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ABSTRACT

There is a great need in the fields of biology, medicine, and pharmaceuticals to create high-
throughput devices for the detection of specific cell states in a heterogeneous mixture of cells.
The desire is to differentiate among diseased and healthy cells, cell age, and cell type with the
minimum amount of sample pretreatment. This project addresses this need by developing
microfluidic devices that exploit the adhesion differences between cell states and cell types to
rapidly count cells of different types without the need for labels. There are two avenues in which
to explore cell adhesion differences with these devices, the first is a net electrostatic change at
the surface of the cell wall and the second is the presence of specific cell-membrane adhesion
proteins. It is hypothesized that the forced interaction of the cell wall with the microfabricated
microcapillary walls would result in a differential velocity based on cell type that could be
detected simply using a microscope and video camera or an interferometer. The eventual
integration of cell velocity detection would result in a portable all-inclusive lab-on-a-chip system
that could be used in the field for detecting the presence of diseases, such as malaria and cancer
as well as in a lab setting for drug discovery.

Thesis Supervisor: Scott Manalis
Title: Associate Professor of Biological Engineering
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Introduction

The unique control of the same genome in a complex multicellular organism produces a wide

range of cell types. These cell types are distinguished from each other based on their function in

the body, but from an extracellular view, are differentiated based on subtle differences in protein

production, secretory as well as membrane-bound, and mechanical response. The presence of a

parasite, virus, or genetic disease enhances these differences further. In the case of a virus or

parasite, additional genomic information has been introduced to the cell and therefore results in

the production of foreign membrane and secretory proteins. Genetic diseases or cancer can

result in the production of proteins that are normally "off' or the over- or under- production of

normally "on" genes. These shifts in gene production can result in many phenotypic changes,

including the increase or decrease of cellular adhesion and cell stiffness.

Some of these extracellular queues have been utilized in biological assays to detect the presence

of disease. For example, detection of prostate specific antigen in human serum is used to

diagnose the presence of prostate cancer. However, visual inspection of cell biopsies and blood

is the most common technique used to detect the presence of most cancers and diseases. For

example, staining and visual inspection of blood smears is the gold standard method of malaria

diagnosis (Gascoyne P. et al. 2002), despite the fact that the most deadly form of malaria affects

third-world countries in Africa that don't have the money or infrastructure to support wide-

spread testing in this manner (WHO 2006). The need to improve testing availability, reliability

and cost-effectiveness for disease diagnosis is the driving force for lab-on-a-chip diagnostics.

The long-term vision for these systems is a stand-alone, disposable, and inexpensive devices that



can reliably diagnose the presence of disease at the point-of-care from a very small biological

sample.

This project aimed to develop lab-on-a-chip technology that utilizes the naturally occurring

extracellular clues of adhesion differences to detect the presence of diseased cells in a biological

sample via a high-throughput method of cell counting. The immediate goal of this project is to

develop a device for the detection of malaria given the acute need for such a device. However,

the device could be applied to other diseases, like sickle cell anemia and cancer, and to other

applications like distinguishing cell types, including the detection of stem cells, as well as

monitoring the effect of drugs. Additionally, these devices could be used to explore basic

biological adhesion interactions in a fluidic environment and in a high-throughput manner.

It is hypothesized that the device presented in this document will achieve the project aims by

inducing a detectable cell velocity difference in a microcapillary based on adhesion properties,

either general electrostatic changes in the diseased state, or the presence of specific adhesion

proteins. The devices microfabricated in this project can be applied to both of the former cases,

where utilizing it purely electrostatically would allow for the easy application of it to many

different cell types and disease states. However, the device modeling and cellular interaction is

unknown, making this a riskier option. This document will first discuss the background work

that has been done leading to the development of this device with regards to both the electrostatic

device and the adhesion protein device. Next, it will discuss the design requirements considered

during fabrication and the fabrication steps. Finally, it will discuss specific device theory,

modeling, and testing as applied to both devices individually.



Background

Plasmodium Falciparum

One million of the 300 million cases of acute malaria are fatal, and 90% of these deaths occur in

Africa, where the deadliest malaria parasite, Plasmodium falciparum, thrives (WHO 2006).

Parasitized red blood cells (PRBC) go through a characteristic lifecycle following P. falciparum

infection. In the first stage, ring stage, there is a visible lesion resulting from the invasion of the

merozoite (Nagao E. 2000). Following the ring stage comes the early trophozite state, late

trophozite stage, and finally schizont stage. The PRBC finally burst following schizont stage,

releasing daughter merozoites, which go on to infect more red blood cells and again the cycle is

repeated. In trophozite and schizont stages, characteristic protrusions (knobs) form and increase

in number with the advancement of infection (Gruenberg J. 1983; Nagao E. 2000), see Figure 1.

These knobs are electron-dense and the site of membrane-bound adhesion proteins that are

responsible for cytoadherence, which is believed to be the cause of severe clinical symptoms of

malaria (Gruenberg J. 1983; Cooke B. M. 2000). The presence of these adhesion proteins results

in an increased adherence of PRBC to other PRBC (autoagglutination), to healthy RBC

(rosetting) and to endothelial cells. These adhesive interactions are believed to contribute to the

blockage of microvasculature and therefore the high mortality rate of Falciparum malaria (Cooke

B. M. 2000).



Figure 1: Comparison of a healthy red blood cell, a red blood cell in trophozite stage, and a red blood cell in

schizont stage (from left to right). Protrusions density increases with stage of infection. SEM images taken

from (Gruenberg J. 1983).

Current Methods of Diagnosing Malaria

Cell Staining - gold standard

Cell smears and subsequent staining using Romanowsky stains are still considered the gold

standard for detecting malaria in blood samples. According to (Kakkilaya 2006), an experienced

technician can detect as few as 5 parasites/uL in a thick film, where thick films are prepared only

for the detection of malaria. However, thin films are prepared in order to detect the type of

malaria, in which case an experienced technician can only detect 200 parasites/uL, but can tell

between the many forms of Plasmodium parasites. Staining is subject to inaccuracy due to

mispractice of the staining technique, for example pH differences of the solution or waiting too

long between sample collection and slide preparation. In addition to human error during

preparation, cell staining could give a false response if there are too few PRBC circulating in the

blood due to their sequestration in microvasculature or prior treatment with anti-malarial drugs

(Kakkilaya 2006).



From thin smear stains, the percentage of infected red blood cells is determined by counting all

the red blood cells on the slide and the number of infected cells. Finding the percentage of

infected cells is important for ascertaining the severity of the infection. The speciation of

infection is determined based on variations in the appearance of infected red blood cells when

stained.

A second staining method that has been developed is the quantitative buffy coat test (QBC). This

method involves the centrifugation of a blood sample in a cylindrical float and therefore

separation of blood components based on densities. The red blood cell portion is then stained

with an acridine orange stain, which is taken up by parasite DNA. The advantage of the QBC

test over traditional cell smears is it takes only 15-30minutes to arrive at a result versus 60-

120minutes (Kakkilaya 2006). However, the technique is a lot more costly due to the required

materials and equipment. Smear tests only cost $0.20-$0.40 per test to perform (Kakkilaya

2006), but of course are limited to areas with the infrastructure to support such testing.

Rapid Malaria Tests (RBT's)

Inexpensive testing methods for malaria that can be done in the field by inexperienced personnel

are desirable considering the conditions where malaria persists. One avenue that has experienced

growth in this area is in the detection of secreted proteins by the malarial parasite in the blood.

These testing kits have achieved low cost, $1.20-$13.50 per test (Kakkilaya 2006) but have not

yet been approved by the Food and Drug Administration for use in diagnosing malaria. This

method of testing still faces many problems with incorrect results due to cross-reactions,

difficulty reading the results by untrained individuals, and sensitivity. RBT's are currently much



less sensitive then microscope assays, 100parasites/uL versus 5parasites/uL for the smear

studies. Also, RBT's are not capable of determining therapeutic effectiveness since antigens

continue to circulate in the body even after effective treatment (Kakkilaya 2006).

Device Motivation

Electrostatic Adhesion Differences PRBC

The presence of the protein and electron dense knobs on the surface of PRBC means that there is

possibly a net surface charge difference between healthy RBC and PRBC. Since the density of

these protrusions increases with infection stage, it's possible that the surface charge also changes

with infection stage. A microcapillary device was built, whose wall charge is controlled with a

gate voltage applied to a conductor separated from the solution by an insulator, Figure 2a. The

applied voltage, Vg, can control the sign and density of wall charge. The hypotheses to be tested

is that complementary wall charges of the device and the parasitized red blood cells will oppose

the fluidic forces and slow the PRBC. Healthy RBCs, that have a different wall charge, will be

affected to a lesser extent and therefore can be differentiated from PRBCS based on their higher

passage velocity. The channel dimensions of the device must be small enough to ensure direct

interaction between the cell membrane and the capillary wall. Microfabrication is capable of

making such channels (on the order of 2pm).
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Figure 2: a) Cross-section of proposed microfluidic FET device (not drawn to scale). Controllable wall

charge of device allows for optimal interaction between device walls and cell wall of parasitically infected

RBC. b) Picture of proposed microcapillary device, whose walls are functionalized with a receptor protein.

Interactions between the cell membrane proteins and the wall receptors result in a velocity decrease of

diseased cells.

Electrophoresis

Electrophoresis has long been used to explore the differences in the electrical characteristics of

cell membranes. Over the years various modes of electrophoresis have been developed, for

example free flow electrophoresis and capillary electrophoresis (Mehrishi J. N. et al. 2002) for

both observation of electrical characteristics and separation of cell types based on differing

electrophoretic mobilities (EPM). It is the information from these studies that indicates a device

that utilizes cell surface charge for detection could be successful.

Cell electrophoresis suffers from a few serious drawbacks: electroosmotic flow, heating,

electrolysis and long separation times. Electroosmotic flow is induced in the system when

charged walls are present in the device, which is true for most experiments since untreated glass

m



capillaries are negatively charged at physiological pH. The two major avenues for treating

electroosmotic flow in microcapillary experiments is to either measure the flow velocity due to

EOF alone and remove it from the calculation of the EPM (Omasu F. et al. 2005) or to oppose

EOF by neutralizing the wall charge (Ichiki T. et al. 2002). Heating and electrolysis are both a

function of the large voltages required to perform electrophoresis. Electrolysis poses significant

problems by creating bubbles and producing pH gradients in the channel (Minerick A. R. et al.

2002). The pH gradients not only produce variable electrosomotic flow patterns throughout the

channel, but affect the electrophoretic mobility of the cell as well. Separation times for cells can

be on the order of hours, which is not only undesireable from a convenience viewpoint, but also

means temperature stabilization is required for cell viability. One solution for this is to only

capture EPM data for a few cells (Slivinsky G. G. et al. 1997) which, reduces the statistical

significance of the data, especially if the researcher is not aware of cell heterogeneity in the

sample.

The wealth of information from electrophoresis experiments does indicate the possibility of

using the proposed voltage controlled device for a number of different cellular applications. For

example, human T-cells have an EPM that is more than 30% greater than B-cells (Slivinsky G.

G. et al. 1997). For the case of diseased cells, malignant human epithelium cells have an EPM

that is 13% greater than healthy epithelium cells (Slivinsky G. G. et al. 1997). Also, in

pigmented hamster melanoma cells, it's been indicated that state of metastacticity is dependent

on differential cellular EPM (Hyrc et al. 1993). The change in wall charge of P. Falciparum

infected erythrocytes does not appear to have been studied previously.



Specific Protein Adhesions

Although the surface charge of PRBC is unknown currently, the adhesion proteins responsible

for cytoadhesion have been studied. The devices voltage controlled microcapillaries developed

above can simply be used as microcapillaries for this implementation. In this second

methodology, the capillary walls can be functionalized with adhesion receptors and their

interaction with adhesion proteins on the cell will impede passage through the device, see Figure

2b. The application of pressure-driven flow will ideally prevent total cell arrest in the channel.

Since the adhesion proteins are specific to the disease state of the cell, it is expected the velocity

of healthy RBC will be unaffected and that the effect on velocity will increase with infection

stage given the increase in knob density, and therefore, adhesion protein density. Figure 3 shows

the proposed adhesive interactions that occur between PRBC and endothelial cells of the

vasculature and other RBC (Cooke B. M. 2000). The PRBC image shows the parasite proteins,

KAHRP and PfEMP3, which are responsible for knob formation as well as the surface proteins

responsible for adhesion. The broken arrows indicate interactions that are not entirely proven,

whereas unbroken arrows indicate those interactions that have been well supported (Cooke,

2000). Therefore, this project could utilize CSA, ICAM-1, HS, CD36, PECAM-1, or TSP as

capture proteins on the wall surface. Since increases in adhesion of PRBC are indicated to be the

cause of the severity of malaria infections, drugs developed to interrupt this adhesion process

would greatly reduce the severity of the infection. Therefore, this device is ideal for not only

detecting the presence of infected erythrocytes in a sample of blood, but also as a tool for

monitoring the efficacy of drugs intended to interrupt adhesive interactions of PRBC, as well as

potentially a high throughput method for testing adhesion-receptor interactions.
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Figure 3: Interactions occuring between a PRBC and an endothelial cell resulting from parasite encoded

adhesion proteins (Cooke, 2000).

Previous work in Malaria Adhesion

What is now known about PRBC interactions with endothelial cells, healthy RBC cells, and

PRBC was discovered using adhesion assays, both single cell and population assays. Some of

the original discovery involved static adhesion testing where either target proteins, like CD36

and ICAM-1 were immobilized in Petri dishes, or cells expressing those proteins were

immobilized on Petri dishes. PRBC were then introduced and after allowing time to settle,

unadhered cells were washed out (Nash G. B. et al. 1992). Adhesion was then measured as a

function of percentage that remained adhered. However, it was later found that when a similar

test was performed under flow conditions, which more closely mimics the microvasculature

environment, some adhesion relationships changed. For example, it was found that TSP, which

has shown adhesion under static conditions, no longer adhered under the stress of flow (Cooke

B.M. et al. 1995). Data suggests that CD36 and CSA interactions with PRBC have similar

attachment characteristics that are resistant to flow disruption up to about 1 Pa of shear stress



(Cooke B. M. et al. 1996). However, interactions with ICAM-1 perform rolling-like behavior

that's very similar to leukocyte rolling behavior (Nash G. B. et al. 1992). It was suggested by

their behavior in flow assays, that ICAM-1 has a higher affinity for it's target proteins than

CD36, but CD36-PfEMP-1 interactions, once formed, were stronger under stress (Nash G. B. et

al. 1992).

Single cell micropipette manipulation assays have also been performed to study the adhesion

forces between PRBC and target cells (Nash G. B. et al. 1992). Although flow conditions

suggested different adhesion forces between CD36 and ICAM-1, the pipette aspiration studies

showed both required detachment forces on the order of 10-1oN (Nash G. B. et al. 1992).

However, quantification of single protein-protein interactions and the total number of

interactions occurring between the two cells was not done for either the flow assays or the cell-

cell pipette assays, making it difficult to make any true predictions of receptor-protein interaction

strengths.

The main conclusion that was reached by the previous studies under flow is that flow conditions

are necessary to observe the true behavior of PRBC in the vasculature system. However, parallel

plate flow assays are only 1.5% efficient due to their large size (the smallest dimension is on the

order of 100im) (Cooke B.M. et al. 1995). Therefore, parallel plate flow assays are not ideal for

high throughput cell counting of heterogeneous cell populations. This device could be used for

both cell counting and high throughput adhesion characterization of cells and specific receptors.

One final caveat to these results is that the cultured P. falciparum strains used in most adhesion



assays show different adhesion characteristics then their counterparts found in infected

individuals (Cooke B. M. et al. 1998).



Device Design and Fabrication

The following design requirements for the electrostatic microcapillary devices were met by

microfabrication of pyrex and silicon wafers, which were then be anodically bonded forming a

sealed fluidic channel. In order for the device wall charge to interact with the cell surface

charge, the channels must be smaller than the cell diameters in at least one dimension. Of

course, as the stage of P. falciparum infection advances, cell stiffness increases, and therefore

passage of the cells through dimensions smaller then the cell may be impossible. However,

(Shelby P.J. et al. 2003) showed that channel height of 2p.m allowed passage of all cells, but not

all channel widths did, Figure 4. Therefore, using (Shelby P.J. et al. 2003) as a design guide,

widths of 2 jtm, 4 jtm, 8 gm, 16 gm, and 20 gpm were fabricated. The initial channel height is 2

gtm, but can be easily increased if necessary by modifying the channel etch time. Future testing

may require varying channel height to observe the effect of mechanical stress on cell electrical

properties. The channel length is somewhat arbitrary, 200 p.m would be sufficient considering

that is the field of view through a high-power objective. However, in pressure-driven flow, the

velocity is proportional to the partial differential of pressure with respect to length. Therefore, a

lower velocity can be achieved with the same pressure applied by increasing the length. Two

millimeters was chosen as the final channel length.

Of course, the major design requirement for the microcapillaries is a thin layer of oxide covering

the gate electrode of the channel, thereby ensuring electrical isolation. There is a design tradeoff

between gate capacitance, and therefore wall charge response, and oxide breakdown. An oxide

thickness of 500nm was grown to meet the both of these requirements. The oxide breakdown

will occur at 400V when the oxide is 500nm thick. All processing, unless otherwise noted, was



done either in the Microsystems Technology Laboratory, on MIT's campus, or in the Nanoscale

Sensing Laboratory.
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Figure 4: (Shelby P.J. et al. 2003) Microcapillary constrictions 2pm high, with varying widths shows that

later stages of PRBC cannot pass through channel widths smaller than 6pm. Arrow indicate direction of

pressure driven flow.

Silicon Processing

Two major features must be etched into a double-side polished wafer. Both sides of the silicon

wafer must be polished in order to ensure a good fluidic seal. Through-holes etched through the

entire wafer will provide fluidic input into the channel. This can be done using a long 85degC,

25% w/v KOH etch. A sacrificial silicon nitride mask must first be grown. Since the nitride

mask will act as an etch stop, the unpatterned side of the wafer will still have an intact nitride

layer, which will allow for the patterning of the microcapillaries. Once the nitride membrane is

patterned using a Reactive Ion Etcher (RIE), several methods can be employed to etch the actual

fluidic channel in the silicon. Wall smoothness is paramount in order to reduce cell mechanical

stress and ensure nonturbulent flow. Therefore, both wet and dry etches were performed for

K L
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IkJll :::



comparison. Using the same conditions as the through-hole KOH etch produced very rough

channels. However, using a CF 4 based dry etch appeared to produce very smooth channels and

so this method was employed for final device production.

-- -- ----- --- -

Pyrex

Figure 5: Cross section of proposed device (not drawn to scale). Initial channel height, 21im. Device widths

ranging from 2-20gm.

Once both the through-holes and the microchannels are etched in the silicon, the sacrificial

nitride membrane must be removed, using a hot phosphoric acid bath. Nitride could be used as

the insulator in the voltage controlled microcapillary, however the properties and surface

chemistry of silicon dioxide are better understood. Therefore, the final step in the silicon

process, prior to bonding with the pyrex wafer, is to thermally grow the oxide insulator, ensuring

electrical isolation in both the through-holes and the channel area. Silicon will provide the

electrical gate contact, and will cover the entire channel. Later device designs can use metal

traces allowing wall control over very specific parts of the channel. As shown in Figure 5, once

the individual devices are die-sawed from the wafer, an electrical contact to the silicon can be

made from the side. An Ag/AgCl wire in one of the fluid ports will provide a ground reference.

V)



It was found during processing, that the KOH etch made the devices extremely fragile during

further processing steps, and many wafers were lost during additional wet steps such as the hot

phosphoric bath and also piranha cleaning steps. In future processing, it might be desirable to

first dry etch the microchannels in the silicon wafer, and then grow the nitride mask for the KOH

through-hole etch. This will move most processing steps to occur before the wafer's strength is

compromised by the KOH etch.

Pyrex Processing

Anodically bonding the channel side of the silicon wafer to pyrex will ensure an enclosed fluidic

channel and allow an optical window into the channel. There are two options, 1) Bond the

silicon to an unprocessed glass wafer, where the silicon channels are directly connected to the

through holes 2) Etch large bypass channels into the glass which connect the through-holes to the

silicon channels. The advantage of the second method is lower pressures are required to fill the

channel. Although the anodic bond will certainly withstand these pressures, the o-rings and

external tubing manifold may not. The disadvantage of using bypass channels is a minimum

pressure is required (Thomas Burg 2006) to induce cell movement from the bypass channel into

the microchannel. This required pressure differential, upon first testing, produces cell speeds

that are too fast to optically determine with a low frame-rate camera. All of these potential

problems will need to be addressed in the testing stage of the devices, i.e. pressure requirements,

manifold constraints, and minimum flow velocity. The latter problem could be addressed by the

purchase of a high frame-rate camera or using a different velocity measurement method.



For the pyrex processing in the case of bypass channels, an amorphous silicon mask can be

patterned and hydrofluoric acid can be used to isotropically etch the Pyrex bypass channels. This

method has been proven previously in the Nanoscale Sensing Lab to produce a smooth 2:1 etch.

The silicon mask works best if deposited using LPCVD (low pressure chemical vapor

deposition), which is done at the University of California Berkeley facilities. An anodic bonding

process was used to permanently bond the silicon and pyrex wafers.

Figure 6: Microscope pictures of fabricated devices a) 8im snake-like channel and bypass on left b) Glass

bypass and silicon through-hole interconnect



Device Theory

The success of the electrostatic device is dependent on the ability to control the device wall

charge. Therefore, this section will explore the wall charge dependence on the applied gate

voltage as a function of physical constraints in the system. First, the double layer model as a

function of intrinsic wall charge will be developed. Next, an extension of the double layer model

will be introduced as a function of an applied gate potential. Finally, the effect of pH and

intrinsic charge on device sensitivity will be explored. Traditional double-layer theory was

employed in deriving this model, but especially with the guidance of notes provided by Jay T.

Groves (Groves 1996). Only three of the four channel walls can be controlled in the manner

presented since the fourth wall must be transparent for measuring cellular velocity. Also, double

layer interactions occurring at the corners of the device has been neglected since at physiologic

pH the debye length is much smaller than the channel widths.

Diele
ctric

tox

Electrolyte
Solution

-1 tH H t-
Cd Cs Cg

Figure 7: Depiction of dielectric-solution interface with metal electrode gate. The double layer, consisting of

the compact Stern layer (Cs) and the diffusion layer (Cg) are in series with the dielectric capacitance (Cd).



For a normal double layer, the intrinsic potential across the double layer due to surface wall

charge density T can be described by the Gouy-Chapman equation

Equation 1: Gouy Equation ýo (o) = 2ksinh 2kTe
ze 2kTe

Where k is the boltzmann constant, T is temperature, z is valency of ionic buffer, e is the charge

of an electron, and LD is the debye length and is defined as:

Equation 2: Debye length LD - 2

Where I is the concentration of the ionic solution and z is the dielectric constant of the solution,

in this case water. The double layer can be modeled as two capacitors in series, the compact

layer capacitance as described by Stem, and the diffuse layer capacitance, which can be found

from the Gouy equation:

es zer
Equation 3: Gouy Capacitance of the diffuse layer CG = coshWzeI

LD  2kT)

Now, in order to take into account the applied potential, one can model the system as a series of

three capacitances, Figure 7, the capacitor due to the dielectric insulator CD (silicon dioxide in

this case), Equation 4, the compact layer capacitance Cs and the diffuse layer capacitance CG.

The total capacitance is series combination of all three, however since CD << CG << Cs, the total

capacitance is roughly equivalent to the capacitance across the dielectric, CD. Viewing the

system as a simple capacitive divider, the diffuse layer potential can be related to the applied

voltage according to Equation 5.

Equation 4: Capacitance due to the silicon oxide dielectric CD, = o
OXt



Equation 5: Capacitor divider dV =-- dC
CD

Integrating both sides and solving for ý results in a relationship that gives the new wall potential

as a function of the intrinsic wall potential and the applied gate potential:

Equation 6: Zeta potential with applied gate bias ý(V) = 2kTsinh-' eLDCD V + sinh 2kT
ze 2kTe 2kT

It's interesting to then study the effect of pH and salt concentration on the sensitivity of the

device. The wall charge density, and therefore the intrinsic zeta potential, is a function of pH.

Silicon dioxide at physiologic pH it is highly negatively charged since the surface is

deprotenated. From Figure 8, one can see that the effect of intrinsic surface charge is to 1)

compress the range over which the surface potential can be changed and 2) to shift the bias

potential at which the surface is sensitive to a change. However, at extreme surface potentials,

+/-200mV, one can see that the surface can no longer be appreciably altered given a large

applied voltage.



Zeta vs. V for various intrinsic zeta potentials I=0 01mM
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Figure 8: Surface Potential vs. applied voltage as a function of intrinsic surface potential (which is dependent

on solution pH).

Figure 8 was modeled with an ionic concentration of 0.01mM. However, the ionic concentration

has a direct impact on the debye length and therefore also an impact on the sensitivity of the

device. Figure 9 shows the relation between the swing in zeta potential as a function of ionic

concentration. This figure was derived assuming a neutral wall charge and therefore the swing is

antisymmetric about zero volts. The increase in ionic concentration, and therefore the decrease

in the debye length, acts to compress the range of achievable surface potentials. Physiologic

ionic concentration for human cells is on the order of 150mM, which implies only a very small

range of voltages can be developed at the surface.
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Figure 9: Zeta potential as a function of voltage for various ionic concentrations, and therefore debye lengths,

with a neutral intrinsic wall charge.

Finally, in Figure 10, both ionic concentration and a non-neutral wall charge of -100mV is

considered. This figure clearly shows the need to neutralize the intrinsic wall charge when high

ionic concentrations are required, since the ability to reverse the wall charge disappears at

concentrations greater than 1mM. Wall charge can be neutralized, of course, by using a solution

with pH very near the wall's pKa. However, in the case of glass and silicon nitride, this is well

below the required pH required for physiologic systems. Therefore, surface alteration using

chemical functionalization will be required to neutralize the wall charge.
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Wall neutralization is a key concern in electrophoresis as well, since electrophoretic mobilities

must be separated accurately from any electroosmotic flow. One group looked at various glass

coatings that could suppress EOF at physiologic pH and salt conditions. Omasu et. al. looked at

three typical coatings that could be used to prevent nonspecific cell adhesion in microcapillary

electrophoresis, bovine serum albumin (BSA), gelatin, and 2-

methacryloyloxyethylphosphorylcholine (MPC). Their EOF results are shown in Figure 11.

MPC appears to have zero charge at physiologic pH of 7.4, making it an ideal coating for this

device. The method followed by (Omasu F. et al. 2005) to coat the channels was a 30minute

dehydration directly preceding functionalization with MPC by filling and emptying the channel.
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Figure 11: (Omasu F. et al. 2005) Comparison of different wall coatings and their effect on electroosmotic

flow

N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB) was used by Schasfoort et. al. to reduce

the wall charge at physiologic pH (Schasfoort R. B. M. et al. 1999). This was not a channel

pretreatment, but CTAB was simply added to the buffer. It reduces the wall charge, but does not

completely neutralize it at pH 7.4. Another method used to significantly reduce electroosmotic

flow in electrophoresis experiments is adsorption of Poly-N-hydroxyethylacrylamide (PHEA)

(Methal N. Albarghouthi 2003). This method involves washing the capillary first with HCl to

maximize protenation of the surface silanol groups and then adsorbing PHEA by washing with

PHEA for 15minutes. Although this method does not completely eliminate EOF, it is a very

stable protocol for significantly reducing EOF.BSAhip
stable protocol for significantly reducing EOF.



Gate Capacitance

Initially it appears that the oxide thickness is a tradeoff between device sensitivity and

breakdown voltage. However, as the oxide thickness is decreased, the required voltage to

achieve a desired zeta potential will also decrease. It is desireable to quantify this tradeoff so

that the optimum thickness can be chosen. Figure 12 demonstrates the relationship between the

required gate voltage and the breakdown voltage for various oxide thicknesses between 100nm

and 2ptm thick. The required gate voltage was determined by Equation 7, where the desired zeta

potential was 100mV. The breakdown voltage of silicon dioxide was assumed to be 8MV/cm.

The intrinsic zeta potential was assumed to be -50mV, which mimics the case where PHEA was

used to reduce wall charge, but has not eliminated entirely. In this case one can see that oxide

breakdown will not actually limit the achievable zeta potential, but instead it will be limited by

the high voltage supply.

Equation 7: Voltage required to achieve a desired zeta potential

V = 2kTC jsinh( - sinh
zeLC 1 .2kT (2kT
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Figure 12: Oxide breakdown voltage and gate voltage as function of oxide thickness. Gate voltage solved to

achieve 100mV zeta potential with a -50mV intrinsic potential at 1mM ionic strength.

Cell-Wall Double-Layer Interactions

The effective wall charge for the device was derived previously as a function of ionic strength,

intrinsic wall charge, and applied gate voltage, Equation 6. Ideally, the cell-wall interaction will

result from cell-wall attraction based on opposite surface charges. However, there are many

possibilities, seen and unforeseen, that could prevent the desired velocity effect from taking

place. The problem of two charged surfaces interacting in an ionic solution is a complicated one.

Even more so when one of those is a flexible cell wall made of a fluid phospholipid bilayer.

The interaction of oppositely charged double layers is prevented when the double layers are

further than a debye length apart due to charge screening by the ionic solution. At high ionic

strengths, the screening distance is very small, on the order of 1-10nm and therefore the channel

'"^"



height of the device was made much smaller than the dimension of the cell in order to ensure an

interaction between the cell wall and the device wall. However, will this system then cause

particle exclusion between the cell wall and the device wall? In this case, the local pH and ionic

strengths are indeterminable and therefore so are the effective wall charges of the two surfaces.

There was an observed phenomenon previously that when positively charged lipid bilayers were

exposed to negatively charged particles, it induced a region in the bilayer that could bind to the

oppositely charged particles, and a region that repelled the charged particles (Aranda-Espinoza

H. et al. 1999). It was concluded that lipid mixing was responsible for space charge separation

across the membrane. Clearly, this phenomenon could potentially exist in the interactions

between the cell and the device complicating the predictive modeling and potentially limiting the

sensitivity of the device.



Device Testing

Testing of the electrostatic device falls into two major categories, first the verification of the

device using electroosmotic flow (EOF) and second the verification that the wall charge can

differentially interact with charged cell membranes affecting their passage velocity. In verifying

the device, using EOF, the major outcomes should be to determine whether intrinsic wall charge

at desired pH and ionic strengths can be neutralized and if the effective wall charge as a function

of voltage is modeled correctly.

Device Verification

One of the most common ways to measure EOF is to use a neutral flow marker, which can be

monitored microscopically. It's necessary that the marker used is completely neutral so that it's

velocity represents only the fluid velocity and not an additional electrophoretic force. Any

neutral marker can be combined with microscope analysis to measure particle velocity.

However, a commercial particle image velocimeter (PIV) could also be used to measure EOF in

the channel.

One of the first challenges in this project is neutralizing the intrinsic wall charge of the device.

The necessity of this was described in the Device Theory section, where it was shown that at

physiologic pH and ionic strength, the wall charge cannot be reversed given native charge groups

of silicon dioxide. Proof that the employed surface chemistry neutralizes the wall charge can be

accomplished by achieving zero EOF for any given applied voltage. Once this is proven, then

EOF can be measured versus applied gate potential to verify the modeling and voltage-surface

charge relationship. The fluid velocity due to an electroosmotic force is shown in Equation 8,



where E is the applied lateral electric field, ir is the viscosity of the fluid, c is the permittivity,

and ý is the modified wall potential.

Equation 8: Fluid velocity resulting from electroosmosis v= - E
17

Combining Equation 8 and Equation 6 results in the fluid velocity as a function of applied

voltage, where ao is considered to be zero since intrinsic neutrality was proved during earlier

testing. An example of the voltage dependency is show in Figure 13. Since sinhl'(x) for x< 1

approximately equal to x, then the electroosmotic flow velocity is roughly linearly dependent on

both applied gate voltage and lateral electric field.

Equation 9: Fluid velocity as a function of applied gate voltage V vf = 2kT sinh-1 -EeLDC l 1

ze 2kTs V 7
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Figure 13: Fluid velocity (pm/s) vs. applied gate voltage for a 5OV/cm lateral electric field, zero intrinsic wall

charge, and a 100mM ionic strength solution.
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Measuring Cell Velocity

Perhaps one of the most challenging aspects to this project is accurately measuring the velocity

of a cell in the channel. One major setback to the implementation of the electrostatic device is

that the difference in velocity between cell types of interest based on charge-charge interactions

will be very small, and therefore a sensitive velocity measurement will be imperative. Luckily,

many methods of measuring the velocity can be attempted, several of which take advantage of

the transparency of the pyrex side of the channel.

Video Microscopy

Video microscopy is perhaps the most straight-forward way of determining cell velocity in the

microchannel. Simply implemented, a continuous camera image will be subject to particle

tracking software, which will identify cell boundaries in the channel and monitor progression of

the cell through the channel. A major disadvantage of this implementation is the frame rate of

the camera will limit the speed that can be captured, and it's possible that the pressure driven

flow required to force cells from the bypass channels into the microcapillary will result in flow

velocity that is too fast for most reasonably priced cameras. Also, the reflectivity of the smooth

silicon channels may obscure the cell boundaries. However, using monochromatic light at

400nm, where hemaglobin selectively absorbs (Sutton N. et al. 1997), will improve contrast

between the cell and channel walls. A major advantage videomicroscopy is that cell volume can

also be estimated using this technique. Dispersion in velocity measurements are predicted due to

cell volume and surface area variations between cells. Normalizing each cell by its measured

volume could reduce this data spread.



Figure 14: Picture of straight 4pm channel. Boxes above and below channel designed to aid in image

recognition.

The fabrication masks for the microchannels were designed with videomicroscopy in mind.

First, marks were added above and below the channels to aid in image recognition. Figure 14

shows a 4jpm straight channel, which has a large box on top of the channel to mark the center,

and smaller boxes below the channel to mark 50pm separations. Also, Figure 6a, shows the

snake-like channels that were fabricated to increase the distance over which a cell will pass in a

single microscope objective area, thereby accumulating a larger passage time.

Interferometry

An interferometer utilizes the interference of a reflected beam to measure the distance between

two reflecting plates. The reflection is of course also a function of the material between the two

plates. Therefore, if a laser beam was directed at the back wall of the channel and it's reflection

detected by a photodiode, the change in optical density due to the presence of a cell in the

channel would effectively modulate the reflected signal at the photodiode. Therefore, two beams

could be used at two spots in the channel in order to detect the passage of a cell through the

channel. The advantage of this system, particularly over videomicroscopy, is the signal

conditioning becomes entirely electronic in nature. The signal will be converted from light to



current via a photodiode and the limitation in change in detectable transit time will essentially be

determined by the spatial separation of the two beams in the channel.

Streaming Currents

Electroosmotic flow is induced by an applied tangential electric field, Equation 8. The corollary

to this is the streaming potential, which is the induction of a tangential field by an applied

pressure gradient. Starting from the same basic equation, one can find the tangential field

produced by the pressure driven flow by relating fluid velocity to the pressure gradient. It is

assumed that in the absence of cells in the channel, fully developed poiseuille flow exists, since

the channel is much longer than the entry length predicted by the low Reynolds number.

Assuming one-dimensional flow for the rectangular channel, the average velocity can be related

to the pressure drop across the channel by Equation 10, where ir is the fluid viscosity, h is the

channel height and the gradient of pressure is taken with respect to the tangential direction, x.

h2 AP
Equation 10: Average fluid velocity for one-dimensional laminar flow Vf = 2rAx

Plugging Equation 10 into Equation 8 and solving for the electric field, produces the result in

Equation 11. Since the electric field can be related to the gradient of a voltage, one can see that

the voltage drop across the capillary induced by pressure driven flow is directly proportional to

the pressure gradient and inversely proportional to the zeta potential of the wall.

AV h2 1 AP
Equation 11: Induced electric field due to streaming potential E = - -

Ax 2e , Ax

When a cell enters the channel, it will disrupt the streaming potential since the cell size is on the

same order as the channel. Therefore a cell entering the channel will change the measured

voltage drop across the channel. Therefore, one way to monitor cell passage time is to measure

the streaming potential changes with time. However, it is possible that the potential across the



channel will reflect only two states of the channel, a fluid filled channel with no cells and a

channel with one or more cells.

Testing Cell-Wall interactions

Following verification of the gate-charge relationship, it will then be time to test whether the

wall-cell interaction will produce the desired effect on velocity. The effect can be simply shown

using a healthy RBC and three wall charges, neutral (V=O), positive wall charge (V=80V), and a

negative wall charge (V=-80V). The cell velocity is expected to be maximally affected when the

wall of the device is positively charged. There are several possibilities why at this point in the

testing process a velocity difference cannot be detected as a function of gate voltage. The first

could be measurement sensitivity as discussed in the previous section as a limit of the different

measurement methodologies. The second reason could simply be that the electrostatic effect

cannot significantly counteract the force in the lateral direction due to the pressure driven flow.

Or finally, the wall charge of the device takes on an unpredictable value when the cell wall is

introduced.

Ideally, a measurable velocity change is detectable as the gate potential is changed. The next

step is to see if cellular wall charge densities can be differentially affected by the device wall

charge. One way to do this is to artificially change the wall charge of a cell so that between cell

types all other variables are identical and a change in velocity an be assumed to be produced only

by the electrostatic interactions between the cells and the device. One model system for this is to

artificially change the wall charge of erythrocytes by covalently binding polyethylene glycol

(PEG) to the cell surface. Sabolovic et. al. performed PEG attachment to red blood cells using a



simple incubation step. They found the electrophoretic mobility changed by 15% (Sabolovic D.

et al. 2000).

The electrophoretic mobility (EPM) is simply the velocity experienced by a particle divided by

the forcing field. Much work has been done to model the forces acting on the particle in order to

extract correctly the surface charge density from the EPM. One of the simplest models, which

neglects surface conductivity and assumes a uniform surface charge is shown in Equation 12.

The Huckel correction to Smulochowski's original relationship takes into account

nonuniformities in the electric field surrounding a spherical particle (Camp J. P. et al. 2005).

Using the Guoy-Chapman relationship, EPM can directly be related to surface charge density,

Equation 13. Therefore, since testing conditions between RBC and PEG coated RBC remained

the same, the 15% change in EPM is ideally a direct reflection of a 15% decrease in surface

charge. Of course, the change in surface charge is potentially different then that reflected by the

change in EPM due to surface charge density variations and other deviations from the model.

Equation 12: Smoluchowski equation, with Huckel's correction, relating zeta potential and EPM

u 2 E"
EPM - -

Eo 3 rI

2 o
Equation 13: EPM as a function of surface charge density EPM=-

3 Ldr

At this point in the testing stage velocity as a function of voltage for a RBC of known surface

charge density has been recorded. Additionally, velocities for two cell types of different surface

charge densities and various gate voltages have also been recorded. It is now ideally possible to

develop a physically motivated model to relate cell passage velocity as a function of surface

charge and gate voltage. Given an accurate predictive model, the sensitivity of the device to



surface charge densities can be determined based on the minimum detectable velocity change.

Finally, the device is ready to be applied to a model system to detect cell types based on their

unique surface charge densities, such as PRBC vs. RBC.



Adhesion Receptor Device

The adhesion receptor device, Equation 2b, will produce a differential velocity between cell

types by utilizing receptor-protein adhesions unique to one of the cell types. This

implementation of the microcapillary device presents much less risk than that of the electrostatic

device since flow based assays have already shown the possibility of inducing specific velocity

changes. However, it cannot be extended to other cell populations easily and will require much

stricter handling conditions in the field due to the receptor proteins that will either be covalently

bound or physioabsorbed to the surface. Also, it will likely only be able to detect those cells,

which are later in the parasite life cycle and have a large concentration of cell surface proteins.

This limitation is worsened because those cells have been shown to sequester in the

microvasculature of the body due to their increased adhesion, which means few of these cell

types can be captured using a blood draw from the extremities. However, it does have the

advantage of more accurately representing in vivo physiology and could therefore be used to

observe therapeutic effects or perform high-throughput adhesion-receptor force interactions.

Surface Functionalization

There are two surface functionalization techniques that could be used in this device. The first

would be to culture cells, which present the desired receptors on their surface, for example

human umbilical vein endothelial cells (HUVEC) which present ICAM-1 or the human

amelanotic melanoma cell line (C32), which present both ICAM-1 and CD36 (Nash G. B. et al.

1992). The second method would be to functionalize the surface with just the proteins alone.

This method has the advantage of eliminating interaction complexity. In the case of using



receptor-presenting cells, the device fabrication must be altered to allow for a single layer of

cells on all four sides of the device.

Protocol for functionalizing a glass surface with CD36 or CSA involves first washing with nitric

acid and then coating with poly-L-lysine, then incubating overnight at 40C with either CD36 or

chondroitin sulfate A (CSA) and then finally blocking with BSA (Cooke B. M. et al. 1998).

Another paper by the same author (Cooke B. M. et al. 1993) presents a way of culturing protein-

presenting cells on capillary walls. Prior to seeding the capillaries with HUVEC cells, a coating

agent like gelatin or 3-aminopropyltriethoxy-silane (APES) was required to ensure cell growth.

Cultured HUVEC cells were then added to the microcapillaries and allowed to attach and grow.

The drawback to this functionalization method is the culture medium must be continually

exchanged to ensure a constant pH due to the metabolization of the cells, temperature must be

controlled, and sterilization is of the utmost importance to ensure cell viability.

Testing and Modeling

Ideally, as with the electrostatic device, a predictive model can be developed to relate cell

velocity as a function of the number of protein receptors on the cell and pressure gradient. As P.

falciparum matures in a PRBC, the density of protein rich knobs will increase, and therefore the

infection stage could also be detected. This predictive model will require knowing the density of

proteins on the surface of the capillary walls, the forces applied by the pressure driven flow, and

the contact area of the cell and device walls. The most important aspect of this device is

specificity of interaction with diseased cells alone.



Assuming cell dimensions where the cell fills the entire channel, then pressure driven flow can

apply a force on the cell on the order of 0.1pN to 20pN. According to the pipette aspiration

experiments with ICAM-1 and CD36 one pN of force is required to pull a PRBC and a HUVEC

cell apart (Nash G. B. et al. 1992) and therefore these flow rates should be enough force to

prevent complete cell arrest . However, in this case, there are potentially many more protein-

receptor interactions and therefore not enough force to prevent cell arrest. This requirement may

aid in the choice of specific adhesion receptor used. For example, ICAM-1 interactions produce

a rolling-like behavior in a flow cell, because although they have a high affinity for PfEMP-1,

their interaction does not hold up under flow conditions like CD36-PfEMP-1 interactions.

However, if ICAM-1-PRBC interactions are not sufficient to produce a measurable velocity

change then CD36 or a combination of ICAM-1 and CD36 could be used.



Conclusion

This document has explored the possible implementations of microfabricated microcapillary

devices made for the use of high-throughput discrimination of cells. Utilizing the natural

changes of cellular adhesion or surface charge differences between cell types and states could

lead to a labeless detection system. This has great potential for many uses, including biological

discovery and pharmaceutical testing. However, it's greatest potential lies possibly in the

creation of a portable lab-on-a-chip device for disease detection in places where standard

equipment cannot normally be used.

The two modes of adhesion based cell velocity differentiation were discussed. In conclusion, the

electrostatic device has the advantage of requiring absolutely no surface chemistry making it

immediately applicable to differentiating between any cell types, which have different surface

charge densities. However, predicting the two double layer interactions was shown to be

problematic and therefore the use of specific adhesion receptors was also introduced and may

prove to be a guaranteed way to induce a velocity dependence that is highly specific to the

disease state.
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