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Abstract

Recently, the operating frequency range of quantum-cascade lasers (QCLs) has been
extended from the mid-infrared to the far-infrared beow the Reststrahlen band (THz
frequencies). Especially for THz QCLs, a detailed understanding of the dynamics
of the electron transport is essential in order to extend their operation to longer
wavelengths and higher temperatures. Compared to mid-infrared structures, the small
subband separations in THz QCLs lead to LO-phonon scattering rates that are highly
temperature sensitive and increases the importance of scattering processes which
favor small transition energies, such as electron-electron (e-e), electron-impurity (e-
imp)and electron-interface roughness scattering. This thesis details the development
and calculation results for different models for the electron transport in THz QCLs.

Using a semi-classical Monte Carlo simulation, including e-e and e-LO-phonon
scattering as well as e-imp scattering, the current density, population density and gain
in two THz QCLs were investigated. We find that the inclusion of e-imp scattering
in the calculations is crucial when modeling the intersubband transport dynamics in
these devices. However, the calculated gain and current density exceed the measured
values due to the absence of wavefunction localization and dephasing scattering in
this model.

To describe coherent electron transport, a density matrix (DM) approach in combi-
nation with a tight-binding model was incorporated into the Monte Carlo simulation.
The scattering events were treated semi-classically but contributed to dephasing scat-
tering. In addition, a phenomenological "dephasing rate" was introduced to take into
account dephasing caused by interface roughness scattering. This model was used
to investigate the influence of dephasing on transport through a barrier. Addition-
ally, current densities, populations and electron temperatures were calculated for two
quantum-cascade structures and compared to a semi-classical simulation. We find
that the inclusion of coherent transport and dephasing in the calculations is essential
when transport is dominated by transitions between weakly coupled states.

As an alternative to the density matrix approach, a simulation based on the non-
equilibrium Green's function formalism was implemented, based on the model de-



scribed by Wacker [1]. We developed simulations which include momentum-dependent
and momentum-independent scattering matrix elements. Scattering, including e-
LO-phonon and e-imp scattering, is handled quantum-mechanically and takes into
account the coherent interaction between states, as opposed to the semi-classical ap-
proach used in the DM picture. A model was developed for e-e scattering, which
produced thermalized subband electron distributions. In addition, several quantum-
cascade devices were simulated and the calculation results were compared to the DM
Monte Carlo results and measurements. We find that, while the NEGF simulations
with momentum-dependent scattering matrix elements and e-e scattering predict the
most accurate results, the simple NEGF simulation originally implemented by Wacker
and the DM simulation can also yield acceptable results at a much reduced compu-
tational expense.

Thesis Supervisor: Qing Hu
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Introduction

The far-infrared frequency range is roughly defined as 30-300 pm or 4-40 meV. Often

this range is also referred to by the term terahertz radiation, since 4-40 meV corre-

sponds to 1-10 THz (Fig. 1-1). Far-infrared (FIR) or terahertz (THz) electromagnetic

radiation is important in many applications such as radio astronomy, environmental

monitoring, plasmon diagnostics, laboratory spectroscopy, telecommunications etc.

and in the characterization of nanoscale condensed matter materials. In recent years,

the generation, propagation and detection of FIR or THz electromagnetic radiation

using two-dimensional semiconductor systems or other semiconductor nanostructures

has become one of the most rapidly expanding fields in the photonics, optoelectronics

and condensed matter physics communities.

Diode lasers are ideal sources because they are cheap, compact and very efficient.

However, the semiconductor band gap places a limitation on emission frequency. The

longest-wavelength diode lasers (- 30pm) are based on narrow gap lead-salt semicon-

ductors [3]. While these lead-salt lasers have been quite successful for high resolution

spectroscopy, they are still limited to cryogenic operation and provide relatively low

power. On the other end of the spectrum, semiconductor transistors can be used to

make 100 GHz oscillators [4]. Molecular gas lasers are currently the only practical

laser sources for the far infrared, but they have limited lasing frequencies. They are
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Figure 1-1: The terahertz spectrum.

also somewhat unwieldy as they require high voltage supplies and are usually rather

bulky.

Intersubband lasers have several advantages over conventional semiconductor lasers.

Most useful is the fact that the emission frequency is chosen by the design of the

widths of the quantum wells, and can hence be tailored to the application. This

is especially useful for infrared applications where small bandgap materials become

difficult to find and work with. Also, since the envelope functions extend over a well

(tens of Angstroms), the dipole moment for the intersubband transition is typically

several orders of magnitude larger than that of an atomic transition. These features

promise more efficient lasers.

1.2 Intersubband Lasers

In 1970, Esaki and Tsu [5] proposed using heterostructures for applications in opto-

electronics. The use of intersubband transitions to create a laser was first suggested

by Kazarinov and Suris [6] in 1971. Since then, electrically pumped quantum cascade

lasers (QCLs) have been developed for wavelengths up to 161 pm [7]. Quantum wells

are made by growing layers of different band gap semiconductors, such as GaAs and

A1GaAs, on top of each other, creating a stack like structure. Since the bandgap of

GaAs is smaller than that of AlGal_xAs, the ensuing band gap profile gives rise to

potential wells. The potential well height is determined by the Al alloy concentration

of the barrier material.
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Figure 1-2: Subbands in a quantum well. The potential well caused by the AlGaAs
/ GaAs quantum well gives rise to bound states localized in the well. In k-space, the
subbands are parabolic as the electrons are not confined in the plane of the well.

These quantum wells perturb the crystal periodicity in the growth direction. New

electron energy states are located in these quantum wells, confined in the growth

direction but still free in the plane of the well. As shown in figure (1-2), the conduction

band is quantized into subbands.

The quantum well is similar to an impurity atom in that localized states are

created. In momentum space, the subbands are parabolic as the electrons are not

confined in the plane of the well. The exact energies of the subband minima are

dependent on the well width and the depth of the potential well. The energies can

be approximated by the formula for infinitely deep wells:

E h2 .71".
E 2m* ( (1.1)2m* L

where m* is the electron effective mass in GaAs, L is the well width and h is the

reduced Planck's constant. The energy levels for a well with a finite barrier are lower

than in equation (1.1). By choosing the well width and the barrier heights we can

tailor the quantum levels so that transitions between E, and En will emit photons

in the far infrared. Very interesting from an engineering point of view is the ability

to tune the energy levels and the dipole moments by applying a voltage bias. The

E

E2

A



Figure 1-3: Active region for the 3.4-THz QCL. Indicated are the conduction band
profile and the magnitude squared of the wavefunctions. The arrows indicate the
electron flow.

Stark shift induced by the electric field shifts the energy levels and alters the potential

profile. This is a very powerful tool when designing quantum wells.

Kazarinov and Suris [6] were the first to propose the use of intersubband transi-

tions to design a laser. The first QCL was demonstrated by Federico Capasso in 1994

at Bell Labs for a wavelength of 4.2 pm, [8] and in 2001 Alessandro Tredicucci de-

veloped the first far-infrared QCL, operating at 68 pm. [9] QCLs have since achieved

significant performance improvements and are poised to become the dominant laser

sources in the mid- and far-infrared spectral ranges. Lasing has been obtained at

wavelengths ranging from 3.4-24 im [10, 8] in the mid-infrared and 60-161 pm in the

far-infrared.

The general principles of how a QCL works are illustrated in figure 1-3 for the

example of a 3.4-THz laser. [11] By applying a voltage bias, a potential staircase is

created in which each identical step consists of multiple quantum wells, termed a

"module". The operation of this device is based on a radiative transition between

levels 5 and 4. Note that at terahertz frequencies, the non-radiative scattering lifetime

T5 is typically much shorter (picoseconds) than the radiative lifetime (microseconds),

~~ I W \I ~2i
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so radiative transport plays no role below the lasing threshold. Depopulation of n=4

is achieved by its strong interaction with another level n=3, which is subject to fast

resonant longitudinal optical phonon scattering into the collector/injector states n=2

and n=1. Electrons from these states are then injected into the excited radiative

level of the next module, allowing the previously described process to repeat. A key

feature of QCLs is the ability to cascade N modules together, so that a single injected

electron can emit many photons, which allows for a differential quantum efficiency

greater than unity.

Especially for THz QCLs, a detailed understanding of the dynamics of electron

transport is essential in order to extend their operation to longer wavelengths and

higher temperatures. Compared to mid-infrared structures, the subband separations

in THz QCLs are much smaller, which greatly influences electron transport. In partic-

ular, since the radiative transition energy hw is smaller than the longitudinal optical

(LO) phonon energy hwLo, the non-radiative relaxation rate is highly temperature

dependent due to thermally activated LO-phonon scattering. The reduced subband

separation also increases the importance of scattering processes which favor small

transition energies, such as electron-electron (e-e), electron-impurity (e-imp), and in-

terface roughness scattering. Therefore, in a proper analysis of electron transport in a

THz QCL, all the aforementioned elastic and inelastic scattering mechanisms should

be accounted for. Indeed, our calculations clearly indicate that electron-phonon (e-ph)

and e-e scattering alone are insufficient to explain the measured current densities. [12]

Most QCL analyses and calculations [12, 13, 14, 15] have only considered e-ph

and e-e scattering. Although the effects of impurity [16] and interface roughness scat-

tering [17] on the spontaneous emission linewidth are well documented and generally

accepted, their importance for electron transport in QCLs has been largely ignored.

The study of e-imp scattering in the electron transport dynamics has been mostly re-

stricted to the relaxation of excited carriers in quantum wells. [18, 19] In section 2.2.4,

we show that the importance of e-imp scattering in electron transport in QCL rivals

or even exceeds that of e-e scattering, and that it needs to be taken into account in

a proper model of the electron transport dynamics.



Due to the often small intersubband energy separations in THz QCLs, the injection

barrier in these devices is often quite thick to limit the interaction between the injector

and the subbands in the next module. This design ensures that electrons will only be

injected into the next module when the injector state lines up the excited radiative

state in that module, and that parasitic currents are minimized. Therefore, resonant

tunneling is a critical transport mechanism in THz QCLs, and as such it is the

subject of active theoretical and experimental research. [20, 21, 22] However, while a

qualitative understanding is straightforward, it is not always clear how to quantify the

exact effect of coherent and incoherent transport. The effects of resonant tunneling

and dephasing are most important when describing the transport between two weakly

coupled energy states, e.g. tunneling through a thick barrier such as an injector

barrier. In the calculation and analysis of QCLs, the localization of wavefunctions

due to dephasing scattering is often disregarded, which can lead to unphysical results

and limit the utility of the simulation. [23] Therefore, it is necessary to include a model

for sequential tunneling to analyze the electron transport in QCLs over a broad bias

range.

We investigated two different approaches to implement coherent transport in our

simulations, namely the density matrix formalism and the non-equilibrium Green's

function (NEGF) formalism. The density matrix (DM) formalism provides an easily

accessible description of coherent electron transport, and is widely used to model

optical and electronic transitions. [24] On the other hand, simulations using NEGF

analysis [1] have shown promising results recently, but the complexity and computa-

tional burden of this method far exceed that of the DM approach and provide a less

intuitive physical picture.

To assess the utility of a DM or NEGF model of electron transport in THz QCLs,

simulation tools were developed for both approaches. This thesis describes the theory

and implementation of these simulations, and compares the calculation results for the

different models with each other and experimental measurements.



Chapter 2

Scattering and transport

2.1 Optical Transitions

The interaction of electromagnetic waves (light) and matter (electrons in the semi-

conductor) is the core of an optical device. Quantum mechanically, the interaction

between photons and electrons in the semiconductor can be described by the Hamil-

tonian

H = (p - qA)2 + V(r), (2.1)
2m*

where A is the magnetic vector potential, m* is the effective electron mass, and q is

the carrier charge (q = -e for electrons). Neglecting the term quadratic in A (a good

approximation for most practical optical field intensities), and applying the Coulomb

gauge V -A = 0, we can distinguish the perturbation Hamiltonian H' due to the

electron-photon interaction:

H' x A- p. (2.2)
m*

However, it is possible to take the quadratic term into account without making the

perturbation Hamiltonian more cumbersome. We can do this by by explicitly writing

the wavefunction / as the product of a phase factor and the remaining wavefunction

i - I eieA -r/h. (2.3)



Substituting this into the Schrddinger equation with Hamiltonian (2.1), we find:

pO = eieA-r/ h (p + eA)P', (2.4)

p2  [a a 1
• = ih a- - e -- -r 1', (2.5)2m* It at

and, as E = -aA/Ot, the Schr6dinger equation for the interaction of a photon with

an electron can be written as a function of the amplitude of the incident optical field

E:

-2* ]eE- r -' = ih , (2.6)

The perturbation Hamiltonian is:

H' = -eE - r. (2.7)

The physical interpretation of this interaction is more intuitively obvious than in the

description with a vector potential. The radiative field acts as a force on the electron

charge cloud, thus accelerating it and generating radiation (emitting a photon) or

exciting the electron (absorption of a photon).

In order to describe the particle-particle interaction between photon and electron,

we have to quantize the electric field E. This can be done similarly to the case of a

harmonic oscillator. A photon then corresponds to one quantum of excitation in an

oscillator:

E(r, t) = -i Fýw [at e- inKr + iwt - a er-iwt (2.8)

The operators a and at are photon annihilation and creation operators, respectively.

They correspond to the absorption and emission of photons by mediation of an oscil-

lating electric (electromagnetic) field with angular frequency w. This is true even if

that field is a vacuum field, as is the case for spontaneous emission.

The optical transition rate between an initial state (Ei, ki) and final state (Ef, kf)

can be described using Fermi's Golden Rule:

2-
Wif = - I (Pf H'(r) j ) 12 j(Ef - E, - hw). (2.9)



Here the delta function assumes a zero linewidth. In order to introduce a finite

linewidth, the delta function can be replaced with the proper line-shape, usually a

Lorentzian with linewidth F. The Lorentzian is a good model for line-shape broad-

ening due to a finite lifetime or dephasing scattering.

6(E/ - Ej - hw) -- (2.10)
(Ef - E, - hw) 2 + (r/2)2 (

More generally, in most cases a number of final states is available, with density of

states p(Eif). As each state is equally probable as a final state for the transition, we

obtain (zero linewidth)

Wf = - I-(,f uH'(r)|4i)12p(Ef )6(Ef - E, - hw). (2.11)

If we neglect non-parabolicity, the subbands in one particular band track each

other. The energy separation between two states with identical in-plane wave vector

remains constant for any two given subbands. Assuming only vertical transitions

(dipole selection rule), this means that p will be given by the subband density of

states for intersubband transitions.

We can write the initial (photon density nph) and final states (nph + 1) in an

intersubband transition as:

eikt,i rt

0- = Fi(z)uo,i, (2.12)

eikt,f-rt

e-- Ff(z)uo,f, (2.13)

where A is the in-plane area of the quantum well and F(z) is an envelope function.

As both the Bloch functions u belong to the same band, and as they are almost

independent of k, we can assume uo,i r o uo,f. The matrix element Hif can then be

written:

i w + 1) • eik F(z)jerI , F(z) (uo,luo,), (2.14)
2Ve (I/V 1 /(

. w(n,h + 1)Hif h -+ 1 6 (F1(z)lezlFi(z)) 3 kt,f,kt,i- (2.15)
H,1 2Vc



In the above equation we made use of the fact that the F(z) can be considered

a constant on the scale of a lattice spacing. This is a very good assumption for low

level states and quantum wells wider than a few monolayers. This is generally true

for the wave functions we are interested in.

The delta function in (2.15) corresponds to a conservation of in-plane momentum.

The momentum carried by the photon, kph, is of the order of 2X/A (A - 100im),

which is negligible compared to the electron wave vectors ki, k/ of the order of

27/a, a being the lattice constant (order of magnitude 5 A). Therefore we can write

kt,f _ kt,i.

The matrix element Zif = (FflzjFi) is called the dipole matrix element between

the initial and final states. The dipole matrix element can be used as a gauge for

the strength of the optical intersubband transition. Due to the dimensions of the

quantum wells and their (bound) energy levels, Zif in intersubband transitions (- 30

A) can be a lot larger than in an atomic system (- 2 A). During the design of a

quantum well structure, we will try to maximize the dipole moment associated with

the targeted intersubband transition.

Also apparent from (2.15) is a dipole selection rule for intersubband transitions.

Only an electromagnetic wave with its electric field polarized along the z-axis (the

quantum well growth axis) will be generated or absorbed in an intersubband transi-

tion.

Using Fermi's Golden Rule, the intersubband transition rate for stimulated emis-

sion (into one specific optical mode, i.e. the same one as the incident wave) can be

written as:

Wi e = • n7h 6(E, - h- w). (2.16)

The transition rate is directly proportional to the intensity of the incident field

(~ nph). Equation 2.16 also shows that the transition rate decreases with increasing

wavelength. The expression for (stimulated) absorption is identical to the one for

stimulated emission.



For spontaneous intersubband emission, we have to sum over all available final

photon states. Taking into account a 3D optical mode density of (87rVn3 E 2)/(h 3 C3 ),

the transition rate is:

e2 W3 Z2W s3  3 if (2.17)
if,sp 37rEohc3

However, in far-infrared optical quantum electronic devices, the transition usually

takes place inside a two-dimensional optical cavity with thickness t, which is at the

same scale or smaller than the wavelength (50-100 tpm). This cavity can consist of

a metal or plasma waveguide, confining the electromagnetic wave in the z-direction

and limiting the optical mode density to A/(27r)2. This yields a 2D intersubband

transition rate of

W 2 D - e2nw2Zif (2.18)

if,sp - 2tcEohc2 ,

scaling inversely proportional to the cavity thickness. Compared to the 3D expression,

this dependence replaces a 1/A dependence. This is shown more clearly if we look at

the ratio of W3D to W2D

W2D  - 4 (2.19)

i f,3sp A

The microcavity effect will increase W2D over the 3D case if the thickness of the

cavity is smaller than the wavelength. Note that a microcavity only has an effect on

the spontaneous emission rate. Stimulated emission, and hence gain, are not affected

as all photons are coupled into one single mode. How many modes are available, is

not important.

Optical gain is defined as the relative increase of a wave intensity per length unit

as the wave propagates through the medium : dl/dx = g(w)I. To find the expression

for optical gain, we subtract total absorption hwNfWab from total stimulated emission

hwNiWst. With beam intensity I =. hw- we find from (2.16):

e2nZ2f
Wst = I I6(E 1 - Ej - hw), (2.20)



and

Neg(w)(Ef - EA - hw). (2.21)
2hneoc

Here AN = Ni - Nf is the population inversion between initial and final subbands. If

the transition has a finite linewidth Af, the delta function in (2.16) is replaced with

a Lorentzian line-shape and the maximum gain is:

ANe2wZfi
90 = r 2n . (2.22)7rh2 rncAf

2.2 Non-radiative transitions

2.2.1 Phonon scattering

The atoms in a semiconductor lattice are linked together with chemical bonds. These

bonds can be strictly covalent or contain a degree of ionicity, as is the case between

Ga(-) and As(+) in GaAs. Still, the atoms are constantly in motion, vibrating around

their equilibrium lattice position, each atom a tiny harmonic oscillator. As the atomic

vibrations are closely coupled through their common bonds, the atomic vibrations can

be seen as part of larger lattice vibrations, which exist in several modes (see figure

(2-1).

Similarly as with an electromagnetic field, each vibration mode can be quantized.

A quantum of excitation in one mode is called a phonon, and each phonon can

be characterized by a wave vector q and angular frequency w. Like an electron or

photon, an unconfined phonon can then be described by a (non-normalized) plane

wave function eiq*.

Similarly as for electrons, the lattice periodicity gives rise to a Brillouin-zone type

E - q phonon dispersion relation. The lower branches represent the acoustic phonon

modes, characterized by the neighboring atoms being in phase. In the longitudinal

mode, the atomic displacements are in the same direction as the direction of energy

transfer, while in the the transverse mode the atomic displacements are perpendicular

to this direction. In optical phonon modes, the displacements of neighboring atoms

are in opposite phase.
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Figure 2-1: Room temperature dispersion curves for acoustic and optical branch
phonons in GaAs, obtained by inelastic neutron scattering. Adapted from
Blakemore [2].

As shown in the figure, the energy of the optical phonons is almost independent

of q, and in calculations longitudinal optical (LO) phonons are usually assumed to

have one energy (hwLo = 36 meV in GaAs). Because of the large dipole moment

induced by neighboring ions, LO phonons couple strongly with electrons in polar

semiconductors, provided enough energy is available.

As the phonons themselves represent the motion of atoms which are centers of

charge, they also represent time-dependent perturbations of the crystal potential and

can therefore scatter charge carriers. The electron-phonon interaction, i.e. creation

and absorption of phonons, can be quantized through creation and absorption oper-

ators. The perturbation Hamiltonian H' is very similar to (2.8):

H' = E a(q) [e - i q' r bqt + e iq -r bq]. (2.23)
q

To find the total scattering rate, we sum over all q in the above equation. a(q) is the

electron-phonon coupling strength.

LA phonons are most important for low energies or low temperatures. In these

cases they correspond to long wavelength deformations of the crystal lattice. The



interaction strength can be expressed as [25]:

2 _WD2
a(q)2 = D (2.24)2pVc2'

Here D refers to the deformation potential, V is the crystal volume, p the material

density and c, the (longitudinal) speed of sound in the material.

For polar semiconductors such as GaAs, interactions with LO phonons are most

important. The LO phonon interaction strength is [26]:

a(q)12 = hLOe2(cs - ) (2.25)
2cscoVq2  , (2.25)

where E, and coo denote the relative permittivity of GaAs at frequencies lower and

higher than optical frequencies, respectively. Due to the 1/q 2 dependence, interactions

with LO phonons at the zone center are favored over transitions involving a large

momentum transfer. Also, the LO phonon threshold energy (36 meV for GaAs) causes

a sharp temperature dependence. This effect is especially important for far-infrared

transitions, where the subband energy spacing is less than hWLo. Here, hot carriers

can open up parasitic LO phonon channels, drastically altering average scattering

times. This can be detrimental to the working of the device.

We can adapt the bulk phonon expression to the 2D case by splitting the real

space dependence of the Hamiltonian in components along and perpendicular to the

growth axis.

H' = e r-tLOe2(Es - Eoo) 1/2 e-iqt-rt e-iqzz (2.26)
q 2eECoocoVq2  --

To assess the transition rate between an initial state ki on subband i and a final state

kf on subband f, we use Fermi's Golden Rule:

Wki-k,- = H~ f 6(Ei(k1) - Ef(kf) - hw(q)). (2.27)

We can rewrite the matrix element H'f:

Hfi = a(q)Aif(qz) 6ki-kf,qt, (2.28)

where Ai, = J+ Oft(z) Oi(z) eiqzdz.



The form factor Aif contains the dependence on the electron wave functions.

Summing over all possible kf, we find the total rate for a LO phonon mediated

transition from the initial state ki in subband i to a state in subband f :

Wk, = 27 E l Ia(q)12 IAs(q)12 6(Ei - Ef - hw(q)). (2.29)
kf qt qz

We assume parabolic subbands and hw(q) ; hwLo. The electrons in subband i

are thermalized with electron temperature Te,i, and their energy distribution can be

described using a Fermi-Dirac distribution around a chemical potential (Fermi energy)

EF:

1
f(E)E= m (2.30)

e kTei +1

As phonons are bosons, their energy distribution is the Bose-Einstein function:

1
NLo(E) = = (2.31)

e kTph -1

Using the momentum conservation qt = ki - kf from (2.28) the LO phonon scattering

rate can be written:

e2 (s - COO)WLO m* + IAO y (qz)12
47r2EOfoofh2 q2

x (NLo(q) + 1) H(Ek + AEif - hwLo). (2.32)

Ei is the kinetic energy of the electron in the initial subband, Ek = -h 2k2 /2m*. The

energy to create a phonon can be obtained from both the electron kinetic energy and

potential energy, i.e. the subband separation. This is reflected in the step function

H(Ei + AEif - hwLo). It is possible to transform the expression for the scattering

rate by Fourier transforming the form factor:

Wk =e 2 (c8 - Eoo) WLO m* I dO (1 - f f(E) IFFi(qt)j
41rEOEiEfh 2  qt

x (NLo(qt) + 1) H(Ei + AEif - twLo). (2.33)

with

F = Jdz f dz' ftW(z)Oi(z)fW(z')it(z'), (2.34)



and 0 is the angle between qt and the x-axis.

Usually we can assume that the phonon temperature Tph is close to the lattice

temperature Tt. For experiments where the device is being tested in a cryogenic

environment, mounted on a cold plate, this means that LO phonons are frozen out.

The equilibrium LO phonon population is negligible and scattering is dominated by

the phonon emission process.

However, resonant LO-phonon scattering can result in the generation of an abun-

dance of phonons with a very similar momentum. Due to this non-equilibrium phonon

population, the reabsorption of the hot LO-phonons can become significant. For a

resonant transition (TLO f0.3 ps) from an upper subband with a population density

ni, most phonons are generated with a momentum q • 0, and the generation rate of

LO-phonons RLO can be approximated by:

RLO = _. (2.35)
TLO

For an electron gas with a temperature of 60 K (average E4 = kTe,i e 5 meV), an

electron with kinetic energy Ej will be scattered by a LO-phonon with a momentum

qt ranging between 0 and 2ki = 2 2m*E/h 2 x 108 m'. However, LO-phonon

scattering is much faster for small qt due to the 1/qt dependence in Eq. 2.33 so the

contributions to the total scattering rate from phonons with large qt can generally

be neglected compared to small q,. To simplify the problem, we assume the phonons

are spread uniformly over momentum space with qt < qm" = 1 x 108 m- 1. For a

LO-phonon dissociation time I 3 SL s 5 ps, the non-equilibrium phonon occupation

number N -eL is given by:

= RLOTr (2m)2  (2.36)

Absorption of LO-phonons will become important if it rivals LO-phonon emission,

i.e. if NLn' -M 1 which happens for a population density of

n (2r) L = 4.7 x 109 cm- 2. (2.37)
rqmax TLO
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Figure 2-2: Various intersubband carrier-carrier scattering mechanisms for a two-
subband system

2.2.2 Electron-electron scattering

With increasing population density, electrons are more and more likely to interact

and scatter. Especially in cases where LO-phonon scattering is not possible or very

limited, e-e scattering is the main scattering mechanism. In this section we will be

using the Hartree approximation, in which we neglect the "exchange energy" caused

by the anti-symmetry in the real space wave function of a two-electron state if the two

electrons have the same spin. Inclusion of this "exchange energy" adds considerable

complexity to the problem (Hartree-Fock), effectively making the problem intractable.

The perturbation Hamiltonian is an unscreened Coulombic potential:

H' = 4 (2.38)
47rcr'

with r the distance between the electrons and E = cEE the dielectric permittivity of

the semiconductor. At its simplest, we can represent electron-electron interaction as

a two-body process involving two isolated carriers. As there are two initial and two

final states, there are a lot more scattering possibilities than in the case of LO-phonon

scattering, which involved one initial and one final state. In figure (2-2), various

scattering mechanisms for intersubband scattering are illustrated. The transition

22 --- 11 22 --- 21
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Figure 2-3: Various intrasubband carrier-carrier scattering mechanisms for a two-
subband system

from subband 2 to subband 1 can be split into three contributions, 22-11, 22-21 and

21-11. The 22-21 and 21-11 transitions are Auger-type transitions, with one electron

relaxing down to a lower subband while giving its excess energy to another electron

which scatters higher into its original subband. Also, there are scattering events

which don't affect the number of electrons in a subband, as illustrated in figure (2-3).

22-22 is a "pure" intrasubband scattering event. Even though these intrasubband

e-e scatterings don't change the subband populations, they are very important for

thermal equilibrium in and between subbands.

The initial and final states are composed of two electron wavefunctions, and are of

the form I"12) = 1'1)10 2 ). The collision probability between electrons with equal spin

polarity is lower due to an exchange term (related to Pauli's exclusion principle), and

therefore only electrons with opposite spins are taken into account here [27]. Taking

plane waves for the electron wavefunctions, the matrix element Hfi becomes:

/ e-ikf'r' e-ikg-r't e2  -iki.rt e-ikj r't

Hf = 7(z) e(z') 4- (z) e(z') e'I (2.39)

where the initial electron states are labeled i and j, and the final states f and g. Note

that, for simplicity, we are working with the unscreened Coulombic potential. The

21 -: 12



separation of the carriers is:

r = Jrt - r't2 + (z - z')2.  (2.40)

Therefore we obtain:

e2  +0o +oo

Hf 4xA-oo e-o
ei(ki-rt+kj.r't) e-i(kr-rt+kgt) (241)

x dr- dr'+ dz dz'. (2.41)
Irt - r't12 + (Z - Z

Expanding the Coulombic potential in a Fourier series, and substituting Hff into

Fermi's Golden Rule gives the scattering rate of a carrier in subband i. Integrating

over all the states of the second carrier (given by kj) and introducing Fermi-Dirac

distribution functions to account for state occupancy, we find

eW = 2fh(e4)2  A (qt) 12f(kj) [1 - ff(kf) [1 - fg(kg)]

x 6(kf + kg - k - kj) 6(Ef + Et - E t - Ej) dk, dki dkj. (2.42)

where the energies Et refer to the total energy of the corresponding carrier, i.e. sub-

band minimum energy plus kinetic energy. Aijfg is a form factor and a function of

qt = -ki - kfl:

Aijfg(qt) = J+ J._ tf(z) v/t(z') 'p(z) ,j(z')e-'~i~tlz-z' dz' dz. (2.43)

The delta functions express the conservation of momentum and energy in the scatter-

ing event. We can see that carrier-carrier scattering will be largest for small exchanged

wavevectors. Assuming parabolic subbands with Et = E + h2k2/2m*, we find:

m*e
4  1AijA g(qt) 2

W = Pj fg9(kj, kf, kg)

k2 + k 2- k2 + (E + E - E - E) dkf dkj,(2.44)

with Pj,,g (kj, kf, kg) representing the probability functions.

It is useful to introduce two new variables, the relative wavevectors

kij = kj - ki, (2.45)



Figure 2-4: Conservation of momentum in e-e scattering.

kf, = kg - kf. (2.46)

The energy conserving delta function then allows reduction of this integral to:

me Ajjg(qt Pj,f,2(kj, kf , kg)dO dkj, (2.47)
7rh'(167rf)2 1o qt

and 0 is the angle between kij and kfg, as illustrated in figure (2-4). Although (2.47)

looks simple, the actual computation is rather time-consuming and resource-intensive.

Certain simplifications, like ignoring final-state Fermi blocking, are common. This is

a fair approximation for low carrier densities or high electron temperatures.

At higher electron densities, the interaction can no longer be described as solely

between two isolated carriers. The reaction of other carriers to the Coulombic poten-

tial will effectively "screen" the disturbing field, thereby reducing the perturbation.

The probability of scattering will decrease as compared to the non-screened case.

One of the simplest models for screening considers only the carriers within the

same subband as the initial carrier state. It replaces [28] the dielectric constant e,

with one which is dependent upon the relative wave vector qt:

2re 2

S= 1 + 7r H,(qt, T)Ajf,9 (qt), (2.48)
(47rc)qt



with the polarization factor

+ 1 - H(qt - 2kF) 1 (2kF2

(qtT) = 4kT cosh2 • dE. (2.49)
JO 4Tcosh 2(?kT

kF is the Fermi wave vector for subband i.

Equation (2.47) gives the carrier-carrier scattering rate for a particular carrier

energy i, averaged over another initial carrier distribution j. In order to find a

scattering rate for the whole subband i, we have to average out over the Fermi-Dirac

distribution of carriers in the initial state.

1 _ fif(Eik) dE(k
T = (2.50)

T- ffi(Ek ) dE '2

with Ej the kinetic energy associated with kl. The denominator is equal to Nilrh2 /m*,

and assuming a parabolic subband, we obtain:

1 I f (ki) ki dki1 = (2.51)
T7 rNi

In general, the "intrasubband" carrier scattering rate increases with temperature,

as state blocking becomes less important. The rise in the number of easily accessible

final states results in a higher scattering rate.

For intersubband scattering mechanisms this is less evident. Overall, intersubband

e-e scattering can be considered to be nearly temperature insensitive. For the popula-

tion densities commonly encountered in far-IR QCLs, the intersubband e-e scattering

rate is approximately proportional to the upper subband population. State blocking

is usually not an issue, again due to the low population densities.

Smet [26] showed that intersubband e-e scattering is nearly inversely proportional

to the intersubband energy separation. However, the relation becomes more complex

if the two levels considered are close to anti-crossing. The overlap between the wave-

functions of initial and final states will sensitively depend on their energy difference.

We can summarize the above as:

1 N
- •c . (2.52)
T AE 21

This empirical relation can be used as a rough guideline in the design of quantum

well structures where carrier-carrier scattering plays an important role.



2.2.3 Impurity Scattering and Interface Roughness Scatter-

ing

The background concentration of ionized impurities, imbedded in the semiconductor

lattice, and its associated distributed charges cause coulomb interaction and scattering

with the transport electrons in the device. In order to investigate and quantize this

scattering, we assume that the impurity density is low enough so that each individual

impurity can be treated separately from the others.

The scattering potential of an ionized impurity at location z = zimp (z-direction

is the growth direction) is given by the Coulomb potential, and we can write for the

corresponding matrix element describing a transition between an initial state i to a

final state f:

(flHimp2i)- 2Aq (q, zimp), (2.53)

where A is a generalized area, q = kf - ki is the exchanged momentum. The form

factor A"P is given by:

Amp (q, imp) = dzof(z) i(z)e - qlz -zimpl  (2.54)

Using Fermi's Golden Rule, we can then find the scattering rate for an electron from

subband i and momentum ki to a final subband f by summing over the all possible

final momenta kf:

W .P = 27 IHEJ 126(E, - E ,)h kf

2; E ( 2 ) 2 6(Ef - Ei) (2.55)

If we transform the sum into an integral and take into account spin conservation, we

can write the scattering as:

imp 2  A mp(, Zimp) (2.56)
"i- 87rhr e2A  0 q

where m* is the effective electron mass and 0 is the angle between kf and the x-axis

(in-plane). Note that this description does not refer to the in-plane coordinates of the



ionized impurity, which is due to the delocalized nature of the electron wavefunctions

in those directions. Since the scattering rate only depends on zimp and no other

coordinates, it is very straightforward to generalize Eq. 2.56 to describe the effects of

a sheet charge N(zimp)dz at z = Zimp:

Wimp(zimp)dz = m*e4 N(zimp)dz 2 A (q, imp) d (2.57)
W f(Zimp)dz -- 87.h32A Jd q

For a bulk doping described by a distribution N(z) the total scattering rate is given

by:
4 A imp 2

W i(imp) - dzimpN(Zimp) 8h AA (qimp dO. (2.58)

Monolayer fluctuations of the barrier and quantum well thicknesses results in a

position dependent variation of the energy and wavefunction of the subbands. [29] We

assume that the roughness height A(r) at the in-plane position r has a correlation

function:

(A(r)A(r')) = 7rA 1 + 2 , (2.59)

where A is the interface area, A is the mean height of roughness and A is the corre-

lation length. The scattering matrix element is given by:

(fk'Hroughji/momk) = d2r FifA(r) eir (2.60)

with

Fif = Vo¢i(zo)of(zo), (2.61)

where V0 is the barrier height (approximately 125 meV for GaAs/Alo. 15Gao.s5Asstructures)

and qi(zo) is the wavefunction of subband i at the interface. Because interface rough-

ness is equivalent to local fluctuations in well width, Fif can also be expressed as:

Fif = V(oE/aL)(aEf/oL), (2.62)

where L is the well width. From Fermi's Golden Rule we find the scattering rate from

state li, k) to (f, k'):

"" Vo2  2 2 (/ + )A6(Ef - Ei) (o (zo) (zo)) (2.63)Wi'.f Arl0



Note that this scattering rate is proportional with the square of the correlation length

A2, and that for a perfectly flat surface A = oo the scattering rate approaches infinity.

However, physically this corresponds with a "glancing" scattering process in which

no momentum or energy are exchanged, and the scattering event has no significance

because no observable parameters are affected. However, this infinity causes some

problems when this expression for the scattering rate is used in simulations. Usually,

we only consider scattering processes with a certain minimum exchanged momentum

(typically q Z 2x107 m-1 ).

2.2.4 Relative importance of impurity and e-e scattering

Ionized impurities (and interface imperfections) are static scatterers, and therefore

it is always possible to rediagonalize the Hamiltonian to get stationary wavefunc-

tions that take into account the modified potential landscape. In such a picture,

the imperfections would not cause any inter-eigenstate scattering per se. The in-

plane translational symmetry would be destroyed, and transitions would take place

between manifolds of states with in-plane position dependence, resulting in linewidth

broadening. However, in simulations a perturbative approach (treating impurities

and imperfections as random scatterers in an otherwise perfect lattice) is preferable.

This approach allows us to describe the in-plane component of the wavefunction as

a plane wave, which vastly reduces the calculation's complexity and preserves an

intuitive picture of intersubband transitions.

Interface roughness scattering rates depend sensitively on the details and condi-

tions of the growth, and will vary widely with samples. This makes interface roughness

scattering impossible to quantify in a universal way without introducing phenomeno-

logical parameters. In contrast, the distribution of ionized impurities in a sample can

be modeled accurately. Due to these considerations, we have chosen to focus on e-imp

scattering. As will be shown, its importance in intersubband transport rivals or even

exceeds that of e-e scattering.

Both e-imp and e-e scattering are Coulombic interactions, which allows for a simple

assessment of their relative importance. Assuming charge neutrality, the number of



electrons and ions are the same and hence the number of possible scattering centers

is equal for both processes. However, due to the exchange interaction, e-e scattering

is mostly caused by interactions between electrons of opposite spins. [27] Also, in a

center-of-mass frame, e-e scattering can be described with a reduced mass m* = m*/2,

whereas for e-imp scattering m* = m*. Furthermore, intersubband e-e scattering

largely originates from interactions between electrons in the same subband. Impurity

scattering, on the other hand, is limited by its dependence on the distance Iz - zimpl

between the scattering electron and the ionized impurity, and as such is most effective

for transport between subbands whose wavefunctions X(z) are close to the doping

layer. This rough estimate of the relative importance of e-e and e-imp scattering [19]

can be summarized as:

w•mpe 1 NI Ae-(q) 2 (2.64)
OC (2.64)Wim 4 N p I A• i (q)j2

Here W and Wifp are, respectively, the e-e and e-imp scattering rates from n = i

into n = f, Ni is the population density in subband i, Nim, is the total doping

density, and the form factors A (Eqs. 2.43 and 2.54) are functions of the exchanged

momentum q. The factor-of-four reduction arises from the exchange interaction and

reduced mass discussed above. Clearly, for intersubband transport, e-imp scattering

usually dominates over e-e scattering and adds significantly to electron gas heating.

However, e-imp scattering does not allow for energy exchange between electrons, and

therefore does not contribute to intrasubband carrier thermalization as e-e scattering

does.

2.3 Coherent transport

2.3.1 General description

In quantum cascade lasers (QCLs), resonant tunneling is a critical transport mecha-

nism, and as such it is the subject of active theoretical and experimental research. [20,

21, 22] However, while a qualitative understanding is straightforward, it is not always



clear how to quantify the exact effect of coherent and incoherent transport. The

effects of resonant tunneling and dephasing are most important when describing the

transport between two weakly coupled energy states, i.e. tunneling through a thick

barrier such as an injector barrier. In the calculation and analysis of QCLs, the local-

ization of wavefunctions due to dephasing scattering is often disregarded, which can

lead to unphysical results and limit the usefulness of the simulation. [23] Therefore, it

is necessary to include a model for sequential tunneling to analyze the electron trans-

port in QCLs over a broad bias range. Although simulations using non-equilibrium

Green (NEG) function analysis [1], as described in a following chapter, are showing

promising results, the complexity and computational burden of this method limit its

utility in obtaining an intuitive picture of electron transport. On the other hand, the

density matrix formalism provides an easily accessible description of coherent electron

transport, and is widely used to model optical and electronic transitions. [24] A more

comprehensive description of this formalism is provided in the next section.

The importance of coherent transport in multiple quantum well structures can be

appreciated by considering a simple superlattice as shown in Fig. 2-5. In this simple

structure, only two energy levels in each well, 1 and 2, participate in the transport

process as electrons move from the left to the right under an applied electric field.

Fig. 2-5(a) illustrates the scheme that is described by the semi-classical model, in

which the entire superlattice is treated as a single quantum mechanical system with

a well-defined Hamiltonian. All the subband energy levels are eigenstates (which are

stationary by definition) of this Hamiltonian. The transport process is the collective

effect of intersubband scattering between the various subbands (eigenstates) involved,

and can be calculated using the Fermi's Golden Rule approximation. This is essen-

tially a rate-equation approach and there is no coherent oscillatory time evolution

among the subband electron populations. In this picture, the electron wavefunctions

always correspond to the stationary eigenstates, and scattering transports an electron

from one eigenstate to another. Under resonant bias conditions, the ground state 1'

in one well is aligned with the excited level 2 of the adjacent well. These two lev-

els form a spatially extended doublet with the "symmetric" wavefunction IS) as the
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Figure 2-5: Difference between semi-classical and coherent picture of coupled quan-
tum wells. (a) Semi-classical picture, the wavefunctions represent eigenstates of the
Hamiltonian and are delocalized at resonance. Transport through the barrier happens
as soon as electrons enter levels IS) or IA). (b) Coherent picture. The wave packet
is initially localized in the left well. Electrons are transported through the barrier with
Rabi oscillations at frequency 0 due to the interaction between 1' and 2.

lower-energy state, and the "anti-symmetric" wavefunction IA) as the higher-energy

state (Fig. 2-5(a)). The energy separation of the doublet is the anticrossing gap A 112.

In this semi-classical picture, the transport through an energy barrier is effectively

instantaneous, as both IS) and IA) are spatially extended across the barrier, and

consequently the barrier causes no "resistance" to the electron transport under the

resonant bias. The only "bottleneck" of this transport process is the energy-relaxing

(inelastic) intersubband scattering from the doublet IS) and IA) into 1, or equiva-

lently (in the case of a superlattice) into the doublet IS") and IA") formed by 1 and

2" of the following well (not shown in the figure). As a result, the current density

under this resonant bias is independent of the barrier thickness, which is only valid

in the absence of dephasing, and is thereby unphysical for real devices.

In contrast, in Fig. 2-5(b) localized basis states are used and electron transport

through the barrier takes place via a coherent time evolution of these states, i.e., it



takes the electrons a finite time to get from one well to the next. In this scheme,

at an initial time, the electron wavepacket resides at the bottom of the left well in

state 1'. This wavepacket can be composed as a coherent superposition of level IS)

and level IA). As time evolves, this wavepacket oscillates across the middle barrier

at the Rabi oscillation frequency A1,2/h. In the absence of pure dephasing, this

oscillation will be damped only by the intersubband scattering as the wavepacket is

depleted each time it is in the right well where intersubband scattering takes place.

The main bottleneck of the electron transport is again the intersubband scattering

lifetime, as in the scenario of Fig. 2-5(a), even though a finite transport time (half of

the Rabi oscillation period) across the barrier increases the dwell time in each well

and consequently reduces the current density somewhat. Note that, in the absence

of dephasing, the wave packet spends half of its time in either well, so that the time-

average of the population distribution is in agreement with the picture described

in Fig. 2-5(a). The most significant difference between the two schemes, however,

becomes clear in the presence of dephasing scattering that may be caused by various

elastic intrasubband scattering mechanisms, such as interface roughness and electron-

impurity scattering. With dephasing scattering, the Rabi oscillation can be damped

even in the absence of inelastic intersubband scattering. One may envision that the

dephasing scattering can be so strong that the Rabi oscillation is overdamped, i.e. the

time evolution of the wavepacket from the left to the right well is no longer oscillatory

(which is a direct analogy to an overdamped harmonic oscillator). In this strong

dephasing limit, the bottleneck of the current transport is the tunneling barrier, which

is the scenario discussed by Luryi. [30] Now the time-averaged population distribution

will be different in both wells, as electrons pile up behind the barrier, and the simple

semi-classical picture of Fig. 2-5(a) is no longer a good approximation.

So far, most of the analysis of transport processes in QCLs has been based on

the semi-classical model described in Fig. 2-5(a). [23, 12, 31, 32] This is mainly be-

cause QCLs were first developed at mid-infrared frequencies, where the photon energy

hw > 100 meV. Consequently, the injection barriers are relatively thin, which results

in a large anticrossing gap of A 1' 2 - 10 meV. Dephasing due to intrasubband scat-



tering does not cause a significant damping to the fast 1' <-* 2 oscillation, and the

main bottleneck of the transport is due to intersubband scattering. In fact, this

Rabi oscillation at 2.5 THz (-, 10 meV) across the injection barrier has been experi-

mentally observed in a mid-infrared QCL by using a time-resolved pump-and-probe

method. [21] In THz QCLs, however, the photon energy is much smaller, hw ~ 10-

20 meV. Therefore, the injection barrier must be made thicker with a smaller anti-

crossing gap of A112 - 1 meV in order to maintain a high injection selectivity. In

comparison, the dephasing rate, which can be estimated from the measured sponta-

neous emission linewidth, is relatively higher (- 4-6 meV in our THz QCLs based

on resonant LO-phonon scattering). [33] As a result of this much stronger dephasing

relative to the injection anticrossing gap, we have found that transport analysis based

on the semi-classical model is quite inadequate. For example, the measured maximum

current densities at resonance are observed to be very sensitive to the thickness of

the injection barriers. Also, simulations based on the semi-classical model tend to

overestimate the current densities and material gains in our laser devices, [23, 12] and

even predict substantial levels of gain in experimental devices that did not achieve

lasing. It is this significant discrepancy between simulation results based on the semi-

classical model and experimental results that motivates us to pursue the investigation

described in this chapter: the importance of the coherent aspect of the transport pro-

cess, or equivalently, the quantitative effect of dephasing scattering on the transport

process involving subband levels at resonance.

In the following sections, we will introduce the density matrix formalism in more

detail, and compare the semi-classical and density matrix approaches by investigating

electron transport through a barrier in resonant and non-resonant bias conditions.

2.3.2 Density Matrix Formalism

To describe the time evolution and phase coherence of a large number of particles,

we can choose from several different approaches. The most straightforward method

would be to use a Schrodinger picture, where we keep track of the full wavefunction

of every particle. From these wavefunctions we can then easily find the relevant



macroscopic quantities, like current, population density or optical gain by summing

over the contributions from each particle. However, due to the inherently statistical

nature of these quantities, much of the information contained in those wavefunctions

is averaged out and turns out not to be relevant for the macroscopic picture.

Another, more efficient approach is the density matrix formalism, [34] which de-

scribes the statistical distribution of quantum states in a system. This method allows

us to treat the properties of a large ensemble of electrons (particles) statistically,

without worrying about the exact details of the individual electrons' wavefunctions.

A generic particle from this ensemble can be represented by a wavefunction ?P:

1b) = Z cikki), (2.65)

where Oi are the basis wavefunctions belonging to the Hamiltonian Ho of the unper-

turbed system, and

ci = (Oi*1). (2.66)

We can then define the density operator

p(t) = [I(t))(4(t)l, (2.67)

which takes the form of a projection operator. The density operator can be interpreted

as a description of the probability distribution in a system. For an ensemble of

particles, the density matrix elements are defined as the ensemble averages:

Pmn =< CnCm > . (2.68)

The diagonal elements pii describe the probability of finding the system in state Ii) and

are proportional to the population density of that state. The off-diagonal elements

pij are related to the polarization between states i and j and describe the degree of

coherent interaction. Consistent with its interpretation as "probability matrix," it

can be shown that

N

Tr(p) = Pii = 1, (2.69)



which reflects that the total population density is conserved. Another important

property is that the magnitude of each off-diagonal element is smaller than or equal

to the geometric mean of the corresponding diagonal elements (Schwartz inequality):

piipjj > IpijI. (2.70)

Physically, the equality corresponds to a "pure state" described by a single wavefunc-

tion, such as the one described by Eqs. (2.65)-(2.67). Note that this pure state needs

not represent just a single electron, but can instead also be used to describe time

evolution of an ensemble of particles. On the other hand, the inequality in Eq. (2.70)

refers to a "mixed state," which can in general be broken up into simpler constituent

pure states:

Smixed = (2.71)

A mixed state cannot be described with a single wavefunction, and represents an

ensemble consisting of independently evolving pure states, i.e. a mixed state is in fact

an ensemble of ensembles. In essence, a mixed state reflects the interaction between a

subsystem that is characterized by a well-defined Hamiltonian Ho and the rest of the

environment, whose effects are too complex to be dealt with from first principles. The

effect of dephasing can then be considered as the scrambling of the phase coherence

of some electrons in one of the constituent pure state ensembles. In this picture,

dephasing causes the involved electrons to be removed from their original pure state,

and subsequently added back to the mixed state in a new constituent pure state, but

with a phase unrelated to its original phase. The net effect is that the population

remains unaffected (diagonal elements pii) while the average coherence pij decreases

due to the randomization. As will be explained in more detail later, the density

matrices used in the Monte Carlo simulation will generally be mixed states rather

than pure states, since they describe the coherence of all electrons with the same

transverse momentum k.

To capture the dynamics of coherent transport we need the equation of motion,

which describes the time-evolution of the density operator and hence of the popu-



lations and polarizations. This equation of motion is also known as the quantum

Liouville equation and can be written as:

dp i
- - [H,p], (2.72)

at

with H = Ho + H', and H' represents a perturbation. In our case, H' consists only

of an adjustment of the electron potential AVTB due to the coupling of the localized

states in one QCL module to the states in the neighboring modules, in the spirit of

the tight-binding (TB) model. It is possible to rewrite the above equation so that

its expression is formally identical to the calculation of a wavefunction. Looking at

the right-hand side of Eq (2.72), we see that the elements of the density operator pij

undergo a linear transformation and it is therefore possible to define a linear operator

£ to describe this transformation. The Liouville Eq. (2.72) then becomes:

ap i= -- h£p, (2.73)
at h

where L is called the Liouville operator, and

Lij,mn = HimSjn - Hj*ncim. (2.74)

In this representation (Liouville space), the superoperator L is a N 2 x N 2 ma-

trix (N is the number of states in the system) and p is a N 2-dimensional vector.

The number of elements in L scales with the fourth power of N, and systems with

many states can quickly pose almost insuperable computational challenges. The sim-

plifications and approximations discussed in Section III effectively "remove" many

off-diagonal elements, and vastly simplify the numerical implementation. Note that

Eq. (2.73) looks very similar to the Schr6dinger equation, and this allows us to apply

the same formalisms to both Hilbert (wavefunction) and Liouville (density operator)

spaces. Using this complete formal analogy, we can apply the calculation techniques

developed for wavefunctions to the density matrix formalism and obtain the desired

results.

So far we have described the coherent time evolution of an electron wavefunction

in a system Ho with only a constant perturbation AVTB due to the interaction with



the neighboring modules. Note that in the absence of scattering implicitly assumed

in Eq. (2.73), the transverse momentum k is conserved and AVTB is non-zero only

for states with an identical k. There is no coherent interaction between states with

different in-plane momentum in this approximation. [35] As explained below, trans-

port between states with different k is handled separately, through semi-classical

scattering mechanisms within the same module. A fully coherent description of the

many interactions, such as electron-phonon, electron-impurity and electron-electron

scattering, would be very involved and computationally intensive. Therefore, it is

more convenient to describe them as semi-classical scattering events, in which elec-

tron scattering rates are described by Fermi's Golden Rule. In view of the setup of

our model, this is a reasonable approximation. In THz QCLs, the injection barrier

is usually much thicker than the other (intramodule) barriers, which results in the

"intermodule" anticrossing gaps (where each level is on a different side of the injec-

tion barrier) being considerably smaller than "intramodule" anticrossing gaps. As

explained in greater detail in Section IV, the intermodule interactions are thus more

sensitive to dephasing, and are best described with Eq. 2.73, while for the intramod-

ule transitions a semi-classical model is adequate. The scattering events affect the

transport of electrons between different states within the system, and hence cause the

relaxation of the population with a scattering time T 1. In addition to this relaxation

scattering, we can also consider "pure dephasing" events that merely scramble the

phase correlation between two states at a rate T2-1 without causing depopulation. As

mentioned before, pure dephasing accounts for the effects of the bath on the electrons

in the system, and as such describe scattering events that are not explicitly included

in the simulation model. Both relaxation scattering and pure dephasing contribute

to the dephasing time Tdeph:

1 1 11 1 + 1 (2.75)
Tdeph 2T1  T 2

We note that the contribution of the relaxation scattering is half of that of the pure

dephasing. This is due to the fact that T2 describes the relaxation of the polarization

pij, which is proportional to the amplitude of the oscillation (pij oc e-t/T2 ); on the



other hand, T1 is a probability decay rate that reduces pii cc Ipcij 2, proportional to the

energy density (Pii oc e-t/T1 - Pij cx e- t/ 2T ). In the equations of motion, scattering

and pure dephasing add extra relaxation terms to the expressions for pii and Pij,

which can be incorporated in the density matrix formalism with a corresponding

superoperator F. Eq. (2.73) now becomes:

= (£iij,mn + .7 i,mn)Pmn, (2.76)
& m,n

with

Fii,mn = (-i + ,Yj)bimbjn - reimn, i =- j, (2.77)

and

Yii,j = 7ji(1 - 6ij) - Yiij-. (2.78)

Here -yi and yj correspond to the total scattering rates out of the i and j levels,

,yji is the net scattering rate from level j to level i and rure (=T-1) is the pure

dephasing rate of the coherent transport between i and j. It is important to note

that the dephasing of pij is not due only to scattering between i and j, but rather

to all scattering events involving either i or j. Electrons scattering out of a level i

disrupt the coherent transport from and to i, and as such dephase all polarizations

Pik (k = i) that involve level i. In Eq. (2.76), all the stochastic aspects of the electron

transport are included in the operator F. Using a phenomenological pure dephasing

time constant T2, Eq. (2.76) can be solved analytically to yield an expression of

current density. [36, 37]

2.3.3 Superlattice

To quantitatively illustrate the effects of dephasing and coherence on transport through

a barrier, it is instructive to investigate a simple superlattice structure as sketched

in Fig. 2-6(a), consisting of a succession of coupled quantum wells, separated by a

barrier with thickness tbarr, and with two energy levels 1 and 2 in each well. Every
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Figure 2-6: Time evolution of the population density in a superlattice with 16.8-nm-
wide GaAs wells and 4.1-nm-wide Alo.15 Gao.85 As barriers. The ground level in one
well is in resonance with the first excited level in the next well (A 112 = 3.9 me V). Level
n = 2 is depopulated by LO-phonon scattering (T,2Lo 0.3 ps). A population density
of 1 x 1010 cm - 2 is initially placed in n = 1'. (a) Conduction band profile and wave-
function probability distributions of the generic superlattice structure used throughout
this paper. Also indicated are the barrier thickness tbarr and energy separation E2 1 ,
which are referenced throughout the text. (b) Spatial distribution of the populations of
n = 1' and n = 2 versus time. The damped Rabi oscillations of the population density
are clearly visible. (c) Time evolution of the total population density in n = 1', 2,
and the ground state 1.



well corresponds to a module, and the wavefunctions are localized in the wells using

the procedure outlined above. The anticrossing gap between n = 1' and n = 2 is

given by A 1'2 = 2AV1,2. The equations of motion can be written as: [38]

d 2iAV1'2 , (P11 - P22)- (P11 - P22)0
(P11 - P22) (P21 - P21) - P22) - (P11 - P22)0 (2.79)dt h T2

d iAV 1'2 iE 1' 2  P21
P21 h (P - P22) - (2.80)

where (Pll-P22)0 is the population difference at equilibrium, and Tdeh-1 = 0.5r2-1+T2-1

These coupled equations can be solved to find an expression for the current density

through the barrier: [36, 37]

J = qN 2Tdeph (2.81)
1 + (E1'2/h)2 Teph + T272Tdeph

where E 1'2 is the energy detuning from resonance, Q = 2AV1, 2 /h is the Rabi oscillation

frequency at resonance, and N, is the total electron sheet density per well. This

expression describes the current density versus detuning bias E 1, 2 as a Lorentzian

with a full-width half-max of

2h
AEFWHM = _[1 + £ 2 T2Tdeph] 1/2. (2.82)

Tdeph

The density matrix model provides a picture of a wavepacket oscillating between

n = 1' and n = 2 at a frequency Q with a damping rate of Td&h. This is illustrated

in Fig. 2-6(b) and (c), which show the spatial distribution of the population density

in a superlattice designed to study the dynamics of the depopulation of the lower

radiative level 4 in FL177C-M5. The electron extraction from level 4 critically relies

on the anticrossing with another level 3, which is subject to resonant LO-phonon

scattering (TLO < 0.3 ps). In our simple model we identify 4 and 3 (in the QCL)

with the ground state 1' and the first excited state 2, respectively. The anticrossing

energy A 1 2 = 2AV1, 2 is 3.9 meV and E2 1 is 39 meV. A population of 1 x 1010 cm-2 is

initially situated in 1' and then oscillates back and forth between the anticrossed levels

1' and 2. There is no pure dephasing added in this simulation (1/T 2=0). Electrons in

state 2 are subject to resonant LO-phonon depopulation, which results in a damped
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Figure 2-7: Dependence of current density on bias for a superlattice consisting of
15.5-nm-wide GaAs wells, separated by 4.1-nm Alo.15 Gao.s5As barriers. The energy
separation E 21 f 42 me V and A1,2 =4.5 meV. Results are shown for both the semi-
classical and the density-matrix simulations.

Rabi oscillation with Tdeph e 0.6 ps. From Fig. 2-6(c), we can see it takes about

1.5 ps for the majority of the electrons to transfer from 1' (corresponding to the

lower radiative level 4) to 1, which corresponds to the relaxation/injection states in

the QCL. This is slower than what we would expect from the semi-classical picture,

where T4 - 0.5 ps. [11] Note that even in the absence of dephasing, it would take

approximately h/22Q 0.5 ps for the electrons to oscillate across the barrier, which

largely explains the longer dwell time in the density matrix calculation.

The dependence of the current density on the pure dephasing rate T2-' is shown in

Fig. 2-7 for a similar superlattice. At resonance, the peak current density decreases

with T2- 1 as the Rabi oscillation is increasingly damped and it becomes more and

more difficult for electrons to tunnel through the barrier. The difference between

the semi-classical result and the density matrix simulation in the limit of T2-1'=0

O
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Figure 2-8: Dependence of peak current density on anticrossing gap A 1, 2 for a
GaAs/Alo.sGaoo.As superlattice with 14.8-nm thick wells separated by barriers with
varying thicknesses. The energy separation E 21 P 60 me V. The semi-classical results
are independent of A 1'2 and the barrier thickness, while the density matrix simu-
lation clearly shows the decrease of the peak current density with smaller A 1'2 and
higher dephasing rate Tz-'. The dashed lines represent theoretical calculations using
Eq. (2.81).

is due to the relaxation dephasing, which is the term -1/2(Q i + yj) in Eq. (2.77).

Away from resonance, the DM model predicts a broader I - V curve with a higher

current density than the semi-classical picture. This is due to the level broadening

(Eq. (2.82)) which relaxes the energy alignment of n = 1' and n = 2. Especially at

high dephasing rates, the increased interaction can cause the upper radiative state

(not shown here) to couple more strongly to the injector/relaxation level 1, and thus

reduce the depopulation selectivity.

The influence of the barrier thickness tbrr is felt through a diminished coupling

AV112 , and can be illustrated by investigating the current transport through a barrier.

We consider a superlattice structure similar to the one shown in Fig. 2-6(a), with an

,- -*_- . * * . * 0 .

.-0"0-•> --v _---$--------g

d

=/'* . Semi-classical MCV o DM MC - deph=0.2 ps

,[DM MC - deh25 fs

2 Tdeph.



energy separation E21 -P 60 meV which is much larger than •wLO. This ensures that,

in the semi-classical picture, the intrawell energy difference E21 still exceeds hwLo even

for large anticrossing gaps so that scattering from n = 2 is dominated by LO-phonon

scattering (7LO 0.3 ps, and nearly independent of E21). The peak current density

occurs when the lower level 1' of one well lines up with the upper level 2 of the adjacent

well. In the semi-classical approach, the anticrossed wavefunctions are delocalized

across both wells, and share an identical carrier lifetime 7 (independent of barrier

thickness) disregarding the minor energy shift due to the anticrossing. This leads to

the unphysical result that the peak current density in the semi-classical description

does not depend on the barrier thickness (as shown in Fig. 2-8). In other words, in this

picture electrons scatter from one spatially extended state into the next, and never

experience any effect from the barrier whatsoever, as illustrated previously in Fig. 2-5.

To include tunneling effects, and hence more accurately describe transport through

a barrier, we need to take into account the phase correlation between localized basis

states, so that the result of phase relaxation is a collapse of the electron wavefunction

into localized states and an interruption of resonant tunneling.

The results for the density matrix calculations are also shown in Fig. 2-8. In

contrast to the semi-classical results, the DM-MC calculations reveal a strong de-

pendence of the peak current density on the anticrossing gap (or barrier thickness)

and the pure dephasing time T2 . For large anticrossing gaps or thinner barriers,

the Rabi oscillation frequency is much higher than the dephasing rate and the peak

current density approaches the semi-classical limit. In this regime the population is

spread equally across both subbands, and the current density is given approximately

by J = qNs/2T2 . For smaller anticrossing gaps, or thicker barriers, the dephasing

scattering becomes increasingly important and inhibits the transport through the

barrier, which results in a lower peak current density. From Eq. (2.81) we can see

that the current density starts to roll off when A1,2 0h/~j.2Tdeph. The dashed lines

are analytical results calculated from Eq. (2.81), which agree well with our DM-MC

results. The good agreement based on this simple structure gives us confidence to

investigate more complicated structures using the numerical DM-MC tool developed



in this work.

Note that localized basis wavefunctions are necessary to produce the above result

within the density matrix formalism. If we chose spatially extended basis wavefunc-

tions (as in the semi-classical case), a localized wavepacket would be represented as

a coherent superposition of extended wavefunctions:

1
I¢) = (•S) + (A)) p = k)(¢I. (2.83)

In the absence of dephasing (and scattering), the time evolution of this wavepacket

would be identical to the one described with localized basis wavefunctions. A proper

implemention of scattering requires a full density matrix approach, [39] which is not

expected to result in a substantial difference between the two models. However, the

inclusion of pure dephasing causes the off-diagonal elements of p to decrease, so that

even in the strong dephasing limit of T2 --, 0:

p = IIS)(SI+ - IA)(AI, (2.84)
2 2

which is still equivalent to the semi-classical model, and no decrease in current density

is predicted. This means that extended wavefunctions are not a good choice for the

basis wavefunctions in our model.



Chapter 3

Monte Carlo Simulation

3.1 Boltzmann Transport Equation

In a semi-classical picture, the movement of carriers in real space r, momentum

space k and time is fully described by the Boltzmann Transport Equation (BTE).

For a system with a constant number of electrons (such as the QC structures we are

interested in) this equation of motion in the presence of an in-plane electric field E is

written as:

Ofi 1 = f l++v.V,fi+E -Vkfi= -4 (3.1)
- t - 9 t

where v is the in-plane electron velocity, fi is the electron distribution function of

subband i, and

V,fi -- + -fk (3.2)

and

Vkfi = 9ix + q (3.3)
OkxX a+y

denote the divergence of fi in real and momentum space, respectively. Remark that

the last two terms on the left-hand side of the BTE only describes the in-plane motion

of the electron, which is of little interest for us. Instead, the collision term on the

right hand side includes both intra- and intersubband scattering and its calculation

and implementation lie at the core of our transport calculation.



The Boltzmann Transport Equation is very hard to solve analytically; it is much

easier to follow the trajectories of selected individual electrons as they move through

a device under the influence of electric fields and scattering forces. Each of these

paths is random as far as the occurrence of particular scattering events is concerned,

If we follow a number of electrons, sufficient to describe the distributions in the dif-

ferent subbands of a structure, the averaged results will be a good approximation of

the average behavior of the electrons within the device. The importance of random

events (and random numbers) in this type of calculation has given rise to the name

"Monte Carlo" (MC) simulation. In many cases, MC simulation is the most accu-

rate technique available for simulating transport in devices, and it is considered the

standard against which the validity of simpler approaches is measured.

In the following sections we will take a closer look at the underlying principles of

the Monte Carlo simulation, and at its practical implementation. Because it directly

mirrors the physics, a better understanding of the technique will also allow for a

better intuitive picture of the simulation results.

3.1.1 Free Flight

Typically, the motion of an electron in a device is due to two contributions: the

presence of on electric or magnetic field, accelerating the electron and changing its

energy continuously, and the occurrence of scattering events. Because the latter

are usually much shorter in duration than the "free flight" in between collisions,

scattering is assumed to be instantaneous and change the electron's momentum and

energy abruptly.

To simulate a typical single free flight and scattering event, four different random

numbers are used. The first specifies the duration of the free flight, during which the

electron moves in accordance with Newton's laws. At the end of the free flight, the

electron's momentum and energy are updated. The next random number determines

the type of scattering event, and two more numbers are needed to determine the elec-

tron's final state, which is characterized by its momentum amplitude and direction.

Once the final state is known, a new free flight is initiated.
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Figure 3-1: Time evolution of momentum and energy of a particle. Scattering events
occur at times t, ..., t 4 , separated by periods of free flight during which the momentum
and energy of the electron change continuously.

In QC structures, an electron is completely characterized by its subband i and

its in-plane momentum k = kji + ky:, where i and - are the unit vectors of the

in-plane directions. The total energy can then be derived from the subband edge

energy E°o and the electron kinetic energy Ek = h2 k2/2m*. Note that the momentum

in the growth direction, k_, is not a good quantum number (due to the localization of

the wavefunctions in the z-direction) and has a distribution that corresponds to the

Fourier spectrum of the electron's wavefunction. As such, the effect of electric fields

on kz is felt through their effect on the wavefunction, and cannot be described by a

simple relation.

If we apply an electric field E, in the x-direction (in-plane), after a time t we find

i m m •

6



the momentum k(t) and energy E(t) of an electron from:

-qk (t) = k (O) + & gt

ky(t) = ky(O) (3.4)

and
h2

E(t) = E + [k2(t) + k(t)] (3.5)

The duration of the free flight is determined by the total scattering rate Fi(k) of

the followed electron, which is the sum of the scattering rates 1/Ti(k) of the different

scattering mechanisms, such as e-LO-phonon, e-e and e-imp scattering:

1 1 1
(k = O(k) + - (3.6)re-LO(k) e-e(k) e-imp(k)

As the electron's subband and momentum change during its time evolution, in gen-

eral F is also time-dependent and the free-flight time will change over the course of

the simulation. However, for now we can simplify the model and assume a time-

independent scattering rate Fo. As we will see, the conclusions we reach are still

general and applicable even for a time-dependent F.

How do we properly choose the free flight time tf so that it reflects the random

nature of the scattering mechanisms? To address this problem, we can investigate the

time evolution of a population ni of electrons in a subband i, subject to a constant

scattering rate To = 1/7. In other words, during an infinitesimal time interval dt, each

electron in i has a constant probability Fo dt to undergo a collision and be removed

from the subband:

dni = - Foni dt, (3.7)

which can be solved to find:

n,(t) = ni(O)e - rot. (3.8)

The population of the subband declines exponentially, and the probability that one

selected electron will survive until time t decreases correspondingly with e- r ot. The



probability P(t) that an electron will scatter between times t and t + dt depends on

the scattering rate and the chance that the electron is still present in i:

P(t) dt = ro e-rot dt. (3.9)

The eventual value for P at the time when an electron scatters is a random value

between t = 0 (P(O)=0) and t = oo (P(oo)=1), which is unknown at the beginning

of the free flight. Therefore, picking random numbers for P will yield a distribution

of free flight times t1 that reflect the random nature of the scattering events:

tf = - ln(P). (3.10)

As mentioned earlier, in reality the scattering rate is not constant but varies

with the subband index and momentum of the electron. The difference between our

proposed constant 17o and the real rate Fi(k) is referred to as the "self-scattering"

rate ~elf(k):

eif (k) = 0o - ri(k). (3.11)

Note that the self-scattering rate depends on the electron's momentum and subband,

and that the chosen To must be greater than the maximum of the elfr(k) it represents.

To fit in with Eq. 3.6, we can describe a self-scattering event as a fictitious scattering

event, in which the electron remains unaffected and its subband and momentum stay

constant. Its only reason for existing is to allow for a constant total scattering rate,

which in turn considerably simplifies the calculations. With the addition of self-

scattering, the total scattering rate is now constant, and we can apply Eq. 3.10 to

find the free flight durations. When a self-scattering event terminates the free flight,

the momentum of the electron is updated according to Eq. 3.4, and a new random

number is generated to determine the duration of the next free flight. In Figure 3-2

the momentum and energy evolution of an electron are illustrated in the presence

of self-scattering. It can be seen that the various fictitious scattering events do not

affect the electron's trajectory. However, the inclusion of self-scattering can lead to

a significant "oversampling" of the trajectory between real scattering events, and an
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Figure 3-2: Simulation of the time evolution of the momentum and energy of an
electron under the influence of an in-plane electric field and scattering. The simulated
scattering events are indicated with markers; diamonds indicate self-scattering events,
crosses indicate true scattering events.

added computational load. Therefore, it is best to choose Fo close or equal to the

maximum value of Fi(k).

After a free flight is concluded, the electron's momentum and energy are updated

accordingly. The next task is to select a scattering mechanism, and find how it in

turn affects the electron. To do this, we need to take a closer look at the different

contributions to F0 .

We previously mentioned that a good value for F0o would be the maximum scat-

tering rate of an electron in a system, as this minimizes self-scattering. On the other

hand, this choice of F0 makes it harder to efficiently select a scattering mechanism for

any random electron. Indeed, the importance of the different scattering mechanisms

for the electron with the maximum total scattering rate is likely to be different from

i mdhl A

PtV)I
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Figure 3-3: Construction of Fo from its constituent scattering rates.

that for other electrons. This means that, although we know the maximum scatter-

ing rate, we have no further information about what scattering mechanism is more

or less likely to be important without carrying out the relevant calculations for every

electron we describe.

Therefore, it is more practical to define To as the sum of the maximum possible

scattering rates m"ax of every contributing scattering mechanism:

0o = pe-Lo,m a x + p e - e, m a x + F e - imp,ma x + " • (3.12)

These maximum scattering rates Fma" are found by summing, for every initial subband

i, the maximum scattering rates to all possible final subbands f, and then picking

the highest resulting rate:

Fe - e/LO/imp,max = maxjF e-e/LO/imp,max = maxj 1 maXk •e-e/LO/imp(k). (3.13)
f

Figure 3-3 illustrates how Fo is found from the individual scattering rates. In general,

this choice of F0o greatly overestimates the actual scattering rate for any electron in

the system, and leads to much self-scattering. However, as will be explained next,

this choice of Fo greatly simplifies the Monte Carlo process to determine a suitable

final state when a scattering event occurs.

max r°1 (k)
k

max iO2(k)
k

max k . k)k

i
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Figure 3-4: Graphical representation of the selection process of a scattering mechan-
sim, and the final subband and momentum by a Monte Carlo procedure.

Figure 3-4 schematically shows how the selection process of the final state unfolds.

When the momentum of the electron (with initial subband i) is updated after a

free flight, a random number r, between 0 and F0 is generated and mapped to the

(maximum) scattering rates belonging to different scattering mechanisms. If we have

m scattering mechanisms (labeled j = 1, ..., m) with rates ', max, mechanism I will be

selected if

1-1 1

ri ~"ax < rl < ••' max" (3.14)
j=1 i=1

When the scattering mechanism is identified and not fictitious (self-scattering), the

final subband f can be determined by a very similar procedure; a new random number

r 2 (0 < r2 < •,mx) is selected and the final subband f is found from:

f-1 I

m ' < r2 < jm.a  (3.15)
j=1 i=l

Depending on the specific scattering mechanism, the determination of the final mo-

mentum may require additional random numbers. In the following sections, we will

discuss in some detail how this process works for e-LO-phonon, e-imp and e-e scat-

tering.
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Figure 3-5: Probability function P as a function of the angle Of. Also indicated is the
maximum probability Po.

3.1.2 Impurity, interface roughness and LO-phonon scatter-

ing

Once the scattering process and the final subband are identified, all that remains to

be determined is the final momentum kf = k (cos Of X + sin Ofyr). The amplitude k1

can easily be found from the conservation of energy:

Eh2k = PE - Eo + (3.16)
2m* f 2m*

To determine the angle Of, we need to examine Eq. 2.58 more closely. We see that

the total scattering rate is found by integrating over Of, or equivalently, that the

probability P(0f) dO of having a final angle between Of and Of + dO is given by:

AimP(q) 12

pimpAf) q 2 (3.17)

J2r do )

where the exchanged momentum q is a function of 0f. As illustrated in Fig. 3-5, we

can find a suitable distribution of 0f by using another, simple Monte Carlo calculation.



We can initially approximate P as a uniform distribution P(0f) = Po by adding a

"self-term" to P(Of). Assuming this uniform distribution, all Of are equally likely and

we can pick Of randomly between 0 and 27r. As a final step, the self-term is taken

into account by generating a random number r (0 < r < 1) and rejecting the choice

of Of if

r > P ) (3.18)
Po

Interface roughness scattering, another elastic scattering process, can be treated

in a very similar way. The handling of LO-phonon scattering, both emission and

absorption, differs in the calculation of kf:

h2 2 2k2

h = EP - Eo + h iWLo, (3.19)
2m* f 2m*

where the plus sign corresponds to LO-phonon absorption and the minus sign to

LO-phonon emission. The explicit form of P(Of) is:

pLO(of) = q (3.20)

o' d0 °f q "

3.1.3 Electron-electron scattering

For e-e scattering, many more parameters need to be determined: the final subband

f and momentum kf of the followed electron, and the identity of the partner electron

(initial subband j and momentum kj) and its final subband g and momentum kg.

Because a full calculation of all involved scattering times is very time consuming and

depends on the specific electron distributions, e-e scattering is handled slightly differ-

ently from the single-electron scattering processes discussed in the previous section.

Since we need to have access to information about the scattering rates for different

initial and final subbands for both the followed electron and the partner electron, it is

useful to define a few additional "lumped" scattering rates to describe the maximum

scattering rate involving certain combinations of initial and final subbands for the

electrons involved. We will model these scattering rates so that they are most helpful

to us when we are trying to use MC methods to determine the various subbands



involved in an e-e scattering event. It is easiest and most intuitive to start from a

specific scattering event, in which the followed electron scatters from subband i to

f and the partner electron from j to g. For this event we can define a maximum

scattering rate je-e'jm,' out of ii, k) due to the described e-e scattering process:

e-e~,max m kWe-e,max(k). (3.21)i-fg i•-•fg

This maximum scattering rate can be found by maximizing the integrand in Eq. 2.47,

i.e. by taking the maximum value of IAjjf 9 (q)I over all q:

Aijfg (q) Al T
<q•si. (3.22)Iq + Qscr scr

After some manipulation, we find:

4 IAmax 12
pe--e,max 7re4  IjAgj (3.23)

i 2h(4i) 2  qscr

where nj is the population density in subband j.

If the partner electron's final subband is unknown, the good estimate for the total

scattering rate is given by the summing Eq. 3.21 over g:

Fe-e,max = pe-e,max (3.24)
ii f ij-"fg

9

and similarly if the partner electron's initial subband is unknown (sum over j):

Fe-e,max e-e,max(3.25)

i_+f i= j-(3.25)

The maximum total e-e scattering rate for an electron in subband i is then given by:

e-e,max meeax (3.26)
Iri iri--If (3.26)

I

Before we discuss the exact MC treatment of the e-e scattering, it is useful and

instructive to examine how many parameters are actually unknown, and how we

can most easily determine these parameters. We need to find the initial and final

subbands and momenta of two electrons, i.e. four subband indices and 8 momentum

components, or 12 parameters in total. We already know the initial subband and

momentum of the followed electron, and the conservation of energy and momentum



in the e-e scattering event yields another three parameters, so that means there are

6 unknowns left to determine with MC methods.

We start by determining the final subband of the followed electron in a similar

way as described in Eq. 3.14. The next step is to randomly choose a partner electron

(one initial subband and one initial momentum, i.e. 3 parameters) from among the

other simulated electrons, which can easily be done by labeling the electrons 1,...,N

and rolling the dice. The remaining unknown (final) subbands (2 parameters) are

then easily found, again by applying Eq. 3.14. This leaves us with just one parameter

to be determined, to be chosen from among the components of the final momenta

(or derivatives thereof). Which one we chose is not very important, as the choice

of one determines the others. In our implementation we picked the angle 0 between

kf and the x-axis, which provides us with clearly defined range (0 < 0 < 27r) and a

straightforward MC calculation.

By choosing the various subbands in the previous steps starting from e w- e max , we

have implicitly assumed a scattering rate of ]pe-',,m. The goal of the next step is to

determine the actual scattering rate for the proposed value of 0 and compare it to

feem.ax Since the exchanged momentum q can easily be found from:

q(0)2 = k + k - 2kfki cos 0, (3.27)

we can again apply the procedure described by Eq. 3.18 and find a suitable value for

the final momenta of both electrons.

3.2 Algorithm

The Monte Carlo simulation consists of two major parts, namely the calculation of

the various scattering rates and the main algorithm to determine the time evolution

of the simulated electrons. There are some differences in implementation between the

semi-classical simulation and the density matrix simulation, which are discussed in

section 3.3. However, the general framework of both simulations is very similar. A

basic flow chart of the algorithm is shown in Fig. 3-6.



Figure 3-6: Flow chart of the Monte Carlo simulation.
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In the simulation we keep track of the electrons belonging to (the subbands of) one

module. In the THz QC structures of interest to us, the module length is generally

comparable to or larger than the spatial extent of the wavefunctions, and as such

the interaction between subbands is accurately described by same-module and next-

neighbor scattering. By finding the wavefunctions belonging to a central module and

its neighboring modules, we can calculate all relevant scattering parameters. Current

continuity can then be enforced by reinjecting every electron that scatters out of the

module into an equivalent level with an identical in-plane momentum k, reflecting

the QC structure's periodic nature.

A proper choice of the basis wavefunctions is very important. Not only do these

wavefunctions determine the various scattering rates, they also play a prominent role

in the physical interpretation and intuition we can gain from the results. For the

Monte Carlo simulation of QC structures, we have elected to work with two differ-

ent choices of basis wavefunctions : the eigenstates of the Hamiltonian including all

modules (for the semi-classical calculations) or the eigenstates of the Hamiltonian

belonging to one single module (for the DM calculations), resulting in more local-

ized wavefunctions. More details about this distinction can be found in the section

discussing the DM simulation.

Once the basis wavefunctions are known, the matrix elements and maximum scat-

tering rates for the electron-phonon, electron-impurity and electron-electron scatter-

ing are calculated as described earlier.

The number of simulated electrons N is chosen to allow for accurate calculation

results while keeping the computation time as short as possible. For a semi-classical

calculation, Nsc=10000 is usually sufficient to get satisfactory results, while for the

density matrix simulations the initial number is Ndm=1000. However, as explained

in the DM discussion, Ndm does not remain constant throughout the simulation,

while Ns does. In the semi-classical simulation, the simulation "particles" can be

interpreted as single electrons, i.e. one particle equals one electron, while in the DM

simulation the particles are in fact electron ensembles themselves which can be split

into more, but smaller ensembles, giving rise to a change in the number of particles.



Each particle, numbered p = 1, ..., N, is characterized by its subband n, and

its momentum ky, which determine what scattering processes are available to that

:particle and what their rate is. To have a ready access to these different scattering

rates, it is necessary to tabulate these rates as a function of n, and kp. This is

achieved most easily by defining a grid in momentum k space with step Ak in both

the x- and y-directions:

k = k~i + ky~ -* k(i, j) = kx,iX + ky•, (3.28)

with

kx,i = iAk, i = -Nk, Nk

ky,j = jAk, j = -Nk, Nk (3.29)

where 2Nk is the number of grid nodes in the x- and y-directions. Usually Nk is

taken to be 50 for a maximum kinetic energy Ek=250 meV, which translates into

Ak e 1.3 x 107 m - 1. We can then classify the different particles according to what

area of k space they are in (and hence what scattering rates they are subject to). This

allows us to use the previously calculated scattering rates and efficiently determine

whether a scattering event is due to self-scattering or true scattering.

Finally, the electron distributions are initialized by randomly assigning the par-

ticles to one or more subbands with a thermalized distribution with temperature

Tlatt .

We are now ready to calculate the time evolution of the ensemble of particles. In

this process, two time constants are of importance: the free flight time rf and the a

time constant Tsy, that characterizes how quickly the electron distributions change.

The free flight time determines how often we need to check whether a particle is

involved in a (self-)scattering event; since the momentum of a particle is updated

after every free flight, rf is also a good indicator of how recent a particle's momentum

information is. In general, rf is a few tens of femtoseconds, mostly due to self-

scattering. The "system change" time rs7y on the other hand is most important

for electron interactions that somehow depend on the other electrons in the system,



e.g. electron-electron scattering and screening effects. These scattering rates which

depend on the detailed electron distributions f(k), need to be reevaluated every

time the distributions change significantly. Since these distributions are, in turn,

determined by the properties of the simulated particles, ideally the time evolution of

all particles would be calculated simultaneously. In practice, f(k) does not change too

drastically over a time period of rsys, so we can time-evolve all particles in sequence,

starting with the particle labeled "1", over a time step At not exceeding rsy (typically

At=10-50 fs). During each time step, a particle can undergo multiple scattering

events. Once the time evolution of last particle N is completed, the scattering rates

and screening parameters are recalculated to account for the change in the electron

distributions. The convergence of the simulation can then be checked by comparing

the averaged electron distribution functions and current density over the previous

time steps. After the Nat'th time step, we can define the average distribution function

fia(k) for subband i by averaging over 100 time steps:

fa(k) = 100 fifA(k), (3.30)
iAt=NAt-99

where fiA' (k) is the distribution function found after time step iAt. This average is

compared to the average over the 100 previous time steps to determine convergence.

If there is no convergence, all particles are propagated over the duration of the

next time step At, starting from where they left off, repeating the procedure ex-

plained before until the convergence requirements are met. During every time step,

the number of scattered particles, their initial and final subbands and the responsi-

ble scattering mechanism are recorded. The current density is then found from the

recorded flux of electrons scattering from the module into the next module, counting

the electrons scattering back the previous module as negative.

The number of time steps necessary to reach a steady-state solution, depends

sensitively on the details of the simulated structure and the initial distribution at

simulation time t=0. In general, the required simulation time varies between 5 ps

(for simple structures with high electron temperatures) to 50 ps (structures with

poorly aligned subbands and low (initial) electron temperatures). For a time step
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Figure 3-7: Time evolution of the subband population densities in a DM simulation of
FL177C-M5. The device is biased at injection anticrossing. All electrons are initially
in subband n=3.

At=10 fs this means that a regular MC simulation entails between 500 and 5000

iterations. An example of the evolution toward a steady-state solution is shown in

Fig. 3-7 for a density-matrix simulation of the subband populations of FL177C-M5.

Each particle represents a population density of 2.8 x 107 cm - 2 . We can see that

most subband populations reach steady-state after 2.5-5 ps. Note that it is necessary

to continue the simulation for another few picoseconds (hundreds of timesteps) to

obtain accurate results.

3.3 Numerical Implementation of DM simulation

The Monte Carlo method is very flexible and allows for a relatively simple and

straightforward simulation of the equations of motion (2.76). On the other hand,

the introduction of the density matrix formalism requires that we keep track of many

more variables (e.g. the polarizations) than in the semi-classical case, and the com-

putational requirements of a full-fledged implementation of these equations rapidly

become very demanding. However, the proper choice of the basis wavefunctions allows

O



us to develop an intuitive description of the transport in a QCL, which is partially

coherent, and partially semi-classical.

In most of the demonstrated THz QCL structures, the levels within one module

couple more strongly to each other than to levels in a different module, and a semi-

classical description of transport within these regions is adequate. In order to reduce

complexity, we restrict the use of coherent transport to model the transport between

those modules, e.g. through the injector barrier, while retaining a semi-classical

description for the transport inside each module. In this picture, current bottlenecks

are described with the coherent density matrix model, while the transport through the

rest of the device is described semi-classically. The basic implementation of this semi-

classical part of the simulation was described in the previous sections and includes

semi-classical electron-phonon (acoustic and LO), e-imp and e-e scattering.

The choice of the proper basis wavefunctions can be very important. This basis

is used to calculate semi-classical scattering rates as well as to compose localized

wave packets to model tunneling behavior and localization. As was explained in

section 2.3.3, the use of spatially extended wavefunctions (as in semi-classical simula-

tions) as basis wavefunctions fails to reproduce the experimentally observed tunnel-

ing behavior for transport through a barrier. To provide an intuitive picture of the

electron states involved in transport, we choose a basis of wavefunctions which are

localized within a module or submodule of the QCL under investigation. The thick

injector barriers that confine a module form an obstruction for the electron transport,

and we expect dephasing effects to be most prominent there. The choice of the basis

wavefunctions as confined to either side of this barrier, makes it easy to describe and

calculate resonant tunneling.

To find the localized wavefunctions 09, we consider a single, isolated module under

bias, embedded in material with the same composition as the barriers. The wave-

functions in the previous (n=-l) and subsequent (n=l) modules are then found from:

07(x) = 0(x - nliod) (3.31)

with energy E" = E° -+nqVbia , where q = -1.6 x 10- 19C is the electron charge, lmod is



the module length, and Vbi, is the applied voltage per module. The interaction AVij

between the localized wavefunctions, Ok and On with respective in-plane momenta

k = ki and kj is then determined with a tight-binding model:

/+oo
AVn (ki, k) = J °(z)AV(z) '(z)dz 6kikj. (3.32)

Here AV(z) is the difference in the confining potential between a single module and

a superlattice composed of a repetition of this module:

AV(z) = Vbarr - E Vmod(Z - mlmod), Z < 0,
m<O

AV(z) = 0, 0 < z < Imod,

AV(z) = Vbarr - E Vmod(Z - mlmod), Z > 1mod, (3.33)
m>O

where Vbarr is the barrier potential and Vmod is the unbiased module potential profile.

In practice, AV(z) is restricted to the influence of next-neighbor modules (n=-1,1)

because QCL modules are usually very wide compared to the extinction length of the

localized wavefunctions. Also note that A Vi = AV,-i. The coherent intra-module

transport due to AVig is negligible compared to the scattering-mediated transport. It

should be stressed again that in the absence of scattering, the transverse momentum

k is conserved and AVi(ki, kj) is non-zero only for states with an identical k. In what

follows we will abbreviate AVI(ki, kj)6kikj with AVlj. Note that this calculated in-

teraction depends (weakly) on bias, as the changing potential and interactions within

the module shift the wavefunctions around.

It should be pointed out that this approach yields a direct estimate of the anti-

crossing gap Aj = 21AV/jl between levels 0 and 0, and it makes this parameter

easily accessible for investigation. In general, these calculated anticrossing gaps over-

estimate the value found from semi-classical calculations by 10-20%. Since the injector

barrier thickness only affects the calculated Aij and not the localized wavefunctions,

this approach is very convenient to study the effect of barrier thickness on transport

(see Section IV).



As mentioned before, we choose to adopt a "hybrid" strategy when including

the density matrix formalism into the Monte Carlo simulation. Only the transport

through the injector barriers is modeled in the DM formalism, the transport through

the rest of the module is still handled semi-classically. This means that all scattering

rates are calculated using Fermi's Golden Rule instead of a full density matrix de-

scription, and are simulated using a Monte Carlo approach. The transport through

the barrier is handled by the quantum Liouville equation (Eqs. (2.76)-(2.78)), which

includes the depopulation and pure dephasing scattering rates in the matrix F. The

solution to this equation exhibits oscillations on timescales varying from a few fem-

toseconds to tens of picoseconds, and a full Monte Carlo implementation of these

equations would be very computationally intensive. Instead, we choose to analyti-

cally calculate the solutions to the equation of motion with a global phenomenological

pure dephasing rate Ipre = T7- 1 that applies to all subband states:

t = E[Lij,mn - T2-16imcji]Pmn. (3.34)
S m,n

T2 can be estimated from measurements of the spontaneous emission linewidth. By

doing this, we describe the damping of the Rabi oscillation with two numerical meth-

ods: pure dephasing (T2) is accounted for analytically and is assumed to be constant

for the duration of the simulation; scattering dephasing (due to e-LO-phonon, e-e, and

e-imp scattering) is calculated using a MC method and can (and will) vary with time.

This scheme allows us to separate the time scales of pure and scattering dephasing,

as the MC sampling rate is not affected by the pure dephasing time. The descrip-

tion of the time evolution of (an ensemble of) electrons between scattering events

includes both coherent transport and pure dephasing. The practical implementation

is straightforward. An arbitrary density matrix p can be described at time t = to:

p(to) = E ckl (to)p0,, (3.35)
k,l

with

po= kik)(1. (3.36)



Because the Liouville operator is a linear operator, we can describe the time depen-

dence of a density matrix as the sum of the time evolutions of its components. If we

write Pkl(t) for the solution to the equation of motion (including only pure dephasing

scattering as discussed above, i.e. /kl(t) is solved from Eq. (3.34) for the basis density

matrices piL, we find:

kL(t) = k C o(t)Pm, (3.37)
m,n

and after a flight time At, p is transformed into:

p(to + At) = E ck1(to)ckm o(At)poF . (3.38)
k,l,m,n

The a priori unknown dephasing rates due to relaxation scattering can then be added

during the MC simulation by setting the appropriate off-diagonal element pij to zero

every second time a scattering event affecting levels i or j happens. This ensures

that the dephasing rate due to relaxation scattering is half of (-yi + yj), as seen in

Eq. (2.77). The affected diagonal element Pii is adjusted accordingly as in the case of

the semi-classical model.

A semi-classical Monte Carlo simulation deals with "integer" particles, i.e. every

simulated particle represents an ensemble of electrons that is not broken up during the

course of the simulation. In principle, all the particles in the ensemble can be name

tagged and monitored during their transport process through the whole structure.

The ensemble evolves and scatters as a whole, and at every point in time has a single

well-defined momentum k. Whether a particle is viewed as a single electron or an

ensemble of electrons is not important, since it does not affect the particle dynamics.

Because the particles are indivisible, conservation laws dictate that their total number

remains constant over the course of the simulation.

In the density matrix MC simulation, however, this is no longer the case, and we

can no longer identify a particle with a single electron. Instead, each particle needs to

be treated as an ensemble of electrons. At the beginning of the simulation, there is a

limited number of particles with a specific energy and momentum, each represented

by a density matrix. The absence of coherent interaction between two states with



different k, makes it convenient to assign a different density matrix to every point in

k space as their (coherent) time evolutions are independent. An ensemble p initially

localized in one level i will quickly spread out across multiple levels due to coherent

transport, while retaining its localization in k space:

p(O) = Ikk)(,I -' p(t) = ECkl(t)I1k)( l0 1 (3.39)
k,l

However, relaxation scattering is calculated semi-classically and describes the transi-

tion of electrons from level i with initial momentum ki (in the ensemble pk') to level j

with final momentum kj. Consequently, a scattering event only affects the parts of pkI

that refer to level i, namely the population density pi' and the coherences p~ (k 4 i),

while the other elements remain the same:

pýk, _ 0, (3.40)

pi , p7 (k : i) -+ 0 (50% chance). (3.41)

The scattered electrons generally have a different momentum kj = ki, and need to be

represented in a new density matrix pkj, which initially consists of an electron wave

packet localized in level j:

pk -= I)q(|jl. (3.42)

The electron population originally represented by one density matrix is now spread

over two density matrices pki and pkj, and subsequent scattering will fragment them

even further. The result is an ever increasing number of ensembles with different

weights, spread out over k space. To counter this unbounded proliferation, we chose

to group different ensembles according to their distribution in k space, by assigning

them to "bins" chosen to represent a grid in k space. The different density matrices in

one bin are very close in k, and can be approximately described with a single density

matrix which is the weighted sum of all density matrices within this bin.



Chapter 4

Non-Equilibrium Green's

Functions

4.1 Introduction : Non-Equilibrium Green's Func-

tions

As discussed in the previous chapter, the density matrix formalism, as implemented,

still leaves substantial room for improvement. The fine-tuning of the DM descrip-

tion would entail the introduction of many phenomenological dephasing times, which

would in fact severely limit the model's envisioned use as a design tool. Instead, we

chose to investigate the non-equilibrium Green's function (NEGF) formalism, which

provides a more generalized microscopic theory for quantum transport. This approach

is very comprehensive, and describes both quantum-coherent effects and scattering to

an arbitrary order of perturbation. Furthermore, energy-resolved transport charac-

teristics like level broadening are made readily available and are a natural part of the

formalism, which is a marked improvement over the time-dependent density matrix

formalism used in the previous chapter.

Non-equilibrium Green's Function theory [40, 41] is deeply rooted in the many-

body theory, which describes how interactions between particles affect the behavior

of a many-body system, such as nuclear systems, electrons in a lattice, plasmas and



ferromagnetic media. The transport of electrons in QCLs, which is characterized

by sub-picosecond scattering due to electron-phonon, electron-electron and electron-

impurity scattering, is therefore a very suitable subject for the NEGF formalism.

The particles in these systems exhibit very complicated behavior, which makes an

accurate description difficult. Early attempts at solving these problems ranged from

simply ignoring the many-body aspect (single particle approximations) to canonical

transformations, in which a new basis is chosen to minimize the particle interactions.

However, Feynman diagrams and path integrals, [42] methods developed originally

for the Quantum Field Theory, together with the Green's function formalism provide

a powerful way to attack the many-body problem.

As a real particle moves through interacting bodies, it causes a disturbance in

its surroundings which travels with it. This cloud of agitated particles "dresses" the

particle and can shield its interaction with other particles beyond the cloud. Good

examples are the motion of an ion in an electrolytic fluid, or an electron in a metal or

semiconductor. The central particle and its accompanying cloud of constantly chang-

ing particles behave as one entity and are known as a "quasi-particle". Many-body

theory is a powerful instrument to translate the description of strongly interacting

bare particles into a picture of weakly interacting quasi-particles, which is much easier

to treat. Due to its composite nature and the interactions with its surroundings, the

quasi-particle will in general be characterized by a lifetime T and an energy Eqp and

mass mp which are different from their counterparts Ebare and mbre for the bare

particle. The difference Eqp- Ebae = Eelf is called the "self-energy" of the quasi-

particle. The particle interacts with the surrounding many-body system, creating a

cloud, and the cloud in turn interacts with the particle, changing its energy. So, in a

sense, the particle is interacting with itself.

The NEGF formalism treats these problems by examining what happens to an

electron that is added to a system that is already in a non-equilibrium state, defined

by a Hamiltonian H which may not be solved exactly:

L + U + Hscatt, (4.1)



In the Heisenberg representation, the unperturbed Hamiltonian can be written in

term of the creation and annihilation operators A(t) and f(t):

Ho = ZE~i(t)&a(t). (4.2)

H has eigenstates Ia), and

U = U A/(t(t)(t ) (4.3)

describes nondiagonal parts of the Hamiltonian as well as the effect of electric fields,

which generally leads to a coherent time evolution. Hscatt refers to elastic and inelastic

interactions of electrons with phonons, ionic impurities, interface roughness potentials

and other electrons. The language of second quantization allows for a convenient for-

mal way to describe many scattering events, as the creation and destruction operators

provide a good way to capture the dynamic interactions between the particles that

form a quasi-particle's cloud. The various Green's functions are therefore defined as

a function of these operators.

Our ultimate goal is to calculate various observables such as the occupation of

state a, which can be expressed as the expectation value of the number operator:

fa(t) = ( t(t)^(t)) . (4.4)

Besides the one-particle density matrices (aý(t)&a(t)), higher order density matri-

ces describe correlation effects and are, e.g., needed to accurately describe electron-

electron scattering. [43]

In contrast to the density matrix formalism, where the temporal evolution of

these observables is studied directly (all operators are taken at the same time t),

Green's functions describe the correlation between two operators at times t and t'. As

explained later, this extra degree of freedom is used to describe the energy spectrum

and linewidth of a given state.

The exact derivation and justification of the various Green's functions and self

energies is quite complicated and technical, and can be found in comprehensive ref-

erence texts such as written by Mahan. [44] Here I will summarize the key definitions

and results that are important for this work, and I will try to provide a physical

interpretation for each function as it is discussed.



4.2 Green's functions

In general, the Green's function formalism can give us the response at any point in

space and time due to an excitation (addition of an electron or hole) of the system

at any other point, including perturbations like scattering. This concept of Green's

functions is very general and appears in many physical contexts in which the su-

perposition priciple holds, such as circuit theory, electrostatics and electromagnetics.

Since our focus is on quantum mechanics, the electronic system is described by the

Hamiltonian H, and we define the Green's function G as: [45]

(E - H)G = S (4.5)

where S is interpreted as an input (electronic excitation). If S is an impulse, we can

formally write:

G = [E - H]- 1. (4.6)

However, the inverse of a differential operator is not uniquely defined until we specify

the boundary conditions. In general, two different Green's functions (retarded and

advanced) are specified, each corresponding to a different boundary condition. This

difference is best appreciated with a simple example of a one-dimensional system,

excited at x = z':

(E - H)G(x, x') = 6(x - x'). (4.7)

with a Hamiltonian given by:

h
2

H = -- _V 2  (4.8)
2m*

If we look at Eq. 4.7, we see that it looks exactly like the Schr6dinger equation, except

for the source term 6(x - x'). The most obvious solution is two waves originating at

x = x0 and traveling outward from the source:

G(x,x') = Aeikl x- '|l. (4.9)
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Figure 4-1: Two possible solutions to Eq. 4.7. (a) The impulse at x=x' excites outgoing
waves, propagating to infinity. (b) Waves incoming from infinity, meet at x=x' and
are annihilated by the excitation.

However, we can construct another solution as well:

G(x', x) = Ae- iklx - x'l,  (4.10)

which corresponds to waves coming in from both sides and being annihilated at x = xo

by the impulse. Note that, in this case, the waves travel in the opposite direction

of the first solution. These two solutions, waves originating at the source and waves

disappearing at the source (see Fig. 4-1) are commonly referred to as "retarded" and

"advanced" Green's functions Gret and Gadv, respectively. The terminology refers

to the time domain, where Gret(t, t') describes the time-retarded response, i.e. what

happens at a time t > t' due to an event at time t'.

The boundary conditions for the retarded Green's functions can be included ex-

plicitly into Eq. 4.7 by adding an infinitesimal imaginary part iqj to the energy:

(E - H + iq) Gret(x, x') = 6(x - x'), 77 > 0, (4.11)

The imaginary part makes the wavefunction grow indefinitely on the "wrong" side of

the source, and hence ensures that the only acceptable solution consists of outbound

waves. Similarly, adding -i7 to the energy results in the advanced Green's function.

We can then write formally:

Gret,o = [(E + in) - HI - 1. (4.12)

As stated before, this retarded Green's function describes (e.g., in the time domain)

what the system looks like at time t after it was excited at time t', and no intervening

excitations or interactions occurred. For this reason, the left-hand side of Eq. 4.12



is often referred to as the "free" or "undressed" retarded Green's function, which is

denoted with the superscript "0". However, in the physical system we are dealing

with, electron transport in QCLs, scattering and interaction with optical fields play

an important role, and the influence of these interactions needs to be included in the

expression for Gret. Although the exact proof is beyond the scope of this introduction,

the correct expression can easily be deduced by taking a closer look at another simple

example.

Consider the problem of an electron propagating from point A to point B following

a one-dimensional path, while undergoing scattering. The electron can get from A

to B in many different ways, which involve a varying number of scattering events at

a varying number of positions (not necessarily restricted to between A and B). As

illustrated in Fig. 4.2, each of these paths can be broken up into consecutive periods of

uninhibited travel (characterized by Gret,o) and a scattering event (with a probability

P). So, the probability of finding the particle at point B is found by summing over

all the different possible paths it can take: We can write this as: [42]

B

B B B

Figure 4-2: Construction of the full propagator (double line) out of an infinite sum
of partial propagators (single line). The dressed propagator includes all the effects of
scattering.
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Fourier transforming this expression simplifies the convolution terms on the right

hand side, and we get:

Gret(kA, kB) = Gret,O(kA, kB) + Eret[Gret,O(kA, kB)] 2 + (Eret) 2 [Gret,O(kA, kB)13 + ..

GretO(kA, kB)
(4.14)1 - EretGret,O(kA, kB)'

where Eret is the eigen-energy of the system and describes the effect of scattering on

the electron's propagation. For a constant scattering rate 1/7 the self-energy is given

by Eret = -ih/T. Using the expression for Gret,o from Eq. 4.12, we can write Eq. 4.14

as:

Gret = (4.15)
E - H - E ret '

where the infinitesimal term irl is no longer needed in the denominator due to the

presence of the imaginary self-energy Eret. This expression is known as the Dyson

Equation, and defines the relation between the electron propagator Gret, which de-

scribes the electron dynamics, and the self-energy Eret, which in turn describes how

scattering affects an electron's coherent time evolution. It is straightforward to gener-

alize this expression to describe a system of interacting states by replacing the scalar

values with tensors:

Gret = [EI - H - ret] -1 (4.16)

The Dyson equation is a generalization of Eq. 4.12 describing the "free propagator"

Gret,o, and the poles of Gret(E) occur at (complex) energies which correspond to the

energy difference between the excited states of the (N + 1)-particle system (i.e., in our

case, the biased QCL including the followed "test" electron) and the ground energy of

the N-particle system. [42] As an example, we can look at a plane wave with energy

Ek which has a retarded Green function given by:

Gret = (E - Ek) - 1, (4.17)

and the self-energy is zero due to the implied absence of scattering. We see that the

pole of Gret indeed corresponds with the energy of the electron. In our case, Gret



contains easily accessible information about the energy and carrier lifetimes of the

different subbands in a QCL. We can define the spectral function A which contains

all the information about the energy level broadening: [45]

A ia 2(k, E) = i[Gret (k, E)- Ga%2 (k, E)]. (4.18)

This function plays the role of a generalized density of states.

In terms of creation and annihilation operators, the retarded and advanced Green's

function can be written as: [46]

Gre a(tl, t 2)= -i 1 - t 2)(z (tl), a(t 2)) , (4.19)

G' (t,, t2) = i(t 2 - t1)({a,(), a~(t 2)})= [re (t2, t)] , (4.20)

where the brackets {} denote the anti-commutator {I, b} = ii + &b. In these defi-

nitions, the time-retarded and -advanced properties of these functions are expressed

more directly through the step functions O. Note that Gadv and Gret are Hermitian

conjugates:

G"d' = Grett. (4.21)

Furthermore, it is straightforward to show that for a real (and hence symmetric)

Hamiltonian H and a symmetric Eret, Gret and Gadv are symmetric as well. This

will be the case in the simulations of the stationary transport, but not for the time-

dependent gain calculations discussed in section 4.6. For a symmetric Gret, the spec-

tral density A can be related directly to Gret:

AQlQ (k, E) = -2Im[G'~,(k, E)]. (4.22)

4.3 Correlation function and G<

As stated before, one of the main goals of the calculations is to obtain an estimate

of the electron distribution function f(k). In order to do this, we can generalize

the expression for the time-varying density matrix p(k, k', t) = (,(k, t)&(k', t)) to



include correlations between the annihilation/creation operators at different times,

and define the correlation function (or "lesser Green's function"): [45, 47]

G<(k, k', t, t' ) = i ((t') ak (t)) (4.23)

Note that the density matrix can still be obtained from the correlation function by

setting t = t':

p(k, k', t) = -i [G<(k, k',, t t')]t=t,, (4.24)

In general, to describe time-varying transport we need to use the full two-time

correlation function. However, since we are only interested in steady-state solutions,

we can eliminate one of the time variables as the correlation function only depends

on the time difference (t - t') and use a Fourier transform to obtain:

G<(k, k', E) = I J dt eiEt/"G'(k, k', t + t', t') (4.25)

The Fourier transform relationship between the energy E and the time difference

(t - t') can be most easily explained by considering a particle with energy E, evolving

in time with a phase factor e- iEt/?. The correlation function is:

P(t)4*(t') oc e - iE(t- t ')/l , (4.26)

which suggests that the Fourier transform of the correlation function with respect to

(t - t') should yield the energy spectrum. In other words, the correlation function

carries information regarding an energy level's linewidth and lineshape.

The (stationary) density matrix can then easily be found by integrating G<(k, k', E)

over all E (Eq. 4.25 with t - t'=O):

p(kk') = i G< (k, k', E), (4.27)

Because of the integration over E, the density matrix formalism retains no information

about the electron energy spectrum, which makes it difficult to implement inelastic

scattering processes (which change an electron's energy). In fact, our Monte Carlo

implementation of the density matrix formalism implicitly assumes that the energy

Ee'" of an electron with momentum k in subband i is uniquely defined by Eelec = Eo +



Ekin , where EP is its subband edge energy and Ekin - h2 k2/2m* is its semiclassical

kinetic energy. This assumption is equivalent to treating the energy spectra as if they

were delta functions centered on Eel". It is of paramount importance to keep in mind

that, in the NEGF formalism, there is no longer a one-to-one relationship between

an energy state's momentum k and its kinetic energy, but that instead these two

quantities should be treated separately. In the NEGF formalism, scattering and a

finite lifetime lead to level broadening and an uncertainty in the energy of an electron;

on the other hand in the semi-classical picture, scattering only leads to a change of a

state's population while its energy remains well defined.

The diagonal elements of the correlation function (in subband index and momen-

tum index) tell us the number of electrons occupying the corresponding energy and

momentum. The semi-classical electron distribution function is then given by:

f G<(k) = p(k, k) = i G(k, k, E). (4.28)

In further analogy to the density matrix formalism, the off-diagonal elements of G<

can be considered a generalized description of the degree of coherent interaction be-

tween different levels (polarization). For a subband a, the distribution function f can

also be related to the spectral density A (generalized density of states):

1t idE
pc(k, k) = - dE G< (k, E) = Aad(k, E)f(k, E). (4.29)

Analogous to the electron correlation function, we can also define a "hole" correla-

tion function G> which describes the hole distribution and phase correlations between

holes. It is important to note that this function still refers to holes in the conduction

band, and not in the valence band in the conventional sense, and as such defines the

hole occupation number 1 - f(k):

G> (k, k', t, t') = -i ((t)k, (t') (4.30)

We can infer that, similar to the density matrix, iG< and -iG> are Hermitian.

As we will see in the discussion of the non-equilibrium Green's function formalism,

during the calculations there is no need to explicitly derive G> at any point. The

only correlation function necessary to determine important simulation results like the

current density, subband population or gain is G<.



4.4 Scattering and self-energy E

The self energy describes the interaction of an electron with itself and its environment,

and can be considered the quantum-mechanical generalization of the semi-classical

scattering matrix. The description of in- and outscattering gives rise to two different

self-energies, E< and E> respectively, which are in turn closely related to their respec-

tive correlation functions (which is similar to stating that the in- and outscattering

rates depend on the involved states' population densities). However, the exact form

of that relationship is highly dependent on the described interaction.

For elastic, one-electron scattering, e.g. impurity or interface roughness scattering,

the expression for the retarded ("ret") and lesser ("i") self-energy follows a simple

template in the Born approximation: [48, 46, 49]

et/<,imp/rough(k, E = Mimp/rough (k - k')Mimp/rough (k' - k)
01,32,k'

xG ret/<(k', E) (4.31)

where Mu"~m(k - k') and MroUgh(k - k') are matrix elements for impurity and rough-

ness scattering, respectively (see section 2.2.3). The angle brackets denote an average

over all possible distributions of impurities or variations in interface thickness. The

expression for Ead" is identical to Eq. 4.31 with Gret --_ G dv.Note that, for Eret, this

relation is very similar to Fermi's Golden Rule if we integrate the expression over E

and we associate Gret with a density of states. This tells us that we can interpret

Eet (k, E) as the (intrinsic) scattering rate associated with the state k in subband a,

and hence gives information about the state's lifetime. Similarly, E< is related to G<

and is a measure for the electron flux associated with that state, i.e. the intrinsic rate

weighted with the electron occupation. However, how do we determine whether this

means scattering into or out of a, k? If we interpret G< as referring to the electron

occupation number, we see that the right hand side of Eq. 4.31 is proportional to the

number of electrons in states other than a, k, and hence E< describes the electron

scattering flux into a, k. On the other hand, E> refers to the scattering of holes (as



described by G> ) into a, k, or equivalently, the electron scattering flux out of a, k.

How do we relate these self-energies to the level lifetime F? As mentioned before,

the retarded and advanced self-energies relate directly to the coherent propagation of

an injected electron. It can easily be shown that: [45]

F = i ret - adv, (4.32)

and as the retarded and advanced self-energies are Hermitian conjugates, the linewidth

is given directly by the imaginary part of 2 7
ret. Any time the electron is removed

from the system, or interacts with its surroundings (the bath), the coherent evolution

is over. This would seem to indicate that the appropriate lifetime is set by Eout. How-

ever, in case another electron tries to enter the system and is blocked by the electron

that is already present, its coherent evolution is disturbed as well. This means that

the rate at which electrons scatter into the state also contributes to its linewidth (cfr.

the expression for dephasing scattering in the chapter about the density matrix for-

malism). Since the out-scattering rate of an electron is equivalent to the in-scattering

rate of a hole, we can write:

F = i [E< + E>] (4.33)

These expressions for F are similar to the one for the spectral function A, and both

describe, in somewhat different terms, the effects of scattering. It is therefore not

surprising that A and F are linked by a simple transformation:

A = GretrGadv = GadVGret . (4.34)

For optical phonon scattering, the retarded self-energy can be written as a function

of the phonon free propagators Do, which describe the coherent evolution of non-

interacting LO-phonons:

ret' (k, E) = iZ M, (k - k') M, 2 1 (k' - k) x

k' 31,02

+ GrEl( k', E - Ei)Dret (El)

+ Gret (k', E- E)D<(E1) + G,1f,(k', E - E1)Dret(E(35),6102 4 35



with

E - hwLO + i0+ E + hWLO + i0 +

Dadv 0(E)
E - hwLO - i0+ E + hwLO - i0+

D<o(E) = -27ri {nLoS(E - hwLo) + (nLO + 1)6(E + htwLo)}

We then find for the full expression of ret,LO:

ret,LO(k, E) = Ma, 1 (k - k')M 2 (k' - k) [(nLO +
01,02 k'

1)Gret (k', E - hwLo)

+nLoG"3(k', E + hwLO)+ 2G" 2

21 2 dEI

1ho{ E- hwLOf

(k', E - hwLO)

0'1,(k, E - El)

E+1 })]
E + hwLO

where nLO = 1/[exp(E/kBT) - 1], the equilibrium phonon occupation number at

temperature T, introduces the only explicit temperature dependence in the whole

Green's function formalism. Similarly for E<,LO:

E< LO (k, E)ai17a2 = Z M,p, (k - k')M2a, (k' - k)
/1,12 k'

+ (nL + 1)G < (k', E + hwLO)]
3f-0102[ 1 •/• •

[nLoGp,(k', E - hwLO)

(4.40)

4.5 Equations of motion

The temporal evolution of the Green's functions is given by an expansion of the simple

Eq. 4.7: [50]

ih 1at, - E, Ga 2 ( tl, t 2 ) - Z Uap1 (t )G 2 tl, t2 )
1) C1 (tl 3a2 t, 13

=zJ dt Fret

dt [E (tl, t)G<2(t, t 2) + E 1<(t ,t)Gia (t, t2)] (4.41)

(4.36)

(4.37)

(4.38)

(4.39)

-- 4- n



(ih - EQ2  ala2 (tl 2  (tlt2 ) U2 a2 (t 2)

/dt et +G< t2)] (4.42)= G a•(tl, t7)Ez 2(t, t2) +G z (t 2)

(ih • - EaI Ga (t, 2) G/3(tl) v(t, 2)

= ha(t - •)•a2  + dt •etadv (t 1, t)Gr'(t, t2), (4.43)

ih - Ea2 G•t/adv (ti, 72)- G•t/adv(t, t•2)UpOa (t2)

= h6(t, - t)2.Sl 2 + G J -t ,adv t)E•l (t, t2 ). (4.44)

where U(t) is generally used to describe the perturbations of the Hamiltonian that

give rise to coherent motion, such as tight-binding matrix elements or the effects of

electrical fields. The effects of scattering are included on the right hand side of the

equations of motion, and are treated as source terms. Together with the expressions

for the self-energy, these equations form a closed set of integro-differential equations

which govern the temporal evolution of the Green's functions.

The relationship between Gret and Eret was already given in Eq. 4.15. The relation

between G< and E< is referred to as the "Keldysh relation":

G< 1, 2) = G f Gret(t, t)E, (t, t')G'v (t', t2) (4.45)

which is obtained as a particular solution of Eqs. 4.41 and 4.42. As such, it holds

true only in the limit of steady state.

Since we are interested only in stationary solutions, we can use Fourier transfor-

mations to simplify these equations:

Ga~ 2(E ) = dt eiEt/"'lGa 2(t + t27t 2), (4.46)

Gac 2 (tl, t2 ) = - dE e-iE(ti-t2)/hGa, 2(E) (4.47)G,,a, (l~ 27r



The equations of motion then become (in matrix notation):

(El - E) - G < - U - G' = E r et . G < + E< G dv  (4.48)

G < - (EI - E) - G< - U = Gret . < + G< Eadv (4.49)

(El - E) - Gret/adv - U G r e t / a d v = I + ret / adv Gret/ ad v (4.50)

Gret/adv - (EI - E) - Gret/ adv -U = I + Gret/ad . E ret/adv (4.51)

and the Keldysh relation:

G < = Gret . < - G adv  (4.52)

4.6 Gain

The information in Gret and G< can also be used to find the gain and absorption

spectra of the structure under bias. [51, 52] To do this, we consider the linear response

of the stationary state described by the Green's functions to a small perturbation due

to an optical field. In this context, we can consider the optical field to be too small

to influence transport, and Gret and G< do not depend on the applied optical field.

This approach will yield the spontaneous emission spectrum, but cannot be used for

the lasing regime.

The gain g and susceptibility X are related by:

SIm [(w)] (453)
c nB

where w is the frequency of the optical field and nB = V is the exciting mode's

relative refractive index. The exciting optical field is polarized along the z-axis and

propagates along y:

E(r, t) = e, (w)eik(w)y-iwt (4.54)

and results in a small time-dependent perturbation

e
61 (r, t) = _ [P - A(r, t) + A(r, t)- f5] + eO(r, t), (4.55)2m, (z)



where i) is the momentum operator and me(z) is the spatially dependent mass. The

vector potential A and the scalar potential ¢ are related to the optical field through

A(r, t) = (w) eik(w)yitz, (4.56)
27r iw

¢(r, t) = 0 (4.57)

in the Coulomb gauge. In the long-wavelength approximation we neglect the spatial

variation of the optical field throughout the structure and we can write in the energy

representation:

6wp(w)= i [t z eo(w) [to, , . (4.58)W Me (z) IO hw

The linear changes in the Green's functions and self-energies caused by 6V(t)

represent the linear response of the nonequilibrium stationary state to the applied

optical field. These changes can be written as:

6Gret(w, E) = Gret(E + hw) [5V(w) + 6Eret(w, E)] Gret(E) (4.59)

and

6G'v(w, E) = Gad(E + hAw) [bV(w) + 6E2"'(w, E)] Gd'v(E), (4.60)

and for the correlation function:

5G<(w, E) = Gret(E + hw)6V(w)G<(E)

+G<(E + hw)6V(w)G"ad(E)

+Gret(E + h.w)SEret(w, E)G<(E)

+Gret(E + hw)6F<(w, E)GadV(E)

+G<(E + hw)JE"dv(w, E)Gadv(E). (4.61)

Note that 6Gadv(w, E) # 6Grett(w, E). The expression for SE(w, E) take the same

functional form as in Eqs. 4.31 and 4.39-4.40, with G(E) --+ G(w, E). For 5E •S , the

expression for Eret is used with the replacement G< --+ -6G< and Gret - -6G adv.

The expressions for the self-energy must be evaluated self-consistently with those for



6Gret/a dv /<, and so another iterative loop, similar to the one for the nonequilibrium

Green's functions, must be carried out.

From the change in the Green's functions we can find the change in the current

density:

6J(w) = 3Jo(w) + 6Jscatt(W) (4.62)

where 3 Jo is the contribution from coherent current

2e dEE)
Jo(w) = V 2 Gk(, E)

a# k

+ [6 ^(w)),] 6 Ga,,k(E) (4.63)

and 6Jscatt can generally be neglected. The change in polarization is related to 6J

through 6P = i 6J/w, and hence the complex susceptibility can be found from:

xP(w) i 6J(w) (4.64)
Co,(W) -o WE(W)

From Eq. 4.53 we then find for the gain:

Re[sJ(w)]
g(w) - onBC(W) (4.65)

4.7 Current

The Green's functions G< and Gret allow us to extract a lot of information about

the electron distribution, such as linewidth and state broadening, population density,

density of states and lifetimes. However, an equally important parameter is the

current density, which can easily be verified experimentally and therefore provides a

good benchmark for the NEGF model. The current density can be calculated from

the change over time of the position operator: [51]

J(t) & (iP . (4.66)V dt V &
If we split up the Hamiltonian H=/Ho+Hscatt, where Ho governs the coherent evolu-

tion (i.e. including off-diagonal elements that do not lead to a change in momentum



k) and H,,tt describes elastic and inelastic scattering, the current density can be

written as:

J(t) = ([Ho+Hscattl) = Jo(t) + Jwcatt(t). (4.67)

The first term on the right hand side describes the coherent current:

Jo(t) e i V [Ho,/')= V R{ [Ho, z]G<(t, t)} (4.68)

In the energy representation this becomes:

2e dE
o = I [Ho, z]apG o(k, E), (4.69)

a,f3 k

or using the density matrix p:

2e
Jo = eV E Z[Ho, z]appa(k). (4.70)

a,f k

The expression for the scattering current is more involved:

Jscatt 2e dE V •  •  - [ 6 (k, E) - zayE6 (k, E)]Ga6v(k, E)
a,3,,y,6 k

+[ret (k, E) -zEre (k, E)]G (k, E), (4.71)

where the "transformed" self-energies E are found by replacing Gp by E za 7Gy• in

the expressions for the self-energy. Note that although the coherent current contains

no explicit reference to the scattering Hamiltonian, nevertheless its effects are included

through G< .

In order to get a more intuitive picture of the expression for Jscatt, we consider

only the diagonal elements of G and E in Eq. 4.71, and obtain:

2e dE
Jscatt E= tV,- 2Va,# k

x[G< Eadv(a) + Gret~<(a)]z + zr[,,<()G d+ +Fret(P)G< , (4.72)SL-'t t'/3 - jaa ac

Ia Ib IIa Iib

where E(a) refers to the contribution of Goa to the self-energy. The different terms

in Eq. 4.72 can all be interpreted as scattering rates. The first term (Ia) consists of

the product of the electron density in # (GkO) with the raw scattering rate from 3
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into a (ECp'(a)), or in other words the electron flux " out of 8 into a. Similarly,

(IIb) describes the scattering rate Io,, out of a into Pf. Term (Ib) is the product of

the density of states in 0 (Ggt) and the in-scattering rate of electrons out of a into p

( (a)), i.e. the electron flux IFN into p from a. (Ha) can be interpreted as rn

Note that the out-scattering rates rout are negative, while the Fin are positive. Since

they describe the same current channel, the corresponding in- and out-scattering rates

must be equal in magnitude and Eq. 4.72 can be rewritten as:

Jscatt oc (r•u t  Fa±r ) (zp - z+r). (4.73)

This expression tells us that the scattering current is proportional to the effective

electron flux (rut +c F_.) multiplied with the distance between a and 3, i.e. the

net velocity and density of electrons moving from a to 3.

4.8 Simulation

In order to decrease development time and to provide a solid frame of reference, the

numerical implementation of the NEGF formalism was based in large part on the

discussion of a similar simulation developed by Wacker et al. [46, 53, 52] Although

in their work they neglect the momentum dependence of the scattering matrix ele-

ments, which leads to significant simplifications, the basic structure and algorithms

of the actual calculations can easily be generalized to apply to our calculations. Fur-

thermore, it is fairly straightforward to include the momentum-independent calcu-

lations in the simulation as a special case, adding the possibility to compare both

approaches. The NEGF simulation includes the effects of electron-impurity, electron-

interface roughness and electron-LO-phonon scattering in the Born approximation,

and treats screening with a nonequilibrium multi-subband model identical to that

used in the MC calculations. To address the absence of an adequate description of

electron-electron (e-e) scattering and carrier thermalization, a tentative model for e-e

scattering was developed and tested.

The ultimate goal of this simulation is to study the electron transport and optical

gain properties in a quantum-cascade structure. A proper choice of the basis wave-
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Calculate J, p, distribution functions, gain

Figure 4-3: Flowchart of the NEGF simulation.

functions is of great importance, as it determines the scattering matrix elements and

the physical picture we can get from the simulations. While the localized wavefunc-

tions used for the density matrix Monte Carlo calculations can provide an intuitive

physical picture, unfortunately the wavefunctions belonging to different modules are

not orthogonal in this description, which renders many of the expressions for the

current density and the gain invalid. In view of this, we chose to follow Wacker [46]

and use Wannier functions as basis wavefunctions. While this choice of basis does

not provide an intuitive picture, the resulting scattering matrix elements are inde-

pendent of the applied bias, which allows for a simpler mathematical treatment of

the calculation.

From simple initial guesses for Gret and G< , self-consistent solutions for the

Green's functions and self-energies can then be obtained through an iterative calcu-

lation. These solutions can be used to find the current density, electron distribution

function and gain spectrum of the investigated structure.
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Figure 4-4: (a) Dispersion relations for the 4 lowest-energy Bloch subbands of the
superlattice. The miniband width is approximately given by 4T1 . (b) Maximally local-
ized Wannier wavefunctions, constructed from Bloch functions. The energy of each
Wannier function corresponds to the middle of the Bloch miniband it was constructed
from.

The following sections provide more background and detail about the various

aspects of the simulation, in particular the Wannier functions, the e-e scattering

model and the practical implementation. As a practical example, we will examine

the simulation results for a simple superlattice structure, consisting of a repetition of

25.1-nm-wide GaAs quantum wells separated by 4.0-nm-wide Alo.15Ga 0.85Asbarriers.

Each barrier is doped to n3-D = 2.44 x 1016 cm -3 , resulting in a 2-D electron density

of 1 x1010 cm -2 . The calculations were done for a lattice temperature Tattu= 2 5 K.

4.8.1 Basis functions

Wannier functions

To construct the Wannier functions, [54, 55, 46] we start from the Bloch functions

Ov(z) of the superlattice potential, each characterized by its momentum q and grouped

in minibands (index v). Note that no external electric field is applied to this super-

lattice potential, and the obtained results will be independent of the bias voltage.

The energy dispersion relation for a single miniband v can be expanded in a Fourier
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series:

oo

EV(q) = EV + E 2Thcos(hdq), (4.74)
h=1

where the index h indicates the order of the Fourier term. In a typical case, the

bands essentially have a cosine shape and only the term with T1 is significant. There-

fore, Eq. 4.74 is very similar to a standard nearest-neighbor coupling result with

tight-binding strength Ti. The dispersion relation and the coupling parameters are

illustrated in Fig. 4-4(a) and Table 4.1 for the superlattice. Note that the lower-energy

subbands have a much smaller dispersion, corresponding to the larger effective con-

fining potential they experience.

The Bloch wavefunctions are delocalized through the whole superlattice, which

makes them a poor representation for the more localized wavefunctions that emerge

when the superlattice is under a voltage bias. However, in analogy to the construction

of localized wavepackets from a set of plane waves, it is possible to make a linear

combination using the Bloch functions in each miniband v to produce a localized

Wannier function i":

_d 7r/d
-(z - nd) = f /d dqe-inqdqC5(z), (4.75)

where d is the module width and n indicates the position of the module with respect

to a central module (n=O). These Wannier functions I" each represent a different

Bloch miniband v, and are assigned the "central" energy E' of that miniband. It

can be shown that these "V are maximally localized when the phases of the Bloch

functions are correlated in a carefully chosen manner, [54, 46] and for that choice I"

Subband EV (meV) TI (meV) T2 (meV)
1 6.4005 -0.2369 0.0067
2 25.5272 0.9853 0.0310
3 57.1439 -2.3615 0.0623
4 100.8408 4.5564 0.1207

Table 4.1: Energy parameters for the Bloch subbands of the superlattice. Since
Ti<< T2, the dispersion relations are nearly sinusoidal.
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will be real. The Wannier functions for the superlattice are illustrated in Figure 4-

4(b). We can see that the 9" are largely confined to a single quantum well, with little

of the wavefunctions leaking out to adjacent wells. However, unlike the tight-binding

model, the wavefunctions are in fact infinitely extended and can be used to describe

non-nearest-neighbor interactions with levels in distant wells.

Once the 9 associated with one module are known, the functions for another

module can easily be obtained by a proper translation. The Wannier functions thus

found are orthonormal:

J dz @"(z - nd)P"'(z - md) = 6,tnm. (4.76)

The Wannier functions belonging to the different modules (single wells in the case of

our superlattice) of a quantum-cascade structure can then be used as orthonormal

basis wavefunctions for the description of electron transport in that structure. As

a first step, we need to construct the (unperturbed) Hamiltonian and describe the

effect of an external bias field on the wavefunctions and energies.

Within second quantization, the creation and annihilation operators a"t and a'

associated with the Wannier function I"(z - nd) can be found from the Bloch ladder

operators in a way similar to Eq. 4.75. Taking into account only the next-neighbor

terms with T1, we can write for the Hamiltonian:

Ho = ~[E'avta' + T•(a•a" + aZt ia~)]. (4.77)
n,v

It is straightforward to show that an originally occupied Wannier state decays on a

time scale of Wannier = h/2T1, which is very similar to the expression for the Rabi

oscillation period found earlier. Therefore, T1 fulfills a role very similar to the tight-

binding elements in the density-matrix Monte Carlo simulation, with the exception

that T only describes interactions between equivalent subbands in adjacent modules.

For our superlattice example, we only take into account the bottom two subbands
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per module and find, for a central module and its adjacent modules (two levels each):

(4.78)

Electric Field

The effects of an electric field F (along the growth direction z) can be included in

the form of a perturbation U = -eFz. Note that the use of a non-orthonormal

set of basis functions, as used in the density matrix MC simulation, would lead to

complications when using the dipole matrix Z. The fact that wavefunctions belonging

to different modules are not orthonormal is not an issue in the DM MC simulation

because the only intermodule interaction is described through a tight-binding matrix

element which does not rely on Z and is translation independent. However, in the

NEGF formalism the off-diagonal elements of Z are used to describe the coupling

between levels due to the electric field (and, as such, gain and coherent transport)

and these are no longer translation independent for non-orthogonal wavefunctions:

Z" - (W' I(z)zl (z)) (1T"(z)j(z + zo) I(z)). (4.79)

For this reason, the orthonormal Wannier functions are a better choice of basis func-

tions for the used NEGF formalism than the localized wavefunctions described in the

previous chapter.
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For our superlattice, the dipole matrix can be written as:

Z - d Z•02

z2 22-d

Z70 - 1)  Z 0(- 1)

g2(- 1)  z7(- 1)

12 z22

z70-1) 0(-1)

Z0(- 1) Z0(-1)
Z70( -1)  Z(-1)`12 Z22

Z10 + d Z"
Z0 Z0 + d

where the diagonal elements are the expectation values for the position of the wave-

functions. The dipole elements between subbands in non-adjacent modules are usually

negligible and are set to zero in our calculations. Note that Z is symmetric and that

the off-diagonal elements are identical for any two adjacent modules. This periodicity

and symmetry, also seen in Ho, is a reflection of the superlattice periodicity, and will

also show up (in a slightly different form) in the Green's functions. These properties

will allow us to reduce the amount of information we need to keep track of in the

simulation.

Diagonalization of the Hamiltonian

While the choice of Wannier functions as basis wavefunctions substantially simplifies

the simulations, it is not immediately helpful to gain an intuitive picture of the

physics of the device under study. Furthermore, our choice of basis wavefunctions is

also reflected in the scattering matrix elements and the Green's functions and self-

energies, which renders them harder to interpret. This inconvenience can be lifted to

a degree if we switch to a more intuitive basis, e.g. by diagonalizing the "coherent"

Hamiltonian Ho - eFU:

H' = V - (Ho - eFU) -V - 1,  (4.81)

where H' is the diagonalized Hamiltonian and V describes the linear transformation.

The new basis functions (Di can then be found from the Wannier functions IF':

PiO = Vi,t,,T (4.82)
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Figure 4-5: (a) Band structure and square of the Wannier basis wavefunc-
tions for a superlattice consisting of 25-nm-wide GaAs wells and 4.1-nm wide
Alo. 15Gao.s5Asbarriers. An external field of F=700 kV/m (18.9 mV/module) is ap-
plied. Every Wannier function is largely confined to a single well. The barriers are
doped to n3-D = 2.44 x 1016 cm-3, resulting in a 2-D electron density of lx 101 cm - 2 .
(b) Band structure and square of the transformed wavefunctions, for the same bias
conditions as (a).

The basis states obtained in this fashion are linear combinations of the Wannier

functions, but have a very close resemblance to the spatially extended eigenstates used

in the semi-classical Monte Carlo simulation. The limited number of Wannier basis

states does not constitute a complete set, so there can be some differences between

the extended eigenstates and the transformed wavefunctions. Figure 4-5 shows the

Wannier wavefunctions and the transformed wavefunctions for the superlattice under

resonant injection conditions (applied bias of 18.9 meV/module), for three adjacent

wells. Note that the transformed wavefunctions are no longer confined to a single

well but are spatially extended.

The Green's functions and self-energies can also be transformed to this more

intuitive basis:

G --+ V - G -V -  (4.83)

Similar transformations can also be applied to quantities derived from Gret or G<,

such as the electron distribution function or the density matrix, which yields the

108

A^ ý



transformed population densities.

4.8.2 Electron-Electron Scattering

To my knowledge, no working and practical model has hereto been proposed to handle

electron-electron scattering in the NEGF formalism. In the absence of this scattering

mechanism, there is no driving force to thermalize the electron distributions of the

various subbands and electron scattering between closely spaced subbands could be

severely underestimated. As such, the simulation results are affected both quanti-

tatively and qualitatively, and may be less relevant when compared to experimental

data. To remedy this, I devised a working model for e-e scattering and integrated it

into the NEGF formalism. Although the used expressions do not have solid physical

underpinnings, the e-e formalism is derived in an intuitive way and is shown to have

the desired qualitative effect. I would like to thank Prof. Andreas Wacker for the

many helpful discussions on this topic.

To get a working model for e-e scattering, we can start from the semi-classical ex-

pression for the scattering rate and infer its Green's function self-energy equivalent by

making the proper adjustments. While this is not a scientifically well-founded deriva-

tion, the resulting equations and expressions are likely to reflect the more intuitive

physics underlying the original semi-classical expression. If the dynamics introduced

by the new terms in the Green's function formalism properly reproduce the behavior

and effects we expect to see from electron-electron scattering, we can consider the

additions successful, even if they are stopgap measures.

As mentioned earlier, to fit into the used NEGF formalism, e-e scattering needs

to be described as a one-electron scattering mechanism, i.e. we can only keep track of

the coherent evolution of one electron, whereas a proper Green's function description

requires the time evolution of a system of two interacting electrons. This limitation

implies that the phase information of one of the partner electrons will be discarded,

i.e. in other words that electron can then be considered to be "semi-classical", and

it has a well-defined energy E = Eo + Ek associated with its momentum. The

other electron, the one of interest to us, can be described with the Green's function
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formalism. This picture essentially defines a background of semi-classical electrons

for the followed "quantum-mechanical" electron to interact with. Another interesting

possibility would be to model the e-e interaction after the electron-phonon interaction

described in Eqs. 4.39 and 4.40, combining a description of an inelastic scattering

process (from a one-electron point of view) with the coherent evolution of the partner

particle (originally a phonon). While promising, this possibility was not explored

further due to its mathematical complexity.

For the description of e-e scattering, expressions for both Eret,e-e and E<,e-e are

required. The choice of an explicit form for one self-energy implies a correlated

form for the other, as both self-energies merely describe different aspects of the same

interaction. Therefore, we only need to construct an expression for either Eret,e-e or

E<,e-e, and the proper form of the other self-energy can then be inferred.

The most obvious self-energy to model is E<,e-e, as it has a straightforward

physical interpretation that can easily be described in a semi-classical expression.

E<,e-e(k, E) tells us the electron flux into state Ia, k) and energy E from all other

states in the system, due to e-e interactions with any other electron in the system.

As mentioned earlier, we are describing the scattering process of a "fully quantum-

mechanical" electron with a "semi-classical" electron. Due to the e-e scattering event,

the electrons exchange momentum q and can scatter from initial subbands (i, j) to

final subbands (f, g):

i, k -- f, kf (quantum-mechanical electron),

j, kj -- g, kg (semi-classical electron).

The initial and final energy of the semi-classical electron are uniquely defined as

Ej = E9 + h2k2/2m* and E, = E° + h2k2/2m*, respectively, while Ei and Ef do not

have a direct relation to ki and kj. E° and Eo are the subband edge energies for

subbands j and g, respectively.

There is a marked difference between the semi-classical and the quantum-mechanical

description of e-e scattering, as illustrated in Fig. 4-6. In a semi-classical picture, a

state's distribution function is described by a delta function in energy and momen-
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Figure 4-6: Differences between the semi-classical and the full quantum-mechanical
picture in allowed electron-electron scattering transitions between two states i and f.
Shown are the semi-classical delta-function distributions and the quantum-mechanical
equivalent. The only allowed semi-classical transition energy is AEs", while a wide
range of energies AE q • is possible for the quantum-mechanical transition.

tum space, and scattering between two states i and f implies a fixed transition energy

AES C = Ef - Ei. Since the partner electron needs to have a transition available with

the exact same energy and momentum transfer, the number of possible scattering

partners is very limited. The quantum-mechanical distributions are still delta func-

tions of momentum but smeared out in energy, and a large range of energies can be

used to describe the transition. As can be seen in the figure, the decoupling of energy

conservation and momentum conservation makes transitions possible which are not

allowed in the semi-classical picture. If we look again at a transition between two

states i and f, a larger range of partner electrons with an extended range of transition

energies AEqm can participate in e-e scattering. For our description of e-e scattering,

where the transition energy and momentum are determined by a semi-classical part-
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ner electron, this means that we will have to sum over all these possible scattering

partners, which adds to the numerical complexity of the calculation.

Let us now first examine the semi-classical scattering rate. In a fully semi-classical

picture, the electron distributions are described by their distribution functions f(k),

and the electron flux into If, kf) can be expressed using Fermi's Golden Rule:

W'-e(kr) = JdEjIVgj9(q) 2fj(kj)(1 - ff(kf))(1 - fg(kg))
i,j,g ki,kj,kg

x6(E - Ei + E f - E g - E9), (4.84)

with the square of the e-e interaction potential:

4

|V ifg(q) 12 e Aq) 2 Aijfg(q)) Ik+kj,k+kg (4.85)(f0EGaAsAq)2

The form factor Aijfg is given by:

Ajjfg = J dz dz' i (z)0*(z) (z')g(z')e-lz-z'l,  (4.86)

and q = jkf - kil.

To deduce E<,e-e from Eq. 4.84, we retain the factors containing fj and fg (which

describe the semi-classical electron) while replacing fi and ff with their Green's

function counterparts, including the correlation function G< (Eq. 4.28). The energy

delta function expresses the conservation of energy in the e-e scattering process and

remains unchanged. Neglecting state-blocking, we can then write for E<,e-e:

f<e-e(kf E)= E E IVijfg(q)~(fj(kj)Gi(ki, Es), (4.87)
i,j,g ki,kj,kg

where E = Ef. The energy Ei can be determined by using conservation of energy:

h2
Ei = Ef + E, - Ej = E + Eo - E + 2m(k 2 - k), (4.88)

and we can express kg using momentum conservation:

k2 = k? + k2 + k) + 2kki cos 0kkj - 2k1 kf cos Okfk, - 2kjk1 cos 0kfkj. (4.89)
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If we transform the sum over the momenta to an integral, and take into account

the conservation of momentum in Eq. (4), we find:

E<,e-e(k, E)= eG A2 m*2  d d/kk, ddkk
fA(E ), E- E IdEidOkk dE& dOk k.S(EocEG.A)2 (27T) 4 h Z Ei,j,g 3

.x Iq(E , E i, Ok fki) f(Ek)G,,(E&, E ), (4.90)

and Ei(Ef, E, EF, Okf k, Ejk, Okfkj) is function of all the integration variables. Note

that we only obtain an expression for the diagonal elements of the self-energy, as

those are the only terms that have a direct semi-classical interpretation. However,

Eq. 4.90 can easily be expanded to include the off-diagonal elements. Because of the

added computational complexity and the fact that the diagonal self-energies seem to

give adequate results, the off-diagonal elements were not calculated or examined any

further.

To determine Eret,e-e, we take a closer look at the relation between the retarded

and lesser self-energy for another non-elastic scattering process, namely LO-phonon

scattering. In the expression 4.39 for Eret,LO, the terms containing G< and the

principal-value integral are generally negligible compared to the terms with Gret, and
Eret,LO can be approximated as a function of Gret alone. Comparing the remaining

terms in E~et,LO with E<,LO, it can be seen that the term referring to LO-phonon

absorption depends on E + hwLo for ,et and E - hWLO for E<, and vice versa for

LO-phonon emission. For the rest, both expressions are identical. In other words, the

only formal difference between the expressions, is that the exchanged energy hwLO

flips its sign. This suggests that we can construct Eret,e-e by copying E<,e-e, replacing

G< with Gret, and changing the sign of the exchanged energy Eg - Ej:

Erete-e )= e4 A2 m *2
E f (0eeA(kf, E) A= - 2 dEk d&krk, dE& dOkk

ff (fOEGaAsA) 2 (2) 4  W4 i, 13fjg

k k 12

Aifg(q(EE ,Oi1)) 13 (4.91)
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with

h2

E, = Ef + E, - Ej = E + Eo - E30 + -(k2~ - k.). (4.92)2m*

As mentioned earlier, unfortunately the practical implementation of this expres-

sion leads to a very computation-intensive calculation, even for a simple structure.

Let us consider the example of our 2-level superlattice, with only scattering between

the two levels of one module. For an energy grid of 500 points (E), a momentum grid

(Ek) of 100 points (see section 4.8.4)and 10 nodes in the grids for the different 0, the

full calculation of the self-energy involves 23 x 1002 x 102 = 8 x 106 summations to

evaluate E < fe- e(kr, E) for one value of f, kf and E, or 2 x 100 x 500 x 8 x 106 = 8x 1011

operations to find all (diagonal) elements of E<~e-e. This number will rise with the

fourth power of the number of subbands involved in the calculation. To reduce the

computational requirements of the e-e scattering expressions, several steps were taken

to speed up the calculation by only retaining the most important terms in Eq. 4.91.

For example, the very strong dependence of G on E and fj(Ek ) on Ek allows us

to restrict the integration to those values of E and Eý where these functions have

their largest values. Additionally, e-e scattering is dominated by (bi-)intrasubband

scattering and intersubband scattering of the type (i, i) -+ (f, f ), so we can safely

ignore other types and still retain the basic physical model of e-e scattering. These

restrictions will alter the expected e-e calculation results, but should still express the

influence of e-e scattering for the majority of the electrons (i.e. primarily at lower en-

ergy in a subband and at higher electron densities). For the superlattice calculations,

only terms with fj(kj) > 10- 6 and G(Ek, E) > max(G)/100 were taken into account.

While more conservative cut-off values for fj and G yielded slightly different results,

the chosen values drastically reduced the calculation time while still incorporating

the basic e-e scattering physics.

The effect of these extra self-energy terms becomes evident when we compare

the (semi-classical) distribution function f(k) for calculations with and without the

e-e terms. Figure 4-7(a) shows f(k) for the superlattice structure at anti-crossing,

calculated without e-e scattering. The electron distributions are very non-thermal
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Figure 4-7: (a) Distribution function f (k) for both subbands of the superlattice for the
.NEGF simulation without e-e scattering. Note that both distributions are highly non-
thermal. (b) Distribution function f(k) for both subbands of the superlattice for the
NEGF simulation including e-e scattering. The low-energy parts of the distributions
are approximately thermalized.

and exhibit large bumps around Ek=10 meV and Ek=30 meV. The origin of these

features is not immediately clear. When the e-e terms are included (Fig. 4-7(b)) the

low-energy range of the electron distribution is nearly thermalized, as indicated in the

figure. Note that the corresponding temperatures for both subbands are very similar,

which indicates a strong e-e interaction between the anticrossed states. For (kinetic)

energies Ek >15 meV, corresponding to the onset of fast LO-phonon scattering from

n = 2 to n = 1 (E21 M 19 meV), the distribution becomes non-thermal, although less

so than in the simulation without e-e scattering. This indicates that the e-e scattering

in those states is insufficiently fast to smoothen out the influence of LO-phonon

scattering, i.e. Te-e 7 TLO 0.3 ps. For the states with Ek > hWLO this is all the

more true, as intrasubband LO-phonon scattering becomes the dominant scattering

mechanism. Note, however, that the thermal part of both electron distributions (up

to - 15 meV) comprises well over 90% of the total electron density. We can conclude

that the main goal of the introduction of the e-e scattering self-energies, namely

achieving a more thermalized electron distribution, has been attained.
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4.8.3 Scattering Matrix Elements

As was the case for the Monte Carlo simulation, the scattering matrix elements for

electron-phonon, electron-impurity, electron-interface roughness and electron-electron

scattering play a central role in the calculations. In the used formalism, these matrix

elements depend only on the Wannier functions, not on the voltage bias applied to

the structure, which makes it possible to calculate the Ma, just once and use the

results for a range of biases. The effects of an electric field are handled separately

(U in Eqs. 4.41-4.44) and result in a change in the coherent current rather than the

scattering current. This is in clear contrast with the Monte Carlo calculations, which

start from bias-dependent wavefunctions and therefore end up with bias-dependent

scattering matrix elements.

In general, the second stage of the simulation (the calculation of the Green's

functions) is by far the most computation intensive and time consuming, and a proper

choice of variables in the initial setup can greatly improve the whole algorithm's

efficiency. Therefore it is usually advantageous to calculate and store the scattering

matrix elements in a form that allows easy access and minimal processing during the

iteration itself.

From Eqs. 4.31, 4.39 and 4.40, we see that the self-energies generally contain terms

of the form:

E(k, E) - Mip, (q)Mfl22 (q)G~ ,2(k', E), (4.93)
k'

where q = 1k - k'W is the exchanged momentum. Changing the summation into an

integration we find:

E(k, E) 2 (2 2  dEk' Gp,,32(k, E) j2 dOMa1 [q(0)]M#2 [q(9)], (4.94)

where Ek' = h2k'2/2m is the kinetic energy associated with k' and 0 is the angle

between k and k'. We can define a "interaction strength form factor", encompassing

the integration over 9:

Ba Pa 2 (Ek, Ek') = j dOMa. [q(O)]M,~[q()]. (4.95)
(495
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This form factor effectively describes the scattering strength (for the studied interac-

tion) between states Ija, k) and ja2 , k'). It is easy to show that Bcaiiia 22(Ek, Ek') =

B, 1p0•12, 2 (Ek', Ek) and BaiPCI 2(Ek, Ek') = Ba02 3h•ai (Ek', Ek). Note that B does not

depend on the Green's functions, and can be evaluated without any prior knowledge

of G. It is also worth remarking that this interaction strength is not limited by any

cut-off energy or other restriction due to conservation of energy. The energies Ek and

Ek' are no more than a convenient way to refer to the momenta k and k', and the

real energy dependence is contained in the parameter E and the Green's functions.

The energy spectra of G< and Gret serve to determine which matrix elements con-

tribute to a certain transition, much like the energy-conserving delta function did in

the semi-classical description.

The self-energy can then be expressed as:

E(EkI E) , (2~r)2 A dE k' G,,(k', E)Bfal2a2(Ek, Ek'). (4.96)

Using the form factor leaves us with only one integration in the expression for the

self-energy, which is a vast improvement over Eq. 4.94 as the angle integration does

not need to be repeated every time E is calculated. However, this improvement comes

at a cost: instead of having to keep track of just M,p(q) (3 dimensions) in Eq. 4.94,

now we need 6 dimensions for B,,~1, 2 (Ek, Ek'). While the resulting use of storage

memory may not be optimal, the gain in calculation efficiency and speed far outweighs

the disadvantages.

Calculation of B

As mentioned earlier, the calculation of B can be a time and memory consuming

process, and it can be very advantageous to explore how we can make this process

more efficient. To do this, we take a closer look at the exchanged momentum q

(Fig. 4-8):

q = k 2 + k'2 - 2kk'cos(O). (4.97)

Because the transport perpendicular to the growth direction is isotropic, we can

choose to point k along the kr-axis without losing the generality of the end results.
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Figure 4-8: Graphical representation of the relation between k, k' and q. The circles
represent the possible end points of the momentum vectors belonging to states with
(kinetic) energies Ek and Ek'

We see that varying 0 makes k' describe a circle while k remains fixed. From Fig. 4-8

and Equation 4.97, it is clear that q will change most rapidly as function of 0 when

cos(9) r 1, i.e. for small values of 101 and when q is minimal. Furthermore, the matrix

elements also tend to exhibit a stronger q-dependence for small values of q, as shown

in Figures 4-9(a) and 4-10(a) for several key transitions in our superlattice. Especially

the elements involving intersubband transitions ("1122" in the figures) change very

rapidly for small values of q. It follows that M can be very sensitive to 0 as well,

and this needs to be taken into account when evaluating B numerically:

BaQL 1,0 2 2 (Ek, Ek') e 2 AOMt ~l 1 [q(0i)JM, 2a 2[ [q(Oi)], Oi = (i-1)AO, i = 1, N(4.98)

where N = 7r/AO is the number of steps in the 0-grid. However, since we are using

uniform steps in 0 to step through the summation, the step size AO needs to be chosen

small for Eq. 4.98 be accurate for small 0 (and q), while a much larger AO would be

sufficient for larger 0. Therefore, choosing a non-uniform grid with increasing AO can

be much more efficient. A good choice is a linearly increasing grid step:

Ai = iAOo --+ i(i + 1) 2 (4.99)
2 N(N + 1)'
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where the minimum grid step AOo = 2xr/N(N + 1) is much smaller than the step

AO = Ir/N for a uniform grid with the same N. While the maximum step size

27r/(N + 1) is almost twice as large as in the uniform grid, it occurs at relatively large

q values where the matrix elements are less sensitive to q and the step size is less

critical. To match the largest step size with AO, it is sufficient to roughly double the

number of nodes in the non-uniform grid; however, to match the smallest step in the

non-uniform grid, we need to square the number of nodes in the uniform grid. This

illustrates that the non-uniform grid is the better choice.

4.8.4 Grid

The various Green's functions Ga(k, E) and self-energies ECp(k, E) are functions of

five variables, i.e. two subband indices, the two components of the momentum k and

the energy E. Fortunately, we can assume that G and E are isotropic perpendicular

to the growth direction, so k can be replaced with the momentum magnitude k, or

equivalently the kinetic energy Ek. This leaves us with four variables, two discrete

and two continuous. In order to represent G and E in the simulation, the continuous

variables are sampled along a discrete grid:

Ek Ei = (i - 1) AEk, i= 1, NEk (4.100)

E Ei = Eo + (i - 1) AE, i = 1, NE (4.101)

and G and E are evaluated on that grid. The start value Eo of the energy E grid can

be chosen so that the grid encompasses the energy range where the Green's functions

are significant.

When choosing the grid steps AE and AEk of the Ek and E grids, there are

two conflicting considerations that require attention: the limited computer memory

and the accuracy of the calculations. Many variables like the Green's functions,

self-energies and the form factor B are functions of two energy variables, and the

arrays representing them will therefore tend to scale inversely proportionally to the

square of the step size. To conserve memory, the grid step sizes should be as large
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as possible. On the other hand, the accuracy and convergence of the algorithm

also depend criticially on the step size: the steps should be much smaller than the

linewidth of the significant features in the energy spectrum. If this is not the case,

the simulation will at best yield questionable results, or may not even converge at all.

So we need to find a compromise to accommodate both these issues.

A typical case will serve as an example to provide some useful numbers. Since we

are only tracking the Green's functions belonging to one module, the energy range of

interest for E encompasses the energies of the functions belonging to that module, i.e.

from Ja = 1, E = 0) to Ja = N, Ek = E~,). However, it is necessary to set the lower

boundary E 0 significantly lower than El=l1,k=o) to allow for linewidth broadening of

the lowest energy states, various effects of scattering (e.g. LO-phonon scattering)

and coherent interactions with lower energy levels in adjacent modules. A similar

argument can be applied to the upper boundary of the energy range. In general, an

expansion of the energy range by 25 meV on either side is sufficient for our purposes.

Assuming EN - E 1 -' 50 meV, the total energy E range is 200 meV. To provide

enough phase space for electrons to scatter and heat up, we usually set Ek,=100

meV. A function with linewidths of about 3 meV requires a grid step of at most

0.3 meV, which translates into almost 700 grid nodes for the E-grid and 350 nodes

for the Ek-grid. For a structure with 5 subbands per module, this translates into

an array of 5 x 5 x 350 x 700 or more than 6 million floating point numbers to

describe a Green's function. However, the memory requirements are far worse for

the form factor B, which also describes the interaction between adjacent modules

(i.e. 15 subbands in this example), and would need 154 x 3502 = 6.2 x 109 elements.

Obviously, this cannot be accommodated and we need to reduce the number of Ek

nodes and take advantage of the symmetries in B to further decrease its storage

size. The necessary storage space for B can be significantly reduced by switching to

a non-uniform Ek grid, which allows for a small AEk for small values of Ek (<10

meV) where B strongly depends on Ek, and larger values of AEk elsewhere. Note

that since Ek oc k 2 , this choice of grid is more representative of a grid in k-space

with a constant step Ak. Finally, many of the interactions represented in B can be
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Figure 4-11: (a) The test function f(Ek, E), sampled with AEk =5 meV and AE =
0.5 meV. (b) The integrated function shows peaks and valleys according to the nodes'
vicinity to a peak in the sampled function.

neglected compared to other, competing interactions, which again leads to smaller

variables and a large improvement in computation speed.

As mentioned earlier, increasing AEk to be comparable to the linewidth of the

Green's functions and self-energies, can lead to errors in the simulation. To illustrate

this, consider a function f with a linewidth F of 3 meV, and choose AE = 0.5 meV

<< y while AEk = 5 mev f F, as shown in Figure 4-11(a). Problems arise when we

attempt to integrate this function with respect to Ek:

Ek

dEk f (E k , E) -- AEkf (E, E), (4.102)
EA

which is shown in Figure 4-11(b). Due to undersampling, the numerical integration

exhibits peaks and valleys (aliasing), which in this case dip down to half the peak

value. To remedy this problem while still maintaining a sparser Ek grid, we can

rewrite e.g. Eq. 4.96 in terms of the grid:

EkdEk B(Ek, Ek')G(Ek, E) = > E f' B(Ek, Ek')G(Ek, E). (4.103)

Each of the terms on the right hand side of Eq. 4.103 relates to one of the terms on

the right hand side of Eq. 4.102. Assuming that B(Ek, Ek') varies slowly with respect
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to Ek (which it does), we can take B out of the integration:

B(Ek, Ek') k' dEk' G(Ek', E) = B(Ek, Ek')Geff(E k ', E)AEk (4.104)
ii i

where the "effective" Green's function Geff acts as an average over G in the relevant

interval, and can easily be evaluated numerically on a denser Ek grid. Using Geff

in integrations, it is possible to circumvent the requirement that AEk «< F. The

minimum step size is now dictated by the changes in B, and AEk = 3 - 5 meV is

adequate in most cases.

4.8.5 Main algorithm

Once the scattering matrix elements are set up, we are ready to calculate the Green's

functions. Due to the periodic nature of QC structures, the Green's functions Gm n

describing coherent transport between the subbands of modules m and n are identical

to G(m+1)(n+l ) of the next modules, save for a shift in energy due to the applied bias

voltage:

G(+1)(n+l)(Ek, E) = G,• (Ek, E - eFd). (4.105)

If we take into account that Gret is symmetric and iG< is Hermitian, it is easy to

show that we need only keep track of GO(-1) and GOO to be able to reconstruct the

whole function. We can write for Gret:

Gret OO(E - Ebias) [GretO(-1)(E)]T 0

Gret = Greto(-1)(E) GretOO(E) [Greto(-1)(E + Ebias)]T ,(4.106)

0 Gret 0(-1)(E + Ebias) Gret °°(E + Ebias)

and for the correlation function:

iG< 00(E - Ebias) [iG<0(-1)(E)]t  0

iG< = iG< (-1)(E) iG<00(E) [iG< 0(-1)(E + Ebias) t .(4.107)

0 iG<0(- 1)(E + Ebias) iG<00 (E + Ebias)

From this perspective, Goo describes the intramodule transport, while Go(- 1) describes

the transport between modules. By using these symmetries, we can significantly speed
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Figure 4-12: (a) Initial guess for Gret (imaginary part) for Ek =0 meV for the super-
lattice. (b) Initial guess for G< (imaginary part) for Ek =0 me V.

up the simulations and reduce the memory requirements to 2/9 or 22%. A similar

argument holds true for the self-energies yret and E<.

The central algorithm to solve the NEGF formalism is based on a very straight-

forward iteration scheme, as shown in Figure 4-3. As mentioned earlier, all Green's

functions and self-energies can be determined from Gret and G< , i.e. if we can find

a reasonable initial guess for these functions we can start the iteration. We can use

Eq. 4.15 to set up Gret:

1
Gret,init (E"k E) = (4.108)ar ' E - Ea - Ek + ir'

where E,, is the subband energy for level a and F is an estimate of the state's lifetime

broadening (typically 3-5 meV). Note that the off-diagonal elements of Gretinit are

zero. In keeping with the interpretation of G< as a generalized density matrix, we

can relate G< to Gret through the occupation probability:

G<,init (Ek, E) -2 2i Gret,init(Ek, E). (4.109)
aat Eaa+Ek-EF,' •

1+e kBT

As can be seen from Figure 4-12, these initial guesses are centered around the semi-

classical energy of the state they represent.
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With these initial guesses and the previously calculated form factors B, an esti-

mate for the self-energies Eret and E< can be determined, and the Dyson Equation

(Eq. 4.15) and Keldysh Equation (Eq. 4.52) in turn provide us with an updated Gret

and G<. To ensure that the total population density a remains fixed throughout the

simulation, G< is normalized after every iteration:

G(E E) -> G (E, ) x - (4.110)

with

o = J dEk GJ (Ek, E). (4.111)

To prevent that the large changes in Gr" and G< cause instabilities in the algorithm,

we can use linear admixing to make the change more gradual. The newly calculated

Green's functions are replaced with a weighted sum of the previous and the new

estimates. For the Nth iteration:

GN -- cGN + (1 - c)GN- 1.  (4.112)

The parameter c can be adjusted to a higher value as the iteration proceeds to allow for

a faster convergence. In our simulations, c is usually chosen in the range c = 0.5-0.75.

The newly calculated functions Get and G< can then be used to find a new estimate

for the self-energies, and so on. In order to find a self-consistent solution of the

transport problem, this process needs to be repeated until the convergence criteria

are met, i.e. no value in Gret and G< changes by more than 0.1 % in consecutive

iterations:

,(E Ej-1(E, EG < 0.001, i = 1... NEk, = 1 .. NE. (4.113)

Self-consistent solutions found in this manner generally yield a population density a'

that is well within 1 % of a, which confirms the validity of the solution. Figure 4-13

shows how the Green's functions and the coherent current density converge during

the simulation of the superlattice. The scattering current is not calculated until the

calculations have converged, and can therefore not be used to monitor the simulation's

progress. Note that Jo remains virtually unchanged after the tenth iteration, while
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Figure 4-13: Convergence of Gret and G< for the simulated superlattice structure. The
Green's functions are considered self-consistent when the maximum relative change in
any component of Gret and G< is less than 0.1% (dashed line). Also indicated is the
evolution of the coherent current Jo over the course of the simulation.

the convergence criteria are far from met. This indicates that there is a considerable

safety margin and that the obtained current density is a valid simulation result.

The implemented convergence criteria are more than adequate to ensure that the

simulation results are accurate.

4.8.6 Output

Once the stationary, self-consistent Green's functions and self-energies are found,

we can move on to the final stage: the calculation of the current density, electron

distribution function and gain. In this section we will examine the calculation results,

and discuss the implementation of the gain simulation.
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Figure 4-14: Spectral density functions A1l (0, E) and A 22(0, E) as function of energy
E for the bottom of both subbands (Ek = 0) of the superlattice.

Green's functions and self-energies

Although the Green's functions and self-energies do not provide a very obvious and

intuitive picture of the transport process they describe, it can nevertheless be very

useful to take a closer look at them.

From the imaginary part of Gret we can immediately find the spectral density

function (Eq. 4.22), which is shown in Figure 4-14 for the subbands of the simulated

superlattice. Note that the peaks of the functions do not match the energy E" of the

corresponding Wannier function. This mismatch can be attributed to two causes: on

one hand, the interaction with the other states, which can cause a positive or negative

shift in energy, and on the other hand the real part of Gret, which represents an energy-

and momentum dependent energy shift. In general, the visible effect of Re(Gret) is to

cause a fairly uniform shift to lower energies of all Green's functions and self-energies.

As the energy differences between different states are almost unaffected, this shift has
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little physical meaning. The little bumps in each spectral density function are due

to coherent interaction, and (as shown later in Fig. 4-16) these disappear when the

Hamiltonian is diagonalized.

The density-of-states linewidth is approximately 6 meV for both subbands. It

is important to note that the states are only smeared out in energy E space, and

not in momentum k space. We can easily verify this by making a comparison with

the semi-classical case. Semi-classically we would expect to see a delta-function at

E = EV + Ek, so the total number of states would be unity, as expected:

1 /dE6(E- E" - Ek) = 1. (4.114)
27

In the NEGF formalism the delta function is replaced with the spectral density func-

tion:

dE A,(Ek, E) = -2 dEIm[Get(Ek, E)] = 1. (4.115)
27r 2rV

Integrating the functions in Fig. 4-14, we find 0.989 for subband 1 and 0.998 for

subband 2, again confirming the convergence and self-consistency of the simulation

results.

By examining how Gret changes as function of k (Figure 4-15), we see that the

spectral function grows more symmetric and narrower with increasing momentum.

The lopsided appearance of the Ek = 0 meV curve is due to the proximity of the

subband edge, which cuts off the low-energy part of the distribution. The decrease in

linewidth can be explained by considering the changes in the (intrasubband) impurity

scattering lifetime. Intrasubband elastic scattering at low energies (which roughly

corresponds with low Ek) is dominated by interactions involving small momentum

exchange q (Eq. 4.97), i.e. fast scattering (see Fig. 4-9), while at higher Ek the average

q, and hence the impurity scattering lifetime, will increase. However, at energies

exceeding one LO-phonon energy hwLO above the subband edge, fast intrasubband

LO-phonon scattering is allowed and the linewidth increases again. From Ek = 30

meV to Ek = 40 meV, the linewidth increases from 2 meV to roughly 4 meV, i.e. an

increase of 2 meV, corresponding with a scattering rate of -rTL = 2 meV/h - 3 x 1012

S-1
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Figure 4-15: Spectral density function A1l (Ek, E) as function of energy E for different
momenta Ek in the ground subband of the superlattice. The dotted line indicates the
subband edge.

Figure 4-16(a) shows the calculated G< for the subbands belonging to the central

module and the two adjacent modules. Rather than a spectral density (for Gret) these

functions represent the electron distribution function for the states in question.In

Figure 4-16(a), the functions for both subbands look very similar in shape (other

than a shift in energy) which is not very surprising as they are representing states in

anticrossing. The strong interaction between the ground state and the first excited

state in the adjacent well can also be seen in the double peak of GI. The Green's

functions belonging to one subband also exhibit a bump around the other subband's

energy, which is due to coherent interaction.

Diagonalizing the Hamiltonian and transforming the correlation function accord-

ing to Eq. 4.83, yields the functions shown in Figure 4-16(b), which now describe the

population density in the extended wavefunctions of Fig. 4-5(b). G" and G2< are

now very distinct and peak at different energies, in accordance with the relation to
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Figure 4-16: Electron distribution functions Im[GIl (0, E)] and Im[G"(O0, E)] as func-
tion of energy E for the bottom of both subbands (Ek = 0) of the superlattice at
injection anticrossing. Distributions functions for the adjacent modules are indicated
with dashed (previous module - higher energy) and dash-dotted (next module - lower
energy) lines. (a) Wannier basis. (b) Transformed basis (extended wavefunctions).

their anticrossing wavefunctions. Also note that the "coherence bump" is no longer

present in the transformed G<.

By integrating G< over E we can find the density matrix p(Ek) (Eq. 4.27) and

the semi-classical electron distribution function f(Ek), which yield the subband pop-

ulations. Table 4.2 shows that the ground state is slightly more populated than the

excited level, which indicates that transport is affected by dephasing. In the diago-

nalized basis, the population difference does not disappear as it would for extended

wavefunctions in the MCDM simulations. The density matrix formalism retains no

information about the energy spectrum, and when one state anticrosses with another,

their populations are redistributed regardless of their energy spectra. In the absence

of dephasing, anticrossing two states with the same energy will result in their popu-

lations being distributed evenly across the interacting states, whatever their energies

are. Because the DM model does not keep track of energy, the coherent interaction

it describes only enforces conservation of momentum. In the NEGF formalism how-

ever, the states' coherent interaction conserves both momentum (k) and energy (E).
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Figure 4-17: Electron distribution in the superlattice at anticrossing, assuming diag-
onalized wavefunctions. Indicated are the electron density in real space (horizontal
axis) and energy space (vertical axis) for both subbands, using a color coding scheme
ranging from red (high density) to blue (low density).

The anticrossing of two (unperturbed) states with the same semi-classical energy and

thermalized populations will give rise to anticrossed states where the lower-energy

state has a higher population density than the excited state. The density of states of

the ground state is higher at low energies, and since there are more electrons available

at those energies (due to the original thermalized distributions) this state will have a

higher population density.

Subband (Wannier) Pop. dens. (x 10 cm- 2 ) Subband (diag.) Pop. dens. (x 10 cm - 2 )

1 5.4 1 5.6
2 4.6 2 4.4

Table 4.2: Subband populations for the superlattice at injection anticrossing, using a
Wannier basis and the basis wavefunctions of the diagonalized Hamiltonian.
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Since the relation between k and E is no longer unique, it is instructive to redefine

the electron distribution function as a function of E instead of Ek:

1
f(E) = -i --- G< (Ek, E). (4.116)

k 27r

Combining the spatial electron distribution, provided by the diagonalized basis wave-

functions, and the transformed energy distribution of f(E), we can visualize the

population densities as shown in Figure 4-17. In the figure, the electron density in

real space (horizontal axis) and energy space (vertical axis) for both subbands are

illustrated, using a color coding scheme ranging from red (high density) to blue (low

density). Note that no wavefunctions are shown in this figure, although the proba-

bility distribution determined by the wavefunctions is clearly reflected in the electron

distributions. The distributions of the anticrossed levels are indistinguishable on the

figure and can be thought of as a single distribution spread over two subbands. While

most electrons are concentrated near the bottom of the subbands, some electrons are

also visible at roughly hwLO below the main distributions. It is not immediately

clear whether this reflects a real physical phenomenon or is merely an artifact of the

simulation.

To get an idea about scattering rates, we can take a closer look at the self-energies

Eret and E<, which are shown in Fig. 4-18. The imaginary part of the retarded self-

energy is directly related to the raw scattering rate F, and allows us to estimate

the level's lifetime. The two major contributions to scattering, elastic scattering in

the form of electron-impurity scattering and inelastic scattering in the shape of LO-

phonon scattering, are both easy to recognize when examining Fig. 4-18(a). We will

focus on 1ret, describing the scattering in the ground state n=1. The peak around

E = E1 clearly describes an elastic scattering process, i.e. intrasubband impurity

scattering and interface roughness scattering. Note that the maximum does not ex-

actly coincide with El, similar to Gret. Intersubband elastic scattering causes another

very small feature around E = E 2. The small bump around E=-42 meV is due to

resonant LO-phonon absorption, which is of little significance due to the low lattice

temperature (Tlatt = 25K). The LO-phonon emission peaks above E=30 meV are
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Figure 4-18: (a) Imaginary part of Elet for both subbands of the superlattice struc-
ture at Ek = 0 meV. Also indicated are the semi-classical energies El and E 2. (b)
Imaginary part of E< for both subbands of the superlattice structure at Ek = 0 me V.

much more prominent. Due to the small overlap between the ground (Wannier) states

in adjacent wells, LO-phonon emission from n=1 is only possible for an intrasubband

transition (E > E 1 + hwLO) or an intersubband transition to n=2 (E > E2 + hwLO).

As can be seen in Fig. 4-18(a), the scattering rates due to these transitions decrease

quickly as E increases and we get farther away from resonance. We can find the

scattering lifetime for the intrasubband LO-phonon peak around E=30 meV (F=30

meV) from TLO = trh/F=0.28 ps, i.e. the resonant LO-phonon scattering lifetime.

Note that this peak describes the transition of an electron with Ek=0 meV (hence

k .0 0) and energy E ~. 30 meV to other states near the subband edge (k' W 0)
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which have a substantial density of states near E = 30 meV - hwLO = -6 meV (as

shown in Fig. 4-14). In other words, due to the extended energy spectrum, the NEGF

formalism allows for (resonant) intrasubband LO-phonon scattering (with very small

q) between states with similar momentum k. However, this does not imply that the

actual electron flow due to this process will be significant, to get a high electron flux

there needs to be a substantial population density (found from G< in figure 4-16) at

that energy (and momentum) as well as a high intrinsic scattering rate. This descrip-

tion is in sharp contrast to the semi-classical picture, where intrasubband LO-phonon

scattering implies a much larger q > /2mwLo/h - 2.5 x 10i m - , and therefore a

much smaller scattering rate.

As explained in section 4.4, the lesser self-energy EE< measures the rate at which

electrons scatter into a state. Analogous to Eret, we can distinguish the contributions

from elastic scattering (around the semi-classical energies) and intra- and intersub-

band LO-phonon emission, at E = El - hwLo for E"". Note that the LO-phonon

emission peaks (electrons scattering into the state due to LO-phonon emission out

of another state) occur at energies lower than the semi-classical energy, in contrast

to Eret. This can also be seen immediately in the expression for ret,LO and E<,LO

(Eqs. 4.39 and 4.40), where the terms for LO-phonon emission are proportional to

Gret(E - hWLO) and G<(E+hWLo), respectively. Resonant LO-phonon emission (with

small q) from states around the subband edge (k e0, with population densities cen-

tered around E = El) is responsible for the LO-phonon emission peak, and causes an

in-flux of electrons around E = El - hwLO.

Gain Simulation

The calculation of the (small-signal) gain is one of most important aspects, if not

the most important aspect of a (QCL) device simulation. The optical characteris-

tics of the investigated device, its emission energy, linewidth and peak gain will to

a large extent determine its success or failure as a laser. The Monte Carlo simula-

tions, both semi-classical and density matrix, contain no direct information about

the linewidth (other than inferred from scattering times), and assume a Lorentzian
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Figure 4-19: Flow chart for the calculation of the gain spectra starting from the sta-
tionary Green's functions.

lineshape centered around the targeted frequency to obtain a peak gain value. The

correct values for the spontaneous emission linewidth, the emission frequency, the

oscillator strength and even the population inversion are debatable in many cases,

and lead to much uncertainty in the interpretation of the simulation results. The ex-

act wavefunctions and associated populations, and hence the oscillator strength and

population inversion, involved in the optical transition are approximated differently

in every simulation, and even within a single simulation different oscillator strengths

and populations may be used in the gain calculations depending on how strong the

role of resonant tunneling is thought to be in the injection of electrons into the upper

radiative state. For exaple, in the semiclassical simulation of FL175C, we may model

the gain as primarily due to the 5-4 transition, or include the broadened 1'-4 tran-

sition and determine the maximum gain due to contributions from both broadened
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Figure 4-20: Gain versus emission energy and bias voltage for the superlattice. The
gain axis is reversed for clarity.

transitions.

On the other hand, the implicit description of the energy spectra in the NEGF

formalism allows for a very inclusive calculation of the gain spectrum, yielding in-

formation about the peak gain, frequency, linewidth and lineshape. This added in-

formation removes the need for the assumptions made for the MC gain calculations,

providing a more robust model for the gain.

As explained in section 4.6, the optical gain is essentially calculated as a small-

signal perturbation to the large-signal Green's functions we obtained from the main

simulation. To resolve the interdependence of the small-signal changes in the Green's

functions and self-energies, another iterative scheme is required, similar to the one

used for the large-signal functions. However, there is one significant difference: the

time-dependence of the perturbing optical potential 5V(w) lifts the symmetry of Gret

and yret, and the Hermitian conjugation symmetry of iG< and iE<. For a superlattice
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or QC structure, the Green's functions belonging to the states in one module are still

identical to the Green's functions in another well, except for a translation in energy.

We can write for Gret:

Gret o(E - Ebia) SGret l(E - Ebias) 0

Gret = re Greto(-1)(E) XGretoo(E) GretOl(E) ,(4.117)

0 5GretO(-1)(E + Ebias) GretOO(E + Ebias)

and for the correlation function:

iJG<0 0(E - Ebias) iSG<01(E - Ebias) 0

iJG< = ibG<o(-1)(E) i6G<°°(E) iSG<01(E) .(4.118)

0 i6G<o(-1)(E + Ebia) isG<OO(E + Ebis)

Compared to the expressions in Eqs. 4.106 and 4.107, now we also need to keep track

of the interactions with the "next" module 6GO' besides 6G' and JGO(-1) to get a

full picture of all interactions.

Since the small-signal functions are generally a function of the excitation frequency

w, the iterative process has to be repeated for all desired w in the target frequency

range. The calculation scheme is shown in Fig. 4.8.6. Similar to the main algorithm,

new functions 6Geff are defined to avoid aliasing effects due to a coarse k grid (see

Eq. 4.104.

Gain spectra for several different biases are shown in Figures 4-20 and 4-21, for

emission energies between 1 and 30 meV. Also shown are the extended wavefunctions

corresponding to each bias, found by transforming the original Wannier functions

(Eq. 4.83). For low biases, up to 16 meV/module, the gain spectrum exhibits a

clear negative peak around 19 meV, which corresponds with the intersubband energy

separation between n=1 and n=2. For these biases, most electrons are stuck in the

ground state.

Closer to the injection anticrossing, the ground state n=1 and the excited state in

the next well n=2" start interacting, dropping n=1 to a lower energy while pushing

the energy of n=2" (and equivalently n=2) up, which results in a higher E21. This

blue shift in the loss can be seen in the figure for biases higher than 16 meV/module.
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Figure 4-21: Gain spectra for different applied electric fields for the superlattice struc-
ture. Extended wavefunctions are shown on the right-hand side.

More electrons are leaking into the excited state, making the population inversion

An 21 less negative and decreasing the absolute value of the peak loss. At the injection

anticrossing (20.4 mV/module), we can see a peak loss of 50 cm -1 at hw=21 meV, and

a small gain of approximately 10 cm - 1 at hw=18 meV. This can be understood when

we consider that the loss peak is due to the optical interaction between the lowest-

energy state of the ground doublet and the highest-energy state of the excited doublet

(wavefunctions indicated in red), with a corresponding negative population inversion.

However, the population inversion between the two other states in both doublets
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is of equal magnitude, but positive, and leads to a positive gain value at a lower

energy. If we consider the doublet as a single, highly interacting "state", this picture

is very similar to Bloch gain, which also shows a double loss-gain peak. However,

due to dephasing and wavefunction localization the population density localized at

the bottom of the well is slightly higher than the population concentrated at higher

energy, which accounts for the fact that the peak loss is higher than the peak gain.
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Chapter 5

Simulation Results

To compare the different approaches to the modeling of electron transport in QCLs,

the density matrix model and a semi-classical Monte Carlo simulation as well as a

Green's function simulation with and without momentum-dependent scattering (re-

ferred to as "full" and "simple" NEGF) were used to calculate current densities, pop-

ulations and electron temperatures for several different QC designs. We will focus on

three representative examples, for which experimental results were published, and use

the semi-classical MC simulation to investigate the importance of e-imp scattering in

QCLs. The Monte Carlo simulations include semi-classical electron-phonon (acous-

tic and LO), electron-impurity (e-imp) and electron-electron (e-e) scattering, and a

nonequilibrium, multisubband screening model for e-imp and e-e interactions. The

NEGF simulations include electron-LO-phonon, electron-impurity, electron-interface-

roughness and electron-electron scattering (only for the simulation with momentum

dependent scattering) and the same screening model as the MC simulations. Inter-

face roughness scattering with roughness A=2.825 A(one monolayer) and correlation

length A=5 nm was included in the NEGF calculations, but its influence on the

simulation results was negligible. The only phenomenological parameter is the pure

dephasing time T2, used in the DM-MC calculations. In all simulations, except for

Fig. 5-12, the lattice temperature Tlatt was assumed to be 25 K.
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Figure 5-1: Band structure of T65. The device consists of GaAs/Alo.lsGao.s5 As layers
with thicknesses (nm) 5.5/23.4/2.4/13.2 (barriers in boldface, wells in plain text)
and a doping concentration n=1.4x 1016 cm- 3 in the 13.2-nm wide well, resulting in
a sheet density of 1.85x 1010 cm - 2 per module.

5.1 T65

The first investigated device is a simple double-quantum-well structure [561 (T65),

whose conduction band diagram and wave functions are reproduced here in Fig. 5-

1. The active region consists of a 23.4-nm wide well where the intrawell radiative

transition takes place primarily between levels n=3 and n=2. A narrower 13.2 nm

collector well and its associated subband n=1 are used to collect electrons and inject

them into the next module. The narrower well is doped to provide an electron density

of 1.85 x 1010 cm - 2 per module.

In experiments, the current characteristics of this device were nearly independent

of temperature for a lattice temperature between 5 and 77 K, while the electrolu-

minescence (proportional to r3) dropped by a factor of 1.5. No gain or superlinear
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power-current (L - I) relations were ever observed. This is a strong indication that

transport through the thick injector barrier is limited by incoherent tunneling be-

tween the injector state n = 1' and the upper radiative level n = 3 (A1' 3 e 0.8 meV).

Furthermore, magnetotunneling spectroscopy revealed clear evidence of an anticross-

ing gap of A21 M 2 meV between levels 1 and 2, validating our hybrid model of using

a semi-classical model for intramodule transport.

The DM simulations included a phenomenological dephasing time of 0.5 ps, which

is consistent with the measured spontaneous emission linewidth Af of 2 meV (0.5 THz,

and Af 0 h/lrT2 ).

Figure 5-2 shows the calculated and measured current density for a lattice temper-

ature of Tlatt=25 K. The DM calculations show a peak current density of 116 A/cm- 2

that corresponds well with the experiments (123 A/cm- 2), while the semi-classical

model overestimated the peak current density (186 A/cm- 2). Both Green's function

simulations produced an almost identical peak current density of 130 A/cm- 2.

In all simulations there is a bump in the I-V characteristic around 20 mV/module,

close to the anticrossing of n = 2' and n = 3. This feature is most evident for the

simple NEGF model, and it predicts rise to a small region of negative differential

resistance (NDR) between 17 and 21 mV/module. However, there is no evidence of

this transition in the experimental results. Overall, the experimental current density

seems to be reproduced most faithfully both qualitatively and quantitatively by the

DM simulation. The sharp features in both the current density and electron tem-

perature (Fig. 5-3), which are clearly visible in the semi-classical and simple NEGF

Table 5.1: Calculated subband energy, temperature, and population density of T65
at injection anticrossing (7!att=25 K) for the semi-classical, density matrix and full
NEGF simulations.

n E (meV) Tel (K) Pop. (1010 cm - 2)
semi-cl. DM Full NEGF semi-cl. DM Full NEGF

1 0 50 86 82 0.53 0.91 0.69
2 3.9 85 95 82 0.37 0.58 0.68
3 25.0 64 62 63 0.95 0.42 0.46
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Figure 5-2: Current density for T65 for a range of biases for the MC and NEGF
simulations. The measured current density (solid line) was adjusted to take into
account a parasitic series resistance of 1.5 Q.

calculations, are smoothed out in the DM and full NEGF results.

Figure 5-4 shows a graphical representation of the spatial and energetic distribu-

tion of the electrons in the structure at injection anticrossing, obtained from the full

NEGF results. There is no clear distinction between the populations of the different

subbands that make up the triplet. The highest electron density is concentrated in

the narrow well, suggesting that the injection barrier inhibits transport and causes

a pile-up of electrons in the injector state. Fig. 5-5 illustrates the various results for

the electron distribution functions obtained from the different simulations at injection

anticrossing. The distributions below Ek=-12 meV can be described as thermal for

all models except for the simple NEGF, due to its absence of e-e scattering. The

distribution function for n=3 exhibits a downward kink around Ek= 15 meV for all

simulations, which corresponds to the onset of (thermally activated) LO-phonon scat-

tering from n=3 to the lower energy subbands. Note that the absence of e-e scattering
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Figure 5-3: Electron temperature for n=3 for the MC and full NEGF simulation
(lattice temperature Tlatt=25 K). The simple NEGF simulation is not represented due
to its non-thermal distributions.

in the simple NEGF model is also reflected in the small increase of the distributions

for n=2,3 around Ek=20 meV (due to the aforementioned e-LO scattering from n=3)

while this feature is smoothed out in the full NEGF model. A second kink can be

seen in all distribution functions at Ek - hwLO due to intrasubband LO-phonon

scattering. The presence of these kinks in all simulations suggests that intrasubband

e-e scattering is not fast enough to efficiently redistribute electrons within n=3 as

the "hot" electrons with energies exceeding Ek ;15 meV are scattered with a life-

time TLO 0.3 ps. While the low-energy part of the distribution can be described

as thermal, the high-energy tail is decidedly non-thermal. This means that simple,

back-of-the-envelope calculations to determine the e-LO scattering rate based on a

thermal distribution may be substantially overestimating its importance.

Most important is the absence of population inversion (Fig. 5-6), and hence gain,

in the DM calculation, which is in agreement with the experimental results. A more

ambiguous picture is presented by the full NEGF simulations (Figure 5-7 for the

design bias), which shows an absorption peak of 26 cm - 1 around 21 meV and a

small gain peak of 9 cm - 1 at 18 meV. Below 10 meV the "intraminiband" absorption
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Figure 5-4: Electron distribution in T65 at injection anticrossing, assuming diag-
onalized wavefunctions. Indicated are the electron density in real space (horizontal
axis) and energy space (vertical axis) for both subbands, using a color coding scheme
ranging from red (high density) to blue (low density).

between the subbands of the triplet n=2,1,3" starts to dominate. The combination

of the gain peak at lower energies and absorption peak at higher energies is similar to

the gain described in the discussion of the two-level superlattice, with the distinction

that the earlier doublet is replaced with a triplet. Both peaks have a linewidth

of about 3 meV, which is slightly higher than the observed A f=2 meV. On the

other hand, the semi-classical results indicate a maximum population inversion of

n3 - n2 e 6 x 109 cm - 2 (corresponding to a An3D M 1.4 x 1015 cm- 3 ), and a predicted

gain of 180 cm - 1 for a spontaneous emission linewidth Af=-2 meV. Such a high level

of gain would have made lasing quite easy to achieve. However, no lasing was observed

from T65 and similar structures, even embedded in metal-metal waveguides. [38] The

DM and NEGF analyses indicate that it is likely that electrons are "stuck" behind
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Figure 5-5: Electron distribution functions of the
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three lowest-energy subbands in T65
functions are for the Wannier states

the injection barriers, residing mostly in levels 1' and 2' instead of equally populating

1' and 3 as the semi-classical model predicted.

5.2 FL177C-M5

The second QC device is a 3.2 THz QCL, [57] labeled FL177C-M5, which operated

up to - 130 K in pulsed mode, and whose band diagram and wavefunctions are re-

produced in Fig. 5-8. Electrons injected into the upper radiative state n=5 make

a radiative transition down to n=4, which is in anticrossing with the excited state

n=3 in the wide well. The energy separation between n=3 and the injector/collector
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Figure 5-6: Population inversion n3 - n2 for the MC simulations for a range of biases.
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Figure 5-7: Calculated gain spectrum for T65 at injection anticrossing calculated with
the full NEGF simulation. Also indicated are the diagonalized, extended wavefunctions
at this bias and the transitions corresponding to the peaks in the gain spectrum.
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Figure 5-8: Band structure of FL177C-M5. The device
consists of GaAs/Alo.15Gao.s5As layers with thicknesses (nm)
5.5/7.9/2.5/6.5/4.1/15.5/3.0/9.0 (barriers in boldface, wells in plain text)
and a doping concentration n=1.9x 1016 cm - 3 in the 15.5-nm wide well, resulting in
a sheet density of 3x 1010 cm -2 per module.

states n=1,2 is slightly larger than hwLo, which ensures that the lower radiative state

is depopulated via subpicosecond LO-phonon scattering. Table 5.2 and Fig. 5-9 show

a comparison of some key simulation results with and without coherent transport

(T2=0.33 ps, to reproduce a FWHM linewidth of 6 meV together with relaxation

scattering T4 ~ 0.5 ps). From Fig. 5-9(a), we can see that the semi-classical results

exhibit a large parasitic current at biases around 40 mV/module, corresponding to

the 1' --+ 3 (with A1'3=0.45 meV) transition. The overestimation of the current

density in this parasitic channel is due to the use of extended basis states in the

calculation of the scattering rates. The density matrix approach largely eliminates

this problem, but there is still a noticeable hump in the I - V while there is none in

the measurements, although the presence of the parasitic channel is still evident in

differential conductance measurements. [57] This simulation result corresponds well

with the simple NEGF calculations done for this same structure in Ref. [58] and re-

produced here, which is a further indication that the used DM approach adequately

149

. I ...... .............. ..



models the coherence effects in the electron transport. The full NEGF simulation

has a slightly reduced parasitic current density, but still overestimates J for all biases

below injection anticrossing. For the calculations involving coherent transport, the

predicted peak current density (700 A/cm- 2 ) and gain are achieved when the upper

radiative level is lined up between the 2'-5 and 1'-5 anticrossings, and not at the 1'-5

anticrossing as for the semi-classical simulation. Due to the finite linewidth of the

levels (> 4 meV for all simulations), which is comparable to E2,1, ; 5 meV, their sim-

ilar anticrossing gaps (A 115 P A 2'5 ' 1.8 meV) and the similar population densities

of 1' and 2', injection is most efficient when both 1' and 2' contribute. Note that for

small linewidths, injection from 2' and 1' into 5 is more centered around their respec-

tive anticrossing bias, which may result in a current peak at the 2' - 5 anticrossing,

followed by a region of negative differential resistance (NDR). In experiments, this

early NDR would prevent the device from reaching its designed level alignment and

degrade its performance.

The predicted peak population inversion AN54 and gain g are lower for the DM

simulations than for the semi-classical calculations, AN 54=4.1 x 10' cm - 2 (g=32 cm - 1

for Af=6 meV) and AN54=6.4x 109 cm - 2 (g=52 cm- 1) respectively. This is largely

due to a decreased injection efficiency and selectivity, as explained earlier in the

discussion about the density matrix formalism. On the other hand, the NEGF simu-

lations predict a narrower linewidth (Af=2.5 meV) and a higher peak gain of about

Table 5.2: Calculated subband energy, temperature, and population density of
FL177C-M5 at the peak current density predicted by the DM simulation (Vbias59
mV/module), for the semi-classical, density matrix and full NEGF simulations. The
lattice temperature is 25 K.

n E (meV) Tel (K) Pop. (1010 cm - 2)
semi-cl. DM Full NEGF semi-cl. DM Full NEGF

1 0 114 143 111 1.14 1.27 0.91
2 5.4 127 138 102 0.74 0.93 0.76
3 41.3 152 174 109 0.13 0.10 0.17
4 46.3 154 174 97 0.19 0.11 0.26
5 60.4 115 108 104 0.73 0.52 0.84
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Figure 5-9: (a) Current density for FL177C-M5 for a range of biases. The density
matrix results were obtained for a phenomenological pure dephasing time T2 =0.33 ps.
(b) Calculated gain for the MC simulations for a spontaneous emission linewidth of
6 meV.

90 cm - 1 for the full NEGF calculation (Fig. 5-10 and 105 cm - 1 for the simple simula-

tion (Fig. 5-11), which corresponds with 37 and 44 cm - ' respectively if the linewidth

is adjusted to the experimentally observed Af=6 meV. The discrepancy between the

calculated and observed linewidths can be due to the underestimation of interface

roughness scattering, or to inhomogeneous broadening which is not accounted for in

the simulations.

The spatial and energetic distribution of electrons in the structure at injection

anticrossing is shown in Fig. 5-13. The presence of a population inversion and the

associated gain can easily be seen in the active region, where the population density of

the upper radiative state is much higher than in the lower radiative state and resonant

LO-phonon depopulated state. Also note that the populations of injector/collector
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Figure 5-11: Calculated gain spectrum for FL177C-M5 at injection anticrossing cal-
culated with the simple NEGF simulation.
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Figure 5-12: Maximum gain of FL177C-M5 as a function of lattice temperature for the
semiclassical and DM-MC simulations, assuming a spontaneous emission linewidth of
6 me V. In experiments, the lattice temperature is somewhat higher than the heat-sink
temperature, and the devices lase up to - 130 K heat-sink temperature.

states n=1 and n=2 cannot be distinguished in the figure. As was the case for T65,

the population density in the injector well is highest, which means carriers are piling

up behind the injector barrier and electron injection into the active region is affected

by dephasing.

To investigate the high-temperature performance of the QCL, MC simulations for

lattice temperatures up to 200 K were performed. As can be seen from Fig. 5-12, both

simulations predict a steady decrease of the gain to g=8 cm-1 (DM) and 14 cm-1

(semi-cl.) at 200 K. This decline is mainly due to the increased LO-phonon mediated

depopulation of level 5. In experiments, CW lasing was observed in very small devices

(100x 100 /m 2) immersed in liquid nitrogen, which roughly corresponds to a facet

mirror loss of 40 cm - 1, for a facet reflectivity of - 60%. [59] This experimentally

inferred gain agrees reasonably well with the predicted gain of - 30 cm-1 (DM) and

44 cm-1 (semi-cl.) at 77 K. The underestimation of gain and peak current density in

the DM simulation indicates that the used pure dephasing time T2 = 0.33 ps may be
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Figure 5-13: Electron distribution in FL177C-M5 at injection anticrossing, assuming
diagonalized wavefunctions. Indicated are the electron density in real space (horizontal
axis) and energy space (vertical axis) for both subbands, using a color coding scheme
ranging from red (high density) to blue (low density).

too short.

Even though the difference between the peak gain and the current densities cal-

culated from the semi-classical simulation and the simulations including coherent

transport is only quantitative, there is an important qualitative difference in the

current-voltage (I - V) characteristics. As can be seen in Fig. 5-9, the semi-classical

current density at the 1'-3 parasitic channel is higher than that at the designed bias of

the 1'-5 anticrossing. Experimentally, this would have resulted in a negative differen-

tial resistance (NDR) above the bias at the 1'-3 anticrossing, making the desired 1'-5

energy alignment inaccessible. Fortunately, dephasing reduces the current density at

this parasitic channel much more than at the designed bias due to the smaller anti-

crossing gap A ~13 ; 0.5 meV, compared to A1 5 ; 1.8 meV. Consequently, we were

able to bias the device at the 1'-5 energy alignment and achieve lasing. However, for

lower-frequency QCLs at 2.1 THz, the biases of 1'-3 and 1'-5 are closer, resulting in

much more similar current densities at those respective bias conditions and a much
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smaller range of current densities in which the devices lase. [60] In this important

aspect, the semi-classical MC calculation is useless in predicting the relative current

densities at the 1'-3 and 1'-5 biases, and whether a NDR will occur below the design

bias. With the much smoother I - V that is closer to the experimental results, the

DM-MC and NEGF simulations could help us in designing suitable structures with a

reduced 1'-3 parasitic current density for lower-frequency lasers.

5.3 OW1185-M1

The third device is a QCL which lased at 1.86 THz [7], and whose band diagram

and wavefunctions are reproduced in Fig. 5-14. In order to prevent reabsorption of

THz radiation due to intersubband transitions and to enhance the injection selectivity,

this device was designed with a one-well injector region and a single injector subband.

At resonance, electrons are injected into the upper level n=4 and make a radiative

transition down to n=3, which is in resonance with level 2. The latter subband

is depopulated by resonant LO-phonon scattering into n=1, from where they are

injected into the next module. The small anticrossing gap between the injector state

and upper radiative state (A1' 4 f1 meV) combined with dephasing scattering makes

transport through the injection barrier incoherent. The energy separation between

the upper radiative level n=4 and the "parasitic" level n=5 is E54 r14 meV, which

is much larger than its anticrossing energy with the injector state A 1,5 = 1.5 meV,

and no electrons are injected directly from n=1' into n=5. This means that n=5 will

play only a very limited role in the electron transport, but could get populated with

hot electrons from n=4, thus reducing gain at high temperatures.

It should be pointed out that there is a substantial uncertainty about the reported

doping density nOW185-M12. 2 5 x 1010 cm - 2 of this device. Due to a problem during

the growth, the doping density was not set correctly and still remains in doubt. How-

ever, by comparing the peak current density of this device with that of another, very

simar device (OWI185), we can get an idea of the possible error in nOw1185 - M1 . As-

suming a similar fraction of the population density is residing in the injection subband
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Figure 5-14: Band structure of OWI185-M1 at the injection anticrossing (45.6
mV/module), obtained from the NEGF calculations, with the four-well module out-
lined in a box. The device consists of GaAs/Alo.15 Gao.ssAs layers with thicknesses
(nm) 4.9/7.8/2.3/7.6/3.2/7.6/5.2/16.8 (barriers in boldface, wells in plain text)
and the 5.2-nm wide barrier is delta-doped in the center at 2.25x 1010 cm - 2 .

and dephasing scattering dominates the transport bottleneck through the injection

barrier, the peak current densities for both devices are determined by Eq. 2.81 at

resonance and their ratio can be written as:

nOWI185-M OW,,85-M1 OWI185-Ml 2
peak -_ 1'4 (5.1)JOWI18 5  nOWI185 AOWI185-M1

peak 1'4

The measured current densities were very close, JOWkls8 5 - M 1=186 A/cm 2 and JOWI185s. 17 0

A/cm2, while the injection anticrossings were AOWi185-M1 =1 meV and AOW185 =0.76

meV, which are both small enough to justify the assumption that transport is de-

termined by sequential tunneling. For a doping density of nOWI185-Mi 1 2.7 x 1010 we

therefore expect a current ratio of 1.45, while the measured ratio is 1.09. This suggests

that the actual doping density nOWI185- M 1 could be as low as 1.7x 1010, which has to

be taken into account when comparing the simulation results to the measurements.

The calculated current densities for the semi-classical MC, density matrix MC
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Figure 5-15: Current density for OWI185-M1 for a range of biases (total electron
density n=2.25x 1010 cm - 2 . The density matrix results were obtained for a phe-
nomenological pure dephasing time T2 =0.33 ps.

(T2=0.33 ps to reproduce a FWHM linewidth of 6 meV with relaxation scattering

r4 P 0.5 ps) and both NEGF simulations are shown in Fig. 5-15. The Monte Carlo

simulations both severely overestimate the current density for all biases, while the

NEGF calculations yield a closer match. All simulated current densities exhibit a

bump around 35 mV/module, especially the semi-classical simulation which exhibits

a very large peak J f2500 A/cm-2 . In this bias range, the injector level lines up

with n=2 (A 1,2 =0.3 meV) and n=3 (A1,3=0.35 meV), creating a parasitic current

channel. The electrons injected into n=2,3 are depopulated by resonant LO-phonon

scattering into the next injector level n= 1, which results in a large parasitic current

despite the small anticrossing gaps. Similar to FL177C-M5, the overestimation of

the current density in the semi-classical simulation is caused by the use of extended

wavefunctions. The peak current density for the DM simulation occurs at a bias

slightly past the parasitic bias, when the injector energy is in between n=3 and n=4
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Figure 5-16: Subband temperature of the upper radiative level n=4 for
biases for the semiclassical, density matrix and full NEGF simulations.
temperature was 25 K.

a range of
The lattice

and injects electrons into both levels. There is however no evident explanation for the

overestimation of J for the DM calculation. The difference between the simple and full

NEGF simulations is mainly due to the underestimation of LO-phonon scattering out

of n=3 and n=2 in the simple simulation; furthermore, the absence of e-e scattering

in the simple simulation between the closely spaced subbands n=2 and n=3 further

reduces the current density. However, rather than only a quantitative there is also a

Table 5.3: Calculated subband energy, temperature, and population density of
OWI185-M1 at the peak current density predicted by the full NEGF simulation

(Vbias=45.6 mV/module), for the semi-classical, density matrix and full NEGF sim-
ulations. The lattice temperature is 25 K.

n E (meV) Tel (K) Pop. (1010 cm - 2)
semi-cl. DM Full NEGF semi-cl. DM Full NEGF

0
35.6
39.9
48.1
62.1

139
158
156
130
95

128
145
154
125
85

105
117
119
144
95

0.94
0.05
0.16
0.88
0.22

1.52
0.10
0.13
0.30
0.20

1.05
0.06
0.18
0.86
0.10
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Figure 5-17: Electron distribution functions for OWI185-M1 at injection anticrossing
for (a) the DM MC simulation and (b) the full NEGF simulation (Wannier functions).
Due to the different set of basis wavefunctions a direct comparison between (a) and
(b) is not possible. The lattice temperature was 25 K for both calculations.

qualitative difference between both NEGF results. Since the calculated parasitic and

design peak current densities are very similar for the simple NEGF, the predicted

occurrence of an NDR region at biases higher than the parasitic bias would make

the 1'-4 anticrossing inaccessible and significantly degrade the device's performance.

On the other hand, for the full NEGF simulation, the parasitic Jpeak=1 75 A/cm- 2 is

much lower than the predicted design Jpe=270 A/cm- 2, and an NDR would have a

very limited impact.

Table 5.3 summarizes the calculated population density and subband tempera-

ture for the MC and full NEGF calculations at injection anticrossing. The subband

populations for the DM MC simulation refer to localized wavefunctions, whereas the

semi-classical and NEGF results refer to extended wavefunctions. Only a modest

number of electrons, 5-10% of the total density, are populating the parasitic level

n=5. As can also be seen in Fig. 5-16, the NEGF simulation predicts lower subband

temperatures than the MC simulations. This is due to the incorporation of energy

spectra in the NEGF formalism, which increases the number of states available for

e-LO scattering and hence energy relaxation and in turn results in a lower electron

temperature. The electron distributions of most subbands are thermal for Ek < 30
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Figure 5-18: Electron distribution in OWI185-M1 at injection anticrossing, assuming
diagonalized wavefunctions. Indicated are the electron density in real space (horizontal
axis) and energy space (vertical axis) for both subbands, using a color coding scheme
ranging from red (high density) to blue (low density).

meV (Fig. 5-17). The onset of fast intrasubband LO-phonon scattering causes a sharp

decrease in the distribution functions above Ek=36 meV. Note that the shown NEGF

distribution refer to the Wannier functions and not the extended wavefunctions, and

therefore a direct comparison between the DM and NEGF results is only possible for

n=1 since this subband is nearly identical in both cases. Figure 5-18 shows a graphi-

cal representation of the spatial and energetic distribution of electrons in the device,

based on the full NEGF simulation. It can clearly be seen that a majority of the car-

riers is stuck in the injector and that the injector barrier is a major impediment for

transport. Also visible are the electron distributions of the upper radiative level n=4

and the parasitic level. On the other hand, the resonant-LO-phonon depopulated

level n=2 is nearly empty and is only visible as two faint stains in the wide well.

Similar to FL177C-M5, the DM MC simulation predicts a much lower peak pop-

ulation inversion (AN 43 = 1.7 x 109 cm - 2 and gain (g=7 cm - 1 for Af=6 meV) than

the semi-classical calculation (AN 43 = 6 x 109 cm - 2 and g=28 cm-') (Fig. 5-19). The

gain spectrum obtained from the full NEGF simulation at injection anticrossing gives

a more complete picture. The 4-3 population inversion results in a gain peak of 27
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Figure 5-19: (a) Calculated population inversion N4 - N3 for the MC simulations of
OWI185-M1. (b) Predicted gain for OWI185-M1 for a spontaneous emission linewidth
of 6 meV.
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Figure 5-20: Calculated gain spectrum for OWI185-M1 at injection anticrossing cal-
culated with the full NEGF simulation. Also indicated are the diagonalized, extended
wavefunctions at this bias.

161



n E (meV) Tel (K) Pop. (1010 cm- 2)
without imp. with imp. without imp. with imp.

1 0 102 121 0.77 0.98
2 6.5 111 139 1.29 0.95
3 44.0 122 145 0.10 0.12
4 49.3 133 160 0.08 0.12
5 63.3 96 117 0.64 0.70

Table 5.4: Calculated subband energy, temperature, and population density of the 3.4-
THz laser at injection anticrossing (Tatt=25 K) with and without impurity scattering.

cm - 1 at hw=8 meV with a linewidth of 2.5 meV, which is equivalent to a peak gain

of 11 cm-1 for Af=6 meV. The narrow absorption peak (Af=1.5 meV) at hw=14

meV is due to the transition between the more densely populated upper radiative

state and the parasitic level n=5. Experiments and Drude model calculations suggest

that the combined waveguide and mirror losses of the investigated device add up to

approximately 5-10 cm - 1 [7], which is close to the calculated DM and NEGF gain.

5.4 Impurity scattering

To illustrate the importance of impurity scattering in electron transport in THz QCLs,

Monte Carlo (MC) simulations [12] were used to investigate several different QC de-

signs. [61] Here we focus on two representative examples, for which experimental

results were published. All simulations include e-ph (acoustic and LO-phonon) and

e-e scattering. Calculations were performed with and without e-imp scattering. A

non-equilibrium, multi-subband screening model [62] was used for e-imp and e-e in-

teractions. No phenomenological parameters were introduced. When comparing the

calculation results with the measurements, the current density J provides a good

reference point. Only when the simulation produces current densities consistent with

experiments can we have confidence in other calculated results, such as subband pop-

ulations and gain. All scattering times are net scattering rates and include the effect

of backfilling. [12]

The first investigated device is FL175C, a 3.4-THz QCL [11] very similar to
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Figure 5-21: Band structure for FL175C. The device
sists of GaAs/Alo.15Gao.s 5As layers with thicknesses
5.4/7.8/2.4/6.4/3.8/14.8/2.4/9.4 (barriers in boldface, wells in plain
and is doped to n=1.9x 1016 cm - 3 in the 14.8 nm wide well, resulting in a
density of 2.8x 1010 cm - 2 per module.
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Figure 5-22: Key results of the MC simulation of FL175C for Tratt=25 K, calculated
with and without e-imp scattering (represented by diamonds and circles, respectively).
(a) J for a range of biases. The measured current density (solid line) was adjusted
to account for a parasitic series resistance of 2 Q. The large parasitic current peak of
-. 2000 A/cm2 at -45 m V/module was omitted from the calculation results. (b) Tel
for n = 5, the upper radiative level. (c) The population density in n=4 (solid line)
and n=5 (dashed line). (d) Material gain for a 1180x 150 zm2 ridge structure. The
two horizontal lines represent the total cavity losses with uncoated facets and with one
facet fully reflecting.
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FL177C-M5, which was discussed earlier.(Fig.5-21) Table 5.4 and Fig. 5-22 show

a comparison of the key MC results with and without e-imp scattering, for a lattice

temperature Tiatt=25 K. Note that the inclusion of e-imp scattering results in an in-

crease in electron temperature. Also, the calculated J at injection anticrossing (-

65 mV/module) increases from 580 A/cm- 2 to 950 A/cm- 2 . The simulation result

closely tracks the measured current density for biases larger than 55 mV/module, in

the range where no large parasitic current channels [12] are present. The increase in J

is due to an enhanced scattering rate in the injector region (between n=2' and n=l'),

and between n=1' and the upper radiative state n=5. r21 decreases from 14 ps to 5

ps due to T21i-np=7 ps, eliminating the population inversion between n=2' and n=1',

in contrast to the result in Ref. [1]. In spite of the decrease in rt'5=4.5 ps (from 6 ps

without e-imp scattering), the population density of n=5 remains almost unchanged

because of the increased thermally activated LO-phonon scattering (-r5L"o 2.8 ps from

4.1 ps). Note that, although e-imp scattering between the radiative levels (T54P=23

ps) is faster than e-e scattering (T-r-e=49 ps), its (direct) contribution to the depop-

ulation of n=5 is negligible. r4 is dominated by resonant LO-phonon scattering, and

is little affected by e-imp scattering. However, the rise in J results in a slight popula-

tion increase in n=4. Using measured values [63] for the refractive index n=3.8 and

the linewidth Av=1 THz, and the calculated population inversion AN54=5.8x 1010

cm-2, a peak gain of 73 cm-1 is found (68 cm-' without e-imp scattering). This value

slightly exceeds the upper limit of the gain range inferred from experiments, which

is most likely due to the neglect of wavefunction localization caused by incoherent

transport through the injector barrier (anticrossing A115 f 1.8 meV).

The second QC device is the simple double-quantum-well structure T65, [56] which

was discussed earlier. In experiments, the current characteristics of this device were

nearly independent of temperature for Tlaut= 5 - 77 K, while the electroluminescence

dropped sharply. This is a strong indication that transport through the thick injector

barrier is limited by incoherent tunneling between the injector state and the upper

radiative level (anticrossing A113 m 0.8 meV). In such a case, the use of extended

wavefunctions for transport analysis would be expected to overestimate J. Table 5.1
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Figure 5-23: Key results of the MC simulation of the two-well structure for Tatt =25 K,
calculated with and without e-imp scattering (represented by diamonds and circles,
respectively). (a) J for a range of biases. The measured current density (solid line)
was adjusted to take into account a parasitic series resistance of 1.5 2. (b) Tei for
n = 3, the upper radiative level. (c) The population density in n=2 (solid line) and
n=3 (dashed line).
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and Fig. 5-23 present the main calculation results with and without e-imp scattering,

for TIatt=25 K. Fig. 5-23(a) shows that the inclusion of e-imp scattering is necessary

to obtain the expected overestimation of the peak current density. As with the 3.4-

THz laser, the increase in current can be explained by the enhancement of transport

through the collector state due to e-imp scattering, combined with a decline in r3

caused largely by thermally activated LO-phonon scattering (7rLO M 13 ps, compared

to 35 ps without e-imp scattering). The calculated lifetime of n=2 is reduced from

72 - -r-e=13 ps to 4 ps by the inclusion of 'mP=6 ps. The poor agreement between

calculation and experiment for this device is likely due to the small anticrossing gap

A1'3 0 0.8 meV.

167



168



Chapter 6

Conclusion

In this thesis, I have described different approaches, both semi-classical and quantum-

mechanical, to model electron transport in quantum cascade lasers and MQW devices

in general. Over the course of my PhD, I have developed simulation tools implement-

ing these different approaches, and compared the results with experimental data to

determine its accuracy and to investigate how to improve the models. Starting from

a simple semi-classical model, which treated electron transport with essentially a

set of rate equations describing only e-e and e-phonon scattering, we gradually added

more scattering mechanisms (e-imp, e-interface roughness) and resonant tunneling by

means of the density matrix formalism. A variety of quantum cascade structures were

simulated with this code, and the results were compared with experiments. Encour-

aged by Andreas Wacker's results with the NEGF approach, we made a major effort

to develop a new simulation based on the papers written by him and his co-workers

to obtain an even more comprehensive picture of electron transport.

Some of the results and conclusions we obtained from these calculations are sum-

marized in what follows.

Our first semi-classical Monte Carlo calculations of a working THz laser (FL175C),

including only e-e and e-phonon scattering, yielded current densities that were sig-

nificantly lower than observed, as well as a gain that was higher than inferred from

experiments. However, due to the spatially extended wavefunctions used in the semi-

classical picture and the lack of dephasing, the calculated current density should
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always exceed the experimental values. This suggested the presence of a major

scattering mechanism that was yet unaccounted for in this model. The addition

of electron-impurity scattering proved to be the solution, resulting in the expected

overestimation of the current density. We were able to show that the importance of e-

imp scattering in electron transport in THz QC structures rivals or even exceeds that

of e-e scattering, and that its inclusion in the calculations is crucial when modeling

the intersubband transport dynamics in these devices.

As a second step we have shown that the inclusion of a model for coherent trans-

port and dephasing is essential to describe the transport dynamics of intersubband

transport in THz QCLs. We implemented this quantum transport with two different

formalisms.

The first approach consisted of adapting the semi-classical simulation to include

a density matrix description of transport. The density matrix model, together with

the choice of localized basis states, allows for an intuitive treatment of transport

between weakly coupled levels and the incorporation of the effects of sequential tun-

neling into a Monte Carlo simulation. Scattering events, including e-phonon, e-e and

e-imp scattering, are treated semi-classically but contribute to dephasing scattering.

In addition, a phenomenological "pure dephasing rate" was introduced to take into

account dephasing caused by interface roughness scattering. We have used the semi-

classical and the density matrix MC simulation to compare calculated current densi-

ties and gain with experimental measurements. The inclusion of coherent transport

showed marked improvement over the semi-classical model. It largely eliminated the

overestimation of the peak current density and parasitic current channels, and cor-

rectly predicted the absence of a population inversion where the semi-classical model

predicted a large gain. However, more remains to be done. The use of a single, phe-

nomenological pure dephasing time to describe the interaction between all subbands

does not take into account the substantial differences in elastic intrasubband (impu-

rity and interface roughness) scattering for different levels in a module. The different

models used to describe these scattering mechanisms and the large scattering rates

these models predict for small-angle scattering, make it difficult to dependably esti-
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mate their contribution to dephasing. More detailed calculations incorporating this

subband-dependant dephasing can provide a model that uses no phenomenological

parameters, and will yield a more accurate description of the electron transport. This

more comprehensive simulation can be a valuable tool for designing and analyzing

QCLs.

As an alternative to the density matrix approach, a simulation based on the non-

equilibrium Green's function formalism was developed. In contrast to the previously

mentioned semi-classical and DM models, the NEGF formalism does not provide a

clear and intuitive picture of the physics underlying electron transport, which makes

it much harder to obtain a good understanding of a device's inner workings and

could pose a barrier to its use as a design tool. However, the formalism naturally

describes the energy spectrum of the states involved in transport, including important

attributes such as linewidth and lineshape, which are lacking in the DM picture.

Furthermore, scattering is handled quantum-mechanically and takes into account the

coherent interaction between states, as opposed to the semi-classical approach used

in the DM picture. The resulting physical model is comprehensive but opaque, and

its implementation as a simulation is very computation intensive.

The NEGF formalism describes coherent electron transport including the effects

of e-phonon, e-imp and e-interface roughness scattering. Two implementations of

the NEGF formalism, with momentum-dependent and -independent scattering ma-

trix elements respectively, were used to model existing QC structures. The simplified

simulation with momentum-independent scattering is less accurate, but much less

computation intensive than the complete calculation. For the complete NEGF simu-

lation, a model for e-e scattering was added and verified. Current densities, population

distributions and gain spectra were calculated and compared with similar results from

the Monte Carlo simulations. In general, the NEGF simulations give a more accu-

rate prediction of the experimental results than the MC results. The results for both

NEGF simulations are similar enough that a good calculation strategy to investigate

a new device can consist of a "rough", quick first pass with the simple simulation to

assess its suitability as a QCL, followed up by a complete simulation at various bias
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voltages to investigate the transport in more detail.

A full, comprehensive study of the predictive power of all simulations (especially

NEGF) could not be completed due to time restrictions. However, with a limited

amount of effort, improvements can be made to both the MC and NEGF simulations

that make them more comprehensive and allow for an easier access to some results of

interest.

The addition of an improved model for interface roughness scattering to the MC

and NEGF simulations could be highly beneficial for the accuracy of both models,

and may eliminate the need for a phenomenological scattering time in the density

matrix MC simulation. The current model tends to generate very high semi-classical

scattering rates at shallow angles (approaching infinity at 0=0), and is only used

to describe intersubband scattering in the MC simulations while intrasubband in-

terface roughness scattering is modeled through the phenomenological T2. On the

other hand, in the NEGF formalism interface roughness scattering contributes so lit-

tle to the self-energies that it can be neglected without affecting the results. This

apparent underestimation of interface roughness scattering is partially responsible for

the underestimation of the spontaneous emission linewidth in the NEGF simulations.

If these concerns can be addressed with an updated model for interface roughness

scattering, the predictive power of the simulations could be significantly improved.

As the maximum operating temperature of QCLs continues to increase, modeling

the devices at higher lattice temperatures and predicting their temperature perfor-

mance will become increasingly important. Unfortunately, neither the MC nor the

NEGF simulations include a working model of acoustic phonon scattering, which

is very temperature sensitive and becomes a major transport mechanism in QCLs

above a lattice temperature of 150-200 K. The energy dispersion of acoustic phonons

makes this problem much harder to treat than LO-phonons. However, it is possible

to approximate acoustic phonons as dispersionless "low-energy LO-phonons" with

an energy that depends on the lattice temperature; the accuracy and importance

of such an addition to the simulation needs to be investigated before any reliable

high-temperature predictions can be made.
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Due to time constraints in the development of the code, many important cal-

culation results from the NEGF simulations are not readily available. Based on

the description of the intersubband currents in section 4.7, it is straightforward to

calculate scattering lifetimes for the different scattering mechanisms for any given

intersubband transition as well as the contribution from coherent interaction. By

diagonalizing the Hamiltonian, these scattering rates and currents can be calculated

for states that fit well in an intuitive picture of electron transport, which would help

the interpretation of the results immensely. Finally, some additional optimization of

the memory management and algorithm routines can help reduce the computational

overhead and allow for a faster and more accurate simulation result.
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Appendix A

Appendix: Fortran Code

A.1 Monte Carlo Simulation

The MC simulation consists of one file of source code, named eeisb_tb14.F, and an

input file mcinput.dat. The input file can be generated with the help of the matlab

script mclayersdm.m, and contains information regarding the layer structure, doping,

how the wavefunctions are localized, the lattice temperature and the applied bias.

As an example, we show the first part of mclayersdm.m which creates the input file

for a simulation of FL175C (the second part, in which the actual file is generated, is

omitted):

scaling=0.92; Xscaling factor to account for under/overgrowth

%Xonolayer thickness (in Angstrom)
d=2.825;

Xnumber of modules
namod-1 ;

%thickness of boundary barriers in monolayers
tbarr-30;
tbarr-tbarr*d;

%module layer thicknesses in monolayers, starting with a well and ending in a barrier
1=[90 8 51 19]*scaling;
l1l+d;

%number of layers
n-reg=length(l);

%number of subnodules
nasmod1 ;

%number of wells per submodule (!!! wells, not layers!!)
nmvells [21;

X Al fraction in layers
xmol=0.15;

%doping regions
X Doping is entered in matrix, dope(region,specification)
Z where region is an integer corresponding to a region number
X dope(reg,1) -xin (angstrons)
% dope(reg,2)-xmax (angstroms)
% dope(reg,3)-doping concentration (cm-3)
X dope(reg,4)-Charge type (1.0 donors or -1.0 acceptors)
X ndreg is the number of different uniformly doped regiona
Z NOTE: For some reason, I use the interface between the first and
X second region as the point z-0.
ndregl ;
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dope (1,1)-98*d*scaling;
dope(1,2)-dope(, .1)+l5*d*scaling;
dope(1,3)=1.4e+16;
dope(1,4)-1.000;

%electric field in V/m
vfield--540000.000;

% max number of levels per module
nsaxad-4;

% lattice temperature (K)
t125;

X simulation duration (s)
tsimax80e-12;

% 2D electron density (MKS)
econ-2.017el4*scaling;

% Conduction band offset percentage
cboffset-0.72;

% form factor jumper
jloadff-0;

% jumper to enable dynamic updating of subbands
jrecalc-0;

% jumper to enable vavefunction cropping
Jcroplf-0;

XX%%%%%%%%%%%%rite input deck%%%%%%%%%%%%

(continued)

Before compiling the source code, we need to make sure that enough memory is
available for the proper execution of the program:

ulimit -s unlimited

The code can then be compiled using the Fortran compiler:

f77 -cpu:p7 -W -03 -N113 -lg2c -llapack eeisb_tbl4.F

The output file is a.out. In the following sections, I will briefly summarize the

different subroutines in the Monte Carlo code.

absc
This subroutine is obsolete, but was left in because it initializes some variables.

It can probably be thrown out entirely if these variables are initialized elsewhere.

aCOUS
Calculation and rejection of the final state for acoustic phonon scattering, assum-

ing a dispersionless acoustic phonon an energy equal to the lattice thermal energy.

Input parameters are:

e: energy of the scattered electron

kx,ky: momentum of the scattered electron

n: initial subband

m: final subband

iv: band to which the particle belongs, always equal to 1 (conduction band)
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part_wt: particle weight, i.e. a weighting factor to determine how much of the

density matrix describing the electron is scattered

aqee
Determination of the e-e form factors, saved in the variable feei. To speed things

up, the algorithm first calculates another form factor that recurs in many calculations.

Only the form factors that are larger than a certain threshold value are evaluated ex-

plicitly, the others are set to zero. As a final step, the subband indices involved in the

non-zero form factors are recorded in the arrays numinteree, isubinteree and numee

far easy access later. The form factors are written out to the file formfactors.dat.

aqnm

Determination of the form factors for e-imp and e-LO-phonon scattering. Output

files are ifim.dat (e-imp) and ffpop.dat (e-LO-phonon scattering).

avg
Determines the average and variance of a variable x. Input/output variables:

x: vector array of the parameter to be averaged

nl,n: begin and end indices of x, indicating the part of x which is averaged

avrg,var: output variables for the average and variance

calcxnn
Calculates the fraction frcar (expressed as a number 0-1) and xnn (in percent) of

the total number of carriers in a given subband.

defreg

Reads the input file mcinput. dat and assigns the values to the proper variables.

This subroutine also determines the layer structure for a single, isolated module and

stores the information in trg (layer thicknesses) and vO (conduction band edge energy

in J).

deg
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Applies the Pauli exclusion principle after a scattering event has taken place, and

updates the electron distribution function fde if the transition is allowed.

degin
Initialization of the electron distribution function fde and the associated energy

and momentum grid.

df
Calculation of the electron distribution function. The results are written to

edistr. dat.

dmass
Calculates the position dependent effective electron mass across the structure.

eel
Calculation of the final state of the electrons involved in intersubband e-e scatter-

ing. The input/output parameters are:

e,kx,ky: energy and wave vector of first particle

n,m: initial and final subband of first particle

el,kxl,ky1,n1: similar parameters for the partner electron

ee
Calculation of the final state of the electrons involved in intrasubband e-e scatter-

ing. The input/output parameters are:

e,kx,ky: energy and wave vector of first particle

n,m: initial and final subband of first particle

el,kxl,ky1,nl: similar parameters for the partner electron

eisubsc
Calculation of the band structure and wavefunctions. The full potential profile

of three modules and their associated wavefunctions psi are determined using the

subroutine schroed. This subroutine also calculates the tight-binding elements and
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exports the results in deltae.dat. To speed up the calculation of the scattering matrix

elements, psi is interpolated on a sparser grid, resulting in zeta.

fract
Determines the fraction of carriers in each subband.

gaas
Initialization of the material parameters of GaAs, such as the effective mass,

dielectric constant and LO-phonon energy, according to Adachi.

geneh
Determination of the maximum scattering rates for intra- and intersubband e-e

scattering, used in the Monte Carlo simulation.

impur
Calculation and rejection of the final state of e-imp scattering. Input parameters

are:

e: energy of the scattered electron

kx,ky: momentum of the scattered electron

n: initial subband

m: final subband

iv: band to which the particle belongs, always equal to 1 (conduction band)

partwt: particle weight, i.e. a weighting factor to determine how much of the

density matrix describing the electron is scattered

intrough
Calculation and rejection of the final state of e-interface roughness scattering.

Input parameters are:

e: energy of the scattered electron

kx, ky: momentum of the scattered electron

n: initial subband

m: final subband
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iv: band to which the particle belongs, always equal to 1 (conduction band)

partwt: particle weight, i.e. a weighting factor to determine how much of the

density matrix describing the electron is scattered

initfd

Initialization of the electron distribution before the main algorithm commences.

Electrons are randomly assigned to a subband and a momentum based on a thermal

distribution.

integr
Integrates a function f using the Simpson rule.

maxff

Finds and returns the maximum e-LO-phonon form factor for any given set of

initial and final subbands. This information is used in the subroutines polabs and

polems, and in the determination of a maximum LO-phonon scattering rate used in

the MC simulation.

mkpot

Subroutine called by eisubsc, used to build the potential profile of a QC structure

under bias and return it in v2.

phopho

Implements the finite lifetime tauph of the LO-phonon population and updates

the hot LO-phonon population phd accordingly.

phsc
This subroutine calculates the maximum scattering rates for e-imp and e-LO-

phonon scattering, using the scattering form factors found from aqnm. The resulting

cumulative rates are stored in scr(i, n, m, k, ibd) according to the scattering electron's

initial energy index i, initial and final subband n and m, band ibd = 1 and scattering

mechanism k:
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k=1: LO-phonon absorption

k=2: LO-phonon emission

k=3: acoustic phonon scattering

k=4: impurity scattering

k=5: interface roughness scattering

polabs
Calculation and rejection of the final state of e-LO-phonon absorption. Input

parameters are:

e: energy of the scattered electron

kx,ky: momentum of the scattered electron

n: initial subband

m: final subband

iv: band to which the particle belongs, always equal to 1 (conduction band)

partwt: particle weight, i.e. a weighting factor to determine how much of the

density matrix describing the electron is scattered

polems
Calculation and rejection of the final state of e-LO-phonon emission. Input pa-

rameters are:

e: energy of the scattered electron

kx,ky: momentum of the scattered electron

n: initial subband

m: final subband

iv: band to which the particle belongs, always equal to 1 (conduction band)

partwt: particle weight, i.e. a weighting factor to determine how much of the

density matrix describing the electron is scattered

thimp
Integration of the e-imp form factor over 27r, used in the determination of the

maximum scattering rates in phsc.
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thir

Integration of the e-interface roughness form factor over 27r, used in the determi-

nation of the maximum scattering rates in phsc.

thint

Integration of the e-LO-phonon form factor over 27r, used in the determination of

the maximum scattering rates in phsc.

volo

This subroutine chooses a scattering mechanism and final subband by generating a

random number and comparing it to the maximum scattering rate. The input/output

parameters are:

e: electron energy

n: initial subband

itype: scattering mechanism (explained in the discussion of phsc)

mtype: final subband

ntsm: maximum number of scattering mechanisms

iv,ibd2: initial and final band (obsolete, both are equal to 1 by default)

zpts
Generates wavefunctions zeta on a sparser grid than is the case for psi. This

subroutine is called by eisubsc.

inirand
Initialization of the random number generator.

schroed

Schr6dinger solver, using the shooting method implemented in shoot, shootrec

and shootpsi. The obtained wavefunctions and energies are recorded in the output

file wf.dat.

selecpsi
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Sorts the wavefunctions by energy and by module, and stores the results in sub-

mod,ns and ninmod and the file subbands.dat. There is the possibility to crop wave-

functions within their module, as a first approximation to limit parasitic interaction

between modules. This subroutine is called from eisubsc.

calcpi
This subroutine calculates the non-interacting polarizability H based on the de-

scription by Maldague [28] and Lee and Galbraith [64]. The screened matrix elements

for e-imp and e-e scattering are determined and stored in vimscr and vscr, respec-

tively.

calcliouville

Determines the Liouville matrix that governs the coherent time evolution and

stores it in liouv.

initdm

Initialization of all density matrices dm at the beginning of the simulation.

propagatedm

Propagates the density matrix of a particle over a free-flight time and updates the

contents of dm.

collapsedm
Adjusts the density matrix after a scattering event took away partwt from sub-

band isub in particle ni.

calcdm
Calculates the coherent evolution of the density matrix over 50 fs for the initial

value pij = 1 and Pam = 0, (n # iandm 4 j). The results are stored in dmtempl and

used to calculate the coherent time evolution of electrons during free flight.

kbins_dm
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Assigns the particles to bins based on their position in momentum space, and

calculates a new density matrix with averaged momentum and energy to represent

each bin. This subroutine reduces the total number of particles in the simulation,

but preserves the total population.

generate_dm
Generates a new particle described by the density matrix with the specified pa-

rameters.

shuff le

Places the contents of the last particle with index nelts in particle nii and decrease

the number of particles nelts by one.

A.2 Non-equilibrium Green's Function Simulation

To set up the NEGF simulations, I use the Wannier functions generated by Prof.

Wacker's code. The input file used is bandl.inp, which contains the information

about the layer structure. The output files from band.out are:

wavef.dat: Wannier functions

ueberlapp.dat: wavefunction overlap integrals

pot.dat: conduction band profile for 7 modules (no bias)

kopplung. dat: interaction matrix elements T1

The NEGF code consists of four files, greenlO.F, subaqee.F, subdefreg.F and

subeisubsc.F and can be compiled with the instruction: f77 -cpu:p7 -W -01 -1g2c

-lapack greenl0.F subaqee.F subdefreg.F subeisubsc.F The output file is a.out.

In the following sections, I will briefly summarize the different subroutines in the

NEGF code.

aqnm
Determination of the form factors for e-imp and e-LO-phonon scattering. Output
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files are Jfim.dat (e-imp) and ffpop.dat (e-LO-phonon scattering).

calcGR
Implementation of the Dyson and Keldysh equations to calculate the Green's

functions Grt and G<. The diagonal and off-diagonal blocks of the functions are

stored separately.

cal cSR
Calculation of Er t and E< from Get and G<. This subroutine also performs the

self-energy calculations needed to determine the scattering current after the algorithm

has converged.

cgain
This subroutine sets up the gain calculations and determines the emission energy

for which the gain is calculated.

calcpi
This subroutine calculates the non-interacting polarizability H based on the de-

scription by Maldague [28] and Lee and Galbraith [64]. The screened matrix elements

for e-imp and e-e scattering are determined and stored in vimscr and vscr, respec-

tively.

calcfftheta
Calculation of the integrated form factors B used in the subroutine calcSR.

findpop
Determines the subband population pop.

findtemp
Determines the subband temperature temp by assuming thermalized subband

populations.

gaas
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Initialization of the material parameters of GaAs, such as the effective mass,

dielectric constant and LO-phonon energy, according to Adachi.

initgreen
Initialization of the verious Green's functions and self-energies. Thermalized sub-

bands are assumed with the population distributed equally across all subbands.

inithamilt
Initialization of the subband energies Er and interaction energy matrix U.

fullmatrix
This subroutine constructs the Green's function or self-energy for a system of 3

modules from its representative diagonal and off-diagonal elements.

calc _dmat
Calculation of the density matrix and electron distribution functions from G<.

normalize
Normalization of the total population after each iteration of the algorithm.

calc_dSR
Calculation of d3ret,d]adv and dE< from dGret,dG&'v and dG<. These functions

are used for the calculation of the gain.

calc_dGR
Calculation of dGret,dGadv and dG< using the formalism described in 4.6.

186



Bibliography

[1] S. C. Lee and A. Wacker. Theoretical analysis of spectral gain in a terahertz

quantum-cascade laser: Prospects for gain at 1 thz. Appl. Phys. Lett., 83:2506,

2003.

[2] J.S. Blakemore. Semiconducting and other major properties of gallium arsenide.

J. Appl. Phys., 53:R123-R179, 1982.

[3] M. Tacke. New developments and applications of tunable IR lead salt lasers.

Infrared Phys. Technol., 36:447-463, 1995.

[4] S.E. Rosenbaum, B.K. Kormanyos, L.M. Jelloin, M. Matloubian, A.S. Brown,

E. Larson, L.D. Nguyen, M.A. Thompson, L.P.B. Katehi, and G.M. Re-

beiz. 155- and 213-Ghz AlInAs/GaInAs/InP HEMT MMIC oscillators. IEEE

Trans.Microwave Theory Tech., 43:927-932, 1995.

[5] L. Esaki and R. Tsu. Superlattice and negative differential conductivity in semi-

conductors. IBM J.Res.Dev., 14:61, 1970.

[6] R.F. Kazarinov and R.A. Suris. Possibility of the amplification of electromagnetic

waves in a semiconductor with a superlattice. Soviet Physics: Semiconductors,

5:707-709, 1971.

[7] S. Kumar, B.S. Williams, Q. Hu, and J.L. Reno. 1.9 thz quantum-cascade lasers

with one-well injector. Appl. Phys. Lett., 88:121123, 2006.

[8] R. Colombelli, F. Capasso, C. Gmachl, A.L. Hutchinson, D.L. Sivco,

A. Tredicucci, M.C. Wanke, A.M. Sergent, and A.Y. Cho. Far-infrared surface-

187



plasmon quantum-cascade lasers at 21.5 pm and 24 /m wavelengths. Appl. Phys.

Lett., 78:2620-2622, 2001.

[9] R. K6hler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davis,

D. A. Ritchie, R. C. Iotti, and F. Rossi. Terahertz semiconductor-heterostructure

laser. Nature, 417:156, 2002.

[10] J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, and A.Y. Cho.

Short wavelength (A , 3.4 pm) quantum cascade laser based on strained com-

pensated ingaas/alinas. Appl. Phys. Lett., 92:680-682, 1998.

[11] B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J.L. Reno. 3.4-thz quantum

cascade laser based on longitudinal-optical-phonon scattering for depopulation.

Appl. Phys. Lett., 82:1015, 2003.

[12] H. Callebaut, S. Kumar, B.S. Williams, Q. Hu, and J.L. Reno. Analysis of

transport properties of terahertz quantum cascade lasers. Appl. Phys. Lett.,

83:207, 2003.

[13] R. Kohler, R. C. Iotti, A. Tredicucci, and F. Rossi. Appl. Phys. Lett., 79, 2001.

[14] F. Compagnone, A. Di Carlo, and P. Lugli. Monte carlo simulation of electron

dynamics in superlattice quantum cascade lasers. Appl. Phys. Lett., 80, 2002.

[15] D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikoni6. Mechanisms of temperature

performance degradation in terahertz quantum-cascade lasers. Appl. Phys. Lett.,

82, 2003.

[16] J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu,

and A. Y. Cho. Narrowing of the intersubband electroluminescent spectrum in

coupled-quantum-well heterostructures. Appl. Phys. Lett., 65, 1994.

[17] H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue. Interface rough-

ness scattering in gaas/alas quantum wells. Appl. Phys. Lett., 51, 1987.

[18] S. M. Goodnick and P. Lugli. Appl. Phys. Lett., 51, 1987.

188



[19] M. Diir, S. M. Goodnick, and P. Lugli. Monte carlo simulation of intersubband

relaxation in wide, uniformly doped gaas/alxgal_,as quantum wells. Phys. Rev.

B, 54, 1996.

[20] H. Vaupel, P. Thomas, O. Kuehn, V. May, K. Maschke, A. P. Heberle, W. W.

Ruehle, and R. Koehler. Dissipative tunneling in asymmetric double-quantum-

well systems: A coherence phenomenon. Phys. Rev. B, 53:16531, 1996.

[21] F. Eickemeyer, K. Reimann, M. Woerner, T. Elsaesser, S. Barbieri, C. Sirtori,

G. Strasser, T. Mueller, R. Bratschitsch, and K. Unterrainer. Ultrafast coherent

electron transport in semiconductor quantum cascade structures. Phys. Rev.

Lett., 89:047402, 2002.

[22] C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog.

Rabi oscillations of intersubband transitions in gaas/algaas mqws. Semicond.

Sci. Technol., 19:S285, 2004.

[23] H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno. Importance of

electron-impurity scattering for electron transport in terahertz quantum-cascade

lasers. Appl. Phys. Lett., 84:645, 2004.

[24] H. Willenberg, G.H. Doehler, and J. Faist. Intersubband gain in a bloch oscillator

and quantum cascade laser. Phys. Rev. B, 67:085315, 2003.

[25] G. Mahan. Many-particle Physics. Plenum, New York, 1990.

[26] J.H. Smet. Intrawell and interwell intersubband transitions in single and multiple

quantum well heterostructures. Massachusetts Institute of Technology, Depart-

ment of Electrical Engineering and Computer Science, Cambridge, MA, 1995.

[27] C.J. Hearn. The physics of nonlinear transport in semiconductors, edited by D.K.

Ferry, J.R. Barker and C. Jacoboni, pages 153-166. Plenum, New York, 1980.

[28] P.F. Maldague. Many-body corrections to the polarizability of the two-

dimensional electron gas. Surf.Sci., 73:296, 1978.

189



[29] T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama. Intersubband

absorption linewidth in gaas quantum wells due to scattering by interface rough-

ness, phonons, alloy disorder, and impurities. J. Appl. Phys., 93, 2003.

[30] S. Luryi. Frequency limit of double-barrier resonant-tunneling oscillators. Appl.

Phys. Lett., 47:490, 1985.

[31] A. Mircetic, D. Indjin, Z. Ikonic, P. Harrison, V. Milanovic, and R.W. Kelsall.

Towards automated design of quantum cascade lasers. J. Appl. Phys., 97:84506,

2005.

[32] R. Koehler, R. C. Iotti, A. Tredicucci, and F. Rossi. Design and simulation of

terahertz quantum cascade lasers. Appl. Phys. Lett., 79:3920, 2001.

[33] B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J.L. Reno. Terahertz

quantum-cascade laser operating up to 137 k. Appl. Phys. Lett., 83:5142, 2003.

[34] S. Mukamel. Principles of nonlinear optical spectroscopy. Oxford University

Press, New York, Oxford, 1995.

[35] R. C. Iotti and F. Rossi. Nature of charge transport in quantum-cascade lasers.

Phys. Rev. Lett., 87:146603, 2001.

[36] R. F. Kazarinov and R. A. Suris. Possibility of the amplification of electromag-

netic waves in a semiconductor with a superlattice. Sov. Phys. Semicond., 5:707,

1971.

[37] C. Sirtori, F.Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho.

Resonant tunneling in quantum cascade lasers. IEEE J. Quantum Electron.,

34:1722-1729, 1998.

[38] B. S. Williams. Terahertz quantum cascade lasers. M.L T. Doctoral thesis, 2003.

[39] T. Kuhn and F. Rossi. Monte carlo simulation of ultrafast processes in pho-

toexcited semiconductors: Coherent and incoherent dynamics. Phys. Rev. B,

46:7496, 1992.

190



[40] L.P. Kadanoff and G. Baym. Quantum Statistical Mechanics. Benjamin, New

York, 1962.

[41] L. V. Keldysh. Sov. Phys. JETP, 20:1018, 1965.

[42] R. Mattuck. A guide to Feynman diagrams in the many-body problem. McGraw-

Hill Inc., New York, 1976.

[43] T. Kuhn. Theory of Transport Properties of Semiconductor Nanostructures (ed.

by E. Schoell). Chapman and Hall, London, 1998.

[44] G. Mahan. Many Particle Physics. Kluwer Academic, New York, 2000.

[45] S. Datta. Electronic transport in Mesoscopic Systems. Cambridge University

Press, New York, 1995.

[46] A. Wacker. Semiconductor superlattices: a model system for nonlinear transport.

Phys. Rep., 357:1-111, 2002.

[47] A. Wacker. Transport in nanostructures: A comparison between nonequilibrium

green functions and density matrices. Adv. in Solid State Phys., 41:199-210,

2001.

[48] R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic. Single and multiband

modeling of quantum electron transport through layered semiconductor devices.

J. Appl. Phys., 81:7845, 1997.

[49] W.W. Chow and S. W. Koch. Semiconductor Laser Fundamentals. Springer,

Berlin, 1999.

[50] H. Haug. Quantum Theory of the Optical and Electronic Properties of Semicon-

ductors. World Scientific, Singapore, 2004.

[51] S. C. Lee and A. Wacker. Nonequilibrium greens function theory for transport

and gain properties of quantum cascade structures. Phys. Rev. B, 66, 2002.

191



[52] S.-C. Lee, F. Banit, M. Woerner, and A. Wacker. Quantum-mechanical

wavepacket transport in quantum cascade laser structures. Cond. Mat.,

7:0507410, 2005.

[53] F. Banit, S.-C. Lee, A. Knorr, and A. Wacker. Self-consistent theory of the gain

linewidth for quantum-cascade lasers. Appl. Phys. Lett., 86:041108, 2005.

[54] W. Kohn. Analytic properties of bloch waves and wannier functions. Phys. Rev.,

115:809, 1959.

[55] G. H. Wannier. The structure of electronic excitation levels in insulating crystals.

Phys. Rev., 52:191, 1937.

[56] B. S. Williams, H. Callebaut, Q. Hu, and J. L. Reno. Magnetotunneling spec-

troscopy of resonant anticrossing in terahertz intersubband emitters. Appl. Phys.

Lett., 79:4444, 2001.

[57] S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno. Continuous-wave op-

eration of terahertz quantum-cascade lasers above liquid-nitrogen temperature.

Appl. Phys. Lett., 84:2494, 2004.

[58] F. Banit, S. C. Lee, A. Knorr, and A. Wacker. Self-consistent theory of the gain

linewidth for quantum-cascade lasers. Appl. Phys. Lett., 86:041108, 2005.

[59] S. Kohen, B.S. Williams, and Q. Hu. Electromagnetic modeling of terahertz

quantum cascade laser waveguides and resonators. J. Appl. Phys., 97:053106,

2005.

[60] B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno. Resonant-phonon terahertz

quantum-cascade laser operating at 2.1 thz (A =141 pm). Electron. Lett., 40:431,

2004.

[61] H. Callebaut, S. Kumar, B.S. Williams, Q. Hu, and J. L. Reno. Importance of

electron-impurity scattering for electron transport in terahertz quantum-cascade

lasers. Appl. Phys. Lett., 84:645, 2004.

192



[62] T. Ando, A. B. Fowler, and F. Stern. Electronic properties of two-dimensional

systems. Rev. Mod. Phys., 54:437, 1982.

[63] B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno. Terahertz

quantum-cascade laser at A - 100 pm using metal waveguide for mode confine-

ment. Appl. Phys. Lett., 83:2124, 2003.

[64] S.-C. Lee and I. Galbraith. Intersubband and intrasubband electronic scattering

rates in semiconductor quantum wells. Phys. Rev. B, 59:15796, 1999.

193


