statistical method calculations for treating polarizible charge

distributions. An approximate treatment of the dipole disorder is obtained through

the use of dielectric continuum models (specifically, the U-DCM and the extended

SC-DCM) which relate the interaction energies between static charge distributions to

the interaction energies in the presense of polarizible molecules comprising a dielectric

medium. However, the simple U-DCM was found to yield inaccurate results for both

the polaron and exciton energies, and even the extended SC-DCM yields inaccurate

results for the exciton energies, indicating either that no simple dielectric continuum

model can account for the dipole disorder in the presense of polarizible molecules, or

that a more sophisticated model is needed. Perhaps most significantly, these results

demonstrate the need to correct the widespread convention of using the U-DCM to

calculate polaron disorder due to dipole disorder, as it underestimates σ by roughly

a factor of two for typical ε. We also noted that at present the only methods for

treating the polarization disorder are crude and ill-suited to quantiative analysis in

comparison to our calculations. However, we observe that a much more accurate

approach is possible through the use of the statistical method if the pair-interaction

assumption is employed, and it would be interesting to compare the results of such a

calculation with the Monte Carlo polarization disorder calculations presented here.

The spatial correllations of the polaron and exciton energies are analyzed. For

the polaron energies, the spatial correllations predicted by Novikov and Vannikov are
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observed for the dipole disorder, while for the polarization disorder arising in spatially

disordered lattices, much shorter ranged correllations are observed. For the exciton

energies, the spatial correllations a generally negligible for the dipole disorder, though

an interesting dependence of the minimal distance correllation on the direction of the

change in dipole moment (∆µ̂) is identified, while for the polarization disorder similar

(though slightly weaker) spatial correllations as observed in the polaron calculations

are observed.

The interaction between the pure dipole disorder and pure polarization disorder

contributions to the total polaron and exciton energy disorder were evaluated in sys-

tems combining both polarizible charge distributions and spatially disordered lattices.

It is found that to within the uncertainty of the calculations, for the polaron calcula-

tions the two components can be modelled as uncorrellated and independent. For the

exciton case, the relationship is not as clear, as a simple assumption of uncorrellated

disorder does not yield consistent results at all ε, and further investigation is needed

to determine the source of the discrepancy.

In evaluating the shapes of the DOS functions, it is found that in most practical

cases the assumption of the Gaussian DOS is valid. The main exceptions are: (1) when

the DOS arises from the interaction of a low concentration of polar molecules doped

into a non-polar host, in which case both the polaron and exciton DOS transition

towards a Lorentzian form with decreasing dipole concentration, and (2) when the

exciton DOS has a significant contribution due to polarization disorder, in which case

the DOS becomes skewed towards low energies and acquires an exponentially decaying

low energy tail. Overall, in a typical neat film of moderately polar molecules, however,

these situations are not encountered.

Calculations the polaron and exciton DOS in AlQ3 are performed using the molec-

ular properties reported in Chapter 3. The DOS is found to be well described by a

Gaussian in all cases, though for the exciton DOS in the spatially disordered lattice

evidence of slight deviations suggesting the impact of exciton polarization disorder

are observed. For the exciton DOS, σ ranges from 0.044± 0.001 eV to 0.060± 0.003

eV, while for the polaron DOS, σ ranges from 0.33±0.02 eV to 0.40±0.02 eV (where
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for both types of excitation the range of values describes the value for the cubic and

spatially disordered lattices, respectively.) The spatial correlations of the polaron

DOS are well described by the theoretical predictions of Novikov and Vannikov for

both the cubic and spatially disordered lattices, while for the exciton DOS the spatial

correllations are generally negligible. It should be also kept in mind that the use of

ab initio parameters in these calculations lends substantial uncertainty to the results

(in the range of ± 30%), so while the calculations are themselves quite precise, the

model parameters are much less so.

Finally, the relationship between the the DOS and the bulk electronic transition

spectrais described in the context of the physical model used in this thesis (namely

that each molecule of a given type shares the same PTS for a given transition and the

DOS describes the associated variations electronic transition energy). The specific

cases of the bulk transition spectra associated with optical absorption and emission,

and UPS and IPES experiments are treated. A simple example of spectral broadening

due to a Gaussian DOS is developed, and the basic procedure for deconvolving the

molecular spectrum from the bulk spectrum using the DOS explained.

174



Chapter 4

The ONELab Simulator

4.1 Introduction

In this chapter we describe the computer simulator developed to carry out the simu-

lations of exciton diffusion and polaron transport described in the following chapters.

We refer to the resulting simulator as the “ONELab Simulator”, or “ONESim” for

short, where “ONELab” stands for Organic Nano-Electronics Lab.1 We begin by

laying out the formal objectives of the simulator in terms of its specific functionality.

Then we describe the simulator at a high level, including the general structure of

code. We then discuss the critical implementation details. Finally, we conclude by

describing the specific application of this code to the calculations presented in this

thesis and then discuss the extent to which the existing ONESim implementation

satisfies our initial objectives.

4.2 Simulator Objectives

The principle goal of this thesis is to achieve device level simulations on the basis

of physical models of electrical excitations in amorphous organic thin films, and this

provides a framework for specifying the specific objectives of our simulator. The first

1his name is chosen because the code described here has been developed for the purpose of
simulating organic electronic systems on the nano-scale.
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(a) (b)

Figure 4-1: Examples of basic thin film device structures. In (a) is shown a generic
“vertical” device, typical of, e.g., OLEDs and organic solar cells. In (b) is shown
a bottom contact thin film field effect transistor, which is a typical example of a
“lateral” device.

objective is to provide support for device geometries typical of amorphous organic

thin film devices. Such devices consist of one or more stacked organic layers, op-

tionally containing additional layers functioning either as insulators (e.g. inorganic

oxides) or as polaron injecting/collection layers (e.g. metal contacts). Within this

specification, one can divide the space of organic electronic devices into two types:

vertical and lateral. In vertical devices, the principle conduction path is through the

layer stack, and because these thin films are typically less than a few hundred nm

in total thickness, while typical lateral device dimensions are many orders of mag-

nitude larger, these devices are often analyzed assuming that the material is infinite

in lateral extent. While this assumption is quite good, it does break down at the

very edges of the device, and if the modelling of such “edge effects” is required, then

this assumption obviously must be discarded. Examples of vertical devices include

OLEDs, solar cells, and photodetectors. In lateral devices, the primary conduction

path is in the plane of the layer stack, and in such devices both lateral and vertical

dimensions are in general required to model device behavior. The most important

example of a lateral device is the OFET. Examples of both types of structure are

shown in Fig. 4-1.

The second objective is to support operating conditions that are meaningful for

typical devices. In the case of OLEDs and OFETs, these conditions are (for the

most part) supplied by assigning voltages to each of the device contacts. For devices

like solar cells and photodetectors the operating conditions involve both the contact
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voltages and an incident optical field. Ideally, both kinds of operating conditions

must be supported in theory. In addition, initial conditions appropriate to reproduce

common experimental situations should be supported. This is particularly relevant

when performing an explicitly time dependent simulation.

The third objective is to provide output that meaningfully describes device be-

havior. Specifically, the simulator should be capable of generating current–voltage

relationships, and for light emitting devices, the emitted light intensity and spectrum.

For example, if the simulated device is an OLED, for a particular applied voltage, it

should be possible to obtain the device current and the emitted light intensity and

spectrum.

In addition to performing device level simulations, the simulator should also pro-

vide direct access to the excitation populations, so that the nature of the internal

physical physical processes that contribute to the observed device behavior can be

better understood. The precise information, and its exact form, remain at this stage

unspecified; rather, the objective here consists only of the requirement that the sim-

ulator should facilitate the gathering of any needed information.

4.3 Monte Carlo and Analytic Excitations

Before describing the details of ONESim itself, it is necessary to first briefly review

the different ways in which one can analyze the behavior and physical processes

of an organic electronic device. The most common method is what we refer to as

the analytic approach. Here the excitations are described in terms of a continuous

function of various variables (e.g. space and energy), and by applying a mathematical

model and the boundary conditions imposed by the device geometry and the operating

conditions, one then operates on the excitation population to determine the behavior

of those excitations in the system. This in turn is then used to obtain the desired

device behavior, either directly or through the use of additional mathematical models.

A simple example of this approach is the equation relating the local current den-

sity J through a material to the field, F , mobility, µ, and carrier concentration n:
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~J = µ~Fn. In this expression, the mobility is assumed to be a fixed quantity of the

material, and for the purposes of calculating the current, only the total local carrier

concentration n need be known, as opposed to the carrier concentration as a function

of carrier energy. We may then represent ~J and n as functions of space, and by

requiring that the carrier population be conservative, obtain an additional governing

differential equation: ∇ ~J(~r) = d
dt
n(~r). If we assume that ~F is constant throughout the

material, then we can then use these equations to solve for the n(~r, t) based on only

~F and µ and the initial conditions n(~r, 0). From n(~r, t) one can then obtain ~J(~r, t).

More sophisticated theories are easily implemented through simple extensions of this

approach. For instance, one can also impose various boundary conditions on n(~r, t)

to represent a particular film geometry, or to approximate the impact of injecting

and collecting contants. One can even include an additional relationship relating ~F

to n(~r) through Poisson’s equation, and thereby include what are known as space

charge effects, in which case, F also becomes a function of time and space. In this

approach, and in most other analytic approaches, the essential methodology is to rep-

resent n as a continuous function of space and time, which is governed by differential

relationships in terms of various other parameters and functions.

In contrast, in the Monte Carlo (MC) approach each excitation is a discrete entity

which at any given time is associated with a particular molecular site. The behavior of

each exitation is then governed by a set of processes having specified rates, which are

in general functions of the type of excitation and which molecular sites are involved.

Time is then divided up into discrete steps, and during any given time step, each

process has a probability of occurance of its rate times the length of the time step. By

then choosing a random number between 0 and 1, and then carrying out the proscribed

process in the event that the random number is less than the associated probability of

occurance, one can, on average, obtain the behavior of an entire excitation population

governed by the supplied physical model. The MC approach has the considerable

advantage over the analytic approach that few (if any) approximations are required

to implement a given physical model of excitation behavior, and the results can be

viewed as being “exact” in the limit of a sufficiently large statistical sampling of
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excitations. Specifically, we have designed ONESim to allow an exact MC treatment

of the physical models described in the previous chapters, and so in this sense, the only

errors in the model are due to the statistical uncertainties. However, it is important

to keep in mind that the MC approach is usually rather expensive computationally

for three main reasons: (1) the need for a large number of statistical samples, (2) the

need to model a large system to adequately reproduce the desired behavior, and (3)

the need to perform many simulation time steps to obtain the desired results.

For this reason, where it is acceptable to do so, analytic methods are preferred

to MC ones. However, one of the suppositions motivating the work presented in this

thesis is that at present MC methods are a necessary and invaluable tool in studying

the behavior of electrical excitations in amorphous organic materials, because existing

analytic theories do not provide quantitatively accurate results, and in some cases even

produce results that are qualitatively inaccurate. This matter will be discussed in

greater detail in the following chapters, where specific MC calculations are compared

with existing analytic theories. We do not, however, neglect analytic methods in

developing ONESim, for two reasons. First, existing analytic theories of certain

electronic processes in amorphous organic materials are already adequate, and other

theories may be developed in the future, and it is intended that ONESim be capable

of integrating such theories. Second, the standard MC description is inapplicable to

the description of most device contacts, and as a result, to handle the injection and

collection of excitations at contacts it is necessary to provide at least some minimum

level of support for analytic models.

We have designed ONESim from the ground up to support both “typical” analytic

models and MC models within each device layer. This is done principally by allowing

a given excitation type within a particular device layer to be either MC or analytic in

character (but not both). While this significantly increases the complexity of the sim-

ulation code (as is touched upon in the next section), this flexibility allows ONESim

to in principle include combinations of device models of unprecedented sophistication

and efficiency.
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4.4 Device Layers and layer excitations

We begin the formal description of ONESim with the physical description of the device

geometry. This is done by specifying the system in terms of a set of device layers. Each

device layer consists of an origin, {x0, y0, z0}, and length, {Lx, Ly, Lz}, along each

cartesian dimension. These parameters define the bounding box of the layer, where we

note that formally, the space along each dimension spans the space from {x0, y0, z0}

inclusive to {x0 + Lx, y0 + Ly, z0 + Lz} exclusive. In addition, the composition of

the layer is also specified, in terms of the molecular density, the composition (i.e.

the number of different material components and their relative concentration), and

optionally, a collection of molecular sites. The molecular sites are required for the

device layer to support MC excitations, and are each specified by their position and

orientation.

In the present implementation, three different schemes for generating the molec-

ular lattice site positions are supported. First, one can generate (at runtime) a cubic

lattice by assigning a site to each vertex of a cubic having a lattice constant equal to

Dsite. As many sites as will fit within the layer’s bounding box are created. Second,

one can generate (at runtime) a random lattice, where exactly LxLyLz/D
3
site sites are

situated randomly within the bounding box of the layer with the restriction that no

two sites are closer than as specified by Dmin. (Note that in the event that the lat-

tice consists of multiple components, Dmin is separately specified and applied to each

different pair of site types.) Finally, one can load in a set of arbitary site positions

from a file.

The site orientations consist of two components, a vector describing the molecu-

lar “direction” and an angle describing the molecular “rotation” about its direction

axis. (These orientation parameters are all presumed to be relative to the same fixed

molecular orientation, so that it is meaningful to calculate relative orientations be-

tween different sites.) For the runtime generated lattices, the orientation terms are

generated to yield isotropically random orientations. The direction vectors are chosen

to be isotropically random in the sense discussed in the Monte Carlo DOS calcula-
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tions, namely that they have exactly the same distribution of vector components

in each direction. Our procedure is to assign to each direction vector component a

random number between -1 and 1, and then normalize the resulting vector to unit

magnitude. The angle of rotation about this vector direction is assigned a random

value from an equal distribution over [0, 2π). In the case that the site positions are

loaded in from a file, the site orientation parameters are also loaded in from the file.

A final matter concerns the application of periodic boundary conditions to a device

layer. Such boundary conditions can be optionally applied to any combination of the

cartesian axes. The application of these periodic boundary conditions allow the layer

to extend “infinitely” along a line or plane, or even fill all space. These boundary

conditions can be independently applied to each device layer, though in practice when

applying periodic boundary conditions to multiple device layers it usually makes the

most sense to assign the same set of conditions to each device layer.

Having described the manner in which the device layers are specified, we now

turn to the manner in which the excitations themselves are specified. To proceed,

we introduce some terminology. For excitations treated in the MC approach, we

refer to each individual excitation as an “MC excitation” and the collection of MC

excitations associated with a particular device layer as an “MC layer excitation”.

For excitations treated in the analytic approach, the individual components of the

excitation population are referred to as “analytic excitations” and the collection of

analytic excitations associated with a particular device layer as an “analytic layer

excitation”.

An MC layer excitation is comprised of a collection of discrete excitations, where

each excitation is associated with an individual molecular site within the associated

device layer. For this reason, as noted above, to support MC excitations a device

layer must have an associated lattice of molecular sites, specified in the corresponding

device layer. To maintain a separation between the fundamental geometric properties

of the system and the properties specific to each excitation type, the excitation specific

properties associated with each molecular site are contained within the MC layer

excitation (as opposed to within the device layer). In the present implementation,
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the only such property is the excitation energy associated with each site, which can be

assigned using three different methods. First, the energies can be assigned randomly

following a gaussian distribution function centered at zero energy and having a full

width half max (FWHM) of 1.0. Second, the energies can be assigned randomly

following a distribution function loaded in from a file. In this case, the input file

consists of the minimum energy Emin, the max energy, Emax, the number of energy

divisions, N , and a list of N values each having an index i ∈ {0, · · · , N − 1} and

having a value equal to the relative probability of a site having an energy within the

range Emin + i(Emax − Emin)/(N − 1). Finally, the energies can be loaded in from a

file directly.

An analytic layer excitation is comprised of a collection of analytic excitations,

which in the present implementation each represent an element of a spatial discretiza-

tion of a continuous excitation population. The elements are described as “bins”

because they contain all of the excitation population contained within the bound-

ing box, or “bin,” associated with a discrete region of space. (As discussed above,

there are many different continuous variables with which one might want to define

an excitation population, of which space is just one. However, most analytic theo-

ries directly operate on only the spatial distribution of the excitation population, as

opposed to the energetic distribution, and so to keep the code as simple as possible

the present implementation provides only this facility.) This spatial discretization is

performed by dividing the bounding box of the layer space into {Nx, Ny, Nz} equal

length regions along the {x, y, z} directions.

At this point, having described the device layers and layer excitations, all that

remains is to describe the simulator’s support for simulating the impact of supplied

physical models on the excitation populations. This is the subject of the next section.

4.5 Overview of A Simulation Step

Each ONESim simulation consists of a series of simulation “steps,” and it is in per-

forming these steps that the excitation behavior is ultimately modeled. We thus now
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turn to the subject of what comprises a simulation step in ONESim. In our im-

plementation, there are two fundamentally different types of simulations: time-step

simulations and event-step simulations. In a time-step simulation, each simulation

step comprises a step forward in time by an amount τ (which is treated as a param-

eter of the simulation). The actions taken during each time step depend on which

physical models are employed, and the type of excitations on which they act.

For a model operating on an MC excitation, each process is typically assigned

a rate Γ, which is in general a dynamic function of the state of the system. These

processes can in general lead to one of three events: excitation creation, excitation

destruction, or excitation transfer. Each process is assigned a probability of Γτ of

generating an event during the time step. For each potential event, a random number

over the range [01) is generated, and if that number is less than Γτ , then the event is

placed in queue of events to be applied to the excitation populations at the end of the

simulation step. For an analytic excitation, the actions taken by a given model are

more arbitary, but in the simplest case one again assigns a rate of Γ to each process,

which, as above can in general consist of one of three events: excitation creation,

excitation destruction, or excitation transfer. The magnitude of the event (i.e. the

amount of excitation population destroyed, created, or transferred) is given by Γτ ,

and this “event” is then queued to be applied to the at the end of the time step. It

is worth noting that the behavior of the analytic excitations is deterministic, since

the events always occur and the magnitudes are functions of only the state of the

system, whereas the behavior of the MC excitations is non-deterministic, since the

events occur based on probabilities and randomly generated numbers.

An important complication, however, arises when interactions between an MC

layer excitation and an analytic layer excitation are considered. While the nature of

this interaction is entirely determined by the physical models utilized in the simula-

tion (and a specific example of a such a model will be described in more detail below)

a few general comments are worth making on the issues involved in carrying out such

a linkage. In general, an MC layer excitation and an analytic layer excitation can

interact in one of two ways, which we define here as passive or active interaction. In a
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passive interaction, one independently operates on the MC and analytic layer excita-

tions to change those populations solely through excitation creation and destruction

events. This approach is simple and general, but has the drawback that in the event

that conflicting events are requested (see next paragraph), it is not always possible

to properly resolve the conflict. In contrast, in an active interaction, one employs

transfer events to directly move excitations back and forth between an MC layer ex-

citation and an analytic layer excitation. This approach has the benefit of providing

a more elegant linkage between the two layers, and allows for the rational resolution

of conflicts, but has the drawback that it requires one to express the interaction in

terms of solely transfer events which may not be the most efficient approach.

Regardless of how the events are generated, at the end of the time step, all of the

events are processed and according action taken to modify the excitation populations.

To determine this action, it is necessary to determine if any conflicting actions are

present. Such conflicts can take different forms, depending on whether the actions

act on MC or analytic excitations (or both). For MC excitations, such conflicts arise

when ever carrying out one action invalidates another action, as when a particular

excitation is to be simultaneously destroyed and transferred. A more complicated

example arises if the occupancy of the molecular sites is restricted to a finite number

of excitations. In this case it is possible for a combination of creation and/or transfer

events to place too many excitations on a single site, thereby creating an invalid state.

Furthermore, in cases where it is necessary to keep track of the particular process

which causes an excitation to be created, destroyed, or transferred, even two events

having the same effect on the system (e.g. two events leading to the destruction of a

particular excitation) lead to a conflict, as it is necessary to make a choice between

which event actually occured. For analytic excitations, the conflicts only arise when

the result of applying a set of actions causes the excitation concentration of any

analytic excitation to fall below zero.

When conflicts arise, it is a sign that the time step chosen for the simulation is too

large for the simulation. The principle of a time-step simulation is that by dividing

time into sufficiently small windows that the system only changes infinitesimally dur-
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ing each time step, one may reasonably reproduce the continuous time evolution of the

real system. When the time step become too large, this effective linear approximation

of the time behavior of the system over that time window causes errors to accumulate.

We may describe this restriction more formally in terms of two conditions: for an MC

process, we require that the event probabilities always remain much less than 1, and

for an analytic process, we require that the change in the analytic excitation concen-

trations always remain much smaller than the excitation concentrations themselves.

However, because it is desireable to minimize the number of required time steps for

any given simulation (to limit the computation time), one frequently employs a time

step in which conflicts, while rare, are still likely to occur at least a few times during

a given simulation. As a result, it is important to be able to handle conflicts in a

rational manner. We consider events acting on MC excitations first, and then events

acting on analytic excitations.

The procedure presently employed for processing MC events is as follows. First, all

creation events are carried out first, before any of the events associated with existing

excitations are processed. In carrying these events out, they are applied to the system

one after the other, with the only restriction that an event that would increase the

current occupancy of a given site above it’s occupancy limit is thrown out. Then, for

each excitation for which at least one event has been queued: (1) if there is a single

event queued, then that event is immediately applied to the system; (2) if there are

multiple events queued, one of those events is chosen at random. (In the present

scheme, events can only be associated with a single excitation.) An event that would

increase the occupancy of a given site above it’s occupancy limit is treated as a special

case; if the occupancy of the relevant site in its current state is such that this limit

would be exceeded by carrying out the event, then that event is thrown out.

This conflict resolution stategy, while sufficient for the simulations presented in

this thesis, is not ideal. The main problem is that there is no facility to link multiple

events together, so that actions taken regarding one event can be properly propagated

to any linked events. The need for such facility arises in the application of models

involving the interaction between multiple excitations, such a two polarons combining
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to form an exciton. In this process, one in principle queues a destruction event for

each polaron and a creation event for the exciton. However, if another model queues

an event for one of those polarons and that event is chosen by the conflict resolution

engine, then the system should properly throw out the creation event for the exciton

as well as the destruction event for the other polaron. While a future version of

ONESim should supply this capability, the current version does not.

Another concern regarding the present conflict resolution strategy is that the

selection between conflicting events is not formally random, but is subtly dependent

on the order in which the events are processed. First, creation events are processed

first and this gives them priority over transfer events as regards the site occupancy

limits. (Note that these events are processed in the order that they are generated.)

Second, all of the events associated with a given excitation are processes in the order

in which the first event associated with that excitation was generated. This gives the

events generated earlier in a time step some priority over events generated later in the

time step as regards the site occupancy limits. These effects are partially balanced

by two factors: (1) events generated near the end of the step but associated with an

excitation with another event generated early in the time step are processed according

to when the first event was generated, which will tend to have a randomizing effect

on the processing order; and (2) the occurance of events that reduce the occupancy of

a given site will actually give preference to later events (since they will have a lower

likelihood of being blocked by an occupancy limit). Nevertheless, since the conflict

resolution is no longer formally random, there is some cause for concern. The key

point to remember, however, is that conflicts are meant to arise very infrequently, and

their resolution is simply meant to prevent the system from ending up in an invalid

state, and this kind of slight bias should not noticeably affect the results so long as

conflicts are indeed rare.

For one or more analytic events, if the net effect leads to a negative excitation

population value, each of the contributing rates is proportionally scaled down so that

the affected excitation population value is zero. The only exception to these rules

arises for a transfer event from an analytic excitation to an MC excitation. Because
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conservation rules require that the analytic excitation be decremented by the equiv-

alent of precisely one excitation, it is necessary that for this event to occur, such a

change in the analytic excitation concentration be allowed. At present, the procedure

employed to resolve such conflicts is to take the total change in the excitation concen-

tration assuming all actions are taken and obtain a scaling factor f which scales that

change to yield a final concentration of zero. All of the analytic events are then ap-

plied with their changes scaled by this concentration. If the remaining concentration

is sufficient to support at least one MC transfer event, the transfer events are then

applied in random order, one after the other, until the remaining analytic excitation

concentration is too low to support any more transfer events. While the support for

resolving such conflicts is provided in ONESim, this situation does not arise in any

of the simulation models developed for this thesis.

Once the conflict resolution is complete, and all of the events have been applied to

the excitation populations, then the simulation step is complete. Since this completes

the description of the time-step simulation, we now move on to an explanation of the

event-step simulation. This type of simulation is used in simulations containing only

MC layer excitations (i.e. analytic layer excitations are not support); it is useful

because in cases where it is applicable, it can significantly reduce computation time

compared to an equivalent time-step simulation.

In an event-step simulation, during each simulation step an event is forced to

occur for each MC excitation. Specifically, for an MC excitation subject to a se-

ries of processes governed by the rates, {Γ1, · · · ,ΓN}, during each simulation step

exactly one of those processes generates an event. This event is chosen based on a

randomly generated number, with the relative probability of occurance proportional

to the relative rates, i.e. the probabilities Pi of the i’th process occuring are given by

Γi/Γtot where Γtot ≡
∑N

k=1 Γk. Once the event is chosen, it is queued for processing

at the end of the simulation step. Before applying the events, they are processed for

conflicts, which arise when multiple events act upon the same excitation. This can

occur if multiple models act upon the same layer and excitation type. This conflict

is resolved by selecting randomly from among these events, with relative probability
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proportional to the relative Γtot values associated with each event. Once the event

is finally chosen, it is assigned a time, t, associated with how much time is to elapse

before the event is to occur. The probability distribution, P (t), associated with t

is given by, exp (−tΓtot), where Γtot here is the total rate associated with all pro-

cesses acting upon the excitation, including the total rates for any conflicting events.

The event is then processed and the “current time” associated with the excitation

incremented by t (where each excitation is initially assigned a current time of zero).

Aside from being restricted to simulations of only MC layer excitations, this type

of simulation does not support spontaneous excitation generation, and does not sup-

port excitation interactions. The first restriction arises because the idea of forcing a

particular event to occur only has meaning with respect to existing excitations, and

so the spontaneous generation a new excitation can not be treated using this method.

The second restriction arises because each event occurs following a different amount

time, and as a result, following the first simulation step each excitation is in general

located at a different point in time, and therefore multiple excitations can no longer

meaningfully interact with each other, as they are no longer co-located in time in the

simulation. Clearly these restrictions limit the usefulness of this type of simulation,

but it remains a helpful tool in certain circumstances.

4.6 Initialization, Termination, and Run Averag-

ing

Having described how the device layers and excitations are specified, and how each

simulation step proceeds, all that remains in describing the basic operation of the

simulator is to define how the system state is initialized and how the simulation

terminates. The simulation state is initialized by assigning an initial excitation pop-

ulation to each layer excitation. For an analytic layer excitation, this consists of

simply assigning to each analytic excitation an initial population that is read in from

a file. For an MC layer excitation, this consists of assigning to each site in the layer a
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probability of being initially occupied, and then creating an excitation on that site if

a randomly chosen number between 0 and 1 is less than that probability. This prob-

ability distribution is supplied in the form of a matrix of values that divide up the

layer space into Nx, Ny, Nz bins along the x, y, z directions, and the sites are assigned

their probability based on which spatial region within which they are located.

The simulation terminates after completing a predefined number of simulation

steps. In a time step simulation, one specifies a series of time step sets, which each

specify the number of time steps to be performed and the length of the time steps,

and these sets are applied in series until completed. For example, one could run time

step simulation with three time step sets: (1) 10 steps of 0.001 time units, (2) 100

steps of 0.01 time units, and (3) 30 steps of 0.1 steps. The simulation would then

consist of 140 steps, of which the first 10 are of length 0.001, the next 100 of length

0.01, and the last 30 of length 0.1. In an event step simulation, one species only the

total number of simulation steps.

Finally, one can also specify how many runs over which to average (or sum, as ap-

propriate) the simulation output, where each run comprises carrying out the required

simulation steps from the properly initialized state using a freshly generated system.

This last feature is more a matter of simple convenience, but since one usually wants

to average the results over many runs, it is quite useful.

4.7 Code Organization

In this section, the organization of the simulator code is described. The simulator

code is organized hierarchically into modules, with each module representing a C++

class. The high level classes provide the basic framework for the simulator and its

underlying functionality, while a series of low level abstract classes comprise the in-

terfaces for the classes that provide the capability to simulate particular device layers,

layer excitations, and physical models.

The highest level class is the SimulationManager. This class interfaces directly

with the external world, and contains the basic parameters of the simulation: (1) the
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simulation type (i.e. time step or event step); (2) the termination conditions (i.e.

how many steps of carry out); (3) the number of runs over which the various results

should be averaged; and (4) when during the simulation should output be generated.

Below the SimulationManager class is the Simulator class, which consists of a

wrapper around the code that: (1) (re)initializes the simulation; and (2) carries out

a single simulation step. This functionality is used by the SimulationManager to

perform the actual simulation.

Below the Simulator class are three classes which express the explicit division of

information and labor in the simulator code. The first class is the DeviceManager,

which contains the device layers, and therefore contains all of the spatial information

about the device structure. The second class is the ExcitationManager, which con-

tains the layer excitations, and therefore contains all of the information about the

excitations in the simulation. The third and final class is the ModelManager which

contains all of the physical models, and therefore contains all of the physics that are

active in the simulation.

Below the DeviceManager class lies the Layer class, which comprises the descrip-

tion of the physical structure of a general device layer, as outlined above. Below

the ExcitationManager class lies the abstract BaseLayerEx class, which comprises

the interface for providing the functionality of managing the excitations present in

a particular device layer. As noted above, this functionality mainly consists of the

ability to create, destroy, and move excitations, and based on the inherent distinction

between the kinds of operations required by an analytic model and those required by

an MC model, two different derived classes were implemented: AnalyticLayerEx and

MCLayerEx. The former is used for analytic layer excitations and the latter is used

for MC layer excitations.

Below the ModelManager class lies two abstract classes: BaseLayerModel and Ba-

seInterfaceModel. The former consists of the abstract interface for a physical model

involving a single device layer, while the latter provides the abstract interface for a

physical model involving the interaction between two different device layers. Both

types of models are specified to be stackable, in the sense that multiple models spec-
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ified for the same type of excitation and the same layer are applied by the simulation

“simultaneously” (i.e. the events are all queued to be processed together at the end of

each simulation step, which any conflict resolution performed by the relevant layer ex-

citation objects as described above). The specific implementations of classes derived

from these abstract classes comprise the physics of the simulator, and a number of such

implementations have been completed for this thesis: from the BaseLayerModel class

we derived the MCLayerModel class, and from the BaseInterfaceModel class we de-

rived the MCInterfaceModel and MCAnalyticInterfaceModel classes. Together, these

classes provide the necessary functionality for performing basic simulations of po-

larons and excitations in one or more organic layers with optional injecting/collecting

contacts.

The object instantiation and inter-object communication is managed as follows.

The SimulationManager contains an instance of the Simulator class, which contains

one each instance of the DeviceManager, ExcitationManager, and ModelManager

classes. The DeviceManager class contains instances of the Layer class. The Ex-

citationManager class contains instances of the MCLayerEx and AnalyticLayerEx

classes. The ModelManager class contains instances of the MCLayerModel, MCIn-

terfaceModel, and MCAnalyticInterfaceModel classes. During the simulation, the

primary communication pathways are between the DeviceManager, ExcitationMan-

ager, and ModelManager classes, which then mediate communication to the member

objects lying below these “manager” classes. Specifically, the layer or interface model

objects in general require information from the simulation’s DeviceManager about the

layers with which they are associated, as well as information from the simulation’s

ExciationManager about the layer excitation objects with which they are associated.

Any events generated by these models must them be queued with the associated layer

excitation objects, communication which is again mediated by the simulation’s Excia-

tionManager. In some cases, different models require information from each other, in

which case their communication is mediated through the simulation’s ModelManager.

Finally, the layer excitation objects in general need to communicate with each other

to support the transfer of excitations from one layer excitation to another. A cartoon
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Layer
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BaseLayerModel
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BaseLayerEx
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SimulationManager

Figure 4-2: Representation of ONESim class structure and communication pathways.
The fundamental ONESim classes are shown in the light blue rounded boxes, where
a class located immediately below another class is instantiated within the higher
class. (Note that the classes beginning with “Base...” are abstract classes and only
classes derived from these abstract classes can actually be instantiated.) The layer
and interface models are derived from BaseLayerModel and BaseInterfaceModel, re-
spectively, while the layer excitation classes MCLayerEx and AnalyticLayerEx are
derived from BaseLayerEx. The black arrows show the explicit communication path-
ways (and point in the direction in which information is requested), which result from
the ownership structure of each class. The purple arrows reflect implicit communica-
tion pathways supported by supplying pointers to the classes from which information
is to be requested within individual function calls.

summarizing the object structure and major communication routes is shown in Fig.

4-2.

4.8 Implementation Details of Fundamental Sim-

ulation Classes

The fundamental simulation classes comprise all of the classes described in the pre-

vious section except the low level model classes. In this section are described some

of the basic implementation details of these classes. Before proceeding, we note that

each of the fundamental simulation classes takes an ifstream argument to their con-

structors, which consists of an the input file stream containing all of the initialization

information required to construct that class. The specific format of these streams is
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not described in this thesis, as it is not relevant to the functionality of the simulator.

The generation of the initialization files that provide these streams is presently car-

ried out by a MATLAB script. It is through these files that the construction of each

of the various simulator objects is controlled.

Moving on to the code itself, in the main function of ONESim, a single Simula-

tionManager object is instantiated. Within the SimulationManager constructor, a

single Simulator object is then instantiated. Within the Simulator constructor, one

object each of the DeviceManager, ExcitationManager, and ModelManager classes is

then instantiated. In the DeviceManager constructor, a Layer object for each layer in

the device is then instantiated. In the ExcitationManager constructor, an excitation

layer object (of type MCLayerEx or AnalyticLayerEx ) for each excitation type and

each layer within which that excitation type is active is then instantiated. Finally,

within the ModelManager, all of the layer and interface model objects are instanti-

ated. Thus, once the SimulationManager object is instantiated in main, all of the

major objects utilized by the simulator are instantiated as well.

The SimulationManager provides a single public member function, run(), which

is called in main() to carry out the simulation. Within this function, for each run

over which the simulation results are to be averaged, the SimulationManager first

initializes the simulation and outputs the simulation data, then performs a series of

simulation steps, periodically outputting the simulation data again, until the simu-

lation terminates, at which point the final simulation data is output. These tasks

are carried out using calls to the following member functions of the Simulator ob-

ject: init(), outputData(), step(), and outputFinalData(). (For simplicity, function

arguments are not shown in this discussion.)

The Simulator’s init() function subsequently calls the init() member functions of

the three manager classes, each of which in turn calls the init() member functions of

their respective child objects. The outputData() and outputFinalData() function are

implemented in the same cascading way, so that each time these functions are called,

every component of the simulation, i.e. the device layers, the excitation layers, and

the models themselves, all provide output as needed, though in the simplest case, only
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the excitation layer need produce output, namely the excitation population profiles.

The step() function calls the step() member function of the ModelManager, which in

turn calls the step() member functions of each of the layer model and interface model

objects.

There are many additional functions provided by the various fundamental simu-

lator classes. Chief among these are the member functions of the Layer, MCLayerEx,

and AnalyticLayerEx classes which are utilized by model objects to implement phys-

ical models. However, the code comprising ONESim presently exceeds 10,000 lines,

and spans more than 40 different classes. It’s implementation has been a signifi-

cant software engineering challenge, and all but the most general details have been

excluded from this discussion as a simple matter of practicality.

4.9 Implementation Details of Layer Model and

Interface Model Classes

In this section we decribe the layer model and interface model classes implemented

for use in this thesis. The three model objects developed here also provide as a partial

template for the development of other model classes capable of treating additional

excitation processes. We begin with the basic Monte Carlo layer model for treating a

single type of excitation: the MCLayerModel class. This model is capable of treating

excitation transfer of MC excitations based on a variety of mechanisms.

First, transfer can occur by a constant rate within a predefined “neighbor” radius:

Γ =

 A if R ≤ Rneigh

0 if R > Rneigh

(4.1)

where A is a constant, R is the intersite distance, and Rneigh is the distance within

which the surrounding sites are considered “neighbors” to which transfer is possible.

Second, transport can occur by a rate proportional an inverse power law function of

distance and an arbitary function of the energy difference Ei − CEf where Ei and

Ef are the initial and final state energies and C is a constant, and this rate again is
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nonzero only for all sites within a predefined “neighbor” radius:

Γ =

 A 1
RBχ(Ei − CEf ) if R ≤ Rneigh

0 if R > Rneigh

(4.2)

where A and B are constants, and χ(E) is an arbitary function input to the model as

a list of N values function, and the minimum and maximum energies, Emin and Emax

respectively, associated with that list, such that for any energy E, the value of χ(E) is

linearly interpolated from the provided values assuming the energy of the i′th value is

given by Emin + i(Emax +Emin)/(N−1) where i ∈ {0, · · · , N−1}. In the special case

that E < Emin then χ(E) is given by the 0’th value, while similarly for E > Emax

χ(E) is given by the (N-1)’th value. This is the transfer rate appropriate for Forster-

type exciton transfer. Third, transport can occur with a rate that is identical to the

previous rate except that instead of an inverse power law function of distance, an

inverse exponential function of distance is employed:

Γ =

 Ae−BRχ(Ei − CEf ) if R ≤ Rneigh

0 if R > Rneigh

. (4.3)

This is the transfer rate appropriate for Dexter-type exciton transfer, or polaron

transport in the absense of an applied field. Fourth, transport can occur with a rate

that is identical to the previous rate except that Ef is modified by external vector

parameter ~F such that Ef ⇒ Ef −D~F · ~R:

Γ =

 Ae−BRχ(Ei − CE∗
f ) if R ≤ Rneigh

0 if R > Rneigh

(4.4)

where,

E∗
f = Ef −D~F · ~R (4.5)

and D is a constant. This is the transfer rate appropriate for polaron transport in

the presence of an applied field ~F that is assumed to be constant over the transfer

distance. Finally, transport can occur with a rate that is identical to the previous rate,
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except that the energy dependence is formally simplified into the Miller-Abrahams

form so that:

χ(Ei − CE∗
f ) ⇒

 1 if E∗
f < Ei

e−(E∗
f−Ei)/kBT if E∗

f ≥ Ei

. (4.6)

This is the transfer rate appopriate for polaron transport when using the field-assisting

MA hopping rate model.

Each of these transfer rates is determined based on ~R, Ei, and Ef , and so the

facility to access these values is provided by the underlying simulator code. Specifi-

cally, the model obtains from its corresponding Layer object a list for each site of all

the “neighbor” sites along with the associated ~R values, based on the provided Rneigh

values. For a single component film, Rneigh is a single value; for a multicomponent

film, one provides a matrix of Rneigh values appropriate for transfer between each

initial and final site type. With this list of neighbor sites, the model can then obtain

the values for Ei and Ef from the corresponding MCLayerEx object, and thereby

construct a list of the corresponding transfer rates.

This model does not treat general interactions between excitations, but some

basic facility for addressing certain kinds of carrier concentration effects have been

implemented. First, one can optionally prevent transfer to certain sites, based on the

final site’s occupancy (which we define as the number of excitations that occupy a

given site). In the simplest case, if the a site’s occupancy is limited to 1, then this

provides a simple way to treat the filling of sites at elevated excitation concentrations,

whereas eliminating this restriction entirely yields a system in which the excitation

concentration is effectively zero, i.e. the excitations are all effectively treated as

remaining infinitely far apart from each other at all times. The reason for supporting

other values for the site occupancy limit will become clear in the following section as

a trick is introduced for treating a wide range of excitation concentrations without

changing the number of excitations or the size of the lattice.

This model can also optionally compute the impact of space charge on the field

inside the layer along a particular direction under two restrictions: (1) the excitations
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all carry an equal, fixed charge of value q, and (2) the perpendicular directions are

uniform and subject to periodic boundary conditions, such that one may assume the

system is uniform and infinite in those directions (which reduces the problem to a

calculation in one dimension). To explain the nature of this implementation it is

necessary to first explain the physical origin of space charge effects, which essentially

represent the self-consistent application of Poisson’s equation to the calculation of

potential function, φ(~r), i.e.,

∇2φ(~r) =
−4π

ε
ρ(~r) (4.7)

where ρ(~r) is the charge distribution, which we can replace with qn(~r) where n(~r)

is the excitation distribution. If one can assign boundary conditions to φ(~r), and n(~r)

is known, then one can solve Poisson’s equation to get φ(~r), and in turn obtain the

local field, ~F (~r), using −∇φ(~r) = ~F (~r). Poisson’s equation simply reflects the fact

that spatial variations in charge concentration lead to spatial variations in potential,

which therefore imply an electric field due to that charge distribution.

In the event that the material is uniform and subject to periodic boundary con-

ditions along two dimensions, it follows that the charge concentration and therefore

the potential are similarly uniform along those dimensions. This reduces the space

charge analysis to a problem in one dimension, and we only have to solve,

d2

dx2
φ(x) = q

−4π

ε
n(x) (4.8)

where x is the spatial variable along the non-periodic, non-uniform direction. Assum-

ing the thickness of the layer along the non-periodic dimension is L, and assigning

the origin to one of the two layer faces along this dimension, we may in general solve

for φ(x) so long as φ(0), φ(n), and n(x) are known. More explicitly, by integrating

Eqn. 4.8 over x from 0 to x’, we get,

d

dx
φ(x)|x = x′ = h(x′)− F0 (4.9)

where F0 is a constant equal to l.h.s evaluated at x = 0, and,
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h(x) ≡
∫ x

0

q
−4π

ε
n(s)ds. (4.10)

Note that since −(d/dx)φ(x) = F (x), it is clear that F0 refers to the field evaluated

at x=0.

Integrating a second time from 0 to x gives,

φ(x) =

∫ x

0

h(s)ds+ F0x+ phi0 (4.11)

where φ0 is a cosntant equal to the potential at x=0. By construction, we choose

φ(0) = 0 (as we are always free to arbitarily shift the potential everywhere by a

constant), so that φ0 = 0. To solve for F0 we use our boundary condition on φ(L):

φ(L) =

∫ L

0

h(s)ds+ F0L (4.12)

∴ F0 =
1

L

(
φ(L)−

∫ L

0

h(s)ds

)
. (4.13)

To implement this analysis for a system of MC excitations, we first divide the

space of the layer along the non-periodic dimension into N + 1 discrete points, each

separated by a distance ∆x: i.e. xi = i∆x where i ∈ {0, · · · , N} and ∆x = L/N .

These points divide the layer space into N bins, indexed from 0 to N − 1, as shown

in Fig. 4-3 (a). We associate with the i’th bin an average excitation concentration,

ni, given by the total number of excitations contained in that bin divided by the bin

volume.

Since our objective is actually to solve for the fields, we set out to compute

F (x′) = −(d/dx)φ(x)|x=x′ , instead of φ(x), evaluated at our N + 1 discrete points.

In particular, we wish to solve,

F (x) = −h(x) + F0 (4.14)

for x ∈ x0, · · · , xN . Our approach is to numerically evaluate h(x) at our N + 1
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points, and then numerically solve for F0. Applying a simple boxcar quadrature we

first compute,

h(xm) = q
4π

ε
∆x

m−1∑
k=0

nk (4.15)

and then compute,

F0 =
φ(L)

L
− 1

L
∆x

N∑
m=0

h(xm) +
1

2
(h(x0) + h(xL)) (4.16)

where the last term on the r.h.s corrects for the fact that the boxcar quadrature on

its own actually integrates from x = −∆x/2 to x = L + Deltax/2. This point is

illustrated in Fig. 4-3 (b). Having solved for F0 and h(x) at our N + 1 discrete

points, we can then evaluate F (x) at our N + 1 discrete points. To finally apply

the space charge field to the MC excitations themselves, we subject each excitation

to the average of the two fields evaluated at the edges of the bin within which that

excitation is location, as illustrated in Fig. 4-3 (c).

The MCInterfaceModel class is identical to the MCLayerModel class except that

it links together sites in two different layers, and does not presently support space

charge effects. The MCAnalyticinterfaceModel class, however, is quite different, as

this class links an analytic excitation layer to an MC excitation layer. This class

is utilized in this thesis to support injecting/collecting contacts, but was designed

to support the more general functionality of linking together any analytic excitation

layer to any MC excitation layer. Based on the above descriptions of the the MC

and analytic excitation layers, the function of the MCAnalyticinterfaceModel class

should be clear: it specifies the manner in which exctiations are transferred between

an MC excitation layer and an analytic excitation layer. The challenge in this task

is in addressing the fact that an excitation in the MC excitation layer is a discrete

entity associated with a particular molecular site, while an excitation in the analytic

excitation layer is a continuous quantity associated with a discrete region of space.

When carrying out a transfer from an MC excitation layer to an analytic layer

excitation, as noted above, one removes an excitation from the MC excitation layer
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Figure 4-3: Illustration of space charge field calculation in ONESim. In (a) is shown
the subdivision of a device layer into N regions based on an equally spaced set of N+1
discrete points along, in this example, the x axis. The spacing between the points is
given by ∆x. In (b) is shown the boxcar quadrature approximation of the integral
over a function f(x) from an initial point x0 to a final point x5 based on the value
of f(x) evaluated at a set of equally spaced points beginning with x0 and ending with
x5. The key point is simply that the boxcar quadrature approximation represents
a discrete value of f(x) as a bar column of width equal to ∆x centered around the
associated point on the x-axis, and the integral is just the sum of these rectangular
areas; however, only half the first and last bar columns are contained within the
integration bounds, so we must subtract half of the first and last contributions from
the sum. In (c) is shown how all excitations on MC sites with x position located
between xN and xN+1 are assigned the average of the field evaluated at xN and xN+1.
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and increments by 1.0 the excitation number in the appropriate analytic excitation

bin. Conversely, when carrying out a transfer from an analytic layer excitation to an

MC layer excitation, one decrements by 1.0 the excitation number in the appropriate

analytic excitation bin and creates an appropriate excitation in the MC layer exci-

tation. While both of these operations are entirely trivial, it can be challenging to

properly assign appopriate transfer rate.

In principle, the most accurate approach would be to analytically integrate the

transfer rate between the discrete MC point and the continuous region in space com-

prising the analytic excitation bin. Alternatively, one could treat the transfer event

as occuring to a discrete point in the “middle” of the analytic excitation bin, or even

to its perimeter. Additionally, for transfer from an analytic excitation bin to an MC

excitation site, one must determine the impact on the rate of the existing excitation

population number.

In the MCAnalyticinterfaceModel class, we implement the simplest of these ap-

proaches. Namely, the Layer object provides the facility for generating neighbor lists

(consisting of analytic bins that are neighbors of MC sites, and vice versa) based

either on the shortest distance between the MC site and the surface of the analytic

bin or based on the distance between the MC site and the middle of the analytic bin.

The choice of method is determined from a supplied model parameter. The transfer

rates in this model are all proportional to the excitation number of the source en-

tity, which is 1.0 for an MC excitation, and is the excitation value for an analytic

excitation. All of the same transfer rates as described above for the MCLayerModel

and MCInterfaceModel classes are implemented for the this model, with the distances

calculated either to the surface of analytic bin or to the center of the bin, consistent

with the method selected for obtaining the neighbor lists.

4.10 Periodic Boundary Conditions and Interfaces

As discussed above, we are often interested in device geometries in which one of the

dimensions are on order tens of molecular layers, but the other two dimensions are
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effectively infinite on this scale. We will also find it useful to study systems which

are effectively infinite in all three dimensions. While it is theoretically possible to

simply model organic layers using larger and larger MC lattices until the desired re-

sults converged, this is hardly the most efficient approach. Instead, one can employ

periodic boundary conditions, such that the space defining a particular device layer

object optionally “wraps” each dimension around from one edge to its opposing edge,

and vice versa. Because the device layer objects are defined as rectangular prisms,

the formal transformation of the spatial dimensions along any wrapped dimension

corresponds to a simple modulo operation. For instance, an arbitary position ~r actu-

ally corresponds to an infinite set of positions with respect to a device layer wrapped

along the x̂ dimension. For a layer of length Lx along the x̂ dimension, these positions

are given by,

~rn = ~r + nLxx̂ (4.17)

where n ∈ Z. If additional dimensions are wrapped as well, then this infinite space of

positions is expanded to include any combination of integer offsets along each wrapped

dimension by the spatial extent of the layer along that dimension. In theory, this can

lead to multiple linkages between the “same” two sites in a single MC layer, if the

neighbor radius associated with the transfer process is greater than the spatial extent

along any wrapped dimension. This may seem like an inconsistency, but in fact

represents the proper behavior, for along a wrapped dimension the idea is to allow

multiple copies of the lattice to exist offset from the real lattice in such a way that

the finite system simulates an infinite system. The presense of multiple linkages with

different interaction distances between the same two sites simply reflects the fact

that individual sites in the system are serving the function of multiple different sites.

Whereas the task of computing distances is made more computationally intensive

in the presense of periodic boundary conditions, and some careful bookkeeping is

required to provide for multiple linkages between the same two sites, the problem is

nevertheless formally trivial. The treatment of interfaces, however, is much subtler.
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We consider first two different MC lattices that are to be linked together. This

challanges of this task are illustrated by considering three different possible situa-

tions: (1) neither layer wraps a dimension, (2) one layer and not the other wraps a

given dimension, and (3) both layers wrap a given dimension. In the first case, the

linkages are trivially defined by simply calculating the real space distances between

sites in the two lattices. In the second case, points in the unwrapped layer must be

wrapped into the space of the wrapped layer for the purpose of computing linkages in

both directions. In the third case, for computing linkages from the first layer to the

second, points in the first layer are wrapped into the space of the second, and vice

versa. The results of these linking rules are shown in Fig. 4-4 which illustrates the

situation governing each case, for two layers each containing a single point and where

the same maximum neighbor distance is applied regardless of the direction of linkage.

The key here is that to properly apply periodic boundary conditions one must always

remember that one effectively has an infinite number of copies of that layer repeated

along each periodic direction. The one confusing implication of such boundary condi-

tions here is that when both layers are subject to periodic boundary conditions along

a given direction, the objective in carrying out the linkages changes from specifying

every linkage along that direction, to specifying the proper average linkage density

(as the presense of periodic boundary conditions on both layers implies an infinite

number of linkages, and so it is not possible, nor particularly meaningful, to try to

specify them “all.”)

A further subtlety arises when interpreting the actual transfer of an excitation unit

from one layer to another in the presense of periodic boundary conditions. Consider

for instance the situation of two layers, each wrapped along the x and y axes but

stacked one on top of the other along the z axis. First, we assume that the two layers

have the same spatial extent in the x-y plane, and consider the transfer of a single

MC excitation from one layer to the other. In this case, a carrier in the first layer

makes the same contribution to the total carrier concentration as in the second layer,

in the sense that if we consider identical thin sheets in the x-y plane on either side

of the interface between the two layers, the addition of a single excitation into those
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Figure 4-4: Illustration of rules for linking together points in two device layers in
ONESim, each optionally subject to periodic boundary conditions along a direction
perpendicular to the interface. The large circles all have the same radius, equal to the
maximum neighbor distance, with the black circle always centered on the point in the
first layer, and the red circle always centered on the point in the second layer. The
direction of the linkage arrows indicate the direction of transfer for that link. In (a) is
shown the trivial case where neither layer is subject to periodic boundary conditions.
In (b) is shown the case where both layers are subject to periodic boundary conditions.
In (c) and (d) are shown the two cases where only one of the layers is subject to
periodic boundary conditions. In (a), (c), and (d) the linkage rules yield energy
linkage between the two layers implied by the specified boundary conditions, where
in (b), where there is an infinite number of such linkages, the linkage rules yield the
average linkage density between the two layers.
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sheets changes the total excitation concentration by the same amount. Thus the

transfer of a carrier from one layer to the other properly conserves the total carrier

concentration in the system. If, on the other hand, two layers do not have the same

spatial extent, then the transfer of an excitation from one layer to the other leads to a

different change in the carrier concentration, and thus the charge is no longer properly

conserved. The problem is that in the presense of periodic boundary conditions, we

can think of each layer as representing the average properties of an infinite system

along each wrapped dimension, in which case the relevant property is not the absolute

number of excitations, but rather the corresponding excitation concentration. A

single excitation in a layer having small wrapped dimensions, however, represents a

larger carrier concentration than a single excitation in a layer having large wrapped

dimensions, and the transfer of an MC excitation from one layer to the other effectively

violates excitation conservation. This difficulty can not be resolved for two MC

excitation layers, and thus when interfacing two such excitation layers, it is required

that the associated layer objects have the same spatial extent along all of the wrapped

dimensions.

The interface between an analytic excitation layer and an MC excitation layer can

in principle be treated in a more general manner simply by applying scaling factors to

the excitation population numbers associated with transport across interfaces involv-

ing wrapped dimensions. To explain, we again consider the case of two layers that

wrap in the x-y plane, now with the MC excitation layer associated with a device

layer having cross sectional area A1 and the analytic excitation layer associated with

a device layer having cross sectional area A2. For transfer from the MC excitation

layer to the analytic excitation layer, we increase the excitation number associated

with the analytic bin by a value equal to A2/A1. For transfer from the analytic ex-

citation layer to the MC excitation layer, we are restricted by the need to always

end up with a single discrete transferred excitation in the MC excitation layer; as a

result, such a transfer is required to decrease the excitation number of the analytic

bin by an amount equal to A2/A1. One must also scale excitation number by A1/A2

when computing the total transfer rate, since the normalized rate prefactor is speci-
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fied as the rate per unit excitation, which here consists of A2/A1. Though all of these

corrections can be straightforwardly implemented in a particular model object (with

extension to the cases where: (1) only one dimension wraps, in which case the scaling

factors consists of the ratio of the lengths of the wrapped dimension; or (2) all three

dimensions wraps, in which case the layer volumes are used), it is usually simpler

to simply construct a system in which the interfaced layers all have the same cross

sectional areas. All of the simulations employed in this thesis maintain this condition,

and for this reason, the implemented interface model functions do not require any of

these rescaling factors.

4.11 Concentration Effects

A final matter of concern regards the handling of concentration effects in organic

layers. To support the modeling of such effects, the MCLayerEx class provides the

facility to limit the number of times a particular site can be occupied by the same

type of excitation, as briefly noted above. The maximum occupancy can be set to

be either infinite (in which case there is no limit on the number of times a site can

be occupied) or equal to an integer M . The support for this limit comprises two

components. First, the occupancy of a site greater than it’s maximum is treated as

a conflict and resolved as described above. Second, the MCLayerEx makes available

the fractional occupancy of a given site, so that a model can alter the associated

transfer rate as needed. This fractional occupancy is equal to the site’s occupancy

divided by M , with the fraction always being zero if M is chosen to be infinite. The

use of this facility to actually implement basic concentration effects is as follows.

In the simplest case of M = 1, by simply dividing the number of excitations, N ,

in a given region by the volume, V , of that region, one can then obtain the associated

average excitation concentration, n. In applying transfer rates in such a system, the

rate of transfer to any occupied site is set to zero. In the case that there is no limit

on the number of times a single site can be excited, the effective concentration is

always zero. The idea behind this interpretation is that in this case, no matter how
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many excitations are present in the system, they never interact with each other, and

therefore it is as if each excitation is always infinitely far from the others, or in other

words, the concentration is always effectively zero. In this case, the transfer rates are

unaffected by the occupancy of the destination site.

In the case that M is equal to a finite integer greater than 1, each lattice site can

be thought of as simultaneously representing M parallel copies of that site. In this

case, it is clear that the system is not fully occupied until each site is occupied M

times, and as a result we have that n = (N/M)/V . The usefulness of this construction

is that it allows one to model low carrier concentrations without either reducing N ,

which reduces the statistical significance of the results, or increasing the size of the

lattice, which may not be computationally feasible (due to memory and performance

restrictions). To properly treat transfer rates in this case, we multiply the transfer

rate to an unoccupied site by 1.0 minus the fractional probability, to reflect the fact

that for a site with fractional occupancy f , the probability that an abritary excitation

trying to transfer to that site encounters one of the occupied “copies” of that site is

given by f .

A final difficulty involving the case of M greater than 1 is that the transfer of

an excitation from one MC layer excitation to another with different M leads to a

normalization problem, since the effective local concentration contributed by that

excitation is no longer conserved. (This complication is much like the complications

that arise when trying to link together two different MC lattices having different

spatial extents along wrapped dimensions.) This problem does not arise in any of

the simulations presented in this thesis, but the recommended procedure is simply

to maintain the same value for M for all of the MC layer excitations linked togehter

in a given simulation. Clearly, the value of M must also be taken into account in

treating transfer between an MC layer excitation and an analytic layer excitations;

specifically, the effective contribution of a single excitation in the MC layer excitation

is equal to 1/M in the analytic layer excitation.
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4.12 Specific Device Simulation Examples

In the following chapters of this thesis two different types of simulations are consid-

ered, and they are described here in the context of their specification in terms of the

ONESim code. In the first type of simulation, which we refer to as an infinite bulk

simulation, we model a single device layer wrapped in all three dimensions. Thus

there is a single Layer object under the DeviceManager. In addition, we consider

a single type of MC excitation in this layer, so there is a single MCLayerEx object

under the ExcitationManager. Finally, a single transfer mechanism is applied to these

excitations, so that there is a single MCLayerModel object under the ModelManager.

In this type of simulation, we initialize the system by randomly creating excitations

on each site in the system based on an equal probability distribution. The simulation

is then carried out using either time-step or event-step simulation steps. If concen-

tration effects are to be modelled in this system, the sites are assigned a maximum

excitation number of M as discussed above. Since the layer wraps in every dimen-

sion, it is implicit that the excitation concentration is effectively constant along every

dimension (since an infinite number of copies of the same system exist along each di-

rection), and so it follows that the excitation concentration in the system is expressed

as simply the carrier concentration averaged over the entire layer and scaled by 1/M .

In the second type of simulation, we model a single device layer sandwiched be-

tween one injecting and one collecting contact, with the layers all wrapped in the

plane perpendicular to the stacking direction. (In this thesis we employ the conven-

tion of stacking the layers in the z-direction while wrapping them in the x-y plane.)

Thus there are three Layer objects under the DeviceManager, two for the contacts,

and one for the active film. We treat a single type of MC excitation in the active

layer, having an associated MCLayerEx object under the ExcitationManager. The

two contact layers are each treated analytically, using a single analytic bin and hav-

ing an associated excitation value that is fixed at initialization. These two layers

contribute an additional pair of AnalyticLayerEx objects under the ExcitationMan-

ager. Finally, there are three model objects, one MCLayerModel object for treating
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the excitations in the active layer, and two MCAnalyticInterfaceModel objects for

treating the injecting and collecting interfaces. Since this simulation is designed to

study bulk-limited conduction through the active layer, the MCLayerModel employs

transport models appropriate for polarons including space charge effects as outlined

above. (The voltage applied across the layer is treated as a simulation parameter.)

The collecting MCAnalyticInterfaceModel object consists of a one-directional set

of transfer linkages from the MC sites to the contact surface. All sites within a spec-

ified distance are linked and are assigned the same constant transfer rate chosen so

that in any given time step, the probability of transfer is always 1.0. This ensures that

the collecting contact behaves like an “ideal” collector. The injecting MCAnalyticIn-

terfaceModel object is slightly more complicated. The linkages are one-directional

from the surface of the contact to the MC site, and as for the collecting contact,

all sites within a specified distance are linked and assigned the same transfer rate.

However, this transfer rate is equal to a prefactor times the field present just inside

the active layer. This field is just the field at the edge of the layer in terms of the

space charge analysis described above, and is therefore calculated by the MCLayer-

Model associated with the active layer. Thus, to determine the injection rates the

MCAnalyticInterfaceModel requests this field from the MCLayerModel before each

time step. Details regarding the choice of the prefactor for the injection rate will be

discussed further in the chapter describing the simulation experiments themselves.

4.13 Conclusion

The ONESim code is very much a work in progress. It’s present development has

been driven by those calculations that were most interesting or relevant to this thesis.

Furthermore, this represents just the first attempt to develop a general purpose code

base for combining arbitary MC and analytic models into a unified simulation, and

the code is undergoing active revision as more features are added or existing features

rebuilt to improve efficiency and/or elegance.

The present implementation has only been fully developed and tested for two types
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of simulation: a single type of excitation within a collection of MC lattices, and a

similar system capped by injecting and collecting contacts. Interactions between MC

excitations are only incompletely supported, though the required changes to the code

are minor (mainly having to do with improving the conflict resolution procedure as

described above.) Concentration effects are supported by way of preventing transfer

to occupied sites as described above, but more complex concentration effects like

Coulombic repulsion are not implemented, and it is not clear if additional facilities

will be required of the basic simulation classes to support the such models. The

treatment of space charge effects for individual layers containing a single type of

excitation is well supported, but additional facilities to support space charge effects

for multiple charged species and across layers are not yet complete.

We also note that no complex analytic model classes have been implemented, since

the main use of analytic models in the present code is simply to supply ohmic contacts.

It is expected that the support of such models will require further modifications to the

basic simulator code. Nevertheless, a significant effort was made to make the structure

of ONESim and the implementations of the basic classes as general as possible, and

we are optimistic that few fundamental changes will be necessary.

Finally, although the subject has not be previously discussed, the efficiency of the

code is a major concern because the simulations described in this thesis can take as

long as a week to complete, and at least part of this simulation time is due to the

overhead associated with supporting such general functionality. In future versions

of ONESim, refinements are planned to improve the computational performance, in-

cluding the possible implementation of an event-step simulation that supports limited

concentration effects.
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Chapter 5

Exciton Motion

5.1 Introduction

The simplest intermolecular process involving excitons is exciton motion, comprising

the transport of excitons from one molecule to another by means of intermolecular

transfer. The study of exciton motion, and exciton diffusion in particular (which refers

to exciton motion between molecules of the same type) in amorphous organic solids

has generated intense research activity over the last twenty five years. Exciton motion

is now understood to be a ubiquitous process in organic optoelectronic thin film

devices, and of particular importance in modeling OLEDs, solar cells, photodetectors,

and some chemical sensors. Experimental techniques refined over the few decades have

made possible the detailed study of exciton diffusion in well controlled systems, and

good agreement between theory and experiment has been obtained.

In this chapter, the fundamental mechanisms of exciton motion are described,

and placed in the context of the preceeding molecular model of amorphous molecular

organic solids. The existing literature on the relevant experimental measurement

and theoretical analysis of exciton motion in amorphous organic materials are also

reviewed. General Monte Carlo simulations of exciton diffusion using ONESim are

presented, and the dependencies of exciton motion on molecular properties indicated.

Finally, a self-consistent analysis of exciton diffusion in AlQ3 is presented.
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5.2 Motivation

In Chapter 2 a number of intermolecular transfer mechanisms involving polarons and

excitons were introduced. For the study of exciton motion, two processes are relevant:

Dexter Transfer and Forster Transfer. In the former, an exciton is transferred from

one molecule (the donor) to another (the acceptor) by way of a pair of simultaneous

electron hopping events. In the latter, an exciton is transferred from the acceptor

to the donor by way of dipole-dipole coupling between the two molecular charge

distributions. In both, the net effect in an organic molecular solid is to support the

motion of excitons through the material.

Exciton motion impacts organic optoelectronic device performance in a variety

of ways, and its influence on two representative examples, a single-color OLED and

a solar cell, serve as illustrative examples. (These descriptions build off the basic

discussion of organic electronic device operation given in Chapter 1.) In conventional

heterostructure OLEDs electrons and holes travel through their respective transport

layers and meet at an interface within the device. At this interface, excitons form

as the electrons and holes combine onto a single molecular site, and these excitons

can form on one or both sides of this interface, depending on the layer materials

and operating conditions. In typical applications, emission from a single type of

molecule is desired, e.g. in display applications, where single color OLEDs (i.e. red,

green, blue) are needed. Thus to obtain optimal device performance every generated

exciton ideally emits from a single type of molecule. Exciton motion can support or

inhibit this objective, depending on the situation.

For the simplest case of an OLED consisting of two neat layers, one of two trans-

port layers also serves as the emitter. Referring to the emitting layer as E and the

other layer as L (for loss), it is clear that any excitons that relax on the L side of

the interface are lost. By controlling exciton motion, however, one can engineer for

a net rate of exciton transfer from L to E and, if this net rate is high enough, any

excitons generated in L can be recovered before they relax. This can be accomplished

by ensuring that the exciton state of E has a substantially lower energy than the ex-
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citon state of L, since the Dexter and Forster transfer rates are greater for “downhill”

transfers than for “uphill” transfers. (Recalling from the discussion in Chapter 2,

this assymmetry arises because in the “uphill” case it is necessary to steal thermal

energy from the surroundings to carry out the needed electronic transition.) At the

same time, the Dexter and Forster rates fall off sharply with distance and therefore

will only support transfer to nearby molecules; thus the farther an exciton in L gets

from the interface, the less likely it is to be recovered. This indicates that exciton

motion within L competes with exciton motion from L to E, since such motion will on

average draw excitons in L away from the interface (as a result of the concentration

gradient).

Because of the presense of exciton motion, both between molecules of differ-

ent types (which is often referred to alternatively as energy transfer) and between

molecules of the same type, it is desireable to control this movement to optimize de-

vice performance. In some cases it is desired that exciton motion through a layer be

prevented, in which case so-called “exciton blocking layers” (which prevents exciton

motion through the layer by virtue a high exciton energy) are used. In other cases

it is desired that exciton motion through a particular series of molecules of different

types (a.k.a. “cascade energy transfer”) is desired, in which case multicomponent

films composed of molecules having progressively lower exciton energies are used. To

optimize such device engineering, a deep understanding of the exciton motion process

is required.

In OLEDs, exciton motion is in some sense a secondary process, in that one could

still construct a high efficiency OLED without it; in contrast, in organic solar cells

exciton motion, and specifically exciton diffusion, is a central and necessary compo-

nent of efficient device operation (see [116] for an excellent review of small molecular

weight amorphous organic thin film solar cells). In an organic solar cell excitons are

generated through the aborption of incident photons, and those excitons then dissoci-

ate inside the device, at which point the corresponding electron and hole travel out of

the device, thereby converting the incident optical energy into usable electrical energy

(namely, current). The main challenges in obtaining high performance organic solar
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cells are: (1) efficiently dissociating the excitons before they decay into the ground

state, and (2) efficiently extracting the dissociated electrons and holes with minimal

resistive losses.

The former challenge arises because excitons on most organic molecules have a very

high binding energy, making spontaneous dissociation energetically unfavorable (i.e.

slow and therefore inefficient). This difficulty is resolved by making the dissociated

state lower in energy than the exciton state through the use of internal interface in

which the dissociation splits the electron and hole onto molecules of different types.

This allows one to arrange for separate electron or hole energies that are low enough

to compensate for the exciton binding energies of the molecules on either side of the

interface. Because most organic charge transport layers can only efficiently transport

either electrons or holes (but not both), the choice of this interface is usually further

restricted to ensure that the electrons end up in the electron transporting layer and

the holes in the hole transporting layer.

Clearly, the optimization of this kind of device requires that as many of the gen-

erated excitons as possible be formed near the interface at which dissociation occurs.

Indeed, in the absense of exciton motion, only those excitons absorbed by molecules

precisely at the interface could dissociate, and either the device efficiency would be

very low (due to the excitons that failed to dissociated) or the amount of absorbed

light would be impactically low (by designing the active layers to limit absorption

to only those molecules precisely at the interface). However, if the excitons in the

absorbing material have a high rate of exciton diffusion, excitons generated over a

much larger region of the device could reach the interface and dissociate, thereby

enhancing efficiency without sacrificing absorption. Overall, organic solar cell de-

vice performance is universally enhanced by higher exciton diffusion rates, and the

engineering of that rate requires a complete understanding of the exciton diffusion

process.

These two simple device examples illustrate that in general when developing an

organic optoelectronic device one of the critical tasks is controlling exciton motion.

Furthermore, it is evident that to properly model the behavior of these devices, one
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must be able to properly model exciton motion. In this chapter, the molecular model

of exciton behavior described earlier in this thesis together with the ONELab Simu-

lator are used to analyze exciton motion.

5.3 Background: Theory of Exciton Motion

Interest in exciton motion in organic materials over the last twenty years has risen

dramatically, particularly in the context of amorphous organic thin films, due to the

relevance of this process in technologically significant organic devices. In this section,

the existing literature relevant to the modern theory of exciton motion in amorphous

small molecule organic solids is reviewed. The study of exciton motion in organic

solids has a long history, extending back to the original reports of Forster[41, 42] and

Dexter[36] describing the exciton transfer mechanisms which now bear their name.

The early investigation of exciton motion was focused on small molecule crystals, and

a number of excellent reviews of this work exist (see [46, 61, 160, 159, 16, 132, 67, 40,

7, 126, 117]).

In this early work a number of important conclusions were drawn. First, the valid-

ity of the Forster and Dexter transfer mechanisms was well established. Furthermore,

it was found that the former controls singlet exciton motion while the latter controls

triplet exciton motion. The reason for this distinction between the two types of exci-

tons is that the Dexter transfer rate, which is dependent on wavefunction overlap, is

roughly independent of the exciton spin symmetry, whereas the Forster transfer rate

— which is dependent on the exciton creation and destruction transition dipole mo-

ments for the acceptor and donor, respectively — is much faster for singlets than for

triplets since singlets since singlets have larger exciton destruction transition dipole

moments. More precisely, in the limit of a pure triplet, the transition dipole moment

for exciton destruction is zero, and the Forster transfer rate therefore also zero. For a

phosphorescent molecule, where the triplet state has some singlet character, the tran-

sition dipole moment for exciton destruction is usually many orders of magnitude

smaller than for typical singlet excitons, as reflected in the much longer radiative
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lifetimes of triplets compared to singlets. This effect, however, only differentiates

the transition dipole moment for exciton destruction on the donor; for the acceptor,

the relevant transition dipole moment is still associated with singlet exciton creation

since this is the only allowed transition for a neutral (and presumably closed-shell)

molecule. Immediately following Forster transfer, the exciton on the acceptor is al-

ways of singlet character, for both fluorescent and phosphorescent materials, though

in efficient phosphorescent molecules this state rapidly relaxes into a triplet1 While it

is conventional to interpret these results in terms of a simple singlet/triplet distinc-

tion, a more general statement can be made since the impact on the Forster transfer

rate of changing the strength of the donor’s exciton destruction transition dipole mo-

ment is entirely encapsulated by the change in the radiative lifetime. In other words,

depending on the radiative lifetime, either Forster transfer or Dexter transfer, or both,

will contribute to the observed exciton motion. In this sense, it is not intrinsically the

singlet or triplet character of the exciton that is important, but the radiative lifetime.

The practical significance of this observation is that for long-lived singlet excitons, or

short-lived triplet excitons, the simple separation described should be applied with

caution.

Second, it was found that exciton motion is almost universally described by in-

coherent hopping, with coherent exciton transport only arising in a small number of

materials at very low temperatures (i.e. in materials and at temperatures where the

phonon scattering is very low, which is experimentally manifest in extremely sharp

phonon lines in the absorption and emission spectra). As a result, in most experi-

mental conditions, one can accurately model exciton motion in terms of a series of

random Dexter or Forster transfer events, with the relevant rates determined by the

molecular properties of each potential donor-acceptor pair. Third, it was found that

molecular wavefunction overlap decays sufficiently rapidly with distance that Dexter

transfer effectively occurs only between neighboring molecules, while for Forster trans-

fer the comparatively weak R−6 dependence of the rate makes this “nearest-neighbor”

1Implicit here is the fact that the triplet state is lower in energy than the singlet state, which is
true in all of the organic phosphorescent molecules reported to date.
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assumption inaccurate. Rather in real systems, it was found that the Forster trans-

fer rate is sufficiently high to support appreciable transfer over a distance of multiple

molecular distances. Fourth, it was found that good agreement with experiment is ob-

tained by describing exciton diffusion in a given material terms of a constant, isotropic

diffusion coefficient, D, motivated by a view of diffusion process as a non-dispersive

random walk.

More recently focus has shifted to the study of exciton motion in disordered ma-

terials. This disorder can take a variety of forms, but is conventionally described in

terms of three components: spatial, orientational, and energetic. The case of spatial

disorder was first investigated theoretically by Haan and Zwanzig[53], who showed

that exciton diffusion by Forster transfer is non-dispersive in a spatially disordered

system, meaning that the diffusion coefficient is a function of time. A more sophisti-

cated treatment (based on self-consistent, diagrammatic series approximations) was

reported soon after by Gochanour et al.[49]. Subsequently, a number of theoretical in-

vestigations extended this analysis to any incoherent electronic “hopping” process (i.e.

any process in which a localized excitation incoherently “hops” from one molecular

site to another) in spatially disordered systems (see e.g. [51, 100]). Bassler[10] sub-

sequently stressed the importance of energy disorder in analyzing hopping processes

in amorphous organic solids, arguing that a Gaussian exciton DOS with standard

deviations of roughly 0.1 eV is expected (based on an estimate of the impact of po-

larization disorder on the exciton DOS). He demonstrated using Monte Carlo (MC)

simulations that spatial disorder is not necessary to achieve dispersive motion of elec-

tronic excitations; indeed, a comparison of his results with those previously reported

for pure spatial disorder demonstrated that for typical energy disorder the impact of

spatial disorder on the results is quite small.

Since these initial studies, the vast majority of the subsequent analyses of exciton

motion in disordered organic materials have represented straighforward extensions of

the basic theory of incoherent exciton transfer, by the Dexter or Forster mechanisms,

between molecular sites subject to spatial, orientational, and energetic disorder. A

particularly comprehensive early theoretical treatment of the problem of energetic
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disorder is due to Movaghar and coworkers[100, 102, 103, 104, 101]. They report an

analysis of exciton diffusion for both the Dexter and Forster transfer mechanisms in

molecular systems subject to Gaussian energetic disorder. In their model, the exciton

transfer rate W between two molecules is given by,

W = P (R)χ(ED, EA) (5.1)

where

χ(ED, EA) =

 exp [− (EA − ED) /kBT ] EA > ED

1 otherwise
, (5.2)

where kB is Boltzman’s constant, R is the separation distance between the two

molecules, T is the temperature, and ED and EA are the exciton energies of the

exciton donating and exciton accepting molecules. For Dexter transfer,

P (R) = νDex exp [−γR] , (5.3)

and for Forster transfer,

P (R) = (1/τrad) (RF/R)6 , (5.4)

where νDex is the Dexter transfer wavefunction overlap term, γ governs the rate at

which the Dexter wavefunction overlap decays with distance, τrad is the radiative

lifetime, and RF is the Förster radius. The exciton DOS, g(E), has a standard

deviation σ, and the molecules are assumed to be uniformly distributed in space.

The model parameters are the molecular density, n, wDOS, and for Dexter transfer,

νDex and γ, while for Forster transfer, τrad and RF .

In the report, they present an analytic theory is based on an approximate Green’s
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function solution to the Pauli Master Equation obtained by linearizing the governing

equation for transfer between all sites in the limit of low excitations. A detailed

derivation is provided in Appendix C. Based on this approximate analytic theory

they obtain expressions for the time evolution of the diffusion coefficient, D(t), and

the mean energy of the exciton population, Ē(t). They report calculations for the

case of an electron hopping rate (i.e. a Dexter transfer rate). They also compare

the calculations of the analytic theory to Monte Carlo simulations employing a cubic

lattice and the same transfer rate. They find good (but not perfect) agreement

between the Monte Carlo simulations and the analytic theory, indicating that the

approximations of analytic theory are at least qualitatively acceptable.

They also find that D(t) is, as expected, strongly dispersive when the initial

exciton population is given by a random population (making the initial population

therefore proportional to the DOS). Specifically, D(t) decays with time towards an

equilibrium value, Deq. No empirical expression is provided for calculating D∞ based

on the system parameters, but it is noted that it is proportional to exp [−(σ/kBT )2].

It is also noted that the time required to reach equilibrium is proportional to D
−1/α
∞

where α is roughly 0.45, though again an empirical expression based on the system

parameters is not explicitly provided. A plot of D(t) for a range of values of σ subject

to Dexter transfer, reproduced from [101], is shown in Fig. 5-1 (a). (The original paper

does not site a value for γ, but elsewhere results are reported for γ = 10D−1
site, and

the same value is likely used for the data in this plot, consistent with the assumption

that Dexter transfer is limited to nearest neighbors.)

It is also found that Ē(t) decays towards an equilibrium value, Ēeq, analytically

predicted to be −σ2/kBT . However, it is found in the Monte Carlo simulations

that for large σ/kBT , this limit is not reached (except at infinite times) because the

excitons become essentially “frozen” in low energy sites from which they can not,

practically, escape. This “freezing” behavior is not well reproduced by the analytic

theory, yielding even qualitiatively incorrect results at long times, but it is found

that these errors are not significant for σ/kBT ≤ 5. Though the authors argue

that the agreement between the analytic theory and Monte Carlo calculations is
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Figure 5-1: Exciton diffusion calculations for Dexter transfer, from [101]. In (a) are
shown analytic calculations of D(t), and in (b) are shown analytic (solid line) and
MC (dashed line) calculations of Ē(t). In these calculations, γ = 10D−1

site. The value
ν0 appearing in the figure is equal to νDex. This value is related to the mean hopping
time, denoted in the figure by τH and in this thesis by τ̄Dex (equal to exp[10]/ν0).
The time τH is identified in the figure by a vertical dashed line.
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excellent aside from the difficulty in treating long time behavior for large σ/kBT ,

it is worth noting that deviations are still evident at short times, as indicated by a

plot of Ē(t) (reproduced from [101]) shown in Fig. 5-1 (b). Regarding the use of

the analytic theory, the authors note that in solving the needed integral equations

the results are sensitive to the choice of the minimal allowed interaction distance (i.e.

the lower bound on R when performing the spatial integration) and that this value

is an essentially arbitary choice. For most of their results (and for all the data in the

plots shown here), they used Rmin = 0. They also report that it is necessary to scale

the density when performing the calculation to correct for that fact that the analytic

approximations overestimate the transfer rates, and report an optimal scaling factor

of roughly 1.0/2.7 for Dexter type transfer. (They refer to this scaling actor as a

percolation factor.) No calculations are reported for Forster transfer rates.

Before moving one, two comments are necessary regarding the approximations em-

ployed in the Movaghar model. First, the Movaghar work, while quite comprehensive

in treating energy disorder, does not include explicit spatial or orientational disorder.

The neglect of explicit spatial disorder is apparent in their analytic theory through

the assumption of a constant molecular density, which therefore does not account

for variations in the local density arising from spatial disorder. In the Monte Carlo

calculations, this neglect arises in the use of cubic lattices. The neglect of explicit

orientational disorder is manifest in the use of a single value for νDex, γ, and RF , since

in principle these values are subject to variations with the relative orientation of the

donor and acceptor. As a result of neglecting these source of disorder, this treatment

does not treat the dispersion in exciton diffusion arising from these sources. However,

as has been previously observed, it is expected that the dispersion arising from energy

disorder should dominate in amorphous organic solids.

It is still important, however, to account for the average impact of spatial and

orientational disorder. Specifically, one should assign a “disorder-averaged” value

to n, νDex, γ, and RF , but this average value may not be a trivial function of the

model parameters. For instance, while the naive choice for n is to set it equal to

V −1
m , for both Forster and Dexter transfer the transfer rates have highly non-linear
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distance dependence, and thus one might expect that spatial disorder would lead to

an average increase in the aggregate transfer rates. To our knowledge, the impact of

spatial disorder on exciton diffusion in the presense of existing energy disorder has

not be reported in the literature, making the proper choice of n uncertain.

For orientational disorder, the naive choice is to apply an orientational average

to the transfer rates themselves (i.e. compute the average transfer rate by averaging

over all possible acceptor and donor orientions for perfectly randomly distributed

orientations). In the case of Forster transfer, where the orientional dependence is

known, this is accomplished by replacing the κ2 term (see Eqn. A.108) with 2/3.

For τDex and γ, since the orientational dependence is not in general known, one can

not perform this average directly, but one can nevertheless assign to those values

the meaning of an simple orientional average. Baumann and Fayer[13], however,

demonstrated that the simple orientational average is only valid if the disorder is

dynamic with an average time period much less than the typical transfer time, such

that for any given transfer event the acceptor and donor orientations are dynamically

averaged over the course of the transfer time. While this case may arise in liquids with

sufficient thermal energy, it is far more realistic in solids to assume that the disorder is

static on the time scale of the transfer event, in which case Baumann and Fayer argue

that one must perform the orientional average not over the transfer rate itself, but

over the relevant observable, which in this case consists of the probability of finding an

exciton on a given site at time t after starting at some initial site at time 0, and they

report that for Forster transfer, κ2 is in this case equal to 0.563, implying that the

proper “disorder-averaged” rate is scaled relative to the simple orientional-averaged

value by a factor of roughly 0.845. (Note that these results apply to isotropic transfer

in 3 dimensions; for non-isotropic transfer or transfer in lower dimensional systems,

different values are obtained.) Since this correction is small it is often neglected

entirely, but it is worth keeping in mind for completeness.

The second important approximation of the Movaghar work is the use of the MA

rate approximation to the Dexter and Forster transfer rates. In Appendix A, it was

shown that the MA rate reflects the approximation of by a Boltzman distribution of
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the change in the overlap of the donor and acceptor PTS functions as a function of

the electronic transition energy. The power of this approximation is that it allows one

to calculate results that are generally applicable to any system. The problem with it,

however, is that one would not in general expect precise, quantitative agreement with

experiment, and on the basis of the Movaghar results alone, there is no indication of

how large these errors would be in a particular system.

Most subsequent studies of exciton diffusion in amorphous organic materials have

employed precisely the same assumptions as in the Movaghar model. This point is

particularly important as regards the use of the MA rate approximation, since this

represents the most severe of the approximations, and so long as it is included in the

model (and the expected errors remain unknown) it inhibits a meaningfully quanti-

tative comparison with experimental data. The model is nevertheless qualitatively

powerful even with the MA rate approximation.

A few treatments of exciton diffusion using alternatives to the MA rate, however,

have been reported in the literature. The first is originally due to Jean et al.[66],

who replaced the MA rate with a direct calculation based on the donor absorption

and acceptor emission overlap assuming each spectrum is described by a Gaussian

function. In this work a series of discrete molecular types were considered, each

described by Gaussians having the same width, but shifted up or down in energy.

Their work, which consisted of MC simulations of time-average emission spectra, was

specifically tailored to light harvesting antennae complexes, and therefore employed

structured lattices of sites with a small number of discrete energies. As a result, their

results are not generally applicable to amorphous organic materials. However, to

this author’s knowledge this work represents the first simulation of exciton motion in

which a direct spectral overlap calculation is used in place of the MA approximation.

This approach was subsequently used in other studies of light harvesting complexes

(see e.g. [138]). More recently, Gaab and Bardeen[44, 43] report what is to this

author’s knowledge the first (and only) application of this model to the study of an

amorphous organic solid (the conjugated polymer MEH-PPV), utilizing a Gaussian

DOS for the energy disorder in MEH-PPV. A second alternative, due to Stein et
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al.[147], utilizes the same approach as employed by Gaab and Bardeen, but with

single Lorentzian line shape functions instead of Gaussians, and a spectral line width

fixed at kBT . This work was applied to the analysis of exciton diffusion between

chromophores chemically bonded to a polymer backbone, though to this author’s

knowledge, this approach has not been subsequently employed in any other reports.

More recently, inherent deficiencies in the small-molecule picture implicit in the

basic Movaghar model have been explored as regards exciton motion in amorphous

organic materials composed of large organic molecules (i.e. large macro-molecules

and polymers). The essential difficulty in the study of exciton motion in materials

composed of large molecules is the importance of intramolecular exciton motion,

which is entirely unaccounted for in the basic small molecule picture, where it is

implicitly assumed that there is a single spatial configuration for a given exciton on

a given molecule. In a large macro-molecule, however, an exciton can be localized on

different parts of the molecule, and depending on which spatial state is occupied, the

transport to neighboring molecules will be different. In other words, exciton motion

in such system consists of a combination of both intermolecular and intramolecular

transfer, but the latter is ignored by the simple small molecule picture. The problem

is similar in polymers, in that an exciton will in general transfer between subunits

along the backbone of a given polymer chain at a different rate than it will transfer to

subunits on neighboring polymer chains. In addition to the difficulty of intra vs inter

molecules exciton transfer, the stuctural restrictions of large molecules also impose

challenges in the analysis of exciton motion, since the assumption of perfectly random

positions and orientations is no longer reasonable. Though a further discussion of

these challenges goes beyond the scope of this thesis, the recent work of Kersting et

al.[75], Bejonne et al.[14], Hennebicq et al. [57], and Westenhoff et al.[158] provide a

flavor for some of the approaches presently employed to improve upon the basic small

molecule model for application to these types of materials.
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5.4 Background: Measurement of Exciton Motion

Concurrent with the theoretical development of exciton motion in organic solids,

numerous experimental techniques have used to probe exciton motion and test the

above theories. For the most part, these measurements are based on the formation of

an exciton population by means of optical excitation and the subsequent measurement

of the emitted photoluminescence (PL). However, since exciton motion has been found

to influence optoelectronic device behavior, in recent years measurements of device

properties has also been used to probe exciton motion.

The simplest exciton motion experiment is the so-called “surface quenching” mea-

surement, in which thin films of a given donor material are fabricated in contact with

a thin film of a given acceptor material, and the PL of the sample monitored as a

function of the donor film thickness. The acceptor material functions by extracting

excitons from the donor material, such that they are quenched (i.e. non-radiatively

destroyed) or emitted by the acceptor (with a PL spectrum that is distinct from that

of the donor). In the former case, the PL intensity of the donor is monitored, while in

the latter case, the PL intensity of either or both materials is monitored. In general,

the critical output of the experiment is the rate of exciton “detection” by the acceptor

(i.e. the rate of transfer to the acceptor film), and this rate is governed by two factors:

(1) the exciton transfer mechanism from the acceptor film to the donor film, and (2)

the rate of exciton difffusion in the donor film, which serves to drive more excitons

close enough to the interface that transfer to the acceptor occurs. This experiment

therefore probes both exciton transfer from donor to acceptor, and also exciton dif-

fusion in the donor material. Since in principle the donor to acceptor transfer rate

is independent of the thickness of the donor film, one can in principle separate these

two contributions by monitoring the PL for the different donor film thicknesses. In

the crudest form of this experiment, only the time-averaged fraction of donor exci-

tons quenched by the acceptor film is monitored. In a more sophisticated form of

the experiment, one monitors the time-resolved intensity of the separate donor and

acceptor PL following excitation by a short light pulse.
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A similar experiment can be performed using multi-component films, in which

the donor material is doped with the acceptor material at different concentrations.

In this case, instead of the donor material and acceptor material forming a planar

geometry, the two materials are intermixed, and the effect of changing the donor film

thickness in the surface quenching experiment is here accomplished by changing the

acceptor doping concentration. These so-called “bulk quenching” studies have the

advantage of supporting, in principle, a wider range of separation distances between

the donor and acceptor molecules. The drawback of these measurements is their com-

parative geometric complexity, which requires more sophisticated models to analyze

the experimental data.

The time-averaged experiments of this form were reported extensively in very

early studies of exciton motion (see the review article [126] for examples). In the late

60s and early 70s, Powell and coworkers pioneered the use of the time-resolved form

of these experiments[123, 124, 125, 118, 119, 120, 121, 122, 45]. In the early 1980s,

Bassler and coworkers used such time-resolved measurements to [115, 133] to report

the first clear evidence that exciton diffusion in amorphous organic solids is dispersive.

More recently, these techniques have been largely abandoned in studies focused on

the detailed behavior of exciton diffusion in amorphous organic solids. The principle

reason for this technique is not as sensitive to the details of the diffusion process as

subsequently developed techniques (see below). However, the time-averaged surface

quenching technique has seen continued use as a simple technique for measuring the

effective exciton diffusion length, Leff
d , used in OLED and photovoltaic organic device

models (see [116] for a number of examples). In the majority of these studies, the

exciton population, n(x), as a function of the vertical position in the film, x, is

governed by a simple differential equation in equilibrium,

(Leff
D )2 d

2

dx2
n(x)− n(x) + τradG(x) = 0 (5.5)

where G(x) is the exciton generation profile (due to the incident light) and τrad is

the radiative lifetime of the donor. This equation is typically solved assuming the
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quenching interface (located at x=0) is perfect (i.e., n(0) = 0) and that the opposite

side of the film does not lead to any quenching, and therefore is a perfect exciton

mirror (i.e., (dn/dx)|x=d = 0). If one further assumes that the exciton generation

profile is constant (which is valid so long as the film is sufficiently weakly absorbing of

both the incident and emitted light, then one obtains[116] for the quenching efficiency,

ηquench, as a function of donor film thickness, d,

ηquench =
Leff

D

d

[1− exp(−2d/Leff
D )]

[1 + exp(−2d/Leff
D )]

. (5.6)

It is clear that the essential assumption that the quenching mechanism is limited to

excitons that come into contact with the interface is not valid in detail, particularly

if a Forster type quenching mechanism operates. This is particularly true in experi-

ments in which a metal film serves as the quencher, as very strong (and therefore long

range) Forster transfer of a molecular exciton to a metal film is possible. In addition,

optical field effects are increasingly important the stronger the interface index con-

strasts in the sample. Thus one would expect Leff
D to in all cases over estimate the

diffusion length associated with exciton diffusion in the host, and this is the primary

reason for referring to this value as an effective diffusion length. In the literature, the

distinction between the true diffusion length and this effective value is not usually

drawn. As a result, values for Leff
D are often reported as intrinsic properties of the

donor material, even though they really represent a combination of both diffusion

in the donor and the specific donor-acceptor transfer mechanism. (One should also

note that the Leff
D defined above is a one dimensional quantity, and for isotropic

motion, the corresponding three dimensional diffusion length is larger by a factor of
√

3.) Another consideration in these calculations is how this non-dispersive effective

diffusion length is related to the underlying dispersive diffusion mechanism. This is

not a question presently addressed in the literature, though it should be possible to

analyze the problem directly through the use of Monte Carlo simulations of exciton

motion within stack of two different material layers.

A number of more sophisticated exciton motion experiments have been developed
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which more directly probe the specifically dispersive nature of the process and allow

for more rigorous tests of diffusion theories by utilizing the presence of excitonic en-

ergy disorder in amorphous organic materials. These approaches fall into three differ-

ent general categories: (1) time-averaged site-selective excitation (SSE) spectroscopy,

(2) time-resolved polarization anisotropy decay (TRPAD), and (3) time-resolved PL

spectroscopy.

In time-averaged site selective excitation measurements an (ideally monochro-

matic) excitation source is gradually tuned downward in photon energy starting from

an energy at roughly the first absorption peak, while monitoring the peak of the time-

averaged sample PL spectrum. For typical amorphous organic materials, initially the

PL spectrum is independant of the excitation energy, but as the energy is reduced, at

some point the PL spectrum begins to shift downward in energy with the excitation

energy. The rationalization of this phenomenon is that as one reduces the excitation

energy, one preferrentially excites excitons with absorption spectra shifted towards

lower energies, reflecting those molecules having exciton energies in the low energy

tail of the DOS. If there is no energy disorder, however, the PL remains independent

of the excitation photon energy.

This phenomenon arises independent of exciton diffusion, and in the situation

that no diffusion occurs, the PL spectrum reflects solely the preferential absorption of

different molecules in the system; in this case the onset of the shift in the PL spectrum

generally begins as soon as the excitation energy reachs the downslope of the first

absorption peak. However, in a system in which energy disorder leads to dispersive

exciton diffusion, the mean energy of the exciton population relaxes over time, and

in the case where this relaxation reaches equilibrium within the average lifetime of

the exciton, it is clear that excitons initially excited with energies in excess of this

equilibrium value, will on average lose that excess energy prior to emitting. In other

words, in such a system the PL spectrum will be insensitive to the excitation energy

for lower excitation energies than in the absense of diffusion. In this experiment, the

presense of this anamolously low excitation energy at which the PL spectrum beings

to shift is the principle signature of dispersive exciton diffusion arising from energy
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disorder. There are numerous reports of such experiments on amorphous organic

materials (see e.g. [134, 64, 65, 130, 59, 12]), and this reduction in the transition

energy is found to be a universal feature of all amorphous organic materials in which

exciton diffusion occurs, indicating the pervasiveness of dispersive exciton diffusion.

The strength of time-averaged SSE measurements is mainly their simplicity. How-

ever, they provide only an indirect measurement of dispersive transport, and since

the model one uses to analyze the data need not properly fit any time dependence it

is a relatively insensitive test of the model’s validity. In short, it is possible to fit the

data with a wide range of parameters that are not straightforward to self-consistently

verify on the basis of the experimental data alone.

In TRPAD measurements, a pulse of polarized light is used excite the molecules in

a sample, and the polarization of the resulting PL is monitored as a function of time.

Specifically, the time-dependence of the PL anisotropy, r(t), is measured, where,

r(t) =
I||(t)− I⊥(t)

I||(t) + 2I⊥(t)
(5.7)

and I||(t) and I⊥(t) are the PL intensities measured through a linear polarizer parallel

to and perpendicular to the excitation polarization, and it is noted that since I(t) =

I||(t) + 2I⊥(t) (with the 2 accounting for fact that there are two perpendicular linear

dimensions of which the measurement selects only one), the divisor of r(t) simply

serves to normalize the anisotropy. For this definition of r(t), one obtains,

I||(t) = I(t) [1 + 2r(t)] (5.8)

I⊥(t) = I(t) [1− r(t)] (5.9)

The anisotropy arises from the preferential absorption by molecules with absorp-

tion transition dipole moments aligned to the polarized excitation source. Specifically,

the absorption rate scales as cos2 θ where θ is the angle between the transition dipole

moment and the excitation polarization, and one can obtain the initial population

density, n(θ, t = 0), as a function of θ by integrating over the distribution of molec-
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ular orientations present in the sample. In the case of amorphous organic solids

(or any organic liquid), this distribution is assumed to be random, in which case,

n(θ, t = 0) = (cos2 θ)(sin θ).

To compute the normalized contribution to I||(t) and I⊥(t) by the emission of a

particular molecule it is in general necessary to account for a non-zero angle β between

the absorption and emission transition dipole moments. However, in the simplest case

where β = 0, then the angle of emission is the same as the angle of absorption, and

one obtains that I||(t) = I(t) 〈cos2 θ〉, where the angle brackets denote an average

over the excited state population, i.e.,

〈
cos2 θ

〉
=

∫ π

0
dθn(θ) cos2 θ∫ π

0
dθn(θ)

, (5.10)

and applying this to the definition of r(t) yields,

r(t) =

[
3

2

〈
cos2 θ

〉
− 1

2

]
. (5.11)

In the event that β is nonzero, an additional factor must be applied to r(t) (ob-

tained by averaging over all possible molecular rotations about the absorption tran-

sition dipole), and for random orientations, this gives,

r(t) =

[
3

2

〈
cos2 θ

〉
− 1

2

] [
3

2

〈
cos2 β

〉
− 1

2

]
. (5.12)

Prior to any depolarization processes, n(θ, t) retains it’s initial value, and for

random molecules, on obtains,

r(t = 0) =
2

5

[
3

2

〈
cos2 β

〉
− 1

2

]
. (5.13)
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If the molecules are fixed in place and there is no exciton motion, r(t) is constant.

If the molecules are not fixed in place, but subject to reorientation, n(θ, t) evolves in

time, making r(t) also time-dependent. In the case of random molecular rotations,

the impact of these rotations is to depolarize the PL over time. To express this

contribution, a function φ(t) is introduced, which expresses time rate of decay of

the initial polarization into a random polarization. Exciton motion also serves to

depolarize the PL over time, and it is assumed that this depolarization is complete

following a single transfer event. This contribution can then be expressed by the

probability, G(t), of an initially excited site retaining its original excitation at time

t is introduced. (This is again the Green’s function associated with the general

random hopping problem.) Given the assumption of complete depolarization after

a single transfer, G(t) expresses the fraction of the population retaining its original

polarization (in the absense of molecular rotation) and 1−G(t) expresses the fraction

of the population that is completely unpolarized. Combining the definition of φ and

G(t), one obtains,

I||(t) = I(t)

[
C∗G(t)φ(t) +

1

3
(1− C∗G(t)φ(t))

]
(5.14)

where C∗ accounts for the time zero polarization of the population, the first term

accounts for the light that retains its initial polarization and the second second term

accounts for unpolarized light. This expression implies,

r(t) = CG(t)φ(t) (5.15)

where C is a constant (related to C∗) that gives the time zero polarization anisotropy.

Thus r(t) is directly proportional to G(t), and therefore comprises a probe of exciton

diffusion. By performing measurements of r(t) for different excitation photon energies

(where the excitation photon energy is scanned in the manner of a time-averaged SSE

experiment, but here using a pulsed source), one can then detect dispersive diffusion
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through a dependence of r(t) on the excitation photon energy. The rationale of this

phenomenon is the same as for the time-averaged SSE experiment, in that lowering

the excitation energy reduces, on average, the likelihood of diffusion.

There are numerous experimental reports of TRPAD studies of exciton diffusion

(see e.g. [50, 147, 164, 158, 44, 43] confirming that in amorphous organic materials

the process is universally dispersive. However, two difficulties with the method are

worth discussing in more detail. First, TRPAD experiments can only probe the very

early times of exciton diffusion, during which the probability of a site retaining it’s

initial excitation is appreciable. For systems where there is substantial diffusion, this

technique does not provide information about the intermediate or long time behavior

of the diffusion process, which is a serious limitation in its application to many sys-

tems. In short, TRPAD is really only suited to the analysis of the very first exciton

transfer event, through for this purpose it is extremely powerful, and is certaintly an

excellent tool for detecting the presense or absense of exciton motion. However, at

short times, where the measurement can provide useful data, the assumption of com-

plete depolarization following a single exciton transfer may not be appropriate, since

exciton transfer rates are known to be orientation dependent. This problem could

in principle be addressed for Forster transfer by performing an exact calculation of

the depolarization anisotropy for a system of randomly oriented transition dipoles,

though this author is not aware of any such calculation in the literature. For Dexter

transfer, where the orientation dependence is due to the precise shape of the ground

and exciton wavefunctions, a general result can not be obtained. In any case, this

problem is not addressed in the literature, and thus the potential magnitudes of these

errors are not known.

Second, in performing TRPAD measurements it is necessary to isolate G(t) from

φ(t). In most solid state systems one would expect φ(t) = 1 in accordance with the

assumption of immobile molecules, and thus φ(t) disappears entirely. However, in

systems where significant reorientations are possible, this assumption is not reason-

able, and an explicit separation of G(t)φ(t) is required. The conventional method

in solution studies for separating the two contributions is to perform a control mea-
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surement in the absense of diffusion (by analyzing a low concentration sample) and

then normalizing the data in the real sample using the control. However, this is not

always practical in solid materials, particularly in the study of neat samples, where

the properties of the molecule doped into another environment at low concentration

may be very different from its properties in the neat solid. For example, it would not

be reasonable to perform the control experiment with CA doped in PS, as discussed

in the Chapter 4, and then perform measurements on neat films of CA; in the former

case the CA has significant roational freedom, while in the latter case the CA is found

to be completely immobile (as determined by measurements of the dielectric constant,

which satisfy ε ≈ n2). Aside from rotations, other sources of polarization anisotropy,

though uncommon, can also interfere with the measurement by introducing additional

time-dependent depolarizations. One such example was recently reported by Smith

et al.[146], in which the polarization anisotropy of acenephthalene (ACE) in 2-Methyl

tetrahydrofuran (MTHF) at room temperature (where MTHF is liquid) and at 77 K

(where MTHF forms a clear glass) was reported. For the cooled sample, a new in-

tramolecular transition was observed contributing a strong, unexpected polarization

anisotropy. Overall, while TRPAD is a powerful technique, it is not ideally suited to

the study of exciton diffusion. The main (and most fundamental) difficulty is that

method probes only the initial step in the diffusion process, and for this reason the

obtained data can not provide a rigorous test of the diffusion model (since only the

initial time behavior need be properly fit).

In time-resolved spectroscopy experiments, the PL spectrum of a given sample

is measured as a function of time following excitation by a light pulse short on the

time-scale of the measurement window. In the typical experiment, the PL spectrum

of a neat film measured as a function of time following excitation sufficiently far

above the first absorption peak that one can assume uniform initial excitation. If

exciton diffusion occurs in the presense of energy disorder, the PL spectrum will shift

in energy over time, reflecting the relaxation of the exciton population towards its

equilibrium distribution. This experiment thus provides a direct probe of Ē(t), and

as a result comprises a uniquely straightforward measurement of dispersive exciton

233



diffusion in the presense of energy disorder. (One can also perform the same measure-

ment under SSE conditions with excitation photon energies along the low energy tail

of the absorption spectrum, and thereby observe the reduction in exciton diffusion

through the reduction in the shift in Ē(t). For the condition where exciton diffusion

is completely prevented, Ē(t) becomes a constant.) In general, because substantial

energy disorder is a pervasive feature of amorphous organic materials, measurements

of time-resolved PL spectra have been embraced as the most direct method for study-

ing exciton motion in such materials. Many experiments of this general type have

been performed[59, 74, 99, 161, 56, 139, 75, 12, 21, 72, 96, 97, 4, 58, 158, 57]. As

with the previous experimental techniques, in these measurements exciton diffusion

in amorphous organic materials is found to be universally dispersive.

In the existing literature on dispersive exciton transport in amorphous organic

solids, the experimental work is overwhelmingly focused on polymers. Only a very

few studies are reported on diffusion between small organic molecules. Richert et al.

reports measurements of changes in the PL time decay as a function of temperature in

neat benzophenone, and explains the data in terms of triplet exciton diffusion towards

intrinsic traps, with the rate of transfer reducing with increasing temperature. They

find that the results indicate dispersive diffusion, and using a Movaghar type model

of Dexter transfer with σ = 0.032 eV (obtained by assuming the peaks in the PL

spectrum at 77 K are broaden purely by energy disorder) obtain rough agreement

with the data. This study is aided by the simple structure of the benzophenone

absorption spectrum, which allows for a reasonable direct estimate of the exciton

DOS. Jankowiak et al. reports time-averaged SSE measurements on neat films of

amorphous 2-bromonaphthalene (BN) at 4.2 K, and using a Movaghar model of triplet

exciton diffusion by Dexter transfer, obtains good (if not perfect) agreement with the

data using σ = 0.020 eV. In another report Jankowiak and Bässler study singlet

exciton diffusion in 9,10-diphenylanthracene (DPA) at 4.2 K by time-average SSE,

and confirm that exciton diffusion is dispersive but do not perform a quantiative fit of

a diffusion model to the data. Aside from these very early studies, we are not aware of

any reports on dispersive exciton motion in small moleculat weight amorphous organic
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solids. By comparison, there are (as evidenced by the many references noted above)

numerous reports on polymers. This stark asymmetry is hard to explain, as there is no

fundamental difficulty in the analysis of exciton diffusion in small molecule materials

as compared to polymers. Indeed, based on the discussion on the previous section,

one could argue that small molecular weight materials are actually the superior test

bed for evaluating the Movaghar et al. type exciton diffusion model that has been so

widely utilized in the literature.

Despite the dubious applicability of the small molecule model, however, agreement

between theory and experiment in amorphous polymers has been remarkably good.

First, as noted above, it is found in all cases that exciton diffusion is indeed disper-

sive. For time-averaged SSE and TRPAD measurements, it is found that quantitative

agreement is possible with a diffusion model subject to disorder with a proper choice

of model parameters. In these fits, the critical fit parameters are σ and either RF or

τDex, depending on whether Forster or Dexter transfer was assumed, respectively. For

these studies the obtained parameters are in all cases physically plausible. In the few

cases[147, 44, 43] where the models applied to the data analysis were not identical

to the Movaghar model (and specifically, employed the previously discussed alter-

natives to the MA rate approximation), no comparison with the simpler Movaghar

model is made, so that it is not clear to what exent the various approximations em-

ployed in each study improve upon the basic Movaghar model. However, as discussed

above, these techniques are not ideal probes of dispersive exciton diffusion. The

time-averaged SSE measurement does not require proper time-dependence, making it

a much less stringent test of the theory, and the fact that TRPAD measurements only

probe such a short time in the diffusion process, similarly fails to provide as rigorous

a test. Nevertheless, the success of the theory in these experiments suggests that the

basic model is at least qualitatively accurate.

A much more powerful verification of the theory would be demonstrated by a

quanitative treatment of Ē(t), but despite numerous experimental studies, a quan-

titative fit to the observed data has not been reported using the basic Movaghar

type models. The only existing quantitative fits involve more sophisticated mod-

235



els employing features specific to polymer materials (i.e. calculations in which both

intermolecular and intramolecular transfer are considered). In these more complex

studies the increase in the number of free parameters (and model assumptions) makes

it difficult to rigorously verify the validity of the model, and more importantly, the

same data werr not analyzed using the simpler models, so it is not clear what kind

of error would have been incurred by using the simpler models. Thus it is presently

uncertain whether the lack of quantitative fits in cases where the Movaghar model

has been used is a result of the small-molecule nature of the Movaghar model being

inadequate for polymers (as suggested by the work in [75, 57, 158]) or because of

other approximations (e.g. the use of an MA rate dependence).

To summarize, it has been definitely established that disorder plays a fundamental

role in exciton motion in amorphous organic solids, and that in all of the studied sys-

tems the energy disorder is the most critical component. The reason energy disorder

is so important to exciton moition is that the Dexter and Forster transfer rates are

found to be strongly dependent on the electronic transition energies associated with

the transfer, particularly in the case of exciton diffusion, for whereas the transfer rate

between two different species having good spectral overlap is relatively insensitive to

variations in shifts in the donor and acceptor spectra, the transfer rate between two

molecules of the same type, where the overlap is limited to the respective spectral

tails of the absorption and emission spectra, is highly dependent on those variations.

This energy disorder has been shown on the basis of both simulation and experiment

to lead to dispersive exciton transport, implying a time dendent variation in the dif-

fusion coefficient and the mean energy of the exciton population as a function of time

towards some equilibrium value. For an initially randomly excited population, in

both cases these values decline over time until reaching equilibrium.

To date, the models of this process are overwhelmingly of the general type de-

scribed by Movaghar et al.[101], with the principle reported variations limited to

modifications of the energy dependence of the transfer rate, first by Jean et al.[66]

and then by Stein et al.[147]. This model has been shown to be at least qualitatively

consistent with existing experimental data, but the vast majority of studies have been
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Table 5.1: Reported effective exciton diffusion lengths in small molecule materials.

Material LD [ Å] Technique Reference

PTCBI 30± 3 Surface Quenching [116]
PTCDA 880± 60 Device Model [23]
PPEI 700 Surface Quenching [52]
CuPc 100± 30 Device Model [116]

680± 200 Device Model [5]
ZnPc 300± 100 Device Model [73]
AlQ3 247 Surface Quenching [26]

210 Surface Quenching [29]
80 Device Model [162]

α-NPD 26 Device Model [155]
TPD 170 Device Model [162]

applied to polymer systems where the basic assumptions of the model are far more

uncertain. Perhaps for this reason quantitative agreement with the most rigorous test

of the theory, namely comparison with experimental measurements of Ē(t), has not

been reported.

The existing data on small-molecule materials is sparse and limited only time-

averaged measurements which do not provide a particularly rigorous test of the theory.

As a result, there is little hard evidence in the literature of the quantiative validity of

existing models of exciton diffusion in small molecule materials. This is noteworthy

because it is in small-molecule systems that one can make the most rigorous defense

of the basic assumption of incoherent hopping between a perfectly random system

of molecular sites (in contrast with polymers), and can therefore carry out the most

definitive evaluation of the validity of such a model.

In contrast with the paucity of studies of the detailed time-dependent nature of

exciton diffusion in small molecular weight amorphous organic materials, there are

many reports in the literature of Leff
D values obtained from surface quenching studies

(using the basic procedure described above), or fits to device data using OLED and

solar cell device models. Examples of such calculated Leff
D values are given in Table

5.1. The wide range in the values reported for different materials indicates that there

exists a broad range of diffusion rates. However, in the cases where multiple values
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have been reported for a single material, there is such wide variation that it is difficult

to treat these values as anything but crude approximations. As discussed above, these

values are obtained subject to various approximations of the diffusion process that

may not be realistic, namely the frequent assumption of nearest neighbor quenching

and a non-dispersive diffusion constant. In the case where the values are obtained

from device models, the uncertainty in the validity of the device model further limits

one’s confidence in these values. To date, there are no reports in the literature in

which the range of reported values diffusion lengths is reconciled with models of

dispersive diffusion employing realistic energy disorder and known absorption and

emission spectra. This is a rather glaring shortcoming of the existing literature on

exciton diffusion in small molecular weight amorphous organic materials.

5.5 Modeling Exciton Motion

In this section, the basic procedure utilized in this thesis for modeling exciton diffu-

sion is described. As discussed in the previous sections, the physical mechanisms for

exciton motion are Forster and Dexter transfer. In Table 2.1 these rates are summa-

rized in the notation of the physical model used in this thesis. For Dexter transfer

the basic rate is given by,

ΓDex
DA (∆Eel

DA, R,Θ) = νDex
DA (Θ) exp

[
−γDex

DA (Θ)R
]
χDex

DA (∆Eel
DA) (5.16)

and for Forster Transfer,

ΓFor
DA (∆Eel

DA, R,Θ) = νFor
DA (Θ)

1

R6
χFor

DA (∆Eel
DA), (5.17)

where,
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νDex
DA (Θ) =

1

τ̄Dex
DA (Θ)

eγDex
DA (Θ)Dsite (5.18)

νFor
DA (φ, θ) =

1

τ̄For
DA (Θ)

[Dsite]
6 (5.19)

=
1

τD

[
R̄F (Θ)

]6
(5.20)

and,

χDex
DA (E) = χFor

DA (E) ≡ χ
Dex/For
DA (5.21)

=
Φ

Dex/For
DA (−E)

Φ
Dex/For
DA (−∆Ēel

DA)
(5.22)

with,

Φ
Dex/For
DA (E) =

∫ ∞

0

dE ′Φ↓
D(E − E ′)Φ↑

A(E ′). (5.23)

In the typical treatment, the orientational disorder is not explicitly treated, so that

the Θ arguments are all dropped, and the rates are all assumed to reflect orientational-

averages, i.e., R̄F , τDex and γ all become “orientationally averaged” quantities. As

discussed above, this orientational average may not be a simple averaged of the rel-

evant value over all possible orientations, but rather may require an additional cor-

rection factor. However, only in the case of Forster transfer, where the orientational

dependence is known, is a general treatment possible. For a simple orientional av-

erage of the rate itself, the κ2 term appearing in Eqn. A.108 is replaced by 2/3.

As noted above, a further correction factor of 0.845 has been proposed by Baumann

et al.[13]. For Dexter transfer, no similar correction factor can be derived since the

general orientational dependence is unknown. For the remainder of this chapter, only

the orientional averaged problem will be considered.

As discussed at length in Appendix A, the precise functional form of χ
Dex/For
DA (E)

depends in detail on the PTS function Φ
Dex/For
DA (E), which is not generally accessible
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by theoretical calculation. However, Φ
Dex/For
DA (E) is obtained from the PTS functions

for exciton creation and destruction, which have a simple relationship to the nor-

malized molecular donor emission and acceptor absorption spectra, and these spectra

can (in principle) be obtained from the corresponding bulk spectra if the appropriate

DOS function is known, as discussed in Chapter 3. The starting point here is Eqn.

3.66:

Sbulk(E) =

∫ ∞

−∞
g0(E − E ′)Smol(E

′)dE ′ (3.66)

obtained under the constant spectral shape approximation. If the normalized molecular

spectra can be thus obtained, a direct calculation of Φ
Dex/For
DA (E) is then possible using

Eqns. A.101 and A.102 to express the individual exciton creation and destruction PTS

functions in terms of those specta. In this way, one obtains,

χ
Dex/For
DA (E) = C

Dex/For
DA

∫ ∞

−∞
dE ′S

rad
D,mol(E − E ′)Sabs

A,mol(E
′)

(E ′)4
(5.24)

where C
Dex/For
DA normalized χ

Dex/For
DA (E) to unity for E = 0, i.e.,

C
Dex/For
DA =

∫ ∞

−∞
dE ′S

rad
D,mol(E

′)Sabs
A,mol(E

′)

(E ′)4
. (5.25)

Furthermore, in the case of Forster transfer one can use the acceptor molecular ab-

sorption cross section, σA,mol(E), to calculate the precise magnitude of R̄F , and one

can obtain σA,mol(E) from its bulk counterpart in precisely the same was as for the

normalized spectra, i.e. through Eqn. 3.66. To make this explicit, one adapts Eqn.

A.108 to the present notation to get,

R̄6
F =

9

8π

~4c4

n4
κ2

DA

∫ ∞

−∞

Srad
D,mol(E)σA,mol(E)

E4
dE (5.26)

where for the orientational average, κ2
DA is replaced with either 2/3 or 0.845 × 2/3,
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depending on whether or not one employs the correction factor proposed by Baumann

et al.[13]. One should note that more complex expressions can certainly be derived in

the event the constant spectral shape approximation can not be applied, in which case

one must instead use the exact expressions relating the normalized absorption and

emission spectra to the bulk spectra (i.e. Eqns. 3.56, 3.57, and 3.60); however, since

this approximation is universally employed in the literature, and is usually valid, the

more tedious exact treatment is not given here.

As discussed in the previous section, the calculation of χ
Dex/For
DA (E) has been

carried out in existing reports on the basis of one of three different approximations:

(1) the MA approximation; (2) the assumption of single Gaussian molecular spectra;

(3) the assumption of single Lorentzian molecular spectra. The first approximation

is arguably the crudest, but it also yields the most general results, in that precisely

the same expression applies to all typers of donor and acceptor molecule. Also,

since it does not require knowledge of the PTS’s (or, equivalently, the molecular

spectra), it is a simpler model to use. Some sense of the quantiative validity of this

approach is provided in Appendix A through direct comparison with the exact PTS

overlap calculation for a simple model molecule. There is was found that while the

approximation does reproduce qualitatively the general features of the overlap, it is by

no means quantitatively accurate. The second and third approaches represent more

realistic approximations, with their validity depending on how well single Gaussian

or single Lorentzian functions represent the actual molecular spectra.

The generalization of this procedure to the use of multiple Lorentzians or Gaus-

sians would allow one to describe the molecular spectra with arbitary accuracy, and

in the limit yields an exact calculation. The challenge in implementing this “exact”

approach is simply one of obtaining an accurate measurement of the molecular spec-

tra, and as discussed above, one can in principle obtain these spectra self-consistently

from the bulk spectra based on an assumed DOS function. Assuming the GDM is

indeed valid for excitons in small molecular weight amorphous organic solids (consis-

tent with the calculations of exciton energy disorder described in Chapter 3), for a

known bulk spectrum the shape fo the molecular spectrum is determined completely
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by the standard deviation, σ, of the DOS. For this approach, then, χ
Dex/For
DA (E) is

completely determined by measurements of the bulk donor absorption and acceptor

emission spectra, and their associated σ values.

Based on the rate expressions developed here, the needed model parameters are

straightforward to enumerate. First, for Forster transfer, one must specify the radia-

tive lifetime, τ , for each type of molecule, along with the R̄F values associated with

each pair of molecular types in the system. For Dexter transfer, one must specify

τ̄Dex and γ. One can usually obtain τ for a given type of molecule from experimental

measurements of PL itensity decay (as described in Chapter 3 for AlQ3). The value

for R̄F can be obtained from the molecular absorption and emission spectra, which

can be derived from bulk spectra for a known DOS, as outlined above. For the Dexter

transfer values comparison with known experimental values is not usually possible.

However, for γ there is a consensus that it must be sufficiently large to ensure that

transport is effectively limited to nearest neighbors, and it is conventional to use a

value of 10D−1
site to ensure that this is the case[11]. This value is also consistent with

the principle that molecular wavefunctions should decay exponentially with distance

with a decay constant on the same order as the Borh radius, which is roughly 0.05

nm, and the overlap of two such decaying wavefunctions gives γ = 10D−1
site for Dsite =

1 nm.

Second, the position and type of each molecule in the system must be specified.

Third, each molecule must be assigned its exciton creation and destruction energies.

Conventionally, this consists of specifying a single value for Ēel for each molecular

type, and then specifying a single shift, ∆Edev, measured relative to Ēel to obtain the

“exciton energy” for each molecule. Here the “exciton energy” is defined as the exciton

creation energy, and in this construction, for a given molecule the exciton creation

energy is then equal to ∆Ē↑,el + ∆Edev and the exciton destruction energy equal to

∆Ē↓,el −∆Edev. (The sign change just reflects the fact that ∆Ē↓,el is negative.) The

subtlety of this construction is that the shift in the two transition energies can be

described by a single value, ∆Edev, an assumption that is valid so long as the impact

of nuclear reorganizations on the disorder can be neglected. As indicated in Chapter
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3, this neglect takes two main forms for energy disorder arising from electrostatic

interactions: (1) neglect of the change in exciton state dipole moment due to Franck-

Condon relaxation (i.e. the change in the dipole moment from state 2 to state 3),

and (2) the neglect of the nuclear polarizibility of the surrounding molecules (i.e. α

is taken to be equal to αel). If these approximations are not valid, then one can

not define a single “exciton energy,” but rather one must specify separate shifts in

the transition energies for exciton creation and exciton destruction. This presents no

fundamental difficulty in modeling the process, but does require that each molecule

be specified in terms of two ∆Edev values. It is assumed for the remainder of this

thesis that it is indeed acceptable to neglect the effect of nuclear reorganizations

on energy disorder, thus supporting the specification of each site by a single ∆Edev

value. Here the ∆Edev values are assigned following the GDM, consistent with the

existing convention in the literature and our own exciton DOS calculations (described

in Chapter 3).

Finally, the χ
Dex/For
DA (E) must be specified. This can involve the MA approxi-

mation or some kind of direct calculation using Eqn. 5.24, in which case one must

specify the molecular spectra. In the ideal case, the molecular spectra are derived

from experimental measurements of the bulk spectra and an assumed DOS. As pre-

viously observed, this last option provides the most stringent test of the model’s

self-consistency. Both approaches are considered below.

5.6 Monte Carlo Simulations of Exciton Diffusion

In this section, general simulations of exciton diffusion using ONESim are described.

Because only diffusion is treated here, the subscripts D and A can be dropped in

the rate expression (since the molecular type is the same for each molecule), and

furthermore, only the properties of a single type of molecule need be specified for a

given system. The principles of the diffusion case are trivially extended to the case of

exciton motion between different species, but the book-keeping needed to keep track

of the different species makes for a much less elegant discussion.
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In the simulations described in this section, both Forster and Dexter transfer are

considered, using orientationally-averaged and MA approximated rates. Thus the

transfer rates for a change in exciton energy equal to ∆E and an intersite distance of

R are given by,

ΓDex(∆E,R) =
1

τ̄Dex
eγDsitee−γRχ(∆E) (5.27)

ΓFor(∆E,R) =
1

τ̄For

[
Dsite

R

]6

χ(∆E) (5.28)

where,

τ̄For = τrad

[
Dsite

R̄F

]6

(5.29)

and,

χ(∆E) =

 1 if ∆E < 0

e∆E/kBT if ∆E ≥ 0
(5.30)

The sole parameters of the model are γ, τ̄Dex, and τ̄For, with τ̄For having the above

noted relationship to taurad and R̄F .

Simulations with both cubic and random lattices of molecular sites are considered,

and the DOS function g0(E) in each case is a Gaussian with a standard deviation of σ.

The construction of the lattice spaces is identical to those used for performing DOS

calculations in Chapter 3: for cubic lattices, the sites are arranged on the vertices

of the lattice with an intersite spacing of Dsite; for random lattices, the sites are

randomly positioned subject to a minimum intersite spacing of Dsite and having an

average density of D−3
site. The space of the lattice forms a cube with sides of length

LDsite where L is an integer. The lattice space in these simulations is subject to

periodic boundary conditions in all three dimensions.

For each simulation, L = 40, yielding lattices containing 64,000 sites. Transfer

between sites is allowed to any site within a specified interaction distance Rint, which
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is selected to be sufficiently large that negligible error is incurred by neglecting transfer

to more distant sites. For each simulation, a fraction finit of the sites in the system

are randomly excited at time zero. The simulation then proceeds in time steps, where

for each excitation during each time step, ∆t, transfer is attempted to each of the

sites within a radius of Rint. The probability of successful transfer is given by the

product of the transition rate and ∆t. For further details on the implementation of

the ONESim code, see Chapter 4. In these simulations, explicit exciton decay is not

included in the model, so as to maintain the exciton population even at long times

(and thereby maintain the same statistical accuracy in the results at all times). This

neglect of exciton decay has no impact on the diffusion process, since interactions

between the excitons are not included in the model and therefore the concentration

of excitons present in the system has no effect on the results.

The principle results of the simulation are< R2 > (t) and Ē(t), which are obtained

by averaging the squared displacement of a given exciton from its original site and

the energy of the currently occupied site, over all the excitons in the system. For

all of the simulations, the results are averaged over at least four different lattices, in

which between 25,600 and 64,000 excitons are initially excited (i.e. finit is between

between 0.4 and 1.0). The diffusion coefficient D(t) is subsequently obtained from

< R2 > (t) by taking a numerical derivative with time and multiplying by 1/6, as

appropriate for three–dimensional, isotropic diffusion. In each plot of these functions:

(1) the time axis is scaled to τ̄ where τ̄ is either τ̄Dex or τ̄For for Dexter and Forster

transfer, respectively; (2) the energy axis is scaled to wDOS, where wDOS is the the

full width at half max (FWHM) of of g(E), satisfying σ by wDOS = 2.35σ; and (3)

the diffusion coefficient axis is scaled to D2
site/τ̄ where again τ̄ is either τ̄Dex or τ̄For

for Dexter and Forster transfer, respectively. These scaling rules are derived trivially

from the MA transfer rate expression.

In the simulations performed below, there are two main parameters controlling

the results: the structure of the lattice and the value of σ̂. In this section the results

are targeted to the analysis of exciton diffusion in typical single component amrop-

hous organic solid at room temperature. For this reason, to illustrate the impact of
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spatial disorder, random lattices with Dmin = 0.8Dsite are considered. (Recall that

this Dmin is consistent with the spatial disorder previously estimated for neat AlQ3

films, based on an analysis of the chemical structure and experimentally measured

amorphous film density.) For the reasons discussed in chapter 3 (in the context of

DOS calculations) significantly smaller Dmin would only be expected to arise in sys-

tems of dopant molecules in a multicomponent film.2 For the values of σ̂, a range

between 0.43 and 2.13 is chosen to reflect typical room temperature values of energy

disorder in typical small molecular weight organic electronic materials. For context,

AlQ3, which is among the more highly polar small molecular weight organic electronic

materials, we obtained σ̂ between 1.7 and 2.3 (depending on whether the value for the

cubic lattice or spatially disordered lattice with Dmin = 0.8Dsite is used). This places

AlQ3 at the upper range of the values analyzed here. Of course, one could certainly

perform simulations for larger σ̂ if needed for a particular system. The calculations

shown in this section simply provide a set of general results illustrating the basic

features of exciton diffusion subject to energy disorder.

Initial simulations were performed to determine the needed internal simulation

parameters to obtain sufficiently accurate results. The impact of the time step ∆t

was investigated for each σ̂ value, by monitoring both D(t) and Ē(t). It is found that

for cubic lattices, the results are the same for any value of ∆t satisfying ∆t ≤ 0.02τ̄ .

It is also found that as σ̂ is increased, the sensitivity on ∆t decreases, such that

for α = 2.13, no significant changes in the results are observed for ∆t ≤ 0.1τ . For

spatially disordered lattices withDmin = 0.8Dsite, the maximum value of ∆t is slightly

lowered, but the effect is small, and adequate results are obtained for ∆t ≤ 0.01τ̄ . In

general, it is found that so long as the chosen value for ∆t leads to an aggregate exciton

hopping probability during a single time step of less than roughly 0.2, the results are

independent of ∆t. The reason for the decreased sensitivity on ∆t with increasing

σ is that the hopping probabilities are on average lower for larger σ̂, because the

2Diffusion between dopants is certainly possible, but is a much less common process in organic
electronic devices because the short ranged nature of Dexter and Forster transfer usually greatly
limits such diffusion. For this reason, this case is not detailed in this section. However, the MC
simulations described here are trivially extended to treat the case of small Dmin.
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excitons on average populate lower energy sites thereby lowering the hopping rates

to neighboring sites — most of which are higher in energy. When the hopping rates

are all lower, then a larger time step can be used without loss of accuracy.

The impact of Rint was also investigated for the same range of σ̂. It was found

that for Dexter transfer, there is no change in the results for Rint ≥ 2.0Dsite, while

for Forster transfer, no change is observed for Rint ≥ 3.0Dsite (and even for Forster

transfer, there is little change even for Rint = 2.0Dsite.) (Note that for Dexter transfer,

γ was set equal to 10/Dsite in these simulations.) Since the value of γ is chosen in

part to ensure that transfer to distant sites is negligible, it is not surprising that one

need not employ a large Rint to obtain accurate results. The fact that such a small

value of Rint can be used for Forster transfer, however, is not necessarily obvious

at first; however, it is easily rationalized by considering the rate at which the rate

falls off with increasing distance in comparison with the differential increase in the

number of hopping sites. The rate scales as R−6 while the differential change in

hopping sites scales as R2, so overall, the differential change in the aggregate rate

scales as R−4. Assuming a minimum interaction distance of roughly Dsite, one can

obtain the approximate fraction of the total aggregate transfer rate for a given Rint

from
∫ Rint

1
R−4dR/

∫∞
Rint

R−4dR. For Rint = 3.0Dsite this indicates that more than

96 % of the total rate is captured, and thus it is not surprising that no significant

changes are observed in the simulation results for larger Rint.

These initial calculations indicate the needed parameters for performing exciton

diffusion simulations that yield a good balance of accuracy and computation time.

Specifically, for all of the following calculations, ∆t ≤ 0.01τ̄ , and Rint is equal to

2.0Dsite for Dexter transfer and 3.0Dsite for Forster transfer. For all of the above

calculations, lattices with L = 40 were used. Simulations were also performed on

lattices down to L = 20 and no significant changes observed in the results, and on the

basis of this it is concluded that there are no significant lattice size effects on these

calculations for at least L ≥ 20. These and the following calculations were performed

with L = 40 so as to obtain large a statistical sampling of sites in each simulation

run without unduly increasing the computation time.
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One can also test for the presense of lattice size effects by verifying that Ē(t)

indeed approaches the theoretical equilibrium value (i.e. σ̂σ at long times. In the

results shown below, this is clearly the case for all of the simulation runs for which

the equilibration is achieved during the simulated time window. The reason that

this test probes the impact of the lattice size on the calculation is that the lattice

must always be sufficiently large to support a statistically significant population of

excitons around Ē(t) for all simulated times. If sufficiently large σ̂ are simulated for

sufficiently long times that the exciton population is driven sufficiently far into the

low energy tail of the DOS that only a the few lowest energy sites are occupied, then

the calculation becomes inaccurate. This is illustrated by considering the limit that

all of the excitons in the system occupy the single lowest energy site in the lattice; at

this point it is clear that the lattice much be made larger if the exciton population

is to be represented realistically. It is not clear from these calculations (or any of

the calculations in the literature) at what point these errors become significant, but

one can estimate as a hard lower bound Ē(t) ≈ −4σ for the L = 40 lattice, since for

this mean energy, the probability of encountering sites with equal or lower energy is

roughly 3x10−5, corresponding to a probability of finding such a site in an L = 40

lattice of roughly unity.

In Fig. 5-2 are shown < R2 > (t), D(t) and Ē(t) for simulations of exciton

diffusion by Dexter transfer for cubic lattices for five σ̂ between 0.43 and 2.13. In

Fig. 5-3 are shown the plots the corresponding results for exciton diffusion by Forster

transfer. In addition, for the plots of < R2 > (t) and D(t), data is also shown for

σ̂ = 0 to illustrate the behavior of the system in the non-dispersive limit. (The plot

of Ē(t) is not shown as it is simply a constant at all times.) Also, in the plots of

< R2 > (t), linear extrapolations of the σ̂ = 0 and σ̂ = 0.43 data to long times are

shown; these extrapolations are based on the assumption of a constant value of D,

which is consistent with the corresponding plots of D(t) showing equilibration at the

end of the simulation time window.

We can draw a number of conclusions from these basic simulations. First, at

short times even the σ̂ = 0 case yields a time dependent D(t), which seems to be
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inconsistent with the expectation of non-dispersive exciton diffusion in this system.

This point is not (to this author’s knowledge) directly addressed in the literature on

exciton diffusion, but can be explained quite easily. In short, the first hop made by

any exciton in the system increases it’s value of R2 by precisely the hopping distance

squared. Following the first hop, however, if the exciton hops back to the inital site, R2

returns to zero; some other hops will leave the value of R2 unchanged, and still others

will increase R2. The behavior of the second hop is representative of the general

diffusion process, whereas the first hop is anomalous, in that every hop increases

R2. Thus on time scales equal to or less than roughly the average hopping time, the

observed value of D(t) is greater than it’s value after all of the excitons have executed

at least one hop, at which point the behavior becomes time-independent; specifically,

in the σ̂ = 0 simulations, we find that this equilibration is fully completed by 2τ̄ . This

relevence of this point is that in evaluating the D(t) data, only the time-dependence

of D(t) at long times should be attributed solely to the energy disorder; the short

time behavior reflects both the dispersion arising from the intrinsic character of the

hopping process combined with the energy disorder.

Second, if one plots the values for Deq obtained for σ̂ between 0.43 and 1.70 (see

Fig. 5-4), the results are consistent with the σ̂ proportionality predicted by Movaghar,

namely that ln(Deq) ∝ σ̂2. (The σ̂ = 2.13 data was not also used, but it was clear that

the system had not reached equilibrium by the end of the simulation time window.)

Fitting to the data yields the following empirical relationships for Deq for the Dexter

and Forster transfer processes,

DDex
eq ≈ 0.125 exp

[
0.56σ̂2

]
D2

site/τ̄Dex (5.31)

DFor
eq ≈ 0.252 exp

[
0.54σ̂2

]
D2

site/τ̄For (5.32)

where the expressions have been verified to be consistent with the simulation results

to within ±5% for 0.43 ≤ σ̂ ≤ 1.70. These results are not consistent with the σ̂ = 0

value for Deq, however, which are also shown in Fig. 5-4. Specifically, the empirical
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relationship underestimates Deq for σ̂ = 0 by roughly 20 %. The source of deviation is

not immediately obvious, but it is worth noting that the ln(Deq) ∝ σ̂2 proportionality

reported in the literature[101] is applied to cases where σ̂ > 1, and over this range,

our results do support this relationship.

Third, from this data one can compare the values obtained for the three dimen-

sional diffusion length, LD, when computed: (1) assuming non-dispersive diffusion

with D = Deq; and (2) by direct evaluation from the simulation results. For simplic-

ity, a single, time–independent exciton decay rate is assumed, characterized by the

PL lifetime τPL. Neglecting dispersion and using Deq, this yields LD =
√

6DeqτPL.

Including dispersion, the concept of a constant LD is ill-defined, but can be reason-

ably approximated by the relationship LD =
√
< R2 > (t = τPL). The two values will

differ to the extent that the time dependence of D(t) impacts the diffusion process.

Specifically, since D(t) > Deq for most of the time prior to equilibration, using Deq

will systematically underestimate the amount of diffusion that actually occurs. The

fractional error in the calculation of LD, however, will decrease as τ increases, since

at long times more of the observed value of LD is due to the long time, equilibrium

behavior. The results of this simple comparison are summarized in Table 5.2. Three

values of σ̂ were considered, 0, 0.43, and 2.13, where in the last case the empirical

relationship derived above is used to obtained Deq (since in this case, the equilibration

does not occur during the time window, and so the value can not be directly obtained

from the long time value of D(t).) Values of LD are calculated for three different τ ,

satisfying τPL/τ̄ equal to 1, 10, and 100, respectively. (For the τPL/τ̄ = 100 case,

the extrapolation of the σ̂ = 0 and σ̂ = 0.43 data in the < R2 > (t) plot is used to

evaluate LD =
√
< R2 > (t = τ). Otherwise, the simulation data is used directly.)

It is found that for σ̂ equal to 0 and 0.43, as expected, there is little error incurred

by assuming the non-dispersive diffusion with D = Deq. The slight error incurred at

τPL = τ̄ is due to intrinsic short time disperive behavior arising from general hopping

processes, but because this effect disappears after roughly a single a single hop it

introduces only relatively minor errors into the calculation, and no significant errors

at long times. However, for σ̂ = 2.13 assuming non-dispersive diffusion with D = Deq
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Figure 5-2: Exciton diffusion simulations for Dexter transfer in a cubic lattice. Cal-
culations of < R2 > (t) >, D(t), and Ē(t) are shown in (a), (b), and (c) respectively,
for a range of σ̂ values. In the < R2 > (t) >, D(t) plots, the dashed lines represent
extrapolations of the MC simulation data assuming equilibrium behavior. In the Ē(t)
plots, the horizontal solid lines denote the theoretical equilibrium energy σ̂σ. In these
calculations, γ = 10D−1

site.
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Figure 5-3: Exciton diffusion simulations for Forster transfer in a cubic lattice. Cal-
culations of < R2 > (t) >, D(t), and Ē(t) are shown in (a), (b), and (c) respectively,
for a range of σ̂ values. In the < R2 > (t) >, D(t) plots, the dashed lines represent
extrapolations of the MC simulation data assuming equilibrium behavior. In the Ē(t)
plots, the horizontal solid lines denote the theorietical equilibrium energy σ̂σ.
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lattice. The values forDeq are obtained from the calculations ofD(t), by averaging the
over the last ten data points in time. For the Dexter transfer calculations, γ = 10Dsite.
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Table 5.2: Comparison of diffusion lengths calculated based on LD =
√

6DeqτPL and

directly from the simulatation data using LD =
√
< R2 > (t = τPL), for different

values of σ̂ and τPL. The equilibrium calculation is listed in each column, also with
the direct calculation in parentheses.

Transfer σ̂ Eq. (Exact) Eq. (Exact) Eq. (Exact)
(τPL/τ̄ = 1) (τPL/τ̄ = 10) (τPL/τ̄ = 100)
[ Dsite ] [ Dsite ] [ Dsite ]

Dexter 0 0.99 (1.05) 3.1 (3.1) 10 (10)
Dexter 0.43 0.83 (0.97) 2.7 (2.7) 8.5 (8.5)
Dexter 2.13 0.25 (0.81) 0.77 (1.6) 2.1 (3.6)

Forster 0 1.4 (1.5) 4.3 (4.3) 14 (14)
Forster 0.43 1.2 (1.3) 3.7 (3.7) 12 (12)
Forster 2.13 0.36 (1.07) 1.2 (2.2) 3.6 (5.3)

significantly underestimates LD, even for τPL = 100τ̄ , indicating that in cases where

the lifetime is short compared to the time required to achieve equilibrium, the errors

in assuming non-dispersive, equilibrium diffusion are substantial. In these cases, the

proper value of LD can only be obtained by directly evaluating
√
< R2 > (t = τPL)

for the σ̂ of interest.

Fourth, it is instructive to review the magnitudes LD values one obtains from

evaluations of
√
< R2 > (t = τPL) to obtain approximate bounds on the diffusion

lengths expected in typical organic electronic materials. For Forster transfer, this

exercise is relatively straightforward because τPL/τ̄For = ηPLR̄
6
F (where ηPL is the PL

quantum efficiency) and reasonable values for ηPL and R̄F are known. Specifically, ηPL

is typically between 0.2 to 0.6, and R̄F is typically between 1.0Dsite and 3.0Dsite. This

yields for τPL/τ̄For values ranging between 0.2 and 440. An approximate lower bound

on LD is then obtained by evaluating
√
< R2 > (t = 0.2τ̄For) for the σ̂ = 2.13 data

set, giving LD = 0.81Dsite. An approximate upper bound is obtained by evaluating√
< R2 > (t = 440τ̄For) for the σ̂ = 2.13, giving LD = 28Dsite. Assuming Dsite ≈ 1

nm, this simple analysis suggests that essentially all amorphous organic electronic

materials should have LD between roughly 0.8 nm and 28 nm, when exciton diffusion

is governed by Forster transfer.
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Dexter transfer, on the other hand, can not be as easily bounded, because appro-

priate values for τ̄Dex are not in general known. It is illuminating, however, that for

typical fluorescent materials, Dexter transfer is believed to be a negligible process,

as this suggests that τPL/τ̄Dex is only appreciable for τPL much larger than roughly

10 ns (since most fluorescent lifetimes are between 1 and 10 ns). In phosphorescent

materials, where Dexter transfer is believed to dominate, τPL can be as large as 1 ms,

and so it is clear that τPL/τ̄Dex can certainly be large, and therefore LD can also be

large. Supposing, as an upper bound on the Dexter hopping rate that τPl/τ̄Dex = 1

for τPL = 100 ns, then for τPL = 1 ms, τPl/τ̄Dex = 1x104, for which LD is roughly

100Dsite for σ̂ = 0. Again assuming that Dsite = 1 nm, this indicates LD can be as

large as 100 nm. In general, both Dexter and Forster transfer operate at the same

time, though in fluorescent materials the former is usually negligible. In the case

where both Dexter and Forster transfer attain their maximal diffusion rates together

(which is not a situation that to this author’s knowledge has even been analyzed,

since in the existing literature, only one mechanism or the other is ever considered

in a given treatment), one can envision obtaining LD as large as 128 nm. All of the

reported values for Leff
D listed in Table 5.1 fall between 3 nm and 88 nm, which is

consistent with the rough bounds derived here. However, to more properly assess the

self-conistency of these values, a detailed comparison between the known absorption

and emission spectra and PL lifetimes for these materials would be required.

It is also worth noting that the impact of energy disorder on the LD values for

this range of σ̂ is relatively minor. Specifically, from Table 5.2 we find that for the

three different values of τPL, the value of LD for σ̂ = 2.13 has roughly 75 %, 51 %,

and 37 % of the σ̂ = 0 value. While these reductions in LD are certainly appreciable,

it is evident that this degree of energy disorder only moderately impedes the exciton

diffusion process.

Finally, in Fig. 5-5 the values of Ē(t) for Dexter and Forster transfer are compared

against each other, revealing that for equivalent values of τ̄ , Forster transfer leads to

faster overall diffusion rates (as evidenced by the more rapid decay of Ē(t) towards

equilibrium). This is due to the weaker distance dependence of the Forster transfer
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Figure 5-5: Comparison of Monte Carlo simulations of Ē(t) for exciton diffusion by
Dexter (solid line) and Forster (dashed line) transfer in a cubic lattice.

rate as compared to the Dexter transfer rate. In short, whereas Dexter transfer is

practically limited to only its 6 nearest neighbors, the Forster transfer rate is still

appreciable for a comparatively large number of sites. This is also reflected in the

fact that higher values for D(t) are observed for Forster transfer compared to Dexter

transfer.

The impact of moderate spatial disorder was also investigated, through simulations

on random lattices having Dmin = 0.8Dsite for the same range of σ̂ investigated above.

It is found that for Dexter transfer, there is no measureable change in either D(t) or

Ē(t). However, for Forster transfer, it is found that at short times the diffusion rate

is enhanced, followed by a period during which the diffusion rate is reduced, after

which the diffusion rate is found to the same as that for the cubic lattice. These

results are summarized in Fig. 5-6. The plot of D(t) shown in Fig. 5-6 (a) is nearly

identical to the corresponding plot for the cubic lattice (see Fig. 5-3 (a)). However,

the plot of Ē(t), shown in Fig. 5-6 (b), demonstrates that for the spatially disordered

256



lattice the onset of the decay in Ē(t) is shifted to earlier time, and after this initial

drop Ē(t) converges back into the cubic lattice curve, suggesting that at first the

diffusion rate is faster, then slower, and then ultimately the same. To illustrate this

more clearly in Fig. 5-4 (c) is plotted the ratio of D(t) for the random lattice to D(t)

for the cubic lattice, showing the short time oscillation in D(t) relative to the cubic

lattice case. The principle conclusion of these results is that for the moderate spatial

disorder investigated here, D(t) and Ē(t) are unchanged for Dexter transfer, and

slightly altered for Forster transfer. These effects can likely be neglected for a semi-

quantiative treatment, but for a precise, quantiative calculation of Forster transfer,

we conclude that spatial disorder has a non-negligible impact on the results.

Before completing the discussion of these general simulations, it is useful to

compare the MC results with the predictions of the analytic theory developed by

Movaghar and coworkers[101], which to this author’s knowledge is the only analytic

theory reporting a solution for Ē(t). The main purpose of this comparison is to de-

termine the extent to which this theory can be used for precise calculations in place of

the MC simulations described above. To obtain Ē(t) using the Movaghar treatment,

one must solve an inhomogeneous integral equation for a function of the site energy

representing the time evolution of the mean energy of an exciton population initially

occupying only sites having the specified initial energy. This equation does not have

a general analytic solution, and so an iterative numerical solution is required. This is

accomplished by discretizing energy, and then solving the integral equation iteratively

using multi-dimensional Newton’s method. The details of the calculation of Ē(t) are

described in Appendix C.

The key numerical considerations of the calculation are the discretization in en-

ergy, and a discretization of space in the radial dimension (for spherical coordinates).

(The solution involves an integral over space, for which the radial integral is not ana-

lytic, necessitating a numerical integration, which requires this discretization.) As a

result of these discretizations, the energy spacing, ∆E, and radial distance spacing,

∆R, impact the accuracy of the results. In addition, because the analytic integrals

are carried out over all energies and space, yielding infinite bounds on E and R, it
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Figure 5-6: Exciton diffusion simulations for Forster transfer in a random lattice with
Dmin = 0.8Dsite. In (a) are shown calculations of D(t). In (b) are shown calculations
(dashed line) of Ē(t), along with corresponding calculations for the cubic lattice (solid
line). In (c) are shown the ratio of D(t) for the random lattice to D(t) for the cubic
lattice to illustrate the relative variations in the diffusion rate for the two cases.
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is necessary to approximate these infinite bounds with finite ones, and the choice of

these bounds also impacts the accuracy of the results. With the exception of the

lower bound, Rmin, on the integral over R, it has been verified that the parameters

used in the calculation are sufficient to yield accurate results. (This is accomplished

by performing the calculation for various values of of the calculation parameters and

demonstrating that for the chosen values, the results are insensitive to further refine-

ments.) Though the precise parameters used in each calculation are not all the same,

in general it is found that ∆E ≈ σ/4 and ∆R ≈ Dsite/5, an energy range of ±7σ,

and a maximum R value of 5Dsite are sufficient to obtain accurate results.

The value of Rmin, in contrast with the other integration bounds, is treated as

a free parameter with which to adjust the results of the calculation. (This value

suggests the physical interpretation of the shortest transfer distance allowed in the

system, but it is not clear how accurate this interpretation is in detail.) Another

free parameter in the calculation is a scaling factor applied to the density. This

parameter, denoted in the Movaghar et al.[101] development by ap and referred to

as the “percolation factor,” corrects for an expected overestimation of the transfer

rate. Movaghar et al.[101] reports a value of ap = 1/2.7 for Dexter transfer with

γ = 10D−1
site, and also suggests the best agreement with cubic lattice MC simulations

is obtained for Rmin = 0.8Dsite, but only a single calculation for this Rmin value is

shown, while all the other calculations employ Rmin = 0. Neither a value for ap nor

an “optimal” value for Rmin for are reported for Forster transfer, as all of reported

calculations are for Dexter transfer.

We compared the analytic calculations to the MC simulations for the range of σ̂

analyzed above. In carrying out this comparison, ap and Rmin were treated as free

parameters specific to the type of lattice and the transfer type. In short, we attempted

to determine a set of values unique to Dexter and Forster transfer, for cubic lattices

and random lattices having Dmin = 0.8Dsite.

We consider Dexter transfer first. Since the same results are obtained for both

the cubic and random lattices, only a single set of parameters are needed. As a

starting point, we employ ap = 1/2.7 as recommended by Movaghar et al.[101] for
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Figure 5-7: Analytic diffusion theory compared with MC simulation, for different
values of Rmin and ap. In (a) are shown Ē(t) for σ̂ = 1.28 calculated from MC
simulations (symbols) and calculated using the analytic theory (solid lines) for a range
of values of Rmin with ap = 1/2.7. In (b) are shown Ē(t) for σ̂ = 1.28 calculated from
MC simulations (symbols) and calculated using teh analytic theory (solid lines) for a
range of values of ap with Rmin=0.55Dsite.

γ = 10D−1
site. In Fig. 5-7 (a) is shown a series of Ē(t) calculations for σ̂ = 1.28 using

the analytic theory with different values of Rmin compared with the MC simulation

results. These results demonstrate that while the analytic theory yields qualitatively

correct results, none of the analytic calculations yield a quantitative fit to the data.

They also show that increasing Rmin has two effects: it delays the onset of the Ē(t)

decay and increases the slope (as viewed in log time) of the decay once it is initiated.

We then analyze the impact of varying ap (with Rmin held fixed at 0.55 Dsite), as

shown in Fig. 5-7 (b). Again, the agreement is not quantiative for any set of ap

values. This plot also shows the primary effect of varying ap is to shift in time the

onset of the decay in Ē(t) without significantly alterning the slope of the decay (again

as viewed in log time).

By varying both ap and Rmin and optimizing for agreement with MC simulation

data, significantly better results are obtained. “Optimal” values of ap = 1.48 and

Rmin = 0.9Dsite were obtained by first modifying Rmin to match the slope of the

Ē(t) decay, and then modifying ap to shift the onset of the the decay as needed. The

analytic calculations with these parameters are shown in Fig. 5-7 (a), along with the
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corresponding MC simulation results, for each value of σ̂ considered above. Despite

the dramatically improved agreement, however, the long time behavior of the two

calculations are found to diverge, with this divergence increasing with increasing σ̂,

thus indicating that even for these optimized parameters, measureable errors remain.

For Forster transfer, since the cubic and random lattice cases are not identical, the

two cases are considered separately. For the cubic lattice, “optimal” parameters of

ap = 2.22 and Rmin = 0 are obtained. The analytic calculations performed with these

parameters are shown in Fig. 5-7 (b), along with the corresponding MC simulation

results. As for the Dexter transfer case, good agreement is observed at short times, but

the results diverge at long times, with this divergence again increasing with increasing

σ̂. Thus it is again found that even for the optimized parameters, the analytic theory

leads to small but measureable errors. For the random lattice, it was previously noted

that the short time diffusion is increased, such that there is an earlier onset in the

Ē(t) decay, and a shallower slope to the decay as the behavior reconverges with the

cubic lattice behavior. This presents a problem, however, for further optimization of

ap and Rmin, because to further decrease the slope of the decay obtained from the

analytic results, it is would be necessary to further decrease Rmin, and it is already

zero. Thus it is found that no further optimization is possible for the random lattice

beyond the parameters obtained for the cubic lattice. A comparison between the

analytic results for ap = 2.22 and Rmin = 0 and the corresponding MC simulation

results is shown in Fig. 5-7 (c). In this case, unlike for the cubic lattice cases, the

disagreement between the analytic theory and the MC simulations is significant at

all times.

To be fair, the analytic theory yields remarkably good results, and for most pur-

poses, the errors noted above could be neglected. In this sense the optimized pa-

rameters quoted above certainly enable the use of the Movaghar et al.[101] analytic

theory for reasonably accurate calculations of Ē(t). However, for a precise, quantia-

tive calculations, particularly in the case of Forster transfer in a spatially disordered

lattice, the MC simulation method remains clearly superior. It is also worth noting

that the analytic theory developed by Movaghar et al.[101] is only developed for an
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Figure 5-8: Analytic diffusion theory with optimized Rmin and ap, compared with MC
simulation. In (a) are shown Ē(t) for Dexter transfer in a cubic or random lattice
(Dmin = 0.8Dsite), calculated using MC simulations (symbols) and calculated using
the analytic theory (solid lines) with ap = 1.48 and Rmin = 0.8Dsite. In (b) are shown
Ē(t) for Forster transfer in a cubic lattice, calculated using MC simulations (symbols)
and calculated using the analytic theory (solid lines) with ap = 2.22 and Rmin = 0.
In (b) are shown Ē(t) for Forster transfer in a random lattice (Dmin = 0.8Dsite),
calculated using MC simulations (symbols) and calculated using the analytic theory
(solid lines) with ap = 2.22 and Rmin = 0.
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MA rate, and no extension of the method has been reported in the literature for arbi-

trary rate expressions, providing another advantage to the MC simulation method for

quantitative analysis of exciton diffusion.3 However, the use of MC simulations is still

predicated on the assumption that the associated computational demands are reason-

able. For the above calculations, the analytic treatment (carried out using MATLAB

scripts) requires roughly 10 minutes for a particular Ē(t) curve having roughly 30

data points, while the MC simulations reported above require roughly 20 minutes

each. Thus for these calculations, there is little difficulty in directly employing MC

simulations.

However, for much longer time windows, the situation would certainly change

because the MC simulation time scales with the maximum simulated time, while the

analytic method scales only with the number of data points, regardless of where in

time those data points lie. As a result, one can monitor an effectively arbitrary time

window using the analytic method, whereas for the MC simulation one is practically

limited to a maximum time of roughly 10000 ¯tau, with such a calcultion requiring a

few days to complete. Thus for very long time windows, it may be necessary to resort

to the analytic method. It should be kept in mind, though, that such simulations

are only necessary when the equilibration time is very long (since the properties of

an equilibrated system can be trivially extrapolated from the equilibrium properties

to arbitary subsequent times), and long equilibration times arise from large σ̂. The

importance of this observation is that it was found above that the errors in the analytic

calculation increase with increasing time and increasing σ̄, suggesting that one should

especially cautious of errors in the analytic method in this case.

3The development of the Movaghar et al.[101] analytic method presented in Appendix C is carried
out in a manner that allows for extension to general rate expressions, and the specific example of an
MA rate in which the maximum rate factor is greater than 1 is described. However, the comparison
of this extended analytic theory with corresponding MC simulations is not described here.
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5.7 Exciton Diffusion in AlQ3

In this section, we[87] report an analysis of singlet exciton diffusion by Forster trans-

fer in AlQ3 using both experiment and MC simulation. We perform a rigorously

self-consistent, quantitative test of different exciton diffusion models by comparing

the models’ predicted behavior for Ē(t) to the measured dynamic energy shift in

the PL of AlQ3 thin films as a function of different temperatures. We find that to

obtain self-consistent fits it is necessary to employ: (1) a spatially disordered lattice

instead of a cubic lattice (as is conventional); and (2) to model the energy depen-

dence of the exciton transfer rate by means of a direct calculation the overlap of

experimentally derived PTS functions instead of using the MA approximation (as is

also conventional). This is the first reported fit between theory and experiment of

Ē(t) for a small molecular weight amorphous organic material, and is the most quan-

titatively self-consistent fit for any amorphous organic electronic material reported in

the literature. This analysis also provides the first quantitative demosntration of the

shortcomings of the use of cubic lattices and the MA approximation to model exciton

diffusion in a real experimental system.

We perform measurements of time resolved PL of 100 nm thin films of AlQ3 grown

by vacuum thermal evaporation (≤ 1x10−6 Torr growth pressure and growth rates of

≈ 0.2 nm/s) on clean glass substrates. Following film growth, the samples are briefly

exposed to atmosphere during transfer from the growth chamber into a closed cycle

helium cryostat with quartz windows arranged for both straight–through and right–

angle optical measurements. Within the cryostat, the thin film PL is excited with 100

fs long, 395 nm wavelength laser pulses generated by frequency doubling the output of

a Coherent RegA 9000 regenerative amplifier seeded by a Coherent Mira 900F mode

locked Ti-Sapphire laser. A repetition rate of 250 kHz is used for all measurements.

The fluorescence is detected using a Hamamatsu C4780 picosecond fluorescence life-

time system consisting of a C4334 Streak Camera and a C5094 spectrograph. The

time resolution is limited by triggering jitter to 100 ps. The spectrograph grating sets

the wavelength resolution to 0.2 nm. All of the measurements are integrated over

264



-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

 

Energy [ eV ]

N
or

m
al

iz
ed

 P
L 

In
te

ns
ity

Ab
so

rp
tio

n 
C

ro
ss

 S
ec

tio
n 

[ 1
0-

17
cm

2
]

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.0

0.5

1.0

1.5

2.0

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8

 295K
 180K
 75K
 35K

 

AlQ3

Figure 5-9: PL and absorption spectra for 100 nm films of AlQ3 at temperatures
of 295K, 180K, 75K, and 35K, where the PL spectra are time integrated over the
entire emission pulse and normalized to integrate over energy to unity. The bottom
panel shows the spectra themselves, while the top panel shows the deviation of the
cooled spectra from the 295K spectra, to better illustrate the differences between the
temperatures. To within the measurement error, the absorption spectra at 35K and
75K are identical.

50,000 measurement frames at a capture rate of 30 Hz (yielding total measurement

times of roughly 30 minutes per sample). The samples are kept under vacuum in

the cryostat at all times, and no sample degradation is observed during any of the

measurements.

Measurements were carried out at temperatures of 295K, 180K, 75K, and 35K.

Time–integrated spectra for each temperature are shown in Fig. 5-9. For each mea-

surement, the time-resolved PL shifts to lower energies with increasing time, as shown

in plots of the mean PL energy, ĒPL(t), as a function of time in Fig. 5-10. Note that

the data are plotted on a logarithmic time scale. Absorption spectra (see Fig. 5-9)

are also measured at each temperature using a Cary 5000 aligned to monitor the

straight–through optical path of the cryostat.
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Figure 5-10: Time evolution of ĒPL(t) (grey points) for thin films of AlQ3 at 295K,
180K, 75K, and 35K, showing fits using Model I (solid black lines) and Model II
(dashed black lines), using the parameters listed in Table 5.3. Inset: Integrated total
PL intensity time decay data (grey dots) for the 295K measurement with fit (black
line) for a PL lifetime of τPL = 17.4 ns.
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The experimental data provide a probe of the time evolution of the exciton pop-

ulation. Specifically, from ĒPL is obtained a measurement of the time evolution of

the mean energy, Ē(t), of the exciton population, n(E, t), where E is the “exciton

energy” described above (i.e. the electronic energy associated with exciton creation).

To make the needed connection, we employ an energy scale in which the mean exciton

energy is zero (i.e. we utilize the technique of expressing the exciton energy entirely

by its deviation from the mean energy, such that the DOS is given by g0(E) as defined

in Chapter 5). In this case ĒPL(t) is given by a simple convolution of the molecular

emission spectrum, Srad
mol(E), with n(E, t). (Note that in this analysis, the constant

spectral shape approximation is employed.) This then yields ĒPL(t) = Ē(t) + E0

where E0 is the mean energy of Srad
mol(E).

To analyze the observed ĒPL(t), MC simulations of exciton diffusion by Forster

transfer are carried out using ONESim for two primary models: I and II. For each

model, an orientationally averaged rate is employed, so that the transfer rate expres-

sion is given by,

ΓFor(∆E,R) =
1

τ̄For

[
Dsite

R

]6

χ(∆E) (5.33)

where,

τ̄For = τ

[
Dsite

R̄F

]6

. (5.34)

The two primary models are differentiated the basis of two components. First, they

differ in the type of lattice used: Model I employs a cubic lattice and Model II employs

a random lattice with Dmin = 0.8Dsite. Second, they differ in the method used to

calculate χ(∆E): Model I employs the MA approximation, i.e.,

χ(∆E) =

 1 if ∆E < 0

e∆E/kBT if ∆E ≥ 0
, (5.35)

while Model II employs a direct calculation of χ(∆E) using normalized molecular

spectra and Eqn. 5.24. For each model the exciton energies are assigned using the
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GDM, so that g0(E) is gaussian function with standard deviation σ (and mean energy

zero).

In these models, D−3
site gives the average site density, which is chosen to match the

density of AlQ3. Based on the measurements of AlQ3 thin films described in Chapter

3, this yields Dsite = 0.87 nm. The value of τ is chosen to be the radiative lifetime of

AlQ thin films. At 295K the PL lifetime (τPL) for AlQ3 is 17.4 ns ± 0.5 ns, obtained

from a single exponential fit to the integrated PL intensity time decay, as shown in the

inset of Fig. 5-10. Since τ is equal to τPL divided by the PL quantum efficiency[117]

which is 32 % ± 2 %[47] for AlQ3 thin films at 295K, we find that τ = 54 ns ± 2

ns.4 For Model I, the remaining model parameters are R̄F , σ, and E0. For Model II,

one must also specify the molecular spectra Srad
mol(E) and Sabs

mol(E) that are plugged

into Eqn. 5.24 to obtain χ(∆E). It is clear that the molecular spectra are needed

for Model II, and a procedure for their calculation is now described. However, before

beginning we observe that it is also useful to calculate the molecular spectra when

using Model I as well, since this allows one to compare the values for R̄F obtained by

fitting to the experimental data with the values for R̄F obtained by direct evaluation

of Eqn. 5.26.

In the appproach employed here, the molecular spectra are derived from mea-

surements of the corresponding bulk spectra. However, the specific procedure is

dependent on whether the aborption or emission spectrum is needed. For Sabs
mol(E),

the calculation is straightforward: σmol(E) is obtained by deconvolving g0(E) and

σbulk(E) based on the specified σ. To perform this deconvolution, σmol(E) is fit by

three gaussian functions, and the parameters of the gaussian functions varied until

the convolution of σmol(E) and g0(E) adequately fits the lowest energy absorption

peak in the bulk spectrum. (It is only necessary to fit the lowest energy peak because

it will overwhelmingly dominate in the overlap integral appearing in χ(∆E).) Having

obtained σmol(E), Sabs
mol(E) is then obtained by normalizing σmol(E) to integrate to

unity.

Obtaining Srad
mol(E) is more difficult, since as discussed above, the bulk PL spec-

4This is precisely the calculation of the AlQ3 radiative lifetime described Chapter 2.
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trum at any given time is given by the convolution of Srad
mol(E) and n(E, t) (and not

simply a convolution with g0(E).) In this experiment, however, the PL is averaged

over well-defined emission pulses, and if one knows the distribution of emitted exci-

ton energies nrad(E) for each emission pulse, one can obtain Srad
mol(E) by deconvolving

nrad(E) from Srad
bulk(E). The calculation is then mainly a matter of obtaining nrad(E).

The MC simulations performed here yield n(E, t) for each time step, and one can

then obtain nrad(E) by numerically integrating n(E, t) exp[−t/τPL] over the course of

the measurement window.5 Having thus obtained nrad(E), one then obtains Srad
mol(E)

by performing the needed deconvolution. As with the absorption spectra, this is

accomplished by assuming a triple gaussian form for Srad
mol(E), and then varying the

parameters of the gaussian functions until adequate agreement with Srad
bulk(E) is ob-

tained.

One subtlety with carrying this calculation out for Model II, however, is that

to have performed the simulation in the first place, one must have already assigned

Srad
mol(E) (to calculate χ(∆E)). In the calculations performed here, an iterative proce-

dure is employed to obtain self-consistent results. Specifically, an initial guess is made

for Srad
mol(E), the simulation performed, the data analyzed, and Srad

mol(E) recomputed,

repeating until the input Srad
mol(E) adequately matches the output Srad

mol(E).

The final input required by each MC simulation is the initial exciton population.

Since the excitation wavelength here is near the peak of the AlQ3 absorption, where

the absorption is relatively flat (and therefore roughly unchanged by small shifts

in the peak energy), we assume that the exciton population is initially random, i.e.

n(E, t = 0) ∝ g0(E). For this initial condition it is also the case that ĒPL(t = 0) = E0.

Fits to the time evolution of the mean PL energy using Model I are denoted by

solid lines in Fig. 5-10 and the corresponding values of R̄F , σ, and E0 are listed

in Table 5.3. Fits using Model II are denoted by dashed lines in Fig. 5-10, and the

associated model parameters are again listed in Table 5.3. Figure 5-11 shows the bulk

5The factor of exp[−t/τPL] arises because exciton decay (either radiative or non-radiative) is
neglected in the simulations performed here, for the same reasons given in the previous section.
Since AlQ3 has a single exponential PL decay, however, the impact of exciton decay is trivially
included by applying a scaling factor of exp[−t/τPL] to n(E, t).

269



Table 5.3: Model parameters for fitting the dynamic shift in the mean PL of thin
films of AlQ3 at different temperatures. Note that T denotes the temperature, R̄F is
the mean Förster radius, σ is the standard deviation of the exciton DOS, E0 is the
mean PL energy at t=0, and R̄calc

F is the mean RF calculated from Eqn. 5.26.

Model T [ K ] R̄F [ nm ] σ [ eV ] E0 [ eV ] R̄calc
F [ nm ]

I 295 1.26 0.034± 0.015 2.27 1.12± 0.05
I 180 1.20 0.033± 0.015 2.29 0.98± 0.05
I 75 1.26 0.029± 0.015 2.29 0.95± 0.05
I 35 1.22 0.026± 0.015 2.29 0.96± 0.05

II 295 1.12 0.039± 0.015 2.28 1.12± 0.05
II 180 0.95 0.039± 0.015 2.28 0.95± 0.05
II 75 0.90 0.039± 0.015 2.29 0.90± 0.05
II 35 0.90 0.039± 0.015 2.29 0.90± 0.05

and molecular spectra for the 295K data fitted using Model II, providing a comparison

of the two sets of spectra. It is found that the molecular spectra have nearly identical

widths as the bulk spectra, but as expected, Srad
mol(E), is shifted to higher energies

as compared to the time-averaged bulk spectra, reflecting the extent to which the

dynamic spectral shift impacts the observed bulk PL of AlQ3. Also shown in Fig.

5-11 are g0(E) and nrad(E), shifted together in energy so that g0(E) is centered at

E0. Based on the fitting parameters the DOS here is much narrower than the bulk

spectra, and this explains why the molecular spectra have essentially the same width

as the bulk spectra. Finally, also listed in Table 5.3 are values of R̄F (denoted by

R̄calc
F ) calculated directly from Eqn. 5.26 using the self-consistently obtained σmol(E)

and Srad
mol(E). In these calculations we use n = 1.70±0.02 (measured by ellipsometry),

and κ2 = 2/3 (which provides the orientational average.)6

From Fig. 5-10, we find that both models fit the experimentally observed data,

but Table I shows that only Model II is strictly self-consistent on the basis of a

comparison of R̄F and R̄calc
F . For Model II the R̄F and R̄calc

F values are in perfect

agreement. In contrast, for Model I, the R̄F overestimate R̄calc
F by between 13% and

33%, corresponding to errors in the Förster transfer rate of between 200% and 540%

6Note that if the correction proposed by Baumann et al. is employed, the values of R̂calc
F would

be 3% lower.
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Figure 5-11: Molecular AlQ3 absorption (σA) and PL (SD) spectra, calculated from
295K data for the Model II fit. Also shown are the bulk absorption (σbulk) and PL
(Sbulk) spectra, as well as the DOS (g(E)) for absorption and emission, and the time
integrated energy distribution of emitted excitons (nex).
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(through the sixth power dependence on RF .) Note that since this self-consistency is

one of the objectives of the analysis, the parameters listed in Table I reflect the fits

for Model I which come the closest to achieving this aspect of self-consistency.

Another evaluation of the self-consistency of the model can be applied by con-

sidering the σ values. We have already established that in polar small molecular

weight amorphous organic solid like AlQ3 thin films, the DOS arises from electro-

static interactions between the molecular charge distributions, interactions which do

not have any temperature dependence. This implies that σ should be independent

of temperature, which is precisely what is observed in Model II, whereas in Model

I, σ decreases with temperature. Thus it is found on this count as well the fitting

parameters obtained using Model I are not self-consistent.

Further simulations and fits were performed using two additional models, Models

III and IV, to determine the extent to which the separate approximations of Model

I, namely the use of a cubic lattice and the MA approxiation, lead to the lack of self-

consistency in the fitting parameters. In Model III, a random lattice with Dmin =

0.8Dsite and the MA rate are used. In Model IV, a cubic lattice and the exact transfer

rate are used. For Model III, one can obtain R̄F consistent with the R̄calc
F , but the σ

values continue to decrease with temperature. In Model IV, one can obtain σ values

that are constant with temperature, but the R̄F are not consistent with the R̄calc
F .

These results reveal that it is the use of the cubic lattice instead of the disordered

lattice that leads to the overestimation of the R̄F values, and while it is the use

of the MA approximation that leads to the inconsistent temperature dependence of

σ. Based on the results of the previous section, we conclude that the former arises

because disorder acccelerates the decay of Ē(t) towards equilibrium, and thus the

neglect of this disorder will require an increase R̄F to compensate. The failure of

the MA approximation is not surprising either, since it takes no account of specific

shape of the AlQ3 absortpion and emission spectra, and therefore can not predict the

evolution of those spectra as a function of temperature; it is entirely plausible that

this neglect manifests as a temperature dependent distortion of σ.

Before moving on a few final comments are in order. First, it is found based on this
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analysis that σ = 0.039 eV. In Chapter 3, we performed theoretical calculations of σ

based on reported ab initio values for the AlQ3 charge distribution in the ground and

S1 state, and using a ground state polarizibility derived from the measured density

and index of refraction. These calculations yielded σ = 0.044 eV for a cubic lattice,

and σ = 0.060 eV. Given the uncertainty of the ab initio dipole moments used in these

calculations, a more realistic result for comparison with experiment is σ = 0.05±0.02

eV, which is entirely consistent with the value obtained in our fits. Second, it is found

that from the simulations using Model II at room temperature, DL ≈ 1 nm. This is

noteworthy because it is much smaller than the values reported in the literature for

Deff
L (see Table 5.1 above), which range betweem 8 nm and 25 nm. The source of this

discrepancy likely lies in the assumptions of the rather crude models used to obtain

those effective diffusion lengths, but it would be interesting to review the precise

nature those measurements to determine if an obvious explanation is evident. Third,

in our analysis we assume that the diffusion process in AlQ3 is dominated by Forster

transfer. As previously discussed, the Dexter transfer rate is usually much smaller

than the Förster transfer rate unless the transition dipole moment of the exciton is

nearly zero, with the characteristic feature being the radiative lifetime. Though τ for

AlQ3 is long for a fluorescent material, it is still much shorter than the lifetimes of

typical phosphorescent materials, where Dexter transfer is believed to be dominant.

Finally, it should be noted that one can also obtain dynamic spectral shifts from an

energy dependent exciton trapping process. However, the single exponential behavior

observed in the PL intensity decay of AlQ3 indicates that such a mechanism is not

present in this system, as such a trapping process yields a time dependent quenching

rate (see e.g. [133]).

5.8 Conclusion

In this chapter the process exciton motion is analyzed. The importance of exciton

motion in organic electronic device performance is illustrated through consideration

of OLED and solar cell device operation. The existing literature on the theory and
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experimental measurement of exciton motion in amorphous organic materials is re-

viewed. The application of the model of small molecular weight amorphous organic

solids described in Chapter 3 is described for exciton motion by Forster and Dex-

ter transfer. The principle methods are described by which self-consistency in the

model parameters can be ensured. General Monte Carlo simulations using ONESim

of exciton diffusion by Dexter and Forster transfer under the MA approximation

are presented, and the dependence of D(t), Ē(t), and LD on molecular properties

described.

Finally, an analysis of exciton diffusion in AlQ3 is presented in which four different

exciton diffusion models are employed to fit experimental measurments of the dynamic

energy shift in the PL of AlQ3 thin films as a function of time for four different

temperatures. It is found that to obtain self-consistent fits it is necessary to employ:

(1) a spatially disordered lattice instead of a cubic lattice, and (2) to model the energy

dependence of the exciton transfer rate by means of a direct calculation the overlap

of experimentally derived PTS functions instead of using the MA approximation. On

both counts, this distinguishes the optimal model from the conventional model used

to analyze exciton diffusion in amorphous organic solids. Specifically, it is found

that the use of a cubic lattice leads to an overestimation of R̄F and the use of the

MA approximation leads to a faulty temperature dependence in σ. This is also the

first reported fit between theory and experiment of Ē(t) for a small molecular weight

amorphous organic material, and is the most quantitatively self-consistent fit for any

amorphous organic electronic material reported in the literature. In the optimized

fits σ = 0.039 eV, which is found to be consistent with the theoretical calculations of

exciton energy disorder reported in Chapter 3 within the stated uncertainties.
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Chapter 6

Polaron Motion

6.1 Introduction

As with excitons, the simplest intermolecular process involving polarons is polaron

motion, comprising the transport of polarons from one molecule to another by means

of intermolecular transfer. The study of polaron motion, and specifically polaron

transport (which refers to polaron motion assisted by an electric field), in amorphous

organic solids is of fundamental importance in all organic electronic devices, since it

is the basis for the flow of electrical current. In the last twenty five years, considerable

research effort has been expended to understand polaron motion in amorphous organic

solids. By comparison with exciton motion, the process is more complex and less

accessible to experimental invesigation, even though the physical principles of the

process are quite similar. As a result, the agreement between theory and experiment

in polaron transport remains comparatively qualitative. At the same time, it is

well understood that an accurate theory of polaron motion is essential for modeling

amorphous organic electronic devices.

In this chapter, the fundamental mechanisms of polaron motion are described,

and placed in the context of the preceeding model of amorphous molecular organic

solids. The existing literature on the relevant experimental and theoretical analysis

of polaron motion in amorphous organic materials is reviewed. A series of novel

Monte Carlo simulations of polaron motion using ONESim are presented, yielding
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calculations of the polaron mobility as a function of field and polaron density at typical

operating conditions. Finally, the unique capabilities of ONESim are demonstrated

by presenting the first Monte Carlo calculations of the current voltage relationship

for space charge limited conduction through an amorphous organic thin film.

6.2 Motivation and Background

The importance of polaron motion in organic electronic devices is self-evident: to the

extent that currents flow in a given device, polaron motion is a controlling process.

Since essentially all electronic devices involve current flow, a proper device model

must properly treat polaron motion. This has been recognized since the earliest days

of organic electronic device technology. Research into polaron motion in amorphous

organic materials is on–going and largely driven by the need for better models of

organic electronic device technologies.

Polaron motion in amorphous organic electronic solids, like exciton motion, pro-

ceeds by a process of incoherent electron hopping events controlled by disorder. This

view of polaron transport was first promoted by Bassler and coworkers in the early

1980s (see e.g. [10]), emerging essentially in conjunction with the similar view of exci-

ton motion. The initial theoretical study of polaron motion focused on the process in

the absense of an applied field, i.e. polaron diffusion.1 The polaron diffusion problem

is essentially identical to exciton motion by Dexter transfer, and thus all of the same

treatments previously described for exciton motion can be simultaneously applied to

polaron motion; indeed, the analysis of both processes was simultaneous, as this sim-

ilarity was recognized from the beginning. Thus, just as for excitons, the influence of

spatial disorder was first investigated in the late 1970s and early 1980s[53, 51, 100],

and then Bassler[10] subsequently demonstrated the importance of energy disorder,

after which all subsequent studies focused on polaron motion in the presense of en-

1A comment on terminology is relevant here. In the literature it is common to refer to molecular
charged states as simply a charge carriers, instead of explicitly as polarons. In this thesis, the term
polaron is used explicitly, since the charged states in amorphous small molecule organic materials
are all highly localized, should properly include the polarization of their surroundings, and therefore
constitute polaron states.
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ergy disorder. These theoretical investigations indicated that polaron diffusion was

dispersive, and since it was observed that the energy disorder of polaron states should

be even larger than the disorder observed for exciton states (based on the stronger

interaction of a charged state with its surroundings as compared to the neutral ex-

citon state), it was argued that the dispersive nature of polaron transport should be

even greater than that observed in exciton diffusion.

Investigation into polaron motion has been more recently focused specifically on

the process in the presense of an applied electric field, i.e. polaron transport. For

exciton motion an applied electric field does not influence exciton motion2. However,

for polaron motion the fact that the excited state is charged allows an applied field

to subject the excitation to a potential gradient. Specifically, in the presence of an

applied field ~F , for transfer of a polaron having charge q from a donor located at

~RD to an acceptor located at ~RA, the acceptor polaron creation energy is shifted by

an energy ∆Efield equal to q ~F · (~RA − ~RD). This energy represents the change in

potential energy of the polaron as a result of hopping in the presense of the applied

field.

As a result of the field’s influence, the polaron creation energy of acceptors in the

“forward” direction along the field (defined as the direction along which the polaron

energy is lowered, i.e. in the positive field direction for negative polarons, and vice

versa for positive polarons) are lowered relative to the donor, and the energies of

sites in the “reverse” direction are raised. This immediately indicates how current

transports in such materials: hops in the forward direction are energetically more

favorable than hops in the reverse direction, and thus carriers drift on average in the

forward direction. This influence can be stated formally by defining a field-assisted

hopping rate, in which energy of the final hopping site is given by Ef − q ~F · ~R where

Ef is the final site energy and ~R is the change in position of the polaron associated

with the hop. For the MA rate in particular, this leads to the following rate equation:

2Applied fields can certainly influence excitons by assisting the dissociation process, but they do
not influence the motion of an exciton.

277



Γhop = νhop exp [−γR]

 exp
[
−
(
E∗

f − Ei

)
/kBT

]
E∗

f > Ei

1 otherwise
, (6.1)

where,

E∗
f ≡ Ef − q ~F · ~R. (6.2)

This rate is referred to in this thesis as the field–assisted MA hopping rate.

The analysis of polaron transport leads principally to a calculation of the polaron

mobility, which is conventionally represented by µ, but which is here represented by

M to avoid confusion with the dipole moment. In general, the current flow at a given

point in space has two components, a drift component due to the applied field, and

a diffusion component due to solely diffusion in the presence of a concentration gra-

dient. The diffusion coefficient D provides the needed material dependent parameter

to obtain the diffusion current, and the mobility provides the corresponding param-

eter to obtain the drift current. Specifically, the current flux ~J (through a plane

perpendicular to Ĵ) due to polarons having charge q is given by,

~J = −qnM ~F − qD∇n (6.3)

where n is the the polaron concentration, and ~F is the applied field, and we have

assumed (as is appropriate for a perfectly amorphous material) that both D and M

are scalars (i.e. polaron motion is isotropic).3 Usually the component of the current

due to diffusion is dropped, as in most practical situations the diffusion current is

negligible. One then introduces the continuity equation (which expresses the need for

particle conservation):

∇ ~J(~r) =
d

dt
n(~r). (6.4)

(Note that in this expression explicit internal polaron generation and loss processes

3In the general case that polaron motion is not isotropic, then both D and M are replaced by
tensors.
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are neglected, so this can be considered an idealized problem. The generation and loss

occuring at the boundaries of the material are usually addressed through the proper

assignment of boundary conditions. Other sources of generation and loss, such as

recombination, however, are here neglected entirely.) In principle, one can solve this

expression to obtain time-dependent behavior, but typically the equilibrium condition

is assumed, i.e. d
dt
n(~r) = 0, which is equivalent to the condition that the current is

everywhere equal.

In the simplest case, both D and M are constants of the material, i.e. they have

no dependence on time, carrier concentration, or field. However, since polaron motion

is indeed dispersive, both D and M are time dependent so long as the system is not in

equilibrium. To address this difficulty “equilibrium” forms of each value are defined,

where here “equilibrium” refers to the average mobility of a carrier traversing an

infinite sample at sufficiently long times that the values are longer time–dependent.

These equilibrium values are denoted byDeq andMeq, and are conventionally assumed

to yield the equilibrium current (i.e. the condition where the current is everywhere

the same).

Bassler[10] and coworkers report an excellent early treatment of polaron transport

subject to the Gaussian Disorder Model (GDM) and a field-assisted MA hopping rate.

The dispersive nature of polaron transport at short times is clearly demonstrated

using Monte Carlo simulations with cubic lattices and isotropic (i.e. orientationally

averaged) hopping rates. (In their work, hopping to 125 neighbors is considered,

indicating a cubic interaction region surrounding each site having sides of length

equal to 2 Dsite.) In these simulations the time required for each polaron to hop a

distance of 40 lattice planes along the direction of the applied field is recorded, and

the data collected together for a population of polarons having random initial site

energy. The subsequent plot provides, effectively, the arrival times of a population of

polarons all initially excited at precisely a distance of 40 lattice planes away (in the

direction opposite the applied field).

Bassler found that by plotting the data in terms of the log of the arrival current I(t)

(calculated by summing the number of polarons that arive in a given time window
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and dividing by the length of that time window) vs the log of time, two distinct

“linear” regimes are evident. (Note that in a plot of log(A) vs log(B), the presense of

a “linear” regime indicates a power law relationship between A and B, such that the

linear slope c = d[log(A)]/d[log(B)] implies A = Bc.) At short times, he finds that

I(t) ∝ tα−1, while at long times I(t) ∝ t−β−1 where 0 ≤ α ≤ 1 and β ≥ α. (Note that

as in the last chapter, σ̂ refers to the standard deviation of the DOS divided by kBT .)

In the limit that σ̂ → 0, he also reports that α → 1, reflecting the non-dispersive

limit. Conversely, in the limit σ̂ → ∞, α → 0, reflecting the “infinitely” dispersive

limit. The significance of α as a signature of dispersion has lead to its identification

as the “dispersion parameter.” (Bassler observes that β, unlike α is not a unique

parameter of the operating conditions and the material, since it is dependent on the

transit distance, and thus between the two, α is the preferred parameter for describing

transport properties.)

It is found that α is dependent on the field, and that as the field is increased, α

decreases, and in the limit of large fields α→ 0, reflecting the situation where the field

provides sufficient energy in a single hop along the field direction to make any forward

site accessible regardless of the initial site energy. In addition, it is found that if the

transport process is allowed to proceed for a sufficiently long time (or equivalently, for

a sufficiently long distance), the transport process ceases to be dispersive, indicating

the onset of equilibrium transport. This is manifest by the formation of a plateau in

the log I vs log t plot (i.e. a region of zero slope), and calculations of the mean energy

of the occupied sites as a function of time reveal that this plateau is associated with

a leveling off of the time evolution of the mean energy. In this respect, the case of

polaron transport is shown to be quite similar to polaron diffusion.

In the event that the polaron transport process is dominated by equilibrium behav-

ior (i.e. in the case that equilibrium is achieved a short distance into the film relative

to the total thickness), the observed behavior is well described by non-dispersive,

“equilibrium” transport. In this limit, Meq = d/τ̄trF where d is the transport dis-

tance, and τ̄tr is the averaged transit time for a carrier to traverse that distance.

(Because of the dispersion, τtr takes on a distribution of values, and the appropriate
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definition of τ̄tr is not necessarily clear. In Bassler’s work, τ̄tr is the mean value of τtr.

However, other choices are possible, as elaborated below.) It is found that the MC

simulation results yield values of Meq that indicate that at a range of intermediate

fields ln(Meq) is roughly proportional to
√
F , consistent with what is known as a

Poole-Frenkel mobility.

Coincident with these early theoretical reprots, experimental measurement were

also reported which confirmed the predicted dispersive nature of polaron transport

in amorphous organic elecotnric materials (see [10] and references therein). These

experiments were all of the form of time of flight (TOF) measurements. The principle

of the TOF measurement is to directly measure τtr for carriers travelling through a

sample film. Specifically, one (ideally) generates a spatially narrow packet of charge

carriers on one side of the film, and then monitors the current through the device

as a function of time while the charge packet travels through the film. Typically

one generates this charge carrier packet by excitation with a pulse of light, and the

subsequently generated excitons dissociate either at an interface or spontaneously due

to the applied field. To maintain a spatially narrow charge packet (relative to the

thickness of the sample), one employs a sample thickness much greater than the region

over which there is appreciable light intensity. Thus it is desireable to use both thick

samples and light sources that are efficiently absorbed by the sample. (In addition,

since one must have electrical contact to both sides of the sample, it is necessary for

one of the contacts be transparent to the excitation light, and indium tin oxide is a

common choice.) In addition to confirming the dispersive nature of polaron transport

in amorophous organic electronic materials, early TOF measurements also indicated

that amorphous organic electronic materials exhibited polaron mobilities having the

Poole-Frenkel form, though the range of fields for which the relationship holds was

found to be wider than what was predicted by Bassler[10] based on the GDM.

An early analytic theory of the mobility in the low field limit is due to Movaghar

et al.[101] (in the same report detailed in the last chapter). Specifically, the authors

connected the previously discused analytic treatment of the dispersive diffusion of

excitations under the GDM to Meq through the Einstein-Smoluchowski relation to
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express the mobility as a function of the diffusion constant:

Meq =
|q|Deq

kBT
(6.5)

which holds in the limit that F → 0, and so long as the occupancy function, f(E),

for polaron states in the material can be described by a Boltzman distribution. The

reason this is expression only holds in the low field limit is that it is derived assuming

J is everywhere zero, and then setting the diffusion and drift components of the

current equal and opposite to each other. Clearly, as soon as the fields are sufficient

to perturb the system from this formal thermal equilibrium condition, the derivation

fails. The origin of the f(E) restriction is that to obtain the relation, it is necessary to

relate n(~r) to φ(~r) in thermal equilibrium (so as to express the gradient of the carrier

conentration); in the derivation of this expresison, this is accomplished by specifying

a Boltzman occupancy function.

The authors actually use this relationship to relate M and D as a function of

time, but this is inappropriate since the occupancy is a time evolving function (as

the system attains equilibrium through its hopping rates) and therefore one clearly

can not assume that f(E) is in general given by a Boltzman distribution. Rather,

at best this relationship applies in the long time limit where equilibrium has been

achieved, and even this only holds so long as the equilibrium occupancy function is

approximately given by the Boltzman distribution. Actual calculations of Meq values

are not reported, though as previously noted, the authors do note that ln(Deq) ∝ T−2,

and therefore a similar relationship for Meq can be inferred. To the author’s knowl-

edge, the analytic method described by Movaghar el a. has not been subsequently

employed in any subsequent reports of equilibrium mobility calculations.

On the basis of further MC simulations of polaron transport, Bassler[11] reports

an empirical expression for Meq as a function of σ and field F in the region over which

the mobility shows the Poole-Frenkel form:

M (GDM)
eq = M0 exp

[
−
(

2

3
σ̂

)2
]

exp
[
Cσ̂2E1/2

]
(6.6)
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where σ̂ = σ/kBT and C is a constant characteristic of the spatial structure of the

system. This relationship is approximate, even as an empirical relationship, since C

is actually weakly dependent on temperature. Also, it should be kept in mind that

this relationship only holds over a relatively narrow range of fields as compared to

the range of fields typically investigated in experimental studies.

In the same article, Bassler also reports an empirical relationship for the mean

energy, Ēeq of the carrier population in equilibrium:

Ēeq = σ̂σ +

[
F

F0

]3/2

(6.7)

where F0 = 1.8MV/cm. This relationship is shown to be roughly consistent with the

simulation data. However, there is a large saturation effect which causes deviations

in cases where either the disorder is small (i.e. σ̂ < 2.5) or the fields are very high.

Bassler argues that the dependence of Ēeq on F is a simple consequence of the fact

that for larger and larger fields, each polaron has a greater ability to hop to sites

having higher energies, and thus the mean energy in equilibrium (which occurs when

the aggregate hopping rates to sites upward and downward in energy are perfectly

balanced) is raised. It is noted that this contrasts with the phenomenon of carrier

heating that occurs at high electric fields in crystalline semiconductors, which is well

described by a field dependent effective temperature for the carriers (to represent the

increased occupancy of high energy phonon modes). In a hopping system with energy

disorder, however, the change in the mean energy is not predicated on any change in

the phonon occupancy. Rather, the actual electronic state occupancy function evolves

such that higher and higher energy states are occupied. Bassler does not, however,

report simulation results of n(E), and thus the precise nature of these deviations can

not be deduced from his results.

Bassler also considers in this report the impact of fluctuations in the hopping

rates arising from variations in the wavefunction overlap. Specifically, for the polaron

hopping rate expressed in Chapter 3, random fluctuations in the γ parameter are

assumed, with a Gaussian distribution having a standard deviation of Σ/
√

2. This
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leads to the following empirical expression for the mobility in the Poole-Frenkel regime

for Σ < 1.5:

M (GDM)
eq = M0 exp

[
−
(

2

3
σ̂

)2
]

exp
[
C
(
σ̂2 − (1.5)2

)
E1/2

]
, (6.8)

and for Σ > 1.5,

M (GDM)
eq = M0 exp

[
−
(

2

3
σ̂

)2
]

exp
[
C
(
σ̂2 − Σ2

)
E1/2

]
. (6.9)

The inclusion of Σ provides an approximate accounting of the disorder arising from

spatial and orientational disorder. This treatment is not exact because it neglects

the fact that spatial and orientational disorder have a degree of spatial correllation

(e.g. multiple sites clustered together in space should all have high transfer rates to

one another) and thus the assumption of purely random disorder in inaccurate. Since

the MC simulations used to generate this empirical relation are constructed with the

rate disorder directly following the proprosed random distribution (as opposed to

allowing it to arise from explicit spatial or orientational disorder) the accuracy of this

approximation is not clear.

Bassler’s expression for Meq has the considerable benefit of being quite straight-

forward to use. However, it must be kept in mind that it is only valid over a narrow

range of fields. For the simplest case where Σ = 0, the simulations show that at low

fields the mobility levels off and becomes field independent, whereas at high fields it

falls off as 1/E. (The high field result is a simple consequence of the fact that the MA

rate has a maximum value of 1, such that at sufficiently high fields, all sites along

the forward direction of the field yield the same hopping rate, independent of the

field. Thus the current flow is constant, which implies Meq ∝ 1/E.) For Σ > 0, the

deviations from the Poole-Frenkel form still occur in general at high and low fields,

except that for sufficiently high Σ the mobility actually increases with decreasing field

at low fields.

Another concern is that all of Bassler’s results are based entirely on MC simu-

lations, and therefore are only verified over the range of parameters for which MC
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simulations have been performed. This is particularly troubling in the context of

applying the results to the case of large disorder, since results are only reported for

σ̂ ≤ 4. The reason for this limited range of reported values is in some sense intrinsic

to the MC method, because of two problems that arise with large disorder. First, the

number of simulation steps required to achieve equilibrium increases with increasing

disorder, and it eventually becomes practically impossible to obtain a value for Meq.

This problem is particularly evident at low fields, where equilibriation of the system

occurs most slowly (since for lower fields, the system must attain a lower equilibra-

tion energy). This difficulty is noted indirectly by Bassler, who observes that the

reported Meq values at low fields may not represent strict equilibrium values because

even after allowing transport through 8000 lattice planes, the mean energy deviates

from his empirical expression (Eqn. 6.7) for σ̂ ≥ 3.5. Second, since the equilibrium

energy (even scaled relative to σ) decreases with increasing σ (evident from the zero

field, diffusion result, which gives Ēeq = σ̂σ), a larger and larger number of sites must

be included in the simulation to obtain valid results, as discussed in the previous

chapter for exciton diffusion. There is was observed that for L = 40, it was clear

that such lattices could not support equilibration energies of less than −7σ, but the

point at which errors begin to arise is likely higher than this value. This problem is

not discussed by Bassler (nor is it addressed, to this author’s knowledge, in any other

reports on MC polaron transport simulations). In general, the inadequate representa-

tion of very low energy tail sites in finite sized lattices will tend to increase mobilities

and mean energies by effectively removing from the system the lowest energy, and

therefore lowest mobility, sites. The extent to which this impacts existing reported

simulation results is unclear.

Despite these difficulties, however, it is notable that in an earlier approximate

analytic treatment by Movaghar et al.[105], the authors analyze hopping using an MA

rate and the GDM and report that ln(Meq) ∝ Fα where 0.2 < α < 0.5 (with α→ 0.5

with increasing temperature), providing a reasonable basis for trusting at least the

basic field dependence of the MC simulations for general σ. At the same time, the

reported analytic method is approximate: the impact of increasing field on the state
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occupancy is treated by assigning to the system an elevated effective temperature

which increases with increasing field, and the effective medium approximation is also

employed. These results are not compared to any MC simulations, either by the

authors themselves, or subsequently by others, so it is not clear how accurate they

are.

By the mid-1990s, further TOF measurements of amorphous organic electronic

materials had established that the Poole-Frenkel mobility holds for many amorphous

organic materials for lower fields than predicted by treatments using the GDM (see

e.g. [38]), and this had come to be viewed as a serious deficiency of the GDM. As

noted in Chapter 3, Novikov and Vannikov[109] demonstrate that the polaron energy

disorder arising from randomly oriented static dipoles is spatially correllated, yielding

what they referred to as the correllated disorder model (CDM) for polaron energy

disorder. It was subsequently shown by Gartstein and Conwell[48] using MC sim-

ulations that spatial correllations arising from charge-dipole interactions can cause

the Poole-Frenkel mobility to apply to a wider range of fields than the GDM. Soon

after, Dunlap et al.[38] report an analytic result (applicable to low fields) for one di-

mensional transport among spatially correllated sites which results in a Poole-Frenkel

form that holds down to zero field, and they argue that the same type of mobility

should hold in three dimensions as well. Subsequent MC simultation of the CDM has

led to the following empircal relationship for the mobility[110, 107],

M (CDM)
eq = M0 exp

[
−
(

3

5
σ̂

)2
]

exp
[
0.78

(
σ̂3/2 − 2

)
E1/2

]
. (6.10)

obtained for cubic lattices using orientationally averaged transition rates (i.e. Σ = 0).

In recent years, the CDM has become the theoretically preferred model for polaron

transport in amorphous organic materials subject to energy disorder arising from

random dipoles because of the wider fields over which the Poole-Frenkel form holds.

However, the existing analytical treatments of the CDM are far cruder than those

that exist for the GDM, and are mainly limited to qualitiative verification of the basic

elements of the functional form of the mobility. As a result, the same concerns over the
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use of emperical expressions derived from MC simulations again apply, in that only

a relatively narrow range σ values have been investigated (namely σ̂ ≤ 5.73). To this

author’s knowledge, treatments of off-diagonal disorder (e.g. spatial or orientational)

have not been reported for the CDM.4

During the last ten years, additional theories of the field dependence of Meq have

emerged to address the cases of: (1) energy disorder arising from higher order mul-

tipoles (e.g. qudrupoles, octopoles), which may be important in non-polar materials

(if the higher order multipoles are sufficiently strong to outweight the polarization

disorder) (see e.g. [106], and (2) amorphous organic thin films with charged dopants

(see e.g. [39]. These cases, however, will not be considered further in this thesis.

Another focus of recent work is the dependence ofMeq on the carrier concentration,

n. (Note that n(E) is here be used to refer to the the carrier concentration energy

density, while n is the total carrier concentration, equal to
∫
n(E)dE.) To date,

nearly all of this work is limited to approximate analytic calculations under the GDM

of M0 (i.e. calculations of the zero field equilibrium mobility), by first calculating

the diffusion coefficient and then relating it to the low zero field mobility using the

Einstein-Smoluchowski relation, as described above. The carrier concentration is

included in the calculation by performing the needed statistical averages assuming a

particular density of initially occupied and initially unoccupied sites as a function of

energy. The occupied site density is given by Nf(E)g0(E) where N is the molecular

density and f(E) is the occupancy function, and the unoccupied site density is given

by N(1 − f(E))g0(E). In all of these calculations to date, f(E) is assumed to be

the Fermi-Dirac function. The MA rate, to this author’s knowledge, is employed in

all of these calculations. (Note that though the Einstein-Smoulochowksi relationship

assumes f(E) is a Boltzman distribution, for typical carrier concentrations, the Fermi

level, EF , obtained by assuming Fermi-Dirac statistics is sufficiently low that the

Fermi-Dirac distribution can be approximated as a Boltzman distribution.)

Emelianova and Adriaenssens[39] review a typical example of this kind of calcu-

4Novikov and Vannikov note in one report[107] in 1998 that they plan to describe simulations of
this nature in a future publication, but we are not aware of any subsequent article in which such
results are described.
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Figure 6-1: Dependence of equilibrium polaron mobility on carrier concentration
under the GDM assuming an MA hopping rate (from [39].) Note that the hopping
rate wavefunction overlap factor ν0 is equivalent to νhop in the text, and the molecular
concentration Ni is similarly equivalent to N . The γ factor which controls the rate
of exponential decay of the hopping rate in [39] is defined such that it is equal to half
the value of γ used in text, so that in these results, γ = 10 nm−1 for the definitions
used in the text.

lation, in which the variable range hopping theory and the concept of an effective

transport energy are used to recast the problem in terms of trap controlled band

transport. It is found universally that increasing the carrier concentration increases

M0, and the effect increases with larger σ̂. An example calculation from [39] is shown

in Fig. 6-1, in which M0 is plotted as a function of the relative carrier concentration

(i.e. n/N) for σ̂ equal to 1.92, 3.08, and 3.85.

A critical feature of these approaches in general is the assumption of Fermi-Dirac

statistics, both in the use of the Einstein-Smoluchowski relation, and also in the choice

of f(E). Also, the use of the Einsein-Smoluchowski relation limits the calculations to

the regime of fields where the mobility has approximately no field dependence. There

are no analogous analytic treatments for the CDM.

An alternative approach is reported by Roichman et al.[135], which appears to

be unique in the literature. In this work the field dependence of the transfer rate is
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Figure 6-2: Dependence of equilibrium polaron mobility on field and carrier concen-
tration under the GDM assuming an MA hopping rate (from [135].) In the top panel
are shown calculations for σ̂ = 4, and in the bottom panel are shown calculations for
σ̂ = 7. The separate curves indicate different carrier concentrations, denoted in the
figure in units of cm−3, where Dsite = 1 nm, so that the molecular concentration is
1× 1021 cm−3.
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included in the calculation of Meq directly through a field assisted MA hopping rate

assuming the energy disorder follows the GDM. The value for Meq is then obtained

by first calculating the microscopic current flux Jif that flows along the field direction

from sites having initial energy Ei to sites having final energy Ef :

Jif =

∫
d3~r [Nf(E)g0(E)] [N(1− f(E))g0(E)] Γ(Ei, Ej, ~r, ~F )~r · F̂ (6.11)

where the integral is performed over all space and Γ(Ei, Ej, ~r, ~F ) is the field–assisted

MA polaron transfer rate. The total current J along the field direction is then calcu-

lated by integrating over all initial and final energies:

J =

∫ ∞

−∞
dEi

∫ ∞

−∞
dEfJif . (6.12)

The equilibrium mobility is then calculated by dividing J by the carrier concentration

n and the magnitude of the field F : Meq = J/nF . In these calculations, Fermi-Dirac

statistics are assumed. This very simple approach has the considerable advantage of

including both field and carrier concentration effects, with the former accounted for

by using the field assisted MA rate, and the latter accounted for by scaling Jif by the

occupied initial site density and the unoccupied final site density. Calculations of the

field and carrier concentration dependence of Meq for σ̂ equal to 4 and 7 are shown in

Fig. 6-2. It is found that the mobility increases with increasing carrier concentration,

as a result of the carriers occupying on average higher energy (and therefore higher

mobility) sites as the carrier concentration increases. This approach represents essen-

tially a primitive adaptation of the variable range hopping model described above,

and since no comparison is made between its predictions and MC calculations, teh

accuracy of these results is unclear. However, to this author’s knowledge, this report

describes the only calculation of Meq as a function of both carrier concentration and

field.
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6.3 Modeling Polaron Motion

In this section, the basic procedure utilized in this thesis for modeling polaron motion

is described. The procedure is much like the one used for exciton diffusion, except for

polarons the impact of applied fields is also considered. Furthermore, since there is

little experimental data to indicate the proper shape of the PTS functions, the MA

rate approximation is employed exclusively. Finally, as in our treatment of exciton

diffusion, orientionally averaged rates are employed. The basic electron hopping rate

is provided in Table 2.1. Adapting this rate to the field-assisting case, using the

orientional averaged quantititives, and applying the MA approximation yields,

Γhop
DA(∆Eel

DA, R, ~F ) = νhop
DA exp

[
−γDex

DA R
] 1 if ∆E∗ < 0

e−∆E∗/kBT if ∆E∗ ≥ 0
(6.13)

where,

νhop
DA =

1

τ̄hop
DA

eγhop
DADsite (6.14)

∆E∗ ≡ ∆Eel
DA − q ~R · ~F (6.15)

where ~F is the applied field, and q is the polaron charge.

Based on this rate expression, the needed model parameters are straightforward to

enumerate. First, values for τ̄hop and γ must be specified, and for all the calculations

presented below, γ = 10D−1
site, consistent with the same arguments presented in the

last chapter for using this value with Dexter transfer. Second, the position and type

of each molecule in the system must be specified. The positions of the molecules are

governed by the density, here given by D−3
site, and structured to yield a cubic lattice.

The lattice space, in both cases, consists of a cube with sides of length LDsite. Finally,

each molecule must be assigned its polaron creation and destruction energies. As in

the exciton diffusion model, this consists of specifying a single shift in the polaron
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creation energy ∆Edev, measured relative to the mean energy Ēel. (Again the use of

a single value is predicated on the neglect of nuclear reorganizations when computing

the DOS.) In the simulations described below, both GDM and CDM are employed

for assigning the ∆Edev values.

6.4 Monte Carlo Simulations of Polaron Transport

In this section are described simulations of polaron transport in a single-component

material as a function of field and carrier concentration. In these simulations, the

hopping rate is given by the field-assisted MA rate described in the previous section.

The polaron energy disorder is assigned based on both the GDM and the CDM to

compare the results of the two different cases. These simulations are all performed

using cubic lattices; we have not investigated the impact of spatial disorder on polaron

transport in this thesis.

The principle result of these simulations is a calculation of Meq. The simulations

are all carried out in cubic lattices with L = 40, and subject to periodic boundary

conditions in all three directions. An external field F is applied along the ẑ direction.

The simulation is initialized by occupying a random collection of sites with polarons.

The simulation then proceeds in time steps until termination. The mobility of each

polaron is calculated by dividing the distance, δRz, that the polaron traverses along

the ẑ direction (relative to it’s initial position), by F and the total elapsed time.

The average of these mobilities is then computed. The simulation continues until the

mobility is found to stabilize. We find that this convergence is achieved in all our

calculation when the polaron population has traversed a distance of an average of not

more than 4000 Dsite.

In performing these simulations, the impact of the polaron concentration on the

results was also investigated. The model of polaron behavior described in Chapter

2 does not explicitly address interactions between polarons, and clearly for concen-

tration effects to be treated, those interactions must be modeled on some level. The

approach employed here is essentially the formal application of the method used in

292



typical analytic treatments of carrier concentration effects: occupied states are made

inaccessible to a hopping polaron. The procedure by which this restriction is imple-

mented in ONESim is described in detail in Chapter 4. In short, each site in the lattice

is allowed a maximum occupancy of M , and the transfer rate of a site with current

occupancy p is given by 1−p/M . (The “occupancy” in this context refers to the num-

ber of polarons that can simultaneously occupy the same site.) The sense of allowing

M > 1 is to support lower carrier concentrations without decreasing the total number

of carriers N in the lattice, or increasing the size of the lattice. In this construction,

the carrier concentration, n, in the lattice is given by n = N/(VlatM) where Vlat is

the lattice volume. To illustrate this more concretely, for a lattice in which Dsite = 1

nm and L = 40, for M = 1, one requires N = 640 to obtain n = 1x1019cm−3. To

achieve n = 1x1018cm−3, however, one requires N = 64, which is impractically small

for obtaining statistically significant data. The problem only increases for smaller

n. However, one can alternatively continue to employ N = 640 and simply increase

M to achieve lower carrier concentrations. Specifically, for M = 10, one obtains

n = 1x1018cm−3, for M = 100, one obtains n = 1x1017cm−3, and so on, all without

changing either L or N , since in this approach the impact of the interactions is treated

probabilitistically, through the scaling of the transfer rates based on the occupancies.

At present, there are no simulations reported in the literature in which concentra-

tion effects are included, and thus these simulations represent an novel approach to

Monte Carlo polaron transport simulations, which for the first time make possible

calculations of Meq as a function of both field and carrier concentration. Note that

in the case there is no bound on the occupancy of a given site, then n is effectively

zero (and this is what is meant by “n = 0” in the simulations reported below.)

Shown in Fig. 6-3 are calculations of Meq(F ) under the GDM and CDM for

σ̂ = {2, 3, 4} and n = {0, 1018, 1019}cm−3. (In all of the calculations reported in this

section, Dsite = 1 nm.) We find that in all cases, the GDM yields lower mobilities

than the CDM. We also find that increasing n in all cases increases Meq, with the

strongest effects observed for lower fields and larger σ̂. At high fields, it is found that

the CDM and GDM results converge, and furthermore, that the results for the dif-

293



ferent n also converge. For low fields, it is found that the CDM results are consistent

with a ln(Meq) ∝
√
F dependence, even for elevated n, with the principle effect of in-

creasing n being simply decreasing the slope of this dependence. Because the low field

dependence of the GDM is more complex, the impact of increasing n is more difficult

to simply parameterize, but the essential shape of the Meq does not change with in-

creasing n; rather it appears that the results are compressed into a narrower range of

higher mobilities with increasing n. It is not practical to obtain empirical expressions

for the mobility in the Poole-Frenkel regime as a function of carrier concentration and

field based on this relatively small set of simulation results. However, these results

certainly indicate the importance of carrier concentration effects, particularly for low

fields and large disorder.

While there are no existing analytic treatments of Meq as a function of F and n

for the CDM, it is possible to employ the approach reported by Roichman et al.[135]

(hereafter referred to as the Roichman method) to analyze the GDM. To do this, one

numerically evaluates Eqns. 6.11 and 6.12, plugging in Gaussian functions in for the

DOS. The only subtlety in the calculation is that in carrying out the spatial integral,

we allow the lower bound, Rmin, of the radial dimension to be variable. In the report

by Roichman et al.[135], all the calculations were performed for Rmin = 0. (Since the

integration is carried out numerically, the discretization of energy and space, as well

as the lower and upper bounds on the integration impact the accuracy of the results,

and we have performed calculations using a range of value to determine acceptable

parameters.) In Fig. 6-4 is shown a comparison between the Meq calculated under

the GDM using MC simulations and using the Roichman method with Rmin = 0.

The agreement between the two calculations is not good. The magnitudes of Meq

are overestimated in the Roichman method by more than a factor of 10 for every data

set, and the mobility field dependence is substantially misrepresented. However, it is

notable that the increases observed in Meq as a function of carrier concentration are

at least comparable for the two calculations. (Note that in the Roichman method, n

is determined by the Fermi energy, EF , and n only goes to zero as EF goes to negative

infinity. However, it is found that Meq ceases to be dependent on carrier concentration
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Figure 6-3: Calculations of polaron equilibrium mobility in a cubic lattice as a function
of field, carrier concentration, and disorder model. In (a), (b), and (c) are shown the
values for Meq as a function of field and carrier concentration for σ̂ equal to 2, 3,
and 4, respectively. Calculations for both the GDM and CDM are shown. Note
that the legend for all three figures is shown in the bottom right. Also note that
the left (mobility) axis is logarithmic, while the bottom (field) axis scales with F 1/2,
to indicate the presense (or absense) of Poole-Frenkel behavior through a linear (or
non-linear) relationship. The bottom axis is further scaled, so that the change in
potential energy for a hop of length Dsite along the field direction is equal to σ. This
scaling is suggested by the empirical relationships reported by Novikov et al.[107].
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Figure 6-4: Comparison between calculations of polaron equilibrium mobility by MC
simulation and using the Roichman method. In (a), (b), and (c) are shown the values
for Meq as a function of field and carrier concentration for σ̂ equal to 2, 3, and 4,
respectively. Note that the legend for all three figures is shown in the bottom right.
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below a certain minimum value of EF , and the Roichman method calculations shown

for n = 0 are obtained for EF below this value.)

We attempted to improve the quality of the Roichman calculations by varying

Rmin, and obtained an “optimal” value of Rmin = 0.892Dsite. The results of these

calculations are also shown in Fig. 6-4. For this choice of Rmin, the magnitudes

of the Meq values are in much better agreement with the MC calculations, but still

the field dependence is not accurately reproduced: it is found that the Roichman

method predicts a much weaker field dependence than is observed in the MC simula-

tions. These results suggest that Roichman method is inadequate due to fundamental

shortcomings of the method.

One problem with the Roichman method is that is does not make any corrections

for back hops. The Roichman method falls into the general class of variable range

hopping models that have been widely employed to analyze the low field equilibrium

mobilities (as described above), and it is found in those calculations that one must

correct for the occurance of hopping cycles (see e.g. [39]). The difficulty is that

variable range hopping models consider only a single hopping event in their analysis.

(In short, they all calculate the hopping rate between sites of a given initial energy

to sites of a given final energy, and then integrate over all space subject to specified

spatial density function. These rates are then assumed to represent the average rates

of transfer at all times.) This approach neglects an essential dynamic to the hopping

process: the occurance of hopping cycles, whereby an excitation hops periodically

between the same series of sites. Such hopping cycles do not contribute on average to

either diffusion or transport, and yet from the perspective of any single pair of sites,

lead to non-zero hopping rates.

In present variable range hopping models of the low field mobility, the following

back hop correction is often employed to address two–site cycles: when calculating the

rate of excitation transfer from a site 1 to a site 2, the net rate should be calculated as

the direct rate of transfer from 1 to 2, Γ12, times the probability, P12, that following

transfer to site 2 an excitation will next hop to any site other than back to site 1.

This is illustrated graphically in Fig. 6-5. In short, this correction accounts for cycles
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Figure 6-5: Cartoon illustrating the nature of the conventional back–hop correction.

in which an excitation hops to a new site, and then immediately back to the original

site. One can gain intuition about the impact of this correction by considered the

hopping rate between an initial site having energy Ei and a final site having energy

Ef . In the event that Ei < Ef , it is evident that following transfer to the final site,

the excitation will find it energetically favorable to transfer back to the initial site,

making two–site cycles likely. In contrast, if Ei < Ef , then following transfer to the

final site, the excitation will find it energetically unfavorable to transfer back to the

initial site, making two–site cycles unlikely. Thus without this correction the rates

for transfers uphill in energy are inflated because they do not account for the likely

occurance of two–site cycles.

We have applied this simple back–hop correction in the Roichman method, by

replacing the Γ(Ei, Ef , ~r, ~F ) in Eqn. 6.11, with effective rates scaled by the Pif factor

described above. This is done by first calculating the total rate of transfer from

a site at the origin having energy Ei to all surrounding sites having energy Ef , to

obtain an aggregate transfer rate Γif . Then one calculates for each pair of initial and

final site energies, the rate, Γback
if (~R), of hopping back to the initial site where the

two sites are separated by a vector ~R. This rate is calculated assuming the presense

of discrete sites, one having energy Ei at the origin, and one having energy Ef at

~R. The scaling factors, Pif (~R), as a function of Ei, Ef , and ~R are then given by

Γif/(Γ
back
if (~R) + Γif (~R)).

Shown in Fig. 6-6 is a comparison between calculations of Meq for σ̂ = 4 with
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Figure 6-6: Comparison between calculations of polaron equilibrium mobility under
the GDM using the Roichman method, with and without the back–hop correction.

and without the back–hop correction (and using Rmin = 0.892Dsite). It is found that

the overall impact of the correction, as expected, is to reduce Meq. It further found

that this reduction increases with decreasing field. This phenomenon arises because

at low fields, the mean energy of the polaron population is lower which leads to, on

average, more hops uphill in energy, and it is the rates of such transfers that are

most strongly reduced by the back–hop correction. Shown in Fig. 6-7 is a com-

parison between calculations of Meq from the back–hop corrected Roichman method

with Rmin = 0.892Dsite and MC simulations. It is found that while the back–hop

correction certainly improves the agreement between the Roichman method and the

MC simulations, the Roichman method still substantially misrepresents the field de-

pendence of the mobility. In addition, though the carrier concentration dependence

is qualitatively accurate (i.e. the mobility increases with increasing carrier concen-

tration, and this effect is strongest at low fields), the quantiative values are not in

agreement MC simulations. While better agreement might be obtained using back

hop corrections accounting for cycles of more than two-sites, this author is not aware

of any reported methods for implementing such additional back hop corrections.
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Figure 6-7: Comparison between calculations of polaron equilibrium mobility under
the GDM by MC simulation and using the Roichman method with the back–hop
correction and using the “optimized” Rmin = 0.892Dsite. In (a), (b), and (c) are
shown the values for Meq as a function of field and carrier concentration for σ̂ equal
to 2, 3, and 4, respectively. Note that the legend for all three figures is shown in the
bottom right.
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Figure 6-8: Evolution of the polaron population n(E) as a function of applied field
under the GDM, as calculated by MC simulation. These calculations are performed
with n = 0 and σ̂ = 3.

Another problem of the Roichman method is the assumption of Fermi-Dirac statis-

tics to describe the carrier population. As previously noted, Bassler and coworkers[11]

established that increasing the applied field increases the mean energy of a polaron

population. We have investigated this directly by monitoring n(E) as a function of

the applied field, and find that n(E) into higher and higher energies with increas-

ing fields (see Fig. 6-8). Certainly an increase in the average energy of the polaron

population would be expected to increase the mobility as a result of making it less

difficult on average to hop to neighboring sites. Indeed, this is precisely the same

argument for why increasing the carrier concentration increase the mobilities. In the

Roichman method, however, it is assumed that the polaron population is always con-

sistent with Fermi-Dirac statistics, making the population independent of the field.

One would therefore expect that the field dependence of Meq will be underestimated

by the Roichman method, since the enhancement of the mobility arising from the

increasing occupancy of high energy sites is entirely neglected. This is precisely what

is observed: the Roichman method shows a relatively flat dependence of Meq on F as

compared to the MC simulations.

Based on the above analysis, we conclude that the Roichman method, while at-
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tractive for its simplicity does not provide an accurate calculation of Meq as a function

of field and carrier concentration, even after employing an optimized value for Rmin

and the conventional back–hop correction used in variable range hopping models.

We also find that the use of Fermi-Dirac statistics present a distinct problem in the

method. An alternative approach not employing Fermi-Dirac statistics might improve

the method sufficiently to allow accurate calculations of Meq, though it is not neces-

sarily clear how one would compute n(E) in such a model. It may also be necessary

to employ more sophisticated back–hop corrections to account for hopping cycles of

three or more sites. Overall, since no adequate analytic alternatives exist, we conclude

that MC simulations remain the best available tool for analyzing the combined field

and carrier concentration dependence of the polaron mobility in amorphous organic

electronic materials.

As a final comment, it is worth noting that the Roichman method has only been

applied to the GDM. In principle, one could employ the same method for the CDM

by replacing the DOS associated with the final sites in Eqn. 6.11 with a DOS that

is dependent on the initial site energy Ei, along the lines of the DOS suggested by

Novikov and Vannikov[109] (see Eqn. 3.31). However, the energy clustering that

distinguishes the CDM from the GDM makes the occurance of multi–site cycles far

more likely, and therefore much more resistant to variable range hopping treatments in

general. To illustrate this, consider that in a system with strongly correllated energies,

a typical low energy site will be surrounded by a number of other low energy sites,

which together form a multi-site potential well. A polaron in such a well will require a

number of upward hops to escape this well, and before it accomplishes this escape one

expects many multi–site cycles to occur as the polaron repeatedly travels back down

to the bottom of the well following an series of upward hops. In short, in the CDM,

since nearby sites always have similar energies (by the very nature of the spatial

correllations), transfer rates will always appear to be high, and the rate of back-

hopping low, whereas in reality this is just an artifact of neglecting the microscopic

structure of the site energies in the system. This inherent difficulty in analytically

treating polaron transport in the CDM presents a considerable theoretical challenge
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which to our knowledge does not yet have a good solution. For this reason, MC

simulations under the CDM are especially critical.

6.5 Conductivity of Amorphous Organic Thin Films

To demonstrate the capability of ONESim for performing simulations applicable to

realistic organic electronic devices, we carried out simulations of the conductivity of

films of a single-component molecular solid for thicknesses and operating conditions

typical of organic electronic devices. We analyzed films consisting of a cubic lattice,

having Dsite = 1 nm, with polaron energies subject to the GDM with σ̂ = 5.1. Three

film thicknesses were considered: 10 sites (10 nm), 40 sites (40 nm), and 100 sites

(100 nm), each with cross sections of 40x40 sites. Along the transport direction,

the lattice is not subject periodic boundary conditions; the perpendicular directions

are subject periodic boundary conditions, to simulate infinite extent in the lateral

directions. Single carrier conduction is assumed, as is typical for organic electronic

materials. Ohmic contacts are also assumed, so as to yield a conductivity that is

entirely due to the thin film itself (as opposed to arising all or in part from contact

effects, which are not the focus of this thesis). The practical significance of the

ohmic contact assumption in this case is two fold. First, at the injecting contact, the

injection rate is assumed to be the same to all sites within a specified distance of the

contact, regardless of the site energy. Second, at the collecting contact, the collection

rate is assumed to be effectively infinite for all sites within a specified distance, so

that no carriers build up at the interface between the film and the collecting contact.

Injection and collection is allowed in these simulations for sites within Dsite of the

contact interface.

To complete the setup for these simulations, it is necessary to review the two

principle conduction regimes for amorphous organic materials. This is most simply

accomplished by assuming, for the moment, that Meq a constant (and not a function

of F and n.) The current flux at any given point ~r in that material is then given by

n(~r)Meq
~F (~r). In the simplest case, both n and ~F are independent of position, and
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then everywhere ~J = nMeq
~F . This is the condition referred to as the ohmic limit.

For conduction through a region of material of thickness d and cross sectional area

A, the current I though the cross section defined by A is given by,

I =
A

d
nMeqV (6.16)

where V is the voltage dropped through the material over the thickness d. The

simplest situation in which this condition holds arises when the material is everywhere

uniform, so that one can define a spatially constant intrinsic carrier concentration ni,

which is furthermore sufficient to support the current flowing through the contacts.

The principle failure of the ohmic limit in organic materials arises when excess

carriers build up, in which case one enters the space charge regime. In this regime,

even for uniform material the field becomes a function of space as a result of the

build of “space charg” in the material (due to presence of excess carriers.) The

conventional approach to treating conduction in the space charge regime is to use

Poisson’s equation to relate the excess carrier concentration, nex(~r), to the potential

φ(~r):

∇2φ(~r) = −4πq

ε
nex(~r) (6.17)

where the potential is then related to the field by,

~F (~r) = −∇φ(~r), (6.18)

where ε is the dielectric constant of the material. Combined with Eqn. 6.3, this gives,

∇2φ(~r) =
4π

ε

[
~J

Meq

(∇φ(~r))−1 + qni

]
(6.19)

An analytic result to this problem is obtained by considering the special case the

interface through which carriers are being injected into the material yields an infinitely

large carrier concentration right at the interface. In this context, this is equivalent to

assuming an ideal ohmic contact. In this case, for the current in the device to remain

304



finite, the field at this contact must go to zero. This yields the following differential

equation in φ(~r),

1

2
[∇φ(~r)]2 − 4π

ε
qniφ(~r) =

4π

ε

~J

Meq

~r. (6.20)

In the typical case, the problem is analyzed in one dimension, to obtain the current

through a film of thickness d. In this case the expression becomes,

1

2

[
d

dx
φ(x)

]2

− 4π

ε
qniφ(x) =

4π

ε

J

Meq

x (6.21)

where J is now implicitly directed along the positive x̂ direction. This is then solved

for J subject to the condition that φ(0) = 0. The resulting expression can be evaluated

at x = d subject to the condition that φ(d) = −V to obtain the current J . While the

above expression is somewhat awkward to work with, if one assumes that nex >> nin,

which will always eventually hold for sufficiently high V , then the term in ni can be

dropped, and the differential equation solved to yield,

J =
9

32π
Meqε

φ(x)2

x3
(6.22)

which evaluated at x = d gives,

J =
9

32π
Meqε

V 2

d3
. (6.23)

When the current through the material is governed by this relationship, the material

is conventionally said to be operating in the space charge limit (SCL). The carrier

concentration for the SCL is given by,

n(x) =
3

16π

ε

q

V

d3/2

1

x1/2
. (6.24)

indicating that along with following a 1/
√
x relationship, the carrier concentration

increases linearly with voltage. For undoped small molecule organic solids, ni is gen-

erally assumed to be sufficiently small that at typical operating currents the SCL

prevails. For this reason, in the simulations we present here, we assume the SCL
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applies, i.e. we assume that ni is negligible so that all of the carriers are “excess”

carriers. The need for using MC simulations instead of the simple expression just

derived is a consequence of the fact that Meq is not constant, but rather dependent

on both the field and carrier concentration, which both vary as functions of space

and applied voltage in the SCL. Furthermore in many organic thin film devices (par-

ticularly vertical devices, where operating voltages are between 1 and 100 volts and

film thicknesses are between 10 and 100 nm) carrier concentrations are often greater

than 1x1016 cm3 and as high as 1x1019 cm3. Based on the calculations from the pre-

vious section, it is evident that such voltages overlap directly with the strongly field

dependent regime of Meq for typical disorder, and such carrier concentrations are suf-

ficiently high to impact Meq. Thus the field and carrier concentration dependencies of

Meq are expected to both impact the results. Since we have established that there are

no existing analytic theories which accurately predict Meq as a function of field and

carrier concentration, MC simulations are then the only option for calculating SCL

currents in amorphous organic thin films using modern models of polaron transport.

To perform MC simulations of this sort, one must include a treatment of car-

rier concentration effects (as described in the previous section), and also perform a

dynamic calculation of the local field within the film as a function of the spatial dis-

tribution of the carriers (as described in Chapter 4.) In addition, such simulations

require that the injection rate scale with the applied field in such a way that larger

fields yield larger injected currents and lower fields yield lower injected currents, and

in the limit of zero or negative field, no current is injected. This is a requirement for

supporting the SCL, which requires that the field go to zero at the injecting contact

(for an ideal contact). This is implemented in the simulation by making the injection

rate linearly proportional to the applied field present at the injecting contact, with a

proportionality constant sufficiently high that the field does indeed approach zero at

the SCL.

Shown in Fig. 6-9 are the calculations of the current-voltage relationship for all

three thickness films. (Note that for each data point, the simulation is performed for

a sufficiently large number of time steps that the current is found to have stablized.)
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Figure 6-9: Space charge limited current through 10 nm, 40 nm, and 100 nm thick
films of a molecular solid subject to the GDM with σ̂ = 5.1, calculated by MC
simulation. The dashed lines indicate a power law I-V with slope 5.0± 0.2.

It is found that over a range of intermediate fields, for all three film thicknesses the

I-V follows a power law relationship (evidenced by a linear regime on a log I vs log V

plot) with an exponent of 5.0 ± 0.2, i.e. J ∝ V 5.0±0.2. Such power law relationships

are frequently observed at intermediate fields over a similar range of voltages in small

molecular weight amorphous organic thin films, and have in the past been attributed

to trap limited space charge conduction (see e.g. [28]). For AlQ3, for instance, a

power law I-V with an exponent of 6±1 at room temperature is reported by Burrows

et al.[28] in 10 nm and 60 nm thick films for voltages between 4 and 10 V and 4 and

20 V respectively (see Fig. 6-10).5

5This data is complicated somewhat by the fact that the currents are actually measured across
two–layer heterojunction devices consisting of an AlQ3 film and a 20 nm TPD film sandwiched
between electrodes, and these power law relationships are reported for an operating regime where
the device operates as an OLED and emits light. However, it is argued that given the inferior
transport properties of the AlQ3 film that that observed I-V is dominated by negative polaron
transport through AlQ3.
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Figure 6-10: Current voltage relationship of a TPD/AlQ3 OLED for two different
AlQ3 thicknesses (from [28].) The TPD thickness is 20 nm, and the measurements
were performed at room temperature.

The greater the slope of the steep power law regime observed in the MC simu-

lations is due to two effects. First, increasing the voltage in the SCL increases the

carrier concentration which increases Meq; and (2) increasing the voltage in the SCL

increases the fields in the film which increases Meq. The combination of these effects

leads to an increase in the power law exponent above the value of 2 predicted for

the SCL when Meq is constant. It has already been established that increasing σ̂

increases the field dependence of Meq. In previous section, we also found that in-

creasing σ̂ increases the carrier concentration dependence of Meq. Thus it is evident

that increasing σ̂ will on both counts be expected to increase the slope of the steep

power law regime. To obtain an empirical relationship precisely expressing this slope

as a function of the material parameters for the CDM and GDM requires extensive

further simulations. The principle challenge in carrying out these calculations is com-

putation time; for instance, the data shown in Fig. 6-9 required roughly 2 weeks of

CPU time on three computers (i.e. 6 CPU weeks). Nevertheless, the calculations

presented here demonstrate the capability of ONESim to tackle this challenging but

critical problem of predicting the conductivity of amorphous organic thin films for
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typical device thicknesses and operating conditions.

6.6 Conclusions

In this chapter, the fundamental mechanisms of polaron motion are described, and

placed in the context of the preceeding model of amorphous molecular organic solids.

The existing literature on the relevant experimental and theoretical analysis of polaron

motion in amorphous organic materials is also reviewed. A series of Monte Carlo

simulations of polaron motion using ONESim are presented which comprise the first

reported MC simulations of polaron transport including carrier concentration effects.

Calculations of Meq as a function of field and carrier concentration are reported

for both the GDM and the CDM. It was found the in all cases Meq increases with

increasing carrier concentration, with the effects increasing with decreasing F and

increasing σ̂. The GDM results are compared against the sole analytic model in the

literature capable of similar calculations for the GDM, and despite applying various

optimizations and further corrections to this treatment, this model is found to yield

inadequate results. Since there are no analytic treatments of similar calculations for

the CDM, no comparison with analytic theory is possible. The prospects of further

improvements in analytic treatments are discussed.

The unique capabilities of ONESim are demonstrated through the calculation of

space charge limited currents through a set of 10 nm, 40 nm, and 100 nm thick amor-

phous organic thin films under the GDM for typical operating conditions. No other

calcultions of this kind, in which the impact of both field and carrier concentration on

the polaron mobility are treated using modern models of polaron transport, have been

reported in the literature. The results are found to be qualitatively consistent with

typical SCL currents previously measured in amorphous organic electronic devices, in

that a power law regime at intermediate fields is observed. Given the absense of any

adequate analytic alternative, it is concluded that Monte Carlo simulations in gen-

eral, and ONESim in particular, comprises a critical tool for tackling the challenging

problem of performing theoretical calculations of the conductivity of amorphous or-
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ganic films for film thicknesses and operating conditions typical of organic electronic

devices.
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Chapter 7

Conclusion

7.1 Summary

With the development of the first OLED, Tang and coworkers[151, 152] ushered in

a period of dramatic growth in the development of amorphous organic electronic de-

vice technology. That growth continues unabated today, with novel device concepts

invented every day in both industry and academia. Not only have researchers demon-

strated working OLEDS (see e.g. [151, 152, 77, 150, 1, 55, 76, 83, 9]), but also solar

cells (see e.g. [116] and references therein, photodetectors (see e.g. [116] and ref-

erences therein), optically–pumped lasers (see e.g. [78]), chemical sensors (see e.g.

[163, 136]), and transistors. Even in the relatively mature field of OLED technol-

ogy, exciting new approaches are actively persued, including inorganic-organic hybrid

LEDs (see e.g. [30]) and polariton LEDs[153].

The continued optimization of existing organic electronic devices, and the con-

tinued development of more advanced device concepts, increasingly requires a deep

understanding of the physics of the underlying electronic processes in amorphous

organic thin films. In this thesis we tackle the general problem of developing accu-

rate and practically useful physical models of electronic devices composed of van der

Waals bonded small molecular weight amorphous organic thin films. Our approach

is to being with the properties of an isolated organic molecule, and then introduced

interactions between this isolated molecule and its surroundings to construct a model
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of polaron and exciton behavior in a disordered molecular organic material applicable

to macroscopic devices. Practically, the model consists of a collection of interacting

spatially and orientationally disordered molecules. We investigated the impact of in-

termolecular interactions on polaron and exciton energy levels in an amorphous solid,

and reported:

• the experimental demonstration and theoretical analysis of the previously ne-

glected phenomenon of solid state solvation; and,

• a significantly improved calculation of molecular energy level disorder in polar-

izible media.

We also reported theoretical calculations of the polaron and exciton density of states

(DOS) in AlQ3 based on the calculations of the AlQ3 molecular charge distribution.

We developed a Monte Carlo (MC) simulator, called ONESim, capable of enabling

device level simulations based on the previously described physical model. We report

that while most of the features of ONESim are trivial adaptations of existing MC

simulations of polaron and exciton behavior, two features of ONESim’s treatment of

polarons are unique:

• ONESim is the first MC simulator of polaron behavior in amorphous organic

electronic materials that includes polaron concentration effects; and,

• the first MC simulator of polaron behavior that includes space charge effects.

In addition, ONESim supports typical organic electronic device structures (e.g. multi-

layer stacks and electrodes), and the combination of both analytic and MC models

in the same simulation.

We reported MC simulations of exciton diffusion and polaron transport using

ONESim. We performed experimental measurements of exciton diffusion in AlQ3

and reported:

• the most rigorous, self-consistent, and quantitative treatment to date of disper-

sive exciton diffusion in a small molecular weight amorphous organic solid,
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providing a convincing validation of the exciton diffusion model of small molecular

weight amorphous organic solids employed in this thesis.

We also reported:

• the first exact MC simulations of equilibrium polaron mobilities in amorophous

organic solids as a function of both field and carrier concentration.

We compared the results of the polaron transport simulations with the existing ana-

lytic treatments, and found the analytic methods to be substantially in error. These

errors were attributed to the neglect of hopping cycle corrections and the use of

Fermi–Dirac statistics, and the prospects for the development of improved analytic

models were discussed.

Finally, using ONESim we reported:

• the first ever exact MC simulations of space charge limited currents through

thin films as a function of voltage under typical operating conditions.

These last simulations demonstrate the power of ONESim for tackling the difficult

problem of predicting the conductivity of amorphous organic thin films at typical

thicknesses and voltages. In general, we find these ONESim simulations reported

in this thesis represent a significant step forward towards the simulation of realistic

device structures.

7.2 Looking to the Future

While considerable progress is resported in this thesis for the molecular level modeling

of organic electronic devices, this work is by no means complete. Further investigation

into the theoretical calculation of polaron and exciton DOS functions including po-

larization effects is still needed, to better develop our analytic understanding of the

simulation results. Ideally, this will make possible an adequate analytic treatment

that alleviates the need for performing direct MC calculations, which as discussed
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are quite computationally expensive (and presently limited to relatively small lat-

tices.) To accomplish this objective, additional DOS calculations are needed at more

dielectric constant values. Such calculations would allow the specification of simple

empirical relationships for the energy disorder which could be used by experimen-

talists in place of the existing (and inaccurate) dielectric continuum approximations,

and which could be used as a reference for analytic calculations.

At this point, our understanding of dispersive exciton diffusion small molecular

weight amorphous organic materials is excellent. However, the sophisticated models

used to directly probe dispersive exciton diffusion have not been widely adapted to

the analysis of the diffusion lengths reported in the literature that have been obtained

by surface quenching experiments or simple analytic device models. Such a compar-

ison would go a long way towards assessing the extent to which those values reflect

physically meaningful quantities, or are merely empirical fitting parameters with only

a passing relationship with the underlying physical processes. Aside from illuminat-

ing what these quantities really represent physically, such a comparison might also

inspire useful modifications to existing device models, particularly in solar cells where

accurate treatments of diffusion are critical.

By comparison with exciton diffusion, our understanding of polaron transport is

much less complete. In particular, investigations into carrier concentration effects on

the polaron mobility have only just begun, and while the MC simulations reported

here represent a signficant advance in the investigation of such effects, much work

still remains. Additional simulations must be performed to support the determina-

tion of empirical relationships for the mobility (to allow for easier comparison with

experimental data). In addition, there remains a great deal of work to be done to

develop acceptible analytic treatments of polaron transport including both field and

carrier concentration effects, in the hopes of one day replacing the computationally

expensive MC simulation technique. Of particular importance is the re-evaluation

of the use of Fermi-Dirac statistics, as injected polarons subject to applied fields in

amorphous molecular organic solids represent a system very far from thermodynamic

equilibrium. (Also, the impact of spatial disorder on polaron transport has not yet be
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investigated using MC simulations, and while the effects might be small, they would

be interesting from a pedagogical perspective.) Further investigation into alternatives

to the MA approximation for the hopping rate should be studied. While a few reports

exist of calculations using, for instance, a symmetric form of the MA rate (i.e. the ex-

ponential Boltzman factor is applied to both downhill and uphill transfer), the impact

of these modifications needs to be more thoroughly investigated. In addition, better

experimental probes of the physical properties of polaron states are also needed, to

yield measurements of both the polaron DOS and polaron PTS functions. The former

would provide a useful comparison between experiment and theory for calculations of

the polaron DOS on the basis of molecular interactions. The latter would allow for

improved hopping rates in polaron transport models in which the PTS functions are

employed directly.

Finally, the application of MC simulations to complete, realistic organic electronic

devices remains the ultimate goal of this work, and at present only the simplest

systems have been treated (i.e. conduction through a single film). Full devices have

not yet been modeled and compared with experimentally observed behavior, and

this must be done before the MC technique can be properly validated for this task.

However, the MC simulations of space charge limited conduction through amorphous

organic thin films reproted here represent an important step forward towards this

goal. Furthermore, the ONESim code developed here has the flexibility to support

the needed device structures, and is in our view an ideal tool for performing such

full-scale device simulations going forward.
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Appendix A

Physics of Organic Molecules

A.1 Introduction

In this appendix the basic physics of organic molecules, and their interactions with

other molecules in a weakly interacting system, are reviewed. This development be-

gins with a treatment of the quantum mechanics of molecules in isolation. Weak inter-

actions with other molecules and radiation fields are then systematically introduced

and their effects analyzed. This chapter is based on derivations adapted from a num-

ber of reference texts on electrostatics, electrodynamics, basic quantum mechanics,

molecular quantum mechanics, and organic electronics[128, 63, 31, 143, 6, 149, 117].1

A.2 The Quantum Mechanics of Molecular States

The starting point of this treatment is the analysis of the time-independent Schroedinger

equation (TISE) for a general collection of interacting electrons and nuclei. The

Hamiltonian associated with N electrons having mass me and positions {~r1, · · · , ~rN}

and M nuclei having masses {m1, · · · ,mM} and positions {~R1, · · · , ~RM}, is given by,

H = −
N∑

i=1

~2

2me

∇2
i −

M∑
A=1

~2

2mA

∇2
A + Vee + Vnn + Ven (A.1)

1Molecular Quantum Mechanics by Atkins and Friedman[6] is particularly recommended as an
introduction of the physics of organic molecules.
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where,

Vee =
e2

4πε0

N∑
i=1

N∑
j>i

1

|~ri − ~rj|
(A.2)

Vnn =
e2

4πε0

M∑
A=1

M∑
B>A

1∣∣∣~RA − ~RB

∣∣∣ (A.3)

Ven = − e2

4πε0

N∑
i=1

M∑
A=1

1∣∣∣~ri − ~RA

∣∣∣ (A.4)

In Eqn. A.1, the first term describes the kinetic energy of the electrons, the

second term describes the kinetic energy of the nuclei, the third term describes the

electronic coulomb repulsion, the fourth term describes the nuclear coulomb repul-

sion, and the final term describes the electron-nucleus coulomb attraction. In this

system, there are N+M different particles, and therefore there are N+M different

spatial coordinates. As a result, the wavefunction, |ψ〉, associated with a partic-

ular solution to the TISE is explicitly dependent on these N+M coordinates, i.e.

|ψ〉 =
∣∣∣ψ (~r1, · · · , ~rN , ~R1, · · · , ~RM

)〉
. Note that the gradient operators are defined

such that ∇i only operates on ~ri and ∇A only operates on ~RA. The task is then to

solve,

H |ψ〉 = E |ψ〉 .

for all of the possible |ψ〉 and eigenvalues E. (Recall that the eigenvalues E are

equivalent to the energy associated with the wavefunction |ψ〉.) The |ψ〉 then comprise

the stationary (a.k.a. equilibrium) states of the system.

This problem is too complex to treat exactly for all but the simplest systems,

and to proceed it is necessary to apply what is known as the Born-Oppenheimer

approximation. The rationale of this approximation is that since the nuclei are so

much heavier than the electrons, they respond to changes in the surrounding potential

much more slowly than do the electrons. Stated differently: one assumes that the
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electrons are capable of instantaneously responding to any changes in the nuclear

positions. In this case, one then solves the electronic part of the Hamiltonian under

the assumption that the nuclei are stationary. In this case, the nuclear kinetic energy

in Eqn. A.1 is zero, and the Vnn term is constant (allowing us to at least temporarily

drop it, since it simply shifts the energy of the state, E, without changing the {|ψ〉}).

This leaves an electronic Hamiltonian of,

Hel = −
N∑

i=1

~2

2me

∇2
i + Vee + Ven (A.5)

and its associated TISE,

Hel |ψel〉 = Eel |ψel〉 . (A.6)

Though this problem still contains the nuclear coordinates through Ven, none of the

differential operations involve these coordinates. As a result, while the nuclear coor-

dinates appear in the {|ψel〉}, in obtaining the solution those coordinates are treated

as constant parameters, making the problem mathematically much simpler.

The nuclear problem is addressed by observing that another outcome of the nuclei

being much slower to respond to the forces present in the system than the electrons

is that they only observe the average behavior of the electrons. This yields a nuclear

Hamiltonian of,

Hnucl = −
M∑

A=1

~2

2mA

∇2
i + Vnn + 〈Hel〉 (A.7)

= −
M∑

A=1

~2

2mA

∇2
i + Vnn + Eel

(
~R1, · · · , ~RM

)
(A.8)

and its associated TISE,

Hnucl |ψnucl〉 = E |ψnucl〉 . (A.9)

As a result, under the Born-Oppenheimer approximation, the differential equations
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dealing with the electronic and nuclear coordinates are decoupled. One finds the solu-

tion by first solving the electronic problem, which gives |ψel〉 and Eel

(
~R1, · · · , ~RM

)
.

One then treats the nuclear problem by plugging Eel

(
~R1, · · · , ~RM

)
into Eqn. A.8,

and solving for |ψnucl〉 and total molecular energy E. The resulting total wavefunction

for each solution |ψ〉 is given by |ψel〉 |ψnucl〉.

Some intuition for the nature of this approximation can be gained by observing

that the effect of the electrons on the nuclei has been reduced to the addition of a

potential function, namely Eel

(
~R1, · · · , ~RM

)
, which together with Vnn, defines the

effective potential within which the nuclei move. At the same time, the effect of the

nuclei on the electrons have been similarly reduced to a stationary potential, com-

prising the coulombic interaction between the electrons and the nuclei, as a function

of the nuclear coordinates.

The Born-Oppenheimer approximation is detailed here because of the intuition

is provides about the nature of molecular electronic transitions. Specifically, since

electronic transitions involve reorganization of electrons, while nuclear transitions

involve reorganization of nuclei, this approximation formally allows one to treat the

former as occuring instantaneously in the time frame of the nuclear system. This is

a critical feature of the electronic transitions governing the behavior of polarons and

excitons on organic molecules.

It is not the purpose of this thesis to describe the details of electronic structure

calculations. However, it is still necessary to more precisely describe the general

electronic and nuclear configurations of the molecular states. The electronic states

will be addressed first, followed by the nuclear states.

The solutions to Hel describe a set of electronic states (which depend paramet-

rically on the nuclear coordinates) corresponding to different configurations of the

electrons on the molecule. Because Hel can not be solved in general, numerous ap-

proximation schemes have been developed. The most common approximation is to

set the total wavefunction |ψel〉 of the many-particle electronic problem equal to a

product of single particle wavefunctions
∣∣∣ψ(i)

el

〉
. In other words:
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|ψel(~r1, · · · , ~rn)〉 =
∣∣∣ψ(1)

el (~r1)
〉 ∣∣∣ψ(2)

el (~r2)
〉
· · ·
∣∣∣ψ(n)

el (~rn)
〉

(A.10)

where the
∣∣∣ψ(i)

el

〉
are then determined by finding the best set of wavefunctions on the

basis of (usually) the variational minimization of the total energy of the molecule.

These single electron wavefunctions are known in the context of molecular electronic

structure theory as molecular orbitals and have the meaning of the individual elec-

tronic states which can be populated, one after another, until all the electrons in

the molecule have been accounted for. (These orbtials come in degenerate, or nearly

degenerate, pairs, one for a spin up electron and one for a spin down electron.) In

practice, the calculation of these orbitals for a given molecule involves not only an

optimization of the electronic energy, but the total molecular energy, indicating that

one must simultaneously solve and optimize the solutions to the nuclear problem as

well, which often makes the problem computationally intractible.

To address this difficulty, the nuclei are usually approximated as classical, sta-

tionary particles.2 This has two important effects: (1) Ven appearing in the electronic

problem becomes a simple coulombic interaction between the electron clouds and the

nuclear point charges at the nuclear positions; and (2) the total energy is obtained

by simply solving the energy minimized electronic problem and then adding the elec-

tronic energy to the nuclear potential energy. In general, it is not possible to obtain

analytic results even for this simplified system, so teh calculation involves a numeri-

cal optimization in which one repeats this process for different sets of sets of discrete

nuclear positions until one obtains the optimal configuration of nuclear coordinates

(i.e. the one yielding the lowest total energy after solving the optimized electronic

problem). This process yields the energy minimized molecular structure, and is often

referred to as a molecular structure calculation.

Typically this calculation is performed for the molecular ground state, conven-

tionally defined as the neutral molecular state with the minimal energy configuration

2One can state this approximation alternatively as an assumption that the nuclei have zero kinetic
energy so that the corresponding wavefunctions describe discrete positions in space, in which case
the gradient operator in the nuclear Hamiltonian disappears leaving only a summation over the
potential terms.
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of the electrons. It is on the basis of this calculation that one typically specifies the

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital

(LUMO). It is further conventional to describe the polaron and exciton states in

terms of these orbitals, namely that the lowest energy negative polarons consists of a

electron added to the LUMO (and correspondingly for the positive polaron, an elec-

tron removed from the HOMO), and the lowest energy exciton consists of an electron

excited from the HOMO into the LUMO. However, while the HOMO and LUMO are

certainly useful concepts, and the orbital description in general of great utility, two

important caveats must be discussed.

First, it should be kept in mind that the orbitals (i.e. the optimum single electron

wavefunctions) in excited states are not the same as those in the ground state, so the

total excited state wavefunction is not obtained simply by changing the occupancies

of the ground state orbitals. (Rather one must perform a new calculation to optimize

the calculation based on the new electron occupancy.) Thus the HOMO and LUMO

orbitals of the ground state (and their associated energies) are actually dependent on

the electron occupancies, and therefore are different for the different exciton and po-

laron excited states. Second, while one often thinks of the molecular orbitals as being

dependent only on the electronic state of the system, this is actually a simplification,

as these orbitals are also alterted (albeit to a lesser degree) by the fact that the nuclei

aren’t really stationary, classical particles, but quantum mechanical particles subject

vibrations even in the ground state. As a result, the electronic orbitals are functions

of not only the electronic state of the molecule, but also the nuclear state.

Before turning to the nuclear state, a brief comment is in order regarding the

electron spin. As noted above, each orbital can be occupied by two electrons, a “spin

up” electron (having spin +1/2) and a “spin down” electron (having spin -1/2.) The

vast majority of organic molecules (including every molecule considered in this thesis)

has zero total spin in the ground state. This is sometimes alternatively called a closed

shell condition, which refers to a system in which each occupied orbital contains spin

up – spin down electron pairs. This implies that polarons can be either spin up

or spin down polarons, depending on whether they impart to the molecule a total
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spin of +1/2 or -1/2 respectively. Excitons are slightly more complex, because they

involve two unpaired electrons, leading to, in principle, four different possible spin

combinations. By constructing the set of orthonormal spin wavefunctions one finds

that there is one exciton state with total spin 0, called the singlet state, and three

degenerate exciton states with total spin 1, called the triplet states. The singlet spin

wavefunction is given by,

∣∣ψspin
S

〉
=

1√
2

[⇑ (1) ⇓ (2)− ⇓ (1) ⇑ (2)] (A.11)

and the triplet spin wavefunctions are given by,

∣∣ψspin
Ta

〉
=

1√
2

[⇑ (1) ⇓ (2)+ ⇓ (1) ⇑ (2)] (A.12)∣∣ψspin
Tb

〉
= [⇑ (1) ⇑ (2)] (A.13)∣∣ψspin

Tc

〉
= [⇓ (1) ⇓ (2)] (A.14)

where ⇑ (n) and ⇓ (n) are the spin up and spin down wavefunctions respectively

associated with the n’th electron. For the most part, this thesis is not concerned with

the spin wavefunctions. However, the distinction between singlets and triplets will

occasionally prove important in cases where elecctronic transitions from the triplet

state to the ground state are relevant: since triplets have a total spin of 1, they can

only transition into the ground state by a process that is capable of changing the

total spin of the system from 1 to 0. For this reason, the following notation is used

to distinguish the two types of exciton states: Sn refers to the n’th singlet exciton

state (counting upward from 1 beginning with the lowest energy singlet exciton),

and similarly, Tn refers to the n’th triplet exciton level. (Note that the set of three

degenerate triplet states are treated as a single level, such that T1, for instance,

refers to a state consisting of any combination of the three lowest energy triplet

wavefunctions.)
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Describing the nuclear state essentially consists of identifying the phonon modes

of the system and specifying the occupancy of those modes. These phonon modes

comprise a particular reporesentation of the solutions to Hnucl, which requires some

explanation. The solutions of Hnucl describe the spatial distributions of the nuclei,

which can be thought of as reflecting (classically) vibrations in the length of the bonds

between the atoms.3 One can obtain a rough sense of the nature of these vibrations

by observing that each nuclei sits within a potential well defined by the neighboring

nuclei and the electron distributions, which in the limit of small displacements is ap-

proximately parabolic. Parabolic potentials are associated with harmonic oscillators,

and if one then imagines all of the nuclei as residing in such wells, coupled together

by their respective positions, one obtain a system of coupled harmonic oscillators.

Just as in the quantum mechanical solution to the ideal coupled harmonic oscilla-

tor, in the nuclear problem one obtains a spectrum of different nuclear wavefunctions

and associated energies, each one orthogonal to the others and corresponding to dif-

ferent oscillations of the nuclei.4 These nuclear wavefunctions are frequently referred

to as molecular phonons, in analogy to the phonons arising in crystals from collective

vibrations of many different atoms. This is the terminology used in this thesis, except

that a further refinement is here employed: phonons describing collective vibrations of

nuclei on a single molecule are intramolecular phonons. This additional specification

will be utilized below when collective vibrations of different molecules are introduced,

which will be referred to as intermolecular phonons.

Under the harmonic oscillator approximation, the total nuclear wavefunction |ψnucl〉

is the product of single phonon wavefunctions, one for each the occupied phonon

modes. In this sense, the phonon picture is quite similar to the molecular orbital pic-

ture used to describe the electronic states of the system. The major difference is that

because phonons do not obey the Pauli exclusion principle, there are no restrictions

3Rotations of the molecule are also possible, but they are not usually important in solid state sys-
tems, and are therefore neglected in this discussion. However, rotations represent a trivial extension
of the same concepts.

4The set of orthogonal wavefunctions are known as the normal modes of the system, constructed
by rewriting the Hamiltonian in terms of a renormalized set of coordinates known as the normal
coordinates.
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on how many times a particular phonon mode can be occupied; also, because phonons

do not obey particle conservation, the total number of occupied states is unrestricted.

Another critical difference between electronic orbitals and phonons is their typical

energy spacing. In general, the spacing between molecular orbitals around the HOMO

and LUMO is on the order of 1 eV. In contrast, the energy spacing of the phonons

associated with bond vibrations is of the order of 0.1 eV.5 For a molecule embedded

in a solid, additional phonon modes are activated which have an even smaller energy

spacing, such that at room temperture, one can often make the approximation that

the phonons form a continuus spectrum of states on the energy scale of kBT . The first

consequence of this is that one usually need not treat the phonon modes as a set of dis-

crete states, but can instead employ a combination of a phonon density of states and

an occupancy function to describe the phonon modes. In this scheme, each nuclear

wavefunction is identified by
∣∣Ψnucl(E)

〉
where E is a continuus variable describing

phonon mode energy, and to account for the variations in the mode degeneracies and

energy spacings, these modes are characterized by a density of states (DOS), ρ(E),

which is consists of the number of phonon modes per unit energy spacing having

energy E.

The second important consequence of the small energy spacing is that thermody-

namics strongly influences the equilibrium occupancy of the different phonon modes.

To explain this, note that in equilibrium, the occupancy of the different electronic

states should be consistent with Fermi-Dirac statistics, namely that the occupancy

probability of a state with energy E, is given by,

ffd(E) =
1

exp [(E − EF ) /kBT ] + 1
(A.15)

where EF is the so-called Fermi energy and kB is Boltzman’s constant. The value

of EF is equal to the average of the ground state energy and the first excited state

energy obtained by promoting an electron to the next higher energy orbital (i.e. the

S1 state), and thus there exists a finite chance that this S1 is occupied. The S1

5For molecular rotations, the typical energy spacing is 0.01 eV.
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state is typically more than 1 eV above the ground state, and so at any reasonable

temperatures, the probability of occupancy of this excited state is completely neglible

(i.e. 4x10−9 for an S1 energy equal to 1 eV more than the ground state.)

For the phonon states in thermodynamic equilibrium, the occupancy is consist

with Bose-Einstein statistics, namely that the occupancy probability of a state with

energy E is equal to,

fbe(E) = Ω
1

exp [E/kBT ]− 1
. (A.16)

Ω is a constant defined such that the integral over ρ(E)fbe(E) over all the phonon

energies energies yields a total occupancy of unity. The origin of this normalization

term is that when describing the phonon occupancies of a molecule it is required

that the total wavefunction of the molecule integrates to unity. (Note that a similar

normalization is achieved in ffd(E) through EF .) Since the typical lowest energy

(a.k.a. ”zero point”) phonon mode is much higher in energy than kBT , fbe(E) is

usually approximated by a Boltzman distribution,

fb (E) = Ω exp [−E/kBT ] . (A.17)

Even including only the intramolecular phonons associated with bond vibrations, it

is already clear that a number of different modes can have appreciable occupancy.

For instance, a mode having energy 0.1 eV higher than the next lower energy mode

has an occupancy that is just 2x10−2 lower. However, when the additional phonon

modes arising from intermolecular interactions are introduced, for which the mode

spacing is much smaller, it is found that many different phonon modes are occupied

in thermodynamic equilibrium, making it critical that the occupancy function be

properly included in the calculation.

In the analysis of polarons and excitons, it is found that the nuclear state is

usually consistent with the thermodynamic equilibrium phonon occupancy. However,

immediately following an excitation, the system will be at least instantaneously out of

equilibrium, and so it is also necessary to identify this non-equilibrium state, though
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the specific phonon occupancy associated with this non-equilibrium state is not needed

for typical calculations. Thus when the explicit nuclear state is referred to below, it

will only be to specify whether or not the phonon occupancy is in thermodynamic

equilibrium.

Before moving on from the analysis of the isolated molecule, it is necessary to

briefly revisit the matter of the dependence of the electronic wavefunctions on the

nuclear wavefunctions. As noted above, changes to the nuclear wavefunctions, which

are now interpreted as changes in the occupancy of the phonon modes, can alter

the electronic wavefunctions. However, it is clear that if the phonon modes are in

thermodynamic equilibrium, only the lowest energy modes are occupied, and in this

case one can usually assume that the changes to the electronic wavefunctions for all

of the phonon modes having appreciable occupancy are negligible. The rationale is

simply that if the occupied phonon modes are all of similarly low energies, then the

corresponding nuclear wavefuctions are all similarly well localized around roughly the

same mean positions, in which case Ven appearing in the electronic problem is roughly

the same and approximately given by the potential associated with stationary nuclei.

This then implies that the corresponding electronic wavefunctions are all also roughly

the same. This assumption is a particularly useful simplification when analyzing elec-

tronic transitions. There are some special cases in which this assumption is not ac-

ceptable, and they are identified below as needed. In every other case, however, this

assumption will be employed, and explicitly referred to as the phonon-independent

electronic wavefunction approximation. Another final comment on this approximation

is that it also implies that the electronic wavefunctions obtained assuming classical,

stationary nuclei can be taken as equal to the actual electronic wavefunctions one

would obtain if the nuclear problem were solved quantum mechanically. Since essen-

tially all quantum mechanical calculations of electronic wavefunctions are performed

under the classical, stationary nuclei assumption, this approximation is implicit in

the use of such theoretical calculations to molecules at non-zero temperatures.
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A.3 Deviating from the Isolated Molecule

This thesis is concerned with molecules in the solid phase, so it is insufficient to

limit the discussion to the properties and behavior of molecules in isolation. Rather a

wealth of interactions between molecules (which in the first place lead to the formation

of the solid phase) impact every aspect of the physics of electrical excitations in small

molecular weight amorphous organic solids. Another important deviation from the

isolated molecular arises from its interaction with the radiation field. In this section,

a basic formalism for treating both types of deviations from the isolated molecule

limit is described which can then be applied to the specific interactions of interest to

polaron and exciton behavior.

In this development, the problem is tackled by first identifying an appropriate

interaction potential to introduce into the molecular Hamiltonian (which may involve

a single molecule interacting with an external potential, or multiple molecules inter-

acting with each other), then adopting an appropriate scheme for treating its effects.

In general, the objective the analysis to determine the extent to which these inter-

actions lead to electronic transitions and changes in the system energy. For those

well-versed in the language of quantum mechanics, the energy changes refer to the

diagonal elements of the interaction hamiltonian, while the transitions are associ-

ated with non-zero off-diagonal elements, and together they completely describe the

quantum mechanical effects of the interaction. Thus in treating both, one obtains a

complete picture of the physical impact of the interaction on the system.

The starting point of the treatment of intermolecular interactions is to write down

the total Hamiltonian associated with a collection of M molecules:

H =
M∑
i=1

Hi +
M∑
i=1

M∑
j>i

V int
ij (A.18)

where Hi is the Hamiltonian associated with the i’th molecule in isolation, and V int
ij

is the potential associated with the interaction between the i’th and j’th molecules.

This interaction consists of the coulombic forces acting between each electron and

nuclei on each molecule. In general, this interaction modifies the electronic and
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nuclear wavefunctions of each molecule. However, for van der Waals solids (i.e. those

held together by dipole-dipole interactions) these interactions are sufficiently weak

that one may assume the electronic wavefunctions are approximately unchanged by

these interactions. (Note that it is not required that the nuclear wavefunctions also

remain unchanged, and indeed, it is found that important modifications of the nuclear

wavefunction arise from intermolecular interactions, namely intermolecular phonons.)

It is intuitive that the change in the energy of the system due to this interaction is

given by the electrostatic interaction energy of the charge distributions of the different

molecules (where one converts the associated quantum mechanical wavefunctions into

explicit spatial charge distributions for each electron and nucleus). The nature and

form of the transitions induced by this interaction are much less obvious. However, to

the extent that V int
ij has any nonzero terms associated with i 6= j, this interaction will

make transitions between two molecules possible, and those transitions will support

some kind of movement of excitations from molecule to another.

The second interaction introduced here is the radiation field. In some ways this

interaction is of even more fundamental importance than the intermolecular interac-

tions described in the previous section, as it acts equally on both isolated molecules

in vaccum and on molecular solids. It is the radiation field that leads to optical

absorption, stimulated and spontaneous emission, thermal radiation, and the ther-

modynamic equilibration of phonon state occupancies.6 In most experimental con-

ditions, and certainly as regards all the physical processes discussed in this thesis,

the interaction between the radiation field and a molecule is even weaker than the

intermolecular interaction, such that one can assume the radiation field leaves both

the nuclear and electronic wavefunctions unchanged.

The introduce the interaction potential for the radiation field, it is first necessary

to described what is meant by the radiation field and how it is expected to interact

with a molecule. This is accomplished by first employing a classical description of

radiation, consisting of EM wave characterized by a sinusoidal oscillation of inten-

6As a technical matter, it is sometimes also useful to think of spontaneous emission as a mani-
festation of the manner in which the radiation field interaction achieves thermodynamic equilibium
of electronic state occupancies.
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sity in time with frequency ω and corresponding sinusoidal oscillation in space with

period equal to λ = c/(nω), where n is the index of refraction of the medium and c

is the speed of light. It is conventional to then proceed by subjecting the quantum

mechanical molecular system to this classical EM field, in the form on an external

time-varying potential. This is known as the semi-classical treatment. This approach

is quite useful for analyzing a number of radiation field induced molecular processes,

despite being involving a rather awkward merging of quantum and classical physics.

One important caveat is that because this approach introduces a time-varying poten-

tial, the system is no longer energy conservative, which is reconciled by accounting

for any change in the energy of the molecule through an external change in the energy

of the radiation field. In some instances, however, the semi-classical picture proves

insufficient to explain the observed phenomena. In this case, it has been found that by

treating the radiation field as a quantum mechanical system (by converting Maxwell’s

equations into a system of harmonic oscillators which can then be quantized), and

then introducing an appropriate molecular interaction potential, one can explain a

number of non-classical phenomena, most notably spontaneous emission. In this con-

struction the oscillating EM waves are replaced by quantized particles called photons,

each having energy equal to ~ω. Furthermore, since both the molecules and the ra-

diation field comprise a closed system in this approach (which is known collectively

as quantum electrodynamics, or QED), energy is fully conserved, and the associated

interaction potential is constant in time.

While the QED approach is more powerful, it is less intuivitive, and so here the

standard approximate semi-classical interaction potential is utilized instead:

Vrad = −µ̃ · ~Fcos (ωt) (A.19)

where,

µ̃ ≡ −e
∑

i

~ri + e
∑

k

Zk
~Rk (A.20)

where e is the fundamental electronic charge, the i’th electron coordinate is ~ri, the
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charge on the k’th nucleus is Zke and its coordinate is ~Rk. The key here is the

introduction of the dipole operator µ̃, which yields the dipole moment associated

with a given state |Ψ〉 through 〈Ψ|µ |Ψ〉.

On it’s own, this choice of interaction potential is not at all obvious. However,

it is easily justified by considering the interaction energy between a classical electro-

magnetic field and a classical molecule and then promoting this energy to a quantum

mechanical operator. First note that the wavelength of radiation in all reasonable

circumstances is much larger than the spatial extent of the molecule, and as a re-

sult, on the size scale of the molecule the field is spatially uniform at all times. For

this reason the sole effect of the interaction between the the radiation field and the

molecule is to induce a dipole (oscillating in time with the radiation field). The origin

of this oscillating dipole is the induced oscillations in the positions of the electrons

and nuclei along the field direction due to the Lorentz force (i.e. ~Fq, where ~F is the

field vector and q is the charge). The absense of any other terms can be explained in

the language of a multipole expansion of the molecular charge distribution: charge

is conserved during the interaction so there is no oscillating monopole term, and the

quadrupole and higher terms appearing in a multipolar expansion of the induced

radiation field are zero if the field inducing the oscillations in charge is uniform in

space.

The next step in the analysis is to compute the interaction energy, which is doneby

taking the negative of the dot product of induced dipole moment and the radiation

field. Converting the classical dipole to the quantum mechanical dipole operator then

gives the interaction potential obtained above. The radiation field interaction can thus

be viewed as simply the quantum mechanical analogue of the classical interaction

energy in the limit that the radiation wavelength is much greater than the size of

the molecule. In the QED operator, the field vector is entirely absent as is the time

dependence, which is on both counts a consequence of the explicit inclusion of the

radiation field as part of the quantum mechanical system. In short, the part of the

wavefunction specifying the radiation field already includes ~F and ω in its definition,

so it is not needed in the interaction term.
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The radiation field interaction is relevant in this thesis because of the electronic

transitions it enables, which include absorption and both stimulated and spontaneous

emission. While this interaction technically changes in the state energy of a particular

molecule as well (equal to −~µ · ~Fcos (ωt)), the fields of interest in this thesis are so

low that these shifts can always be neglected.

A.4 Overview of Molecular Electronic Transitions

Having introduced the relevant interaction potentials, it is now treat the electronic

transitions that subsquently arise. In this section, the general principles of molecular

electronic transitions our outlined, yielding results that will be used in the following

sections to treat specific electronic transitions.

The first step in analyzing molecular electronic transitions is to recall the Born-

Oppenheimer approximation and apply the principle that electronic transitions occur

within a fixed nuclear framework. Consider that, as discussed above, the electronic

wavefunctions depend on nuclear wavefunctions through the positions of the nuclei.

As a result, if the nuclear positions change, so will the electronic wavefunctions (and

their associated energies). (The nuclear wavefunctions and the associated phonon

spectrum also changes.) Following an electronic transition, one will therefore usually

observe a change in the minimum energy mean positions of the nuclei (due to the

change in the spatial distribution of the electrons). The molecular transition process

then evidently occurs in two steps. First, the electronic transition occurs with the

nuclei having the mean positions that minimize the energy of the initial state. The

nuclei of the molecule are then in a non-equilbrium state, which manifests as the

sudden occupancy of a set of high energy phonon states. Then over time, the phonon

occupancy and total energy evolves to attain thermodynamic equilibrium.

The basic picture of the cycle of electronic excitation and subsequent relaxation

is illustrated graphically in Fig. A-1, for a molecule initially in its ground state.

In this figure, the bottom axis describes the nuclear coordinates, as parameterized

into a single line connecting the equilibrium coordinates for the ground and excited
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states. Two parabolic curves are shown in Fig. A-1 (a), representing the molecular

state energies associated with the ground (g) and excited (e) electronic states as

a function of the nuclear coordinates. These curves represent the potential function

observed by the nuclei in the molecule. Using parabolic curves represents a significant

simplification; however, it is sufficient to illustrate the fact that the energy minima

associated with the ground and excited states are in general different, and away from

those minima, the nuclear energy must rise. In this figure, the electronic excitation

event is represented by a vertical line, as appropriate for an event in which the nuclei

are stationary (in the time frame of the transition). The phonon energy levels have

been indicated by horizontal lines within the parabolic energy profiles, and their

wavefunctions represented by solutions to the parabolic well problem.

In Fig. A-1 (b) are shown examples of hypothetical molecular transitions in this

system involving an electronic transition from the ground to the excited state for

different initial and final phonon modes. Given the wide range of possible transitions,

it is clear that to compute the total transition rate one must perform a sum over all

the different transition rates. To do this correctly, one must enumerate each of the

occupied phonon modes in the initial electronic state and compute the transfer rate to

each of the available phonon modes in the final electronic state. The total rate is then

the sum over the individual rates scaled by the initial state occupancy and final state

availability. It will be shown below that these individual rates are proportional to the

spatial overlap of the initial and final phonon wavefunctions, which can be rationalized

by observing that if the electronic transition occurs within a fixed nuclear framework,

then the transition can only occur to the extent that the nuclei are located in the

same space in initial and final phonon modes.

Based on the discussion above of phonon occupancies in thermal equilibrium,

for a molecule in thermal equilibrium, the initial phonon mode with the highest

occupancy is the one with the lowest energy, and this mode has it’s peak spatial

distribution over the minimum of the potential well (i.e. the nuclear configurations

Rg and Re for the ground and excited states). It is then evident by an inspection of the

nuclear wavefunctions in Fig. A-1 (a) that the maximal overlap between this lowest
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Figure A-1: Illustration of the Franck-Condon shift observed in electronic transitions.
In the figures, the vertical axis refers to energy, while the horizontal axis refers to the
nuclear configuration, i.e. the set of coordinates describing the positions of the nuclei.
The parabolic curves describe the nuclear potential energy functions, V nucl

g and V nucl
e

of the ground (g) and excited (e) electronic states respectively. The minimum energy
molecular configurations for g and e are identified by Rg and Re respectively. In (a) are
shown the first five intramolecular phonon wavefunctions for g and e. The electronic
energy is denoted by Eel

g and Eel
e for g and e respectively, while the n’th phonon

energies are denoted by Eph
g n and Eph

e n for g and e respectively. In (b) are shown
examples if hypothetical molecular transitions between the different initial and final
state phonon modes. In (c) are identified the excitation energy, E↑, associated with
the dominant excitation transition, and the relaxation energy, E↓, associated with the
dominant relxation transition. Also shown are the Franck-Condon (FC) relaxation
energies, ∆EFC

g and ∆EFC
e for g and e respectively, following the dominant transition.

In (d) is shown the same process but subject to the assumption of stationary, classical
nuclei, and accordinaly the V nucl

g and V nucl
e are redefined as the respective electronic

energies, Eel
g and Eel

e .
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energy initial phonon mode occurs for the final phonon mode with energy closest to

the intersection of a vertical line through the minimum of the initial state potential

energy function with the final state potential energy function. This is illustrated

in Fig. A-1 (c), which indicates the dominant excitation and relaxation transitions

for a system that is initially in thermal equilibrium at the time of the transition.

Also indicated are the Franck-Condon relaxation energies (as conventionally defined),

which give the energy difference between the excited state phonon mode excited by the

dominant transition and the corresponding minimum energy phonon mode. Observe

how the relaxation energy is smaller than the excitation energy, and that this is a

fundamental consequence of the fact that the minimal energy nuclear configurations

for the ground and excited states are different (i.e. Rg 6= Re). This application of

the Born-Oppenheimer approximation to electronic transitions, where one assumes

that such transitions occur within a fixed nuclear framework, is known as the Franck-

Condon principle, and the difference between the excitation and relaxation energies

is often called the Franck-Condon shift. Note that the electronic energies, Eel
g and

Eel
g , of the ground and excited states respectively, are fixed quantities (at least to the

extent that phonon-independent electronic wavefunction approximation holds), and

the Franck-Condon shift therefore arises from difference in the initial and final state

nuclear energy for each transition.

There is, however, a subtlety hidden in this analysis as regards the time evolu-

tion of the system following an electronic transition. Clearly, if the transition occurs

within a fixed nuclear framework, then the state of the molecule immediately follow-

ing an electronic transition is given by the final electronic state as calculated with the

nuclear wavefunction still in its initial state. As this point the nuclear wavefunction

then evolves into the final state nuclear wavefunction associated with the newly ex-

cited phonon mode. This occurs on the time scale of a typical nuclear oscillation, i.e.

on order 10−13 s. Once this evolution is complete, the mean positions of the nuclei

are nominally in their minimum energy configuration for the new electronic state and

excited phonon mode. In a sense, then, the Franck-Condon nuclear relaxation has

completed by this point, in that the mean positions of the nuclei have completed
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nuclear motion.
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their rearrangement in response to the electronic transition. Because the vast ma-

jority of molecular systems also rapidly attain thermodynamic equilibrium with their

surroundings on the same time scale as the typical nuclear oscillation, however, it

is conventional to include in the Franck-Condon relaxation the subsequent evolution

of the phonon energy and occupancy into thermodynamic equilibrium. The different

stages of this evolution are illustrated in Fig. A-2 (a), where each phase of the cycle

is denoted by a different number: (1) electronic ground state with the nuclei in the

ground state configuration for the minimal energy phonon mode; (2) electronic excited

state with the nuclei in the ground state configuration for the minimal energy phonon

mode; (2a) electronic excited state with the nuclei in the excited state configuration

for an excited phonon mode; (3) electronic excited state with the nuclei in the ex-

cited state configuration for the minimal energy phonon mode; (4) electronic ground

state with the nuclei in the excited state configuration for minimal energy phonon

mode; (4a) electronic ground state with the nuclei in the ground state configuration

for an excited phonon mode. The electronic transitions are associated with the (1) to

(2), and (3) to (4) transitions, and these are therefore the most important molecular

states. It will not be necessary to directly address states (2a) and (4a) in this thesis,

and the combined transition from (2) to (2a) to (3) will be treated as a single process

corresponding to the conventionally defined excited state FC relaxation, and similarly

for the combined transition form (4) to (4a) to (1).

As noted above, quantum mechanical calculations of molecular properties are often

performed assuming the nuclei are classical stationary particles. The results of such

calculations are very useful when analyzing electronic transitions, but only if one keeps

in mind some important differences in the meaning of the resulting values. In Fig.

A-1 (d) is shown the basic picture of a molecular electronic transition assuming the

nuclei are stationary, classical particles. It is conventional in this picture to treat all

energy as electronic (because the nuclei are viewed as merely changing the potential

energy observed by the electrons), and thus changes in the nuclear configuration do

not define a potential well within which the nuclei vibrate, but rather define a space of

electronic state energies as a function of the nuclear positions. The molecule is always
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assumed to be initially in its minimum energy configuration, and one performs the

electronic transition within a fixed nuclear framework; as a result, the transition

is represented by a vertical line through that minimum energy configuration, and

the change in electronic energy associated with the transition is defined by where

that vertical line intersects with the electronic energy curve of the final state. In

the figure, these energies are identified by Eel
↑ and Eel

↓ for excitation and relaxation

respectively. The subsequent Franck-Condon relaxation energies are identified by

∆EFC
g and ∆EFC

e for the ground and excited states respectively. While the values

obtained from this kind of calculation are not precisely equal to the corresponding

values for the dominant transition obtained from a quantum mechanical treatment of

the nuclei, they are closely related to those values, deviating principally because in

the stationary, classical nuclei picture, the zero-point phonon energy (i.e. the energy

of the lowest energy phonon mode) is neglected.7 Since this error is often quite small,

it is usually sufficient to treat the molecular properties computed in this way as equal

to the values associated with the full quantum mechanical system.

A further sense of the meaning of treating the nuclei as classical particles is ob-

tained by relaxing the restriction that the nuclei are formally stationary at all times,

in which case they become dynamic classical particles. In this case, for a set of nu-

clei that are initially stationary (and therefore located at precisely Rg or Re for the

ground and excited states respectively, where the gradient of the potential energy,

and therefore the forces, are zero), one finds that following an electronic excitation

they are instantly subject to a driving force due to change in their potential function

(due to the new electron distribution). Effectively, these nuclei, which previously had

no potential or kinetic energy are instantaneously infused with potential energy equal

to the Franck-Condon relaxation energy. This potential energy is then transferred

into a nuclear vibration around a new set of mean nuclear positions. This vibrational

energy is then radiated away from the molecule as the vibration slowly decays until

the nuclei are stationary again at their new mean nuclear positions. This system now

7The stationary nuclei picture also neglects the discreteness of the phonon modes, which can
cause additional errors on the order of the phonon mode spacing.
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closely reflects the behavior of the full quantum mechanical system, and one even

recovers the fact that the electronic energy of the ground and excited states are really

fixed quantities, and the differences between the excitation and relaxation energies

are due to changes in the nuclear energy of the system. The corresponding diagram

of each of the different phases of the excitation - relaxation electronic transition cycle

are shown for the classical nuclei picture in Fig. A-2 (b).

A.5 Intermolecular Interaction Transitions

In this section, the electronic transitions arising from intermolecular interactions are

described, and the associated transition rates derived. The first step of this develop-

ment is to simplify the many-molecule Hamiltonian (Eqn. A.18) into a Hamiltonian

of just two molecules:

H = H1 +H2 + V int,el
12 + V int,nucl

12 . (A.21)

where the interaction term has been split into the part involving the electronic co-

ordinates V int,el
12 and the part operating on just nuclear coordinates the V int,nucl

12 .

The rationale of this separatation is that in accordance with the Born-Oppenheimer

approximation, the electronic problem is treated as parametric in the nuclear coor-

dinates, so that the electronic and nuclear problems can be decoupled and solved

sequentially. In dividing up V int
12 in this way, an analogy can be drawn with the single

molecule Hamiltonian (i.e. Eqn. A.1) introduced as the start of this chapter: V int,el
12

functions like an additional component of Vee and Ven, while V int,nucl
12 functionals like

an additional component of Vnn.

The usefulness of this separation is that while it is a good approximation that

the electronic wavefunctions are unchanged by intermolecular interactions, the same

cannot be said for the nuclear wavefunctions (as will be explained in detail below).

However, if one simply assumes the nuclear problem has been solved exactly, then

one can perform the analysis without addressing this difficulty directly. This is done

by explicitly separating the interaction potential into the part relevant to the elec-
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tronic problem, and then investigating how the interaction introduces transitions

between electronic states under the assumption that the exact nuclear wavefunctions

are known.

The implication of this new solution to the nuclear wavefunctions is that instead

of dealing with two sets of orthogonal phonon distributions (one for each molecule)

that are then coupled together by the interaction potential, there is instead single

distribution of phonon modes (including all the modes of both molecules), all being

proper orthogonal eigenfunctions of the nuclear Hamiltonian. These new total nuclear

wavefunctions are characterized by a single energy E and a single DOS function,

ρ(E). To formalize the meaning behind constructing the problem in this way, the

total wavefunction of our system in the i’th electronic state and having total phonon

energy E, is identified by,

|Ψi(E)〉 =
∣∣ψel

1i

〉 ∣∣ψel
2i

〉 ∣∣ψnucl
i (E)

〉
(A.22)

where
∣∣ψel

1i

〉
and

∣∣ψel
2i

〉
are the electronic wavefunctions of molecules 1 and 2 in isola-

tion and in the i’th electronic state, and
∣∣ψnucl

i (E)
〉

is the total nuclear wavefunction

for a total phonon energy of E in the i’th electronic state. In writing down this ex-

pression, the phonon-independent electronic wavefunction approximation is implicitly

employed (since the electronic wavefunctions are treated as independent of E.)

One can then trivially obtain the transfer rate between the two molecules in terms

of V int,el
12 and the total wavefunctions of the isolated molecules by application of

Fermi’s Golden rule. For an initial electronic state i and final electronic state f , this

rate is given by:

Γfi =
2π

~

∣∣∣∣〈V int,el
12

〉
fi

∣∣∣∣2 ∫ ∞

−∞

∫ ∞

−∞
dEdE ′ |αfi(E

′, E)|2

×ρN
i (E)f(E)ρN

f (E ′)δ
(
E ′ − E + ∆Eel

fi

)
(A.23)

=
2π

~

∣∣∣∣〈V int,el
12

〉
fi

∣∣∣∣2 Φfi(−∆Eel
fi) (A.24)
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with,

αfi(E
′, E) ≡

〈
ψnucl

f (E ′)|ψnucl
i (E)

〉〈
V int,el

12

〉
fi

≡
〈
ψel

f

∣∣V int,el
12

∣∣ψel
i

〉
(A.25)

Φfi(∆E) ≡
∫ ∞

−∞

∫ ∞

−∞
dEdE ′ |αfi(E

′, E)|2

×ρN
i (E)f(E)ρN

f (E ′)δ (E ′ − E −∆E) (A.26)

where: (1)
∣∣ψnucl

n (E)
〉

is the total nuclear wavefunction of the system in electronic

state n and having phonon energy E; (2)
∣∣ψel

n

〉
is the total electronic wavefunction of

the system in electronic state n; (3) ρN
i (E) is the phonon DOS function for electronic

state i; (4) f(E) is the phonon occupancy function (associated with the initial state);

and, (5) Eel
fi is the electronic energy of state f minus the electronic energy of state i.

The sense of Eqn. A.24 is that from Fermi’s Golden rule the transition rate between

two particular initial and final electronic states is proportional to

∣∣∣∣〈V int,el
12

〉
fi

∣∣∣∣2, and to

obtain the total rate one must further integrate over all the initially occupied phonon

modes and available final modes, while still accounting for energy conservation (which

is done through the delta function). Note that αfi(E
′, E) is not zero here because the

overlaping wavefunctions are due to different electronic states, and therefore aren’t

orthogonal with each other.

In this expression,
〈
V int,el

12

〉
fi

has been introduced, which consists of the electronic

component of the interaction potential matrix element coupling initial state i and final

state f. This is reflects the strength of coupling between the initial and final electronic

states. The function Φfi(∆E) has also been introduced. This function consists of the

double integral over the initially occupied and all final phonon states, written so that

the change in phonon energy of the transition is equal to the function argument ∆E.

In this thesis, Φfi(∆E) is referred to as the “phonon transition spectrum” (PTS)

in that it describes the normalized spectrum of transition rates as a function of the

change in the phonon energy for the transition. (Note that the PTS is very similar

341



to the homogeneous lineshape function used in the context of optical transitions.)

An important feature of the transition rate derived here is that it is constant in

time, which requires a brief explanation. This rate is obtained by taking the time

derivative of the time rate of change in the probability of finding the system in the

final state instantaneously after the system is placed into the initial state. Suppose

then that the transition of interest consists of the transfer of an excitation from a

donor molecule (D) to an acceptor molecule (A). Once the interaction potential is

introduced, at any given subsequent moment in time, either D or A excited, with a

probability obtained by solving for the quantum mechanical wavefunctions of D and

A exactly for all time and evaluating the relative strength of their ground and excited

state wavefunctions. The meaning of a constant rate like the one derived above is

that when ever D is excited, it’s rate of transfer to A is given by this constant value.

This result, however, is dependent on an important assumption: that the over-

all transition rate is slow on the time scale of the Franck-Condon relaxations of the

donor and the acceptor. If this condition is not met, then the transition can become

“resonant,” in which case the excitation rapidly oscillates between the two molecules

(following a sinusoidal probability with time) with a frequency known as the Rabi

frequency. The significance of the Franck-Condon relaxations in this context are two

fold: (1) they dissipate excess thermal energy present following a transition; and (2)

they scatter the time coherence of the A and D wavefunctions. For a resonance con-

dition to hold, the energy of the system must remain constant and the interacting

wavefunctions must remain time coherent, and thus Franck-Condon relaxations pre-

vent such resonances from arising unless the coupling strength is so large that the

transition rates are much greater than the Franck-Condon relaxation rates (though

even in this case, the resonance will not persist indefinitely since energy and time

coherence will still be slowly dissipated.) Such resonant transitions are not consid-

ered further in this thesis, but it should be kept in mind that for particularly strong

intermolecular interactions such coherent, oscillating transitions may arise.

It is instructive to now apply the principle of a constant transition rate to the time-

averaged behavior of a statistical system. Consider the case of a transition involving
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two molecules, and divide a given system up into a collection of N two molecule pairs.

Expressing the population of states in their initial state by Ni and in their final state

by Nf , the impact of a constant transition rate Γ on the state populations can be

expressed in terms of two simple differential equations:

dNi

dt
= −ΓNi

dNf

dt
= ΓNf . (A.27)

This yields an exponential time dependence for the populations, and assuming

Ni = 1 and Nf = 0 at time zero, the explicit solution is,

Ni(t) = e−ΓtNf (t) = 1− e−Γt. (A.28)

One can then relative the behavior of the statistical system (so long as the sta-

tistical ensemble is sufficiently large) to the probabilitistic behavior of the individual

molecular systems. Applying that approach here, one finds that the time evolution

of the wavefunction, |Ψ(t)〉, of an pair of molecules is given by,

|Ψ(t)〉 = a(t) |Ψi(t)〉+ b(t) |Ψf (t)〉 (A.29)

with,

a(t) = e−Γtb(t) = 1− e−Γt (A.30)

where |Ψi(t)〉 and |Ψf (t)〉 are the wavefunctions of the initial and final states. This

suggests that one may define a lifetime, τ , for the transition, equal to Γ−1, in the

sense that the probability of an initially excited state remaining excited at time t

decays exponentially as exp[−t/τ ].

343



At this point, obtain explicit expressions for the transition rates associated with

particular interaction potentials, it is necessary to specify V int,el
12 more precisely (along

with what kinds of initial and final electronic states are coupled together). The

case of electron transfer from one molecule to another is considered first. The most

straightforward example of this process is illustrated in Fig. 1-3 (d), which shows a

negative polaron transfering from a donor molecule to an acceptor molecule. This

process and the corresponding one for positive polarons are collectively referred to

as polaron transfers. However, the same kind of electron transfer process occurs

in spontaneous polaron formation (Fig. 1-3 (a)), exciton formation (Fig. 1-3 (e)),

polaron annihilation (Fig. 1-3 (f)), and exciton dissociation (Fig. 1-4 (b)). Thus

the principles employed in developing the transfer rate for the simplest case are also

applicable these more general electron transfer processes; the only real differences

are the initial and final electronic wavefunctions involved in the transition, and the

associated state energies.

The origin of electron transfer by way of V int,el
12 is that this term exposes the

potential of molecule 2 to the electrons on molecule 1, and as a result, those electrons

can access the orbitals on molecule 2. It is intuitive that the rate of this electron

transfer process is proportional to the spatial overlap of the initial and final molecular

orbitals involved in the transition. The sense of this is simply that the electron must

tunnel from the initially occupied orbital into some new unoccupied orbital, and the

rate of such a tunneling process scales with the wavefunction overlap. Specifically,

the rate of electron transfer is given by Eqn. A.24 with,

〈
V int,el

12

〉
fi

= β
〈
ψel,orb

2 |ψel,orb
1

〉
. (A.31)

where
∣∣∣ψel,orb

1

〉
and

∣∣∣ψel,orb
1

〉
are the electronic orbitals of molecules 1 and 2 respectively

which involved in the transition, and β is a constant. Plugging this into the total rate

expression, one obtains,
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Γhop =
2π

~
β2
∣∣∣〈ψel,orb

2 |ψel,orb
1

〉∣∣∣2 Φfi(−∆Eel
fi) (A.32)

where the subscript “hop” comes from the convention of describing electron transfer

as “electron hopping.” The key here is that the total transfer rate is proportional

to the squared magnitude of the spatial overlap of two electronic orbitals involved in

the electron transfer event. At this point, it is common to apply simplifying approx-

imations which express the rate in terms of various constant parameters. The most

straightfoward simplification is obtained by observing that the single electron wave-

functions associated with
∣∣∣ψel,orb

i

〉
and

∣∣∣ψel,orb
f

〉
fall off exponentially with distance

(as this is general property of wavefunctions outside of the potential well confining

them.)8 As a result, we may take |〈f |i〉|2 ∝ e−γR where R is the distance between

the molecules and γ is a parameter describing how quickly the exponential decays.

Making this substitution, one obtains,

Γhop = Ke−γRΦfi(−∆Eel
fi) (A.33)

where K is a constant dependent on neither R nor ∆Eel
fi.

9 The second conventional

simplification requires a more severe approximation: one assumes that the ρN
i (E),

ρN
f (E), and αfi(E,E

′) terms contained within Φfi(∆E
el
fi) are constant in energy. If

one then plugs in the Boltzman distribution for f(E) in Eqn. A.26, and carries out

the integrals, one gets,

8To be precise, the wavefunction falls off exponentially with distance where ever the state energy
is less than the potential energy.

9There is a subtle additional approximation here, in that β, and therefore K, is weakly dependent
on the energy of the initial and final states, which can lead to a weak dependence on ∆Eel

fi. This
dependence, however, is universally neglecting in existing treatments of intermolecular transitions
involving polarons and excitons in amorphous organic materials.
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Φfi(−∆Eel
fi) = C

∫ ∞

0

∫ ∞

0

dEdE ′f(E)δ
(
E ′ − E + ∆Eel

fi

)
(A.34)

= C

 1 if ∆Eel
fi < 0

eEel
if /kT if ∆Eel

fi ≥ 0
(A.35)

where C is a constant. While this approximation is hardly accurate in detail, it is

at least reasonable to assume that f(E) has the strongest energy dependence among

the terms in the double integral, and in this respect is a meaningful estimate of the

dominant dependence of the rate on ∆Eel
fi. In particular, it illustrates an extremely

important principle of electronic transitions in general, namely that transitions involv-

ing an increase in the electronic energy usually much slower than those that involving

a decrease in electronic energy. Qualitatively, this reflects the fact that to increase

the electronic energy of the system, it is necessary to acquire thermal (i.e. phonon)

energy from the surroundings to carry out the transition, which becomes more and

more difficult the more energy that it required, since a system in thermodynamic

equilibrium does not support many high energy phonon modes (or more precisely,

the occupancy of such modes falls off approximately as exp[−E/kBT ]). In contrast,

transitions involving a decrease in electronic energy require only that there exist

phonon modes into which the excess electronic energy can be deposited, and such

modes are essentially always exist. This approximation is also useful for expressing

expected dominant temperature dependence of the rate. Plugging this approximation

into the full rate equation then yields,

Γhop = νhope
−γR

 1 if ∆Eel
fi < 0

e−∆Eel
if /kT if ∆Eel

fi ≥ 0
(A.36)

where νhop is a constant parameter. This expression is known as the Miller-Abrahams

(MA) hopping rate equation[98].

In addition to electron transfer as it applies to the transport of polarons, one can
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also identify a mechanisms by which the above electron transfer process applies to

excitons: an exciton can be transferred from a donor molecule to an acceptor molecule

if the excited electron on the donor transfers into an orbital on the acceptor molecule,

while at the same time an electron on the acceptor transfers into an unoccupied

orbital of the donor. This is the process shown in Fig. 1-4 (c). Since this is precisely

the same process as described in the previous section, except that now two electron

transfers are occuring simultaneously, it is intuitive that one can derive a very similar

transfer rate expression. Specifically, the rate is given by,

ΓDex =
2π

~
β2
∣∣∣〈ψel,orb,1

2 |ψel,orb,1
1

〉∣∣∣2
×
∣∣∣〈ψel,orb,2

2 |ψel,orb,2
1

〉∣∣∣2 Φfi(−∆Eel
fi). (A.37)

The rate is proportional to the separate orbital overlap terms associated with the

simultaneous hopping events. The first set is idenfitied by
∣∣∣ψel,orb,1

1

〉
and

∣∣∣ψel,orb,1
2

〉
,

while the second set is identified by
∣∣∣ψel,orb,2

1

〉
and

∣∣∣ψel,orb,2
2

〉
. Again, β is a constant.

Clearly, if one applies the same approximations to this rate as to the single electron

hopping rate equation one again arrives an a rate equation equal to Eqn. A.36, but

with different values for the various parameters. This process is known as Dexter

transfer[36], exciton transfer by correllated electron exchange, or phonon assisted

exciton transfer. In this thesis we will use the term Dexter transfer, and hence the

subscript “Dex” on the rate.

The same simplifications as were earlier applied to the the electron hopping process

are applicable by the same argumenters to the Dexter transfer process. Simplifying

the orbital overlap to an exponential distance dependence, one obtains,

ΓDex = Ke−γRΦfi(−∆Eel
fi) (A.38)

where K and γ are again constant parameters, and simplify Φfi(∆E
el
fi) as above, one
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obtains a corresponding MA–type rate:

ΓDex = νDexe
−γR

 1 if ∆Eel
fi < 0

eEel
if /kT if ∆Eel

fi ≥ 0
(A.39)

where νDex is a constant parameter.

There are a number of additional processes that can occur by electron hopping in

the event that two excitations interact with each other. One such process involves the

interaction of an exciton with either another exciton or a polaron. The premise of the

interaction is that the relaxation of an exciton on one molecule provides the energy

to support the formation of an additional excitation on the other molecule, thereby

making the process (potentially) energetically favorable. In particular, if two excitons

meet they can yield a final state consisting of one molecule in the ground state and one

molecule in either a bi-exciton (i.e. combined two exciton state) or a higher energy

exciton state. The latter state usually rapidly decays back into the lowest energy

exciton state, with the excess electronic energy converted to phonon energy, and thus

the formation of this latter state is associated with the exciton-exciton annihilation

process, whereby two excitons interact and one exciton is destroyed. There is no

experimental evidence to indicate that the bi-exciton is sufficiently common to play

an important role in typical amorphous organic electronic devices, and thus it is likely

that on most real systems, the exciton-exciton annihilation process is energetically

preferred.

If an exciton and polaron meet, they can yield a final state consisting of one

molecule in the ground state and one molecule in either a combined polaron-exciton

or higher energy polaron state. In the same way as for exciton-exciton interactions,

the latter process leads to exciton-polaron annihilation, whereby an exciton and po-

laron interact and the exciton is destroyed. And again, while the formation of the

exciton-polaron state is possible in principle, there is no evidence suggesting that it is

sufficiently common to play an important role in typical amorphous organic electronic

devices.
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This completes the discussion of electronic transitions involving electron transfer

between molecules. However, there is another critical molecular transition resulting

from intermolecular interactions that must be addressed. Unlike the electron transfer

interactions described above, this interaction is not based on wavefunction overlap

but on the long-range interaction between the charge distributions of each molecule.

The starting point of the development is again the two molecule Hamiltonian and the

specification of V int
12 .

To construct this interaction potential, the operator for the charge distribution of

the m’th molecule by ρm(~r) is introduced, along with the operator for the potential

produced by that charge distribution by φm(~r). In classical electrostatics, one obtains

the energy of interaction between two charge distributions by integrating over all

space the product of the charge distribution of one with the potential of the other,

and writing this instead in the form of operators, one obtains:

V int
12 =

∫
ρ1(~r)φ2(~r)d

3~r (A.40)

where the symmetry of the problem indicates that V int
12 = V int

21 . In this kind of calcu-

lation, it is often useful to perform a multipolar expansion of the charge distributions,

in which case, the charge distributions are replaced by a series of point multipoles

defined to have an origin at the center of the molecule, in which case,

φm(~r) =
Qm

r
+
µ̃m · ~r
r2

+ · · · (A.41)

where ~r is the position vector relative to the center of the molecule, Qm is the operator

for the scalar monopole moment (i.e. the total charge), µ̃m is the operator for the

vector dipole moment, and the remaining terms of the multipole expansion fall off

with r to the third power or higher. Note that the charge and dipole operators of a

particular molecule are given by,
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Q = Qel + Qnucl (A.42)

µ̃ = µ̃el + µ̃nucl (A.43)

where,

Qel = −e (A.44)

Qnucl = e (A.45)

µ̃el = −e
∑

k

~rk (A.46)

µ̃nucl = e
∑

k

Zk
~Rk (A.47)

and ~rk is the coordinate for the k’th electron on the molecule, Zke is the charge of

the k’th nucleus on the molecule, ~Rk is the coordinate for the k’th nucleus on the

molecule, and the superscript “el” denotes an operator that acts on only the elec-

tronic wavefunctions while “nucl” denotes an operator that acts on only the nuclear

wavefunctions.

Applying the multipole expansion to the interaction energy operator, one obtains,

V int
12 =

Q1Q2

R12

+
[Q1µ̃2 −Q2µ̃1] · ~R12

R2
12

− µ1µ2κ12

R3
12

+ · · · (A.48)

where,

κij = µ̂i · µ̂j − 3(µ̂i · R̂ij)(µ̂j · R̂ij), (A.49)

~Rij = ~Ri − ~Rj, ~Ri and ~Rj are the positions of the center of i’th and j’th molecules

respectively, and ŝ denotes the unit vector parallel to ~s. The usefulness of this ex-

pansion is that at sufficient distances, only the first non-zero term in the expansion
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is important, and for this analysis this expansion is formally truncated at the dipole

term.

To proceed, one separates V int
12 (as before) into the component operating on the

electronic wavefunctions, V int,el
12 , and the component operating on the nuclear wave-

functions, V int,nucl
12 . Again assuming that the nuclear problem has been solved exactly,

one is left with just the operator V int,el
12 which is identical to V int

12 , except that it only

acts directly on the electronic wavefunctions. Specifically,

V int,el
12 =

Qel
1 Qel

2

R12

+

[
Qel

1 µ̃
el
2 −Qel

1 µ̃
el
2

]
· ~R12

R2
12

− µel
1 µ

el
2 κ

el
12

R3
12

(A.50)

where,

κel
ij = µ̂el

i · µ̂el
j − 3(µ̂el

i · R̂ij)(µ̂
el
j · R̂ij). (A.51)

To obtain the transition rate associated with this interaction, the objective is to

calculate
〈
V int,el

12

〉
fi

, which is accomplished by plugging V int,el
12 into Eqn. A.25. Since

the initial and final electronic wavefunctions appearing in Eqn. A.25 are given by the

product of the electronic wavefunctions on molecules 1 and 2 in the initial and final

electronic states respectively, then we obtain
〈
V int,el

12

〉
fi

by simplying replacing each

of the charge and dipole operators in V int,el
ij by their matrix elements, i.e.,

〈
V int,el

12

〉
fi

=

〈
Qel

1

〉
fi

〈
Qel

2

〉
fi

R12

+

[〈
Qel

1

〉
fi

〈
~µel

2

〉
fi
−
〈
Qel

2

〉
fi

〈
~µel

1

〉
fi

]
· ~R12

R2
12

−

〈
µel

1

〉
fi

〈
µel

2

〉
fi

〈
κel

12

〉
fi

R3
12

(A.52)

where,
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〈
κel

mn

〉
fi

=
〈
µ̂el

m

〉
fi
·
〈
µ̂el

n

〉
fi
− 3(

〈
µ̂el

m

〉
fi
· ˆRmn)(

〈
µ̂el

n

〉
fi
· ˆRmn) (A.53)

and the electronic charge and dipole moment matrix elements of the m’th molecule

having initial and final electronic wavefunctions
∣∣ψel

m,i

〉
and

∣∣ψel
m,f

〉
, respectively, are

given by,

〈
Qel

m

〉
fi

=
〈
ψel

m,f

∣∣Qel
m

∣∣ψel
m,i

〉
(A.54)〈

~µel
m

〉
fi

=
〈
ψel

m,f

∣∣ µ̂el
m

∣∣ψel
m,i

〉
. (A.55)

Because the operator Qel
m is just a constant, and by construction

∣∣ψel
m,f

〉
6=
∣∣ψel

m,i

〉
(since if this were not the case, the molecule would not have undergone an electronic

transition), then
〈
Qel

m

〉
fi

= 0. Dropping all of the terms in the electronic charge

matrix element, one then obtains,

〈
V int,el

12

〉
fi

= −

〈
µel

1

〉
fi

〈
µel

2

〉
fi

〈
κel

12

〉
fi

R3
12

. (A.56)

By plugging Eqn. A.56 into Eqn. A.24 one then obtains the total transfer rate,

ΓFor:

ΓFor =
2π

~

∣∣∣∣∣
〈
µ̃el

1

〉
fi

〈
µ̃el

2

〉
fi

〈
κel

12

〉
fi

R3
12

∣∣∣∣∣
2

Φfi(−∆Eel
fi) (A.57)

where Φfi(−∆Eel
fi) is again the PTS evaluated at −∆Eel

fi. As done previously for the

electron hopping expressions, it is possible to rewrite this rate in terms of constant

parameters. First addressesing the distance dependence, one can rewrite the rate as,

ΓFor = K
1

R6
Φfi(−∆Eel

fi) (A.58)
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where K is a constant parameter. One can then also apply the previously MA ap-

proximation to Φfi(∆E
el
fi) to obtain,

ΓFor = C
1

R6

 1 if ∆Eel
fi < 0

eEel
if /kT if ∆Eel

fi ≥ 0
(A.59)

where C is a constant parameter.

This type of transfer is known in the literature as Förster transfer[41, 42], or (in

some chemistry journals) resonant energy transfer. We will use the term Förster

transfer in this thesis, hence the subscript “For” used in the above rate expressions.

Since no electron transfer is involved in Förster transfer, only transitions in which

each molecule maintains its charge are allowed. For this reason, we are usually only

interested in the application of this rate to exciton transfer, as illustrated in Fig.

1-4 (d). A polaron can theoretically transfer energy into a ground state molecule

and excite an exciton, but only if the polaron initially has sufficient excess energy

and, as explained above, one can usually assume that the excitations are all found

in their lowest energy electronic state due to rapid thermalization. Thus in practice,

polarons do not have the needed excess energy (for a sufficiently long time) to support

this process. Just as for electron hopping, Förster transfer can support a variety

of transitions involving the interaction of two excitations, and by exactly the same

logic, the most important such processes involve exciton-exciton and exciton-polaron

interactions.

Before moving on, one should take special notice of the fact that Förster trans-

fer rate is proportional to the dot product of the electronic dipole moment matrix

elements for molecules 1 and 2, which are frequently referred to as the “electronic

transition dipoles.” For this reason the Förster rate can be directly related the rates

associated with radiation absorption and spontaneous radiation emission (as will be

shown below). The source of this connection is the fact that the radiation field inter-

action potential is just the electronic dipole operator.10

10This apparent connection to the radiation field is not at all coincidental. Indeed, one can derive
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A this point, a comment on the nuclear interaction potential is in order. At the

start of this section, it was argued that one could not neglect the changes to the

nuclear wavefunctions caused by intermolecular interactions, and therefore arranged

the problem so that the exact solutions to the nuclear problem could be assumed.

Since it is still assumed that these interactions are too weak to signifiantly alter

the electronic wavefunctions, then they are unlikely to significantly alter the mean

positions of the nuclei. However, the presense of neighboring molecules can still

introduce two very important effects. First, consistent with the previously developed

intramolecular phonon picture, one can think of the intermolecular interactions as

introducing coupling springs between the molecules, such that the set of supported

vibrations is expanded to include gross vibrations of entire molecules with respect to

each other. Since these interactions are weak, these springs would not be expected

to noticeably change the mean positions of the nuclei relative to each other, and as a

result the original intramolecular phonon modes should remain roughly unchanged.

But these new vibrations are still important, since they introduce what is referred to

here as an intermolecular phonon, involving a vibration of the position and orientation

of the entire molecule relative to its neighbors, as illustrated in Fig. A-3.

The origin of these new vibrations can be interpreted as the introduction of a new

potential well acting on molecule as a single unit, arising from the effectively restric-

tions of its motion by its neighbors. This new potential well is much shallower in space

than the potential wells associated with the nuclei themselves, and so the vibrations

introduced in this way are much more closely spaced in energy. For this reason, the

most dramatic effect of intermolecular phonons is to substantially smooth out the

total molecular phonon distribution. As previously noted, the typical intramolecular

phonon energy spacing is on order 0.1 eV, while the energy spacing of the typical

intermolecular phonon is one order 0.001 eV. Along with finally providing a sound

this rate using entirely classical arguments, whereby it arises as an interaction of the near-field parts
of the dipole fields produced by the two molecules. One can derive this expression in yet a third way
using QED, and in this approach the interaction involves the passive coupling of the two molecules to
the radiation field as a means of transmitting the electromagnetic interaction of the two molecules.
Because the state of the radiation field never changes, and yet nevertheless seems to transmit energy
from one molecule to another, the transfer is said to involve a virtual photon.
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Nuclear Vibrations

Molecular
Vibrations

Figure A-3: Illustration of intramolecular vibrations (involving changes in the relative
positions of the nuclei on a single molecule) and intermolecular vibrations (involving
gross changes in the position or orientation of the molecule as a whole). In a condensed
phase, as shown, molecular vibrations are restricted, in contrast with the gas phase.

justification for treating the molecular phonon distributions as approximately contin-

uous, this also indicates that it is clearly unreasonable to entirely neglect the impact

of intermolecular interactions on the nuclear wavefunctions. At the same time, the

effects of these nuclear interactions are not strongly dependent on the precise details

of the local environment (so long as they are weak), so that one can assume that

each molecule experiences an approximately equal degree of smoothing due to inter-

molecular interactions (so long the local environments are not radically different).

This point will be revisted below to demonstrate the universality of the PTS for a

particular type of transition and a particular molecular type in a uniform medium.

Finally, before leaving this chapter it is necessary to briefly return to the mat-

ter of spin wavefunctions. All of the intermolecular interactions discussed above are

generally assumed to be spin conserving, so they can not cause a transition between

states having different total spins. In other words, any transitions involving polarons

conserve the polaron spin, while any transitions involving excitons only involve the
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singlet states. The one important caveat here is that some molecules have the ca-

pability to mix together the different spin states, and thereby effectively flipping the

spin of a given electron. The most common example of this phenomenon is known

as spin-orbit coupling, which occurs in organic molecules having heavy metal atoms.

In these systems, the angular momentum of the electronic orbitals are coupled to the

spin orbitals, causing the previously orthogonal singlet and triplet wavefunctions to

mix. The resulting singlet state has some triplet character, and the triplet states have

some singlet character. In systems where such mixing can occur, transitions that are

otherwise forbidden due to spin conservation become possible (e.g. radiative triplet

relaxation), with a rate that is proportional the extent to which the initial state has

the spin needed to support the transition.

A.6 Molecular Radiation Field Transitions

In this section the transition rates associated with the radiation field interaction are

developed. Two kinds of processes will be considered, ones in which a molecule

absorbs energy from the radiation field and those in which a molecule emits energy

into the radiation field. In performing this analysis, it is assumed that the molecules of

interest are coupled to other molecules through the kinds of intermolecular interaction

terms described above, i.e. the interactions do not significantly alter the electronic

wavefunctions, but do broaden the molecular phonon spectra. Since the molecules

therefore continue to retain their individual character, it is sufficient to treat the

radiation field interaction based on the analysis of a single molecule.

Because these transitions do not involve the transfer of any electrons to another

molecule, the charge on the molecule is maintained.11 Therefore the only supported

electronic transitions involve either the promotion of an electron to a higher energy

unoccupied orbital, or the demotion of an electron to a lower energy unoccupied

orbital. For the absorption process, if the molecule is initially in the ground state,

11This analysis is limited to interactions with radiation of sufficiently low energy that photoion-
ization does not occur.
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this leads to the creation of an exciton, as illustrated in Fig. 1-4 (a). For the emission

process, if the molecule is initially in an exciton state, then this leads to radiative

exciton decay, as illustrate in Fig. 1-4 (b). These are the dominant radiation field

interactions relevant to the overwhelming majority of organic electronic materials and

devices.

More complex processes can also occur, and though they will not be directly

addressed below, they are worth a moment’s further consideration. If the molecule

is already in a polaron state, light absorption can lead to either the formation of

an exciton-polaron pair (if a low energy electron is promoted) or to the formation

of a higher energy polaron. Likewise, for light emission, a molecule that is in a

polaron state can relax into a lower energy polaron state so long as such a state

exists. If the molecule is already in an exciton state, light absorption can lead to

either the formation of a bi-exciton or a higher energy exciton. For various reasons,

these processes are usually very difficult to observe (mainly because they usually have

short lifetimes and are present in very low concentrations), and are only important in

experiments specifically designed to detect them. Nevertheless, the rate expressions

developed below are applicable to all of these cases, with proper specification of the

initial and final state wavefunctions and energies.

The processes of optical absorption and stimulated emission are considered first.

In these processes light energy is respectively absorbed or emitted by the molecule

as a result of coupling to the incident radiation field. In the language of QED, the

molecule absorbes or emits a photon by coupling to the radiation field wavefunction.

An analysis of these processes yields the following transition rate for a particular pair

of electronic states (identified by i and f, where Ef > Ei for absorption and Ef < Ei

for emission) as a function of the frequency ν of the absorbed/emitted radiation per

unit energy interval,

Γfi(hν) =
B

cn

(
3γ2
) I(ν)

h

∣∣∣∣〈M̃〉
fi

(±hν)
∣∣∣∣2 (A.60)

where,
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B =
1

6ε0~2
, (A.61)

I (ν) is the irradiance per unit frequency interval (Wm−2Hz−1), γ2 is an orientation

term equal to 1/3 when the radiation field is unpolarized (and also when the absorp-

tion rate is averaged over an ensemble of randomly oriented molecules),
〈
M̃
〉

fi
(E) is

the aggregate transition dipole moment as a function of energy, and the ± appearing

in the argument for the aggregate transition dipole moment differentiated between

absorption (+) and stimulated emission (-), respectively. The meaning of
〈
M̃
〉

fi
(ν)

will be explained in more detail below. Observe that the rate expression for absorp-

tion and stimulated emission is essentially the same; the only difference between the

two processes being whether or not the transition is upward or downward in energy,

and this is the reason for the difference in the sign of the argument to the aggre-

gate transition dipole moment. One should also keep in mind that this rate is a rate

per unit energy (because of the presence of the I(ν)/h term), and to get the total

absorption rate one must integrate over energy.

It is common to relate the absorption rate to what is known as the absorption

cross section, σ(ν), which is defined as the time–averaged fraction of the incident

light intensity absorbed by a single molecule as a function of frequency. Based on

this definition,

σ(hν) = hνΓabs(hν)/I(ν) = ν
B

cn

(
3γ2
) ∣∣∣∣〈M̃〉

fi
(hν)

∣∣∣∣2 (A.62)

where it has been noted that the time average absorbed light intensity is equal to

the time averaged transition rate (i.e. Γabs(ν)) times the energy absorbed in each

transition, which is given by hν since a single photon is absorbed in each transition.12

One then divides by I(ν) to get the fraction of the absorbed intensity.

The absorption cross section is usually a readily measurable quantity. This is

accomplished by measuring the fraction of the incident light intensity that is trans-

mitted through a known thickness of material, where the light intensity is specified

12Multi-photon absorption is not considered here.
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by its mean frequency, ν, and its frequency uncertainty, ∆ν. Since the total rate of

absorption is everywhere proportional to the light intensity, I, at that frequency, one

may write down a simple differential equation for the light intensity as function of

the distance travelled through the film, z:

dI = N 〈σ(ν)〉∆ν Ihνdz (A.63)

where N is the molecular density and 〈σ(ν)〉∆ν denotes the value of σ(ν) averaged

over the frequency uncertainty of the incident light. The sense of this expression is

that the differential change in intensity due to absorption through a film of thickness

dz is given by the amount of light absorbed in that film, which is just the number of

absorbing molecules in a dz thick film (i.e. Ndz) times the faction of light absorbed on

average by each molecule (i.e. 〈σ(ν)〉±∆ν I). Solving this expression for the fraction of

the incident intensity transmitted through a total distance t, gives the transmittance,

T :

T = e−N〈σ(ν)〉∆νt (A.64)

Rearranging this, and defining 〈T (ν)〉∆ν as the fraction of light intensity transmitted

as a function of the light frequency and uncertainty, yields,

〈σ(ν)〉∆ν = − ln(〈T (ν)〉∆ν)

Nt
. (A.65)

It is conventional to specify the molecular density, N , in units of cm−3 and the

thickness in units of cm. This then gives the absorption cross section units of cm2.13

The process of spontaneous emission will now be addressed. In this process an

electronic transition occurs through coupling to the vacuum radiation field, allowing

for emission independent of the radiation field intensity. Since this process occurs

even if the radiation field intensity is zero, the semi-classical development is unable

13Since there are many different functions of absorption in common usage, it is easy to get confused
by them. To remember which one the cross section refers to it is helpful to recall that the idea of
calling σ a cross section is that it has units of area.
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to explain such a process, though it can still be rationalized that such a process must

exist on the basis of thermodynamic arguments, as Einstein did in reporting the first

derivation of the rate of this process. However, it is straightforwardly derived using

QED, in which case the molecule is said to emit a photon by coupling to fluctuations

in the vacuum radiation field. Both approaches give the following rate expression,

Γspon
rad (hν) =

4πν3

3εc3~2

∣∣∣∣〈M̃〉
fi

(−hν)
∣∣∣∣2 . (A.66)

where the subscript “rad” is used to describe the radiative emission process. Though

it is not necessarily obvious, this rate is also a rate per unit energy. This comes from

the fact this rate is implicitly proportional to the density of states (DOS) of the free

space vacuum radiation field, and this DOS is defined per unit energy. As noted in

the previous section, one sometimes defines the lifetime of a transition, and this is

particularly useful for spontaneous emission, where this lifetime is denoted τrad. In

particular, since the lifetime is given by the inverse of the total transition rate of the

initial state to the final state,

τrad =

[∫ ∞

−∞
Γspon

rad (E)dE

]−1

. (A.67)

Note that this rate is independent of the orientation or intensity of an existing ra-

diation field; however, since it is implicitly dependent on the DOS of the radiation

field, modifications to this DOS will certainly impact the transition rate. Deviations

the DOS of the radiation field from the free space field arise, for instance, when the

emitting molecule is situated in an optical cavity.

It is often useful to define the normalized emission spectrum as a function of

energy, Srad(E), as,

Srad(E) =
Γspon

rad (E)∫∞
−∞ Γspon

rad (E)dE
(A.68)

which describes the relative intensity of radiation emitted by the molecule as a func-

tion of frequency. (The “spon” is dropped from the notation because the stimulated
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emission spectrum will not be used further in this thesis, and so it should always be

clear that the emission spectrum refers to the spontaneous emission spectrum.)

To complete this analysis, it is necessary to obtain an expression for the aggre-

gate transition dipole moment,
〈
M̃
〉

fi
(E). Again using Fermi’s Golden rule, it is

straightforward to show that,

∣∣∣∣〈M̃〉
fi

∣∣∣∣2 (Erad) =

∫ ∞

−∞
dE

∫ ∞

−∞
dE ′ρN

i (E)f(E)ρN
f (E ′)

×
∣∣∣〈µ̃〉fi (E

′, E)
∣∣∣2 δ (E ′ − E + ∆Eel

fi(E,E
′)− Erad

)
(A.69)

where ρN
k (E) the phonon density of states (DOS) associated with the k’th electronic

state 1, f(E) is the phonon state occupancy function, ∆Eel
fi(E

′, E) is equal to the

electronic energy of the molecule in electronic state f and having phonon energy E’

minus the electronic energy of the molecule in electronic state i and having phonon

energy E, Erad is the radiation energy passed in as an argument. Note that Erad is

equal to hν for absorption and −hν for emission. In this expression, 〈µ̃〉fi (E
′, E) has

also been introduced; this consists of the transition dipole moment associated with an

initial electronic state i having phonon energy E and a final electronic state f having

phonon energy E’, i.e.,

〈µ̃〉fi (E
′, E) = 〈ψf (E

′)〉 |µ̃ |ψi(E)〉 (A.70)

where |ψk(E)〉 is the total molecular wavefunction associated with the system in the

k’th electronic state and having total phonon energy E. In other words, this is the

total dipole operator (operating on both the electronic and nuclear wavefunctions).

These expressions are rather cumbersome because they allow that the electronic wave-

functions and the associated electronic energies are dependent on the nuclear wave-

functions, so that both 〈µ̃〉fi and ∆Eel
fi are both functions of E and E’. If one applies

the phonon-independent electronic wavefunction approximation, the expression for∣∣∣∣〈M̃〉
fi

∣∣∣∣2 simplies to:
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∣∣∣∣〈M̃〉
fi

∣∣∣∣2 (Erad) =

∣∣∣∣〈µ̃el
〉

fi

∣∣∣∣2 ∫ ∞

−∞
dE

∫ ∞

−∞
dE ′ρN

i (E)f(E)ρN
f (E ′)

× |αfi(E
′, E)|2 δ

(
E ′ − E + ∆Eel

fi − Erad
)

(A.71)

where
〈
µ̃el
〉

fi
is the electronic transition dipole as defined in the previous section, and

αfi(E
′, E) is the total phonon wavefunction overlap between the molecule in initial

electronic state i and having phonon energy E and the molecule in final electronic

state f and having phonon energy E’. From this expression, the PTS can be naturally

introduced into this expression, yielding,

∣∣∣∣〈M̃〉
fi

∣∣∣∣2 (Erad) =
∣∣∣〈µ̃el

〉
fi

∣∣∣2 Φfi(−∆Eel
fi + Erad) (A.72)

where Φfi(∆E) is the PTS for the transition of interest (either absorption or emis-

sion). Note that to account for the change in energy of the radiation field, the

argument to the PTS is set equal to ∆E equal to −∆Eel
fi + Erad.

Plugging in Eqn. A.72 into the total rate expressions derived above gives,

Γabs(hν) =
B

cn

(
3γ2
) I(ν)

h

×
∣∣∣〈µ̃el

〉
fi

∣∣∣2 Φfi(−∆Eel
fi + hν) (A.73)

Γstim
rad (hν) =

B

cn

(
3γ2
) I(ν)

h

×
∣∣∣〈µ̃el

〉
fi

∣∣∣2 Φfi(−∆Eel
fi − hν) (A.74)

Γspon
rad (hν) =

4πν3

3εc3~2

∣∣∣〈µ̃el
〉

fi

∣∣∣2 Φfi(−∆Eel
fi − hν). (A.75)

These rate expressions look very similar to those obtained for the electronic tran-

sitions caused by intermolecular interactions. Once again, it is found that the rate is

proportional to a matrix element of the electronic part of the interaction potential (in

362



this case the electronic transition dipole moment) times a PTS comprising the depen-

dence of the rate on the phonon spectra. The main difference here as compared to the

intermolecular transition case is that for radiation field interactions the energy of the

molecular system is not constant, rather it increases when radiation is absorbed and

decreases when radiation is emitted, and this is reflected in the −∆Eel
fi±hν argument

supplied to the PTS.

Finally, it should be noted that the radiation field interaction is spin conserving,

so it can not cause a transition between states having different total spins. In other

words, any transitions involving polarons conserve the polaron spin, while any transi-

tions involving excitons similarly conserve the spin. For exciton transitions involving

the ground state (as the initial state for absorption or the final state for emission),

this restricts the radiation field induced transitions to singlets (since the ground state

for closed shell molecules, as previously explained, as zero total spin). The weakening

of this restriction is the case introduced above where the singlet and triplet states are

mixed. In this case the triplet states have some singlet character, and the radiation

field can induce transitions with a rate proportional to the extent that the exciton

state has singlet character. The most important example of such mixing in organic

electronic materials is phosphorescence, the process by which excitons of primarily

triplet character spontaneously decay, though at a very slow rate as compared to

excitons having primarily singlet character.

A.7 Energy Shifts due to Intermolecular Interac-

tions

In this section the impact of intermolecular interactions on the energies of the molec-

ular states is analyzed. As discussed above, the energy shifts due to the radiation field

are negligible and so no further analysis is required. The contributions due to inter-

molecular interactions, however, can not be ignored, and in this section an expression

for calculating those energies is developed.
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The starting point is again the assumption that the intermolecular interactions are

weak, which in this context is interpreted as an assumption that the charge distribu-

tions of the individual molecules are roughly unchanged by intermolecular interaction.

This, unlike the more stringent assumptions of the wavefunctions being unchanged,

allows one to apply the weak interaction approximation to both the electronic and

nuclear wavefunctions, since even though the latter are certainly modified, these mod-

ifications are not expected to significantly change the molecular charge distributions

(since the mean positions of the nuclei are roughly unchanged). This allows for a

straightforward zeroth order treatment of the interaction energies, as well as simi-

larly straightforward first order extension to case of small perturbations of the charge

distribution on account of the intermolecular interactions.

This development begins with the same interaction potential used to derive the

Förster transfer rate. The difference here is that instead of investigating the extent to

which V int
ij mixes previously orthogonal isolated molecular electronic wavefunctions,

one directly computes the interaction energies associated with the isolated molecular

states. Specifically, for a set of M molecules, the total interaction energy is given by,

M∑
i

M∑
j>i

Eint
ij =

M∑
i

M∑
j>i

∫
ρi(~r)φj(~r)d~r (A.76)

where ρi(~r) and φj(~r) are the charge distribution of the i’th molecule and potential

function due to ρj(~r) respectively, and V int
ij have been replaced by Eint

ij to emphasize

that the sum is over the expectation value of the interaction energy. Since V int
ij is just

the operator describing the electrostatic interaction energy, this expression consists of

the electrostatic interaction energy of a collection of M charge distributions. At this

point the problem is an essentially classical one, except that the charge distributions

themselves are continuous functions in space instead of discrete particles.

This expression might seem entirely tractable already, in that one may, for a par-

ticular state of the system, compute the charge distribution associated with each

molecule, then compute the potential functions that result from those charge distri-

butions, and finally sum up the interaction energy integrals to get the desired result.
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However, exactly computing the spatial integral for a large collection of continuous

charge distributions is a nontrivial task (never mind that the calculation of the exact

ρi(~r) is itself challenging). Thus it is common to simplify the calculation by reducing

the charge distributions to point multipole expansions in the manner described in the

previous section. In this case, the electrostatic interaction energy between the i’th

and j’th molecules is given by,

Eint
ij =

QiQj

Rij

+
[Qi~pj −Qj~pi] · ~Rij

R2
ij

− µiµjκij

R3
ij

+ · · · (A.77)

where Qi and ~pi are respectively the charge and total dipole moment associated with

the charge distribution of the i’th molecule. If one assumes that the interactions

are dominated by just these terms (which is reasonable so long as the dipole term

is nonzero), then the calculation has been reduced to one of determining just the

charge and dipole moment of each molecule in the system, and then performing an

algebraic sum over a few terms to compute the interaction energy of each pair. This

is approach employed in this thesis for computing the interaction energies.

The choice of the values for Qi and ~pi, however, requires further comment. Clearly,

if the molecule is charged (as is the case for a polaron), then Qi is just the charge of

polaron, i.e. +e or −e where e is the electronic charge. For a neutral molecule, Qi = 0.

The computation of ~µi, however, is more complicated. Certainly, one could compute ~pi

based on a calculation of the isolated molecular wavefunctions. However, it is known

that the presence of an external field can induce a change in the charge distribution

of a molecule by slightly distorting the electronic and nuclear wavefunctions. While

the change to the wavefunctions is often very small (and was neglected above in

calculating the electronic transition rates), the effects of this change as regards the

interaction energies of the molecules with each other can be significant.

This distortion is often described in terms of the polarizibility, α(ω), of the

molecule which linearly relates the magnitude of the induced dipole moment to an

external field, ~Fcos(ωt), which is assumed to be uniform over the molecule. Though

the field is assumed to be time varying in general, ω can go to zero to obtain the
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static field case. This polarizibility is derived by performing a perturbation analysis

of a molecule using −µ̃ · ~Fcos(ωt) as the perturbation potential (where as previously

discussed, only the dipole operator acts for a uniform field). This kind of perturbation

modifies the charge distribution through the formation of an induced dipole, with a

magnitude that can be expressed in terms of a power series in interaction potential.

The polarizibility is the coefficient of the linear term, which is dominant if the in-

teraction is weak. The polarizibility is in general a tensor which operates on ~F to

yield the induced dipole moment, but it is common to assume that the polarizilibity

is isotropic, in which case it is a scalar, and the induced dipole moment is given by

α(ω)~Fcos(ωt).

Assuming it remains valid to treat the local fields on a molecule due to the sur-

rounding molecules as roughly uniform over the spatial extent of the molecule (which

is equivalent to assuming that the spatial derivative of the potential is smooth on the

size scale of the molecule), then one may include the polarizbility in the above anal-

ysis by computing the total dipole of each molecule as equal to the sum of the static

dipole (defined as the dipole moment of the molecule in isolation) plus the induced

dipole, i.e.,

~pi = ~µi + α(ω)~Fi (A.78)

where ~mui is the static dipole of the i’th molecule and ~Fi is the total field observed

by the i’th molecule, calculated from the potential as,

~Fi = ∇

[∑
j 6=i

φj(~r)

]∣∣∣∣∣
~r=~Ri

. (A.79)

In addition, it is necessary to take into account the change in the internal molecular

energy, Eself
i , as a result of its polarization (since work must be done to form the

dipole against the internal forces), which is given by[19]:

Eself
i =

1

2
α(ω)F 2

i . (A.80)
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This energy is obtained by simply observing that the energy of the molecule must

be minimized with respect to infinitesimal changes in the induced dipole moment

(since the induced dipole arises from the minimization of the molecular energy in the

presense of the field). Note that this energy is not additive in the manner of the

intermolecular interaction energies, since the energy is dependent on the square of

the total field expereinced by the molecule, which is due to a sum of contributions

from all the surrounding molecular charge distributions.

The inclusion of the polarizibility makes the problem of computing the interaction

energies considerably more difficult, as the fields on each molecule must now be com-

puted self-consistently to obtain the proper induced dipoles. Nevertheless, presuming

one can specify the charge, dipole moment, and polarizibility of each molecule, one

obtains an excellent approximation of the electrostatic interaction energy.14 Further-

more, this approach is straightforwardly extended to more accurate treatments the

charge distributions through the introduction of higher order multipole terms.

At this point it is worth pointing out that this development of the interaction

energies includes the static dipole – induced dipole interactions that are the domi-

nant force holding polaron molecular solids together. In the previous chapter, these

forces were described in a relatively qualitative manner. Here, their origin is now

perfectly clear, and the method by which they can be computed equally clear. One

intermolecular interaction missing from this treatment is the pure induced dipole –

induced dipole interaction, often alternatively referred to as the dispersion interac-

tion. In this thesis, the focus is on materials having non-zero dipole moments (as this

is overwhelmingly the case for small molecular weight organic electronic materials),

and in such materials, dispersion interactions are much weaker than static dipole –

induced dipole interactions, and can thus be neglected. For this reason, dispersion

interactions are not treated in any more detail here.

Finally it is wodth considering how these electrostatic interaction energies are

related to the rate processes developed in the previous sections. The first key point

14Formally, the calculation yields the exact result to first order in the potential perturbing the
charge distributions, subject to the implicit approximation of reducing the charge distribution to a
point charge and dipole.
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is that so long as one assumes that the nuclear wavefunctions are altered by their

environment in the same way for each molecule in the system, then one may identify

for each type of electronic transition a single PTS applicable to every molecule of a

given type (or pair of molecules of given types, for intermolecular transitions). This

holds because the PTS is only dependent on the phonon distributions, occupancies,

and overlaps, which are all assumed to be the same for each molecule. The second key

point is that the sole effect of the electrostatic interactions is then simply to shift the

value of ∆el
fi associated with each transition, depending on the interactions of each

molecule with its neighbors.

A.8 Transfer Rates and the PTS

Earlier, the rates of a number of different kinds of electronic transitions were found in

each case to be proportional to a PTS function, which contains all of the dependence

of the rate on the phonon wavefunctions. The PTS in each case consisted of a double

integral over the phonon wavefunction overlap for all the initially occupied modes and

all the available final modes, subject to an energy conservation restriction. Directly

calculating the PTS for a particular electronic transition is a non-trivial exercise in

quantum computational chemistry, requiring considerable resources even for a simple,

isolated molecule. The same computation for a transition spectrum for a molecule

(or pair of molecules) embedded in a solid is even more challenging. This is not the

focus of this thesis. However, it is extremely useful to obtain a deeper understanding

of the nature of the PTS functions, and that is the purpose of this section.

To set up the discussion, the rate expressions derived above are re-expressed in

the following form:

Γfi(∆E) = CΦfi(∆E) (A.81)

where C is a constant, and it is recalled that,
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Table A.1: Summary of transfer rate expressions in the form of Eqn. A.81. Note that
the column denoted “Eqn.” lists the number of the original equation from the text.

Rate Prefactor C ∆E Eqn.

Γabs
B
cn

(3γ2) I(ν)
h

∣∣∣〈µ̃el
〉

fi

∣∣∣2 −∆Eel
fi + hν A.73

Γstim
rad

B
cn

(3γ2) I(ν)
h

∣∣∣〈µ̃el
〉

fi

∣∣∣2 −∆Eel
fi − hν A.74

Γspon
rad

4πν3

3εc3~2

∣∣∣〈µ̃el
〉

fi

∣∣∣2 −∆Eel
fi − hν A.75

Γhop
2π
~ E

2
i

∣∣∣〈ψel,orb
2 |ψel,orb

1

〉∣∣∣2 −∆Eel
fi A.32

ΓDex
2π
~ E

2
i

∣∣∣〈ψel,orb,1
2 |ψel,orb,1

1

〉∣∣∣2 ∣∣∣〈ψel,orb,2
2 |ψel,orb,2

1

〉∣∣∣2 −∆Eel
fi A.38

ΓFor
2π
~

∣∣∣∣〈µ̃el
1 〉fi

〈µ̃el
2 〉fi

〈κel
12〉fi

R3
12

∣∣∣∣2 −∆Eel
fi A.58

Φfi(∆E) ≡
∫ ∞

−∞
dE

∫ ∞

−∞
dE ′ρN

i (E)f(E)ρN
f (E ′)

× |αfi(E
′, E)|2 δ (E ′ − E + ∆E) (A.82)

In Table A.1 are given the expressions for ∆E and the prefactor C associated with

each of the transition rates we have analyzed.

While the calculation of C is certainly important, from the discussion in the

previous section it should be clear that one can treat this part of the expression in

terms of a small number of constant parameters applicable to every molecule in the

system without any significant loss of accuracy (based principally on the assumption

that the electronic wavefunctions of each molecules are unaffected by intermolecular

interactions.) The PTS, however, defies such reduction, short of very crude treatments

like the MA approximation. At the same time, it was found that intermolecular

interactions do not change the PTS, and so each transition is characterized by a

single PTS applicable to every molecule (or pair of molecules) in a given system (so

long as the system is homogeneous.) As a result, this universal PTS is critical to
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understanding a given electronic transitions in the system. To develop an intuition

for the nature of the PTS, a simple example system is developed in this section for

which the exact PTS functions can be calculated for various transitions. Based on

this simple model system, the impact of the PTS on the various transitions rates

applicable to polaron and exciton processes is illustrated.

The starting point of the example is approximation that one can derive the prop-

erties of phonons based by placing the nuclei in parabolic potential wells. (This

is formally true in the limit, as any energy minimum can be approximated by a

parabolic potential over a sufficiently small range, but this model does not pretend

to be accurate in detail.) Since the state energies and wavefunctions associated with

parabolic potentials are well known (being the solutions of the harmonic oscillator),

this used here as the nuclear potential function. To include the separate contributions

of intramolecular and intermolecular phonons, the model consists of two uncoupled

oscillators, one for the nuclei, and one for the molecule as a whole. (The two vibra-

tions are not precisely uncoupled in practice, but this is reasonable for an approximate

model system.) Finally, since the application of this simple model is to the analysis

of transitions between electronic states, one must specify different nuclear potentials

for the two different electronic states. For simplicity, the potential wells associated

with the ground and excited states are taken to be the same, except offset in terms

of the nuclear coordinates to reflect the Franck-Condon shift. The problem is further

simplified by restricting it to one dimension. (Treating additional dimensions here

simply increases the degeneracy of each mode.)

Defining the lower energy electronic state as the ground (g) state and the higher

energy electronic states as the excited (e) state, we have the following potential func-

tions:
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Vg =
1

2
mω2x2 (A.83)

Ve =
1

2
mω2 (x− xFC)2 (A.84)

V (M)
g =

1

2
Mω2

Mx
2 (A.85)

V (M)
e =

1

2
Mω2

M (x− xFC)2 (A.86)

where Vg and Ve are the intramolecular vibrational potential functions for the ground

and excited states respectively, V
(M)
g and V

(M)
e are the corresponding respective inter-

molecular vibrational potential functions, m is the nuclear mass, M is the molecular

mass, and xFC is the position offset of the ground and excited state potential minima

giving rise for the Franck-Condon shift. To keep the analysis simple, a single par-

ticular is considered for each oscillator, one subject to the nuclear potential and one

subject to the molecular potential. The Hamiltonian govering this system in the i’th

electronic state is:

Hi = − ~2

2m

∂2

∂x2
m

+− ~2

2M

∂2

∂x2
M

+ Vi(xm) + V
(M)
i (xM) (A.87)

where xm and xM are the coordinates of the nucleus and the molecule respectively.

The total wavefunction here is given by,

|Ψi〉 = |ψi(xm)〉
∣∣∣ψ(M)

i (xM)
〉

(A.88)

where |ψi(xm)〉 solves the nuclear part of Hi and
∣∣∣ψ(M)

i (xM)
〉

solves the molecular

part of Hi. One may trivially solve for the energies and wavefunctions of this system,

to obtain for the nucleus:
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En =

(
n+

1

2

)
~ω (A.89)

ψn(x) =

(
mω

π~22n(n!)2

)1/4

exp

(
−mωx

2

2~

)
Hn

[(mω
~

)1/2

x

]
(A.90)

where the Hn are the Hermite polynomial functions.15 For the molecule, we obtain

the same set of solutions with m and ω replaced by M and ωM :

E(M)
n =

(
n+

1

2

)
~ωM (A.91)

ψ(M)
n (x) =

(
mω

π~22n(n!)2

)1/4

exp

(
−MωMx

2

2~

)
Hn

[(
Mω

~

)1/2

x

]
(A.92)

In the example presented here, we use the following parameters:

m = 12 ∗ 1.67x10−27kg (A.93)

mM = 120 ∗ 1.67x10−27kg (A.94)

ω = 4x10131/s (A.95)

ωM = 4x10121/s (A.96)

xFC = 0.3x10−10m (A.97)

∆Eel
fi = 2.0eV (A.98)

These mass and ω values are chosen such that the intramolecular vibrations are

based on one carbon atom having a typical spatial uncertainty of 0.02 nm for the

modes occupied at room temperature (here taken to be kBT = 0.026 eV, or T =

301 K), while the intermolecular vibrations are based on ten carbon atoms and a

corresponding spatial uncertainty of 0.2 nm. The nuclear potential and corresponding

15There are many derivations of the quantum mechanical harmonic oscillator. The treatment by
Shankar in Principles of Quantum Mechanics is favored by this author.
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wavefunctions of the first few levels are shown in Fig. A-4 (a) for the ground and

excited state levels. The energies of these states are represented in the figure by the

horizontal lines drawn through each wavefunction, measured relative to the minimum

of the potential well, reflecting a constant energy spacing of 0.026 eV. The molecular

vibrations have exactly the same wavefunctions, except that the energy spacing 0.0026

eV, as shown in A-4 (b).16

One can now apply this model to the calculation of Φfi(∆E). In constructing

the model, the specifical nature of the “excited” state of our system is not specified,

so in principle, it can refer to an exciton, positive polaron, or negative polaron.

Furthermore, though for convenience the lower energy state has been defined as the

“ground” state and the higher energy state the “excited” state, they can represent

any pair of states, and thus the Φfi(∆E) obtained in this model is generally applicable

to any type of electronic transition. In other words, since our model is so simple and

non-specific, even though it can not be expected to describe the detailed structure of

any particular Φfi(∆E), it nevertheless describes the general structure of all Φfi(∆E).

As previously explained, transitions of primary interest in this thesis come in

two different forms: (1) excitation formation (a.k.a. “excitation”) from the ground

state state having the therodynamic equilibrum phonon mode occupancy; and (2)

excitation destruction (a.k.a. “relaxation”) into the ground state from the excited

state having the therodynamic phonon mode occupancy. The key here is that the

phonon occupancy of the initially occupied state is assumed to be well approximated

by a Boltzman distribution. Finally, to make the example slightly more concrete,

∆Eel
fi is here chosen to be typical of a molecular exciton transition, but the choice

of this value has little impact on the results and does not limit their applicability to

other excitations.

The calculation of Φfi(∆E) proceeds by first computing the rate of transfer for

each value of ∆E. This is accomplished by defining a series of energy bins into which

the space of ∆E is divided. Then for each pair of phonon modes, the total change

16The specific magnitudes of these energy spacings are not important in detail. In practice, one
often observes slightly smaller intermolecular phonon spacing, and slightly larger intramolecular
phonon spacing. At the same time, the values obtained in this simple example are not unrealistic.
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Figure A-4: Illustration of the impact of phonons on the absorption and emission
spectrum of a molecule for a single electronic transition. Two uncoupled parabolic
potentials are used to represent the nuclear vibrational and molecular vibrational
spectra. The potential wells, the first few wavefunctions, and their associated energies
as a function of: (a) the nuclear position (for a molecular position of 0) and (b) the
molecular position (for a nuclear position of 0). (The energies of each phonon mode are
represented by the horizontal lines through each wavefunction, as measured relative
to the minimum of the potential well.) In this example, the excited state electronic
energy is 2.0 eV higher than the the ground state electronic energy. In (c) are shown
the PTS for excitation and relaxation, denoted by Φ↑(E) and Φ↓(E) respectively.
Recall that the argument E gives the change in phonon energy accompanying the
transition. In (d) are shown the separate contributions of nuclear vibrations and
molecular vibrations to Φ↑(E). The total Φ↑(E) is obtained by convolving the one
contribution with the other.
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the phonon energy is computed, which is given by, E ′ − E, where E is the energy of

the initial phonon mode and E ′ is the energy of the final phonon mode. The sum of

E ′ − E and ∆E must be zero to satisfy the delta function, so the ∆E bin is chosen

that properly cancels E ′−E. Then to this bin is added the product of the occupancy

of the initial state and the squared spatial overlap of the two phonon modes. This

comprises the contribution to the total rate of transfer for that photon energy, due

to transfer between that pair of phonon modes. Note that because the calculation

involves discrete phonon modes, the double integral over the continuous initial and

final phonon mode energies is recast as a double sum over discrete initial and final

phonon modes. The results of this calculation are shown in Fig. A-4 (c), where

Φ↑(E) and Φ↓(E) denote the excitation and relaxation PTS’s respectively. Note that

the two functions are evidently identical in this example; this is a result of the fact

that the potential functions governing the nuclear (i.e. intramoleculer) and molecular

(i.e. intermolecular) phonons are the same for the ground state as for the excited

state. While this is not generally the case, this assumption does not significantly

impact the calculation. Another interesting feature of these results is how the PTS’s

are not centered over an energy of zero, but rather are peaked at roughly 0.1 eV.

This is a manifestation of the Franck-Condon relaxation, and this offset of the peak

in the transition rate is a measurement of ∆EFC for the ground and excited states.

Because of the simplicity of this model, it is clear that these shifts do indeed arise

just from the fact that the minimum energies of the ground and excited state nuclear

wavefunctions are associated with difference nuclear positions.

Another important feature of this model is that by setting up the problem so

that the intramolecular and intermolecular phonons are uncoupled, the two can be

analyzed separately. The total transition spectrum is therefore computed by taking

the convolution of one with the other. The part of the excitation PTS due to only

intramolecular vibrations is shown in Fig. A-4 (d), along with the part due to only

intermolecular vibrations. This plot shows how the intermolecular vibrations turn

the relatively widely spaced, discrete lines associated with transitions between in-

tramolecular vibrations into a relatively smooth and continuous transition spectrum.
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This broadening of the individual lines associated with intramolecular phonons is

often described as thermal broadening. (This broadening is also often referred to

as homogeneous broadening, to the extent that it is indeed valid to assume that

the intermolecular interactions broaden each molecular spectrum in exactly the same

way.)

As these PTS’s are associated with electronic transitions of a single molecule, they

are straighforwardly converted into absorption and emission spectra. To describe the

absorption spectrum is it useful to obtain a function proportional to the the absorption

cross section, and by combining Eqns. A.62 and A.72, one obtains that,

σ(E) ∝ EΦfi(−∆Eel
fi + E) (A.99)

where the argument E refers to the radiation energy hν and we have dropped all

factors that are constant in E. This relationship can be made more precise by efining

a “normalized” absorption spectrum, Sabs(E), in analogy to the normalized emission

spectrum defined in Eqn. A.68, such that,

Sabs(E) =
σ(E)∫∞

−∞ σ(E)dE
(A.100)

which in turn yields,

Sabs(E) =
EΦfi(−∆Eel

fi + E)∫∞
−∞EΦfi(−∆Eel

fi + E)dE
. (A.101)

Plugging in Φfi(E) = Φ↑(E) and ∆Eel
fi = 2.0 eV then yields a calculation of the

normalized absorption spectrum, as shown in Fig. A-5. Similarly, one obtains the

normalized emission spectrum Srad(E) from the PTS by combining Eqns. A.75 and

A.68 to get,

Srad(E) = E3Φfi(−∆Eel
fi − E)

∫ ∞

−∞
E3Φfi(−∆Eel

fi − E)dE, (A.102)

where again the argument E refers to the radiation energy hν. Plugging in Φfi(E) =
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Figure A-5: Normalized absorption and emission spectra (in black lines) calculated
for our simple model system, along with the raw PTS (normalized to integrate over
energy to unity) for each process (in thik grey lines) illustrating the impact of the E
and E3 prefactors on the absorption and emission spectra respectively.

Φ↓(E) and ∆el
fi = -2.0 eV then allows one to calculate the normalized emission

spectrum, shown in Fig. A-5. Also shown in Fig. A-5 are the raw functions

Φ↑(−2.0 eV + E) and Φ↓(2.0 eV − E) to illustrate the impact of the prefactors of

E and E3 that scale the PTS in the normalized absorption and emission spectra,

respectively. It is clear that the PTS’s are actually very close to the real normalized

spectra; the reason for this is that the PTS’s are confined to a relatively narrow range

of energies relative to ∆Eel
fi, limiting the effect of these prefactors.

This simple model can also be applied to the transition rates of intermolecular

processes. The main differences from the case of emission and absorption is that

for intermolecular transitions ∆E = ∆Eel
fi, and one must account for changes in

the state of two molecules at once. The impact of this second condition is that

the rate is implicitly the product of two nuclear wavefunction overlap terms, one

for the transition on the first molecule and one for the transition occuring on the

second molecule. This fact is hidden in approach taken above to derive the rate
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expressions since the nuclear problem was treated through a nuclear wavefunction

containing the nuclear coordinates of both molecules. This made it simpler to write

down our rate expressions, but here it is beneficial to break up the nuclear overlap

contribution to the rate explicitly into the components due to each separate molecular

transition. Specifically, the total nuclear wavefunction is reexpressed as the product

of the nuclear wavefunctions of each molecule. (Technically, this product form of

the nuclear wavefunction is an approximation to the extent that the nuclear state

of one molecule impacts the nuclear state of another. However, these interactions

are mainly limited to the transfer of thermal energy from one molecules to another

until themodynamic equilibrium is achieved, and for an electronic transition, such

interactions can be neglected since they will only occur after the electronic transition.)

The modification is introduced by directly expressing the phonon distribution and

occupancy functions of each molecule, and then integrating over both contributions

separately, with an appropriate delta function to maintain energy conservation. In

this way, the following PTS for an intermolecular transition rate is obtained,

Φinter
fi (−∆Eel

fi) =

∫ ∞

−∞
dE1

∫ ∞

−∞
dE ′

1

∫ ∞

−∞
dE2

∫ ∞

−∞
dE ′

2

×|α1fi(E
′
1, E1)|2|α2fi(E

′
2, E2)|2

×ρN1
i (E1)f(E1)ρ

N2
i (E2)f(E1)ρ

N1
f (E ′

1)ρ
N2
f (E ′

2)

×δ(E ′
1 + E ′

2 − E1 − E2 + ∆Eel
fi) (A.103)

where αkfi(E
′, E) is the nuclear wavefunction overlap on the k’th molecule, for an

initial electronic state i having phonon energy E and a final state f having phonon

energy E ′, and ρNk
i (E1) is the phonon DOS function for the k’th molecule in the

i’th electronic state. The superscript “inter” here indicates that this PTS involves

the transfer of an excitation from one molecule to another as distinct fromn an PTS

involving a transition on a single molecule. It is evident from this expression that

Φinter
fi (E) can in general be expressed as an integral over two Φfi(E) functions, one

involving the transition on molecule 1 and one involving the transition on molecule

378



2. If molecule 1 is specifically identified as experiencing a relaxation transition, and

therefore refer to it as the donor (D), and molecule 2 as experiencing an excitation

transition, and therefore refer to is as the acceptor (A), one obtains,

Φinter
fi (−∆el

fi) =

∫ ∞

−∞

∫ ∞

−∞
dEdE ′Φ↓

D(E)Φ↑
A(E ′)δ(E ′ + E + ∆Eel

fi) (A.104)

=

∫ ∞

−∞
dE ′Φ↓

D(−∆Eel
fi − E ′)Φ↑

A(E ′). (A.105)

Thus it is found that one can express the intermolecular PTS as integral over the

product of the PTS’s of the individual molecular electronic transitions. The reason for

maintaining a distinction between the donor and acceptor here is simply to formally

account for the possibility that the two molecules involved in the transition need not

be of the same type, in which case they are govered by different PTS’s.

In applying the simple model developed in this section to this rate expression, it is

convenient to assume that the donor and accept are indeed of the same type, in which

case the D and A subscripts can be dropped. To obtain Φinter
fi (E) one then plugs into

Eqn. A.105 the excitation and relaxation PTS’s calculated above. To observe the

character of this integral more clearly, Φ↓(−∆Eel
fi − E) Φ↑(E) are plotted against E

in Fig. A-6 (a) for ∆Eel
fi = 0, illustrating that this is an overlap integral over the

individual PTS, with one PTS reflected about the E = 0 point. The ∆Eel
fi offset then

shifts Φ↓ up or down in energy, and as a result, the impact of ∆Eel
fi on the integral

is to change the degree of overlap by shifting the molecular PTS’s closer or father

apart. Specifically, for negative ∆Eel
fi, the overlap increases, until the overlap reaches

a maximum and begins to fall off again. For positive ∆Eel
fi, the overlap decreases as

the two profiles move farther apart.

In Fig. A-6 (b) and (c) are shown respectively linear-linear and log-linear plots

of Φinter
fi (−∆Eel

fi). It was previously argued that one can roughly approximate the

dependence of the intermolecular PTS on ∆Eel
fi by e−∆Eel

fi/kT for positive ∆Eel
fi, and

unity otherwise (referred to here as the MA approximation.) This approximation is

shown in Fig. A-6 (b) and (c), and it is clear that while it is hardly accurate in
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Figure A-6: Illustration of the impact of phonons on the transition rate for excitation
transfer from one molecule to another, as a function of the change in the electronic
energy of the system. In (a) are shown the Φ↓

1(E−∆Eel
1fi) and Φ↑

2(E) functions, which

are in this model identical. In (b) are shown Φ↓
1(−E ′) and Φ↑

2(E), which illustrates
the overlap of the two functions for ∆Eel

fi = 0. In (c) and (d) are shown plots of the

directly calculated Φinter
fi (−∆Eel

fi) and the MA approximation.
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detail, it does reproduce the general features of the transition rate. Nevertheless, the

errors in this approximation can be considerable. Depending on the value of ∆Eel
fi,

this approximation sometimes undestimates the rates, and sometimes overestimates

the rates; in this example (calculated for room temperature) over a range of ∆Eel
fi

of ± 0.5 eV, it is found that the approximate rates are between 10x and 0.1x the

real rate. Outside of this range, the approximation increasingly overestimates the

rates. However, the MA approximation is still widely used because it does not require

knowledge of any of the details of the individual molecular PTS functions.

Because of its wide use, it is useful to consider the situations in which the MA

approximation is mostly likely to be in error. First, major errors can arise when

∆Eel
fi is large and negative. For this kind of transition, a large amount of electronic

energy is being converted into phonon energy, and as a result the dominant transfer

is from the lowest energy initially occupied phonon modes (as these are the ones most

likely to be occupied) into any excited state modes having sufficient energy. For a

parabolic potential, the energy spacing of the modes is constant, so the phonon DOS

functions in this example are exactly constant, and there is always a sufficiently high

energy mode available. Thus the only limit to the rate is the wavefunction overlap.

(In real molecules, the phonon DOS is hardly constant, but this still serves as a good

approximation as compared to the energy dependence of the occupancy function

and the wavefunction overlaps.) As a result, the phonon occupancy function does not

strongly impact this rate, rather it’s main dependence is on the wavefunction overlap,

and it decreases because for ∆E larger than the Franck-Condon shift, this overlap

decreases. Since this approximation is based on an assumption that the overlap is

constant, it is not surprising that this effect is improperly modeled.17

Second, when the analysis depends on the precise behavior of the overlap function

17It is worth keeping in mind that in a given polaron or exciton transfer processes, there are
often many possible electronic states of the acceptor into which to transfer the excitation, and one
typically limits consideration to the lowest energy such state based only on its favorable energetics;
if ∆E is large and negative, however, transfer into higher energy acceptor electronic states becomes
more likely. In this case the total rate is summed over the different possible acceptor electronic
states, and this will tend to balance the error in the predicted MA rate. However, the extent to
which this balancing of the error applies to a given process must be considered on a case by case
basis.
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around ∆Eel
fi = 0, this approximation can prove unacceptable. While the absolute

magnitude of errors may not be unreasonably large for this range of DeltaEel
fi, the

approximation substantially misrepresents the form of the dependence of the rate on

∆Eel
fi over this range. If the experiment being performed is sensitive to this form (as

will be the case in one of the studies reported in this thesis), then better approxi-

mations may be required. For this reason, it is noted that whenever possible, one

should try to perform experimental measurements that access the relevant PTS’s.

For single electron hopping, useful measurements of the PTS are not generally avail-

able. However, because the optical absorption and emission spectra are in principle

straightforwardly related to the PTS’s associated with Förster and Dexter exciton

transfer, the PTS’s required for analyzing exciton intermolecular transitions can in

principle be directly obtained.

This relationship can be formalized by rewriting the Förster transfer rate from a

donor to an acceptor in terms of the normalized donor emission spectrum, Srad
D , and

the acceptor absorption cross section, σA, yielding:

ΓFor =
1

τD

R6
F

R6
(A.106)

where R is the intermolecular distance, τD is the radiative lifetime (i.e. τrad) of the

donor, and RF , known as the Förster radius, is given by,

R6
F =

9

8π

~4c4

n4
κ2

DA

∫ ∞

−∞

Srad
D (E)σA(E)

E4
dE (A.107)

=
9

8π

c4

n4
κ2

DA

∫ ∞

−∞

Srad
D (ω)σA(ω)

ω4
dω (A.108)

where c is the speed of light, n is the index of refraction of the medium, and ω is

an optical angular frequency satisfying E = ~ω. Because the Förster transfer rate

and the absorption and emission rates are both dependent on the same electronic

transition dipole moments, this expression is actually an exact relationship. For the
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Dexter transfer rate, one can similarly obtain,

ΓDex =
2π

~

∣∣∣〈ψel,orb,1
2 |ψel,orb,1

1

〉∣∣∣2 ∣∣∣〈ψel,orb,2
2 |ψel,orb,2

1

〉∣∣∣2
×
∫ ∞

0

Srad
D (E)Sabs

A (E)

E4
dE (A.109)

where Srad
D (E) and Sabs

A (E) are the normalized emission and absorption spectra, re-

spectively, introduced above. Note that in both these expressions, the explicit ∆Eel
fi

dependence has disappeared. The reason is that the absorption and emission spectra

are assumed to be obtained from the actual donor and acceptor molecules involved

in the transfer, and therefore their relative positions on the energy axis already take

∆Eel
fi into account.

Before leaving this model example, it is instructive to consider the effect of chang-

ing the temperature. In Fig. A-7 (a) are shown Φ↓(E) for T = 151 K, 75 K, and

4.7 K. Two important features are clearly evident as the temperature is reduced: (1)

the spectral peaks associated with the intramolecular phonon modes become increas-

ingly sharp; and, (2) the entire spectrum narrows slightly, though this narrowing has

little additional impact on the spectrum below 75 K. In Fig. A-7 (b) are shown the

directly calculated Φinter
fi (−∆Eel

fi) and the MA approximation for T = 301 K, 151

K, and 75 K. In Fig. A-7 (c) are shown the results for T = 4.7 K. (The results are

separated into two graphs to make the data easier to see.) These calculations show

that the MA approximation roughly reproduces the temperature dependence of the

rates on ∆E, and in this respect, the approximation is certainly of some interest.

However, it is also the case the errors (in terms of the factor relating the real rate

and the approximate rate) significantly increase with decreasing temperature. For

instance, at 4.7 K the approximate rates for large ∆E are roughly 1x10−6 the real

rates, and at the maximum overlap, the approximate rate is roughly 5x10−4 the real

rate. In contrast, it was observed above that the room temperature approximation

over the same range of ∆E yields rates which are between 10x and 0.1x the real

rates. In addition to providing a comparison between the MA approximation and the
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Figure A-7: Comparison of the MA approximation with directly calculated PTS
overlap function. In (a) are shown Φ↓(E) for T = 151 K, 75 K, and 4.7 K. In (b) are
shown the directly calculated Φinter

fi (−∆Eel
fi) and the MA approximation for T = 301

K, 151 K, and 75 K. In (c) is shown the same calculations for T = 4.7 K. In (d) is
shown the directly calculated value of Φinter

fi (0) for a range of temperatures. The MA
approximation does not provide a prediction of this value.

directly calculated Φinter
fi ()∆Eel

fi at different temperatures, this exercise is also useful

in providing a calculation of the values of Φinter
fi (0) at different temperatures. These

values are plotted in A-7 (d), along with values calculated at a number of additional

temperatures. The dependence of Φinter
fi (∆Eel

fi = 0), which can be thought of as the

transfer rate between two identical molecules. Though the results do not reflect a

simple functional form they clearly do not follow a simple exp[−c/kBT ] proportional-

ity where c is some constant, as might be expected based on the logic that motivates

the MA approximation.
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In this section, the PTS functions associated with a primitive model molecule have

been calculated and applied to the evaluation of different electronic transition rates.

While this example should not be viewed as an exact representation of the electronic

transition spectra of any particular molecule, it does serve to illustrate many of the

important features of the interaction between phonons and electronic transitions.

The intuition one gains from this example is particularly helpful in understanding

the effect of temperature on molecular transition spectra and transition rates. This

example also provides insight into the quality of the MA approximation, indicating

that though it can be expected to roughly reflect Φinter
fi (−∆Eel

fi), it is clear that where

ever possible it is far superior to employ the directly calculated overlap of the relevant

PTS spectra.

A.9 Phonon Transitions and Thermalization

Before leaving the physics of electronic transitions behind it is necessary to delve

somewhat more deeply into the matter of thermodynamic relaxation and phonons.

In particular, it has been found that the phonon occupancy function plays a critical

role in determining the transition rates, and it has been argued that practically one

need only be concerned with transition involving molecules having thermodynamic

equilibrium phonon occupancies. This claim is further explained and justified in this

section. In addition, two processes alluded to above will be explained in this section

by introducing electronic transitions that occur purely through the coupling of two

electronic states to the phonon modes: (1) that one can usually assume polarons and

excitons are present in their lowest energy electronic state, and (2) excitons can relax

without emitting optical radiation.

To begin this discussion, it is useful observe that it is fundamentally through the

radiation field interaction that the states of the molecular system achieve thermo-

dynamic equilibrium. To appreciate why this statement is self-evident, recall that

the very definition of temperature is through the radiation field produced by the sys-

tem, and so it clearly must be the case that thermodynamic equilibrium is achieved
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through interaction with the radiation field. Of course, there are other mechanisms

which can accelerate this equilibration, and indeed, these will often be more impor-

tant than the radiation field contribution, but fundamentally, it is still the radiation

field that controls the ultimate equilibration condition.

One can show that the expressions for the optical absorption and emission rates

developed above lead to the required Fermi-Dirac distribution of state occupancies

for the electronic states on a single molecule. (Indeed, it was to satisfy this condition

that Einstein first derived the spontaneous emission rate equation.) However, if one

tries to apply the same absorption and emission rates to pure phonon transitions

(i.e. transitions in which the electronic state remains unchanged) and plug in the

approximate form of the transition dipole given by Eqn. A.71, one finds that the

transition rate is always precisely zero. The problem here is that since the electronic

state is unchanged, the α terms are zero as the nuclear wavefunctions are exactly

orthogonal to each other. The solution to this apparent paradox is that in the event

the electronic state is unchanged, it is no longer valid to neglect the effect of the dif-

ferent phonon modes on the electronic wavefunctions. In other words, pure phonon

transitions represent an example of when the phonon-independent electronic wave-

function approximation breaks down. It is not necesary to develop an expression for

the corrected rates applicable to phonon transitions here, but one should observe that

these rates are not precisely zero, and thus this development remains consistent with

thermodynamics. These transition rates are, however, small18, and it has been argued

above that thermal equilibration occurs so rapidly that one can essentially assume it

is instantaneous on the time scale of the transition rates developed above. The reso-

lution of this problem is that for any condensed phase the coupling of phonon modes

between molecules allows all the molecules to rapidly achieve the same distribution

of phonon modes as each other through the transfer of high energy phonon modes

into many smaller energy phonon modes on the surrounding molecules. (The spring

analogy is again useful here, as the coupling to the surrounding molecules effectively

18This can be rationalized by noting that the independent electron waverfunction approximation
is generally quite good, so if a rate is due entirely to the extent to which it breaks down, then that
rate is most likely very small.
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damps away high energy intramolecular vibrations of any particular molecule.) In

other words, each individual molecule is connected to a large thermal bath, and so if

a single molecule is suddenly out of equilibrium with the other molecules, energy is

rapidly transferred between molecules to correct this imbalance, a process that does

not required any explicit coupling to the radiation field. In practice, it is found that

this thermal equilibration process occurs on a time scale of roughly 100 fs. This rate

is much faster than is typically encountered in exciton and polaron process in amor-

phous organic electronic materials, and thus it is indeed reasonable to assume that

each molecule’s phonon modes are in thermal equilibrium at all times.

At this point the picture of pure phonon transitions is reasonably complete, but

one more important process must be addressed: electronic transitions arising from

pure phonon interactions. This process is the origin of the relaxation of high en-

ergy excited states into their lowest energy excited state, and also the origin of non-

radiative relaxation of excitons. These kinds of electronic transitions seem to be in

direct violation of the analysis of transfer rates given above, since if one assumes that

one has the exact electronic wavefunctions of the system, then they are all exactly or-

thogonal, and in the absense of a perturbing interaction potential the transition rates

ought to be exactly zero. Though this statement seems correct, it is actually just

another example of how the phonon-independent electronic wavefunction assumption

occasionally breaks down.

The key is that the electronic wavefunctions of two different electronic states are no

longer exactly orthogonal if they are associated with different nuclear wavefunctions.

While it has been argued that one can usually neglect this dependence, in the event

that the difference in phonon energies is large, the overlap between the electronic

wavefunctions of two different electronic states can become substantial. Since the

maintenance of energy conservation in such transitions requires that the change in

electronic energy be entirely balanced by the change in phonon energy, then by this

argument, the larger the energy difference between the electronic states, the larger

the overlap of the electronic wavefunctions, and therefore the larger the transition

rate. This does not account for the whole picture however.
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Since the occupancy of phonon modes in equilibrium falls off following a Boltzman

distribution, it is exceedingly unlikely that a transition into a higher energy electronic

state would be supported by this process, since the extra energy would have to be

provided by an initially excited phonon mode. In contrast, a transition into a lower

energy electronic state faces no such thermodynamic barrier since there is presumably

always an available phonon mode in the final state of sufficiently high energy. There-

fore one may conclude that only transitions to significantly lower energy electronic

states are supported.

Furthermore, one must still take into account the phonon wavefunction overlap

when assessing the transition rate. In the example developed in the previous section

it was found that the nuclear wavefunction overlap between the lowest energy initial

state phonon mode and the different final state phonon modes is a maximum for a

particular excited state nuclear wavefunction, as determined by the Franck–Condon

shift. For both lower and higher energy final phonons the overlap decreases. Thus the

nuclear wavefunction overlap between the two electronic states will tend to decrease

the larger the difference in phonon energies for any phonon energies past the peak

value. This rate usually falls off precipitously if the change in phonon energy deviates

significantly from the energy yielding the peak overlap; in the simple example devel-

oped in the previous section, the rate had fallen off by a factor of more than 100 just

0.2 eV above or below the peak transition energy. Thus there is a balance between

the increase in electronic wavefunction overlap due to the increased nuclear disortions

of in very high energy phonon modes and the decrease in the overlap between the

the initial and final phonon modes for final mode with much higher energies. It is

not straightforward to intuitively rationalize the relative strength of these two ef-

fects, but it is evident from experiment that the phonon wavefunction overlap is the

dominant factor. Consequently, the rate of relaxations involving changes in phonon

energy much larger or smaller than the associated Franck–Condon shift fall over very

sharply. For the most part, the energy spacing between the different exciton and po-

laron states is no more than 0.3 eV, which is typical of Franck-Condon reorganization,

and one finds that relaxations involving this kind of electronic energy change occur
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in condensed phase systems on the 100 fs time scale, the same as for the equilibration

of the phonon occupancy described above. In contrast, the rate associated with the

transition of the lowest energy exciton into the ground state, which typically involves

a change in electronic energy of between 1.5 eV and 3.0, frequently takes many orders

of magnitude longer. This is the reason that one can usually assume that excitons

and polarons rapidly decay into their lowest energy exicted states (with the excess

energy transferred to phonon modes.) This entire process is conventionally referred

to as thermalization.

As a final note, it is important to keep in mind that even though the decay of the

lowest energy exciton into the ground state is a comparatively slow process it is still

important, since it is the source of non-radiative relaxation (and therefore usually

constitutes a source of loss in optoelectronic devices.) This process is indicated in

Fig. 1-4 (e), and is the main reason that organic materials do not have PL quantum

efficiencies of unity. Specifically, if the non-radiative decay process in a material are

much more rapid than the spontaneous emission process, then the material will have

a low intrinsic PL quantum efficiency, and vice versa.19

A.10 Conclusion

In this appendix the basic physics of molecules and their interactions with their

surroundings are developed. The focus of this development is to lay down the ground

work for treating the behavior of polarons and excitons in small molecular weight

amorphous organic solids. The important results are summarized below.

First, it was found that the specific electronic energy levels and phonon distri-

butions of a particular polaron or exciton are in general a complex function of the

molecular structure. However, one will in general observe a Franck-Condon shift for

all excitations, such that the energy associated with creating an exciton or polaron is

19The other process which sometimes contributes to a reduction in the intrinsic PL quantum
efficiency is spontaneous exciton disocciation. In most amorphous molecular organic solids, the
exciton binding energy is sufficiently large that one can reasonably neglect this process, though at
sufficiently high fields this neglect may no longer be valid.
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always larger than the energy associated with destroying it. It was also found that the

combination of intramolecular and intermolecular phonon modes collectively yield a

distribution of energy levels that can be treated as smooth and continuous, and that

many different phonon modes are usually occupied at any given time (as governed by

the phonon occupancy function). As a result, the molecular energy “level” associated

with a given state is found to more properly comprise an energy spectrum combining

both the electronic energy of the state and the associated distribution of occupied

phonon modes.

Second, a varity of electronic transitions involving intermolecular interactions were

analyzed. It was found that intermolecular interactions make it possible for an elec-

tron to hop from one molecule to another, with a transfer rate given by Eqn. A.32.

This process most prominently applies to polaron transfer, but also to any other

process involving the transfer of a single electron from one molecule to another (e.g.

spontaneous polaron formation, electrical exciton formation, polaron annihilation,

and exciton dissociation). It was also found that intermolecular interactions support

transitions involving the simultaneous transfer of two electrons, leading to a transfer

rate given by Eqn. A.38. This process most prominently applies to exciton trans-

fer, in which case it is known as Dexter transfer, but also applies to exciton-exciton

and exciton-polaron interactions (of which the annihilation processes are the most

important). Finally, it was found that intermolecular interactions can lead to simul-

taneous charge conserving electronic transitions on two molecules by a process known

as Förster transfer, with a rate given by Eqn. A.58. This is most prominently appli-

cable to exciton transfer, but as with Dexter transfer, also applies to exciton-exciton

and exciton-polaron interactions.

Third, a variety of transitions involving interactions with the radiation field were

analyzed. It was found that the rates of absorption and stimulated emission rate were

given by Eqns. A.73 and A.74, respectively, and that the former is related to fraction

of light absorbed by a thickness of material through the absorption cross section using

Eqn. A.65. It was also found that the rate of spontaneous emission is given by Eqn.

A.75, and that this is related to the radiative lifetime through Eqn. A.67, and to

390



the normalized emission spectrum through Eqn. A.68. While further consideration

is not given in this thesis to the stimulated emission rate, both the absorption and

spontaneous emission rates will prove quite important.

Fourth, it was found that phonons in molecular solids impact our analysis of po-

laron and exciton transitions in various ways. In particular, because thermodynamic

equilibrium is achieved very rapidly (on the order of 100 fs), one can assume the

phonon modes of the molecule have their thermal equilibrium occupancies except

instantaneously following an electronic excitation. Additionally, it was found that

electronic transitions can occur involving only an accompanying phonon transition,

which leads most notably to: (1) the rapid relaxation of excitations into their lowest

energy excited state; and (2) to non-emissive exciton relaxation. And finally, since it

was found that the transition rates are computed by taking integrals over the overlap

of the initial phonon modes with the final phonon modes, the concept of the phonon

transition spectrum (PTS) was introduced. The PTS was shown to play a central

role in all electronic transition processes.

Finally, it was found that one can compute the shift in total energy associated

with intermolecular interactions on the basis of a multipole expansion, which can

usually be truncated at the dipole term. It was also found that one can include a first

order treatment of the perturbations of the charge distrubtions by the intermolecular

interactions by introducing the molecular polarizibility. Lastly, it was found that

the electrostatic interaction energies shift only electronic energy of a given molecular

state, such that the PTS governing a given transition on an individual molecule is

the same for all molecules of given type in a uniform system. In the simplest case

of an amorphous material composed of single type of molecule, the only differences

between each molecules that impacts the transition rates are: (1) the variations in

the electronic energy due to electrostatic interactions (which shift the PTS spectra),

and (2) the variations in the intermolecular distances and orientations (which impact

mainly the intermolecular transition rates by altering either the orbital overlap, for

hopping processes, or the electrostatic coupling strength, for Förster transfer).
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Appendix B

DOS Calculation Details

B.1 Introduction

This appendix contains a detailed derivation of the theory of the DOS calculations

described in Chapter 4. The development presented here originates with the results

of appendix A, where it is shown that electrostatic interactions between the molecular

charge distributions lead to shifts in the electronic state energies, and in amorphous

materials (having positional and orientational disorder) one observes variations in

these shifts. The treatment begins with the basic expressions for calculating the

electronic transition energies for a system of discrete, polarizible molecular charge

distributions, and then describes a variety of approximate methods for performing

this calculation.

B.2 Calculating Electronic Transition Energies

From appendix A, one finds that the electrostatic interaction energy of two molec-

ular charge distributions can be calculated in terms of the charge, dipole moment,

and polarizibility of each molecule. One can extend this calculation to higher order

polarizibilities and multipole moments, as shown in appendix A, but in this develop-

ment only this simplest treatment is employed. To calculate the shift in electronic

transition energy arising from intermolecular interactions one calculates the difference
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in the electrostatic interaction energies before and after the electronic transition of

interest.

The terminology and notation of Chapter 4 are all employed here. A system of N

molecules each assigned a unique index i is assumed, as is the “low excitation limit.”

The molecule on which the electronic transition occurs is referred to as the active

molecule, while all of the other molecules are referred to as passive molecules. In

addition, for each state k of the system, each molecule is described by its charge,

Qi(k), dipole moment, ~µi(k), electronic polarizibility, αel
i (k), and total polarizibility,

αi(k). The molecular states are referred to here by the numbering scheme introduced

in appendix A (see Fig. A-2), i.e. they are referred to as: 1 (ground state in equilib-

rium), 2 (excited state immediately following excitation creation), 3 (excited state in

equilibrium), and 4 (ground state immediately following excitation destruction). A

corresponding set of additional notation is employed to refer to the total state of the

system where the i’th molecule is “active” and in the j’th molecular state: jSi (where

the “S” stands for “system”). And finally, for the k’th state, the total electrostatic

interaction energy is identified by Eint(k), the local field at the i’th molecule by ~Fi(k),

and the local potential at the i’th molecule by φi(k).

In general, the procedure for calculating the energy of a given system state involves

first self-consistently interacting each molecular charge distribution with every other

to obtain the total field present (and hence the induced dipole) at each molecule, and

then calculating the total electrostatic interaction energy based on the total charge

and dipole (static plus induced) of each molecule, as well as any changes in the

internal molecular energy as a result of polarization. The change in the electronic

transition energy is then just the difference in the total energy before and after the

transition. Since there are only charges and dipoles in this model, the starting point

of the calculation are the fields and potential functions of those charge distributions.

For a point charge Q, the field at a position, ~r, measured relative to the point charge

location, is given by,

~F (~r) =
Qr̂

r2
(B.1)
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where r̂ is the unit vector along ~r. The potential is given by,

φ(~r) =
Q

r
. (B.2)

The field produced by a point dipole ~p at a position, ~r, measured relative to the dipole

position is given by,

~F (~r) =
3(~p · r̂)r̂ − ~p

r3
(B.3)

where r̂ is the unit vector along ~r. The potential is given by,

φ(~r) =
~p · r̂
r2

. (B.4)

The interaction energy between a general system of charges and dipoles is then

obtained by means of two simple relations. First, the interaction energy of a point

charge, Q, and another charge distribution distribution is equal to Qφ where φ is

the potential due to that charge distribution at the site of the point charge. Second,

the interaction energy between a point dipole, ~p, and another charge distribution is

equal to −~p · ~F , where ~F is the field produced by the other charge distribution at the

site of the point dipole. With these relations, one then obtains the total electrostatic

interaction energy for a given state k from,

Eint(k) = −QA(k)
N∑

i6=A

~pi(k) · r̂iA

r2
iA

−
N∑
i

N∑
j>i

~pi(k) ·
3 (~pj(k) · r̂ij) r̂ij − ~pj(k)

r3
ij

+
1

2

N∑
i

αi(k)Fi(k)
2 (B.5)

where the sums are over the N molecules of the system, A denotes the index of the

active molecule, ~rij = ~ri − ~rj with ~ri being the position of the i’th molecules, k ∈

{1SA, 2SA, 3SA, 4SA}, ~pi(k) is the total dipole of the i’th molecule in the k’th state
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(i.e. the ground state dipole, except for the 0’th molecule, is either the ground state

dipole or the dipole immediately following excitation). In forming this expression, the

fact that only the active molecule can have non-zero Q has been taken into account.

Note that in this expression each interaction term is only counted once for each pair

of molecules.1 Also, the last term in the energy is just the internal molecular energy

associated with the polarization of each molecule. A further simplification is possible

through a rearrangement of the summations and terms to get,

Eint(k) = −1

2
QA(k)

N∑
i6=A

~pi(k) · r̂iA

r2
iA

−1

2

N∑
i

~pi(k) · ~Fi(k)

+
1

2

N∑
i

αi(k)Fi(k)
2 (B.6)

where in the second term the sum over the dipole fields of the surrounding charge

distributions has been replaced by the total field at the i’th element, which allows the

double counting of the dipole interactions, and therefore requires a leading factor of

one-half to compensate. This sum now includes the interaction energy between the

charge QA and the surrounding dipoles, and therefore the first term requires a leading

factor of one-half to compensate. The benefit of this rearrangement is that the last

term can be eliminated whenever the charge distribution is in equilibrium, since in

that case ~p = ~µ+ αFi(k), and the interaction energy becomes,

1To see why one should not double count the interactions, consider that the electrostatic inter-
action energy is effectively the energy of constructing the charge distribution from nothing. As a
result, there is no interaction energy to introduce the first charge distribution. The second charge
distribution interacts with just the first distribution. The third charge distribution interacts with
just the first and second distributions, and so on. Thus the interaction is only counted once for each
pair of charge distributions.
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Eint(k) = −1

2
QA(k)

N∑
i6=A

~pi(k) · r̂iA

r2
iA

−1

2

N∑
i

~µi(k) · ~Fi(k) (B.7)

by replacing αi(k)~Fi(k)
2 with αi(k)~Fi(k)· ~Fi = (~pi(k)− ~µi(k))· ~Fi(k). The equilibrium

condition does not always hold, in which case it is necessary to use the more complex

Eqn. B.5, but where ever the equilibrium condition is valid this simpler form can be

used.

The change in the electronic transition energy, ∆Eint, due to electrostatic in-

teractions, is given by the difference between the interaction energy in initial and

final states. In this thesis only two types of transition are considered: transitions

of the active molecule from molecular state 1 to 2, and the corresponding transition

from molecular state 3 to 4. These comprise the excitation creation and destruction

transitions, and the associated changes in electronic transition energy are given by,

∆Eint
↑,A = Eint(2SA)− Eint(1SA) (B.8)

∆Eint
↓,A = Eint(4SA)− Eint(3SA), (B.9)

where the index of the active molecule is given by A and we have introduced the

notation that Eint
↑,A represents the 1SA to 2SA transition (i.e. the excitation cre-

ation transition) and Eint
↓,A represents the 3SA to 4SA transition (i.e. the excitation

destruction transition).

To evaluate Eqn. B.5 it is necessary to compute the fields, ~Fi(k), and total dipole

moments, ~pi(k), on each molecule in the k’th state. From Eqns. B.1 and B.3,

~Fi(k) =
N∑

j 6=i

Qj(k)r̂ij

r2
ij

+
M∑
j 6=i

3(~pj(k) · r̂ij)r̂ij − ~pj(k)

r3
ij

, (B.10)
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where k ∈ {1SA, 2SA, 3SA, 4SA}. The relationship between the fields ~Fi(k) and

the total dipoles ~pi(k) is complicated by the presense polarizibility in addition to

the electronic component (i.e. polarization due to nuclear motion), because only the

electronic polarizibility responds immediately to an electronic transition. Consistent

with the definitions of the corresponding molecular states, states 1SA and 3SA are in

equilibrium with the total polarizibility, while the states 2SA and 4SA are immediately

following an electronic transition and therefore only in equilibrium with the electronic

polarizibility. Thus, for states 1SA and 3SA we have,

~pi(1SA) = ~µi(1SA) + αi(1SA)~Fi(1SA) (B.11)

~pi(3SA) = ~µi(3SA) + αi(3SA)~Fi(3SA) (B.12)

where ~µi(k) is the static dipole of the i’th molecule in the k’th state and αi(k) is the

corresponding total polarizibility. For states 2SA and 4SA we have,

~pi(2SA) = ~µi(2SA) + αel
i (2SA)~Fi(2SA)

+
(
αi(1SA)− αel

i (1SA)
)
~Fi(1SA) (B.13)

~pi(4SA) = ~µi(4SA) + αel
i (4SA)~Fi(4SA)

+
(
αi(3SA)− αel

i (3SA)
)
~Fi(3SA) (B.14)

where αel
i (k) is the electronic polarizibility of the i’th molecule in the k’th state. These

expressions are derived by simply observing that α − αel gives the polarizibility of

the slower, nuclear response, which leaves behind an induced dipole in equilibrium

with the field at the molecule in the initial system state. To solve for the fields and

dipoles in state 1SA, one then solves the system defined by Eqns. B.11 and B.10, and

similarly for state 3SA one solves Eqns. B.12 and B.10. To solve for the fields and

dipoles in state 2SA, one first solves for the fields in state 1SA and then solves Eqns.

B.13 and B.10, and similarly, for state 4SA one first solves for the fields in state 3SA
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and then solves B.14 and B.10.

To perform the above interaction energy calculations for the desired 1 to 2 and 3 to

4 transitions, it is necessary to specify the charge, dipole moment, and polarizibilities

of each molecule in states 1SA, 2SA, 3SA, and 4SA, for all the values of A for which the

change in transition energy is desired. For any given value of A, for every molecule

but the A’th, the charge distribution is in its ground state, so that the charge is

zero and the dipole moment and polarizibilities are given by their molecular state

1 values. For the A’th molecule, however, one must in theory specify the charge,

dipole moment, and polarizibilities in each of the molecular states 1, 2, 3, and 4.

The charge is straightforward: polaron transitions QA(k) is zero in states 1 and 4,

and ±e in states 2 and 3, while for exciton transitions it is always zero. (Here e is

the fundamental electron charge.) The dipole moments are obtained from quantum

chemical calculations of the electronic structure in each state, as illustrated in the

previous chapter for the AlQ3 exciton transition. For polaron transitions, however,

the dominant contribution to the change in the electrostatic interaction energy is due

to the change in charge, and so the change in dipole moment is usually neglected,

i.e. it is assumed that ~µ1 = ~µ2 = ~µ3 = ~µ4. For the polarizibilities, if they are

assumed to be roughly isotropic then the ground state values can be obtained from

the bulk ε and n, as described in the previous section. The polarizibilities of the other

states, however, are not accessible through this technique, and no reports exist in the

literature of quantum chemical calculations of the polarizibilities of organic electronic

molecules in these other states. For this reason, it is common to either drop the

polarizibility of the A’th molecule entirely, or leave it at its ground state value, when

performing interaction energy calculations. In these calculations we assume that the

polarizibilities are identical in each state.

As discussed in Chapter 3, it is common to neglect nuclear polarization, in which

case α ≈ αel, and the equations for ~pi(k) become:

~pi(k) = ~µi(k) + αel
i (k)~Fi(k), k ∈ {1SA, 2SA, 3SA, 4SA}. (B.15)
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This approximation greatly simplifies the interaction energy calculations and the asso-

ciated errors are usually quite small, but as will be discussed below, in some materials

the errors can be substantial. As a result, this approximation should be applied only

after verifying that the expected errors will not be unacceptably large.

B.3 Dielectric Continuum Models

Directly utilizing the formalism of the previous section is computationally expensive

even for relatively small numbers of molecules because of the need for self-consistently

computing the dipoles and fields on every molecule, and various simplifying approxi-

mations are possible in which the polarizibilities of the molecular charge distributions

are treated in an approximate, and less computationally intensive, fashion. In gen-

eral, such approximations are concerned with the problem of calculating the local

field (on a molecular, or even atomic, size scale) in a polarizible medium. This is a

problem with a long history2, going back to the original construction of Maxwell’s

Equations and the constitutive relation connecting the electric field with the dielec-

tric displacement. In the approach of Kelvin[71] and Maxwell[93], matter in general

comprises a continuous dielectric (i.e. polarizible) medium characterized by ε, and

one obtains the local field by constructing within this dielectric medium a micro-

scopic cavity appropriate to the problem of interest. The fields within the cavity are

then obtained by solving Maxwell’s Equations for the cavity geometry. In contrast,

Lorentz[84, 85] (and later Rosenfeld[137], Mazur[95, 94], and de Groot[35, 34]) ap-

proached the problem by directly constructing the medium out of collections of point

charges in vacuum. In this thesis, the problem of calculating the local fields act-

ing on each molecule (and thereby computing the electrostatic interaction energies)

is approached in the Lorentz picture, in that the fields are all formed through the

interaction of a collection of discrete molecular charge distributions.

The primary challenges in using Maxwell’s approach are in properly construct-

ing the cavity for the problem of interest, and in connecting ε to the microscopic

2This short historical review is adapted from Bottcher’s Theory of Electric Polarization[19].
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properties of the material (i.e. the properties of the constituent molecules, for a

molecular material). The primary challenge in using Lorentz’s approach is to analyze

a sufficiently large system that one obtains useful results on the macroscale. Over

the last century many different approaches to the anlysis of the local field have been

developed, and Maxwell’s approach of treating matter as a dielectric continuum is

at the center of the vast majority of these methods, because of the natural manner

in which a dielectric continuum can account for the polarization of large numbers

of molecules at reasonable computational cost. Such approximations are referred to

here collectively as dielectric continuum models (DCMs).

B.4 Uniform Dielectric Continuum Model

In the simplest DCM, one sets all of the molecular polarizibilities to zero and copmutes

the interaction energies as if the charge distributions are immersed in a uniform

continuous dielectric described by a dielectric constant ε. This is referred to here

as the uniform dielectric continuum model (U-DCM). The principle features of the

U-DCM is that the charge distributions all comprise only their static component and

the all of the interacting fields are scaled by a factor of 1/ε.

The electrostatic interaction energy of state k within the U-DCM is given by,

Eint(k) = −QA(k)

ε

N∑
i6=A

~µi(k) · r̂iA

r2
iA

−1

ε

N∑
i

N∑
j>i

~µi(k) ·
3 (~µj(k) · r̂ij) r̂ij − ~µj(k)

r3
ij

(B.16)

for k ∈ {1SA, 2SA, 3SA, 4SA}. Since all of the charge distributions are static, the

self-consistent calculation of the fields is not necessary, and the internal molecular

energy terms also disappear.

In this approach, the calculation is further simplified by evaluating specifically

the change in energy associated with an electronic transition: since only transitions
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involving the active molecule are considered, none of the interactions between passive

molecules change and thus it is not necessary to calculate those contributions to the

total energy in the first place. Formally, if the charge of the A’th molecule changes

by ∆Q and the dipole moment changes by ∆ ~mu, the change in the electrostatic

interaction energy is given by,

∆Eint
A (∆Q,∆ ~mu) = −∆Q

ε

N∑
i6=A

~µi(1) · r̂iA

r2
iA

−1

ε

N∑
i6=A

∆~µ · 3 (~µi(1) · r̂Ai) r̂Ai − ~µi(1)

r3
Ai

. (B.17)

where in deriving this expressions the fact that for all of the transitions of interest

the passive molecules are in their ground molecular state was employed.

One subtlety in the U-DCM is that it appears to hold only when ε = n2, as

only in this case can one assume that the dielectric medium is always in equilibrium

with the charge distribution of the active molecule, and therefore expect that the

proper screening of the interaction is given by the 1/ε factor. If, on the other hand,

significant nuclear polarization occurs, then it would seem that this theory is no longer

appropriate, as the interaction energies immediately following electronic transitions

will be calculated improperly. This author is not aware of any report that addresses

this difficulty, perhaps because most treatments of amorphous organic solids assume

ε = n2 from the start, but one can show that this theory can also be applied self-

consistently to the case where ε > n2 as well; the trick is to simply set ε = n2,

regardless of whether or not significant nuclear polarizibility is present.

To derive this result, observe that the impact of the dielectric on the interaction

energy between two charge distributions can be separated into two components, the

part due to the direct interaction between the two charge distributions, and the part

due to the polarization of the medium. In this approach, if we specify the direct

interaction energy as Eint
ε=1, which is calculated as if no dielectric was present, then

the polarization of the medium must account for an additional interaction energy Eint
corr
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such that in equilibrium Eint
ε=1/ε = Eint

ε=1 +Eint
corr, and therefore Eint

corr = −(1−1/ε)Eint
ε=1.

Recalling that immediately following an electronic transition, only the electronic part

of the polarization has responded, one can derive the total interaction energy in the

non-equilibrium states immediately following electronic transitions. For states 1SA

and 3SA,

Eint
corr(1SA) = −D(ε)Eint

ε=1(1SA) (B.18)

Eint
corr(3SA) = −D(ε)Eint

ε=1(3SA) (B.19)

where,

D(x) =
x− 1

x
(B.20)

while for states 2SA and 4SA,

Eint
corr(2SA) = −D(n2)Eint

ε=1(2SA)−
[
D(ε)−D(n2)

]
Eint

ε=1(1SA) (B.21)

Eint
corr(4SA) = −D(n2)Eint

ε=1(4SA)−
[
D(ε)−D(n2)

]
Eint

ε=1(3SA). (B.22)

The logic of this expressions is that the component of the interaction energy due

to solely the electronic polarization is given by D(n2)E0 for an equilibrium state, so

one can compute the retained polarization energy immediately following an electronic

transition by taking the direct interaction energy of the prior state and multiplying it

by (D(ε)−D(n2)). Based on these expressions, one can calculate the direct interaction

energies from Eqn. B.16 by setting ε = 1, and then calculate the total interaction

energies from:
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Eint(1SA) = [1−D(ε)]Eint
ε=1(1SA) (B.23)

Eint(2SA) =
[
1−D(n2)

]
Eint

ε=1(2SA)−
[
D(ε)−D(n2)

]
Eint

ε=1(1SA) (B.24)

Eint(3SA) = [1−D(ε)]Eint
ε=0(3SA) (B.25)

Eint(4SA) =
[
1−D(n2)

]
Eint

ε=1(4SA)−
[
D(ε)−D(n2)

]
Eint

ε=1(3SA). (B.26)

To complete this analysis, the impact of these interaction energies on the 1SA-2SA

transition energy is calculated:

∆Eint
↑,A = Eint(2SA)− Eint(1SA) (B.27)

=
[
1−D(n2)

]
Eint

ε=1(2SA)−
[
D(ε)−D(n2)

]
Eint

ε=1(1SA) (B.28)

− [1−D(ε)]Eint
ε=1(1SA) (B.29)

=
[
1−D(n2)

]
Eint

ε=1(2SA)−
[
1−D(n2)

]
Eint

ε=1(1SA) (B.30)

=
1

n2

[
Eint

ε=1(2SA)− Eint
ε=1(1SA)

]
(B.31)

and similarly for the 3SA-4SA transition:

∆Eint
↓,A = Eint(4SA)− Eint(3SA) (B.32)

=
1

n2

[
Eint

ε=1(4SA)− Eint
ε=1(3SA)

]
. (B.33)

Thus, while the actual interaction energies associated with the different molecular

states for ε > n2 deviate from the values predicted by Eqn. B.16 (and the proper

values actually given by Eqns. B.23 - B.26), one still obtains the proper change in

electrostatic energy for an electronic transition by simply setting ε = n2 in all cases.

The U-DCM is powerful because of its simplicity, but it suffers from a number

of major shortcomings. First, it does not account for the energy associated with the

polarization of the medium by the molecular charge distributions. Second, it does not
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properly account for the field enhancements arising from the fact that each charge

distribution is really located in vacuum and surrounding by a polarizible medium.

Third, it does not account for the discrete nature of the molecular polarizibilities. The

first two of these shortcomings are at at least partly addressed the more sophisticated

DCMs described in the next section. The third shortcoming is a general problem

of dielectric continuum models that can only be addressed by dropping the DCM

approach all together.

B.5 Molecular Cavity Dielectric Continuum Model

The principle extension of the DCM beyond the simple U-DCM is to place the active

molecule within a cavity. As a class, such DCMs are known as molecular cavity di-

electric continuum models (MC-DCMs), and their origin is in the calculation of the

energy associated with the polarization of a medium by a molecular charge distribu-

tion, an energy that is entirely ignored under the U-DCM. To understand what is

meant by this energy, consider a single point charge immersed in a dielectric solid

characterized by ε and having no static dipoles. According to Eqn. B.16, there is no

electrostatic interaction energy resulting from the immersion of the charge into the

dielectric medium. However, it is well known that such a charge will induce a local

polarization of the surrounding medium and thereby lower the system energy. One

can see this by imagining that the dielectric is composed of tiny polarizible points in

space. Those little points will aquire dipole moments aligned along the field produced

by the charge, and will contribute an interaction energy equal to that induced dipole

moment times the negative value of the electric field. The sum over these negative

numbers thus leads to a negative total interaction energy. This process, by which the

a surrounding dielectric medium responds to a charge distribution to lower the energy

of the charge distribution, is conventionally known as solvation, though in this thesis

the more general term polarization will be usually be employed.

This polarization (or “solvation”) energy can be calculated approximately by plac-

ing the molecular charge distribution within an otherwise empty cavity surrounded by
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a homogeneous, continuus dielectric. The premise of this approach is that to deter-

mine the local fields acting on a particular microscopic charge distribution within the

medium, it is necessary to place that charge distribution within a cavity since it’s pre-

sense by definition excludes the presense of the matter comprising the dielectric. The

development of such MC-DCMs was pioneered in the 1920s and 1930s by Born[17],

Martin[90], Bell[15], Onsager[112], and Böttcher[18], and more recently advanced to

a remarkable degree (see eg. [154] for an excellent review).

The general approach to calculating the polarization energy consists of first solv-

ing for the potential inside and outside the cavity. The total interaction energy is then

comprised of the energy to place the molecular charge distribution within the poten-

tial due to the dielectric response plus the energy to polarize the dielectric medium

surrounding the cavity. It is conventional to refer to the potential due to the dielectric

response as the reaction potential, denoted by φR(~r), and the corresponding field as

the reaction field. Expressing the molecular charge distribution by σM(~r), then the

energy to place σM(~r) in φR(~r) is given by
∫
σM(~r)φ(~r)dr3. Though one could also

calculate the dielectric polarization energy, it is not necessary to do so, because the

total interaction energy is always equal to half the molecular energy[19]. (The origin

of this factor of one half is that the energy to polarize the surrounding medium is

always equal to minus one half of the reduction in energy of the charge distribution in

the reaction field, for precisely the same reason that the internal energy to polarize a

molecule in a field is equal to minus one half the reduction in energy of the molecular

charge distribution resulting from its polarization in that field.) Since the charge dis-

tribution is entirely contained within the cavity, it is thus only necessary to calulate

the reaction potential inside the cavity. It should also be noted that if the molecular

charge distribution is polarizable, one must also include in the calculation the change

in the internal energy of the molecular charge distribution.

Here the results for the simplest MC-DCM are reviewed, in which the molecular

charge distribution is expressed in terms of just the point charge, point dipole, and

polarizibilities, and the molecular cavity consists of a sphere of radius a. This model

is here referred to as the spherical cavity dielectric continuum model (SC-DCM). In
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this case the expressions for the reaction potentials, fields, and polarization energies

are all analytic and straightforward. The reaction potential, φR, and field, ~FR, at the

center of a spherical cavity in equilibrium with a point charge Q are given by[17],

φR = −sign(Q)ΠQ (B.34)

~FR = 0 (B.35)

where,

Π =
1

a

ε− 1

ε
. (B.36)

while the reaction potential and field at the center of a spherical cavity in equilibrium

with a dipole is given by[15, 112],

φR = 0 (B.37)

~FR = Λ~p (B.38)

where,

Λ =
1

a3

2(ε− 1)

2ε+ 1
. (B.39)

and ~p is the total dipole moment of the molecule. For a general polarizible dipole in

equilibrium with the reaction field, ~p = ~µ+ α~FR, in which case, we have that[18],

φR = 0 (B.40)

~FR =
Λ

1− αΛ
~µ (B.41)
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which also indicates that the total dipole ~p is given by,

~p =
1

1− αΛ
~µ. (B.42)

The total polarization energy for the combined charge and dipole (including the

correction for the change in internal energy) is then given by,

Epol = Q
1

2
ΦR −

1

2
~FR · ~p+ Eself . (B.43)

where the superscipt “pol” stands for “polarization” to denote that this energy here

includes just the polarization of the medium (and does not include, for instance, the

interaction with any static dipoles located outside the molecular cavity). In the event

both the reaction field and charge distribution are in equilibrium with each other,

Eself =
1

2
αF 2

R (B.44)

=
1

2
F 2

R · (~p− ~µ) (B.45)

where in obtaining this expression, the fact that the induced dipole moment, ~p − ~µ,

is equal to α~FR has been utilized. Plugging this into Eqn. B.43, along with the

corresponding expressions for ~FR and ΦR gives,

Epol = −ε− 1

2ε

Q2

a
− 1

2

Λ

(1− αΛ)
µ2. (B.46)

Typical equilibrium polarization energies for an organic solid can be estimated by

setting ε ≈ 3 and a ≈ 0.5 nm. For a unit charge, Epol = -0.963 eV; for an unpolarizible

dipole with magnitude equal to 5 D, Epol = -0.0357 eV; and for a polarizible dipole
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with static magntitude equal to 5 D and α = 6x10−23 cm3, Eint = -0.0678 eV.3 From

these values it is clear that the interaction energy for the point charge is much greater

than the interaction energy for the dipole, and that the additional component of the

dipole interaction energy due to the molecular polarization is roughly equal to the

component due to the static dipole.

The SC-DCM is applied below to the calculation of the change in energy for

the 1SA-2SA and 3SA-4SA electronic transitions in the general case where α > αel

and ε > n2. The resultant expressions represent a generalization of the Ooshika-

Lippert-Mataga (OLM) model of solvatochromic shifts, which treats the polarization-

induced energy shifts in absorption (i.e. exciton creation) and emission (i.e. exciton

destruction) for organic solutes in liquids, under to the SC-DCM[113, 82, 92]. The

development below generalizes these expressions to the case of charged excited states

(for application to polarons) and also to the case where α > αel, a condition not to

this author’s knowledge previously addressed in the literature.

For the 1SA and 3SA states, the active molecular charge distribution and the

medium are in equilibrium, and the energy if obtained from Eqn. B.46. For states

2SA and 4SA, however, only the electronic polarization of the active molecule and

the surrounding medium are in equilibrium with the new molecular charge distribu-

tion, while the nuclear polarization remains in equilibrium with the previous states

molecular charge distribution. The internal energy in this case becomes,

Eself
A (2SA) =

1

2

(
αel

A(2)FR(2SA)2 + (αA(1)− αel
A(1))FR(1SA)2

)
(B.47)

Eself
A (4SA) =

1

2

(
αel

A(4)FR(4SA)2 + (αA(3)− αel
A(3))FR(3SA)2

)
(B.48)

where in these expressions no “A” subscript is needed for the reaction fields since the

only cavity in the system is around the active molecule, and so the reaction field is

implicitly the field at the active molecule. Adapting Eqns. B.13 and B.14 to this

3The common unit of dipole moments is the Debye, denoted D, which is equal to 10−18 esu · cm
or 3.336x10−30 C ·m.
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problem yields for the total dipole moments,

~p(2SA) = ~µA(2) + αel
A(2)~FR(2SA) +

(
αA(1)− αel

A(1)
)
~FR(1SA) (B.49)

~p(4SA) = ~µA(4) + αel
A(4)~FR(4SA) +

(
αA(3)− αel

A(3)
)
~FR(3SA). (B.50)

Based on Eqn. B.38, it is clear that one may write the reaction field due to a dipole

moment ~p resulting from just the electronic polarization of the dielectric medium is

given by,

~F el
R = Λel~p (B.51)

where,

Λel =
1

a3

2(n2 − 1)

2n2 + 1
, (B.52)

where n2 has been introduced explicitly to refer to the electronic component of the

dielectric response. Using Eqn. B.51, one then obtains expressions for ~FR(2SA) and

~FR(4SA):

~FR(2SA) = Λel~p(2SA) +
(
Λ− Λel

)
~p(1SA) (B.53)

~FR(4SA) = Λel~p(4SA) +
(
Λ− Λel

)
~p(3SA). (B.54)

(Note that there is no contribution to the field due to the charge of the active molecule

because, as noted above, the reaction field due a charge is zero at the center of the

spherical cavity.) The solution of these equations for the explicit total dipoles and

corresponding reaction fields is tedious but straighforward, yielding,
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~p(2SA) =
1

1− αel
A(2)Λel

[~µ(2) + ζ21,A~µ(1)] (B.55)

~p(4SA) =
1

1− αel
A(4)Λel

[~µ(4) + ζ43,A~µ(3)] (B.56)

where,

ζ21,A ≡ αel
A(2)

Λ− Λel

1− αA(1)Λ
+ (α− A(1)− αel

A(1))
Λ

1− α− A(1)Λ
(B.57)

ζ43,A ≡ αel
A(4)

Λ− Λel

1− αA(3)Λ
+ (α− A(3)− αel

A(3))
Λ

1− αA(3)Λ
(B.58)

and,

~FR(2SA) =
Λel

1− αel
A(2)Λel

[~µA(2) + ζ21~µA(1)] +
Λ− Λel

1− αA(1)Λ
~µ(1) (B.59)

~FR(4SA) =
Λel

1− αel
A(4)Λel

[~µA(4) + ζ43~µA(3)] +
Λ− Λel

1− αA(3)Λ
~µ(3). (B.60)

These expressions are exact solutions under the spherical cavity dielectric contin-

uum approximation, but require the polarizibility of the active molecule in all four

molecular states, values that are usually not available. If one instead assumes that αA

and αel
A are independent of the electronic state the electronic and total polarizibility

of the solute is the same in each of the four states, then the resulting expressions

become,

~p(2SA) =
1

1− αel
AΛel

[~µ(2) + ζ∗A~µA(1)] (B.61)

~p(4SA) =
1

1− αel
AΛel

[~µ(4) + ζ∗A~µA(3)] (B.62)

where,
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~FR(2SA) =
Λel

1− αel
AΛel

[~µA(2) + ζ∗A~µA(1)] +
Λ− Λel

1− αel
AΛ

~µA(1) (B.63)

~FR(4SA) =
Λel

1− αel
AΛel

[~µA(4) + ζ∗A~µA(3)] +
Λ− Λel

1− αel
AΛ

~µA(3) (B.64)

and,

ζ∗A = αel
A

Λ− Λel

1− αel
AΛ

. (B.65)

The solvation energies associated with each state are then obtained by plugging in

the appropriate internal energy, field and dipole expressions into Eqn. B.43. The

resultant expressions are rather cumbersome, and it is common to apply a variety

of further simplifying approximations. First one can frequently neglect the nuclear

polarizibility of the active molecule, so that α = αel, in which case,

Eself
A (2SA) =

1

2
αel

A(2)FR(2SA)2 (B.66)

Eself
A (4SA) =

1

2
αel

A(4)FR(4SA)2 (B.67)

and then,

Epol(2SA) = Q
1

2
ΦR(2SA)− 1

2
~FR(2SA) · ~µ (B.68)

Epol(4SA) = Q
1

2
ΦR(2SA)− 1

2
~FR(2SA) · ~µ. (B.69)

It is also usually possible to neglect the effects of Franck-Condon reorganization on

the active molecule’s dipole moments, so that ~µA(1) = ~µA(4) ≡ ~µA(g) and ~µA(2) =

~µA(3) ≡ ~µA(e). Employing these simplifications, the explicit expressions for the

energies become quite manageable:
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Epol(1SA) = −1

2

Λ

(1− αAΛ)
µA(g)2 (B.70)

Epol(2SA) = −1

2
ΠelQA(e)2

−1

2

[
Λel

1− αel
AΛel

[~µA(e) + ζ∗A~µA(g)]

+
Λ− Λel

1− αel
AΛ

~µA(g)

]
· µA(e) (B.71)

Epol(3SA) = −1

2
ΠQA(e)2 − 1

2

Λ

(1− αAΛ)
µA(e)2 (B.72)

Epol(4SA) = −1

2

[
Λel

1− αel
AΛel

[~µA(g) + ζ∗A~µA(e)]

+
Λ− Λel

1− αel
AΛ

~µA(e)

]
· µA(g) (B.73)

where,

Πel ≡ 1

a

n2 − 1

n2
. (B.74)

These expressions are treated at the same level of theory as the original OLM expres-

sions, except for the presense of the QA terms in the 2SA and 3SA states.

In the event that α can be neglected entirely, one then obtains,

Epol(1SA) = −Λ

2
µ(g)2

A (B.75)

Epol(2SA) = −ΠelQA(e)2

2
− Λ

2
~µA(g) · ~µA(e)

−Λel

2
(~µ(e)− ~µ(g)) · ~µ(e) (B.76)

Epol(3SA) = −Π
QA(e)2

2
− Λ

2
µ(e)2

A (B.77)

Epol(4SA) = −Λ

2
~µA(e) · ~µA(g)

−Λel

2
(~µ(g)− ~µ(e)) · ~µ(g) (B.78)
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In this case the changes in the energy of the 1SA-2SA and 3SA-4SA transitions are

given by,

∆Epol
↑,A = −ΠelQA(e)2

2
− Λ

2

(
~µA(g) · ~µA(e)− µ(g)2

A

)
−Λel

2
(~µA(e)− ~µA(g)) · ~µA(e) (B.79)

∆Epol
↓,A = Π

QA(e)2

2
− Λ

2

(
~µA(e) · ~µA(g)− µ(e)2

A

)
−Λel

2
(~µA(g)− ~µA(e)) · ~µA(g). (B.80)

These even simpler expressions reflect the most basic form of the original OLM expres-

sions, again except for the presense of the QA terms, and because of their simplicity

are the ones actually used in practice to compare against experimental measurements

of solvatochromic shifts[113, 82, 92].

The final simplification considered here is the case that α = αel and ε = n2, i.e.

that the nuclear polarizibility of the entire system is negligible, which it has been

previously argued is often a reasonable approximation in molecular organic solids.

In this case each state is in equilibirium with its surroundings and the resulting

polarization energies are given by:

Epol(kSA) = −ΠelQA(k)2

2
− Λ(

1− αel
AΛ
) µ(k)2

A

2
(B.81)

where k ∈ {1, 2, 3, 4}.

The SC-DCM has been widely applied to the analysis of polarization energies of

molecules in solutions, and has provided considerable insight into the proportionality

of those energies with the parameters of the molecular charge distribution and the

surrounding medium. However, the SC-DCM is at most a semi-quantiative model

because of the crudeness of the choice of molecular cavity. Indeed, the proper choice

for a is not at all obvious and all of the interaction energies are highly dependent

on this choice. For this reason, more sophisticated methods are required to obtain

quantitative values for the polarization energies.
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The development of such methods for liquid systems has been the subject of

intensive research during the last fifty years. In the literature on polarization phe-

nomena in liquids, particular terminology is employed: the charge distribution inside

the cavity is associated with a “solute” molecule, the surrounding medium comprises

a “solvent,” and the interaction energy is known as the solvation energy. The most

common method for performing accurate calculations of this solvation energy uti-

lizes a much more realistic cavity that is calculated based on the relative sizes and

shapes of the solute and solvent molecules. For example, it is common to define the

solute cavity surface as the “solvent accessible surface” computed by many ab initio

quantum chemistry packages. For such arbitrary surfaces, analytic solutions to the

reaction potential are unavailable and numerical techniques must be employed. Fur-

thermore, in such computations one often employs a more realistic representation of

the charge distribution, with the nuclei represented by positive point charges and the

electrons represented by continuous charge distributions consistent with the molecu-

lar orbitals. However, powerful methods have been developed to treat this complex

problem; in the most widely used approach one divides the cavity surface into tesserae

(i.e. polygonal surface elements) each having an associated apparent surface charge.

The aggregate effect of these surface charges leads to the proper reaction potential

inside the cavity. This procedure is known as the apparent surface charge (ASC)

approach, and the widely used implementation developed by Tomasi and coworkers

is known as the polarizible continuum method (PCM)[154]. To address the response

of the solute charge distribution to the reaction potential, which is treated above

through the solute polarizibility, the typical procedure is to iteratively compute the

reaction potential and then the new solute electronic structure in the presence of that

reaction potential, and repeat until the structure and solvation energy stabilizes.

While such PCM calculations are very well suited to the analysis of polarization

energies in solutions, they suffer from a major shortcoming with respect to their ap-

plication to amorphous solids: since the surroundings are treated as a continuum and

the cavity surface is viewed as a property of the type of the solute and solvent, for

every molecule of a particular type immersed in a solvent of a particular type one ob-
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tains the same solvation energy. However, in a solid consisting of polarizible molecules

subject to spatial disorder each molecule actually experiences a slightly different lo-

cal polarizibility which leads to variations in the polarization energy. This effect

could theoretically be addressed by computing a range of different cavity surfaces

to reflect the range of different local molecular arrangements, but the determination

of those surfaces is itself a computationally daunting problem, while the individual

PCM calculations are themselves at least as difficult to perform as a standard elec-

tronic structure calculation (which often require weeks to perform). Thus even if

one could determine a rationale scheme for constructing the relevant cavity surfaces,

the calculation of a statistically significant number of those surfaces to obtain the

associated distribution of polarization energies would represent a prohibitively costly

calculation.

Another shortcoming of the SC-DCM, and MC-DCM methods in general, is that

there are no existing models for self-consistently calculating the interaction energy of

a dense collection of polarizible molecules having non-zero static charge distributions.

In other words, while MC-DCM methods are well-adapted to the treatment of the

interaction between a solute and a collection of solvent molecules, where the solvent

molecules are modeled as having purely polarizible charge distributions, they are

not well adapted to the analysis of a system in which every molecule is effectively a

solute and therefore contains both a polarizible and a static component to its charge

distribution. The challenge in developing such a model is two-fold: (1) a proper choice

for computing the local fields must be employed (and which thereby eliminates the

need for a self-consistent calculation of the fields and dipoles on a system of polarizible

molecules), and (2) the interaction energies must be computed in a manner that is

self-consistent with the choice of the local field. To the author’s knowledge such a

model does not exist in the literature; a model based on the SC-DCM and using the

Lorentz local field correction is developed below, though it is found that this model,

like the U-DCM, yields significant errors. Despite these limitations, MC-DCMs are

powerful tools for studying basic polarization phenomena, and in Chapter 4, the SC-

DCM is employed in thestudy of polarization energies in the solid state in the event
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that one can not neglect the effects of nuclear polarization.

B.6 Extending the SC-DCM

In this section the SC-DCM is extended to the calculation of transition energies in the

general case that the passive molecules have non–zero static dipole moments. In this

development, it is assumed that nuclear polarization is negligible (i.e. that α = αel

and ε = n2). It is further assumed that the material is composed of a single type of

molecule with a molecular density of ρmol, as this greatly simplifies the expressions

(though the same procedure can be employed to the more complex case of multi-

component materials). This development is carried out by combining the SC-DCM

with the Lorentz local field correction to treat the impact of the dielectric on the

interacting fields. The author is not aware of any reports in the literature in which

a similar model is used to predict polaron and exciton energy disorder, though all of

the individual elements of the model are well known.

The first part of the model consists of applying the SC-DCM to each molecu-

lar charge distribution by placing it in a spherical cavity of radius a and treating the

surrounding dielectric as if it were infinite and continuous. In this development, a sat-

isfies the relationship proposed by Onsager[112], namely that 4πa3/3 = MW/πNAρ,

where as before MW is the molecular weight, NA is Avogadro’s number, and ρ is

the mass density of the material. This definition is equivalent to defining the cavity

volume as precisely the volume associated with a single molecule within the material.

By making the surrounding dielectric appear infinite and continuous to each charge

distribution, the local field due to the polariziation of the surrounding molecules is

obtained by solving for the reaction field under the SC-DCM. Since α = αel and

ε = n2, this further implies that each charge distribution is always in equilibrium

with the surrounding dielectric. The main effect of the reaction field on the charge

distribution is to enhance the dipole moment of the charge distribution, according to

Eqn. B.42, such that,
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~pi =
1

1− αΛ
~µ. (B.82)

The second part of the model is to use an local field approximation to calculate

the contribution to the local field at particular charge distribution due to some other

charge distribution. This is accomplished by first calculating the field, Fex, in the

surrounding dielectric due to a charge distribution within a spherical cavity. This

relationship given is by[17, 112]:

~Fex =
1

ε

Q

r2
r̂ +

3ε

2ε+ 1

[
3(~p · r̂)r̂ − ~p

r3

]
(B.83)

where Q is the total charge and ~p is the total dipole. To convert this field from its

value within the dielectric continuum to the value experienced by a particular charge

distribution, the Lorentz local field correction is used. This correction relates the

local field ~FL within a virtual spherical cavity to the external field in the surrounding

dielectric, ~Fex, by the relation:

~FL =
ε+ 2

3
~Fex. (B.84)

The meaning of using a virtual cavity here is that its presense does not disturb

the polarization of the surrounding medium, whereas a real cavity would induce a

change in the surrounding local polarization. Physically, this means that the charge

distribution within the cavity is assumed to be properly polarized to maintain the

same polarization field inside and outside of the cavity. Since it is the local field in

equilibrium that is needed, this is indeed the desired condition.

In general, the field experienced by a given charge distribution is the sum of the

local fields due to the surrounding charge distributions plus the reaction field due

to its own polarization of the surrounding medium. The subtlety here is that the

Lorentz local field correction already includes the reaction field resulting from the

polarization of the charge distribution by Fex. To make this point clear, it is useful to

perform an alternative derivation of the Lorentz local field correction within the SC-

DCM. Consider a real spherical cavity, containing at its center a polarizible charge
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distribution characterized by polarizibility α. The field, ~Fc, within with this real

spherical cavity due to an external field ~Fex is given by[19]:

~Fc =
3ε

(2ε+ 1)
~Fex. (B.85)

The total local field in the cavity is given by ~Fc + ~FR where ~FR is the reaction field.

The local field induces a dipole moment equal to α~FL, and the reaction field that

forms in response to this induced dipole is equal to Λα~FL (see Eqn. B.38). The

self-consistent solution of this system gives,

~FL =
1

1− Λα
~Fc (B.86)

=
1

1− Λα

3ε

(2ε+ 1)
~Fex. (B.87)

At this point the term Λα can be eliminated by replacing α using the Claussius-

Mossotti equation and plugging in the definition of a:

αΛ =
α

a3

2(ε− 1)

(2ε+ 1)
(B.88)

=
ε− 1

ε+ 2

2(ε− 1)

(2ε+ 1)
(B.89)

which plugged into the ~FL expression gives,

~FL =
(ε+ 2) (2ε+ 1)

9ε

3ε

(2ε+ 1)
~Fex (B.90)

=
(ε+ 2)

3
~Fex (B.91)

which is precisely the Lorentz local field correction from Eqn. B.84.

The third and final part of the model is to calculate the change in energy for a

given transition from the sum of: (1) the pair interactions between the active molecule
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and the surrounding molecules; and (2) the polarization energy of the active molecule

calculated under the SC-DCM. This calculation is approximate (even within the DCM

described up to this point) because it neglects the fact the the internal polarization

energy of each molecule scales as the square of the local field, and therefore can not

be summed up from the contributions of the separate local field components. In this

approximation, however, it is implicit that the energy of the system can be obtained

by summing up all the pair interaction terms that arise from each separate charge

distribution and its polarization of the surrounding medium. If not for the internal

polarization energies, this procedure would be exact within the SC-DCM.

For the polaron creation (with charge ∆Q), the change in interaction energy is

given by the change in the polarization energy (under the SC-DCM) and the change

in the energy of interaction between ∆Q and the surrounding dipoles. The first term

is the same for every site in a given system (owing to the nature of the SC-DCM), and

given by Eqn. B.43 with Q replaced by ∆Q and ~µ set to zero (assuming the change

in ~µ for the polaron transition can be neglected). The charge-dipole interaction

is obtained by calculating the local field due to the polaron charge at each of the

surrounding dipoles, and then summing up the −~FL · ~p terms. Together this gives,

Eint(∆Q) = Epol(∆Q)−∆Q
ε+ 2

3ε

1

1− αΛ

N∑
i6=A

~µi(1) · r̂iA

r2
iA

(B.92)

where,

Epol(∆Q) = −ε− 1

2ε

(∆Q)2

a
. (B.93)

Replacing αΛ as above yields,
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Eint(∆Q) = Epol(∆Q)− (ε+ 2)

3ε

(ε+ 2) (2ε+ 1)

9ε
∆Q

N∑
i6=A

~µi(1) · r̂iA

r2
iA

(B.94)

= Epol(∆Q)− Ωqd∆Q
N∑

i6=A

~µi(1) · r̂iA

r2
iA

. (B.95)

where,

Ωqd ≡
(ε+ 2)

3ε

(ε+ 2) (2ε+ 1)

9ε
(B.96)

Since Epol(∆Q) is the same for every molecule, under this extended SC-DCM the

polaron energy disorder scales as Ωqd relative to the disorder for static charge distri-

butions, with α related to ε through the Claussius-Mossotti equation. For ε equal to

2 and 3, the Ωqd scaling factor is equal to 0.74 and 0.72, respectively; in contrast, for

the same ε values the U-DCM predicts 0.5 and 0.33, respectively.

For the exciton transition, the same calculation is carried out, except in this case,

the interaction energy of interaction is between a change in dipole moment ∆~µ and

the surrounding dipoles. The change in polarization energy is again the same for

every site, and given by Eqn. B.43 with Q set to zero and µ set to ∆µ. The dipole-

dipole interaction is obtained by calculating the local field due to the change in dipole

moment of the exciton at each of the surrounding dipoles, and then summing up the

−~FL · ~p terms. Together this gives,

Eint(∆~µ) = Epol(∆µ)

−

{[
ε+ 2

3

] [
3ε

2ε+ 1

] [
1

1− αΛ

]2

×
N∑

i6=A

~µi ·
[
3(∆~µ · ˆriA) ˆriA −∆~µiA

r3
iA

]}
(B.97)

where,
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Epol(∆µ) = −1

2

Λ

(1− αΛ)
(∆µ)2, (B.98)

Replacing αΛ as above yields,

Eint(∆~µ) = Epol(∆µ)−

{[
ε+ 2

3

] [
3ε

2ε+ 1

] [
(ε+ 2)(2ε+ 1)

9ε

]2

N∑
i6=A

~µi ·
[
3(∆~µ · ˆriA) ˆriA −∆~µiA

r3
iA

]}
(B.99)

= Epol(∆Q)− Ωdd

N∑
i6=A

~µi ·
[
3(∆~µ · ˆriA) ˆriA −∆~µiA

r3
iA

]
. (B.100)

where,

Ωdd ≡
[
ε+ 2

3

] [
3ε

2ε+ 1

] [
(ε+ 2)(2ε+ 1)

9ε

]2

(B.101)

Since again Epol(∆µ) is the same for every molecule, under this extended SC-DCM

the exciton energy disorder scales as Ωdd relative to the disorder for static charge

distributions, with α related to ε through the Claussius-Mossotti equation. For ε

equal to 2 and 3, the Ωdd scaling factor is equal to 1.98 and 3.60, respectively; in

contrast, for the same ε values the U-DCM predicts 0.5 and 0.33, respectively.

As will be demonstrated below, neither the extent SC-DCM presented here nor

the U-DCM are entirely consistent with exact calculations of the energy disorder in

systems of polarizible molecular charge distributions. For this reason, it is important

to keep the key approximations of this model in mind. First, because this model

employs the SC-DCM, and is therefore implicitly dependent on a choice of a, it is

inherently subject to considerable uncertainty. Nevertheless, in the analysis of polar-

ization energies, the SC-DCM is usually sufficient to reasonably predict the trends

in the energies as a function of ε quite well. Second, the use of the Lorentz local

field correction is based on an implicit assumption of homogeneous fields; indeed,
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it is really meant to be used to study the impact of a uniform, externally applied

electric field on the polarization of a medium. Fields which have substantial spatial

variation on the size scale of the molecular charge distributions will violate this ap-

proximation, and certainly such spatial variations are present in the local fields fields

arising from charges and dipoles on nearby molecules. The extent of the associated

errors is not clear, but they would be expected to be greatest for nearest neighbor

interactions, where the polarizations of the respective charge distributions are most

inhomogeneous. Third, this model does not accurately compute the internal polar-

ization energies (as noted in the derivation), and the magnitude of the consequent

errors is not clear either.

B.7 Estimating Polarization Energy Disorder

Such calculations would also provide exact values for the polaron and exciton energy

disorder due to variations in the local polarizibility that arise in the presense of spatial

disorder. At present only a relatively crude procedure for calculating this energy

disorder exists, due to Silinsh[144] who applied the method to polaron polarization

disorder. The principle of the method is to express the polarization energy associated

with a charge (for the polaron transition) or a dipole (for the exciton transition) on

a particular “center” site in terms of the positions of the surrounding sites, and then

evaluate how that energy varies with random spatial fluctations in the site positions.

In carrying out this calculation, the principle approximation is to neglect interactions

between induced dipoles. Another key, though substle, approximation is that the

surrounding sites are all assumed to have zero static charge and dipole moment. (This

approximation is usually not described as such, but because the internal polarization

energy of a molecule is proportional to the square of the local field, one can not obtain

its contribution to the total energy of the system simply by summing the contributions

obtained for each separately applied field. As a result, the method described below is

only accurate if the static charge distributions on the surrounding sites fail to induce

any polarizations of their own, which is equivalent in a random system to assuming
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that those static charge distributions are zero.)

Within this construction, the total polarization energy of a charge q at the origin

surrounded by sites all having polarizibility α and positions ~ri is given by,

Epol
q = −αq

2

2

N∑
i

1

r4
i

. (B.102)

Note that the factor of one half arises from the inclusion of the internal polarization

energy of the surrounding sites. Since all of the surrounding charge distributions are

zero, this gives the change in energy of the polaron creation transition, and is further

equal to minus the change in energy of the polaron destruction transition. Silinsh

then assumed that all the site positions are subject to random fluctuations ∆ri about

a mean value r̄i, which cause corresponding random fluctuations in Epol
q . To first

order in the ∆ri, this fluctation is given by,

∆Epol
q = −αq

2

2

N∑
i

∆ri

[
∂

∂ri

N∑
j

1

r4
j

]
(B.103)

= −2αq2

N∑
i

∆ri

r̄5
i

(B.104)

Since the distance fluctuations are assumed to be formally random, they follow a nor-

mal distribution. If it is further assumed that the fluctuations in the position of each

site are subject to the same standard deviation σr, then the polarization energies form

a gaussian distribution with zero mean and one obtains for the associated standard

deviation, σpol
q ,

σpol
q = 2q2ασr

√√√√ N∑
i

1

r̄10
i

(B.105)

= 2q2α
σr

D5
site

√
C5 (B.106)

where C5 is a constant dependent only on the structure of the mean sites, and defined

424



by,

Cn ≡
N∑
i

[
Dsite

r̄i

]n

(B.107)

Formally, this analysis describes the fluctations in the polarization energy of a charge

at the origin subject to dynamic fluctations in the surrounding site positions. This

result, however, can also be applied to the fluctuations in the charge polarization

energy for a charge on different sites in a static lattice by choosing the mean site

positions r̄k to form a regular lattice in which each point is identical to every other.

Two alternate expressions for σpol
q are subsequently reported by Bässler[10, 11], which

relate σp to the mean polarization energy, Ēpol
q . While these expressions contain

apparent errors in their derivation, and are additionally inconsistent with each other,

it is nevertheless useful to derive the correct expression relating σpol
q and Epol

q . This

relationship is:

σpol
q

Ēpol
q

= 4
σr

Dsite

√
C10

C4

. (B.108)

To make this more useful as a general expression, one can employ an approximate

calculation of C10 and C4 in which one replaces the sums with integrals over a uniform

site density, with a site density equal to precisely 1 after scaling the distances by Dsite;

i.e.,

Cn ≈
∫ ∞

rmin

4πr2dr

rn
(B.109)

=
4π

rn−3
min

1

n− 3
(B.110)

where rmin sets the lower bound of the integration to reflect the physical situation

that only distances to neighbors should be included. This then gives,
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√
C10

C4

≈ 1√
4π
r
−5/2
min

√
1

sqrt7
(B.111)

= r
−3/2
min (B.112)

The choice of rmin value is somewhat arbitary; here a value of (3/4π)1/3 is chosen to

since this sets the excluded volume to be equal to the volume of precisely one site.

With this choice,
√
C10/C4 = 0.35, and the following approximate general relationship

is obtained,

σpol
q

Epol
q

≈ 1.4
σr

Dsite

. (B.113)

It is worth noting that this expression is similar to the first relationship reported by

Bässler[10], except that in Bässler’s expression the coefficient is just 4 and σr/Dsite

is replaced by 〈∆r/r〉, which is the mean of the site position variations scaled by

the distance between that site and the origin. Aside from the derivation involving

apparent errors (eqn. (2) in [10] does not appear to be correct), this expression is

also difficult to use useful because 〈∆r/r〉 is a non-trivial function of both σr and the

lattice structure. However, one should still attribute to Bässler the idea of expressing

σpol
q in terms of Ēpol

q . (The second relationship that Bässler[11] reported contains

errors that are even harder to explain, and is not discussed further here.) Finally,

one can also plug the approximation obtained for C10 directly into the expression for

σpol
q to get,

σpol
q ≈ 14.3q2α

σr

D5
site

. (B.114)

This same method was also used by Bässler[10, 11] to describe exciton disorder

arising from the van der Waals dispersion interactions, though the same errors as

arise in the polaron expressions are propagated to these expressions. However, since
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these expressions deal with dispersion interactions they are not discussed here any

further. A similar treatment of exciton disorder arising from the polarization disorder

has not been reported, but in principle involves a trivial extention of the approach.

Specifically, the polarization energy of a static dipole ~µ at the origin is given by,

Epol
d = −αµ

2

2

N∑
i

|µ̂− 3 (µ̂ · r̂i) r̂i|2
1

r6
i

(B.115)

= −αµ
2

2

N∑
i

[
1 + 3 |µ̂ · r̂i|2

] 1

r6
i

. (B.116)

While this expression is somewhat difficult to use, if one makes the assumption that

the only variations in site positions involve a change in the position along the r̄i along

each site, it is possible to express the change in polarization energy (using the same

procedure as above) by,

∆Epol
d = −3αµ2

N∑
i

[
1 + 3 |µ̂ · r̂i|2

] ∆ri

r̄7
i

. (B.117)

and this then yields,

σpol
d = 3αµ2 σr

D7
site

√
D2,14 (B.118)

where D1,12 is a constant dependent only on the structure of the mean sites, and

defined by,

Dm,n ≡
N∑
i

[
1 + 3 |µ̂ · r̂i|2

]m [Dsite

r̄i

]n

(B.119)

Expressing σpol
d in terms of Ēpol

d yields,
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σpol
d

Ēpol
d

= 6
σr

Dsite

√
D2,14

D1,6

(B.120)

Applying the same approximation scheme as above to evaluate the Dm,n terms by

replacing the sums with integrals and employing a uniform density of 1 yields,

Dm,n ≈
{∫ π

0

sin θ
[
1 + 3 cos2 θ

]m
dθ

}∫ ∞

rmin

2πr2dr

rn
(B.121)

=
2π

rn−3
min

1

n− 3

{∫ π

0

sin θ
[
1 + 3 cos2 θ

]m
dθ

}
(B.122)

which evaluated at m = 1, n = 6 gives,

D1,6 ≈ 2π

r5
min

4

5
(B.123)

and at m = 2, n = 14 gives,

D2,14 ≈ 2π

r11
min

9.6

11
(B.124)

which then gives,

√
D2,14

D1,6

≈ 0.59 (B.125)

where rmin = (3/4π)1/3 has again been used. This gives the approximate general

relationship,

σpol
d

Ēpol
d

≈ 3.54
σr

Dsite

. (B.126)
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Plugging the approximation for D2,14 directly into the expression for σpol
d yields,

≈ 54.9αµ2 σr

D7
site

(B.127)

It is interesting to note that the fundamental approximations of this method,

namely the polarization energy is constructed just of a sum of pair contributions

between the excitation and the surrounding sites, make it possible to use the more

sophisticated statistical method to calculate the DOS without resorting to a first

order Taylor expansion around ∆r, or the rather clumsy integral approximations of

the sums. This would also allow one to calculate the DOS even when the condition

∆ri/ri << 1 did not hold. Such calculations have not appeared in the literature,

though perhaps the basic approximations of the method introduce themselves suf-

ficient error that a more accurate method of calculating the DOS based on those

assumptions is not useful.
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Appendix C

Analytic Solution to Hopping

Diffusion in a Conservative System

C.1 Introduction

In this appendix an analytic treatment of diffusion by means of hopping events in

a material subject to random spatial and energetic disorder is detailed. The devel-

opment given here is adapted from the work of Movaghar and coworkers[100, 102,

103, 104, 101], and is applicable to both charge carriers and excitons. This analysis

is in principle limited only to conservative systems (i.e. systems in which there is no

particle losses, as occur in, e.g., radiative exciton decay). However, if the loss rate

is the same for each excitation independent of the molecular site, this restriction can

be dropped, and the influence of loss included by simply uniformly reducing the total

excitation population as a function of time. Note that since this treatment assumes

the low particle limit, where there are no inter-excitation interactions, the excitation

concentration has no influence on the theory.

C.2 Analytic Development

We begin with the linearized governing equation,
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dnj

dt
= −

∑
k

Wjknj +
∑

k

Wkjnk (C.1)

which holds in the limit of low excitation. (This is also known as the Pauli Master

Equation.) The Wij express the transfer rate between molecular sites, while the ni

represent the excitation populations on each site. The time dependence of the ni

is implied, while the Wij are assumed to be time-independent. Note that we have

complete freedom in choosing the values for each of the Wii, since all the terms

involving Wii exactly cancel. For the purposes of our analysis, we assume that all the

Wii are zero. Taking the Laplace Transform of our governing equation we obtain,

pn̂j − nj(t = 0) = −
∑

k

Wjkn̂j +
∑

k

Wkjn̂k (C.2)

where the hat denotes a function in Laplace space. (For all of the Laplace transformed

values, the inverse time argument is implied.) Upon rearrangement this yields,

n̂j =
nj(t = 0)

p+
∑

k Wjk

+
1

p+
∑

k Wjk

∑
k

Wkjn̂k. (C.3)

We proceed by first making the following substitutions,

εj ≡ −
∑

k

Wjk (C.4)

Ĝij ≡ n̂j (C.5)

where Ĝij is defined such that nj(t = 0) = 1 and ni6=j(t = 0) = 0. (Note that Ĝij is

just a Green’s function, and our approach will follow methods traditionally used in

the solution of Green’s functions.) Rewriting Eqn. (C.3) in terms of Ĝij we obtain,

Ĝij =
δij

p− εj
+

1

p− εj

∑
k

WkjĜik. (C.6)

(The determination of the Ĝij comprises the solution of the problem.) We expand
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this infinite sum with the definition,

Ĝ0
jj ≡

1

p− εj
(C.7)

to yield,

Ĝij = Ĝ0
jjδij + Ĝ0

jj

∑
k

Wkj

[
Ĝ0

kkδij + Ĝ0
kk

∑
m

Wmk [· · · ]

]
(C.8)

and by grouping (and rearranging) terms of the same order in Wij we obtain,

Ĝij = Ĝ0
jjδij + Ĝ0

iiWijĜ
0
jj +

∑
k

Ĝ0
iiWikĜ

0
kkWkjĜ

0
jj

+
∑
k,m

Ĝ0
iiWikĜ

0
kkWkmĜ

0
mmWmjĜ

0
jj + · · · (C.9)

which is the form of the familiar Dyson expansion.

We continue by investigating Ĝii, which has the form,

Ĝii = Ĝ0
ii + Ĝ0

iiWiiĜ
0
ii +

∑
k

Ĝ0
iiWikĜ

0
kkWkiĜ

0
ii

+
∑
k,m

Ĝ0
iiWikĜ

0
kkWkmĜ

0
mmWmiĜ

0
ii

+
∑
k,m,r

Ĝ0
iiWikĜ

0
kkWkmĜ

0
mmWmrĜ

0
rrWriĜ

0
ii + · · ·

= Ĝ0
ii +

∑
k 6=i

Ĝ0
iiWikĜ

0
kkWkiĜ

0
ii

+
∑

m6=i,k

∑
k 6=i

Ĝ0
iiWikĜ

0
kkWkmĜ

0
mmWmiĜ

0
ii

+
∑

r 6=i,m

∑
m6=k

∑
k 6=i

Ĝ0
iiWikĜ

0
kkWkmĜ

0
mmWmrĜ

0
rrWriĜ

0
ii + · · · (C.10)

where we have set the Wii to zero to obtain the last line. Using our intuition about

expressions with the Dyson expansion form, we assume that it is possible to write,
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Ĝii =
1

p− εi −∆i

(C.11)

where ∆i has the sense of a self energy. With this assumption, we see that,

Ĝii = Ĝ0
ii + Ĝ0

ii∆iĜii (C.12)

= Ĝ0
ii + Ĝ0

ii∆iĜ
0
ii + Ĝ0

ii∆iĜ
0
ii∆iĜ

0
ii

+Ĝ0
ii∆iĜ

0
ii∆iĜ

0
ii∆iĜ

0
ii + · · · . (C.13)

By comparing Eqns. (C.10) and (C.13) we can systematically construct the required

form for ∆i by enumerating terms and grouping them by their order in Wij. In this

way, we obtain,

∆i =
∑
k 6=i

WikĜ
(i)
kkWki +

∑
m6=k 6=i

WikĜ
(i)
kkWkmĜ

(i,k)
mmWmi

+
∑

r 6=m6=k 6=i

WikĜ
(i)
kkWkmĜ

(i,k)
mmWmrĜ

(i,k,m)
rr Wri + · · · (C.14)

where the superscript indices in parenthesis mean that those indices are explicitly

excluded from the system for that term, and where the summation notation r 6= m 6=

· · · indicates a sum over nonrepeating indices. To clarify the former, observe that,

Ĝ(i,j)
mm = Ĝ0

mm +
∑

k 6=i,j,m

Ĝ0
mmWmkĜ

0
kkWkmĜ

0
mm

+
∑

r 6=i,j,m,k

∑
k 6=i,j,m

Ĝ0
mmWmkĜ

0
kkWkrĜ

0
rrWrmĜ

0
mm

+
∑

s 6=i,j,m,r

∑
r 6=i,j,k

∑
k 6=i,j,m

Ĝ0
mmWmkĜ

0
kkWkrĜ

0
rrWrsĜ

0
ssWsmĜ

0
mm

+ · · · (C.15)

and therefore we also have that,
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Ĝ
(v,w,··· )
ii =

1

p− εi −∆
(v,w,··· )
i

(C.16)

with

∆
(v,w,··· )
i =

∑
k 6=i,v,w,···

WikĜ
(i,v,w,··· )
kk Wki +

∑
m6=k 6=i,v,w,···

WikĜ
(i,v,w,··· )
kk WkmĜ

(i,k,v,w,··· )
mm Wmi

+
∑

r 6=m6=k 6=i,v,w,···

WikĜ
(i,v,w,··· )
kk WkmĜ

(i,k,v,w,··· )
mm WmrĜ

(i,k,m,v,w,··· )
rr Wri

+ · · · . (C.17)

We will find it useful to also modify the form Ĝij. We do this by first observing

from Eqn. (C.9) that our expansion can be described as a network, with the Ĝ0
ii de-

noting the nodes and the Wij denoting the edges. Within this picture, the summation

goes over all the paths through the network that originate on node i and end on node

j. Noting then that Ĝii describes the term consisting of all paths originating and

ending on node i, and that Ĝ
(j)
ii describes the same term but with node j excluded,

we can write,

Ĝij = Ĝjjδij + ĜiiWijĜ
(i)
jj +

∑
k 6=i,j

ĜiiWikĜ
(i)
kkWkjĜ

(i,k)
jj

+
∑

m6=k 6=i,j

Ĝ0
iiWikĜ

(i)
kkWkmĜ

(i,k)
mmWmjĜ

(i,k,m)
jj + · · · . (C.18)

It is easy to see that this produces all the terms in Eqn. (C.9) with the use of a few

diagrams. See, for instance, Fig. (C-1), which illustrates the first three terms. The

first gives all paths starting and originating on node j (what we will call loops over

j). The second term connects loops over i with loops over j, with i excluded from the

loops over j because any term with i in it was already counted in the Ĝii term. The

third term connects loops over i to loops over any internal node k and then to loops

over j, with the appropriate nodes again removed to avoid double counting. And thus
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v̂
Gjjδijv v-

Ĝii Ĝ
(i)
jj

Wij

v v v- -

Ĝii Ĝ
(i)
kk Ĝ

(i,k)
jj

Wik Wkj

Figure C-1: Diagram of first terms of Ĝij expansion in Eqn. (C.18).

we build up the set of all possible paths through the network, originating on node i

and ending on node j. The idea behind the transformation is that we’ve expanded Ĝij

in terms of closed loops instead of in terms of Ĝ0
ii. This will assist us in our carrying

out our approximation.

At this point, we recall that εj is dependant on the Wij terms, and in applying

our approximation we must take that correlation into account. This can be done by

introducing a renormalized rate constant,

gkj =
Wkj/Wjk

1/Wjk + Ĝjj(kj)
(C.19)

g
(i,··· )
kj =

Wkj/Wjk

1/Wjk + Ĝ
(i,··· )
jj (kj)

(C.20)

where the term Ĝjj(kj) denotes Ĝjj with the node k removed from the system and

the the k-j linkage removed from the εj sum. In other words,

Ĝjj(kj) =
1

p+
∑

m6=k Wjm −∆
(k)
j

(C.21)

Now we introduce a new quantity Cj defined such that,
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Ĝjj =
1

p+
∑

m gjm − Cj

(C.22)

Ĝjj(kj) =
1

p+
∑

m6=k gjm − C
(k)
j

. (C.23)

Since we have just replaced the original transfer rates with the renormalized ones in

the sum, Cj must satisfy,

C
(k,··· )
j =

∑
m6=k,···

g
(k,··· )
jm −

∑
m6=k,···

Wjm + ∆
(k,··· )
j (C.24)

We can show that our definition for Cj has a very simple meaning which naturally

leads to the desired approximation. We do this by first noting from Eqn. (C.21) that

we can write,

Ĝjj(kj) =
1

p+
∑

mWjm −∆
(k)
j −Wjk

=
1[

Ĝ
(k)
jj

]−1

−Wjk

(C.25)

where we have simply noted that
∑

k 6=mWjk is equivalent to
∑

k Wjk−Wjm. Through

some rearrangement, we get,

Ĝjj(kj) = Ĝ
(k)
jj + Ĝ

(k)
jj WjkĜjj(kj)

= Ĝ
(k)
jj + Ĝ

(k)
jj WjkĜ

(k)
jj + Ĝ

(k)
jj WjkĜ

(k)
jj WjkĜ

(k)
jj + · · · (C.26)

Now returning to gkj, we see that by rearranging Eqn. (C.19) we get,
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gkj = Wkj −WjkĜjj(kj)gkj

= Wkj −WjkĜjj(kj)Wkj

+WjkĜjj(kj)WjkĜjj(kj)Wkj − · · · (C.27)

and plugging in for Ĝjj(kj) from Eqn. (C.26),

gkj = Wkj

−Wjk

(
Ĝ

(k)
jj + Ĝ

(k)
jj WjkĜ

(k)
jj + · · ·

)
Wkj

+Wjk

(
Ĝ

(k)
jj + Ĝ

(k)
jj WjkĜ

(k)
jj + · · ·

)
Wjk

×
(
Ĝ

(k)
jj + Ĝ

(k)
jj WjkĜ

(k)
jj + · · ·

)
Wkj

− · · · . (C.28)

Dividing through by Wkj and rewriting with the definitions,

(1) ≡ Ĝ
(k)
jj Wjk

(1)× (1) ≡ (11)

(etc...)

we obtain,

gkj/Wkj = 1− [(1) + (11) + (111) + · · · ]

+ [(1) + (11) + (111) + · · · )× [(1) + (11) + (111) + · · · )]

− [(1) + (11) + · · · )]× [(1) + (11) + · · · ]× [(1) + (11) + · · · ]

=
∞∑

n=0

[
−

∞∑
m=1

(1)m

]n

. (C.29)
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Using the convergent sum relation,

∞∑
k=0

gk =
1

1− q
(C.30)

we see that,

gkj/Wkj =

[
1 +

∞∑
m=1

(1)m

]−1

=

[
∞∑

m=0

(1)m

]−1

= 1− (1) (C.31)

and therefore,

gkj = Wkj −WkjĜ
(k)
jj Wjk. (C.32)

Combining Eqns. (C.24) and (C.32), we then obtain,

C
(k,··· )
j = ∆

(k,··· )
j −

∑
m6=k,···

WjmĜ
(j,k,··· )
mm Wmj (C.33)

This reveals that Cj has a very simple interpretation: it is the sum of all the non-

repeating, closed loops over a network of Ĝkk nodes and Wkm edges involving at least

three nodes.

We now wish to express Ĝij in terms of the renormalized rate constants. We begin

by proposing that,
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Ĝij = Ĝjjδij + ĜiigijĜjj(ij)

+
∑
k 6=i,j

GiigikGkk(ik)g
(i)
kjG

(i)
jj (kj)

+
∑

m6=k 6=i,j

GiigikGkk(ik)g
(i)
kmG

(i)
mm(km)g

(i,k)
mj G

(i,k)
jj (mj)

+ · · · . (C.34)

We can expand this by plugging in for the gik and Gkk(ik) terms using Eqns. (C.33)

and (C.26). The first term is trivial. The second term generates,

Ĝii

(
Wij −WijĜ

(i)
jj Wji

)(
Ĝ

(i)
jj +G

(i)
jj WjiG

(i)
jj + · · ·

)

which we can rewrite more simply with the definition,

(1) ≡ WjiG
(i)
jj

(1)× (1) ≡ (11)

(etc...)

to obtain,

ĜiiWijĜ
(i)
jj (1− (1)) (1 + (1) + (11) + · · · )

which simplies to,

ĜiiWijĜ
(i)
jj .
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We can analyze the third term similarly, beginning first with,

∑
k 6=i,j

Ĝii

(
Wik −WikĜ

(i)
kkWki

)(
Ĝ

(i)
kk +G

(i)
kkWkiG

(i)
kk + · · ·

)
×
(
Wkj −WkjĜ

(i,k)
jj Wjk

)(
Ĝ

(i,k)
jj +G

(i,k)
jj WjkG

(i,k)
jj + · · ·

)
which we can rewrite with the definitions,

(1) ≡ WkiG
(i)
kk

(2) ≡ WjkG
(i,k)
jj

to obtain,

∑
k 6=i,j

ĜiiWikĜ
(i)
kk (1− (1)) (1 + (1) + (11) + · · · )

×WkjĜ
(i,k)
jj (1− (2)) (1 + (2) + (22) + · · · )

which simplifies to,

∑
k 6=i,j

ĜiiWikĜ
(i)
kkWkjĜ

(i,k)
jj .

Thus it is clear that the form proposed in Eqn. (C.34) will indeed reproduce all the

terms in the expansion of Ĝij from Eqn. (C.18).

The essence of our approximation is to set the Cj to zero. Alone, this means that

we simply ignore the contributions of any closed loops in our Ĝkk - Wkm network

involving three nodes or more. To offset this, however, we will also simultaneously

drop the prohibitions on repeated indices (i.e. we allow the sums to go over all nodes

for each index and drop the superscripted indices). This has the affect of reintroducing
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previously prohibited paths that now allow us to include an approximation to the

closed loops lost in our approximation through the product of pair (i.e. ĜiiWijĜjj)

contributions. To apply these approximations self-consistently, we first introduce the

rate symmetrization function fij defined such that,

fijWij = fjiWji (C.35)

This function can take different forms. The conceptually simplest choice is to take

fij = [Wij]
−1, but at this stage, it is not necessary to make our choice explicit.

With this function, we can identify a symmetry relation for the exact Ĝij and Ĝji.

Specifically, by writing out Ĝji using Eqn. (C.9), and making replacements of the

form Wji = [fij/fji]Wij (with some internal cancellations within the sums) we obtain,

Ĝji = Ĝ0
iiδji + Ĝ0

jjWjiĜ
0
ii +

∑
k

Ĝ0
jjWjkĜ

0
kkWkiĜ

0
ii

+
∑
k,m

Ĝ0
jjWjkĜ

0
kkWkmĜ

0
mmWmiĜ

0
ii + · · ·

= [fij/fji] [Ĝ
0
jjδij + Ĝ0

iiWijĜ
0
jj +

∑
k

Ĝ0
iiWikĜ

0
kkWkjĜ

0
jj

+
∑
k,m

Ĝ0
iiWikĜ

0
kkWkmĜ

0
mmWmjĜ

0
jj + · · · ]

Ĝji = [fij/fji] Ĝij (C.36)

We wish to achieve the same symmetry relation with our approximate Ĝij and

renomalized rate constants. To do this we first introduce a symmetrized form of our

gij,

gS
ij =

Ĝii

Ĝii(ji)
gij. (C.37)

g
S(v,··· ,m)
ij =

Ĝ
(v,··· )
ii (mi)

Ĝii(ji)(v,··· )
gij. (C.38)

442



With these definitions, we can obtain from Eqn. (C.34) that,

Ĝij = Ĝjjδij + Ĝii(ij)g
S
ijĜjj(ij)

+
∑
k 6=i,j

Gii(ik)g
S
ikG

(i)
kk(kj)g

S(i)
kj G

(i)
jj (kj)

+
∑

m6=k 6=i,j

Gii(ik)g
S
ikG

(i)
kk(km)g

S(i)
km G(i,k)

mm (mj)g
S(i,k)
mj G

(i,k)
jj (mj)

+ · · · . (C.39)

Now applying our approximations (and employing the superscript R on our g

to emphasize that in our approximation we have reduced the network as described

above), we have

Ĝii =

[
p+

∑
k

gR
ik

]−1

(C.40)

Ĝii(ji) =

[
p+

∑
k 6=j

gR
ik

]−1

(C.41)

and plugging these into our expression for gS
ij we get,
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gRS
ij =

[
p+

∑
k g

R
ik

]−1[
p+

∑
k 6=j g

R
ik

]−1 g
R
ij

=

[
p+

∑
k 6=j g

R
ik + gR

ij

p+
∑

k 6=j g
R
ik

]−1

gR
ij

=


[
Ĝii(ji)

]−1

+ gij[
Ĝii(ji)

]−1


−1

gR
ij

=
[
1 + Ĝii(ji)g

R
ij

]−1

gR
ij

gRS
ij =

 1

gR
ij

+
1[

Ĝii(ji)
]−1


−1

(C.42)

By combining Eqn. (C.19) with our symetrization function and applying our

reduction approximation, we get,

fijg
R
ij =

fij (Wij/Wji)

1/Wji + Ĝjj(ij)

=
fij (fji/fij)

fji/fijWij + Ĝjj(ij)

=
fij

1/Wij + fijĜjj(ij)/fji

=

 1

fijWij

+
1[

Ĝjj(ij)
]−1

fji


−1

fijg
R
ij =

 1

fijWij

+
1

fji

[
p+

∑
k 6=i g

R
jk

]
−1

(C.43)

and combining Eqns. (C.42) and (C.43) we get,
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fijg
RS
ij =

 1

fijWij

+
1

fji

[
Ĝjj(ij)

]−1 +
1

fij

[
Ĝii(ji)

]−1


−1

=

 1

fijWij

+
1

fji

[
p+

∑
k 6=i g

R
jk

] +
1

fij

[
p+

∑
k 6=j g

R
ik

]
−1

(C.44)

and by inspection we can see that swapping i and j leaves the r.h.s. unchanged,

demonstrating that,

fijg
RS
ij = fjig

RS
ji (C.45)

as we wanted.

Applying our approximation to our expression for Gij we see that Eqn. (C.39)

becomes

Ĝij = Ĝjjδij + Ĝii(ij)g
RS
ij Ĝjj(ij)

+
∑

k

Gii(ik)g
RS
ik Gkk(kj)g

RS
kj Gjj(kj)

+
∑
m,k

Gii(ik)g
RS
ik Gkk(km)gRS

kmGmm(mj)gRS
mjGjj(mj)

+ · · · . (C.46)

And finally we transform our expression from one involving individual nodes to one

involving distributions through the use of an effective medium approximation (EMA),

which is nothing more than the conversion of functions of node indices into functions

of continuous variables (here, position and energy) and the conversion of the sums over

nodes into integrals over distributions. Under this approximation, one presupposes

an infinite number of nodes, in which case the removal of any single individual term

from a sum is negligible, allowing us to write finally,
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Ĝij = Ĝjjδij + Ĝiig
RS
ij Ĝjj

+
∑

k

Giig
RS
ik Gkkg

RS
kj Gjj

+
∑
m,k

Giig
RS
ik Gkkg

RS
kmGmmgRS

mj Gjj

+ · · · . (C.47)

where the boldface denotes a configurationally averaged quantity. This expression

can also be written in the form,

Ĝij = Ĝjjδij + Ĝii

∑
k

gRS
ik Ĝkj (C.48)

Ĝij =
δij

p+
∑

k gRS
jk

+
1

p+
∑

k gRS
ik

∑
k

gRS
ik Ĝkj (C.49)

Finally, we note that swapping i and j in Eqn. (C.48) and utilizing Eqn. (C.45) yields

the desired symmetry relation for our approximate, averaged Green’s functions,

Ĝji = [fij/fji] Ĝij (C.50)

C.3 Time Evolution of The Excitation Population

We are interested in solving for the time evolution of the excitation population as

a function of energy, and the simplest feature we can study which gives insight into

this behavior is the mean energy. To obtain this, we first define an energy evolution

function by,

ε̃i(t) =
∑

j

εjGij (C.51)
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which in Laplace Space is just,

ε̃i(p) =
∑

j

εjĜij. (C.52)

This function describes time evolution the mean energy of the system when initially

only states with energy i are occupied. If we then multiply Eqn. (C.49) by εj and

sum we obtain,

εjĜij = εjĜjjδij + Ĝii

∑
k

gRS
ik εjĜkj∑

j

εjĜij = εiĜii + Ĝii

∑
k

gRS
ik

∑
j

εjĜkj

ε̃i(p) = εiĜii + Ĝii

∑
k

gRS
ik ε̃k(p) (C.53)

which comprises an integral equation that we can use to solve for the ε̃i(p). Expanding

this expression to obtain,

ε̃i(p) =
εi

p+
∑

m gRS
im

+
1

p+
∑

m gRS
im

∑
k

gRS
ik ε̃k(p) (C.54)

we see that we must first obtain the gR
ij and gRS

ij to solve for the ε̃i(p).

To do this, we return to Eqn. (C.43) and apply the EMA by dropping excluded

indices to obtain

fijgij =

[
1

fijWij

+
1

fji

[
p+

∑
k gR

jk

]]−1

(C.55)

and dividing through by fij and summing we get,
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∑
j

gij =
∑

j

[
1

Wij

+
fij

fji

[
p+

∑
k gR

jk

]]−1

σi =
∑

j

[
1

Wij

+
fij

fji [p+ σj]

]−1

(C.56)

where

σi ≡
∑

j

gij. (C.57)

Thus we have obtained an integral expression for σi, which once obtained allows us

to calculate the gR
ij using,

gij =

[
1

Wij

+
fij

fji [p+ σj]

]−1

. (C.58)

And by expanding Eqn. (C.44), applying the EMA as before, and utilizing the defi-

nition for σi we see that we can also now directly calculate the gRS
ij using,

fijg
RS
ij =

[
1

fijWij

+
1

fji [p+ σj]
+

1

fij [p+ σi]

]−1

. (C.59)

C.4 Population Evolution for MA Rate Hopping

The practical application of the EMA, as noted above, involves converting the sum-

mations into integrals over distributions. In a system with a distribution of positions

n, and a distribution of energies ρ, then we have simply,

∑
k

⇒
∫ ∞

−∞
dεkd ~Rkρ(εk)n( ~Rk)
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which we can apply to Eqns. (C.54) and (C.56) to get,

ε̃i(p) =
εi

p+ σS
i

+
1

p+ σS
i

∫ ∞

−∞
dεkd ~Rkρ(εk)n( ~Rk)g

RS
ik ε̃k(p) (C.60)

σi =

∫ ∞

−∞
dεjd ~Rjρ(εj)n( ~Rj)

[
1

Wij

+
fij

fji [p+ σj]

]−1

(C.61)

where,

σS
i ≡

∑
j

gRS
ij . (C.62)

which with Eqn. (C.59) becomes,

σS
i =

∫ ∞

−∞
dεjd ~Rjρ(εj)n( ~Rj)

[
1

Wij

+
fij

fji [p+ σj]
+

1

[p+ σi]

]−1

. (C.63)

At this point must start assigning values to our functions to proceed. It is in this

step that we connect our theoretical development to a specific physical system. In

this work, we are interested in studying particle diffusion in an uniform amorphous

medium with a Gaussian distribution of energies. Thus, we have,

n(~R) = neff (C.64)

ρ(ε) =
2

w

√
ln(2)

π
exp

[
−4ln(2)

ε2

w2

]
(C.65)

and for the specific case of polaron hopping,

Wij = νχijexp
(
−2γ

∣∣∣~Ri − ~Rj

∣∣∣) (C.66)
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where the χij function describes the energy dependance of the transfer rate. For

polaron hopping, a Boltzman factor is assumed,

χij =

 exp [− (εj − εi) /kT ] εj > εi

1 otherwise
(C.67)

Note that neff , w, ν, and γ are system parameters supplied at the outside in specifying

the problem. Also, we here set ν equal to one, and thereby normalize time to 1/ν.

Along the same lines, we set γ equal to one, and thereby normalize space 1/γ. Finally,

we set w equal to one, and thereby normalize energy to the full width half max of ρ.

Observe that kT must therefore be expressed in terms of w.

With these functions, we can proceed with the numerical solution. First, we

observe that while we could set fij equal to χ−1
ij , in accordance with the original

development of this problem, we instead choose,

fij = fi = exp (−εi/kT ) (C.68)

Thus from Eqn. (C.61) we see that our first step is to solve,

σi = neff

∫ ∞

−∞
dεjd ~Rjρ(εj)

[
exp [2Rj]

χij

+
fi

fj [p+ σj]

]−1

= 4πneff

∫ ∞

−∞
dεjρ(εj)

∫ ∞

0

dRjR
2
j

[
exp [2Rj]

χij

+
fi

fj [p+ σj]

]−1

(C.69)

Ideally, the next step would be to perform an analytic integration over Rj, but in

this case, this is not useful. Specifically, since,

∫ ∞

0

x2

exp[x] + A
dx =

−2

A

∞∑
k=1

(−A)k

k3
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then if we integrated analytically we would have to deal with an infinite series that

may be slow to converge. So instead we perform a numerical integration of R using

a boxcar average, such that,

σi = 4πneff

∫ ∞

−∞
dεjρ(εj)∆R

n=0∑
N

(n∆R)2

[
exp [2n∆R]

χij

+
fi

fj [p+ σj]

]−1

(C.70)

where we choose N sufficiently large and ∆R sufficiently small to obtain acceptably

small error. We can perform the integral over εj similarly, to obtain,

σi = 4πneff∆ε
∑

j

ρj∆R
N∑

n=0

(n∆R)2

[
exp [2n∆R]

χij

+
fi

fj [p+ σj]

]−1

(C.71)

where in the last line we also made the notational replacement ρj ≡ ρ(εj). The

meaning of the discretization here is that the εi and εj energy axes have been dis-

cretized identically, and the i,j subscripts designate function values at the respective

discretized energies. As with the spacial integral, to apply this approximation, it is

necessary to choose a finite range of energies over which to perform discretization,

and this range should cover a sufficiently wide energy space with a sufficiently fine

resolution to obtain adequate error.

We can solve Eqn. (C.71) for σi using the multidimensional Newton’s Method.

To do this, we first write,

gi = σi − λ
∑

j

ρj∆R
N∑

n=0

(n∆R)2

[
exp [2n∆R]

χij

+
fi

fj [p+ σj]

]−1

(C.72)

where,

λ ≡ neff4π∆ε (C.73)
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In this form, we see that the problem of solving for ~σ is now one of finding the values

of ~σ that zero the function ~g. We can accomplish this by guessing a solution to ~σ

and then computing the resulting value for ~g. Then we compute the Jacobian matrix,

with elements given by,

Jij = ∂gi/∂σj

= δij − λρj∆R
N∑

n=0

(n∆R)2

[
fi

fj [p+ σj]
2

] [
exp [2n∆R]

χij

+
fi

fj [p+ σj]

]−2

.(C.74)

Next we compute an adjusted guess for ~σ using the expression,

~σnew = ~σ − J−1 · ~g.

We then iterate until the errors (expressed by the values of ~g) are sufficiently small.

Having obtain a solution for ~σ, we then compute the discretized σS
i , from a dis-

cretization of Eqn. (C.63)

σS
i = λ

∑
j

ρj∆R
N∑

n=0

(n∆R)2

[
exp [2n∆R]

χij

+
fi

fj [p+ σj]
+

1

[p+ σi]

]−1

.(C.75)

With ~σ and ~σS computed, we finally turn to the calculation of the ε̃i(p) from a

discretization of Eqn. (C.60),

ε̃i(p) =
εi

p+ σS
i

+
1

p+ σS
i

λ
∑

j

ρj∆R
N∑

n=0

(n∆R)2

×
[
exp [2n∆R]

χij

+
fi

fj [p+ σj]
+

1

[p+ σi]

]−1

ε̃j(p) (C.76)
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which we can rearrange such that,

ε̃i(p)− 1

p+ σS
i

λ
∑

j

ρj∆R
N∑

n=0

(n∆R)2

×
[
exp [2n∆R]

χij

+
fi

fj [p+ σj]
+

1

[p+ σi]

]−1

ε̃j(p) =
εi

p+ σS
i

(C.77)

and which is then equivalent to the matrix equation,

(I −K) · ˜̃ε = ~c

where I is the identity matrix and,

Kij =
1

p+ σS
i

λρj∆R
N∑

n=0

(n∆R)2

[
exp [2n∆R]

χij

+
fi

fj [p+ σj]
+

1

[p+ σi]

]−1

ci =
εi

p+ σS
i

.

In this form, it is easy to see that we can obtain ˜̃ε(p) from,

~̃ε = (I −K)−1 · ~c. (C.78)

This completes the numerical calculation of the ε̃i(p). To compare our results

to experimental behavior, we want ε̃i(t), which in theory involves simply an inverse

Laplace transform. Because we must perform this transform numerically using a

discretized frequency space, our technique is to use an approximation called Zakian’s

algorithm. For the remaining example systems, the mathematical development will

complete with the calculation ε̃i(p), and it will be assumed that the conversion to ε̃i(t)

is carried out using Zakian’s algorithm as described in a separate section following

the last example system.
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C.5 Population Evolution for General Exponential

Hopping

While the specific case of polarons is of considerable interest, it is worthwhile to

consider a particular generalization of the exponential hopping model. Specifically,

we are interested considering

n(~R) = neff

ρ(ε) =
2

w

√
ln(2)

π
exp

[
−4ln(2)

ε2

w2

]
Wij = νχijexp

(
−2γ

∣∣∣~Ri − ~Rj

∣∣∣)

where here χij is given by,

χij =

 exp [− (βεj − εi) /kT ] χij < χmax

χmax otherwise
(C.79)

where β and χmax are new system parameters, and as before, w, ν, and γ are all set

to one to normalize energy, time, and space. The main difference between this case

and the previous one is that Eqn. (C.68) is no longer a valid form of fij, and we now

use instead fij = χ−1
ij . This yields,

σi = neff

∫ ∞

−∞
dεjd ~Rjρ(εj)χij

[
exp [Rj] +

χji

[p+ σj]

]−1

= neff

∫ ∞

−∞
dεjρ(εj)

∫ ∞

0

dRj4πR
2
jχij

[
exp [Rj] +

χji

[p+ σj]

]−1

. (C.80)

Using the same disctretization and boxcar average integral approximations as in the

previous section, we obtain,
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σi = neff4π∆ε
∑

j

ρj∆R
N∑

n=0

(n∆R)2χij

[
exp [n∆R] +

χji

[p+ σj]

]−1

(C.81)

and solving as before using multidimensional Newton’s method,

gi = σi − λ
∑

j

ρj∆R
N∑

n=0

(n∆R)2χij

[
exp [n∆R] +

χji

[p+ σj]

]−1

(C.82)

where,

λ ≡ neff4π∆ε (C.83)

and we have for the Jacobian,

Jij = δij − λρj∆R
N∑

n=0

(n∆R)2χij

[
exp [n∆R] +

χji

[p+ σj]

]−2
χji

[p+ σj]
2 . (C.84)

Turning to σS
i we have,

σS
i = neff

∫ ∞

−∞
dεjρ(εj)

∫ ∞

0

dRj4πR
2
j

[
exp[Rj]

χij

+
χji

χij [p+ σj]
+

1

[p+ σi]

]−1

= λ
∑

j

ρj∆R
N∑

n=0

(n∆R)2χij

[
exp [n∆R] +

χji

[p+ σj]
+

χij

[p+ σi]

]−1

(C.85)

and again we obtain the ε̃i(p) by solving,

~̃ε = (I −K)−1 · ~c (C.86)
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where from

ε̃i(p)− λ

p+ σS
i

∑
j

ρj∆R
N∑

n=0

(n∆R)2χij

×
[
exp [n∆R] +

χji

[p+ σj]
+

χij

[p+ σi]

]−1

ε̃j(p) =
εi

p+ σS
i

(C.87)

we have

Kij =
λ

p+ σS
i

∑
j

ρj∆R
N∑

n=0

(n∆R)2χij

[
exp [n∆R] +

χji

[p+ σj]
+

χij

[p+ σi]

]−1

(C.88)

ci =
εi

p+ σS
i

.

C.6 Population Evolution for Förster Transfer

It is straightforward to adapt the above analysis to the case of exciton diffusion by

Forster transfer in an amorphous medium with a Gaussian distribution of energies.

In this case, we have

n(~R) = neff

ρ(ε) =
2

w

√
ln(2)

π
exp

[
−4ln(2)

ε2

w2

]
Wij = χijν

R6
F∣∣∣~Ri − ~Rj

∣∣∣6 (C.89)

where the χij function describes the energy dependance of the transfer rate, and for

generality, we set fij = χ−1
ij . For Forster transfer, χij can take numerous specific

forms. However, since our analysis is not dependant on this choice, it is not in fact

necessary to define it. However, for illustrative purposes, it is sufficient to consider

a definition such as in Eqn. (C.79). As previously, neff , α, β and χmax are system
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parameters. Note that in our analysis w, ν and RF are all set to one to normalize

energy, time, and space respectively.

We begin with Eqn. (C.61) which yields for this model,

σi = neff

∫ ∞

−∞
dεjd ~Rjρ(εj)χij

[
R6

j +
χji

[p+ σj]

]−1

= neff

∫ ∞

−∞
ρ(εj)dεj

∫ ∞

0

dRj4πR
2
jχij

[
R6

j +
χji

[p+ σj]

]−1

(C.90)

It is possible to carry out the integral over R analytically:

∫ ∞

0

dR
R2

BR6 + A
=

1

3

∫ ∞

0

dx
1

Bx2 + A

=
1

3
√
AB

tan−1

(
x

√
B

A

)∣∣∣∣∣
∞

0∫ ∞

0

dR
R2

BR6 + A
=

π

6
√
AB

(C.91)

then we have that,

σi = neff
2

3
π2

∫ ∞

−∞
dεjρ(εj)χij

[
p+ σj

χji

]1/2

. (C.92)

We then discretize the system in energy and applying a boxcar average to for the

integration, yielding,

σi = neff
2

3
π2∆ε

∑
j

ρjχij

[
p+ σj

χji

]1/2

= λ
∑

j

ρjχij

[
p+ σj

χji

]1/2

. (C.93)

where
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λ ≡ neff
2

3
π2∆ε (C.94)

We then solve the problem as before using multidimensional Newton’s method, with,

hi = σi − λ
∑

j

ρj
χij√
χji

[p+ σj]
1/2 (C.95)

and the Jacobian is given by,

Jij = ∂hi/∂σj

= δij −
1

2
λρj

χij√
χji

[p+ σj]
−1/2 . (C.96)

Having obtained solutions for the σi in this way, we then compute the discretized

σS
i from Eqn. (C.63), yielding,

σS
i = neff

∫ ∞

−∞
dεjd ~Rjρ(εj)

[
R6

j

χij

+
χji

χij [p+ σj]
+

1

[p+ σi]

]−1

= neff

∫ ∞

−∞
dεjρ(εj)

∫ ∞

0

dRj4πR
2
j

[
R6

j

χij

+
χji

χij [p+ σj]
+

1

[p+ σi]

]−1

and following the same integration procedure as above, we get,

σS
i = neff

2

3
π2

∫ ∞

−∞
dεjρ(εj)χ

1/2
ij

[
χji

χij [p+ σj]
+

1

[p+ σi]

]−1/2

= λ
∑

j

ρjχ
1/2
ij

[
χji

χij [p+ σj]
+

1

[p+ σi]

]−1/2

(C.97)

which we can evaluate directly.

To finally obtain ε̃i(p), we turn to Eqn. (C.60), and expand the expression for
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gRS
ij ,

ε̃i(p) =
εi

p+ σS
i

+
neff

p+ σS
i

×
∫ ∞

−∞
dεjd ~Rjρ(εj)

[
R6

j

χij

+
χji

χij [p+ σj]
+

1

[p+ σi]

]−1

ε̃j(p) (C.98)

and integrating and discretizing this as for σS
i , we obtain,

ε̃i(p) =
εi

p+ σS
i

+
λ

p+ σS
i

∑
j

ρjχ
1/2
ij

[
χji

χij [p+ σj]
+

1

[p+ σi]

]−1/2

ε̃j(p) (C.99)

which we can rearrange to get,

ε̃i(p)− λ

p+ σS
i

∑
j

ρjχ
1/2
ij

[
χji

χij [p+ σj]
+

1

[p+ σi]

]−1/2

ε̃j(p) =
εi

p+ σS
i

(C.100)

which allows us to solve for the ˜̃ε(p) as before from

~̃ε = (I −K)−1 · ~c. (C.101)

where I is the identity matrix and,

Kij =
λ

p+ σS
i

ρjχ
1/2
ij

[
χji

χij [p+ σj]
+

1

[p+ σi]

]−1/2

ci =
εi

p+ σS
i

.
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C.7 Alternate Calculation of Population Evolution

for Forster Transfer

In the previous section we found that for Forster transfer, the integrals over space

could be integrated analytically to yield a quite elegant result. However, in practice,

one usually wants to set a lower bound on the transfer distance. Physically, the idea

is that in a real system, two molecules can not be arbitrarily close to each other, since

they have some physical extent and can not both occupy the same space. Therefore,

it is physically inaccurate to integrate Rj in the above integrals from zero to infinity,

but rather one should integrate starting from some finite rmin. While this is trivially

accomplished in the above polaron treatments by simply starting the sums over n from

rmin/∆R instead of zero, for the Forster transfer treatment given in the last section,

this doubles the numbers of terms in every expression. As a result, practically it is

better not to integrate over Rj analytically, and to instead utilize the same treatment

as presented in Section 4, but everwhere replacing exp [Rj] with R6
j .

In other words, to obtain the σi we solve using multidimensional Newton’s method

the following equation adpated from Eqn. (C.82),

gi = σi − λ
∑

j

ρj∆R
N∑

n=0

(n∆R)2χij

[
[n∆R]6 +

χji

[p+ σj]

]−1

(C.102)

where, as previously,

λ ≡ neff4π∆ε (C.103)

and the Jacobian adapted from Eqn. (C.84) is,

Jij = δij − λρj∆R
N∑

n=0

(n∆R)2χij

[
[n∆R]6 +

χji

[p+ σj]

]−2
χji

[p+ σj]
2 . (C.104)
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To calculate σS
i we adapt from Eqn. (C.85) to obtain,

σS
i = neff

∫ ∞

−∞
dεjρ(εj)

∫ ∞

0

dRj4πR
2
j

[
[Rj]

6

χij

+
χji

χij [p+ σj]
+

1

[p+ σi]

]−1

= λ
∑

j

ρj∆R
N∑

n=0

(n∆R)2χij

[
[n∆R]6 +

χji

[p+ σj]
+

χij

[p+ σi]

]−1

(C.105)

and again we obtain the ε̃i(p) by solving,

~̃ε = (I −K)−1 · ~c (C.106)

where adapting from Eqn. (C.87), we have,

ε̃i(p)− λ

p+ σS
i

∑
j

ρj∆R
N∑

n=0

(n∆R)2

×χij

[
[n∆R]6 +

χji

[p+ σj]
+

χij

[p+ σi]

]−1

ε̃j(p) =
εi

p+ σS
i

(C.107)

which yields

Kij =
λ

p+ σS
i

∑
j

ρj∆R
N∑

n=0

(n∆R)2χij

[
[n∆R]6 +

χji

[p+ σj]
+

χij

[p+ σi]

]−1

(C.108)

ci =
εi

p+ σS
i

.

C.8 Terms of Dyson Expansion of Ĝii in ∆i

To generate the terms in Eqn. (C.10) the key is to keep track of the summation indices

in Eqns. (C.14) and (C.15). The first three terms are trivial. Successive terms are

increasingly complicated, requiring the compilation of multiple summations into the

precise summation appearing in Eqn. (C.10). The first four terms are shown here.
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All this is required to obtain additional terms is patience. (One can also do this part

of the derivation without setting Wii to zero. While this approach generates more

terms, they fall into a more obvious pattern with which some may find it easier to

work.)

W order Generated Term Source Term

0 Ĝ0
ii Ĝ0

ii

2
∑

k 6=i Ĝ
0
iiWikĜ

0
kkWkiĜ

0
ii Ĝ0

ii∆iĜ
0
ii

3
∑

m6=i,k

∑
k 6=i Ĝ

0
iiWikĜ

0
kkWkmĜ

0
mmWmiĜ

0
ii Ĝ0

ii∆iĜ
0
ii

4
∑

r 6=m6=k 6=i Ĝ
0
iiWikĜ

0
kkWkmĜ

0
mmWmrĜ

0
rrWriĜ

0
ii Ĝ0

ii∆iĜ
0
ii∑

m6=i,k

∑
k 6=i Ĝ

0
iiWikĜ

0
kkWkmĜ

0
mmWmkĜ

0
kkWkiĜ

0
ii Ĝ0

ii∆iĜ
0
ii∑

m6=i

∑
k 6=i Ĝ

0
iiWikĜ

0
kkWkiĜ

0
iiWimĜ

0
mmWmiĜ

0
ii Ĝ0

ii∆iĜ
0
ii∆iĜ

0
ii

· · · · · · · · ·
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Appendix D

Papers and Patents

D.1 Published Papers

C. F. Madigan, M.-H. Liu, and J. Sturm. Improvement of output coupling efficiency

of organic light-emitting diodes by backside substrate modification. Appl. Phys.

Lett., 76:1650, 2000.

C. F. Madigan, T. R. Hebner, J. Sturm, R. A. Register, and S. Troian. Lateral dye

distribution with ink-jet dye doping of polymer organic light emitting diodes. Mat.

Res. Soc. Proc., 624:211, 2000.

M. W. Mosckewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-

neering an Efficient SAT Solver. Proc. of the 38th Conf. on Design Automation, 530,

2001.

L. Zhang, C. F. Madigan, M. W. Mosckewicz, and S. Malik. Efficient Conflict Driven

Learning in a Boolean Satisfiability Solver. ICCAD ’01, 279, 2001.

C. F. Madigan and V. Bulović. Solid State Solvation in Amorphous Organic Thin

Films. Phys. Rev. Lett., 91:247403, 2003.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović. Sensitivity gains in

chemosensing by lasing action in organic polymers. Nature, 434:876, 2005.
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C. F. Madigan and V. Bulović. Modeling of Exciton Diffusion in Amorphous Organic

Thin Films. Phys. Rev. Lett., 96:046404, 2006.

P. Annikeeva, C. F. Madigan, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and

V. Bulović. Photoluminescence of CdSe/ZnS Core/Shell Quantum Dots Enhanced

by Energy Transfer from a Phosphorescent Donor. Chem. Phys. Lett., in press.

D.2 Patent Applications

M. Moskewicz, C. Madigan, and S. Malik. Method and system for efficient imple-

mentation of boolean satisfiability. No. 20030084411, May 1, 2003.

M.-H. Lu, J. C. Sturm, C. F. Madigan, and R. Kwong. Increased emission efficiency

in organic light-emitting devices on high-index substrates. No. 20040007969, January

15, 2004.

A. Rose, T. M. Swager, Z. Zhu, V. Bulović, and C. F. Madigan. Organic materials

able to detect analytes. No. 20060073607, April 6, 2006.
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[65] R. Jankowiak, B. Ries, and H. Bässler. Spectral diffusion and triplet exciton

localization in an organic glass. Phys. Stat. Sol., 124:363, 1984.

[66] J. M. Jean, C-K. Chan, G. R. Fleming, and T. G. Owens. Excitation transport

and trapping on spectrally disordered lattices. Biophys. J., 56:1203, 1989.

[67] J. Jortner, S. A. Rice, and R. Silbey. In O. Sinanoglu, editor, Modern quantum

chemistry, Vol. 3, page 139. Academic Press, New York, 1965.

[68] L. Kador. Pressure effects on hole-buring spectra in glasses: Calculation beyond

the gaussian approximation. J. Chem. Phys., 95:846, 1991.

470



[69] L. Kador. Stochastic theory of inhomogeneous spectroscopic line shapes rein-

vestigated. J. Chem. Phys., 95:5574, 1991.

[70] L. Kador, S. Jahn, D. Haarer, and R. Silbey. Contributions of the electrostic

and the dispersion interaction to the solvent shift in a dye-polymer system, as

investigated by hole-burning spectroscopy. Phys. Rev. B, 41:12215, 1990.

[71] Sir W. Thomson Lord Kelvin. Reprints of Papers on Electrostatis and Mag-

netism. MacMillian and Co., London, 1872.

[72] S. P. Kennedy, N. Garro, and R. T. Phillips. Time-resolved site-selective spec-

troscopy of poly(p-phenylene vinylene). Phys. Rev. B, 64:115206, 2001.

[73] H. R. Kerp and E. E. van Faassen. Nord. Hydrol., 1:1761, 1999.

[74] R Kersting, U Lemmer, RF Mahrt, K Leo, H Kurz, H Bässler, and EO Gobel.
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[133] R. Richert, B. Reis, and H. Bässler. Time-dependent non-equilibrium exciton

diffusion in an organic glass. Phil. Mag. B, 49:L25–L30, 1984.
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