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Abstract

In model based recognition the problem is to locate an instance of one or several known
objects in an image. The problem is compounded in real images by the presence of
clutter (features not arising from the model), occlusion (absence in the image of
features belonging to the model), and sensor error (displacement of features from
their actual location). Since the locations of image features are used to hypothesize
the object's pose in the image, these errors can lead to "false negatives", failures to
recognize the presence of an object in the image, and "false positives", in which the
algorithm incorrectly identifies an occurrence of the object when in fact there is none.
This may happen if a set of features not arising from the object are located such that
together they "look like" the object being sought. The probability of either of these
events occurring is affected by parameters within the recognition algorithm, which
are almost always chosen in an ad-hoc fashion. The implications of the parameter
values for the algorithm's likelihood of producing false negatives and positives are
usually not understood explicitly.

To address the problem, we have explicitly modelled the noise and clutter that occurs
in the image. In a typical recognition algorithm, hypotheses about the position of the
object are tested against the evidence in the image, and an overall score is assigned
to each hypothesis. We use a statistical model to determine what score a correct
or incorrect hypothesis is likely to have. We then use standard binary hypothesis
testing techniques to decide the difference between correct and incorrect hypotheses.
Using this approach we can compare algorithms and noise models, and automatically
choose values for internal system thresholds to minimize the probability of making
a mistake. Our analysis applies equally well to both the alignment method and
geometric hashing.

Thesis Supervisor: W. Eric L. Grimson
Title: Associate Professor of Computer Science and Electrical Engineering
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Chapter 1

Introduction

1.1 Motivation

In order to build machines capable of interacting intelligently in the real world, they
must be capable of perceiving and interpreting their environs. To do this, they must
be equipped with powerful sensing tools such as humans have, one of which is Vision
- the ability to interpret light reflected from the scene to the eye. Computer Vision is
the field which addresses the question of interpreting the light reflected from the scene
as recorded by a camera. Humans are far more proficient at this visual interpretation
task than any computer vision system yet built. Lest the reader think that this is
because the human eye may somehow perceive more information from the scene than
a camera can, we note that a human can also interpret camera images that a computer
cannot - that is, a human outperforms the computer at visual interpretation tasks
even when limited to the same visual input.

Model based recognition is a branch of computer vision whose goal is to detect the
presence and position in the scene of one or more objects that the computer knows
about beforehand. This capability is necessary for many tasks, though not all. For
example, if the task is to navigate from one place to another, then the goal of the
visual interpretation is to yield the positions of obstacles, regardless of their identity.
If the task is to follow something, then the goal of the interpretation is to detect
motion. However, if the task is to count trucks that pass through an intersection at
a particular time of day, then the goal of the task is to recognize trucks as opposed
to any other vehicle.

Model based recognition is generally broken down into the following conceptual mod-
ules (Figure 1-1). There is a database of models, and each known model is represented
in the database by a set of features. In order to recognize any of the objects in a
scene, an image of the scene is taken by a camera, some sort of feature extraction is
done on the image, and then the features from the image are fed into a recognition
algorithm along with model features retrieved from the model database. The ta.sk
of the recognition algorithm is to determine the location of the object in the image,
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Figure 1-1: Stages in model based recognition.

thereby solving for the object's pose (position of the object in the environment).

A typical recognition algorithm contains a stage which searches through pose hy-

potheses based on small sets of feature correspondences between the model and the
image. For every one, the model is projected into the image under this pose assump-
tion. Evidence from the image is collected in favor of this pose hypothesis, resulting
in an overall goodness score. If the score passes some threshold 0, then it is accepted.
In some algorithms this pose, which based on a small initial correspondence, may be
passed onto a refinement and verification stage. For the pose hypothesis generator, we
use the term "correct hypothesis" to denote a pose based on a correct correspondence
between model and image features.

If we knew in advance that testing a correct hypothesis for a particular model would
result in an overall score of S, then recognizing the model in the image would be
particularly simple - we would know that we had found a correct hypothesis when
we found one that had a score of S. However, in real images there may be clutter,

Pose Hypothesis
Generator

poses

Refinement and
Verification

C 17T



occlusion, and sensor noise, each of which will affect the scores of correct and incor-
rect hypotheses. Clutter is the term for features not arising from the model; such
features may be aligned in such a way as to contribute to a score for an incorrect

pose hypothesis. Occlusion is the absence in the image of features belonging to the
model. This serves to possibly lower the score of a correct hypothesis. Lastly, sensor
noise is the displacement of observed image features from their true location.

If we knew that part of the model was occluded in the scene and yet we keep the
threshold for acceptance at S, we risk the possibility of the algorithm's not identifying
a correct hypothesis, which may not score that high. Therefore, we may choose to
lower the threshold for acceptance to something slightly less than S. However, the
lower we set the threshold, the higher the possibility that an incorrect hypothesis
will pass it. The goal is to use a threshold which maximizes the probability that the
algorithm will identify a correct hypothesis (called a true detection) while minimizing
the probability that it accepts an incorrect one (called a false alarm).

In this thesis, we determine the implications of using any particular threshold on the
probability of true detection and false alarm for a particular recognition algorithm.
The method applies to pose hypotheses based on minimal correspondences between
model and image points (i.e., size 3 correspondences). We explicitly model the kinds
of noise that occurs in real images, and analytically derive probability density func-
tions on the scores of correct and correct hypotheses. These distributions are then
iused to construct receiver operating characteristic curves (a standard tool borrowed
from binary hypothesis testing theory) which indicate all possible triples of (thresh-
old, probability of false positive, probability of true positive) pairs for an appropriately
specified statistical ensemble. We have demonstrated that the method works well in
the domain of both simulated and actual images.

.1.2 Object Recognition as Information Recovery

To approach the problem in another way, we can think of the object recognition
problem as a process of recovering a set of original parameters about a source. In this
abstraction, there is some sort of information exchange between the source and the
observer, the information might be corrupted in some fashion, the observer receives
sonme subset of the information with added noise, and finally, processes the observed
iniformation in one or several stages to settle upon a hypothesis about the parameters
of interest.

For example, in the case of message transmission, the parameters of interest are
thie message itself, the noise is introduced by the channel, and the observer tries to
recover the original transmitted message. In sonar based distance measurement, the
parameter of interest is the free distance along a particular direction from a source,
thIe infornmation is the reflected sonar beam, and the perceived information is the
time delay between sending and receiving the beam. The observer then processes this
information to derive a hypothesis about the free space along the particular direction.
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Figure 1-2: Recovering information from a source over a noisy channel.

In model based vision, the parameters of interest are the presence or absence of a
model in a scene, and its pose in three dimensional space. The information is the
light which is reflected from a source by the objects in the scene, and the perceived
information is the light which enters the lens of a camera. The information goes
through several processing stages to get transformed into a two dimensional array of
brightness values representing an image, and then through several more steps to come
to a hypothesis about the presence and pose of any particular model.

In this thesis we cast the problem as a binary hypothesis testing problem. Let the
hypothesis H be "model is at pose P". We are trying to reliably distinguish between
H and H. It is generally not always possible to do this, especially as the noise goes
up, but we can bound the probability of error as a function of the statistics of the
problem, and can determine when the noise is too high to distinguish between the
two hypotheses.

1.3 Overview of the Thesis

All of the definitions, terminology, conventions and formulas that we will use in the
thesis are given in Appendix A.

Chapter 2 explains the model based recognition problem in more detail, and gives a
very general overview of work relevant to this thesis. We will define the terms and
concepts to which we will be referring in the rest of the work.

In Chapter 3 we present the detailed error analysis of the problem.

In Chapter 4 we present the ROC (receiver operating characteristic) curve, borrowed
from hypothesis testing theory and recast in terms of the framework of model based
recognition. The ROC curve compactly encompasses all the relevant information to
predict (threshold, probability of false positive, probability of false negative) triples for
an appropriately specified statistical ensemble. We also confirm the accuracy of the
ROC curves performance predictions with actual experiments consisting of simulated
images and models.

Chapter 5 explores the effect of varying some of the assumptions that were used in
Chapter 3. This chapter can be skipped without loss of continuity.



In the first part of Chapter 6 we measure the sensor noise associated with different
feature types and imaging conditions. In the second part, we demonstrate the appli-
cation of ROC, curves to the problem of automatic threshold determination for real
models and images.

In Chapter 7 we discuss implications of our work for geometric hashing, a recognition
technique closely related to the one analysed in the thesis.

Finally, we conclude in Chapter 8 with potential applications and extensions.



Chapter 2

Problem Presentation and
Background

We begin by setting the context for our problem. First we will define the terms to
which we will be referring in the rest of the thesis. We will then talk about different
techniques for solving the recognition problem, and finally we will discuss how these
techniques are affected by incorporating an explicit error model.

2.1 Images, Models and Features

An image is simply a two dimensional array of brightness values, formed by light
reflecting from objects in the scene and reaching the camera, whose position we
assume is fixed (we will not talk about the details of the imaging process). An object
in the scene has 6 degrees of freedom (3 translational and 3 rotational) with respect
to the fixed camera position. This six dimensional space is commonly referred to as
transformation space. The most brute force approach to finding an object in the scene
would be to hypothesize the object at every point in the transformation space, project
the object into the image plane, and perform pixel by pixel correlation between the
image that would be formed by the hypothesis, and the actual image. This method is
needlessly time consuming however, since the data provided by the image immediately
eliminates much of the transformation space from consideration.

Using image features prunes down this vast search space to a more manageable size.
What is meant by the term "image feature" is: something detectable in the image
which could have been produced by a localizable physical aspect of the model (called
model feature), regardless of the model's pose. For example, an image feature might
be a brightness gradient, which might have been produced by any one of several model
features - a sudden change in depth, indicating an edge or a boundary on the object,
or a change in color or texture. An image feature can be simple, such as "something
at pixel (x,y)", or arbitrarily complex, such as "a 450 straight edge starting at pixel

(x,y) of length 5 separating blue pixels from orange pixels".



The utility of features lies in their ability to eliminate entire searches from considera-
tion. For example, if the model description consisted of only corner features bordering
a blue region, but there were no such corners detected in the image, this information
would obviate the need to search the image for that object. Another way to use
features is to form correspondences between image and model features. This con-
strains the possible poses of the object, since not all points in transformation space
will result in the two features being aligned in the image. In fact, depending on the
complexity of the feature, sometimes they cannot be aligned at all - for instance,
there is no point in transformation space that will align a 450 corner with a curved
edge. The more complex the feature, the fewer correspondences are required to con-
strain the pose completely. For instance, if the features consist of a 2D location plus
orientation, only two correspondences are required to solve for the pose of the object.
If the features are 2D points without orientation, then a correspondence between 3
image and model features (referred to as a size 3 correspondence) constrains the pose
completely.

It would seem intuitively that the richer the feature, the more discriminative power it
imparts, since one not need check correspondences that contain incompatible feature
pairings. In fact, there is an entire body of work devoted to using feature saliency
[SUT88, Swa90] to efficiently perform object recognition. It is true that one can use
more complex features to prune the search space more drastically, but the more
complex the feature, the more likely there is to be an error in the feature pairing

process due to error and noise in the imaging and feature extraction processes. For
simplicity, in this work we consider only point features, meaning that image and model
features are completely characterized by their 2D and 3D locations, respectively.

The general method of using features is to first do some sort of feature extraction on
both the model and the image; next, to form groups of correspondences to constrain
thl:e areas of pose space that have to be tested, and finally, to find the pose.

2.2 Categorizing Error

We use the term "error" to describe any effect which causes an image of a model in a
known pose to deviate from what we expect. The kinds of errors which occur in the
recognition process can be grouped into three categories:

* Occlusion - in real scenes, some of the features we expect to find may be
blocked by other objects in the scene. There are several models for occlusion:
the simplest is to model it as an independent process, i.e., we can say that we
expect some percentage of features to be blocked, and consider every feature to
have the same probability of being occluded independent of any other feature.
Or, we can use a view based method which takes into account which features are
self-occluded due to pose. More recently, Breuel [Bre93] has presented a new
model that uses locality of features to determine the likelihood of occlusion;



that is, if one feature is occluded under a specific pose hypothesis, an adjacent
feature is more likely to be occluded.

* Clutter or Noise - these are extraneous features present in the image not arising
from the object of interest, or arising from unmodelled processes (for example,
highlights). Generally these are modelled as points that are independently and
uniformly distributed over the image. These will be referred to as clutter or
sometimes, "random image points".

* Sensor Measurement Error - image features formed by objects in the scene
may be displaced from their true locations by many causes, among them: lens
distortion, illumination variation, quantization error, or algorithmic processing
(for instance, a brightness gradient may be slightly moved due to the size of the
smoothing mask used in edge detection, or the location of point feature may be
shifted due to artifacts of the feature extraction process). This may be referred
to as simply "error".

The interest in error models for vision is a fairly recent phenomenon which has been
motivated by the fact that for any recognition algorithm, these errors almost always
lead to finding an instance of the object where it doesn't appear (called a false posi-
tive), or missing an actual appearance of an object (a false negative).

We will present an overview of recognition algorithms, first assuming that none of
these effects are present, and subsequently we will discuss the implications of incor-
porating explicit models for these processes.

2.3 Search Methods

Much of the work done in model based recognition uses pairings between model
and image features, and can be loosely grouped into two categories: correspondence
space search and transformation space search. I will treat another method, indexing,
as a separate category, though it could be argued that it falls within the realm of
transformation space search. The error analysis presented in this work applies to
those approaches falling in a particular formulation of the transformation space search
category. In this section we discuss the general methods, assuming no explicit error
modeling.

2.3.1 Correspondence Space

In this approach, the problem is formulated as finding the largest mutually consistent
subset of all possible pairings between model and image features, a set whose size is
on the order of rn?" (in which m is the number of model features, and n is the number
of image features). Finding this subset has been formalized as a consistent graph



labelling problem [Bha84], or, by connecting pairs of mutually consistent correspon-
dences with edges, as a maximal clique problem [BC82], and as a tree search problem
in [GLP84, GLP87]. The running time of all of these methods is at worst exponential,
however, at least in the latter approach Grimson has shown that with pruning, fruit-
less branches of the tree can be abandoned early on, so that this particular method's
expected running time is polynomial [Gri90].

2.3.2 Transformation Space

In the transformation space approach, all size G correspondences are tested, where
G is the size of the smallest correspondence required to uniquely solve for the trans-
formation needed to bring the G image and model features into correspondence. The
transformation thus found is then used to project the rest of the model into the image
to search for other corresponding features. The size of the search space is polynomial,
O(nGmnG) to be precise. This overall method has come to be associated with Hut-
tenlocher and Ullman ([HU87]), who dubbed it "alignment", though other previous
work used transformation space search (for example, the Hough transform method
[Bal81] as well as [Bai84, FB80, TM87], and others). One of the contributions of
Huttenlocher's work was to show that a feature pairing of size 3 was necessary and
sufficient to solve uniquely for the model pose, and how to do it. Another charac-
teristic of the alignment method as presented in [Hut88] was to use a small number
of simple features to form an initial rough pose hypothesis, and to iteratively add
features to stabilize and refine the pose. Finally, for the pose to be accepted it must

pass a final test in which more complex model and image features must correspond
reasonably well, for example, some percentage of the model contour must line up
with edges in the image under this pose hypothesis. This last stage is referred to
as "verification". Since it is computationally more expensive than generating pose
hypotheses, it is more efficient to only verify pose hypotheses that have a reasonable
chance of success.

2.3.3 Indexing Methods

Lastly, we come to indexing methods. Here, instead of checking all poses implied
by all size 3 pairings between model and image features, the search space is further
reduced by using larger image feature groups than the minimum of 3 and to pair
them only to groups in the model that could have formed them. This requires a
way to access only such model groups without checking all of them. To do this, the
recognition process is split into two stages, a model preprocessing stage in which for
each group of size G, some distinguishing property of all possible images of that group
is computed and used to store the group into a table, indexed by that property. At
recognition time, each size G image group is used to index into the table to find
the model groups that could have formed it, for a total running time of O(nG) (not
including preprocessing).



At one extreme, we could use an index space of dimension 2G (assuming the features

are two dimensional) and simply store the model at all positions (xl, yl, ...XG, yG) for

every pose of the model. However, this saves us nothing, since the space requirements

for the lookup table would be enormous and the preprocessing stage at least as time

consuming as a straight transformation space approach. The trick is to find the

lowest dimensional space which will compactly represent all views of a model without

sacrificing discriminating power.

Lamdan, Schwartz, Wolfson and Hummel [LSW87, HW88] demonstrate a method,
called geometric hashing, to do this in the special case of planar models. Their

algorithm takes advantage two things - first, for a group of 3 non-collinear points in

the plane, the affine coordinates of any fourth point with respect to the first three as

bases is invariant to an affine transformation of the entire model plane. That is, any

fourth point can be written in terms of the first three:

m3 = mo + a(ml - mo) + 3(m 2 - mo).

We can think of (a, f3) as the affine coordinates of m3 in the coordinate system

established by mapping mo, mi, m2 to (0, 0), (1,0), (0, 1). These affine coordinates

are invariant to a linear transformation T of the model plane.

Second, there is a one-to-one relationship between an image of a planar model in a 3D

pose and an affine transformation of the model plane. We assume that the pose has

3 rotational and 2 translational degrees of freedom, and we use orthographic projec-

tion with scale as the imaging model. Then the 3D pose and subsequent projection
collapses down to two dimensions:

1 0 0 r7'1 ,1 71,2 7'1,3  Xi X 71 ,1xi + Sr71,2Yi + t
0 1 0 2 ,1 72,2 2,3 i ty sr 2 , i + r 2 ,2 Yi + ty

0 0 0 '3,1 , r:3,2  r 3,3 0 0 0

where s is the scale factor, and the matrices are the orthographic projection matrix

and rotation matrix, respectively. Conversely, a three point correspondence between

model and image features uniquely determines both an affine transformation of the

model plane, and also a unique scale and pose for an object (up to a reflection over

a plane parallel to the image plane; see [Hut88]).

Therefore, suppose we want to locate an ordered group of four model points in an
image (where the model's 3D pose is unknown). The use of the affine coordinates of
the fourth point with respect to the first three as basis to describe this model group

is pose invariant, since no matter what pose the model has, if we come across the

four image points formed by this model group, finding the coordinates of the fourth

image point with respect to the first three yields the same affine coordinates.

Geometric hashing involves doing this for all model groups of size 4 at the same time.

The algorithm requires the following preprocessing stage: for each model group of



size 4, the affine coordinates of the fourth point are used as a pose invariant index
into the table to store the first three points. This stage takes O(m 4 ), where m is the
number of model points. At recognition time, each size 3 image group is tested in
the following way: for a fixed image basis B, (a) for every image point, the affine
coordinates are found with respect to B, then (b) the affine coordinates are used to
index into the hash table. All model bases stored at the location indexed by the affine
coordinates are candidate matches for the image basis B. A score is incremented for
each candidate model basis and the process is repeated for each image point. After
all image points have been checked, the model basis that accumulated the highest
score and passes some threshold is taken as a correct match for the image basis B.

In theory, the technique takes time O(n 4 + 774 ). More recently, Clemens and Jacobs
formalized the indexing problem in [CJ91] and showed that 4 dimensions is the mini-
mum required to represent 3D models in arbitrary poses. All views of a group of size
4 form a 2D manifold in this space, implying that unlike in the planar model domain,
there exists no pose invariant property for 3D models in arbitrary poses. Other work
involving geometric hashing can be found in [CHS90, RH91, Ols93, Tsa93].

2.4 The Effect of Error on Recognition Methods

All recognition algorithms test pose hypotheses by checking for a good match between
the the image that would be formed by projecting the model using the tested pose
hypothesis, and the actual image. We will discuss exactly what we mean by a "good
match" shortly. The three kinds of errors cause qualitatively different problems for
recognition algorithms. The effect of occlusion brings down the amount of evidence in
favor of correct hypotheses, risking false negatives. The presence of clutter introduces
the possibility that a clutter feature will arise randomly in a position such that it is
counted as evidence in favor of an incorrect pose hypothesis, risking false positives.
Sensor error has the effect of displacing points from their expected locations, such
that a simple test of checking for a feature at a point location in the image turns into
a search over a small disk, again risking the possibility of false positives.

It would appear that simply in terms of running time, the search techniques from

(correspondence space search --+ transformation space search -* indexing) go in order
of worst to best. However, this ranking becomes less clear once the techniques are
modified to take error into account. The differences between the approaches then
become somewhat artificial in their implementations, since extra steps must often be
added which blur their conceptual distinctions.

Correspondence space search is the most insensitive to error, since given the correct
model-feature pairings, the globally best pose can be found by minimizing the sum
of the model to image feature displacements.

For transformation space approaches, dealing with error turns the problem into a
potentially exponential one. The reason is that the transformation space approach
checks only those points in the space that are indicated by size 3 correspondences



between model and image features. Though there are many correct image to feature
correspondences, it may be the case that the poses implied by each correspondence
cluster near the globally correct pose in transformation space, while none of them
actually land on it. Therefore, finding the globally best pose will require iteratively
adding model-feature pairings to the initial correspondence. However, for each ad-
ditional pairing, the model point in the pair can match to any image points which
appears in a finite sized disk in the image. Assuming uniform clutter, some fraction
k of all the image points will appear in such a disk. If all of them have to be checked
as candidate matches, this brings the search to size O(mrkn ).

To conclude the discussion of the effect of noise on different techniques, we note that
in general, the more efficient an algorithm, the more unstable it is in the presence
of noise. This observation is not really surprising since the speed/reliability trade-off
is as natural and ubiquitous in all computer science as the speed/space trade-off. In
the remaining discusion and throughout the thesis, we will be dealing solely with
transformation space search, and the analysis that we present is applicable equally
well to both alignment and geometric hashing.

2.5 Error Models in Vision

The work incorporating explicit error models for vision has used either a uniform
bounded error model, or a 2D Gaussian error model. A uniform bounded error model
is one in which the difference between the sensed and actual location of a projected
model point can be modeled as a vector drawn from a bounded disk with uniform, or
flat, distribution. A Gaussian error model is one in which the sensed error vector is
modeled with a two dimensional Gaussian distribution. Clutter and occlusion, when
modeled, are done so as uniformly distributed and independent. Though there has
not been a great deal of this type of work, there are some notable examples.

2.5.1 Uniform Bounded Error Models

Recently, (Cass showed that finding the best pose in transformation space, assuming
a uniform bounded error associated with each feature, can be reduced to the problem
of finding the maximal intersection of spiral cylinders in transformation space. Stated
this way, the optimal pose can be found in polynomial time (O(mrn6 6 )) by sampling
only the points at which pairs of these spiral cylinders intersect [Cas90]. Baird [Bai84]
showed how to solve a similar problem for polygonal error bounds in polynomial time
by formulating it in terms of finding the solution to a system of linear equations.

Grimson, Huttenlocher and Jacobs [GHJ91] did a detailed comparative error analysis
of the both alignment and geometric hashing method of [LSW87, HW88]. They used
a uniform bounded error model in the analysis and concentrated on determining the
probability of false positives for each technique. Also, Jacobs demonstrates an index-
ing system for 3D models in [Jac92] which explicitly incorporates uniform bounded



error.

2.5.2 Gaussian Error Models

The previous work all used a uniform bounded error model to analyze the effect of
error on the recognition problem. This model is in some ways simpler to analyze, but
in general it is too conservative a model in that it overestimates the effect of error.
A Gaussian error model will often give analytically better results and so it is often
assumed even when the actual distribution of error has not been extensively tested. It
can be argued, however, that the underlying causes of error will contribute to a more
Gaussian distribution of features, simply by citing the Central Limit Theorem. In
[We192], Wells presented experimental evidence that indicates that for a TV sensor
and a particular feature class, a Gaussian error model is in fact a more accurate
noise model than the uniform. Even when the Gaussian model is assumed, there is
often not a good idea of the standard deviation, and generally an arbitrary standard
deviation is picked empirically.

Wells also solved the problem of finding the globally best pose and feature corre-
spondence with Gaussian error by constructing an objective function over pose and
correspondence space whose argmin was the best pose hypothesis in a Bayesian sense.
To find this point in the space he used an expectation-maximization algorithm which
converged quite quickly, in 10-40 iterations, though the technique was not guaranteed
to converge to the likelihood maximum.

Rigoutsos and Hummel [RH91] and Costa, Haralick and Shapiro [C'HS90] indepen-
dently formulated a method to do geometric hashing with Gaussian error, and demon-
strated results more encouraging that those predicted in Grimson, Huttenlocher and
Jacobs' analysis of the uniform bounded model. Tsai also demonstrates an error
analysis for geometric hashing using line invariants in [Tsa93].

Bolles, Quam, Fischler, and Wolf demonstrate an error analysis in the domain of
recognizing terrain models from aerial photographs ([BQFW78]). In their work, a
Gaussian error model was used to model the uncertainty in the camera parameters and
camera to scene geometry, and it was shown that the under a particular hypothesis
(which in this domain is the camera to scene geometry) the regions consistent with
the projected model point locations (features in the terrain model) are ellipses in the
image.

2.5.3 Bayesian Methods

The Gaussian error model work has used a Bayesian approach to pose estimation,
i.C.,, it assumes a prior probability distribution on the poses and uses the rule

(pose I data) = P(pose)P(data pose)
P(data)



to infer the most likely pose given the data. The noise model is used to determine
the conditional probability of the data given the pose. In Bayesian techniques, the
denominator in this expression is assumed to be uniform over all possible poses, and
so can be disregarded ([We192, RH91, CHS90, Tsa93]). This assumes that one of the
poses actually is correct, that is, that the object actually appears in the image. The
pose which maximizes this expression is the globally optimal pose. However, if we do
not know whether the model appears in the image at all, we cannot use the above
criterion.

2.6 The Need for Decision Procedures

In general, it is possible to find the globally best pose with respect to some criterion,
but if we have no information as to whether any of the possible poses are correct,
that is, if we have no information as to the probability that the model appears in the

image, then we must determine at what point even the most likely pose is compelling
enough to accept it.

In this thesis we address this problem with respect to poses based on size 3 corre-

sponces between image and model features. We will use the term "correct" hypotheses
to denote correct size 3 correspondences. Such correct correspondences indicate points
in transformation space that are close to the correct pose for the model in the image.

Since transformation space search samples only those points in transformation space
that are implied by size 3 correspondences, what we are doing is trying to determine
when we have found a point in the space close enough to the correct pose to accept
it or to pass it on to a more costly verification stage.

Suppose we were working with a model of size m in a domain with no occlusion,
clutter, or error. In this case, a correct hypothesis would always have all corrob-
orating evidence present. Therefore, to test if a hypothesis is correct or not, one
would project the model into the image subject to the pose hypothesis implied by the
correspondence, and test if there were in image points present where expected. We
call this test a decision procedure and m the threshold. However, suppose we admit

the possibility of occlusion and clutter, modeled as stated. Now it is not clear how

many points we need to indicate a correct hypothesis, since the number of points in

the image that will arise from the model is not constant. In particular, if there is

the probability c for any given point to be occluded, then the number of points we

will see for a correct hypothesis will be a random variable with binomial distribution.
Deciding if a hypothesis is correct is a question of determining if the amount of evi-
dence exceeds a reasonable threshold. So even without sensor error, we must have a
decision procedure and with it, an associated probability of making a mistake.

When we also consider sensor error, the uncertainty in the sensed location of the 3

image points used in the correspondence to solve for the pose hypothesis magnifies
the positional uncertainty of the remaining model points (Figure 2-1). Therefore
since a model point could fall anywhere in this region, we have to count any feature



Figure 2-1: Possible positions of a model point due to positional uncertainty in the three
points used in the correspondence to form the pose hypothesis.

which appears there as evidence in favor of the pose hypothesis. As the regions
spread out spatially, there is a higher probability that a clutter feature will appear
in such a region, even though it does not arise from the model. So now, instead of
never finding any evidence corroborating an incorrect pose hypothesis (assuming only
asymmetric models), the amount of evidence we find will also be a random variable
with distribution dependent on the error model.

It is important to understand the implications of using any particular threshold as
a decision procedure, since when the distributions of the two random variables over-
lap, using a threshold will necessarily imply missing some good pose hypotheses and
accepting some bad ones. Most working vision systems operate under conditions in
which the random variables describing good and bad hypotheses are so widely sepa-
rated that it is easy to tell the difference between them. Few try to determine how
their system's performance degrades as the distributions approach each other until
they are so close that it is not possible to distinguish between them.

It is this area that is addressed in this thesis. Our approach focuses not on the pose
estimation problem, but rather on the decision problem, that is, given a particular
pose hypothesis, what is the probability of making a mistake by either accepting or
rejecting it? This question has seldom been dealt with, though one notable exception
is the "Random Sample Consensus" (RANSAC) paradigm by Fischler and Bolles
([FB80]), in which measurement error, clutter and occlusion were modeled similarly
as in our work, and the question of choosing thresholds in order to avoid false positives
addressed as well. More recently, error analyses concentrating on the probability of
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false positives were presented in the domain of Hough transforms by [GH90], and in
geometric hashing by [GHJ91], and much of the approach developed in this thesis
owes a debt to that work.

Conclusion

We have structured this problem in a way which can be applied to those algorithms
which sample transformation space at those points implied by correspondences be-
tween 3 model and image features. In the next few chapters we will present the
method, and its predictive power for both simulated and real images.



Chapter 3

Presentation of the Method

In this chapter the problem we address is, given a model of an object and an image,
how do we evaluate hypotheses about where the model appears in the image?

The basic recognition algorithm that we are assuming is a simple transformation space
search equivalent to alignment, in which pose hypotheses are based on initial minimal
correspondences between model and image points. The aim of the search is to identify
correct correspondences between model and image points. We will refer to correct
and incorrect correspondences as "correct hypotheses" and "incorrect hypotheses".
(Correct hypotheses specify points in transformation space that are close to the correct
pose, and can be used as starting points for subsequent refinement and verification
stages. The inner loop of the algorithm consists of testing the hypothesis for possible
acceptance. The steps are:

(1) For a given 3 model points and 3 image points,

(2) Find the transformation for the model which aligns this triple of model points
to the image points,

(3) Project the remaining model points into the image according to this transfor-
mation,

(4) Look for possible matching image points for each projected model point, and
tally up a score depending on the amount of evidence found.

(5) If the score exceeds some threshold 0, then we say the hypothesis is correct.

Correspondences can be tested exhaustively, or the outer algorithm can use more
global information such as grouping to guide the search towards correspondences
which are more likely to be correct. The actual manner through which the correspon-
dences are searched is not relevant to the functioning of the inner loop.

In the presentation of the algorithm, steps (4) and (5) are deliberately vague. In
particular, how do we tally up the score, and how do we set the threshold? The



answer to these two questions are linked to each other, and in order to answer them
we need to select:

* A weighting scheme - that is, when we project the model back into the image,
how we should weight any image points which fall near, but not exactly at, the
expected location of the other model points. The weighting scheme should be
determined by the model for sensor error.

* A method of accumulating evidence for a given hypothesis.

* A decision procedure - that is, how to set the threshold 0, which is the score
needed to accept a hypotheses as being correct.

The first two choices determine the distributions of scores associated with correct
and incorrect hypotheses. Different choices can make the analytic derivation of these
distributions easier or harder; Chapter 5 will discuss some of these issues but for now
we present a single scheme for which we can do the analysis.

After a brief presentation of the mechanics of the alignment algorithm, we will present
the error assumptions we are using for occlusion, clutter, and sensor noise, and how
these assumptions affect our scoring algorithm. For the remainder of the chapter we
will present a particular scoring algorithm for hypotheses, and we will derive the score
distributions associated with correct and incorrect hypotheses as a function of the
scoring algorithm. Once we know these distributions, the question of determining the
relationship between performance and the threshold used for acceptance will become
straightforward.

In our analysis we limit ourselves to the domain of planar objects in 3D poses. We
assume orthographic projection with scaling as our imaging model, and a Gaussian
error model, that is, the appearance in the image of any point arising from the model
is displaced by a vector drawn from a 2D circular Gaussian distribution. Because
much of the error analysis work in this domain has assumed a bounded uniform
model for sensor error, we will periodically refer to those results for the purpose of
comparison.

3.1 Projection Model

In this problem, our input is an image of a planar object with arbitrary 3D pose.
Under orthographic projection with scaling, we can represent the image location

[u., vi]T of each model point [xi, yi]T with a simple linear transformation:

i a c i I+ (3.1)vi cd yi t,



where the transformation matrix is a 2 x 2 non-singular matrix, and [t,, ty]T is the
translation vector. To easily see why this is so, note that when the model is planar,
the coordinate frame of the model can be chosen so that the third coordinate is always
0. In this case the 3D transformation collapses down to two dimensions:

s 0 1 0 7'2,1 r 2,2 7'2,3  Yi = sr2,lXi + sr2,2Yi + ty
0 0 0 r3,1 r 3,2 r 3,3  0 0 0

Here, s is the scale factor, and the matrices are the orthographic projection matrix
and rotation matrix, respectively. Conversely, a three point correspondence between
model and image features uniquely determines both an affine transformation of the
model plane, and also a unique scale and pose for an object (up to a reflection over
a. plane parallel to the image plane; see [Hut88]).

3.2 Image, Model, and Affine Reference Frames

Conceptually, there are three different coordinate frames we utilize during the anal-
ysis. Model space is the global reference frame used for the model representation,
and image space is the global reference frame of the image. The transformation from
model space to image space is accomplished by the linear projection model discussed
above.

A third coordinate frame, called affine space, is used for each correspondence tested.
This coordinate frame is established by the three model points used in the initial
correspondence (which must not be collinear, or they would not span a plane). The
ordered triple of model and image points used in the correspondence is referred to
as the model basis and image basis, respectively. Each model point can be uniquely
expressed as a linear function of the model basis:

mi = mo + ai(ml - mo) + f3i(m 2 - m 0 ) (3.2)

We can think of the vectors (mi - mo) and (m 2 - mo) as the unit basis vectors (1,0)
and (0, 1) establishing the affine coordinate frame, in which (ai, /i) are the affine
coordinates of mi.

We convert from model space coordinates to affine space coordinates as follows: given
model points mo, m 1, m 2 (in model space coordinates), the coordinates of a fourth
point mi with respect to this basis are given by the expression

1 sin(O-V))
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Figure 3-1: Calculating the affine coordinates of a fourth model point with respect to
three model points as basis.

in which
mn1 = m1 - mo m 2 = m 2 - mo m = mm - mo

gl = Lmm = Lm'm i

and L denotes the angle between the two vectors of the argument.

If we perform an affine transformation T plus a translation t such as in Equation 3.1
to both sides of Equation 3.2, we demonstrate that the affine space coordinates (ai, 0i)
of a model point mi remain unchanged with respect to the transformed coordinates
of the basis:

T [mi] + t = T [mo + ai(mi - mo) + i(m 2 - mo)] + t
= Tmo + t + T[ac(ml - mo)] + T[/i(m 2 - MO)]
= Tmo + t + ai(Tmi - Tmo) + f/3(Tm 2 - Tmo)

= [Tmo + t] + ai([Tmi + t] - [Tmo + t]) + f3i([Tm 2 + t] - [Tm 0 + t])

This invariance of affine space coordinates under linear transformations (which we will
call "affine invariance") gives us several advantages. First, we can find the projected
image location of projected model points without having to solve directly for the
transformation, since the image locations of all the model points can be expressed by
such a linear operation. Therefore, the image location of a projected model point mi
with affine coordinates (c, f3) i with respect to a given basis, once a correspondence
between model and image points has been established, is given by the expression

s = so + al(s - so) + /(S2 - SO) (3.3)

where si denotes the ith images point. Second, since there is a one-to-one correspon-
dence between affine transformations and poses, the affine invariance of this represen-



tation implies that it is pose invariant as well. This is the key to a particular form of
indexing, called geometric hashing. In particular, for the affine space established by
every model basis, the affine coordinates of every other model point is used as pose
invariant indices into a table into which the model basis is stored.

Because the affine representation is pose independent, it is the smallest model repre-
sentation for indexing (see discussion of relative and absolute axes, [CJ91]); any other
smallest representation must necessarily use coordinates which are functions of the
coordinates on the axes formed by the model basis. Because of this, and the recent
interest in affine coordinates in indexing and invariance, it is this representation that
we discuss and analyze in the rest of the work. Using this representation, we will be
able to apply the analysis to both alignment and geometric hashing.

3.3 Error Assumptions

We use the term "error" to describe any effect which causes an image of a model in
a known pose to deviate from what we expect, using our projection model to form
the image from the model. There are three kinds of error we will be assuming for the
analysis - occlusion, clutter, and sensor error.

Occlusion occurs as a result of some part of the object in the scene being blocked,
thereby preventing the model feature from appearing in the image. The way we model
this process is to assume that all features on the model have the same probability c
of being occluded, and that the occludedness of any particular feature does not affect
any otlher. Though this independence assumption is probably not accurate, it is often
assumed for the sake of simplicity.

Any image point which does not arise from the model is referred to as clutter. We
assume that these points will be independently and uniformly distributed over the
in age.

Lastly, we refer to the difference between an image feature's observed to actual loca-
tion as "sensor error". This displacement may arise due to artifacts of the imaging
or feature extraction process. We assume the same standard deviation of the sensed
error for all points from the same image, denoted by o0 . The actual value of •o will
depend on things such as lighting conditions, camera, and feature type used, and may
change from image to image. In the next section we will derive the effect this sensor
error has on tile possible projected locations of model points in the image.

3.4 Deriving the Projected Error Distribution

In this section we give an expression for the possible locations of the projected model
points as a, function of error in the observed image locations of the basis points. Any
point which appears at one of these locations may have arisen from this hypothesis,



and may be counted in favor of its being correct. We use both a uniform bounded
error model and a Gaussian error model for the purpose of comparison.

3.4.1 Uniform Bounded Error

We are assuming that the sensed location of a point, si, is displaced from its actual
location by a vector drawn from a uniform bounded distribution. Let us use si to
denote the true location of the point, and ei to denote the error vector. Therefore,
for every image point,

s. = si + ei.

Let us assume that {mo, mi, m 2} SO, s1, S2} is a correct image to model correspon-
dence, and let (cai, pf) be the affine space coordinates of a fourth model point mi.
Then the true image location of mi is a function of true image locations of {so, S1, S2 :

s; = (1 - ai - 3;)so + ais, + s3i2

However, the computed location of mi is a function of the locations of the image basis
points. We will denote the computed location as si, and

; = So + ai(s, - sO) + i(S2 - So)
= (1 - ai - O)so + aiSl + AiS2

The expression for the displacement vector for the projected model point is given by
the difference between its computed and true location:

s - s = (1 - ai - f3i)so + ais1 + /iS2 - (1 - aS - )o ± S1  iS2

= (1 - a - /f3)[o + eo] + ai[4s + ei] + i[S2 + e2]
-(1 - ai -_3i)so + ais + #iS2

= (1 - - f-i)eo + aie, + ± 3e 2

When the error vectors e, are drawn from a uniform circular distribution with radius

CO, the vector given by this expression was shown in [GHJ91] to be distributed over a
disk with radius

co(I 1 - a• - 3i 1 + I ai I + 1 +3i 1 +1). (3.4)

3.4.2 Gaussian Error

For the 2D Gaussian error model, we will use the terminology X - N(m, o2) to denote
that the random variable X is normally distributed with mean 7n and variance a2.
Also, E[X] denotes the expected value of the random variable X. We assume a fixed
standard deviation ro for the error distribution, and proceed as follows1



Let sk = true image location of model point mi:

si = (1 - ai- _ )so -+ ai + f3i~ 2.

Let si = observed image location of mi:

si = si + ei

where ei - N(O, oz). Then si is a random variable, si - N(i, UO).

Let sj = computed image location of mi:

si = (1 - ai - 3i)so + ais, + A~iS2-

The projected error distribution in which we are interested is the difference between
the computed and observed image location of mi :

Asi = si - si

E[As•] = E[s;]- E[k]
= E[si] - ((1 - a, - /3i)E[so] + aiE[s1 ] + f3iE[s 2])
= - ((1 - i - 3)Ao + a•S 1 + if3iS2)
=0

For the covariance matrix, we want to find the relation between any two random
variables Asi and AAj:

Cov (As2 , As) = E [IssAT] - E[A s] E 3

= E[(si- i)(s- g -o 0
SE[(i + e - (1 - - f3)[o eo] - [ e] +i[2 e)

(s; + ei - (1 -j a- f3j)[so + eo] + aij[I + el] + /3 [S2 + e 2])T]

= E[(ei - (1 - a - f/3)eo + aie, + f3e 2) *

(e3 - (1 -aj - fl)eo + aje, + O3e 2)T]

Since all the ei's are independent, all terms eieT, i : j disappear when we multiply
and average, leaving

E[(1 - ai - i -)( a - - T)e0 e + aaeleT + /3l/je2e + eeT] = (3.5)

[(1 - a - f3)(1 - aj - 0j) + aaj + f#jf]2 I ij (36)
[(1 - a• - /3i) + a? + /3z + l=

where I is the identity matrix. The difference between the terms for i = j and i z j
comes from the fact that in the former case, E[eieT] = OrI, while in the latter case



E[eieTI = 0. So, the distribution of the error vector for the ith point is a circular
Gaussian with variance

01 2 2 =i _ [3i)+ a2 + I f3 + 1] (3.7)

The fact that the distribution has non-zero covariance (Equation 3.6) indicates that
the error vectors for the different projected points are not independent. Since this
dependence is difficult to take into consideration, we will assume that they are inde-
pendent and proceed with the analysis. This assumption will cause us to underesti-
mate the true variance of the score distribution for correct hypotheses, as we will see
in a later section.

3.5 Defining the Uniform and Gaussian Weight
Disks

In our recognition algorithm, all size 3 correspondences are searched through in order
to find a good pose. Each correspondence between model and image points is used to
project the rest of the model points into the image, and for each projected model point
location, if an image point appears at that location, this is counted towards a total
score for this hypothesis. If after checking all the projected model point locations the
total score exceeds some threshold, this hypothesis is accepted.

When a correct correspondence is tested in the absence of any error, there will always
be an image point at the exact projected location of every model point. When we
take sensor error into account, then any image point appearing within the range of
the projected error distribution is a match candidate for the projected model point.
It is clear that the larger the distribution, the more likely it is that a random image
point will appear within its range.

In all previous work involving analyzing a bounded uniform sensor error model, the
method of scoring a point which appears inside the range of the projected error
distribution has been to accord it a full vote. Though the projected error distribution
is in fact not uniform, these analyses have implicitly treated it as though it were, by
according the same score to any point which appears inside it.

In order to differentiate the scoring method from the error model, we will define an
entity called a weight disk, whose height at every point determines the score of an
image point which appears at that location. For example, the weight disk implied by
the scoring scheme just mentioned is a disk, centered at the projected model point
location, with height 1 and radius given by Equation 3.4. This will be called the
"uniform weight disk". Though an optimal weight disk for a given error model may
exist, it may also be difficult to derive or use. In general, we will speak of comparing
weight disks, rather than error models, unless we are comparing the optimal weight
disks for the error models involved.



We now define the weight disk which we will use to assign scores to points appearing
in locations consistent with the projected error distributions, assuming a Gaussian
model for sensor noise. Because the projected Gaussian distribution is unbounded, it
could give rise to a point appearing anywhere in the image with non-zero probability.
In practice though, we will ignore all points appearing outside a disk of radius 2o
from the center. The reason for this is to reduce run time and will become clear when
we discuss geometric hashing. Because of this limitation, we will assign a value of 0
to points from the part of the distribution extending from 2ao to oo:

00 27r 1 r2  
2OOd O)I -r2

S2e- rdrdO = e 2,2 dr

-- e 2c
2

2u
2

That is, we will miss an image feature arising from a model point 13.5% of the time.

Next, for a point falling within the range of the truncated distribution, we will assign
weights according to their proximity to the disk center. The weight is chosen to be:

1 d2

V = - e 2227ro 2

where d =distance from the point's location to the disk center. This is the actual
height of the 2D Gaussian distribution at the location where the image point appears.
Again, this weighting is not optimal for this error model, and we will discuss different
weighting schemes and their implications in a Chapter 5. Therefore, the Gaussian
weight disk is a Gaussian distribution, centered at the projected model location, and
truncated at 2or from the center.

Figure 3-2 illustrates the projected Gaussian and uniform weight disks. The figure
shows that the Gaussian weight disks are smaller and more dense at the center than
the uniform weight disks; this can also be seen by comparing the analytic expression
for the radius of the uniform weight disk (Equation 3.4) against the radius of the
Gaussian weight disk (where o is given in Equation 3.7):

co(I I -- 3  + I I + I 3  +1) + 22oo/(1 - ýa- i3)2 +a±+ 2 3z +1

This inequality holds because of the triangle inequality. For the comparison, to = 2ao.

3.6 Scoring Algorithm with Gaussian Error

The exact method of determining a score for a correspondence is given by the following
algorithm:
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Figure 3-2: The top and bottom figures show the location and density of the projected

uniform and Gaussian weight disks, respectively. The darkness of the disk indicates the

weight accorded a point which falls at that location. The three points used for the matching

are the bottom tip of the fork and the ends of the two outer prongs. The image points found

within the weight disks are indicated as small white dots. Note that the uniform disks are

bigger and more diffuse than the Gaussian disks.
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(a) for a hypothesis (mo, ml, m 2) : (so, sl, s 2 ), find all Gaussian weight disk loca-
tions and sizes:

(i) find affine coordinates mj = (aj, /j) with respect to basis (mo, mi, m 2)

(ii) projected image location for mj is so + aj(sl - so) + /3j(S2 - So)

(iii) projected Gaussian weight disk radius for mj is 2a = 2(a +/3 + [1 - aj

(b) for every image point sj, initially set d = oo.

(i) find the minimum distance d between sj and mj such that d < 2a.

d
2

(ii) add v = 2 2-- (the height of the Gaussian weight disk at the image
point location) to the sum w, which is the total score for this hypothesis.
If this image point did not come within 2o- of any projected model point,
then v = 0.

The collection method seems somewhat nonintuitive in that we accumulate evidence
from every image point, instead of taking the contribution from at most one point per

projected weight disk. The reason we chose to associate a random variable with each
image point, rather than each weight disk, is that it is difficult to work with sums
of random variables whose density function involves the max function. In Chapter 5
we will examine the implications of accumulating weight from at most a single image

point per weight disk.

Now that we have selected a weighting scheme and a particular algorithm for accu-

mulating scores for hypotheses, we can determine the score density associated with

correct and incorrect hypotheses. As we can see from step (b:ii) in the algorithm, the

score is a sum over the individual weights from the n image points (not including the
three used for the basis correspondence). First we will define the random variables
describing the score contributions from the individual image points.

Suppose we are testing a correct hypothesis. Then a particular model point mi will
give rise to an image point which falls within the projected Gaussian weight disk for
model point mi 86.5% of the time, since the weight disk only extends to a radius
of 2~oe. The weight that this image point yields using our weighting scheme can be
described by a random variable which we will call VM. For convenience we will refer
to such an image point as a "true" image point. To demonstrate what this means,
in the simpler bounded uniform error case and with c denoting the probability of
occlusion, the density of VM is:

fv,(v) = c(0) + (1 - c)6(v - 1)

where 6 is the unit impulse function. This indicates the fact that when we are testing a
true image point, it will always appear inside a projected weight disk and contribute a
score of 1, unless it is occluded, in which case it contributes 0. We break the equation



into cases not out of necessity, but for legibility (which will be appreciated in later
sections).

We also define the random variable V- to describe the weight that a random point
will yield for a tested hypothesis, where the term "random point" is taken to mean an
image point which either does not arise from the model at all, or that does arise from
the model, but the hypothesis being tested is incorrect. Note that we are assuming
by this that a point which does arise from the model will contribute the same as a
clutter point when the correspondence being tested is incorrect.

Next, we define the random variables WH and Wy to describe the cumulative weight
of correct and incorrect hypotheses. We let n + 3 be the number of image points and
m + 3 be the number of model points. Then Wy7 is defined as

W- = V (3.8)
i=1

where the n in the sum is due to the fact that 3 image points are used in the basis

correspondence. Note that when we are testing an incorrect hypothesis we consider

all the image points to be random, whether or not the model appears in the image.

The expression for WH is slightly more complicated because of occlusion. If there
were no occlusion, then WH would receive contributions from m projected model
points and (n - mn) clutter points, that is:

?r, 7,--rn

WH = VM + V (V3.9)
i=1 i=1

(3.10)

When c 7 0, we observe n clutter points but we do not know how many of them arise

from the model. The number of projected model points that we observe is actually a
binomially distributed random variable M. Thus,

M n-M

WH = ZVM + VV (3.11)
i=1 i=1

P{M = k} 7= )( - c)k Cm-k (3.12)

To discriminate between correct and incorrect hypotheses, we must know the score
that a correct hypothesis is likely to have versus an incorrect one. For this we need to
first determine the probability densities of the variables VM and V-H and subsequently
the densities of WH and WT-. The derivations for the density of VM and VV given
a particular value for the size of the weight disk is straightforward; however the size
of the weight disk is itself dependent on the affine coordinates of the model points.
We will define another random variable, Uo., to describe the values of the standard
deviation of the projected Gaussian error distribution, and we will discuss the how



we estimate its density in the next section. Once we have this expression, we will find
the densities of VM and VV by integrating the expressions:

fJV(v) = j0 fVM1oe(v Io)fce(o)do,

fv(V) = Ijfviu(v a) fo(a)da

3.6.1 Determining the Density of oe

The motivation for treating the weight disk radius as a random variable is that we
would like to remove the dependence of a, from the geometry of any particular model.
Rather, we would like to find an expression for the probability density of the weight
disk radius over all possible models. To do this, we estimate the density by generating
thousands of models and keeping a histogram of the affine coordinates of all the model

points in the affine space formed by randomly chosen model bases.

Specifically, the method is as follows: when a particular hypothesis is being evaluated,
each model point is projected into the image with a weight disk whose radius is a
function of the affine coordinates of the model point:

2 = 2coV(1 - a - /)2 + a? +2 + 1

in which ao, the standard deviation of the sensed Gaussian error, is a constant which
must be determined empirically. We define a random variable a, which takes on the
values of a in the above expression, and in order to remove the dependence of a, on
the constant a0 , we define another random variable

e = V(1 -ai- i)2+ a 2 (3.13)

and we set

Oe = aope (3.14)

In the analysis we use two different probability densities for p,, one for correct basis
matchings and one for incorrect basis matchings. Intuitively, this is due to the fact
that when incorrect basis matchings are tested, more often than not the projected
model points fall outside the image range and are thrown away, while when correct
hypotheses are tested the remaining model points always project to within the image.
In tests we have observed that over half of incorrect hypotheses tested are rejected
for this reason, leading to an altered density for p,.

Let us call the two densities fPelH and fpe,-. We empirically estimate the former
density by generating a random model of size 25, then for each ordered triple of
model points as basis, we increment a histogram for the value of p, as a function of a
and /3 for all the other model points with respect to that basis. For the latter density,
we generate a random model of size 4 and a random image, and histogram the values



of Pe for only those cases in which the initial basis matching causes the remaining
model point to fall within the image. The densities for p, found in this manner have
been observed to be surprisingly invariant over numbers of model points ranging from
1 to 30, over numbers of image points ranging from 1 to 1000, and even across ranges
of ao differing by as much as 10 to 1 (using a fixed image size).

The model is constrained such that the maximum distance between any two model
points is not greater than 10 times the minimum distance, and in the basis selection,
no basis is chosen such that the angle ,P between the two axes is 0 _|<1 15 - or
15 7< P, < 1 -7r. This is done to avoid unstable bases, thereby bounding the size
of the affine coordinates. For example, the coordinates of the point P = (1, 1) with
respect to the bases (1,0) and (-1,0) is (oo, oo). A similar problem exists for the
same point P with respect to the bases (1,0) and (0, 0). The minimum value of p, is
found analytically by minimizing Equation 3.13 with respect to a and /3, and occurs
at a = /3 = 1, where p, = (4)1/2. The maximum value of p, occurs at the boundary
conditions discussed above, and was determined empirically to be 1 40.

The results were almost identical in every test we ran; two typical normalized his-
tograms are shown in Figure 3-3. The histograms very closely fit the curves

fp•H(P) = alp -2  al = 1.189

and

f'el-1 (P) = aop -4  ao = 4.624

between the ranges r1 = j, r2 = 40. Note that the actual value for r'2 is not crucial,
given the actual density functions - in fact, the difference in the analysis using

7' = 40 or 72 = Oc turns out to be very small. Figure 3-3 shows the estimated density
functions for p, superimposed on the empirical density functions. The integral of the
analytic expression thus defined = 1.018 and 1.052, respectively.

Using Equation 3.14, the density of Pe implies the density of a,:

foelH(U) = bl1 -2  bl = alao

and
fLeH(a) = bo5- 4  bo = ao 3

between the ranges sl = cor, and .s2 = a• ro 2. For the rest of the work we will work
with the variable ae rather than p, for convenience, keeping in mind that in the final
analysis, the terms ao, al, rl and r2 are constants, and the terms bo, bl, .sl and s2, are
variables dependent on them and the value of co.
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Figure 3-3: The density functions fpelH(P) and fpl (p), respectively.

3.6.2 Determining the Average Covariance of Two Pro-
jected Error Distributions

We have already derived the covariance between two projected error distributions,
once the model to image correspondence has been fixed. This was shown to be

Cov (A, A s) = [(1 - a - 3•)(1 - a•- 3j) + ai aj + /3i3j] UI

The probability density of the expression (1 - ai - fi)(1 - aj - /3j) + aic• + /•34j can
be estimated in a similar manner as in the previous section to determine the average
covariance between projected error distributions. The actual experiment performed
was: for 1000 randomly generated models, subject to the same constraints as in the

previous section, 25 random model bases were chosen (again, subject to the same
constraints as in the previous section). For each basis, 25 random model pairs were
tested for the value of the covariance, and the result histogrammed. The results
indicated that the average covariance was always positive. The implication of the
average covariance being positive is that our estimate of the variance of WH will be
too low, as we will observe.
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3.7 Deriving the Single Point Densities

3.7.1 Finding fv (v)

Given a correct hypothesis and no occlusion, the possible locations of a projected
model point mi can be modeled as a vector §i+ei, where ei = [R, O]T. Let us treat the
vector ei as a pair of random variables R and 0 to avoid defining new notation. Then
ei given a fixed weight disk size is a displacement vector with Gaussian distribution

(expressed in polar coordinates)

1 - 2
f, l (r, O I 0)= 20- -- e 202

We now choose an evaluation function g(r, 0), which we use to weight a match that
is offset by ei from the predicted match location. We want to find its density, i.e., we
want fg(R,eo)lJ(v), where the joint density of R and O is as stated. As mentioned, we
choose the evaluation function

1 r2
g(r, 0) = 2r. 2

We are assuming that the value of a is fixed without actually denoting this in the
function g. Since the evaluation function g is a really function of r alone, we need to
know the density function of r. To find this, we integrate fR,olk (r, 0 a) over 0:

7 -r2

2
= 2 r f

Next, we want to find the density of the weight function
variables formula for a monotonically decreasing function
restated here:

-fn(g-' (v))
f,(R)(v) = g,(g'(v))

Working through the steps, we find

g(,-)

g'(,.)

fRIO". (7. 1 01

f R ci(g-l(v) or)

g'(g-1 (v))

v = g(R). The change of
is given by Equation A.1,

1 r2

2 e 2.2

- -r
2

0-2

= 27rg(r)

S2g-'(v)g(g- (v))
- 2wvg-'(v)

012\



g-l(v)

=4 fg(R)Iue(V I -a) fRIue g )
g'(g-l(v))

= 2rvg-'(v)
vg-l(v)

It may seem counterintuitive that the resulting distribution is constant. However,
this can be understood if one considers an example in which fR,e(r, 9) is uniformly
distributed. Integrating over all angles yields a linearly increasing function in r.
Assigning an evaluation function g(r, 0) which is inversely proportional to r yields a
constant density function on fRjie(v I O). The same thing is happening here, only
quadratically. Since we only score a point if it falls within a radius of 2a from the
center, we miss the entire part of the distribution from a radius of 2o to oo, which as
we showed before is e-2.So the probability density of VM given a fixed sized weight
disk is:

e-26(v) 0
fVMle(VI a)= 27rU2 << V <

2-ra2e2 -- 2ra2

0 otherwise

This expression correctly integrates to 1.

We need to integrate this expression over all values of a,0 Dealing first with the case
first where v 7 0, we get:

JfVM(v) = fVMIe(V I -)fH(a)d-

= 27roa2bir - 2do

= 2rbI do-

There are two things to take into consideration when calculating the limits for the
integration: first, the possible values of -o range from a lower limit sl to an upper
limlit s2, due to limits on the values of the affine coordinates. Also, for a given o• = a,
it is clear that the maximum value we can achieve is when r = 0 = v = and the
minimum value we can achieve is at the cutoff point r = 2o > v = 2- e-2 . Setting
v to each of these expressions and solving for a leads to the conclusion that for a
particular value v, the only values for a, such that g(ei I a,) could equal v are in the
range ( 1, 7-). Therefore the lower bound on the integral is a = max(si, 1),
and the upper bound is o = min( , 182).

The bounds over which the integration is performed is illustrated in Figure 3-4. The
third dimension of this graph (not shown) is the joint density function fVM,,,. Con-
ceptually what we are doing is integrating over the a axis. We split this integral into
the three 3 regions defined by the integration bounds, and deal with the case v = 0
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Figure 3-4: The figure shows the boundaries for the integration for both fv,(v) and

fy-(v I m = 1). The bottom curve is a = - , and the upper curve is a = The
third dimension of the graph (not illustrated) are the joint density functions fVM,'e (V a)
and fv?,?ae(v,ra I = 1).

separately. Integrating, we get:

JVM ()

where

e-2 2(v)

2 CNb(82 e- _

2Abl0~ - 1)
0

1

27r.s 2
2e2

1
f3 = 2e2

2·;arsl2

v=0
l < v < 2

£2 < v _< f3
t:3 < V < £4

otherwise

1
27rs 2

2

1

27rs 1
2

and .sl, 82 are the minimum and maximum allowable values for ao, respectively. This
expression is graphed on the left in Figure 3-5 for co = 2.5.
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3.7.2 Finding fv-(v Im = 1)

We do the same derivation for the distribution fv-v(v m = 1), that is, the value that
a random point contributes to the basis of a model with 4 points. This is a prerequisite
for finding the distribution for the case where the model has m + 3 points. Given a
hypothesis and a random point, we calculate the distribution as follows: let event E
= "point falls in a single hypothesized weight disk". Given a, = a, the probability of
event E equals the area of the weight disk divided by the area of the image A, i.e.,

P{E I al= } = A
A

A-47 4o 2

P {IJe = A

Now we calculate the probability that a point which is uniformly distributed inside a
disk of radius 2r contributes value v for an incorrect hypothesis, using the weighting
function defined in the previous section. As before, we express a uniform distribution
as a pair of random variables R, 0, and then integrate over 0 to get the density of R
alone, since the evaluation function g is a function of R:

fR,Oel (r, 0 1) =
7r(2a) 2

-7

202

As before, we calculate the density fg(R)IOe. given that the clutter point falls in the
weight disk with the new distribution for R and get:

fg(R)I1e(vI , E) = (
g'(g-(v))
1 -1

2

Therefore, the density of VV given a single weight disk with fixed o, is:

fVvjle(V 1 o, m = 1)
P{E = oI 6(v) = [A-4}ro[ A]6(v) v 0

= fvleI(v I , E)P{E • a = 2- < v<
M oAv 2irra

2 
e2  - 27ru

2

0 otherwise

Again, this expression correctly integrates to 1. As before, we need to integrate over
aee:

fv-(v Im = 1) = fyfV le(v I a, m = 1)f -lH(a) da

( 2, A 
-4

) f(or- 4 dbo d'KAv ,



2br b0

A Av J0-d

Dealing with v = 0 as a separate case, and with the same bounds as before, integrating
yields:

[1 - (~- )]S(v) v=O

{ Av s2 --
fvy-b(v Ie/7 1) b(e- < v <v

2irbop( V 2wv) 
__< V

0 otherwise

where
1 1f, = 2 2 =

2-s 2
2e 2  2rs2

2

1 1
£3 =4 =27r.s1

2 e2  27rsl 2

This function is illustrated in on the right of Figure 3-5 for a value of ao = 2.5.

We ran two simulations to verify the analysis of this section. In the first one, we
tested the density function fv,(v) as follows: we generated a random model of size
4, chose a random 3D pose and scale, projected the model into an image adding
a Gaussianly distributed displacement vector to each point, chose a correct image
to model correspondence, and histogrammed the value of the fourth point. This
was repeated 15, 000 times. The second simulation differed only in that instead of
projecting the model into the image, a random image was created and a random
correspondence tested. The results of the simulations are also shown in. Figure 3-

5. Both graphs show a normalized histogram of the results of 15, 000 independent
trials excluding the value at v = 0. The measured density of fv,(v) does not fit
the prediction at v = 0 because of binning problems at that value, but the rest

of the first graph indicates the empirical results corroborating the predictions very
closely. For the second graph, most of the density occurs at v = 0; for the remainder
of the distribution a chi-squared test shows no significant difference between the

empirical and analytic distributions (probability = .98 for x 2 = 160 with 199 degrees
of freedom).

3.8 Deriving the Accumulated Densities

Having found the single point densities, we use them to find the density of the com-

bined weight of points for correct and incorrect hypotheses.
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(cr -= 2.5. Note that the scale of the y axis in the first graph is a)pproximately ten times
greater than that of the second.

3.8.1 Finding fwH(w)

For a model of size mi + 3 and an image of size n + 3, when a correct hypothesis is
being tested, then there are M true points in the image, and n - M random points,
where M is binomially distributed and

P{M = k }(1 - c)kC11 m-k

The weight we collect for this hypothesis is a random variable with probability density

M n-M

fwH (w) - ' V .) ..* (Vy ) fv (V) -- - V )
M n-M

= J fvM(v) 0 fv (V-V)
i=1 i=1

where &; denotes convolution. The above shortened notation will be used from now
on for convenience. This formula assumes that each point contributes weight to its
supporting basis independently of any other.

In order to avoid explicitly convolving the preceding distributions, we find the ex-
pected value and the standard deviation of VM and V-, and invoke the central limit
theorem to claim that the combined weight of a correct correspondence between a
size- r + : model in a size n + 3 image should roughly follow a normal distribution.
The fact that M is binomially distributed when c -- 0 means that this distribution

I - - --. -U - -U - ,- - "- - -

n



will not be completely Gaussian, but we will assume that it is for simplicity. Again,
N(mr, o-2 ) denotes a normal distribution with mean 7n and variance 0,2:

J N( M ("-,M M, -M

fwH~N E V+ E V ,r EV+ E V)) .
1 1 1 1

Lastly, we use the formulas for conditional mean and variance, given by Equations
A.2 and A.3, restated here, to simplify the above expression:

E[X]
Var (X)

= E[E[X I Y]]
= E[Var(X I Y)]+ Var(E[X I Y])

Solving in stages, we find:

7n-M

VM + EE 1
M

Var

E[E[Z

~~· (·[ 1E Var

Var (E

V IM
1

n-M

VM + - V-M M)
1

I-M

VM + VVI M)]
I M

n-M
VM±

We use the values E[M] = (1 - c)m
formulas to find that:

fw=H

= ME[VM] + (n - M)E[VV]

= MVar (VM) + (n - M)Var (VV)

= E[M] E[VM] + E[n - M] E[VV]

= E[M] Var (VM) + E[n - M] Var (VV)

= Var (M) E[V] 2 + Var (n - M) E[V] 2

and Var (M) = mc(1 - c), and use the above

, N(A, B)

in which

A = (1 - c)rnE[VM] + [n - (1 - c)mn]E[VV]

B = (1 - c)nVar (VM) + rnc(1 - c)E[VM]2

+[n- (1 - c)rn]Var (VV) + mc(1 - c)E[V] 2

Solving for the remaining terms, we find

E[VM]
1 v fvM(v)dv



Integrating over the four regions of the distribution and using the equalities

1 1 1 1
f1 -= 2 2 - 2 3 - I 4 -

27s 2
2e 2 C22 27s2  27rs 1

2e 2  2s 1
2

yields

E[Vm1] = b 4 3 3

Further substitutions of the equalities

b1 =- alo s1 - cr0 S2 = 070 2

from Section :3.6.1 yield

E[VM] - a, 12[•14 13 1 •

Finally, the substitutions a, = 1.189, r1 = , 72 = 40, also from Section :3.6.1, yield

1
E[VM] = 2.01 x 10- 2 x

The remaining terms are found using the same steps:

E = V2 fV, (v)dv

602 e6  S5

1 2
a e6  -i 1- -

= 9.76 x 10- 4 x (0
Var(VM) E[V - E[ VM] 2

Note that the value of the limit r2 was determined empirically and is a function of the
constraints on the bases that were chosen. Without the basis constraints, r2 tends to
infinity, and in fact the values of these parameters for r2 = 40 and 72 = oO are not
significantly different.

The values of E[VW] and Var (Vv) are derived in the next section.



3.8.2 Finding fw -(w)

For an incorrect hypothesis we look at the problem in
above, the mean and standard deviation of VV m =
random image point that drops into a single weight
fv-(v 1 = 1), we find:

two steps. First we derive, as
1, i.e., the weight of a single
disk. From the distribution

E[VVI 7m = 1] = v fvfv

bo(e 2  1)
3e 2A

r M = 1)dv

3 3
.S1 S 2

Substituting bo = a0o' from Section 3.6.1, we get:

E[VVy m = 1]
ao(e 2 - 1)

3e 2 A

Lastly, we note from Section 3.6.1 that

ao
· · 3r? 35

since this is exactly the integral of the density f _. Therefore,Pe H

We continue with E[V I m = 1]:

E[V2 m = 1 = v 2 V (
bo(e 4 - 1)
20e4 Ar

ao(e4 - 1)
20e 4Awra•

V m = 1)dv

Is 5 •1 2

5 5
51[

Substituting ao = 4.624, r" = j, and r 2 = 40, from Section 3.6.1:

E [V In = 1]
Var (V- I m -= 1)

1
= 3.52 x 10- 2 ×

= 2A

SE[VM = 1]- E[V m = 1]2

Note that the mean E[V I7 m = 1] is not dependent on the value of co.

1 1
1 3L'1 7 '2

=1

E[VV I m = 1]
e2 -

A



Now, consider a single random image point (i.e., n = 4; three for the hypothesis and
one left over) dropped into an image where a model of size m + 3 > 4 is hypothesized
to be. In this case the event that the random point will contribute weight v to this
hypothesis is calculated as follows: Let event Ei = "point drops in the ith weight
disk." Then,

fv-i(v I v # 0) = fvy_(v, Ej) + fv-(v, E2) + ... + fV_(v, E,, )

where we are assuming the disks are disjoint, hence we are overestimating the proba-
bility of the point falling in any disk. The actual rate of detection will be lower than
our assumption, especially as the m grows large.

1 - m4b [L - -] v=O
mn2-bo • 1 l<V1g2fv-.(v) = 1 822]£ov<

[v e -\/F ] f2 < V <V f3

Av s,[
0 otherwise

As m grows large, (1 - 7n [1- - 2]) < 0 so this expression is no longer a density
function. This is the point at which the model covers so much of the image that a
random point will always contribute to some incorrect hypothesis. Therefore, this
analysis only applies to models for which

A 1 1 -1 A
m < 47rao = .02034

using the equalities b0 = a0an , si = a0r1 and 82 = a 0r 2 from Section 3.6.1. For a
v-A: a ratio of 200 : 1, m < 800, and for a ratio of 50 : 1, m < 50.

The mean and standard deviation for the weight of one random point dropping into
an image with m weight disks is:

E[V-] = vfyv•(v)dv
= mE[Y~V m = 1]

E[V1 = jv 2 fyv(v)dv
=mE[V I r =

Var (VV) E [V= - E[V ] 2

= mE [V I= 1] -n 2 E[V Im = 1]2

D)ropping n points convolves this distribution with itself n times:

fw_(w) = 0 fvy(v)
i=1



H Mean Variance

m n Emp Pred Emp/Pred Emp Pred Emp/Pred
1 1 3.695E-3 3.218E-3 1.15 1.519E-5 1.462E-5 1.04
1 100 3.838E-3 3.534E-3 1.09 1.735E-5 1.668E-5 1.04
1 500 4.803E-3 4.812E-3 .998 2.227E-5 2.498E-5 .891
5 5 1.966E-2 1.609E-2 1.22 1.493E-4 7.312E-5 2.04

10 10 4.199E-2 3.218E-2 1.30 5.413E-4 1.462E-4 :3.70
10 100 4.451E-2 3.505E-2 1.27 5.340E-4 1.648E-4 3.24
10 500 5.548E-2 4.783E-2 1.16 5.748E-4 2.475E-4 2.32

H Mean Variance
m n Emp Pred Emp/Pred Emp Pred Emp/Pred

1 1 3.241E-6 3.462E-6 .936 1.875E-8 2.251E-8 .833
1 100 3.068E-4 3.462E-4 .886 1.974E-6 2.251E-6 .877
1 500 1.634E-3 1.731E-3 .944 1.1163E-5 1.126E-5 .992

5 5 8.913E-5 8.656E-5 1.03 6.4808E-7 5.616E-7 1.15
10 10 3.495E-4 3.462E-4 1.01 2.400E-6 2.240E-6 1.07
10 100 :3.508E-3 3.462E-3 1.01 2.328E-5 2.240E-5 1.04

10 500 1.629E-2 1.731E-2 .941 1.077E-4 1.120E-4 .961

Table 3.1: A table of predicted versus empirical means and variances of the distribution

fWH(w), in the top table, and fwH-(w) in the bottom table, for different values of m and n.

and therefore the weight that an n+3-size random image contributes to an incorrectly
hypothesized model of size r + 3 follows the distribution:

N(nE[V-] , nVar ( V-))

The means for both distributions were tested empirically from the same experiment

as shown in Figures 3-5. That is, for WH, we generated a random model of size m + 3

and projected it into an image, adding a Gaussian displacement error to each point,
and adding n - m additional clutter points (distributed uniformly within the image).
We only tested correct hypotheses, and kept track of the accumulated weight. We

repeated this experiment for a given (nm, n) pair until we had over a few thousand

points. The same was done for Wy7 except that the image tested contained n random

points (i.e., the model was not projected into the image) implying that only incorrect
hypotheses were tested. A table of values for the means and variances of all the

experiments is given in Table 3.1. For all the experiments, occlusion = 0, uo = 2.5.

In all the experiments, the means are close those predicted for the experiments. For

W-, the predicted variance is also quite accurate. The underestimate of the variance

for WH is due to the fact that our assumption that the true points contribute weight
independently of any other true point is false, and in fact the average covariance
between pairs of projected error distributions is positive. This can be seen also in
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Figure 3-6, which shows the empirical versus analytical density of WH for m, 7r, C, O•

= 10, 10, 0.0, 2.5.

Chapter Summary

In the analysis, we limited the model domain to planar objects. The reason for this
was that the analytic expression for the projected error of the fourth model point,
which for planar objects is given by Equation 3.4 and 3.7, is not known for either
the uniform or Gaussian error model when the model is not planar. This is the only
factor limiting the applicability of the analysis to 3D models; when such an expression
becomes available, this method will easily be able to incorporate it.

In the beginning of the chapter we asked the questions, how do we accumulate evi-
dence for a hypothesis, how do we decide if the hypothesis is correct, and how likely
are we to have made a mistake in the decision? So far we have addressed the first
question by selecting the recognition algorithm and noise model that we are using,
and deriving the probability density functions associated with the scores that correct
and incorrect hypotheses will accumulate using our algorithm. In the next chapter
we will discuss how to decide whether a hypothesis is correct or not, given its score.



Chapter 4

Distinguishing Correct

Hypotheses

In the last chapter we selected an algorithm, noise model and weighting scheme, and
using these we derived expressions for fwH and fwH-, the weight densities of correct
and incorrect hypotheses. What we need now is a way to decide, given a score for a
hypothesis, if that score is high enough to warrant our deciding that the hypothesis
is correct. In this chapter we will show how to use the probability densities derived
in the previous chapter to do this. We briefly introduce the ROC (receiver operating
characteristic) curve, a concept borrowed from standard hypothesis testing theory,
and cast our problem in terms of this framework.

4.1 ROC: Introduction

Suppose we have the following problem: we are observing a world in which there are
exactly two mutually exclusive and exhaustive events: Ho and H1. We are given the
task of deciding which one of them is correct. The only hint we have is some quantity
X that we can observe. We also know that if Ho were true, then we would observe
the value of X distributed in some known way, and similarly if H1 were true, i.e.,
we know fx(x I Ho) and fx(x H1). To relate this back to the object recognition
problem, Ho = "hypothesis being tested is incorrect" and H 1 = "hypothesis being
tested is correct".

Let the space of all possible values of the random variable X be divided into two
regions, Zo and Z 1, such that we decide Ho if the value of X falls in Zo, and H1 if X
falls in Z 1. Conversely, we can think of the decision procedure as defining the decision
regions Zo and Z1. Then we can define the quantities

P {say Ho I Ho is true} = I fx(x I Ho)dx
Szo



PF = P{say H1 I Ho is true} = fx(x I Ho)dx

PM = P{say Ho I H, is true} = fx(x Hl)dx

PD = P{say H I H, is true} = fx(x I H)dx

These quantities are often referred to as PM = "Probability of a miss", PD = "Prob-
ability of detection", and PF = "Probability of false alarm" for historical reasons.

In our problem we are assuming we have no prior knowledge of the probabilities of
Ho or H 1. In the absence of such information, a Neyman Pearson criterion, which
maximizes PD for a given PF, is considered optimal [VT68]. This criterion uses a
likelihood ratio test (LRT) to divide the observation space into decision regions, i.e.,

say H1

fx (x I H) >
fx(x I Ho) <

say Ho

That is, we observe a particular value x, and compare the conditional probability
density functions for that value of x. If the ratio of the conditional densities is greater
than a fixed threshold qj, choose H 1, otherwise choose Ho. Changing the value of
the threshold 7j changes the decision regions and thus the values of PF and PD. The
R.OC (receiver-operating characteristic) curve is simply the graph of PD versus PF as
a function of varying the threshold for the LRT. The optimal performance achievable
is given by points on the curve.

If the prior probabilities of Ho and H 1 are known, then the optimal Bayes decision
rule is used. This test also involves a likelihood ratio test, in which the threshold qj
chosen to minimize the expected cost of the decision, and is a function of the costs
and priors involved:

(C(10 - Coo00) Po= (Co1 - CO)P1

where Cs,j is the cost associated with choosing hypothesis i given that hypothesis j
is correct, P~ is the a-priori probability that hypothesis Hi is correct, and o10 > Coo
and Col - C(7 have been assumed. This point necessarily lies on the ROC curve, thus
the ROC curve encapsulates all information needed for either the Neyman Pearson
or Bayes criterion.

For example, assume for our problem that Ho ~ N(mo, or) and H, - N(mi, or), and
assume that mnl > mo and o1 > ao. The likelihood ratio test yields:



fx(x I H1)
fx (x I Ho)

1 exp(- (x-71)2)

1 exp(--(-m)2
co 2ao)

exp ((x - m o)2 - ( - nl1) 2

2 2 2a 20 1

(X - 11)0 2

0o0
(X- ( ml) 2

0-1

The regions Zo and Z 1 are found by solving the above equation for equality,

[(moO'2 - m 21 •) - OoOa (7A[2 - o_ ] + (no - m)) 2) 1/2]
a1= 2 2

[(moo02 _- 1110) + oa1 ([a2 o_ C] + (mo - 11)2 )1/2]
X2 2 21 0

The values of PF and PD are found by integrating the conditional probability densi-
ties fx(x I Ho) and fx(x I HI) over these regions Zo and Z1, where Zo = {x : x, <
x < 2 } and Z1 = Zo.

P = fx (xI Ho)dx

PD = fx (x | Hi)dx

X2 (x_-m0)2
=1 2e 2

X1 v O
2( 1 (x-ml)

2

-ll~ V/-0- eV

In Figure 4-1 for example, we have plotted the ROC curve for the distributions
fx(x I Ho) and fx(x I H1) alongside. The axes are x = PF, y = PD. The line x = y
is a lower bound, since for a point on this line, any decision is as likely to be true
as false, so the observed value of X gives us no information. Though an ROC curve
is a 3D entity (i.e., a point in (PF, PD, r) space), we display its projection onto the

say H1

say Ho

say H 1

s

say Ho

say Hm
>

say Ho

say H1

say Ho

71

71

rl0-0l

=7o21n-
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rT = 0 plane and can easily find the associated yr value for any (PF, PD) pair. When
the threshold is infinite there is a 0 probability of false negative, but a 0 probability
of correct identification as well. As the threshold goes down, the probabilities of both
occurences go up until the threshold is 0, when both positive and false identification
are certain. In our problem we assume that we do not have priors, so our goal is to
pick a threshold such that we have a very high probability of identification and a low
probability of false positives, i.e., we are interested in picking a point as close to the
upper left hand side as possible. Note that the larger the separation between the two
hypothesis distributions, the more the curve is pushed towards that direction.

4.2 Applying the ROC to Object Recognition

In our problem formulation, Ho = probability that the hypothesis is not correct, and
H1 = probability that it is. In our case, we have a different ROC curve associated
with every fixed (m, n) pair, where im + 3 and ni + 3 are the number of model and
image features, respectively. We assume that Ho and H1 have Gaussian densities

fw- and fwH, whose means and variances were derived in Chapter 3. Because in our
formulation the variance of fw, is always greater than that of fwH, the lower bound
of the interval defining Zo is always negative. Since we can't in practice achieve any

score lower than 0, we will treat the test as a threshold test, that is, we will accept a
hypothesis as being correct if it falls above 0 = x 2.

Using this technique, we can predict thresholds for simulated experiments, as shown
in the next section.

4.3 Experiment

The predictions of the previous section were tested in the following experiment: to

test an ROC curve for model size m + 3, image size n + 3, occlusion c and sensor
error ao, we run two sets of trials, one to test the probability of detection and one to

test the probability of false alarm. In all our experiments we used a value Uo = 2.5).

For Po, a random model of size rn + 3 consisting of point features was generated

and projected into an image, with Gaussian noise (co = 2.5) added to the x and y
positional components of each point feature, independently. Occlusion (c) is simulated
by adding a c probability of not appearing in the resulting image for each projected
model point. Only correct correspondences are tested, and the weight of each of these

correct hypotheses is found using the algorithm, restated here:

(a) for a hypothesis (mo, mi, m 2 ): (so, l, s 2), find all Gaussian weight disk loca-
tions and sizes:

(i) find affine coordinates mj = (aj, /3j) with respect to basis (mo, mi, m 2)

(ii) projected image location for mj is so + aj(sI - so) + 3j(S 2 - So)



(iii) projected Gaussian weight disk radius for mj is 2r = 2(a +/3ý + [1 - 3 -

(b) for every image point sj, initially set d = oc.

(i) find the minimum distance d between s. and mj such that d < 2r.

(ii) add v 2= 2 e 2
•
2 (the height of the Gaussian weight disk at the image

point location) to the sum w, which is the total score for this hypothesis.
If this image point did not come within 2or of any projected model point,
then v = 0.

'We performed this experiment, keeping a histogram of the weights, until there were
,2500 sample points. To test the probability of false alarm, we run the same experiment
using random images which do not contain the model we are looking for. The resultant
histograms are normalized to yield the empirical density of WH and WiT for the given
values of m, n, c and uo. To construct the ROC curves we loop through 25 thresholds
and tally the proportion of the empirical distributions of WH and WH that fall above
the threshold, yielding a (PF, PD) pair for each one. The resulting Pr, PF, and ROC
curves as a function of threshold 0 are shown in Figure 4-2 for n = 10, 100, 500, 500,
occlusion c = 0.0, 0.0, 0.0, 0.25. The ROC curves for the same parameters are shown
alongside. The axes for the graphs are (x, y) = (0, PF), (x, y) - (0, Pr), and (x, y)
(P1 , Pr).
The graphs of the PF, PD and ROC curves indicate that the predicted and actual
curves match very well, with the best predictions when the number of clutter points is
high. Turning to the PD plots, we see that when the threshold is high we consistently
underpredict the probability of detection. This error works in our favor, since it
pushes the actual (PF, PD) points up above the predicted ones. This high threshold
area corresponds to the region on the ROC curve along the PD axis.

The discrepancies between the curves are due to assumptions we made in the ana-
lytic derivations, the most significant of which is the assumption that WH and W7-
are Gaussian. In fact, none of the displayed empirical curves are actually Gaussian,
though when the clutter is high the distributions are more nearly so. In theory we
could use (Chernoff bounds to bound the expressions for Pr) and PF for a given thresh-
old [VT68] but we will not explore this option. Instead, we will use the analytical
curves as an approximation to the actual curves, and note that despite this modelling
error, we still see a good fit between empirical and actual performance.

4.3.1 Using Model-Specific ROC Curves

TFhe largest discrepancy between predicted and actual performance can be traced to
J)r prediction, as seen in Figure 4-2. In our analysis, we assume two things that cause
this mismatch. First, we assume that a correctly hypothesized model point accumnu-
lates weight in favor of a correct hypothesis independently of any other. Second, we
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assume that the number of model points is large enough so that we can approximate
the probability density of WH by a Gaussian. However, we have shown in the previous
section how to empirically derive the actual WH and PD curves by simulation. We
can use this technique to tailor the overall method to a particular model in order to
imnprove the prediction for that model.

Specifically, the method would work as follows: the same simulation as was performed
in the previous section is done, using the given model instead of a randomly gener-
ated one, with no occlusion or clutter. A simple function can be fit to the actual
distribution for WH, and this function will subsequently be used as the density of W7-
(with not clutter or occlusion) for this model. The density of WH for any other value
of n and c can then easily be derived from this.

Summary

In this chapter we introduced the ROC curve, which enables us to encapsulate all
the information needed to make a decision about choosing thresholds to determine

Plerformance. That is, for a particular image, model, and threshold for the weight that
a hypothesized match must score in order to accept it, we can predict the probability
that a correct or incorrect match will pass the threshold. Conversely, for a given model
and image, we can predict the threshold required to achieve a given probability of
true detection or false alarm. We applied this technique to simulated models and
images and were able to successfully predict thresholds and performance for a wide
range of model to image sizes.

The ROC curve also indicates the level of performance achievable for a particular
niodel and image, so that we can determine when a desired level of performance
(for instance, 0 probability of false alarm at the same time as a 1.0 probability of a
true detection) is simply not possible for a given model and image. In effect, we are
able to identify when an image is simply too noisy to be able to achieve any better

performance than randomly guessing whether a given hypothesis is correct or not.



Chapter 5

Comparison of Weighting Schemes

In the previous chapters we talked about decision making for a particular weighting
scheme; however, we can use the machinery we developed in the last chapter not only
to evaluate hypotheses, but also to compare the relative merits of different possible
weighting schemes. In this chapter we use the ROC to compare several such schemes.
We have already discussed one weighting scheme which we will call Scheme 1. Scheme
2 will denote the weighting and decision scheme generally used with the uniform
bounded error model, and Scheme 3 will denote the same weight disk as Scheme 1,
but using a weight accumulation algorithm which collects evidence from at most one
point per projected error disk. Ultimately we will decide to remain with the original
scheme we developed in Chapter 3.

5.1 Uniform Weighting Scheme

The weight disk used with the uniform bounded error model assigns a full vote to
any model point which falls inside it. For a model point with coordinates (a, /3) in
the frame established by the model basis used in the correspondence, the projected
weight disk has radius

o( - --3 + I + I f I +1).

where Ec is the radius of the uniform error distribution for sensor noise. We will use
the symbol ec to describe the values this expression takes on as the affine coordinates
vary. The expected value of VM under this scheme is 1 - c, and for VV, E[VV I m = 1]
is the probability that a random point will contribute a vote of 1 at a particular weight
disk to an incorrect hypothesis. This is the expected size of the weight disk over the

size of the image, which is = A*. This last expression was called the redundancy
factor y and was derived analytically in [GHJ91], but for our comparison we took
the empirical value from simulations such as those described in Section 3.6.1. For an



S:VA ratio of 1 : 100, pr. 0.0034. The expected value of VV is the probability that
a single random point dropping into an image with mn circles of average area 1u will
fall into one or more of them. Using the notation

B(p; n, k) = k
0 otherwise

the expression describing the probability that a clutter point will drop into one or
more weight disks is given by the inclusion-exclusion principle, and is

i=1

If we upper bound this probability by assuming the weight disks are disjoint, this is
simply rnp. This approximation constrains the number of model points to be less
than rni-' 1  300.

The random variable Wy is binomially distributed:

FwH (k) = B(my; n, k)

The distribution for WH is a little more complicated; that is, in order to observe
exactly k points, i points must have been observed from the model, and the remaining
k - i points were random, for all numbers from 0 to k:

k

Fw,(k) = E B(1 - c; m,i)B(mi; y-n,k- i)
i=0

This product of two binomial distributions is not itself binomial, and the optimal
Neyman Pearson test to distinguish between them is complicated to derive. We will
use a simple threshold test since it is widely used, though we have not proven that it
is optimal with respect to the Neyman Pearson criterion. The probabilities of a true
and false positive using a threshold test are, respectively

k

PD = 1 - FW (i)
i=O
k

PF = 1 - FwH(i)
i=0

Figure 5-1 compares the ROC curves for Scheme 1 (Gaussian weight disk) and Scheme
2 (uniform weight disk) for nm = 10,7n = 10, 50, 100, 500, 1000, occlusion= 0.0 and 0.25.
We can see that in the case of no occlusion and for small values of n, both techniques
predict good PF vs Po curves, though the bounded uniform weight disk has better
performance because there is no possibility of a false negative when occlusion= 0,



while with the Gaussian weight disk there always is. However, as n increases, the

performance of Scheme 2 breaks down more rapidly than Scheme 1 for both occlusion
values. For occlusion= 0.25, both schemes perform about equally for small values of
n (for example, at n = 100), but again as n increases, the performance of Scheme 2

degrades more dramatically than that of Scheme 1 (n > 500).

5.2 An Alternative Accumulation Procedure

In Section 3.8 we presented the basic recognition algorithm, and pointed out that

in the accumulation procedure, we add the contributions from every image point, as

opposed to at most one point per error disk. That is, if several image points fall

within the same error disk, we add the contributions from all of them. Intuitively
one would expect that this would not work as well as simply taking the value of the
closest point to the center of each error disk.

In this section we investigate the what happens to the ROC curve if we modify the
accumulation step to take only the "heaviest" point per error disk, i.e., the one
appearing closest to the disk center. This weight scheme will be called Scheme 3, and

we will use the same variable names as we did for Scheme 1, but with a '*' in the name
to differentiate the random variables and their distributions from those of Scheme 1.
The derivations of the density functions for Scheme 3 are more difficult, and we will
end up approximating the density function fv* such that E [VM is underestimated.

Surprisingly, we will see that even with this underestimate, the theoretical ROC curve

for Scheme 3 is not as good as for Scheme 1.

We begin by defining two new random variables, VL and VT-. The difference between
VM and VL is that the former variable described the weight that a true image point

would yield - that is, a point which actually arises from the model when a correct
correspondence between model and image points has been established, and the rest

,of the model points are projected into the image. VL is the weight that a true weight

disk will contribute to the accumulated sum - that is, a disk which is projected into
the image when a correct hypothesis is being tested, when the image contains n + 3
points. The same distinction holds for the variables VR and VM .

We begin with the random variable Vi.. Extending a derivation given in [BRB89] for
the one dimensional case, we first define yet another random variable, Xk = distance of

the closest point to the center of a disk, when the disk contains k uniformly distributed
points. We derive the probability density function as follows: Let a be the radius of
the disk. We divide the disk into an inner disk and 2 rings:
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To find the probability density of Xk, we first find the probability that of k points,
none fall in the inner disk, one falls inside the h-ring and the remaining k - 1 fall
outside the ring:

P{z < Xk < x + h} () (k (x + h)2 X (a 2 - (x + h)2 k-1
_ h( 2 2I a a

(2hx + h2) 2 )( 2X - 2ax - h )k-1

Now we take the above
limit as h -+ 0:

fXk(x)

expression, divide by the width of the ring h, and take the

limP( < Xk < + h)
hA-o h

k= lim k( 2x + h)(a 2 - X2 - 2hx - h2) k- 1
h--O 2k

k= a22x(a2 -_2)k -1
a2k

Now, let Y,, = distance of closest point to the center of a given weight disk disk (i.e.,
•e is fixed) in an image with n + 3 points. So, the radius of the disk, a, is 2a,. For

legibility, let us set , l4,= to be the probability that a random image point falls
in the error disk. Then the probability that the closest image point to the disk center
is at a distance x equals the probability that exactly k points fall in the disk times
the probability that the closest of the k points is x away from the center of the disk,
for all k:

fy. I,(x Io) = E P{k pts fall in disk} P{n - k pts fall outside} fxklI(x I)
k=1



U (2 l k1
=l ) (,)k ( - (4k 2)k 2x(4a0 2 - X2)k-1

To derive fvv-il e(v I o), we have to determine the density of g(Y,,) for a fixed or, where
_2

g(y) = e 2~ This is extraordinarily complicated, and we will not even attempt
it.

Instead, we do the following. First let us assume that n < -!-. We will justify this
assumption shortly. This together with the fact that (1 - yg) r 1 means that not
only is the binomial term decreasing after the first term, but that the second term
is less than half the first. Therefore, we take the liberty of approximating the entire
distribution by the first term. When we do this, the term fxk(x) becomes much
simpler, since we only have to worry about the case where a single random image
point falls in the error disk, k = 1:

fXiIe,(X1 0)= 2) 2

Not surprisingly, this is the same expression as we derived back in Chapter 3 for the
distance of a single point from the center of a disk, when the point is drawn from
a uniform distribution. At that time we derived the weight that such a point will
contribute when using our weighting scheme g:

fg(X)l0(V Ir)= I=2

So, combining this expression with the probability that a single point will fall in a
given error disk, we get

fylr(V 1 ") = fng(1 - Ig)l 1 fg(X)e(V I)

A 2
which is exactly n times the distribution fv-(v 1 m = 1) that we derived back in
Chapter 3. Without rehashing all the steps, we simply point out a few differences. In
particular, in Equation 3.15, m was bounded above by * (4rao[- - -1])-1 in order

for the distribution fv-.(v) to be a density function. For the distribution fvy_(v) the
M

same bound must hold, but for n instead of m. Let us call N the maximum number
of allowable image points. Now we can justify our first assumption that n < --: Let
us use the expected area of the Gaussian error disk over all values of a,. This is given
by the expression:

IS 7r(24 r)2f_ cr()d
S2 j r(2a)2 bdIS1 04



= 41rbo S-2 da

- 47rbo 1 ]

= 4raoo0•[ -1 1
7"1 7'2

The maximum number of disks that can fit into the image (assuming the disks are
disjoint) is the image area A divided by this expression, which is exactly the bound
- that we assumed above.

To sum up, we have derived the approximation

fVM(V) J min(n, N)fv- (v m = 1)

and therefore

E[V]J d min(n, N)E[V~ m = 1]

E[(V)2] min(nz, N)E[V- m = I]

Var (V) ~ min(n, N)E[V- mr " = 1 - min(n, N)2 E[V• m = 1]

All the terms on the right hand side of these equations are known quantities that were
derived back in Chapter 3. Note that because of our approximations, our prediction
for E [V] is an underestimate of the distribution's actual first moment.

Finally we derive fv;,(v). We first look at a single correctly hypothesized weight disk
- that is, the weight that is scored by a disk which is projected into the image as a
result of testing a correct hypothesis. The weight disk always contains the correctly
projected model point, unless (a) the point is occluded, or (b) the point falls outside
the 20e Gaussian weight disk. If either of these two things happen, then all of the
clutter points get a chance to score inside the weight disk. We will also assume
for simplicity that if the true point appears inside the disk then we will take its
contribution even if clutter points also appear inside the disk. Then the probability
that we will see weight v > 0 is:

P'{disk gets weight v > 0} =

P{disk gets weight v > 0 1 true point seen} +

P{true point not seen} P{disk gets weight v > 0 1 false point seen}

And for the case when v = 0:

P{disk gets weight v = 0} = P{true point not seen} P{false point not seen}

For convenience let us call B the probability that no clutter point falls inside a true
weight disk. In the case in which occlusion= 0 the expression for the density fv;



would be correctly given by the expression

( [c + (1 - c)e- 2]BS(v)fv(v) = f,(v) + [c + (1 - c)e-']fvL(v)
M

v=O
v$O

in which the c's would disappear. When occlusion # 0 we have the problem that we
don't know how many of the observed image points are clutter points. Therefore, we
must define a random variable M describing the number of model points that actually
show up in the image. M is binomially distributed with mean (1 - c)m and variance
c(1 - c)m. Using this random variable instead of m in the expression for fv*z in the

M
above expression, the density fvL becomes:

[c + (1 - c)e- 2]B6(v) v = 0
fv(v) fv(v) + [c + (1 - c)e- 2] min(n - M, N)fvv(v mI = 1) v 0

Let us temporarily rename p = c+(1-c)e- 2, and assume that min(n- M, N) = n- M
for ease of manipulation. Then

Spe - 2 BS(v )  v = 0
fv(v) fVM(v) + p(n - M)fv-v(v I m = 1) v 0

We use Equations A.2 and A.3 to remove the random variable M, first for the mean:

E[VL] = E[VM] + p(n- (1 - c)m)E[VW m = 1] (5.1)

and proceeding in stages for the variance:

E[VL I M]

Var (VL I M)

Var (E[VL I M])

E[Var (Vk A M)]

= E[VM] + p(n - M)E[VV I m = 1]
= E[(V)2 I M] - E[V I M]2

= [E[ V11  + p(n - M)E[V m = 1]] -

[E[VM] + p(n - M)E[VV I ml = 11] 2

= p2E[V I nz -= 1]2 Var (M)
= E[V] - E[VM] 2 + pE[(i - M)] E[V I m = 1

-p 2E [(n - M)2] E[V I m7 = 1]2

-2pE[n - M] E[VM] E[V 77 m = 1]

Next, substituting the expression E[lM2] = Var (M) + E[M]2 into the last equation
and solving for the entire expression, we get:

Var(V4) = Var(E[Vk I M]) + E[Var(VL I M)]
= p2 E[V I 7n = 1]2 Var (M) + E [V] - E[VM]2

+p(n - E[M])E[VM I m = 1]



-p 2 [(n - E[M])2 + Var (M)]E[V- I m = 1]2

-2pE[n - M] E[VM] E[V m = 1]

Note that the first term in the sum cancels out the variance in the third line, leaving

the expression:

Var (V) = E[V ]- E[VM] 2

+p(n - E[M])E[V I = 1] - p2 (n - E[M]) 2E[V I m = 1]2

-2p(n - E[M])E[VM] E[V j I = 1]

Putting back the min expression and substituting the value of E[M] we finally get

Var (V) = E[Vj]- E[VM]2 + p min(n - (1 -c)m, N)E[V Im = 1]

-p2 min(n - (1 - c)7n, N)2E[V- m = 1]2

-2pmin(n - (1 - c)m, N)E[VM] E[VV I m = 1]

in which all the terms are known.

The accumulated densities W H and W!• are simply collected over all m error disks

independently, so that

W H* - N(mE[Vk],mVar(VM))

In Figure 5-2 we show an ROC comparison of Schemes 1 and 3. The new method,
Scheme 3, performs very poorly in theory because as the number of clutter points

go up, the chance of at least one point appearing in every disk is very high. When

this happens it is no longer possible to distinguish between correct and incorrect

hypotheses. For a o 0 : Vr ratio of 1:200, the maximum number of image points

allowable by the method is 818; at this point a random point will appear in every

weight disk with probability 1 and the ROC' curve becomes almost diagonal.

In Figure 5-3 we see the actual PF, PD and ROC curves using this weighting method.

The predicted performance greatly underestimates the actual performance of the

method. This discrepancy is due to our overestimate for the mean of the random

variable Vy, as we were forced to do in order to push the analysis through. Despite

the fact that the actual performance is better than predicted, it is still the case that

the actual ROC curves for Scheme 3 are not as good as those for Scheme 1, as can

be seen in Figure 5-4.

It is clear that Scheme 1 is better than Scheme 3 most importantly because the latter

performs better in actual simulations than Scheme 3. It also has the advantage that

our predictions for the distributions of WH and Wy are more accurate than those

of Wk and W Hf. For both these reasons we will perform all experiments in the next

chapter using Scheme 1.
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Figure 5-2: The graphs show the comparison of ROC curves for Scheme 1 (top curve)
versus Scheme 3 (bottom curve). The x and y axes are PF and PD, respectively. Increasing
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(10,100), (10,500), (30,100), and (30,500). For all graphs, occlusion = 0 and a0o = 2.5.
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Surnmmary of Weighting Schemes

In this chapter we discussed two different possible weighting schemes and used the
RO)C curves to compare them to the original scheme we developed in Chapter 3.
Ultimately we showed that our original scheme has better error performance than both
alternative schemes. It is important to note that none of the schemes we have analyzed
is optimal with respect to a maximum likelihood criterion, which would assign a
better score to hypothesis HA than to HB if P{irnage I HA} > P{irmage HB}. For
the remainder of the thesis we will use the original scheme we developed in Chapter
3.
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Chapter 6

A Feasibility Demonstration

In the preceding chapters we presented a theoretical approach to placing a, bound on
the probability of true versus false detection for the output of a recognition problem
in a limited domain, and some simulations supporting the viability of the method. In
this chapter we argue that the Gaussian error model is a reasonable approximation for
point feature locations by measuring the noise associated with different point feature
types. Finally, we demonstrate the process of applying the analysis to real images.

6.1 Measuring Noise

6.1.1 Feature Types

A point feature is a physical aspect of the model which can be detected at a 2D
location in an image of the model, regardless of the model's pose. When consid-
ered in this light, we can see that there are two aspects of how powerful a feature
type is as a representation - its ability to represent the model, and its ability to be
reliably extracted from the image. Asada and Brady [AB86] discuss a model repre-
sentation called a Curvature Primal Sketch, in which point features are defined as
distinctive points in the curvature of the boundary of the object; i.e., zero crossings,
minima/maxima, and discontinuities, in the boundary curve's first derivative. In the
domain of planar models, these model features are all invariant to affine transforma-
tions and by extension, pose (note that it is the location of the features, and not the
magnitude of the boundary curve's first derivative at these points, that is affine invari-
ant). However, reliably extracting these sorts of features from an image is difficult,
since their location is extremely dependent on factors such as pixel resolution, image
processing parameters, and even model pose, since at certain poses the magnitudes
of the boundary curve's first derivative becomes so small that the features become
undetectable.

Another possible representation is to limit the feature types to a single kind of cur-
vature discontinuity, that is, intersections of straight line segments greater than some



fixed length. Line crossings, junctions, and corners are all examples of this. This
representation has its own problems since boundary curves on the model cannot be
represented at all by line segments. From the image processing side, a curve appearing
in an image gives rise to a indeterminate number of corner features, depending on the
magnitude of the curvature and image processing parameters. However, the locations
of intersections of long straight line segments might be more stably detected.

Wells [We192] uses as point features the center of mass of connected pixel strings
of length k, broken randomly. This is similar, but not equivalent, to sampling the
contour of the object at fixed intervals. One possible problem with this type of point
feature is simply that there are so many - that is, if k is too small, we are not
significantly pruning the search in transformation space by using these features to
form hypotheses.

Few recognition systems in the literature use the simple point features described
above; for example, SCERPO [Low86] and HYPER [AF86] both use entire line seg-
ments as features, the Local-Feature-Focus method of Bolles and Cain [BC82] uses
oriented corners and holes, Huttenlocher's ORA system [Hut88] uses oriented points,
and Ettinger's SAPPHIRE system ([Ett87]) uses the compound point features de-
fined in the Curvature Primal Sketch. The advantage of using more information per
feature is that the additional information will often eliminate hypotheses consisting
of impossible image-feature pairings.

One disadvantage of using more complex features is that there is more likely to be
errors in their extraction, and this error may prevent correct image-model feature
pairings from being tested. Also, Jacobs has recently shown that some basic work
using simple point features in the domains of linear combinations of models [U1B89]
and indexing of 3D models [(:.J91] does not extend to oriented point features [Jac92].

We wish to sidestep the issue of which is the best feature representation by arguing
that no matter what feature type is chosen, there will inevitably be some error in
extracting the features from the image, no matter what dimensionality the feature
type has, be it a simple 2D location, or a 2D location with orientation, magnitude,
or any combination of other kinds of information. Our goal is to argue that, given a
feature type, we can measure the noise associated with it and apply an error analysis
to determine the probability of false versus positive identification. Because it was
simpler to use simple point features, we have limited ourselves to using only these.

We have measured the noise associated with four feature types, under different con-
ditions. They are

* intersections of straight line segments of a fixed minimum length,

* points of maximum curvature,

* inflection points,

* centers of mass of connected fixed length pixel strings.



The actual algorithm we used to extract these features is unimportant, since we are
interested in measuring the variability of each type of feature, given a fixed feature
finder. We have attempted to measure the noise per feature type as a function of

* different images of the same scene,

* different degrees of image smoothing,

* illumination.

Interestingly enough, there was some variation in feature locations even for the first
image group, where one would expect the images to be identical. In fact, there are
slight differences in pixel values between images, probably due to different amounts
of light reaching the camera during the imaging stage (fluorescent lighting was used),
or possibly due to quantization error. This introduces a level of uncertainty in all
the subsequent image processing stages, from image smoothing to edge detection to
boundary tracing to subsequent feature extraction.

6.1.2 Procedure for Measuring Noise

To measure the noise associated with each feature type under each kind of condition,
three groups of images processed as follows:

* 5 images of a telephone, same illumination, at 5 second intervals. Each image
was smoothed with a Gaussian mask with a = 2 pixels and Canny edge detected
with thresholds of 2 and 4.

* A single image of a fork, with 5 different sized Gaussian smoothing masks:
0 = 1, 1.5, 2, 2.5, and :3 pixels. Each image was Canny edge detected with
thresholds of 2 and 4.

* 5 images of an army knife, varying illuminant position and strength. Each
image was smoothed with a Gaussian mask with a = 2 pixels and Canny edge
detected with thresholds of 2 and 4.

The result of processing yielded 5 different edge maps for each group. The original
images were all taken with a Panasonic TV camera with automatic gain control,
using an 16mm lens and manually focused. The exact conditions were not measured
precisely, since we are interested in them only insofar as they conform to "reasonable"
operating conditions. All images consisted of a 720 x 484 pixel map. Only overhead
lighting was used except for the last image group, for which a floodlight was used to
change the direction of illumination.

For each edge map, all chains of connected pixels were computed and smoothed, and
each feature type found:



* Intersection points - the chains were segmented into straight edge segments
using a recursive line-splitting algorithm ([GLP87]), then all intersection points
whose distance was < 10 pixels away from the ends of the segments which
formed them were kept.

* Maximum curvature points - the derivative of the tangent along the curve was
computed, then all minima and maxima exceeding a fixed threshold were kept
as point features.

* Inflection points - the zero crossings of the tangent's derivative along the curve
whose absolute slope exceeded a fixed threshold were kept as point features.

* Mass centers of chain fragments - the chains were broken into fragments of
length 10, then the center of mass of each one taken as a point feature.

For each image group, the feature locations for each of the 5 images were indicated
on a single bitmap, color coded by the index of the image from which it came. In

Figures 6-1, 6-3 and 6-5, the features are shown only in white, due to reproduction
limitations. The correspondences across images were manually indicated for the first
three feature types by mousing on clusters which the user believed indicated a feature

of a. given type. For the fourth feature type, the correspondences were automatically
formed by clustering together those features from every image who mutually agreed

on their nearest corresponding feature. Figures 6-1, 6-3 and 6-5 show a representative
image from each image group, and the point features from all the image groups with
their correspondences indicated by circles. The feature types depicted are intersection

points (phone), centers of mass (fork), and maximum curvature points (army knife).

The inflection point feature was the most unstable, and is not illustrated.

For each cluster within a given feature type, the mean in both the x and y direction
was calculated, then for each feature in the cluster, its distance from the mean of
the cluster was histogrammed. This yielded, for each image, a histogram per feature

type. This histogram is intended to be an accurate sample of the error distribution of

the feature type. Some sample histograms are shown next to the pictures from which
the features were clustered.

In addition, the error distribution of a third coordinate for each feature type was
calculated. For the intersection points, the third dimension is the angle, for maxi-
mum curvature points, it is the magnitude of the curvature, for inflection points, the
slope, and for centers of mass, the tangent of the curve at that point. The results

indicate that the error distribution along this third dimension can also be modelled as
Gaussian, and suggests that our method could be extended to incorporate this extra
information, though we have not done so.

The calculated variances of each feature type per image group are:



Figure 6-1: First image group. The group consists of 5 images of a telephone, same
lighting conditions and smoothing mask. The top figure shows one of the images of the
group, with the intersection of straight line segment features from all 5 images of the group
superimposed in white. The bottom figure shows the result after Canny edge detection and
chaining. The straight line segments from which the intersection points were taken is not
illustrated. Superimposed on the bottom figure are the location of the clusters chosen for
the noise measurements, indicated by circles. All intersection features located within the
bounds of the circle were used as sample points for the noise measurement.
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Figure 6-2: Left hand side, from top to bottom: the histograms of the x, y and z coordi-
nates of the intersection features depicted in the previous figure. For intersection features,
the z coordinate is the angle of intersection. The Gaussian distribution with mean and
variance defined by the histogram is shown superimposed on the graph. On the right hand
side is the cumulative histogram, again with the cumulative distribution superimposed.
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Figure 6-3: Second image group, consisting of the edges from 5 different smoothing masks
of the same image. Again, the top figure shows one of the images of the group, but the
features shown are the center of mass features from the boundary, randomly broken into
segments of length 10. The bottom figure show the clusters, i.e., groups of features which
mutually agree upon their nearest neighbor features across all of the images.
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Figure 6-5: Third image group - an army knife under 5 different illuminations. The top
figure shows one of the images of the group, with the maximum curvature features from all
5 images superimposed.
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s # points o a a2X y z
INTERSECTIONS:
Phone: 28 325 1.8 1.2 0.079
Fork: 7 231 8.3 2.9 0.52
Knife: 19 85 2.0 2.6 0.30
MAX CURVATURE:
Phone: 38 221 0.54 0.27 0.017
Fork: 8 71 3.8 1.7 0.093
Knife: 23 169 2.4 4.2 0.11
CENTERS OF MASS:
Phone: 523 2615 2.0 1.2 0.015
Fork: 305 1525 3.4 1.6 0.0027
Knife: 244 1220 2.7 2.1 0.027
INFLEC'TIONS:
Phone: 10 48 0.68 0.96 4.3
Fork: 3 18 6.8 2.6 1.1
Knife: 5 26 5.7 3.3 3.5

Since there were so few reliable clusters of inflection points for each set of images, the
results from the distribution can't be taken as representative of any sort of underlying
distribution for this feature type. The intersection and maximum curvature points
were fairly abundant and stable. For the centers of mass feature, note that the
variances are about twice as large in the x direction as the y direction. This is
because the contour of the objects were aligned more along the x direction, so the
uncertainty would naturally be greater along the contour's tangent due to the manner
in which these points were found. We expect that any directional bias of this sort
will be symmetrised by the random orientation of the object in the image.

Because the results between image groups are so disparate, we chose to use the average
variance for a particular image group as a guide for choosing r0 per experiment (again,
assuming that the rotational component of the pose distribution allows us to do this).
The calculation is simply

70 2x + C2

2

per feature type per experiment. In our subsequent work we will limit ourselves to
using only maximum curvature feature types. For these features, the above calculation
yields co0 .65,1.7,1.8 for the phone, fork, and knife respectively. In the actual
experiments it was found that better performance was achieved by using values that
were slightly larger than these for the phone and the knife.

# clusters



6.1.3 Discussion of the Method

There are several aspects of the noise calculation that an observer might take issue
with. The first is simply the assumption that the real location of the sought after
feature is the mean of every cluster; that is, there is no bias in the error distribution.
This brings up the question, what is the real location of a feature? Suppose the

particular feature finder we were using always displaced features to the left by 3
p)ixels, or, displaced features in an orientation-dependent fashion. Representing the
distribution of vectors between where we believe the feature should be, and where the
feature finder actually localizes them, can be a problem. However, the comnplexity
disappears if we decide to let the feature finder be the judge of the "actual" location
of the features. This will require the model representation to be determined by the
feature finder (we will discuss exactly how in the next section). Also, any orientation-
dependent directional bias of the feature finder should be randomized by the fact that
the orientation of the model in the image is random as well.

Aniiother objection might be that we are not measuring the correct thing: rather,
what should be measured is the displacements of a single feature from, say, 100
different images. Instead, what we are really doing is sampling many different random
variables, and as such, it is no wonder that we are ending up with a close to Gaussian
error distribution, since by the Central Limit Theoren], the sumn of many different
random variables will be G(aussian, no matter what their individual distributions. The
answer to to this charge is that this sum of random variables is exactly the distribution
that we are interested in measuring; far from invalidating the method, this objection
reinforces it.

Another question might be about the manner in which the clusters were formed; that
is, at least for the 3 out of 4 of the feature types, we manually clustered together
t hose features that seemed to be close to a location at which it seemed reasonable
that a feature should appear. There was no guarantee that there was exactly one
feature frolm each image group in the cluster; some clusters probably were missing
representative features from some images, some clusters probably contained several
features from the same image. Also, we didn't take all possible clusters, only those
which seemed subjectively appropriate. Despite these issues, we claim that since the
Inodel representation is chosen by the user (i.e., which model features comp)rise the
representation), it is not unreasonable for the user to determine the range of locations
indicating a possible location. As to the question of variable number of features per
image included in a single distribution, we note that if the image feature extraction
p)rocess drops a feature for one of the images in the distribution, there is nothing we
cani do. If one image contains several features close to the desired feature location,
then including all of them in the distribution implies that any of them is a feasible
match for a model feature which projects to near that location.



6.1.4 Using Different Feature Types

Now that we have several feature types, each with their associated go, we look at the
problem of combining information for a hypothesis consisting of pairings of different
feature types: i.e., suppose we have a hypothesis consisting of a size 3 pairing of
feature types 1, 2 and 3 with associated error standard deviations al, U 2 and a 3
respectively. Then the possible locations of a fourth point (a, /3) of feature type 4
with error standard deviations a 4 remains centered at the expected location, but with
variance

ao(1 - a- p3)2 + aa 2 + a3 2 + 42

We can still weight the occurences of a corroborating point as before. However,
the calculation of the densities for VM and VV become more involved, since we can
no longer use the same approximation for fl,,H(-) and fel(a). If the a's are not
all equal, these density functions are dependent on the four new random variables
a, i = 1... 4, whose distributions are different for each model. Though it is still
possible to do the calculation, it is much more complex than before.

6.2 Building the Planar Model

Building models for 2D planar objects is particularly easy, since a single image con-
tains sufficient information to do it. In order to be able to use the error model which
we have analysed and measured, we build our model as follows: a single image of
the model at in an arbitrary pose is run through the feature detector. The user then
clicks on clusters of points appearing near the location of a desired feature; the mean
of this cluster is then incorporated into the model representation. This method of
building the model is compatible with the way in which we measure and represent
error in our analysis.

6.3 Applying the Error Analysis to Automatic
Threshold Determination

Here's an example of an application of our error analysis to a typical problem in
object recognition - automatic threshold determination for a system which uses our
recognition algorithm. Optimally, we would like to build a demonstration system in
which, given a model and some image, the user specifies a certainly level up front,
i.e., "I don't want the system to tell me about anything unless it is 90% certain that
is an instance of the model". In order to achieve this, it would have to be the case



that
ND PD > 0.9

ND PD + NF PF
in which ND and ND are the total number of true and false hypotheses, respectively.
However, in our problem these numbers are unknown; the only control we have is
over the values of PF and PD and this does not bound the certainty of the result.

Thus our demo will be as follows: the user is able to specify a desired value for either
PF or P). The image is processed to find the number of model and image features,
and then the system constructs the associated ROC curve and finds the implied PD

(if a PF was specified, otherwise the implied PD for the specified PF), and what
threshold will give that performance. It then notifies the user of the implications of
the choice.

As it turns out, the simplifying assumption that the clutter is randomly distributed in
real images is not only incorrect, but the deviation from the modeled error also very
strongly affects the way the system works. The reasons for this are illustrated by an
extreme example: imagine an image in which n feature points appear in the left side
of the image while the right side has none. When we project an error disk into the
image, if it appears in the left side it is twice as likely to encompass an image point
at random than our prediction. In addition, the denser region will more likely be
sampled (in this example, will definitely be sampled) for the 3 random image points
chosen at random to form the pose hypothesis, making it much more likely that the
remaining error disks also project to the left side of the image. These two effects
result in a much higher effective density than indicated by the mere number of points
appearing in the image.

We can attempt to fix to the problem in two ways: we can either estimate an effective
image density as a function of density variability across the image and use a single
ROC curve and threshold per image, as we have been doing up until now. Or, we can
calculate the effective density per hypothesis (that is, density of the region in which
the projected model falls), and use a different ROC and threshold per hypothesis.
We chose the latter approach, that is, we chose to calculate an ROC curve not for an
entire picture (since a single value for n does not suffice to describe all hypotheses
when the density is so variable across the image) but rather on a per-hypothesis basis.
So, instead of being able to predict a single threshold for all hypotheses emanating
from an image, we calculate the threshold every time we test a different hypothesis.
Since we are changing the ROC curve per hypothesis, we can choose the threshold to
constrain either the false alarm rate or the true detection rate, but not both.

6.3.1 The Problem with the Uniform Clutter Assumption

In this section we illustrate in more detail the problem with the uniform clutter
assumption. First we show the original demonstration in which we found a discrep-
ancy between our predicted and actual behavior of the system, and subsequently, a
sequence of experiments to isolate its cause.



Initially we built a demo which runs in one of two modes, random and exhaustive.
For both modes, the system takes as its input

* The model, consisting of a list of 2D feature locations,

* The image, also consisting of a list of 2D feature locations,

* Estimated occlusion level, which is a number between 0 and 1, inclusive,

* The value of c0 for this feature type.

In addition there are two optional arguments SUB-MODEL and SUB-IMAGE, which
are subsets of the model and image, respectively. If these optional arguments are non
empty, the demo runs in exhaustive mode, otherwise it runs in random mode. The
motivation for these optional arguments is to limit the number of hypotheses tested
to a reasonable size, and to be able to include some correct hypotheses among those
tested. For instance, in the telephone test with 33 model features and 250 image
features, the number of hypotheses, though polynomial, is still _ 4 x 1011. Even if
we could check one hypothesis per second, this would still take 13 thousand years,
risking a very dull demo for the user. However, when a sub-model and sub-image
group of size 4 that correctly correspond to each other is specified, then the demo
exhaustively tests 96 hypotheses of which 4 are correct.

When the demo runs in exhaustive mode, the user is asked to specify a desired PF.
The number of model and image features implies a single ROC curve, and the user
specified PF implies a particular PD and threshold. The system reports to the user
the implied PD and proceeds to cycle through all size 3 hypotheses formed by cor-
respondences between the model and image subsets, showing the user all hypotheses
which score above the threshold. The user answers each query with "correct" or
"incorrect", and the number of times the system makes a mistake is tallied.

When the demo runs in random mode, the user is asked to specify only a PF, after
which 1000 randomly chosen hypotheses are tested, the assumption being that the
probability of randomly choosing a correct one is infinitesimal.

The output of the demo is a histogram of the weights of all the hypotheses tested.
If the demo was in random mode, the normalized histogram should have the same
distribution as Wy-. If the demo was in exhaustive mode, then the predicted to
empirical (PF, PD) point is illustrated on a graph.

We ran the demo in exhaustive mode on the telephone image shown in Figure 6-7 with
a user specified certainty level of .99. The first part of the figure shows the grey-scale
image of the telephone with the points chosen to comprise the model indicated in
white. The bottom figures show a correct and incorrect hypothesis that the system
came up with that exceeded the threshold.

In terms of performance, the demo failed quite dramatically, showing far more incor-
rect hypotheses exceeding the predicted threshold than should have been the case.
Upon inspection the cause for this breakdown is easily identified; running the demo



in random mode with the same model and image produced the histogram shown in
Figure 6-8. The figure shows the predicted density of Wj for m = 30, n = 248 super-
imposed on the normalized histogram of the actual density function. Both the mean
and variance are much larger than they should be. The question is, what is causing
such a large discrepancy?

We pinpointed the problem by performing the following sequence of experiments.

(A) First we eliminated the possibility that the sheer number of model and image
points was the culprit by performing the same simulation as was done to derive
the ROC curves in Chapter 4 for the same value for m and n as in the tele-
phone model and image. The results of the simulation follow the predictions of
the error analysis very satisfactorily and normalized histogram of the weights,
approximating the density of Wny, is shown in Figure 6-9. This indicates that
the problem lies elsewhere.

(B) To eliminate the possibility that something about the model itself was causing
the behavior (for instance, the model symmetry), we created an image in which
the model was present, but all the remaining image points were redistributed
uniformly over the image, maintaining the same values of m and n. We then ran
the demo in random mode, and found that the resulting histogram of weights
also conformed to the predictions of the error analysis (Figure 6-10). This also
pinpoints the problem, since the only difference between this experiment and
the original demo was the distribution of the clutter points, thus isolating the
cause of the discrepancy.

(C) Lastly, we tested to make sure that model pose did not affect the results by
running the same test as (B), but translating the model points to the very
top of the image (Figure 6-11). This did affect the weight histogram slightly,
but in the other direction - that is, it served to make the PF prediction an
overestimate, not an underestimate, of the clutter effects.

6.3.2 Finding a Workaround

Density Correction Factor

Our first attempt at fixing the problem is to determine the effective image density.
If we can do this, then we can maintain a single ROC and threshold per image.
Let us define a quantity which we will name the density correction factor. This
is an empirically derived number which serves as a kind of amplification factor, in
that it scales the actual number of image features to yield the effective number of
image features. The procedure for finding it is simple: we subdivide the image into
a 16 x 16 grid of regions, each one with approximately uniformly distributed image
clutter. During the demo, every time an error disk is projected into the image, a



·,'

° 

°

.1 •

·' .

.·°.

Figure 6-7: The top figure shows the original image, with the feature points chosen for
the model indicated in white. The middle figure is a correct hypothesis that exceeded the
predicted threshold, and the bottom shows an incorrect one. The points indicate image
feature points, and the circles indicate projected weight disks.
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Figure 6-8: The histogram for the weights of incorrect hypotheses chosen from the original
image. Note that the mean and variance greatly exceeds those of the predicted density of
WYt for nm = 30, n = 248.
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Figure 6-9: The histogram of Wr- for 2500 randomly chosen hypotheses For this model
and image, m = 30, n = 248, when the clutter is uniform and the model does not appear
in the image. The prediction closely matches the empirical curve.
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Figure 6-10: The top picture shows the model present in the image, but with the clutter
points redistributed uniformly over the image. The actual density of W-- closely matches
the predicted density.
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Figure 6-11: When the model points are displaced to the top of the image, the resulting
density of WH is affected, but in the other direction. That is, the noise effects are now
slightly overestimated instead of underestimated.
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count for that region is incremented. Finally, the histogram is normalized (turning
it into a 2D probability density function for the probability of being hit by an error
disk), and from this we calculate the expected number of image points per region
by multiplying the normalized histogram by the number of image points per region.
Finally this is turned into the density correction factor by multiplying it by (number
of regions / number of image points).

We used the density correction factor to get an idea of the difference between the
number of clutter points that we are using in our calculation versus the effective
amount of clutter. We would expect the demo to produce a correction factor of
- 1 when run on a completely uniformly distributed image, with a higher number
indicating a higher variability in density. As expected, the original image resulted
in a correction factor of - 4.57, while experiment A (completely uniform image)
yielded a correction factor of . 1.13. Experiments B (model with uniform noise),
and C (displaced model with uniform noise) yielded intermediate values of 1 2.03
and - 1.75, respectively. Note that knowing this number doesn't directly suggest a
solution, since a correction factor of > 1 doesn't imply that the method breaks down.
Rather, it simply confirms that regions of high clutter density are actually hit more
often than the low clutter regions, as we suspected.

Threshold per Hypothesis

It is clear from our work up until this point that the uniform clutter assumption does
not adequately model the clutter in real images, and we cannot fix the method by
amplifying the number of image points in a naive way. Instead, we have modified
the method to work on a per-hypothesis basis. That is, we use the same grid of
uniformly distributed density regions to estimate the effective image density every
time we project the model into the image, and calculate the ROC curve and threshold,
assuming a fixed certainty level. This implies that we cannot predict the overall
probability of a miss at the outset of the demo, since it changes for every hypothesis,
but we can set the threshold to maintain a fixed probability of false alarm.

Implications of the Uniform Clutter Assumption

We have definitively shown that the assumption of uniformly distributed clutter un-
derestimates the negative effects of clutter for this recognition algorithm. Though
the number of images we have examined is not enormous, it is quite safe to say that
one cannot assume that the feature points in an image will be so distributed, and
so any analysis which depends on this assumption will underestimate the effects of
clutter. To our knowledge, all error analyses that have been done imtil now in the
field of computer vision have used this assumption.



6.4 Demo

We revised the demo to take into account the density correction per hypothesis. The
demo runs as before, with two changes. First, the user is able to specify either
a PF or PD level. If a PD level is specified, then only correct correspondences are
tested. These correct correspondences are passed to the demo through the parameters
SUB-MODEL and SUB-IMAGE. Second, the user is not told at the outset what the
implied PF rate (or Po rate) will be for the specified level, since it changes for every
hypothesis.

In this section we present the output of the demo in action. In theory the demo
should work for any planar object in an arbitrary pose, but in practice the fact that
we are working under perspective instead of orthographic projection will lead to errors

that we do not expect will be adequately modeled by a Gaussian. For this reason

we cannot vary the pose of the object in our experiment (except for translations in

the x and y direction), and so for this limited case we can include 3D models in our
domain.

For the demo, then, we can use all the 3D objects that we have been working with
until now. namely, the telephone, fork, and army knife. We work with a single object

at a time. A model of an object is constructed from a single image of it by first

processing the image to find all the feature locations, displaying their 2D locations,
and then mousing on points which we want to be in the model. To test the validity

of the error analysis, we run the demo on a different image than the one from which
the model was constructed.

6.4.1 Telephone

In this test, we used the telephone model that was shown in Figure 6-7. For every

hypothesis, the effective density is calculated, and the ROC curve for that model

size and image density determined. The threshold associated with the ROC point
(PF, PD) on the curve is found, and if the weight exceeds the threshold, the hypothesis
is displayed.

Table 6.1 shows the results of experiments in which a particular rate of either false
alarm or true detection was given, then the threshold was dynamically set per hy-
pothesis to maintain the specified rate. The same three experiments were performed
for four different values of o0 including that found in Section 6.1.2. The first column

is the oo value that was assumed for the experiment. The second and third colummns
contain the user specified PF or PD. In the fourth column is the total number of hy-

potheses tested. The fifth, sixth and seventh columns contain the expected number
of hypotheses of those tested that should pass the threshold, the actual number of
hypotheses that pass the threshold, and the error bar for the experiment (we show

one standard deviation = tPF(1 - PF), t = number of trials. The actual PF (or

Pl)) is shown in the eighth column. The last column shows the average distance of all



ao PF PD Total Expect Actual Error Act PF/PD E[D]
0.5 .01 1081 11 15 3.27 .014 -2.1

.001 1121 1 0 1.06 0
.9 512 461 503 6.8 .98 5.1

0.65 .01 1082 11 29 3.27 .027 -3.7
.001 1080 1 0 1.04 0

.9 510 459 510 6.8 1.0 2.7
1.0 .01 1073 11 23 3.26 .021 -3.24

.001 1094 1 0 1.05 0
.9 514 463 501 6.8 .97 5.5

2.0 .01 1113 11 21 3.32 .019 -1.95
.001 1091 1 0 1.05 0

.9 508 457 496 6.8 .98 4.2

Table 6.1: Results of experiments for the telephone. The first column is the ao value that
was assumed for the experiment. The second and third columns contain the user specified
PF or PD. In the fourth column is the total number of hypotheses tested. The fifth, sixth
and seventh columns contain the expected number of hypotheses of those tested that should
pass the threshold, the actual number of hypotheses that pass the threshold, and the error
bar for the experiment (we show one standard deviation = VtPF(1 - PF), t = number of
trials). The actual PF (or PD) is shown in the eighth column. The last column shows the
average distance of all the hypotheses that passed the threshold from E[WH].

the hypotheses that passed the threshold from E[WH], The distance is given in terms
of the standard deviation of WH, that is:

D E[WH]- w

Var (WH)

where w is the weight of the hypothesis which crossed the threshold.

This model and image contained 33 and 2:31 features, respectively. In our experiments
we tested several values of ao to see how varying that value would affect the accuracy
of our predictions. In Section 6.1.2 when we measured the noise associated with
the maximum curvature feature type for the phone image group, we determined that
ro = 0.65. As we can see from the table, the results were not significantly different for

the different values of o-o, though a value of co = 0.5 seemed to be most accurate for
the experiment PF = 0.01. Oddly enough, using the measured value for 0o0 resulted
in the worst predictions.

For all of the experiments, we see that the threshold predicted to maintain a specified
PF of .01 did not achieve the desired false detection rate. The reason for this is that
our assumption that the density function of Wy is Gaussian is false; in fact, the upper
tail of the actual distribution of Wy- contains more of the distribution than a Gaussian
with the same mean and variance would. Despite this, the predicted thresholds for



Figure 6-12: The incorrect hypotheses that fell above the threshold chosen to maintain a
PF of 0.01. For these experiments, a0o = 2.0. The circles show the locations of the projected
weight disks, while the points show the feature locations.
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o-o PF PD Total Expect Actual Error Act PF/PD E[D]

1.0 .01 1157 12 44 3.38 .038 -1.6
.001 1139 1 0 1.02 0

.9 514 463 0 6.8 0
1.8 .01 1075 11 51 3.26 .047 -.98

.001 1017 1 1 1.01 .001 -2.77
.9 512 461 318 6.8 .62 -.048

2.0 .01 1126 11 40 3.34 .036 -.93
.001 1100 1 0 1.05 0

.9 541 487 423 7.0 .78 -.2
3.0 .01 1020 10 29 3.18 .028 -.44

.001 1044 10 2 1.0 002 -1.06
.9 517 465 431 6.8 .83 .5

Table 6.2: Experimental results for the army knife. Though a0o for this image group was
determined to be 1.8, we see that the predictions for a value of ao = 2 or 3 are much better.
The columns indicate the co used for the experiment, either PF or PD , the total number
of hypotheses tested, the expected number of hypotheses to score above the threshold, the
actual number that scored above the threshold, and the error bar for this value (we show
one standard deviation = vtPF(1 - PF), t = number of trials). The actual PF (or PD)
is shown in the next column, and the last column shows the average distance of all the
hypotheses that passed the threshold from E[WH]

an even lower probability of false alarm (i.e., PF = 0.001) work well.

Lastly, we note that on the average, even those false hypotheses which passed the
threshold had weights which were still significantly below the mean of WH, while the
weights of true hypotheses passing the threshold were significantly above. Though not

justified by the analysis, this information might also be used to discriminate between
true and false hypotheses passing the threshold.

6.4.2 Army Knife

The same experiment was done with the army knife. This example differs from the
previous example in that we used far fewer model points, 14 versus 33. This brings
the value of E[WH] much closer to E[Wf-], and in general we found that the system
behaved less well due to this. For this experiment, the number of model and image
features were 14 and 162 respectively. The model plus two examples of hypotheses
which fell above the threshold are shown in Figure 6-13.

The o-0 for this feature type was determined in Section 6.1.2 to equal 1.8. Referring
to Table 6.2, we see that using this value for the sensor noise results in a very poor
prediction for PD . For example, for a specified PD value of 0.9 we can see that
the actual percentage of true hypotheses that passed the threshold was only 0.62.
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Figure 6-13: The top figure shows the original image, with the feature points chosen for
the model indicated in white. The middle figure is a correct hypothesis that exceeded the
predicted threshold, and the bottom shows an incorrect one.



Figure 6-14: The model of the fork superimposed in white onto the original image.

Raising the value of ao improved the prediction for both PF and PD, with the best
performance prediction resulting from using a value of OTo = 3.0, with oro = 2.0
a close second. However, even the predictions for these oo values results in too
high a false alarm rate when a value of PF = 0.01 is specified - again, using a
Gaussian approximation for the density of WyT causes us to underestimate the extent
of the upper tail of the actual distribution. As in the previous model, the predicted
performance closely matched actual performance for a PF value of 0.001.

Unlike in the previous set of experiments with the telephone, there is not much
difference between the average distance from E[VM] of true and false hypotheses which
pass the threshold. Whereas before there was a chance that this extra information
might further help discriminate between true and false hypotheses which pass the
threshold, for this model and image the extra information is no help.

6.4.3 Fork

The same group of experiments for the fork image group are depicted in Table 6.3.
The model contained 9 feature points and is shown in Figure 6-14, while the image
contained 170. The table indicates that the predictions for the ro = 1.7 and 2.0
give the best results of the group, though the prediction for ao = 1.7 is worse for a
specified PF = 0.01, and the prediction for ao = 2.0 is worse for PF = 0.001. The
former value, o0 = 1.7, was the value determined for this image group in Section
6.1.2. Generally, performance predictions were not quite as successful for this model
as for the first two.
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Figure 6-15: Three kinds of false positives that occurred for a highly symmetric model.
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uo PF PD Total Expect Actual Error Act PF/PD E[D]
1.0 .01 1093 11 36 3.28 .033 -.058

.001 1070 1 1 1.03 .001 -1.84
.9 508 457 468 6.8 .92 2.48

1.7 .01 1052 11 56 3.23 .053 .27
.001 1065 1 1 1.03 .001 1.77

.9 529 476 475 6.9 .90 2.55
2.0 .01 1011 11 43 3.16 .043 -.28

.001 1020 1 7 1.01 0.007 1.82
.9 523 471 467 6.9 .89 2.4

3.0 .01 1043 10 59 3.21 .056 .67
.001 1057 10 17 1.03 .016 1.5

.9 512 461 444 6.8 .87 1.6

Table 6.3: Experimental results for the fork model.

6.4.4 The Effect of Model Symmetry

While performing the previous experiments, it was noted that incorrect hypotheses
which roughly aligned the model along an axis of symmetry in its image projection
would be more likely to get a high score and pass the threshold. The second hypoth-
esis in Figure 6-12 is an example of this phenomenon, as well as the first two false
hypotheses shown in Figure 6-15. These "symmetric" hypotheses are more likely to
be sampled when the three image points in the basis actually arise from the model
(while not correctly corresponding to the model basis tested). To test this effect, we
ran the above experiments for some sample values of ao. The three points in the
image basis used for the random correspondence was restricted to those arising from
the model.

The results in Table 6.4 show that on the whole, the restriction to hypotheses using
image bases arising from the model causes a higher false positive rate than the same
experiment without the restriction. This does not prove that the model symmetry is
entirely causing this effect, especially since the knife model, which is not symmetric,
shows the same tendency towards a higher false positive rate, while the fork, which is
highly symmetric, does not (at least for the PF = .01 experiment). Nonetheless, we
suspect that model symmetry may is a contributing factor, though more tests would
have to be done to settle the matter conclusively.

6.4.5 Comparison to Results Using the Uniform Clutter
Assumption

In the previous sections we performed experiments in which we dynamically set the
threshold per hypothesis, depending on which region of the image the model projected



Model o0 PF Total # Found This PF Previous PF Error
Phone 1.0 .01 1101 37 .034 .021 3.3

.001 1126 2 .002 0 1.06
Knife 3.0 .01 1096 66 .06 .028 3.29

.001 1015 11 .011 .002 1.01
Fork 2.0 .01 1070 46 .043 .043 3.25

.001 1067 22 .021 .007 1.03

Table 6.4: Experimental results when all the points in the image bases tested come from
the model. The first and second columns contain the model and ao tested. The next columns
contain the specified PF , total number of hypotheses tested, and number of hypotheses that
passed the threshold. The next two columns contain the actual PF for this experiment and
the value for the same experiment in which the tested image bases are not constrained to
come from the model (this value was taken from the previous group of experiments. Finally
the last column is the error bar for the experiment, which we took to be one standard
deviation = vtPF(1 - PF), t = number of trials.

Model ao PF Total # Found This PF Previous PF
Phone 1.0 .01 1080 418 .39 .021
Knife 3.0 .01 1114 528 .47 .028
Fork 2.0 .01 1061 490 .46 .043

Table 6.5: Experimental results when uniform clutter is assumed. The first and second
columns contain the model and cro tested. The next columns contain the specified PF ,
total number of hypotheses tested, and number of hypotheses that passed the threshold.
The next two columns contain the actual PF for this experiment and the value for the same
experiment in which the effective density is calculated per hypothesis, and the threshold
dynamically reset.

to under the tested hypothesis. We have shown the method working reasonably well

despite a slightly higher false positive rate than expected for some cases. One source
of the problem may possibly be that the image was indiscrimately broken into a
16 x 16 grid for the effective density calculation, in which the clutter was assumed to
be uniformly distributed within a rectangle of the grid. This approximation may not
be quite correct for the images used.

Lest the reader question the advantage of using a dynamic threshold, we illustrate
some experiments for the case when clutter is assumed to be uniform. That is, a
single ROC( curve and threshold is calculated for the entire image, and any hypothesis
which falls above it is counted. The results are shown in Table 6.5. The table clearly
shows the necessity of using dynamic thresholds, and one can appreciate how well our
method actually performs when compared with these results.



6.5 Conclusion

In this chapter we have demonstrated the applicability of many of the ideas developed
so far. First we argued that the positional error of features due to effects such as
lighting and smoothing are well modeled by a Gaussian approximation, and showed
how to determine the size of the Gaussian for different feature types. Finally we
showed an example of automatic threshold setting applied to the problem of finding a
correct correspondence between model and image features. It was found that in two
of the three image groups, the better predictions were achieved when using a ro0 for
each image group that was slightly higher than that found in our measurements.

It was demonstrated early on that the assumption that clutter is uniformly distributed
over an image greatly underestimates the effects of clutter on the algorithm we are
using when applied to a real recognition problem. Because of this, we were not able
to apply exactly the same approach that we demonstrated on simulated images in the
Chapter 4; rather, we had to adjust the threshold for every model pose hypothesis,
depending on the clutter levels of the regions that the model projected to. This
meant that when a hypothesis projected to a region of high density, it needed far
more evidence to be considered a possible detection than otherwise. We showed this
approach working reasonably well for a small group of images. When given false alarm
rates of .01 and .001, the system was able to recalculate the threshold per hypothesis
to achieve close to the specified performance.

One effect that we noted was that when the image basis used in the correspondence
was constrained to come from the model points in the image, the false positive rate
tended to be higher. We suspect this may be related to the effect of model symmetry,
since incorrect correspondences that happened to project the model to a position that
was relatively symmetric to the actual pose would often pass the threshold. This event
is more likely to occur when the features in the image basis come from the model.

In the next chapter we will discuss the implications of our findings to other existing
recognition techniques.



Chapter 7

Implications for Recognition
Algorithms

The error analysis we have presented applies not only to alignment, but to geometric
hashing as well. We will briefly discuss the original geometric hashing algorithm and
explain the modifications that are required to be able to apply our error analysis.
Finally we will discuss possible applications and extensions of our work.

Because we used affine coordinates as the model representation and limited the Gaus-
sian weight disk to a radius of 2ae, our method for threshold and performance pre-
diction applies equally well to both alignment and geometric hashing, provided the
original geometric hashing algorithm is modified to take error into account in a par-
ticular way. First we will discuss the original algorithm, and then we will describe
the modifications required for the error analysis to apply.

7.1 Geometric Hashing

The geometric hashing method was introduced by Lamdan, Schwartz and Wolfson
in [LSW87], and Hummel and Wolfson in [HW88]. The algorithm consists of two
stages, a preprocessing stage in which a lookup table is created, and a run time
stage in which small groups of image are features used to access the lookup table for
potential matches.

In the preprocessing stage, the hash table is constructed as follows: Every ordered
triple of model points is used as a basis, and the affine coordinates (a, f3) of all other
model points are computed with respect to each basis. Thus, if 7F1o, 7'~1 and r712 are
basis points, then we represent any other feature point by

mi = mo + ai(ml - mo) + Af3(m 2 - mo)

The basis (mo, m 1 , m 2 ) is entered into the hash table at each (ai, /ji) location. Intu-
itively, the invariance of the affine coordinates of a model with respect to 3 of its own



points as basis is being used to "precompute" all possible views of the model in an
image. The precise algorithm is:

* for every ordered model triplet Bk = (m0, mi, m 2),

- for every other model point mr

(i) find coordinates mj = (aj, /j) with respect to basis Bk
(ii) enter basis Bk at location (aj, fj) in the hash table.

The running time for this stage is O(m 4 ), where 7m=number of model points.

At recognition time, the image is processed to extract 2D feature points. Every image
triple is then taken as a basis, and the affine coordinates of all other image points are
computed with respect to the basis to index into the hash table and "vote" for all
bases found there. We will use the term "random image basis" to refer to an image
basis which contains at least one point not arising from the model. Intuitively we
are searching for any three image points which come from the model, and using the
hash table to verify hypothesized triples of image points as instances of model points.
Such an image triple will yield a large number of votes for its corresponding model
basis. The precise algorithm is:

* for every unordered image triplet (io, i1, i2)

(a) for every other image point ij

(i) find coordinates ij = (aJ, f3j) with respect to basis (io, iZ, i 2)

(ii) Index into the hash table at location (aj, /3j) and increment a his-
togram count for all bases found there.

(b) If the weight of the vote for any basis Bk is greater than some threshold
0, stop and output the correspondence between triple (io, il, i2) and basis
Bk as a correct hypothesis.

A single pass of the algorithm corresponds to testing a single image basis for a corre-
spondence to any model basis. In some versions of the algorithm, the hypothesis that
is output subsequently undergoes a verification stage before being accepted as cor-
rect. The termination condition for accepting a correspondence of bases (and hence
a pose of the object) and the implied probability of true detection and false alarm
are exactly the issues that our error analysis addresses.

7.2 Comparison of Error Analyses

The first error analysis of the geometric hashing technique was done by Grimson,
Huttenlocher and Jacobs [GHJ91]. They used a uniform model for sensor error, and



concluded several things: first, that when sensor error is taken into account and a
particular image triplet is chosen in the recognition stage, then the regions in the hash
table that are consistent with the sensed position of any fourth image point (step (ii))
are ellipses whose center and axes are dependent on configuration of the image basis.
Thus, the error regions themselves cannot be taken into account at the preprocessing
stage, but rather must be computed in step (ii) of the recognition stage, and all model
bases in the region incremented.

Second, they derived the probability that a single random image basis would match
any model basis as follows: Suppose the probability that a single random image point
will be in a region consistent with any model point is it on average. Let us fix the
model basis that we are interested in. The probability that a single image point will
fall in any region consistent with this particular model basis is

p = 1 - (1 - P)"

since there are m places in the index table where this basis appears, and the image
point must avoid all of them. However, there are n image points, so the probability
that this particular model basis gets at least k votes is

k-1
Wk= 1- Z Ik p( _p)-k

i=o k

This is the probability that a single random image basis matches a fixed model basis.
There are m(m - 1)(m - 2) bases in the hash table (we will use m(3) to denote this
expression), so probability that this image basis will contribute at least k votes to
any model basis is

1 - P{image basis contributes > k to no model basis}

= 1 - (1 - wk)(..)
= 1 - ( 1 kI _p)-k

i=O

This is the probability that in a single pass through the recognition stage of the
geometric hashing algorithm, the image basis being tested will find a match of at
least size k at random. They presented an analogous analysis for alignment, which
is identical except the roles of n and m are switched. Thus they conclude that the
probability of an overall false positive was greater for the geometric hashing case than
for alignment, because n > mr prevails rather generally.

The difference in the positions of n and m in their analysis was based on the assump-
tion that alignment counts at most one image point per model disk whereas geometric
hashing counts all image points that appear in the model disk. This is equivalent to
the distinction between Schemes 1 and 3 that was discussed in Chapter 5. However,
the geometric hashing scheme can be easily modified to use either collection method
by keeping track of whether a point has already been collected from that particular



location; in fact, this is the method generally used. The alignment method can also
easily use either collection scheme. Therefore, the probability of error is equivalent
for either method when using comparable collection schemes.

Interestingly enough, we have shown the opposite of the conclusion of [GHJ91] with
regard to the probability of error as a function of collection method. We concluded
in Chapter 5 that the performance of Scheme 1 (counting all image points that fall in
a weight disk) is better than that of Scheme 3 (at most one image point per weight
disk); this is because even when the clutter is very high, the expected number of points
falling inside a correctly hypothesized weight disk is always greater than the expected
number of points falling inside a random weight disk regardless of the clutter level.
Therefore, the expected value of the sum of points appearing in the disk will always
be higher if the disk is correct. The other collection scheme saturates with noise once
there is a high probability that at least one image point will appear per weight disk.
This finding does not contradict the analysis in [GHJ91] since the weighting scheme
used in that analysis was based on a uniform model for sensor noise.

To apply our error analysis we would have to project entire error ellipses into the
hash table as described in [GHJ91], but in the Gaussian error model case, the ellipses
would be smaller and we would increment weights for model bases instead of votes.
Now we can appreciate why it was important to limit the Gaussian weight disk to a
finite size. If the distribution were unbounded, we would have to go through the entire
table and contribute some small weight to every basis, thus changing the run time
of the original geometric hashing algorithm. Applying our method to this domain
results in being able to derive triples of (0, PF, PD) for the termination step of the
geometric hashing algorithm (step (b)).

Furthermore, we can easily calculate the probability that a particular image basis
will match any model basis, as was done in [GHJ91]. We already mentioned that
the geometric hashing technique can be considered a "filtering" step which provides
candidate model to image basis correspondences to some more expensive verification
step. Then the technique would be considered to break down once the number of
matches it offers up is too high.

Suppose we are willing to verify (by alignment or any other verification technique) all
bases that pass our threshold, as long as there are < k of them. Then, an overall false
positive is the combined event that the three image points being tested do not arise
from the model, yet more than k model bases "look good". An overall true positive
is the combined event that the three image points do arise from the model, that < k
model bases pass the test, and of these, one of them is the correct one. We will call
these combined events QF and PD, and

P{TF} = 1 - *= 0 (,!-3)1 Pp(1 - PF)"(j-

P{nD} = PD * i= ("~3 ) Pk (1 - PF)'f(3t-



7.3 Summary

The error analysis and threshold prediction method that we derived in this thesis
are directly translatable to the geometric hashing algorithm, provided the latter is
modified to take Gaussian error into account.



Chapter 8

Conclusion

The kind of analysis we have done in this thesis is crucial in order to build robust
systems. One way of making a system more robust is to incorporate several different
sensors or processing modules for the same feature. Each sensor or module has a
weighting attached to its output which is related to its reliability. The process of
integrating the information from all the sensors is dependent on correctly assessing
the reliability of the sensors under what conditions.

What we have done in this thesis is to begin to assess the reliability of a vision
sensor for a fixed algorithm. We expect that such error analyses will be necessary for
integrating vision into any automated system, with or without multiple sensors.

8.1 Extensions

To conclude, we have demonstrated an error analysis for alignment or geometric
hashing, and a companion method that predicts triples of (threshold, PF, PD) for a
fixed number of model and image features. The method as presented is limited to
planar models solely due to our ignorance, as yet, of an analytical expression for the
size of a projected error disk as a function of sensor error in the 3D case. We showed
the method working well first in the domain of simulated models and images, and
subsequently in real images.

The application to real images was problematic in that our model for clutter was
not accurate, and the disparity initially resulted in an unexpectedly high false alarm
probability. We modified the basic method to take the non-uniformity of the clutter
distribution into account, and subsequently demonstrated a method to dynamically
reset the threshold used for accepting a hypothesis to maintain a fixed probability of
detection or false alarm.

There are several areas for extending the initial work presented in this thesis:

* The most significant improvement would result from a more sophisticated model
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for clutter. Though we assumed a uniform model, which is a standard in the
field, this model vastly underpredicts the negative effects of clutter on the prob-
ability of false positives.

* When a model is symmetric, often a pose which aligns the model in the image
along an axis of symmetry will appear very good. Information about model
symmetry could be incorporated into the method such that when we are testing
such a case, the threshold would be raised accordingly.

* Though we used simple 2D features for the analysis, there is nothing inherent
in the method preventing extensions to more complex features.

* The method can easily be tailored to a particular model database by repre-
senting the score distributions for correct hypotheses for each model, and using
these distributions instead of the generic distributions to improve performance
for the given database.

It is our belief that model based vision algorithms will not be useful unless and until
we can know how much faith we can place in the interpretations given by them. The
work presented in this thesis is a step towards addressing the question.
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Appendix A

Glossary, Conventions and
Formulas

The notation that I use in the thesis generally follows the conventions used in Van
Trees [VT68] except where no confusion would result by abbreviation.

A.1 Conventions

Random variables are denoted by capital letters, and their values are generally de-
noted by the same letter in lower case.

Vectors (such as 2D image and model features) are denoted in bold-face lower case,
and matrices are denoted in bold-face upper case.

P{.} denotes the probability of the event in parentheses.

Fx(x) is the probability that random variable X is less than or equal to x.

fx(x) is the probability density function of the random variable X.

A vertical line in an expression means "given that". So for example, fx(x I E) is the
probability density function of X given event E. If the event being conditioned upon
is that the value of a random variable A = a, then we write fXIA(X a)

E[.] is the expected value of the random variable in brackets.

Var (-) is the variance of the random variable in parentheses. Cov (X, Y) is the co-
variance between the random variables X and Y.

X - N(m, o,2) denotes that the random variable X is normally distributed with mean
rm and variance o-
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A.2 Symbols and Constants

m + 3 number of model features
n + 3 number of image (sensor) features
mi ith model feature
si ith image feature
0 threshold used in recognition algorithm
PF probability of false positive (false detection)
PD probability of true positive (true detection)
•0o standard deviation of sensor noise for the Gaussian error model.

This is considered to be a constant whose value
must be determined empirically.

0o radius of sensor noise for the uniform error model.
A image area
</,-i angles
Z, j, k indices
H the event "three feature correspondence is correct"
H the event "three feature correspondence is incorrect".
M the event "image feature arises from model"
M the event "image feature does not arise from model", or alternatively,

"image feature is clutter"

A.3 Random Variables

p, ranges over the values of the expression

a2 + f/2 + (1 - a _ f3) 2 + 1

for all model points, where (a, 3) is a model point's affine coordinates in the
coordinate frame established by the three model points used in the correspon-
dence.

Oe describes the standard deviation of projected Gaussian error disks and is defined
as

UOPe.

VM(m, n, c, 0O) describes the weight or score distribution of a single point arising from the model
for the specified values of m, n, c and ao.

VV11 (mn, c, c0) describes the weight or score distribution of a single clutter point for the speci-
fied values of m, in, c and o-.

WH (mn, n, c, ao) describes the weight or score distribution of an entire correct hypothesis for the
specified values of m, n, c and 0o0.
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W-(m, n, c, ao) describes the weight or score distribution of an entire incorrect hypothesis for
the specified values of rn, n, c and o0 .

For simplicity, the last four random variables will be referred to as VM, V-, WH and

W7, since the values of the parameters m, n, c and ao are constant for the scope of
the discussion.

A.4 Functions of Random Variables

Let X be a random variable with probability density fx(x), and let Y be a random
variable which arises as a function of X, specifically, Y = g(X). Assuming the func-
tion g is monotonically increasing and differentiable, the probability density function
for the random variable Y is given as follows [BRB89]:

fx (9-' (y))
fy(Y) = f,(i(y)) (A.1)

g'(g- 1 (y))

For a monotonically decreasing function, the formula is the negation of the above
expression.

Suppose X and Y are jointly random variables. Then the mean and variance of X
can be found by conditioning on the value of Y [Ros84]:

E[X] = E[E[X IY]] (A.2)

Var (X) = E[Var (X I Y)] + Var (E[X I Y]) (A.3)
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