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Abstract

In the Intensive Care Unit, physicians have access to many types of information when
treating patients. Physicians attempt to consider as much of the relevant information
as possible, but the astronomically large amounts of data collected make it impossible
to consider all available information within a reasonable amount of time. In this thesis,
I explore Bayesian Networks as a way to integrate patient data into a probabilistic
model. I present a small Bayesian Network model of the cardiovascular system and
analyze the network's ability to estimate unknown patient parameters using available
patient information. I test the network's estimation capabilities using both simulated
and real patient data, and I discuss ways to exploit the network's ability to adapt to
patient data and learn relationships between patient variables.
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Chapter 1

Introduction

Bayesian Networks provide a flexible way of incorporating different types of infor-

mation into a single probabilistic model. In a medical setting, one can use these

networks to create a patient model that incorporates lab test results, clinician ob-

servations, vital signs, and other forms of qualitative and quantitative patient data.

This thesis will outline a mathematical framework for incorporating Bayesian Net-

works into cardiovascular models for the Intensive Care Unit and explore effective

ways to assimilate new patient information into the Bayesian models.

1.1 Using Models to Integrate Patient Data

Physicians have access to many types of information when treating patients. For

example, they can examine real-time waveform data like blood pressures and electro-

cardiogram (ECG) recordings; data trends like time-averaged heart rate; intermittent

measurements like body temperature and lab results; and qualitative observations like

reported dizziness and nausea.

Within the Intensive Care Unit (ICU), physicians attempt to consider as much

of the relevant information as possible, but the astronomically large amounts of data

collected make it impossible to consider all available information within a reason-

able amount of time. In addition, not all of the data collected is helpful in its raw

form, but sufficient statistics taken from such data might help physicians gain a more
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thorough understanding of recent changes in the patient's state. Because of this, we

are exploring ways to integrate different types of patient data into more synthesized

forms (see http://mimic.mit.edu/).

Models provide one way of synthesizing multiple observations of the same com-

plex system, and Bayesian Networks provide a probabilistic framework for developing

patient models. With Bayesian Networks, we can incorporate different data types

into a single model and use Bayesian inference to probabilistically estimate variables

of interest, even when data is missing.

By using models to synthesize data, we hope to improve monitoring capabilities

and move patient monitoring in new directions by generating more accurate alarms,

making predictive diagnoses, providing clinical hypotheses, predicting treatment out-

comes, and helping doctors make more informed clinical decisions. As an example,

alarms generated by current monitoring systems have extremely high false alarm

rates, and because they go off so frequently, nurses learn to ignore them. Often these

alarms are generated by observing only a single patient variable at a time. By syn-

thesizing more of the available patient data, systems could generate more accurate

alarms that would convey more reliable information.

Similarly, current monitoring systems measure and display patient vital signs, but

they only perform a limited amount of analysis on the measured waveforms. By

using models to synthesize patient data, monitoring systems might one day perform

analyses that could diagnose problems before they become critical, perhaps predicting

a patient's impending hemodynamic crisis minutes in advance so that doctors can

perform preventive treatments instead of reactive ones. Advanced systems might

further use patient models to simulate treatment options and use the simulation

results to guide doctors toward more effective treatments. Systems might also learn

to identify the true source of a medical problem so that doctors could address problem

sources instead of treating symptoms. This discussion touches on just a few of the

ways that a more synthesized approach might aid both clinicians and patients.
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1.2 Traditional Cardiovascular Models

As mentioned before, models provide one way of synthesizing different observations

of the same complex system. Many traditional cardiovascular models are derived

from physiology by using computational models of the heart and blood vessels. Such

computational models provide a set of differential equations that can be mapped to

an equivalent set of circuit equations. Within the equivalent circuit models, volt-

age represents pressure, current represents blood flow, resistance represents blood

vessel resistance, and capacitance represents compliance, a measure of vascular dis-

tensibility. These circuit models are used to simulate cardiovascular dynamics and

gain a thorough understanding of how components within the cardiovascular system

interact.

A number of cardiovascular circuit models exist with varying levels of complexity.

The Windkessel model, for example, describes the arterial portion of the circulatory

system with only two parameters. In contrast, other models like those described

in [4, 6, 14] contain many vascular compartments representing the right and left

ventricles, the systemic veins and arteries, the pulmonary veins and arteries, and

sometimes even other organs in the body. Some models simulate pulsatile behavior

[2, 4], while others track trend behavior [12]. Timothy Davis's thesis contains a

short survey of several of the early lumped-parameter hemodynamic models including

CVSIM, CVSAD, and the Windkessel model [3].

While these physiological models are complex enough to track real patient data,

using these models to do so in real time is extremely challenging. Within the ICU,

only a limited number of patient vital signs are consistently available. These signals do

not provide enough information to accurately estimate more than a small number of

model parameters [14]. This means that many parameters in the larger physiological

models cannot be estimated accurately using commonly available patient data. In

addition, real data is often extremely noisy. Signals frequently disappear or become

overwhelmed by artifacts when patients move or become excited. These artifacts make

it even more difficult to robustly track patient trends using physiological models.
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In addition, conventional physiological models do not use all available informa-

tion when attempting to track patient state. They do not incorporate qualitative

observations like "the patient is dizzy" or "the patient is bleeding heavily." They also

fail to incorporate information about the patient's diagnosis. Similarly, physiological

models fail to assimilate intermittent data like that obtained through lab reports,

nurses notes, and medication charts, into their calculations. These types of informa-

tion convey important information about the patient's state and should be taken into

account.

In order to integrate both qualitative and quantitative information into modeling

efforts, we use Bayesian Network models to complement the traditional physiologi-

cal ones. With Bayesian Networks, we can incorporate non-numeric, discrete, and

continuous information into the same model. Bayesian Networks can robustly use

intermittent data when it is available and function reliably when such data is not

available. These networks provide a stochastic framework for estimating physiological

model parameters, a framework we can rely on when patient measurements become

noisy or unreliable.

1.3 Bayesian Networks in Medicine

Within the medical field, Bayesian networks have frequently been used for diagnosis

[8, 16, 11, 10], patient monitoring [1], and therapy planning [13]. For instance, the

Heart Disease Program [8] uses a several-hundred-node Bayesian Network to create

a list of most probable cardiovascular diagnoses, given patient symptoms. While

accurate, the network is difficult to maintain because of the large number of network

parameters set by expert opinion.

VentPlan [13], a ventilator therapy planner, attempted to use a Bayesian Network

to incorporate qualitative data into a mathematical model of the pulmonary system.

By exploiting the Bayesian Network, the program used qualitative patient information

to initialize parameters of the mathematical model. The mathematical model then

ran simulations to determine the best ventilator treatment plan, given the current
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patient state. Overall, the system proposed treatment plans that changed ventilator

settings in the correct direction, but experts disagreed about the proper magnitude

of change needed.

Using Bayesian Networks, Berzuini et al. [1] propose a methodology that uses in-

formation about previous patients to monitor current patients. Within this method-

ology, each patient is described using the same parameterized model. Each set of

patient parameters is assumed to be drawn from the same unknown probability dis-

tribution. The current patient receives an additional parameter that rates how typical

his or her response is in comparison with the general population. If the current pa-

tient's response seems typical, information about previous patient parameters is used

to set the current patient's parameters. Otherwise, current patient parameters are

set using only information about the current patient. The relative weight assigned

to information from previous patients versus information from the current patient

changes based on the current patient's typicality. With a Bayesian Network, Berzuini

et al. explicitly described how current patient parameters depend information about

both current and previous patients. They then used this methodology to model how

patients' white blood counts respond to chemotherapy. By conditioning on informa-

tion obtained from previous patients, these researchers more accurately tracked white

blood count for patients deemed typical of the general population.

Recently, much work has been done on sequentially learning Bayesian Network

structures from data [5]. Algorithms that perform this type of learning are often used

in biological contexts to identify large biological networks, but have also been used in

other contexts to learn models directly from data. The book by Neapolitan contains

a summary of some of these applications and research within the field of Learning

Bayesian Networks [10].

In this thesis, I focus on developing relatively simple Bayesian Network models of

the cardiovascular system that capture necessary patient dynamics without adding

extraneous model parameters that are difficult to estimate. Unlike the Heart Dis-

ease Program, I explore much simpler models whose parameters can be learned and

updated based on available patient data. The current goal is not to diagnose every
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type of cardiovascular disease, but instead to estimate unavailable information about

a patient's state based on data generally available in the ICU. We aim to develop

a Bayesian model for the cardiovascular system similar to the Bayesian model used

by VentPlan, while exploring ways to balance population data with current patient

history, as in [1].

1.4 Goals

In this thesis, I will describe a methodology for using Bayesian Networks for cardio-

vascular monitoring in the Intensive Care Unit. Specifically, I will

" describe a mathematical framework for incorporating Bayesian Network models

into cardiovascular patient monitoring systems for the ICU;

" describe a methodology for assimilating new patient information into Bayesian

models without disregarding or overemphasizing previously acquired informa-

tion;

" describe simulation results that explore whether

- Bayesian Networks can provide good estimates of hidden variables;

- Bayesian Networks can learn and track changes in patient state;

" describe future research directions based on simulation results.

1.5 Outline

In Chapter 2, I give an overview of Bayesian Networks and important terminology.

Within this chapter, I introduce a simple Bayesian Network model of the cardiovascu-

lar system, a model later used to predict unknown patient parameters using available

patient data. In Chapter 3, I discuss how to model the network probability distribu-

tion parameters, and I describe various ways of using patient data to set and update

these parameters. I then apply the Bayesian Network model to both simulated and

18



real patient data in Chapter 4. In this chapter, I analyze the network's ability to

use Bayesian inference to predict unknown patient parameters, given generally avail-

able patient information. Chapter 5 concludes with a discussion of the network's

capabilities and a discussion of future research directions.
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Chapter 2

Bayesian Networks

This chapter provides an overview of Bayesian Networks. It describes how these

networks are derived and the types of mathematical issues one needs to consider

when creating and implementing a Bayesian Network. In this chapter, I introduce a

small Bayesian Network model of the cardiovascular system that I will explore more

deeply later in the thesis.

2.1 What is a Bayesian Network?

Before introducing Bayesian Networks, I would like to briefly discuss networks in

a more general context. A network, or graph, consists of a set of nodes and a set

of edges which connect the nodes. The edges can be either directed or undirected,

depending on whether they point from one node to the other or simply indicate a link

between nodes.

In a directed graph, like the one shown in Figure 2-1, the edges are represented

by arrows. The triangular end of each arrow is called the head, while the other end is

called the tail. In Figure 2-1, nodes X and W are connected by a directed edge, with

node X at the edge's tail and node W at its head. When two nodes are connected by

a directed edge, the one at the tail is called the parent, while the one at the head is

called the child. Node X, then, has two children, W and Y.

Paths through the graphs are formed by following arrows, tail to head, from one

21



x

w Y

(Z

Figure 2-1: A directed acyclic graph.

node to another. Since arrows can be followed, tail to head, from node X to node

Z, a path exists from X to Z. Since arrows can not be followed in this manner from

node W to node Z, no path exists from W to Z. If a path exists from one node to

another, the latter node is called a descendant of the former. Thus, W, Y, and Z are

descendants of X, but X, Y, and Z are not descendants of W. Because of this, X, Y,

and Z are known as non-descendants of W.

When a path exists from a node back to itself, that path is called a cycle. The

graph in Figure 2-1 contains no cycles, but if an arrow was added from Z to X, it

would contain a cycle. A directed graph containing no cycles is called a directed

acyclic graph.

Networks are used to represent many different types of relationships. In computer

networks, the nodes may represent computers while the edges represent wires between

the computers. Within a cellular network, nodes represent cell phones or cell towers

and directed edges represent down-links or up-links between nodes. In social networks,

nodes signify people, while edges signify interactions or relationships between those

people.

In a Bayesian Network, nodes represent random variables, and edges represent

conditional dependencies between those variables. In this manner, a Bayesian Net-

work uses a directed acyclic graph to represent a joint probability distribution. More

specifically, a particular graph structure represents a class of probability distribu-

tions that factors in a certain way. These factorizations in turn imply a certain set of
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conditional independencies. The Markov Property, a property shared by all Bayesian

Networks, summarizes the most fundamental set of these implied conditional inde-

pendencies. This property states that child nodes are conditionally independent of

their non-descendants, given their parents. If a node does not have parents, the node

is simply independent of its non-descendants.

Due to the Markov Property, a Bayesian Network's joint probability distribution

relates to its graph structure in a straightforward manner. If the network uses N nodes

to represent the random variables {xl,.. ., xz}, the joint probability distribution of

{ i,... , Xn} can be expressed as

n

P(Xi,. . . ,x,2 ) =7P(xi the parents of xi).
i=:1

As an example, the class of Markov Chains all factor as

n

P(Xi, . . n) = P(xi)- rlP(Xilxi_1),
i=2

and all exhibit the same set of conditional independencies, namely that the past,

xi_1, is conditionally independent of the future, xi, given the present, xi. Thus, all

Markov chains with the same number of random variables have a Bayesian network

with the same graphical form.

Figure 2-2 displays a simple Bayesian Network, its conditional probability distri-

butions, and an equation for its joint probability distribution. Due to the Markov

Property, this network structure implies that heart rate (HR) is independent of net

volume inflow (NVI) because heart rate has no parents, and net volume inflow is not

a descendant of heart rate.

The full set of conditional independencies implied by the graph structure can be

derived from the set delineated by the Markov Property [10]. When the graph struc-

ture does not imply that a conditional independence exists within a set of nodes,

that set of nodes often exhibits a conditional dependence. Implied conditional de-

pendencies of this sort, however, do not exist within every probability distribution
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SP (HR )

PH)(VI CP (CO HR, NVI)

Lo HR

Hijh HR -

LOW NVI H jah NVI

P( HR,CO,NVI )=
P( HR )P( NVI )P(CO|H R,NVI )

Figure 2-2: A Bayesian Network example, where HR denotes heart rate, CO denotes
cardiac output, and NVI denotes net volume inflow.

that factors in a manner consistent with the graph structure. To see this, suppose

that in Figure 2-2 the top row of the conditional distribution for cardiac output (CO)

equaled the bottom row, so CO no longer depended on HR. Then the distribution for

CO would be the same regardless of whether HR was low or high, and the conditional

dependence implied by the arrow from HR to CO would not be present within the

underlying probability distribution.

A Bayesian Network is called well-posed if and only if all conditional dependen-

cies implied by the network structure are present in the probability distribution. In

other words, a well-posed probability distribution contains only those conditional

independencies implied by the network structure and no additional independencies

not implied by the structure. When the underlying distribution is not well-posed,

it exhibits conditional independencies not reflected in the network structure. In this

case, one can always find a different network structure that would better describe the

underlying distribution. In the example in the previous paragraph, we could obtain

a well-posed network structure by removing the arrow between HR and CO. Unless

otherwise specified, all Bayesian Networks discussed in this thesis are well-posed.

Bayesian Networks are often used to make inferences about unknown information,
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given known observations. This involves calculating the a posteriori distribution of

the unknown variable, given all available information. The a posteriori distribution

can then be used to calculate a best estimate of the unknown variable, given the

known data. Because the joint probability distribution is represented as a Bayesian

Network, algorithms can efficiently calculate the a posteriori distribution by exploiting

the network structure [17, 10].

2.2 Important Terminology

A Bayesian Network model has three interrelated parts: the network structure, the

form of the probability distribution, and the distribution parameters. The network

structure, i.e., the directed acyclic graph structure, defines a set of conditional inde-

pendencies that the underlying distribution must exhibit, but the form of the distri-

bution is otherwise unconstrained. The structure specifies only the manner in which

the distribution must factor.

Given a network structure, each node can be assigned a different type of discrete

or continuous distribution, conditional on the values of its parents. The form of these

conditional node distributions determines the form of the underlying joint probability

distribution. For example, if the node variables are jointly Gaussian, the conditional

distributions will all be Gaussian.

The distribution form further constrains the underlying distribution defined by

the network structure, but one must also set the conditional distribution parameters

to have a fully-defined model. These network parameters form the final part of the

Bayesian Network model. In the jointly Gaussian case, the parameter set consists of

the conditional means and variances for each network node. Much of the thesis is

devoted to setting and updating these network parameters.

To create a Bayesian Network, one can deduce a probabilistic model from prior

experience, learn model structure and distributions from real data, or use some com-

bination of these two approaches. In our treatment of Bayesian Networks, we assume

that an appropriate network structure and an appropriate probability distribution
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form have been derived by experts. This network structure and distribution form

remain constant throughout our simulations. We then explore ways of setting and

updating the parameters based on prior experience and patient history. Specifically,

we are interested in the following issues:

" Parameter Initialization - Initially setting the distribution parameters based on

both expert opinion and general population data by performing some combina-

tion of

- Pre-Training Initialization - Setting the distribution parameters based on

previous expectations or expert opinions.

- Batch Learning - Learning distribution parameters from previously ac-

quired patient data sets.

* Inference - Using both the initialized network and available patient information

to estimate the values of unknown variables.

" Sequential Parameter Learning - Incrementally updating the distribution pa-

rameters based on new information about the patient.

Many Bayesian Network models are initialized using a set of training data and

then employed to make inferences about new data sets, without any type of feedback

mechanism to update the probability distributions based on incoming data. In the

ICU setting this type of approach seems flawed, because the model will be trained

on general population data but applied to a particular patient whose characteristics

may or may not reflect those of the general population. In order to make the model

robust, the network must dynamically adapt to new information obtained from the

patient.

Perpetually using the same Bayesian Network model for a given patient also as-

sumes that the patient's response is stationary. It assumes we are modeling a station-

ary probability distribution. During a hospital stay, however, the patient's response

may change based on un-modeled variables. Assuming that the underlying probabil-
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Figure 2-3: A simple Bayesian Network model of the cardiovascular system.

ity distribution is not stationary, we must continually update parameters to capture

changes in the underlying probability distribution.

2.3 A Bayesian Network Model of the Cardiovas-

cular System

As mentioned previously, I set out to create a simple Bayesian Network model of

the cardiovascular system that captures necessary patient dynamics without adding

extraneous model parameters that are difficult to estimate. With the help of medical

experts, I developed the Bayesian Network model pictured in Figure 2-3. This model

describes a probabilistic relationship among the random variables stroke volume (SV),

mean arterial blood pressure (BP), total peripheral resistance (TPR), cardiac output

(CO), and heart rate (HR) such that

P(SV, BP, TPR, CO, HR)

P(TPR)P(HR)P(SV)P(BPITPR, CO)P(COIHR, SV). (2.1)

The model reflects relationships between cardiac output and the other random vari-

ables, namely that CO = HR x SV and CO =- . The network represents a

preliminary model upon which one could build in the future.

As mentioned in Section 2.1, the Bayesian Network structure implies that a set of
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conditional dependencies and independencies exist between the node variables. Again,

these independencies can be derived from the fact that each node is conditionally

independent of its non-descendants, given its parents [10]. Assuming well-posedness

within Figure 2-3, TPR and CO are conditionally dependent, given BP, and BP is

conditionally independent of both HR and SV, given CO. Intuitively, this means that

if BP is fixed, knowing the value of TPR yields additional information about CO.

Similarly, if CO is fixed, knowing BP yields no additional information about HR or

Sv.

Although the random variables in the Bayesian Network can have probability

distributions of an arbitrary form, unless the random variables are Gaussian, in prac-

tice continuous distributions are approximated by discrete probability mass functions

(PMFs). Within a medical setting, many patient variables are non-Gaussian. For

instance, continuous-valued variables like heart rate and blood pressure can only

take values within finite-length intervals, so these variables are best modeled by non-

Gaussian random variables. Similarly, discrete valued data and non-numeric data

realistically take only a finite number of discrete values. Measurement noise may be

Gaussian, but the actual patient parameters being measured generally are not.

Within this model, we use a Bayesian Network to model relationships between

heart rate, blood pressure, cardiac output, total peripheral resistance, and stroke vol-

ume. Realistically, these patient parameters can only take values in a finite range,

and median filtering removes much of the Gaussian noise. Because of this, we choose

to approximate their continuous probability distributions using discrete probability

mass functions. Specifically, we model the random variables in Figure 2-3 using dis-

crete probability mass functions that assign probabilities to five quantized random

variable values. Each quantized value represents a range of values that a continu-

ous version of the same random variables might take. Because of this, the PMFs

approximate continuous distributions.

Ultimately, the model depicted in Figure 2-3 could be expanded to incorporate

many different types of patient data, but for the research presented in this thesis,

this simple model seems appropriate. I previously explored an alternate model which
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incorporated treatment information, but due to a lack of acceptable training data

(see Appendix A), I chose to focus on the model presented in this section instead.

Throughout the remainder of the thesis, I will explore how well this model can capture

patient dynamics.

29



30



Chapter 3

Learning Algorithms

When creating a Bayesian Network for patient monitoring, one would like a model

that relies on both general population information and current patient data. In this

chapter, I explain several methodologies for training a Bayesian Network that use

both previously available data and data that is gradually presented to the network.

These learning algorithms view the Bayesian Network parameters as random variables

and update their distributions based on incoming data. I first describe how we model

parameters using what are known as Dirichlet distributions and then describe how

we exploit these distributions to train the Bayesian Network using patient data. I

finally introduce the learning algorithms explored in later chapters.

3.1 Modeling the Bayesian Network Parameters

using Dirichlet Distributions

When a patient visits the hospital, his or her response often changes with time based

on un-modeled variables like medications. This means that the probability distribu-

tions modeled by the Bayesian Network, and thus the Bayesian Network parameters,

also change with time. In a sense, the Bayesian Network parameters become random

variables themselves. When performing parameter learning, or training, we in fact

view the network parameters as random variables. This allows us to use Bayesian
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Figure 3-1: A simple Bayesian Network model of the cardiovascular system.

methods to set and update the patient parameters based on patient data.

To treat the Bayesian Network parameters as random variables, we must first

define a probabilistic model from them. A good model will reveal how the parameter

distributions relate to observed patient training data. This section develops how

we model probability mass function (PMF) parameters using Dirichlet distributions.

First, we use multinomial distributions to examine how probability parameters relate

to observed patient data sets when the probability parameters remain constant. We

then expand upon this idea to develop a probabilistic model for the parameters based

on relationships between the parameters and observed data sets.

3.1.1 Introduction to Dirichlet Distributions

Before viewing the Bayesian Network parameters as random variables, let us first

examine the relationship between a fixed set of patient parameters and multiple sets

of observed patient data. Toward this end, let us take a closer look at the HR node of

the cardiovascular model reproduced in Figure 3-1. Again, we model HR as a random

variable whose values fall into one of five quantization bins. When an observed value

falls into bin i, we will say that HR equals i. Thus, HR takes values within the set

{1, 2, ... , 5}. Assuming that HR takes the value i with probability fi, the numbers

{fi, f2, ... , f4} form the set of network parameters that we need to estimate.

Assume for a moment that we have a training data set which contains N inde-

pendent samples of the random variable HR. Let bi be number of times HR takes the
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value i during the N independent trials. If we then consider many different training

sets containing N independent samples, the number of times HR takes the value i in

a particular training set can be viewed as a random variable, Bi. Looking over the

many different training sets, the random variables {B 1, ... , B 5 } have a multinomial

probability mass function of the form:

n! f bi ... ,b 5 if b= N and b ;> 0,
P(B1 = bil ... , B5 = b5 ) ={ i bi1

0 otherwise.

This multinomial distribution is a simple extension of a binomial distribution, which

describes the probability of observing b1 successes in N independent Bernoulli tri-

als. The multinomial distribution instead describes the probability of observing

{bi, ... , b5 } occurrences of the values {1, ... , 5} in N independent HR trials.

If we look at a particular data set in which the values {1,... , 5} are observed

{bl,... , b5 } times during the N trials, then , the relative frequency with which i isN')

observed, is the maximum likelihood estimate of fi. This means that when fi equals

, the probability of value i occurring bi times during N trials is maximized.

During the above analysis, {B 1 ,... , B5}, the number of times that values are ob-

served in the training data sets, are seen as random variables. The HR probability

parameters, {fi, ... , fs}, and the number of observed trials, N, are seen as constants.

Using this approach, we obtain what seems to be a logical estimate for the probabil-

ity parameter fi. Intuitively, however, {fi, . . . , fs} should be the random variables

and {B 1,... , B5 } should be fixed, because we generally obtain only a single training

data set with fixed {bi,..., b5}. The probability parameters, on the other hand, are

unknown and may change with time. Thus, these probability parameters are better

modeled as random variables themselves.

In order to view the HR probability parameters as random variables, let F be

a random variable representing the probability, or 'frequency,' with which HR takes

the value i. We then model this set of PMF parameters, {F1,..., F5 }, as having

what is known as a Dirichlet distribution. The reasons for choosing this distribu-
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tion model should become apparent as we describe the Dirichlet distribution and its

characteristics.

Using this model, the HR probability parameters {F 1,. .., F5} share the following

Dirichlet probability density function [10]:

1fF(N) ai-l a2-1 . a.. a -I5
f5  if 0<fi < IandL fi~1p (F1 = fi, . .. , F4 = f4) = *Z=1IFai

0 otherwise;

where a 1, ... , a5 are non-negative parameters, Ej ai = N, and F(n) is the gamma

function, an interpolation of the factorial function where F(n + 1) = n!. For conve-

nience, we use Dir(fi,... , f4, a,,... , a5 ) to denote this distribution. The Dirichlet

distribution parameters a,, ... , as are called Dirichlet counts.

When the HR probability parameters {F 1, F2,..., Fs} are modeled using this

Dirichlet distribution, the expected value of random parameter F equals 2-. In

mathematical notation, E[Fi]= , for valid values of i. If we interpret the Dirichlet

parameter a2 to be the number of times value i is observed in N independent trials,

this gives us the estimate of F that we would expect.

The Dirichlet parameter interpretation is actually a bit more complicated, but the

initial interpretation of a as the number of times i is observed yields good intuition.

Due to the form of the Dirichlet distribution, a parallels bi + 1, or one plus the number

of times i is observed in a particular training set. Thus, when ai = 1 for all i, all of

the bi equal zero, indicating that we have not yet observed any HR information. In

this case, the Dirichlet distribution simplifies to a uniform distribution, indicating we

have no prior information about the HR probability parameters, {F}, and thus, all

valid combinations of {F1, F2 , ... , F} are equally likely.

As new information becomes available, we can use the Dirichlet distribution to

compute Bayesian updates for the probability distribution parameters. The update

process is computationally simple because the Dirichlet distribution is a conjugate

prior. This means that if we model the HR probability parameters using a Dirichlet

distribution and compute an a posteriori distribution based on new data, the resulting
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a posteriori is another Dirichlet distribution. More specifically, assume that we have

observed one training data set in which HR values {1, .. ., 5} are observed {bi, .., b5}

times during N trials. Then, if we initially view all valid combinations of HR param-

eter values as equally likely, we would let ai = bi + 1, let N = _1 as, and model the

probability parameters as having a Dir(fi, f2, ... , f4, a,, a2 , ... , a5) distribution. If

we then received an additional training data set, d, in which the HR values {1,. .. , 5}

are observed {S1,... , S5} times during M new trials, the a posteriori HR parameter

distribution, given the new data, is equal to

p(F1 = fi,.. ., F4 = f4 ld) = Dir(f1 , f2,... , f4, a, + si, a2 + S2, ... , a5 + S).

Based on the updated HR parameter distribution, E[Fd] = (ai+si)/(N+M), which

again makes intuitive sense. In other words, the new expected HR parameter values

equal the relative frequencies observed in the combined data set of N + M points.

For a more thorough treatment of Dirichlet distributions, please refer to [10].

3.1.2 Modeling Nodes with Multiple Parents

When a node has parents, its parameters are modeled using several different Dirichlet

distributions. To understand how this works, let us first examine the PMF of an

arbitrary node variable, X, that has N parents, {Y, y 2 , ... yn}. If X can take nx

possible values, and Y' can take nyi possible values, the conditional PMF for X can

be parameterized by a set of nX - ] i nyi parameters. These PMF parameters can be

indexed according to the values taken by the child and parent nodes. For instance, let

x represent a particular value taken by X, and let yi represent a particular value taken

by Y'. Then, the conditional PMF of X can be parameterized by a set of probabilities

of the form Fxy1,...,yf, where Fxy1,...,yf represents the probability that X takes value

x when its set of parents, {Y 1,y 2,...Yn}, takes the set of values {y 1,y 2 ,... yfl.

Within our model, BP has two parents, CO and TPR, and its conditional distribution

can be parameterized by probabilities of the form Fp,co,,,,,tp, where Fpi,coj,,Pr is a

random variable describing the probability that BP = bpi, given that CO = coj and
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TPR = tprk. Expanding upon the notation used in the last section, HR has no

parents, so its parameters simplify to the set {Fhri,..., Fhr}, where Frj describes

the probability that HR takes value hri.

A node's parameters can be grouped into sets which describe conditional PMFs,

given a certain set of parent values. If we assume that X can only take values

within the set {1, ... , Xnx }, the set of PMF parameters {F 1,,yl,...,y, ... , Fx,,,...,yf}

defines the PMF for X, given that {Y', y 2 ,... yn} equals {y 1, y2 , ... yf}. Since these

parameters form a PMF, they must sum to one, i.e., K . fX,,1,...,lyn = 1. Since each

parameter set of this form creates a single PMF, the parameters within such a set

share a Dirichlet distribution. For example, the BP parameters for which CO = 1 and

TPR = 1 together form the conditional PMF described by P(BP I CO = 1, TPR = 1),

and this set of parameters share the same Dirichlet distribution.

3.1.3 Model Complexity

The number of PMF parameters determine the complexity of our model, since each

of these parameters should ideally be learned using patient data. If the number of

parameters becomes too large, or large numbers of PMF parameters correspond to

node variable value combinations that do not occur within the training data sets,

it becomes difficult to confidently define the Bayesian Network model using patient

information.

The number of PMF parameters assigned to a particular node depends on how

many parents that node has, how many values it takes, and how many values its

parents take. If node X takes nx possible values, and its parents {Y1 , y 2 ,... yn}

take {fnyi,... , nyn } values apiece, X has nx - i nyi PMF parameters. Thus, by

limiting the number of parents a particular node has, we can keep the number of

parameters at a manageable level.
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3.2 Setting and Updating the Dirichlet Distribu-

tions

By using Dirichlet distributions to stochastically model the conditional PMF pa-

rameters, we create a probabilistic model with multiple levels. At the top level,

the Bayesian Network represents a discrete probability distribution stored as a set

of conditional node distributions. In our model, this top-level distribution is the

joint probability distribution of HR, TPR, BP, CO, and SV, and it is stored as a

collection of conditional PMFs, one for each node variable. The PMF parameters

like { Fhri, Fhr2 , . .., Fhr5 } describe the frequencies with which the node variables take

particular values. At the next level, the PMF parameters are modeled as random

variables with Dirichlet distributions. These Dirichlet distributions depend on other

parameters called Dirichlet counts.

Each PMF parameter has a corresponding Dirichlet count that stores information

relevant to that parameter. The Dirichlet count corresponding to the PMF parameter

FxiY2 intuitively represents the number of times that X equals xi, Y' equals y',

and Y 2 simultaneously equals y 2 within the available data set. To initialize or train

the Bayesian Network, one adjusts the Dirichlet counts. The PMF parameters are

then taken to be the expected values of the Dirichlet distributions. These expected

values can be calculated directly from the Dirichlet counts as explained in Section 3.1.

Thus, by updating the Dirichlet counts, we use Dirichlet distributions to set PMF

parameters based on incoming data.

The Dirichlet counts are initially set to values based on prior belief about the node

variable distributions. For example, if X has no parents and one feels strongly that

X is likely to take the value 1 and unlikely to take the value 2, one sets the Dirichlet

count corresponding to X = 1 to a high value and the Dirichlet count corresponding

to X = 2 to a low value. When training the network on data, the Dirichlet counts

are updated based on the number of times the corresponding set of parent and child

nodes simultaneously take a particular set of values within the data set. Essentially,

the learning procedures compute histograms for each set of parent and child node
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values and use these histograms to update the Dirichlet counts.

When initializing the Dirichlet counts, one must ensure that the Dirichlet counts

for different network nodes do not conflict with one another. Consider the toy example

pictured in Figure 3-2. In this Bayesian Network, the Dirichlet functions reduce to

beta functions since each function only has two parameters. F21, the parameter

corresponding to the probability that X = 1, has a beta(1, 1) distribution, which is

similar to observing X = 1 once and X = 2 once during a total of two observations.

Fx2 , the parameter corresponding to X = 2, is defined be 1 - Fx, because the sum

of the PMF parameters must equal one. Fy, has a beta(1, 1) distribution when

X = 1 and a beta(1, 0) distribution when X = 2, which is similar to observing

(X, Y) = (1, 1), (X, Y) = (1, 2), and (X, Y) = (2, 1) in three observations. Fy2 again

equals 1 - Fyj. In this case, the number of observations used to set beta counts for

the X and Y parameters differ. This discrepancy can cause undesirable results as

the Dirichlet counts are updated based on incoming information [10]. To avoid these

complications, one must initialize the Dirichlet counts so that they are self-consistent,

i.e., so that the sum of the counts assigned to each node is the same, and the counts

can all be drawn from the same set of observations. When a Bayesian Network has

self-consistent Dirichlet counts, the network is said to have an equivalent sample size

equal to the sum of the Dirichlet counts assigned to a particular node. For example,

if Fx, received a beta(2, 1) distribution in Figure 3-2, then the conflict would be

removed, and the network would have an equivalent sample size of 2 + 1 = 3. For a

more rigorous exploration of equivalent sample sizes, refer to [10].

In addition to ensuring that the Dirichlet counts are initialized consistently, one

should consider how their initial values will affect the speed with which the Bayesian

Network adapts to new information. Since the PMF parameters are set to the ex-

pected values of the underlying Dirichlet distributions, many different Dirichlet dis-

tributions can result in the same PMF. If we again consider Dirichlet distributions

with two parameters, all of the distributions pictured in Figure 3-3a result in the same

PMF since they all have the same expected value. More specifically, suppose Z is

akin to a Bernoulli random variable, and Z equals 1 with probability fi = E[F] and
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Figure 3-2: A Bayesian Network example that does not exhibit an equivalent sample

size.

2 with probability f2 = E[F2] = 1 - fi. Assume that the beta(ai, a 2) plots in Figure

3-3a now represent probability distribution for the random variable F1 . In all cases,

fi = f2 = 0.5, since the beta distributions all have an expected value of 0.5. Each

beta distribution, however, results in a different posterior distribution when certain

data observations are made. Suppose we take each of the beta distributions in Figure

3-3a to be a prior distribution of F 1, and we calculate the posterior distributions

after observing a new sample of Z. If we observe that Z = 1, the resulting posterior

distributions are pictured in Figure 3-3b. When the original beta parameters were

less than 1, observing that Z = 1 makes fi very close to 1 and f2 = 1 - fi very close

to 0. Alternatively, when the original beta parameters were both one, the prior is

uniform and fi becomes = 0.67, a value much closer to its a priori value of 0.5.

For the final two cases, fi stays very close to 0.5, because a more significant amount

of prior evidence indicates that fi and f2 are equal. Thus, by setting the a priori

Dirichlet counts in different ways, we can change how quickly the PMF parameters

adapt to new data. The learning algorithms presented in the next section experiment

with ways of initializing and changing the Dirichlet counts in this manner.
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3.3 Learning Algorithms

In the medical setting, one wants to incorporate knowledge gained from medical ex-

perts, general population statistics, and current patient data. An ideal Bayesian Net-

work should rely on well-established information about the general population, while

still adapting to the current patient. The learning, or training, algorithms presented

in this section perform distribution parameter learning by relying on different ways

of setting and constraining Dirichlet parameters to affect how quickly a Bayesian net-

work adapts to new information and how strongly it depends on previously obtained

history.

We can set a Bayesian Network's probability parameters using some combina-

tion of pre-training initialization, batch learning, and sequential learning. During

pre-training initialization, we set the Dirichlet counts based on expert opinion and

previous experience. In batch learning, we use information from previously acquired

patient data to set or update the Dirichlet counts all at once. During sequential

learning, we use incoming patient data, either one point at a time or several points

at a time, to continuously update the Dirichlet counts based on recently acquired

patient data.

The training algorithms presented in this section represent different ways of com-

bining batch and sequential learning approaches to vary the amount and type of

information stored in the network's probability distributions. We us these method-

ologies to create networks that incorporate both persistent and transient memory

components.

3.3.1 Batch Learning

During batch learning, the network receives all of the training data at once, cal-

culates a single set of posterior Dirichlet distributions, and uses the same resulting

PMFs and conditional PMFs every time that the network performs inference in the

future. In other words, the network memory is persistent, and the Bayesian Network's

probability distribution remains stationary.
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Whenever we perform batch learning in this thesis, we precede the batch learn-

ing by a pre-training initialization step. During this step, the Dirichlet counts are

initialized uniformly so that the network has an equivalent sample size of 1. Since

all nodes are modeled using five-level multinomial random variables, Dirichlet counts

for nodes with no parents are initially set to 0.2, and Dirichlet counts for nodes with

two parents initially equal 0.008. This means that all a priori PMFs and conditional

PMFs are uniform, but as soon as the network receives training data, it immediately

assigns an extremely low probability to values not appearing in the observed data set.

This mirrors the beta(0.5, 0.5) case presented in Figure 3-3a.

During learning, the batch algorithm computes histograms for each set of child

and parent nodes to count the number of times that different value combinations

appear within the training data set. In the Bayesian Network model pictured in

Figure 3-1, the learning algorithm independently computes histograms for TPR, HR,

and SV, the nodes with no parents. The algorithm then adds the histogram results to

the initial Dirichlet counts to obtain the updated Dirichlet counts. It then computes

joint histograms for each set of {TPR, CO, BP} and {HR, SV, CO} values, and adds

the appropriate histogram count to each of the corresponding initial Dirichlet counts.

In this manner, it obtains updated Dirichlet counts for BP and CO, respectively.

The algorithm sets each PMF parameter to the expected value of the appropriate

updated Dirichlet distribution as explained in Sections 3.1 and 3.2. Once the updated

PMF parameters are calculated, the training is complete. Each time the network is

subsequently used for inference, the network uses this same set of PMF parameters.

3.3.2 Sequential Learning with Transient Memory

During sequential learning, the posterior distributions are recalculated every time

that the network obtains a new piece of training data. In pure sequential learning,

histograms are first computed on the new piece of training data in the same way

as described above. The histogram values are again added to the Dirichlet priors

to obtain the updated Dirichlet counts. The updated Dirichlet counts then become

the Dirichlet priors used the next time the network receives another set of training
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data. This process is repeated each time the network receives data. In a sense,

sequential learning is batch learning repeated over and over again on smaller data

sets. Frequently each data point is presented to the network individually, but the

data can be segmented in many different ways during sequential learning.

When the network performs inference, it uses the PMFs obtained from the most re-

cent Dirichlet counts. Thus, the same Bayesian Network may use different probability

distributions when performing inference at different times, if it has been sequentially

trained during the interim.

To perform sequential learning with a transient memory of size n, the network

is again initialized using the same pre-training initialization procedure described in

the batch learning section. The nodes without parents train sequentially on the

first n training data points, but this time they store a copy of the data history.

When the network receives the (n + 1)" training data point, the nodes increment

the appropriate Dirichlet counts and then subtract out the Dirichlet counts obtained

from the first data point. In general, when the parentless nodes receive information

from the (n + k)th training data point, where k is a positive integer, they increment

their Dirichlet counts based on the (n + k)th data point and decrement the Dirichlet

counts based on values from the kth data point. Thus, the new Dirichlet counts equal

the initial counts plus the counts obtained from the last n data points seen.

The nodes with parents follow a similar procedure, but they store n most recent

relevant data points instead. Considering the conditional PMF for BP when CO =

1 and TPR = 1, the parameters for this PMF train only on data points for which

CO and TPR both equal 1. Thus, these parameters initially train on the first n data

points for which CO = TPR = 1. We will refer to these data points as relevant data

points. When the network receives its (n + 1)'t relevant training data point, i.e., the

(n + 1)" point for which CO = TPR = 1, the P(BPICO = 1, TPR = 1) parameters

increment the appropriate Dirichlet count and then subtract out the Dirichlet count

obtained from the first data point. Similarly, when these parameters receive the

(n + k)th relevant training data point, where k is a positive integer, they increment

the appropriate Dirichlet count based on the (n + k)th data point and decrement the
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Dirichlet count based on the kth data point. Other conditional PMFs respond to data

in the same way. Each conditional PMF, conditioned on the parent random variables

{Y', Y 2} taking values {y , y?}, is set using the n most recent relevant data points,

or the n most recent data points for which the parents Y' and Y2 take the values y

and y , respectively.

3.3.3 Combinational Learning

Combinational learning combines aspects of both sequential and batch learning. In

combinational learning, the Dirichlet counts are initialized using the same pre-training

initialization procedure as before. Then, the network receives a batch of data contain-

ing m data points to be stored in persistent memory. The network is batch trained

on these m data points. The resulting network is then sequentially trained, with a

transient memory size of n, on the incoming data. The Dirichlet counts at any point

in time equal the initial counts plus counts from the m data points stored in persis-

tent memory plus counts from the last n relevant data points seen. The network's

probability distribution then has both stationary and non-stationary components.

This type of learning is similar to that described in [1]. The relative sizes of the

persistent (batch) and transient (sequential) memories determine how much weight

is assigned to each type of information. Within the current algorithm, the persistent

memory size is determined by the number of points used to batch train the network.

When this number of points is large relative to the sequential transient memory size,

the information used to batch train the network is weighted heavily. When number of

points used to batch train the network is small relative to the transient memory size,

the incoming patient data is weighted heavily. In future versions of this algorithm, an

additional typicality parameter could be added to more explicitly control the relative

weight assigned to these two types of information.
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Chapter 4

Application to Patient Data

In this chapter, we test our Bayesian Network model of the cardiovascular system

using both real patient data and simulated patient data. We then analyze how accu-

rately the model can estimate a patient's cardiovascular parameters, given generally

available patient information. The first section reviews the Bayesian Network model

and gives an overview of the general procedure used during the test trials. The second

section describes procedures used and results obtained when testing the network with

simulated patient data, and the third section describes procedures used and results

obtained when testing the network with real patient data.

4.1 The Bayesian Network

The Bayesian Network model of the cardiovascular system introduced in Section 2.3,

and reproduced in Figure 4-1, describes probabilistic relationships between cardiac

output (CO), stroke volume (SV), total peripheral resistance (TPR), heart rate (HR),

and blood pressure (BP). The nodes again represent random variables, and the arrows

represent conditional dependencies. The node variables are modeled as multinomial

random variables which take one of five quantized values, and the five quantization

levels are chosen to cover the patient data sets described below.

The number of quantization levels determines the number of PMF parameters

stored by the Bayesian Network nodes. Within Figure 4-1, the HR, SV, and TPR
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Figure 4-1: A simple Bayesian Network model of the cardiovascular system.

nodes contain five probabilities, one for each of the five valid quantization levels. Since

the CO and BP nodes have two parents, they contain more probability parameters.

Due to their two parents, the nodes store twenty-five conditional PMFs, one for

each set of parent node values. Thus, these nodes both contain one-hundred twenty-

five probabilities apiece, five for each of the twenty-five conditional PMFs. Each

group of five PMF parameters is modeled as having a joint Dirichlet distribution,

and these Dirichlet distributions are defined in terms of Dirichlet counts. With one

Dirichlet count per PMF parameter, the Dirichlet counts store how frequently data

combinations described by their corresponding PMF parameters occur within the

training data sets.

In this chapter, we train the model in Figure 4-1 using the learning algorithms

described in Section3.3, and then we test the network's ability to estimate SV, CO,

and TPR, given BP and HR. At the beginning of each trial, we initialize the Bayesian

Network probability distributions using the pre-training initialization procedure de-

scribed in Section 3.3.1, so both the conditional distributions and the underlying

Dirichlet distributions are initially uniform, and the Dirichlet distributions have an

equivalent sample size of one. We then train the network using one set of quantized

training data and if possible, test the network by performing inference on a second

quantized data set. During sequential learning, we use the same data set for both

training and inference due to the sequential nature of the algorithm. During testing,
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the network uses its current probability distributions to estimate current quantized

values of CO, SV, and TPR, given current quantized values of HR and BP. We then

compare the actual quantized patient data to the quantized estimates to evaluate the

network's estimation accuracy.

4.2 Preliminary Tests using Simulated Data

We first tested the Bayesian Network using simulated patient data to ensure that the

network could learn the types of relationships found in a patient setting. When dealing

with actual patients, measurements may be inaccurate and noisy, and many internal

patient parameters cannot be measured. In a simulated environment, however, one

can completely control all patient parameters, and one knows the exact actual value

of all internal and external patient parameters. Thus, when we ask the Bayesian

Network to estimate internal patient parameters, we know with complete certainty

what the output should be.

In this section, we batch train the network on portions of simulated data and test

how accurately the network can estimate CO, SV, and TPR, given current values of

HR and BP. We find that the network accurately estimates unknown variables at a

rate far higher than that obtained through random chance.

4.2.1 Simulated Data

Data Generation

For the preliminary work reported in this section, the data used to train the Bayesian

Network was obtained by simulation of the simple pulsatile cardiovascular model in-

troduced in [12]. Figure 4-2 illustrates the circuit representation for the model. Ca is

the arterial compliance, C, is the venous compliance, Ch(t) is the time-varying com-

pliance of a single ventricular chamber, R1 is the inflow resistance to the ventricle, R2

is the outflow resistance from the ventricle, and R3 is the total peripheral resistance.

The pressure Vh is the ventricular pressure, V, is the central venous pressure, and V
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Figure 4-2: The simple pulsatile cardiovascular model. The model has a single ven-
tricular compartment (R1 , Ch(t), R 2), an arterial compartment (Ca, R 3), a venous
compartment (CV), an interstitial fluid compartment (Ci, Ri), and a blood infusion
or hemorrhage source Q,.

is the arterial blood pressure. The ventricular volume is Qh.

The elastance function Eh(t)=1/Ch(t) for the ventricle is represented as a piece-

wise linear function [12] given by:

3(Es -Ed)t +Ed for 0 < t < T

Eh(t) = 6(E Ed )(1: - t)+E, for 1 < t < T (4.1)

Ed for Z: <t T

where T is the duration of the cardiac cycle, E, is the end-systolic elastance, and Ed

(< E,) is the end-diastolic elastance. State equations for this model can be derived

as in [12], but with an additional equation representing the interstitial compartment

dynamics. The nominal parameters used in the model are shown in Table B.1 in the

appendix.

To generate testing and training data, we used the model to run twenty 500-

second-long simulations during which one or more patient parameters deviated from

their nominal values. These deviations are described in Table 4.1. The cardiovascular

responses, sampled at a rate of 10 Hz, were used to compute the beat-to-beat averaged

values of the arterial and venous blood pressures, as well as the average flow across

the total peripheral resistance. These variables were then used to calculate cardiac

output. Using heart rate (HR=) and CO, we calculated SV. These five variables,
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Description of parameter changes
1 Nominal Parameters
2 TPR increases from 1 to 5
3 QV=4 ml/s
4 QV=-4 ml/s
5 TPR decreases from 1 to 0.3
6 C decreases from 2 to 0.6
7 HR is stepped up from 60 to 300 bpm
8 HR is stepped down from 60 to 30 bpm
9 C, decreases from 50 to 20
10 R 2 increases from 0.01 to 0.5
11 R2 decreases from 0.01 to 0.001
12 E, increases from 2.5 to 5
13 Ed decreases from 0.1 to 0.05
14 E, decreases from 2.5 to 1
15 Ed increases from 0.1 o 0.2
16 QV=4 ml/s and TPR increases from 1 to 3
17 QV=-4 ml/s and TPR decreases from 1 to 0.5
18 HR is stepped up from 60 to 300 bpm

TPR decreases from 1 to 0.5
19 HR is stepped down from 60 to 30 bpm

TPR decreases from 1 to 3
20 HR is stepped up from 60 to 300 bpm

TPR increases from 1 to 3

Table 4.1: Description of the training data segments.

HR, SV, CO, BP, and TPR, were saved for each of the twenty simulations. The

first ten samples of each simulation were discarded to remove unrealistic transient

simulation effects, and the resulting data was then used to train and test the Bayesian

Network.

Training and Test Sets

The data was segmented into ten second intervals. Half of the intervals were chosen

uniformly at random to be included in the training set, while the remaining intervals

were placed in the test set. This random selection process was repeated fifty times to

obtain fifty different training and test sets. This procedure was repeated for interval

sizes of 100 seconds and 250 seconds.

Data was then quantized by placing values into five equally sized bins that cover
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Figure 4-3: Simulated data

an acceptable dynamic range for each variable of interest. For example, HR was

quantized to values of 25, 75, 125, 175, and 225 beats per minute. These quantized

values were mapped to bin numbers, with the smallest quantization range mapping

to bin 1, and the largest mapping to bin 5. The quantized values used when training

on simulated data are shown in Table B.2).

Figure 4-3 shows the data obtained from each of the twenty simulations. The

simulation results are concatenated, so the large discontinuities indicate the end of

one simulation and the beginning of another. The blue waveforms show the simulation

outputs, while the green quantized waveforms show the quantized versions of the

simulation outputs that are used to train and test the network. The horizontal lines

indicate the quantization thresholds. Any values larger than the highest quantization

threshold are quantized to the midpoint of the highest quantization range, while any

values lower than the lowest quantization threshold are quantized to the midpoint of

the lowest quantization range.
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4.2.2 Network Training

After pre-training initialization, we first batch trained the network model on the entire

data set to obtain a baseline for comparison. Throughout batch training, the network

received data for all five node variables at each time step. After training on the whole

data set, the network used the resulting distribution to perform inference each time

it computed estimates. Estimates obtained from the network trained in this manner

reveal the optimal estimates for our data set. We then batch trained additional

networks on each of the randomly segmented training sets described above.

4.2.3 Testing the Trained Network

We provided each trained network with quantized BP and HR values from the cor-

responding test set and used the network to obtain estimates of CO, TPR, and SV,

given the HR and BP values. We computed both quantized minimum mean square

error (MMSE) estimates and maximum a posteriori (MAP) estimates as follows:

MMSE(XIBP, HR) = {E[XqIBPq, HRq]}q

= {ExqP(xqlBPq, HRq)}q, (4.2)

and

MAP(XIBP, HR) = arg max{P(xqIBPq, HRq)}, (4.3)
Xq

where X is either CO, TPR, or SV; the subscript q indicates that the corresponding

value is quantized; and xq ranges over the set of quantized values taken by the random

variable X. We then mapped the quantized estimates to their corresponding bins and

compared the binned estimates with the actual binned values from the corresponding

test set.
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4.2.4 Error Analysis

Any time an estimate did not fall in the same bin as the actual value, the estimate

was counted as an error. Bins were used to calculate the errors since identifying the

relative range of the variable of interest is normally acceptable in a clinical setting.

We examined two types of error rates, the absolute error rate, i.e., the number of

errors divided by the total number of samples, and the root mean square error. The

bin numbers were used to calculate the root mean square error as (estimatedb -actualb) 2

V numsamples

where estimatedb is the estimated bin number, actual, is the actual value's bin num-

ber, and numsamples is the total number of points in the test data set. By using the

bin numbers, the error rate for each variable was normalized to the same scale.

4.2.5 Results

Error rates and standard deviations increased as the segment size increased, since

data combinations not seen in the training sets were more likely to appear in the

test sets when the segment size was large. Analysis is presented for the 250-second

segment case since those error rates are the most conservative.

Error rates for both types of estimates were comparable. As seen in Table 4.2,

the MAP estimates provided a slightly smaller absolute error rate, and the MMSE

estimates provided a slightly smaller root mean square error, as expected, but the

differences do not seem statistically relevant. If left to random chance, the expected

Mean Absolute Mean Root Mean
Error Rates (STD) Square Error (STD)

Estimator MMSE MAP MMSE J MAP

Resistance 0.33 (0.06) 0.31 (0.06) 0.73 (0.14) 0.77 (0.17)
Cardiac
Output 0.30 (0.07) 0.27 (0.07) 0.72 (0.16) 0.78 (0.23)
Stroke

Volume 0.26 (0.08) 0.29 (0.06) 0.68 (0.16) 0.71 (0.14)

Table 4.2: A comparison of the mean error rates and standard deviations for the data
sets with 250 second segments, where MMSE denotes the minimum mean square error
estimates and MAP denotes the MAP estimates.
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Figure 4-4: Conditional probability mass functions for BP, given CO and TPR. Each
plot shows the conditional PMF of BP for a particular set of CO and TPR values.

absolute error rate would be approximately eighty percent, so the Bayesian Network

is performing far better than random chance. The 25% to 33% absolute error rates

indicate that the estimates fall in the correct bin more than two-thirds of the time.

The small root mean square errors indicate that when the estimate does not fall in

the same bin as the actual value, it tends to fall in a nearby or adjacent bin.

Errors more frequently occur when a combination of values appears in the test set

but not the training set. Figure 4-4 shows how such occurrences affect a subset of the

learned conditional probability mass functions (PMFs). In Figure 4-4, each set of bars

of a given shading displays the PMF obtained when the network was trained using

a different training set. The first bar in each group was obtained by training on the

entire data set, while the other bars were obtained using partial training sets. When

a particular set of BP-CO-TPR value combinations was not found in the training set,

the PMF remained uniform. The plot on the bottom right displays such a case.

4.3 Tests using Real Patient Data

While simulated data provides exact information about all internal patient parame-

ters, simulated data cannot predict how a Bayesian Network model will respond to

patients in the ICU. By training and testing the network using real patient data, how-

ever, we can gain insight into how a Bayesian Network model might perform in an ICU
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Figure 4-5: Data samples containing thermodilution measurements. The stars indi-
cate actual values while the crosses represent quantized values. The data samples are
plotted versus the sample set numbers.

setting. The following section explores how our Bayesian Network model performs

when presented with ICU patient data from the Multi-parameter Intelligent Monitor-

ing for Intensive Care (MIMIC) patient database (http://mimic.mit.edu/index.html).

4.3.1 Patient Data

All of the patient data used in this section came from a database of one-hundred-

twenty de-identified ICU patient records, all of which contain thermodilution cardiac

output measurements. The data sets used to test and train the network fall into

two classes. The first class contains the actual thermodilution cardiac output mea-

surements and measurements of the concurrent heart rates and mean arterial blood

pressures. The HR and BP values were obtained by averaging one minute of the pa-

tient waveform data prior to the time at which the cardiac output measurements were

taken. Corresponding values of SV and TPR were then calculated using SV =
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Figure 4-6: Data from patient 11007. Original waveforms are shown in blue, quantized
waveforms are shown in green, and the quantization thresholds are shown in aqua.

and TPR = 4. Any set of CO-HR-BP-TPR-SV measurements containing missing

values was discarded. The resulting data set, denoted as the Gold Standard Data,

contains 1351 sets of measurements taken from 120 different patients.

The second data set consists of full patient records extracted from the 120-patient

database mentioned above. Using the data from each patient record, beat-to-beat

estimates of cardiac output were calculated using Lijestrand's method [7]. Beat-to-

beat averaged BP waveforms were obtained from the 125-Hz blood pressure waveforms

from the database. We used the beat-to-beat BP, HR, and CO values to calculate

beat-to-beat values for SV and TPR. All of the waveforms were then median filtered

to reduce noise. The resulting waveforms were taken as the actual values of HR, BP,

CO, TPR, and SV when training and testing the Bayesian network. For the most

part, we restrict our attention to a particular patient from the database, Patient

11007.

Both the Gold Standard Data and full patient record data were quantized by
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placing values into five equally sized bins that cover an acceptable dynamic range for

each variable of interest. These quantized values were again mapped to bin numbers,

with the smallest quantization range mapping to bin 1, and the largest mapping to

bin 5. The quantized values used when training on real patient data are shown in

Table B.3). Any values above or below the most extreme thresholds were mapped to

the nearest quantization bin. Figure 4-5 shows that data samples contained in the

Gold Standard Data set as well as their quantized values and the quantization thresh-

olds. Figure 4-6 shows the waveform data, quantized waveforms, and quantization

thresholds for Patient 11007.

4.3.2 Batch Training and Prediction

First we batch trained the Bayesian Network on the Gold Standard Data, and tested it

using the data from Patient 11007. This means that we used the Gold Standard Data

to set the probability distribution once and used the same distribution to perform

inference on the entire Patient 11007 data set. After training the network once on all

of the Gold Standard Data, we successively presented it with each set of the patient's

HR and BP values and let the network compute the MMSE and MAP estimates of

the corresponding CO, SV, and TPR values, following the same procedure used in

Section 4.2.3. Since the network was batch trained, the same probability distribution

was used to compute each of the estimates. We again compared the binned estimates

to the binned versions of the actual SV, CO, and TPR values, i.e., binned versions

of the values obtained using Liljestrand's method, and determined that the network

failed to accurately estimate CO and SV nearly one hundred percent of the time.

Figure 4-7 shows the actual CO, SV, and TPR waveforms, the quantized waveforms,

the MAP estimates, and the MMSE estimates obtained using batch training. As

shown in this figure, the MAP and MMSE estimates fail to accurately track the CO

and SV waveforms.
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Figure 4-7: Comparison of actual Patient 11007 TPR, CO, and SV waveforms to
estimated waveforms obtained using a network solely trained on the Gold Standard
Data.

Comparison of MMSE and MAP Estimators

Because the MAP estimates can only take the quantized values represented in the

probability distribution, the MAP estimates almost always equal quantized versions

of the corresponding MMSE estimates. In the rare instances where this is not the case,

the marginal distribution used to calculate the estimates has more than one significant

peak. The MMSE estimate reflects the bi-modal nature of the distribution, while

the MAP estimate does not. In general, the MMSE estimates are more interesting

because they can take unquantized values. Throughout the remaining trials, I focus

my analysis on the MMSE estimates for simplicity. Because the MAP estimates tend

to equal the quantized MMSE estimates, the analysis for MAP estimates follows as

an easy extension.

4.3.3 Single Beat Prediction using Sequential Training

Since batch training alone resulted in unsatisfactory performance, I explored sequen-

tial training methods, that is, methods which allowed the network to continually
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update its probability distributions based on incoming patient data. The networks

described in this section were sequentially trained using finite memories of various

sizes.

Because the patient record data is averaged on a beat-to-beat basis, each set of

data values presented to the network represents information from a single beat. Thus,

a finite memory of one thousand points indicates that the current probability distri-

butions depend on information from the most recent thousand heart beats relevant

to the probability distribution in question. For example, the probability distribu-

tions for HR, SV, and TPR, variables in our network with no parents, depend on the

most recent thousand heart beats. On the other hand, distributions for CO and BP,

nodes in our network with two parents, depend on the last thousand heart beats for

which the parent random variables took a particular set of values. In other words,

P(COIHRb = 1, SV = 1), where HRb and SV represent the bin numbers for HR

and SV, respectively, depends on the last thousand beats for which HRb = 1 and

SV = 1, and sets of beats of this sort frequently extend further back in time than

the most recent thousand heart beats.

When tested, the sequentially trained network uses the probability distribution

learned from beats 0 through t to calculate its (t + 1)st estimates. After updating its

probability distributions based on information from beat t, the network receives HR

and BP information from beat t + 1 and uses this information to estimate the CO,

SV, and TPR associated with the (t + 1)st beat. Since the network uses information

from beat t to predict information about beat t + 1, these estimates are called single

beat predictions. To compute error rates, we again compare the binned single beat-

predictions with the binned actual values.

Sequential Memory Size Variation

To test the effects of finite memory size on the Bayesian Network's estimation ac-

curacy, I sequentially trained the Bayesian Network model four times using finite

memory lengths of 100, 1000, 5000, and 8000 heart beats. These memory lengths

approximately correspond to time intervals of one minute, ten minutes, fifty-five min-
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utes, and an hour and a half, respectively. Each time, the network was first reini-

tialized and then sequentially trained and tested using the Patient 11007 data. The

results are shown in Figure 4-8.

With a memory size of 100 beats, the estimates become noisy. They tend to

spike to new values whenever the HR or BP presented to the network changes. As

the memory size increases, this type of behavior occurs less frequently. Spikes occur

when one of the node distributions returns to its initial uniform distribution value.

This situation is described in more detail in Section 5.2.1.

If the data remains within the same set of quantization bins for long enough, the

estimates settle to the appropriate quantized values. This makes intuitive sense, be-

cause the probability distributions can only distinguish between this set of quantized

values. When the MMSE estimate takes an unquantized value, it indicates that more

than one quantization bin has been assigned a non-negligible probability. When a

large percentage of the memory window contains identical data points, however, the

Bayesian Network assigns a high probability to the corresponding quantization bins,

causing the MMSE estimates to approach quantized values. When the memory size

is small, the MMSE estimates move quickly from one quantized value to another, but

as the memory size grows larger, the estimates take unquantized values for longer.

For memory sizes of 5000 and 8000 points, this type of behavior enables the network

to accurately track intermediate values when the data fluctuates between different

quantization bins. This type of estimation can be seen in the SV plots of Figure 4-8c

and Figure 4-8d at minute 1000. Here, the quantized SV fluctuates between values,

but the MMSE estimate closely approximates the actual SV waveform.

As the memory size increases, the estimates respond more slowly to abrupt changes

in the patient data. Just after minute 1200, as seen in Figure 4-6, SV increases

abruptly without a corresponding change in HR or BP. Because they move quickly

from one quantized value to another, the networks with memory sizes of 100 and 1000

respond quickly to this abrupt change, but the other networks take longer to respond.

The sudden increase in SV at minute 1200 shows how the network responds to

changes in the estimated variables that are not accompanied by changes in HR or
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Figure 4-8: Estimates when the Bayesian Network is sequentially trained with various
finite memory sizes and tested on the Patient 11007 data. In a, b, c, and d, the
memory sizes are 100, 1000, 5000, and 8000 beats, respectively.
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Memory Size 100 1000 5000 8000
Resistance 0.21% 0.30% 0.29% 0.26%

Cardiac

Output 1.96% 8.32% 18.00% 21.04%
Stroke

Volume 1.53% 5.34% 12.55% 13.10%

Table 4.3: Absolute error rates for the MMSE estimates when the network is sequen-
tially trained on Patient 11007 data using finite memory sizes of 100, 1000, 5000, and
8000 beats.

BP, the variables available to the network during estimation. Without some type

of indication from either HR or BP that something is changing, the network cannot

predict a sudden change in SV. Thus, the network adapts to the change in SV in a

delayed fashion as the network updates its probability distributions based upon the

new SV data. Because of the change in SV after minute 1200, the network successfully

tracks a slight increase in the CO waveform, even though the quantized CO, HR, BP,

and TPR values do not change. Here, the network relies on the changing probabilistic

information about SV to change the CO estimate.

Within the Patient 11007 data set, changes in SV and CO often occur without

corresponding changes in BP and HR. Thus for this data set, the network frequently

relies on information that the probability distributions extract from recent SV and

CO trends to estimate future CO and SV values.

Table 4.3 shows the absolute error rates obtained by quantizing the MMSE esti-

mates and comparing the quantized estimates to the quantized waveform. The abso-

lute error rates measure the number of times the quantized waveforms do not equal

the quantized estimates, divided by the total number of samples in the waveform.

The error rates in Table 4.3 are expressed as percentages.

The error rates obtained using sequential learning are better than those obtained

using the simulated data analyzed in Section 4.2.5. Thus, according to this metric,

the sequentially trained networks perform better than anticipated.

Table 4.3 shows that the absolute error rates increase as the memory sizes increase.

This reflects the fact that the estimates move quickly from one quantized value to
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Figure 4-9: Comparison of the actual non-median filtered Patient 6696 waveforms
with the MMSE estimated waveforms obtained by first sequentially training the
Bayesian Network on the Gold Standard Data and then sequentially training and
testing the network on Patient 6696 data with a history size of 1000 data points.

the next when the memory size is small. Since this type of behavior is not necessarily

desirable, comparing quantized estimates to the quantized waveform does not prove

to be a satisfactory means of evaluating network performance. This issue is addressed

in the Section 4.3.4.

Robustness to Noise

To test how the network, training, and inference algorithms would respond to noise,

I tested a sequentially trained network with a memory size of 1000 points using a

non-median filtered version of data from Patient 6696, another ICU patient. Overall,

the network performed much better without noise, but the MMSE estimates pro-

vided some robustness against noise. As seen in Figure 4-9, which compares the

actual TPR, CO, and BP waveforms with the MMSE estimates obtained using the

sequentially trained network, the MMSE estimates frequently produce a trend that
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follows the actual CO, TPR, and SV waveforms. The MAP estimates, which are not

pictured, perform far worse because they can only take quantized values. When the

noise extends across quantization boundaries, the MAP estimates flip back and forth

between adjacent quantized values, creating noisy estimated trends, while the MMSE

estimates frequently produces a less noisy version that balances the two quantized

extremes. When the noise lasts for a short period of time, a period less than a window

length, the estimates appear to dampen the noise slightly.

4.3.4 Multiple Beat Prediction using Sequential Training

In Section 4.3.3, we performed single beat predictions, which used the probability

distributions obtained by sequentially training on first t time steps to predict patient

parameters at time step t + 1. In a hospital setting, however, it seems likely that the

network would need to use its current probability distributions to estimate patient

parameters five to ten minutes in the future. Thus, this section explores the network's

ability to use probability distributions obtained by sequentially training on first t

time steps to estimate CO, TPR, and SV at time step t + n, given the HR and BP

measurements at time step t + n. Since the network uses distributions from beat t to

predict information about beat t + n, these estimates are called n-beat predictions.

Previously, we quantitatively evaluated network performance by comparing quan-

tized estimates to quantized versions of the actual waveforms. As mentioned in Sec-

tion 4.3.3, this type of metric favors estimates that move quickly from one quantized

value to another. As a better metric of network performance, we can compare the

network's estimates to estimates obtained using a naive approach that requires min-

imal computation. In this section, we evaluate networks using such a metric. In this

case, we use the last available observation as the naive estimate. In other words, we

use the CO, TPR, and SV observation from time step t as the naive estimates for time

step t + n when performing n-step prediction. We then compare this naive estimate

this the n-step estimate produced by the Bayesian Network and note the percent of

the time that the Bayesian Network estimate is closer to the actual waveform than

the naive estimate. In other words, we evaluate how frequently the Bayesian Network
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Finite Memory Size Prediction Gap Size Mean Frequency with which Network
(beats) Outperformed Naive Approach (%)

1000 1 0.1
1000 416 20.4
1000 831 27.6
5000 416 22.3
5000 831 30.9
5000 1661 38.2
8000 416 23.2
8000 831 31.2
8000 1661 36.9

Table 4.4: Average percent of the time that the Bayesian Network estimates were
more accurate than the naive estimates for CO and SV.

produces more accurate estimates than the naive approach.

To test the network's ability to perform n-beat predictions, I first calculated single-

beat, 416-beat (five minute), and 831-beat (ten minute) predictions using Bayesian

Networks that were sequentially trained using finite memory sizes of 1000 beats. I

then computed 416-beat (five minute), 831-beat (ten minute), and 1661-beat (twenty

minute) predictions using sequentially trained Bayesian Networks with 5000 and 8000-

beat finite memories. Each time, the network was first reinitialized and then sequen-

tially trained and tested using the Patient 11007 data. The estimates were then

compared with estimated obtained using the naive approach mentioned above.

Since TPR remains essentially constant, the naive approach estimates for TPR

were extremely accurate throughout all trials. On average, the Bayesian Network

produced a superior estimate only 7.3% of the time. Because the trends for CO and

SV contain similar transients, the network estimated these variables with similar levels

of accuracy. Taking the performance rate as the percent of the time that the MMSE

estimates were closer to the actual waveforms than naive estimates, the performance

rates for CO and SV were extremely similar. Due to their similarity, these rates

were averaged to obtain a mean performance rate for each trial. The mean CO-SV

performance rates are shown in Table 4.4.

In the single-beat case, the naive approach produced more accurate estimates
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Figure 4-10: 1661-beat MMSE and naive estimates obtained when the network is
trained using a sequential memory size of 5000 beats. The bottom two plots show
the HR and BP evidence presented to the network during training and inference.

nearly one hundred percent of the time. In general, the naive approach outperformed

the Bayesian Network approach, but as the number of prediction beats increased, the

network performance improved. When the time gap was small, the naive approach

performed quite well because the data had not had very much time to change. As

the prediction gap became larger, however, the last observed data point was more

likely to significantly differ from the current actual value. Thus, as the prediction

gap increased, the naive took longer to adapt to changes in the patient data. As the

prediction gap increased, the Bayesian Network also took longer to adapt to changes

in patient data, but its adaption delays grew more slowly than those associated with

the naive approach. The naive approach delays always grew linearly with n, while the

Bayesian Network delays sometimes became shorter. Specifically, when the network

relied on previously stored information to perform its prediction, its time delays did

not grow as quickly.
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Figure 4-10 shows results from the trial in which the MMSE estimates exhibited

the best performance. During this trial, the network was sequential trained using

a memory size of 5000 beats and produced 1661-beat (20 minute) predictions. The

MMSE estimates produced using 1661-beat prediction are qualitatively similar to

those produced using smaller prediction gaps. The majority of the improvement

in relative Bayesian Network performance as the prediction gap increased is due to

degraded naive approach accuracy.

4.3.5 Combinational Learning

Previously, we displayed results obtained when a sequentially trained network was

used to estimate values of CO, SV, and TPR that occurred twenty minutes after the

final training data point occurred. In this case, the network probability distributions

were trained using only data from the current patient. If the network had access to

information from other patients, perhaps this additional knowledge would help the

network produce better estimates. This type of approach, which we call combina-

tional learning, creates a network with a probability distribution that relies on both

persistent and transient memories (see Section 3.3).

Combinational learning is accomplished by first batch training the network on

previously available data, and then sequentially training and testing the network on

incoming patient data. In this section, we first batch trained the Bayesian Network

model using the Gold Standard Data. We then sequentially trained and tested the

network on the Patient 11007 data using a finite memory size of 5000 beats. This

created a persistent memory containing information from the 1351 beats of the Gold

Standard Data set and a transient memory containing data from 5000 beats of recent

Patient 11007 history. Due to the relative memory sizes, the incoming patient data

was weighted more heavily.

The results shown in Figure 4-11 reveal that batch training the network before

performing sequential training caused the network performance to degrade. Com-

paring these results with those seen in Figure 4-10, the network produced better

estimates of CO and SV when it relied only on current patient data. Comparing
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Figure 4-11: 1661-beat MMSE and naive estimates obtained when the network is first
batch trained on the Gold Standard Data and then sequentially trained on the Patient
11007 data using a finite memory size of 5000 beats. The bottom two plots show the
HR and BP evidence presented to the network during training and inference.

the Gold Standard Data with the Patient 11007 data, this is not surprising because

the Patient 11007 does not behave in a manner consistent with the Gold Standard

Data set. Specifically, Gold Standard Data CO and SV values typically remained

low, while those in the Patient 11007 trends took higher values.

Due to the batch training, the network's ability to estimate TPR improved some-

what arbitrarily. Essentially, the Gold Standard Data added some variability to the

TPR distribution so that the TPR estimate did not equal a quantized value as fre-

quently. This enabled it to come closer to the actual TPR value more often than it

did when the network was only sequentially trained.

Although using information from other patients did not improve estimation capa-

bilities in this example, using data from additional patients probably would help in

other instances. Specifically, previous patient information would probably improve

estimates if previous patients shared response characteristics with the current patient.
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Chapter 5

Discussion and Future Work

5.1 Discussion

The Bayesian Network can successfully track TPR, CO, and SV by sequentially learn-

ing from patient data. The network creates estimates that fall within the same quan-

tization range as the actual waveforms eighty to one hundred percent of the time.

Despite this capability, the naive approach of taking the most recently observed point

as the current estimate outperforms the Bayesian Network approach sixty-three to

eighty percent of the time when there is a gap between training and estimation and

nearly one hundred percent of the time when there is no gap. Since the naive ap-

proach performs well when the data is stationary, but performs poorly when the data

changes abruptly, future work must enhance the Bayesian Network's ability to predict

abrupt changes in patient state and to predict how an abrupt change in one variable

will affect the other variables' values. Overall, the Bayesian Network's strengths lie

in its ability to consider all network variables at once and learn probabilistic relation-

ships between variables. This ability to synthesize information must be exploited to

enhance future performance.
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5.2 Future Work

This section discusses future research directions, exploring possible ways to improve

the network's performance and enhance its abilities to detect and respond to patient

data.

5.2.1 Further Analysis of the Current Network Model and

Algorithms

In this subsection, I outline unresolved issues encountered while working with the

current Bayesian Network model. I discuss algorithmic improvements and suggest

ways to enhance our understanding of how our network model responds to real patient

data.

Sequential Algorithm Revision

As explained in Section 3.3, the sequential learning algorithm with an n-point mem-

ory size uses information from both initial probability distributions and recent patient

history to set the current probability distributions. The algorithm sets the current

distribution probabilities based on normalized histograms of the n most recent points

relevant to the probability distributions of interest plus the relevant initial Dirich-

let counts. During the trials examined in this section, the probability distributions

were initialized using small uniform Dirichlet counts whose influence quickly becomes

overwhelmed by the incoming data. Under certain conditions, however, the initial

Dirichlet counts become significant.

As shown in Figure 4-8a, changes in the quantized BP or HR values sometimes

cause momentary noise in the estimated CO, SV, and TPR waveforms. Essentially,

changes in the random variables presented as evidence to the network can abruptly

change the estimated values obtained via Bayesian inference. This type of noise

occurs more frequently when the window size is small, but also occurs when the

data used to train the network remains constant for long periods of time. This

behavior seems to emerge when the data remains constant for a long time relative to
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the size of the sequential algorithm's sliding memory window. When the network is

initialized differently, the shapes of the noise spikes change, indicating that the noise

spikes coincide with times when the network relies heavily on initial distributions

to compute its estimates. This occurs when the histograms computed from recent

patient history contain no information about a particular combination of HR-BP-SV-

CO-TPR values.

Further analysis reveals several problems with the current algorithm. First, the

learning algorithm does not maintain an equivalent sample size. To see this, note that

the HR, SV, and TPR probability distributions depend on the n most recent data

points. CO and BP, however, have twenty-five conditional probability distributions,

one conditional distribution per set of parent-node values, and each conditional dis-

tribution depends on the most recent n data points that co-occur with the correct set

of parent-node values. This means that the HR, SV, and TPR distributions depend

on n data points, while the CO and BP distributions depend on 25 x n data points.

Since the conditional node distributions do not all depend on the same number of

points, the a posteriori distributions calculated using the network may have undesir-

able characteristics. Future work should address this issue by analyzing the effects

of the non-equivalent sample sizes and if necessary, developing a sequential learning

scheme that maintains an equivalent sample size.

In addition to drawing probability distributions from a non-equivalent sample

size, the current algorithm allows the probability distributions to become completely

overrun by stationary data. If for instance, HR falls into quantization bin number 3 so

that HRb = 3 for more than n successive points, the algorithm changes the heart rate

PMF to a distribution where the probability assigned to HRb = 3 is close to one and

the other probabilities are close to zero. Thus, the PMF learns that HR almost always

takes the same value, which is not true in general. This problem could be partially

addressed through combinational learning, i.e., by batch training the network on

relevant data before beginning the sequential training. Then, the network would have

persistent memory that would significantly affect the sequentially learned portion of

the distributions. In effect, the batch training would provide persistent memory of
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long-term HR variability, while sequential training would increase the probability

assigned to recently observed values. This would hopefully keep the network from

memorizing stationary data. To address this problem in another way, one could

create an algorithm that would not learn from constant patient data for more than a

specified period of time. Such an algorithm would be more selective when choosing the

patient data points used to set the probability distributions, so that the probability

distributions do not simply learn constant patient values. Then when the patient data

does change, the network will retain memory of other past value combinations so that

the network will not have to relearn old data. This type of approach is discussed in

[15], where the Bayesian Network probability distributions are updated using a table

of values carefully selected from the incoming data. Since not all incoming data was

added to the table, the probability distributions did not simply memorize current

data values.

Experimentation with Model Parameters

Further analysis should be done to determine how the number of quantization levels

assigned to node variables affects the Bayesian Network's performance. Changing the

valid quantized values as well as incorporating non-uniform quantization ranges could

affect network performance as well. Adding additional quantization levels might allow

for more accurate estimates, but might also make it difficult to obtain enough data

to confidently set all of the probability distribution parameters.

More work should be done to determine how different combinations of batch and

sequential learning affect the network's prediction capabilities. By using combina-

tional learning, or different combinations of batch and sequential learning, one can

vary the size and relative influence of data stored in persistent and transient mem-

ories. Varying the memory sizes both together and relative to one another should

vary how quickly the network adapts to new information and how much it relies on

general population statistics. It would be useful to explore how these memory size

relationships affect network performance.

In addition to varying memory sizes, training data can be weighted based on its
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apparent relevance. During sequential learning, one could add exponentially decay-

ing weights to the incoming data so that recent data is weighted more heavily than

the distant past. As in [1], the persistent memory and transient memory could be

assigned weights that vary based on the current data trends. Perhaps in steady state,

the transient memory containing recent patient history could be weighted more heav-

ily, while the persistent memory containing variability information could be weighted

more heavily when the patient data changes abruptly. In the future, one could ex-

plore whether methodologies of this type would enhance our Bayesian Network's

performance.

Explicitly Modeling Inter-patient Dependencies

Berzuini et al. [1] explicitly define a probabilistic model that describes how patient

parameters depend on other variables. They assume that each set of patient param-

eters is drawn from the same distribution when patients behave in a similar manner.

When patients appear to fall into different classes, each class of patients has its own

patient parameter distribution. Patients within a given class are assumed to draw

their parameters from the same distribution. The parameter model presented in [1]

explicitly delineates how patient parameters relate to patient observations as well.

Designing a model that describes how we believe the current patient parameters re-

late to observed data and to other patient parameters would help guide our algorithm

design. Explicitly modeling how patient parameters change with time would guide

future work as well.

Probability Distribution Analysis

To gain additional insight into how the probability distributions adapt to current

patient data, it would be useful to examine how the network probability distribu-

tions change with time in response to the training data. It would also be useful to

analyze how significantly each conditional node distribution affects the a posteriori

distributions and estimation outputs.
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Reevaluation of Estimation Goals

Further thought must be put into determining exactly what we would like the network

to learn and predict. It appears that when patient variable values remain constant, the

naive approach of using the most recently observed value as the next estimate works

extremely well. On the other hand, when the patient data changes abruptly, the naive

approach obviously fails. In addition, as the network learns from stationary data,

it forgets information about value variability, but does not necessarily outperform

the naive approach due to the quantized nature of the network. A superior scheme

might use the naive approach when patient data remains stationary and use the

network to predict new values when the patient data does change abruptly. An

alternative scheme might use two networks of varying resolutions, one low-resolution

network to predict responses to abrupt patient changes and another high-resolution

network to perform estimation when the patient data remains stationary. In such a

scheme, quantization levels within the low-resolution network could cover the entire

dynamic range of interest, while high-resolution quantization levels would cover only

a small dynamic range containing the stationary patient data observed most recently.

Regardless, explicitly stating which type of network performance we desire would help

direct future work.

5.2.2 Real Patient Data

As seen in Figure 4-7, information contained in certain patient data training sets may

be irrelevant to the patient of interest. Thus, when creating persistent memory within

the Bayesian Network model, one must ensure that the data used is relevant to the

current patient. Thus, it seems desirable to have several different patient databases

to chose from when initializing the persistent memory, perhaps one database for each

type of common cardiovascular disorder. A specific database would then correspond

to a particular disorder and would contain data from patients who shared a similar

medical history. Then, if the current patient was diagnosed with disorder A, the

Bayesian Network's probability distributions could be initialized using data from other

74



patients with the same disorder. Similarly, this approach would keep distributions

from being contaminated by data from patients with very different medical histories.

If enough patient data can be gathered it would be useful to determine whether this

type of approach would yield more accurate Bayesian estimates.

Learning with Missing Data

The current algorithms assume complete training data sets. This means that each

training data point presented to the network contains values for all of the node vari-

ables. When performing sequential learning in a real patient setting, however, com-

plete data sets will not always be available. The EM algorithm, presented in [9],

performs Bayesian learning when portions of the training data set are missing. Cur-

rently, the sequential algorithm cannot learn from an incomplete data set, so this

algorithm should be extended to include the EM capabilities.

5.2.3 Expansion of the Current Model

Dynamic Bayesian Models

While the current network model can adapt to changes in patient data, it cannot

learn time dependencies within patient data trends. Thus, it can sense the current

HR value, but it cannot identify whether HR is increasing, decreasing, or remaining

constant. Dynamic Bayesian Networks, however, learn from both current variable val-

ues and from the relationships between variable values adjacent in time. A Dynamic

Bayesian Network expansion might provide more accurate estimates when the data

changes abruptly since Dynamic Bayesian Networks store information about how the

node variables respond to increasing or decreasing patient parameters.

Adding Additional Network Nodes

By adding new network nodes, the Bayesian Network model could be expanded to

incorporate information about medications, lab reports, nurses notes, diagnoses, and

medical treatments. Including such information could help the network better pre-
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dict changes in patient state. Incorporating these additional nodes into a Dynamic

Bayesian Network structure might also allow the network to take into account treat-

ment administration time delays. Through intelligent network design, this additional

information might help the network more accurately predict abrupt changes in patient

state and produce more accurate estimates of patient parameters.

When adding new network nodes, structural learning algorithms [10] can be used

to learn underlying probabilistic dependencies from the data. This approach ensures

that the probabilistic dependencies implied by the network are present in the patient

data used to create the network structure, giving the network structure an additional

degree of credibility. The structural algorithms also set the probability parameters

based on the patient training data, ensuring that the probability distributions can be

learned from patient data as well.

5.3 Conclusion

While the Bayesian Network model shows promise, much remains to be done to

enhance its performance. Chiefly, further thought must be put into the learning al-

gorithms' design and intent. In addition, the network must learn to respond more

robustly to abrupt changes in patient data, through the use of better training data

sets, Dynamic Bayesian models, improved training algorithms, expanded Bayesian

Network designs, or some combination there of. Future work should explore whether

changes like those discussed within this chapter would in fact enhance network per-

formance.
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Appendix A

Alternate Bayesian Network Model

which Incorporates Treatment

Information

Initially, we hoped to use a Bayesian Network model to capture the effects of med-

ication and fluid levels on vital signs and internal patient parameters. We wanted

to develop a way of incorporating treatment information into a Windkessel model

by using estimates obtained from the Bayesian Network to set Windkessel model

parameters.

With the help of medical experts, I developed the Bayesian Network model pic-

tured in Figure A-1, where Levophed is a medication, HR denotes heart rate, Net

Volume Inflow denotes the net change in the total blood volume, BP is mean arterial

blood pressure, CO is cardiac output, and TPR is total peripheral resistance.

I then used the patient data pictured in Figure A-2 to initialize the network

parameters. For test purposes, I allowed each random variable to take three values:

low, mid-range, and high. I then discretized the patient data based on the thresholds

indicated in Figure A-2.

After using this data to set the parameter values, I arrived at the conditional prob-

ability mass functions partially pictured in Figure A-3. I then performed inference

on the network by giving the network different values for Levophed and Net Volume
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Figure A-1: A simple model of the cardiovascular system
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Figure A-2: Patient data used to initialize the network parameters
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Figure A-3: Conditional PMF from a trained network: Conditional PMF of BP given

TPR and CO

Inflow and computing the marginal distributions for blood pressure. The resulting

marginal distributions are pictured in Figure A-4.

Although the distributions pictured in Figures A-3 and A-4 are plausible, overall

the distributions were not. Specifically, Levophed, a peripheral vasoconstrictor, is

supposed to constrict veins and arteries, and thus increase TPR. Looking at the

training data in Figure A-2, TPR reaches its peak value when the patient is no longer

receiving Levophed. This discrepancy caused the network to learn counterintuitive

probability distributions.

In the real patient database available to us, the medication administration times

are only accurate to within a twenty or thirty minute window. When the other

available information fluctuates on a much faster time scale, this level of temporal

accuracy is not acceptable. While the Bayesian Network in Figure A-1 may yield

useful results when initialized correctly, we would need to obtain a much larger, more

comprehensive data set with accurate medication administration times to test the

validity and estimation capabilities of this model.
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Figure A-4: Network results
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Appendix B

Simulation Parameters and

Bayesian Network Quantization

Values

Parameter Value in pulsatile model
R, 0.01 mmHg/(ml/s)
R2 0.03 mmHg/(ml/s)
R3 1 mmHg/(ml/s)
Ca 2 mmHg/ml

Cv 100 mmHg/ml
Qv 0 ml/s
Ci 300 ml/s
Ri 1 mmHg/(ml/s)
Ed 0.1 ml/mmHg
Es 2.5 ml/mmHg
Va(0) 91.2281 mm Hg

Vv(0) 15.0337 mm Hg
Qh(O) 127.383 mm Hg
T 1s

Table B.1: Nominal parameters used to create the simulated data.
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Bin Quantized Value for
Number TPR I SV I HR I CO I BP

1 0.5 25 25 2 30
2 1.5 75 75 6 90
3 2.5 125 125 10 150
4 3.5 175 175 14 210
5 4.5 225 225 18 270

Table B.2: Bin numbers and corresponding quantization values used when training
the Bayesian Network on simulated patient data.

Bin Quantized Value for
Number TPR SV HR CO JBP

1 0.3 25 38 1.5 42
2 0.9 75 74 4.5 66
3 1.5 125 110 7.5 90
4 2.1 175 146 10.5 114
5 2.7 225 182 13.5 138

Table B.3: Bin numbers and corresponding quantization values used when training
the Bayesian Network on real patient data.
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