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Abstract

The instruments used to measure borehole acoustic data can be classified as either
wireline or logging while drilling (LWD). The wireline tool measures formation speeds
after the borehole is drilled, and the LWD tool measures formation speeds while the
borehole is drilled. This thesis focusses on comparing the data collected by these
tools and how formation properties affect their measurements.

LWD and wireline measurements taken from the same borehole are compared.
Discrepancies in estimated shear and compressional velocities, as calculated by time
semblance methods, were found between the two data sets. We modeled radially lay-
ered formations with increasing or decreasing radial velocity profile to estimate the
acoustic measurement penetration for each tool. We reprocessed sections of the data
using frequency semblance methods and compared with layered model results. We
found that a frequency-domain analysis is feasible and reduces the overall difference
between the LWD and wireline shear and compressional velocity estimates. The re-
maining discrepancy can be explained by the different radial depths of penetration of
these two tools, which naturally leads to a difference in the velocity estimates when
there is a radial gradient in the velocity profile.

We model axisymmetric propagation of waves in a borehole with a transversely
isotropic (TI) formation. An algorithm is developed for an arbitrarily radially layered
medium that can be used to approximate the steel LWD tool inside the fluid-filled
borehole. We present a full description of modal arrivals, as a function of frequency
and phase velocity, for the LWD tool and compare with the wireline case, both for
isotropic and TI formation. The tool modes were found to be largely unaffected
by the presence of a TI medium while the modes associated with the borehole fluid
and formation, i.e. Stoneley, pseudo-Rayleigh and borehole flexural modes, displayed
sensitivity to the TI formation parameters, specifically to C44 in the elastic stiffness
matrix. Our analysis demonstrates that at a lower frequency of operation, the LWD
tool can potentially measure the effect of a TI medium in the fundamental shear



modes, if the modes are well-coupled to the formation (i.e., the formation is soft).

This thesis makes two new contributions to the field of borehole geophysics.
Firstly, we make an independent comparison of LWD and wireline measurements,
and our work suggests that frequency-domain semblance processing may be a better
method of analysis, particularly in radially varying formations. As industry moves to-
ward faster and more cost efficient LWD measurements, it is essential to understand
the implications of the LWD tool geometry in relation to its wireline counterpart
and how traditional velocity processing methods are affected. Secondly, we present a
modal analysis of the LWD tool in a transversely isotopic formation, which suggests
that the newer generation of LWD tools, operating in a lower range of frequency
may be able to measure TI formations. The TI medium is of major importance to
exploration geophysics as it represents the anisotropy found in thinly layered media,
i.e. sedimentary strata. This is the predominant form of anisotropy seen in many
sedimentary basins, so that its effect on LWD measurements is of great interest to
exploration geophysics.

Thesis Supervisor: M. Nafi Toksiz
Title: Professor
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Chapter 1

Introduction

In this thesis, we present a systematic comparison of two acoustic logging tools used

in the industry to estimate formation shear velocities. These tools are the "wireline"

tool, which is used to perform acoustic measurements after the borehole is drilled,

and the "logging while drilling" (LWD) tool which is used to perform measurements

while the borehole is being drilled. Due to the very different mode of operation of

these tools, they must satisfy very different physical constraints, so that their physical

dimensions are different, as well as their operating frequencies. The goal of this thesis

is to compare both tools from a measurements perspective as well as from a theoretical

modeling standpoint, and to offer possible explanations for some of the differences in

shear and compressional measurements achievable with these tools.

This thesis consists of two parts: in the first part, we compare measurement

data taken with both tools in the same borehole and quantify the differences in the

estimated shear and compressional velocities. Several scenarios are investigated to

account for the difference in estimated velocities using these two tools. In particular,

we compare two different methods of velocity processing: time domain semblance and

frequency-domain semblance. In addition, we model the effect of the different source-

receiver offsets and the different frequency ranges of the tools. Finally, we model the

effect of radially non-homogeneous formation velocities around the borehole. Because

of their different geometries and ranges of operating frequencies, LWD and wireline

tools inherently probe the formation at different radial depths from the borehole, so



that any radial inhomogeneity results in different estimated velocities. In the second

part of this thesis, we consider the effect of transverse anisotropy in the formation on

the tool acoustic measurements. We extend previous models of the acoustic modes

associated with borehole acoustic logging tools, in particular the theory for a radially

multilayered medium is applied to the LWD tool in a transversely isotropic (TI) for-

mation and its effects on the tool modes are studied. The developed algorithm has

the flexibility to add an arbitrary number of layers which can be defined as fluid or

solid with the outer most layer being isotropic or transversely isotropic. The code

is used to generate the modes for the wireline and LWD tools in isotropic and TI

formations. It is also used to generate the tool response in multi-layered formations

with both increasing and decreasing radial velocity profiles, to simulate damaged

and flushed zones. The results of these studies are compared with data taken from a

well where both the wireline and LWD tool were used to log the formation properties.

The above research makes two important and new contributions to the field of

borehole geophysics. Firstly we make an independent comparison of wireline and

LWD data. We are fortunate to have data taken from the same borehole with both

tools, giving a unique opportunity to compare the two in identical formations. Addi-

tionally we show how complicated radial structure surrounding the borehole influences

both the wireline and LWD data and how, using careful processing methods, we can

recognize this in the data. Lastly, we present for the first time a method for LWD

mode analysis in a TI formation. This type of anisotropy is commonly found in sed-

imentary strata seen in oil reservoirs and for this reason it is essential to understand

how it effects measurements made with LWD technology.

In the broadest sense the development of new acoustic logging tools aims to im-

prove subsurface seismic velocity estimations from borehole acoustic data. The data

is taken using a logging sonde which excites and records acoustic waveforms measured

along the borehole at regular intervals. Typically the data are measured at depths

relevant for oil reservoirs which are usually between 1000 to 10,000 m. Borehole

geophysics refers to the study of subsurface properties using measurements made at



varying depth in drilled boreholes. While borehole geophysics is often applied to the

petroleum industry, data taken at the borehole scale can have a much broader appli-

cability in the geo-sciences. Measurements which can better characterize subsurface

properties are directly relevant to flow modeling, fluid delineation and saturation, to

seismology (both on the reservoir and the global scale), as well as to time reverse

acoustics to name a few. In short, the methods and data presented in this thesis can

be used to better define subsurface properties, as well as to refine and improve models

in many areas of geophysics not restricted to petroleum applications.

A large portion of the work presented here concentrates on measurements made

by LWD tools. LWD tools are at the current forefront of borehole measuring tech-

nology and much of the recent literature in borehole geophysics has been directed at

interpretation methods for LWD measurements. Another topical area of research is

that of reservoir anisotropy. Until recently, in the last twenty years or so, the forma-

tion surrounding the borehole was modeled as homogeneous and isotropic. This as-

sumption simplifies the physics and mathematics of modeling and data interpretation

considerably, and produces reasonable and useable results. Indeed many formations

are essentially isotropic and homogeneous on the scale at which the measurements

are made. However, with escalating computational power and ever dwindling oil

resources, it is possible and increasingly important to account for certain types of

anisotropy seen at the reservoir scale.

Much of the research pertinent to borehole geophysics, and to the sub-discipline

of borehole acoustics, can be found in geophysical and acoustics journals, with areas

of cross-over with medical imaging techniques. The main drivers for research of this

type are the larger oil and oil service companies and academic institutions. Seminal

papers such as White (1968) and Biot (1952) formulated the equations and solutions

to describe the propagation of waves in a borehole environment. The second genera-

tion of research, seen in papers such as Cheng and Toksiz (1981), Tsang and Rader

(1979), Schmitt and Bouchon (1985) and Kurkjian (1985) focussed on reproducing



the seismograms as measured by the logging sonde. This work was further extended

to include radial layering, poro-elasticity and transverse isotropy, White and Tong-

taow (1981), Schmitt (1989), Schmitt (1988a), Ellefsen (1990) and Leslie and Randall

(1992).

Simultaneously to the theoretical work referenced above, a body of work on in-

terpretation of acoustic data was also published. Very early tools used just one or

two receivers and formation compressional velocity was calculated from the distance

between source and receiver divided by the time taken for the first break to arrive at

the receiver. As full waveform logging was developed, i.e. where the full wavetrain

is recorded, and the number of recievers was increased, the methods to extract the

formation shear and compressional speeds became more advanced. Semblance Time

Coherence (STC) methods, Kimball and Marzetta (1984) and for dispersive arrivals

Kimball (1998), Tang et al. (1995) and frequency domain methods Lang et al. (1987),

Sinha et al. (1994), Huang et al. (1998) and Rao (2005). More recently, measurements

using tools developed with orthogonally placed sources and receivers, have enabled

stress-induced, or azimuthal anisotropy, to be estimated in-situ, Sinha and Kostek

(1996), Tang and Chunduru (1999) and

Tichelaar and Hatchell (1997).

We have cited here just a few of the authors who have made contributions to the

field over the last few decades, and very briefly covered some of the larger areas of

interest. Much of this research however was completed before the LWD tool had been

implemented and therefore many of the well understood facets of borehole acoustics

must be re-examined for the newer tool geometries.

In chapter 2 we present a discussion of the various types of industry logging son-

des, with an emphasis on wireline and LWD acoustic tools. We present an overview

of the acoustic modes of the isotropic borehole environment for both tools. We show

the cases for both fast and slow formations and the response for monopole, dipole



and quadrupole excitations. We start by presenting a full modal analysis for these

tools, and then emphasize those modes which are pertinent to the borehole formation

properties. We discuss qualitatively the mode characteristics and how they affect the

interpretation of data seen in later chapters. Finally, we briefly discuss methods of

velocity analysis in the time and frequency domain.

In the following section, chapter 3, we compare LWD and wireline data taken

from the same borehole. The data show some initial discrepancies which cannot be

explained by formation alteration or inherent tool differences. We reprocess the wave-

forms using frequency domain methods and the resulting differences between data sets

are explained by the use of three radially layered formation velocity models. The nu-

merical code developed in chapter 4 is used to model the radially layered media and

the results are compared with the data. Velocity processing methods are compared

and tool measurement penetration is discussed.

Chapter 4 outlines the theory for the mode analysis, we describe how to solve the

wave equation in a TI medium using cylindrical coordinates and how to compute the

solution for a given phase velocity and frequency. In this chapter, the focus is on the

LWD tool in the TI formation but the equations are easily reducible to the wireline

and/or the isotropic case. We outline the algorithm used to create the multi-layer

model and present results for the wireline and LWD tools in fast and slow TI media

using monopole, dipole and quadrupole excitations.

Appendix A outlines the theory, presented in chapter 4, for a simple two-fluid

case. The absence of shear waves in the fluid-fluid model greatly simplifies the the-

ory, making it possible to solve analytically. This section is included as a simple

introduction to the theory presented in chapter 4.

Appendix B gives the full formulation of the equations needed to solve the TI,

LWD system. They are presented as matrix elements which are plugged in to the



equations in chapter 4.

The final appendix, appendix C, presents a method used to calculate the stress in-

duced anisotropy using four component acoustic data. This appendix uses a different

data set and has no LWD data, and therefore is not directly applicable to compare

LWD and wireline tools. Additionally this type of anisotropy is seen in vertically

fractured media and not in the layered media modeled in the TI case in chapter 3.

However, it may still be of interest to the reader as it discusses formation flexural

modes and how they are influenced by azimuthal anisotropy. It describes a method

of dispersion analysis from tool seismogram arrays and presents cross-dipole acoustic

data giving further insight into tool operation.



Chapter 2

Tool design, Overview of modes in

isotropic formations and Velocity

processing methods.

2.1 Logging Tool Design

In this section of the thesis we present a brief overview of general tool design for use

in a borehole environment. The goal of this thesis is to compare the data from a

wireline and LWD perspective and in later chapters we model two generic versions

of these acoustic tools. Figure 2-1 shows a cartoon of the respective tools in the

borehole, note the difference in length and diameter of the tools and the size of the

fluid annulus between the tool and the borehole wall. . However it should be noted

that there are a broad range of logging tools available and depending on the type of

formation, borehole fluid and data requirement there are many types of measurement

that can be taken in-situ. This section serves as a brief introduction to these tools

and some of the measurements made, with an emphasis on acoustic data.

Taking physical measurements in the borehole environment presents numerous

engineering challenges. The tool must withstand extreme conditions of intense heat
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and pressure, in a fluid-filled and remote location. In addition, efficient coupling of

the tool to the physical environment must take place in a very limited space. The

borehole is drilled in sections, of decreasing diameter, starting at near 36" near the

surface and decreasing to as little as 4.5" at large depth. After each section is drilled,

logging tools can be used to record data before the section is cased with a steel pipe to

maintain stability. Some wireline measurements can be made after the well is cased,

however, for acoustic measurements the open hole is the preferred environment. As

the diameter of the borehole changes so does the tool used to make the measurement.

A specific tool may come in 5 or 6 different diameters so that an appropriate borehole

to tool diameter ratio is optimized over the length of the well.

Borehole logging measurements can be separated into two groups, measurements

made while the borehole is drilled, called "Logging While Drilling" (LWD), and

measurements made after the borehole is drilled, called wireline. Common types of

measurement include acoustic measurements for formation shear and compressional

velocites, resistivity measurements for hydrocarbon saturation and porosity, sponta-

neous potential measurment as a lithological indicator, gamma ray measurement as a

lithological indicator and shale fraction estimator, and finally neutron logs, for poros-

ity estimation. This list is by no means exhaustive but gives a few of the possible

measurements that can be made in-situ. In addition to these formation measurements

there are also readings such as caliper measurements, for borehole diameter and el-

lipticity estimation, which give information about the state of the borehole. While

these measurements are not necessarily of direct use to formation evaluation, they

are of extreme importance to interpreting the data pertinent to the formation.

In this thesis we concentrate on acoustic measurements. Acoustic data can be

measured in several ways depending on the formation property of interest. In chapter

3 we present monopole and dipole data taken in the same well for wireline and LWD

tools, although these are not the only type of acoustic data that can be measured.

Monopole sources excite axi-symmetric modes and are used primarily to estimate



formation compressional and shear velocities from refracted arrivals in fast formations.

The compressional refracted arrival can be detected using this measurement regardless

of whether the formation is fast or slow, since the compressional velocity in the solid

is always greater than that of the borehole fluid. The shear refracted arrival however,

only exists in fast formations where the shear velocity in the solid is faster than

that of the borehole fluid. In slow formations, dipole data is used to measure modal

arrival and estimate the formation shear velocity. We discuss modes in more details in

section 2.3. In addition to monopole and dipole tools, some acoustic logging tools are

capable of measuring quadrupole and higher order modes, which are also useful for

determining formation shear velocities. Finally, we present a study of a cross-dipole

tool in appendix C, used to measure azimuthal variation of formation velocities. In

contrast to the measurements described above, the cross-dipole measurement uses

sources and receivers that are oriented orthogonally in the azimuthal direction. This

so-called cross-line data, is used to determine azimuthal variation in velocity and thus,

horizonthal formation stresses.

2.2 Summary of main differences between LWD

and wireline acoustic logging tools

While there is much variation between LWD and wireline tools in the industry, there

are certain properties which are common to most tools. In general, the LWD tool has

a greater diameter and a shorter offset between source and receiver than its wireline

counterpart. The LWD tool must withstand harsher conditions than the wireline

tool since it is used for logging while drilling and is therefore designed to be more

robust. The LWD tool has a hollow center to allow the drilling mud to flow through

the borehole, removing the cuttings from the drilling bits. The flow of fluid and

borehole cuttings around the tool create noise in a frequency band of 0 to 5 kHz,

so that data is recorded in a higher frequency band to avoid contamination by the

noise. For the wireline tool however, this low frequency noise is not present, so that



operating frequencies in the 0 to 5 kHz are possible. Additionally the wireline tool

takes measurements as a function of depth whereas the LWD tool takes measurements

as a function of time. This is important when comparing the data as the formation

velocities have not necessarily been sampled at exactly the same locations along the

borehole wall and if thin layering is present there may be discrepancies. In chapter 3

we present a comparison of two particular acoustical tools used in the industry whose

main differences are outline above and discussed in further details in the chapter.

2.3 Overview of Modes

Before complicating the modal analysis with the transversely isotropic formation or

a radially layered formation, we present the modes for the LWD and wireline case

in a isotropic homogeneous formation. It is important to understand under which

conditions certain modes are excited and how they interact for a given tool and bore-

hole geometry. The wireline case, which is modeled as a fluid filled borehole shows

the simplest example while the addition of the LWD tool and inner fluid annulus

excites more complicated modes. The order of the source type, e.g. monopole, dipole

or quadrupole and whether the formation is fast or slow, are also necessary consid-

erations in determining which modes are present. Here we present a brief overview

of the expected modes excited in the wireline and LWD cases. We show monopole,

dipole and quadrupole responses to fast and slow isotropic formations and discuss

nomenclature and characteristics. The model parameters and formation velocites for

the fast and slow mediums are given in table 2.3.

The borehole radius used is 0.11m and the LWD tool's inner and outer radii are

0.024m and 0.092m respectively.

2.3.1 Wireline

The wireline case is most often modeled as a fluid filled borehole surrounded by an

infinite formation. The tool itself, which has a much smaller diameter than the LWD



Table 2.1: Formation parameters used for the models in this chapter.

tool, has only an outer radius and can be modeled as a solid steel pipe. In reality the

tool is filled with the necessary electronics to excite and record the borehole response,

but it has no inner free space that is open to the borehole, which is unlike the LWD

tool. The shear and compressional velocities and the density of the tool can take

into account the internal electronics to yield some average values slightly less fast and

dense than solid steel. The algorithm described in chapter 4 can easily handle the

additional solid layer at the center of the borehole but here we follow convention and

model the wireline case as the fluid filled borehole without the tool. This allows us

to view the modes associated with the formation, and therefore of the most interest,

easily and is also considered valid as the sources and receivers are very well insulated

for the wireline case reducing the possible tool modes substantially.

Wireline: fast formation, monopole, dipole and quadrupole

In a fast formation as seen in figure 2-2, both the monople (axisymmetric), dipole

(non-axisymmetric) and quadrupole (non-axisymmetric) modes are plotted for com-

parison. The monopole excites Stoneley and Pseudo-Rayleigh modes, the dipole ex-

Vp Vs p
[ms1] [ms-'] [kgm- ]

Fast Formation 3309 1819 2440

Slow Formation 2024 1180 2440

Steel Tool 6500 3000 7800

Fluid 1500 0 1000



cites formation flexural modes and the quadrupole excites formation screw modes.

The fundamental modes in each case exist at all frequencies and asymptote to the

Scholte velocity at high frequencies, Schmitt (1988b). The Stoneley mode, for the

fast formation parameters, exhibits reverse dispersion which is characterized by an

increase in phase velocity with frequency. The Stoneley wave travels in the fluid at the

fluid-borehole interface and is strongly coupled with the fluid properties, especially

in fast formations. We will further discuss the zero frequency phase velocity asymp-

tote which determines whether the dispersion in direct or reversed in chapter 4. The

Pseudo-Rayleigh modes, which are also excited by the monople source, have definite

cutoff frequencies below which they cannot exist. These cutoff frequencies increase

with each higher mode. At the low frequency cutoff they travel at the formation shear

velocity and asymptote to the fluid compressional velocity at high frequencies. The

dipole source excites the fundamental formation flexural mode and higher flexural

modes. The higher flexural modes and higher quadrupole screw modes are analogous

to the pseudo-Rayleigh modes in that they have defined cutoffs below which they do

not exist. All of the higher order modes for monopole, dipole and quadrupole asymp-

tote to the formation shear velocity at low frequencies and to the fluid compressional

velocity at high frequencies in the case with a fast formation.

Wireline: slow formation, monopole, dipole and quadrupole

In the slow formation only the fundamental modes for the monopole and dipole are

excited, i.e when the mode phase velocity is less than the formation shear velocity.

Modes which travel above the formation shear velocity radiate energy into the solid

and are termed leaky modes. Figure 2-3 shows the excited modes for monopole,

dipole and quadrupole in a slow medium where the formation shear velocity is less

than that of the borehole fluid compressional velocity. Similarly to the fast formation

the monople excites the Stoneley wave which starts at the tube wave velocity at zero

frequency and asymptotes to the Scholte velocity at high frequencies. However in this

case the dispersion is direct due to the fluid compressional velocity being higher than
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Figure 2-2: Wireline monopole and Dipole in a fast isotropic formation

the formation. The borehole flexural mode reaches the formation shear velocity at

low frequencies and has the same Scholte velocity as the Stoneley at high frequencies,

similarly for the quadrupole screw mode.

2.3.2 LWD

The LWD tool is attached to the drill string and takes measurements as the borehole is

being drilled, meaning that the tool must be able to withstand much higher pressures

than the wireline. This leads to a much larger and more robust tool making the

tool modes harder to suppress. The borehole modes are complicated by the presence

of a steel tube within the borehole and a small annular fluid between the tool and

formation. The tool itself generates modes which couple with the modes generated

by the formation and both the inner and outer fluid layers propagate a Stoneley

wave. Here we model the borehole and tool together as the interaction of the tool

and formation modes provides a more realistic basis for interpretation of real LWD

data.
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Figure 2-3: Wireline monopole and Dipole in a slow isotropic formation

LWD: fast formation, monopole, dipole and quadrupole

Figure 2-4 shows all the modes associated with the tool and formation for the LWD

case in a fast formation with monopole, dipole and quadrupole excitation. The ad-

dition of a steel tube in the center of the borehole considerably complicates the

interaction of modes. When two modes approach each other at a given frequency and

phase velocity they will not cross but instead exchange character, this is termed as

an avoided crossing and is of particular importance in the dipole case. Incorrectly

identifying a modal arrival in the seismogram data may lead to erroneous velocity

estimations and so it is of great importance to understand how the modes interact

and influence each other. Figure 2-5 shows a closer view of the modes associated

with the formation in the LWD case. These are the modes of primary interest in the

analysis of borehole data.

In a similar pattern to the wireline case the LWD monopole excites Stonely and

pseudo-Rayleigh waves with a monopole source. The Stonely has no cutoff and travels

- Monopole Stoneley
FLUID COMPRESSIONAL - Dipole Flexural

------------- -- Quadrupole Screw

FORMATION SHEAR

-I -- - - - - -....... ....... ..............



at a lower phase velocity than in the wireline case at low frequencies and has a com-

parable phase velocity at high frequencies. The fundamental pseudo-Rayleigh mode

has a cutoff at much higher frequencies compared with the wireline case, this is due

to the smaller fluid annulus between the tool and formation. The smaller dimension

means that the longer wavelengths cannot propagate constructively along the fluid

and only at higher frequencies can the mode exist.

The dipole formation flexural mode for the LWD case has a dramatic change in

character from the wireline case caused by the presence of the tool flexural mode.

Without the confines of a borehole the tool flexural mode (seen in figure 2-4) would

normally start at zero phase velocity at zero frequency and slowly increase to the tool

shear velocity as the frequency increases. If the tool were in free space this would

correspond physically to the change from the waves exciting the bending of the whole

tool, at low frequency, to waves which travel just along the surface at high frequencies,

i.e. Rayleigh waves which travel at 0.919 of the shear velocity. (It should be noted

in figure 2-4 that the tool flexural mode is subject to another avoided crossing with

one of the higher order dipole tool modes and therefore does not reach the Rayleigh

velocity associated with tool shear velocity in this example.) The presence of the tool

and borehole cause the tool flexural and borehole flexural to interact and exchange

character either side of an avoided crossing. This means that the borehole flexural

mode, which would have asymptoted to the formation shear velocity, now takes on

the tool flexural character at low frequencies and similarly the tool flexural mode

now resembles the wireline borehole flexural at low frequencies. The geometry of the

tool in relation to the borehole defines where the modes interact and for the example

shown in figure 2-4, it is around 3 kHz. At high frequencies the borehole flexural is

unchanged and tends to the Stoneley velocity.

The fundamental quadrupole screw mode asymptotes to the formation shear at

low frequencies and to the Scholte velocity at high frequencies. The higher order screw

mode is also excited and has similar asymptotes to the fundamental screw mode but



at much higher frequencies.
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Figure 2-4: LWD monopole and Dipole in a fast isotropic formation, full modal
interactions

LWD: slow formation, monopole, dipole and quadrupole

In the slow formation only the lowest order radial modes exist and therefore there is

no equivalent pseudo-Rayleigh mode or higher order flexural and screw modes in the

soft formation. Figure 2-6 shows all the monopole and dipole modes associated with

the LWD tool in a slow formation and figure 2-7 shows an enlarged plot of the modes

of interest to formation shear velocity evaluation. They are very similar to those seen

in the fast formation examples in section 2.3.2 but are at lower phase velocities due
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Figure 2-5: LWD monopole and Dipole in a fast isotropic formation, close up modes
influenced by formation shear velocity

to the change in formation parameters.

2.4 Velocity processing methods

Understanding how the phase velocities of the modes changes with frequency is im-

portant to extract compressional and shear velocities from the data. However, the

waveforms measured by the array of receivers contain contributions from several ex-

cited modes, so that interpreting this data is not necessarily straightforward. There

are two main methods for extracting velocities from the recorded waveforms: time-

domain methods and frequency-domain methods. Time-domain methods have the

advantage of being fast, robust, and simple to program, however they are only truly

accurate for non-dispersive modes. To account for dispersion, corrections to the time-

domain data can be applied, but these corrections are not always accurate. These

corrections work best with data that has a narrow range in frequency, so that sub-

stantial filtering of the data is often necessary. Frequency-domain methods are ideally
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Figure 2-7: LWD monopole and Dipole in a slow isotropic formation, close up modes
influenced by formation shear velocity

suited for dispersion curve analysis but are computationally expensive and require

careful interpretation.

2.4.1 Time-domain methods

The very first acoustic logging tools used in the industry had only two receivers and

formation velocities were estimated by knowing the distance between receivers and

the time-difference between first arrivals. This simplistic method is highly effective

for the first break compressional arrival with a high signal to noise ratio. Shear

velocities are very hard to estimate using this method as the shear arrival is obscured

by the initial compressional arrival in the seismic coda. Modern tools have an array of

receivers and time-domain semblance methods are used to extract formation velocities

Kimball and Marzetta (1984). These methods still work best if each seismic arrival

is isolated from the waveform before processing. This can be achieved by filtering

either in the time or frequency-domain. Isolating the correct arrival requires detailed
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understanding of the waveforms.

2.4.2 Frequency-domain methods

The advantage of frequency-domain methods is that they extract the full dispersion

curve over the range of frequencies excited by the tool. This helps not only to de-

termine what arrivals are present in the data, but also allows one to pick the correct

formation velocities for dispersive modes. Frequency-domain methods can be divided

into two types of analysis: model-based analysis and data-based analysis. Model-base

analysis such as Prony's method fit an assumed model to the data. They are only

truly effective if the correct model is used, for example, in Prony's method an expo-

nential functional form is assumed for the propagation function from one spatial point

to another corresponding to a single mode. One then chooses the number of modes

to include in fitting this model to the data, so that the number of modes relevant to

the interpretation is key and is not derived from the data but rather assumed at the

outset.

Data-based approaches such as frequency-semblance methods do not assume an

underlying model but rather directly lead to estimates of the compressional and shear

velocities from the data. However these methods are very sensitive to noise present

in the data, and require expert interpretation so that spurious results due to noise

contaminating the data are not mistaken as actual formation velocities.





Chapter 3

LWD and wireline data comparison

and analysis

3.1 Introduction

The high cost of operations during oil exploration requires that borehole measure-

ments be made not only accurately but also as quickly as possible. In recent years this

has meant a shift from traditional wireline tools, which operate only after a well has

been drilled, to newer LWD (logging while drilling) or MWD (measurements while

drilling) tools. The sonic logging tools are one class of tool which have been devel-

oped to operate in this manner. While the basic characteristics of both the wireline

and LWD tools remain similar, there are differences in tool design and measurement

methods that must be considered when interpreting their respective waveforms. The

LWD tools typically have a larger diameter than the wireline and therefore reduc-

ing the annulus between the tool and formation. Each tool is designed to operate

in specific frequency ranges to maximize certain modal responses and this must also

be considered when extracting velocities. Additionally the offset between the source

and first receiver in the LWD tool is approximately half of the offset in its wireline

counterpart. This is important when logging in very fast formations (Vp>4 kms- 1)

as modal arrivals may not be well separated.



Other differences include transducer design and damping mechanisms, used to re-

duce noise traveling along the tool. In Chapter 2 we discussed the mode shapes of the

respective tools and saw how the geometry of the tool and the formation properties

affect the measurement. It is obvious from the modes that, depending on the for-

mation, we cannot necessarily directly compare velocity picks between tools without

accounting for modal dispersion. Table 3.1 shows which arrival is used to estimate

compressional and shear velocities for the wireline and LWD tools and what frequency

ranges and source-receiver offsets are typically used.

The aim of this chapter is to compare velocity analyses, as calculated from LWD

and wireline waveforms in the same borehole. An independent study of the formation

velocities, as measured by each of the tools, will give a better understanding of their

respective capabilities and show what methods are appropriate for extracting forma-

tion velocities. The analysis here is further complicated by radially non-homogeneous

formations which cause dispersion in head waves and increase or decrease the dis-

persive characteristics in the normally dispersive modes. These issues are addressed

by modeling the effects of a radial velocity gradient for each tool and comparing it

with signatures seen in the data. While there is a body of work documenting wave-

form processing for both tools in homogeneous and non-homogeneous formations,

there have been few studies that document comparisons of the two tools, Boonen and

Tepper (1998). LWD sonic data analyses, without a wireline comparison, have been

published by Goldberg et al. (2003), Tang et al. (2002) and Market et al. (2002) and

sonic wireline published works include Chen (1988), Winbow (1988),Brie and Saiki

(1996) and Huang (2003). Radially varying formations for the wireline case have been

studied by Chan and Tsang (1983), Baker (1984)and Schmitt (1988a).

In sections 3.2 and 3.3 we compare the compressional and shear speeds as calcu-

lated by time and frequency semblance algorithms for the data set. Using modeling

techniques, section 3.4 looks at the effects of tool frequency ranges and geometry on

the measurement penetration into the formation. Section 3.5 shows markers in the



Wireline Logging While Drilling
LWD

Source-Receiver 3.35m (11ft) 1.37m (4.5ft)
Offset

Compressional Estimated from a head wave Estimated from a head wave
Velocity i.e. direct compressional speed i.e. direct compressional speed

frequency range 15-30 kHz frequency range 12-15 kHz

Shear Estimated from a slightly Estimated from a head wave
Velocity dispersive arrival which in fast formations and a

assymptotes to formation dispersive modal arrival, to
shear velocity at low which a correction must be
frequency added, in slow formations

frequency range 80Hz-5kHz frequency range 5-8kHz

Table 3.1: Overview of methods velocity extraction, the tool frequency range and
source-receiver offset for Wireline and LWD data used in this chapter.

data set that are a result of the tool measurement depth and the chapter summary

is in section 3.6.

3.2 Standard velocity processing of the data using

time semblance (STC)

Our data set consists of both LWD and wireline data collected over the same interval

in the same well. At each depth the tool source excites an acoustic response from the

formation and an array or receivers along the tool records the result. Depending on

the sampling rate and type of measurement made the waveforms are typically 5-40



microseconds long. It is these waveform arrays that are then processed at each depth

to estimate formation speed. This is known as full waveform logging as the entire

wavetrain can be used in the processing, although typically the shear, compressional

and modal arrivals are separated out and analyzed individually by looking at certain

speeds and arrival time ranges. There are both monopole and dipole logs measured by

the wireline tool and dipole logs from the LWD tool. The wireline data was collected,

before the well was cased, approximately ten days after the drilling was completed.

It should be noted that all the tool dimensions and source frequency ranges used in

this chapter are for the two particular tools used in this data set.

To extract the pertinent formation velocity using time domain methods, the wave-

forms are filtered in a certain frequency band and semblance time coherence, STC

Kimball and -larzetta (1984), is used to calculate the velocities at which there is

coherent energy across the array. This analysis is performed at each depth to give a

log of formation velocities. Before comparing the formation shear and compressional

velocities from each tool it is important to qualify which modes are present in the

data, and how waveform processing extracts the velocities, as summarized in table

3.1. Figure 3-1 shows some typical waveforms as measured by the wireline tool using

a dipole source.

For the compressional measurement, the wireline used in this data set uses a

monopole source operating between 8 and 20 kHz and the LWD tool, for this data

set, uses a dipole source between 12 and 15 kHz. Both tools aim to measure the

compressional head wave which is assumed to be non-dispersive, meaning that the

calculated speeds are the formation compression velocities and no further processing

of the data is needed.

For the formation shear measurement, both tools use a dipole source to excite the

borehole flexural mode. This mode can be measured in both fast and slow formations,

unlike the shear head wave which is only recorded in a fast formation. The wireline
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tool operates between 80Hz and 5 kHz and the LWD tool between 3 and 8 kHz. The

borehole flexural mode is dispersive and consistently asymptotes to the shear wave

velocity at low frequencies for the wireline case. For the LWD geometry the small an-

nulus between the tool and borehole wall cause the frequency band where the mode

is most dispersive to shift to lower frequencies than its wireline counterpart where

noise from circulation of drilling mud is also present. Additionally the tool flexural

mode interacts with the borehole flexural mode at low frequencies causing it to tend

to much lower velocities than the formation shear speed, as seen in chapters 2 and 4.

Using the LWD data between 5 and 8 kHz excludes the noise from mud circulation

and ensures that the tool flexural modes is not interacting with the borehole flexural

mode, but means a velocity correction must be made to account for the lower modal

shear speed in this frequency range. This correction is taken from forward modeling

based on the formation density and compressional velocity, the size of the borehole,

borehole fluid properties and the dispersed shear velocity picked from the flexural

mode.

In the following sections 3.2.1 and 3.2.2 we show the formation shear and com-

pressional speeds as calculated by the service provider using standard industry STC

processing. It should be noted that we were able to reproduce this result with very

good agreement (< 2%) using the same methods. Figure 3-2 shows the gama ray and

caliper measurements over the same interval. We can see from the caliper that the

borehole diameter is fairly consistent throughout the log, except at the very top and

bottom of the log. Large variations in borehole size can lead to erroneous velocity

estimations in frequency domain processing as the diameter of the borehole deter-

mines the cutoff frequency of the higher order modes and affects the frequency range

of greatest dispersion. If one assumes a constant borehole diameter it is sufficient to

pick one band of frequency for the velocity pick. If however there is great variation in

borehole diameter it may shift the frequency band where the interpretation is most

accurate. The caliper here shows a difference of the order of 1cm which is not large

enough to be of concern when processing the data. The gamma ray log is useful to



determine changes in lithology over the length of the borehole. We can see from the

correlation between the velocity and gamma ray logs that the changes in velocity are

lithologically driven. The gamma ray indicates that the formation is a shaley sand,

with the cleanest sands around 6000 ft (zone A) .

3.2.1 Shear Velocities from Data Set

The wireline tool has two arrays of receivers placed orthogonally on the tool, referred

to as the upper and lower arrays. These arrays give two formation velocity measure-

ments 900 apart azimuthally. If the tool is operating optimally and the data quality is

good, the differences between the velocities measured by the orthogonal receivers can

be attributed to either borehole ellipticity/irregularity or formation anisotropy. The

difference between the upper and lower dipole measurements can be seen in figure

3-3. Assuming the borehole is circular, the formation appears to be mostly isotropic

to slightly anisotropic (< 2%) with the exception of the zone between depths x6000

and x6200 ft where there are a few outliers around 10%. This is an important con-

sideration when comparing the LWD and wireline tools as the they turn while de-

scending/ascending the borehole, and take the acoustic measurements regardless of

azimuthal orientation. When comparing between tools, we consider areas where the

percentage difference between the velocity measurements are larger than the differ-

ence between the upper and lower dipole measurements. This is to avoid formation

anisotropy being the largest component in the velocity differences. If we consider

that the LWD measurement can be either greater, less than or the same as the wire-

line measurement we can see all three types of bias in the data. The larger singular

differences between the two measurements are likely due to mismatching in depths

of the tools measurements. The rate at which the borehole is drilled is not constant

and so the LWD takes measurements as a function of time. This leads to uneven

spatial sampling along the borehole. Conversely, wireline tools take measurements

as a function of depth and so are evenly sampled along the z-axis. For the purposes

of calculating the difference between the two logs the LWD data was interpolated to
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have samples at the same depths as the wireline, which can lead to the large spikes

seen in the right hand plot.

The zone between x6000 ft and x6200 ft shows the LWD is measuring velocities

slower than the wireline. The zones above and below this region at x5500 ft to

x6000 ft and x6200 ft to x6500 ft show the LWD measuring velocities faster than the

wireline. Lastly the zone below x7100ft shows the LWD and wireline to be closer in

velocity estimation. For the first zone, x6000 ft, the degree of anisotropy approaches

the differences measured by the two tools but for the rest of the zones, the anisotropy

estimated from the difference between upper and lower dipole cannot account for the

discrepancies. For the remainder of the thesis we will refer to these regions as zones

A, B and C, with zone A referring to data between x6015 and x6030 ft, zone B for

data between x6390 and x6405 ft and zone C for data between x7090 and x7100ft.

3.2.2 Compressional Velocities from Data Set

The compressional velocities taken from time semblance picks can be seen in figure

3-4. The two measurements show similar profiles with some slight differences. Apart

from spikes in the data due to depth mismatching the other, and more significant,

difference between the two velocity profiles is a consistent bias of around 2.5% with

the LWD tool measuring a slightly lower velocity. There was a 10 day delay be-

tween measurements and it it possible that some of the measured properties may

have changed over this period due to fluid invasion, mudcake formation etc., referred

to as alteration, Boonen and Tepper (1998). But the consistent bias along the log,

that does not change with changes in formation, could suggest it is not related to

formation properties.

Time lapse acoustic logs often show a difference in measurements, as pore and

drilling mud fluid equilibrate down hole. This is especially problematic where shales

are present as they can swell, altering both the geometry of the borehole and the

acoustic properties, Blakeman (1982), Wu et al. (1993). Although alteration is a
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Figure 3-3: Shear velocities for Wireline and LWD data (calculated from time sem-
blance), percent difference between wireline and LWD velocities (LWD-Wireleine),
and percent difference between LWD upper and lower dipoles (upper-lower). The
histograms on the right hand side show the percentage distribution of the difference
between the LWD and wireline shear velocities picked from time semblance (dark)
and, the percentage distribution of the difference in velocities as measured by the
upper and lower wireline dipoles (light). Note the shift of bias from LWD measuring
a slower velocity at x6000 ft, to the LWD measuring a faster velocity between x6200
ft, and x7100 ft and a mean bias of zero below x7100ft. (LWD is the reference)
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possible scenario which can account for the small discrepancies in velocities, it seems

unlikely the whole formation would produce a similar bias. If the bias was due to

alteration, and thus formation related, one would expect to see the difference between

the logs vary less uniformly as a function of depth. The peak of the distribution

of the velocity differences are similar to those between the lower and upper dipole

shear measurements, but the distribution has a larger variance indicating that there

are regions where the tool velocity differences are greater than those attributable to

formation anisotropy and therefore are the result of another mechanism.

3.3 Processing waveforms using a frequency sem-

blance approach and comparing with time sem-

blance results

Industry's preferred method of velocity analysis is semblance time coherence (STC)

because it is fast, robust and needs very little input from the interpreter. The algo-

rithm relies on a uniform event move-out in the waveforms, and is therefore accurate

for non-dispersive to slightly dispersive modes. It could however, give erroneous re-

sults for dispersive waveforms. This issue is usually overcome by filtering the data

in a narrow frequency band before the semblance processing and then correcting the

velocity pick from forward modeling. This correction is sufficient if the mode is well

understood, but as we will see later in this chapter, there are many parameters which

can alter the shape of a mode making standard corrections difficult to calculate ac-

curately.

One way around this problem is to perform the semblance calculation in frequency

rather than time. A full frequency semblance allows us to plot the phase velocity as

a function of excited frequencies, giving more information about the mode and con-

sequently formation properties. The downside to extracting the full mode is that it

is computationally expensive and the result is harder to interpret. There is no quick
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algorithm to pick the correct phase velocity and each plot must be interpreted indi-

vidually. While this method is currently unsuitable for large amounts of data it can

be a useful interpretation tool if performed at a few key depths. The algorithm used

in this paper to extract the frequency semblance log is described in Rao (2005).

The uncertainty associated with these methods can be quite large depending on

the spread of the coherent region on the semblance figure. For completely undispersed

noise free wave forms the time semblance result is well defined. The presence of noise

or dispersion causes a spread of the coherence in semblance space, therefore increasing

the uncertainty of the velocities.

We have isolated three zones of interest from the velocity logs picked from time

semblance, centered around x6026 ft, x6400 ft and x7100 ft, zones A, B and C.

For each zone we reprocess some of the waveforms from using both time and fre-

quency semblance analysis for both the compressional head wave and formation flex-

ural mode.Figures 3-5 , 3-6, 3-7 , 3-8, 3-9 and 3-10 show the compressional and shear

velocity picks from reprocessed data in zones A, B and C both in time and frequency.

In these plots the both the LWD and wireline data are shown and a distribution

of the differences between the velocity estimations are shown as a histogram in the

lower portion of the plot. It can be seen for most of the data that the mean difference

between the two measurements is reduced when the frequency processing is used.

Figures 3-11, 3-12 and 3-13 show semblance plots from one depth within each of the

zones. It should be noted however that the discrepancies between the measurements

fall into the region of uncertainty as given by the coherent semblance blobs seen in fig-

ures 3-11 to 3-16 suggesting that any difference between the two velocity estimations

can be accounted for by the uncertainty inherent to processing methods. While we

do not discount that the measurements overlap in the region of uncertainty in some

of the zones, we still believe that the physical tool properties play a significant role in

the depth of investigation. We therefore model cases consistent with the biases seen

in the three reprocessed zones as the changes in velocities between the two processing



methods are consistent.

From the modal analysis seen in chapter 2 and the knowledge that the refracted

arrivals are non-dispersive we know what to anticipate for radially homogeneous for-

mations. The discrepancies between the tool measurements in zones A, B and C

indicate that the formation may not have the same radial velocity profile in all zones.

This can be inferred by the different biases between the tool measurements in the

three zones. We assume, and will go on to show in section 3.4, that the tools mea-

surements penetrate into the the formation at differing radial depths. It is therefore

important to understand the character of the formation radial velocity profile. The

frequency and time semblance comparisons shown in this section are useful for two

reasons. Firstly we see the difference in velocities as picked by the two methods and

secondly we extract the full mode from the data, allowing us to see any deviation from

a radially homogeneous model. Because the compressional refracted arrival, in hard

formations, should be non-dipersive for the radially homogeneous case it is the easier

arrival to analyze in terms of unexpected dispersion. The formation shear flexural

mode is also affected by a radial velocity gradient in the formation but is harder to

interpret as it is already a dispersive mode. The main objective of this section is to

show the difference between the time and frequency semblance velocity picks saving

the discussion of radial velocity profiles for the following section and referring to them

here only qualitatively.

3.3.1 Compressional head wave in zones A, B and C, time

and frequency semblance.

First we compare the wireline monopole at all three depths in the semblance plots,

shown in figures 3-11, 3-12 and 3-13. Table 3.3.1 gives the time and frequency sem-

blance picks for each of the three chosen depths. It is important to compare not only

the difference between the time and frequency velocity picks for each tool but also

to look at the change in bias for the tool measurements when processed with fre-
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Figure 3-6: Time and frequency semblance shear velocity picks for wireline and LWD
data in zone A. The histograms represent the distribution of differences between the
measurements, with LWD used as the reference. The mean difference between the
two velocity picks over the shown depths is given in the title of the historgram.
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Figure 3-7: Time and frequency semblance compressional velocity picks for wireline
and LWD data in zone B. The histograms represent the distribution of differences
between the measurements, with LWD used as the reference.The mean difference
between the two velocity picks over the shown depths is given in the title of the
historgram.
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Figure 3-8: Time and frequency semblance shear velocity picks for wireline and LWD
data in zone B. The histograms represent the distribution of differences between the
measurements, with LWD used as the reference. The mean difference between the
two velocity picks over the shown depths is given in the title of the historgram.
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Figure 3-9: Time and frequency semblance compressional velocity picks for wireline
and LWD data in zone C. The histograms represent the distribution of differences
between the measurements, with LWD used as the reference. The mean difference
between the two velocity picks over the shown depths is given in the title of the
historgram.
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data in zone C. The histograms represent the distribution of differences between the
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quency opposed to the time semblance. For example at x6026ft the LWD measured

a slower velocity than the wireline when the time semblance velocity was calculated

but with the frequency semblance method the LWD now measures a faster velocity.

At x6400ft and x7100ft the bias does not change. This bias shift can also be seen at

certain depths in the reprocessed sections in figures 3-5, 3-7 and 3-9.

We now compare the semblance plots qualitatively. For x6026 ft, the phase ve-

locity for the compressional refracted mode increases very slightly with frequency,

indeed this can also be seen on the time semblance as the second later arrival, al-

though it is not quite so obvious. At x6400 ft we see the opposite behavior: the

dispersion indicates that the higher frequencies are decreasing in phase velocity, this

is again apparent on the time semblance, and a second small area of coherence can

be seen at around 2 ms. This is typical of STC results when a dispersive waveform

is present. At the third depth of x7100 ft, the mode appears to be constant in phase

velocity, which is what is expected from the compressional head wave. Assuming

that lower frequencies see further into the formation than high frequencies, the plots

suggest that there is a fast to slow radial velocity gradient at x6026 ft, a slow to fast

radial velocity gradient at x6400 ft and no radial velocity variation at x7100 ft. For

the LWD high frequency dipole, which is also measuring the compressional refracted

wave. The frequency plots show a similar trend to the wireline but they are not so

pronounced. The time semblance, however do not show dispersion.

3.3.2 Formation flexural mode in zones A, B and C, time

and frequency semblance.

The shear dipole flexural mode is somewhat more complicated to interpret. When the

LWD tool is present the mode follows the shape of the tool mode at low frequencies.
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Figure 3-11: Compressional velocity picks in Zone A using frequency and Time sem-
blance analysis. The wireline data are shown in the top row and the LWD in the
bottom row. The white dashed lines on the left hand column indicate the compres-
sional velocity as picked from frequency semblance. The black dashed lines on the
right hand column denote the industry pick from time semblance.

WIRELINE WIRELINE LWD LWD Formation radial
time pick freq. pick time pick freq. pick velocity profile

[m/s] [m/s] [m/s] [m/s] near -- ,+ far

Zone A 2833 2820 2783 2850 Fast --, Slow
x6026ft

Zone B 2180 2139 2150 2105 Slow -- Fast
x6400ft

Zone C 2450 2431 2442 2422 radially homogeneous
x7100ft
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Figure 3-12: Compressional velocity picks in Zone B using frequency and Time sem-
blance analysis. The wireline data are shown in the top row and the LWD in the
bottom row. The white dashed lines on the left hand column indicate the compres-
sional velocity as picked from frequency semblance. The black dashed lines on the
right hand column denote the industry pick from time semblance.
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Figure 3-13: Compressional velocity picks in Zone C using frequency and Time sem-
blance analysis. The wireline data are shown in the top row and the LWD in the
bottom row. The white dashed lines on the left hand column indicate the compres-
sional velocity as picked from frequency semblance. The black dashed lines on the
right hand column denote the industry pick from time semblance.
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Table 3.3: Shear Velocity.
picks for LWD and wireline.

Comparison of time and frequency velocity semblance

Figures 3-14, 3-15 and 3-16, show the formation flexural mode in time and frequency

semblance, for the three depths of interest, for both the wireline tool (top row) and

LWD tool (bottom row). Table 3.3.2 shows the velocity picks for the two methods

for the LWD and wireline data at the three depths of interest. Once again it is

important to not the change of bias between the LWD and wireline measurement

when the frequency semblance method is used for the data in zone A.

In the wireline frequency semblance figures (left hand side, top row), (figures 3-14,

3-15 and 3-16) the formation flexural mode for a homogeneous formation is overlain

on the figure, it is the white solid line. Again, comparing across the depths, we can

see for the wireline in zone A that the semblance plot indicates some radial velocity

variation. Between 2 and 4 kHz the semblance indicates an increase in phase velocity

which is not consistent with the dipole flexural mode, which should be flat in this

region. In zone B the semblance shows the flexural mode behaving as expected but

does not show any coherence above 4kHz.In zone C ft the semblance plot follows

the overlain dipole flexural mode all the way out to 10 Khz and indicates that the

WIRELINE WIRELINE LWD LWD Formation radial
time pick freq. pick time pick freq. pick velocity profile

[m/s] [m/s] [m/s] [m/s] near --+ far

Zone A 1350 1463 1430 1258 Fast -- Slow
x6026ft

Zone B 720 683 715 680 Slow -, Fast
x6400ft

Zone C 1026 1026 1017 1017 radially homogeneous
x7100ft



formation is indeed homogeneous at this depth.

Lastly we qualitatively compare the LWD formation flexural mode across all three

depths. This is the hardest plot to interpret due to the complicated interaction of

dipole flexural and tool modes. The modal phase velocity was picked at 4Khz and

a static correction (calculated from forward modeling) added, which gave a first es-

timate of the formation shear velocity. This formation velocity was then used to

generate the dipole (white line), quadrupole (green line) and hexapole (black line)

modes for a homogeneous case and these were then compared with the original sem-

blance plot. The shear velocity was then adjusted and the modes of the homogeneous

model re-calculated until a good fit was found. In zone A, figure 3-14, the dipole

and hexapole modes were both excited. This can also be seen on the time semblance

plot with two areas of coherence at 1 and 2 ms. This could cause confusion if a

single velocity is to be picked from the time semblance as in the standard processing

chain. In zone B, figure 3-15, the area of coherence is again diminished as it was in

the wireline dipole case. Here it appears that the dipole and quadrupole have been

excited. Lastly in zone C, the dipole appears to be the only excited mode, as can be

clearly seen between 4 and 10 kHz. The time semblance is not easy to interpret, as it

has two clear areas of coherence at different phase velocities. The excitation on the

hexapole is somewhat unusual and may be caused by the tool not being centered in

the borehole.

3.4 Depth of Investigation for wireline and LWD

tools

Before we further compare the LWD and wireline logs with velocities picked from

frequency semblance, we take a closer look at the effects on the waveforms of radial

velocity gradients surrounding the borehole. From the initial analysis of the data

seen in the last section we identified three scenarios, one of increasing velocity, one
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Figure 3-14: Shear velocity picks in Zone A using frequency and time semblance
analysis. The wireline data are shown in the top row and the LWD in the bottom row.
The white dashed lines on the left hand column indicate the shear or compressional
velocity as picked from frequency semblance. The black dashed lines on the right hand
column denote the industry pick from time semblance. The calculated modes for the
appropriate tool are overlaid for the frequency semblance images in the dipole shear
cases, the white solid line indicates the dipole mode, the green solid line indicates the
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Figure 3-15: Shear velocity picks in Zone B using frequency and time semblance
analysis. The wireline data are shown in the top row and the LWD in the bottom row.
The white dashed lines on the left hand column indicate the shear or compressional
velocity as picked from frequency semblance. The black dashed lines on the right hand
column denote the industry pick from time semblance. The calculated modes for the
appropriate tool are overlaid for the frequency semblance images in the dipole shear
cases, the white solid line indicates the dipole mode, the green solid line indicates the
quadrupole mode and the black line the hexapole mode.
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Figure 3-16: Shear velocity picks in Zone B using frequency and time semblance
analysis. The wireline data are shown in the top row and the LWD in the bottom row.
The white dashed lines on the left hand column indicate the shear or compressional
velocity as picked from frequency semblance. The black dashed lines on the right hand
column denote the industry pick from time semblance. The calculated modes for the
appropriate tool are overlaid for the frequency semblance images in the dipole shear
cases, the white solid line indicates the dipole mode, the green solid line indicates the
quadrupole mode and the black line the hexapole mode.
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of decreasing velocity and one where the formation is radially homogeneous. In this

section we model the response of the tool corresponding to these scenarios.

Both tools measure in a different frequency range and have different offsets between

the source and first receiver. This implies that there will be a difference between the

tools' respective depths of investigation for any refracted arrivals. As a general rule

of thumb, waves penetrate deeper into the formation as the source receiver separation

increases, Baker (1984). Also the increased wavelength of lower frequencies implies

that they will probe deeper into the formation, Plona et al. (2002). These general

approximations point to the fact that the tools are measuring the formation at dif-

ferent radial distances from the borehole wall. These effects can be separated into

those caused by the radial geometry and frequency of the tool and those caused by

the radial geometry, frequency and source receiver offset combined. In this section we

have modeled both scenarios to break down their respective effects on the measured

borehole response.

3.4.1 Effects of frequency and radial variation on depth of

investigation

To formally quantify the respective tool's depth of investigation due to frequency and

radial variation we calculate the phase velocities of the compressional head wave and

flexural mode by solving the wave equation in a radially layered borehole and sur-

rounding formation. Each layer has a compressional velocity and shear velocity and

density corresponding to the type of material. The boundary conditions are defined

for fluid-solid and solid-solid interfaces depending on the layers and as many layers

as needed to model the radial velocity profile can be added.

Radial variations in velocity around the borehole wall can be either increasing or

decreasing with radial distance. Figure 3-17 and 3-18 show the radially increasing

velocity models for the fast (hard) and slow (soft) formations modeled in this section.

We have not shown similar plots for the decreasing velocity case as these models were



just a flip from left to right of the formation parameters shown in figures 3-17 and

3-18. The last layer, i.e. the layer furthest from the borehole, extends to infinity.

For the LWD model there was an additional steel layer within the borehole with an

inner radius of 2.4 cm and an outer radius of 8.6 cm. The borehole radius is 10.5

cm [ 8.75"], which is similar to the radius of the borehole in the real data. A forma-

tion density of 2600 g/cm3 is used throughout the model. Each velocity layer in the

model is 10 cm.We will follow the terminology of Baker (1984) where an increasing

radial velocity it termed "damaged" and a decreasing radial velocity is "flushed". In

this terminology both of these terms refer to an invaded zone which is distinct from

alteration. Alteration is used to describe changes in shale over a period of time as

described by Blakeman (1982) and Hornby and Chang (1985). The goal of this paper

is not to describe the processes responsible for a radial velocity gradient but to show

how they can be recognized in the logged data.

In the following sections we will look at each model separately. We have four

cases, radially increasing velocites, fast and slow formations and radially decreasing

velocities, fast and slow formation. For the increasing models we look at both the

compressional head wave and formation flexural waves. For the radially decreasing

model we examine only the formation flexural mode as the measured refracted head

wave is trapped in the inner layer and behaves as if there is a homogeneous formation

surrounding the borehole.

Fast Velocity Model

r/s

r/s
Vs

Vp

0.1 m

Figure 3-17: Radially increasing fast formation velocity model.
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Figure 3-18: Radially increasing slow formation velocity model

Damaged model, radially increasing velocity.

Compressional refracted arrival.

Figure 3-19 shows the effects of radially increasing velocity model on the wireline and

LWD compressional head wave. For the compressional velocities, where the tools aim

to measure the refracted compressional arrival, there is no dispersion associated for

this wave in a homogeneous model. In the homogeneous case the picked velocity does

not change with frequency. The velocities are indicated on figure 3-19 by the solid

and dashed horizontal lines, at 2078 and 2468 for the slow model, and 2771 and 3160

for the fast model. The effects of radial layering are clearly seen in the case of the 10

layer model. The normally non-dispersive refracted arrival is now strongly dispersive

and asymptotes to the far borehole velocity at low frequencies and the near borehole

velocity at high frequencies. These refracted waves are distinct from the leaky-P mode

which shows similar dispersive characteristics but whose cutoff frequency is higher,

at around 6 kHz, and asymptotes to the fluid velocity at high frequencies. This

form of dispersion in a compressional arrival would therefore be highly indicative of a

formation with a radially increasing velocity profile and is similar to the compressional

arrival seen in figure 3-13 for the wireline frequency semblance analysis. It is difficult

to interpret the data more quantitatively as the shape of the dispersion caused by the

radial velocity gradient is highly dependent on the layer width, number of layers and

contrast between layers.

m/s
m/s
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Figure 3-19: Calculated dispersion curves for the compressional wave for the wireline
and LWD tools using the layered model shown in figures 3-17 and 3-18. The dashed
lines indicate the compressional refracted mode for the homogeneous case using the
parameters in the first and last layer in each model and the blue stars show the
dispersion calculated for the faster 10 layer model, while the blue squares show the
curves for the slower ten layer model.

Formation shear flexural mode for wireline and LWD.

In this section we look at the effects of the radially increasing velocity models on the

formation flexural modes for both the wireline and LWD case. Figure 3-20 shows

the results from the modeling using the same models shown in figures 3-17 and 3-

18 but with 1cm layers. The shear flexural mode's depth of investigation cannot

be estimated using the same method. The flexural mode is already dispersive in a

homogeneous medium, so that when the layered model is added there are additional

dispersive effects. To overcome the problem of separating the dispersive effects, and

to get an estimate of the depth of investigation, an alternative method was used. The

dashed lines in figure 3-20 show the wireline and LWD dipole shear flexural modes for

5 homogeneous model cases, for both the fast (upper curves) and slow models (lower

curves). The velocities in the homogeneous cases are those used in the 1st, 3rd, 5th,

7th and 9th layers. The stars show the respective formation flexural mode for the 10

layer velocity model shown in figure 3-17 and 3-18. The dashed lines, starting from

the lowest line in each fast and slow model case, can be identified with depths of

investigation of 1cm, 3cm, 5cm, 7cm and 9 cm respectively. For the wireline dipole



case we can see that at frequencies below 2 kHz the tool is probing 10 cm or more

into the formation, at 3 kHz the tool is probing 8 cm, at 5 kHz 4cm and by 10 kHz it

is around 1cm. This is true for both the fast and slow models for the wireline dipole

flexural mode. The LWD flexural mode however probes much closer to the borehole

wall at all frequencies. From the dispersion shown in the bottom plot of figure 3-

20, the LWD tool probes only a little further than the slowest layer surrounding the

borehole wall for both the fast and slow velocity model. At low frequencies ( 1-2

kHz) the LWD tool probes about 2 cm into the formation, by 3kHz the depth of

investigation is only as far as the first layer in the model, which is 1cm. This is a

qualitative argument and the absolute values of the depth of investigation only serve

to illustrate the trends of the tool sensitivities. The parameters used in these models

were comparable to those found in the data set allowing us to draw comparisons,

which may not be appropriate in an absolute sense for other data sets.

Flushed model, radially decreasing velocity

In this section we reverse the order of the layers in model used in the previous section

to create a flushed model ie the velocity in the layers decreases away from the bore-

hole. We have computed the dispersion curves for the slower velocities, for the LWD

and wireline dipole. We do not show the dispersion curves for the wireline monopole

or LWD high frequency dipole as these modes probe only the first layer and show

no dispersion. This is because the waves are refracted away from the borehole and

so only a leaky compressional mode is recorded by the tool. This will be discussed

more in the next section where the full synthetic seismogram is shown and some of

the effects of the flushed model can be seen.

Formation flexural mode for wireline and LWD

In a similar analysis to the flexural modes seen in the last section we plot the radi-

ally varying model results over five homogeneous cases. Figure 3-21 shows the dipole

flexural mode for both tools. The dashed lines represent the 1st, 3rd, 5th, 7th, and
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Figure 3-20: Calculated dispersion curves for the shear modes as measured by the
wireline and LWD tools using the layered model shown in figures 3-17 and 3-18. The
shear flexural mode dispersion is shown in the top plot for the wireline tool and, the
bottom plot for the LWD tool. Here the dashed lines indicate the shear flexural mode
for a homogeneous model with the properties of the 1st, 3rd,5th,7th and 9th layers in
figure 3-17 (higher velocities) and 3-18 (lower velocities), The red stars indicate the
dispersion curves as calculated for the 10 layer model but with 1cm layers. Note how,
for the LWD case the layered model dispersion (red stars) fall almost exactly on the
homogeneous dispersion curve for the parameters in the 1st layer, indicating the tool
sees very close to the borehole
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9th layer homogeneous models with the 1st layer being the fastest. We can see from

overlaying the dispersion curve from the 10 layer model that the mode probes only

into the first layer for both tools above 4 kHz. The wireline flexural mode asymptotes

to the 10th layer shear velocity, suggesting its depth of investigation is further than

10 cm below 4 kHz.

Given the frequency component of real data measured by the LWD and wireline

wireline dipole flexural shear velocities
I O1
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I IVV

1000

E
900

ann
0 2 4 6 8 10

[khz]

Figure 3-21: Calculated dispersion curves for the shear modes measured by the wire-
line and LWD tools. These modes are similar to those shown in 3-20 except the
10 layer model was reversed so that the radial velocity is decreasing and 1cm layers
were used. The results are for the fast model. The dashed lines show the calculated
dispersion for the homogeneous case using the properties in the 1st, 3rd, 5th, 7th and
9th layers in figure 3-17. Note how at higher frequencies, both the wireline and LWD
see close to the higher velocities nearest to the borehole wall and therefore do not
penetrate very deeply.

tools, the compressional measurements should be comparable. However there may

be discrepancies in the shear measurement, depending on the radial velocity profile
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surrounding the borehole. If the radial velocity is increasing i.e. formation is "dam-

aged", the wireline measurement will be faster. If the radial velocity is decreasing

i.e. formation is "flushed", the wireline and LWD will be directly comparable. The

comparison is hard to make however, as a reading on the LWD flexural mode below

5 kHz is influenced by the tool mode. This influence happens at higher frequencies

for the fast to slow model. As a result the flexural mode for the LWD in the flushed

model does not have the peak at around 1.75 KHz like those for the homogeneous

case. If the waveforms were filtered below 4 kHz the pick made from time semblance

would be too slow and the correction from a forward model of the homogeneous case

is insufficient. If it is made at higher frequencies the tool is really only seeing the

fastest layer and the would therefore overestimate the formation shear velocity.

Effects of source receiver offset on depth of investigation

In the previous sections we showed the calculated dispersion for a radially layered

model. The results showed the phase velocities over all frequencies, but did not in-

clude the effects of source-reciever separation. Using a ray-path analogy, the deepest

penetration into the formation comes from the greatest source-receiver offset. Stud-

ies on the effect of mud cake on borehole seismic signatures use ray-path models to

explain changes in acoustic measurements Baker (1984), Blakeman (1982) and Baker

and Winbow (1988). The consensus is that any deviation from a radially homoge-

neous formation can be seen in the data as a function of source receiver offset. The

conclusion is that the wireline tool will probe further into the formation at any given

frequency due to its longer offset.

In this section we have modeled the two tools using a wavenumber integration

scheme that takes into account the source offset on each tool. Because the wireline

flexural mode is already probing deeper into the formation we can assume that the

source receiver offset will enhance this effect and we do not model it again in this

section. The compressional refracted wave however showed the converse behavior

and so we have included modeling of this mode. The waveforms generated here not



only take into account the borehole geometry and formation parameters but they also

include the tool's source (assumed to be a ricker wavelet) and the offset to the first

receiver.

Damaged model, radially increasing velocity

Slow Velocity Model

Vs

Vp

r/s

r/s

0.1 m

Figure 3-22: Slow velocity model used for depth of penetration studies, i.e. slow
formation. Radially increasing velocity.

Figure 3-23 shows the waveforms generated for three models. First a homoge-

neous formation with Vp=2295 Vs=1325 m/s, second a homogeneous formation with

Vp=2078 Vs=1200 m/s and lastly the velocity layers shown in figure 3-22. All models

use a borehole radius of 0.105m [;8.75"] . We have used a broad source spectrum to

make the dispersion curves in the bottom plot clear.

In all cases the addition of slower layers around the borehole wall causes a delay in

the arrival of the first break. There is an increase in amplitude of the P-wave and an

increased ringing in the monopole compressional head wave and the dipole shear flex-

ural mode. Both of which are caused by constructive interference from waves trapped

in successive layers. These results are similar to those shown by Baker (1984) and

Plona et al. (2002).

By looking at the close up figure of the wireline tool waveforms, it is clear that

the layered model waveforms arrive somewhere in between the fast and slow model,

but closer to the slow model. The LWD waveforms however show that the layered



model does not really differ from the slow homogeneous case. The waveforms overlie

each other almost perfectly suggesting that the layered model is behaving as if it were

seeing the first layer only. The dispersion curves clearly show the shift from the low

frequencies measuring further into the formation and seeing the faster velocities. The

homogeneous compressional refracted wave is non-dispersive and follows along the

red dashed line for the faster homogeneous model and the green dashed line for the

slower. It is worth noting that, at 10 kHz and above, the LWD tool is only probing

the slowest layer, which is what we observe in the waveforms.

The wireline tool however probes some distance into the formation out until about

25 Khz. We can conclude from this plot that at very low frequencies both tools

penetrate into the furthest layer of the formation but the compressional velocity is

typically picked at around 15-20 Khz. This would mean that we could expect the

wireline tool to give a faster velocity than the LWD if the formation velocity was

increasing radially.

Radially decreasing model

Figure 3-24 is similar to figure 3-23 except that the velocities are reversed, giving a

radially decreasing velocity profile (the fast to slow model). Here we see a decrease

in the wireline P monopole amplitude and no increased ringing in the coda. The de-

crease in P amplitude is to be expected: the wave train is leaky and radiates energy

into the outer layers. Waves that are in the slower and further layers remain trapped

and are not refracted back into the borehole as there is no critical refraction along

these boundaries.

The arrival of the refracted wave for the layered model is again in between the

fast and slow homogeneous models but this time is closer to the fast arrival. The

LWD waveforms show a similar arrival and are also closer to the fast homogeneous

model. There is no diminished amplitude for the LWD dipole case. The dispersion

curves show that the wireline tool is able to see beyond the first layer into the slower



Wireline

1.5 2 2.5 3 3.5
Time (ms)

LWD

E 3.50

i3 3.35

4 4.5 5 1.5

E

C:
CUca4-.CO
0

E

0.5 1 1.5 2 2.5
Time (ms)

2400

2200

2000

1800(0

3 3.5 4

E 1.52

Ca
CW
D 1.370

. ............ I ..... .... ................... ................ .......... I 1 0 w D. . LWDI

- Wireline........
......

15
[kHz]

20

Figure 3-23: Waveforms for the radially increasing velocity model for the wireline and
LWD compressional refracted wave.. Homogeneous models; Red, Vp=2295 Vs=1325
and green, Vp=2078, Vs=1200 m/s. Black refer to the layered model shown in
figure 3-22. The right hand plots show a close up of the first arrivals shown on the
left. Note how the arrival of the layered model in black falls between the fast and
slow homogeneous refracted arrivals for the wireline tool but arrives with the slow
homogeneous arrival for the LWD case. This suggests that the LWD tool measures
close to the borehole wall for the compressional dipole. The bottom plot shows the
dispersion curves as extracted from the waveforms. The red and green dashed lines
correspond to the expected dispersion curve for the homogeneous cases shown in the
waveforms plots. Above 10 kHz the LWD tool sees close to the borehole wall, while
the wireline sees further due to the greater source offset.

2
Time (ms)

LWD

5

30

Wireline



layers but only at very low frequencies. Above 10 kHz both tools see only the first

and fastest layer. The LWD dipole compressional arrival is weak and not observed

below 8 Khz and quickly asymptotes to the velocity in the inner and fastest layer.

To summarize this section, we have shown that the tools can measure at different

depths into the formation depending on their frequencies and or their source-receiver

offsets. Traditional thinking is that both tools should measure the same velocity and

any difference between the two measurements was due to temporal changes in for-

mation over the time period between measurements. While we do not discount that

there are effects on the borehole over time there are also arguments for the tool mea-

surement radial penetration. In an effort to summarize the salient points seen in the

preceding section we have created table 3.4. Here we briefly compare the expected

tool bias for the three proposed models in zones A, B and C, i.e increasing radial

velocity, decreasing radial velocity and radially homogeneous.

3.5 Signatures from the real data

We have established that the tools have differing depths of investigation and that

differences in processing may account for small differences between the measured ve-

locities in each tool. In this section we re-process waveforms taken from zones A, B

and C. Figure 3-25 shows the velocity picks from the time semblance thin solid lines,

and the frequency semblance picks, dashed lines with markers. As mentioned in a

previous section the frequency semblance is computationally expensive so that only

seven depths were picked and processed for each zone. If we return to the earlier

hypothesis that there is a radially increasing velocity gradient in the first zone, we

can reinterpret the velocity picks given the modeled results in section 3.4.1. The com-

pressional mode shows that there is better agreement between the LWD and wireline

tool using the frequency semblance. The velocities were picked at 15kHz and so there
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Radial velocity profile
near --* far fast -- slow slow -* fast homogeneous

borhole wall.

Compressional LWD e Wireline Wireline > LWD
velocity due to leaky nature of depending on

compressional mode in frequency band of LWD = Wireline
this type of formation, measurement. As

both tools see close a result of
to borehole wall longer source-

receiver offset.

Shear LWD e Wireline Wireline > LWD
velocity assuming the due to both

appropriate correction mode shape and LWD = Wireline
is made for the increased source- assuming

the LWD dispersion. receiver offset appropriate
If not Wireline > LWD correction to LWD.
(due to underestimating

LWD correction)

Table 3.4: Summary of
seen in zones A, B and

section 3.4 in regards to the
C

proposed radial velocity profiles
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Figure 3-25: Velocity picks from time and frequency semblance in the three zones of
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should be good agreement at this frequency. It would have been informative to also

compare the velocities at lower frequencies to see if they diverge with the wireline

tool measuring lower velocities. This analysis is not possible with the current data, as

the excited frequencies do not extend below 12 kHz for the LWD case. The frequency

semblance in figure 3-11 show a lowering velocity at around 6kHz which is consistent

with the modeled case in section 3.4.1.

The shear velocity picks for this zone can be seen in the upper right hand plot in

figure 3-25. Here the LWD and wireline tools have very good agreement using the

frequency semblance picks. This is much improved over the large 15% difference that

is seen in the picks from the time semblance. The frequency semblance picks were

made at 4kHz for both the wireline and LWD. From figure 3-21 we can see that the

two measurements should agree at this frequency. At 5 kHz both tools are seeing

only into the first few centimeters around the borehole and when the tool dispersion

correction is applied to the LWD velocity pick both tools are measuring the same

formation velocity.

In zone B, _ x6400 ft, the hypothesis is that the surrounding formation is dam-

aged, i.e. an increasing radial velocity profile. Here the re-processed velocity picks

for the compressional refracted wave show that the wireline is probing a faster ve-

locity layer. The results from section 3.4.1 show that this should be the case for a

radially increasing velocity model. The dispersion curves in figure 3-23 indicate that

the wireline tool is probing further into the formation and is therefore sensitive to

a faster velocity layer. The shear velocity picks show a similar behavior with the

wireline again measuring slightly faster velocities. Returning to figure 3-20 we can

deduce that the LWD flexural mode is only sensitive to velocities very close to the

borehole wall, however the wireline tool in the slow to fast model sees further into

the damaged zone. Again these velocity picks were taken at 5 kHz.

In zone C, at x7100 ft, there appears to be a formation that has a homogeneous



velocity profile. The velocity picks from the frequency and time semblance are seen

in the third row of figure 3-25. In the homogeneous case both the LWD and wireline

tool should show good agreement for both the compressional and shear pick. There

should be no dispersion seen in the refracted wave and the flexural waves for both the

LWD and wireline should have only the dispersion effects caused by the geometry of

the tool and borehole. Lastly we expect that the time and frequency semblance picks

should also show good agreement.

The frequency semblance reveals subtleties in the data that are otherwise missed

with the time semblance approach. Without the correct velocities it is hard to inter-

pret this data set in terms of the tool measurement penetrations discussed in section

3.4. For a final verification of the radial profiles we have picked the velocities from

the time semblance for the first and last 4 receivers in each of the zones of interest. It

is well established, for the refracted waves, that the greater the offset between source

and receiver, the greater the depth of penetration of the waveforms. This means that

the velocity pick from the last four receivers should see further into the borehole wall

than the first four. The difficulty with this type of analysis is that the signal to noise

ratio is significantly reduced by using only four waveforms in the semblance codes.

The time semblance still gives meaningful results, provided the data quality is good,

but the frequency semblance can be much more difficult to interpret. Because of this

restriction, figure 3-26 shows the compressional refracted picks for the LWD and wire-

line tools from the time semblance only. It is the relative velocities between the first

and last receivers rather than the absolute value of the velocity pick that is important.

Returning once more the three models hypothesized from the frequency semblances

seen in figures 3-11 to 3-16 we can compare our expectation with the velocities seen in

figure 3-26. If the semblance velocity pick from the first four receivers is greater than

that from the last four we assume a radially decreasing model, if the first four show

a slower velocity than the last four we assume a radially increasing velocity and if

the first and last receivers show similar velocities we assume a homogeneous velocity

profile. Zone A shows a radially decreasing velocity behavior, the second set of depths



at zone B show a radially increasing behavior and the last depths at zone C show a

more homogeneous velocity profile, which all concur with our initial predictions from

section 3.3.

3.6 Discussion and Conclusions

Separating the elements of the case study into parts we can draw several conclusions.

The first of which is that the method of velocity analysis greatly impacts the mea-

surement in areas where the velocity around the borehole is not homogeneous. The

comparison between the time and frequency semblance picks is shown in section 3.3

and figures 3-5 to 3-10. We see that while there are still discrepancies between the

wireline and LWD measurements, they are reduced when frequency domain process-

ing methods are applied. It is noted that the dispersive effects of a radial velocity

gradient can cause errors in the time semblance pick which are accounted for with

the frequency semblance.

Secondly it is advantageous to have the full shape of the mode in the region of the

excited frequencies as this can reveal information about the formation velocity profile.

The differences between the wireline and LWD measurements after processing in the

frequency domain can be explained in terms of varying radial velocity profiles. If the

time domain velocity picks are used there is not model that can correctly explain the

differences in tool measurement at all depths in the data. This is further validation

that the frequency domain methods give a more accurate estimate of formation veloc-

ities. We have not proposed a mechanism for these velocity gradients but have shown

that if they exist it is likely that the wireline and LWD tools will measure different

velocities. This second conclusion is very important when comparing the two data

sets. It would be a mistake to expect the tool measurements to concur exactly as

they are effectively measuring at differing radial depths and small deviations between

velocity picks are to be expected. In section 3.4, where we attempt to quantify the

depth of investigation we show how the differing velocity profiles also alter the mea-
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surement penetration. In the case of the fast to slow model, the refracted P wave

become trapped in the high velocity zone surrounding the borehole therefore reducing

the amplitude of the measured refracted wave by the tool. In the case of the radially

increasing velocity profile this is not the case and the P response measured by the tool

is not attenuated. It is of further interest to note the effects of the tool geometry on

the modes, without taking into account the source offset distance, as in section 3.4.1.

Here we see that the LWD tool actually probes further into the formation for the P-

wave but this situation is reversed when the z-axis of the tool is included in the model.

In final conclusion, we note that neither tool appears more accurate than the

other, each tool has a measurement depth of penetration defined by the tool geome-

try and frequency range, which is further conditioned by the surrounding formation

properties. What is important to note when comparing velocity picks form the tools

is that overall trends in the data agree and that the waveforms have been processed

accurately. A full frequency semblance, although computationally expensive can be

a useful interpretive tool if calculated a few times throughout the log. This can help

isolate zones which may need further interpretation when reading the time semblance

velocity picks. One quick check for velocity gradients is to process near and far re-

ceiver sets and compare the results, providing data quality is good.

A similar data set taken in a fast formation would be useful for further analysis to

verify the differences in velocity as measured by the two tools for the compressional

refracted wave. The data set used in this paper is somewhat unique, it is unlikely

that a borehole would be logged with both type of tool as cost of operations is high

and two velocity analyses are somewhat redundant from an interpretation point of

view. New generation LWD tools are capable of measuring at lower frequencies for

the shear dipole flexural mode so further analysis with this type of data would prove

useful.





Chapter 4

Mode analysis for LWD geometry

in transversely isotropic media.

This chapter describes the method used for calculating the modes for the logging while

drilling, LWD, tool geometry in an isotropic and transversely isotropic medium. The

methodology follows closely that of the model discussed in appendix A but is consid-

erably more complex. If the reader is unfamiliar with the method, it is suggested that

he/she read appendix A as a primer for this chapter. We develop a mode analysis

algorithm for the general layered case which can have an arbitrary number of cylin-

drical layers with any combination of fluid and solid boundaries. The outermost layer

may also be transversely isotropic. The formulation of the algorithm in this manner

allows us to model both the wireline and LWD geometry in an arbitrarily layered

medium which has applications in later chapters. Figure 4-1 shows the case for the

LWD tool in a multi-layered medium with a transversely isotropic outer layer with an

option for interior isotropic formation layers. Throughout this chapter we will model

a system comprising of the sequence: fluid, isotropic solid, fluid, transeversly isotropic

solid. We will derive only the equations necessary for the transversely isotropic case

as these can be reduced to the isotropic case by using the appropriate elastic con-

stants in the set of equations given in 4.5. An excellent review of the material can

be found in Tang and Cheng (2004), which contains similar derivations of both the

transversely isotropic and isotropic cases. The original treatment of the work can



be found in many borehole geophysics papers including Cheng and Toks6z (1981),

Paillet and White (1982) , Chan and Tsang (1983), Kurkjian and Chang (1986) and

Schmitt (1989).

In our derivation we follow closely the work of Ricks (1994) and Rao V.N (1999),

where Hankel functions of the first kind (H(1 )(x)) and Bessel functions of the first

kind (J,(x)) are used in place of the usual modified Bessel functions of the first

(In(x)) and second (K,(x)) kind in the potential equations used to solve the borehole

system. In theory any two Bessel functions can be chosen to represent the potential

solutions to the wave equation but the Hankel funtions of the first kind and the Bessel

function of the first kind give the greatest stability in wavenumber over a large range

of frequencies and borehole geometries Ricks (1994).

4.1 Solution of the wave equation in transversely

isotropic medium using cylindrical coordinates.

The general wave equation is given by,

V.a + pw 2u = 0 (4.1)

where a is the stress tensor, p the denstiy and u the displacement vector. Helmholtz's

theorem states that the wave equation solution is separable into three scalar potentials

4, X and F,

u = VQ + V x (X) + V x V x (Fi) (4.2)

Expanding equation 4.2 into cylindrical coordinates, i.e. radial, azimuthal and vertical

components, u, v and w and writing it in terms of the scalar potentials, we have the
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The stress-strain (Hookes' law) relationship in cylindrical coordinates for the trans-

versely isotropic case is written as

C11 Cll - 2C66

Cll - 2c 66 C11 C13
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0

0

0 0 0

0 0 0000
000
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which can be reduced to the isotropic case by setting

c11 = A + 2p
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The strain elements in equation 4.4, in terms of the cylindrical displacements Auld

(1990), are;

du
err =

u 1 Bv
eoo - -

r r aO
Ow

ezz = z9
1 1(Ou v Byero = - +av
2 r O0 r -r
1 (lOw Ov)eeo = - +
2 r O9 Oz
1 (Ow Ouerz =2 r+ +-z (4.6)

Expanding 4.4, using 4.3 and 4.6, gives three wave equations:

O2I
cl1V2 I + (c13 + 2c44 - c11) + fW2(D +

8z ( c 1 -3 - C4 4) V2 + (C13 + 2c44 - cl) 2  2 = 0 (4.7)

02Xz [(c1 3 +2c 4 4  
2 +C 33 - C 13 -2c 44 ) 42 +w2cI+ - V2) C44 V2 + (C33 - C13 - 2c4 4) + PW2r) = 0 (4.8)

66V2X + (C44 - 66) + pW2X = 0 (4.9)

We find that for the isotropic case the three scalar wave equations are separable and

distinct, however in the transversely isotropic case equations 4.7 and 4.8 are coupled.

The displacement potentials for a multipole wave of order n can, in the isotropic case,



be written as
4 AH7 )(qr) + BJn(qr)

S = eikzein CHU(1)(qshr) + DJn(qshr) (4.10)

r EH(1)(qsvr) + FJn(q,,r)

Where A, C, E are the amplitude coefficients of the outgoing waves, B, D, F are the

amplitude coefficients of the incoming waves, n is the multipole order, k is the axial

wavenumber, 0 is the azimuthal angle, z is the vertical axis, J, is the Bessel function

of the first kind and H (1) is the Hankel function of the first kind and qp, q,, and qsh

are the radial wavenumbers for the compressional waves, the shear waves polarized

in the vertical direction and the shear waves polarized in the horizontal direction

respectively.

For the isotropic layers the solutions are those given in equation 4.10. In a fluid

we use the same solution but only the 1) potential is relevant as there is no shear

wave generated. Note for the isotropic case the modes described by X and F are

degenerate because the velocities of the shear vertical, S,, and shear horizontal, Sh,

are equal. For the transversely isotropic case these velocities are distinct and the

potential equations for (4 and F are coupled. Using the isotropic solutions as a

starting point we can substitute them into equations 4.7, 4.8 and 4.9 to find the

appropriate potential equations for the transversely isotropic case. Only the outer

unbounded layer can be transversely isotropic in the model described in figure 4-1. In

this case we only need to consider the outgoing waves in the potential wave equations,

i.e. An, C, and E,. This is a consequence of an imposed radiation condition. We

define the last layer in the system as semi-infinite, which implies that there are no

incoming waves and we therefore need only define the outgoing potentials.

41 A Hn()(qr)
X = eikz einO CH) (qhr) (4.11)

F EH(1) (qsvr)

We wish to find the corresponding radial wavenumbers, qp, q,, and qsh, for each



potential following an analysis like that found in chapter two of Tang and Cheng

(2004). The substitution leads to

(q2 + k2)(_- 66q2 - c44k2 + pw2)(Uq4 - Vw2 q2 + Ww4) = 0 (4.12)

where

U = C11C44

V = p(c1 + c44) -CC33 -- - 2cl3C ) (
W = 3344 (4.13)

( C44 W2 (33 W2

The solution for the radial wavenumber for the Sh wave, which is uncoupled, is found

when (-c 66q2 - C44k2 + pW2) = 0, therefore

pw2 - c44k2
qsh = (4.14)

C66

The solution for the S, and P wavenumber is found when (Uq4 + Vw2q2 + WW4 ) = 0

which leads to two solutions known as the quasi-compressional and quasi-shear waves.

-V + /V 2 -4UW
qp = iw 2U

-V - fV-_2 -4UW
qs, = iw (4.15)

2U

This coupling leads to 4 and F being defined as the following

4D ='eikz e in AJn(qpa)H (qr) + b'EJH(qr) (4.16)

F a'AJn(qpa)H,(qpr) + EJnHn(qsvr)
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where,

/ w (C13 + 2c44)k2 + C11q2 - pw2
a _

ikp c44 k2 + (C11 - C13 - C44) - p 2

b ik/ C44 k 2 + (Cl1 - C13 - C44)s 2  (4.17)
w (C13 + 2c44)k 2 + C11q2 - Pw 2

Here a' and b' are made to have the dimension of length by multiplying by and n

respectively, where 3 is the average shear velocity of the model.This ensures that all

the potential equations will be consistent and is discussed further in the next section.

We now have the formulation for the potentials in each type of layer, either fluid,

isotropic solid or transversely isotropic solid. Returning to the original model we can

define the potentials in each layer to build the system of equations that can be solved

simultaneously. We consider a model with j layers and j-1 interfaces. The jth layer in

the model is defined by it's material properties, e.g. isotropic, transversely isotropic,

fluid, solid etc. and the boundary conditions at each interface are determined by the

the type of material on either side of the boundary.

4.1.1 Normalization of displacement potentials

In terms of displacement potentials, the total displacement is written as

u = VA + Vx (xi) + VxVx (F£) (4.18)

so that, because the left hand side has units of displacement, the potentials (, X

must have units of length squared, while F has units of length cubed. For ease of

comparison of the magnitude of the displacement constants, we choose to write the
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displacement potentials in medium j as

S einOeikz(

X eine ikz (a

F = einOe ikz

[An(k, w)H(1) (qpr) + B,(k, w)Jn(qpr)]

[n (k, w)H(1 ) (qshr)+ n D(k, w) Jn(qshr)]

(f-) [E(k, w)H(1)(q8vr) + Fn (k, w) Jn(qsvr)]

where d, / are the average compressional and shear velocities of all layers. In such

formulation, the coefficients An(k, w) ... F(k, w) all have units of length and their

magnitude can be directly compared with each other. For the TI case, where there

are two shear velocities for the final layer, we choose the shear vertical, Sv, as 3.

Furthermore, as described in detail in Ricks (1994) it is essential for numerical stabil-

ity to further normalize the displacement potentials. A valid solution to the acoustic

wave equation can be generated from any set of functions of wavenumber and fre-

quency for the constants An(k, w) ... F,(k, w). We are thus free to multiply or divide

by any function of k, w. For numerical stability the goal is to avoid any exponentially

large or small numbers that would lead to computational overflow or prevent matrix

inversion because of the near singular value of some of its elements. Thus, we choose

the parametrization for the potentials in layer j, i.e., for Rj > r > Rj-1,

/ H( -1H) (qpr) B1
- einOeikz A + B)(k, (W)Jn(qp) )H(1)+qp j(4.20)

(4.20)

x inO ikzX=e e
cHn(l ) (Qshr)
Cn(k,w) + Dn(k, W)Jn(qshr)H(1)(qshRj)

H ( )(qshRj-_i)

(4.21)
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F = ein0 eiz (a) (
H (q(,,Rj- 1)

(4.22)

For imaginary values of q = qp,sh,sv, i.e. for large wavenumber k, the Bessel

function H(l) (qr) is exponentially large while Jn(qr) is exponentially small. With the

above normalization, and in the large wavenumber region of evanescent waves, this

ensures that no exponentially large or small displacement potential is obtained near

either boundaries as r - Rj-1 or r -- Rj.

To summarize, the displacement potentials in the LWD model shown in Fig. 4-1,

are given by the following.

Inner Fluid: j=1

FI = einOeikz () /BF Ir)H(1) FIR
Sn R(4.23)

(4.23)

Tool: j=2

= einO eikz

I 
( WC,I " BnTjn( Tq ?(1) (qPTRj)n+ Jn(q r)Hn (q Rj)

+ DJ(qr)H(qR)

I() [ET Hn)(qT ) + FJ(qvr)Hn( (qsRj)]
L _ 1 

n 
j - ,

4 FO = ein eikz AFO H (qO R ) oF+ B (FOn(r) H(1)( FOR-)]

U(nl) (qPFO0Rj _l)-•' •'n't " n ( p j/

Transversely Isotropic Formation: j=4

= ein eikz

A HF H (qr)- + b'E F H1
1 (qF r)

n l(qFRj-1) nHn q(q Fv 1)

cVF Hn )(qhr)
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4.2 Boundary Conditions

The boundary conditions are determined by the type of interface, e.g. fluid-fluid, fluid-

solid, fluid-vacuum etc. The boundary conditions at each interface are the continuity

of radial displacement and stress, and the vanishing of shear stresses written as,

Ulhs (R) = Urhs(Rj)

aIhs (R) = aS(R)hs

alhs t(Rj = a rhs

ah•(Rj) = arh"(R) (4.27)

Where Rj is the radius of the interface and lhs and rhs denote the medium to the

left and right hand side of the interface. These four equations let us relate the

displacement coefficients on the left to those on the right. Applying these boundary

conditions at the three interfaces in our model, figure 4-1 gives rise to a system of

twelve equations with twelve unknown displacement coefficients

Cn = { BFI, AT, BT, CT, DT, ET, FT, AFO BFO, AF, CF, DF }. In matrix notation we

can write it as follows

MCn = Sn (4.28)

where Sn defines the vector of displacement and stresses due to the presence of a

source. To find the dispersion characteristics of the modes in the system we solve the

system in the absence of source

MnCn = 0 (4.29)

which implies that

det M(k, w) = 0 (4.30)

where the elements of M can be found in appendix B. The calculation itself is relatively

straight forward from an algorithm standpoint. Once the equations and boundary

conditions are correctly established the main areas of difficulty are the book-keeping
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aspects. As a general overview the computation follows the basic recipe of;

1) establish the number and type of layers to fix the number of constants needed to

be solved for.

2) establish the interface types in the model and therefore the boundary conditions

and relevant equations.

3) Build the matrix M.

4) The modes can be seen on the plot of IMI as a function of frequency and wavenum-

ber, either in phase or magnitude, and can be extracted using root search methods.

4.3 Modeling Results

In this section we present the results for both wireline and LWD cases in isotropic

and TI formations. Cases were chosen to represent both fast and slow formations.

The elastic constants for the stiffness matrix are taken from Thomsen (1986) for the

Mesaverde Shale, for the fast formation, and the Pierre shale, for the slow formation.

Table 4.3 gives the parameters used in each case. The shear vertical, Sv, velocities

were used as the reference isotropic case. In each model a borehole diameter of

8.75" (0.22m) was used and figure 4-2 shows the radial specifications and material

parameters of the modeled LWD tool. We model the wireline case as a fluid filled

borehole with no tool. Introducing any steel body into the borehole center will excite a

similar set of tool modes to those seen in the LWD case. Although adding a steel pipe

would approximate the wireline radial geometry, it does not capture the full damping

of the tool modes allowed by the geometry of the tool along the z-axis. As mentioned

in the discussion of wireline tools in the introduction, the body of the wireline sonde

employs various methods to damp out any tool arrivals making it is reasonable to use

the simpler model of a fluid filled borehole to approximate the wireline case. However

the radial geometry of the LWD tool must be included because a similarly effective

damping of the tool modes is not possible.
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Fast: Mesaverde Shale Slow: Pierre Shale

VP 3901 2202

[ms-1]

Vsv 2682 969

[ms-i]

VSh 2614 940

[ms-1]

0.137 0.015

6 -0.078 0.085

- 0.026 0.030

Cl1 31.53 10.59
[GPa]

C13 -1.21 7.57
[GPa]

C33 40.17 10.91
[GPa]

C44 18.99 2.11
[GPa]

C66 18.05 1.99
[GPa]

p 2640 2250
[kgm3]

Table 4.1: Thomsen parameters and equivalent elastic constants for Mesaverde (fast)
and Pierre (slow) shales
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OD=7.25"

[0.184m]
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[0.222m]

Vp=1500 m/s
p=1000kg/m3

Figure 4-2: Cross sectional view of the model used in the LWD case and the material
parameters.

4.3.1 Monopole

Figures 4-3, 4-4, 4-5,and 4-6 show the modal response of the borehole system to a

monopole excitation for the wireline and LWD tool radial geometries in slow and fast

isotropic and transversely isotropic formations.

Wireline

The Stoneley wave is present in both the slow and fast formations but the higher

order pseudo-Rayleigh is only seen in the fast formation. In the slow case the ax-

isymmetric Stoneley mode shows direct dispersion, i.e. the phase velocity decreases

with frequency, while in the fast case the Stoneley dispersion is reverse. The zero

frequency asymptote of the Stoneley mode is given by;

( 2 1/2 t2 2 -1/2

Cst -= at 1 -2 r2 + P~21 (4.31)
borehole borehole P2

where 1 and 2 refer to the material properties of the borehole fluid and formation

respectively.
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In the open borehole case this reduces to;

Cst = a 1 + 1/2(4.32)
P2132 )

Schmitt (1988a) and personal communication. The high frequency limit, when the

mode sees the borehole wall as an infinite planar fluid-solid interface, is given by the

Scholte velocity. The zero frequency asymptote of the Stoneley mode given in equa-

tion 4.32, for this particular Pierre Shale formation, is below the fluid compressional

velocity and the Scholte wave velocity, which is always less than the shear velocity of

the formation, is even lower. These two asymptotes define the direct dispersion seen

in figure 4-3. These asymptotes are not the same for the TI case. At low frequencies

the difference between the isotropic and TI case is smaller than for high frequencies.

This implies that the low frequency phase velocities are less sensitive to the shear

horizontal velocities given by the C66 in the stiffness matrix than the high frequencies

Schmitt (1989), figure 8b.

For the Mesaverde shale, the fast formation, the isotropic and TI cases are much

closer in phase velocity at all frequencies and the dispersion is now reversed. In a fast

formation the Stoneley mode is poorly coupled to the formation, meaning the bulk of

the modes energy is associated with the borehole fluid making it much less sensitive

to formation properties. This is evident from the marginal change in phase velocities

seen between the isotropic and TI case in figure 4-4. The dispersion is defined by

the same low and high frequency asymptotes as previously discussed but here the

zero frequency Stoneley phase velocity is less than that of the Scholte velocity, which

results in the reverse dispersion.

LWD

Figures 4-5 and 4-6 show the monopole case for the LWD tool in the slow and fast

formations given in table 4.3. With the addition of the tool in the borehole both

Stoneley wave dispersions are now reverse. Equation 4.31 gives the zero frequency
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Figure 4-3: Wireline, Monopole Source, dispersion characteristics of the phase veloc-
ity of the modes obtained in the presence of a slow isotropic and slow transversely
isotropic formation. At very low frequencies ( where C > Vs) the Stoneley wave may
be "leaky".
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Wireline, Mesaverde Shale: fast formation, monople n--=0O
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Figure 4-4: Wireline, Monopole Source, dispersion characteristics of the phase velocity
of the modes obtained in the presence of a fast isotropic and fast transversely isotropic
formation

phase velocity of the Stoneley when a tool is present. By inspection we see that the

addition of a tool in the borehole will push the zero crossing lower as the radius of

the tool is always less than that of the borehole. The high frequency asymptote is the

again the Scholte wave velocity. Again the poor coupling of th"e Stoneley wave to

the formation velocities can be seen as the relatively small change in phase velocity

between the isotropic and TI cases.

4.3.2 Dipole

Figures 4-7, 4-8, 4-9 and 4-10 show the modal response of the borehole system to

a dipole excitation for the wireline and LWD radial tool geometries. The formation

parameters used for the fast and slow shales are given in 4.3
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LWD, Pierre Shale: slow formation, monople n=O
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Figure 4-5: LWD, Monopole Source, dispersion characteristics of the phase velocity of
the modes obtained in the presence of a slow isotropic and slow transversely isotropic
formation

LWD, Mesaverde Shale: fast formation, monople n=0

5 10 15
[kHz]

20 25 30

Figure 4-6: LWD, Monopole Source, dispersion characteristics of the phase velocity of
the modes obtained in the presence of a fast isotropic and fast transversely isotropic
formation
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Wireline

The wireline case in the slow formation with a dipole source excited the fundamental

flexural mode. This mode exists at all frequencies and is analogous to the fundamental

Stoneley mode seen in the monopole case. In the fast formation both the fundamen-

tal flexural mode and higher order flexural modes are generated. The higher order

flexural modes can be seen in figure 4-8 and have cutoff frequencies corresponding to

critical refraction of the waves. Comparing the fundamental flexural mode in the fast

formation with that in the slow formation shows again the reduced coupling of modal

energy to the formation for the fast formation and, in the slow case, how the higher

frequency phase velocities are greater influenced by the slower Sh velocity than the

low frequencies. This is evident form the greater difference in phase velocities between

the isotropic and TI medium at high frequencies that at low frequencies.

Wireline, Pierre Shale: slow formation, dipole n=1
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Figure 4-7: Wireline, Dipole Source, dispersion characteristics of the phase velocity of
the modes obtained in the presence of a slow isotropic and slow transversely isotropic
formation
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Wireline, Mesaverde Shale: fast formation, dipole n=1

[kHz]

Figure 4-8: Wireline, Dipole Source, dispersion characteristics of the phase velocity of
the modes obtained in the presence of a fast isotropic and fast transversely isotropic
formation

LWD

In the LWD case the flexural mode is forced to zero phase velocity at zero frequency

resulting from the interaction of the tool flexural mode. This can be clearly seen in

figures 4-9 and 4-10. The peak of the formation flexural mode is shifted to higher

frequencies in the fast formation case. This peak indicates where the tool flexural

and formation flexural modes avoid crossing. In the fast formation the peak shifts

to higher velocities as the angle of critical refraction increases for faster formation

velocities. The high frequency asymptote is the Scholte velocity which is close to the

borehole fluid velocity in the fast formation and below the formation shear velocities

in the slow formation.

4.3.3 Quadrupole

Figures 4-11, 4-12, 4-13,and 4-14 show the modal response of the borehole system to

a quadrupole excitation for the wireline and LWD tool radial geometries in the same
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LWD, Pierre Shale: slow formation, dipole n=1
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Figure 4-9: LWD, Dipole Source, dispersion characteristics of the phase velocity of
the modes obtained in the presence of a slow isotropic and slow transversely isotropic
formation

LWD, Mesaverde Shale: fast formation, dipole n=1
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Figure 4-10: LWD, Dipole Source, dispersion characteristics of the phase velocity of
the modes obtained in the presence of a fast isotropic and fast transversely isotropic
formation
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slow and fast formations seen in the above two sections.

Wireline

The fundamental mode excited by a quadrupole source is the screw mode. Figures 4-

11 and 4-12 show the screw modes for the wireline case in the slow and fast formations.

The fundamental screw modes have no cutoff and asymptote to the shear velocity at

low frequencies. The appearance of a cutoff for this mode is due to a coalescence of

the pole with the shear refracted wave branch point. The higher screw modes present

in the fast formation, analogous to the higher flexural and pseudo-Rayleigh modes

do have a cutoff frequency which can be seen in figure 4-12. In both the fast and

slow formations the high frequency asymptote is the Scholte velocity but the screw

mode asymptotes to this at higher frequencies than for the monopole or dipole cases.

Similarly to the monopole and dipole cases, the poor coupling of the interface modes

to the formation properties in a fast formation can be seen by the relatively small

change in phase velocities between the isotropic and TI cases. The slow formation

again demonstrated that it is not only more sensitive to the formation shear velocities

but the sensitivity to the Sh velocity increases with frequency.

LWD

The quadrupole excitation for the LWD case is shown in figures 4-13 and 4-14. In

both the fast and slow formation the screw mode asymptotes to the formation shear

velocity. In the dipole LWD case the tool flexural mode interacts with the formation

flexural causing it to zero phase velocity at zero frequency. In the quadrupole case

the tool screw mode is at much higher phase velocities and therefore does not interact

with the formation screw mode. This suggests that the quadrupole mode is better

suited as an estimator of formation shear velocities than the dipole data seen in

previous chapters. Similarly to the previous cases we see the relatively small change

between the isotropic and TI for the fast formation.
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Figure 4-11: Wireline, Quadrupole Source, dispersion characteristics of the phase
velocity of the modes obtained in the presence of a slow isotropic and slow transversely
isotropic formation

Wireline, Mesaverde Shale: fast formation, quadrupole n=2
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Figure 4-12: Wireline, Quadrupole Source, dispersion characteristics of the phase
velocity of the modes obtained in the presence of a fast isotropic and fast transversely
isotropic formation

117

FORMATION SHEAR sv - Iso. Screw
"FORMA"¶•' SHEAR--R ----- -- - + Iso. Screw (higher)

S........ ..... ...... --- TI. Screw
/ TI. Screw (higher)

FLUID COMPRESSIONAL-
n

· · ·

----

........... .... ..C ."
. . . . . . . .l . .r

• . .



LWD, Pierre Shale: slow formation, quadrupole n=2
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Figure 4-13: LWD, Quadrupole Source, dispersion characteristics of the phase veloc-
ity of the modes obtained in the presence of a slow isotropic and slow transversely
isotropic formation
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Figure 4-14: LWD, Quadrupole Source, dispersion characteristics of the phase velocity
of the modes obtained in the presence of a fast isotropic and fast transversely isotropic
formation
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4.4 Conclusions

The modeled results shown in the previous sections can be compared in several ways.

Firstly comparing slow and fast isotropic and TI formations, we note that the funda-

mental modes are excited in both cases but the higher order modes are only excited

in the fast case. The coupling of the modal energy to the fast formation is poor

and therefore relatively insensitive to the TI medium. In the slow formation the the

modes are sensitive the to the TI parameters, specifically the Sv, C66 at low velocities

and the Sh, C44 at high velocities.

Secondly comparing the wireline and LWD modes. The presence of a tool in the

borehole reduces the fluid annulus, giving the effect of reducing the borehole diameter.

In general this means a shifting of modes to higher frequencies as. In the dipole case

the formation flexural modes is greatly affected by the presence of the tool flexural

mode and shows a dramatic change in mode character compared to its wireline coun-

terpart. The presence of the tool also changes the low frequency asymptote of the

monopole Stoneley mode sufficiently so that the direct dispersion seen in the wireline

case is now reversed.

Lastly we compare the monopole, dipole and quadrupole modes. In terms of

extracting a modal phase velocity that is representative of the formation shear the

screw mode (n=2) gives the most direct result in both the wireline and LWD cases. In

a fast formation the formation shear is calculated from the refracted shear arrival and

further shear modal analysis is unnecessary. In a slow formation there is no refracted

shear wave and the shear velocity is estimated from a modal arrival. In the wireline

case the dipole flexural mode is sufficient but the interaction of the tool flexural mode

in the LWD case complicates the shear velocity pick. The quadrupole screw mode is

not affected by the tool flexural mode and so the low frequency asymptote requires

no correction. Additionally the low frequency screw mode asymptote is at higher

frequencies for the LWD tool, compared with the dipole case, which moves it away
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from the frequency band at which the drilling noise and mud circulation can cause

contamination.
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Chapter 5

Conclusions

The goal of this thesis is the determination of formation compressional and shear

velocities obtained from two acoustic logging tools, wireline and LWD. The thesis

includes: the formation and numerical computation of acoustic wave propagation in

a borehole environment for LWD and wireline geometries, the analysis of data from

wireline and LWD measurements taken in the same borehole, and comparisons of the

results. In addition the modeling is extended to transversely isotropic media such as

those commonly found in layered sediments.

We have compared LWD and wireline tools both using actual logging data and

numerical modeling of acoustic modes in the borehole. Traditional time-semblance

processing of the data leads to differences in estimated velocities for these two tools.

We found that for the purpose of comparing the measurements of the wireline and

LWD tools, time-semblance analysis could be inadequate. Time semblance methods

fail in the presence of dispersive arrivals and only frequency-domain methods reveal

the full modal dispersion. We found that a frequency-domain analysis is feasible and

reduces the overall difference between the LWD and wireline shear and compressional

velocity estimates. The remaining discrepancy can be explained by the different radial

depths of penetration of these two tools, which naturally leads to a difference in the

velocity estimates when there is a radial gradient in the velocity profile.

The remaining difference in the velocity estimates from wireline and LWD tools

data can be explained by radial gradient in the velocity profile of the formation.
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This kind of radial velocity gradient causes dispersion in otherwise non-dispersive re-

fracted arrivals and increases or decreases the expected dispersion in modal arrivals.

Any method used to process the waveforms for formation speeds that assumes a fixed

correction for modal dispersion, or assumes that the head waves are non-dispersive,

will incorrectly calculate formation properties. The argument is extended to show

that the different operating frequencies and source-receiver offsets of the tools give

differing measurement penetration depths, so that discrepancies between the tool logs

is expected in certain types of formations.

In chapter 4, we presented a method to model seismic wave propagation in a a radi-

ally multi-layered borehole model with an outermost transversely isotropic formation.

The inner model layers may be any combination of isotropic solids and fluids. Each

layer is defined by its velocities, density and thickness. The TI medium is defined by

the five elastic constants, C11, C33, C13, C44 and C66 or the three Thomsen parameters

E, y and 6. The model allows us to calculate the modal arrivals as a function of phase

velocity and frequency. This is used to study the modes of interest when extracting

formation properties from acoustic logging data.

The code was used to model the LWD tool in a TI formation and compare it to the

wireline case.Inspection of the modal dispersion profiles in fast and slow formations

reveals that the LWD measurement, due to its frequency range of operation, is un-

suited to differentiate a TI formation from an isotropic one. This limitation is by no

means fundamental but results from the presence of acoustic noise at low frequency

and the resulting constraint of operating in a range of frequencies sufficiently greater

than that of the noise. Sophisticated signal processing, noise reduction and or rejec-

tion techniques, as well as improved transducer design would enable the operation

of the tool at significantly lower frequencies. Our analysis demonstrates that at a

lower frequency of operation, the LWD tool can potentially measure the effect of a TI

medium in the fundamental shear modes, especially in the low velocity formations

In summary the future of borehole measurements is pushing towards LWD tech-
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nology as the savings in exploration time are significant. As this trend progresses,

it becomes increasingly important to understand the LWD measurements accurately.

Borehole acoustics, although a well developed area of research for wireline tools, is

still an active and ongoing area of research for the LWD case. We have made two

important contributions in this field with the work presented in this thesis. Firstly,

we have made an independent comparison of LWD and wireline data for a formation

where traditional processing methods gave significantly different results for velocity

estimates in LWD and wireline tools. We have suggested a possible explanation as to

why these estimates can differ and how current time-domain based velocity processing

methods may be improved by using frequency-domain methods. Secondly, we have a

developed a detailed model of the LWD modes in a TI formation. This understanding

stemming from this model is consequential to exploration geophysics, as reservoirs lie

in sedimentary basins where the thinly layered strata result in a predominantly TI

medium.
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Appendix A

Simple model using two fluids

In this appendix we derive the equations needed to solve the canonical form of the

borehole mode problem using a fluid filled borehole surrounded by a fluid formation. A

fluid-fluid model excites only the compressional modes therefore reducing the number

of constants and equations needed to describe them. Although this simplifies the

mathematics significantly the model gives insight into the more complicated multi-

elastic layer problem and is sophisticated enough to illustrate the method of solution

for the full LWD case.

The fluid-fluid model is illustrated in figure A-1

B source

source

p1

a
fluid 1

A1

B= -O

Az

B2=O

P2 -a2

fluid 2

Figure A-1: Fluid-fluid Model
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The basic recipe for solving the problem mathematically is the same. First, we

assume a potential wavefield in both media which consist of incoming and outgoing

waves. Then, boundary conditions are applied at the interface allowing us to solve

for the amplitude constants in the potential equations. Once we have the constants,

we have the full potential wavefield solution. This can then be used to calculate

seismograms. Before the method for seismogram calculation is shown (time vs offset),

this section will concentrate on understanding the modes arising from a single interface

and how they, can be interpreted. In cylindrical coordinates, we have cylindrical waves,

whose radial dependence contains Bessel functions. The potential can be separated

into the radial dependence given by A,K,(fr) +B,I,(fr) and the z dependence given

by ei kz The third axis in cylindrical coordinates is the azimuthal dependence which

is determined by the order of the source e.g. monopole, dipole, quadropole etc., and

is given by cos nO, where n is the pole order. The formulation assumes a ring source

which is comprised from an infinite number of point sources along a ring of radius

a. We will discuss the source term further in the next section when calculating the

seismograms. The potential solution in medium 1 is written as

,D1 = [A1Kn(fir) + BlIn(fir)] eikz cos nO (A.1)

and similarly for medium 2

42 = [A2Kn(f 2r) + B 2In(f2 r)] eikz cos nO (A.2)

where A is the amplitude of the outgoing wave and B the amplitude of the incoming
1

wave, k is the axial wavenumber, and f = (k2 - k2) 2 is the radial wave number. The

boundary conditions applied at R, are displacement and pressure continuity:

u = (A.3)
r = (A.4)

7rr, = -pW 2# (A.4)
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are continuous across the interface,

U1 = U2 (A.5)

rrr, 1 = arr,2 (A.6)

from A.3, ui is given by

ui = cosn9eikz (Ai[Kn(fir) - fiKn+l(fir)] + Bi[-In(fir) + fiIn+l(fir)]) (A.7)
r r

and arr,i is

-pw 2(i = [AjKn(fir) + BiIn(fir)] eikz cos nO (A.8)

To solve for the eigenmodes of the system, we use the so-called radiation conditions:

we set B2 = 0, the wave is only outgoing in medium 2 and A1 = 0, since the wave

potential should be finite at r = 0. In the absence of a source we can write:

[M] A 2  =0 (A.9)
BJ

where [M] is

[ - [rIn(fir) + fiIn+i(fIr)] n"Kn(f 2r) - f 2Kn+1(f 2r)

S plW2 I(1fir) -p 2W2 K (f2 r)

Figure A-2 shows the modes for both monopole and higher order directional modes.

This simple model illustrates the types of modes present in a cylindrical multilayer

system and many features will also be present in the full model including tool and

anisotropy. To find the eigenmodes of the system we set the determinant of M to

zero. The determinant, set to zero, is given by;

n n
-p- •

2In(fIr) ( Kn(f 2 r) - f 2Kn+,(f 2r))-p 2w2Kn(f2 r) (n (flr) + fl n+1(flr)) 0

(A.11)
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Figure A-2: Eigenmodes for n=O (odd) and n=1 (even) modes. al=1500, a2=12000,
Pl=1000, P2= 1 00 0 0 , r=O.1

128

dipole



The modes arise when either the first term equals the second term or both terms

equal zero independently. Because the system is relatively simple we can derive the

modes analytically. The first and simplest mode can be seen at all frequencies at a

phase velocity of a,. This mode is non-dispersive and arises when fl = 0. (N.B the

mode is somewhat obscured at low frequencies for the n=1 case in figure A-2 but it

is still present). The modified Bessel function of first kind, I, is zero at the origin,

therefore when fl = 0 both the first and second terms of equation A.11 will be zero

and it therefore follows that the determinant of M will be zero.

For both the monopole and dipole case there are modes which appear above cer-

tain discrete cutoff frequencies. If we consider the extreme case where P2 > P1,

i.e. the outer layer is much more dense resulting in a large difference of mechan-

ical impedance, we need only consider the term involving p2 to first order, i.e.

[P2 W2Kn(f 2r)] [n1(fir) + fIn+ (fIr)] c 0.

This occurs when fi is imaginary so that the Bessel function In is oscillatory

and the term nIn(fir) + (fir)In+l(fir) has zeros. Physically this corresponds to

the waves reflected from the interface interfering constructively, and giving rise to

a standing wave-like mode. This happens at discrete frequencies corresponding to

fitting increasing number of wavelengths within the borehole. This was described for

the pseudo-Rayleigh mode by Schmitt and Bouchon Schmitt and Bouchon (1985).

To understand in more details we look at fl = Vk 2 - k2,, which is imaginary when

IkJl Ika,. Moreover fi = -ilfl|, i.e. the root corresponding to w + ie where

e -+ 0. We thus find nIn(fir) + (fir)I,+l(fir) = i-" [nJn(firl) - IfirlJn+l(firjr)],

which is oscillatory and has zeros which we'll denote by Xn,m to denote the mth zero

of the expression Fn(x) = nJn(x) - xJn+1 (x). For example, we find numerically

xzj - {0, 3.85, .. }, and xx,j = {0, 1.85, ... }. Corresponding to these zeros, we find

the modes Ifiri = xn,m, which we can re-arrange to give the wavevector

kn,m() = 1 2  (A.12)
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and the corresponding phase velocity

Vn,m(W) = W (A.13)
2 ( xn ml2

We can see from A.13 that for w less than the cutoff frequency the phase velocity is

purely imaginary, at the cutoff the mode has infinite phase velocity and finally when

w is large the phase velocity tends to a. These modes and their respective cutoff

frequencies can be clearly seen in figure A-2.

Given the phase velocity we can calculate the group velocity which is given by 4,

w = vok

differentiating with respect to w gives

dk dv41 = -v + k (A.14)
v4  w dvy
vg vo dw

which can be rearranged to give

V dv (A.15)
v4 dw

By inspection we can see that when the slope of the phase velocity is high and positive

the group velocity will be low and vice versa. At the cutoff V4 -+ oo and Vg -- 0, this

represents the radial oscillation of the source, while the wave does not propagate.
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A.1 Wave number integration to calculate seismo-

grams

In this section we show how the characteristic equation, shown in the last section,

can be used to calculate synthetic seismograms for the model. In order to calculate

the seismograms we must define a source. In this case we use a ring source placed at

radius a. The source term is defined as

,ource (k,w) = Asource(k,w) (A.16)
In(fa)K&(fr) r > a,

where Asource(k, w) is the Fourier transform of the source time dependence. This is

typically a Ricker or Kelly wavelet. Note that the angular dependence was assumed

to be that of a multipole of order n, and assuming a detector suited to detect this

multipole order only, we effectively integrate out the angular dependence, so that it

is omitted from here on. The boundary conditions in equations A.5 and A.6 now

become

U1 + Usource = U2  (A.17)

rr,l + aource = arr,2 (A.18)

which leads to a system of equations similar to those seen in equation A.9 and with

[M] given by A.10

A2  )K,(fiR) - fiKn+i(fiR)In(fia)

B1  -piw2K,(fiR)I,(fia)

Again solving for A 2 and B 1, which are both funtions of k and w. This is plugged

into the expression for the potential solution in equation A. 1

4b (k, w, r, 0) = A2 (k, w)In(fir) cos nO (A.20)
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Thus, the radial stress a,,r (i.e. the pressure in the fluid) can be calculated as a

function of position in the borehole. Multiplying by cos nO and integrating over angles

we thus have the stress induced in the fluid arr(r = a, k, w) = pw2A 2(k, w)I,(fir).

Performing a double Fourier transform over wavenumber and frequency, we can ob-

tain the seismograms, i.e., arr(r = a, z, t). Note that in order to properly treat the

poles and branch cuts of the expression, we introduce a small imaginary part to the

frequency w before performing a double Fourier transform, see for example Tang and

Cheng (2004) (this is the method used to generate the seismograms on figure A-3).

Figure A-3 shows a calculated seismograms from a dispersion curve similar to those

shown in A-2. The plot on the left shows the phase and calculated group velocities

and the plots on the right shows the calculated seismograms. It is easy to see from

these figures how the modeshape influences the character of the corresponding seis-

mograms. It is instructive to see these modes, and their corresponding seismograms,

one at a time as the complicated interaction of dispersion curves for a complete tool

model make it hard to distinguish individual effects. In figure A-3 the mode comes

from an infinite velocity at around 3.5 kHz and asymptotes to the inner fluid ve-

locity of 1000 m/s. The group velocity has the opposite behavior. By looking at

the corresponding seismograms we can see that the high frequencies precede the low

frequencies, suggesting that the group velocity has the greater influence on the seis-

mogram arrival and packet shape. If the shape of the dispersion curve was reversed

we would expect to see the opposite behavior in the seismograms.

132



Example of dipole type 1 mode
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Figure A-3: The phase and group velocity of the first type of dipole and monopole
mode excited in the simple model used in this appendix. The right hand side plot
shows the corresponding waveforms.
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Appendix B

Elements in M

This appendix lists the elements of M in chapter 4, equation 4.29 in full. The matrix

M consists of the k and w dependance of the equations derived from the stresses and

boundary conditions. Here we show the full equations given in matrix form.

For the displacements, u, v and w, in medium j at radius R, shown in 4.3 we have

v = [D()(R)] -
Lw

A(U)

B(U)

Cc)

D(W)

E()

F(j)

(B.1)
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where

D(j) (d/w) Y•l (n, qR) (B.2)
1,1 R HU(l)(qpRj_l)

D(J) (=/W) YJl (n, qpR)H(l) (qpRj) (B.3)1,2 - R

D(j) in(6/w) Hn(l)(qshR) (B.4)
1,3 R H l)(qshRj-1)

D,4 - n R Jn (qshR)H(nl)(qhRfJ) (B.5)

1,4 
(B.6)

D(j) ik(a/w)(//w) YH1 (n,q8 •R) (B.6)
1,5 R Hn)n (qsj(B-l))

D() ik(6/w)(3/w) .J(n, qsvR)H() (q,,Rj) (B.7)

D(j) in(d/w) H(n) (qpR)
2,1 R Hl (q)(pRj_1l)

2,2 R n( )(qp R)H(l)(qpRj)  (B.9)

D(j) (5/w) Y-ll (n, qshR)
2,3 R H(1) (qshRj-1)

n(j) (d/•w)
2,4 - ( Jw (n, qshR)Hn(l)(qshRj) (B.11)

D(j) -nk(/w)(3/w) H(l)(qvR) (B.12)
2,5 R H(l)(qsvRj, )  (B.12)

D(j) -nk(d/w)( /w)
D,6 R • (qvR)H(l)(qsvRj) (B.13)
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D(j)3,1

D(j)
3,2

D(j)3,3

D(j)
3,4

D(j)
3,5

D(j)3,6

= ik(6/w) H(l )(qpR)

S ( )/ J (q, R)j(q Rj)
= ik(d/w)Jn(qpR)Hn l(qpRj)

= 0o

= 0

H(1)(qsvR)
= (a/w)($/w)qH (),,

H-n (qst Rj1)

= (d/w)( /w)qvJn(qsR)Hn) (qsRj)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

For the strains, {err, eoo, e eoz, erz, er, er} in medium j at radius R, we have

= [E()(R)] -

= ( /w) Y i2(n, qpR)

.R g()(q1hRj_l
)

- R2 YJ(n, qpR)H 1 )(q•hR)

in(d/w) Y7 •(3(n, q,•R)
R2 Hn (qsRj-1)

in(c )(1) 
(qs - )

ik(d/w)(p3w1) 2 s(n, svR)
R2 Hn (q,,Rv -1)

ik(5/w)(p/w)= R2  J2(n , q8 vR)Hl )(qs,,Rj)
Rt2 Si3
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eoz

erz

erO

where

(B.20)

E(j)1,1

E(J1,2

E(J)
1,3

E(S)
1,4

E(j)1,5

E(j)1,6

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)



E(j) (L/w) YIH1(n, qpR) - n2H(1)(q,,R) (B.27)
E,1 = R• ~H)(qpRj).27)

E2- R2 (YJI(n, qpR) - n2Jn(qsvR)) H(l)(qpR) (B.28)

) -in(al/) Y- 3(n, q,hR)
2 f 2  )(qhJl) (B.29),3R2 Hn) (qshRj1)

, = -in2/w) Y 3 (n, qhR)Hl) (qPhR) (B.30)

E - ik(6/w)(f/w) Y,-l(n, q,,R) - n2Hn(l)(q,,R)
'.I = R2  H(1l)(qRj-1) (B.31)

E = ik(d/w)( w)S 2(q,,R) (B.32)2, _/)(/R2 (YJI(n7rqjR) - n2Jn(qsvR)) Hg)(qRj) (B.2)

S = -k 2( H(qpR) (B.33),= ( H(n/ ) (q1 R)

Ej ) - -k 2(a/w) Jn(q R)H 1n) (qpRj) (B.34)

E (  = (B.35)

E( = 0 (B.36)

E = ikH)(q,,R) (B.37)
3,= 2k H(i)H (qsvRjf )

E3 = ikq (/w)w) )Jn(qsvR)Hi))(q(,,R) (B.38)

Ej )  ( /w ) H )(qpR)

E4,1 = -2nk (B.39)
4,1 R Hn(1 )(qRj_1)

E4j  -2nk Jn(qpR)Hn(n)(qpRj) (B.40)

)  -ik(d/w) Y3Rl(n,qshn) (B.41)
R Hn(l)(qshRj_ 1)

E4(J= -ik(dw) (n, qshR)H(l)(qshRj) (B.42)
,R

E4(j) in(q 2 - k2)(/w)(/w) H (qR)
R =() (B.43)

E in(q2 - k2  (qH ( )
E4,6J Jn(qsvR)H )(qHn Rj) (B.44)
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E (j )  /2ik ) Y- 1 (n, qpR)2ik (B.45)5,1 R H(( ) (qpRjl)

EJ  = 2ik (w) y (n, qR)Hn()(qRj) (B.46)5,2 ftR

S -nk(a/w) H(nl)(qshR)
,3 = (B.47)

S -nk(/w) (qhR 1)(qhR) (B.48)

,4 = R J (qfR)H R (B.48)

E5)  (q2 - k2) (i/w)( (/w) YYI (n, q. vR)
E,5R =1) - (B.49)

S (q,6 - k2
,6 = R Y J(n, q,,R)H )(q,,Rj) (B.50)

E() 2in(d/w) YHi4 (n, qhR) (B.53)
6,3 - R 2  H() ( qh Rj- 1)

=-- 2 2in/W)~y (n, qhR)H )(qhRj) (B.54)62 -(R2(P/() Y4R) 4shn)

E6() -2nk(a/w)( /w) yY 3(n, q8 fR)

,3 R2  ( (, qsvR 1)  (R) (B.56)

where

YE 1(X) = nF,(x)- zF+l(x) (B.57)

Y4 2(x) = [n(n- 1)- x2] FY(x) + xFn+l(x) (B.58)

YF 3(x) = (n- 1)F,(x) - xFn+l(X) (B.59)

YY 4(x) = [n(n - 1) - HX )(x) + xFn+ 1(x) (B.60)

where F,(x) = HnH()(x), Jn(x) .
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The stresses are given by

S = C.E (B.61)

where C is the elastic compliance matrix given in 4.4 and E are the strain matrix as

defined above.

Lastly we define the matrix which generates the boundary conditions as the fol-

lowing

T() (R) =
[D]

[S{1,5,6},{:}]
(B.62)

where D is the displacement matix and 5{1,5,6},{:} is the 1st, 5th and 6th rows of the

stress matrix in B.61. This formulation gives the Displacement, u, v, w and stresses

arr, arz and ae used in the boundary condition equations in 4.27.

The final step is to create the global matrix M which relates the layers present in the

model to the applied boundary conditions.

[-T(1)(R 1),{2}] [T( 2) (R 1)Z,{1:6}] [0]4x2 [0]4x3 1
[014X1 [-T( 2) (R2 )I,{1:6}] [T(3) (R 2)Z,{1: 2}] [0]4x3

[0]4x1 [0]4x6 [-T( 3) (R1)I,{1: 2}] [T( 4) (R 1)2,{ 1,3,5}]
(B.63)

where I = {1, 4, 5, 6} corresponding to u, a9r,r,ro for fluid/solid interfaces (all inter-

faces are fluid/solid interfaces in the LWD model), and where [0]nxm denotes a n x m

matrix of zeros. This formulation can be immediately extended to any type and

number of layers (fluid, solid, vacuum).
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Appendix C

Simultaneous Inversion of

cross-dipole acoustic waveforms in

anisotropic media for azimuthal

angle and dispersion of fast and

slow shear waves

Cross-dipole acoustic logging tools are designed to measure the anisotropy charac-

teristics in a borehole environment. The dipole sources allow measurements of the

shear velocity in slow formations (ie. the formation shear wave velocity is slower than

the borehole fluid compressional velocity) that are not possible with monopole tools.

Most commonly the tool excites a compressional and shear wave in the formation and

the lowest order dipole mode known as the flexural mode. The flexural mode is the

motion of the borehole 'flexing' from side to side in the formation, and the guided

flexural wave travels along the borehole-formation interface. It is a dispersive mode

and asymptotes to the shear velocity at low frequencies and to the fluid velocity at

high frequencies, Kurkijian and Chan (1986). In an anisotropic formation, the bore-

hole flexural mode dispersion is sensitive to azimuthal position, and can therefore be
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used to estimate anisotropy, Sinha et al. (1994).

The cross-dipole sonic tool will see spatial ordering on a scale smaller than the

investigating wavelength, as anisotropy. This anisotropy can be intrinsic to the for-

mation as caused by crystal structure, grain orientation, or micro cracks, or it can be

extrinsic due to fractures, faults, stress, or bedding planes. The alignment of these

phenomena causes a directionally preferential stiffness, which leads to directionally

dependent velocities. The polarization of the vertical and horizontal shear waves into

their fast and slow components is termed 'shear wave splitting' and can be the result

of either form of anisotropy. The degree of splitting can be used to calculate the frac-

ture orientation, Tichelaar and Hatchell (1997), and fracture density, Tathaml et al.

(1992), in the formation surrounding the borehole. With both the direction of stress

and the dispersion information it is possible to calculate 'in-situ' stress fields, Huang

(1998) and Sinha and Kostek (1996), which are used to optimize well placement and

production and can help predict well stability.

Dispersive waveforms can be misinterpreted as separate arrivals in the time traces

which will be seen as two different modes in velocity processing. Kimball (1998) pro-

posed an algorithm to correct dispersive waveforms using modeled dispersion curves.

The dispersion relation is a function of borehole geometry, formation and fluid com-

pressional velocities, and the formation and fluid densities. This means that each of

these parameters must be known accurately in order to correctly define the frequency

dependent shear wave phase velocities. Modeling the dispersion curves, rather than

inverting for them, is less computationally expensive but if one of the model param-

eters is incorrect the derived dispersion curve will be inaccurate. Therefore it more

desirable to invert the waveforms for the dispersion relationship as the result does

not rely on additional measurements.

The cross-dipole tools try to minimize the dispersive effects of the flexural mode

by exciting frequencies close to the low frequency asymptote, ie. in the non-dispersive

regime, figure C-1. Unfortunately the energy of the flexural mode can be very low

in this region, therefore decreasing the signal to noise ratio, Kimball et al. (1995).

Moreover, the non-dispersive region changes, as the tool measures the response of dif-
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ferent formations along the borehole, making it difficult to consistently excite energy

over the correct frequencies. In other words even though the cross-dipole tool excites

frequencies close to the low frequency asymptote there is often substantial dispersion

Tang et al. (1995).

0,

.2
0

Frequency [kHz]

Figure C-1: Modeled Example of a Flexural Mode dispersion Curve. Borehole Diam-
eter [13"], Borehole Fluid Shear Velocity [1500 ms-l], Borehole Fluid Density [1200
kgm- 3], Formation Shear Velocity [2500 ms-'], Formation Compressional Velocity
[5000 ms-l], Formation Density [2600 kgm -3 ]

In this paper we present a method to simultaneously invert cross-dipole data for

azimuthal orientation of anisotropy and for the dispersion curves of the fast and slow

shear waves. Current processing performs each of these steps separately: firstly the

azimuthal angle is estimated and secondly the fast and slow wave components are

processed individually to obtain the formation shear wave velocities. The former is

estimated by rotating the orthogonal dipole measurements until the cross components

are minimized. This occurs when the measurements are aligned along the fast and

slow shear directions and the angle defines the orientation of the fast and slow direc-

tions with respect to the tool. If the mode is non-dispersive, Alford rotation (Alford

(1986)) can be used to project the waveforms onto the fast and slow shear mode
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directions. This simple rotation scheme assumes no frequency dependent velocities

and finds the azimuthal angle for which the cross-dipole components are minimized.

However, Huang et al. (1998) showed that any rotation scheme that does not consider

waveform dispersion may produce erroneous results. Hence it is important that simul-

taneous inversion be done for azimuthal orientation and dispersion. The feasibility

of combining- the two-step process into a one-step inversion is shown by Tang and

Chunduru (1999), where data are inverted for an average low frequency shear wave

velocity and the azimuthal angle. In this paper we present a similar methodology but

invert for the full dispersion curve allowing a better characterization of anisotropy.

C.1 The Objective function and Inversion Method

C.1.1 Cross-Dipole Data

The cross-dipole tool belongs to the family of wireline acoustic tools. It is used

primarily to estimate acoustic velocities as a function of azimuthal position in slow

formations, (i.e. those whose shear velocity is less than the borehole fluid velocity).

Although tool design varies from company to company, all tools have similar general

features and consist of two pairs of dipole sources and eight pairs of dipole receivers.

The dipole acoustic transducer source pairs are oriented orthogonally on the tool, one

pair along the x direction and one along the y direction. The transducer receivers

are similarly oriented with the first pair having a large offset from the source and

subsequent receivers being evenly distributed with a separation of approximately 15

cm. (Figure C-2 shows a cartoon of a generic cross-dipole tool). This source receiver

configuration permits a directional measurement of the formation's acoustic response.

The two sources fire separately, and after each excitation the receivers in both the x

and y direction record the formation response. This recording results in 4 arrays of 8

(the number of receivers) traces, X source to X receiver referred to as XX, X source

to Y receiver referred to XY, and similarly for YX and YY.

When a slow formation is excited with a dipole source, a set of axisymmetric

144



Recei)
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Fast Plane
I1

Figure C-2: Schematic of generic Cross-Dipole tool.

borehole-guided modes and compressional waves are formed. In a fast formation there

is also a refracted shear wave. The guided modes of lowest cut-off frequency, known

as flexural modes, are polarized in the x-y plane perpendicular to their direction of

propagation that is along the z-axis. If the medium is anisotropic, the flexural wave

motion splits into a fast and slow component dependent on the directional velocities of

the rock and the frequency component of the excitation. When the source transducer

pair oriented along the x-axis is excited, the displacement vector of the flexural wave

generated is also in the x direction. The fast and slow axes of the formation make

an angle 0 with respect to the x and y axes so that the displacement vector has

projections cos and sin 0 on the fast and slow directions, respectively. The fast

and slow flexural waves then propagate with their respective (frequency dependent)

velocities and are recorded at the receivers. Since the receivers are also oriented along

the x and y axes, the displacement measured is a second projection of the fast and

slow modes back onto the x and y axes.

Let Sx(t) and Sy(t) represent the source excitation functions for the x and y
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oriented dipoles, and let sx(w) and sy(w) be their fourier transforms. Also let gfn)

and gn) (w) be the formation propagation function from the source to the nth receiver,

i.e.,

g n)(w) = exp (iv• zn (C.1)

g n)(w) = exp i z (C.2)

where vf(w) and v,(w) are the fast and slow frequency dependent phase velocities,

respectively, and zn is the distance from the source to the nth receiver. The signals

recorded by the cross dipole tool are therefore given by

xxn(w) = g9(n)(w)sX(w) cos2 9 + g'n)(W)sX(w) sin2 0  (C.3)

Xyn(W) = [gn)()Sx()_ - g(n)(w)s(w)] cos9sin0 (C.4)

YXnn(W) = [g n) (W)s(W) - g.n)(w)sy(w)] cos0sin0 (C.5)

YYn(w) = 9 n)(w)sy(w) sin2 0 + g~·)(w) cos2  (C.6)

Assuming the same source function for both the x and y transducers, sx(W) = sy(w) =

s(w), and letting fn(w) = g(f)s(w) and s,(w) = g n)s(w), we can now represent equa-

tions C.3 to C.6 in matrix form

( xx(w) Xy,(w) cos 9 - sin 0 f (w) 0

yxn(w) YYn(w) sin 9 cos 0 0 sn,(w)( cos9 sin (C.7)
- sin 0 cos 0
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C.1.2 Rotation

We can use equation C.7 to create synthetic waveforms for a given source function and

dispersion relations. Figures C-3 and C-4 show the difference between the borehole

flexural mode recorded with a tool whose x and y axes are at an angle 0 = 250 with

the formation fast and slow axes, and the borehole flexural mode recorded with a

tool which is aligned with the formation fast and slow axes. In matrix terms, if the

tools and formation axes are aligned, the diagonal components of equation C.7 are

maximized and the off diagonal components vanish.

We can invert C.7

( fn(w) 0 cos0 sin (xx(w) yn(W )

0 sn(w) -sin 0coos 9 yn(w) yyn(w)

(cos0 -sin0 (C.8)

sin 0 cos 0

which gives the fast and slow propagation functions as

f,(w) = xxn(w) cos2 0 + [xyn(w) + YXn(W)] sin 0 cos + yyn(w) sin2 0 (C.9)

Sn(W) X= x,(w) sin 2 0 - [xyn(w) + YXn(w)] sin 0 cos + yyn(w) Cos2 0. (C.10)

Additionally, it is easy to see from equations C.9 and C.10 that if 0 = 90' or 0O there

will be no xyn(w) or yzn(w) dependence.

C.1.3 Propagation

Next, the effects of propagation through the formation are undone. Figure C-5 shows

the same data from figure C-4 after the effects of propagation have been undone. If the

correct dispersion relation is used (i.e., each frequency component is back propagated

at the correct; velocity), only the source function remains at each receiver on the inline

arrays, and because the correct rotation has been applied, there is no signal on the

cross-line arrays.
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Remembering that f,(w) = g(n)s(w) and s,(w) = g(")s(w), we can write equation

C.8 as,

s(w)

0

cos 0

- sin 0

0
W) )
sin 0
cos 0

0
e-i 'zn

ryn(w)

VYn(W)

cos 0
sin 0

- sin 9

cos 0

- i -__ z ne 7

0 (
YX,(W)

which is valid for any receiver n.

The propagation function has been moved to the right hand side. There is now

a complete expression for the rotation and propagation of a source function to each

of the array receivers. In other words, if the correct azimuthal angle and dispersion

relations, vf(w) and v,(w), are used in equation C.11, we recover the source function

s(w) at every receiver.

Inline XX Crossline XY

8

00 2 4
x 10 3

Crossline YX

8

2

00 2 4
Time[s] x 10

Figure C-3: Time series representation of
angle 0 = 250 with the formation axes.
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Inline XX

x 10i

Crossline YX

Time [s] x 10

Crossline XY

2 4
x 10

Inline YY

Time [s] x 104

Figure C-4: Time series representation of the borehole flexural mode with tool aligned
(0 = 900, 00) with the formation axes.
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Figure C-5: Time series representation of
the correct dispersion relation.
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C.2 Objective Function

To set up this problem as an inversion, it is necessary to form an objective function

whose minimum corresponds to the correct values of the parameters being inverted

for. (ie vf(w), v,(w) and 0). If the two inversions for azimuth and phase velocities

are performed separately, the second inversion result is conditional on the first. This

conditionality means that any error in the first result will be carried into the second.

Performing a joint inversion gives the global best estimate for all of the parameters

simultaneously and provides an unconditional result.

We know that for the correct azimuth, 0, the back rotated signals f,(w) and s,(w)

will be maximized. We can therefore find the derivative of equations C.9 and C.10

and set them to zero (or minimize, in the case of an inversion) to obtain the azimuthal

angle,

Of (w) = (yy - xx) sin 20 + (xy + yx) cos 20 = 0 (C.12)
as( )

OsW = (xx - yy) sin 20 - (xy + yx) cos 20 = 0 (C.13)

For the correct azimuth both 1 (w) and ! (w) would ideally be zero independently,

therefore their difference (w) - L (w) also vanishes. In order to have an objective

function that is also sensitive to correlations in the data (i.e. between receivers), we

chose to minimize the quantity dw (w) - (w) - () 12, where

n and m are the receiver indices (in this case 1 to 8). Note also that when the signal is

incorrectly back-rotated, the f, and s, data both contain fast and slow components

which are correlated and correctly picked-up by such an objective function.

For the propagation, we know that if the correct velocity is used at each frequency,

the data at each receiver will be back propagated to the source function. Thus if we

undo the propagation correctly and subtract the signal from any receiver pair the

absolute value of their difference should vanish.

Therefore, our choice for an objective function is
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O [v(),v, (w),0] = f(w) f(w) 2

n,m

+ Is(w) ,Sm,(w ) 2

+ Ifn(W) - fm(w)12 + ISn(W) - Sm(W) 12

(C.14)

which is sensitive to both azimuth angle and fast and slow dispersion. In addition,

this objective function combines all the data from all receivers, and its minimization

should therefore enable one to obtain the best fitting parameters (azimuth as well as

fast and slow mode dispersion curves) taking into account the maximum amount of

information contained in the data. This method is to be contrasted with more tradi-

tional methods (for example, first estimate the azimuth independently of dispersion

and then separately analyze the fast and slow mode data), that only partially take

into account all the information contained in the data. Equation C.15 is another

representation of C.14. It shows, in matrix form, how the inversion calculates the

value of the objective function for the fast dispersion using trial functions vf-t and

Otrial for receivers spaced a distance z,, and zm from the source. A similar matrix can

be written for the slow dispersion.

b
d

(C.15)

where,

a = -e vfet-w•
2

evf (w) + elv 7 + ef() - e•'i) cos 2(9 - Ot)

b = e vf-t(

1 ___
C = -e vft()

2

ef(W) - e9T, sin 2(0 - Ot)

e - e' sin 2(0 - Ot)
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1 -__W it 7w __ _W_

-d= e e.t(, I -f- ( + e +4 - e - e cos 2•') (0 - Ot)

One can see from inspection of C.15 that if Ot = 0, the two off diagonal terms will

be zero and the diagonal terms will be maximized. If vf-t = vf, the two diagonal

terms will be zero but the off diagonal terms will still have a contribution unless

the trial angle is correct. Note that subtracting fm from f, and not s, makes the

objective function insensitive to the initial source receiver offset. The full dispersion

curve specifies a velocity for each frequency component in the data.

C.3 Inversion

Depending on the size of the fourier transform used to convert the data into the fre-

quency domain, there can be a large number of parameters to invert for. Typically

if the traces have 512 samples in time and a 512 point fast fourier transform is per-

formed, there will be 256 frequencies to invert for on each dispersion curve. This leads

to an inversion search space of 513 parameters (2 x 256(frequencies) + 1(angle)).

In order to avoid inverting such a large model space the dispersion curves can be

parameterized by using piecewise constants, for example. Essentially this divides the

frequency space into a number of bands over which the dispersion curve is described

by a constant. The inversion code implements a variable grid algorithm, which dy-

namically updates the placement and size of the frequency bands with each iteration.

The algorithm has two stages. The first, called the spin-up, uses regularly spaced bins

to estimate the rough form of the data's dispersion curve. At each spin-up iteration

the code doubles the number of piecewise constants it uses to fit the curve. At the

first iteration it fits one constant which represents some average phase velocity; at

the next iteration it fits two, and at the next 4, and so on. The spin-up is typically

run for 4 iterations, which means that the dispersion curve has been parameterized

by 8 evenly spaced (in frequency) constants. These iterations provide the best pos-

sible starting guess for the second part of the algorithm which uses a variable grid

frequency spacing. After each minimization iteration the grid refining code allocates
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the number of frequency bins to be used according to the shape of the dispersion curve

at those frequencies. In other words, the algorithm adds more frequency bins where

the gradient of the curve is largest, ensuring that the inversion has enough parameters

to capture the character of the curve while keeping the number to a minimum so that

the inversion runs efficiently.

Figure C--7 shows the objective function space for some synthetic flexural wave

forms. The data was created using the dispersion relations and source spectrum

shown in figure C-6. The plots were made by dividing the frequency axis into 4

regions (shown as the red vertical dotted lines in C-6) and holding three of the phase

velocities constant, at the correct value, while varying the fourth. The objective

function surface is shown for the low, mid-low, mid-high, and high regimes and the

pink star marks the true minimum of the surface. Figure C-8 shows a similar view

of the surface as a function of azimuthal angle; here the slow dispersion curve is

held at the correct velocity while the angle and fast dispersion relation are varied

in the 4 frequency bins. Each of the minima shown in figure C-8 show smoothly

varying structure with a single minimum. The absence of complicated structure or

local minima shows the objective function is easy to invert. The minima decrease in

size for the higher frequency bins but remain smooth and well behaved.

The slant of the minima in figure C-7 is due to a correlation between the fast and

slow velocity modes. When inverting the data, the objective function is looking to find

the values of vf and vs that back propagate the data to the source function. Although

only one choice for each of these dispersion curves will give the correct answer, there

can be some trade off between the two modes. In other words, if the inversion chooses

the fast mode to be a little slower and the slow mode to be a little faster, there is

still a good match of the source functions. This trade off is intrinsic to the objective

function, however by using all possible receiver pairs the length of the correlation

is reduced. If the same figure were shown for just one receiver pair, the correlation

would stretch; conversely, if there were more than 8 pairs of receivers, there would be

a shrinking of the minimum in the diagonal direction. From the frequency spectrum

of the data, shown in figure C-6 (the black curve), and from the total value of the
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objective function in each in each bin, seen in the colourbars in figure C-7, it is clear

that the frequencies with higher spectral content have a greater influence on the value

of the objective function. For the high and low frequency bands, where the spectrum

has less magnitude, the contribution to the objective function is less. This fact has

important consequences for the inversion as the results are likely to be inaccurate

where the spectrum has lower magnitude.

C.4 Results

C.4.1 Results from Synthetic Data

This section presents inversion results for synthetic flexural waveforms and discusses

the consequences of noise within the data. Synthetic waveforms, were calculated using

a rotation of 350 and the dispersion relations and source spectrum shown in figure

C-9. The phase velocity values were chosen to be similar to those found in a shaley
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sandstone formation and the source spectrum is typical of those used in industry

shear sonic logging tools. Figure C-10 shows the time series array representation of

the calculated synthetic data (green). The data are inverted for a total of 6 spin-

up iterations and a further 6 iterations using the dynamic frequency grid. The blue

curves, again in figure C-10, show the time series after the data have been back

propagated and rotated by the output of the inversion code. As previously discussed in

sections C.1.2 and C.1.3, if the data have been correctly rotated and back propagated,

the cross-line components will be minimized and the in-line components will recover

their original form from the time of excitation. In other words they have had the

effects of rotation and propagation along the borehole undone and they resemble

the excitation source function. This can be seen clearly in figure C-10 where the blue

traces have been minimized on the cross-line components and show the source function

on the in-line traces. The inversion also correctly calculated the angle between the

tools x-axis and the fast plane as 350. Thus mismatch between the inversion result

and synthetic curves at high frequencies is due to the lack of data above 10 khz. The

source spectrum is highest around 4 khz but falls off rapidly and there is almost no

frequency content in the data above 9 khz.

Figures C-12 and C-13 show inversion results for the same synthetic data used

above but with 5% gaussian white noise added to the time traces which is approxi-

mately 30dB. The azimuthal angle is estimated to be 340 which is 10 less than the true

angle. The inverted dispersion curves are noisy above and below the region of high

frequency content. There is however, good agreement where the frequency content is

highest.

C.4.2 Results from Field Data

In this section we present some results from real cross-dipole data from a well in

Venezuela. We compare three methods; the joint inversion, simple frequency domain

Alford rotation followed by Prony's method and, simple frequency domain Alford

rotation followed by a back propagation scheme which inverts each frequency indi-

vidually. The simple frequency domain rotation scheme is similar to that of the joint
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Figure C-9: Dispersion curves for fast and slow shear waves used to create synthetic
data. The black curve shows the synthetic data.
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Figure C-10: Time series Representation of original synthetic data (green) and after
rotation and back propagation prescribed by inversion output (blue).

157

31



Synthetic Data Inversion Result -> iteration 6 no. theta=35

2500

:2000
E

1500

0 1000

0 2000 4000 6000 8000 10000 12000 14000

Figure C-11: The inversion results for the synthetic data case. The circles represent
the inversion output and the solid curves show the dispersion relationships used to
create the synthetic data.
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Figure C-12: Time series Representation of original noisy synthetic data (green) and
after rotation and back propagation prescribed by inversion output (blue).
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Synthetic Noisy Data -> iteration 5 no. theta=34
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Figure C-13: The inversion results the noisy synthetic data case. The circles represent
the inversion output and the solid curves show the dispersion relationships used to
create the synthetic data.

inversion but is calculated without taking into account the effects of dispersion. Fig-

ures C-16, C-19 C-22 and, C-25 show reasonable agreement between the three results

for depths of 7000, 7500, 6700 and, 8000 ft. Below each inversion result is a calculation

of semblance from the data after rotation onto the fast and slow axes. (Figures C-17,

0-20,C-23 and, C-26. The maximum contour corresponds to the velocity of coherent

energy in the waveforms. Figures C-18, C-21, C-24 and C-27 show the original wave-

forms in green and after they have been rotated and back propagated as prescribed by

the inversion (blue). As previously discussed in sections C.1.2 and C.1.3 there should

be a minimization for the cross-line components and the waveforms should resemble

the source function.

Table C.1 shows the azimuthal angle between the x axis of the tool and the fast

formation direction calculated by the joint inversion, and the simple frequency do-

main Alford rotation. It also shows the difference between these two inversions and

the difference in shear mode velocities taken from the dispersion curves of the rotated
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data. (except for depth 7500ft which was taken from the semblance plots) Anisotropy

in rocks is typically less than 10% suggesting the data from depth 7500ft are noisy or

the borehole may not be exactly circular.. The tool rotates as it moves through the

well so the inversion results must be corrected to find the direction of maximum stress

with respect to the geographic north. The tool measures the azimuthal angle from

the x-axis on the tool and the magnetic north, table C.2 shows the corrected results.

These can be compared with borehole break out measurements in the well which are

areas of damage to the borehole caused by stress. As the stress acts on the borehole

it can change from circular to elliptical with the major axis in the direction of mini-

mum stress. If the deformation increases past the elastic regime the borehole wall can

experience failure and some of the stress will be released in the form of a break out.

These break outs are measured by calipers in the well which record the diameter of

the borehole in orthogonal directions. Break out data gathered from this particular

well indicate a maximum stress direction between 330' and 360'. Additional stress in-

formation can be taken from the word stress map, www.world-stress-map.org, which

compiles regional stress field data for public use. Figure C-15 shows the regional

stress enlarged in the region of the borehole. Here the direction of maximum stress is

recorded as approximately 3150 ± 100. Figure C-14 shows the stresses from breakouts

and regional stresses with the inverion results for each depth. The azimuthal angles

calculated from the inversion fall within the expected direction with the exception

of the result at depth 7500 ft. It is unlikely that the stress direction changes signifi-

cantly over the length of the well because the regional stresses are determined by the

plate movements along the northern coast on Venezuela, shown as the thick black

line in figure C-15. Instead the inverted angle mismatch is likely to be a result of

noise in the data. The dispersion inversions at this depth, figure C-22, show spurious

results for the fast phase velocities at low frequencies, indicating the presence of noise.
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Figure C-14: Stress directions for joint and simple inversions shown with maximum
stress directions calculated from break outs and regional stresses.

161

6700 ft 7000 ft

w



290

Figure C-15: Regional stress map for area of borehole.
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C.5 Conclusions and Further Work

We have presented a method for a joint inversion for azimuthal angle and dispersion

relation for cross dipole acoustic waveforms. There is good agreement between the

dispersion relations calculated here and those calculated using traditional processing

methods but the calculated azimuthal angles differ significantly. These angles have

been compared with break out data from the borehole and regional stress maps and

show reasonable agreement at three of the four depths. The data quality at depth

7500 ft is likely responsible for the poor maximum stress direction estimation. This

noise can be seen in the dispersion curves for that depth in the low frequencies. It

should be noted however that the joint inversion gives much better results in the

low frequencies than either of the comparative methods. The semblance plots also

agree with the joint inversion results underlining the importance of a simultaneous

inversion. Further work on this project should address multi-modal arrivals. In this

paper we have assumed that the majority of the energy is in the flexural mode,

allowing us to ignore the refracted compressional and shear waves. If the borehole

is not perfectly cylindrical the flexural mode may not be the strongest arrival and

contamination in the flexural mode from other arrivals must be accounted for. This

can be achieved by filtering in the time and/or the frequency domain, if the arrivals

are well separated, but often this method is not ideal because useful data may be

discarded or not separated completely. A second consideration is the speed of the

algorithm which may be improved using alternative non-linear inversion methods.
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Figure C-16: Dispersion analysis results for depth 6700ft.
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Table C.1: Angle between fast
angle inversion

Table C.2: Angle
angle inversion

plane and tool x-axis for joint inversion and simple

between fast plane and tool x-axis for joint inversion and simple

Rotated Fast 6700ft

1000

0 0.005 0.01 0.015
time (second)

Rotated Slow 6700ft

0.02 0 0.005 0.01 0.015
time (second)

Figure C-17: Semblance analysis results for rotated data at depth 6700ft.
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Depth Joint Inversion Simple Inversion difference Difference in velocities from
ft degrees degrees degrees fast and slow modes

(from dispersion) [ms - i] [%]
6700 50 27 23 250, 9%
7000 50 59 9 300, 9%
7500 47.5 56 8.5 550, 17%
8000 69 43 26 250, 7%

Depth tool angle Joint Inversion Simple Inversion
ft degrees degrees degrees

from true North from true North from true North
6700 55 355 332
7000 76 335 343
7500 115 293 1
8000 258 327 301

0.02

E

.i. .



Crossline XY

0.01

Crossline YX

0.01
time [s]

0.02

Inline YY

0.02
time [s]

Figure C-18: Original waveforms (green)
prescribed by inversion results (blue).
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Depth 7000
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Figure C-19: Dispersion analysis results for depth 7000ft.
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Rotated Slow 7000ft
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Figure C-20: Semblance analysis results for rotated data at depth 7000ft.
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Figure C-21: Original waveforms (green)
prescribed by inversion results (blue).
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Depth 7500
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Figure C-22: Dispersion analysis results for depth 7500ft.
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Rotated Slow 7500ft
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Figure C-23: Semblance analysis results for rotated data at depth 7500ft.
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Figure C-24: Original waveforms (green) and after rotation and back propagation as
prescribed by inversion results (blue).
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Depth 8000
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Figure C-25: Dispersion analysis results for depth 8000ft.
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Figure C-26: Semblance analysis results for rotated data at depth 8000ft.
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Figure C-27: Original waveforms (green)
prescribed by inversion results (blue).
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