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Abstract

Scanning beam interference lithography is a technique developed in our laboratory
which uses interfering beams and a scanning stage to rapidly pattern gratings over
large areas (300x300 mm2 ) with high precision. The repeatability of the system ~~ t3
nm is an important precursor for obtaining nanometer accuracy. The R&D award
winning tool developed in our laboratory, referred to as the nanoruler, uses scanning
beam interference lithography to pattern large gratings with periods on the order of
574 nm at velocities approaching 100 mm/s.

In this thesis, I will present techniques which I developed to improve the accuracy
of the nanoruler. These techniques include mirror mapping, which allows one to
characterize the reference mirrors used for stage scanning. In addition, I will present
characterization techniques which include translation and rotation tests to measure
the distortion present in our system. In order to correct for the measured distortion,
I have implemented an on the fly phase-lookup technique in which the phase of the
interfering beams are modulated to correct for the system distortion.

Several potential applications of this technology require not only high phase fi-
delity, but uniform linewidth as well. Toward this end, I have presented a detailed
analysis of the relationship between the exposure dose contrast, beam geometry, phase
modulation, and stage scanning parameters. In addition, I have implemented novel
scanning techniques which have allowed for patterning more general periodic struc-
tures. For example, a technique referred to as Doppler writing will allow one to scan
the stage perpendicular to the interference fringes. This technique may be utilized to
create several overlapping strips of grating, each with a different period, allowing one
to obtain a chirp in a direction parallel to the interference fringes.

Furthermore, I developed a patterning technique referred to as beam-blanking.
While conceptually simple, the challenges for implementing this writing strategy in-
cludes synchronization of high speed electronics with the stage motion to phase-lock
the interfering beams to the stage at high stage velocities. By combining all of the
latter techniques: namely the ability to phase-lock, turn off the writing beams, im-
plement generalized scanning with phase-look up on the fly, several more generalized
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geometries of interest for applications including photonic Bragg devices, metrology,
and X-Ray telescopes may be patterned at high speed, over large distances, with
precision and accuracy.

Thesis Supervisor: Mark Schattenburg
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 The goal and motivation for Scanning Beam

Interference Lithography

The goal of Scanning Beam Interference Lithography (SBIL) is to produce large area (

on the order of 300 mm2 ) periodic patterns with high phase fidelity, uniform linewidth,

at high speed. Applications for this technology include the fabrication of gratings for

metrology, space instrumentation such as X-Ray telescopes, and high power laser

pulse compression to name a few. In the area of metrology there is an ongoing re-

search effort to provide metrology for small features on large length scales. Indeed,

the International Technology Roadmap for Semiconductors in 2004 requires position-

ing ranges to cover an area of 450x450mm by 2010 to 2014 and to manufactur features

on the order of 45 nm[29}. The high precision over large areas is necessary for mea-

suring small feature sizes in integrated circuits, wafer inspection, and in new photonic

and biotech devices. The gratings we are producing may address the semiconductor

roadmap's metrology needs by functioning as a position encoder (otherwise known as

an optical encoder).

Moreover, Schattenburg and Smith have argued that there is a "critical role of

metrology in nanotechnology"[39]. Citing the importance of measurement in several

industrial revolutions, an argument is presented that nanometrology is necessary for
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Figure 1-1: 300 mm grating fabricated in Scanning Beam Interference Lithography on
a silicon substrate

the nanotech era. Indeed, according to the National Institute of Standards and Tech-

nology (NIST), the semiconductor industry (a $200 billion dollar industry in 2003)

has been driving the metrology needs for other industrial sectors [10]. A paper by

Postek at NIST illustrates that the value of a nanometer control in the IC industry

exceeds ten dollars per nanometer (per microprocessor) resulting in an overal 1 billion

dollar savings for critical control [35]. Indeed, it is estimated that the NIST linewidth

standard resulted in a savings of over 30 million dollars. Moreover, Postek observes

that the rule of thumb in the semiconductor industry is "if you can't measure it, you

can't make it". This unfortunate truth leaves several advanced technologies shelved

in research institutions, and slows the progress of a new market.

There are several examples of emerging technology that may benefit from nanoac-

curate positioning. For several years carbon nanotubes have been receiving increasing

attention. A recent application of carbon nanotube nanodevices involves their uses

as vertical interconnects for semiconductor technology. As current densities increase

due in part to the scaling of semiconductor devices a need for replacing traditional

silicon technology metal wires has made carbon nanotubes a promising candidate for
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interconnects. Another example of carbon nanotube devices involves using arrays of

carbon nanotube Field Effect Transistor (FET) logic circuits. However, as pointed

out in the literature, a major hurdle for producing carbon nanotube FETs involves

the limitation associated with positioning carbon nanotubes at specific locations on

a wafer because the dimensions of the nanotubes are small and the transistor sizes

are large [5, 15].

One may make a case study of carbon nanotubes because indeed they illustrate

many of the nano-fabrication principles occuring in todays nano-era. For example, a

proposed method for fabricating carbon nanotubes uses a photo-lithography produced

template. Similarly, a technique known as templated self-assembly utilizes a template

which contains long range spatial order to assist the growth process of self assembled

materials. Self assembled materials exhibit short range order, but when combined

with lithographic techniques long range spatial order may be achieved [24, 8, 9].

Another example in which coherent diffraction gratings are useful is in the field

of photonic devices. Bragg gratings are commonly used as add-drop filters in optical

communications, mirrors in laser cavitities, and as dispersion compensators [28]. This

is because they actively select certain frequencies while rejecting others based on con-

structive or destructive feeback from reflection or transmission from a grating. When

used in this manner, this process is sometimes referred to as distributive feedback (for

example distributed feedback lasers). Smith et al have developed a technique known

as spatial phase-locked e-beam lithography for creating long range spatially coherent

Bragg devices. They have shown for add/drop channel filters that phase errors larger

than 5 nm lead to undesirable consequences [28, 17].

In the field of space telescopes, large area gratings are useful since they allow

for a larger collection area of shallow incidence X-Rays. Indeed, our sponsors at

NASA have been funding our work in order to progress the technology to be used

in future space missions. Recently, a new sponsor, Plymouth Grating Laboratories,

have been applying our technology for high-power laser pulse compression. High-

power pulses contain large energies over small areas, sufficiently high to damage small

optical components. If the beams are expanded such that they contain less energy
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per unit area (i.e. the intensity is decreased) the use of large optics such as our

diffractions gratings may be employeed as an optical device, in this instance for pulse

compression.

While I have listed a number of applications for this technology, it is by no means

exhaustive. Currently, there is plenty of activity in nanotechnology as evidenced

by the emergence of new technical journals and hot research areas in industry and

academia related to the field. In order for mass production and commercialization

to occur, metrological requirements must be satisfied. It is the goal of this thesis to

progress towards providing these metrology needs.

1.2 History of Scanning Beam Interference Litho-

graphy

Spherical waves cause
hyperbolic phase.

Hyperbolic Phase

Figure errors & defects
in collimating optics cause noise.

Linear Phase + Noise

Figure 1-2: Traditional Interference Lithography.

The motivation for creating large area gratings is clear. The natural question arises

as to why SBIL? The answer to this question is found by examining the predecessors to
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scanning beam interference lithography. Traditional interference lithography involves

a single exposure, and is therefore arguably fast. For covering large areas, a beam

is expanded into a spherical wave. Now one may interfere this spherical wave over

a large area substrate. However, the drawback of this approach is that it produces

hyperbolic phase distortions [6] as shown in figure 1-2 (a). Alternatively, one may

use a large lens to collimate the beams as shown in figure 1-2 (b). These lenses

are notoriously difficult and costly to make and commonly introduce errors due to

manufacturing imperfections, known as figure error, into the interfering wavefront

which ultimately produces noise in the grating.

Spatial Filter

x-axis
interferometer

substrate

Air-Bearing Stage

Granite Table

Figure 1-3: SBIL concept showing image formation and beam path through a focusing
lens, spatial filter, and collimating lens. An air-bearing stage is scanned on a granite
block to expose a substrate. The stage position is monitored using X and Y axis
interferometers.

The pioneers of SBIL, Mark Schattenburg, and previous PhD students Carl Chen

,and Paul Konkola ,eveloped scanning beam interference lithography to address these

issues. Scanning beam interference lithography uses a small diameter beam (~ 1mm)

which traverses small commercially available optics as shown in figure 1-3. An air-

bearing stage (Model: Microglide T300L) designed by Anorad Corporation (Haup-
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page, NY) is used to scan the stage using frictionless magnetic forces. The stage is

mounted on a precision lapped ultraflat granite base. The specification of the flat-

ness of the stage travel is ±1.5 microns over the full range of travel [4]. In addition,

an active vibration isolation system designed by Integrated Dynamics Engineering

is provided to reduce vibrations of the stage during scanning. Also shown in figure

1-3 are two incident beams which traverse symmetrical optical paths. The gaussian

beams traverse a focusing lens which focuses each beam to a Fourier plane. A spa-

tial filter is placed in the Fourier plane to remove any high spatial frequencies. A

subsequent collimating lens is used to re-collimate the beams. On the substrate both

beams overlap resulting in a Gaussian intensity envelope with carrier fringes. The

carrier fringes inside the intensity envelope are not drawn to scale. Typically, the

period is set for a 574 nm period by controlling the angle of the incident beams. The

period of the resulting intensity is given by Pf = A/2 sin 0 where 0 is the half angle

between the beams. For a 2 mm diameter beam and a 574 nm period, there are over

3000 fringes within the beam diameter.

Large substrates (on the order of ~ 300x300 mm3 ) are exposed by scanning a

stage in either a parallel scan as shown in figure 1-4 (a), or in a Doppler scan fashion

as shown in figure 1-4 (b). The stage trajectory is shown in red in figure 1-4. Parallel

scan is named as such because the stage is scanned parallel to the interference fringes

(along the Y axis). The stage is stepped over at the end of the scan, in a direction

perpendicular to the interference fringes (i.e., along the X axis) off of the substrate

in order not to smear the fringes on the substrate. The scan is then repeated in the

opposite Y direction in order to overlap adjacent scans. In Doppler scanning, the

stage is scanned in a direction perpendicular to the interference fringes (along the

X-axis). The stage is then stepped over (along Y) at a location off of the substrate

and the scan is repeated in the reverse (X) direction. A uniform average exposure

dose is developed by overlapping adjacent scans in both cases. In Doppler scanning,

the fringes must be synchronized with the stage in order not to smear the image

transferred onto the photo-resist covered substrate.
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(a)

J Y

(b)

Y.m

ALI J
Stage x

Figure 1-4: Stage scanning methods (a) Parallel scanning in which the stage is scanned
parallel to the interference fringes on the substrate. The stage scan direction is shown
in red. (b) Doppler scanning in which the stage is scanned perpendicular to the inter-
ference fringes on the substrate. In both cases, the stage steps over in a perpendicular
direction to the scan off of the substrate. The scan is then repeated in the reverse
direction in order to overlap adjacent scans.

1.3 Heterodyne Phase Modulation

The heart of SBIL resides in its control architecture. One anticipates that there

is significant error at the nanometer level in the stage motion. The key to avoiding

printing these errors involves using high-precision interferometers to monitor the stage

error. Once this error is known, the interference fringes may be modulated to correct

for the stage error. In this way, the interference fringes are said to be stationary in
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Figure 1-5: Scanning beam interference lithography writing mode.

the stage reference frame. In order to implement the interference fringe motion, one

requires a method of modulating the interference fringes. The SBIL architecture uses

acousto-optic modulators to phase modulate the left and right arm beams. The left

and right arm refers to the left and right beam paths which make the interference

pattern. Acousto-optic modulators are devices which act as transducers to effectively

convert a radio frequency (RF) wave into a refractive index modulation in a crystal.

By changing the frequency of the RF wave the period of the index modulation may

be changed. The period is given by A = v/f, where v is the velocity of the RF wave

in the crystal and f is the frequency of the wave. The index modulation may then

be thought of as a grating which is traveling at the same velocity as the RF wave.

This moving grating gives rise to a doppler frequency shift of the diffracted wave [21].
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The end result is that the first order diffracted wave from an acousto-optic modulator

obtains a frequency shift, or a phase modulation, which may be controlled by changing

the RF input. In this manner, the interference fringes may be synchronized with the

stage motion so that they are stationary in the stage refererence frame. Figure 1-5

illustrates this principle. Shown are three acousto-optic modulators (AOMs) which

modulate the left arm with frequency fL, the right arm with frequency fR, and the

heterodyne beam with frequency fH by changing the RF input frequency into AOM1,

AOM2, and AOM3 respectively. The nominal modulation frequencies are fL = 100

MHz, fR = 100 MHz, and fH = 120 MHz. These modulations frequencies are of

course small with respect to the optical frequencies (several hundred THz) in the

beams given by f = c/A, where A = 351 nm is the wavelength of light and c = 3x108

m/s is the speed of light in air. However, when the left arm and the heterodyne arm

interfere at phase detector #1 the resulting measurement signal contains the frequency

difference fH - fL. In this way, one may recover the phase difference between the right

arm 0 R and the heterodyne arm OH by observing the output of phase meter #1 in figure

1-2 given by (41 = OR - OH). Similarly, phase meter #2 in figure 1-2 measures the

phase between the left arm OL and the heterodyne arm as 42 = OL - OH. Subtracting

the two measurements q 1 - 0 2 then allows us to obtain the phase difference between

the left and right arms given by #1 - #2 = OR - OL.

In parallel writing, the stage travels along a direction parallel to the interference

fringes in the Y direction. In order to overlap adjacent scans the the stage is pro-

grammed to step over an integer number of grating periods in between scans. In this

case, a stage error along the X fringe direction, Xerror, leads to a phase error in the

grating. The phase of the interference fringes are changed to compensate for this

stage error. This is done by modulating the phase difference between the arms such

that
27r

OR - 2 = Xerror, (1.1)

where Pf = 574 nim is the fringe period. The concept of correcting for the stage error

is clearly shown in the error equation 1.1. That is, in the case that the stage error
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is zero, and the stage properly steps over an integer number of periods in between

scans, the phase modulation goes to zero. In this case, the fringes of the new scan

overlap with the fringes of the previous scan and optimal contrast is obtained.

During Doppler writing, a similar argument applies. The main difference, however,

is that during Doppler writing the stage position is moving along the X direction

during a scan. The fringes are then simply modulated to follow the measured stage

X position. Explicitly, the fringe locking condition is expressed as

OR -- X = Xm, (1.2)
Pf

where xm is the measured stage position along the X-axis obtained from the output

of our X-axis interferometer. Ideally, implementing Doppler writing should involve

modifying the parallel writing error equation given by equation 1.1 and programming

a new scan direction. Another consideration needed in achieving high contrast images

during Doppler scanning involves the effect of a subtle time delay in the electronics.

Since the stage typically achieves a constant velocity v during a scan in the range

of 10-100 mm/s, the fringes must move at a frequency of 17-174 kHz. A time delay

in the electronics leads to a phase delay in the fringes. This will be described in

greater detail in the chapter on novel writing techniques (chapter 2). In the next

section, I will describe a powerful feature in the nanoruler. The nanoruler also uses

a heterodyne technique to read the phase of a written grating.

1.3.1 Reading Mode

The nanoruler's heterodyne reading mode scheme shown in figure 1-6. The left and

right arms, modulated by frequencies fL = 90 MHz and fR = 110 MHz ,respectively,

are combined in phase meter #3. The frequencies of the left and right arms are

chosen to give a 20 MHz frequency difference in the interference signal collected

on phase meter 03 [25]. These beams are split off before they interact with the

grating surface, and therefore do not contain any phase information about the grating.

Rather, phase detector #3 measures the phase difference between the right and the
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Figure 1-6: Scanning beam interference lithography reading mode.

left arms (03 = OR - OL). On the other hand, the reflected left arm from the grating

and the back-diffracted right arm are collected into phase meter #4 . This phase meter

contains the phase difference between the reflected left arm and the back diffracted

right arm. The back diffracted right arm contains the phase information of the grating

we seek along with the phase of the reflected left arm or and incident right arm .

The phase detected at phase detector 4 therefore contains 4 = OR + O0 - or where

OG is the phase of the grating. The phase of the grating is then recovered by taking

a difference between the output of the two detectors as in 4 - 03 = OG.

This assumes that the phase of the back diffracted right arm Od is equal to the

phase of the incident right arm OR plus the phase of the grating as expressed by the
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relation 0 R = OR + 0 G. This also assumes that the phase of the incident left arm

0 L is equal to the phase of the reflected left arm or. This reading mode ability will

be discussed in greater detail in chapter 5. The original reading mode configuration

proposed by Heilmann, and implemented by Konkola will be used in combination

with an algorithm I developed to determine the grating phase in the presence of

a system distortion. The original reading mode configuration, as described in this

section may be used to recover the phase of a grating in an ideal system. However, a

real system will contain non-ideal characteristics such as Abbe error, reference mirror

distortion, and substrate expansion (due to thermal effects and vacuum chuck forces).

How to recover the grating phase in a distorted system will be the highlight of my

contribution. In addition, the reading mode system as described requires a specific

grating orientation. Namely, the grating must be oriented with its lines parallel to the

Y-axis. A dual pass reading mode technique which I propose will also be presented in

chapter 5 which will allow one to read the grating in a rotated position. In addition,

the surface map of a grating substrate may be recovered using this approach.

The grating phase may be read across the grating by scanning the stage. In the

following section, I will describe how the stage interferometer works.

1.3.2 Stage Measurement Interferometer

The stage position must be measured with high resolution in order to achieve re-

peatability at the nano-meter level. This is accomplished by using Zygo's linear/angle

interferometers (ZMI 2000 Series). A cartoon illustrating how the position measur-

ing interferometer works is shown in figure 1-7. Zygo's 2000 series of interferometers

use a heterodyne scheme where two cross polarized beams (S and P polarizations)

with modulated frequencies (fi, f2) exit a Helium-Neon laser. The two beams enter a

polarized beam splitter together and seperate upon exiting into two seperate paths.

A particular polarization associated with frequency fi, the P polarization undergoes

reflection at the beam splitter interface and reflects from a reference mirror surface.

Upon reflection from the reference mirror, it passes a retarder of A/4 for a second

time which effectively rotates the polarization of the beam by 90 degrees resulting in a
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Figure 1-7: Position Measuring Interferometer (Zygo Corporation [1]). The output
of a helium neon laser includes two cross-polarized beams modulated at frequencies fi
and f2. Red corresponds to the beam path path of the reference arm modulated with
frequency fi. Shown in blue is the measurement arm, modulated with frequency f2.

beam of modulation frequency fi with a S polarization. This new polarization allows

for the beam with frequency fi to transmit through the polarized beam splitter as it

proceeds to the optical element which translates and retroreflects the beam. It then

undergoes transmission through the polarized beam splitter for a second time. Upon

reflection from the reference mirror, for the second time, it changes its polarization

once again as it passes twice through the optical retarder. This returns the beam

once again to its original P polarization allowing it to reflect from the beam-splitter

and into a receiver.

The other beam with a frequency modulation of f2 and a polarization of S trans-

mits through the polarized beam splitter and reflects from the stage reference mirror.

Similarly, it changes polarization after passing the A/4 retarder and becomes P po-

larized allowing for it to reflect at the beam splitter interface. The beam then gets

translated and retroreflected. It once again reflects from the beam splitter interface

and reflects back from the stage mirror for the second time. This time it changes its

polarization to S and transmits through the beam splitter where it is collected at the

receiver along with the other beam of frequency fi.
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While this level of detail is provided in the Zygo manual [1], it is included in this

introduction as a reference for how the stage interferometer works. The point to be

taken away from this cartoon is that the beam modulated with frequency f2 which

reflects from the stage mirror does so twice. This is known as a four pass scheme,

since each pass is a round trip and therefore doubles the path length. By viewing the

stage or reference mirror, we will see two spots on each mirror associated with the

position measurement.

We will return to the stage measuring interferometers in chapter 3 where we will

discuss coordinate system errors. At that point, an additional two beams (not shown

in figure 1-2) will also be shown in the stage and reference mirror, however, we will

not provide a beam trace for these additional beams. These additional two beam

paths are used for an angle measurement. We will utilize both the position and angle

measurements in chapter 3 to measure the distortion in the stage reference mirror. It

is noted that the optical layout used for the angle measurement is similar to the one

shown above and is well documented in the Zygo manuals. Rather than repeating a

schematic of the layout, the reader is referred to the appropriate reference. The final

note in closing of this section is that the resolution of all of the phase detectors used

in this chapter correspond to a least significant bit resolution of l. For a wavelength

of ~ 633 nm, this corresponds to a resolution of 633/(512x4) = 0.3091 nm, where

the factor of 4 is a result of the 4 pass configuration. However, the writing and

reading mode interferometers use a single pass arrangement with a UV wavelength.

In that instance, the least signficant bit resolution on the phase detector electronics

is 351/512 nm = 0.6855 nm. With all other considerations aside, this places a limit

on the repeatability due to the resolution of our electronics.

1.3.3 Refractive Index Correction

Turbulence and temperature fluctuations change the refractive index of air. The

nanoruler minimizes the error due to refractive index fluctuations by enclosing the

system inside an environmental enclosure (designed by Control Solutions) which con-

trols the temperature to ±10 mK. The environmental enclosure is also placed within
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a clean room environment. In addition, a refractometer is used to monitor the refrac-

tive index fluctuations. Paul Konkola et al. implemented the refractive index control

which essentially entails using an interferometer which monitors a stationary path as

a method to measure refractive index fluctuations An(t) [26, 27]. The refractometer

provides a measurement On for t > 0 expressed as

On(t) = 27rL[n + An(t)], (1.3)

where L is a constant which is a measure of the distance between the two interferome-

ter arms (the reference and measurement arm). At time t = 0, when the measurement

begins 6(0) = Oo = " , where n is the initial refractive index. The change in re-

fractive index An(t) relative to the refractive index at the start of the measurement

n is then found to be

An(t) = [On - Ono] . (1.4)
27rL

In general, the stage error due to refractive index fluctions will be of the form

Xerror = An(t)[xm - xo], (1.5)

where xm is the measured stage position and xo is a constant offset. Physically,

the offset xo correspond to the position of the stage where the so called "deadpath"

is zero. The deadpath is a term given to the uncompensated path length in an

interferometer which is subject to index fluctuations. For example, when the reference

and measurement arms pass through the same path length in a uniform medium the

deadpath is zero. In order to calculate equation 1.5, one only needs to solve for

two unknowns L in equation 1.4 and xo in equation 1.5. Paul Konkola devised an

experiment which allows one to use reading mode to determine the unobservable

error in SBIL. This is done by reading the phase of the grating while the stage

is held stationary. Since the stage position is known using stage interferometers,

and the grating phase is assumed to be linear over small distances, the noise in the

grating phase measurement may be determined and is referred to as the unobservable
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error. By applying a least-squares fit to the unobservable error, one may solve for

the constants L and x0 . Paul Konkola found that refractive index correction will

compensate for approximately 10 nm of error incurred over an hour period [26]. In

the next section, I will describe the software and hardware in SBIL which takes all of

the inputs previously described to fringe lock the interference fringes to the stage.

1.4 SBIL Hardware and Software Implementation

The core of scanning beam interference lithography resides in the software. It would

be difficult to describe the software in any great level of detail because of its complex-

ity. However, a basic understanding of how the software works will already provide

us with much insight. Here I will present a basic overview of the software architec-

ture, and I will try to highlight some of my specific contributions to the software

development.

The basic platform for the software to be described was written by Paul Konkola

and Carl Chen. I have built off of their platform and have made several contributions,

some of which I will make a note of at the end of this section. Carl's software mostly

used a Labview environment for non-time critical tasks such as automated beam

alignment, CCD camera capture, and data analysis of intensity measurements to

deduce the fringe period. His software resides on a computer, which I refer to as the

Labview computer.

Paul Konkola's software was written in a code-composer C-environment. This

software is used to communicate with an Ixthos Champ C6 VME board which contains

four Texas Instruments TMS3206701 DSPs. Out of these three DSPs, three are

currently being used. This board resides on a VME bus and is the master to several

other VME input/output boards to be described. Once the C-code is compiled using

Texas Instrument's compiler (Code Composer Studio), the code is downloaded to the

DSPs using a JTAG interface. The code is then loaded and ran off of each DSP. The

DSPs run at an internal 167 MHz speed, and each contains 16 megabytes of memory.

The C compiler environment refers to these three DSPs as DSP A, B, and D. We
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prefer to use more descriptive names. Since DSP B is used to pass user commands,we

refer to it as the user-interface DSP.

DSP A, known as the real time DSP, contains all of the real time code which

computes all of the necessary values to close our feedback loop. These computations

include reading the nine inputs from the other VME devices (9 variables). Namely,

these include the x and y inteferometer measured position, the refractometer mea-

surement, the x and y stage angle interferometers measurements, the writing mode

phase detector outputs 01, 02, and the reading mode outputs 03,04. This loop speed

is currently 10 KHz, and is determined by an integer multiple of the stage interferom-

eter's laser clock frequency. Accordingly, every 0.1 ms all of the various interferometer

inputs are triggered and available. The 10 KHz laser clock also generates a hardware

interrupt (interupt 5) on DSP A which causes it to service an interrupt routine (inter-

nally known as the interrupt 5 routine). This then computes a phase correction to be

sent to a frequency synthesizer which generates the RF phase modulation necessary

to drive the acousto-optic modulators. In addition to interrupt 5, which is where all

of the real time code is stored, an additional interrupt (interrupt 4) is used to monitor

errors. If the stage hits a limit switch, or if the phase meters report any errors, a

digital change of state board (VME-VMIC-1181) generates a VME hardware inter-

rupt 4. DSP A then enters a interrupt 4 service routine and further investigates the

cause of the error. Recently, I have added a Labview trigger which also shows up as

a change of state on the VME-1181 and generates an interrupt 4 hardware interrupt.

This is used for handshaking and transferring information to the Labview computer.

Previously, communication did not exist between the two seperate systems. This has

allowed further automation of routine tasks, and has also allowed one to implement

a phase shifting interferometry algorithm discussed in chapter 4 on contrast.

DSP D, the data exchange DSP, stores all of the data which is collected during

reading mode. This data is then transferred to an external computer through the

JTAG interface so that it may be processed. I wrote an additional layer of software

in visual basic to make this data transfer process user friendly. Visual basic is truly a

user friendly environment which due to its simplicity provides for a fast turn around
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time when programming graphical user interfaces. Visual basic manipulates the code

composer studio environment by using "COM Object Programming" features in Mi-

crosoft Windows. For more information on how this is done, the interested reader is

referred to Texas Instruments Technical Support Knowledge Base (available online)

for code composer studio.

While the handshaking signals between the Labview system and the DSP envi-

ronment is controlled by an interrupt, the actual data transfer is done using a VME

digital input board. The VME-VMIC 2510 board provides the digital input/output

to the Labview environment. In addition, this board also serves the function of pro-

viding a digital output to the frequency synthesizer which drives the AOMs. This

digital word may be used to change the phase or amplitude of the RF power to the

AOMs.

The other boards on the VME bus consist of four ZMI-2002 series electronic phase

boards (manufactured by Zygo Corp [1). These detect the output of the stage x and

y position/angle interferometers, the writing mode signals #1 and 42, and the reading

mode signals 03 and #4. In addition, a Zygo ZMI-2001 series board is used to monitor

the refractometer input.

My contribution to the software development in SBIL comes in the form of im-

plementing Doppler writing, as described previously. In addition, I wrote a Visual

Basic interface to add user-friendliness and to import/export data to the DSPs. This

is particularly useful for importing phase map corrections to be described in chapter

2. Another major contribution comes in the form of absolute phase correction and

beam blanking. Previously, due to the design of the ZMI-2002 series of electronics

turning on and off the beams would force one to lose the "absolute phase" of the

beams. Essentially, this means that the phase differences in writing mode are known

up to an arbitrary constant. This is not a problem for writing entire wafers. However,

if one wishes to pattern wafers while blanking the beams it is necessary to recover

this phase information in order to obtain high contrast. I developed a method to

re-establish the phase of the beams and to blank the beams during writing by using

lookup tables during writing and by taking advantage of a phase diagnostic register
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in the ZMI-2002 boards.

Finally, I created a Labview/DSP communication channel using a VME inter-

rupt as a handshaking signal and a VME digital I/O board for data transfer. This

is critical for developing the phase shifting interferometry algorithms which require

synchronization of the real time DSP to change the phase of the interference fringes

with a Labview driven capture of CCD frames. In addition, this is particularly use-

ful for automating certain tasks and for merging the software written by Chen and

Konkola on two different platforms.

1.5 Roadmap to this thesis

In chapter 2 we will discuss general patterning techniques used in SBIL. I have imple-

mented a novel scanning technique in SBIL known as Doppler scanning. This allows

one to pattern a grating using an interference pattern while scanning a stage per-

pendicular to the interference fringes. This method requires synchronization of the

interference fringes with the stage motion. A particular advantage of this technique

involves the speed and ease with which one may write certain patterns. For example,

suppose a pattern has an area W x L, where W is the width of the pattern in a

dimension perpendicular to the interference fringes and L is the length of the pattern

parallel to the interference fringes. Patterning by Doppler writing will requires less

scans and be in general faster if W > L. Another advantage of Doppler writing

involves the ease with which we may tune into a desired period. It will be shown in

chapter four that one may choose a desired period in parallel scanning by stepping

the stage over by an integer number of grating periods. In Doppler scanning, on

the other hand, one only needs to change the phase modulation of the beams while

scanning. This will have important implications for the next generation of scanning

beam interference lithography referred to as the variable period system. Finally, if

one considers other patterns which consist of a chirp along a direction parallel to the

interference fringes Doppler writing will be a superior choice. We will discuss this

type of pattern in greater detail in the section on Doppler writing.
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In addition to the aforementioned Doppler writing scheme, I have developed a

method to blank the beams in order to implement amplitude maps while patterning.

While conceptually simple, the challenges involves the use of synchronizing high speed

digital electronics to synchronize beam blanking, re-establish phase, and to change

the amplitude of the beams while the stage is in motion. This allows for writing

different patterns on different portions of a substrate. In the section on contrast,

we will show that changing the amplitude of the beams will also allow for changing

the linewidth of the grating. This will allow for writing different patterns on the

same substrate with different diffraction efficiencies. In addition, I have developed

a method to implement two dimensional phase maps which may be used for phase

correction, or phase modulation. This requires transfering two dimensional phase

information to memory locations which are addressed during scanning. The phase

information is then sent to the frequency synthesizer which drives the acousto-optic

modulators that ultimately change the phase of the interfering beams which pattern

the substrate.

The nominal grating period in this thesis is 574 nm. We would like to fabricate

gratings to have a phase accuracy limited only by the repeatability of the system

(~ +3) nm. Toward this end, this thesis will address achieving this goal by iden-

tifying the major sources of error which are present in scanning beam interference

lithography and developing techniques to measure these errors. These error sources

include coordinate system error which may be further divided into Abbe error and

reference mirror distortion which are addressed in chapter 3. A novel technique I de-

veloped will be presented to characterize the mirror distortion in our stage reference

mirrors.

In addition, the sources of linewidth variation are discussed in chapter 4. In

the last section of this thesis, we will devise characterization techniques which may

be employed to characterize the grating distortion in SBIL. These tests are similar

in scope to methods used in the optics industry for testing wavefronts and optical

components. However, the novelty involves the mathematical analysis done in the

context of discrete signal processing and the application for characterizing grating
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distortions in SBIL using the nanoruler's unique reading mode ability.
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Chapter 2

Novel Patterning Techniques

In this chapter, I will present novel techniques which I developed to pattern gratings

in Scanning Beam Interference Lithography. These techniques will include a Doppler

writing scheme as described in the introduction (Chapter 1). In addition, a beam

blanking and absolute phase technique will be described along with implementation of

2-dimensional phasemap correction. We will begin this chapter by describing Doppler

writing in great detail[31].

2.1 Doppler Writing

The Scanning Beam Interference Lithography (SBIL) system, see figure (2-1 a), in-

cludes an X-Y air-bearing stage onto which a resist-covered substrate is placed and

held down using vacuum forces. A stationary interferometer attached to the optical

bench and supported by the granite air-bearing block provides a grating "image" on

the substrate. In order to expose large areas on the substrate, the stage is scanned

using two different approaches as shown in figure 1. In both methods the interference

fringes are held stationary with respect to the substrate using fringe locking electron-

ics and acousto-optic modulators [25]. The first method (figure 2-1b) consists of a

parallel scan, in which the stage scans along a direction parallel to the interference

fringes. At the end of the scan, at a location outside of the substrate, the stage is

stepped over by a distance of approximately half a beam diameter or less. This allows
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the new scan to overlap with the previous scan and produces a uniform dose profile

[6].

Optical
Bench

(a) SBIL system schematic

X Direction
Scanning
Grating
Image

X-Y Stage

Resist-
Coated
Substrate

(b) Parallel Scanning

X Direction

II
*Scanning
Grating
Image

(c) Doppler Scanning

Figure 2-1: (a) SBIL schematic showing X-Y stage and stage interferometer SBIL uses

two scan methods to expose a large resist-covered substrate. In both methods, the

interference fringes are held stationary with respect to the stage using phase-locking

electronics. (b) Parallel scanning requires the stage to scan in a direction parallel to

the interference fringes. The stage steps over less than half of the beam diameter off

of the substrate at the end of a scan. A new strip is then written in the opposite

direction which overlaps with the previous strip. (c) In Doppler scanning, the stage

scans perpendicular to the interference fringes. The stage then steps over parallel to

the interference fringes at the end of a scan.

In this chapter we present novel results on the implementation of Doppler scan-

ning. In Doppler scanning, the stage is scanned along a direction perpendicular to the

interference fringes (see figure 2-1c)). High contrast gratings require the fringe locking

algorithm to synchronize the interference fringes to the stage motion perpendicular

to the fringes. For example, consider an X-Y coordinate system which is defined by
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the reference frame of the granite block shown in figure 2-1a. Assume the interference

fringes are aligned parallel to the Y axis. If the stage moves perpendicular to the

fringes (X direction), and the fringes are held stationary with respect to the granite,

smearing of the fringes occurs on the exposed photoresist. On the other hand, if

the interference fringes are phase-locked with the X stage motion, the interference

fringes move with the substrate along X and a high-contrast grating is produced in

the photoresist. We will derive this result in chapter 4 where we will discuss contrast

in greater detail.

P6

P5

X

Y

Figure 2-2: Geometry well suited for Doppler writing

It would not be correct to say that Doppler writing is in general superior to Parallel

writing, because there are situations in which each offers a particular advantage.

Parallel scanning offers a continous scan along the Y with discrete steps along the

X axis. Doppler scanning on the other hand, offers discrete steps along the Y axis,

but continous scanning along the X axis. Therefore, neither offers an advantage in

terms of continous scanning because each technique scans continously in orthogonal
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directions. However, Doppler writing offers a unique advantage in patterning in

certain geometries. Consider the grating shown in figure 2-2. This pattern consists

of constant periods along the X direction. However, as one increases along Y, the

grating periods decrease. We may say, loosely speaking, that the grating is chirped

along Y although we note that the lines are parallel to the Y axis. In Doppler writing,

this particular geometry would be relatively easy to pattern. For example, each period

Pi may correspond to an individual Doppler scan. In between scans, the fringe period

may be adjusted by changing the angle of the incident beams. The Doppler scan

may then be repeated. Since the pattern is chirped along a direction "parallel" to

the fringes, this particular pattern would be difficult to write using Parallel mode.

While the latter pattern may at first appear to be quite abstract, it may be useful

for a number of practical applications. Several photonic devices may benefit from

this type of structure. For example, consider a grating directional coupler device

which is described in standard texts on photonic devices [42]. Distribute feedback

may be used in these waveguide devices to spatially select certain frequencies for use

in optical fiber communication applications. Since the bandwidth of these devices

is proportional to 1/N where N is the number of periods, long gratings could offer

narrow bandwidth filtering. Doppler writing allows us to generate a mask for these

devices which include several spatial frequencies. This will allow for coupling out

several wavelengths for fiber optical communication applications.

Another application for this structure includes its use in x-ray telescope appli-

cations. Shown in figure 2-3 is a diagram illustrating a proposed variable period

structure for a NASA x-ray telescope. It has been suggested that a grating with a

chirp along the Y direction as shown in figure 2-2 will serve as a good approximation

for the structure in figure 2-3. The geometry of figure 2-3 consists of a radially chirped

grating. Accordingly, the contours of constant period reside on circles of radius p.

The details of patterning this type of structure will be the thesis topic of another

student in our group. However, we mention it here because it is a good motivation

for Doppler writing.

For the remainder of this section, we will describe the details of implementing
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X-ray Reflection Grating Geometry
(Off-Plane Diffraction)

Pm 1 mm

~1W'

pa <0.2 AM Flatness <1.0 pm
Chirp Ap/p -2% Roughness <0.5 nm

ae -10

Figure 2-3: Variable period structure for x-ray telescope application

Doppler writing. We will return to Doppler writing in chapter 4 where we will discuss

contrast issues. In chapter 4, we will show that the period which is printed in a grating

is determined by the fringe modulation in Doppler scanning, whereas it is determined

by the stage step-over distance in parallel scanning.

Implementing Doppler writing requires synchronous motion of the interference

fringes with the stage of our system. In order to accomplish this motion, high speed

electronics are required. Here we will discuss the time delay associated with the

time it takes to update the phase of the interference fringes from the time the stage

position is acquired. Compensating for this time delay is necessary to implement

Doppler writing. In this context, the time delay should not be confused with the

temporal equivalent of an optical path length difference in the interfering arms.

In order to implement Doppler writing our control loop uses five phase-meter

inputs. Two interfering arms using a A, = 351.1 nm wavelength produce a grating

image on the substrate, as shown in figure 2-4. The left arm with frequency fL

is interfered with a heterodyne beam with frequency fl in phase meter 1 (PM1),

which outputs <b1. The right arm with frequency fR is interfered with the heterodyne
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reference in phase meter 2 (PM2), which outputs (D2. The remaining three phase

meters are necessary for stage control: the stage X-axis interferometer phase meter

outputs the x stage position 4 in units of 27r phase corresponding to a distance

AHeNe= 632.8 nm, the Y-axis interferometer outputs the y stage position oby in the

same phase units, and a refractometer phase meter which monitors variations in the

index of refraction that lead to changes in optical path length. A detailed discussion

of the refractometer phase meter is available elsewhere [26] and is described in the

introduction to this thesis.

DP/ Frequency-
Comparator Synthesizer

I AOM3

I AOM2

AOM1

PM2 PM1

|Wafer

SeX-YStage

(a) Writing mode

DSP/ Frequency
Comparator Synthesizer

II I
AOM2 AOM1

PM3

fL fR

PM4

G rating
L X- YStag

(b) Reading mode

Figure 2-4: Metrology and writing modes used in scanning beam inteference lithog-
raphy.

The difference between phase meter 1 and phase meter 2 in figure 2-4 contains

the phase difference Al = 4 - 41> between the left and the right arms [25]. In

order to implement Doppler writing, this phase must be synchronized with the stage

motion. This requires significant frequency differences Af between the arms, where
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Af = 'JAM. In order to describe the stage motion, we will define an X-Y reference

frame to be that of the granite table on which the stage moves, as shown in figure

2-1.

For example, consider the case in which the image fringes formed by the left

and right arms are parallel to the Y-axis and periodic along the X-axis with period

Pf = A/ (2 sin 9), where 9 is the half-angle between the beams. The image intensity

pattern will be of the form

I(x, t) = A{1 + -ycos[--x - A1(t)]}G(x), (2.1)
Pf

where A is the amplitude of the interference pattern, y is the image contrast, x is the

coordinate along the X-axis, and A1(t) is the phase difference of the left and right

arms at time t. Here G(x) = exp[-8(x - Xo) 2 /D 2] is the Gaussian envelope of the

image, where xO is the image center and D is the e- 2 diameter. During parallel scan

mode AA ~ 0, leading to fringes essentially stationary with respect to the Gaussian

envelope.

Now consider the reference frame of the moving stage. The stage reference frame

X'-Y' is traveling at velocity v(t) with respect to the stationary frame, which we

assume is along the X-axis. The moving stage coordinate relative to the stationary

reference is therefore given by

= x - x,, (2.2)

where x, = f vdt. As an aid in understanding this relative coordinate relation, let us

consider an object on the stage located at a coordinate in the stage reference frame

'. Now let us assume that the stage is stationary (with respect to the laboratory

frame) such that x, = 0. An object at a position ' in the stage coordinate frame may

also be described as being at a position xO = ' in the laboratory frame consistent

with our notation in equation 2.2. Now let us allow the stage to move relative to

the laboratory frame with a velocity v. An object on the stage is still located at the

same position x' in the stage frame. However, in the laboratory frame, this object

has moved to position xO = x'+ x, due to the motion of the stage. This confirms are
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sign convention in equation 2.2.

The intensity in the stage reference frame may then be written by substituting

x = X' + x, into equation 4.45 as written below:

I(x', t) = A{1 + -ycos[- (x'+ x,) - A1D(t)]}G(x' + x,). (2.3)
Pf

As the image envelope in the stage reference frame moves with time we want to

frequency-shift the left and right arms so that the fringes are stationary in the stage

coordinate x'. We accomplish this by shifting the frequency of the two arms using

acousto-optic modulators such that

27r
P9 =X) (2.4)

which can be written,

2jvdt = 2r Af dt, (2.5)

where Pg is the desired grating period. For example, in the constant velocity case,

x, = v - t and the condition of fringe locking becomes Af = v/Pg. In order to obtain

a high-contrast latent image in the resist, the difference between the fringe period

P1 and the grating period Pg must be small otherwise fringe smearing will occur and

contrast will degrade. This condition is met when A << -9 where AP = Pf - P

and D is the image diameter. This condition is provided here without proof. We will

prove this relation in chapter four where we devote our discussion to contrast.

2.1.1 Electronic Time Delay

Early implementations of Doppler writing yielded gratings with poor contrast at

certain velocities. This was determined to be due to the time delay in the control

loop which results in phase offsets between overlapping scans. This is illustrated by
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including a time delay term td in equation (2.3), assuming constant velocity, obtaining

I(x', t) = A{1 + -ycos[-27(x' + xS) - -V - (t - td)]}G(x' + x,). (2.6)
Pf P9

The phase offset between adjacent scans is given by

(I4d - --rI| - td, (2.7)
Py

which increases with the velocity. In general, the above equation can be generalized to

a two-dimensional case with the grating arbitrarily aligned with respect to the stage

axes and with an arbitrary velocity vector. Note that at certain velocities where the

phase offset 'Jd = (2n + 1)7r, where n is an integer, the contrast in the printed image

goes to zero and no grating results. This is because the adjacent scans overlap with

a 7r phase shift. In order to compensate for the phase delay, we must determine the

time delay in our system. In the next section, I will describe an experiment which

was performed to measure this time delay.

2.1.2 Measuring the Time Delay

We begin by identifying the various sources of time delay in our system. A set of five

synchronized phase meters update internal phase registers at a 20 MHz clock rate

(50 ns). Every 2000 cycles (100 ps) the phase meters simultaneously latch out their

phase values making them available to externally readable registers, and generate a

bus interrupt corresponding to a 10 kHz interrupt rate. A digital signal processor

(DSP) services the interrupt at time Ti as shown in the timing diagram in figure 2-5.

The phases read by the DSP have a data age on the order of 335 ns as a result

of time delays in electronics and digital filters (1, 11]. In figure 2-5, the upper left

inset shows the time Ti when the phase meters are latched and the interrupt routine

begins. The phases which are latched at time Ti, however, corresponds to phase of

the measurement signal at time Tp (335 ns delay). The comb in the inset corresponds

to 50 ns events. Every 50 ns a new phase measurement occurs and the phases are
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summed and stored in internal phase registers [1].

During the interval from Ti to Tc, the DSP reads the phase registers, calculates

the phase error and outputs the phase correction to the digital frequency synthesizer

as shown in figure 2-5. At time Ts the synthesizer outputs an RF frequency correction

to the acousto-optic modulator (AOM). The propagation delay associated with the

RF cable from the synthesizer to the AOM and the velocity of sound in the AOM

transducer adds additional time. Finally, at time Ta the AOM phase-shifts the beam

and the beam propagates to the wafer. At time Ti' = Ti + 100ps, the next DSP

interrupt occurs and the cycle repeats. The overall time td = Ta - Tp is the total

time delay of the system measured to be 99.5 ps, which is just a little shorter than

the DSP loop rate of 100 ps. Rather than determining the time delay of the various

components individually, a series of experiments were used to determine the overall

time delay of the system.

In order to measure the time delay of our control loop, a grating is mounted on

the stage and the system is placed into metrology mode (see figure 2b). In open-loop

metrology mode SBIL uses two phase meters to measure the phase of gratings which

have been previously written. Phase meter 4 measures the interference of the left

arm back-diffracted off of the grating and the right arm zero-order reflected from the

grating, obtaining

44(t) = (%(t) - 'h(t) - (b(t) -- A4)t) - 4 (t), (2.8)

where (DL and 4 R are the phase of the left and right arm, respectively, and %g is the

phase of the grating [25].

Phase meter 3 measures the interference of the left and right arms which are picked

off before they reach the grating, obtaining

3(t) = A1(t) = 'I (t) -
4 (t). (2.9)

Subtracting the output of phase meter 4 from phase meter 3 results in the phase

of the grating (D. The stage can be scanned in a parallel fashion, or in a Doppler
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100 ps I!

99.5 ps

Figure 2-5: Timing diagram of the SBIL control loop. Shown in the upper left is a
zoomed-in view when the phase measurement occurs. At time Ti a DSP interrupt

occurs. The phases which are available at Ti have a 335 ns delay time (Ti - Tp =
335 ns) due to electronic propagation delay. The tick marks shown on the zoomed-in

scale correspond to a period of the 20 MHz phase meter clock (50 ns). At time Tc, the

DSP computes a phase correction and it is sent to the frequency synthesizer. At time

Ts, the synthesizer outputs RF power to the AOM. At time Ta, the AOM frequency

shifts the beam. The overall time delay Ta - Tp is 99.5 ps. At time Ti' = Ti + 100
ps the next DSP interrupt occurs and the cycle repeats.

scan mode. We developed a novel "closed-loop" Doppler configuration which allows

measurement of the overall time delay of our feedback loop. In closed-loop Doppler

metrology mode the stage is scanned perpendicular to the stage and a feedback loop

synchronizes the phase of the image grating with the stage motion.

To illustrate this principle, let us confine ourselves to a one-dimensional example

where the grating lines are periodic along the X-axis of the stage. Furthermore, we

scan the stage along the X-axis. The phase of a constant-period grating in the stage

frame is given by < = f'. The phase of the grating in the stationary frame is given

by
27r

P9}(t) = - (X - xe), (2.10)

where x. is the grating position at time t in the stationary reference frame. In closed-

loop Doppler metrology mode, the phase of the left and right arms are controlled by
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a frequency synthesizer. The phase difference between the left and the right arms are

set by the DSP at time t to be

A/MDSP(t) = 27r s (2.11)

where Pm is a constant to be determined. Taking the derivative of equation (2.11)

yields

Af = 1 d A(DSP = V/Pm. (2.12)

In the absence of a time delay in the electronics, the phase difference between the

left and the right arms would be given by A-1)(t) = A'DSP(t). This simply means

that the DSP code which updates the frequency difference between the left and right

arms would instantaneously modulate the left and right beams. To account for a

time delay, we note that the phase difference between the left and right arms may be

expressed as ALV(t) = A'IDSP(t - td). The output of phase meter 4 in the presence of

this time delay, from equation 2.8 is given by 4 4 (t) = AIDSP(t - td) + (t). From a

Taylor series expansion, we know that we may express A(DDSP ADSP(t - td) +

td{y A4DSP(t - td)}. If we further assume that the stage velocity v does not change

over the time delay interval (i.e., the linear expansion is valid), we may express the

derivative term in the taylor series as IAA4DSP(t - td) = 27rv/Pm where we have used

equation 2.12. Using these relations, we may arrive at an expression for (P4 as

d
'I 4(t) = ACDSP(t) d AM)DSP(t - td) - td - (Ig(t) (2.13)

dt
= 2r (X, - Vtd) +2 (X - X'). (2.14)

PM Pg

The first term in equation 2.13, A&IDSP(t), is defined by equation 2.11. The second

term, dAIDSP(t - td) is given by equation 2.12 where we use the assumption that

the stage velocity does not change over a time interval td. The final term 1g(t) is

substituted with equation 2.10 giving rise to equation 2.14. Note that the terms

involving x, cancel if the modulation constant Pm = Pg. Note also that the offset in
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phase -Vtd depends on the product of the velocity and the time delay td.Pg

With these considerations, we may express the output of phase meter 4 as a

function of the position x of the grating in the laboratory frame. That is, 0 4 (x) =

r(x - t). Figure 2-6 shows the results of our closed-loop Doppler metrology mode

experiment. The output of phase meter 4, 44, is scaled by & to give units of

distance. A hysteresis curve is obtained as the stage is scanned repeatedly back and

forth, starting at rest at point A and accelerating in the positive direction to point B,

then traveling with a velocity of +60 mm/s for ~ 60 mm to point C corresponding

to the upper portion of the hysteresis curve, then decelerating from point C to point

D at rest, then accelerating in the negative direction from point D to point E, then

traveling with a velocity of -60 mm/s for ~ 60 mm to point F corresponding to the

lower portion of the hysteresis curve, then finally decelerating to rest at starting point

A. The offset from the center corresponds to the scaled phase delay, 4'd - = Vtd, in

units of length. This phase delay is proportional to the velocity of the stage and the

time delay. Once the time delay is corrected for in the control loop, the hysteresis

disappears and one obtains the dashed line in the center of the hysteresis loop shown

in the figure. Ideally, the line should contain a zero slope. The slope in the line is

a consequence of not matching the modulated constant Pm to the grating period P,

resulting in a moire beat between the two periods.

2.2 Conclusions

In this section, I have implemented a novel scanning technique in SBIL referred to

as Doppler Writing. While the concept of Doppler scanning has been previously de-

scribed by Schattenburg et al[40], I was the first to implement this writing scheme

in SBIL. The challenge involved in implementing Doppler writing requires an un-

derstanding of the time delay in the electronics. An experiment was performed in

which the time delay was found to be 99.5 ps. Correcting for this time delay in the

control loop requires compensating for a phase offset which is a function of velocity.

When the measured time delay was corrected for, optimal contrast was obtained in
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Figure 2-6: Measured hysteresis curve of the Doppler metrology mode experiment
used to determine the time delay. The upper portion of the curve (dotted line from
B-C) corresponds to a positive stage velocity of v2=60 mm/s for 60 mm. The bottom
portion (dotted line from E-F) corresponds to a negative velocity of 60 mm/s as the
stage reverses its scan direction. Similarly, the dashed line corresponds to a velocity
v1=30 mm/s. The offset from the center is proportional to the product of the velocity
and time delay. Once the time delay is corrected for, the solid line in the center results
in which the hysteresis is removed. The output of phase meter 4 is scaled by Pm/(27r)
to give units of distance, where Pm = 574 nm.

the developed photoresist grating. By changing the time delay from the measured

value, contrast degradation occured as measured with the aid of a scanning electron

microscope. This gives us further confidence in our measurement of the time delay. It

is also noted that prior to correcting for the time delay, certain velocities resulted in

gratings of poor contrast. Properly accounting for the time delay solved this problem,

making Doppler scanning highly repeatable for all velocities.
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In addition, I have described some novel applications for Doppler scanning. In-

deed, it shows promise for writing periodic structures with a chirp in a direction

parallel to the interference fringes. These structures may be useful for photonic de-

vices which utilize distributive feedback, x-ray telescope applications, and it is my

hope that new applications will become available.

2.3 Beam Blanking and Absolute Phase

In this section, I will describe how I blank the beams and re-establish phase during

patterning a wafer. Beam blanking refers to turning the beams on and off during

patterning. While conceptually simple, synchronizing the stage motion, the intensity

amplitude, and the phase locking electronics requires a detailed understanding of the

various hardware components throughout the system. While it is not particularly

instructive to discuss all of the software details, nor to provide an in depth hardware

description of the various components involved, some of the more subtle aspects will

be presented here. The software will be made available to future users, and armed

with knowledge of the more subtle details presented in this section one should be able

to follow it.

The beam blanking problem is broken down into two parts : (1) turning off/on the

power to the acousto-optic modulators, and (2) re-establishing fringe locking. The

power to the acousto-optic modulators is derived from an RF output of a frequency

synthesizer. The frequency synthesizer is controlled by a 32 bit address line and a

32 bit data line. The frequency synthesizer contains three main registers, namely

a power register and a frequency register (and a phase register which is not being

used). During fringe locking, the frequency register is addressed. In order to turn off

the AOM's, a digital word must be sent out on the address lines to select the power

register. The zero amplitude must then be sent out on the data lines. This is done

by using a digital I/O board on the VME bus (VME 2510B).

Turning the beams back on requires one to write the desired amplitude value to

the synthesizer's power registers. Next, the frequency registers must be addressed and
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loaded with the nominal frequency values for the left and right arms. Now finally, the

phase meter boards must be reset. This is done after verifying that there is sufficient

signal strength on the phase meters by checking a status register.

The challenge involves re-establishing fringe locking. A pre-requisite for imple-

menting fringe locking requires a fundamental understanding of how the Zygo phase

meter electronics measure the phase. Here we will describe the operation of the phase

meters in the context of phase meter 3, which outputs 4P3 as described in equation

2.9.

The Zygo phase meter electronics are designed to measure the phase of a hetero-

dyne signal. This heterodyne signal has a nominal frequency of 20 MHz. For the

purposes of our discussion, the measured signal will consist of 03 which contains the

20 MHz frequency difference between the left and the right arms. As is common to all

methods of phase detection, the phase of this measured signal must be measured with

respect to a reference signal. The reference signal to the Zygo phase meter electronics

consists of a 20 MHz clock signal which triggers all of the phase meter measurements.

There are several specialized circuits available for detecting the phase of a heterodyne

signal. These include digital and analog phase-locked loops, zero-crossing detectors,

and discrete-signal processing based specialized circuits which compute the FFT of

a signal. The latter technique becoming available with the advent of fast analog to

digital conversion technology. However, it is beyond the scope of this thesis (and not

our design) to discuss the phase-detection circuitry.

During patterning in writing mode or reading in reading mode, the phase output

(in our example #3) is read from a phase register, referred to as a position register in

the Zygo literature. Unfortunately, the Zygo 2002 series of phase meter electronics

start up with a phase value of zero in the position register.

Ideally, the phase difference between the measurement signal #3 and a reference

signal (usually referred to as the reference clock) would be stored in the position

register. While this phase difference is computed, at startup, this phase difference

is lost because the Zygo phase meters initiates the position register to zero. From

this point of initiation onwards the position register unwraps the phase difference
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between the measurement signal and the reference clock. Here what we mean by

phase unwrapping is simply that the phase difference is not restricted to be between

0 and 27r. To see why this is important, one only needs to consider the position of

the stage. We are interested in the relative stage position and the total distance it

has traveled, not the distance modulo the period of the helium neon laser. For the

purposes of fringe locking, an unwrapped phase is required because our controller

differentiates this phase to generate a frequency word to send to the synthesizer. A

wrapped phase (restricted to 0-27r) contains many discontinuities creating problems

for differentiation. We would therefore like to use the position register because it

contains a filtered unwrapped phase. In order to use the position register and recover

the absolute phase, we must calibrate for the phase lost. To be clear, we define the

absolute phase of a signal to be the phase difference of the signal between 0 - 27r with

respect to a reference clock.

We may express the phase read from the position register as

# 3 (t) = #3abs(t) + Of fset, (2.15)

where Oqffset is a value added to initialize the position register to 0 for t = 0. If

we can recover this offset, we may subsequently subtract its value from future #3(t)
measurements to obtain the signal 03abs, (t) we seek, that is, the absolute phase 03as, (t)

defined as the phase difference of the signal into phase meter 3 and the phase of a

reference clock at time t.

The trick to recovering the phase difference between the measurement arm and

the laser clock resides in using a phase diagnostic register on the Zygo 2002 boards.

As a suggestion to the reader, understanding of this section is not necessary for a

broad understanding of the work that is to follow in subsequent sections. A detailed

discussion is provided here for the next generation of engineers to work on SBIL. The

actual code for this section is provided in Appendix C, and a discussion is provided

in this section to provide a summary of how the algorithm works.

The phase diagnostic register contains the absolute phase difference between the
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measurement arm and the laser clock. So, one simply needs to read this register for

each phase meter and the phases can then be compared to a commmon reference.

The last consideration one must take into account is that the phase which is read

from the phase diagnostic register is the wrapped phase. In addition, the phase

diagnostic register has an opposite sign convention from that of the position registers.

Accordingly, the phase diagnostic register output 43diag(t) has a range from 0 to 27.

This may be considered the modulo 27 value of -03-unf(t), which may be expressed

as

#3diag (t) = -mod2[03-untf(t)], (2.16)

where mod27r[] is the modulo 27 operator. We have emphasized the fact that the

phase diagnostic register is unfiltered. That is, the position register signal #3(t) is

a filtered version of the measurement signal, whereas the phase diagnostic register

corresponds to the negative modulo 21r version of the unfiltered measurement signal

03-unf

Now to calculate the phase offset in equation 2.15 we simply perform a modulo

27r operation on equation 2.15 and add equation 2.16. This may be expressed as

Ooffset = mod27[#3pos(t)] + #3diag(t) (2.17)

In order to restrict Goffset to be between 0 and 21r we perform a final modulo 27

operation on equation 2.17. A measurement was performed in reading mode. The

output of phase meter 3 and the phase diagnostic register are shown in figure 2-7. The

phase diagnostic register has been scaled by -1 and shifted by 27r in order to restrict

its value between 0 and 21r. The output of both curves are displayed in units of

counts, where 512 counts = 2 -r. If we wrap the phase of the position register output

03pos, and subtract the scaled diagnostic register the result would be a constant phase

offset 9Offset which is the absolute phase that we seek.

A final note of interest involves averaging the measurement of Ooffset. It is critically

important that the phase of the interference fringes are controlled with low phase noise

in order to obtain optimal contrast. Since the phase diagnostic register on the ZMI-
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Figure 2-8: Beam blanking and absolute phase were implemented to apply an ampli-

tude map to the wafer
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2002 series are unfiltered, I have applied averaging of the calculated absolute phase

offset. The averaging that is performed corresponds to a sum of all N previously

calculated absolute phase values (i.e., q3abs[0] + q3abs[1 + ... #-3 abs[N]) divided by N,

where the brackets are used to specify the loop iteration number. As pointed out

in the Zygo literature, one must be careful when averaging wrapped phases since

the average of 0 and 512 is 511 (in units of counts where 512=27r). In other words,

the average of 0 and 27r is 0 rather than 7r. An example for where this would be a

problem is if a measured value for 9 o0.fet is close to 2w and contains noise. My strategy

for dealing with this involves creating a convention to deal with this scenario. The

problem resides in averaging two phase values which reside in quadrant I defined as

0 < Oof fet < -r/2 or quadrant IV defined as 3r/2 < Oof fset < 27r. A convention is

made when this occurs to force all subsequent values to be in one of the two quadrants

by adding or subtract 27r. Here is an example.

Suppose a current value is in quadrant IV on the unit circle, and passes our loop

criteria such that (G! f set < 37r/2). Further suppose that a previously stored value

Oof f set-old computed in the last interrupt cycle resided in quadrant I as in (of fset-old <

r/2). A decision, is then made to force the current value and all subsequent values

to quadrant I. This is done by subtracting 27r from the current value forcing it to

become negative. This negative number is suitable for averaging since the average of

a positive value in quadrant I and a negative value does not pose a problem.

At the end of the loop iteration, Oof f set-old gets updated and becomes a negative

value. In the subsequent loop iteration, Oof f set-old will be a negative value which

strictly speaking is not in quadrant I. However, our loop criteria which considers all

(Oof fset-old < 7r/2) as belonging to Quadrant I will treat it as such. In subsequent loop

iterations, if the present value resides in Quadrant I, averaging is performed without

further consideration. If the present value resides in Quadrant IV, 27r is once again

subtracted and the process repeats.

The result of implementing absolute phase is shown in figure 2-8. For this figure, a

lookup table was created in memory where an amplitude value is retrieved while scan-

ning. The map for the amplitude was created using a bit map file and transferred into
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the DSP memory. The fringe locking was re-established during scanning at a velocity

of 40 mm/s. The characters MIT were spelled and the remaining exposed substrate

contained uniform high contrast, as visible to the eye. This particular pattern is

chosen to portray the capability of the system, however, it is not particularly useful.

Applications where beam-blanking would be useful include maskless patterning of a

substrate. For example, different sections of the substrate may be patterned with

varying linewidths without additional processing steps. This would lead to further

study of the relationship between linewidth and diffraction efficiency. This in itself

may be useful if one wishes to amplitude modulate a diffracted beam by modulating

the diffraction efficiency across a substrate.

Furthermore, absolute phase recovery may be used in SBIL's reading mode con-

figuration. The nanoruler is the only grating patterning tool with its own reading

capability to characterize the phase of a grating. A particular problem that occurs

in reading mode involves signal loss from varying reflectivity or diffraction efficiency

across the substrate. This may occur if for example a large particle is lodged some-

where on the substrate, or if the material is not uniform. Ordinarily, a scan would

have to be programmed to avoid these areas on the substrate. By using the absolute

phase feature, and some of the beam blanking features (such as checking for signal

strength before re-establishing fringe lock), the reading mode performance may be

greatly enhanced.

2.4 Phase Map

In this section, I will describe how I implement phase map correction in scanning

beam interference lithography. This is a critically important feature for implement-

ing self calibration. The nanoruler has the ability to measure several sources of error.

In the following chapters, I will discuss novel techniques which I developed to mea-

sure the system distortion in the nanoruler which is the lump sum of all the error

sources which contribute to phase distortion during patterning. In addition, in the

subsequent chapter I present a technique which I developed to characterize the mirror
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distortion in the nanoruler. Many of these sources of error may indeed be difficult

to remove from the system. For example, the mirror distortion is due for the most

part to manufacturing tolerances. The mirrors where provided from a vendor with

a specification of approximately A/10 or roughly 60 nanometers. Furthermore, the

stage must rotate during scanning due to torque from the magnetic drive forces or

non-straightness of the guiding ceramic surfaces. Phase map correction allows one to

correct the phase due to all these error sources by modulating the interference fringes.

Implementing phase map correction with the existing infrastructure really turns

into a software challenge. As noted in the introduction, the nanoruler uses three

Texas Instruments TMS32006701 DSPs denoted (A,B,D) on an Ixthos Champ C6

board. A visual basic program transfers data from a windows operating system onto

the program memory of DSP D (the data exchange DSP) using an interface standard

known as a JTAG interface. Since DSP A is the real time DSP, which computes all

of the fringe locking operations, it must be in control of a local PCI bus. A diagram

of the DSP architecture, modified from the Ixthos manual, is shown in figure 2-9.

An important point to take notice of is that DSP's A and B form a cluster. These

two DSPs can share their memory directly through the IXstar chip. However, DSP

D (the data exchange DSP) must transfer memory to DSP A or B with the through

the use of an additional chanel, the PCI-PCI bridge chip. The general strategy then

for performing memory transfers is to have the real time DSP, DSP A, in charge of

the Ixstar PCI bus. This means that DSP A should initiate writes and reads from

DSP B. Transfering memory maps from Visual Basic then involves using the JTAG

to transfer the data to DSP D, followed by a data transfer from DSP D to DSP B by

means of the PCI-PCI bridge. Subsequently, DSP A may then read DSP B's memory

at a non-critical time. This memory routing scheme has been observed to give reliable

results. Prior attempts by Konkola, and the author to directly write into DSP A have

resulted in sporadic errors causing hang ups.

Once the memory has been appropriately transferred, we need to devise a method

to look up the memory map for phase correction. This is done by taking a two-
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Figure 2-9: DSP architecture. DSP A is the real time DSP which uses a Zygo
reference clock to initiate an interrupt service routine. An additional interrupt (not
shown) is used to monitor errors and for handshaking with labview. The phase maps
are transferred from Visual Basic to DSP D using a JTAG interface.
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dimensional phase correction map described by OMap(x, y) and discretizing it by plac-

ing it into 2-D pixels of area 1x1 mm2. The phase map should be arranged into a

2-dimensional array of size 477x317 to allow for the full range of travel. Accordingly,

the stage has a range of travel of 316 mm in the X direction and 476 mm in the Y

direction. Since the memory locations in the DSP use linear addressing, it is more

convenient to convert this two dimensional phase map into a 1 dimensional array.

This is done by mapping the (i, j) element in the two dimensional array to an element

k in the one dimensional array where k = i317 + j. This way, a 2-D array of size

317x477 gets mapped into a 1-D array of length 151,209. This mapping scheme is

illustrated in figure 2-10.

Once the lookup table is generated and transferred into a linear memory address,

the phase may easily be retrieved while the stage is scanning. This is accomplished

by reading the (x,y) positions of the stage and rounding them to the nearest millime-

ter. This provides the corresponding indices (ij) of the two dimensional phasemap

position. The memory offset address is then computed by the relationship: Offset

Address=i317 + j. The phase values are then retrieved and sent out to the frequency

synthesizer for phase modulation.

In order to test the phase map, a two dimensional sinusoidal phase was written

with a 30 mm period as shown in figure 2-12. The sinusoidal amplitude of the phase

map was choosen to be equal to 2-r. This corresponds to a period of 574 nm. The

units in figure 2-12 are shown in nm, where we have scaled the output phase by a

factor of P /2-r where P is the fringe period of 574 nm. It is common in the field

of optics to express the phase in terms of wavelength or period, which will be done

frequently throughout this thesis. The grating was then read back in reading mode,

which resulted in the scaled output shown in 2-12. The results are rather remarkable.

Not only can we use phase map correction to correct for phase distortions caused

by our system, but we may verify that these phase corrections work by using the

nanoruler's reading mode.

Before leaving this section, I would like to make a few additional comments. Phase

correction may also be applied to provide spatial phase modulation to a diffracted
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Figure 2-11: A sinusoidal phase was written into a grating using a 2-D phase map

and read back using the nanoruler's reading mode. The phase is scaled by Pf to give

units of nanometers. Pf is the nominal grating period of 574 nm. This confirms that

our phase-correction works.
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wavefront. This phase modulation may serve several purposes. If one wishes to apply

a phase correction for the substrate of a surface for example, the period may be varied

to compensate for the substrate non-flatness.

Secondly, I would like to point out another interesting technique which may be

employeed to verify the phase map correction. When two exposures are done on to

a photo-resist covered substrate, a moire pattern is formed. This may be understood

by recognizing that areas in the resist where the second exposure is in phase with the

first exposure, high contrast results. Where the two exposures are a 180 degrees out of

phase, poor contrast is formed. The resulting image in the resist where high contrast is

formed and a grating is visible then corresponds to regions where the sum or difference

of the phase of the two exposures is a constant. Two exposures were made to generate

the pattern shown in figure ??. In the first exposure, the grating period was written

with a period P1 ~ 574 nm where the periodicity is in the X direction. The second

exposure was made with a period P2 = P1+ .01 nm in the X-direction with a with a

phase modulation in the Y direction given by 0(y) = 27rsin(27ry/30mm). The moire

pattern consists of two overlapping sinusoids in the y direction, corresponding to a

moire pattern with a Y phase +#(y) variation and a period in the X-direction of

approximately 30 mm. This double exposure moire technique may also be used to

verify that the phase maps work. The advantage of this approach is that one does

not have to place the system into reading mode, and requires only two exposures

followed by development. In addition, the moire technique may be used as a test of

the repeatability of our system over extended periods of time. For example, a first

exposure may be performed days before the second exposure. Any changes in the

system which causes phase distortion result in a phase shift of the moire pattern.

The latter technique is useful for a visual estimate of system distortion, and in our

example of verifying a phase map. However, I have developed superior approaches

which will be described in chapter 5 that provide quantitative results. In the next

chapter, I will describe the major sources of coordinate system error in the nanoruler.
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Figure 2-12: Two exposures were used to generate this moire pattern. In the first

exposure, a grating period of P ~ 574 nm along the X axis was patterned . In the

second exposure, a period of P2 = P + .01 nm along the X was also written into the

grating. During the second exposure, a phase map was also used to add a sinusoidal

phase modulation along the Y direction in the form of 27r sin(27ry/30mm). The

resulting moire period is shown where the X axis runs from left to right (horizontally)

in the figure, and the Y axis from top to bottom (vertically).
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Chapter 3

Coordinate System Considerations

In this chapter we will discuss errors in measuring the true stage location. We will

begin this chapter by describing a class of errors known as Abbe errors. These errors

are created by improper alignment of the coordinate measuring axis, and rotations of

the object to be measured. A simple way to illustrate this process is to consider the

"grating image" which is formed by the ultra-violet beams. If the stage rotates about

the grating image it has two potential consequences will be described seperately. The

first potential problem involves loss of contrast.

If the dark and bright fringe periods are being printed onto a photo-resist covered

substrate a small rotation will cause the pattern to expose areas of the resist which are

not meant to be exposed. This would effect the linewidth of the pattern, but not the

phase error. Certainly, the fringe period of the image grating may change. However,

it will be shown in the chapter on contrast that the period of the grating which is

printed into the resist (and therefore its phase) will be determined by the step-over

distance in the scan (for the case of parallel scanning) or by the phase modulation

in the case of doppler scanning. The effect of the actual image grating period and

orientation will affect the contrast of the printed grating, but not the phase error.

The primary goal of scanning beam interference lithography is to achieve high

phase accuracy. Uniform linewidth is also of high priority, however, it may be achieved

by controlling the exposure dose and the image contrast.

The second problem caused by rotations involve translations. If the stage is ro-
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tated about the origin of the "grating image" any translation of the stage, as a result

of the rotation, would lead to a phase error. For example, the grating image may be

described as a function f(x, y), with a centroid at a location on the stage which we

take to be the origin (x, y) = (0,0). As the stage rotates about this centroid, the

origin of the stage will not translate. However, improper alignment of the interfer-

ometer beams will lead one to conclude that the stage origin has translated, when in

fact it has not.

A claim which is made, but is by no means obvious, is that proper alignment of

the interferometer beams would minimize this translational error. We will show that

misalignment of the interferometer beams would therefore lead to translational error,

and elaborate more on this important result. We will consider rotations only in the

(X - Y) plane, however, the techniques developed may be extended to out-of-plane

rotations. The reader is encouraged to read Konkola's thesis for a detailed analysis

of out-of-plane rotations [27].

Another contributor of coordinate system error involves the stage mirrors them-

selves. These mirrors serve as reference planes which define the X and Y axis of our

stage. Any deviation from nonflatness of the stage mirrors will lead to a deviation in

the linearity of our coordinate system. The particular mirrors which we use have a

nonflatness of approximately A/10 ~ 60 nm. This will lead at best to gratings with

60 nm of phase distortion. It is the goal of this chapter to develop a measurement

algorithm that will allow us to measure the stage mirror distortion. Once the dis-

tortion is known, the phase may be corrected by using a phase lookup table which I

developed in chapter 2.

Before embarking on the adventure to measure rotational errors, we will develop

mathematical operators which will alleviate the need for making several geometric

arguments based on sketches. These operators may be found in text books on pre-

cision design and elsewhere [41]. The power of these operators comes about because

they immediately allow one to make generalized statements. They also reveal key

properties which are useful in this analysis. For example, they allow one to derive

the coupling which occurs between rotation about a point and translation.
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3.1 Translation and Rotation Operators

The stage motion is extremely critical for good performance in scanning beam inter-

ference lithography. Rotation of the stage could lead to contrast degradation among

other sources of error. In addition, the X axis interferometer and Y axis interferom-

eter must be aligned properly such that the intersection of the two measurement axis

meet at the location of the "grating image." If this is not the case, then a class of

errors known as "Abbe" errors occur. Dr. Ernst Abbe made the following statement

regarding the design of precision microscopes "if errors of parallax are to be avoided,

the measuring system should be placed coaxially with the axis along which the axis

is to be measured on the workpiece" [41, 12].

It is the aim of this section to develop the formalism to treat our mirror measure-

ment process. In doing so, we will gain the additional benefit of understanding the

source of "Abbe" errors, which will be a powerful tool in understanding the need for

precision design in the Nanoruler.

We will restrict our discussion to translations and rotations in the X - Y plane.

There are a set of linear matrix operations which will make the discussion more

convenient. First, let us consider an arbitrary position vector T and describe its

coordinates in polar form such as

T = pcos(0) + psin(O)J. (3.1)

Now suppose we wish to rotate this vector by an angle a. This new vector may be

written as

(3.2)

r p cos(O + a)J + psin(O + a)V

r {p cos(O) cos(a) - psin(O) sin(a)}71 + {psin(O) cos(a) + pcos(6) sin(a)}.
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It is convenient to express this rotation operation in its equivalent matrix form as

r cos(a) -sin(a) rx

r [ sin(a) cos(a) ry

The rotation matrix Ra (a) is then defined to be a two-by-two matrix which operates

on r = rxi + r'? to produce r' by the relation r' = R,,r. As one could see,

the transformation matrix does not allow for translations. In order to allow the

additional degree of freedom for translation one must increase the dimensionality of

the matrix by one [41]. This is commonly known as a homogenous transformation.

In preparation for the next section, we will define two fundamental operators. The

first is the homogenous rotation operator

cos(a) - sin(a) 0

RH(a) = sin(a) cos(a) 0 (3.4)

0 0 1

which allows for rotations about an origin (0,0). The second operator is a homogenous

translation operator which allows for a translation of (Ax, Ay)

1 0 AX

T(Ax, Ay) = 0 1 Ay . (3.5)

0 0 1

One may verify that the inverse of the translation operator T-1 (Ax, Ay) reverses the

translation to an increment (-Ax, -Ay) such that T 1 T = T(-Ax, -Ay)T(Ax, Ay) =

I, where I is the identity matrix. The operation of the translation operator T(Ax, Ay)

on a position vector iT = xof + yo? may be summarized as T(Ax, Ay) =

(xo + Ax)J + (yo + Ay)?. In order to confirm our understanding of the use of
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these operators, we will express the equivalent operation in matrix form as

Xo+AX 1 0 AX xo

yo +AY 0 1 Ay YO . (3.6)

1 0 0 1 1

The usefullness of defining this formalism will become apparant in the next section

where we will apply the rotation and translation operators to determine the effect of

Abbe errors in our system.

3.1.1 Stage Rotations and Abbe Error

Paul Konkola performed the original design work on the Nanoruler and discussed

several sources of Abbe errors present in the system [27]. In his thesis he considers

the rotations of several components of the Nanoruler system. He provides a thorough

analysis of the rotation of a subsystem where all of the phase meters reside (also known

as the "metrology block"). Furthermore, he also considers "out-of-plane rotations"

(the pitch and roll) of the various subsystems including the interferometer head.

While it is not appropriate to repeat that analysis here, we will elaborate on some

of the critical findings in his thesis. Specifically, Konkola's thesis presents a small

section (section 4.3.1) on the consequence of rotational stage errors [27]. We would

like to derive some of the statements made in that section since it is fundamental to

the understanding of the most important accuracy limitations in the Nanoruler.

Eliminating Abbe errors are crucial to the accuracy of the Nanoruler and it has

therefore earned itself a section in this thesis. It is the sincere hope that at the end

of this analysis, a reader without the insight gained from experience in the area of

precision design will understand the source of Abbe error. At the very least, it will

confirm the results Dr. Konkola achieved and serve as a good background. In any

event, the analysis in this section will allow us to develop an argument for a novel

mirror distortion algorithm to be presented later in this chapter.

Before taking advantage of the mathematical operators defined in the previous
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section, it is important to point out some general principles. Refering to figure 3-1

we will notice three different orientations of the stage.

In figure 3-1 (a) the stage is in a zero degree orientation and the stage X axis

interferometer measures the distance to the point P on the stage mirror. The grating

image which is formed by the ultra-violet beams is assumed to be fixed at the origin

of the coordinate system X - Y denoted by point 0 in the figure.

Now consider a stage rotation by an angle a about the origin as shown in figure

3-1 (b). If the stage rotates about the origin (point 0) as shown in figure 3-1 (b)

it is observed that the origin is invariant to rotation. Since the "image grating"

remains fixed to the origin the stage should not translate. However, as shown in

figure 3-1(b) the point P on the stage mirror translates by an amount J, in x and Jy

in y. This results in a new position measurement in the X-axis interferometer. The

interferometer now measures the x coordinate of point S (in the unrotated coordinate

system). The following analysis will show that for small rotations (a) and the correct

choice of P this error will be neglible. For an incorrect choice of P, that is one in

which the measurement axis of the interferometer does not include the origin, there

will be a considerably larger error which we have been referring to as an Abbe error.

The analysis will be made simpler by considering a key property of rotations.

Namely, a rotation about the origin may be viewed as a rotation about any point

plus a translation. The use of the operator formalism may be used to prove this.

Pictorally, as shown in figure 3-1 (c), the stage is rotated around point P. In this

case, P is invariant to the rotation. We may verify that the orientation of the stage

in figure 3-1 (b) may be obtained by performing the rotation in figure 3-1 (c) followed

by a translation (6 , 6y).

Incidentally, I would also like to point out that I am neglecting the fact that the

reflected beam from the stage mirror will also change its angle upon reflection from

point P. This angle change with respect to a "reference beam" at worse would lead

to a fringe pattern at the detector which will be averaged out over the spot size of

the beam. The path length of the reflected beam will also change as a result of the

angle of reflection, but results in a cosine error of the form L(1 - 2 ) where L is
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(a)
P

0=dOO)

Y

(b)

Y (0,(0)

P

0=(O)

Figure 3-1: Top view of the stage showing an X-axis mirror and a Y-axis mirror.
Three different orientations for the stage are shown with an X - Y coordinate system
defined by the measurement axis of the X and Y axis interferometers. The origin
labeled 0 is the location where the measurement axis of the X and Y interferometers
meet. In order to eliminate Abbe error, the grating image must be located at the origin
0. (a) the stage is in its nominal position and the inteferometer measures the X-axis
stage mirror at point P. (b) the stage is rotated by ac at the origin 0 and (c) the stage
is rotated by a at the point labeled P.
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the pathlength in the case of reflection from normal incidence. Since 0, the angle

with which the reflected beam changes with respect to normal incidence is small, we

may neglect this cosine error. We are interested only in path length changes along

the measurement axis of the interferometer. For this reason, the angle change upon

reflection is not of significance for small angles.

This suggests a useful way to keep track of the location of point P due to a

rotation about the origin. The process is broken down into two steps. First, rotate

around P which does not result in any translation of point P and therefore does

not cause a phase change on the interferometer measurement. Secondly, translate by

some amount (J,, J).

The first step of rotation around P is simple enough. We will need to work a little

harder to determine the translation 6x along the X-axis and 6yalong the Y axis.

A convenient method to determine the translation (6, 6,) is to apply the rotation

operator around P, and compare it to the rotation operator applied at the origin 0.

Using the operator formalism, the rotation about a point P = (px, py) in a coordi-

nate system X - Y may be expressed as R' = T-1 (-px, -py)RHT(-px, -pv). This

result may require some thought, and could be found in a standard text on linear

transformations. The rotation operator is defined to operate about an origin in some

reference frame. We may attribute a reference frame to point 0, and a reference

frame to point P. We know how to apply the rotation operator in either reference

frame. We now need to express the operator which operates in the reference frame of

P to its equivalent in the reference frame of 0.

Mathematically, we can find the equivalent operator (rotation about P) in the

reference frame of 0 by transforming the reference frame of 0 to P (i.e., translating),

applying the rotation in P, and transforming the reference frame back to 0.

An alternative way to look at this result is to realize that we first translate a

point P back to the origin by applying T(-p,, -py). We rotate about the origin by

applying the second operator (RH)(which we know preserves the origin). Finally, we

apply the third operator T(p,,p.) which translates the point P back. Throughout

the process the coordinates of point P are preserved which we know must be the case
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since P is invariant to any rotation a about point P. The resulting transformation

for a rotation about P = (px, py) in the coordinate system (X - Y) with an origin 0

is shown below:

cos(a) - sin(a) -cos(a)px + sin(a)py +px

R' = T-1 (-p., -py)RHT(-p, -py ) = sin(a) cos(a) -sin(a)px - cos(a)py +py (3.7)

0 0 1

We can observe that the operation of rotating around the origin RH in equation 3.4

may be expressed as a rotation about P with a translation of (6,, 6y). This statement

may be compactly written as RH = T(64, 3y)R' where 6, and Jy may be found by

inspection from equation 3.7. Notably, we find 6, = cos(a)px - sin(a)py - P, and

6y = sin(a)px + cos(a)py - py.

With all the prelimaries aside we are now ready to make some powerful conclusions

on the effect of rotations. For small angles a one may make the approximation
2

cos(a) -,1 - 2 and sin(a) - a. This allows us to rewrite the translation of point

2 2
P as 5= - - apy and 6 = apx - . Typically, the angles of rotation on

the Nanoruler are on the order of 10 microradians. This allows us to eliminate all

the second order terms with regards to a. The interpretation of this result may be

aided by an illustration. Figure 3-2(a) depicts a rotation of the stage about the point

P. Next, the stage is translated by Jy - apx. This step changes the distance of the

X-axis interferometer measurement by a negligible amount (E) as shown in in figure

3-2 (b). The geometry in figure 3-2 shows that the distance change (E) in the X axis

interferometer due to a translation of Jy as a result of a rotation a about the origin

is given by E ~ a 2p. The most important contribution to the error in the X axis

interferometer measurement is due to the translation of 6,.

The translation 6, was derived to be 6, - apy. This is where the Abbe error

comes in and is the most important point in this analysis. If the axis of the X-axis

interferometer is aligned with the origin (which is taken to be the location of the

image grating) then py = 0. However, if there is an offset of an amount p, = YA, the
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---- P

O=(O,O)

cc

Figure 3-2: A rotation about the origin may be considered as a rotation about P (which
leaves P invariant), plus a translation of (6 ,6,). (a) the stage mirror is rotated by a
and translated by 6y. (b) The error in the X-axis interferometer measurement as a
result of translating J, is negligible for small a. This error is found to be f ~c a6y

magnitude of the Abbe error in the X axis will be given by

Abbeerrorx = Yaa. (3.8)

An analogous argument may be made for the Y-axis interferometer. In this case

ideally px = 0. However, if the Y measurement axis is translated from the origin

by px = XA, then the important contribution to the Y-axis error comes about from

a translation Jy. In this case, J, = XAa. We give this error a special name of

Abbe,,,o -y and highlight this important result as

Abbeerror-y = Xa. (3.9)
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Figure 3-3 clearly defines the offset XA and YA. As we have seen, proper alignment of

Y-Interferometer

:0 U a)

XA

Figure 3-3: The origin is defined at point 0 where the image grating resides. The
X-axis interferometer is shown with its measurement axis in solid lines. The measure-
ment axis has an offset from the origin by an amount YA. A rotation of the stage about
the origin by (a) would produce an Abbe error in the X axis of Abbeerro,x = aYA .
Similarly, an offset of the measurement axis of the Y-interferometer by XA would
lead to an Abbe error Abbeerror-y = aXA

the stage interferometers axis is critical for accuracy in the Nanoruler. Unfortunately,

the Nanoruler does not have at its disposal good metrology on the intersection of the

interferometer beams. An offset of 1 mm for a stage rotation of 10 microradians could

lead to an Abbe error of 10 nanometers. The alignment for the interferometer beams

with respect to the location of the grating image must be made before the stage is

installed which in turn requires metrology on squareness of the stage mirrors and on

the squareness of the interferometer beam paths.

On the other hand, the Nanoruler has very good metrology on the placement of the

grating image. For the current design of the Nanoruler, however, large translations

of the grating image location (taken to be our origin) are not practical. The mirrors

which guide a split-off portion of the ultra-violet beams which compose the grating

image are only a few millimeters in diameter. Small translations on the order of a
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mm would require major realignment of the optical components to avoid clipping.

An improved design of the Nanoruler will allow for translations of the grating

image, or of the interferometer beams. One may conceive of an experiment where

the phase error in a grating is read for different positions of the grating image. One

must be careful in interpreting the results when reading the phase of a grating. For

example, if a grating is written in a distorted coordinate system and the grating

phase is read back in the same coordinate system, one would conclude there is no

error. An offset of the grating image would produce a relative Abbe error. Chapter

5 addresses this problem by designing a grating rotation test which will allow one to

draw conclusions about the systematic error.

In the following section, we will discuss another source of coordinate measurement

error. This error is due to a distortion in the stage mirrors. An ideal mirror would

have all of the properties of a geometrical plane. It would be perfectly flat over the

length of interest. Real mirrors have non-flatness due to manufacturing errors and

distortions due to mounting stresses.

3.2 Mirror Nonflatness

Typically, high accuracy two-axis (x,y) stages use displacement interferometers to

determine stage position and velocity. A stage controller uses these quantities as

feedback to minimize the error between the desired and actual stage travel. This

method, however, is prone to error due to the non-ideal flatness of the stage mirrors.

In order to compensate for the mirror nonflatness, knowledge of the mirror profile

over the length scale of interest is required. We have developed a method to measure

the stage mirror nonflatness by using two linear/angular interferometers mounted on

opposing axes. By performing discrete sampling of the stage mirrors along the range

of travel, we show that both the stage rotation and a filtered mirror profile can be

obtained. Here we present the measurement transfer function which describes the

spatial frequencies of the mirror profile that can be recovered using this approach.

A novel inverse transfer function was developed which eliminates the instability due
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to zeros in the transfer function. Moreover, we will apply this technique to measure

nonlinearities of a 300 millimeter stage mirror. In the context of this measurement,

we will describe the assumptions and limitations of this approach.

Techniques for calibrating mirror nonflatness exist in the literature. One promising

method uses a self-calibration approach known as the three-flat test [101. This method

uses three reference flats which are compared to each other interferometrically. By

comparing three combinations of the reference flats, followed by a fourth combination

in which one of the flats is rotated, a resulting set of equations are obtained. These

equations may be solved to obtain the nonflatness of the reference flats [23].

Once a reference flat is calibrated, it can subsequently be employed to calibrate

an interferometer, which itself is subject to non-ideal optical components. While

these measurement approaches have been demonstrated successfully, the equipment

required may be expensive or require extensive design. For a 300 mm stage mirror, a

nonflatness measurement would require a pre-calibrated interferometer with a large

aperture. Another approach would be to perform a 3-flat test on the mirror itself,

which would require extensive design for rotation and probing equipment. More-

over, there is also the possibility that distortion will be added to the mirror by the

installation procedure [38].

Here we will present an alternative technique which allows us to measure the

mirror nonflatness after it is mounted on a stage. This eliminates the measurement

uncertainty resulting from the mounting process. The measurement procedure in-

volves using two opposing axis (X-Y) measurements. Each axis measurement uses

a Zygo angular/displacement interferometer. Here, we will focus on measuring the

X-stage mirror. The Y-stage mirror may be measured similarly.

3.3 Measuring the X-Stage Mirror

We will begin by considering the stage drawn in figure 3-4. This figure illustrates

the X and Y stage mirrors. The X-stage mirror is measured at four different points

labeled a, c, d, f, which are separated by a distance h. The stage is located in a
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laboratory frame with coordinates (x,y). For convenience, we have chosen the same

definition for the laboratory axis as is currently implemented in SBIL.

The X axis interferometer produces a measurement

Xm (XY) = mX(x, y) + mx(x, y + h) (3.10)
2

for a given stage position (x, y) in the laboratory frame. For a linear mirror this has

the geometric interpretation of monitoring the average of the displacements of the

two locations on the mirror labeled "a","c". Accordingly, this would be equivalent

to measuring the displacement of the stage mirror at a point labeled "b" the average

of "a" , "c". For a nonlinear mirror, this geometric interpretation will not be entirely

correct as we shall see.

Equation 3.10 simply states that when the stage is located at a position (xO, Yo)

in the laboratory frame, point "a" corresponds to the displacement measurement

mX (xO, Yo), and the measurement of point "c" corresponds to the displacement mea-

surement mx (xo, yo + h). If the stage is translated to a position (xo, yo - h), one may

verify that the displacement measurement of point "a" is equivalent to the displace-

ment measurement of point "c" when the stage was at location (xO, Yo). This aids

in understanding the nomenclature used in the equation 3.10. It also allows us to

become familiar with the laboratory reference frame, and confirms that we are using

the correct sign "+h" in equation 3.10.

The zygo linear/angular displacement interferometers use a configuration which

allows for optical differencing. Essentially, an additional two interferometric arms

monitor the points "d, f" shown in figure 3-4. This may be viewed as a measurement

Xm(x, y + 2h) which has the geometric interpretation of monitoring the point labeled

"e" in figure 3-4 for a linear mirror. The angle measurement of the stage is determined

by

Xm(x, y) - Xm(x, y + 2h)
O2(x, y) = .h (3.11)2h

This has the geometric interpretation of measuring the slope between the points

labeled b and e in figure 3-4 for a linear mirror. This is equivalent to measuring
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Figure 3-4: (X-Y) stage showing the orientation of the X-Y stage mirrors. For the
X-stage mirror, the interferometers measure for different points on the mirror labeled
a, c, d, f. These for points are separated in the Y direction by a distance h.

tan(9) ~ 0 where 0 is the angle the mirror makes with the Y-axis.

Let us proceed to construct our measurement process by now allowing for a nonflat

reference mirror and a small stage rotation a. We will assume an X-axis stage mirror

which will produce a displacement measurement of the form

mX(y) = x + D,(y), (3.12)

where x is the stage position in the laboratory reference frame and Dx(y) is a nonlinear

distortion which results from the nonflatness of the stage mirror. In the absence

of a distortion D,(y), m,(x, y) describes a straight line for each location xo. For

example, substituting x = aO in equation 3.12 yeilds mx(xo, y) = ao which describes

a vertical line (i.e., flat mirror) at a distance aO. If we apply a rotation about the

origin, such that x' = cos(oz)x - sin(a)y, and y' = sin(a) + cos(a)y, we find that

mX(aI', y') = cos(a)x - sin(a)y + D{sin(a) + cos(a)y}.

We could interpret this result by identifying the two components of the stage
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mirror measurement

m(x', y', a) = mx-inear(x, y, a) + mx-nonlinear (x, y, a). (3.13)

The linear portion of the mirror under rotation by a results in a displacement mea-

surement mxinear (x, y, a) ~ x - ay. One may verify that in the case mx(x, y) =

mxinear(x, y, a), equations 3.10 and 3.11 result in the measurement Ox(x, y) = a.

This is equivalent to adding a wedge in the mirror and measuring the slope of the

wedge.

The nonlinear distortion of the mirror mx-nonlinear (x, y, a) Dx(ax + y) may

be interpreted as the nonlinear distortion measurement of the X-stage mirror as a

function of y. There is a translation J, = ax of the distortion function Dx (y) as a

result of the rotation a occuring at the origin. However, the rotations in the Nanoruler

are on the order of t 10 microradians. This will result in a worse-case translation

6y = 4 micro-meters. Our measurement process is blind to variations in the X-mirror

on this length scale since the beam diameter of the interferometer beams are on the

order of 3 mm. In other words, the interferometer measures a moving average version

of the mirror profile, which averages out any disturbances with frequencies higher

than 1/spot size.

We can therefore neglect the effect of the translation 6. on the nonlinear mirror

measurement. This results in mxnoninear(x, y, a) ~ Dx(y), where we see that the

rotation of a has negligable effect on the nonlinearity contribution of the mirror to

the measurement process.

With these considerations in mind, we can use equations 3.10 and 3.11 to write

our measurement Ox for a nonlinear mirror as

S(X, y) - Dx(y) + Dx(y + h) - Dx(y + 2h) - Dx(y + 3h) +a0y). (3.14)
4h

In order to obtain an equation as a function of the X-axis mirror distortion, D.(y),

we must subtract out the angle of rotation a(y) as shown in equation 3.14. This is

accomplished by performing a simultaneous measurement on the Y-axis mirror using
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the Y-axis interferometer.

3.3.1 Measuring a using the Y-Axis Interferometer

If the stage translates along the line x = xo, the Y-axis interferometer will provide

a similar measurement. I have provided a drawing of the displacement measurent

of the Y-axis interferometer in figure 3-5. The Y-axis interferometer produces a

displacement measurement of the form

YM(XY) = my(x, y) + my(x - h, y) (3.15)
2

which has the geometric interpretation of measuring the average displacements at the

points labeled g, i on the Y-stage mirror. Incidentally, the X and Y axis interfer-

ometers are not identical. Notice the definitions of the displacements on the Y-axis

measurement are not the equivalent of rotating the X-axis interferometer by 90 de-

grees. The interferometer head was customized for the use in the Nanoruler, but the

drawing in figure 3-5 is a faithful representation of our current setup.

The Y-axis interferometer also provides an angular measurement which is defined

as
Ym(x, y) - Ym(x - 2h, y)

(X, Y) = 2h . (3.16)

An analogous argument to the one used for the X-axis interferometer will allow

us to consider the Y-displacement measurement my(x, y) = y + Dy(x). The non-

linear distortion in the Y-mirror is given by Dy(x). This allows us to express the

Y-displacement measurement as my (x, y) = my-linear(x, y) +mynninear (x, y), where

my-inear(xy) = y and my-nonlinear(x,y) = Dy(x). We are once again interested

in observing the effect of a rotation on the Y-mirror displacement measurement

my-inear(x, y). For small a the linear displacement becomes my-inear(x, y, a)

ax + y. This is the equivalent of a wedge in the Y-axis mirror, and one may verify

that in the case my(x, y) = m Iinear(x Y, a), equation 3.16 results in the measure-

ment 9.(x, y) = -a. Special attention must be made to confirm the negative sign of
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Figure 3-5: (X-Y) stage showing the orientation of the X-Y stage mirrors. For the Y-
stage mirror, the interferometers measure four different points on the mirror labeled

g, i, k, 1. These four points are separated in the X direction by a distance h.

a. The geometry of the Y-axis interferometer is different from the X-axis interfer-

ometer. Had the X and Y axis interferometer heads been identical, a positive sign

for a would result.

Under a rotation of a, the nonlinear distortion becomes D, (x, y, a) = D,(x - ya),

where the prime notation denotes the distortion which occurs after the rotation, and

unprimed denotes the distortion prior to rotation. We note that a translation of

JX = ya occurs due to a rotation at the origin (0,0). We may once again neglect this

translation since for small rotations a the translation will be much smaller than the

beam spot size of 3 mm. The maximum translation is on the order of 6y ~ 2 um. We

therefore conclude that the Y-axis mirror distortion does not change with rotation

and may be written as D (x, a) = Dy(x).

Moreover, since we are holding x = xo. constant we expect to be sampling a
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constant part of the Y-stage mirror nonlinear distortion. This allows us to write

6,x oy)=Dv(xo)+Dv(xo-h)-Dy(xo-2h)-Dy(xo--3h)_ay)4h(317)

= c - a(y).

In equation 3.17 we have recognized that the terms involving DY do not vary with y

and we have lumped their sum into a constant c. We are only interested in knowing

a up to an arbitrary constant and we will therefore omit this constant in the analysis.

3.4 Measurement Transfer Function

The method used to extract the X-mirror profile from the angle measurements involves

translating the stage while holding the x coordinate of the stage constant. The 0.

measurement on the stage X-interferometer provides information about the stage

mirror nonlinearity at four equi-distant points, plus a rotation a. In order to extract

the mirror profile information, we add the Y-axis interferometer measurement given

by equation 3.17. This results in the quantity

AO(xo,y) =60(xo,y) + y(xo,y) (3.18)
_ Dx(y)+Dz(y+h)-D (y+2h)-D. (y+3h) + C,4h

where we may subtract out the constant from our measured result. This will allow

us to define a measurement transfer function. From linear systems theory, we can

describe this measurement process by an impulse response

1
h(y) = --{6(y) + 6(y + h) - 3(y + 2h) -6(y - 3h)}, (3.19)

4h

where 6(y) is the Dirac unit impulse function. We recognize that the output quantity

AO(xo, y) may be expressed as

AO(xo, y) = h(y) * DX(y), (3.20)
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i.e., a convolution of the input consisting of the X-axis mirror's nonlinear distortion

D,(y), and the impulse response h(y). This is a powerful representation in that all

of the key properties we need to characterize the measurement process are described

by the impulse response. For example, the impulse response has an odd symmetry

about the point y = -3h/2. We can therefore represent the impulse response as an

odd function with a linear delay of -3h/2. The Fourier transform of the impulse

response results in a measurement transfer function of the form

Hc(ew) = -2ejw3h/2 [2jcos(wh/2)sin(wh)] . (3.21)
4h

The transfer function described by equation 3.21 contains the properties which we

may have anticipated by inspecting the impulse response. For example, the delay

of -3h/2 shows up as the complex exponential ejwMh/ 2 . Furthermore, we note that

the remaining term inside the brackets is completely imaginary as we expect for

the Fourier transform of a function with odd symmetry. The zero locations of the

continous transfer function may also be observed from inspection of the magnitude

of the transfer function response shown in figure 3-6 obtaining wi, = nr/h. This

may also be found from inspecting equation 3.21. The component cos(wh/2) has

zeros at wn = (n + 1/2)27r/h where n is an integer. This results in zeros for odd

multiples of ir/h as in w = {ir/h, 37r/h, 5wr/h.. .} with a first zero location at W = wr/h.

This corresponds to a spatial frequency of f = 1/2h or a spatial period of A = 2h.

The sin(wh) results in zeros for all multiples of ir/h as in w = {7r/h, 27r/h, 37r/h...}

The result of the product of the cosine and sine term results in double zeros at odd

multiples of wr/h.

A plot of the continuous transfer function is provided in figure 3-6 for a normalized

frequency of w/wi where w, = .

This transfer function has a nice physical interpretation. Accordingly, any spatial

frequencies present in the mirror with a period of 2h which corresponds to the distance

between points "b" and "e" in figure 3-4 will not be detected by the measurement

process. Periods A = 2h/n corresponding to the higher order harmonics of the
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Figure 3-6: lHc(ejw) ploted as a function of w/wi where w, = .

fundamental spatial frequency (f = nfo = n/2h), will also not be detected by the

measurement process. In addition, the DC term will be lost.

In order to recover the input D,,(y), we must apply the inverse transfer func-

tion. The corresponding transfer function will have a magnitude in the frequency

domain of IHi(ejw)I such that IHi(e'w)j = IHc(ejw)L-l. This may be easily seen if

we take the magnitude of Fourier transform of the output A9(y), which we will de-

note as IAL(ej'')I = ID(ew')IIHc(ew)I, and then multiply it by IHZ(ew)I, resulting

in ID(ew)I = [ A9(ew)IIHi(ej'')I. Unfortunately, we do not have an implementable

inverse filter in the continuous domain. An equivalent transfer function may be found

in the discrete domain . The distortion for the stage mirror will then be found by

sampling the output AO which results in a discrete signal. The inverse transfer func-

tion Hi(ejw) will then be applied to the output in the discrete domain. In the next

section, we will develop this process in greater detail.

3.4.1 Discrete Sampling of the Mirror

In the previous section, we described a measurement process in which the input is

the mirror distortion D,(y) and y is the stage coordinate along the Y-axis. The

interferometer beams sample the mirror along discrete points, and this process may
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be viewed as a convolution of the input with an impulse response h(y). To recover the

input, the inverse filter with the property IHi(ew)I = H_(ejw)-1 must be applied.

In this section, we will show how to implement this inverse filter digitally.

Y Minor

x m[n]
mx[n+N]
in+2N

Figure 3-7: The X-Y interferometers use a four-pass scheme to measure stage angle
and displacement. The four measurement points are shown for each stage mirror. As
the stage travels along Y, keeping the X displacement constant, small rotation errors
a may occur.

In order to progress, we will discretize the former equations and introduce a stan-

dard notation. Figure 3-7 illustrates our discrete measurement process. The dis-

cretization occurs because our controller samples the interferometers at finite inter-

vals during the stage travel. If we represent the discretized stage coordinate y = nA,

and remove the redundant notation we may rewrite equations (3.10) - (3.17) as

Xml[n] = mx~ri + mx[n + N] (3.22)
2

x[n] = 2[ - Xn + 2N] + a[n] (3.23)

Ym[n=m] - 'Y{[n] + my[n - N] (3.24)
2

6O[n] = C - o[n]. (3.25)
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We note that we have chosen to write the discrete equation 3.23 slightly different than

its continuous counterpart in equation 3.11. Equation 3.11 was derived for conceptual

purposes in the case that the mirrors were oriented at a 90 degree orientation with

respect to the measurement axis. Equation 3.23 allows for a linear wedge in the

mirror profile before a rotation a occurs (i.e., non-orthogonal mirrors), and is therefore

slightly more general. In any event, once we recover the mirror profile by applying

the inverse measurement transfer function, we will remove any linearity leaving us

with the nonlinear mirror distortion which we seek.

The discretization is facilitated by choosing a sampling period such that A, = h/N.

This insures that the measurement points are located at integer sampling distances

from each other. This results in the discrete equations 3.22 - 3.25 having "integer

delays" of multiples of N. As we will see, the impulse response of the measurement

transfer function will lead to a simple algorithm to recover the mirror's nonlinear

distortion.

Certainly, we are not restricted by any physical laws which prevent us from sam-

pling at any rate other than (f, = - = N/h). Indeed, discrete filters which have

the overall effect of producing a non-integer delay in the frequency response may be

represented by using an infinite impulse response (IIR) filter [33]. We choose not to

implement such a filter because implementing the inverse of an IIR filter adds consid-

erable complexity and does not allow for the one-to-one correspondance between the

continous time finite impulse response filter described by equation 3.19 and a discrete

finite impulse response.

Another constraint on the sampling period A, involves satisfying the Nyquist

criteria. Namely, we must sample at sampling rate 1/A, which is greater than twice

the maximum frequency content in the mirror distortion to avoid aliasing. The beam

spots in our interferometer which sample the mirrors have diameter size D = 3 mm.

This spot size may be considered as a moving average, since the detector averages the

intensity distribution over the spot size (i.e., it detects the power in the beam). This

effectively attenuates spatial frequencies present in the mirror larger than 1/D. As

an upper limit, we conservatively acknowledge that our measurement is bandlimited
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to within 1/D. Since the mirrors are of optical quality, they are likely "smoother"

and may be treated as bandlimited to within a smaller frequency range.

Investigation of the frequency spectrum of our measuremnents indicates that the

mirror does not have significant power for frequencies Z 1/D. For our purposes, we

have chosen a sampling rate of A, = h/2 = 3.2 mm for a seperation h = 6.4 mm.

This will satisfy the Nyquist criteria if the mirrors are bandlimited such that highest

spatial frequency in the mirror spectrum is less than 1/6.4 mm-.

3.5 Discrete Measurement Transfer Function

With the desired notation in place for the various quantities, discrete Fourier analysis

will allow us to investigate the spatial frequency spectrum of the mirror profile. By

holding the X-displacement constant, equation (3.23) for the 0, measurement results

in a measurement of the mirror profile with an error term due to the stage rotation.

The rotation may be removed by adding the Y-axis angle measurement. Adding

equation (3.25) to equation (3.23) and ommiting the constant offset results in

AO[n] = mx[n] + mx[n + N] (3.26)
4h

m.[n + 2N] + m,[n + 3N]
4h

where AO[n] = 9x[n] + 0,[n]. Note, we are only interested in solving equation 3.26

up to an arbitrary constant. By losing information about a constant offset, we are

disregarding any linear variation (i.e. a wedge) in the mirrors.

The discrete measurement transfer function may then be defined in terms of the

discrete Fourier transforms ALE(ejw), and Mx(ew) of the quantities A6[n] and mx[n]

respectively. To relate these quantities, we define the discrete measurement transfer

function Hd(ew) as

He(e) =(3.27)
Mx (ejw)

Hd (eijw) (1 + e+jwN - e+jw2N - e+jw3N) (3.28)
4h
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The measurement transfer function may be interpreted as follows. When we add

the stage rotation given by the Y-interferometer 6, to the X-interferometer 02, we

obtain a filtered mirror profile. The filter that is applied to the mirror profile is given

by the measurement transfer function. A key property of the measurement transfer

function is that it does not have a dc (zero frequency w = 0) component. This

component would provide information about the X-displacement of the stage mirror,

which is not of interest. Moreover, we would like for our measurement to be immune

to the stage X-displacement since considerable stage error occurs while attempting

to maintain a constant displacement x = xo.

A few points may be made about the transfer function in equation 3.28. First, the

exponents of the complex exponentials are postive, which indicates that the filter is

non-causal. This is expected, because the X-axis interferometer measures the points

"ci" ", and "f" in figure 3-4 which are ahead of point "a" in the measurement. In

order to implement this filter in software such as matlab which requires causal filters

we must advance the mirror by 3N. This may be shown mathematically by rewriting

the filter's frequency response as

+ 3 N( (1 + e-jwN _ -w 2 N - e-jw3 N)
Hd(e") = -e I( 4(329

4h

where the terms inside the braces {} correspond to a causal filter. The complex

exponential denotes an advance of the mirror by 3N. The procedure to recover the

mirror distortion requires an application of the inverse to the causal filter, followed

by a delay of 3N to the result. The causal-discrete filter may then be described as a

Z-transform with the following coefficients

Hd-causal(Z) = - (1 ± -2N .z 3 N) (3.30)
4h

We note the negative sign in the transfer function and sign of the mirror distortion

to be consistent with our definition of the displacement axis. Accordingly, a positive

distortion is to be interpreted as a distortion which increases the path length of the

interferometer's beam. A negative distortion is one in which shorten's the interfer-
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ometers beam, and would consist of a distortion in which the nonflatness protrudes

toward the interferometer.

The pole and zero locations of the discrete causal filter are shown in figure 3-8.

We notice that the first zero location (beyond DC) resides at a location corresponding

to a normalized frequency of w = ir/2. This corresponds to a spatial frequency of

f, = (ir/2)1/(A,27r) = 1/(4A,) = 2/h. It is not a coincidence that this corresonds

to the same zero location of the continuous transfer function. In effect, by sampling

the mirror at discrete intervals we have found a discrete equivalent representation of

an effective continuous transfer function, Hc-ef (ejw) = Hc(ew) within the frequency

range (- - < f < -- ). The interested reader is referred to Oppenheim and Schafer's

section on "Discrete Time Processing of Continous-Time Signals" for the sufficient

conditions in which this approximation is valid [33]. Moreover, from the pole-zero

plot we observe locations where there are double zeros. We notice that we observed

the same double zero locations in our discussion of the continuous transfer function.

0.8

0.6-

0.4

0.2-

-0.2

-0.4

-0.6-

-0.8-

S 0.5 0 0.5 1
Real Part

Figure 3-8: Zeros of the Z-transform of the causal discrete transfer function Hd.causal.
The first zero beyond DC corresponds to a normalized frequency of w =7r/2 which
corresponds to a spatial frequency of fo = 1/(2h). The remaining zeros are higher
order harmonics nfo. The sampling period is A = h/2. The numbers in the figure
indicate the order of the zeros and poles

To recover the mirror profile, we must apply the inverse of the discrete transfer

function Ha(e j)-. Unfortunately, investigation of the zeros of Hd(ejw) reveal that
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they reside on the unit circle, which by definition does not have a stable inverse

transfer function. In order to obtain a stable inverse, we must find an approximation

to Hd(eiw) with zeros inside the unit circle. Subsequently, we may take the inverse of

this approximate function and apply it to AO to recover the mirror profile. I would

also like to point out, that if one were to apply the unstable inverse transfer function

in Matlab the result would "blow up." Figure 3-9 shows an approximate transfer

function for N = 2.

The transfer function shown in the red dashed curve figure 3-9 is an approximation

to the transfer function Hd(ew). This transfer function has a stable inverse since it's

poles and zeros shown in figure 3-10 reside within the unit circle. The magnitude of

the approximate transfer function corresponds well with the actual transfer function

with the exception of the zero location at a normalized frequency of w = 0.5 and

at DC. Any power at this frequency will be lost. Moreover, the phase shown in

the bottom of figure 3-9 is approximately linear (which corresponds to a constant

group delay) with the exception of a distortion occuring at the normalized frequency

(P = 0, .5, 1) which is not of interest since these locations correspond to lost frequency

content.

3.6 Experimental Results

So far we have outlined a process in which we can determine the nonlinear distortion

of a mirror. In the experiments to be described in this section, the stage is scanned

along a constant xo. The particular position xO that is chosen is not significant, since

the measurement process is not a function of this parameter. As the stage is scanned

along the Y axis, both stage mirrors are sampled using high speed electronics (i.e.,

the Zygo ZMI-2000 series measurement boards). The angular output of the Y-Axis

interferometer is added to the angular output of the X-Axis interferometer producing

the signal AO[n]. The resolution of the Zygo 2000 series electronics is A/512, where

A = 633 nm corresponds to the wavelength of a helium neon laser, and the factor of 4

is a result of the multiple passes in the beam path. This corresponds to the resolution
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Figure 3-9: The solid line shows the frequency response of Hd(esw), while the dashed
line corresponds to an approximation Ha(eiw) ~Ha(es') where the double zeros
corresponding to a normalized frequency of 0.5 have been moved inside the unit
circle. In addition, the zeros corresponding to a normalized frequency of w = 0

and w = wr have been moved slightly within the unit circle. These zeros would
result in an unstable inverse transfer function. Any spatial frequencies in the mirror
corresponding to the zeros in H(ew) will be lost. For the case of N = 2, the zero
location at a normalized frequency of 1 corresponds to spatial periods equal to the
spacing h between the four beam spots on the mirror.

of the lowest bit in the phase measurement.

The angular measurements of the X and Y axis interferometers are shown in

figure 3-11(a) and (b) respectively. We notice from the Y-axis interferometer mea-

surement that the total rotation is on the order of ca ~±10 yi rads. This is within the

specification provided by the manufacturer. Furthermore, the stage yaw (a) has been

found to be on the same order of magnitude by utilizing a commercially available
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Figure 3-10: The zeros for the approximate transfer function Ha(ew) Hd(ejw) are
shown. Since all of the zeros fall within the unit circle, the approximate transfer
function Ha has a stable inverse. The zero locations for the approximate transfer
function are {0.99, -0.99, z0, -zo, z0, -zo} where zo = 0.85eix/ 2

autocollimator. While there may be various sources for the yaw rotation of the stage,

one potential cause is a result of deformations in the ceramic surface. The stage is an

Anorad microglide T300L (Anorad Corporation, Hauppauge NY) model which floats

on a granite surface using air-bearings. The stage is accelerated using frictionless

magnetic forces. Deformations of the surfaces (granite and ceramic) on which the

stage glides with the use of air-bearings, in addition to torques caused by magnetic

forces may lead to small rotations of a.

For the purposes of our measurement, summing 6, and y, will cancel the rotation

a leaving only a function of the mirror distortion to be measured. In deriving the

equations for 0, and Q,, we noted that each measurement would contain the rotation

a but of a different sign. This is clearly seen in the data in figure 3-11, where both

0, and Oy measurements have a linear slope in common but of different sign.

The frequency content in our measurement AO is shown in the bottom of figure 3-

12. A discrete Fourier transform is applied to the the output AO. The frequency axis

is normalized to the same dimensionless units as the transfer function in figure 3-9.

One may observe that the majority of the power in the measurement resides within a

normalized frequency of -0.3 < w, < 0.3. For any arbitrary mirror shape, we can not
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Figure 3-11: Measurements (a) Ox(y) and (b) Oy(y) are
stage coordinate y in units of microradians (prads)

shown as a function of the
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make any general statements about aliasing by simply expecting the data. However,

for a mirror of optical grade we may make a few general statements. Namely, since

the mirrors are polished we expect smoothing of high frequencies. Therefore, we

conclude that most of the power would reside at low frequencies, with a shape in the

power spectrum that decreases with increasing frequency. Inspection of the Fourier

spectrum of AO in figure 3-9 suggests that the data is bandlimited to a normalized

frequency of Wn-max = 0.3, which corresponds to a spatial frequency of f,/6 - .

This gives us confidence that we are sampling with a sampling rate that satisfies the

Nyquist critera, since fmax < f,/2.

AO, Filename: xm020706-001.txt

150

100

50

o'
0

100 200 300 400
Y Stage Position (mm)

Fourier Transform of AO, Filename: xm020706-001.txt

0.2

500

10.4 0.6 0.8
Normalized Frequency o> 2/(2nfS)

Figure 3-12: Top: Output AO = G2+G,. Bottom: Fast Fourier transform of AO. Most
of the power resides below a normalized frequency of .3 which satisfies the Nyquist
sampling criteria.
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Applying the inverse filter, Ha(ejw) = IHal(ejw)I ~ IHil(ew)l is a relatively

simple process to implement in Matlab. One may construct a finite difference equation

and apply the filter using a recursive loop. Alternatively, one may make use of the

matlab filter function and input the filter coefficients. The inverse filter may be placed

into the form:

-4h
H2 (esw) = -4(.h1

ao + aiz- 1 + a2 z- 2 + a3z- 3 + a4 z-4 + a5z- 5 + a6z-6 (331)

where the filter coefficients are given by ao = 1, a, = 0, a 2 = 0.4649, a3 = 0, a 4 =

-0.8942, a5 = 0, a6 = -0.5116, and the gain constant is .7367. One may verify that

this filter is the inverse to the approximate filter with the pole-zero diagram shown

in figure 3-10. Applying this inverse filter to the discrete output AO[n] results in

the the reconstructed mirror shown in figure 3-13. A best fit line is subtracted from

the reconstructed mirror in order to obtain the mirror nonflatness. There are two

pronounced features in the data at 75 and 375 mm. These features correspnd to

locations where holes were made in the mirror for mounting purposes. In addition,

there appears to be a small high frequency oscillation in the data. If one observes the

Fourier transform of the data in the bottom of figure 3-13, a slight feature appears at

a normalized frequency of f, = 0.5. This is a direct consequence of the inverse filter.

The measurement transfer function which is applied to the data should remove any

spatial frequencies corresponding to this normalized frequency of W = 0.5 as seen from

the zero locations in the pole-zero plot in figure 3-10, and from the large attenuation

shown in the transfer function in figure 3-9. However, one may observe that there is

a background noise level in the data (noise floor). This uniform power spectrum is

typically referred to as white noise. Temporal fiuctations and other random processes

may contribute to this background noise level. When the inverse filter is applied,

any noise present in this portion of the power spectrum becomes amplified. In an

ideal situation, the zeros of the measurement transfer function and the poles of the

inverse transfer function would cancel each other out. Due to the finite precision of
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Figure 3-13: (Top) Measured mirror nonflatness after applying an inverse filter Hiejw
to the output AO and subtracting out the best fit line. (Bottom) Discrete Fourier
Transform of the measured results.

our discrete signal processing and measurement noise, however, the poles which reside

on the unit circle lead to an unstable inverse transfer function. The pole locations of

the inverse transfer function are brought in closer to the origin of the unit circle (i.e.,

the radius is reduced) in order to reduce the gain of the transfer function.

If one wishes to remove the feature which causes the ripples in the data in figure

3-13 one may move the zeros of the approximate transfer function, at a normalized

frequency of 0.5, further inward away from the unit circle. This leads to an inverse

transfer function with less gain at these spatial frequencies. Alternatively, an inverse

filter may be applied to the measured data followed by a low pass filter to reduce the
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large gain at the normalized frequencies corresponding to the pole locations. Since

we are dealing with linear systems the order of the cascade is not of importance. One

may also apply the low-pass filter followed by an application of the inverse filter. This

has an alternative interpretation of removing the noise at the unstable frequencies.

The result of applying a low pass filter to the data in figure 3-13 is shown in figure

3-14.
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350 400

Figure 3-14: A low pass filter consisting of a 4 point moving average is applied to the
reconstructed mirror profile. This filter removes the high frequency errrors introduced
by the noise present at the pole locations of the inverse transfer function.

In summary, our discussion has allowed one to taylor a technique for reconstruct-

ing the mirror profile from angular measurements using angular/displacement inter-

ferometers [301. A recipe has been provided which allows one to reconstruct the mirror

profile by applying a stable inverse measurement transfer function. The exact form
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of this transfer function has been given in equation 3.31. Alternative inverse transfer

functions may be found which may provide a better approximation to the true inverse

measurement transfer function as a result of minimizing an error criteria. As a result

of the background noise in our measurements, one must be careful to reduce the noise

floor by pre-filtering the output AO in order to reduce the large gain of the inverse

transfer function at the pole locations.

150

001

501

0

50

100
0 100 200 300

Y Stage Position (mm)
400 500

Figure 3-15: The X-axis stage mirror was scanned along the Y-axis for three different
stage locations (xo=1 mm, xo = 150 mm, xo = 280 mm). For each scan along Y,
the mirror is discretely sampled using the X and Y axis interferometers. The results

look similar for the various X locations as we expect.

In any event, our recipe for computing the mirror works well and results in a fairly

smooth mirror profile as we would expect. From the analysis, we have shown that the

exact x coordinate in which the X-axis mirror is scanned does not effect our data. In
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order to test this claim, we scanned the stage X mirror along the Y-axis at various x

locations. The result of our measurements for three different x coordinates are shown

in figure 3-15. The results indeed look similar for the three different x locations as

we would expect.

In the range of y = 200 - 300 mm, however, the scan corresponding to a stage

location of x = 280 mm has an order of 10 nm difference from the other scans. Part of

this error may be the result of air-refractive index variations which were not corrected

for during the acquisition of this data. Furthermore, averaging was not used and

would further reduce the noise in the measurement. Since the measurements overlap

at various locations of the scan, we are overall satisfied and believe the X-mirror

nonlinearity D. (y) and our measurement process to be invariant to the various stage

locations under which the data is acquired to within a 10 nm tolerance.
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Chapter 4

Contrast Considerations

The relationship between linewidth and dose in photolithography has been known for

some time. Minimizing the variations in linewidth is important for a number of appli-

cations. For example, for diffractive grating applications the linewidth determines the

diffraction efficiency of the diffracted wave. Similarly, distributed feedback photonic

devices such as waveguides and photonic bandgap device's performance will largely

depend on coherence (phase fidelity) and linewidth control (for efficiency). In this

chapter, we will therefore study the various parameters which influence the linewidth

in scanning beam interference lithography.

We will start off with an overview of a simple model which has been frequently used

in photolithography. This model is known as the binary resist clipping model, and

provides insight into the general relationships one would expect for an ideal photore-

sist behavior. More sophisticated modeling would include modeling of the volume of

the resist structure. For example, anti-reflection coatings are used to prevent back re-

flection from the bottom of the substrate. This has been shown to eliminate standing

waves normal to the surface which lead to "scalloping" of the sidewalls. In addition,

post exposure baking has also been shown to reduce the roughness on the developed

resist. For the purposes of this chapter, we will ignore these higher order effects which

are modeled in the IC industry using commercial software such as PROLITH.

As we proceed, we will develop models to determine the contrast of the dose.

Scanning beam interference lithography, as opposed to traditional interference litho-
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graphy, uses a scanning method to create an exposure dose to cover large areas. This

produces a set of stringent requirements unique to SBIL on scanning. It also provides

a unique opportunity in that one could tune in to a certain period by choosing a set

of scan parameters. We will find that in the case of parallel scanning, one may choose

the period by appropriately choosing the step over distance. While this remarkable

result was first discovered by one of my colleagues Dr. Carl Chen, a novel model will

be presented in this section which will provide some keen insight. The former model

requires a simulation in the spatial domain which hides many interesting details. In

this chapter, we will develop a model in the Fourier domain, which will allow us to

draw many conclusions without having to run any simulations. For example, I will

show the relationship between the interfereing beams' spot size, the shape of the

intensity, fringe period, and step over distance on the contrast of the dose.

In a previous chapter we described a new scanning technique known as Doppler

writing. This method of writing requires that the fringes in the interference pattern

synchronize with the stage motion, as the stage scans perpendicular to the interference

fringes. In order to move the fringes in the interference pattern, the phase of the

interference beams are modulated using acousto-optic modulators. For the first time,

I will show how we can control the period using Doppler writing by choosing the

appropriate phase modulation. Moreover, the relationship between the fringe period,

phase modulation, and contrast will be presented. This has important implications

for the next generation of SBIL, the so called variable period SBIL, in which Doppler

writing will play an important role.

At the end of the chapter we will discuss some non-idealities in the wavefronts

which may be incorporated into our model. For example, an assumption throughout

the chapter is that the wavefronts of the interfering beams are planar. That is, the

phase of the wavefronts are at most linear. For Gaussian beams, this condition is

only met when the beams interfere at their waists. Previous studies by Chen have

shown the effect of the placement of collimating lenses on the phase of the Gaussian

wavefronts. In this section, we will discuss some predictions made by our model on the

relationship between contrast and on wavefronts with nonlinear phase. In addition,
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we will present some experimental results on measuring the wavefronts and we will

compare algorithms used to extract the wavefront phase from an interference pattern.

4.1 Introduction: The relationship between con-

trast, dose, and linewidth

In this section, we will discuss the relationship between the average dose, the resist

properites, and the resulting linewidth in scanning beam interference lithography.

The dose will be denoted as D(x) and will be defined to be the integral of the total

intensity over time D(x) = f I(x)dt. The image grating will be described as the

intensity I(x) which results from the interference pattern of two beams.

The dose contrast is a function of several parameters in scanning beam interfer-

ence lithography. For example, the image-grating's shape, which is formed by the

interference of two interfering beams, will have a large impact on the contrast of the

exposure. In traditional interference lithography, two large beams interfere and the

image grating is directly transfer into a photoresist-covered substrate. In scanning

beam interference lithography, an image grating which exists within the overlap re-

gion of two interfering beams (typically 2mm) is scanned, stepped, and repeated until

the entire wafer is exposed. The step size, and the influence of these parameters on

the contrast will become clearer in the following sections of this chapter. For the pur-

poses of an introduction, we will consider a clipping model where the image grating

is assumed to be sinusoidal and we will reserve our discussion of scanning and the

Gaussian nature of the interfering beams until later in this chapter.

The latent image is a term given to the pattern which is transfered onto photore-

sist. The latent image characteristics (such as shape) and linewidth will depend on the

contrast of the exposure dose. When we speak of contrast, unless stated otherwise,

we will for the purposes of this chapter be describing the contrast of the exposure

dose. In this particular section, in which case scanning is not considered, the dose

will be proportional to the intensity I(r) in the image grating. By definition, the dose
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is the integral of the intensity over time, and since our image grating is stationary

the the proportionality constant between dose and intensity is the exposure time. So

in this sense, the dose contrast will be proportional to the contrast of the intensity.

However, as we proceed further in the chapter we will assume the contrast of the im-

age grating is perfect, and study the unique features of SBIL that effect the contrast

of the dose. If we wish to account for the non-ideal contrast of the image grating, it

will be easy to incorporate into the analysis by scaling the resulting contrast with the

image contrast.

Let us now clearly define what we mean by dose contrast. We will use a common

definition for the contrast of a dose D(x) with variation along the x-axis. Namely,

the contrast y may be defined in the following manner

Dmax - Dmin

Dmax + Dmin

where Dmax is the maximum dose and Dmin is the minimum dose. For a sinusoidal

dose with an offset of Dag and an amplitude DA descibed by

D(x) = Davg + DAsin( -- x ), (4.2)

the contrast -y defined in equation 4.1 is found to be -y = DA/Dg. Typically, a

sinusoidal dose will be written to reflect this definition in a form

D(x) = Davg[1 + y sin(-x)]. (4.3)
Pf

With the definition in place for contrast, we would like to now evaluate how the

contrast affects the linewidth of our latent image. Strictly speaking, the latent image

will require development in order for the pattern transfer to be complete. Similar

indeed to the role of film in photography. Interestingly enough, the first commercial

photo-resists were developed by Kodak. Nonetheless, we may attribute a linewidth

to describe the spatial width of the region in which the light induced reaction occurs.

In order to do so, we will use a simple model for the resist (known as the binary resist
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Figure 4-1: Binary Resist model. A threshold dose of 1 (dimensionless units) is
shown. After post-exposure development, any resist exposed with a dose greater than
the threshold dose is removed. The result is the square profile shown, with a linewidth
equal to half the period for a sinusoidal exposure with a contrast 7=1.

or clipping model). Namely, any region in the photo-resist which is exposed above

a threshold dose is removed by subsequent application of the photo-resist developer

(for positive photo-resist). Figure 4-1 is an illustration of the clipping model.

Accordingly, a sinusioidal dose with a constant offset corresponding to D,,, = 1

in normalized units is shown in figure 4-1. This sinusoidal dose is also chosen to

have a contrast -y = 1. The photoresist threshold Dr (which is usually determined

empirically) is shown to equal the average dose Dvg = 1. Regions in the resist which

are exposed with a dose greater than the threshold dose D > Dr are removed by

applying a developer. The regions in the resist which are exposed below the threshold

remain. The rectangular pulse train which remains may be described by its width

within a period which we refer to as the linewidth.

There are two basic parameters for a given resist dose threshold Dr that will affect

the linewidth in the latent image. These parameters are the average dose Dvg and

the dose contrast -y. Figure 4-2 illustrates the effect of changing the average dose Davg

on the latent image linewidth for a constant -y, in this case -y = 1 . For the purposes

of illustration, the threshold dose is shown to to be 0.5 in normalized units. The

average dose for the three curves are greater than the threshold dose. The change in
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Figure 4-2: Effect of Dose. Three different exposures with an average dose of 1, 1.5,
and 2 for a fixed contrast of -Y = 1. The threshold dose is shown in the dotted line. A
change in linewidth will result in the developed latent image as the intersection of the
dose and the resist's threshold dose changes.

linewidth that results may be visualized by noting the change in intersection of the

dose curves with the threshold dose.
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Figure 4-3: Effect of Contrast. Three different dose profiles which have the same
average dose but different contrast (y = 0.7, y = 0.9, -y = 1) are shown. The inter-
section with the dose threshold (dotted line) will separate regions which are removed
upon development.

In figure 4-3 I show the effect of varying the contrast for three exposures with the
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same average dose Dayg. Shown are three dose profiles corresponding to y = 1, 0.9, 0.7

each with an average dose of Da, = 1. Similar to the case in which we changed the

dose with a fixed contrast, changing the contrast with a fixed dose will also change the

linewidth. This may be visualized by once again noting the change in the intersection

of the dose with the threshold dose. For illustration purposes, a threshold dose of

Dr = 0.5 is shown in figure 4-3 in a dotted line. For emphasis, we recall that any

dose levels greater than the threshold dose will be removed during development.

1
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0.8
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0 0.5 1
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avg t

linewidth/period) as a function of the average dose,

It is also worth noting from figure 4-3 that for each contrast the important para-

meter is the average dose relative to the threshold dose. For each contrast, we may

then generate a family of curves by either increasing the threshold dose or by chang-

ing the average dose. One may also gain insight by examining three limiting cases of

interest. In the case that the threshold dose Dr is equal to the average dose Davy,
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a 50% duty cycle is achieved for all contrast variations. This is also shown in figure

4-4 which plots the duty cycle vs dose for different contrasts. In the case that the

threshold dose is below the minimum dose, all of the latent image is removed during

development. This is the case in which Dmin = Davg(I - 'Y) > Dr. We may also then

solve for the minimum average dose in which complete overexposure occurs (i.e., the

linewidth goes to zero) resulting in Davg = Dr/(l - y). The latent image may then

be said to be completely overexposed. In the ideal case, the linewidth will not go to

zero when 'y = 1 as shown in figure 4-3. Finally, in the case in which the maximum

dose is below the threshold dose Dmax = D,,vg(1 + y) < Dr, all of the resist remains

after exposure and the image is said to be overexposed. The maximum average dose

in which this occurs may be expressed as Dag = Dr/(1 + Y).

For emphasis, we may label the over-exposure limit Doverexpose and the underex-

posure limit as Dunder-expose as

Dr
Dover-expose = (4.4)

Dunder-expose = . (4.5)
1+ -Y

The benefit of exposing with a high contrast is that the sensitivity to the average dose

in the exposure to achieve a given linewidth is improved. For example, from equation

4.4 we find that as we increase -y the over-exposure dose in which the linewidth goes

to zero is decreased. Thus far, the relationships we have described are common to

resists and photolithography and serve as good introductory material. In the following

sections, we will describe how contrast is achieved in SBIL. Obtaining good contrast

is highly dependent on satisfying certain conditions on the stage scanning as we will

see.

4.2 Parallel Writing Contrast

In this section, we will illustrate the effect of the stage scanning on the dose contrast.

For simplicity, we will consider a one-dimensional intensity I(x). For scanning beam
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interference lithography we acknowledge that the intensity is in fact within a two-

dimensional Gaussian envelope which is a function of both x and y. However, in

the case of parallel scanning the y dependence is integrated out of the problem by

scanning along a continuous y direction as shown in figure 4-5. At the end of the scan,

the stage is translated in the x direction by a discrete step amount S and the scan is

repeated now in the opposite y direction of the previous scan. This scanning mode

is known as parallel scanning because the stage is scanned along a direction parallel

to the interference fringes. Therefore, the problem is truly becomes one-dimensional.

The first scan creates a dose profile along x given by D(x) = f(I(x, y -y,)!, which is

then stepped over along x to expose the entire wafer [7]. In order to keep the notation

more managable, we will assume we have a one-dimensional intensity. Lets begin by

assuming that we have two electric fields in the left and right arms given by E and

ER, as written below:

EL = AL(x) exp(jkLX + jkL-4Z) (4.6)

ER = AR(x) exp( jkRpx + jkRzZ) - (4.7)

For the time being, we do not have to make any assumptions about the amplitudes

AL (x), and AR(x), although we expect them to be Gaussian. Furthermore, we assume

the x-components of the k vectors of the left and right arms are of the form kLx- =

-kRx = 27rsin(G),, where A = 351 nm and 0 is the half angle between the beams,A

resulting in a period of Pf = A The z-components of the k vectors are equal2sin(O)~

kLzi = kRzi and therefore do not play a role in the intensity. The half angle is

currently chosen for a period of P = 574 nm. The average intensity I(x) is calculated

by taking the complex conjugate product of the sum of the fields (EL +ER)(EL +ER)*,

where E* denotes the complex conjugate of E as shown below

I(x) = |EL 112 + ER 112 + ELE* + ERE* (4.8)

= IIEL12 + IER 112 + 2Re{ELE } (4.9)

= IIAL(x)112 + IIAR(X)11 2 + 2AL(x)AR(X)COS( 27X) (4.10)
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Now we define the local contrast of the image grating component with spatial period

Pf to be

'image-grating (x) = 2AL(x)AR(x) 2(4.11)
IIAL (X)11 2 + )IAR (X)

By local contrast we mean the contrast within a few periods Pf of location x in the

intensity I(x). This requires AL(x) and AR(x) to be slowly varying with respect to

cos('x). This will be satisfied, for example, if the highest spatial frequency fnax in

AL(x) and AR(X) is much less than 1/Pf.

The more interesting question is what is the contrast of the dose when we step over,

or sum the intensity. This could be represented mathematically as a summation, or

equivalently by a convolution with an impulse train as shown in equation 4.12. Since

the step over is along the direction x, we are assuming that the dose along the x

direction of a single scan is proportional to the intensity. The proportionality constant

T is equal to the time T the intensity dwells at location x before the stage is stepped

over for our one-dimensional treatment. For the full two-dimensional treatment of

an intensity J2d(X, y), the one-dimensional dimensional intensity may be modified by

I(x) = f I2(x, y)dy and the proportionality constant may be replaced by r = 1/v

where v is the velocity of the scan in the y direction. This functional replacement

would provide the correct results. We will continue however with our one-dimensional

treatment with this knowledge in mind.

The dose D(x) may be expressed as a convolution with an impulse train d(x) as

D(x) = rI(x) * d(x) (4.12)

d(x) = E 6(x - nS) (4.13)
n=-oo

where S is the step-over distance, and the impulse train expresses the process of

translation and summation. In order to calculate the contrast of the dose, D(x), we

simply need to look at the ratio of the radian spatial frequency component w = 27rf

at 27r/Pf to the DC component. Since the transform of a convolution is the product
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Figure 4-5: (a) Parallel scanning concept. The image grating is scanned in the y
direction. At the end of the scan, the stage steps over a distance S in the x direction.
The scan direction y is then reversed and the new scan overlaps with the previous

scan. (b) The image grating consisting of a Gaussian envelope modulated with carrier

fringes. The stage is stepped over a discrete amount. For optimal contrast, the step
over distance should be an integer number of grating periods so that the fringes of the
new scan overlap with the previous scan.
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(x) =A(x) x [1+ cos(22A/Pfx)]
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Figure 4-6: Cartoon illustrating the Fourier transform of the intensity.

of the transforms, and since the transform of a comb of spatial delta functions is a

comb of frequency delta functions,

D(w) = I(w)J(w) (4.14)
2,7r 27rn

d(w) = 6(w - ), (4.15)

where the overscore denotes the Fourier transform. The Fourier transform of the

intensity may be found with the aid of figure 4-6. For the case AL(x) = AR(x),

the intensity of the form given in equation 4.10 may be visualized as the product

of A(x) = 2IAL(x)AR(x)I with a function of the form [1 + cos( x)]. In frequency

space, the cosine term within the brackets translates and scales the Fourier transform

of A(x), F{A(x)}, to spatial frequencies ', -. The scale factor is 1/2. The
Pf fI

constant offset 1 within the bracketed term transforms into an impulse and therefore

the convolution of the Fourier transform of F{A(x)} with an impulse results in the

identity system. The overal result shown in figure 4-6 is that the Fourier transform

F{A(x)} is just a replicated at spatial frequencies 0, 27r/P, -27r/Pf, and scaled by

a factor of 1/2 at spatial frequencies 27r/Pf, -27r/Pf.
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Thus, the frequency spectrum of D(x) is discrete since the product of the Fourier

transform of I(x) and a discrete impulse train d(w) is discrete. The impulse train

therefore selects the spatial frequency components w = ' of the Fourier transform

F{I(x)} as shown below

27rn 27r -27rn
D(w) = -( 2n ) r2I( ), (4.16)

where n is an integer and S is the step-over distance, and the overscore denotes

the Fourier transform. It is worth noting that it is a general property of Fourier

transforms that the Fourier transform of a periodic signal is discrete. If the step-over

distance is chosen correctly, such that it is an integer number of periods S = NP,

the spatial frequency spectrum of the dose will have a component at w = 27r/P (i.e.,

for n = N in equation 4.16). Otherwise, we note that we could slightly change the

fundamental period of the dose by modifying the step-over distance. Let us assume

that we choose the step over distance to be an integer number of grating periods

S = NP. The contrast at w = 2w/P is then found to be

2y ( -f) (4.17)
D(O)

The Fourier transform 2D(g) could easily be verified to be

-27r 27r
2D(-) = -r < 2AL(x)AR(x) > (4.18)

Pf S

where <> denotes the DC component given by < f(x) >= f2, f(x)dx. In light of

figure 4-6 and our previous discussion, the Fourier transform component of D(x) at

spatial frequency 9 is just the translated and scaled (by a factor of ir/S) replica of

the DC component of the Fourier transform of A(x) = 2AL(x)AR(x).

Interestingly then, one could have guessed the solution by taking the spatial aver-

age of the image grating contrast given in equation (4.11). In conclusion, the contrast
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for given envelopes AL(x), and AR(x) as a result of discrete scanning is given by

< 2AL(x)AR(x) >
< |AL(X) 2 IIAR(X) 2

Prior to this analysis, it would have been difficult to calculate the resulting constrast

for different beam profiles AL(x) and AR(x). Before moving onto examples in which

this Fourier analysis will be helpful (such as in beam overlap, and period error)

I should make a few comments about the step over distance. The contrast given in

equation 4.19 will be meaningful if there is only one spatial frequency component w =

2 in the dose. To insure that this is the case, the step over distance should satisfy thePf-

Nyquist limit such that 27r/S is larger than the maximum spatial frequency of A(x).

This is always satisfied in our scanning if we approximate A(x) to be bandlimited to

27r/L where L is the beam diameter. Therefore, S must always be chosen such that

S < . This will insure that a uniform dose is achieved, and that only one spatial

frequency component is present. Finally, we will also make a note about the limits in

the integrals. We have chosen to use an impulse train d(x) that extends over all space

where the summation limits are over infinity. In doing so, we are obtaining what we

refer to as the steady state response and are therefore neglecting the transients at the

beginning of the scan which are not of interest. Physically, this corresponds to the

dose one would expect at the center of the substrate where the dose corresponds to

a summation of the nearest neighbor scans. Therefore, a dose in the center will be

representative of a steady state response since the dose at the center is equivalent to

a dose calculated using the infinite limits in the sum.

4.2.1 Example: Beam Overlap Error

In this section, we will carry forward our Fourier analysis to determine the contrast

due to two displaced Gaussian envelope functions. This example will be useful in con-

sidering the contrast degradation and alignment tolerances on our interfering beams.
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Consider the case where AL(x) and AR(x) are two displaced Gaussian functions:

2

AL(x) = ELexp(4 ) (4.20)

AR (X)= AL(X - X0) (4.21)

where R is the 1/e 2 radius (typically 1 mm) of the product AL (x)AR (x) = EL2exp( -)

when the displacement x0 = 0. The contrast as a function of the displacement is given

below. One could verify that evaluating the Fourier transform in equation 4.17 results

in a Gaussian contrast function of radius R = 2L. This could be found by using the

Fourier transform relationship of a Gaussian function given by,

R<= %/,rRe (4.22)

and by using the convolution property. For example the numerator of Equation (4.19),

2 < AL(x)AR(X) >, is calculated by using the convolution property along with the

fact that AL(x) is even symetric. In other words,

< AL(x)AR(x) >= j AL(x)AR(x)dx (4.23)

= j AL(x)AL(X - xo)dx (4.24)

= ( AL(x) AL(XO - x)dx (4.25)

= AL(xo) * AL(xo) (4.26)

where the last operation denotes convolution. In going from equation 4.24 to 4.25

we have used the even-symmetry of the Gaussian function AL(x). Furthermore, by

recognizing that a convolution in space corresponds to inverse Fourier transform of

the product of Fourier transforms in frequency, we have

AL(xo) * AL(xo) = F-1{ AL (xo)AR(XO) (4.27)
2

R
2 

-w2R
2

= Fl{7rR2 e 4 e 4 } (4.28)

2 -Rw2R2(7rR2F-1je 2 }(4.29)
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= Reid (4.30)
2

We could proceed to calculate the denominator of Equation (4.19), but we recognize

that it will result in a constant. Furthermore, for xO = 0 we note that the contrast -y

equals one. This allows us to determine that the denominator of Equation (4.19) will

equal 2 R, the value of the numerator in Equation 4.19 when xO = 0. This analysis

allows us to conclude that for a beam overlap error of xo the contrast is given by

y(Xo) = exp(-X/2R 2 ). (4.31)

The value of xO which results in a contrast of 1/e 2 is related to the beam spot size

radius by xO = 2R. Physically, this result makes sense because when the adjacent

scans are stepped over by a diameter, the beams no longer overlap as shown in figure

4-7 (a). This in turn could be used as a design criteria to calculate the depth of focus.

For example, given that the beams overlap at a particular location on a substrate as

shown in figure 4-7 (b), one is interested in knowing the tolerable substrate height

variation h to obtain good contrast. Using the relationship tan(6) - Q, where h is

the height of the substrate and 6 is the half angle of the interfering beams, we find the

displacement xO is equivalent to xO = 2h tan'(). For a period of 574 nm, the half

angle is 0 = 0.3057. We therefore find h = 0.5xo/0.30. At a displacement xO = 229.6

pm, the contrast has degraded by 10 percent (-y = .9). This corresponds to a change

in substrate height of h = 382.7 microns for a 1 mm beam radius R.

4.2.2 Example: Period Error Tolerance

In this section I will find the relationship between the step over error and contrast

tolerance for two overlapped Gaussian beams. Specifically, I will assume that the

envelopes for the left and right arms are equal as in AL (x) = AR (x) so that the

intensity may be described in the form I(x) = A(x)[1 + cos('x)], where A(x) =

e-22 2 If the step over is chosen to be an integer number of grating periods,

S = NPf, the contrast may easily be determined by making use of equation 4.17.
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Figure 4-7: (a) Top view of the substrate where the beams are translated by xO. A
grating exists only where the beams overlap. (b) View showing the depth of focus h. If
the substrate thickness varies by h, the beams will no longer overlap on the substrate.

Specifically, the frequency component D(2") for n = N is equivalent to the DC

component of A(x) scaled by a factor of rr/S. This leads to an ideal contrast y 1,

since the DC component D(O) is equivalent to the DC component of A(x) scaled by

a factor of T27r/S. Now we are interested in the case in which the step over distance

is not equal to an integer number of grating periods. For example, we may change

the period in the grating by simply stepping over by a distance S = N(Pf + AP).

However, the contrast will suffer.

The tolerance on AP may be determined by making reference to figure 4-8. In

figure 4-8, we illustrate in the dashed curve that if the fringes of the period were equal

to Pf + AP, our step over distance would sample the DC frequency component of

A(x)/2. However, since there is an error of AP, our step over distance samples the

Fourier component F{A(x)}/2 at frequency w = 2, . These considerations allow
TV
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Figure 4-8: A step over distance is chosen such that S =N(Pf + AP), where the
period error is given by AP. For small AP, this corresponds to sampling the Fourier
transform of A(x)/ 2 at w = AP

I

us to express the contrast as a function of period error. We will use the property that

the Fourier transform of a Gaussian beam with 1/e2 intensity radius is

_2x! v/27rR -,,2
e~R 4- e 8 (4.32)2

Interestingly, the 1/e 2 frequency response corresponds to W11,2 = 4/R or fl/,2 =

4/(27rR). This may also be expressed in terms of the beam diameter L as in fl/2 =

4/(7rL) ~- 1.27/L. The back of the envelope calculation that tells us the frequency

content of a beam of diameter L is bandlimited to f = 1/L is not a bad approximation

in light of this analysis. In any event, the contrast as a function of a period error AP
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may be expressed by evaluating the ratio

2F{A(x)}}w=27r AP/fP
(=0) ' ,(4.33)

D(O)

resulting in
(2IrLP/P )2

R
2

-(AP) = e- 8 . (4.34)

Now let us apply some numbers to this example. I will explore the limit for the value

of AP in which -y(AP) = 1/e 2 . I have already showed that this occurs for a spatial

frequency f = A- =L. This leads to a design rule AP < L. For Pf = 574 nm,

a beam spot diameter L = 2 mm, -APf = 1.27L = 365 parts per million or ppm. This

tells us that the ratio -A < 365 ppm as the limit for 1/e 2 contrast degradation, or a
P1

period error of AP = 0.2097 nm.

As we alluded to in the introduction, Chen has performed an analysis of contrast

error (which he refers to as dose amplitude error) using a spatial domain approach [7].

His technique does not provide a closed form relationship, and requires a simulation

of the multiple step over distances to produce a dose error plot. Here we offer an

alternative solution which provides a closed form equation. The advantage in our

solution is that we explicitly can determine the dependence of the radius R, fringe

period P1 , and period error AP on the contrast -y. Moreover, my model is consistent

with the contrast predictions of my colleague's simulation.

4.2.3 Experimental Results for Period Error

In this section, we will discuss the results of an experiment which is performed to

examine the relationship between period error and dose contrast. In order to obtain

an expression for the average dose, we will use a two-dimensional intensity of the form

I2d(X, y). As we scan along the first strip, the average dose will be given by D(x) =

f I2(x,y)4I. The subsequent sampling along x may be considered as a convolution

with an impulse train d(x) which results in the total dose given by Dtotai = D(x)*d(x).
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The average dose is then found to be

DS12() JI 2d(X, Y) (4.35)Da X)=S - S12 V

This may be expressed in units of mJ/cm2 in terms of the total power P in the beam

as

Davg = , (4.36)
SV

where P is the total power in the interfering region given in mW, v is the stage

velocity in mm/s, and S is the step-over distance between scans in mm.

I simulated a step over error as a result of a period error by adding a phase error

between subsequent scans. Notably, stepping over by the correct amount corresponds

to stepping over by an integer number of periods such that the fringes of the new

scan overlap with the fringes of the previous scan. If a period error exists, there will

be a phase error between subsequent scans. This phase error may be examined by

evaluating the phase at the end of the step over distance S as in

27rS ? 27rS 2irS AP
P + (4.37) f P

where the step over distance was chosen to be S = NP, but the actual period in the

image grating is given by Pf + AP. This may be expressed as an equivalent phase

error between scans as
2-rS = AP 

(4.38)
P Pf

Typically one prefers to scale the phase 6, by a factor w = g to produce a phasePf

in nanometers. An experiment was performed corresponding to a phase error of

wO, = 0, 30,60 nm. For a period of P = 574 nm, this corresponds to an equivalent

phase error of AP = 0, 70,140 parts per million respectively for a step over distance

S ~ 0.4287 mm (rounded to the nearest integer multiple of Pf). For a beam spot

of radius R = 1mm, this corresponds to a contrast degredation of 0,0.07, and 0.25

respectively (i.e., y 0.93,0.75). The results of these experiments are shown in

Figure ?? taken from [31]
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Figure 4-9: Measured resist duty cycle (linewidth/period) vs dose for different period

errors for 574.303 nm period gratings. The dashed and dotted lines show the result of

a simulation where a period error of 0 and 140 parts per million are used. The solid

lines indicate the results of measurements for a 0, 70, and 140 ppm period error. All

plots intersect at the clearing dose, where the duty cycle is 50 %.

The slope of the linewidth vs dose curve gives an indication of the dose contrast.

For high contrast, it is possible to overexpose beyond the clearing dose with less

sensitivity to dose. For poor contrast, a more rapid decrease in linewidth is observed

for overexposing beyond the clearing dose. For these experiments, wafers coated with

78 nm-thick Brewer i-con-4 ARC, and 570 nm-thick Sumitomo PFI-88 resist were

used.

The experimental results and simulations show the trend one would expect. There

is some discrepency, however, and the measured linewidths do not overlap perfectly

with the simulations. One explanation for this involves using an oversimplified resist

model. For this simulation, a binary resist model is used. Improved simulations
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would involve modeling higher-order effects in the resist, such as absorption, back

reflections, and resist chemistry. In addition, other sources of contrast degradation

may be present which are not being accounted for. Moreover, we have estimated

many parameters such as the beam spot size, the shape of the Gaussian beams, and

have assumed the image grating contrast to be 1. In additon, we have made the

assumption that we know the period P to well within the uncertainty required to

conduct these experiments. The repeatability of our period measurements are on the

order of 2 parts per million.

4.3 Doppler Writing Contrast

4.4 Introduction

In this section we will consider the equivalent of a period error for Doppler writing.

Recall that Doppler writing is a patterning technique in which the stage is scanned

perpendicular to the interference fringes. Similar to the section in parallel writing,

we will begin by assuming that we have two electric fields polarized along the Y axis

in the left and right arms given by EL and ER

EL = AL (x) exp(jkLtx + jkLzZ)y (4.39)

ER = AR(x) exp(jkRox ± jkRzZ + jZXI).- (4.40)

We have allowed for a phase offset of A<D in equation 4.40. This phase will be

controlled by our frequency synthesizer which drives an acousto-optic modulator.

For the time being, we do not have to make any assumptions about the amplitudes

AL (x), and AR(x), although we expect them to be Gaussian. Furthermore, we assume

the x-components of the k vectors of the left and right arms are of the form kLxi =

-kaxz = 27r sin(6) i, where A = 351 nm and 0 is the half angle between the beams,

resulting in a period of Pf = The z-components of the k vectors are equal

kLz, = kRzz and therefore do not play a role in the intensity. The half angle is
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currently chosen for a period of Pf = 574 nm. The average intensity is calculated by

taking the complex conjugate product of the sum of the fields (EL + ER)(EL + ER)*,

where E* denotes the complex conjugate of E.

In order to find the intensity, we proceed to calculate

I(x) = IEL112 + IIER|12 + ELE + ERE* (4.41)

=IIEL12 + IER112 + 2Re{ELE*} (4.42)

= A1(x) 12 + AR(x) 112 + 2AL(x)AR(x)cos(-7x - A4b). (4.43)
Pf

We will define Doppler writing as patterning in the direction perpendicular to the

interference fringes (i.e., x), at a velocity v (see the chapter on Doppler writing for

a detailed explanation). The stage reference frame X' is moving with respect to the

laboratory reference frame X at velocity v yielding the relation X' = X + f vdt. We

will define x, = f vdt to be the position of the stage reference frame with respect

to the laboratory frame. Notably, an object located at position x in the laboratory

reference frame may be expressed as being at position

x' = x - x, (4.44)

in the stage frame since the origin of the coordinate frame X is located at distance

-x, with respect to the origin of X'. The author acknowledges that constantly chang-

ing between reference frames may appear to be unecessarily confusing. A reference

diagram is provided in figure 4-10 for clarity. The only result we will need is the

relation given in equation 4.44 which allows us to relate an object's coordinate in the

stage frame with coordinate x' or in the laboratory frame with coordinate x. This will

be useful in describing the intensity which is stationary in the laboratory reference

frame. As shown in the diagram in figure 4-10 as the stage moves along positive X

in the laboratory frame, the intensity appears to move to the left along negative X'

in the stage frame.

The intensity in the stage reference frame may then be written by simply substi-
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Figure 4-10: The laboratory frame X - Y - Z and the moving stage frame X' - -
Z' are shown. For an observer in the laboratory frame, the intensity appears to be
stationary. For an observer in the stage frame, the intensity appears to be moving to
the left for a positive velocity v of the stage as measured in the stationary frame.

tuting x = x' + x, for x in equation 4.43 resulting in

I'(x', t) = IAL (X'+ X, 112  2 +ARWX,)I22cos[--(x'+xs) - Ab]G(x'+x,). (4.45)

where

G(x' + x,) = AL(x + x)AR(X'+ Xs). (4.46)

We note that the sign is correct in equation 4.45 since the intensity appears to shift

to the left in the stage frame (along negative x') for positive values of x,.

In order to calculate the dose, we must integrate over time and change variables

to xS [27]. Explicitly, we may write

D(x') J I'(t)dt (4.47)

D(') n i('x + ) sd, (4.48)

where the variable change of dt to dx, is accomplished by recognizing dx, = v. As
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a side note, we may gain insight by comparing the continuous Doppler scan case to

that of a discrete step over in parallel scan. In the case of a discrete scan, we found

that the dose resulted in a summation as given by equations 4.12 and 4.13. The

summation was represented as a convolution of the intensity with an impulse train

d(x) = E'_=- 6(x-nS), where S is the step over distance. In Doppler mode, the scan

is no longer discrete but continous which is the limit in which the step over distance

goes to zero (S ~ dx,). In the continous step over case, the summation becomes an

integration, and the convolution with an impulse train becomes a convolution with a

unit step function . The unit step function u(x') is a function defined as u(x') = 1

for {x' > 0}, and u(x') = 0 for x' < 0. In order to be consistent with our choice

in coordinate systems, the integral in equation 4.48 may be expressed compactly by

a convolution D(x') = I(x') * u(-x')1/v, where the negative sign associated with

the coordinate x' is necessary since the intensity envelope appears to move towards

negative x' for positive x,.

I will show that this integral may be written explicitly as a convolution in the

following steps:

D(x') = J(x') * u(-x')1/v (4.49)

= I(x' - X)U(- x') dx (4.50)
XS=-OO (

- f I(x' + x 8 )(xo) , (4.51)
xJ=0 V

= 1 (X' + x) d . (4.52)
xs=0 V

In going from equation 4.50 to 4.51 we changed the sign on the integration variable x,

and reversed the limits of integration. It is also noted that in equation 4.52 the unit

step function was replaced by unity (by definition). This exercise served to illustrate

that Doppler writing is a limiting case of a parallel scanning with a discrete step over

distance that approaches zero, as we would expect. It also confirms that we have

been consistent in our choice of representation.
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We will now express the integral in equation 4.48 explicitly below

D(x') = J{IAL(x' - X)2 + IIAR(x ~ x)112 +

2cos[2-(x' - xS) - A4D]}G(x'- x,) dx. (4.53)
Pf V

The first two terms in equation 4.53 may be expressed as a convolution {IAL(x') 12 +

AR(x') 12}*u(-x')1/v. We note that this convolution approaches a constant in steady

state. This will contribute to a constant offset of our dose. What we will do in the

following analysis is to observe the effect of A<D on the third term in equation 4.53.

When A4< is equal to l-x., the x. terms cancel out, and the cos function couldPf

be taken out of the integral. What remains in the integral is G(x') convolved with

u(-x')/v. If AL(x') = AR(x'), perfect contrast results. This can be seen by writing

the result of equation 4.53 as D(x') = F[1+cos(! x')] where F = IAL(x')1 2*(-x')/v.

Now let us consider a more general case where there is an error in our phase

modulation AD. We would like to determine the dose when A(L = ,A x,. This

corresponds to a linear phase modulation where we have used a period (i.e., Pf + AP)

different then the fringe period P. We may approach this by examining the integral

1 2 cos[ -L(x' + xS) - 2P± -x ,]G(x' + x,) dx, (4.54)
Pf AP+ Pf V

= 2 fRe{e( e }P+Pf }G(x' + xS)dx (4.55)

=2J Re{e( e }G(x' + x,) , (4.56)

where in equation 4.56 we have taken a Taylor series expansion of the denominator

term in the phase of the complex exponential in equation 4.55. We also notice that

we may cancel the terms involving x,/Pf leading to further simplification as written

below:

2J e .2e }GP' + j ) . (4.57)
2Reje"Tfx e Pf xs}G(x'+x)(-7
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For all practical purposes, we will impose the condition that G(x,) is real so that we

may take the real part out of the entire integral. For mathematical convenience, we

will impose the additional condition that G(x,) is even so that its Fourier transform is

real. In addition, by the sifting theorem we recognize the Fourier transform F{G(x, +

x')} to be equivalent to F{G(x,)}e+2r-'

The reward in this analysis is that the integral in equation 4.57 may be expressed

as the real part of the Fourier transform of G(x, + x') with respect to x, evaluated at

a spatial frequency f = - Pf . With these conditions the integral in equation 4.57

may be evaluated as

2Re{e 'J e Pf I= AP/Pf F{G(xs)} | I APPf }I/v (4.58)
Pf Pf

= 2cos( 2'r() - F { AP/Pf}1/V (4.59)
Pf Pf

2ir
2cos( ± X')F{G(x,)}If A± f,}1/V, (4.60)

Pf +AP fX = P,

where in going from equation 4.59 to 4.60 we have used the property that the Fourier

transform of G(x,) is complex conjugate symmetric since G(x,) is real. In addition,

in equation 4.60 we have used the property that the Fourier transform of G(x,) is

real since G(x,) is even. The exciting result of equation 4.60 tells us that the contrast

change is proportional to the spectrum of G(x,) evaluated at a spatial frequency f =

APIPI~ .Furthermore, it also illustrates that the period of the grating will be equal to
Pf

the period Pf + AP determined by the phase modulation A1$. This remarkable result

proves that the period of the grating is not limited by the period of the interference

fringes P but rather by the period of the modulation. On the other hand, the

contrast will depend on the Fourier transform of the envelope evaluated at frequency

f - ____f

Pf

In terms of a linear system, the results make sense. If the input to a linear system

is a sinusoid of spatial frequency ,, the systems transfer function must have

some gain at this spatial frequency. Roughly speaking, the beam spot profile G(x)

determines the attenuation (or contrast degradation) that will occur. In the limit
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that the spot size goes to zero any spatial frequency may be written this would be

analogous to patterning with a fine tip pen versus a marker.

We could use the Fourier transform relationship for a Gaussian function to de-

termine a closed analytical expression for the contrast due to a Gaussian beam. For

a Gaussian envelope function G(x') with a 1/e 2 radius of R, the Fourier transform

relationship is given by:

-2x
2  _2R2

e 2iR/2e 8 (4.61)

Using this property, we could then proceed to find the contrast degradation due

to changing the period by AP. This could be written as

~(AP)= (27rAP/P 
)2R2

g(P)= 8 (4.62)

The 1/e 2 contrast degradation occurs when = 3, for a .7 mm beam radius

R, 574 nm fringe period, the maximum period change before a 1/e 2 lost of contrast

is .3 nm. With these set of parameters, the contrast may be rewritten as

27rAP2

-Y(AP) = e~ 77(4.63)

where a = .3 nm and is defined such that when AP = a the contrast y = 1/e 2 . A

plot of the contrast for various values of AP assuming a = 4P2/(27rR) = .3 nm is

plotted in figure 4-11.

Interestingly, the relationship we have found for the contrast provides for an in-

sightful interpretation. Let us consider a discrete case in which we sum sinusoidal

interference patterns of spatial frequency 1/P with different phases (given by a phase

modulation A(D). For pure sinusoidal signals, we would not expect the resulting pat-

tern to produce an output of spatial frequency , since the operation of summa-

tion is linear. However, since we have a Gaussian envelope with a broad bandwidth
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Figure 4-11: Contrast for a Gaussian function

modulated with sinusoidal carrier fringes of period 1/Pf, the spatial frequency

exists in the power spectrum. By properly applying a phase modulation ALV and by

overlapping scans we can supress the other spatial frequencies in the patterned grat-

ing. The contrast suffers, because the peak spatial frequency in the Gaussian beam

resides at 1/Pf.

If the spot size were to shrink to a delta function, we could write any period we

desire simply by modulating the beams with A4 because of the high spatial frequency

content present. Unfortunately, this is not a viable option because the spot size is

diffraction-limited and smaller spot sizes require more scans. It is also interesting to

note that one may alter the shape of the envelope to allow for a greater selection of

acceptable period changes. For example, one may modulate the Gaussian envelope

by multiplying it with a sinusoid which will allow one to obtain a much greater range

of AP. This has the physical interpretation of effectively take the beam spot with

Gaussian envelope G(x, y) and dividing it into two smaller beams. At the moment,

these concepts are not being pursued but it does shed light into this remarkable

conclusion.

One thing that this analysis shows is that we can continually chirp the grating by

using Doppler writing. For high contrast, the period change should be much less than

1.3 nm for a beam radius of 0.7 mm and a fringe period of 574 nm. Currently in the
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design phase, is a new generation of scanning beam interference lithography which will

change the fringe period on the fly. This analysis will not incorporate such dynamic

behavior. However, a good design rule may be found by considering the phase of a

beam with a fringe period of , P. The change in phase 60 at the edge of a beam

with diameter L may be found by a Taylor series expansion resulting in 60 ~ 2"N L.

Setting this change in phase to be much less than ir results in a design rule N <
Pf R

which is similar to the result we achieved through Fourier considerations.

4.4.1 Experimental Results

Figure 4-12: Moire experiment consisting of two exposures with periods P 1 = 574.668
nm and Pf2 = 574.678 nm.

I performed an experiment which allows one to test the period modulation con-

cepts discussed in this section for Doppler writing. Accordingly, two linear gratings
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were written into a photo-resist substrate with two different fringe periods Pf 1 and

Pf2. We expect the exposure dose on the photoresist to be of the form

D = Davg + Disin( x) + D 2 sin( 2rx) (4.64)

The average dose in units of (mJ/cm2 ) for a single Doppler scan (the term Davg) may

be estimated by using the relationship

P 1
Davg ~ 100 , (4.65)

L v'

where L is the beam diameter, P is the average power in the interfering beams,

and v is the velocity of the beams. If we overlap these scans by stepping over in

a direction parallel to the interference fringes, the average dose will be scaled by a

factor L/S where S is the step over distance in the direction parallel to the interference

fringes. This results in the same formula for the average dose for Doppler scanning

as in parallel scanning. In these experiments, the average dose Dv over the entire

substrate resulting from two exposures was calculated to be 63 mJ/cm2 . The total

power in the beams used was 10.8 mW.

The resulting dual exposed grating pattern is shown in figure 4-12. When the two

sinusoids are in phase, the individual exposures constructively interferere resulting

in a high exposure dose. When the two sinusoids are completely out of phase, poor

contrast results as the two exposures destructively interfere with each other. The two

sinusoids are in phase when (-h- - r )x = n27r, where n is an integer. Solving for x,

we find that the phase of each exposure constructively interferes at x = n( Pf_ ).

The period A = f'l_ is known as the moireperiod, and for our choice of PfiPf2Pf I-Pf 2

it is equal to 3.283 cm. As shown in figure 4-12 the bright fringes are separated by a

distance consistent with our moireyeriod. This confirms our understanding that the

period of the grating is determined by the phase modulation A0, and not necessarily

by the fringe period of the interfering beams.
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4.5 Wavefront Errors

So far in my analysis I have considered the intensity due to Gaussian wavefronts

which are modeled as being real. This allowed us to consider the beam as a plane

wave with a Gaussian wavefront as in I(x) = A(x)[1 + cos(2x)] where A(x) was

assumed to be real. In this section, we will make some observations of a case in

which the Gaussian wave A(x) may contain a non-planar wavefront. In general, if

two Gaussian beams interfere at their "waist" location the phase of the wavefronts

may be modeled as being ideal plane waves. At any other location, however, the

Gaussian beams will have nonlinear phase. The intensity will then be of the form

I(x) = IA(x)I+Re{A(x)e(-)}, where A(x) may be complex as in A(x) = G(x)ejo(x),

where G(x) is a real Gaussian envelope given by G(x) = AeX2/R 2 and Re{} corresponds

to taking the real part.

Now let us make some general observations. In the case that 9(x) is linear with

respect to x, as in 9(x) = 27rAPx, we note that this results in the equivalent of a

period error which will reduce the contrast. For example, multiplication by a linear

phase complex exponential in the spatial domain corresponds to a frequency shift in

the frequency domain. However, the Fourier transform of a Gaussian envelope with

a Gaussian phase term ej2,x 2 /R 2 results in a function with a Gaussian magnitude and

Gaussian phase in the frequency domain. It is well known that the Fourier transform

of a Gaussian is another Gaussian. We have seen in the section on parallel contrast

that stepping over by a discrete amount corresponds to multiplication in the frequency

domain by an impulse train. Since this impulse train only selects one spatial frequency

spectrum in the Fourier transform of the intensity I(x) we reason that a nonlinear

Gaussian phase error in the frequency domain will be of no consequence.

In summary, linear phase errors lead to contrast reduction and may be viewed

equivalently as a period error. Second order nonlinear phase errors (i.e., of the form

e x 2 /R 2 result in a Gaussian phase in the frequency domain. What will follow is an

analysis which will provide us some insight into abberations, and general nonlinear

phase errors.
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4.5.1 Abberations and nonlinear Wavefront Errors

Let us again consider in intensity of the form I(x) = G(x) + G(x) cos(!"x + 0,(x))

where 0,(x) is a phase error due to the nonlinear phase in the wavefront. This may

also be expressed as I(x) = G(x) + Re{G(x)eOs(x)e Pf }, where G(x) - Aex2 /R 2 is a

Gaussian envelope as before but now will will express the phase error as

0,(x) =/3sin(wmx), (4.66)

where the coefficient 3 allows us to investigate the effect of a phase error of different

magnitude. Since ejosin(wmx) is periodic we may expand it into a Fourier series [44].

This results in
00

eil3 sin(wxn) -E Jn(3)e)nmX", (4.67)
n=-oo

where J(/) are the Fourier coefficients which are known as Bessel functions of the

first kind. The solution for the coefficients is not in closed form, but they have been

tabulated. For small values of 3 on the order of / < 0.2 the zero-order coefficient

dominates and has a value Jo = 0.99, which will predict minimal contrast loss. For

larger values of /3, i.e., for / = 1, the higher order Fourier series coefficients are signif-

icant, and the zero-order produces significant contrast loss (at least 25 % considering

only the zero-order coefficient).

While this analysis has been carried out for a specific form of the phase error

0,(x) = Osin(wmx) it provides some insights into the constraints on the amplitude

and frequency of the phase errors in our wavefronts. For example, the above analysis

suggests that wavefront distortions should be controlled such that 0, < 0.15(27r) or

15% of a wave.

4.5.2 Phase Shifting Interferometry and Wavefront Detec-

tion

In the last section, we established that a Gaussian wave with a Gaussian phase pro-

duces no error in contrast nor in the phase of the printed grating. This is quite a.
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remarkable statement, which was originally suggested by means of a simulation by

Chen [7] using a model derived by Konkola [27] which involved carrying out summa-

tions in the space domain through simulations. The statement is rather remarkable,

and my frequency domain analysis confirms their results. Moreover, their model does

offers some explanation as to this amazing result in the space domain. Namely, in

a Gaussian amplitude function, the peak of the amplitude provides the most weight

to the resulting printed phase. The phase error that is transfered onto the latent

image may then be considered an amplitude weighted phase error. Since the peak of

the amplitude function contains zero phase error, this phase dominates in the aver-

age. The frequency domain picture suggests that there are several spatial frequencies

present. Stepping over by an integer number of grating periods selects only one spa-

tial frequency while canceling out the others. Moreover, in practice the wavefronts

are never ideally Gaussian nor plane-like. Indeed, abberations or wavefront distor-

tions are typically present and may lead to contrast degradation as suggested by the

previous section using a sinusoidal phase expansion.

In order to investigate the wavefront distortion, a technique known as phase shift-

ing interferometry is used. There are several algorithms available for phase shifting

interferometry, which offer different interpretations of the same result. Some of the

most popular involve utilizing complex polynomials [2]. My particular favorite expla-

nation for phase shifting interferometry utilizes a Fourier windowing point of view as

originally proposed by De Groot[22].

The idea behind phase shifting interferometry is to solve for the phase 0, (x, y) due

to an interference pattern of the form

I(x, y, t) G(x, y) + G(x, y) cos( 2 + E(x, y) + wt). (4.68)

The interference pattern is collected on a CCD camera, so one may operate on a

particular pixel at at time. For example, the phase at a pixel (xo, yo) is given by

Io(t) = I(xo, yo, t) = Go + Go cos(-rxo + 0 0 + wt). (4.69)
Pf
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Now, it is particularly simple to solve for the nonlinear phase 0 by using the discrete

Fourier transform. If we rewrite the intensity in its discrete form where T, = 27r/Nw

is the sampling rate, then the intensity may be rewritten as

Io[n] = Go + Go cos(7xo + 0o + wTon) (4.70)

= Go + Go cos( 2Xo + 9o + 2n). (4.71)

In this form, the phase 0o may be recovered by computing the phase of the first

order coefficient of the discrete Fourier transform of Io[n]. The first order coefficient

is found by calculating
N-1

Io(1) = 1 [n]ed 2N (4.72)
n=O

and the phase may be written explicitly as

27r _,-~-l i[n]sin(T)
90 + -xo tan- 1Z- N() (4.73)

ZEN= I[n]cos(2 -)'

noting not interested in the linear phase term, if it is present. This algorithm is

known as the Fourier transform algorithm and has a nice interpretation. There are

several algorithms available in the literature. Indeed, at a Precision Engineering

Conference Dr. Peter De Groot, a scientist at Zygo Corporation and the first to

offer a windowed Fourier transform interpretation, stated that everyone should write

their own algorithm at one point in their career. Accordingly, I have applied a 100

step Fourier transform algorithm. The experiment consists of interfering a zero-order

reflected beam and a backdiffracted beam such that they interfere on a CCD camera.

The two beams propagate parallel to one another, so the carrier fringe period Pf = 0.

In addition, the various I[n] are summed on the CCD camera by applying a phase

shift 2 to one of the interfering arms. This phase shift is applied by using ourN

acousto-optic modulator. The results for this experiment are shown in figure 4-13

In view of De Groot's analysis, several aglorithms may be generated by applying

a window w[n] to I[n] before taking the discrete Fourier transform. In this instance,
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the first-order Fourier component is given by

N-1

Io(1) = E I[n]w[n]ej2. (4.74)
n=O

Several choices of windows are given and are published in both signal processing and

in the phase shifting interferometry literature. De Groot also points out that perhaps

the most commonly known phase shifting interferometry algorithm, known as the

Hariharan algorithm, may be viewed equivalently as windowing before taking the

Discrete Fourier transform. The Hariharan algorithm is convenient because it uses

only five frames.

The use of the Hariharan algorithm for the nanoruler was the subject of Chen's

thesis work [7]. Accordingly, the phase may be obtained by setting the phase step

ng with N=4, and performing the calculation

0 = tan-1 2(I[3] (4.75)
[0] - 21[2] + 1I[4](

The result of applying the Hariharran five step algorithm is shown in figure 4-14.
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Chapter 5

Grating and System Error

Characterization

In a previous chapter, we identified two sources of error in the nanoruler. Namely,

these errors consisted of Abbe error and stage mirror distortion. By modulating the

phase of the interference fringes during patterning, one may in principal correct for

these errors. In addition to the known errors, there may be other sources of error

due to thermal expansion, compression, air turbulence, and the limited bandwidth of

our controller. In this chapter we will develop a series of techniques to determine the

total error in order to "self calibrate" our patterning tool.

The techniques developed in this chapter are novel in the sense of their application

to characterizing the phase error in gratings. We will borrow from similar techniques

found in the literature for the characterization of wavefronts. In inteferometry, rela-

tive phase differences are measured by comparing two wavefronts commonly referred

to as the object wavefront (W) and reference wave W,. The reference wavefront

traverses non-ideal optical components and is therefore subject to distortion. In or-

der to calibrate the reference wavefront, several algorithms which involve translations

and rotations have been proposed. Indeed, interferometers known as rotational shear

interferometers allow for rotation of the object wavefront with respect to the refer-

ence wavefront. These rotational tests allow one to determine the non-rotationally

invariant components of the reference and object wavefronts.
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Another calibration technique in interferometry involves translations. Lateral

shear interferometers have been developed to compare the phase of a wavefront with

a translated replica of the wavefront. For small displacements A, the phase difference

between a translated wavefront with respect to its nominal position W0 (x + A, y) -

W,(x, y) may be viewed as an approximation of calculating the partial derivative of

the wavefront in the shear direction. The inverse process integration, will then allow

one to determine the original wavefront. This technique is similar to the one we used

for calculating the mirror distortion. In this chapter we will apply the concept of

lateral shearing as a characterization technique of our grating and system distortion.

In the nanoruler, reading mode allows us to compare the phase of the diffracted

beam from our grating with a reference beam. The phase difference between the re-

flected and diffracted beams result in the phase of the grating plus a system distortion

as will be shown. In this sense, we are not particularly interested in the phase of the

reference wavefront. After all, the reference and diffracted wavefronts have approxi-

mately two millimeter diameters which are much smaller then the length scale of our

patterned gratings. On the other hand, when we read the phase of our grating we

are comparing its phase to a coordinate reference frame. In this case, the coordinate

reference frame may be thought of conceptually as a reference wavefront. We may

therefore perform translations and rotations of our grating with respect to this co-

ordinate reference frame in order to determine the system distortion which is fixed

to the coordinate reference frame (for example, Abbe errors and distorted reference

mirrors).

We will begin this chapter by describing the nanoruler's reading mode in detail.

We will then proceed to describe a classic test known as the three flat test. This

is an example of an"absolute test" in which three flats may be compared to each

other interferometrically to determine the absolute surface of the individual flats.

This introduction will serve as a background for the methods we will propose for

determining the nanoruler's systematic distortion. We will then proceed to develop

two tests which may be used to determine the nanoruler's distortion. These tests will

involve lateral translations and rotations.
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At the end of the chapter, we will propose a novel reading mode configuration in

the nanoruler which allows us to read the grating in a rotated position. A particular

problem with rotating a grating is that the diffracted beams change angle with the

grating orientation. Our dual pass reading mode method allows for ease of alignment

which will be immediately implementable in the current nanoruler system. Measure-

ments of a grating in its 0, 45, and 90 degree orientations will be presented for the

first time.

5.1 Reading the Phase of the Grating: Traditional

Reading Mode

The simplest model of reading mode contains all of the necessary elements for the

experiments to be described. We will treat each beam as a plane wave and therefore

disregard its gaussian nature and its finite size. Furthermore, any beam may be

decomposed into a series of plane waves which will work well within the framework

of our model.

In its basic configuration, two beams are used in reading mode. The two incident

beams can be described as having an electric field with a given amplitude (A', A')

and phase (OL, 0' ). The electric field of the incident left arm E" and the incident

right arm E will be described by

Ej - ALexp(OL)= A'exp(jk'zL + jWLt) (5.1)

E = A'exp(jO') = A'exp(jk ZR + 'ADR-L + jWRt)

where ZL is a coordinate along the axis parallel to the propagation direction of the

left beam. Similarly, ZR is a coordinate along the propagation direction of the right

beam given by its propagation vector (k-vector). At the intersection of the two planes

of constant phase described by kLZL k'ZR, the phase difference between the two

arms are given by WRt - WLt + A4R-L. Similarly, the reflected electric fields from the
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grating interface may be written as

EL = A'exp(jO') = A'exp( jk'ZL + jWLt) (5.2)

E = Aexp(j) = A'exp(jk zR + jWRt + jZ R-L)

We will concentrate on the right arm and refer to figure 5-1 although a similar ar-

gument applies to the left arm. Upon negative first-order diffraction a portion of

the power along the direction of propagation of the right reflected arm (kr) changes.

If the diffraction condition is satisfied the k-vector of the diffracted right arm (k')

becomes the sum of the the grating vector and the zero-order reflected k vector as in

k = kr + kg. The grating vector kg = g in this case is the negative fundamental

spatial frequency of the grating where Pg is the period of the grating. What makes

reading mode work is the Doppler shift that occurs when the grating is moved.

d

k-l

Figure 5-1: Reading Mode showing the propagation direction of the incident right arm,
zero-order reflected left arm, back-diffracted right arm, and a grating. The direction
of the corresponding k-vectors are shown.

We will digress a little to discuss how the phase of a diffracted arm changes due to

a Doppler shift. Since the diffracted beam changes momentum from hk' = h(kr -kg),

energy must also be conserved resulting in hwd = h(WR + wg) [43]. The directions of

the k vectors are given in figure 5-1. Furthermore, the phase of the grating is given
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by Ogmag =7r (X -- A. The temporal frequency of the grating phase is given by

Wg = kgv where the velocity of the grating is v. The diffracted electric field therefore

becomes

Ed = Adexp(jA)= exp(jkz Rd + j(WR + w,)t + jA4R-L) (5.3)

EA = Adexp( j9d) exp(jk d ZRd + jwRt + jkgVt + jA DR-L)

EA = A exp(j6d) = exp(jkdzRd + jWRt + jkgxo ± J 4 RL),

where the last relation in equation 5.3 comes from recognizing the displacement of

the grating to be x0 = vt. In the more general case x0 = f vt.

An alternative derivation would involve a Fourier optics approach. One may

model the grating as a periodic amplitude mask. The field gets multiplied by this

amplitude mask in real space and becomes convolved with the Fourier transform of

the amplitude mask in the spatial frequency domain. The end result is that the field

picks up the fundamental frequency component of the amplitude mask along with a

phase shift given by the phase of the mask.

The important point to be taken away is that the diffracted beam includes a phase

which is a function of the local period of the grating at position x,.

The phase of the grating may be found by extracting kgxo from the diffracted

beam ER. We will now show how the phase of the grating has been traditionally

calculated [27].

In essence, the diffracted right arm and reflected left arm are recombined and

their phase difference is recorded and we label this difference <D4. From equation 5.3

we note that we may express Od = Or + kgxo by inspecting or in equation 5.3. This

requires making a number of justifiable assumptions. Namely, if we unfold the beam

paths such they all travel along a parallel straight line we note that k zd = krZr.

This assumes that the magnitudes of k' and kr are equal. In order for us to be abled

to unfold the beams and provide a useful comparison, a further assumption must be

made that the reflected and back diffracted beams travel in the same medium.

This corresponds to the phase difference between equation 5.3 and 5.2 as shown
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below

<R4 = L+kg o- (5.4)

In our experiment, we also perform an independent measurement of the phase

difference between the left arm and the right arm. This difference which we label 4)3

is expressed

4D3 = - , (5.5)

which assumes that or - or = 0i - 0. The difference 4D4 - <P3 then provides us with

the phase of the grating

(g(X0) = 4D4 - 3 = 2-XO (5.6)
P9

we seek. A few general comments may be made regarding this analysis. While the

grating phase has been uniquely determined a number of assumptions have been made.

Our independent measurement of the phase difference between the left and right arm

at the location where 4I3 is taken has been assumed to be a faithful representation

of the difference in 4)4 up to perhaps a constant. While efforts have been made to

keep similar optical paths in place, vibrations and refractive index variations between

optical paths may cause this assumption to be invalid. Furthermore, an assumption is

made that the stage is scanned in the plane of the grating. Rocking of the stage with

respect to the incident left and right beams will lead to additional non-idealities. It

is then the subject of the next section to determine if there are any systematic errors

present in reading mode.

5.2 Introduction to Self Calibration

In this section we will describe a test known as the three flat test. It is perhaps the

most, well known example of a self calibration test, and has been used in the context
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of optical testing to calibrate reference flats. By combining and comparing three

reference surfaces an absolute calibration of each reference surface may be obtained.

We will begin by briefly reviewing the three flat test and then we will proceed to

describe how to perform similar tests to determine the phase of our gratings.

Suppose three flats with surface profiles described by A(x,y), B(x,y), and C(x,y)

are compared with each other interferometrically. Each of the flats may be compared

with each other resulting in the following three measurements M 1 , M 2 , M 3 .

A(x, y) + B(-x, y) = M1(x, y) (5.7)

A(x, y) + C(-x, y) = M2 (x, y)

B(x, y) + C(-x, y) = M3(x, y),

where Mi(x, y), M 2 (x, y), and M 3 (x, y) are the results of three interferometric mea-

surements. The inversion of the X-axis occurs because the two flats face each other

in the interferometer. It is necessary for example to rotate one of the reference flats

about the Y axis. In order to solve for A(x, y), B(x, y), and C(x, y) one requires

more information. One may verify that a solution only exists in equation 5.7 for a

line parallel to the Y-axis where x = 0. This result is due to the fact that the line

described by x = 0 on the Y axis is invariant to rotations about the Y-axis and is

therefore common to all three measurements M 1 , M 2 , M 3 .

The missing information one seeks to solve in equation 5.7 relates to how the flat

behaves when its axis is inverted. For example, the missing information includes how

A(x, y) relates to A(-x, y) and so on for the other two reference flats. If one had

additional information about the axis symmetry, one may in principle solve equation

5.7.

By means of a mathematical introduction we recall that any function f(x) may

be decomposed into its odd and even components. In a one dimensional case we can
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identify these components as

feven f(x ) + f(-X) (5.8)
2

fodd(X) = f f (5.9)
2

f(x) = feven(X) + fodd() (5.10)

It is convenient to decompose a function of two dimensions into four components

(even-even, even-odd,odd-odd, and odd-even) as suggested by [3]. For example, to

calculate the even-odd component one calculates the even component with respect to

the X-axis, feven,x(X, Y) = f'(x'y)+f--Y) . The even-odd component, feven,odd(X, y), is2

then found by taking the odd part of fevenx,(X, y) with respect to the Y-axis. The end

result is feven,odd(X, y) = f"een,.(X)-f -,x(xy). The complete four components which2

make up the decomposition of f(x, y) are listed below

feveneven(X) Y) f(x, y) + f (-X, y) + f(X, -y) + f(-x, -y) (5.11)
4

f~d,~d(X,)=f (x, y) - f(-x, y) - f(x, -y) + f(-x, -y)
4 aoa~, )=(5.12)

fenodd (X, Y) f (, y) + f(-X, y) - f(x, -y) - f(-X, -y) (5.13)4
feven,od (X, IY) = X )+f(X )f(,-)-f(X Y (5.13)

foddeven(XY) f(X, Y) - f(-, y) + f(X, -y) - f(-X, -y) (514)
4

f (x, y) = feven,even(X, y) + fodd,odd(X, y) + feven,odd(X, y) + fodd,even(X, y). (5.15)

Wyant et al. has used such a decomposition to arrive at an elegant derivation

of a three flat test. In the following sections, we will develop algorithms based on

rotations and rotational symmetry. In Wyant's analysis a polar Fourier transform

is used to evaluate some of the rotational symmetry properties and in determining

the various components. In this thesis, we will also use a Fourier decomposition, but

will deviate largely from his approach and will only use one reference (namely our

diffraction grating).
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5.3 Reading Mode System Distortion

In reading mode, the nanoruler has the ability to "read" the phase of a patterned grat-

ing. This "reading mode" has a remarkable repeatability on the order of 8 nanometers

peak to valley (three sigma) [27]. However, the accuracy of the nanoruler's reading

mode has yet to be determined. It is the aim of this section to provide some in-

sight into the accuracy limitation associated with reading mode and the need for

subsequent calibration.

In general, the phase read from a grating on a real measuring system may be

expressed as the sum of a system distortion decomposed into its linear S(x, Y)L and

nonlinear component S(x, y)NL (X, y) as in S(x, y) = S(X, y)L + S(X, y)NL, a nonlinear

grating distortion DgNL (x, y), and an idealized grating phase consisting of a plane

DgL (X, y). To be concise, we define the nonlinear component of S(x, y) and D(x, y)

to consist of the terms which do not have a linear dependence on x or y. In one

dimension, for example, a polynomial expansion may be used and the zero and first

order polynomial terms of x will comprise the linear expansion, and the higher order

terms will make up the nonlinear expansion. Strictly speaking, we will use linearity

as it's well defined meaning in systems in which superposition applies. The reader

is referred to Oppenheim's text on linear systems for a detailed discussion on linear

systems.

The system distortion describes a distortion which is inherent in the system per-

forming the reading. In the case of an ideal system S(x,y) would be zero. Examples

of situations which would make S(x,y) nonzero in the nanoruler would include rota-

tion of the stage during scanning, non-flat stage reference mirrors, Abbe error, and

other sources of error. The interested reader is referred to P. Konkola's thesis which

analyzes and treats the various sources of error[27].

We will refer to the phase of the grating which is read in reading mode as

OGratingRM (X, Y) = S(X, y)L + S(., y)N L + DgL (x, y) + DgNL (X, Y). (5.16)

The grating distortion function DgNL(X, y) describes the nonlinear phase distor-
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tion in the patterned substrate. For example, deformation of the substrate after

exposure due to handling and phase errors introduced due to thermal expansion and

compression would constitute examples of this kind of error. In addition, during the

writing process any inaccuracies in the system will also be transferred onto the sub-

strate. The phase 9 GratingRM is written to be as general as possible. For example,

suppose we read a grating which was written on an ideal system. This ideal system

would have zero distortion and therefore DgNL(X, y) = 0. Further, assume that the

grating was handled properly and was mounted on the nanoruler such that no addi-

tional distortion is introduced to the grating and DgNL(X, y) remains zero. During the

reading process, the phase component S(x, y) would be nonzero due to the inaccuracy

of our system.

As another example, assume there is a coordinate system error as described in a

previous chapter. For simplicity, lets allow the X-axis coordinate x to be distorted by

Xd = x + fx(y) where Ex(y) is on the order of a few hundred nanometers. The desired

phase of our grating has a constant phase along the Y-axis, i.e., Dg(x,y) = 2.

However, since there is a coordinate system error the nanoruler patterns the grating

such that in the distorted coordinates (Xd, y), the grating phase

27rXd
Dg-DistortedFrame(Xd, y) = (5.17)

is linear. However, in the undistorted coordinate frame (x, y) the same phase is

Dg-undistorted(X, y) = 2x+ 2rE(y) (5.18)

Now suppose we read this grating back in the same distorted coordinate frame in

which the grating was written. The result is

OGratingRM-DistortedFrame(Xd, ) = 2 7Xd (5.19)
Pr

We may alternatively express our measurement in the distorted frame as being equiv-

alent to a measurement in the undistorted frame plus an error. Mathematically, this

156



may be expressed as OGratingRM-DistortedFrame(Xd, y) = Dgundistorted(Xd, y) + S(Xc, Y),

where we see S(d, y) = _ 2(Y) by subtracting equation 5.18 from equation 5.19

where x is substituted for Xd.

In the above example, we derived a system error S(x, y) for a coordinate system

error Xd = X + e,(y). The latter example was made for a case in which the grating

phase is assumed to be linear in the distorted coordinate frame (i.e., D,(Xd, Y) =

xT-Xd). In general, the grating distortion may be nonlinear in the distorted coordinate

frame (due to for example thermal expansion errors). For a general measurement of

Dg (Xd, y), we are interested in expressing the phase read in the distorted coordinate

system as being equalivalent to the phase read in an undistorted system plus a phase

error. This phase error may be found mathematically,by substitution x = Xd for a

general grating distortion Dg(x, y) in the undistorted coordinate system mesurement

of equation 5.18. The error in the substitution is given by x - Xd = -6E(y). We may

find the consequence of this error by examining Dg (Xd - E, y). For a slow varying

nonlinear component, DgNL (X, y) = DgNL (Xd - E, Y) DgNL (Xd, y), so we may use x

and Xd interchangeably. However, for the linear component DgL (Xd - Ex, Y d

ex(y)), where we see the error in the substitution is S(x, y) = - 2 ",c) This discussion

allows us to apply our abstract discussion of system errors to an important class of

errors in the nanoruler, namely the coordinate system error described in a previous

chapter.

For the remainder of the analysis, we will assume our measured coordinates to

be ideal. We will proceed to make the substitution (x = Xd, y = Yd). We lump the

errors of making this substitution into the system error S(x, y). In addition, we will

disregard the plane components DgL(X, y) = 2-x + 2y. The linear components of

Dg(x, y), consists of the best fit plane to the grating phase where Px is the nominal

grating period along the X-axis, and Py is the nominal grating period along the Y-axis

(i.e., in a least squares sense). In addition, we will disregard any linear phase error in

our system S(x, Y)L. These linear phase errors may be caused by improper alignment

of the stage interferoneter beams which lead to cosine errors, and a wavelength drift

of the interferometer laser.
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The priority in this analysis is to determine the nonlinear part of the system

distortion S(x, y) which will allow us to calibrate reading mode to read gratings

written on any system. Subtracting out the best fit plane from equation 5.16 results

in

OGratingRMNL (X, Y) = S(X, y)NL + DgNL (X, Y), (5.20)

where the subscript RMNL serves to remind us that we are interested in the nonlinear

grating phase read in reading mode with a nonlinear system distortion S(X, Y)NL-

In the following section we will perform a simulation of a proposed algorithm to

recover the system distortion function. We will make use of an example where we

will consider a hypothetical system distortion function wS(x, y) = 50sin(7rx/a) nm

which is scaled by w = Pg/27r in order to express the phase in nanometers where

a = 180 mm as shown in figure 5-2. Note, it is common to express the phase in units

of a fraction of a wavelength, or grating period, or distance in order to emphasize its

dependence on spatial distances.

We will also make reference to a grating distortion given by wDg(x, y) {75[(x/b)2+

(y/b)3] + 50cos(27ry/c)} nm where b = 100 mm and c = 90 mm as shown in figure

5-3. This functional form is chosen for the purposes of illustration, and is somewhat

arbitrary.

5.4 System Error Characterization by Translation

In the previous section we described the phase of the grating in reading mode to

consist of two distinct components: the nonlinear system distortion SNL (X, y) and the

grating phase DgNL(X, y). In order to seperate the two components and to determine

each one individually, we must perform an operation on one of the components. A

particularly simple operation involves translating the grating. We may perform the

following two reading mode measurements

M1 = S(x, Y)NL + DgNL (X, y) (5.21)

M 2 = S(x, Y)NL + DgNL (X + AX , y). (5.22)
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Figure 5-2: Simulated System Distortion Function Dg(x, y)

Measurement M1 consists of a phase measurement with the grating in its nominal

position. For illustration purposes, consider the output of the measurement given in

figure 5-4. This measurement consists of the sum of the grating distortion Dg(x, y)

and the system distortion S(x, y) given in figures 5-2 and 5-3. Our objective is to

recover the grating distortion Dg(x, y) from this measurement. We also perform a

measurement M2 consisting of translating the grating by an amount A. with respect

to its position in measurement M1 .

Subtracting the two quantities M1 - M 2 results in

Vx = DgNL(XY) - DgNL (X + A, y). (5.23)

This equation is similar to the equations which described our mirror measurement

process. In the special case that the grating varies along a single dimension x we

could apply the same analysis which we applied to our mirror measurements. In that

159

System Distortion

50>

04E)

200

100

Y (mm) 0 0



Grating Distortion

2001

x

0

100
so o

0

Y -Mr) 00 0

X (mm)

Figure 5-3: Simulated Grating Distortion Function Dg (x, y)

particular case, the output V, = M, - M 2 may be described as a convolution the

grating's nonlinear phase DgNL(X, y) with an impulse response hAx(x) = 1 - J(x -

Ax). The transfer function HA, which corresponds to the Fourier transform of the

impulse response contains zeros on the unit circle. From linear systems theory, we

know that the inverse of this transfer function HLX = 1/HAx is unstable. In the

one dimensional case, we have shown a simple way to find an approximate transfer

function HiA, H which has a stable inverse. Accordingly, we have shown in order to

recover DgNL from an equation of the form given in Eq. 5.23, we must simply apply

the inverse transfer function 1/HAx to the measured output Vx. Unfortunately, in

two dimensions the problem becomes more complicated as the issues of stability are

not trivial and defining a closed form solution for the approximate transfer function

HAx requires examination of poles on a 2-D surface.

One approach to apply Hix in the frequency domain involves developing a thresh-

olding algorithm which removes the singularities at the pole locations. This may be
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Figure 5-4: Simulation: D (x, y) + S(x, y)

done by setting the maximum of the inverse transfer function to a finite value. In

this section, however, we will follow a different approach.

If the variables in the grating distortion are separable, for example DgNL = X2_ 2

then one may in effect treat the problem as a superposition of a one dimensional (1-D)

problem in x, and a 1-D problem in y. However, if the variables are not separable

and involve cross terms such as in DgNL = X2 + 2xy + y2 we can no longer decompose

the two dimensional problem into a superposition of two 1-D problems.

Interestingly, the two dimensional impulse response hAx(x, y) = 1 - 6(x + Ax) is

used frequently in image processing and is known as an edge detector. It approximates

the partial derivative and is therefore useful in determining the edges of an image.

Instead of having the coefficients of the impulse response written as a vector, they

correspond to a matrix in the two dimensional discrete case. For example, the matrix
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corresponding to hA. (x, y) may be written as

hAx(nx, n.) = , (5.24)
0 0

where nm corresponds to the row index of the matrix and ny corresponds to the

column index. This formalism assumes discrete sampling of the (x,y) coordinates

into a grid of pixels (n, ny). While it is beyond the scope of this thesis to dis-

cuss two-dimensional systems theory in great detail, we will provide the following

interpretation to allow for the jump from one dimension to two dimensions. In one

dimension, the Discrete Fourier Transform (DFT) of an impulse response is defined

as H(eiw) = * h[n]eiw', where the coefficients h[n] correspond to a vector. In

two-dimensions, the Discrete Fourier Transform will also be two dimensional with

frequency components along two axis given by wa, wy. The two-dimensional DFT is

then defined as H2 d(eE) -_ E _0 h[nx, ny]e'eiw xeiw'Y.

In addition, the translation Ax corresponds to a unit of nx = 1 pixel in our discrete

grid although the formalism may be modified to include larger translations. This

matrix representation of the impulse response has a particularly useful interpretation

in the discrete domain. It pictorally represents the weights of various pixels in the

image. It shows that the output is computed by taking the difference between a

pixel and its horizontally adjacent pixel. All of the information regarding any spatial

frequency variations along the y axis (i.e., w in the frequency domain) in the image

are lost.

An impulse response corresponding to a translation along y may also be deter-

mined. For example, suppose we translate the grating along the y direction and

measure

M3 = S(x, Y)NL + DgNL (X, y + Ay) (5.25)

17 = DgNL (X, y) - DgNL (X, y - Ay), (5.26)

where V,= M - M 3 corresponds to the phase difference between measurements
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M1 and M 3 . The output may also be described by an impulse response hAy(x, y) =

1 - 6(x, y + Ay) in matrix form as

1 0
hAy(n= ny) = (5.27)

-L j

Any spatial frequency information along the x axis is lost (i.e., wx) with a one dimen-

sional translation of this form. This may be viewed as an operator approximation

of a partial derivative along y. The total derivative may then be approximated by a

superposition of the two measurements 7 = Vx+ 7V resulting in a superposition of

the two impulse responses hA.Ay = hAx + hAy producing the overall impulse response

2 -1
hA=,y(x, y)[ (5.28)

From linear systems theory, the output N may be viewed as a 2-D convolution

of hAxAy(x, y) * DgNL(X, y). Ideally, the inverse transfer function may be found

by computing the 2-D Fourier transform of the impulse response as in HAxAy =

F{hAxay(x, y)}, and then finding the inverse transfer function defined as Hixy =

1/HANAv. As we alluded to earlier in the discussion, the 2-D inverse transfer function

is unstable, and moreover it is an infinite impulse response filter. While algorithms

exist to approximate an unstable IIR filter the process is considerably complicated.

We will follow a different approach to design a reconstructive filter which will allow

us to reconstruct DgNL (X, y). The algorithm to be used is similar to one which appears

in a paper by Freischald and Koliopoulos in which a least squares modal method is

used to compute a reconstruction algorithm. We will show that our reconstructive

algorithm agrees with the one cited in the literature under certain assumptions. We

will follow a significantly different approach using the formalism of discrete image

processing. The least square criteria which is used in the literature minimizes the

error between the measurement 1 and the inverse fourier transform of a function

whose coefficients are to be determined. We will use a least-squares method that
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minimizes a different error which provides a more conventional metric encountered in

signal processing.

The least square error reconstructive filter Ht will minimize the square error (e2)

between the input D,(x, y) and the reconstructed input bg(x, y) = HZHD,(x, y).

This error may be written explicitly as e = Dg(x, y) - bg(x, y). In the presence

of noise, we would like to construct a minimum mean square error reconstructive

filter. This reconstructive filter has a particular advantage in that it minimizes the

mean square error in the reconstructive process. For example, consider as an input a

grating distortion with some additive noise in the measurement process resulting in

Dg(x, y) +n(x, y). The approximated inverse transfer function applied to the output,

HtHDg(x, y) + Hrin(x, y) ~ Dg(x, y) provides the best approximation to Dg(x, y) in

a minimum mean square error (MMSE) sense [20].

These class of filters are well known within stochastic signal processing and are

referred to as Wiener filters (after an MIT Professor Norbert Wiener). The filter

coefficients of H' which satisfy this criteria may be expressed in the following form:

H i H* (w, wy) (5.29)

where (w1 , W2 ) are the spatial frequencies along the x and y axis. The transfer function

H* denotes the complex conjugate of H, where H = HA:,,y = F{hAAy} is the overall

transfer function of our measurement process corresponding to the Fourier transform

of the impulse response hAxAy. The remaining terms in the denominator of equation

5.29, Rann P, wy) and R (, wy), correspond to the power spectrum of the input in

the absence of noise, and the noise respectively. The most recent authors to apply

filtering concepts to sheared wavefronts (Freishclad et al.) [19], and later Poyneer et

al [36, 14, 12, 37, 32] used discrete Fourier transforms and the concept of filtering in

order to reconstruct a wavefront as a result of a lateral shear. However, the authors

have not compared the results of their finding to a well known filter, known as a

Wiener filter. The Wiener filter is used frequently in image processing applications

[21, 28, 20].
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If one sets the power spectrum of the noise Rnn(w, wY) = 0, one obtains results

similar to that of Freischlad et al. The assumption must also be made that the

cross terms resulting from the magnitude operation IHAxAyI = IHAX + HANI are

negligible. Specifically, we assume that the cross terms involving HAxHix and its

complex conjugate are not significant.

With these assumptions, the grating distortion is recovered by applying our Wiener

filter in the frequency domain to obtain the relation

DF{Dg(nx~n l - (1 - ej21/N)DF{ 7 x} + (1 - ej2,/N)DF{Vy} (5.30)
4(sin(7rl)2 + sin(7rk)2)

where DF{} denotes the 2D discrete Fourier transform operation to be defined be-

low, and (nx, ny) are the discretely sampled coordinates (corresponding to pixels for

example) of the continuous coordinates (x, y). The pixels are defined in a grid of size

NxN. The coefficients k, 1 are the discrete Fourier transform coefficients given by the

relation

Dg(l, k) = DF{Dg(x, y)} = - j Dg(nx, ny)e-( 2 x/N)knxe-( 2 /N)ln". (5.31)
nx ny

The distortion function Dg(nx, ny) may then be recovered by applying the inverse 2-D

Discrete Fourier transform to equation 5.30. The inverse Fourier transform relation

is defined as

Dg(nx, ny) = Dg(l, k)e j( 2
1/N)kne j(2

7/N)lny. (5.32)

This algorithm is tested by applying an inverse filter in the frequency domain to the

discrete Fourier transform of the outputs (Vx) and (Vy) as expressed in equation 5.30.

The grating distortion Dg(n, ny) is then recovered by inverse Fourier transforming

the Dg(l, k) by using the relation for the inverse discrete Fourier transform given in

equation 5.32. The reconstructed grating distortion from our example of Dg(x, y) +

S(x, y) is shown in figure 5-5. In our simulation, noise was not added.

165



Reconstructed Grating Distortion using Inverse Filter

200-

1Aft
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Figure 5-5: Reconstructed grating distortion by applying inverse filter $W

5.4.1 Discussion and Conclusions

In this section, we have presented a method for characterizing the grating and system

distortion based on translating the grating. The assumption is made that the sys-

tem distortion S(x, y) is invariant to a translation of the grating by (Ax, Ay). The

measurement 7, described in equation 5.23 may be characterized by the transfer

function HAx(wx, wy) shown in figure 5-6 where we notice that any special frequencies

along the Y axis (wx = 0, wy) are lost. Similarly, the measurement corresponding

to a translation along y denoted as Vy as given in equation 5.26 may be described

by a transfer function HAy. The magnitude of this transfer function is the same as

the magnitude of HAx in figure 5-6 with the wx and wy interchanged (i.e., rotate the

figure 90 degrees). If we assume the power spectrum of the noise is 0, we may min-

imize the mse of the output to an estimated filter kax by finding the Wiener filter

coefficients. The inverse of the estimated filter is denoted as HLx and may be applied
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Figure 5-6: Transfer function HA,

to the output Vx in the frequency domain by

D,(l, k) ~ Htv' = 2 DF{,} (5.33)

Similarly, we may find the filter coefficients which minimize the mse between the

output of a filter HAy and the output of the estimated filter HAy in an mse sense. If

we apply the inverse of the estimated filter HAy to the output 7y we obtain

Dg(l, k) ~ flg
H*

VYIHnk 2 VY (5.34)

By multiplying the denominators of equations 5.33 and 5.34 to both sides of the

equations and combining we obtain

Dg(l, k)[IHA1 2 +H 2 ]~ His 7x +HjY 7y. (5.35)
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From equation 5.35 we may solve for Dg(l, k) = DF{Dg(nx, rn} as

HADF{ V} + H7jDF{y(}
D(l,k) HA 2 + IHA 2 (5.36)

which is equivalent to equation 5.30 and the results obtained in the literature ??

although obtained in a different manner. This particular derivation is insightful be-

cause it shows that the result is obtained from essentially applying a mse metric to

two seperate (1-D) problems and combining the result. That this is indeed the case

may be inferred by recognizing that = 1/HA2. A better metric for evaluating a

2D distortion is obtained by a applying a 2D wiener filter to the output. In the case

that the cross terms involving HLHAy are negligible, this is equivalent to combined

1D treatment.

While the filter of the form of equation 5.36 is suitable for all practical purposes,

an improved filter may be obtained using the 2D inverse Wiener filter to a transfer

function HAzAy. This may be used by recognizing that in the presence of white noise,

the signal to noise ratio R '-(,,) in equation 5.29 may be approximated by a constantRx (Wx ,w'y

C. The improved filter may then be applied in the frequency domain to the output

V in the form

H* aDFIV}Dg(l, k) ~-. A DF } (5.37)
IHAXAY2 + C

where for our choice of the transfer function HAxAy this may be rewritten as

[1 - ej( 27/N)l + 1 - j(27/N)k]DF{V}
1 - ej(27/N)l ± 1 - ej(27/N)kl2 + C

In conclusion, we have developed an alorithm to reconstruct a grating from a

difference map in the nanoruler. This algorithm is similar to Freischad's algorithm

in the literature for lateral shearing of wavefronts but has some key differences. The

procedure used to develop the reconstructive filter followed from applying concepts

known in 2D image processing, namely Wiener filtering. This allowed us to develop a

more general equation 5.37 which may be applied to the measurement process in the

presence of noise by tuning a single parameter C. A simulation of the reconstructed
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grating distortion obtained by applying equation 5.37 to our simulated distortion

functions S(x, y) + Dg(x, y) resulted in a reconstructed output b,(x, y) ~ D,(x, y)

similar to figure 5-6 without any notable differences. The source for the matlab code

is provided in the appendix.

5.5 System Error Characterization by Rotation

Analogous to the translational test, we may also develop a rotational test which will

allow us to analyze the grating distortion. It should be pointed out that rotational

tests are well suited for characterizing rotational symmetries. When testing optical

wavefronts, rotational tests are largely employed due to their convenience of describing

rotations of rotationally symmetric wavefronts by rotationally symmetric functions,

such as Zernike polynomials.

One particular test which has been employeed in the nanoruler involves rotation

of a grating by 180 degrees. We may apply Wyant's analysis to a rotation [3]. We

find that a rotation of the grating distortion Dg(x, y) by an angle 0 may be expressed

as {Dg(x, y)} - Dg(x cos 6 - y sin 0, x sin 0 + y cos 0). It follows that a rotation

of a 180 degrees inverts both the X axis and Y axis, leading to {D,(x, y)} 1 0 =

Dg(-x, -y). We may also decompose a grating distortion into its {even, even},

{odd, odd}, {even, odd}, {odd, even} components as given by equations 5.11 - 5.15.

We will use shorthand notation and define these components as D9 = Dgee + Dgoo +

Dgeo + Dgoo where the (x, y) dependence is implied. Furthermore, we note that the

effect of a rotation by 180 degrees results in {Dg}'8 0 = Dgee + Dgoo - Dgoe - Dgeo.

Let us once again consider a reading mode measurement of the form OgratingRMNL=

Dg(x, y) + S(x, y). Suppose we take the following measurements: M with the grating

in its nominal position, and M 2 where the grating has been rotated by 180 degrees.

These measurements may be expressed as

M, = Dgee + Dgoo + Dgeo + Dgoe + S (5.39)

M2= Dgee + Dgoo - Dgeo - Doe + S. (5.40)
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Figure 5-7: S(x, y) + D,(x, y)

We note that in measurement M 2 the system distortion does not change since only

the grating has been rotated. The data corresponding to measurement M 1 is shown

in figure 5-7. The substrate for this measurement consists of a 220x165 mm BK7

substrate. This BK7 substrates is rather thick (on the order of 25 mm) and opti-

cally flat making it suitable for metrology purposes. An anti-reflection coating and

photo-resist were spun onto the substrate. Subsequently, the substrate (substrate ID:

103039A-005-3AL) was exposed and patterned on the nanoruler resulting in a period

of Pg = 574.3 nm. After developing the exposed resist, the substrate was coated with

aluminum in order for it to be read in the nanoruler's reading mode.

The measured peaks and valleys of the data are on the order of ±60 nm. Since

we do not know the system distortion S(x, y), we can not obtain any information

regarding the distortion of the grating from the data shown in figure 5-7.

A second measurement corresponding to equation 5.40 in which the substrate

is rotated by a 180 degrees is shown in figure 5-8. The peaks and valleys of this
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Figure 5-8: S(x, y)+{D,(x, y)} 180 . The grating is rotated by 180 degrees and measured
in reading mode.

measurement are on the same order of magnitude as in

From equation 5.40 we expect the even-odd component

of the grating distortion to invert in this measurement.

between measurements M, and M 2 we can remove all of the

distortion (and the system distortion) which are invariant

180 degrees. This may be expressed as

[Ml - M2]/2 = Dgeo + Dgoe,

the 0 degree orientation.

and odd-even component

If we take the difference

components of the grating

to a grating rotation of a

(5.41)

where we have subtracted equation 5.40 from eq. 5.39 and divided the result by two.

The grating's even-odd and odd-even distortion as a result of applying 5.41 are shown

in figure 5-9. This test is useful in the sense that it allows us to begin to make some

statements regarding the distortion of the grating. The peaks and valleys of the sum

of the grating's even-odd and odd-even distortion are also on the order of ±60 nm.
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Figure 5-9: [Dg(x, y) - {D,(x, y)} 180]/2

This allows us to conclude that the grating contains these errors which are of the

order of magnitude we would expect for from considering the sources of coordinate

error in our system (i.e., mirror nonflatness).

Furthermore, it has been suggested that vacuum forces of the stage which clamp

the substrate during patterning have resulted in further grating distortion. A com-

parison of a grating written with the vacuum off with one in which the vacuum was

on during patterning showed less distortion when measured using an external source

consisting of a large aperture interferometer. However, reading mode experiments

which compare the effect of the the vacuum clamping do not corroborate with these

results.

Further experiments with a highly controlled parameter space must be performed

in order to deduce the source of these errors. One must be careful to insure the

substrate has reached thermal equilibrium before writing and reading the substrate.

In addition, handling and mounting procedures when comparing data to external
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(assumed to be calibrated) interferometers must also be considered. It is assuring

that our reading mode experiments are repeatable to within ~ ±10 nm on these

particular substrates. This is important since it allows one to correct for the system

distortion by controlling the phase of the writing beams during patterning. As we have

seen, rotating the grating by 180 degrees will not allow us to determine the grating

distortion, nor the system distortion entirely. It is the objective of the remainder

of this section to discuss rotation tests, and the information content which may be

recoverd in a more general manner.

Dp[n+2]

Dp[n+3] Dp[n+1]

Dp[n+4] Dp[n]

Dp[n+5]

D p[n+7]
Dp[n+6]

Figure 5-10: A pixel D,[n] oriented at radius p from the center of rotation is shown.
Also shown are 8 equidistant sampling points Dp[n], for n=0,1,...,7

Our goal in this section is to develop a test based on rotations which will allow us

to determine an estimate of D,(x, y) denoted as bg(x, y). In anticipation of rotation,

we will use cylindrical coordinates to describe the grating distortion. The idea is to

express coordinates (x, y, z) into a cylindrical coordinate system described by radius

p and angle 0 with height z as in (p, 6, z).

The convenience of using this coordinate system is that we recognize that we

can express any function f(x, y) in cylindrical coordinates as f(p, 6). This con-

version results in a periodic function of 6 with a fundamental period of Op = 27r.

This makes f(p, 6) particularly suitable for a fourier series expansion as f(p, 0)

Em fm(p)exp(j27rmO/Op) where fm(p) are the fourier expansion coefficients of f(p, 9)
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with respect to 6 along a radius p. If we restrict are discussion to a fixed radius,

p = po, we observe that a function of f(x, y) may be expressed as a 1-D function of

O as in f (0) = ', fmexp(jm9).

Recall that during our measurement we obtain a grid of pixels consisting of di-

mensions NxN. For the sake of discussion, let us consider a single pixel (xo, yo) in

our measurement. This particular pixel is located at radius p = A + y' from the

center of rotation, and 0 = 0. We will denote our measurement on this pixel as

9 gratingRMNL =Dp[n] + S,[n]. In addition, if we sample the grating distortion at M=7

discrete angles along this radius p given by 9 = n' for n = 1, 2,...7 we will will

obtain D,[n + 1], D,[n + 2], ..., Dp[n + 7] as shown in figure 5-10.

Our choice in notation will now become clear. Suppose we take eight measure-

ments where the grating has been rotated by 9 = nl, where n = 0, 1, 2,...7. Let's

concentrate on pixel D,[n. If we sum all eight measurements and divide by L=8, we

will calculate an ouput on this pixel as

N=7
Op[n] = L E Dp[n + N] + S[n]. (5.42)

N=O

This measurement may also be expressed as a convolution of the input D,[n] with an

impulse response h[n] as in

9p[n] = D,[n] * h[n] + S[n] (5.43)

1 N=7
h[n] = L E 6[n+ N]. (5.44)

N=O

One may recognize that the transfer function h[n] corresponds to a moving average

filter. The frequency response of such a filter may be found by taking the fourier

transform of 5.44 resulting in

H(e-') = 1 sin(wL/2) ej/2 (5.45)
L sin(w/2) '

where w is a normalized frequency used in the discrete fourier transform. The fre-
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quency is normalized such that w = 27r = y where 0, is our sampling angle defined

to be 2 in this example (i.e., 45 degrees). The transfer function given by equationL

5.45 is a low pass filter which attenuates high spatial frequencies. The first zero cor-

responds to an angular period of 0 = 27r. Indeed, only low angular frequencies are

passed. Since our function is periodic, only the zero order (DC) component of D,(n)

is not attenuated in equation 5.43. This result was first present by Evans et al [16, 34]

albeit by using a different method of analysis which does not emphasize the filtering

approach.

I have simulated an output 0, for an input of a system distortion S(x, y) and

grating distortion Dg(x, y) in figures 5-2 and 5-3. The output in equation ?? is

computed using matlab where the grating distortion is rotated by 0 = nrO where

n = 0, 1,...7 and 0, is the sampling angle given by 0, = i. Equation 5.42 applies to

each pixel Dp[n], in general an image is taken on a square array of pixels of size NxN.

The resulting 0, is shown in figure 5-11. We note that the output contains the system

distortion S(x, y) and the DC (zero order) angular component of the grating distortion

Dg(x, y). Note that the zero order component corresponds to a rotationally symmetric

distortion, which shows up as a nonlinear distortion in a cartesian coordinate system

containing circular symmetry.

The linear systems formalism is insightful since it illustrates the information which

may be recovered after apply a filter hAn] as a result of rotation. In the summation

case we used a moving average filter in which case only the angular-average or DC

component of the grating distortion remains. In a cartesian coordinate system, the DC

component resulting from a fourier series expansion with respect to x is usually not

of interest and is neglected (since we are interested only in nonlinearities). However,

we note that the the DC component in a fourier series expansion with respect to 0

results in a circularly symmetric distortion which by definition is nonlinear in x and

y.

It is also clear that a different transfer function with an impulse response h[n] may

be obtained by taking a difference between measurements. For example, suppose we

rotate the grating by 0, = E and obtain a measurement O, = Dpn + 1] + S[n]. If
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Figure 5-11: Output 9, corresponding to the average sum of eight measurements. In
each measurement, the grating is rotated by an angle 0 = n , where n = 0,1, 2, ...7
resulting in an output given by 9p[n] = E " D,[n + N] + S[n] for each pixel. The
summation corresponds to computing the rotationally invariant (DC component) of
Dg(x, y).

we subtract this from the non-rotated measurement 9, = D,[n] + S[n] and label the

result w[n] we obtain

w[n] = D,[n + 1] - D,[n] (5.46)

w[n] = Dj[n] * h[n] (5.47)

where we note the impulse response describing this measurement process may be

given by h[n] = 6[n + 1] - 6[n]. We realize that this impulse response has a zero at

the zero frequency location (for example the average of h[n], E{h[n]} = 0). Therefore

applying a difference equation of this form to our measurements will not allow us to

recover the DC-angular frequency component.
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5.5.1 Conclusion

Regardless of the algorithm we choose, it will not be possible to isolate the grating's

zero order angular frequency component based solely on rotation. This makes intu-

itive sense since the zero-order angular frequency component is invariant to rotations

by definition. Freishclad has derived a three flat test using a similar filter transfer

function approach for reference flats [18]. Accordingly, if we could filter the zero order

component which we will denote as D[0] of the grating distortion Dg(x, y) by applying

the filter h[h] in equation 5.42 we would obtain D[O] + S[n]. If we perform the same

measurement on a second grating E,(x,y) we may obtain E[0] + S[n]. The last equa-

tion one would require to solve for S[n] would require a direct relation between the

two grating distortions D[0] + E[0] which we may not obtain in the nanoruler system.

In other words, a three flat test requires the flexibility to compare any combination

of flats to each other. This additional flexibility allows one to obtain information

regarding the rotationally invariant component. In the nanoruler, we may also use

three gratings but we may not compare two gratings directly to each other.

While we may carry out a similar analysis as we have done in the cartesian coordi-

nate system for a transfer function of the form given in equation 5.47, we acknowledge

that at best we will lose information about the rotationally invariant term. This term

contains information about the grating's nonlinearity in a cartesian coordinate system,

and it therefore makes this test ill-suited for recovering the grating's nonlinear dis-

tortion. Moreover, an inverse reconstructive filter is difficult to implement in matlab

software. For a frequency domain approach, it will require taking a fourier transform

along a polar grid which requires writing customized routines in matlab. Nonethe-

less, in some applications it may be desired to make the grating phase nonlinear and

circularly symmetric. The approaches in this section would then apply. For the pur-

poses of this thesis, the translational test is the preferred method for characterizing

a grating's nonlinearity.

In the next section, I will present a technique which is developed to read the grating

in a rotated position. This is useful for characterizing the system coordinate error
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distortion. For example, if one wishes to characterize the y coordinate distortion, one

may rotate the grating by 90 degrees and apply the translational test of the previous

section. If one wishes to apply the rotational test of this section, a dual pass reading

mode approach will allow for reading the grating in a rotated position. In addition,

it will be shown that the substrate's surface profile may also be recovered using this

dual-pass alignment scheme.

5.6 Dual Pass Reading Mode

In traditional reading mode, the angle of the incident right arm is set so that the ray

of the back-diffracted negative first-order beam is parallel with the ray of the incident

beam. Strictly speaking the directions are anti-parallel, or a 180 degrees apart. This

configuration is commonly referred to as the "Littrow" configuration, and is shown

in figure 5-12. The traditional reading mode only allows for two grating orientations

k .

Beam SpIlfter

kg

Figure 5-12: Traditional reading mode. The incident right arm k' is back-diffracted

into kd. The angle of incidence of the left and right arms are such that the back-

diffracted right arm is parallel to the left reflected arm kr. The reflected left arm and

back-diffracted right arm are combined on phase detector 04.
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(0 degrees and 180 degrees). Any other grating orientation would violate the Littrow

condition and cause the back-diffracted beam to change its angle. In this section, we

will describe a novel reading mode technique which allows one to read the grating

in any orientation. Furthermore, it will allow one to measure the surface profile of

a grating which has not been possible with our existing methods. This new reading

mode will be refered to as dual pass reading mode.

The idea for dual pass reading mode involves canceling out the effect of diffraction

on the propagation direction of the diffracted beam. The idea of using a double pass

scheme to cancel out the change in angle of the beam due to diffraction is not new.

It has been found in the literature for acousto-optic modulator applications [133. The

basic principle is that upon retro-reflection a beam reverses all of its propagation

vector (k) components.

Consider the right diffracted arm (k' = k-' + k') vector in figure 5-13 which

includes the sum of the zero order (reflected) kr vector and the negative first-order

diffraction grating vector k;'. We now reflect this beam onto itself such that its

direction is reversed and we define its new direction as kretroreiiect = -k-' - kr. As

it diffracts for a second time from the same diffraction grating the grating vector

cancels out. In addition, the component of -kr normal to the surface changes sign.

For book keeping purposes we may write -k = - k 1 where k and -k 1 are

the parallel and perpendicular components of kr to the grating surface. This double

diffraction then results in a new direction k 2d = kretrorefec + = ± ki 1 . The

end result is that the double diffracted vector k 2d is the same as the reflected-right

incident arm with its parallel component reversed. This is exactly the direction we

require, as it is equivalent to the direction of the reflected left arm (kr). Both the left

reflected arm and the double diffracted right arm are then detected at phase meter

0$4-

A few additional considerations will need to be taken into account. Namely, since

the right arm undergoes diffraction twice the grating phase it incorporates is doubled.

In addition, comparing the path length of the double diffracted arm k2d with that of

the reflected left arm kR in figure 5-13 we notice that kId contains an additional optical
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path. This additional path length corresponds to twice the path traversed from the

surface of the substrate to the retro-reflecting mirror (i.e., it traverses this distance

twice). The surface height must be properly accounted for because an increase in

the surface height in the normal direction Z by Az decreases the phase of the the

diffracted arm by AOb = 2k'Az, where k' is the propagation component along the

Z-axis.

k kL
k2d

k -

9

Figure 5-13: Dual pass reading mode showing the reflected right arm kr, the reflected
left arm kL, negative first-order grating vector k 1 . The back-diffracted right arm ki
the retroreflected beam kretrore lect and the double diffracted beam k2d are also shown.

In general, an ideal grating in the X-Y plane described by coordinates (X, y) has

a phase Ograting = kxgx + kygy. Using our convention, the zero degree orientation is

defined such that kxg= g and kyg = 0. During diffraction, some of the power from

the reflected beam is transferred to the various diffracted orders. These orders must

obey the diffraction condition

= (k; + kxg) 2 + (k; + kyg) 2 + (kd) 2 , (5.48)

where k = 2 and A = 351nm is our wavelength, and k d is the z component of theA

diffracted beam. In addition, kr is the X component of k vector of the reflected beam.

Similarly k; is the Y component of the reflected beam. The above equation simply

states that the reflected beam gets scattered by the grating vector which transfers
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momentum hkxg and hkyg to become the diffracted beam.

In the Littrow configuration for our grating at a 0 degree orientation kxg= -2k;

and kyg = k' = 0. To no surprise, in this condition the Z component of the back-

diffracted beam k' must satisfy the same energy conservation rule as the reflected

beam and hence the magnitude of the Z-components are the same. For example, it is

clear that the reflected beam must satisfy k2 = (k;)2 + (kr)2 and from equation 5.48

the back-diffracted beam must similarly satisfy k2 = (k;)2 + (k') 2 which allows us to

conclude k' = kZ.

The above analysis shows that we can calculate the diffraction grating Z compo-

nent, kZ, for a given grating orientation. In the zero degree orientation, the grating

axis is aligned so that kxg = and kyg = 0. If we rotate the grating by 0, we

will find a new grating vector k' with components k'9 = k 9cos(9) + kygsin(O), and

kyg = -kxgsin(O) + kygcos(O). Once the diffraction grating vector components are

determined, kd may be found using equation 5.48. The component (kz) may then be

used to determine the height of the surface as will be shown in the next section.

5.6.1 Determining the surface of a grating

The technique used to determine the surface height requires an understanding of

the difference between the positive and negative diffracted orders of the grating.

Referring to figure 5-14, we have labeled the positive order grating vector as k+ 1,

and the negative grating vector order k; 1 . These can be thought of as positive and

negative spatial frequencies of the grating. The need for a vector is required because

the dimensionality may in general be greater than one.

If the phase of the grating increases in the direction of the positive grating vector,

we will obtain a positive phase shift in the corresponding diffracted beam of positive

diffracted order (kg'). The other diffracted beam (k- 1) which gets scattered by the

negative spatial frequency grating vector (kg 1 ) obtains a negative phase shift.

Using dual pass reading mode we can choose to retroreflect either order. We will

continue to use the traditional reading mode measurement (#3) described in equation

5.5 which provides the phase difference between the left and right arms. In addition,
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IX

k9 +1

Figure 5-14: A grating with two spatial frequencies k+' and k- 1 . These spatial
frequencies transfer positive and negative momentum to the reflected beam resulting
in postive kdj1 and negative kdj1 diffracted orders. If the phase of the grating increases
along the direction of the k+', the beam with kj 1 will result in a positive phase shift,
while kdj1 will obtain a negative phase shift.

we will use the same principle as in traditional reading mode to determine the phase

of the grating. That is, we will use phase meter 0 4 as shown in figure 5-13 for

our dual-pass reading mode measurements. The main difference is that the signal

which is collected in phase meter 4 contains information regarding the grating phase

and surface profile along with the phase difference between the left and right arms.

Subtracting out the phase difference between the left and right arms from the phase

q4 will leave the phase information describing the surface of the grating substrate and

the grating phase.

The fact that the surface information is collected in the double diffracted beam

could be understood by observing the additional optical path length which is incor-

porated into dual pass reading mode. This is one of the major differences between

the traditional and dual pass reading modes. If the surface height is raised, this

additional optical path is shortened.

Now with a qualitative explanation of dual pass reading mode we will formalize the

measurement process. If we retroreflect the positive diffracted beam kid1 order and

compare the phase of the double diffracted beam kjd with the phase of the reflected
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left arm we obtain at phase detector 4

04=20grating + 20surface + OR - $L. (5.49)

We will define our first measurement Smi to be

Sml -04 = 2 0grating + 2 .surface. (5.50)

In a symmetric configuration in which both the positive and negative order dif-

fracted beams k+1 and k- 1 have the same Z component k' the contribution of the

surface of the grating to the measured phase 4 will be the same for both diffracted

orders. However, the grating phase will differ by a negative sign depending on which

diffracted order is used. In such a configuration, we will perform a second measure-

ment by retroreflecting the positive diffracted order kj-. This would result in a similar

measured signal Sm2

S.2 =4- 03=-
2 0

grating + 2 surf ace, (5.51)

where the phase of the grating has opposite sign because we have used the double

diffracted beam from the positive order diffraction. Subtracting both measurements

Smi - Sm2= 40grating will allow one to determine the phase of the grating. Summing

both measurements Smi + Sm2= 40surface will allow one to solve for the height of the

surface.

As a final note of caution, in order to cancel the effect of the surface on mea-

surements Sm1 and Sm2 one requires both diffracted beams to contain the same k'

component. This may be accomplished by using a 90 degree orientation to be de-

scribed in the next section in which both diffracted orders have symmetry about the

Z axis. Once the surface is calculated, any diffracted order may be used in any ori-

entation to determine the grating phase. In the sections to follow, we will illustrate

the grating orientation for 90 and 45 degree dual pass reading mode configurations

in order to perform the proof of concept experiments to determine the system error
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and surface profile.

5.6.2 90 Degree Orientation

We will refer to figure 5-15 (a) in describing the 90 degree orientation of our grat-

ing in dual pass reading mode. In the zero degree orientation, our nominal grating

vector lies along the X axis. Figure 5-15 shows the new grating orientation when it

is rotated 90 degrees. The grating lines and spaces are shown along with the pos-

itive and negative spatial frequencies k-' and k+'. Accordingly, the incident arm

k' has a component which is projected onto the X - Y plane in figure 5-15. Some

of the power in the reflected arm kr gets diffracted into two arms k+1 and k-1. In

figure 5-15(b)two mirrors are shown which retroreflect the diffracted orders back onto

themselves resulting in a double diffracted beam which is anti-parallel to the incident

beam. Figure 5-15 only captures the directions of the diffracted ordersx in the X - Y

plane. We must now calculate the diffracted components along the Z-axis. In the

YY
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(a) (b)

Figure 5-15: Dual Pass Reading Mode in the 90 degree orientation: (a) An inci-

dent beam ki interacts with the grating vector k-' and k+' and is diffracted into two

orders k-' and k+'. Also shown is the reflected beam kr (b) A mirror M1 may be
used to retroreflect the negative order kdT. Alternatively, mirror M2 may be used to
retroreflect the positive order k+ 1.

previous section we described the conditions for the zero degree orienation. We stated
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the grating components mathematically as k-1= -2kg and ky, = k R= 0. When we

rotate the grating by 90 degrees, we find k- = 0, k- = -2k . Using equation 5.48

one may see that the Z component of the diffracted beam will also change. We will

rewrite equation 5.48 with these new values as

= (k;) 2 + (kyg) 2 + (kd) 2  (5.52)

= (kr) 2 + (2kr) 2 + (kd) 2 .

This allows us to solve for the Z component of the diffracted beam. This Z component

is given by

k = k 1 - 5()2 (5.53)

k= k sin(-y). (5.54)

Substituting our value k; = 1/2 2, we find sin(y) = V1 - 5/4( )2 resulting in

sin(y) = 0.7299. This number will be required to determine the surface profile of the

grating in the 90 degree orientation, as described in the previous section. The surface

profile, h(x, y, z), may be calculated by taking the sum of the two measurements

described by equations 5.50 and 5.51. This is written as

h(x, y, z) = 1/(2kz) (Sm1  - Sm2) (5.55)

h(x, y, z) = 1/(2k)Osurf ace

5.6.3 Experimental Results for 90 Degree Orientation

A proof of concept experiment was performed using a 165x220 mm BK7 substrate

(Substrate ID # 103039A-005-3AL) which was oriented in a 90 degree orientation.

The experiment performed in figure 5-16 consists of a right incident arm which un-

dergoes diffraction once by the grating vector k9 1 . The right arm is retroreflected

and undergoes diffraction one more time by the same grating vector k91 . This results

in the double diffracted vector picking up twice the phase of the grating as previously
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described. The double diffracted right arm with direction k2d is recombined with the

left reflected arm kr at the phase detector 4 as shown in figure 5-13.

Shown in figure 5-16 is the measurement (4 - 43)/2. The phase meter measure-

ment q3 detects the phase of the same signal that is used in the traditional reading

mode experiments. This phase 3 corresponds to the phase difference between the

left and right arms.

The phase meter outputs (#4 and 03) are scaled appropriately so that the units

are in radians.

x 10

, 5-
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M

-10 -200

-15 150
300 280

260 240 220 200 180 100
Stage Y Position (mm) ' ;

Figure 5-16: This measurement corresponds to S, 1 = 1/2(04 - 0 3). Note the plane

orientation is along the Y axis as expected for a 90 degree orientation. The period

may be extracted by using a planar fit to the data. The measured period is 574.16 nm

along the Y axis.

From figure 5-16 one may determine the period of the grating. This is done

by finding the best fit plane to the data, using a least squares fit. The best fit

plane is of the form Ofit(x,y) = ax + by, where the coefficients a and b are the

slopes along x and y respectively. The linear phase of the grating is of the form

Ograting(x, y) = kxgx + kygy. Therefore, the period of the grating is easily determined

by recognizing that kg = 2 = a and k = 2 = b.

Using the technique described to determine the period of the grating, we found

186



that Py = -574.16 nm. The period in the x direction was found to be much larger

resulting in P. = -287.05 pm indicating that the alignment was fairly good. The

fact that we are looking at the negative diffracted order is available from the sign of

the data. In analyzing the above data, one must take care to realize that the grating

axis is inverted from the stage axis. As the stage moves from left to right, one reads

the grating from right to left. Furthermore, this particular grating was written at

574 nm on the nanoruler. This gives us confidence that we are indeed measuring the

correct quantity, and that our scale factors are properly accounted for.

The true quantity of interest is the nonlinear phase error. A linear phase error

corresponds to an error in the period of the grating which is easier to correct. In order

to determine the nonlinear phase error, we proceed to subtract the best fit plane from

the data in figure 5-16. The resulting nonlinear phase is shown in 5-17. A smoothing

filter is applied to the data to reduce the measurement noise.

A potential cause of the measurement noise may be attributed to vibrations.

In this proof of concept experiments for the sake of time and cost considerations

mounting was achieved using standard laboratory optical posts and mounts. The

rather bulky assembly could be customized and optimized for reducing vibrations.

With the most stable mounting however there are some additional points to con-

sider. One aims to achieve the same noise level in dual pass reading mode as in the

traditional reading mode. However, it must be realized that dual pass reading mode

traverses the same optical paths as in the traditional reading and adds an extra path

length. Indeed, this additional optical path length allows us to measure the surface

of the substrate. On the other hand, it comes at the cost of making the measurement

vulnerable to independent vibrations of the stage in the normal Z direction. In other

words, the measurement process can not distinguish between a vibration of the stage

and a surface feature.

The question arises as to whether or not vibrations of the stage in the Z direction

are of concern for writing gratings in the system. Paul Konkola provides a detailed

analysis of the effect of translations in the Z direction. To the first-order, translations

of the "metrology block" which consists of the various phase meters are of inconse-
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quence. However, if there is a rotation Gy of the stage along the X - Z plane a

translation AZ produces an error e of magnitude e = AZOy. Since the pitch of the

stage Oy is typically on the order of 10 microradians, writing mode is quite insensitive

to vibrations of the stage in the Z direction. In addition, the specification for our

stage is within 2 microns peak to valley over the total range of travel.

Since vibrations along the Z axis or not of particular concern for the nanoruler

an effort has not been made measure these vibrations. However, one may rely on

averaging to remove the vibrational noise from the measurement. Improved mounting

of the mirror assembly would also serve to reduce the noise. In additon, a stronger

intensity in the double diffracted beam would result in an improved signal strength at

the detectors, which may also serve to reduce any measurement noise. Nonetheless,

the results have the correct order of anticipated magnitude. Figure 5-17 contains
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Figure 5-17: A best fit plane is removed from the measurement (S.1 44 - 43)/2

resulting in the above nonlinear phase measurement Sm1 = 2 0 grating + 2 0 surface. In

addition, the data is scaled by a factor of -, where P = 574.16 nm is the measured

period of the grating to obtain units of nm

phase information of both the surface and phase of the grating.

In order to remove the effect of the surface of the grating from the phase in figure

5-17 we will need to perform one more measurement. This measurement is performed
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by retroreflecting the positive diffracted order kj in figure 5-15 (b) by using the

retroreflecting mirror M2. The double diffracted beam from the positive order then

gets recombined with the reflected left beam into phase meter #4.

We observe that this measurement results in Sm2 = -grating + 6surface. If we

then subtract out measurement Smi from Sm2 we cancel the effect of the surface and

find the phase of the grating to be Ograting = (Smi - Sm2)/2. Figure 5-18 illustrates

the measured grating phase in units of nanometers. Similarly, we can calculate the

?100,

0,

C50

0 150 100

Figure 5-18: Phase of grating in units of nanometers obtained after computing
0grating =L(Si1 - Sm2)/2

surface of the grating by summing the two measurements Smi and Sm2. The scale

factor which allows one to convert the phase of the resulting measurement to a surface

18

height is 2k as previously derived.

The measurement of the surface of the grating is shown in figure 5-19. These re-

sults are remarkable in the sense that this is the first time the nanoruler tool has been

abled to measure the surface profile. Undoubtedly, improvements to the measurement

process may be made to reduce the noise level. If all else fails, one may take several

measurements and perform further averaging to reduce the noise level. One does note

some surface features on the order of 200 nanometers peak to valley. These features
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are pronounced macroscopically and have long spatial frequencies. For example, the

data shown in figure 5-19 spans a range of approximately 70x150 mm. Furthermore,

the BK7 glass substrate has been coated with aluminum which may lead to surface

roughness on such a large length scale.
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Figure 5-19: Surface of the grating obtained after calculating h(x, y) = 2(Sm1 +

Sm2)/2

5.6.4 45 Degree Orientation

In order to complete the rotational grating test which we have developed to charac-

terize the system distortion, it will be necessary to obtain a reading of the grating in

a 45 degree orientation. Our novel dual pass reading mode technique is a convenient

method which will allow us to read the grating at such an angle. It is noteworthy that

any alignment scheme could be used to recombine the diffracted order at 45 degrees

with the zero reflected order. However, dual pass reading mode only requires one ad-

ditional component for each orientation (i.e., a retroreflecting mirror). This could be

compared with having to use two additional mirrors and a beam splitter assembly, a
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total of three components, which must be aligned for each grating orientation. These

three components would complicate the alignment process by introducing more de-

grees of freedom and lead to difficult packaging requirements in the nanoruler which

does not offer much real estate.

The 45 degree orientation of the grating and the diffracted orders which result are

shown in figure 5-20. From the figure, we take notice that the positive diffracted order

kj 1 and the negative diffractive order k-' are no longer symmetric about the Z axis.

In this orientation, we may not cancel the effect of the surface as we did in the 90

degree orientation. However, since the surface profile has already been measured in

the 90 degree measurement we may subtract its effect from the measurement directly.

In order to subtract the effect of the surface from the measurement one needs

to calculate the appropriate scale factor which converts the surface height to units

of radians. This scale factor may be verified to be twice the Z component of the

diffracted order kd as decribed in section 5.6.1. Following a similar procedure outlined

for the 90 degree section, we recognize that in the 45 degree orientation k.g = X(2k;)

and k., = -kxg as shown in figure 5-20. Common to all orientations, the reflected

beam does not change and has an x component k;, and no y component kr = 0.

From equation 5.48 we find

= (k + k (- k) (5.56)

we find k d = k I - )2(7 + 2V2).

5.6.5 45 Degree Orientation Experimental Results

Proceeding similarly to the 90 degree orientation, we perform a measurement Sm2

where we retroreflect the positive order k+' of figure 5-20 and recombine the double

diffracted arm with the left reflected arm into the phase meter <J 4 as shown in figure

5-13. When we subtract out the phase of the left and right arms measured in phase

meter 3, we obtain twice the phase of the grating and twice the contribution from the

surface as shown in figure 5-21. Figure 5-21 contains several pieces of information.
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Figure 5-20: Dual pass reading mode in the 45 degree orientation: (a) An incident
beam ki interacts with the grating vector k-' and k+' and is diffracted into two orders
k- 1 and k+'. (b) A mirror M1 may be used to retroreflect the negative order k- 1 .
Alternatively, mirror M2 may be used to retroreflect the positive order kj1 .

The best fit plane to the data provides us directly with the k components of the

grating. We find the best fit plane coefficients divided by 2 produce k-, = 7.5277x10 3

mm- 1 and kyg = 7.9509x10 3 mm- 1 . This immediately tells us the grating angle a

which may be found by taking the inverse tangent of the ratio of the components.

We find a = atan(kg/kyg) = 46.560, fairly close to the 45 degree orientation we

attempted to align to. The alignment for these proof of concept experiments were

performed by using rulers to mark distances. Future upgrades to the system will

allow for precision rotation of the grating which is not available at the time of this

thesis. The grating periods in the X and Y directions deduced from the measurements

resulted in P, = 834 nm and Py = 790.25 nm respectively.

In order to obtain the nonlinear part of the measurement, we must. subtract out

the best fit plane from the data. This is shown in figure 5-22
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Figure 5-21: Output from dual pass reading mode experiment
The output consists of twice the grating phase and twice the
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Surface of the grating obtained after calculating h(x, y) = -(Sirl +
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APPENDIX A: Matlab Code For Mirror Reconstruction

clear all;

close all;

HENERES = 3.236409608091024e+009; %counts/meter for stage interferometer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gratingperiod=574; %grating period in nm

M=4000;

N=2;

%Lets Now Find the Frequency Response

B=zeros(N+1,1);

B(3*N+1,1)=+l;

B(2*N+1)=1;

B(N+1)=-1;

B(1)=-1;

figure;

zplane(B' ,1);

%Now for the Approximate Transfer Function

q-roots (B)

AO=.85;

zO=AO*exp(i*pi/2);

m=[.99,-.99,-zO,zO,-zO,zO];

q2=poly (m)
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q3=q2;

figure;

zplane(q3,1);

filename='xm020706-001.txt';

data = load(filename); %X Theta, Y

dataextract2;

h=6.375 %mm

figure;

[h2,w21=freqz(q3,1,M);

[h1,w1]=freqz(B',1,M);

a=-1*abs(h2(400)/h1(400));

filtercoeff=1/a*q3;

[h2,w2]=freqz(filtercoeff,1,M);

freqz(filtercoeff,1,M);

hold on;

freqz(B',1,M);

figure;

thetaxconv = 1/HENERES/(.0254*.5)*1e6; (it is being divided by 12.4) %for converting

y=x(:,ycol)*1/HENERES;

xd=x(:,xcol)*1/HENERES;

xtheta=x(:,thetaxcol)*thetaxconv;

ytheta=x(:,ydaccol)*thetaxconv;

Comment=''
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Theta Vs TIME

subplot(2,2,1);

plot (t,xtheta);

title(['\Theta_{x} vs Time Filename ',filename,Comment])

xlabel('time (s)');

ylabel('\Theta_{x}, micro radians')

X**************************ThetaX Vs Y

subplot(2,2,2);

plot (y,xtheta);

title(['\Thetax} vs y Filename ',filename,Comment])

xlabel('y');

ylabel('\Theta{x}, micro radians')

X********************************** Y VERSUS TIME

subplot(2,2,3);

plot(t,y); %For converting phase meter

title(['Y vs Time Filename ',filename])

xlabel('time (s)');

ylabel('Y(m)')

* ThetaY Vs Y

subplot(2,2,4);

plot(y,ytheta);

title(['\Theta_{Y} vs y Filename ',filename,Comment])

xlabel('y');

ylabel('\Theta_{Y}, micro radians')

* Delta Theta
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dtheta=(xtheta+ytheta);

figure;

subplot (2,1,1);

plot(y,dtheta);

xlim([0 1]);

title(['\Delta \theta ',filename,Comment])

xlabel('Distance(mm)')

c=median(dtheta);

dtheta=dtheta - c; %Remove Constant

hold on;

plot (y,dtheta, 'r');

subplot(2,1,2);

four2=abs(fft(dtheta));

xval=linspace(0,2,length(four2));

plot (xval ,four2);

xlim([0 1]);

title(['Fourier Transform of \Delta \theta ',filename,Comment])

xlabel ('Distance (m)')

figure;

xreconstruct=filter(2*h,filtercoeff,dtheta*le-3);

plot(y,xreconstruct);

Xaxis([0,300,0,1])

xlabel('stage position (mm)');

ylabel('Reconstructed Mirror Profile(\mum)')

title(['Reconstructed Mirror Profile with Inverse Measurement Transfer Function'])

[PS]=polyfit(y,xreconstruct,1);

linfit=polyval(P,y);

hold on;
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plot(y,linfit,'k');

mirror=(xreconstruct-linfit)*1e3;

figure;

subplot(2,1,1);

plot(y*1e3,mirror);

title(['Mirror Nonflatness: ',filename,Comment])

ylabel('Mirror nonflatness nm');

xlabel('Stage Y position (mm)')

subplot(2,1,2);

four=fft(mirror);

plot(xval,abs(four));

xlim([O 1]);

title([I'FFT of Mirror Nonflatness ',filename,Comment])

Ylabel('FFT Coefficients');

xlabel('Normalized Frequency')

h=[1 1 1 1]/4;

mirrorfilt=filter(h,1,mirror);

figure;

plot(y*1e3,mirrorfilt);

xlabel('Stage Y position (mm)')

ylabel('Mirror nonflatness (nm)');
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APPENDIX B: Matlab Code For Grating Translation Test

%Lets suppose we have the following system distortion:

close all;

clear all;

xvec=-100: 1:100;

yvec=xvec;

[X,Y]=meshgrid(xvec,yvec);

S=50*sin(2*pi/180*X) %System Distortion

G=((X/100).^2+(Y/100)^3)*75+50*cos(2*pi*Y/90); %Grating Distortion

mesh(S);

title('System Distortion');

figure;

mesh(X,Y,abs(G+50)); %ADD AN OFFSET SO WE ARE DEALING WITH POSITIVE QUANTITIES

title('Grating Distortion');

xlabel('X (mm)');

ylabel('Y (mm)');

figure;

mesh(X,Y,G+S);

title('Grating Distortion + System Distortion');

xlabel('X (mm)');

ylabel('Y (mm)');

figure;

%%%%%%%%RECOVER THE GRATING DISTORTION BY TRANSLATION %%%%%%%%%%%X%%%X%%%%%%%%%
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dx=l;dy=1;

[row, coil =size (G)

hx=[-1 1;0 0]

Gfx=filter2(hx,G);

%%%THE LAST COLUMN NEEDS CORRECTION: See K.R. Freischlad and C. Kolipoulos%%X

Gfx(:,col)=-1*sum(Gfx(:,1:col-1),2);

mesh(Gfx);

title('Output of 2D impulse response which corresponds to differencing');

dx=1;dy=l;

[row,col]=size(G);

hy=[-1 0; 1 0]

Gfy=filter2(hy,G);

Gfy(row, :)=-1*sum(Gfy(1:row-1,:));

N=row;

i=sqrt(-1);

Xp=X+100;

Yp=Y+100;

reconstruct=1 . ( 4*sin(pi/N*(Xp)).^2+4*sin(pi/N*Yp).^2) .* ( (exp(-2*pi*i*Xp/

reconstruct(isinf(reconstruct))=0;

reconstruct (isnan(reconstruct))=0 ;

reconstruct (1,1)=0;

% figure;

/ mesh(X,Y,abs(reconstruct));

w=(fft2(reconstruct));

figure;

%ADD A DC OFFSET BECAUSE ABSOLUTE FUNCTION WILL NOT WORK WITH

%NEGATIVE QUANTITIES
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mesh(X,Y,1/N^2*abs(w+100*N^2));

xlabel('X (mm) ');

ylabel('Y (mm) ');

title('Reconstructed Grating Distortion using Inverse Filter');

% figure;

% freqz2(h);

figure;

freqz2(hx);

xlabel('\omega{x}');

ylabel('\omega_{y}');

zlabel('IH_{\Delta x}');

figure;

freqz2(hx+hy);

xlabel('\omega_{x}');

ylabel('\omega_{y}');

zlabel('IH_{\Delta x}+H_{\Delta y}I');

figure;

%NOW LETS FIND THE TOTAL INVERSE WIENER FILTER AS DESCRIBED BY MONTOYA

k=1;

Hdxdycc=(1-exp(2*pi/N .* Xp))+(1-exp(2*pi/N .* Yp));

numerator=Hdxdycc.*fft2(Gfx+Gfy)

denominator=abs(Hdxdycc).^2+k;

Dglk=numerator./denominator;

dgreconstruct=ifft2(reconstruct);

mesh(abs(dgreconstruct + 100));

title('Obtained using Wiener 2D');
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APPENDIX C: C Code for Beam Blanking: filename =

j-sbil-bleamblnk-works.c

#include <ixcbsp.h>

#include "j-mfe_def.h"

#include "j-sbildef.h"

#include "j-sbilsdram.h"

#include "j-sbilvme1181.h"

#include "j-vme2510b_def.h"

#include "j-sbilzmi.h"

#include "beamblank.h"

extern int waitstate[2];

extern int turnonbusystat;

extern int turnoffbusystat;

extern int ampaddr [2] [3];

extern int doseoff;

extern VMEDEVICE vme_devd32;

extern int datadisableaddr[2];

extern int resetzmi;

extern int fs;

extern int fr;

extern int fringescale;

extern int freqaddr [2] [3];

extern double timercount;

extern int signalstatphil;

extern int signalstatphi2;

void turnonbeams(int *ampdosel, int *ampdose2, int *velocity)

{

/*int word=Ox144FOO2O; */
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if(turnonbusystat==1)

{

vmexwrite(&vme-dev-d32, (void *)MFE_ADDR, &datadisableaddr[1], 1, SWAP); /*DISABL

vmexwrite(&vmedevd32, (void *)MFEDATA, ampdosel, 1, SWAP); /*PASS AOM1 DATA*/

}

else if(turnonbusystat==2)

{

/*ENABLE AOM1*/

vmexwrite(&vmedevd32, (void *)MFEADDR, &ampaddr[1][0], 1, SWAP); /*ENABLE AOM1 */

}

else if(turnonbusystat==3)

{

/*Turn Back on AUM Power Ch2*/

/*DISABLE, DATA*/

vmexwrite(&vmedevd32, (void *)MFEADDR, &datadisableaddr[1], 1, SWAP); /*DIS

}

else if(turnonbusystat==4)

{

vmexwrite(&vmedevd32, (void *)MFEDATA, ampdose2, 1, SWAP); /*PASS AOM2 AMP DATA *

}

/*We would like to reset ZMIPHI4 when we have intensity*/

else if(turnonbusystat==5)
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{
/*ENABLE AOM2*/

vmex-write(&vme_devd32, (void *)MFEADDR, &ampaddr[1][1], 1, SWAP); /*ENABLE AUM 2 A

}

else if(turnonbusystat==6)

{

vmex.write(&vmedev-d32, (void *)MFEADDR, &datadisableaddr[1], 1, SWAP); /*DISABLE

}

else if(turnonbusystat==7)

{

/*fs=fr + (int)(*velocity/100 * fringescale *Oxffffffff/300.0);*/

fs=fr;

vmex-write(&vmedevd32, (void *)MFEDATA, &fs, 1, SWAP); /* ENABLE freqi data */

}

else if(turnonbusystat==8)

{

vmex-write(&vmedevd32, (void *)MFEADDR, &freqaddr[1][0], 1, SWAP); /* ENABLE freq

}

else if(turnonbusystat==9)

vmex-read(&vmedevd32, (void *)(ZMIPHIlBASE), &signalstatphil, SWAP); /*read theta

vmex-read(&vmedevd32, (void *)(ZMIPHI2_BASE), &signalstatphi2, SWAP); /*read theta

signalstatphil=signalstatphil>>16 & OxFF;

signalstatphi2=signalstatphi2>>16 & OxFF;

if ((signalstatphil &Ox08) && ( signalstatphi2 & Ox08)) /*Tells us the measurement Si
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{

/* vmexwrite(&vmecdevcd32, (void *)MFE_ADDR, &datadisableaddr[1], 1, SWAP);*/ /*DISA

}

else

{

turnonbusystat=turnonbusystat-1; /*REPEAT, Phil and Phi2 Have No Signal*/

}

}

/*Reset and Wait 25 msecs if we have intensity*/

else if(turnonbusystat==10)

{

/*position resetzmi(ZMI3PHIlBASE);*/

/*RESET PHASE METER BOARDS*/

vmexwrite(&vmedevd32, (void *)ZMIPHIlBASE, &resetzmi, 1, SWAP); /*pass freqi dat

vmexwrite(&vmedevd32, (void *)ZMIPHI2_BASE, &resetzmi, 1, SWAP); /*pass freqi dat

}

else if(turnonbusystat==11)/*We have issued a reset and now waiting for registers to

{

vmexread(&vmedevd32, (void *)(ZMIPHIlBASE), &signalstatphil, SWAP); /*read theta

vmex_read(&vmeaeva32, (void *)(ZMI_PHI2BASE), &signalstatphi2, SWAP); /*read t

signalstatphil=(signalstatphi>>16) & OxFF;

signalstatphi2=(signalstatphi2>>l6) & OxFF;

turnonbusystat=turnonbusystat-1;

if (waitstate [01>100)

{
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if((signalstatphil & Ox1i) && (signalstatphi2 & Ox1O)) /*Tells us the position reset

{

turnonbusystat=turnonbusystat+1; /*Advance*/

}

}

waitstate [0] ++;

}

else if (turnonbusystat==12)

{

/* fs=fr + (int)(*velocity/100*fringescale*Oxffffffff/300.0);*/

fs=fr;

vmex-write(&vmedevd32, (void *)MFEDATA, &fs, 1, SWAP); /* ENABLE freqi data */

turnonbusystat = -1; /*Will become 1 at the end of Loop*/

turnoffbusystat=1;

timercount=0;

}

turnonbusystat=turnonbusystat+1;

}

void turnoffbeams(void)

{

if(turnoffbusystat==1)

{

/*UNMASK INTERRUPTS*/

vmexwrite(&vmedevd32, (void *)(ZMIPHIlBASE + Ox18), &doseoff, 1, SWAP); /*UNMASX

vmexwrite(&vmedevd32, (void *)(ZMI_PHI2_BASE + Ox18), &doseoff, 1, SWAP); /*UNMAS9

}

else if(turnoffbusystat==2)
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{

/*DISABLE, DATA, ENABLE AOM1*/

vmexwrite(&vmedevd32, (void *)MFEADDR, &datadisableaddr[1], 1, SWAP); /*DIS

vmexwrite(&vmedevd32, (void *)MFEDATA, &doseoff, 1, SWAP); /*PASS AOM1 DATA (Off

}

else if(turnoffbusystat==3)

{

vmexwrite(&vmedevd32, (void *)MFEADDR, &ampaddr[1][0], 1, SWAP); /*ENABLE AOMI */

}

else if(turnoffbusystat==4)

{

/*DISABLE, DATA, ENABLE ADM2*/

vmex-write(&vmedevd32, (void *)MFEADDR, &datadisableaddr[1], 1, SWAP); /*DISABLE

}

else if(turnoffbusystat==5)

{

vmex-write(&vmedevd32, (void *)MFEDATA, &doseoff, 1, SWAP); /*PASS AOM2 DATA */

}

else if(turnoffbusystat==6)

{

/*NOTE DATA IS ALREADY ON DATA LINES, AND THERE IS NO NEED TO PASS DATA*/

vmex-write(&vmedevd32, (void *)MFEADDR, &ampaddr[1][1], 1, SWAP); /*ENABLE AOM2 *

turnonbusystat=1; /*Phase Meter is No Longer Reset because we are turning o

turnoffbusystat=-1;

}
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turnoffbusystat=turnoffbusystat + 1; /*It takes 5 cycles to Turn off the Beams */

}

void absolutephasejfct(int *phifringel, int *phifringe2, int *philoffset, int *phi2of

{

vmexread(&vmedevd32, (void *)(ZMIPHIlBASE+OxOC), absphil, SWAP); /*read phase di

vmexread(&vme_dev_d32, (void *) (ZMI PHI2BASE+OxOC), absphi2, SWAP); /*read phase di

/*phixtheta=absphi3>>12;*/

/*phiytheta=absphi4>>12; */

/* Absolute Phase is in the Form OxAABB COQO, Where C = 9thBitA 9thBitB 0 0 */

*absphiltotal=((*absphil>> 24) & OxFF) + 256*( (*absphil>>15) & Oxi);

*absphi2total=((*absphi2>> 24) & 0xFF) + 256*( (*absphi2>>15) & Oxi);

*absphiltotal=-1 * *absphiltotal+512; /*Phil and Phi2 Diagnostic Registers count i3.

*absphi2total=-1 * *absphi2total+512;

*philoffset = ((*phifringel & OxiFF) - *absphiltotal) & OxiFF;

*phi2offset = ((*phifringe2 & OxiFF) - *absphi2total) &Ox1FF;

/*TAKE CARE OF SPECIAL CASE OF QUADRANTS I & IV FOR AVERAGING */

/*IF THE PHASE CHANGES BETWEEN 0 and 512, then make number above 256 negative*/

/*SPECIAL CARE MUST BE MADE FOR FIRST ITERATION. MAKE PHIOFFSETOLD=256*/

if(timercount>1)

{

if((*philoffset<128) && (*philoffsetold>384)) /*Keep the number High*/

{

*philoffset=*philoffset+512;

}

else if((*philoffsetold<128) && (*philoffset>384)) /*Keep the number Low*/

{

208



*philoffset=(*philoffset-512);

}

if((*phi2offset<128) && (*phi2offsetold>384)) /*If Difference is Greater than 256*/

{

*phi2offset=*phi2offset+512;

}

else if((*phi2offsetold<128) && (*phi2offset>384)) /*If Difference is Greater than 25

{

*phi2offset=(*phi2offset-512);

}

}

*philoffsetcount = *philoffsetcount + *philoffset;

*phi2offsetcount = *phi2offsetcount + *phi2offset;

*philoffset= (int) (*philoffsetcount/timercount);

*phi2offset= (int) (*phi2offsetcount/timercount);

*philoffsetold = *philoffset;

*phi2offsetold = *phi2offset;

timercount=timercount+1.0;

}
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APPENDIX D: Matlab Code For Grating Rotation Test

%Lets suppose we have the following system distortion:

close all;

clear all;

xvec=-100:1:100;

yvec=xvec;

[X,Y]=meshgrid(xvec,yvec);

S=50*sin(2*pi/180*X) %System Distortion

G=((X/100).^2+(Y/100)^3)*75+50*cos(2*pi*Y/90); %Grating Distortion

mesh(S);

title('System Distortion');

figure;

mesh(X,Y,abs(G+50));

title('Grating Distortion');

xlabel('X (mm)');

ylabel('Y (mm)');

figure;

DO=S+G;

D1=imrotate(G,45,'neares','crop')+S;

D2=imrotate(G,90,'neares','crop')+S;

D3=imrotate(G,135,'neares','crop')+S;

D4=imrotate(G,180,'neares','crop')+S;

D5=imrotate(G,225,'neares','crop')+S;

D6=imrotate(G,270,'neares','crop')+S;

D7=imrotate(G,315,'neares','crop')+S;
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D=DO+D1+D2+D3+D4+D5+D6+D7;

figure;

mesh(X,Y,(D)/8);

xlabel('X (mm)');

ylabel('Y (mm)');

zlabel('Distortion (nm} ');
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