Banked Microarchitectures for Complexity-Effective Superscalar

Microprocessors
by
Jessica Hui-Chun Tseng

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of '

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2006

f T’-’ . T m{;d
© Massachusetts Institute of Technology 2006. All nghts reserved.

Author........ ... i, -7 m e iiee e e e
Deparm%(fva;:cmcal Engmeenng and Com cience
May 5, 2006
/
Cemﬁed by , Wd"’ W e S T R I I T R
Krste Asanovié
Associate Professor
Thesis Supervisor
Acceptedby............. b T T T S \
> Arthur C. Smith
Chairman, Department Committee on Graduate Students
- OF TECHNOLDGY
NOV § 2 2006 ARCHIVES

__LIBRARIES

Banked Microarchitectures for Complexity-Effective Superscalar Microprocessors
by
Jessica Hui-Chun Tseng

Submitted to the Department of Electrical Engineering and Computer Science
on May 5, 2006, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

High performance superscalar microarchitectures exploit instruction-level parallelism (ILP) to improve pro-
cessor performance by executing instructions out of program order and by speculating on branch instruc-
tions. Monolithic centralized structures with global communications, including issue windows and register
files, are used to buffer in-flight instructions and to maintain machine state. These structures scale poorly to
greater issue widths and deeper pipelines, as they must support simultaneous global accesses from all active
instructions. The lack of scalability is exacerbated in future technologies, which have increasing global
interconnect delay and a much greater emphasis on reducing both switching and leakage power. However,
these fully orthogonal structures are over-engineered for typical use. Banked microarchitectures that con-
sist of multiple interleaved banks of fewer ported cells can significantly reduce power, area, and latency of
these structures. Although banked structures exhibit a minor performance penalty, significant reductions
in delay and power can potentially be used to increase clock rate and lead to more complexity-effective
designs. There are two main contributions in this thesis. First, a speculative control scheme is proposed
to simplify the complicated control logic that is involved in managing a less-ported banked register file
for high-frequency superscalar processors. Second, the RingScalar architecture, a complexity-effective out-
of-order superscalar microarchitecture, based on a ring topology of banked structures, is introduced and
evaluated.

Thesis Supervisor: Krste Asanovié
Title: Associate Professor

Acknowledgments

First, I like to thank my advisor Krste Asanovi¢ for supporting me throughout this work and for his constant
advice and encouragement. He is such a great inspiration to any student who is interested in computer
architecture research. I treasure my learning experience under his invaluable guidance. I also like to thank
Professor Arvind and Professor Srini Devadas for reading my thesis and sitting on my committee. I thank
Professor Jacob White for his academic advice in pursuing my graduate study.

Thanks to Christine Chan, Abe McAllister, Godfrey Tan, Jaime Teevan, Doug De Couto, and Mark
Hampton for their collaborations in various class projects. Thanks to Ronny Krashinsky and Mike Karcz-
marek for TA’ing 6.823 with me. More thanks to Ken Barr, Chris Batten, Steve Gerding, Jae Lee, Rose
Liu, Albert Ma, Heidi Pan, Michael Zhang, Seongmoo Heo, and Emmett Witchel for being the greatest
teammates.

I thank Professor Dean Tullsen for providing and helping me with SMTSIM. I thank Xiaowei Shen
for being my mentor when I was interning in IBM T. J. Watson Research Center. 1 thank Victor Zyuban
for many interesting discussions in register file designs. I also thank Joel Emer for sharing his insightful
experiences in microprocessor designs.

Thanks to Anne McCarthy for helping me settle in when I first joined the group. Thanks to Michael
Vezza for providing IT support that saved me a great deal of time. Many thanks to Mary McDavitt for all
her administrative help, encouragements, and moral supports during the last few years of my graduate work.

Thanks to all my friends who have made my life in MIT so enjoyable and memorable. Special thanks to
Jing Song, Joy Cheng, and Carolyn Lee, for being such wonderful roommates and great friends during my
study in MIT. I miss our late night snacks and conversations.

Funding for my graduate work came from a number of sources including NSF graduate fellowship,
NSF CAREER award CCR-0093354, DARPA PAC/C award F30602-00-2-0562, CMI project 093-P-IRFT,
DARPA HPCA/PERCS project W0133890 with IBM Corporation, and donations from Intel Corporation
and Infineon Technologies.

Last but not less, I like to thank Mom, Dad, David, and Will for their endless love, patience, support,

and encouragements. Most of all, thank you for sharing this journey and believing in me.

Contents

1 Introduction 17
1.1 ThesisOverview e e e e e 18
2 Background and Motivation 21
2.1 Superscalar MiCTOPTOCESSOIS« v v v v v i e et e e e et e e e e e e 22
2.1.1 Imordervs.Out-of-order 22

212 Terminology e e e e e e e 23
2.1.3 Out-of-order ExecutionPipeline 24

214 RegisterFile 25

2.1.5 Instruction Issue Window e, 27

2.2 Clustered Architectures e e e 29
2.3 Efficient Register FileDesigns, 31
23.1 Less-ported SHUCTUTES ¢ i v vt it e e e e e e e 32

2.3.2 Multibanked Microarchitecture 0 e 32

233 RegisterCaching e 33

234 Asymmetric StrTuCture e . 34

235 Content AWArENess v v vt v e e e e e e e e e e e e e e e 34

2.3.6 Other Related Work on Reduced Complexity Register Files. 34

2.4 Efficient Instruction Issue Window Designs 35
241 TagEHEmination i i ittt e e e 35

242 Banked Configuration 36

243 PipelineWindow L e e 37

2.44 Scoreboard Scheduler e e 37

24.5 DistributedScheduler. L 37

246 OtherRelated e e 37

2.5 Motivation for Banked Microarchitectures 38
3 Methodology 41
3.1 Simulation framework e 41
3.1.1 Front-End Pipeline Stages, 42

3.1.2 Dynamic Instruction Scheduling and Execution 43

313 CommitStage e e e e e e e e 43

3.1.4 Memory Instruction Modeling 43

3.1.5 Additional Modifications L e 44

32 Benchmarks e e 45
3.2.1 Dynamic Instruction Profiling 45

3.3 Baseline Superscalar Processor L e 46
34 TPCVersusPerformance 47
4 A Speculative Control Scheme for Banked Register File 49
4.1 Register Bank Structure e e e e 50
4.2 Physical Characteristics i i i i e e e e e e e e 52
421 RegfileLayout e 52

422 Regfile AreaComparison. ittt e e e e 53

423 Regfile Delay and Energy Evaluation 54

43 ControlLogic o o i i e e e e e e e e e e e e e e e e e 55
4.3.1 Speculative Pipeline Control Scheme 56
43.2 RepairingthelIssue Window 57

4.3.3 Conservative Bypass-SKip e 58
434 ReadSharing 59

4.4 Modeling Local PortContention, 60
4.4.1 Port Conflict Probability (PCP) eneen.. 60

442 PCPAnalysis i e e 61

45 SimulationResults 62
45.1 Performance Sensitivity e 62
4.5.2 Extending to SMT Architecture, 64
453 Inm-orderSuperscalar 66
454 Correlation AmMONg ACCESSES v v v v v v e e e e e e e e e e e e e 67

N 111 11 | 68

RingScalar: A Complexity-Effective Banked Architecture 71

5.1 RingScalar Microarchitecture e 72
5.1.1 Architecture OVEIVIiEW L. e e e e e 72
512 RegisterRenaming e e e 74
513 IssueWindow L e e e e e 77
5.14 BankedRegisterFile 79
5.1.5 BypassNetwork e 80

52 Operand Availability 81

53 Evaluation e e e e e e e e e 82
53.1 Resource Sizing e e e e e e e 83
532 IPCComparison ii i im ittt ettt 84
5.3.3 Regfile Read Port Optimization Effectiveness 85
534 Two-waiting Queues e e 87

54 Complexity Analysis e e e e e 87

55 Summary e e e e e e e e 90

Conclusion and Future Work 91

6.1 Summary of Contributions e 91

6.2 Future Work e 92

10

List of Figures

2-1 IPCs for single-issue in-order, four-way in-order, and four-way out-of-order superscalar ma-

chines. e e e e e e e 23
2-2 Microarchitectures of (a) single-issue in-order, (b) four-way in-order, and (c) four-way out-

of-order superscalar machines. L e 24
2-3 Four-way out-of-order superscalar execution pipeline. L. 25
2-4 A 32x32 regfile structure with two read-port and one write-port. 26
2-5 Wakeupcircuitry ofascheduler. L L oo o 27
2-6 Latch-based compacting instruction issue queue. 28
2-7 Clustered architecture. i e e e e 29
2-8 Ringclustered architecture. e e e e e e 31
2-9 Multibanked regfile structure. L. e e e e 33
2-10 Banked issue quene orgamization. e e 36
2-11 Distributed FIFO structured issue window. 38
2-12 Reservation station style issue window design. 38
2-13 A multibanked architecture design. 0 o, 39
3-1 Simulation framework. e 42
3-2 IPCs for the baseline configuration., 47
4-1 An eight-read, four-write port register file implemented using four two-read, two-write port

banks. The register file interconnect and bypass network are shown as distributed muxes

where each dotted crosspoint represents a potential switched connection. 51

11

42

Area comparison of four different 64x32b regfiles for a quad-issue processor. The clear
regions represent the storage cells while the lighter shaded regions represent the overhead
circuitry in each bank. The black shading at the bottom is the area required for the global

bitline column circuitry. The medium-dark shading to the side is the area for address decoders. 53

4-3 Detail area breakdown of various 64x32b eight read-port and four write-port register file

designs. . . . o i e e e e e e e e e e e e e e e e e e 54
4-4 Detail breakdown of various 64 x32b eight read-port and four write-port register file designs

in terms of (a) read access delay and (b) read energy consumption. 56
4-5 Pipeline structures of processor with unified register file and processor with multibanked

register file. An additional cycle is added for multibanked register file for read port arbitra-

tion and muxing. Read bank and write bank conflicts are also detected in this cycle. 57
4-6 Pipeline diagram shows repair operation after conflicts are detected. The wakeup tag search

path is used to clear ready bits of instructions that had a conflict causing them to be reissued

two cycles later. Any intervening instruction issues are killed. 58
4-7 Conservative bypass skip only avoids read port contentions when the value is bypassed from

the immediately preceding cycle. L e 59
4-8 PCP for designs with (a) 16 banks with varying number of local ports and (b) varying number

of banks withtwo localports. e 62
4-9 TPCs for the 4-issue pipeline with register fileof size80. 63
4-10 IPCs for (a) 1-Thread, (b) 2-Thread, and (c) 4-thread workloads. 66

4-11 Normalized IPC % for a four-way in-order machine with a 8B2R2WY'Y regfile. Results are

normalized to the IPC of a four-way in-order superscalar with a fully-ported regfile. 67
4-12 Conflict cycle comparison for (a) readsand (b) writes. 68
5-1 RingScalar core microarchitecture for a four-issue machine. The reorder buffer and the

memory queue arenot shown. Lo e e 73
5-2 RingScalar rename and dispatch. The sub and and instructions were already in the window

before thenew dispatch group. i e e 74
5-3 RingScalar register renaming and column dispatch circuitry. Only the circuitry for srcl of

instruction 1and 2iS ShOWN. L i i e e e e e e e e e e e 76

54 Wakeup CirCuitry. e e e e e 78

5-5 Latch-based compacting instruction queues.o i e e e . 79
5-6 Percentage distribution of zero-waiting, one-waiting, and two-waiting instructions. 81
5-7 Percentage distribution of last-arrival operand for two-waiting instructions. 82
5-8 Average IPC comparison for different regfilesizes. 83
5-9 RingScalar average IPC sensitivity to instruction window size. 84
5-10 IPC for 1 thread workload with a gshare branch predictor. 84
5-11 IPC for 1 thread workload with a perfect branch predictor. 85

5-12 Percentage of operands that do not compete for regfile read port due to conservative bypass-
skipped optimization. e e 86
5-13 Percentage of operands that do not compete for regfile read port due to read-sharing opti-

MIZAUOM. v o e s 86

13

14

List of Tables

3.1
32
33

4.1

4.2

43
44

4.5
4.6

5.1

SPEC CINT2000 benchmarks description.ot i v vn vy 45
The instruction distribution of SPEC CINT2000 benchmarks. 46
Common simulation parameters. ittt e e e e e e e e 47

Relative area of different 64 x32-bit eight global read port and four global write port register
file designs. Packing is the number of local bit cells packed per global bit column. 54
Relative delay, energy, and leakage numbers of different 64 x32-bit eight global read port
and four global write port register filedesigns. 55
F(d,A,B,N) forvariousdvalues.uuuuunnunenn. 61
Normalized IPC % for a quad-issue machine with 80 physical registers. Configurations
are labelled as (#banks)B(#local read ports)R(#local write ports)W (bypass skipped?)(read

sharing?). Results are normalized to the IPC of the baseline case (unified with eight read

andfour write ports). L e e e 63
Three workload categories. e 64
Heterogeneous multithreaded workloads. 65

Total complexity comparisons. Percentage results are normalized to the baseline

(BL32:80RBWA4). e e e e 89

15

16

Chapter 1

Introduction

Conventional superscalar microarchitectures [Yea96, Kes99] employ monolithic centralized structures with
global communications, including issue windows, register files, and bypass networks. These structures
scale poorly to greater issue widths and deeper pipelines, as they must support simultaneous global accesses
from all active instructions. They also scale poorly to future technologies, which have increasing global

interconnect delay and a much greater emphasis on reducing both switching and leakage power.

To address this problem, decentralized clustered microarchitectures have been proposed [SBV95, KF96,
FCJV97, RISS97, AG05], where microarchitectures are divided into disjoint clusters each containing local
instruction windows, register files, and functional units. However, clustering adds significant control logic
complexity to map instructions to clusters and to manage communication of values between clusters. The
area and control complexity overhead of clustered architectures cannot be justified by the level of instruction

parallelism in current applications [ZKO01].

The other approach is to retain a centralized design but increase the efficiency of these fully orthogonal
structures, which are over-engineered for typical usage. The challenge is in developing efficient microar-
chitectures with simple pipeline control algorithms that allow smaller, less-orthogonal structures to attain
good performance without adding excessive complexity. In this thesis, I argue that a complexity-effective
superscalar microprocessor can be realized by constructing centralized structures from multiple interleaved

banks of lesser ported cells.

The research conducted for this thesis builds upon earlier work in banked register files [WB96, CGVT00,
BDAO1, PPV02], tag-elimination [EA02, KL03], and dependence-based scheduling [KF96, PJS97] and has

17

two main contributions:

o Developing a speculative control scheme for banked register files for high-frequency superscalar pro-

CESSOrs.

o Proposing a complexity-effective superscalar architecture that is based on a ring topology of banked

microarchitectures.

1.1 Thesis Overview

This thesis consists of six chapters.

Chapter 2 provides background and motivation for this work. It reviews conventional superscalar mi-
croprocessors and shows that monolithic centralized structures with global communications such as register
file, issue windows, and bypass network do not scale effectively with issue widths and deeper pipelines.
Previous work in microarchitecture techniques that improve processor efficiency are examined, including

clustered and banked architectures.

Chapter 3 describes the methodology and the baseline machine configuration used for this work. The
SMTSIM simulator [Tul96] and the SPEC CINT2000 benchmark suite [Hen00] were used to evaluate the
performance of various banked microarchitectures and their control logic. Detailed models of register file,
instruction window, and control logic were added to SMTSIM. A baseline machine configuration is chosen
based on a preliminary analysis of the characteristics of the workload.

Chapter 4 examines energy-efficient banked multiported register file designs. Provided that the number
of simultaneous accesses to any bank is less than the number of ports on each bank, a banked regfile can
provide the aggregate bandwidth needs of a superscalar machine with significantly reduced area compared to
a fully multiported regfile. Custom layouts of the regfile were used to determine the physical characteristic
of various banking designs. Earlier banked schemes that required complex control logic with pipeline stalls
would have likely limited the cycle time of a high-frequency design. I present a speculative control scheme
suitable for a deeply pipelined high-frequency dynamically scheduled processor which avoids pipeline stalls.
The performance impact of regfile port conflict mis-speculations are evaluated and verified with results from

both a cycle-accurate simulator and an analytical model.

18

Chapter 5 applies the banking techniques to the instruction issue window and proposes a complexity-
effective banked architecture, RingScalar. RingScalar builds an N-way superscalar from N columns, where
each column contains a portion of the instruction window, a bank of the register file, and an ALU. By exploit-
ing dependency-based scheduling to place dependent instructions in adjacent columns, the bypass network
is simplified into a ring connect, where a functional unit can only bypass values to the next functional unit.
Furthermore, the fact that most instructions have only one outstanding operand when they enter the rename
stage is exploited to use only one wakeup tag in the issue queue entries. This approach reduces the cost of
broadcasting tag information across the window.

Finally, Chapter 6 concludes by summarizing the contributions of this thesis and suggesting future work.

19

20

Chapter 2

Background and Motivation

Out-of-order superscalar microarchitectures provide high single-thread performance, but at a significant
cost in terms of area and power. This overhead is due to large centralized structures with global communi-
cations, including issue windows, register files, and bypass networks. This hardware dynamically extracts
instruction-level parallelism (ILP) from a single instruction stream but scales poorly to greater issue widths
and future technologies [PJS97], which have increasing global interconnect delay and rising leakage power.
The advent of chip-scale multiprocessors, which integrate multiple cores per die, provides additional mo-
tivation to improve the area and power efficiency of each core. In this chapter, I provide an overview of
superscalar processors and related microarchitecture techniques. Then, I argue that banked microarchitec-
tures merit investigation for their high area and power efficiency which results in a more complexity-effective

machine.

Section 2.1 reviews the basic concepts of a superscalar microprocessor and its major components. High
performance superscalar designs raise the overall instruction thoughput by issuing multiple instructions in
parallel and executing instructions out of program order. The pipeline structure of an out-of-order super-
scalar processor is illustrated and terminology is defined. I identify the reasons why orthogonal structures

such as register files and instruction issue window are difficult to scale.

Section 2.2 discusses an alternative microarchitecture style, clustering, which aims to support greater
issue widths at higher frequencies. Clustered architectures attempt to scale to larger issue widths by splitting
the microarchitecture into distributed clusters, each containing a subset of register file, issue queue, and

functional units [SBV95, KF96, FCIV97, RISS97]. However, such schemes require complex control logic

21

to map instructions to clusters and to handle intercluster dependencies. Also, clustered designs tend to be
less area efficient as they typically have low utilization of the aggregate resources [RF98].

Section 2.3 and Section 2.4 examine previous research in microarchitecture techniques that alleviate the
scalability and efficiency problem of register files and instruction windows. Section 2.5 summarizes the

main arguments made in this chapter.

2.1 Superscalar Microprocessors

Superscalar microprocessors started appearing in the late 1980s and early 1990s with the increasing popu-
larity of RISC processors and the growing availability of transistor resources. Recent commercial general-
propose processors such as Silicon Graphics’s MIPS R10000 [Yea96], Digital’s 21264 Alpha [Kes99],
IBM’s Power4 [TDF101], Intel’s P6-based processors, the Pentium 4 [HSU1O01], as well as AMD’s
Athlon [AMD99] and Optero [KMACOQ3] are all superscalar processors.

2.1.1 In-order vs. Out-of-order

Superscalar microarchitectures increase processor performance by issuing multiple instructions simultane-
ously to exploit the instruction-level parallelism (ILP) present in applications. A processor that can execute
N instructions in parallel is an N-way machine. The ability to dynamically issue varying numbers of in-
structions per clock cycle differentiates the superscalar from the VLIW (very long instruction word) design.
In a VLIW design, the compiler schedules instructions statically. An in-order superscalar issues instructions
dynamically depending on the dynamic detection of hazards, but always in program order. Out-of-order de-
signs issue instructions potentially out of program order. Out-of-order execution machines require additional
hardware to manage the precise architectural state of in-flight instructions, but reduce processor stalls from
data dependencies. For example, in an in-order core, the pipeline stalls when the next waiting instruction is
the consumer of data that is not yet available. In contrast, out-of-order processors perform future work by
issuing other instructions that do not have an outstanding data dependency into the pipeline.

To evaluate the performance benefits of superscalar, Figure 2-1 shows the Instruction-committed-per-
cycle (IPC) comparisons of different machines across the SPEC2000 CINT benchmark suite by using the
methodology described in the next chapter. The simulated data indicates an approximately 40% improve-

ment from a single-issue to a quad-issue in-order machine and another 40% improvement from a four-way

22

2-5 T T T T T T T T T T | T T
Il single-issue in-order
B four-way in-order

Bl four-way out-of-order

1'5 wn QS s W AR AR AN ST TERee e ot comus s R s R VR sy keI d 0 300 e . -

IPC

. bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg
Benchmark

Figure 2-1: IPCs for single-issue in-order, four-way in-order, and four-way out-of-order superscalar ma-
chines.

in-order to a four-way out-of-order superscalar machine.

However, Figure 2-2 shows that as the issue width quadruples, demand on the number of register file
port increases by a factor of four and the bypass network grows substantially. For out-of-order superscalars,
the number of register file entries must increase to support removal of artificial data dependencies by register
renaming. An instruction issue window is also required to manage and schedule in-flight instructions out of
program order. These highly centralized and orthogonal structures such as the register file, instruction issue
window, and bypass network are typically very inefficient. Therefore, the focus of this thesis is finding tech-
niques to improve the efficiency of high performance out-of-order superscalar processors, while retaining

their performance advantages.

2.1.2 Terminology

Throughout the thesis, the following terminology will be used to describe dynamically scheduled superscalar

execution cores.

e Fetch is the act of retrieving instructions from the instruction cache.
e Decode is the process of decoding instruction opcodes and operands.

e Rename is the act of mapping an instruction’s architectural registers to the physical registers. Renam-

ing eliminates artificial write-after-read and write-after-write data dependency hazards [HP02].

23

[Fetch Unit]

¥ ¥ ¢ %
[Decoder |
[Fetch Unit | /_*
Y. 2 ¥ 3 [
[Decoder | e e

Figure 2-2: Microarchitectures of (a) single-issue in-order, (b) four-way in-order, and (c) four-way out-of-
order superscalar machines.

e Dispatch is the process of moving the renamed instructions into the scheduling hardware, such as an

instruction issue window.

e Issue is the process of sending ready instructions from the instruction issue window into the execution

units.
e Write Back is the act of writing results back to the physical register file.
e Complete is the act of instructions leaving the pipeline after write back.

e Commit is the process of retiring completed instructions. The commit logic updates the architectural

state and releases resources such as entries in the reorder buffer (ROB), memory queue, and register

file.

2.1.3 Out-of-order Execution Pipeline

A superscalar processor builds on a logically pipelined design, where each pipeline stage is in charge of one
of multiple tasks that are needed to complete each instruction. Figure 2-3 shows an example of a four-way
out-of-order superscalar processor execution pipeline structure. Instructions are first fetched, decoded, and
renamed. Instructions are then dispatched to the issue window and wait until both operands are available.
The instruction issue window pipeline stage contains the critical wakeup-select loop [PJS97], where the

wakeup phase is used to update operand readiness and the select phase picks a subset of the ready instructions

24

Fetch I DecodeI Renamel\,,,,,qus,,us?,,tac E%‘gss Execute Writebacq Commitl

Figure 2-3: Four-way out-of-order superscalar execution pipeline.

to issue. Once a single-cycle instruction is selected, its result tag is immediately broadcast to the instruction
issue window in the next wakeup phase to allow back-to-back issue of dependent instructions, even though
the selected instruction will not produce its result for several cycles. Before execution, register values are
read from either the register file or the bypass network. After execution in the functional units, the results
are written back to the register file and the instruction is committed in program order to maintain precise

architectural state.

2.1.4 Register File

The multiported register file, or regfile, provides buffered communication of register values between pro-
ducer and consumer instructions. With the deeper pipeline speculation and higher instruction-level paral-
lelism (ILP) of more aggressive out-of-order superscalar processor designs, both the number of ports and the
number of required registers increase. These increased requirements cause the area of a conventional mul-
tiported regfile to grow more than quadratically with issue width [ZK98]. The trend towards simultaneous
multithreading (SMT) [TEL95] further increases register count as separate architectural registers are needed
for each thread. For example, the proposed eight-issue Alpha 21464 design had a regfile that occupied over
five times the area of the 64 KB primary data cache [Pre02].

A register file is composed of SRAM like storage cells, address decoders, wordline drivers, column
circuitry, multiplexing circuitry, and interconnects [ZK98, RDK*00, SJO1, BPNO3]. Figure 2-4 shows a
32x32-bit regfile with two single-ended read ports and one differential write port. The storage array is the
main component and the cell size is constrained by the number of wires (bitline and wordlines) and the
cross-coupled inverters. We can express the area of a multiported storage cell with single-ended reads and
differential writes in a closed form, Equation 2.1. h;y, is the height of the coupled-inverters layout, w;y, is
the width of the coupled-inverter layout, W is each wire-track space, N, is the number of read ports, and

Ny, 1s the number of write ports.

25

_________________ ordling_rs_RO .o vmcmomecnamnnca,
T T 0 T | 1
g 1 wordlinert RO? L a
e | giewg W e
srel | i T | [Wordline w RO [| =F =1
5 e B e e A E [2 8 s £
o)
=g S
51 8
a
il
t S ey Jwordline_rs R311J____________ L1,
S 5 8 651 ' 2 i e :
< vEEE L [[wordline_rt R3%| [L 1 [
i -——i # E l:: ::_ ' ' _‘i ’ﬂ ! i B)
s S | [Wordline_w _R31[|'F =e
|5 & S 1. P e Ll
5 =11z =
] =] A= al A2
3l B | I3 Bl & 3 |8
B ES 3| Y2 4’ 3
Column Circuitry | Column Circuitry
P Bit0 Bit31

RF_rt/sd0)f
RF_rs0
RF_w31
RF_rt/sd31
RF_1s31

/16
/16

—
r<— SA,

pe—
[<— Sa,

]

w -
"?‘_(~— RF_w0
sd_control
=3
rt_control
%
rs_control
b
<4
& sd_control
& t_contyol
-3
" s control

]|

t |
]

-
-

Figure 2-4: A 32x32 regfile structure with two read-port and one write-port.

areasiorage = (Riny + W(Ny + Ny)) X (Winy + W Ny + 2WN,,) 2.1

Both Figure 2-4 and Equation 2.1 indicate that the area of a conventional regfile increases super-linearly
with the number of ports. For this reason, many architects have explored alternative designs for implement-

ing a large and fast multiported register file.

One approach, used in the Alpha 21264 [Kes99] and 21464 [Pre02] designs, divides the functional units
among two clusters and provides a copy of all registers in each cluster. This design halves the number of
read ports required on each copy of the regfile, but requires the same number of write ports on both regfiles
to allow values produced in one cluster to be made available in the second cluster. This approach isn’t used

to reduce area but to reduce read latency.

26

2.1.5 Instruction Issue Window

The instruction issue window or issue queue is where instructions wait to be scheduled to an appropriate
execution unit. The issue window dynamically schedules instructions into the pipeline to exploit instruction-
level parallelism to improve processor performance. Because the critical wakeup-select loop is part of the
instruction issue window and its timing usually helps determine a processor’s clock frequency, it is hard
to scale this structure to greater issue widths [PJS97]. Moreover, studies have shown that the scheduler
logic consumes a large portion of a processor’s power (e.g. around 18% of total chip power of the Alpha

21264 [EA02]).

There are several styles in implementing a dynamic scheduler, but most designs employ a wakeup circuit
to check the read-after-write data hazard and a select arbiter to choose instructions for issue. One approach is
to store the direct source tags of each waiting instruction and dynamically update its readiness by matching
the source tags to the result tags of issued instructions. As shown in Figure 2-5, each result tag passes through
one of N wakeup ports and is driven across the entire window, with each entry having two comparators,
leading to a fanout of 2E, where £ is the number of entries. The direct source-tag scheduler requires
Nlogy(X)] wires to broadcast N result tags each cycle, where X is the number of regfile entries, and
a total of E x 2N [log,(X)] bit-comparators. This scheme is shown to scale well with larger number of
registers but not with greater issue width.

wakeup ports
o Ve
Ok F

[ready| srcttag | [src2 tag [ready]

Figure 2-5: Wakeup circuitry of a scheduler.

Another variation of the direct source-tag approach is to one-hot encode the source tags as in the Alpha
21264 [FF98] processor. Each entry of the issue queue contains as many number of bits as the number of
physical regfile entries, X. This bit array represents the data dependencies of each instruction and is the
logical OR of two one-hot encoded sources. Again, the scheduler updates the readiness of instructions by
matching the source field to destination registers of issued instructions each cycle. To reduce the number

of wakeup ports, result tags (one-hot encoded) of issued instructions are ORed together. Since there is only

27

Dispatch Port Issue Port

Select Arbiter

Figure 2-6: Latch-based compacting instruction issue queue.

one set of comparators for the source field, fanout for the wakeup port is also reduced from 2F to E. The
one-hot encoding scheme requires only a single wakeup port but a larger storage array for issue window (
E x X instead of E x 2[log,(X)]). This design requires X wires to signal data completion and a total of
E X bit-comparators.

The size of an issue window that uses one-hot encoding grows linearly with the size of regfile and
becomes impractical for designs with a large number of registers. To improve the efficiency, Intel’s Pentium
4 processor [HSUT01] stores the instruction dependencies in terms of one-hot encoded scheduler entry
numbers instead of register numbers. The issue window is organized as a F' X E bit matrix. As instructions
are issued, they send the one-hot encoding that correspond to their issue queue entry numbers. This scheme
requires F number of wires with a fanout of E to broadcast the entry numbers of issued instructions and
a total of E? bit-comparators. The complexity reductions of the scheduler, however, comes at the cost of
an additional future-file like structure and the control logic that maps the architectural register numbers to
scheduler entry numbers.

Many issue queue designs keep instructions in age-order because it simplifies pipeline cleanup after
exceptions or branch mispredictions and can improve performance over randomly assigned order. Figure 2-
6 shows a latch-based compacting instruction queue design where the fixed-priority select arbiter picks

the oldest ready instruction for issue. The age ordering of instructions is preserved by compacting out a

28

Cluster 0 Cluster 1] Cluster 2

Cluster 3

J J

[Inter-Cluster Communicaton]

Figure 2-7: Clustered architecture.

completed instruction from the window, each entry below the hole retains its value, each entry at or above
the hole copies the entry immediately above to squeeze out the hole, while the previous highest entry copies
from the dispatch port if there’s a new dispatch. Each entry has a single input port which is connected to
a 2N fan-in mux, feeding from N dispatch ports and output ports of entries above. The dispatch ports are
uséd to move the newly decoded instruction into the issue window. Also, each entry has one output port
with a fanout of 2N, N to issue ports and N to input port of entries below. After instructions are selected,
they are sent to the issue ports for further pipeline execution. The wide input mux and the large fanout of
latch-based compacting issue queues makes it hard to scale to greater issue width.

Dynamic instruction schedulers are a central component in superscalar microprocessors and have re-
ceived much attention in the literature [PJS97, BAB102, RBR02, PKE103]. Previous techniques that try to

prevent the scheduler from becoming the critical path will be reviewed and discussed in Section 2.4.

2.2 Clustered Architectures

Clustered architectures divide the microarchitecture into disjoint clusters each containing local issue win-
dows, register files, and functional units as shown in Figure 2-7. Inter-cluster communication is required
when a value is needed from a different cluster. Clustering has the potential to scale with larger issue widths
and at high clock frequencies but its performance can be affected by poor workload balancing and high inter-
cluster communication penalties. Therefore, a critical matter in the design of such systems is the heuristics
used to map instructions to clusters.

To address the delay and power scaling problem of superscalar machines, various forms of decentralized

29

clustered designs have been proposed [SBV95, KF96, FCJV97, RISS97, AG0S]. These microarchitectures
are based on a cluster of small-scale superscalar processors but each uses different heuristics to map instruc-
tions to clusters. Some group instructions by the control flow hierarchy [SBV9S, RISS97] of a program

while others group instructions by their data dependency [KF96, FCIV97, AGO5].

Multiscalar [SBV95] exploits control flow hierarchy and uses compiler techniques to statically divide a
single program into a collection of tasks. Each task is then dynamically scheduled and assigned to one of
many execution clusters at run-time. Aggressive control speculation and memory dependence speculation
are implemented to allow parallel execution of multiple tasks. To maintain a sequential appearance, each task
is retired in program order. This scheme requires extensive modification to the compiler and the performance
depends heavily on the ability to execute tasks in parallel. On the other hand, Trace processors [RISS97] are
software invisible and build traces dynamically as the program executes. This approach, however, requires
a large centralized cache to store the traces and the algorithm used to delineate traces strongly influences the
overall performance. Both Multiscalar and Trace processors attempt to reduce inter-cluster communication
by localizing program segments to an individual cluster but rely largely on control and value predictions for

paralle] execution.

Data dependencies dictate the amount of communication between instructions. PEWs [KF96] and Mul-
ticluster [FCIV97] assigns dependent instructions to the same cluster as much as possible to minimize
inter-cluster communication and these assignments are determined at decode time. The performance is com-
parable to a centralized design but decreases as the number of clusters increases. This is because such an
algorithm has poor load balancing and cannot effectively utilize a large number of clusters. Multicluster sug-
gests the possibilities of using complier techniques to increase utilization by performing code optimization
and code scheduling. Instead, Abella and Gonzalez [AG05] proposed a scheme that inherently distributes
the workload across all the clusters by placing consumer instructions in the cluster next to the cluster that
contains the producer instructions. To minimize the cost of such next-neighbor cluster communication, the
processor is laid out in a ring configuration so that the results of a cluster can be forwarded to the neighbor
cluster with a very short latency as shown in Figure 2-8. Each partition of the register file can be read only
from its cluster but can be written only from the previous neighboring cluster. Nevertheless, this design still
requires long latency inter-cluster communications to move missing operands to appropriate clusters. I use

a variant of this ring topology in the context of a centralized microarchitecture to reduce complexity.

30

Cluster 1

A

o = e

5 Inter-Cluster c

7} Communica D

3 ' - @

O N
€ le1sn|H 3

ET N

WA

Figure 2-8: Ring clustered architecture.

\

Clustered architectures have the potential to scale to larger issue widths by splitting the microarchitecture
into distributed clusters. However, the primary disadvantages are the complexity of inter-cluster control
logic and the complexity of mapping instructions to clusters. Clustered designs also require additional area
to achieve performance similar to a centralized architecture for moderate size cores [ZKO01]. Since our goal
is to build a reduced complexity medium-size core, rather than an aggregation of multiple medium-sized

cores to build a large core, the banking approach is a more suitable alternative.

2.3 Efficient Register File Designs

A variety of techniques have been proposed to reduce the complexity of a multiported regfile by exploring

different types of register access behaviors. For example, it is well known that a conventional regfile is

31

over-engineered for typical usage. Many data values are sourced from the bypass network, leaving regfile
read ports underutilized [WB96, CGVT00, BDAO1, PPV02, TA03]. This motivates the designs of less-
ported [PPV02, KMO03] and multibanked regfiles [WB96, BDAO1]. Additionally, localities in access and
localities in value have been exploited to design hierarchical and simplified regfile structures [CGVTO0,
BTMEQ2, JRB98, BS03, AF03].

2.3.1 Less-ported Structures

Provided that the number of simultaneous accesses to regfile is less than the number of ports, the number
of regfile ports can be reduced and still meet the aggregate bandwidth needs of a superscalar machine with
savings in area, access latency, and power. Many authors have observed that over 60% of source operands
are sourced from the bypass network and Park et al. [PPV02] proposed a bypass-hint scheme that reduces
register read port contention. However, this bypass-hint is optimistic and can be incorrect. Pipeline stalls are
required when read ports are oversubscribed but such stalls are difficult to implement in a high frequency
pipeline without compromising cycle time. It is also observed that in over 50% cycles, all read ports and
write ports are idle [HBHAO2]. Kim et al. [KMO03] recommend pre-fetching operands and adding delayed
write-back queues to smooth out the burst behavior, so that a less-ported regfile can be used to provide
the aggregate bandwidth, but this adds the cost of extending the bypass network. Nevertheless, both these
proposals add complexity to the already timing critical wakeup-select loop, because the select logic still
has to select no more instruction than the number of available read ports after considering the bypass hint

bits [PPV02] or the prefetch flags [KMO3].

2.3.2 Multibanked Microarchitecture

Similar performance can be reached with even fewer ports on each storage cell if the regfile is built from
multiple interleaved banks [WB96, BDAO1] (Figure 2-9). Such multibanked register file designs have been
shown to provide sufficient bandwidth for a superscalar machine with significantly reduced area compared
to a fully multiported regfile [WB96, BDAO1]. The challenge with this approach is managing the complexity
and added latency of the control logic needed to handle read and write bank conflicts and the mapping of
register ports to functional units. Previous designs all have complex control structures that would likely limit

cycle time and add to design complexity.

32

| | | |
g + + vy vYy * + :
| Read Address Clrossbar |

[
I Write Address Ctossbar I
A A A 4
A A
[R? d Local—tc|> _Global Dath Port Crossbar |
Wirite Local-t9—GloHal Data Port Crogsbar |
h

J

I T T I
|I 11 1] [] 11 |1 11 I]

Figure 2-9: Multibanked regfile structure.

Wallace [WB96] describes a banking scheme that uses the bypass network to reduce unnecessary read
port contention but no description of the bypass check or read conflict resolution logic is given. Also,
write conflicts are handled by delaying physical register allocation until writeback, at which point registers
are mapped to non-conflicting banks. The primary motivation for this delayed allocation was to limit the
size of the physical register file, but this can lead to a deadlock situation requiring a complex recovery
scheme [WB96].

The scheme presented in [BDAO1] handles read bank conflicts by only scheduling groups of instructions
without conflicts. This reduces the IPC penalty but adds significant logic into the critical wakeup-select
loop. The authors also assume that bypassability can be determined during wakeup, but do not detail the
mechanism used [BDAO1]. A design with single-ported read banks is evaluated. However, this requires
more complex issue logic to allow instructions where both operands originate from the same bank to be
issued across two successive bank read cycles. Also, write port conflicts are handled by buffering conflicting
writes, which increases the size of the bypass network. Functional unit pipelines must also be stalled when

the write buffers are full.

2.3.3 Register Caching

Localities of access have been used to design cache structures and can be extended to regfile designs.

In [CGVTO00, BTMEOQ2], registers are cached to reduce average access latency. The disadvantage of reg-

33

ister caching is that it can add considerable control complexity to an architecture, as register caches have
much worse locality than conventional data caches and determining the appropriate values to cache is non-
trivial. Register caching is motivated by the increasing access penalty of conventional multiported structures
as port counts and register counts increase. Multibanking counteracts this increase and reduces total area,

independent of the presence of exploitable localities.

234 Asymmetric Structure

As an alternative to less-ported storage cells to reduce the array size, an asymmetrically ported register file
structure is proposed in [AF03] to decrease the wordline load. The author explores the fact that many of the
register values are small and require only a small number of bits for representation to reduce the number of
ports required for the most significant bits. The most significant bits of a regfile are less ported while the rest
are fully ported. Again, this scheme involves additional complexity for the select logic and extra hardware
that only reduces the wordline load. This asymmetric regfile structure still has problems with the scalability

of the number of registers and the number of ports for the less significant bits.

2.3.5 Content Awareness

Clustering and banking approaches enable the implementations of regfiles with a large number of registers.
Alternatively, localities of register values have been used to design content-aware register files to reduce the
number of registers required [JRB 98, BS03]. Both Jourdan [JRB*98] and Balakrishnan [BS03] propose a
regfile design that only allocates a single physical register for each unique value. This scheme reduces the
number of required physical registers by eliminating value duplication. However, reusing a physical register
for different logical registers necessitates a large amount of additional hardware and complicated control

logic in both the critical wakeup-select loop and regfile write backs.

2.3.6 Other Related Work on Reduced Complexity Register Files

The aforementioned work has focused on the design of a high bandwidth register file for dynamically sched-
uled superscalar processors with a single logical register file. Other work has examined the use of partitioned
register files made visible to software. The SPARC architecture [WG94] has overlapping register windows

where software explicitly switches between sets of registers. In-order superscalar implementations of the

34

UltraSPARC exploit the fact that only one register window is visible to implement a dense multiported
structure {TJS95]. Clustered VLIW machines make the presence of multiple register file banks visible to
software, and the compiler is responsible for mapping instructions to clusters [Fis83]. Vector machines have
also long been designed with interleaved register file banks that exploit the regular access patterns of vector

instructions to provide high bandwidth with few conflicts [Cor89, DEC90].

2.4 Efficient Instruction Issue Window Designs

Many researchers identify the issue window’s wakeup and select logic as likely one of the most critical
timing and energy bottlenecks for future superscalar processor designs [PJS97, BAB 702, RBR02, PKE*03].
Hence, several proposals have attempted to address this problem by improving its efficiency. The fact
that issue window source tags are underutilized because many operands are ready before an instruction is
dispatched into the window has inspired the tag-elimination [EA02], half-price architecture [KLO03], and
banked issue queue [BAB102] designs. These schemes reduce the electric loading of the wakeup ports and
the number of comparators by keeping the number of tag checks to minimum. Others exploit the fact that it
is unnecessary to perform tag checks on a consumer instruction prior to the issuing of its producer because
a consumer instruction cannot possibly be issued before its producer. This motivates designs that group

instructions in the same dependency chain to reduce wakeup complexity [KF96, PJS97, RBR02, EHA03].

24.1 Tag Elimination

Several authors have noted that instructions often enter the instruction window with one or more operands
ready; only 10% to 20% of all dynamic instructions wait on two operands [EA02, BAB 102, KL03]. Ernst
and Austin [EA02] introduce a last-tag speculation technique to reduce tag comparison requirements for
instructions with multiple operands in flight. Tag comparison is only performed for operands predicted to
be last-arriving, which need only a single tag matching logic per issue queue entry. If a misprediction is
discovered in the register read stage, the processor must flush and restart the pipeline. In comparison to the
conventional scheduler, this scheme halves the number of tag comparisons but still requires the N wakeup
port, N dispatch ports, and N issue ports. Also, it is doubtful if the saving can justify the cost in implement-
ing a last-tag predictor and the extra control complexity in validation/recovery of last-tag prediction.

As an alternative, the Half-Price architecture [KLO03] avoids last-tag misprediction by providing tag

35

comparison circuitry to both operands as in the conventional design. Instructions can only be issued into the
pipeline if all dependencies are met. However, only half of the operands are directly wired to the wakeup
bus to reduce load capacitance. To deliver data completions to the other half of the operands, a sequential
wakeup mechanism is proposed to latch and rebroadcast the tag in a second broadcast path in the next
clock cycle. Similar to last-tag speculation, a predictor is used to predict the timing critical operand that is
then placed in the same-cycle-broadcast half of the issue window. The Half-Price architecture reduces the
average latency of wakeup circuitry but still requires the same amount of hardware support and complexity

as a conventional scheduler.

2.4.2 Banked Configuration

Buyuktosunoglu et al. [BABT02] proposed a banked issue queue structure for instructions with one or less
non-ready operands and a separate queue to handle instructions with two non-ready operands as shown in
Figure 2-10. Each instruction is steered to the bank corresponding to the ID number of the unavailable
source register. This scheme reduces the power dissipation by halving the number of comparators in the
banked issue queues and allowing only one bank to be activated per tag-broadcast. However, it doesn’t
scale well with greater issue width as each window requires N dispatch ports, N wakeup ports, and N
issue ports to support the seamless flexibility of a monolithic scheduler. The large dispatching crossbar and
issuing multiplexing circuits can also add considerable overhead. Plus, a standard two-waiting queue is still

required in this scheme to schedule instructions that have neither source operand available.

Dispatchl* N

Dispatch Crossbar |

N N N N N
Y o o <
Bank0 Bank1 Bank2 Bank3| N

N IN IN IN IN
Multiplexer |
L ‘_-/

Issue T N
v

>Wakeup

Figure 2-10: Banked issue queue organization.

36

2.4.3 Pipeline Window

Raasch et al. [RBR02] pipeline the issue queue by dividing it into small window segments to reduce cycle
time. The processor dynamically promotes instructions from one segment to the next until they reach the
final stage. This design eliminates the conventional tag broadcast and simplifies the select-logic because it
keeps track of the dependency chains and only issues the instructions that reach the final segment. However,
this scheme involves complex control logic, with considerable area and power overhead to determine the
timing of each instruction. Extra pipeline stages also increase the branch misprediction latency and potential

race conditions between dependency chains can cause deadlocks.

2.4.4 Scoreboard Scheduler

Conversely, the Cyclone scheduler [EHAOQ3] estimates the issue time of each instruction based on its de-
pendencies before dispatching. It uses a centralized scoreboard structure to update any timing variation.
The processor checks the availability of operands before executing the instructions to avoid deadlocks and
pipeline flushes. The instruction is simply replayed when it is scheduled incorrectly. Nonetheless, it can
waste a great deal of energy to keep track of dependency chains by constantly moving instructions among

the queues.

2.4.5 Distributed Scheduler

Several other schemes for dependence-based scheduling [KF96, PJS97] attempt to steer up to N depen-
dent instructions from a dispatch buffer to one of N distributed instruction windows. The motivation is to
localize wakeup processing in each window and to avoid considering dependent instructions in the select
process. However, the simple FIFO-based approach presented by Palacharla et al. [PJS97] still requires that
N dependent instructions can be steered into the tail of a FIFO at dispatch time as shown in Figure 2-11.
This results in an N x N2 interconnect crossbar to allow any of the N dispatched instructions to connect to

any of the N dispatch ports on any of the NV FIFOs.

2.4.6 Other Related

To simplify the select-logic, some designers use separate groups of reservation stations [Tom67] for each

functional units, such as in various IBM Power architecture implementations [TDF1T01]. Nevertheless,

37

Dispat(]:h I
L

v v v v
N X N2 Crossbar

I |
$hed d4bv eyiv vyyy
FIFO| |FIFO| |FIFO| |FIFO

T T T T
v v v v
Issue

Figure 2-11: Distributed FIFO structured issue window.

Figure 2-12 shows that the result tag broadcast still needs to be sent to all the issue queues, and the dis-
patch network can become large if multiple instructions can be sent to one functional unit. Ponomarev
et al. [PKE03] decreases the energy consumption of issue queue by using circuit techniques but doesn’t
improve the latency.
; IZI)ispatch| :
" ¥ B v |
Dispatch Crossbar]
v [Aaad
W je—W W

W YYY

P T e]
A e

Figure 2-12: Reservation station style issue window design.

2.5 Motivation for Banked Microarchitectures

As reviewed above, several proposals have attempted to reduce the cost of one component of a superscalar
architecture (e.g., just the register file or just the issue window), but often with a large increase in overall
pipeline control complexity or possibly needing compensating enhancements to other portions of the ma-
chine (e.g., extending the bypass network to forward values queued in write buffers ahead of limited regfile
write ports). Also, many schemes optimize only latency not area or power. This motivates the work in this
thesis to develop a new out-of-order superscalar microarchitecture that simplifies all the major components
in the instruction flow to increase area and power efficiency without excessive pipeline control complexity.

Clustering is a common approach to resolve the scalability problem of highly centralized superscalar

38

[Fetch Unit |
¥ & v ¥

[Decoder |

M w T Iw

Regfile Read Crossgbar

A A A y

<
<&

Figure 2-13: A multibanked architecture design.

structures. Although decentralized microarchitectures reduce intra-cluster latency and have the potential
to scale to larger issue widths, they require complex logic to map instructions to clusters and to manage
communication of values between clusters. Clustered architectures also tend to be less area efficient as they
typically have low utilization of the aggregate resources [RF98]. I believe these are the reasons that few
clustered processors have been implemented commercially. Alternatively, banked microarchitectures have
attract many researchers’ attention because of their ability to reduce area, power, and access time. Banking
is more effective than clustering for moderate scale machines. In a cluster architecture, each cluster contains
one slice of each major microarchitectural component (issue window, register file, functional units, and
bypass network) placed close to each other. Multiple clusters are then connected with some lower-bandwidth
inter-cluster communication mechanism. In a banked architecture, the slices within each component are
placed next to each other, then components are interconnected in much the same way as in a monolithic
design. This can be seen in Figure 2-13, where the regfile is a monolithic block divided into banks, where
any column’s ALU can read data from any bank. Another example is that all ALUs of a design with banked
structures would be co-located in the same datapath to give very fast and low energy bypassing.

The contribution of this thesis is to improve previous work on banked regfile with a simpler and faster
control scheme, and to extend banking to other parts of processor designs to reduced complexity of medium

sized cores.

39

40

Chapter 3

Methodology

Microarchitecture designs are compared on the basis of their performance, power, area, and design com-
plexity. The potential trade-off of these characteristics can be analyzed by careful study and comparison
of circuits for each component individually. However, the impact of microarchitecture on overall processor
performance is difficult to determine analytically due to the complex interactions between pipeline stages.
In this chapter, I describe the common simulation methodology used to evaluate design alternatives. I also
discuss the choice of workload and system parameters. Section 3.1 describes the general simulation frame-
work, the simulation flow, and the functional blocks. Section 3.2 presents the benchmark suite and the
sampling method. The machine configurations of idealized baseline processors are presented in Section 3.3.

Section 3.4 summarizes the performance evaluation methodology.

3.1 Simulation framework

To characterize the behavior of banked microarchitectures, we extensively modified an existing superscalar
processor simulator, SMTSIM [Tul96], to include detailed models of various banked microarchitectures and
pipeline control schemes. These modifications included changes to the Rename, Dispatch, Select, Issue,
Regfile, and Bypass stages of the processor pipeline.

SMTSIM [Tul96] is an instruction-level simulator that provides a cycle-accurate model of a pipelined
out-of-order superscalar processor with simultaneous multithreading. SMTSIM is written in the C program-
ming language and executes the Alpha instruction set. Modifications are made to SMTSIM to represent the

idealized baseline machine, which uses the same general structure as the MIPS R10K [Yea96] and Alpha

41

| L1-I Cache }——-l Fetch Unit H Branch Predictor |
[I I 1
I-TLB . MEM | [Regfile
| Decoder | =—=ROB | |Queue| Free-
t | is
[| I i |

[Rename Mapper |

L2 Cache |« =1 T]
: Issue Window
L3 Cache
i Issue Logic
Main Memory [I I]

L1-D Cache

Commit Queue

Store
Queue

Commit Logic

Figure 3-1: Simulation framework.

21264 [PKET03] processors, with a unified physical register file containing both speculative and commit-
ted states. Figure 3-1 illustrates the simulation framework. Instructions are fetched, decoded, renamed,

dispatched, and committed in program order while being dynamically scheduled for execution.

3.1.1 Front-End Pipeline Stages

Instructions are fetched and decoded in program order. In the fetch pipeline stage, a simple global branch
predictor, gshare, is used to speculatively fetch instructions. If a mispredicted branch instruction is detected
during the execution stage, the processor flushes the pipeline, and restarts fetch along the correct path. The
simulated results show that around 90% of branches are predicted correctly with a gshare predictor of 4K
entries, 2-bit counters, 12-bit global history, and a 256-entry Branch Target Buffer (BTB). The processor
uses the address of the first instruction in the fetch block to check if there is a cache miss. The fetch is
stalled for a number of cycles according to the miss type. The processor resumes fetching one cycle after
the cause of the stall has been resolved. During decode, each instruction attempts to allocate resources
including: an entry in the reorder buffer to support in-order commit; a free physical register to hold the

instruction’s result value, if any; an entry in the issue window; and an entry in the memory queue, if this

42

is a memory instruction. A register freelist is maintained in a Last-In-First-Out (LIFO) fashion to keep
track of available physical registers. If any required resource is not available, decode stalls. Otherwise, the
architectural register operands of the instruction are renamed to point to physical registers, and the source
operands are checked to see if they are already available or if the instruction must wait for the operands in
the issue window. The instruction is then dispatched to the issue window, with a tag for each source operand

holding its physical register number and readiness state.

3.1.2 Dynamic Instruction Scheduling and Execution

Our out-of-order superscalar machine issues instructions dynamically, potentially out of program order,
depending on the presence of hazards. As earlier instructions execute, they broadcast their result tag across
the issue window to wake up instructions with matching source tags. An instruction becomes a candidate
for execution when all of its source operands are ready. A select circuit picks some subset of the ready
instructions for execution on the available functional units. Priority is given to older instructions. Once
the instructions have been selected for issue, they read operands from the physical register file and/or the
bypass network and proceed to execute on the functional units. When the instructions complete execution,
they write values to the physical register file and write exception status to the reorder buffer entry. When the

machine knows an instruction will be executed successfully, its issue window entry can be freed.

3.1.3 Commit Stage

To preserve precise architectural state for exception handling and the illusion of sequential program execu-
tion, instructions are committed from the reorder buffer (ROB) in program order. If the next instruction to
commit recorded an exception in the ROB, the machine pipeline is flushed and execution continues at the
exception handler. As instructions commit, they free any remaining machine resources (physical register,

reorder buffer entry, memory queue entry) for use by new instructions entering decode.

3.1.4 Memory Instruction Modeling

Memory instructions require several additional steps in execution. During decode, an entry is allocated in the
memory queue in program order. Memory instructions are split into address calculation and data movement

sub-instructions. Store address and store data sub-instructions issue independently from the window, writing

43

to the memory queue on completion. Store instructions only update the cache when they commit, using
address and data values from the memory queue. Load instructions are handled as a single load address
calculation in the issue window. On issue, load instructions calculate the effective address then check for
address dependencies on earlier store instructions buffered in the memory queue. Depending on the memory
speculation policy, the load instruction will attempt to proceed using speculative data obtained either from
the cache or from earlier store instructions in the memory queue (the load instruction may later require re-
execution if an address is mispredicted or a violation of memory consistency is detected). For simplicity, the
simulator used in this study has a perfect memory dependency predictor (i.e. load instructions are only issued
after all the store instructions that it depends on are completed). Schemes such as Store-Sets [CE98] can
approximate this perfect memory dependency predictor. If the load cannot proceed due to an unresolvable
address or data dependency, it waits in the memory queue to reissue when the dependency is resolved. Load
instructions reissuing from the memory queue are given priority for data access over newly issued loads
entering the memory queue.

The scheduler always predict that load instructions will be L1 cache hits. If the load happens to be a
miss, the instructions that follow are flushed out of the execution pipeline for rescheduling and a one-cycle
penalty is added to recover the pipeline. To keep track of outstanding misses, the simulator models Miss

Status Handling Registers (MSHRs) [Kro81].

3.1.5 Additional Modifications

Several additional modifications are made to the original simulator to keep track of a unified physical reg-
ister file organized into banks. First, a register renaming table that maps architectural registers to physical
registers is added to monitor the regfile access from each instruction. To keep track of available registers and
to study the performance effect of different register renaming policies on the banked regfile, a variety of reg-
ister freelists are created. Extra arbitration logic is added to each regfile bank to prevent over-subscription
of read and write ports when a lesser-ported storage cell is used. Since load misses are timing critical, a
write-port reservation queue is also added to give them priority over other instructions. To evaluate the per-
formance impact of banking other parts of processor design, such as organizing an N-way superscalar into
N columns, changes are made to the register renaming policy, dispatch logic, wakeup-select loop, and issue

logic.

| Benchmark (label) | Language | Category

256.bzip2 (bzip) C Compression

186.crafty (crafty) | C Game Playing: Chess

252.eon (eon) C++ Computer Visualization

254.gap (gap) C Group Theory, Interpreter

176.gcc (gee) C C Programming Language Compiler
164.gzip (gzip) C Compression

181.mcf (mcf) C Combinatorial Optimization

197 .parser (parser) | C ‘Word Processing

253.perlbmk (perl) | C PERL Programming Language
300.twolf (twolf) C Place and Route Simulator
255.vortex (vortex) | C Object-oriented Database

175.vpr (vpr) C FPGA Circuit Placement and Routing

Table 3.1: SPEC CINT2000 benchmarks description.

3.2 Benchmarks

This thesis focuses on evaluating the performance effects of banked microarchitectures within integer
pipelines, and so the SPEC CINT2000 [Hen00] benchmark suite was chosen for its wide range of appli-
cations taken from a variety of workloads. This application-based suite measures compute-intensive integer
performance and comprises twelve benchmarks written in C and C++. The applications range from data
compression, word processing, game playing, compiler, program language, to databases, as shown in Ta-
ble 3.1. The suite has long run times but expected performance can be well characterized without running to
completion. To reduce the simulation run time to a reasonable length, the methodology described in [SC00]
is used to fast-forward execution to a sample of half a billion instructions for each application. The bench-

marks are compiled with optimization for the Alpha instruction set.

3.2.1 Dynamic Instruction Profiling

The instruction distribution of committed instructions for each benchmark is shown in Table 3.2. The com-
puter visualization benchmark (eon) is the only integer program that still contains significant floating-point
instructions and has a very high proportion of load and store instructions. Applications for data compression
{bzip and zip) and interpretation (gap) have a large fraction of arithmetic operations. It is also observed
that “BRANCH” and “JUMP” form around 10%-20% of total instructions for most of the benchmarks.

The combinatorial optimization program (mcf) is an outlier because 28% of its executed instructions are

45

| Benchmark | FP | LOAD | STORE | JUMP/BRANCH | OTHER |
bzip 0% | 21% 7% 10% 62%
crafty 0% | 26% 7% 13% 54%
eon 14% | 25% | 27% 11% 23%
gap 0% | 15% 5% 4% 77%
gec 0% | 25% 13% 18% 45%
gzip 0% | 20% 8% 9% 62%
mcf 0% | 31% 8% 28% 34%
parser 0% | 24% 8% 17% 52%
perlbmk 0% | 29% 15% 15% 41%
twolf 0% | 23% 6% 13% 58%
vortex 0% | 25% 17% 16% 42%
vpr 0%] 25% | 12% 11% 52%
average 1% 24% 11% 14% 50%

Table 3.2: The instruction distribution of SPEC CINT2000 benchmarks.

control-flow instructions while the group theory interpreter (gap) contains only 4% of such instructions.

3.3 Baseline Superscalar Processor

Table 3.3 shows common parameters across the machines compared in this thesis. We used a large reorder
buffer of 256 entries, a large memory queue of 64 entries, and 32 MSHRs such that performance is not
limited by these structures. The wider fetch width (eight instructions instead of four) is used to increase
the number of instructions that can be fetched per cycle with minimal hardware overhead. Since only a
difference of less than 20% in IPC is observed between four-issue and eight-issue width, the improvement is
not substantial enough to justify having more than a four-issue width on these codes even with the optimistic
memory system. The simulation results indicate that the optimal configuration for the baseline processor is
aregister file of 80 entries and an issue window of 32 entries. Halving the issue window size would decrease

the average IPC number by 9% but doubling the number to 64 entries would only improve the IPC by 2%.

Figure 3-2 shows the IPCs of the baseline configuration for the SPEC CINT2000 benchmark suite. The
numbers range from 0.27 to 2.27 with an average of 1.51. Benchmark mcf has a high L1 data cache miss

rate of 33% and the lowest JIPC count among all the applications.

46

| Item | Configuration
L1 I-cache 16KB 4-way, 64-byte lines, 1 cycle
L1 D-cache 16KB 4-way, 64-byte lines, 1 cycle
L2 unified cache 1MB 4-way, 64-byte lines, 12 cycles
L3 unified cache 8MB 8-way, 64-byte lines, 25 cycles
Fetch width 8
Dispatch, issue, and commit width | 4
Integer ALUs 4
Memory instructions 2 (1-Load and 1-Store)
Reorder Buffer 256 entries
Memory Queue 64 entries
MSHR 32 entries
Branch predictor gshare 4K 2-bit counters, 12-bit history

Table 3.3: Common simulation parameters.

IPC

- bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
Benchmark

Figure 3-2: IPCs for the baseline configuration.

3.4 1IPC Versus Performance

Instruction-committed-per-cycle (IPC) and clock frequency are the two most important measurements for
processor performance. IPC is average the number of committed instructions for each clock cycle and it can
be determined by processor pipeline simulation. The processor clock rate is governed by the circuit-level
critical path, which is influenced by the entire design. Shortening the propagation delay of one component
does not always translate to a faster processor. Consequently, the new clock frequency cannot be easily
estimated when alterations are made to a machine. The banked microarchitectures that are proposed in this

thesis typically have far less circuit latency than the traditional monolithic designs and potentially improve

47

processor frequency. But, lacking an actual hardware implementation, we evaluate the performance of
a processor with banked microarchitectures conservatively against the idealized superscalar processor by

comparing the IPCs assuming the same clock rate.

48

Chapter 4

A Speculative Control Scheme for Banked

Register File

Multiported register files and bypass networks lie at the heart of a superscalar microprocessor core and pro-
vide buffered communication of register values between producer and consumer instructions. Demands on
both the number of ports and the number of registers in a register file grow with increasing issue widths.
The trend toward simultaneous multithreading (SMT) further increases register count as separate archi-
tectural registers are needed for each thread. A banked multiported register file design can meet these
increased requirements without consuming excessive power and die area. A banked regfile is a physical
register file divided into multiple interleaved banks with fewer ports per bank. Bank conflicts occur when
the number of simultaneous accesses to any bank is more than the number of ports on each bank. Previous
proposals [WB96, BDAO1, PPV02, KM03] had complex control structures to manage bank conflicts that
would likely limit cycle time and add to design complexity. This chapter evaluates banked register files and
proposes a simple speculative control scheme suitable for a deeply pipelined high-frequency dynamically
scheduled processor. !

This speculative control scheme does not place any register bank arbitration in the critical wakeup-select
loop, but instead speculatively issues potentially conflicting instructions. If any conflicts are found after
issue, a pipelined recovery scheme quickly repairs the issue window and reissues conflicting instructions. In

contrast to previous work [WB96, BDAO1, PPV02], all conflicts are detected and resolved in one pipeline

'The work in this chapter was previously published in [TA03, TA05). The 1% variation in performance results from the earlier
publication is due to the fact that we use a different simulator in this thesis.

49

stage so that no write buffering or pipeline stalls are required. The main drawback of our scheme is the
performance impact of bank conflicts and the extra pipeline stage used for port arbitration. The additional
pipeline stage causes an increase in branch misprediction latency while bank conflicts add penalty cycles to
repair the pipeline and delay the issue of dependent instructions.

To achieve maximum performance with the minimum number of ports per regfile bank, the number of
bank conflicts is reduced by removing the correlation of accesses to the same bank and by avoiding unneces-
sary port contention. It is observed that instructions which become ready in the same cycle tend to be issued
together and that some architectural registers are used more frequently than others. Hence, two optimization
techniques, bypass-skip [Rus78, BDAO1, PPV02] and read-sharing [BDAO1], are investigated. Bypass-skip
avoids competing for register read ports when operands will be sourced from the bypass network. Read-
sharing fetches only one copy per register value from the regfile and the fetched value is shared among the
instructions that requested it.

Section 4.1 describes the structure of banked multiported register files. Then, the physical characteristics
of various regfile designs are evaluated and presented in Section 4.2. The simple speculative control scheme
is proposed and its pipeline structure is presented in Section 4.3. In Section 4.4, a mathematical model is
built to determine the port contention rate of various banked regfile configurations. Lastly, the simulated

performance results are analyzed and summarized respectively in Section 4.5 and Section 4.6.

4.1 Register Bank Structure

A banked register file consists of multiple interleaved banks of non-fully-ported register cells. Figure 4-1
shows one example of a register banking scheme for a four-issue processor. The regfile provides a total of
eight global read ports and four global write ports using four interleaved register banks, each with two local
read ports and two local write ports. Compared to a conventional multiported structure, each word of register
storage has fewer ports and the storage cell size is dramatically smaller. But now additional multiplexing
circuitry is required to connect the local port bitlines to the global port bitlines, and the possibility of bank
conflicts arises when too many global ports attempt to read or write the same bank.

As shown in Figure 4-1, each functional unit needs two global read ports, which are termed the left port
and right port, to execute instructions with two register source operands. The local-global port crossbar is

simplified by connecting one local port on each bank to only the global left operand buses, and the other

50

Write

Left Read Right Read

A Sp S 3E S

A Non-Critical
Bypass

-n
o=
o

n
c
—

Ezakzakzak=)

FU2

FU3

Figure 4-1: An eight-read, four-write port register file implemented using four two-read, two-write port
banks. The register file interconnect and bypass network are shown as distributed muxes where each dotted
crosspoint represents a potential switched connection.

local port to only the global right operand buses. Therefore, all banks have at least two local read ports. This
enables any instruction to retrieve both operands from the same bank in one cycle, but doesn’t allow the use
of the local left ports to fetch global right port operands. Apart from the reduction in mux circuitry, this
restriction simplifies port arbitration logic by cutting in half the number of possible contenders for a local

read port.

In contrast, the design presented in [BDAO1] employed banks with only a single read port. The single
read port must connect to all global ports, and hence requires the same local-global crossbar complexity as
a dual read-port design that connects each local port to half the global ports. Our initial circuit layout study
indicates minimal area savings for the single read port design versus the split dual port design once the cost
of the local-global crossbar is included. Moreover, the single read port bank requires considerably more

complicated control logic to handle execution of an instruction that fetches both operands from the same

51

bank, and each read port arbiter has twice as many inputs.

Figure 4-1 also shows a portion of the bypass network for functional units with single cycle latency; crit-
ical multiple cycle units, such as load units, will require additional bypass paths. Register file writeback may
require one or more cycles, in which case additional bypass logic is required for results that have completed
but which are not yet available from the register file. These delayed bypass paths are not latency critical and

can be supplied by an early stage mux that feeds into the final latency-critical mux stage [FGK t02].

4.2 Physical Characteristics

The physical characteristics of various sized banked register files are investigated and presented in this
section. All designs were laid out in a 0.25 pzm CMOS process from TSMC. The storage cells are a standard
six transistor SRAM design, with differential write ports and single-ended read ports. Section 4.2.1 describes
the layouts of various designs that have been undertaken to determine area, access latency, and energy
consumption tradeoffs of regfile designs. First, the die area is estimated by measuring the actual layout
in Section 4.2.2. Regfile delay and energy numbers were obtained from HSPICE [Nag75] simulations of

extracted layouts with a 2.5 V supply voltage in Section 4.2.3.

4.2.1 Regfile Layout

Metal 1 is used for local bitlines within a bank and metal 2 for word lines. The local ports from each bank
then connect to the global bitlines running over the cells in metal 3. Most previous work has assumed that a
large conventional multiported register file would have each port on a storage cell connected directly to the
global bitline. With more metal layers, it is desirable to employ a hierarchical bitline structure, where each
port on a cell connects to a local bitline which in turn connects to the global bitline [AKSB01, FGK +02].
On each access, only one local bitline is connected to the global bitline. The parasitic drain capacitances
of the storage cells in other banks are not driven, reducing delay and energy dissipation. Another benefit
is that signal-to-noise ratio improves in the presence of leakage currents from off cells [AKSBO1]. Adopt-
ing hierarchical bitlines in our baseline flat design reduces the relative energy and delay advantages of a
multibanked design. To save area, we employ a single-ended global write bitline which is converted to a
differential local bitline using a local inverter. To further save area, we pack two local storage cells into one

global bit column where possible. This has three disadvantages: a 2:1 column mux is required which adds

52

4b8rd4w 4b2r2w 4b2riw 4b1riw

= =

1 bank overhead
Bl column cell

(1 storage array
Bl address decoder

Figure 4-2: Area comparison of four different 64 x32b regfiles for a quad-issue processor. The clear regions
represent the storage cells while the lighter shaded regions represent the overhead circuitry in each bank. The
black shading at the bottom is the area required for the global bitline column circuitry. The medium-dark
shading to the side is the area for address decoders.

area and delay; greater wordline load also adds to delay; and twice as many local bitlines are discharged on
each access, which increases energy usage.

Figure 4-2 provides a graphical comparison of the floorplan of four 64 x32-bit 8 read-port and 4 write-
port multibanked register file designs. Each configuration is labeled as (#banks)b(#reads)t(#writes)w, where
(#banks) is the number of banks, (#reads) is the number of local read ports, and (#writes) is the number of
local write ports. For example, 4b8r4w refers to a regfile with four interleaved banks of fully ported cells.
As found in the initial study, multiplexing circuits dominate the area of small ported multibanked designs.
Moving from a single read port to split dual read ports per bank has minimal impact on the area. In addition,
the banked design with only a single read port cannot sustain eight global read port accesses and relies on

the bypass network to supply the missing read operands.

4.2.2 Regfile Area Comparison

The relative area of a variety of 64x32-bit 8 read-port and 4 write-port multibanked register file designs
are shown in Table 4.1, and the detailed area breakdown studies are shown in Figure 4-3. For the designs
with 8 read ports and 4 write ports per storage cell, moving to hierarchical bitlines adds area because of the
interconnection overhead. An additional 11% area overhead is incurred when there are 16 words per local
bitline, and an additional 23% moving to 8 words per local bitline. These designs do not have bank conflicts.

As the number of local ports per bank is reduced, area drops dramatically. Compared to the fully ported

monolithic regfile, designs with four banks of less ported cells are around one quarter the size, and designs

53

| 64x32b, 8 read ports, 4 write ports |
Area 8rdw | 22w | 2rlw | Irlw
1 banks | 100.0% - - -
4 banks | 111.0% | 29.0% | 24.3% | 22.9%
8 banks | 122.6% | 37.1% | 32.0% | 30.2%
Packing 1 2 2 2

Table 4.1: Relative area of different 64 x32-bit eight global read port and four global write port register file
designs. Packing is the number of local bit cells packed per global bit column.

[bank overhead

| S o e, s e e o .|l column cell

[storage array

- address decoder |

(52

Area (mm?)
N W o

—_

1b8rdw 4b8rdw 4b2r2w 4b2riw 4biriw 8b8rdw 8b2r2w 8b2riw 8biriw
Register File Configuration

Figure 4-3: Detail area breakdown of various 64 x32b eight read-port and four write-port register file de-
signs.

with eight banks are around one third the size. Apart from the reduction in storage cell size, regfiles with a
smaller numbers of ports per bank have significantly less address decoder area than the highly multiported
one. Each bank has fewer decoders with narrower addresses. Multiplexing overhead dominates when there
are only a few ports per cell, as seen in both Figure 4-2 and Figure 4-3. Designs with two read ports per
bank are only a few percent larger than designs with a single read port per bank given that the single read
port must connect to all global read ports whereas each of the two read ports only connects to half of the

global read ports. Also, increasing the number of write ports from one to two adds only 16-20% in area.

4.2.3 Regfile Delay and Energy Evaluation

Table 4.2 lists normalized delay and energy measures for various multibanked register file designs in com-
parison to the unified design. Figure 4-4 shows the detailed delay and energy breakdowns of these designs.
For regfiles with fully ported storage cells, using hierarchical bitlines reduces energy by almost 40% and
cuts delay by 8—17%. The latency is further decreased, up to around 25%, when designing with lesser-ported

cells. A slight decline in energy is also noticed for these lesser-ported banked regfiles. The delay and energy

54

savings, however, are not as great as might be expected from the large area reduction. The packing of two
local storage cells per global bit column slows the wordline drive and adds a column mux stage, and it also
causes twice as many bitlines to discharge on a read. Alternatively, the less ported cells can be reoptimized

for even smaller delay and energy, but this would add considerable additional area.

[64x32b, 8 read ports, 4 write ports |
Delay 8rdw | 22w | 2riw | Irlw
1bank | 100.0% - - -
4 bank 92.4% | 719.1% | 79.0% | 81.9%
8 bank 83.3% | 74.8% | 714.8% | 77.1%

Energy 8rdw | 2r2w | 2rlw | Irlw
1bank | 100.0% - -
4 bank 62.0% | 57.9% | 56.9% | 40.5%
8 bank 61.4% | 58.6% | 57.6% | 40.7%

Leakage 8rdw | 22w | 2rlw | Irlw
SRAM | 100.0% | 40.4% | 29.3% | 25.3%

Table 4.2: Relative delay, energy, and leakage numbers of different 64 x32-bit eight global read port and
four global write port register file designs.

The primary source of energy dissipation for the 0.25 gm CMOS process is dynamic switching of load
capacitance. Within a few process generations, it is expected that static leakage current will be responsible
for a large fraction of total power dissipation [CBF00]. Table 4.2 shows the relative size of leakage energy
across the three designs. The relative leakage energy numbers were obtained by calculating the total width
of leaking transistors, assuming that 80% of stored values are zero, and that the bit cell ports were optimized
to reduce read energy for zero values [TAOO]. Banking reduces leakage power by at least 60% over the

baseline case, and so we expect even greater relative power savings as leakage currents grow.

4.3 Control Logic

A banked multiported register file can provide sufficient bandwidth for a superscalar processor at a lower
cost than a flat design. The main challenge is devising control logic that can handle the inevitable bank

conflicts without compromising cycle time or adding excessive complexity.

55

B global bitline

] local bitline
- @ wordiine
[address decoder

Delay (ns)

o 1b84w 4b8raw 4b2r2w 4b2riw 4biriw 8b8r4w 8b2r2w 8b2riw 8biriw
Register File Configuration

(b)

[global bitline
.|] local bitline
Bl wordline
.| B address decoder ||

Energy (pJ)

i 1b8rdw 4b8rdw 4b2rw 4b2riw 4biriw 8b8rdw 8b2r2w 8b2riw 8biriw
Register File Configuration

Figure 4-4: Detail breakdown of various 64 x32b eight read-port and four write-port register file designs in
terms of (a) read access delay and (b) read energy consumption.

4.3.1 Speculative Pipeline Control Scheme

Previous work has either placed additional arbitration logic in the select path to avoid conflicts or required
that multiple pipeline stages be stalled [WB96, BDAO1, PPV02, KMO03]. Both approaches complicate crit-
ical timing loops [BTMEOQ2]. In particular, stalling a deep pipeline is usually prohibited in high-frequency
processors due to the difficulty of generating and routing a global stall signal to a large number of pipeline
registers. To overcome these problems, we introduce a speculative pipeline control scheme. The pipeline
first speculatively issues potentially conflicting instructions then performs port arbitration in a later pipeline
stage. If any conflicts are detected after issue, a pipelined recovery scheme, described below, quickly repairs
the issue window and reissues conflicting instructions. Figure 4-5 compares this modified processor pipeline
to the baseline design.

A conventional pipeline has a fixed mapping of issued instruction operands to register file ports, so
operands of an instruction can be fetched from the regfile immediately after issue. A banked regfile scheme,
however, must first mux operand addresses into the available register file ports. The extra arbitration pipeline

stage shown in Figure 4-5 detects both read and write regfile conflicts and muxes the winning addresses into

56

Fetch Decode | Rename wﬁiz,spu;em Eiggss Execute JWriteback] Commit Baseline

Fetch Decode | Rename wﬁizspusi,m Arbitrate E&ggss Execute [Writeback] Commit | Modified

Figure 4-5: Pipeline structures of processor with unified register file and processor with multibanked register
file. An additional cycle is added for multibanked register file for read port arbitration and muxing. Read
bank and write bank conflicts are also detected in this cycle.

the address decoders. The arbitration stage also manages requests to write back results from long or variable
latency operations such as divides or cache misses. These are given higher priority than newly issued
instructions. In Figure 4-5 and in the evaluation model, a whole pipeline stage is allocated to the arbitration
and register address mux, but the actual penalty should be much lower in practice.

In the modified pipeline, all instructions that pass the arbitration phase can read from and write back to
the regfile with no conflicts. The speculative control scheme avoids register bank write buffers [BDA01],
which increase the size of the bypass network and require pipeline stalls when full. It should be noted
that sufficient write ports must be provided such that write bank conflicts do not cause a large performance
degradation. This approach is also much simpler than schemes that delay physical register allocation until

writeback to avoid conflicts [PPV02].

4.3.2 Repairing the Issue Window

The arbitration stage detects all bank conflicts, that is, when too many reads try to access the left or right side
of a single bank or too many writes try to access the same bank. If such conflicts are detected, the processor
must repair the issue window and reissue the conflicting instructions. Figure 4-6 shows the method by
which the pipeline state is restored after a conflict. A second group of instructions following the ones that
encounter a conflict will have been speculatively issued into the pipeline in parallel with the detection of the
conflict. This second group is killed along with the instructions in the first group that were not granted a
read or write port. The wakeup phase that would have been used to broadcast the tags of the second group
of instructions is now used to repair the issue window by broadcasting the tags and resetting the ready and
issued bits for the destinations of the killed instructions in the first group. Issue will now resume correctly
in the select phase of this pipeline stage. This approach adds only a mux into the tag broadcast path of the

critical wakeup phase.

57

5@ Arbitrate Read
Wakeup Selecy Conflict Bypass Execute || Writeback
Wake Dependents \ \\Kill Issue Group
Wak:ﬁ: uze| ectll Arbitrate g;:gss Execute Writeback
\ Clear Ready Bits
Issue ’ Read .
Wakeup Selectl| Arbitrate Bypass Execute Writeback

Figure 4-6: Pipeline diagram shows repair operation after conflicts are detected. The wakeup tag search
path is used to clear ready bits of instructions that had a conflict causing them to be reissued two cycles later.
Any intervening instruction issues are killed.

4.3.3 Conservative Bypass-Skip

It has been previously noted [TA00, BDAOI, PPV02], that a great percentage of operands are either the
dedicated zero register (RO on MIPS, R31 on Alpha) or are supplied from the bypass network. The number
of requisite read ports can be reduced significantly if we have a separate zero input to the bypass mux, and
also if operands that will be sourced from the bypass network do not compete for access to the register file
ports.

Avoiding read port contention for bypassed operands would at first appear to require that the arbitration
logic wait until the bypass logic determines if operands will be bypassed. To avoid this increase in pipeline
latency, the check can be folded into the wakeup phase. Park et al. proposed an optimistic bypass hint
scheme [PPV02] where an extra hint bit is added to each operand of instructions waiting in the issue window.
The hint bit is cleared if the operand was ready before the instruction entered the issue window, otherwise
it is set. When the instruction is selected, an operand with the hint bit set will not contend for a read port
as it is likely to be sourced from the bypass network. The disadvantage of this scheme is that it is only a
prediction, which when incorrect requires stalling earlier pipeline stages to allow the instruction to access
the read ports. Stall are difficult to implement in a high frequency pipeline without compromising cycle
time. The mispredictions also reduce performance in cases where the read could have been satisfied from a
free read port if only it had been in contention.

Instead, we adopt a conservative bypass bit scheme, which is always correct but which only avoids
contending for read ports for values bypassed from the immediately preceding cycle. Each operand in the
instruction window has multiple comparators, one per tag-wakeup port, to determine if the operand becomes

ready in that cycle. The bypass bit for each instruction window operand is stored in a latch that is loaded

58

-

READ/BYPASS EXE WB1 wB2

Figure 4-7: Conservative bypass skip only avoids read port contentions when the value is bypassed from the
immediately preceding cycle.

with the result of OR-ing together comparator results every cycle. If an instruction is selected in the same
cycle where a tag match caused the instruction to wake up, the bypass bit will be set indicating that the value
is available from the bypass network. If the instruction is not selected for issue, the bypass bit latch will be
cleared by the failing tag matches on the next wakeup phase. The bypass bit is conservative because it is only
set for values that will be ready in the cycle before the current instruction executes as shown in Figure 4-7.
Where there are several pipeline stages feeding the bypass mux (e.g., when register file access takes multiple
cycles), this scheme will still compete for read ports even though these operands will be sourced from later
pipeline stage bypasses. In practice, our simulation results show that this lost opportunity causes negligible
performance impact. To reduce datapath complexity, a microarchitecture might not support bypass from
every functional unit. In this case, the wakeup tag search can be modified to broadcast a signal indicating
whether the operand can be bypassed. This value can then be latched into the bypass bit on a successful tag
match. Any register operand of an issued instruction which doesn’t have the bypass bit set must contend for

read ports.

4.3.4 Read Sharing

Read bank conflicts commonly occur when multiple instructions in an issue group try to read the same
physical register [BDAO1]. Instructions that depend on the same register become ready on the same cycle
and are likely to be issued together. The read port arbiter can detect this sharing and remove the conflict by
setting enable signals such that a local port drives multiple global ports. Since the banked regfile structures
presented in this chapter have limited local-to-global crossbars, read sharing is localized to the left ports and

the right ports. For example, if a physical register is read from both sides, two local ports are required.

59

4.4 Modeling Local Port Contention

In this section, an analytical model of register file bank conflicts is developed under the assumption that
register file accesses are uniformly randomly distributed across banks. Later, this model is used to help

understand the results obtained by detailed microarchitectural simulation.

4.4.1 Port Conflict Probability (PCP)

Bank conflicts occur when too many instructions compete for the same bank port during the same cy-
cle. The port conflict probability (PCP) is the probability of having any conflicts in any regfile bank at a
given cycle. Equation 4.1 shows how PCP is calculated for a regfile with two interleaved banks, Bank0
and Bankl. By definition, PCP is the probability of either Bank(0 or Bankl encountering any conflict,
P(Conflictpanko U Conflictpanks). This is further derived to the summation of each bank conflict probabil-
ity (P(Conflictpanko) + P(Conflictpanks)) minus their interceptions (P(Conflict ganko N Conflictponks })-
For a regfile with fully ported storage cells, PCP is always zero.

PCP = P(Conflictggnko U Conflictpankr)
= P(Conflictganko) + P(Conflictpanks)— 4.1y
P(Conflictganko N Conflictpanks)

By knowing the number of simultaneous regfile accesses and the configurations of banked regfile struc-
ture, PCP can be easily computed for each clock cycle. We first need to determine M (Equation 4.2), which
is the maximum number of banks that could encounter conflicts in a cycle, given A accesses to a regfile with
B banks of N ported storage cells. When M is zero, we have a conflict-free cycle (PCP = 0). When M
is one, we have the possibility of conflicts in only a single bank (e.g., P(Conflict anko N Conflictpank1) is
zero). When M is greater than one, we could have conflicts across multiple banks in the same cycle. De-
pending on the value of M, PCP is calculated differently (Equation 4.3). Since there are only two possible
states, conflict and non-conflict, for each regfile bank, binomial coefficients are used to find conflicting sets
(Equation 4.4). 4C, determines the number of possible combinations where z out of A regfile accesses
fetch values from the same bank regardless of the ordering and % is its probability. O(A, B, N)

adjusts for duplicate counts where multiple banks encounter bank conflicts in the same cycle.

60

M = min(B, LN—+1J)
0 ifM <1
A A-z
B-1)
> a0 BT =
PCP=3"3" g s
Z ACx’ BA-1 _O(A’BvN)
z=N+1
M >1
Al
ACs = S o

(4.2)

4.3)

4.4)

Analyzing the conflict overlap, O(A, B, N), between multiple banks, two sets of binomial coefficients

are required to find the two orthogonal sets of combination. One is for the number of banks while the other

is for the number of accesses. In Equation 4.5, gCy - F(d, A, B, N) determines the number of instances

where at least d out of B banks encounter conflicts and -gl;; is its event probability. Table 4.3 shows how

F{d,A, B, N) can be found for different numbers of overlapping conflict banks.

: E].—/['BCCI'F(d)AaBaN)

L d] F(d,A,B,N)
A—(N+D) —A—j i
2 | S) S 4Cy - a-jeCy - (B — 2)A~doin
A(NFT) ~A—jo—(N+1) ~A—jo—7j ——
3 Z7O=l\(/v+1)zjlzj](\),+(l)thjje/'_&l ACJO * A"JOCJI . A_‘,)O__jlc:m . (B — 3)A J0—11—72
4 ;

4.4.2 PCP Analysis

Table 4.3: F(d, A, B, N) for various d values.

4.5)

The performance sensitivity of different banked regfile configurations can be assessed by PCP if its accesses

are not correlated. Figure 4-8(a) plots the PCPs of a regfile with sixteen banks of varying number of local

61

@ o

—e— 8-access
—— 7-access
...| —=— 6-access

—— 5-access
—A— 4-8ccess
\ | —e— 3-access

2 4 8
#Port #Bank

Figure 4-8: PCP for designs with (a) 16 banks with varying number of local ports and (b) varying number
of banks with two local ports.

ports over a number of accesses. It shows that having the additional second local port reduces the number of
conflicts by at least a factor of four, even for four-issue machines. Similarly, Figure 4-8(b) plots the PCPs of
a regfile with varying number of banks of two local port cells over a range of accesses. This demonstrates
that PCP is very sensitive to the number of banks when storage cells are lesser-ported, and having a sufficient
number of banks is crucial to keep the conflicts low. For example, PCP is limited to around 5% when there
are four accesses to a eight-banked structure, but it grows exponentially to 50% after doubling the number

of accesses.

4.5 Simulation Results

To evaluate the performance impact of the proposed banked regfile, the simulator is modified to keep track
of a unified physical register file organized into banks. The branch misprediction latency is increased by
one cycle to account for the extra arbitration cycle in the speculative control scheme. Controls for pipeline

repairs are also modeled to include the penalties when bank conflicts occur.

4.5.1 Performance Sensitivity

Figure 4-9 and Table 4.4 show the resulting absolute and relative IPC numbers obtained for a four-issue
machine with an 80-element register file. The baseline processor is simulated on the standard eight-stage
pipeline with a fully ported regfile, while others are simulated on the modified nine-stage pipeline with a

banked regfile. Each configuration is labelled as (#banks)B(#reads)R(#writes)W (bypass ?)(sharing ?), where

62

2.5 T T T T T T T T T T T T T - base"ne

Bl 8B2R4WYY
Bl 8B2R2WYY
Bl 4B2R2WYY
[8B2R1WYY
8B2R2WNY
8B2R2WYN
Bl 8B2R2WNN

IPC

bzip crafty eon gap gcc gzip mcf parser perl twolfvortex vpr avg
Benchmark

Figure 4-9: IPCs for the 4-issue pipeline with register file of size 80.

(#banks) is the number of banks, (#reads) is the number of local read ports, (#writes) is the number of local
write ports, (bypass?) indicates if the processor avoid competing for register ports when the value bypassed
from the last execution cycle, and (sharing?) indicates if local read ports can drive multiple global read
ports to implement read sharing.

The simulations show that the performance degradation would be less than 1% compared to the baseline

if the select logic were changed to avoid register bank conflicts at issue time, and where both bypassing

[Gn %) | bzip [crafty | eon [gap [gcc | gzip | mof | parser | perl | twolf | vortex | vpr [avg]
Baseline 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 [100.0 | 100.0 | 100.0 100.0 | 100.0 | 100.0
8B2R4AWYY 90.3 96.2 96.4 85.5 94.4 89.1 | 100.0 95.2 96.9 94.1 974 91.3 939
8B2R2WYY 89.8 96.2 96.4 84.1 93.7 88.2 | 100.0 94.5 96.9 94.1 97.4 90.3 93.5
4B2R2WYY 75.8 90.8 93.5 65.6 87.4 73.6 | 100.0 87.7 93.8 85.6 94.0 78.2 85.5
8B2R1IWYY 75.8 90.8 94.0 67.8 86.7 72.7 | 100.0 86.3 93.8 85.6 94.0 712 854
8B2R2WNY 80.1 93.9 95.2 76.7 89.5 78.6 | 100.0 89.7 94.8 89.0 95.7 83.5 88.9
8B2R2ZWYN 74.2 87.0 81.0 68.3 755 71.4 | 100.0 80.1 89.6 84.7 85.5 68.4 80.5
8B2R2WNN 629 824 76.2 58.1 67.8 61.8 96.2 72.6 84.4 76.3 80.3 60.7 73.3

Table 4.4: Normalized IPC % for a quad-issue machine with 80 physical registers. Configurations are
labelled as (#banks)B(#local read ports)R(#local write ports)W(bypass skipped?)(read sharing?). Results
are normalized to the IPC of the baseline case (unified with eight read and four write ports).

63

Category || Workload Average IPC
1-Thread {| One thread of a SPEC CINT2000 benchmark 1.79
2-Thread || Two threads of different SPEC CINT2000 benchmarks | 2.60
4-Thread || Four threads of different SPEC CINT2000 benchmarks | 3.42

Table 4.5: Three workload categories.

and port sharing are used to reduce conflicts in a system with eight 2R2W banks. In practice, this scheme
would have a much slower wakeup-select loop which would likely limit clock frequency and reduce total
performance. By adopting our speculative control scheme, we instead issue instructions without considering
conflicts and later kill conflicting instructions. The row labelled 8B2R2ZWYY shows the performance drops
another 0~15% averaging 5%. But it is possible that this configuration could have a lower cycle time to
make up for this IPC difference.

Overall, the 8B2R2ZWYY configuration performs well for this design point and is chosen as the center
point in perturbing other parameters. Reducing the number of banks to four (4B2R2WYY), lowers perfor-
mance by another 0~14%. We can also see that moving from 1 to 2 write ports (8B2RIWYY, 8B2R2WYY)
improves performance by more than 9% but having more than 2 write ports per bank (8B2R4WYY) only
improves performance by another 0.4%. This is expected given that average IPCs are rarely above 2, and
some instructions do not write to registers.

The two optimization techniques, conservative bypass-skip and read sharing, greatly reduce the number
of bank conflicts and have a significant effect across all the benchmarks. The performance degrades by over
5% when bypass optimization is removed (8B2R2WNY), around 13% when the sharing optimization is re-
moved (8B2R2WYN), and a total of 20% when both are removed. OQur simulations confirm the observation
in [BDAO1] that groups of load and store instructions dependent on the stack pointer tend to issue together,
probably at procedure call/return points. It is also worth noting that branch instructions dependent on the

same register were another common source of read sharing.

4.5.2 Extending to SMT Architecture

To evaluate the scalability of this work, the proposed banked register file scheme is extended to SMT pro-
cessors. One might expect that the higher utilization of an SMT processor would raise the number of bank

conflicts and hence reduce the applicability of our banked regfile design. Instead, the initial data surprisingly

64

| Name | Applications

mix2.1 | (bzip, twolf)

mix2.2 | (gap, gzip)

mix2.3 | (crafty, gcc)

mix2.4 | (mcf, perl)

mix2.5 | (parser, vortex)

mix2.6 | (eon, vpr)

mix4.1 | (crafty, gec, gzip, votex)
mix4.2 | (bzip, eon, mcf, twolf)
mix4.3 | (gap, parser, perl, vpr)

Table 4.6: Heterogeneous multithreaded workloads.

reveals that banking produces even better results for an SMT core than a single thread superscalar core. This
result is partly due to SMT’s ability to hide the increased branch mispredict penalty, i.e., when one thread
experiences a misprediction, other threads can continue to execute instructions. The positive results demon-
strate that the speculatively controlled banked regfile works well for highly utilized SMT processors and has

the potential to cope with their ever-increasing regfile port and size requirements.

Table 4.5 shows the three workload categories that were used for performance evaluation and their
average IPC. The I-thread workload models the behavior of superscalar processors, while 2-thread and 4-
thread workloads account for the multithreading environment of SMTs. For the multithreading workloads,
we randomly paired different combinations of the benchmark as listed in Table 4.6. Changes are made to
the baseline configuration to accommodate SMT’s processing requirements. The issue width is increased
to eight where four memory instructions are allowed (two loads and two stores), the regfile and ROB size
is increased to 512 entries, and the memory queue size is increased to 128. However, the issue queue
and MSHR size remains the same, 32 entries, as we found that larger sizes do not improve performance
significantly.

Figure 4-10 shows the resulting absolute IPC obtained for I-thread, 2-thread, and 4-thread workloads.
The 1-thread workload models the behavior of superscalar processors, while 2-thread and 4-thread work-
loads account for the multithreading environment of SMTs. It is found that the average performance degra-
dation of the 16B2R2WYY design increases from 5%, 8%, to 12% as we increase the workload from one,
two, to four threads, respectively. This indicates that the register file does not provide sufficient throughput

by having only two local read ports. After adding another pair of local read ports to the register file banks

65

- Baséline
Bl 16B2R2WYY
Bl 16B4R2WYY

bzip crafty eon gap gcc gziB mcf parser perl twolf vortex vpr avg
enchmark
(b)

IPC

IPC

0= : g
0mix2.1 mix2.2 mix2.3 mix2.4 mix2.5 mix2.6average mix4.1 mix4.2 mix4.3 average
Benchmark Benchmark

Figure 4-10: IPCs for (a) 1-Thread, (b) 2-Thread, and (c) 4-thread workloads.

(16B4R2WYY), performance is restored to just a 2% IPC degradation in all three workload categories. In
fact, the average IPC increases as we increase the workload, but the percentage of IPC degradation and its

variation across applications decreases slightly.

4.5.3 In-order Superscalar

A four-way in-order superscalar also needs a highly ported register file to accommodate a maximum of eight
reads and four writes per cycle. Figure 4-11 shows that using an eight-banked regfile with two local read
ports and two local write ports decreases IPC by less than 5% on average, with a range from 0 to 8%, in
comparison to a fully ported design. This result is similar to the one that we observed with out-of-order
superscalar processors. Regardless of issue policy, the proposed banked regfile performs consistently across

different machine configurations and architectures.

66

Normalized IPC %

50 El8B2R2WYY In-order
bzip crafty eon gap gcc gzip mcf parserperl twolfvortex vpr avg
Benchmark

Figure 4-11: Normalized IPC % for a four-way in-order machine with a 8B2R2WY'Y regfile. Results are
normalized to the IPC of a four-way in-order superscalar with a fully-ported regfile.

4.54 Correlation Among Accesses

To compare the observed conflicts against those predicted by the model developed in Section 4.4, the simu-
lator is used to gather a histogram of the number of accesses to the regfile in each cycle. Then, the weighted
sum of PCP is calculated over the whole run. These numbers are compared against simulation results for
4-thread workloads on 16B4R2W regfiles with different additions of optimization techniques as shown in
Figure 4-12. Without the read port optimizations there are many correlated read accesses leading to a much
higher conflict rate than that predicted by uniform random accesses. Applying bypass-skipped reduces the
number of correlated accesses somewhat, but applying read-sharing causes fewer conflicts than a random
distribution. By applying both optimization techniques, a slightly lower percentage of conflicting cycles
than purely random accesses is also achieved. Read-sharing is very effective in removing the correlations
between read accesses. The observed difference is because if each access is truly mutually exclusive, we
would still have a few situations where multiple instructions are reading the same registers and cause con-
flicts. These conflict events are included in the uniform random accesses assumption model, but not in the
simulation with the sharing optimization. Read sharing avoids these type of bank conflicts by providing
values to the same half of read ports. However, for write port conflicts, the simulation numbers indicate that
the write port allocation is not uniformly distributed across all the banks. Unlike for reads, no optimization
techniques are applied to remove or prevent write correlations. Several register renaming policies, includ-
ing FIFO, LIFO and Random, were also investigated to determine if different algorithms would have some

impact on the correlations but our results were unchanged for all cases.

67

(@) (b)

Il Predicted
[] Simulated

—_
[$;]
il
[$;]

Il Predicted
[] Simulated

_‘
2.
|
=
=]

i

Read Conflicts (% of Total Cycle)
C

Write Conflicts (% of Total Cycle)

[I

. None Bypass Sharing Both None Bypass Sharing Both
Scheme Scheme

o

Figure 4-12: Conflict cycle comparison for (a) reads and (b) writes.

4.6 Summary

In this chapter, I have presented an energy-efficient banked multiported regfile design together with a much
simpler pipeline control scheme suitable for a high-performance dynamically scheduled processor. To pre-
vent increases in cycle time, the speculative control avoids register bank arbitration in the already timing-
critical issue logic but instead adds an extra pipeline stage to detect and resolve any conflicts. Since bank
conflicts can degrade performance, the number of conflicts is kept low without buffering by using a sufficient
number of banks and ports and by removing the correlation between accesses to the same bank. Through
layout studies, it is shown that for a small number of ports per bank, overall register file size grows slowly
as ports are added because area is dominated by bank interconnect. This fact is exploited by using more
ports per bank to reduce the IPC impact of the proposed speculative pipeline control scheme. The reduction
in control logic complexity and bypass mux size of the speculative design can justify the slight increase of
the overall regfile area over the minimally ported one.

For a four-issue superscalar processor, we reduce the 80-entry regfile size by over a factor of three,
access time by 25% and access energy by 40%, while reducing IPC by 6% with the SB2R2WYY configu-
ration. For an eight-issue SMT processor, the area of the 512-entry regfile is reduced by a factor of seven,
access time by 30%, and energy by 60%, while IPC is degradated by less than 2% with the 16B4R2WYY
configuration. I expect the power savings of using smaller and less ported storage cells to increase as leak-
age rises with decreasing feature size. Even though this banked regfile design exhibits a small performance

penalty, the reductions in register file delay can potentially be used to increase the clock rate and lead to a

68

more complexity-effective design. The ability to reduce area and power significantly with minimal perfor-
mance degradation should also make this approach attractive for multi-processor chips which are designed

to provide the highest possible thread throughput at low cost.

69

70

Chapter 5

RingScalar: A Complexity-Effective
Banked Architecture

Banked regfile structures have been shown to be very effective in the previous chapter. In this chapter, a
new centralized out-of-order superscalar architecture, RingScalar, comprised of banked microarchitectures
arranged in a ring configuration is introduced. RingScalar is a complexity-effective architecture that simpli-
fies all the major components in the instruction flow to increase area and power efficiency without excessive
pipeline control complexity. It builds an N-way superscalar from /N columns, connected in a unidirectional

ring. Each column contains a portion of the issue window, a bank of the physical register file, and an ALU.

The restricted ring topology of RingScalar reduces electrical loading on latency-critical communications
between columns, such as instruction wakeup and value bypassing. Since most communication is now kept
within a column, the global interconnect overheads and the number of ports required for each component
are also reduced. Furthermore, RingScalar exploits the fact that most decoded instructions are waiting on
only one operand [EA02, KLO03] to use just a single source tag in each issue window entry, and dispatches
instructions to columns according to data dependencies to reduce the performance impact of the restricted
communication. This RingScalar banking approach reduces the cost of broadcasting tag information across
the instruction window, and only requires a single wakeup tag port and tag comparator on each instruction
entry. The instruction window banking scheme also meshes smoothly with a banked register file scheme to

reduce the number of write ports required on each cell in the physical register file to one.

In section 5.1, RingScalar microarchitectures are described in detail and are compared against the con-

71

ventional superscalar. The statistics on both operand availabilities and dependencies are presented in Sec-
tion 5.2 to determine the potential performance impact of implementing a banked instruction issue window.
Then, simulated results and circuit complexities of RingScalar are analyzed in Section 5.3 and Section 5.4.

To finish the discussion, Section 5.5 summarizes the design and concludes the findings.

5.1 RingScalar Microarchitecture

The RingScalar design builds upon earlier work in banked register files [WB96, CGVT00, BDAO1, PPV(2,
TAO03], tag-elimination [EA02, KL03], and dependence-based scheduling [KF96, PJS97]. For clarity, this

section describes RingScalar in comparison to a conventional superscalar.

5.1.1 Architecture OQverview

RingScalar retains the overall instruction flow of a conventional superscalar and uses the same reorder
buffer and memory queue, but drastically reduces the circuitry required in the issue window, register file,
and bypass network by restricting global communication within certain structures. These restrictions exploit
the fact that most instructions enter the issue window waiting on one or zero operands.

The overall structure of the RingScalar microarchitecture is shown in Figure 5-1. RingScalar divides an
N-way issue machine into N columns connected in a unidirectional ring. Each column contains a portion of
the issue window, a portion of the physical register file, and an ALU. Physical registers are divided equally
among the columns, and any instruction that writes to a given physical register must be dispatched and
issued in the column holding the physical register. This restriction means each bank of the regfile needs
only a single write port directly connected to the output of the ALU in that column.

A second restriction is that any instruction entering the window while waiting for an operand must be
dispatched to the column immediately to the right of the column containing the producer of the value (the
leftmost column is considered to be to the right of the rightmost column in the ring). This restriction has two
major impacts. First, when an instruction executes, it need only broadcast its tag to the neighboring column
which reduces the fanout on the tag wakeup broadcast by a factor of N compared to a conventional window.
Second, the bypass network can be reduced to a simple ring connection between ALUs as any other value
an instruction needs should be available from the register file. The bypass fanout is reduced by a factor of

N, and each ALU output now only has to drive the regfile write port and the two inputs of the following

72

N
o) | Renamed Buffer |
£ v ! ! !
G | Dispatch Crossbar J
(a8
= r 2nd Wakeup Signal|Crossbar |
= 3 A
g v l ¥ ¢ ¥y ¢ 2 l
= o Col0 Col1 Col2 Col3 =
[0} S:’ O
= °
o) = (o
w S one one one one =
| o =
2 ()
3| = 7
% 2 am b) I [0
2
=l 2 —ij —-IZ? |
§ v v
[Select Arbiter 11 |
= 52 5
 — 7]
3 y 3
3 [SRC1 Read Adpiress Arbitef & Crossbar |
® [y [
E [ISRC2 Read Adgress Arbi}er & Lrossbaf I -
2 [1]+ i
§ 3—-—4 Write[Address Crﬁs ab' | =
o g v Y A =
@ -)
o3 o
g % ¥ ¥
[0] o y y |
= 2 | SRC1 Local 9 Glpbal Data|Pprt Grossbar |
% ¥ [vv ¥
g | SRC2 Locd to Gigbal Datq Port Qrossbar |
e
(Y]
o
.
- A A y y y
]
3
5]
o)
X
L
"N

Figure 5-1: RingScalar core microarchitecture for a four-issue machine. The reorder buffer and the memory
queue are not shown.

73

ALU.

These restrictions are key to the microarchitectural savings in RingScalar, and as shown in the simulation
model, have a relatively small impact on instructions per cycle (IPC) while significantly reducing area,
power, and circuit latency. The following subsections describe the major components of the machine in

more detail.

5.1.2 Register Renaming

The RingScalar design trades off a little added complexity in the rename and dispatch stage (and some
overall IPC degradation) to reduce the area, power, and latency of the remaining stages (issue window,
regfile, bypass network). Figure 5-2 shows an example of the RingScalar renaming and dispatch process.

Since the Alpha ISA is used in the experiments, instructions can have zero, one, or two source register

operands.
Oldest 10 I 12 3
[wri(3) Jaddrt, i, #1 [swri(d) [xorrs 1,24 |
{} Rename
[1w P1[5}, Po[4] Jadd P2[3], P1[5]] sw P2[3}, P3[4] [xor P3[4], P2(3] |
¥
Dispatch Conflict
Colo Colt Col2 Coi3
[

sw addr. P3[4] | {lw P1[5}, PO[4] Fidd P2[3], P1[5] | sw data P2[3]

Fub Po[4, P3[2] | Fnd P3f4], P2[0!1

Figure 5-2: RingScalar rename and dispatch. The sub and and instructions were already in the window
before the new dispatch group.

As RingScalar decodes each instruction, the source architectural registers are renamed into the appro-
priate physical registers and the readiness of these operands is checked, just as in a conventional superscalar
processor. Instructions that are not waiting on any operand (zero-waiting) can be dispatched to any column
in the window. Instructions that are waiting on one operand (one-waiting) must be dispatched to the column
to the right of the producer column. Instructions waiting on two operands (two-waiting) are split into two
parts that will issue sequentially, and each part must be dispatched to the column to the right of the appro-
priate producer column. A separate 2nd wakeup port is provided on each column to enable the first part
of an instruction to wakeup the second part regardless of the column in which it resides. The second part

sits in the window, but will not request issue until after the first part has issued and woken up the second

74

part. Store instructions are handled specially by splitting them into two parts (address and data) that can
issue independently and in parallel. Previous work has considered the use of prediction to determine which
operand of a two-waiting instruction will arrive last [EA02], but in this work, a simple heuristic that assumes

the first (left) source operand will arrive last for a two-waiting instruction is adopted.

To reduce complexity in both the dispatch crossbar and the issue window entries, RingScalar has only
a single dispatch port for each column in the window. The two parts of a store instruction or two-waiting
instruction occupy two separate dispatch ports if they go to different columns, but can be dispatched together
in one cycle to the same column. Note that a physical register tag is now divided into two fields: the window

column and the register within the column.

As with a conventional superscalar, the first step of renaming is a rename table lookup to find the current
physical register holding each architectural register source operand together with its readiness, while, in
parallel, the architectural source registers of later instructions in the group are checked for dependencies on
the architectural destination registers of earlier instructions. Then, the column selector assigns the dispatch
column for each instruction and the dispatch column arbiter grants the dispatch port to allow each instruction
to enter the issue window. The final step of renaming is to allocate a destination physical register for the
instruction if required (store and branch instructions do not require destination registers). Any instruction
that is granted a dispatch port simply takes the head of the relevant free list because each column has a

separate physical register free list.

For dispatch column assignments, the RingScalar renamer has some flexibility in how any zero-waiting
instructions (and any dependents) are mapped to columns. A simple greedy scheme where instructions
are considered in program order is chosen to minimize the complexity of the rename logic. Zero-waiting
instructions select a dispatch column using a random permutation that changes each cycle. One-waiting
and two-waiting instructions have no freedom and must be allocated as described above. When the next

instruction cannot be dispatched because a required dispatch port is busy, dispatch stalls until the next cycle.

Figure 5-3 shows the renaming and column dispatch circuitry in detail. Each rename table lookup
returns the column (Col) in which the physical register resides and a single bit (Rdy?) indicating if the value
is ready or not, in addition to the physical register number. Below the rename table in Figure 5-3, only
the circuitry responsible for column allocation is shown, without the physical register number within the

column. Column information is represented using a unary format with one bit per window column (i.e., Col.

75

Inst. 0 Inst. 1 Inst. 2
[op Isrci[src2[dest] [op [srci[src2[dest] [op [srci]src2dest]
—]

>

Rename Table l

Co dy? Co dy? Colfyy Rdy? Col} IRdy?
Zero-Wait N
Colu Col. Select g

N Requests 2 v0

Inst. 0 Col. Grants

Inst. 1 Col. Grants

Inst. 2 Col. Grants

Figure 5-3: RingScalar register renaming and column dispatch circuitry. Only the circuitry for srcl of
instruction 1 and 2 is shown.

is an N-bit vector) to simplify circuitry.

For each instruction, the Col. Select circuitry calculates two N-bit column vectors: Requests and Next.
The Requests vector has one or two bits set indicating which columns the instruction wants to dispatch
into, and is calculated in two steps. First, if both of the operands are ready, an internal vector is set to the
precomputed Zero-Wait Column vector which has a single bit pointing at the randomly assigned column for
this instruction. If at least one of the operands is not ready, the internal vector is set to the bitwise-OR of the
two input Col vectors. The internal vector is then rotated by one bit position to yield the Requests vector.
The rotation is simple rewiring and so has no additional logic delay.

The Next output has a single bit set indicating the column into which this instruction will write its final
result. First, the internal vector is assigned either Zero-Wait Column if both operands are ready, Col for the
second source only if the instruction is one-waiting on the second operand, or otherwise Col for the first
source (i.e., one-waiting on first operand or two-waiting). Second, the internal vector is rotated by one bit
position to obtain the Next vector.

Any later instruction in the current dispatch group that has a RAW dependency on an earlier instruction
in the group must mux in the Next vector from the earlier instruction in place of the stale column vector read

from the rename table. In the worst case, a series of serially-dependent instructions requires the Next values

76

to ripple across the different Col. Select blocks in the dispatch group, as shown in Figure 5-3. Fortunately,
mux select lines are available early, and the ripple path always carries non-ready operands (Rdy?= 0), which
reduces worst-case latency to a few gate delays per instruction.

The dispatch column arbiter is implemented using the serial logic gates shown at the bottom of Figure 5-
3. The leftmost input to the arbiter chain is a Col. Full vector indicating which columns cannot accept a
new instruction, either because the issue window is full or because there are no free physical registers left
in the column. The arbiter ensures that instructions must dispatch in program order, by preventing later
instructions from dispatching if an earlier one did not get all requested columns (this is the purpose of the
equality comparators). The ripple through the arbiter is in parallel with the slower ripple through the Col.
Select blocks, so adds only a single gate delay before yielding the column grant signals.

This additional column latency in RingScalar is compensated by the reduced dispatch latency, as each
dispatch port fans out to N times fewer entries than in a conventional superscalar, and each entry has one
port rather than N. Also, note that the column allocation circuitry is a small amount of logic (dozens of
gates on each of the N bit slices) and represents a very small power and area overhead compared to the

savings in issue window and register file size.

5.1.3 Issue Window

The RingScalar issue window has several complexity reductions compared to a conventional superscalar.
The primary savings come from the reduced port count in each column. A conventional superscalar window
has N dispatch ports, 2N wakeup ports, and N issue ports on each entry. RingScalar has only a single
dispatch port, two narrower wakeup ports, and one issue port.

Each column needs only two wakeup ports. The first wakeup port is used by the preceding column to
wake up dependent instructions, while the second port wakes up the second part of a two-waiting instruction.
Both of these ports are narrower than in a conventional superscalar as shown in Figure 5-4. The physical
register tag requires 1g(NN) fewer bits because the consumer must be waiting for a value located in the
preceding column. The second-part tag can be considerably narrower as it only needs to distinguish between
multiple second parts mapped to the same column in the issue window.

The RingScalar instruction window design significantly reduces the critical wakeup-select scheduling

loop. Wakeup has reduced latency because an instruction only has to broadcast its tag to one column, each

77

wakeup ports

- -+ 2nd part
Q & ' wakeup wakeup
D & port port
=, 2 & g
[reeh] sret tag | [src2tag [medy] [edy] srctag | | | [Jreecy)
Conventional RingScalar

Figure 5-4: Wakeup circuitry.

entry has only one comparator, and each tag is narrower. A conventional design requires the tag be driven
across the entire window, with each entry having two comparators, leading to a 2V times greater fanout in
total. The select arbiter also has considerably reduced latency, as each column has a separate arbiter, and
each column can only issue at most one instruction. The conventional design has an arbiter with N times

more inputs and /N times more outputs.

Each entry of RingScalar has only a single issue port, which reduces electrical loading to read out
instruction information after select. A conventional design has each entry connected to N issue ports, each
with N times greater fanout. We implement a two-level select arbitration scheme for RingScalar. First, each
column has an independent local arbiter that selects one instruction to issue from the ready instructions on
that column. This arbiter is o(n?) less complex than the global arbiter, as it has 1/N the number of request
inputs and 1/N the number of grant outputs. An N-way arbitration is then performed among the selected

instructions for execution resource constraints.

The combination of a single dispatch port and a single issue port makes it particularly straightforward
to implement a compacting instruction queue [BAB102], where each column in the window holds a stack
of instructions ordered by age with the oldest at the bottom (Figure 5-5). Instead of having input ports
connected to 2N fan-in mux and output ports with 2N fanout, each entry now reduces the fan-in and fan-
out by a factor of N. Similarly, the electric loads to each dispatch port and issue port is decreased by a factor
of N because the entries are spread evenly across N columns. Another benefit of RingScalar issue window

is its simplification in the compaction multiplexing circuitry, results in reduced area.

The instructions are latched after issue, then undergo a second stage of select arbitration (Select Arbiter
11 in Figure 5-1) that is used to resolve structural hazards across columns. For example, the baseline machine
only allows a single load to issue per cycle. RingScalar also allows only a single first-part sub-instruction

to wake-up a second-part sub-instruction across the 2nd Wakeup Signal Crossbar each cycle to minimize

78

Dispatch Port Issue Port Dispatch Port Issue Port

ENTRY 0
ENTRY 1
El 2
ENTRIYB
5 Pt 5
£ £
< <
3 8
[0 [0
7)) 7))
[
[]
[
L]
Conventional RingScalar

Figure 5-5: Latch-based compacting instruction queues.

circuitry. Instructions failing the second stage of arbitration remain in the issue latch and block further issue
in the column until the structural hazard is resolved.

In practice, instruction entries are not compacted out right after issue, but only after it is known they will
complete successfully. In particular, dependent operations are scheduled assuming loads will hit in the cache
and must remain in the window until the cache access is validated in case a miss requires the dependent
instruction be replayed. As described in the following section, RingScalar uses the same technique if a

banked register file with read conflicts is used.

5.14 Banked Register File

One of the greatest savings in RingScalar comes from the reduction in the number of write ports required
on the register file. Each column has a separate physical register bank, which needs only a single write port.
RingScalar allows any column to read data from any register bank in the machine but only allows to write
data to its register bank. In the simplest configuration, we provide a full complement of read ports (2N) on
every bank. To further reduce regfile power and area, the lesser-ported banked regfile presented in Chapter 4
can be used. For example, the four-issue machine shown in Figure 5-1 has four read ports and one write port

per bank whereas a conventional machine would have eight read ports and four write ports.

79

The speculative control scheme is adopted to handle the reduced-read-port design without adding com-
plexity to the issue logic. Instructions continue issuing assuming there will be no conflicts. When read-port
conflicts are detected, the instruction window must be repaired and execution must be replayed. The num-
ber of read bank conflicts is reduced by not requesting read port accesses when a value was produced in the
preceding cycle and hence will be available on the bypass ring (conservative bypass-skip), and by imple-
menting the read-sharing optimization, which allows a single bank port to send the same register to multiple

requesters over the global ports.

As mentioned in the previous chapter, the speculative control design adds an additional arbitration stage
to the pipeline as shown in Figure 4-5. A local to global read port crossbar is also required to allow any
functional unit to read any register from any local bank’s read port. Unlike the design in Chapter 4, there
is no need for a global write port network and an arbiter with bank conflict detection, as the RingScalar
design associates one column with each write port and issues at most one instruction per column. This is
a considerable saving, as it was also previously found that more than one write port per bank was required
to reduce write port conflicts to an acceptable level. However, variable latency instructions, such as cache
misses, still require access to the register file write ports to return their results. To avoid write conflicts, a
returning cache miss inserts a high priority request into the select arbiter for the target column, preventing

another instruction from issuing while the cache miss uses the write port.

5.1.5 Bypass Network

RingScalar also provides a large reduction in bypass network complexity. An ALU can only bypass to its
neighbor around the ring, not even to its own inputs. This bypass path is sufficient because the dependence-
based rename and dispatch ensures dependent instructions are located immediately following the producer
in the ring. If an operand was ready when the instruction was dispatched, it would have been obtained
from the register file in any case. If a dependent instruction does not issue right after the producer, it must
wait until the value is available in the regfile before issuing. Comparing to the fully-bypassed superscalar,

RingScalar reduces each ALU fanout by (N — 1).

80

Eltwo-waiting
‘I Jone-waiting ||
Il zero-waiting

9 bzip crafty eon gap gcc gzig mcf parser perl twolf vortex vpr avg
enchmark

% of Total Instruction

Figure 5-6: Percentage distribution of zero-waiting, one-waiting, and two-waiting instructions.

5.2 Operand Availability

Previous work indicates that issue window source tags are underutilized and many instructions enter the
issue queue with only zero or one outstanding register operands [EA02, KLO03]. For this reason, RingScalar
halves the number of wakeup tags in the issue window. In RingScalar, instructions with two unmet source
operands at the time of dispatch are split into two parts and occupy two entries, which affects the overall
capacity of the instruction window. To confirm the observation that more than 80% of instructions wait on
only one or zero operand, Figure 5-6 shows the distribution of zero-waiting, one-waiting, and two-waiting
instructions on our four-way baseline superscalar processor running the SPEC CINT2000 benchmark suite.
The percentage of two-waiting instructions ranges from 3.9% (mcf) to 21.9% (bzip) with an average of

11.8%.

As the second part of a two-waiting instruction will only be issued if woken up by the first part, the
arrival timing of the two unmet operands impacts the performance of RingScalar. When the source operand
of the second part arrives last, the waking of the second part is likely to finish before the instruction is ready
to be issued. However, if the second part arrives first, the waking of the second part delays issue of the ready
instruction for additional cycles. RingScalar uses a simple scheme where the left source operand is always
predicted to arrive last. Figure 5-7 shows that the left source operand arrives last more than half of time in
eight out of twelve programs (ratio ranges from 46.7% to 71.3% with an average of 56.4%). These numbers
do not include store instructions, where the address calculation and data movement issue independently and

in parallel.

81

-
(=]
(=]

-]
[=]

60

&
(=]

Elright arrive last
[lleft arrive last

0 bzip crafty eon gap gcc gzig mcf parser perl twolf vortex vpr avg
enchmark

N
[=]

% of Two-waiting Instruction

Figure 5-7: Percentage distribution of last-arrival operand for two-waiting instructions.

5.3 Evaluation

RingScalar reduces the area, latency, and power of all major structures in the instruction flow by dividing an
N-way superscalar into N columns connected in a unidirectional ring. This distributed hardware structure
reduces the utilization of hardware resources and requires a larger number of register file and issue window
entries, which is analyzed in Section 5.3.1. Next, the performance of RingScalar in comparison to the
conventional design is evaluated in Section 5.3.2. Section 5.3.3 analyzes the effects RingScalar has on
regfile read port reduction techniques. Section 5.3.4 presents the IPC counts of an alternative RingScalar

design where a separate issue widow is added to handle two-waiting instructions.

In this section, each configuration 1is labeled with the following nomenclature:
(arch)(#iq):(size)R(#read)W(#write), where (arch) is either the monolithic baseline (BL) or the RingScalar
(RS) architecture, (#ig) is the total number of instruction window entries, (size) defines the regfile size,
(#read) and (#write) are the number of read ports and the number of write ports in each regfile storage
cell. An ideal 4-issue superscalar configuration BL32:80R8W4 is selected to provide baseline numbers. It
contains a conventional monolithic issue window with 32 issue queue entries, a fully multiported register
file with 80 registers, and a full bypass network. For RingScalar, entries are evenly distributed among
columns. For example, RS48:128R8W1 is a RingScalar design where each of the four columns has twelve
issue window entries, and a bank of 32 registers with eight read ports and one write port. Any RingScalar
with a speculatively-controlled banked register file, has an additional read port arbitration stage added as

shown in Figure 4-5, and the branch misprediction penalty is increased by one cycle.

82

*
1‘6_ o N . . .
R S -A
" .| % BLI28:256R8W4 | |
o145 A BL32:xR8W4
& .4 .. |-8 BLIEXR8W4
O RS64:xRIW1
1.35F | == RS48:XRAWA
1.3
1'25_.,,.
BT 150 200 250
Regfile Size

Figure 5-8: Average IPC comparison for different regfile sizes.

5.3.1 Resource Sizing

The register file and issue window of RingScalar is spread evenly across the columns. Their utilization is less
than a monolithic structure and so the optimal sizing needs to be re-evaluated. The first set of experiments
determines the effect of increasing the regfile size while keeping the issue window fixed. The second set of

experiments finds out how performance varies when increasing the size of the RingScalar issue window.

Figure 5-8 shows diminishing performance improvements as the regfile size is increased for both the
baseline superscalar BL32:xR8W4 and the RingScalar RS48:xR4W1 processor. For the baseline design, [PC
saturates at 144 registers; performance remains the same if additional registers are added beyond this point.
RingScalar, however, keeps improving as more registers are added. This is because instructions can only be
allocated to a particular column in RingScalar, and an imbalance of registers across the columns lowers the
total regfile utilization. Nevertheless, the diminishing returns does not justify implementing a regfile that is
larger than 128 for issue queue sizes of 48 and 64. The performance of the BL128:256R8W4 configuration

is also plotted to show the limit on IPC for these codes with this simulation framework.

Performance increases as the issue window size grows as shown in Figure 5-9. For designs with 256
registers, IPC improvement tapers off beyond a window size of 64; for designs with 128 registers, it tapers
off beyond a 48-entry window. This also demonstrates the significance of a balanced design, increasing
the resource in just a single area will not always lead to higher performance. Therefore, RS64:256 and

RS48:128 are chosen as the two basic parameter settings for the RingScalar evaluation.

83

1.31

| & RSx:256R4W1 |
-8B~ RSx:128R4W1

20 40 60 80 100 120
Issue Window Size

Figure 5-9: RingScalar average IPC sensitivity to instruction window size.

Il BL32:80R8W4
Bl RS64:256R4W1
BB RS48:128R8W1
I RS48:128R4W1
Bl RS48:128R2W1

bzip crafty eon gap gcc gzip mef parser perl twolf vortex vpr avg
Benchmark

Figure 5-10: IPC for 1 thread workload with a gshare branch predictor.

5.3.2 TIPC Comparison

To evaluate RingScalar, its performance is compared against the baseline configuration. Simulations were
run with a gshare branch predictor and with a perfect branch predictor to ascertain the effect of the extra
pipeline stage and branch predictor inaccuracies. Figure 5-10 shows the absolute IPC obtained with a gshare
branch predictor, while Figure 5-11 shows the results using perfect branch prediction. IPCs increase 12%,
on average, for designs where the processors only fetch and execute code on the correct path. The relative
performance differences between the baseline and RingScalar remains consistent across different branch

predictor precisions.

Overall, the results for the RingScalar design are quite competitive with the idealized superscalars given

84

Il BL32:80R8W4
Il RS64:256R4W1

|

| o by

| ‘
1 BRI WL 1 1 |
n gap gcc gzip mcf parser perl twolf vortex vpr avg
Benchmark

25 Bl RS48:128R8W1
[RS48:128R4W1
2 Bl RS48:128R2W1
g 1.5HRNEN - ‘ i ...
1 . . N ’ .. SRS . . BEERIE . . BB ..
0.5 | i B B R e
o]

Figure 5-11: IPC for 1 thread workload with a perfect branch predictor.

their simplified window design, and their much more realistic implementation parameters. In comparison
to the baseline (BL32:80R8W4), the performance of the small RingScalar design without regfile read-port
conflicts (RS48:128R8W1) has an average of 12% IPC reduction and a maximum degradation of 24%. The
performance impact is mainly due to delayed issuing of critical instructions, which can pile up in the same
issue column. Extra regfile savings can be achieved in RingScalar with a lesser-ported banked structure.
Figure 5-10 show that IPC drops only another 1% for RS48:128R4W1 design but 4% for RS48:128R2W1
design. Further comparing the RS48:128R4W1 design to the large RingScalar (RS64:256R4W1) design,
only a 2% IPC difference is observed. The above data supports that RS48:128R4W1 is a good design point

for a four-issue machine.

5.3.3 Regfile Read Port Optimization Effectiveness

The two types of optimization, conservative bypass-skip and read-sharing, decrease the number of regfile
bank conflicts in the lesser ported banked structure by reducing the number of read port contentions. If an
instruction is selected in the same cycle where a tag match caused the instruction to wake up, the conservative
bypass-skip scheme avoids competing for the regfile read port. In the baseline machine, on average, 36%
of the total read port conflicts are avoided when conservative bypass-skipped is implemented, as shown
in Figure 5-12. This percentage drops to only 23% for the RingScalar design because RingScalar steers
instructions that wait on the same operand into the same column and only allows a single instruction to be

issued per column each cycle. Instructions that normally read values from the bypass network now have to

85

|l Baseline
[JRingScalar

a
o
T

'y
(=)
T
]

N
o
T

B

bzib cray en gap gcc gzp mcf parsér rI twol voex vr avg
Benchmark

-t
o
T

% of Total Source Operand
8
T
1

(=]

Figure 5-12: Percentage of operands that do not compete for regfile read port due to conservative bypass-
skipped optimization.

-Balseline l |
[]RingScalar

)
<

-
()]
T

-,
o
T
I

[3)]
T
i

% of Total Source Operand

bzip crafty eon gap gcc gzig
e

rtex vpr avg

mcf parser perl twolf vo
nchmark

[=]

Figure 5-13: Percentage of operands that do not compete for regfile read port due to read-sharing optimiza-
tion.

access the data from the regfile because of their delayed issue. The use of the conservative bypass-skipped
optimization is not as effective in RingScalar as in the baseline design but it still avoids a significant number

of read port conflicts.

Conservative bypass-skip screens out instructions that depend on the same register and are issued in the
same cycle when instructions become ready. The read-sharing optimization further reduces the number of
bank conflicts by removing read port contention for instructions that depend on the same register but are not
issued in the same cycle as their tag match. Figure 5-13 shows the percentage of reads that avoid accessing
the regfile if we allow a local port to drive multiple global ports. The average result across the benchmark
suite is 12% for the baseline superscalar and 2% for RingScalar. Again, this is a result of the way RingScalar
dispatches instructions into columns and its restriction on the number of instructions that can be issued per

column on each cycle. Instructions that share the same dependent registers would be packed into the same

86

column and would never be issued together if the data is not ready at the time of dispatch. In RingScalar,
read-sharing can only benefit a small number of instructions that depend on the same ready register and that

are issued in the same cycle.

5.34 Two-waiting Queues

The performance loss of using only a single-tag instruction window is evaluated by comparing the results
to a variation of a RingScalar design where each issue queue column is further divided into three banks.
Figure 5-14 shows that instruction banks are of three types, depending on whether instructions are waiting
on zero, one, or two source register operands. Unlike the original RingScalar design, instructions that wait
on both operands that are placed in the banks with two source tags. The two-waiting queues reduces the
complexity in register renaming logic and eliminates the prediction on operand availability as two-waiting
instructions are no longer split into two parts. Simulated results show that a 3% IPC improvement is observed
across the benchmarks after a 16-entry two-waiting queue is added to RingScalar (RS48:128R4W1). This

small enhancement does not justify the additional area and power consumption of two-waiting queues.

5.4 Complexity Analysis

To determine the complexity effectness of RingScalar designs, the area, latency, and power reductions of
key components are analyzed in this section. The approach is to first compare required regfile die area by
counting the number of occupied wire tracks. Then, the factors that determine latency and power of issue
windows are evaluated.

The area of a register file can be estimated by the number of bitlines and the number of word-
lines [RDK 00, TA03]. For regfiles with single-ended reads and differential writes, Equation 5.1 is used to
approximate the area for each bit-slice. The width (w) and the height (k) of a storage cell, including power
and ground, is given in unit of wire tracks. R is the number of read ports, W is the number of write ports,
and F is the number of entries in the regfile. The equation expresses that each regfile port calls for one

wordline per entry, plus a single bitline for read ports and a pair of bitlines for write ports.

A'reaRegﬁle = (w +R+W) x(h+ R+ 2W) X B (5.1)

87

N
g I Renamed Stage I
S v v v v
& I Dispatch Crossbar & Arbiter]
Col0 Col1 Col2 Col3
= 1 =] e
9 ¢
= q
Erd 2
gl 3
o 2
) X (@]
o3 'g one one E
Sl =
gl s g
© 8 7
=S| = L 1 @
°
©
o
= =
| Select|arbiter Il
= L [}
(%3
| [
3
‘:) ISRC1 Read Adfiress Arbiter & Crossbar |
kS y [¥ | 4
% SRC2 Hepd Adpress Arbifer & frossba | -
0 —
ol £ x I =
L
§ %———»] Write|Address Cr)$ 5
> S \AA yYvy @
m D
o B [}
g 3 o
[] 4
E § Y v vy y r
2 | SRC1 Locdl fo Jobal Datg Rort Crossbar l
s y vy [y
° | §RC2 Lodal to Global Dafa Port [Crossbai |
4
A 4 % y
2
3
1)
o]
X
L
"N

Figure 5-14: RingScalar architecture for designs with three issue banks per column.

88

Anissue window consist of dispatch ports, issue ports, wakeup port, comparators, tag broadcast network,
and select arbiters. The speed of the wakeup-select loop is a function of wire propagation delay and the fan-
in/fan-out delay. Its power consumption is proportional to switched capacitance, such as wire capacitance
and transistor parasitic capacitance. RingScalar reduces these parameters by adopting lesser-ported banked
structures. Power saving can also be achieved by minimizing the number of active components, such as
comparators. Using Equation 5.2, the number of bit comparators in an issue window can be determined. T’
is the number of tags per entry, B is the number of tag bits per entry (depends on the regfile size), Y is the
number of wakeup port per tag, and F is the number of entries. For example, there are 2 x 7x 4 x 32 = 1792

bit-comparators in the baseline (BL32:80R8W4) design.

Numberbit_cmparators - T X B X Y X E (5.2)

Table 5.1 provides a complexity and performance comparison across a few RingScalar designs and
the baseline. In general, RingScalar designs are smaller and more power efficient than the conventional
superscalar. Even the large RingScalar design (RS64:256R4W1) has a smaller regfile, a much simpler issue
window (faster wakeup-select), and a smaller bypass network than the baseline, despite the increased number
of regfile entries.

The RS48:128R4W1 design point appears to be a sweet spot in performance-complexity. Regfile area
is under half that of the baseline while the issue window is much smaller, and IPC is just 13.3% away
from the baseline. Adding more read ports only increases IPC by 1% (RS48:128R8WI). The additional
regfile area saving of moving from RS48:128R4W1 to RS48:128R2W 1 is only 9% but causes a 3% drop in
IPC. Furthermore, a 48-entry RingScalar issue window requires only one fourth the number of dispatch,

issue, and wakeup ports, and 21% of the tag comparators of a conventional 32-entry design. Table 5.1

Configuration Regfile Issue Window Wakeup Select || Bypass Networks IPC
Area || #Dispatch/Issue/ | #Compa- || Fan-out Arbiter ALU | MUX
Wakeup Ports rators Fan-out | Fan-in
BL32:80R8W4 100.0% 4/4/8 100.0% 64 || 4from32 9 7 || 100.0%
RS64:256R4W1 80.8% 17172 28.6% 16 || 1from 16 3 4 89.7%
RS48:128R8W1 87.6% 172 21.4% 12 || 1from12 3 1 87.6%
RS48:128R4W1 40.4% 1/12 21.4% 12 || 1from12 3 4 86.7%
RS48:128R2W1 31.4% 11172 21.4% 12 || 1from12 3 4 84.2%

Table 5.1: Total complexity comparisons. Percentage results are normalized to the baseline
(BL32:80R8W4).

89

also shows that RingScalar reduces wakeup delay because of its reduction in the wakeup broadcast fan-out.
Comparing to the baseline configuration, RS48:128R4W1 has faster select timing. BL32:80R8W4 has one
arbiter that selects four instructions out of a pool of 32 instructions while RingScalar has four arbiters, each
independently selecting only one out of 12 instructions. The reduced bypass network decreases the ALU
fan-out by a factor of three while the bypass mux fan-in is cut from seven to four for the RingScalar bypass
networks.

In this evaluation, the baseline architecture was idealized in several respects. More realistic superscalar
models should have a reduced IPC advantage over RingScalar. For example, most designs approximate the
oldest-first select arbitration to reduce circuit complexity; real designs have less than fully orthogonal func-
tional unit issue; and they will experience load-hit mispredictions and memory dependence misspeculations.
These additional stalls will tend to reduce the IPC advantage of existing superscalar designs. The complex-
ity reduction of RingScalar could enable overall performance improvement by reducing circuit latency, and

hence clock frequency, and also power, while reduce considerable area.

5.5 Summary

The RingScalar design builds upon earlier work in banked register file, tag-elimination, and dependence-
based scheduling. It provides complexity reduction throughout the major components of an out-of-order
processor, in exchange for a small increase in complexity in the rename and dispatch stage. Compared with
idealized superscalar architectures, there is only a small (10.3-13.3%) drop in IPC but with a large reduction
in area, power, and latency of the issue window, register file, and bypass network. RingScalar should be
even more competitive against realistic conventional superscalar processors, and should provide a suitable

design point for CMP cores that need both high single thread performance and lower power and area.

90

Chapter 6

Conclusion and Future Work

I have shown that banking works well compared to monolithic structures. A banked register file design can
provide the bandwidth needed by a superscalar processor but with reduced area, delay and energy. For a
quad-issue processor, I show that banking reduces regfile size by over a factor of three, access time by 25%
and access energy by 40%, while reducing IPC by 6%. I also presented the RingScalar architecture based
on a ring topology of banked structures that reduce the complexity of dynamically scheduled superscalar
processors. The design exploits the fact that most decoded instructions are waiting on just one operand to
use only a single tag per issue window entry, and to restrict instruction wakeup and value bypass. It limits
the resources required in all stages of execution, from dispatch, wakeup, select, issue, regfile read, bypass,
and write bank. For four-issue processors, IPC drops 13% but with large complexity reduction that can be

used to increase clock rate, leading to a more complexity-effective design.

6.1 Summary of Contributions

The main contributions presented in this thesis are classified into two categories:

Banked Regfile

o The design of full-custom banked register files. 1 show that the multiplexing circuits dominate the area
of few-ported multibanked design. Moving from a single read port to split dual read ports per bank

only impacts the area minimally, yet significantly reduces control logic complexity.

91

o The invention of a conservative bypass-skip technique that uses wakeup tag search to determine by-
passability of source registers. The bypass bit is only set if the bypass will occur from the immediately
preceding cycle. This scheme does not save register port bandwidth for operands that will be bypassed

from later bypass stages but can be easily implemented with only one bit per register read.

o The invention of a speculative control scheme that issues instructions without considering bypassabil-
ity or register file bank conflicts. It relies on rapid port arbitration and a non-stalling pipeline repair to

reduce the pipeline complexities in handling limited regfile ports.

RingScalar

e The design of a banked issue window that uses only single-tag entries and places instructions into
columns according to the dependency. 1 also show that the small performance lost in single-tag banked

issue window structure can be well justified by its large complexity reductions.

o The design and evaluation of RingScalar-a complexity-effective banked superscalar microarchitec-
ture. The design divides an N-way superscalar into N columns connected in a unidirectional ring,
where each column contains a portion of the instruction window, a bank of the register file and an
ALU. I show that RingScalar simplifies all the major components in the instruction flow to increase

area and power efficiency without excessive pipeline control complexity.

6.2 Future Work

There are several avenues of research which lead on from this work:

Banked Reorder Buffer Structure

Although this thesis discusses only banked register files and banked issue windows, the banking techniques
can be applied to other centralized SRAM/CAM-like structures, such as the ROB. For example, the number
of write ports can be minimized if the ROB is also divided into columns as in the rest of the RingScalar

architecture.

92

Banked Load-Store Queue

There are many recent papers [CE98, POV03, SMRO5] concerning the complexities in load-store queues.
Since a load-store queue is another centralized SRAM/CAM-like structure, banking techniques [GAR 705,
BZ06] can also be applied to reduce its die area, access time, and power. The difficulty in banking this

structure is maintaining the required ordering of elements across banks.

Optimizing Register Renamer

Most machines use SRAM structure to store the mapping between the logical and the physical registers.
As the register file size increases, the register renaming hardware overhead also increases. With a banked
register file and RingScalar’s restricted ring topology, the renaming table can be potentially optimized to

reduce circuit complexity.

Adaptive Embedded Cores

Embedded applications usually require only real time performance and emphasis on power consumption.
Savings can be achieved if the machine is reconfigurable in-flight according to its workload. Since individual
bank of a banked structure can be deactivated with proper techniques, the RingScalar design is a good

candidate for power-sensitive embedded cores.

93

94

Bibliography

[AFO3] A. Aggarwal and M. Franklin. Energy efficient asymmetrically ported register files. In JCCD 2003, pages
2-7, San Jose, CA, October 2003.

[AGO5] J. Abella and A. Gonzalez. Inherently workload-balanced clustered microarchitecture. In JPDPS-19, Long
Beach, CA, April 2005.

[AKSBO1] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar. A low-leakage dynamic multi-ported
register file in 0.13 gm CMOS. In ISLPED’01, pages 68-71, Huntington Beach, CA, August 2001.

[AMD99] AMD. AMD Athlon processor technical brief. AMD Techical Report, December 1999.

[BAB'02] A. Buyuktosunoglu, D. Albonesi, P. Bose, P. Cook, and S. Schuster. Tradeoffs in power-efficient issue
queue design. In ISLPED’02, pages 184189, Monterey, CA, August 2002.

[BDAO1] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi. Reducing the complexity of the register file in
dynamic superscalar processors. In MICRO-34, pages 237-248, Austin, TX, December 2001.

[BPNO3] K. M. Buyuksahin, P. Patra, and F. N. Najm. Estima: An architectural-level power estimator for multi-

ported pipelined register files. In ISLPED’03, pages 294-297, Seoul, Korea, August 2003.

[BS03] S. Balakrishnan and G. Sohi. Exploiting value locality in physical register files. In MICRO-36, pages
265-276, San Diego, CA, December 2003.

[BTMEQ2] E. Borch, E. Tune, S. Manne, and J. S. Emer. Loose loops sink chips. In HPCA’02, pages 299-310,
Boston, MA, February 2002.

[BZ06] 1. Baugh and C. Zilles. Decomposing the load-store queue by function for power reduction and scalability.

IBM Journal, 50(2):287-297, March 2006.

[CBFOO] A. Chandrakasan, W. J. Bowhill, and F. Fox. ”Design of High Performance Microprocessor Circuits”.
IEEE Press, 2000.

95

[CE98]

G. Z. Chrysos and J. S. Emer. Memory dependence prediction using store sets. In ISCA-25, pages 142-153,

Barcelona, Spain, June 1998.

[CGVTO0] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham. Multiple-banked register file architectures. In

[Cor89]

[DEC90]

[EA02]

[EHAO3]

[FCIV97]

[(FF98]

ISCA-27, pages 316325, Vancouver, Canada, June 2000.
Unisys Corporation. Scientific processor vector file organization. U.S. Patent 4,875,161, October 1989.

DEC. Vector register system for executing plural read/write commands concurrently and independently

routing data to plural read/write ports. U.S. Patent 4,980,817, December 1990.

D. Emnst and T. Austin. Efficient dynamic scheduling through tag elimination. In ISCA-29, pages 37-46,
Anchorage, AK, May 2002.

D. Emnst, A Hamel, and T. Austin. Cyclone: A broadcast-free dynamic instruction scheduler with selective

replay. In ISCA-30, pages 253-262, San Diego, CA, June 2003.

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. G. Vranesic. The Multicluster architecture: Reducing cycle time
through partitioning. In MICRO-30, pages 149-159, Research Triangle Park, NC, December 1997.

J. A. Farrell and T. C. Fischer. Issue logic for a 600-mhz out-of-order execution microprocessor. Journal

of Solid-State Circuits, 33(5):707-712, May 1998.

[FGK*02] E. S. Fetzer, M. Gibson, A. Klein, N. Calick, C. Zhu, E. Busta, and B. Mohammad. A fully-bypassed

[Fis83]

6-issue integer datapath and register file on an Itanium microprocessor. IEEE Journal Solid-State Circuits,

37(11):1433 — 1440, November 2002.

J. A. Fisher. Very long instruction word architectures and the ELI-512. In ISCA-10, Stockholm, Sweden,
June 1983.

[GAR*05] A. Gandhi, H. Akkary, R. Rajwar, S. T. Srinivasan, and K. Lai. Scalable load and store processing in

latency tolerant processors. In ISCA-32, pages 446457, Madison, WI, June 2005.

[HBHAQ2] S. Heo, K. C. Barr, M. Hampton, and K Asanovic. Dynamic fine-grain leakage reduction using leakage-

[Hen00]

[HPO02]

biased bitlines. In ISCA-29, pages 137-147, Anchorage, AK, May 2002.

J. L. Henning. SPEC CPU2000: measuring cpu performance in the new millennium. Computer, 33(7):28—
35, July 2000.

J. L. Henpessy and D. A. Patterson. ”Computer Architecture”. Morgan Kaufmann, May 2002.

[HSU*01] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The microarchitecture

of the Pentium 4 processor. Intel Technology Journal, 2001.

96

[PRB*98] S. Jourdan, R. Ronene, M. Bekerman, B. Shomar, and A. Yoaz. A novel renaming scheme to exploit value
temporal locality trhough physical register reuse and unification. In MICRO-31, pages 216225, Dallas,
TX, November 1998.

[Kes99] R. E. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24-36, March/April 1999.

[KF96] G. A. Kemp and M. Franklin. PEWs: A decentralized dynamic scheduler. In ICPP’96, pages 239-246,
Bloomingdale, IL., August 1996.

[KLO3] I Kim and M. Lipasti. Half-price architecture. In ISCA-30, pages 28-38, San Diego, CA, June 2003.

[KMO03] Nam Sung Kim and Trevor Mudge. Reducing register ports using delayed write-back queues and operand
pre-fetch. In ICS-17, pages 172-182, San Francisco, CA, June 2003.

[KMACO03] C.N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The AMD Opteron processor for multiproces-
sor servers. Micro, 23(2):66-76, March 2003.

[Kro81] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In ISCA-8, pages 81-87, May 1981.

[Nag75] L. Nagel. SPICE2. Technical Report ERL-MS520, ERL Technical Memo, University of California, Berke-
ley, 1975.

[PIS97] S. Palacharla, N. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. In ISCA-24, pages
206-218, Denver, CO, June 1997.

[PKE*03] D. Ponomarev, G. Kucuk, O. Ergin, K Ghose, and P. Kogge. The Alpha 21264 microprocessor. IEEE
Transactions on Very Large Scale Integration Systems, 11(5):789-800, October 2003.

[POV03] 1. Park, C Ooi, and T. N. Vijaykumar. Reducing design complexity of the load/store queue. In MICRO-36,
pages 411-422, San Diego, CA, December 2003.

[PPV02] 1. Park, M. D. Powell, and T. N. Vijaykumar. Reducing register ports for higher speed and lower energy.
In MICRO-35, pages 171-182, Istanbul, Turkey, November 2002.

[Pre02] R. P. Preston et al. Design of an 8-wide superscalar RISC microprocessor with simultaneous multithread-

ing. In ISSCC Digest and Visuals Supplement, pages 266—500, San Francisco, CA, February 2002.

[RBRO2] S. Raasch, N. Binkert, and S. Reinhardt. A scalable instruction queue design using dependence chain. In
ISCA-29, pages 318-329, Anchorage, AK, May 2002.

[RDK*00] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens. Register organization for
media processing. In HPCA, pages 375-386, Toulouse, France, 2000.

97

[RF98]

[RISS97]

[Rus78]

[SBV9Y5]

[SCO00]

[SJo1]

[SMRO5]

[TA00]

[TAO3]

[TAO5]

[TDF+01]

[TEL95]

[TIS95]

[Tom67]

[Tul96]

N. Ranganathan and M. Franklin. An empirical study of decentralized ILP execution models. In ASPLOS-
8, San Jose, CA, October 1998.

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith. Trace processors. In MICRO-30, pages 138-148,
Research Triangle Park, NC, December 1997.

R. M. Russell. The CRAY-1 computer system. Communications of the ACM, 21(1):63-72, January 1978.

G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors. In ISCA-22, pages 414-425, Santa
Margherita Ligure, Italy, June 1995.

S. Sair and M. Charney. Memory behavior of the SPEC2000 benchmark suite. Technical report, IBM
Research Report, Yorktown Heights, New York, October 2000.

P. Shivakumar and N. P. Jouppi. CACTI 3.0: an integrated cache timing, power, and area model. Technical

report, Western Research Laboratories, 2001.

T. Sha, M. M. Martin, and A. Roth. Scalable store-load forwarding via store queue index prediction. In
MICRO-38, pages 159-170, Barcelona, Spain, November 2005.

J. Tseng and K. Asanovi¢. Energy-efficient register access. In Proc. of the 13th Symposium on Integrated

Circuits and Systems Design, pages 377-382, Manaus, Brazil, September 2000.

J. Tseng and K. Asanovi¢. Banked multiported register files for high-frequency superscalar microproces-
sors. In ISCA-30, pages 6271, San Diego, CA, June 2003.

J. Tseng and K. Asanovi€. A speculative control scheme for an energy-efficient banked register file. [EEE

Transactions on Computers, 54(6):741-751, June 2005.

J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 system microarchitecture. IBM
Technical White Paper, October 2001.

D. M. Tullsen, S. Eggers, and H. M. Levy. Simultaneous muitithreading: Maximizing on-chip parallelism.
In ISCA-22, pages 392-403, Santa Margherita Ligure, Italy, June 1995.

M. Tremblay, B. Joy, and K. Shin. A three dimensional register file for superscalar processors. In HICSS,
pages 191-201, Maui, HI, January 1995.

R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM Journal, 11(1):25-33,
January 1967.

D.M. Tullsen. Simulation and modeling of a simultaneous multithreading processor. In The 22nd Annual

Computer Measurement Group Conference, San Diego, CA, December 1996.

98

[WB96]

[WG94]

[Yea%6]

[ZK98]}

[ZKO1]

S. Wallace and N. Bagherzadeh. A scalable register file architecture for dynamically scheduled processors.

In PACT-5, pages 179-184, Boston, MA, October 1996.

D. L. Weaver and T. Germond. "The SPARC Architecture Manual/Version 9”. Prentice Hall, February
1994.

K. C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, 16(2):28-40, April 1996.

V. Zyuban and P. Kogge. The energy complexity of register files. In ISLPED’98, pages 305-310, Monterey,
CA, August 1998.

V. V. Zyuban and P. M. Kogge. Inherently lower-power high-performance superscalar architectures. IEEE
Trans. on Computers, 50(3):268-285, March 2001.

99

