
Using Multimedia in Design Instruction

by

Sepehr Kiani

B.S. California Polytechnic State University
1991

Submitted to the Department of
Mechanical Engineering in Partial'Fulfillment of

the Requirements for the Degree of

Master of Science in Mechanical Engineering

at the Massachusetts Institute of Technology
June 1994

© Massachusetts Institute of Technology, 1994, All rights reserved.

Signature of Author -
'Department of Mechanical Engineering

June 3, 1994

Certified by
David Gordon Wilson

_ Professor, Mechanical Engineering
Thesis Supervisor

Accepted by Eng. aC~ -C-

Eng. ,
MASSACHUS.FTS INSTITU"E

AUG 0 11994
.. ,.;, .,.,• •2 L; 1

Ain A. Sonin
Chairman, Graduate Committee

U r -I i -

ABSTRACT

The design and development of a multimedia education program called EDICS
(Engineering Design Instructional Computer System) is discussed in this thesis. The
system is an upgrade from earlier work intended to teach undergraduates the basics of
mechanical design elements. A survey of multimedia technology is first given, including
digital video, digital audio, authoring environments, networking, and storage issues. The
software design is presented, including a discussion of the environment chosen. The
Microsoft Visual Basic program uses an overall database-centered approach. EDICS is
used to create a tutorial chapter on the process of design by presenting a case study on the
design of a human-powered hydrofoil. By conducting a study on this chapter of EDICS,
using MIT undergraduate mechanical engineering students as subjects, both overall
effectiveness and specific design are evaluated. The results of the study indicate that the
students enjoyed the multimedia approach to learning, but that the tutorial still needs work
in specific areas and that not all the intend subject matter was successfully conveyed.
Recommendations as to the future of EDICS are made. The overall conclusion of this
work is that multimedia has great potential in conveying large amounts of diverse
information, but that both the technology and approach are still in their infancy.

TABLE OF CONTENTS
Abstract .. 2
Table of Contents .. 3
List of Figures .. 5
List of Tables 6
Acknowledgments ... 7
Chapter 1: Introduction .. 8

1.1. History of EDICS... 8
1.2. Old EDICS reviewed... 9
1.3. Related work.. 10
1.4. Thesis summary... 12

Chapter 2: Multimedia hardware and software.. 13
2.1. The current (1994) state of multimedia 13

2.1.1. D igital audio.. 13
2.1.2. Digital video .. 13
2.1.3. Storage ... 15
2.1.4. Networking ... 17
2.1.5. Personal computers 17
2.1.6. Authoring system s 18
2.1.7. Modeling and animation 19

2.2. Summary.. 20
2.3. hardware used ... 20

2.3.1. Windows PC.. 20
2.3.2. Apple M acintosh....................................... 21
2.3.3. Video capture 22
2.3.4. Picture and slide scanning 22

2.4. software used ... 22
2.4.1. AutoCAD ... 22
2.4.2. 3DStudio .. 22
2.4.3. Photoshop ... 23
2.4.4. Adobe Premiere 23
2.4.5. V isio 23
2.4.6. Video for Windows .. 24

Chapter 3: EDICS databases .. 25
3.1. M ultimedia databases .. 25
3.2. The EDICS archive ... 26
3.3. Data entry: building screens 30

3.3.1. Queried form ... 31
3.3.2. Screen arranger application 32

Chapter 4: Developing EDICS' software... ... 37
4.1. Authoring systems: selection of Visual Basic37
4.2. Design of the program .. 38

4.2.1. Interactivity 41
4.2.1.1. Locate the item 41
4.2.1.2. Interactive design 42

4.2.1.3. Typed definition box.. .43
4.2.1.4. Estimation .. 43
4.2.1.5. Multiple-choice check box 44

4.2.2. N otepad.. 44
4.2.3. Sound-off ... 44

4.3. Disadvantages of our approach 44
Chapter 5: Flying on water-a design-process case study 46

5.1. The need for this chapter ... 46
5.1.1. Process ... 47
5.1.2. System and component levels................................. 47
5.1.3. Geometric modeling.................................. 48
5.1.4. Swimming in the Charles River: design iteration....................... 48

5.2. An experiential pedagogical approach... 49
5.3. Using a human-powered hydrofoil as a case study 49

Chapter 6: Evaluation and student testing... 54
6.1. Testing approach 54
6.2. T esting .. 55

6.2.1. Problems with the program 55
6.2.2. Observations ... 56

6.3. Results 56
6.4. Conclusions... 62

Chapter 7: conclusions .. 63
Chapter 8: Recommendations... 64

8.1. Sim ulation .. 64
8.2. Expandability 65

8.2.1. W here w e are now .. 65
8.2.2. Future potentials 65

8.3. Developing a standard 67
8.4. Reality of hardware needs... 67
8.5. Authoring: Where to go from here? 68

References .. 70
Appendix A: EDICS program design 73
Appendix B: EDICS program listing .. 76
Appendix C: Database structures .. 188
Appendix D: Design process chapter outline................................. 190

LIST OF FIGURES

Figure 2.1: Power verse time for microprocessors 18

Figure 2.2: Comparison of programming languages and authoring environments 19

Figure 3.1: Query linking example............................... 26

Figure 3.2: EDICS archive table form 27

Figure 3.3: EDICS database structure 29

Figure 3.4: Screen editor form .. 32

Figure 3.5: Screen arranger... 33

Figure 3.6: O bject pallet....................................... .. 34

Figure 3.7: Pop-up menu .. 35

Figure 3.8: Page links dialog box ... 35

Figure 4.1: EDICS program approach.. 39

Figure 4.2: Index window .. 40

Figure 4.3: Glossary window ... 41

Figure 4.4: Find the bearings activity.. 42

Figure 4.5: Interactive design activity.. 43

Figure 5.1: Skeeter hydrofoil ... 50

Figure 5.2: EDICS page--detail design and construction52

Figure 5.3: D esign review page.. .. 53

Figure 6.1: Subjects level of understanding of design process 57

Figure 6.2: Average percent of material covered on each page 59

Figure 6.3: EDICS page-hydrofoil concepts 60

Figure 6.4: Subject m atter conveyed .. 61

LIST OF TABLES

Table 3.1: Archive codes .. 27

Table 3.2: Transition types and codes 29

Table 5.1: Initial design specifications 50

ACKNOWLEDGMENTS

A project of this magnitude could never be done without a large team of skilled
people, as did this one. They provided the diversity of experience required to make this
project a success.

First I would like to thank professor David Gordon Wilson for his guidance and
encouragement as principal investigator for EDICS and my faculty advisor. He gave me
the freedom to try new and different approaches to problems; giving just enough rope to
hang myself, but never letting me hang from it. Co-principal investigator Ernesto Blanco
brought heart and character to the project, and always many words of wisdom.

The large number of undergraduate students made this project a learning process from
all sides. Their hard work and enthusiasm carried me through the low points. Each of them
brought their own abilities and experiences too many for me to mention here: Acee
Agoyo, Fred Ackerman, Dalia Ali, Sumit Basu, Chris Berg, Bryson Gardner, Dennis
Burianek, Joe DeMare, Richard Domonkos, Ryan Ehlert, LaTaunynia Flemings,
Sherondalyn Johnson, Rob Kim, Jason (Scrapy) Mueller, Bruce Padmore, Chang Suh, and
Yannick Trottier.

Building the Skeeter was probably the largest part of this project and never would
have been possible without professor Mark Drela and Ph.D. student Matthew Wall
volunteering enormous amounts of time on the design and construction of it. They enjoy a
large portion of the credit for its success. I also want to give special thanks to Norm
Berube for all his help with last minute machining and the guidance he gave to Fred
Ackerman (an aspiring undergraduate machinist and designer). There were many other
people who volunteered on the hydrofoil project in large and small ways: Julie Yang, Li
Shu, Ben Lindes, Ian Kaye, Tom Washington, Harold (Guppy) Youngren, professor
Woodie Flowers, Marc Schafer, and Shin Choi. I would also like to thank Ted VanDusen
and Composite Engineering for letting us use his facilities and kayak molds.

The Center for Advanced Engineering Studies (CAES) needs mention here for its
initial sponsorship and later allowing us to finish work in their facilities. I would like to
specifically thank Cecil Feaver for his good humor and support. Without him we never
could have kept all the computers running.

Finally, my friends and family who kept me going with their constant emotional and
moral support. Special thanks to Bill Baker and Sami Farhad for their help with editing
this thesis, to Hood Gaemmaghmin for his crazy food runs to China Town at three in the
morning, and finally to Sasha Bashirelahi for her love and cheer throughout my busiest
times.

1. INTRODUCTION

1.1. HISTORY OF EDICS

The Engineering Design Instructional Computer System (EDICS) was initially funded

in 1984 by MIT's Project Athena with Professor David Gordon Wilson as principal

investigator and Seichi Tsutsumi as co-principal investigator. Later Professor Ernesto

Blanco as co-principal investigator and Professor Woodie Flowers as a consultant joined

the project. Initial work was done on a DEC IVIS (Interactive Video Instructional

System). This system was not very practical and the project eventually fell into limbo.

In 1988 EDICS was reinvigorated with funding from the National Science Foundation,

with Wilson, Blanco, Tsutsumi and Flowers continuing their roles. Graduate student

Douglas Marsden was hired to develop three chapters on bearings, attaching rotors to

shafts, and connecting and capping cylinders [Marsden 90]. Each chapter represents a

complete tutorial section of EDICS. The platform was changed to an Apple Macintosh

running HyperCard and controlling a separate video disk and monitor.

In 1990 David Crismond replaced Marsden as graduate research assistant

concentrating his efforts on converting the software from version 1 to version 2 of

HyperCard (EDICS v2) and conducting an extensive evaluation of the program's

effectiveness [Crismond 92].

In 1992 Sepehr Kiani replaced Crismond, funding having shifted to the ECSEL

(Engineering Coalition of Schools for Excellence in Education and Leadership) program,

also under the National Science Foundation. Work went forward on the Macintosh adding

a drafting and sketching section, and debugging the code so that it could be sold under an

agreement with Intellimation. However, in the Fall of 1992 funding of the project was

taken over internally by MIT's Center for Advanced Engineering Studies (CAES), which,

hoping to include EDICS with their video sales, required that the agreement with

Intellimation be terminated. Market forces pushed for the program to run on the IBM PC

platform also, and for delivery to be on CD-ROM using digital video instead of a separate

video disk player. Work began in summer of 1993 developing EDICS v3 using Visual

Basic running under Microsoft Windows. The bearings chapter was converted, and a new

chapter on the design process was added, incorporating a case study of the design of a

human-powered hydrofoil.

1.2. OLD EDICS REVIEWED

EDICS was designed to provide users with some practical experience in mechanical

design, using video of real devices. Aimed at students who may not have mechanical

design experience it covered topics, such as bearing selection and shaft/rotor connections,

that students tend to have difficulty with.

The version of EDICS prior to this thesis was running on an Apple Macintosh

computer requiring a minimum of 5MB of RAM and 40MB hard disk space, monochrome

or color monitor, and a laser-disk player with a separate monitor. The authoring

environment was HyperCard using third-party software to control the laser-disk player

and to play animations.

Each subject, except drafting, has the following sub-sections: introduction, physics,

specification, types, good practices, examples, selection system, and self-test. The

treatment relies heavily on real hardware examples, often asking the user to guess

quantities like the speed of a dentist drill. The user navigates through the system using a

menu structure and a sequenced page metaphor. A map can be accessed to help guide the

user though the program.

EDICS has been put in the workshop (right next to the cut-off saw) for a short course

offered at MIT called "Taking Things Apart." In this course, students disassemble machine

components, and describe them using EDICS as a resource. The students are also required

to go linearly through separate subjects in EDICS. Copies of EDICS have been given to

twelve other universities and a couple of high schools for evaluation. While feedback has

been minimal, it has been positive.

A study of EDICS was done by Crismond to compare its effectiveness to written text.

He found that "[s]tudents who used the computer version of EDICS had significantly

higher scores than the text versions in the following areas: analogical reasoning;

estimation; and certain vocabulary measures, location-task skills, and a timed-list-

generation or brainstorming task." [Crismond 92].

1.3. RELATED WORK

There are many other efforts around the world to implement computer-aided

instructional systems (CAI). Most are more modest efforts specifically designed for a

particular class or lab. Many of them concentrate more on the simulation side than on

informational media.

Rochester Institute of Technology department of electrical engineering has been using

a HyperCard tutorial in their third-level-design laboratory. The laboratory course requires

students to design and build electronics circuits. The RIT faculty found that the current

student pool had widely varied experience and that they needed to provide less-

experienced students with a head start. To do this they developed a tutorial using the

computer to teach the design process in conjunction with separate video tapes [Spina &

Mukund 93].

A tutorial on the First Law of Thermodynamics for closed systems has been developed

at the University of Louisville department of mechanical engineering. It is the first part of

an eight-module series designed to reduce the high attrition rate for the thermodynamics

course. Using Asymetrix's Toolbook authoring system on a Windows-based system, the

tutorial is both projected in class using an LCD projection panel and out of class by

individual students. The program uses hypertext and animation [Coburn 92].

At Rensselaer Polytechnic Institute a system called the Flexible Education Module

(FEM) has been developed for a lab course on embedding microprocessor controllers. It is

a HyperCard program running on Macintosh Quadras using EyeQ DVI (Digital Video

Interleave) cards set up at each laboratory workstation. A local hard disk stores frequently

used video files while a large server stores less-used video files. The information,

organized in a tree structure, can be accessed through a glossary/index or by topic using a

menu structure. FEM also provides links to commercial software on the system, allowing

students to launch data-analysis software, word processors, etc. A controller card in the

Macintosh is used in parts of the experiments. Initial tests of the program showed that

students wouldn't use it until it was well integrated with the laboratory experience, i.e.,

until a computer is sitting on the lab bench running analysis software. Student response to

FEM has been positive for the most part. Overall use is slightly lower than was hoped;

however, when the students used the program they benefited from the experience

[Borkowski 92].

Iowa State University Engineering College has been developing a system called the

Studio for Exploiting Technology to Teach Technology (Setforth). The program uses a

Macintosh-based system and Authorware Professional as an authoring environment. They

conducted experiments exploiting the cross-platform capabilities of Authorware to port

course material to IBM PCs. Courseware for two computer engineering courses were

developed for both projection in class and student tutorial use. Duplicates of lecture

screens are available to students in hard-copy and on-line. Old exams and problem-set

solutions are on the system for student access. Student rating of the system suggests that

the most important aspect of the program was having old exams and problem-set solutions

on the computer [Smay & Genalo 92].

In the Laboratoire EPC in France a five-module tutorial on power electronics has

recently been developed. It is a Windows-based system using Icon Author as an

environment. The tutorial uses digital video and color graphics to present the topic of fly-

back converters [Jaafari, Picard & Bessege 93].

1.4. THESIS SUMMARY

The eight chapters of this thesis follow the basic chronology of the work. Chapter two

gives an overview of the current state of multimedia looking at all the elements and where

they may go in the near future. The third chapter begins the discussion of the design of the

new EDICS. The entire database structure and approaches to data entry are given here.

The fourth chapter is an overview of the design of the EDICS program. The EDICS-

chapter on the presentation of the design process is discussed in chapter five. The case

study for this EDICS-chapter is the design and construction of a human-powered

hydrofoil. The next chapter discusses the findings of an evaluative study on the

effectiveness of the EDICS design-process chapter. Ten MIT undergraduate mechanical-

engineering students give their feedback. Recommendations are made in chapter eight as

to the future direction of EDICS. The program design outline is giving in appendix A and

the actual program code in appendix B. The database structures are given in appendix C.

Appendix D has the complete outline of the EDICS design-process chapter.

SPTER 2. MULTIMEDIA HARDWARE AND SOFTWARE

2.1. THE CURRENT (1994) STATE OF MULTIMEDIA

For more than a decade various forms of multimedia have been available on computer

systems, in the form of graphics and text controlled by the computer. Currently available

are digital audio, digital video, and full-color graphics, all running on powerful,

inexpensive personal computers that have large memory capacity.

2.1.1. Digital Audio

In the last ten years, with the introduction of the compact disk, digital audio has

almost completely taken over the recording industry. Digital audio is now available on all

major computer systems either on the motherboard or as a low-cost addition.

Compression and decompression, which significantly reduces storage requirements, are

easily within the capability of modern computers.

The future will bring hardware prices down further and standardize computer

motherboards to include sound chips. Digital signal processors (DSPs) are becoming

widespread. They can do general digital-to-analog and analog-to-digital processing of

audio, modem, analog video capture and fax-type functions on one chip. Combined audio

and video file structure and compression standards are currently evolving (as discussed

below).

2.1.2. Digital Video

The video industry is following the footsteps of the audio world. The video laser-disk

player uses the same storage technology as the CD but stores both digital video and audio.

These systems convert the digital information on the video disk to analog output that is

then played on television monitors. This is still one step away from having video on the

computer screen. The video production industry has been flirting with the prospect of full

digital recording for a few years now. The industry foresees video being transformed, in

the same way that desktop publishing changed the printing industry, to "desktop video"

[Cornell 92]. The main limitation is the large storage capacity required for this application;

fortunately data-compression techniques are under continual development and higher-

density storage is on the horizon.

Video and audio compression methods are similar, in that they condense information.

Video compression is accomplished by storing only changes between video frames

(temporal compression) or by compressing the data in each frame separately. The

compression ratio can be increased by sacrificing image quality and making moving images

"blocky" along their edges. The video industry has set its first standard for digital video

codec (compressor/decompressor) called MPEG (Motion Picture Experts Group) and is

working on a new scaleable international standard called MPEG II slated for 1995.

Meanwhile the computer industry, impatient for standards, is waging a battle for the

multimedia standard, with chief players being Apple Video, Microsoft Video, SuperMac's

Cinepak, and Intel's Indeo.

There are two approaches to digital video codec. Software-based codec simply uses

the main processor to run compression and decompression algorithms. Hardware-based

compression uses specially designed processors to compress and decompress video

images. This frees the main processor for other tasks.

Hardware-based codec performance is very good, allowing video resolution of

640x480 pixels playing at frame rates up to 30 frames per second. These specialized

processors can be programmed to run any current or future codec algorithms. Most

compression chip-sets are manufactured by C-Cube and Intel. Cost is the big drawback of

dedicated video compression. Low-cost playback (decompression only) cards, however,

have recently been coming into the market.

Because general computer processors are beginning to have the speed to perform

video compression, software developers are starting to produce software-based video

codecs. The compression algorithms are the same as those used in the hardware-based

systems: the only difference is that the main CPU handles these algorithms. These

software-based systems that run on PCs currently include Apple QuickTime on Macintosh

and Windows, and Microsoft's Video for Windows. Also MPEG players for workstations

and PCs are now available. MPEG is much more computationally intensive and requires

high-performance systems to playback at a reasonable rate. Playback that is approximately

equivalent to television is 640x480 pixels by 30 frames per second. The current crop of

high-end PCs can decompress at about half that rate. Most developers are currently using

the Cinepak codec to put 320x240 pixel at 15 frames per second on CD-ROM, a

reasonable compromise.

As a general rule non-dedicated hardware will win out in the long run, and this will be

the case with digital video. Full-rate video playback on standard PCs will be software-

based within the next few years, gradually reducing the video-playback hardware market.

The other main trend is with video compression, which is 50-to-100-times more

computationally intensive than decompression. This means that a 50 to 100 times increase

in CPU speed is required for a standard PC to process video in real time. This sort of

performance increase is five to seven years away. Therefore production-level digital video

recorders will depend on hardware-based systems in the years to come. The prices of these

systems, however, will drop dramatically.

2.1.3. Storage

Optical data storage has come into the low-price arena due to the explosion of CD

sales in the music industry. The 650MB compact disk (CD-ROM) at first seemed to be an

enormous amount of storage. One of the first available encyclopedias claimed to take only

20% of one disk; but, it did so mostly because it contained only very compact text, with

little or no multimedia components. With the addition of 8-bit color (i.e., 256 colors), and

later 24-bit color (i.e., 16.4 million colors) the storage situation becomes more difficult.

The addition of digital video requires even greater storage capacity.

Using storage media that were designed for audio as computer-based storage,

however, creates a whole series of problems, the largest one being speed. Slow-spinning

CDs have data rates of 150 kB/s and access times of 1000ms. Newer CD-ROM drives

have doubled and even quadrupled that performance, boosting data rates to a level high

enough for full video playback. Access times still remain very slow (100 to 300ms) when

compared to hard-disk storage (10 to 20ms).

A recently available technology that solves the speed problem and allows for the

writing of data to the disk is the magneto-optical disk. With storage densities similar to

those of the CD-ROM, these systems use magnetic fields to distort locally the optical

surface of the disk. The speeds of these systems are much closer to those of hard-disk

storage. Magneto-optical drives are, for now, too expensive to have the mass appeal of

the CD-ROM.

The work being done in laboratories is encouraging. Super-high-density magnetic-

storage and optical-storage systems are being developed [Bell 93]. The density of data on

a magnetic medium is dependent on how close the read/write head is to the disk. The

performance of these systems is being improved by using disk media such as glass and

liquid films instead of air to reduce the read/write gap-thereby boosting an already

mature technology. Work also continues in solid-state storage systems; industry coalitions

have been formed to develop flash memory that stores information in chips without

needing continuous-connection to electrical power.

For now (approximately the next 5 years) the CD-ROM will be the main delivery

medium for multimedia. Within ten years typical storage capacities will increase a hundred

to a thousand fold.

2.1.4. Networking

The technology for high-capacity optical networks currently exists and is being used in

some limited ways. The bandwidths of optical networks are such that multiple digital

video and audio signals can be sent on one fiber-optic line. There are major forces creating

large-scale, high-capacity networks internationally and in the US. These proponents

include phone companies, the television industry, the federal government, and the

computer industry. Development on this scale will be slow; large-scale networking will

likely take five to seven years to fully implement. High-speed local networks, however,

capable of transferring the quantity of information required for multimedia, are currently in

use. Loeb warns, however, that even in the long term these networks may not allow for

arbitrarily complex multimedia applications [Loeb 92]. Lower capacity networks, i.e.,

most of the current Internet system, is connecting academia and many corporations.

2.1.5. Personal Computers

Demand for the personal computer is increasing, pushing the prices of high-

performance computers down. The current crop of low-cost desktop computers have the

power that workstations had only a few years ago (see Figure 2.1). Manufacturers, now

poised to attack the consumer audio/video market in the next few years, envision

consumers buying computers that will also serve as home entertainment and education

systems. Computer processors will need to make a significant increase in power per dollar

for this to be possible.

1000

FIGURE 2.1: POWER VERSE TIME FOR MICROPROCESSORS.
(Data from manufactures)

* estimated

2.1.6. Authoring Systems

Authoring systems are the word processors of multimedia, allowing multimedia and

hypertext "documents" to be written and edited. They are essentially high-level

programming languages; Figure 2.2 gives a general comparison. The purpose of

multimedia is much less defined than desktop publishing was when it got started.

HyperCard, a program developed by Apple, was the first to lay down tracks in this area. It

allowed for interactive text and graphics as well as powerful programming features. The

current crop of development tools resembles anarchic mayhem, with dozens of players

fighting for supremacy; but no one knows the exact needs of the users. Key terms

advertised include "cross-platform compatibility," "hypertext," and "QuickTime or digital

video support." When the dust settles there will likely be a few big players left standing.

U
W

100

10

Intel (x86)

* DEC (Alpha)

* PowerPC

10-

91 92 93 94 95 96 97 98
Year

Much of the battle will ensue when Microsoft, the Apple and IBM alliance, and Macro

Media release rumored products.

High
(no code)

04

0
L

Low

based (Authorware, Icon Author)

Tooil oo

Assembly language 0

Machine Code 0
(all code) FLEXIBLITY

FIGURE 2.2: COMPARISON OF PROGRAMMING LANGUAGES
AND AUTHORING ENVIRONMENTS

No one program or system will win out; there will be numerous applications running

on different types of computers all trying to share information. One effort on the Internet

is Mosaic, developed by the University of Illinois, which is multi-platform front-end to

Internet information. Another group working to set a standard for multimedia objects is

The Multimedia and Hypermedia information coding Expert Group (MHEG) [Kretz &

Colaitis 92].

2.1.7. Modeling and Animation

Graphics tools that were formerly available only to the Hollywood special-effect guru

now run on desktop computers producing what is termed "virtual reality," i.e., photo-

realistic images and animations. These programs allow the user to create objects in space

and assign surface qualities to them. Objects can be given paths and rotations to follow.

Lights and cameras can be positioned anywhere in space. The software then creates the

image by mapping the surfaces and calculating the cast shadows, yielding individual frames

of an animated movie.

This new modeling software, combined with available two-dimensional animation

packages, is rapidly evolving due to competition, giving authors easier-to-use, lower-cost,

and more-integrated tools. As hardware further improves in the next decade, real-time

complex three-dimensional rendering will become commonplace, adding a whole new

facet to multimedia.

2.2. SUMMARY

We don't have to go back very far to see that the computer industry has moved along

at an amazing pace. Computer capabilities that were unimaginable just a decade ago are

now at our disposal. This increase in power has created multimedia, which promises to

revolutionize the information world. The number of actors in this field goes far beyond the

number involved in the computer industry, enlisting the giants of home entertainment and

the professional media. The challenge that lies ahead for the engineering world is to

determine what exactly we should do with all these new toys.

2.3. HARDWARE USED

2.3.1. Windows PC

The majority of the development of EDICS was done on an Intel 486DX2-66 VESA

local bus computer. It had 64MB of RAM and 500MB of hard-disk space. The graphics

board was a ATI MACH32 with 2MB of DRAM driving a 21-inch color monitor allowing

for 24-bit color (16.4-million colors). Sound was handled by a 16-bit sound card that also

allowed for sound recording. Three other PCs were also used: two 486DX-50 machines

and an IBM PS/2 Ultimedia M77 (486DX2-66). All machines were networked together to

a server with a 750MB hard disk.

2.3.2. Apple Macintosh

We used two 900-series Macintosh Quadras, both with 13-inch color monitors. The

Macintoshes served as temporary servers and for image editing. Also image scanning was

all done on the Macintosh.

2.3.3. Video capture

Video capture was done using the capture utility that is part of Video for Windows

and the Intel Smart Video Recorder card. The card has built in Indeo compression

technology and allows for up to 320x240 pixels at 15 frames per second. It can also

capture individual frames at 640x480 resolution.

2.3.4. Picture and slide scanning

We had the good fortune of having access to a Canon Color Laser Copier 500 with a

Fiery computer interface and a separate slide-scanning unit. The system was capable of

scanning 8 1/2" x 11" paper at 400dpi in full color.

2.4. SOFTWARE USED

2.4.1. AutoCAD

AutoCAD is a computer-aided design (CAD) program that does 2D and 3D drawing

along with solid modeling. Initial design work of the hydrofoil was done using the DOS

version of AutoCAD 11 that was later upgraded to release 12. The Windows version of

release 12 was used to transfer drawings from AutoCAD to Photoshop to be added to the

archive. The UNIX version, running on MIT's Athena system, was also used by

undergraduate research students to update drawings.

2.4.2. 3DStudio

3DStudio is a photo-realistic rendering and animation package. Three-dimensional

objects can be created directly or imported from AutoCAD. The workspace is set up like a

filming studio where spot-lights, ambient-light and point-lights can be added anywhere in

space. Materials are selected from a library and mapped onto the object for rendering. The

object is viewed from a camera that can be placed anywhere in space and has any focal

length desired. The program can make animations using a key-frame system where

objects, cameras, and/or lights are moved or rotated to different positions and the

computer fills in the in-between frames. Frames are then rendered one-at-a-time for play

back.

2.4.3. Photoshop

We used Photoshop on both the Macintosh and the PC for scanning and editing

images. It has a powerful set of tools and filters that can be used to enhance images. It

also includes a filter for de-interlacing video, which is useful for images picked from video.

Photoshop was also used for making all the buttons and backgrounds for the program.

2.4.4. Adobe Premiere

Adobe Premiere is a digital video editing package. It allows for the splicing of video

files with image files. A library of effect transitions provide transitions like fades. Up to

three audio tracks can be played on top of each other. It also has a library of filters for

special effects, cropping and touching up video. We mainly used Premiere for linking

video sequences and placing a voice track on top.

2.4.5. Visio

A very easy-to-use program for making simple 2D vector drawings is Visio. Vector

graphics are based on (and saved as) graphical primitives, i.e., points, lines, circles, arcs

and fills, as opposed to bit-maps that are rasterized graphics. Visio also can import and

export many different types of bit-map and vector files. This was one of the main features

we used. It was also used for some text operations and simple diagrams.

2.4.6. Video for Windows

Video for Windows allows the Windows media player to play digital videos. It also

includes applications for capturing and editing video and for capturing audio. Version 1.1

can use several different codecs, including Indeo and Cinepak. The video-capture program

was used in conjunction with the Intel capture board for digitizing the video and capturing

frames.

EPTER 3. EDICS DATABASES

:3.1. MULTIMEDIA DATABASES

Databases are systems that store and retrieve information. In a media-rich environment

a database can include text, images, videos, animation, and sound. It is even possible to

treat objects from other programs, such as finite-element models or spreadsheets, as media

records. The idea is that information is not just text-based but can be of any form.

Different database tables can be linked using shared entries. This is called a relational

database, and is a very efficient way to store information. The database is manipulated by

means of queries--linking tables, performing calculations, or sorting records. Say you

have tables 1 and 2 shown in Figure 3.1. Table 1 has fields A and B; table 2 has fields B

and C. This would be useful if different values of A can be related to one value of C. A

query function uses the B field as a relating code to create a virtual table combining A, B,

and C. The savings become apparent, for example, if C contains large bit-map images,

duplication is avoided. It also has advantages in editing-one change to C changes it in all

instances.

Table 1
Field Query linking

A tables 1 & 2

Field dField

B A
Field

Table 2 B

Field Field

Field i -ilr;8i·@i

FIGURE 3.1: QUERY LINKING EXAMPLE

Query tools are for now just text-based devices that have carried over from text-based

systems. New multimedia database tools are going to eventually develop that are similar to

the one IBM is developing: a database query tool that can do searches on shapes, colors

or textures that appear in images and videos [Brown 94]. Such a tool would allow you to

search for images based on a simple sketch you enter.

3.2. THE EDICS ARCHIVE

The first step I took in preparing for the development of the new EDICS was to create

an archive database to keep track of the various media objects, (see Figure 3.2). The

database was initially created in Borland's Paradox for Windows and later moved to

Microsoft's Access. The "archive code" field allows for linking to EDICS pages using

coding system given in Table 3.1. For example S100 refers to the bit-map file S 100.TGA,

and V200 refers to the video file V200.AVI. The "Description" and "Archive source"

fields provide the information required to search through the database and to locate

originals (i.e., slides, drawings, videos, etc.). The actual archive field is an OLE (object

linking and embedding) object accepting anything in the Windows clipboard and retaining

information about what program it was clipped from. For example, if a video is copied and

clipped in to this field the current frame of the video is displayed in the window; then if

double clicked it will play the video using the same media-player program that it originally

came from. The other fields will be discussed later. The EDICS database currently

contains some 620 still images, 270 videos, 119 audio files, and 15 vector images that can

all be searched for and/or sorted.

Object
terms

Object
(OLE)

FIGURE 3.2: EDICS ARCHIVE TABLE FORM

TABLE 3.1: ARCHIVE CODES

CODE OBJECT TYPE FILE TYPE
S Still images files-bit-maps targa (.tga)
A Audio files wave (.wav)
V Video and animation files AVI (.avi)
M Vector graphics files metafile (.wmf)
T Text Access database table (.mdb)

The EDICS database tables provide the instructions (code) that the EDICS player uses

to run the tutorial. The key advantage is that the same SQL (Standard Query Language)

database and media files are platform-independent. Therefore players can be written in any

language on any system, resulting in the same multimedia program for all platforms

without having to redo the content work. A few commercially available authoring systems

provide either a translator or player for cross-platform operation. The main problem with

these systems is that upgrade and compatibility is completely under the control of the

vendor. If for example we later decide to use a player written in a different language, or if

Visual Basic languishes, we would have all of our standard databases and none of the

content work would be lost.

Figure 3.3 shows the database structure of EDICS. At the top level is a tutorial table.

Each chapter in EDICS is a tutorial, so bearing design, spring design and design process

chapters each have their own record in this table. The page table is keyed to the tutorial

table where each record is an object. The different types of objects and their codes are

listed in Table 3.1. Each record in the Page table is sorted first by Tutorial codes and then

by page codes. Objects with the same page codes are placed on the screen in the order of

the sequence field and placed in the location indicated. We have provided for several

transition types listed in Table 3.2. New types of transitions are easily accommodated by

adding new codes.

FIGURE 3.3: EDICS DATABASE STRUCTURE

TABLE 3.2: TRANSITION TYPES AND CODES

Transition Code Transition Description
0 none
M move
V move and drop
D drop
W wait

F{ font specifications} font
L loop video

The archive table is used only for development purposes and is not needed for

delivery. All the objects are in the form of files (see Table 3.1) except for text codes that

refer to a separate text table; this is more efficient than having separate text files. Finally

Tutorial

e.g., Bearings chapter
(lists pages in the order they appear in the section)

Page

e.g., Bearings introduction page
(lists objects in the order they appear on the page)

Topic
(page topics)

Object

e.g., formatted text, video, audio, etc...
(lists attributes: filename, color, etc...)

Object terms

e.g., bearing, inner race, ...

t(hese are terms with definitions

which are related to this object).

Index
(terms connected to objects)

II

an object code that starts with an "L" refers to a title (the text for which follows the "L",

e.g., "LDesign Review"). The transition code field is used to set font and style of the title.

Tied to every object in the archive is a series of object terms from the object-term

table. These terms are defined in the Index table. Whenever that object is on the screen, all

its object terms are listed in the list box at the bottom of the screen. For example if there is

a term used in a video that a student may need defined, that term will be attached to that

video object and the user can click on the list to bring up the definition. Also, terms

connect to text objects will be highlighted in the text and can be clicked on directly (this

feature is not yet fully functional). The index can have all available object types linked to it

for display.

The index-set table allows groups of pages to be linked to form a sequence. Any

object (except audio files) can be connected to an index-set, functioning like a button, that

when clicked-on branches to that index-set. This feature has a second intended function:

of allowing anyone to take a series of pages or objects and stitching them together into a

sequence. The idea is that an instructor can go into a class with a pre-selected series of

pages and objects to present in class or have students go through them for an assignment.

3.3. DATA ENTRY: BUILDING SCREENS

Eight tables make up the main EDICS database along with image, audio and video

files in total making up the entire content of EDICS. The tables are designed for efficient

information storage and retrieval. By themselves, however, they do not clearly present

content information and screen layout. Editing a table directly does, however, allow for

making mass changes. For example to change a particular image that appears on multiple

screens would be laborious without direct editing.

Laying out each screen would be a daunting task without some sort of help from the

system. It requires a full knowledge of all the different types of transition codes, scale of

images, coordinate location (x, y) of all objects, and link code information. To simplify

this, two front-ends to the database were created. They represent two different levels of

access to the database.

3.3.1. Queried Form

The first-level database front-end uses the query and form tools that are part of the

Access database program. Querying all the tables together in one "Screen editor" form,

shown in Figure 3.4, the data are somewhat more recognizable than in a raw table of

codes. The query automatically takes care of the relational links between tables, whereas

direct table-editing requires manual linking. The page-form works on a per object basis (an

object is any image, audio, video, text, etc.). It does not, however, show what the screen

will look like. This level of data entry was useful because development of the database and

the next higher level front-end needed to occur simultaneously. It also allows quick access

to the information and at the same time provides visual cues from the archive. The built-in

text searching feature furnishes an efficient way to locate information in large tables.

FIGURE 3.4: SCREEN EDITOR FORM

3.3.2. Screen-Arranger Application

The screen-arranger application, shown in Figure 3.5, is a much more elaborate front-

end to the EDICS database. It is written in Visual Basic, as is the rest of EDICS. Visual

Basic's built-in SQL calls are used to manipulate the eight tables that make up the EDICS

content. Screen layout and behavior are the same as the EDICS player (that actually uses

the same Visual Basic form), except branching does not work.

FIGURE 3.5: SCREEN ARRANGER

A floating object pallet, see Figure 3.6, provides access to all types of available

objects. Clicking with the left mouse button on any icon creates an empty object box of

the desired type. The objects can then be dragged to any part of the screen with the left

mouse button.

Tp.xt
Bitmap
graphic

-------- Video

--- Audio

Close
objects

Save all
objects

FIGURE 3.6: OBJECT PALLET

Pressing the right button of the mouse on any object brings up a menu of relevant

properties, shown in Figure 3.7, that can be set for each object. Setting filename, location

and size features has an immediately visible effect. To see the effect of setting other

features like sequence, transition, and interval require the screen to be "played." This is

done by pressing the "repeat" button on the bottom of the screen. Links function only in

the player mode and do not function in the screen arranger. Figure 3.8 shows the link

dialog-box. Any object except audio files can be linked to either an index-set (a set of

pages connected together) or to another object on any page. Changes to objects on the

screen are saved either one at a time with the "update" menu item or all at once by clicking

on the disk icon on the object pallet.

!

Graphics/video Text
Text

Ž,Y... 2819A9
height. 200

1idth. .300
Transition. .. >
Interval. ..
Requence.. .6
Zoom
Rotate >
Scale All ..20i_-e...-

Y .. 20 12 11

Sm

3~d WeI

ITransition -
,,! i:~:.~ ~_ ;. .::L.. I,- .: .::.::requenice.• . .4:••

New Text
Font Name.. Arial
Font Size. . .24

Italic

Backcolor
Create Link
Update

FIGURE 3.7: POP-UP MENU

PFageLUikE. L: hde LSe Dbject:
The sreeara co Add th rAt t o ITe Dt ecaviftor P

sof aectis al the. le, ..ei.

si orATe4 Jaianete efors Swe ave the rScreen Text t 228
to function wi teroilhe need of directly manipulating t-e database tables. I wouldrecommend the following changes and additions to reach this goal:
Prop eller iteration 3: ssembf ± l

Link To: ,P(PioAut; E5. New Object Hee--1

FIGURE 3.8: PAGE LINKS DIALOG BOX

The screen-arranger code represents the largest and most complex part of the EDICS

software. It is also the place where there is the most room for improvement in use-ability.

The current state of the program is such that adding new items directly to the database is

much easier. The screen arranger, however, manipulates objects already on the screen

easily. The ultimate goal would be to have the screen-arranger application robust enough

to function without the need of directly manipulating the database tables. I would

recommend the following changes and additions to reach this goal:

Send to lak LeJ
*Create Link
Edit

Delete Octb c

* Have a table listing of all the objects on the screen (the page table) accessible. It would

list all the objects in sequential order, and all their features. The sequence could be

changed by just dragging objects (or sets of objects) up or down the list. Features could

also be edited directly.

* Add a properties window that is similar to the Visual Basic properties box. The

properties of the highlighted object would appear in the window allowing them to be

edited. This could even replace the pop-up menu.

* Have a question box ask if you are sure you want to leave the current page without

having saved the changes.

* Allow objects to be scaled by dragging a corner. This is difficult to implement so we

left it for future development. Currently object scaling is set by changing the actual

width and height values. You should also be able to rescale the object to original size.

* Add some basic drawing tools, i.e., lines, circles, rectangles, fills, line types and colors.

These would all be vector graphics and become part of a metafile (a Windows metafile

combines both bit-map and vector graphics in one file).

PTER4. DEVELOPING EDICS' SOFTWARE

4.1. AUTHORING SYSTEMS: SELECTION OF VISUAL BASIC

The search for an authoring environment for the new EDICS was started in the Fall of

1993 with the help of a study conducted by MIT's Center for Educational Computer

Initiatives (CECI) [Ali-Ahamd, Bolduc, Trometer, & Webster 92]. Five authoring

environments were considered: Claris HyperCard, Asymetrix's Toolbook, MacroMedia's

Authorware Professional, MacroMedia Director, and Microsoft Visual Basic. The

selection was based on speed, ability to present all media types (especially digital video),

cross-platform compatibility (Apple Macintosh and IBM PC), ability to play simple 2D

animations and to allow for hypertext.

HyperCard was very appealing because previous work was conducted in it, permitting

us to lose the least amount of work. The problem was that it didn't readily support color

graphics or QuickTime video. A different program would be required for the IBM PC that

could convert HyperCard stacks. This was determined undesirable because translation is

not very good and the IBM PC was to be our main delivery platform.

Asymetrix's Toolbook was a very strong contender for PC-based delivery because

there was some translation between HyperCard and Toolbook. Toolbook also filled all the

requirements except that of speed.

MacroMedia's Authorware Professional was evaluated purely based on CECI study

[Ali-Ahamd, Bolduc, Trometer, & Webster 92] because we could not get an evaluation

copy and it was beyond the project's budget to purchase one just for evaluation. It had a

very appealing characteristic of being cross-platform. However, it was such a high level

environment (as opposed to low level like C) that it was not as flexible as other options. It

was also deemed a poor performer and therefore not selected.

MacroMedia Director was also cross-platform and had all the performance

characteristics desired, including very strong animation and graphics features.

Unfortunately it didn't support hypertext and became cumbersome with large programs

such as this one.

Microsoft Visual Basic was initially not considered because it is not really considered a

multimedia authoring environment, but rather a programing language, requiring much

more coding than the other systems. It uses objects (forms and controls) that can control

each other in a hierarchical relationship that includes built-in Windows system objects

[Appleman 93]. We considered Visual Basic based on the suggestion of CECI, because it

filled all the criteria except cross-platform capabilities (although a Mac version was

rumored). We chose Visual Basic because it gave us much greater control over the

system. It allowed us to design a database-driven program that would make cross-

platform playback relatively easy.

4.2. DESIGN OF THE PROGRAM

One of the key advantages of Visual Basic that we exploited was its built-in SQL calls.

It uses Microsoft Access database files as a native file format. I wanted to take advantage

of this feature to create a system in which the content data is completely independent of

the software. Prior experience upgrading old EDICS from HyperCard version one to

version two showed that updating the system also required updating the content.

The basic database structure is discussed in the previous chapter. The program

approach is shown in Figure 4.1. Archived objects are all stored as separate files and

played by the Player according to the commands in the main Database. The main database

is programmed using the Screen Arranger.

Vidide files

Screen Arrar

Image files Audio files

Archive

ger \r

ext database

Database

FIGURE 4.1: EDICS PROGRAM APPROACH

A main menu structure provides access to all the different chapters of EDICS, which

currently includes Bearings and Design Process. The index, shown in Figure 4.2, is a

separate floating window that has terms defined and linked to the pages with related

objects (from the object term table) providing access to all those pages-this particular

feature is not yet fully operational. Selecting a term brings up the glossary, shown in

Figure 4.3, giving a written definition and potentially cross references to other objects.

Navigation controls follow a basic left-to-right metaphor similar to old EDICS. Branches

can be attached to any object (except audio files). Objects with branches attached act like

he-"•e•

table
pointer

buttons that do one of two things when clicked on. If the object is attached to an index-

set, the program heads down the series of pages in that index-set. A return button

becomes available allowing the user to return to the branch point. If the object is linked to

another object then the latter object will appear on top of the screen and can be put away

by clicking on it.

For the complete program structure outline see Appendix A. The majority of the

actual coding was done by undergraduate research student Acee Agoyo: a complete listing

is in Appendix B.

FIGURE 4.2: INDEX WINDOW

File "lam
=s"P

FIGURE 4.3: GLOSSARY WINDOW

4.2.1. Interactivity

Five types of interactive sessions were designed: locate the item, interactive design,

typed definitions, estimation, and multiple-choice check box. The approach taken with

these was a general one, in line with the rest of the program. Therefore the implementation

required carefully thought-out code that would work for many different problems.

4.2.1.1. Locate the item. Locate the item is based on the "Find the Bearings" activity from

the old version of EDICS. It allows hot spots to be attached to any part of any image and

questions associated with these spots. When a student selects one of these points on the

picture a series of questions about that location is asked. With the Find the Bearings

problem the student is given a Rube Goldberg device, shown in Figure 4.4, and is asked to

find all the bearings. A series of questions is then asked about each selected bearing.

Underlying the program is a set of database tables that allows any image and any number

of hot spots to be associated with a problem.

FIGURE 4.4: FIND THE BEARINGS ACTIVITY

4.2.1.2. Interactive Design. Interactive design is based on a program designed by an MIT

undergraduate research student, Joe DeMare, using SuperCard on the Macintosh. In the

Visual Basic version an image of an incomplete or incorrect design is displayed (see Figure

4.5). The user selects potential solutions from a pallet connected a particular area of the

design. The original image is changed to match the selection. As many pallets as desired

can be accommodated, corresponding to different parts of the design. The underlying

database accesses metafiles. Solution images (up to three) can be requested once the user

has selected items from the pallet.

The example shows an improperly designed shaft/bearing-mounting. The user is given

a pallet of possible bearings and mountings to select from for each side of the shaft. When

the mouse is over one of the items in the pallet a description appears at the bottom of the

screen. When bearings have been replaced the user can see two solutions to the problem.

FIGURE 4.5: INTERACTIVE DESIGN ACTIVITY

4.2.1.3. Typed Definition Box. The typed-definition box is a simple scrollable text window

that can be placed anywhere on the screen. The user is asked to type in a definition. The

typed information can then be carried over to another screen to compare it with other

possibilities.

4.2.1.4. Estimation. The estimation activity has not yet been implemented. It is based on

the old EDICS example estimation questions. The user is asked to estimate the value of

some system and to enter it on a slider bar. Then the user can click on the answer button

to see if she or he was right. In one example the user is shown a video of a dentist drill and

is asked to estimate the speed at which it spins. Estimation skills like these are extremely

important for a design student to develop.

4.2.1.5. Multiple-Choice Check Box. The multiple-choice check box has not yet been

implemented. It allows a series of questions to be asked with multiple choice solutions

offered in check boxes.

4.2.2. Notepad

A notepad is designed to allow the student to take notes from the program or to copy

information and objects. Though not fully implemented it would link notes to particular

pages for easy reference.

4.2.3. Sound-off

Finally the sound off or silent mode brings up a transcription window where all the

audio is transcribed. This allows EDICS to be both run in situations where the sound

would bother other people or on systems without sound capabilities.

4.3. DISADVANTAGES OF OUR APPROACH

When I set out to design the program I was expecting a much larger full-time

programming staff. Ultimately one very skilled undergraduate research student wrote the

lion's share of the code, with only the index, interactive-design, and "locate-the-item"

being coded by two other undergraduates. As a result the content end of EDICS had to be

partially put on hold while the software was being developed. In the end we have a very

ambitious piece of software with two chapters almost complete.

One of the major problems with the of EDICS v2 was that the openness of HyperCard

allowed for bad code to be hidden in all sorts of little corners, written by well-intentioned

research students. By bad code is meant code that is not properly documented and is

written in an undisciplined fashion. While it may initially function properly, it will probably

cause problems further down the road. Because of this, debugging EDICS v2 was a nearly

impossible task. This version of EDICS is a partial response to the problems encountered

with HyperCard. The problem is that we have replaced a highly decentralized system with

a highly centralized one. In the old EDICS if anyone wanted to add a new type of

interactivity, she or he could just go in and do it (of course you may end up with more bad

code lying around). With the new design, adding anything new is a slower and more

involved process that requires strong programing skills and a detailed understanding of the

structure of the EDICS program.

There may be a compromise to be struck here, allowing custom forms to be objects

themselves. This would allow new features to be added much more quickly and at the

same time provide a buffer isolating the main program from potentially poorly written

code.

The other major problem inherent to any program of this size is the need for

maintenance. It requires a skilled programmer with a strong working knowledge of the

software. This will become most apparent when upgrading to the next (32-bit) version of

Visual Basic, expected in 1995, promising improved performance, new features, and many

hassles. This will be reminiscent of the transition from HyperCard version one to two.

Ultimately programs of this size will need significant overhauls to overcome bugs that

are built into the program structure. The only way to purge the program of these is to

restructure the code. Major revisions of EDICS should coincide with operating-system

upgrades, version changes, or platform changes. Note that the key advantage of having the

content decoupled from the software is that the content is retained through a software

upgrade.

PTER5. FLYING ON WATER-A DESIGN-PROCESS
CASE STUDY

5.1. THE NEED FOR THIS CHAPTER

On the current status of engineering students and curricula Wilson and Blanco write

that there are three trends:

* The range of disciplines that design has to cover, or at least introduce to students, is

continually expanding.

* The share of the curriculum that is devoted to teaching design has been significantly

reduced over the last 50 years, while the emphasis on engineering physics has increased,

so that the background of the younger design instructors often includes little design.

* The range of preparation of the undergraduate students entering mechanical

engineering is much more varied now, and the mechanical experience is generally less

than in the past [Wilson & Blanco 91].

The subjects developed thus far for EDICS are all component-based, using the power

of the medium to familiarize students with various components and the design of elements

such as bearings and shaft/rotor connections. This is very important for students who lack

the experience of taking mechanical devices apart. From my experience, however, in

working with students on various project competitions and courses, students have a

difficult time understanding how all these elements come together into a complete device.

Good design requires two things: experience and a "systemized" process [Sherwin 82].

Both experience and understanding of design come from dissecting mechanical devices

(design anthropology) and from doing actual design. Dixon would argue, however, that

there is a danger of confusing experience with education [Dixon 91]. My basic goal is to

attempted to give students a guided design experience using the capabilities of multimedia.

Specifically, I hope to get across the following four concepts.

5.1.1. Process

Many design textbooks cover process with simple hypothetical examples or in a purely

symbolic fashion. Often I find students in the machine shop cutting material without

having a solid idea of what they plan to do. Their plans are usually very vague and they

may have a crude conceptual sketch. This comes from a public that thinks a pretty

rendering of a new-car design means it is ready for production. At the same time these

students have been taught design process steps in their design courses. Engineers need to

understand not only the process, but experience it to have faith in it. The overriding

question of this thesis is: can you give students some of this experience with an interactive

media-rich example?

5.1.2. System and component levels

Students have difficulty understanding the difference between component and system

level design. The concern here is that the cause-and-effect relationship between system

and subsystem are not fully grasped by the new designer. Students learn to design and

analyze at a component level well, while the system design is often neglected. This is

especially true when design is a team effort, where design tasks are often issued at the

subsystem level. The new designer often embarks on what I call "gimmick design." This is

the tendency to expect a design to succeed because it included some novelty, like carbon-

fiber frame tubes on a poorly designed bicycle. High-performance design in things like

race cars force designers to be thorough. You may have the best carbon/carbon clutch

ever designed, but if the wheels fall off half way through the race you have failed. A case

study provides many examples of how the selection or design of components affects the

system.

5.1.3. Geometric modeling

Geometric modeling is also greatly neglected in the current mechanical engineer's

education. Drafting in itself is not what I mean, but the ability to develop models to

simulate the look, fit and function of a system; and to be able to communicate that design,

i.e., drafting. An element that has been squeezed out of the engineering curriculum in

many schools is the drafting course. For some reason this topic is looked down on as not

being a core engineering science. I generally agree with Slaughter that drawing (geometric

modeling) comes first in order of importance in design and calculations come second

[Slaughter 63]. This is not to say that engineering science isn't important: it is central to

design. I maintain that the majority of mechanical design is a geometry problem. Whether

you're a specialist in fluid dynamics or controls, where design is involved so is geometric

modeling. I break this subject into three main areas: conceptualization, modeling, and

communication. This is similar to Barr & Juricic's break up of engineering-design graphics

(EDG) into design ideation and design communication [Barr & Juricic 91]. The goal here

is for the student to understand that there is a need to develop the skills in all these levels,

to do good design, using the best available techniques. The EDICS design chapter is rich

with notebook sketches, color renderings, rendered solid models and plain-old

dimensioned detail-drawings.

5.1.4. Swimming in the Charles River: design iteration

Too often design case studies are given with the edge taken off them: they show the

problems and how the brilliant engineer solved them. There is a great deal more drama and

unexpected results that makes design a rich and exciting experience. Design examples that

resolve perfectly intimidate students because they show a problem, and its solution

without showing the struggle and (sometimes embarrassing) mistakes. By showing the

iterations, the mistakes that were made and their consequences, I hope to empower the

student to not be afraid of those mistakes.

5.2. AN EXPERIENTIAL PEDAGOGICAL APPROACH

All these lessons I wish to relay in the context of a real design problem. By presenting

design phases in an as-they-occur manner it is hoped that the student will learn from the

experience without having necessarily been told what he or she is to learn. This is much

like the mentor or apprentice model of learning, where lessons are hidden in tasks. Here

the lesson is hidden in the design experience.

5.3. USING A HUMAN-POWERED HYDROFOIL AS A CASE STUDY

Why build a human-powered hydrofoil? First I wanted to select a real device as

opposed to some purposeless or worse a hypothetical design. Students need to be excited

and passionate about design, so selecting an exciting device was a major criterion.

Secondly the selected device must have all the components that are or will be covered by

EDICS, that is bearings, fastening and joining, springs, torque transmitting elements,

power transmission, materials, and cam mechanisms. Finally it must satisfy scope, scale

and financial limitations. I also wanted to draw on available human resources and

experiences. Selecting a human-powered device seemed to fill all the above criteria. MIT

has the world record for human-powered speed on water (1991 men's, 1992 women's), in

a hydrofoil [Drela, Schafer & Wall 92].

Instead of a record-setting craft a practical human-powered hydrofoil was selected,

later to be called the Skeeter. At first I wanted to take the project all the way to a beta or

preproduction stage, but that was later trimmed back to an alpha prototype. The criterion

for the boat was for it to be a commercial recreational craft that significantly out performs

a single-person scull or an eight-person crew shell, to be in the price range of a very high-

end bicycle, and to take a range of rider sizes and abilities. Initial design specifications are

given in Table 5.1.

TABLE 5.1: INITIAL DESIGN SPECIFICATIONS

Rider sizes
heights to 2 m (6'5")
weights to 110 kg (250 LB)
Design specifications
weight 23kg (50 LB)
take off power 250 watts
top speed (well trained) 7.7 m/s (15 knots)
Manufacturing price range to $3000

Design of the hydrofoil, shown in Figure 5.1, started in the summer of 1992 and was

built during the summer and fall of 1993. It was named the Skeeter, the common name for

a water bug.

FIGURE 5.1: SKEETER HYDROFOIL

The general approach to presenting this material is to give the theory or concept

behind each phase in very general terms. If the student is then interested in how that phase

was implemented in the design of the Skeeter he or she must click-on the related buttons

on the screen. The sequence more or less follows the timeline of the design. The timeline

is continuously displayed so that the user can have some idea of where in time he or she is.

'The main sections of the chapter are:

introduction;

design process;

project planning;

concept research;

concept development;

layout development;

modeling;

design review;

concept/layout selection;

human factors study;

detail development; and

conclusions.

For a complete outline of the chapter see Appendix E.

Pains were taken to show every mistake made in the design work. For example when

the Skeeter was first put in the water the outriggers were so undersized that the whole

thing flipped over. I have included the video footage of one of the designers (me) taking a

bath in the Charles River and the four subsequent iterations required to get the design

right. "Murphy meant to remind us-the engineers, mechanics, fabricators, welds,

machinists, drivers and pilots of the world (in short, those who deal intimately with the

potentially deadly combination of man and machine in motion) that the price of human

error and/or oversight in any branch of engineering can be (and often is) very high indeed"

[Smith 84]. The consistent comment that I got from students looking at the program was

that it was real to them. It was not some perfect solution to a contrived problem, but one

based on the real struggle associated with design. Every element of the design of the

Skeeter can be accessed by the student on the detail-design-and-construction pages shown

in Figure 5.2.

FIGURE 5.2: EDICS PAGE-DETAIL DESIGN AND CONSTRUCTION

Two other important areas that I wanted to make sure are clear to the student are that

design is a team effort and that design needs to be scrutinized by peers and users. A

"people" page shows the faces and contributions of the 16 people associated with the

Skeeter project. Also, a design review was conducted, see Figure 5.3, illustrating the need

for design review for success in design [Thompson 85].

FIGURE 5.3: DESIGN REVIEW PAGE

In the end the tutorial covers as much of the details of the design case as possible. It

does this with 35 video segments that account for 330MB of disk-space and 332 bit-map

files (targa) accounting for 85MB of disk-space. The majority of video files and images

are associated with the detail development page. There are some details left incomplete as

of this writing including the page on the history of human-powered water-craft; pictures

for people involved with the project; modeling pages for propeller design, foil design and

dynamics/controls simulation; design decision-making page; and scans of notebook

sketches associated with detail development pages.

01R6. EVALUATION AND STUDENT TESTING

6.1. TESTING APPROACH

There are two main goals in testing the tutorial at this point: to get overall feedback on

the content and approach, and to get specific feedback on object design, program flow,

and page layout. It is premature and beyond the scope of this thesis to conduct a full

evaluation on the overall effectiveness of this tutorial. It is intended to use the data

collected for continued development of the program and to adjust the material focus.

Second-and third-year mechanical engineering students are solicited for the

evaluations by using the MIT email system to advertise. They are offered ten-dollar gift

certificates for ice cream and told the test will take a maximum of two hours.

A pre-questionnaire was made up to try to assess the student's level in design. The first

two questions are based on questions asked by Crismond, in a comparative study on the

effectiveness of EDICS [Crismond 92], to categorize the students into novice, borderline

and experienced. My intention is to try to get a feel for where these subjects are at in their

understanding of design and design process. In the pretest I also asked for their general

concept of what design is.

The subject then goes through the program taking as much time as they wish. They

were asked go through naturally and not to feel they must cover everything, that is to go

through only the items that interest them. They were also encouraged to complain out-

Answers for questions 1 and 2: O=none, l=a little, 2=occasionally, 3=frequently

1. How much experience have you had taking things apart over the last few years?

2. How much experience have you had in repairing mechanical objects?

3. What does "design" mean to you?

loud so that the complaints, e.g., can not read text, could be recorded for the problem.

Also the information that the subject covered on each page was noted.

Once the subject completed the tutorial, a post-questionnaire was given to try to

understand what the he or she got out of the program, and recommendations to improve

the program.

6.2. TESTING

A total of ten students were tested. There were three females, seven males; four were

second-year and six were third-year students. Testing occurred at the end of the year, so

effectively all the subjects were one grade higher. They were volunteers and all were

interested in design, multimedia and/or ice cream. This would bias them towards being

more interested in the program than a random pool of students forced to use it as part of

a course. Subjects spent between 25 and 120 minutes going through the program.

6.2.1. Problems with the program

There are about six sections of the program that were not complete and therefore

blank. The topics were not critical to the overall effectiveness of the program. It should be

noted that most students wanted to look at the history page; and system/control modeling,

propeller design and airfoil design buttons on the modeling pages.

1. What does the design process mean to you now?

2. If you were part of a design team for a new type of Truck Transmission and you

had to outline your design process in 5 steps what would they be?

3. What do you think you learned from the program?

4. Was there one particular element of the program that sticks out in your mind?

5. What suggestions could you make to improve the program?

One bug in the software that we were unable to fix before testing was in loading

images (specifically targa files). For some reason the plug-in that allowing us to load these

images doesn't return all the memory resources when the object is unloaded. Consequently

as you flip through screens memory is slowly consumed. Eventually objects on the screen

start disappearing and the only solution is to quit the program and restart Windows. This

is about a 2-minute process and breaks the rhythm of the user. Subjects had to quit from

one to four times depending on which and how many pages they looked at.

Because we were running the program off a network server, sometimes the program

would slow down and videos will pause for a disconcerting period of time. I would

sometimes have to tell the subject that the video was not done playing even thought it had

paused for an extended period of time.

6.2.2. Observations

It was interesting to note how different student concentrated on different areas of the

program. Two students looked at every single concept while most only looked at a few.

Some students read every bit of text on the screen, while others barely even glanced (one

went as far as complaining).

6.3. RESULTS

Based on the pre-test questions and discussions with the subjects, they were scored on

their understanding of design and design process. For example if a subject would use key

terms in describing the design process, i.e., planning, need, etc., his/her scores would be

higher. The answers to the first two questions were added to a subjective score of one-

third weight based on the third question and discussion with the student. The total scores

were then normalized on a percent scale, and plotted in Figure 6.1, showing that all had at

least basic understanding of what design is.

1I ('Ch)7I VVJo
90%
80%
70%

- ~J'-/o
S ZcnoL...p,

40%
30%
20%
10%
Mw/1

1 2 3 4 5 6 7 8 9 10

Subject

FIGURE 6.1: SUBJECTS LEVEL OF UNDERSTANDING OF DESIGN PROCESS

This would be expected because all the students have recently taken MIT's 2.70

course. This is the second-year mechanical-engineering-design course at MIT. Students

learn the basics of design, including the process, and do a design-and-fabrication project.

Students in Crismond's study were all in the process of taking 2.70 and he found that a

sizable portion of them had little experience with mechanical objects, and even less with

design [Crismond 92].

From observations made of the subjects as they went though the program, usage per-

page was collected. Figure 6.2 shows the average percentage of each page covered by all

the subjects and the standard deviation, along with the number of buttons on the page.

Subjects tended to explore the whole page if the page was simple, i.e., the number of

buttons on the page was small. The concept development page had 17 buttons, though it is

not necessarily the purpose of this page for all the concepts to be looked at, (see Figure

6.3). The plot for this page has a high standard deviation, because two subjects went

I -I I I I I I

through all the different concepts. If those two students are removed the average is 19%

with a standard deviation of 10%. The other page with many buttons is the detail page,

thirteen (see Figure 5.2). Again with this page it is not necessary for the student to go

through every detail; however, each button has significantly more information than the

concept page. A coverage on the average of 40% is acceptable. The responses to these

pages were mixed. Students either really appreciated that there was so many choices and

options to explore, or felt overwhelmed.

1IA09 _

90% -

80%

70%

60% -

50% -

40% -

30%-

20% -

10% -

oo/, I

20

18

16 0

14

12 N
o

10 j

8

6 =

4

2

0

U

oP o uI- (U - '- ;U, o 0 0 U~0 o U 04c2 ~ 0
o -0

FIGURE 6.2: AVERAGE PERCENT OF MATERIAL COVERED ON EACH PAGE

__

-

-

-

I I I

m ·• m -

v l
I

v
,

FIGURE 6.3: EDICS PAGE-HYDROFOIL CONCEPTS

Answers from the post questionnaire were categorized and plotted in Figure 6.4 for

the number of subjects who felt that the topic was important to them or that they included

it in their description of the design process. This is only a self-evaluative measure of

content penetration.

* Importance of detail: Five subjects of the ten felt they gained an understanding of the

quantity of detail work involved in design that they never had before, e.g., "An

appreciation for the amount of detail."

* Iteration: This relates to evolution in component details. It was often noted by the

students, e.g., "Some of the details (iterations, construction), I know about, but I didn't

really consider them."

* Notebook: Throughout the program where appropriate notebook pages, scanned

directly from the engineer's notebook, can be viewed. A couple students commented

the value of seeing actual notebook pages.

* Process: Five subjects expressed an appreciation for the process presented on a real

design, e.g., "It was really interesting to see the design process in action." All of these

students had a good understanding of the process of design in general terms to start

with.

2

1

O-

o-

oA

0

o

CIa

a.)

o

a

0

- 0

FIGURE 6.4: SUBJECT MATTER CONVEYED

In the end most of the subjects liked the material, but all had comments on the

presentation. Many of the comments and suggestions were based on individual images and

videos while others were more general. Most felt that the first two-thirds of the material

was slow and boring. They all suggested having more video earlier on. I was surprised at

the number of students who were interested in the process plan and how it evolved; they

suggested that some sort of overlay be used to show the changes. Many of the students

wanted to know where they were in the program and suggested some sort of navigation

assistance.

6.4. CONCLUSIONS

The goal of the this study was to get overall feedback on the content and approach,

and to get specific feedback on the screen objects. Overall the subjects were positive about

the program, but not extremely. The results show that there are some clear flaws making

the presentation occasionally slow and unclear. The target audience for the program

should be one grade level lower than the tested students. They had prior experience with

the material, hence the educational goals were not met. This adjustment would require

defining of technical terms more clearly.

The main learning objectives for the user are process, system and component

interaction, geometric modeling, and understanding design as an iterative process. From

these only process and design iteration were clearly experienced by the subjects. It is clear

from the test that the coverage of component interaction and geometric modeling is

covered too passively and needs to be brought more directly to the surface.

fPTER7. CONCLUSIONS

A database-driven multimedia program was created using Microsoft Visual Basic and

Access database. Database provides code for the program to present the media. A human-

powered hydrofoil was design and built as a design-process case study for the program.

The EDICS chapter on the design process of the human-powered hydrofoil was put into

the database including 35 video segments and 332 bit-map files (targa). Ten students were

used to test the overall approach to the subject of design process and to test individual

elements of the program. Results show that there is potential in the approach but some

changes are need to make it more interesting and effective.

SPTER 8. RECOMMENDATIONS

8.1. SIMULATION

One area that is neglected in EDICS is simulation. Computers provide an excellent

environment for simulating natural phenomena. Simulation as opposed to animation would

allow for a student to change parameters to a problem and the computer would provide a

simulation as a result of the input.

Because design is such a broad subject, the potential types of simulation and modeling

that could be incorporated are also diverse. They could include finite-element modeling for

material mechanics, kinematics simulations, fluid dynamics, etc.

The goal set early on for developing EDICS was to provide students with a "hands-

on" type experience, in the hope that they would gain some basic understanding of

mechanical design and design components. Simulation of systems would provide just that.

The main difficulty lies in developing the simulation. Simulation and modeling software is

becoming advanced and readily available on inexpensive desktop computers (the same

ones used for multimedia). It would not be prudent to develop our own simulation

programs when so much good software already exists. The best approach here would be

to link EDICS to these programs. The tools for doing this are now becoming standard on

all the different operating systems. They allow a program to be controlled from within

another program. In Microsoft Windows this is called object linking and embedding

(OLE).

Say we were to give the student a spring-design problem allowing him or her to size a

spring in a dynamic system. The dimensions and material of the spring that affect the

dynamics of the system could be simulated in a window under Mat Lab (an interactive

"matrix laboratory") at the same time a FEA (finite-element analysis) fatigue model could

be in another window. The student could explore the problem in analysis packages that are

available on the system at the time.

The advantage to this cellular approach is that the development efforts are not

duplicated. The simulation and modeling programs are also stand alone packages. This

reaches another need of new engineers: experience in using new computer aided

engineering (CAE) tools [Kitto 93].

8.2. EXPANDABILITY

8.2.1. Where we are now

Current lay-out of the EDICS program allows for other users to create "index-sets,"

which are pages and objects from the EDICS program linked together. For example if an

instructor wanted students to go through a specific series of pages, videos and images he

or she could create an index-set connecting them together and assign it for the students to

review. This would also work for projecting in the classroom. The instructor could have

pre-selected a series of videos or images to playback in the classroom. The next level of

user modification of EDICS is basically functioning. Here the user actually expands and

changes the database to include or exclude items. If the professor has a special bearing

example he or she wants the student to see at some point in the bearing chapter it can be

added using the Screen Arranger utility adding videos and images from the local hard disk.

8.2.2. Future potentials

Implicit in the long-term success of a program such as this is its ability to grow and

expand to fit the needs of its users. The large-scale high-capacity networking that is

currently evolving nationally and internationally opens the possibilities for having EDICS

as a less-defined web of information located on various systems.

For example if someone at a west-coast university had developed a database of

composite material properties. A student on the east coast could be looking at the

database linked into a composite design tutorial developed and running at some southern

university. Software tools that allow this are just now becoming available on the Internet,

such as Mosaic. Because systems like these are both highly integrated and very

autonomous, they give authors a forum for putting out materials much easier than

publishing.

The usefulness of the system will lie in its completeness. If companies list their

products and services on the net with the proper links, EDICS could be accessed as a type

of help in understanding the product. In the other direction EDICS could access the

product catalogs and manufacture's product-selection programs.

For example if an engineer needed to design a transmission and was reviewing power

transmission in EDICS he or she could quickly link to a gear catalog and maybe run an

automated gear-selection routine provided by the manufacturer. Also, if that same

designer was trying to pick out a clutch mechanism from a networked catalog and needed

a refresher on clutch types he or she could go into EDICS from the catalog.

As you can see this becomes a very vast system quickly. Any centrally controlled and

managed system would be doomed to failure because it would presuppose that all of that

knowledge is centralized. By having standard software links and networked information,

the quantity of information becomes boundless.

Setting up a network-served system will require both an authoring environment that is

portable and a server that is available on the Internet. A project that is currently being

developed on the Internet is the National Engineering Education Delivery System

(NEEDS) which is the brainchild of the Synthesis Coalition supported by the National

Science Foundation. NEEDS is a courseware multimedia database. The intention of the

system is to be an open curriculum covering the entire engineering spectrum [Agogino

93]. If EDICS were to be migrated to a cross-platform environment compatible with

NEEDS it could become a node on the system. If EDICS is intended to be a money-

making operation, then being part of NEEDS may not fulfill this.

The net result for the future planning of EDICS is to go beyond designing a single-

user-based system that is CD-ROM delivered. The CD-ROM is an interim delivery

solution with maybe a 5 to 10 year life. Since academic settings are the main aim for

EDICS and they are the first to be networked together, focusing a broad effort towards

network delivery would be the wisest long term goal.

8.3. DEVELOPING A STANDARD

The costs involved with developing a multimedia program are currently very high, but

within the next five years they will drop very significantly. This will make authoring

interactive multimedia information a single-desktop task where authors can do all or most

of the work themselves. A standard accepted quality level, style and format for technical

papers have evolved to the form it is today. Engineers and scientists know and can follow

these without any additional help thanks to advancement in word-processing software and

inexpensive high-quality printing hardware. Computer tools evolved to match the accepted

standard more than standards changed to meet the capabilities of the computer tools.

The general potentials of multimedia are clear. Accepted standard structures and

styles, however, do not yet exist [Rojas-Fernandez 91]. Software developers are designing

tools that they hope will satisfy user needs; at the same time users don't know what they

want or need. Ultimately efforts as this one will eventually lead to standards that will allow

for the content person to focus on the content.

8.4. REALITY OF HARDWARE NEEDS

One of the realities that I came across is that we were severely under-powered for the

work we wanted to do. Digital video is an enormous resource consumer. For example to

capture 5 minutes of video (at 320x240 pixels and 15fps), edit it down to 2 minutes, and

compress it requires the following:

* hard-disk space for pre-edited files: 200 to 300 MB;

* recompression time on a 486DX-66 with 64MB of RAM: 160 to 200 minutes; and

* hard disk space for final movie: 18 to 22 MB.

These computer problems plagued this thesis, i.e., processor speed (video compression is

very demanding on floating-point operations), disk-space and network performance.

At the time the DX-66 was the fastest PC class computer available; now with new

systems performance is easily doubled or tripled. That means that compressing the 2-

minute video will take 50 to 60 minutes-still pretty slow. Specially designed digital

video-processing hardware is still expensive but offers a good solution.

Disk space is a high-priority item. We had a 750 MB server for EDICS that had just

enough space for one chapter (Bearings, Design Process, etc.) at a time. The design

process chapter has about 350 MB of video files. This required nearly four full DAT

backup tapes (5 GBs used) to backup all the original capture files for future editing. What

is needed is about 500 MB for each chapter of EDICS plus an additional 500 MB for

support files. A dedicated capture machine with one to two GBs of storage and a tape

backup (1 to 25 GB per tape) would be required.

The size of the overall undertaking will govern what system and network (if a local

network is called for) is selected. One way to eliminate the huge requirement for storage is

to go to slide shows instead of full-motion video. In many cases a slide sequence with

voice over can be more effective than video and consumes significantly less space (the

2:41 minute 650x415 pixel 8-bit slide sequence on the propeller development used only

5.2 MB of disk space and was very well received by students).

8.5. AUTHORING: WHERE TO GO FROM HERE?

It is very easy to think that something on the other side of the fence is better than what

you have now. We have problems with bugs and implementation of this software that are

very annoying; at the same time it must be remembered that the HyperCard version of

EDICS had entrenched problems too. In deciding the next step for the development of

EDICS the reality of changing to another system must be considered.

The future of EDICS staffing will really govern what is the best direction to go. If

minimal or no programming staff is going to be available then a switch to a non-

programmed authoring environment (Authorware or Icon Author) maybe the best thing to

do. Transferring the information maybe partially automated, but mostly manual. Issues of

cross-platform capabilities need to be fully tested. The main problem with this approach is

that it will not (for now) be available to UNIX users (the exception is Silicon Graphics

machines).

If some programming staff is available, I would recommend developing a networked

version of EDICS that is running under Mosaic. The approach would be to "hard wire" it.

This takes the minimum up-front programming, as opposed to the database approach that

we have take thus far. Mosaic would make EDICS available on all platforms and

completely networkable. Compatibility issues with file format should be worked out to

make EDICS compatible with NEEDS.

If a capable staff of programs is available then the options are very many. Continued

development of the Visual Basic program, which may include a complete software rewrite

is one possibility. This would allow for players to be written for other platforms. Network

issues will need to worked out in the software if network delivery is desired.

All these solutions have the potential of being delivered as a CD-ROM, networked or

both (choosing Mosaic would not be a great choice for CD-ROM if networking wasn't

considered). These suggestions should be weighed against the current tide of the

multimedia industry and academia.

REFERENCES

[Ali-Ahamd, Bolduc,
Trometer, & Webster
92]

[Appleman 93]

[Barr & Juricic 91]

[Bell 93]

[Borkowski 92]

[Brown 94]

[Coburn 92]

[Cornell 92]

[Crismond 92]

Ali-Ahamd, Wissam; Bolduc, Lynne; Trometer, Ruth;
Webster, Michael; An Evaluation of Low-cost
Multimedia Authoring Environments, MIT Center for
Educational Computer Initiatives in collaboration with
the American University of Beirut, MIT/CECI 1992.

Appleman, Daniel, Visual Basic Programmer's Guide to
the Windows API, Ziff Davis Press, Emeryville, CA @
1993.

Barr, Ronald E.; Juricic, Davor; "Development of a
Modem Curriculum for Engineering Design Graphics,"
Engineering Education, American Society of Engineering
Education, Washington DC, Vol. 81 No. 1, Jan/Feb
1991.

Bell, Trudy; "The Specialties: Multimedia, Magnetics,
Multidisciplinary Education," IEEE Spectrum, Institute
of Electrical and Electronic Engineers, Inc., New York,
NY Vol. 30 No. 1, Jan. 1993.

Borkowski, Chris A.; Kulp, Paul T.; Luetzelschwab,
Mark; Gile, Michael; DiCesare, Frank; "Role of a
Hypermedia Interactive Environment in a Laboratory
Course," Frontiers in Education: Proceedings from 22rd
Annual Conference, Nov. 11-14, 1992, Nashville,
Tennessee.

Brown, Eric, "Query Technology Recognizes Color and
Shapes," New Media, Hypermedia Communications Inc.
Vol. 4 No. 6, June 94.

Coburn, W. Geoffrey; Collins, Robert L.; Lindauer,
George C.; Mullin, Thomas E.; Hnate, William P.;
"Development of Multifaceted Instructional Modules for
Introductory Thermodynamics," Frontiers in Education:
Proceedings from 22rd Annual Conference, Nov. 11-14,
1992, Nashville, Tennessee.

Cornell, Ed, "Who Pushes The Buttons? Pixel Dust Part
III," AV Video, Montage Publishing, Inc. November
1992, Vol. 14, No. 11.

Crismond, David P., Evaluating EDICS: analyzing the
use of an interactive multimedia system in engineering
design education, Massachusetts Institute of Technology
M.S. thesis, Feb. 92.

[Dixon 91]

[Drela,
92]

Schafer & Wall

[Jaafari, Picard &
Bessbge 93]

IKitto 93]

[Kretz & Colaftis 92]

[Loeb 92]

[Marsden 90]

[Rojas-Fernandez 91]

[Sherwin 82]

[Smay & Genalo 92]

Dixon, John R.; "The State of Education," Mechanical
Engineering, The American Society of Mechanical
Engineers, Vol. 113, No. 2, Feb. 1991.

Drela, Mark; Schafer, Marc; Wall, Matt, "Decavitator
human-powered hydrofoil," Human Power, Vol. 9 No.
3&4, Fall-Winter 92-92.

Jaafari, A.; Picard, J.P.; Bessege, R.; "Multimedia, an
Application for Education in Power Electronics," Fifth
European Conference on Power Electronics and
Applications, Brighton Conference Centre, UK,
September 13-16, 1993, The Institution of Electrical
Engineers © 1993.

Kitto, Kathleen; "The Role of CAE Tools in Engineering
Technology," Frontiers in Education: Proceedings from
23rd Annual Conference, Nov. 6-9, 1993, Washington
DC.

Kretz, Francis; Colaitis, Franqoise; "Standardizing
Hypermedia Information Objects," IEEE
Communications, Institute of Electrical and Electronic
Engineers, Inc., New York, NY Vol. 30 No. 5, May
1992.

Loeb, Shoshana; "Delivering Interactive Multimedia
Documents over Networks," IEEE Communications,
Institute of Electrical and Electronic Engineers, Inc.,
New York, NY Vol. 30 No. 5, May 1992.

Marsden, Douglas W., Development of the Engineering
Design Instructional Computer System (EDICS),
Massachusetts Institute of Technology M.S.M.E thesis,
June 90.

Rojas-Fernandez, Helena; "Online and Hypermedia
Information Design," IEEE International Professional
Communication Conference, Institute of Electrical and
Electronic Engineers, Inc., New York, 1991.

Sherwin, Keith, Engineering Design for Performance,
Ellis Horwood Ltd., West Sussex, England, @ 1982.

Smay, Terry A.; Genalo, Lawrence J.; "Creating
Courseware for Engineering Education," Creativity:
Educating World-Class Engineers, Conference
Proceedings, American Society for Engineering
Education, June 21-25, 1992, Toledo, Ohio.

[Smith 84]

[Spina & Mukund 93]

[Thompson 85]

[Wilson & Blanco 91]

Smith, Carroll, Engineer to Win, Motorbooks
International, Osceola, WI, @1984.

Spina, Robert; Mukund, P.R.; "A Multimedia Approach
to Teaching Design in Core Laboratories," Frontiers in
Education: Proceedings from 23rd Annual Conference,
Nov. 6-9, 1993, Washington DC.

Thompson, Graham; Design Review: The critical
Analysis of the Design of Production Facilities;
Mechanical Engineering Publications, London © 1985.

Wilson, David Gordon, Blanco, Ernesto E., "EDICS: A
Multimedia Tutor for Engineering Design,"
MECHANICAL ENGINEERING, The American
Society of Mechanical Engineers, October 1991, Vol.
113, No. 10.

APPENDIX A: EDICS PROGRAM DESIGN

Menu Structure
* Single menu system that will provide access to all levels and sections of EDICS.

It will indicate what the user has covered and will be a flip up item from the main
controller. Will include some sort of preview.

* 1. The Design Process
*2. Bearings
3. Fastening and Joining
4. Springs
5. Power Transmission
6. Materials

* Map will be a single scrolling page that covers all of EDICS.
Index/dictionary

* *Separate floating window.
* *All terms will be defined with a written definition and one of the following: still

image, video, or animation illustration.
* Double clicking on all relevant index items will connect all related pages to that

term in a linear sequence. Also devices (e.g., the Black and Decker hammer drill)
will play back all related media.

* User will be able to create an index item that will connect all selected pages and
media in a linear sequence. User will add pages that user is currently on.

Developer tools
* *These would be created for in house use initially, with future consideration for

others to add their material to EDICS.
* *The main tool here will be the "screen arranger." The purpose of this utility is

the creation of the EDICS screens. Media based on the Paradox database script
will be placed and manipulated in this editor including sequence information.
Once desired settings are made the screen will be "printed" as a record to a SQL
database.

Media and presentation
* The decisions on which media to use will come from the answer of the question,

"How would a real world engineer communicate this idea?" These are the
purposed basic rules for the presentation of information on the new EDICS.

1. Renderings, i.e., color hand drawings: conceptual ideas.
2. Sketches, i.e., black and white pencil sketches: convey more

detailed/developed ideas.
3. CAD solids, i.e., computer generated 3D images and animation's: fully

developed design.
4. CAD drafted, i.e., computer generated 2D line drawings: implementation

level.
5. Photos and Video: for showing actual parts.
6. Audio:
7. Text:

* *Video: one video compression standard will be used for all slide shows, video
and full animations. It will be MCI (Multimedia Controller Interface) compatible
(note: currently we are using Cinepak, final selection is not necessary until end of
the project).

* *A video controller will be provided for movies.
* *Still images: these will all use the same file format, allowing for 16 bit or less

color, depending on desired quality. At time of CD printing all images will be fully
edited and backgrounds incorporated. Currently using targa format for fastest
loads.

* *Vector images: Windows metafile format will be used.
* *Audio files: all audio files that are not interleaved with video will be store as

.WAV files. The program will allow the sequencing of media, including sound
files.

Controls
* (*The prototype of this has been completed) The main EDICS controller will be a

physical controller device similar in function features to that done earlier (Sepehr's
interface in MacroMind Director).

* Navigation
1. *Left-right navigation metaphor
2. Down will correspond to in-depth information, e.g., calculations and

equations
3. *Menu access
4. *Map
5. *Index
6. *Quit EDICS
7. Page location will be indicated and user will be able to move between

pages
8. Speaker volume
9. *Voice off/on

Branching
* *Index-set branching

1. Any object, except audio, can be linked to any index-set. When that object
is clicked on program branches to first page in that index-set. Subsequent
pages appear to the right.

2. A return-to control-button appears allowing the user to return to the
branch point.

* *Object branching
1. Any object, except audio, can be linked to any other object on any other

screen. When the former object is clicked on the latter object appears on
top of the current screen.

2. Clicking on the "opened" object puts it away.
Interactions (the types of user activities will be limited)

* *Locate the item

1. Define invisible areas over an image that will have pop-up menus attached
to them allowing for selection from a list. This is based on the current "Find
the Bearing" activity.

2. Scores will be tracked for number of incorrect selections and tallied for that
user.

* *Interactive design (this is based on work done by EDICS UROP Joe DeMare)
1. Incomplete or incorrect design is given to the student.
2. User selects design corrections. Design is changed to the selection.
3. Each option will have pros and cons that will be given after student is done

selecting.
4. Up to three "expert" designs can be given as the solution.
5. Each design selection will have a score allocated to it that will be used to

evaluate the student.
* *Typed definitions

1. Provide text field for user to type in requested definition.
2. Transfer text to notepad if requested.

* Check Box Multiple Choice
1. Puts boxes next to terms and allows for user to select relevant items
2. Scores will be tracked for number of incorrect selections and tallied for that

user.

* Estimation (this is based on example estimation questions)
1. Three objects are associated with this screen all "play" at the same time.
2. A slider bar or dial indicates values to a question posed.
3. Multiple problems are allowed for each problem.
4. Score are tracked for user.

Note Pad
* *Allow user to make notes.
* Add current page to notes with hot button for easy location.
* *Print out.
* Add a piece of media to notes.

User tracking
* *Ask user to enter name and password
* *Create new password for new users
* Track user's progress through the program.
* Keep scores on activities for user feedback.

Voice off
* *A floating/scrolling text field will come up if voice is turned off.
* *This will be transcription of the narration.

* indicates that this is completed

APPENDIX B: EDICS PROGRAM LISTING
(Program code was written mostly by Acee Agoyo, with assistance from Chang Suh and

Ryan Ehlert all MIT undergraduate students)

FRMDEFIN.FRM CODE

Dim Objects(3) As String

Sub CreatelndexSet ()

Dim SQLStmt As String

SQLStmt = "Select * from [Index Database] where [Term] LIKE '" & CurWord & ""'
dtalndex.RecordSource = SQLStmt
dtalndex.Refresh

End Sub

Sub DisplayMedia ()

Dim ObjectType As String, Definition As String
Dim Ctr As Integer

txtDefinition.Text = Objects(2)
For Ctr = 1 To 3

ObjectType = LCase(Left$(Objects(Ctr), 1))
If ObjectType <> "" Then

Load picArchive(Ctr)
Select Case ObjectType

Case STILL CODE
'Debug.Print STILLPATH & Objects(Ctr) & FILE_STILL
picArchive(Ctr).Image = STILLPATH & Objects(Ctr) & FILE_STILL
picArchive(Ctr).AutoRedraw = True
picArchive(Ctr).Visible = True

Case SCREENTEXT_CODE
'txtDefinition.Text = CurObject
'txtDefinition.Text = ReadFile(TEXTPATH & Objects(Ctr) & FILE_TEXT)

Case AUDIO_CODE
Case VIDEO_CODE

End Select
End If

Next Ctr

End Sub

Sub Form_Load ()

lblWord.Caption = CurWord
CreateIndexSet
GetMedia
DisplayMedia

End Sub

Sub GetMedia ()

On Error GoTo ErrHandler:

Objects(1) = dtalndex.Recordset.Fields("Object 1")
Objects(2) = dtaIndex.Recordset.Fields("Object 2")
Objects(3) = dtalndex.Recordset.Fields("Object 3")

ErrHandler:
Exit Sub

End Sub

FRMDIALO.FRM CODE
Option Explicit

Sub cmdOk_Click (Index As Integer)

Dim Temp As Integer, Ctr As Integer

Tag = 0
If Index = 0 Then

If frameDialog(DIALOG_ZOOM).Visible Then
Tag = Val(txtZoom.Text)

ElseIf frameDialog(DIALOG_SCALE).Visible Then
Temp = Val(txtScale.Text)
If optScale(0) Then

Tag = -(1 - (Temp/ 100))
Else

Tag = Temp / 100
End If

Else
Tag = Val(txtDimension.Text)

End If
End If

For Ctr = DIALOG_SCALE To DIALOG_HEIGHT
frameDialog(Ctr).Visible = False

Next Ctr

Hide

End Sub

Sub spnDimension__SpinDown (Index As Integer)

If txtDimension.Text > 0 Then
txtDimension.Text = Val(txtDimension.Text) - 1
txtDimension.Refresh

End If

End Sub

Sub spnDimension_SpinUp (Index As Integer)

txtDimension.Text = Val(txtDimension.Text) + 1

txtDimension.Refresh

End Sub

Sub spnScale_SpinDown ()

If txtScale.Text > 0 Then
txtScale.Text = Val(txtScale.Text) - 1
txtScale.Refresh

End If

End Sub

Sub spnScale_SpinUp ()

txtScale.Text = Val(txtScale.Text) + I
txtScale.Refresh

End Sub

Sub spnZoom_SpinDown ()

If txtZoom.Text > 0 Then
txtZoom.Text = Val(txtZoom.Text) - 1
txtZoom.Refresh

End If

End Sub

Sub spnZoom_SpinUp ()

txtZoom.Text = Val(txtZoom.Text) + 1
txtZoom.Refresh

End Sub

Sub txtDimension_KeyPress (KeyAscii As Integer)

If KeyAscii = 13 Then
KeyAscii = 0
cmdOkClick 0

End If

End Sub

Sub txtScale_KeyPress (KeyAscii As Integer)

If KeyAscii = 13 Then

KeyAscii = 0
cmdOk_Click 0

End If

End Sub

Sub txtZoom_KeyPress (KeyAscii As Integer)

If KeyAscii = 13 Then
KeyAscii = 0
cmdOk_Click 0

End If

End Sub

FRMDICT.FRM CODE
Option Explicit

Sub cmdExit_Click ()

Unload Me

End Sub

Sub mnuWindowItem_Click (Index As Integer)

Select Case Index
Case 0 'Cascade

frmMain.Arrange CASCADE
Case 1 'Tile

frmMain.Arrange TILE_HORIZONTAL
Case 2 'Arrange

frmMain.Arrange ARRANGE_ICONS
End Select

End Sub

FRMLOGIN.FRM code
Option Explicit

Const EDICSPWDDB = "d:\share\edicsdat.a\access\pwd.mdb"
Const EDICSUSERS = "c:\edics\users"

Dim Users() As String
Dim PwdDb As Database
Dim NewUser As Integer

Sub AddPwd (SupplyTb As Table, ByVal UserName As String, ByVal Password As String)

SupplyTb.Index = "PrimaryKey"
SupplyTb.Seek "=", UserName

SupplyTb.Edit
SupplyTb.Fields("Password") = Password
SupplyTb.Update

SupplyTb.Close

End Sub

Sub AddUser (SupplyTb As Table, ByVal UserName As String)

Dim Response As Integer

Response = MsgBox("You are a new user, would you like to register for an account?",
MBOKCANCEL + MB_ICONQUESTION + MB_APPLMODAL, "New User")

If Response = IDOK Then
SupplyTb.AddNew
SupplyTb.Fields("UserName") = UserName
SupplyTb.Fields("Files") = EDICSUSERS + UserName + "\"
SupplyTb.Update
SupplyTb.Close
txtNewVerify.Text = ""
picPasswd.Visible = True
txtNewVerify.SetFocus

Else
cmdOk_Click 1

End If

End Sub

Sub cmdOk_Click (Index As Integer)

UserName = txtUserName.Text

Select Case Index
Case 0 ' OK Button

If Not ValidUser(PwdDb.OpenTable("Password Table"), UserName) Then
NewUser = True
AddUser PwdDb.OpenTable("Password Table"), txtUserName.Text

Else
If Not ValidPwd(PwdDb.OpenTable("Password Table"), UserName, txtPasswd.Text) Then

MsgBox "Invalid Password, Please Try Again", MB_OK + MB_APPLMODAL
txtUserName.Text =
txtPasswd.Text = ""
If NewUser Then

picPasswd.Visible = False
End If
txtUserName.SetFocus

Else
GetUserInfo PwdDb.OpenTable("Password Table"), UserName
PwdDb.Close
Unload frmLogin
frmMainMenu.Move 2500, 1400

End If

End If
Case 1 'Cancel Button

QuitPgm
End Select

End Sub

Sub FormLoad ()

txtUserName.Text = ""
txtPasswd.Text = ""

NewUser = False

OpenPwdDb
'ReadUserNames

End Sub

Sub GetUserInfo (SupplyTb As Table, ByVal UserName As String)

Debug.Print "Valid user, looking in directory"

Dim UserFiles As String

SupplyTb.Index = "PrimaryKey"
SupplyTb.Seek "=", UserName
UserFiles = SupplyTb.Fields("Files")

Debug.Print UserFiles

End Sub

Sub OpenPwdDb ()

'SetDefaultWorkspace "Admin", "gears"

Set PwdDb = OpenDatabase(EDICSPWDDB)

End Sub

Sub ReadUserNames (SupplyTb As Table)

End Sub

Sub txtNewVerify_KeyPress (KeyAscii As Integer)

If KeyAscii = 13 Then
KeyAscii = 0
If txtPasswd.Text = txtNewVerify.Text Then

AddPwd PwdDb.OpenTable("Password Table"), txtUserName.Text, txtPasswd.Text

cmdOk_Click 0
Else

Beep
End If

End If

End Sub

Sub txtPasswd_KeyPress (KeyAscii As Integer)

If txtUserName <> "" Then
cmdOk(0).Enabled = True

End If

If KeyAscii = 13 And txtPasswd.Text <> "" And txtUserName.Text <> "" Then
KeyAscii = 0
cmdOkClick 0

End If

End Sub

Sub txtUserNameKeyPress (KeyAscii As Integer)

If txtPasswd.Text <> "" Then
cmdOk(0).Enabled = True

End If

If KeyAscii = 13 And txtUserName.Text <> "" Then
KeyAscii = 0
txtPasswd.SetFocus

End If

End Sub

Function ValidPwd (SupplyTb As Table, ByVal UserName As String, ByVal Password As String) As
Integer

SupplyTb.Index = "PrimaryKey"
SupplyTb.Seek "=", UserName

If SupplyTb.Fields("Password") = Password Then
ValidPwd = True

Else
ValidPwd = False

End If

SupplyTb.Close

End Function

Function ValidUser (SupplyTb As Table, ByVal UserName As String) As Integer

SupplyTb.Index = "PrimaryKey"
SupplyTb.Seek "=", UserName

ValidUser = Not SupplyTb.NoMatch

SupplyTb.Close

End Function

FRMMN3.FRM CODE
Option Explicit

Const DROPINT = 0
Const FileName = 1
Const FinalX = 2
Const FinalY = 3
Const OBJHEIGHT = 4
Const INITX = 5
Const INITY = 6
Const MOVEINT := 7
Const TRANSTYPE = 8
Const OBJTIME = 9
Const OBJWIDTH = 10
Const MAXTITLES = 11
Const BRANCH_PIC = 4
Const BRANCH_JUMPTO = 5
Const BRANCH_LOADOBJ = 6
Const MAXCACHE = 10

D)im ListBoxTitles(MAXTITLES) As String
D[im ObjectText(MAXTITLES) As String
Dim CachedList(MAXCACHE) As CachedObj
Dim LinkIndex As Integer
Dim DragX As Single, DragY As Single
Dim CurX As Single, CurY As Single
Dim PageCtr As Integer
Dim LabelCtr As Integer, TextCtr As Integer, GraphicCtr As Integer
Dim InputCtr As Integer, VideoCtr As Integer, AudioCtr As Integer, CommandCtr As Integer
Dim MetafileCtr As Integer, BranchCtr As Integer
Dim LinkPtr As Integer
Dim CurText As Integer, CurGraphic As Integer
Dim NumObjects As Integer, NewObjects As Integer
Dim NextPage As Integer
Dim CurVoice As String
Dim Active As Control
Dim PageDb As Database
Dim SectionDs As Dynaset
Dim ObjectTermDb As Database, IndexDb As Database
Dim ObjectTermTb As Table, IndexTb As Table, TopicTb As Table
Dim TextTb As Table
Dim AllPageso As String
Dim AllTopicso As TopicInfo
Dim ObjectsOnPageo As ObjectInfo
Dim UserlndexListo As IndexList
Dim Userlndexltems() As String, UserCtr As Integer

Dim IndexPtr As Integer, UserIndex As Integer
Dim SoundDone As Integer, VideoDone As Integer
Dim WavePlayer As MMControl
Dim UserTool As Integer
Dim CurrentBookmark As String
Dim SavedText As String
Dim ObjectMapo As Integer
Dim PageCaption As String
Dim hCurOpen As Integer, hCurClose As Integer

Sub AddNewltem (ByVal ObjectName As String, OutputCombo As ComboBox)

Dim ObjType As String

ObjType = Left$(ObjectName, 1)
OutputCombo.Addltem UnparseObjName(ObjType) +" " + ObjectName

End Sub

Sub BuildMap (AllTopicso As TopicInfo)

'modifies frmMap
'effects Builds a map in frmMap, based on AllTopics

Dim Ctr As Integer
Dim Page As String

For Ctr = 1 To UBound(AllTopics)
Page = AllTopics(Ctr).Topic
frmMap !outlineMap.AddItem Page

Next Ctr

End Sub

Sub CacheObject (CacheList() As CachedObj, Pointer As Integer, ByVal ObjectName As String, ByVal
LinkIndex As Integer, ByVal SourceType As String, ByVal SourceIndex As Integer)

If Pointer > MAXCACHE Then
Pointer = 0

End If

CacheList(Pointer).Name = ObjectName
CacheList(Pointer).Index = LinkIndex
CacheList(Pointer).SourceType = SourceType
CacheList(Pointer).SourceIndex = SourceIndex

End Sub

Sub cbolndexNames_Click ()

Dim IndexItems As String

IndexItems = ItemList(UserIndexList0, cbolndexNames.Text)

lstIndexSet.Clear
PutItems IstIndexSet, IndexItems, INDEXDELIMITER

End Sub

Sub cbolndexNames_DblClick ()

txtLink.Text = cboIndexNames.Text

End Sub

Sub cboObjects_Click ()

lstObjectProp(cboObjects.ListIndex).Visible = True

End Sub

Sub cboObjectTerms_DblClick ()

' effects Clicks the definiton button.

cmdDefinition_Click

End Sub

Sub ClearAllObjects (ByVal OldLabels As Integer, ByVal OldGraphics As Integer, ByVal OldText As
Integer, ByVal OldVideo As Integer, ByVal OldAudio As Integer, ByVal OldInput As Integer, ByVal
OldCommand As Integer, ByVal OldMetafile As Integer)

'effects Unloads all labels, graphics, text, video, audio, and user input objects.
A 'NotLoaded' Error occurs if an object is not present on screen. This error
occurs if the user presses and navigating buttons before the entire screen is
drawn.

' An "Object Not Loaded" error will occur when and Unload statement is called on
' an object that is not present on the screen.
On Error GoTo NotLoaded

Dim Ctr As Integer
Dim ObjName As String

' Clear all label objects
For Ctr = 1 To OldLabels

Unload lblPage(Ctr)
ObjName = "1"

Next Ctr

' Clear all graphics objects
For Ctr = 1 To OldGraphics

Unload picAny(Ctr)
ObjName = "s"

Next Ctr

' Clear all text objects
For Ctr = 1 To OldText

Unload lblAny(Ctr)
ObjName = "t"

Next Ctr

' Clear all video players and video windows
For Ctr = 1 To OldVideo

Unload mmcPlayer(Ctr)
Unload picVideo(Ctr)
ObjName = "v"

Next Ctr

' Clear all audio and command pictures, if in Editor
If UserTool = EDITOR Then

For Ctr = 1 To OldAudio
Unload picAudio(Ctr)
ObjName = "a"

Next Ctr
For Ctr = 1 To OldCommand

Unload picCommand(Ctr)
ObjName = "c"

Next Ctr
End If

For Ctr = 1 To OldInput
Unload txtUserInput(Ctr)
ObjName = "u"

Next Ctr

For Ctr = 1 To OldMetafile
Unload picMetafile(Ctr)
ObjName = "m"

Next Ctr

NotLoaded:

Debug.Print "Not Loaded: " & ObjName & "--" & Ctr & " on page " & lblCurPage.Caption
Debug.Print Error
Resume Next

End Sub

Sub cmdArrangerClick (Index As Integer)

'modifies NewObjects
'effects Peforms one of several commands availble in the Editor:

NewText -- creates a new text object,
NewGraphic -- creates a new graphic (still) object.
NewMetafile -- creates a new metafile object.
NewCommand -- loads the special command object.
LoadBackground -- loads a picture into the background.
NewVideo -- creates a new video object.
NewAudio -- creates a new audio object.

NewLabel -- creates a new label object.
NewInput -- creates a new input object.
SavePage -- saves all the objects on the current page to the database.

If Index <> PAGESAVE Then
NewObjects = NewObjects + 1

End If

Select Case Index
Case TEXTTOOL

NewText
Case GRAPHIC

NewGraphic
Case METAFILE

NewMetafile
Case COMMANDBUTTON

NewCommand
Case VIDEO

NewVideo
Case AUDIO

NewAudio
Case Label

NewLabel
Case USERINPUT

NewInput
Case PAGESAVE

SavePage
End Select

'Text Button

'Graphic Button

'Load Metafile

'Special Command

' Video Button

' Audio Button

'Label Button

' User Input Button

' Save Page Button

End Sub

Sub cmdCreateIndex_Click (Index As Integer)

Dim Response As Integer

Dim AppName As String, Section As String, Entry As String, FileName As String
Dim ParentPtr As Integer, ChildPtr As Integer
Static EntryPtr As Integer
Static InBranch As Integer

Select Case Index
Case 0

picPage(0).Width = 449
cmdCreatelndex(7).Enabled = True

Case 1
If IstPages.Text <> "" Then

lstIndexSet.AddItem lstPages.Text
End If

Case 2
If lstIndexSet.ListIndex >= 0 Then

lstIndexSet.Removeltem lstIndexSet.ListIndex
End If

Case 3
If cbolndexNames.Text = "" Then

MsgBox "Enter a Name for this Index Set", MBOK + MB_APPLMODAL, "Create
Index Set"

Else
CreateIndexSet UserIndexListo, cbolndexNames.Text, IstIndexSet
If Not (Member(cbolndexNames.Text, cbolndexNames)) Then

cbolndexNames.AddItem cbolndexNames.Text
End If
AppName = "Index Items"
Section = UserIndexList(IndexPtr).Name
Entry = UserIndexList(IndexPtr).List
FileName = "c:\edics\users\" + UserName + "\" + UserName + ".ini"
Response = WritePrivateProfileString(AppName, ByVal Section, ByVal Entry,

FileName)
If Response Then

'MsgBox UserName + ".ini updated successfully.", MB_OK + MB_APPLMODAL,
"Index Set"

Else
'MsgBox UserName + ".ini update failed.", MB_OK + MB_APPLMODAL, "Index

Set"
End If

End If
Case 4

lstIndexSet.Clear
Case 5

'If UserIndex Then
' an index set is already being run: change re-entry point

InBranch = True
'PageCtr = FindPageNo(AllPages, UserIndexltems(UserCtr))

'Else
' EntryPtr = IndexPtr
'End If
UserCtr = 0
UserIndex = True
mnuPageltem(6).Enabled = UserIndex
cmdNavigate(3).Visible = True
RunIndexSet IndexPtr
KeyPreview = True

Case 6
cmdCreatelndex(7).Enabled = False
picPage(0).Visible = False
lstObjects.Visible = False
lblObjects.Visible = False
cmdCreateIndex(O).Visible = True
cmdCreatelndex(5).Visible = True
txtLink.Visible = False
lblNewObj.Visible = False
lblLinkLabel.Visible = False
picDropNew.Visible = False
IstPages.Tag = 0
KeyPreview = True

Case 7
'If InBranch Then

' return to branch point, not trunk
IndexPtr = IndexPtr - 1

If IndexPtr <= EntryPtr Then
InBranch = False
cmdCreatelndex_Click 7

Else
cmdCreatelndex_Click 5

End If
'Else

' return to trunk
UserIndex = False
InBranch = False
innuPageltem(6).Enabled = UserIndex
picPage(0).Visible = False
Caption = DatabaseSection
KeyPreview = True
cmdNavigate_Click 2

'End If
End Select

End Sub

Sub cmdCtlBox_Click (Index As Integer)

Select Case Index
Case 0

PopupMenu mnuCtlBox, POPUPMENU_LEFTALIGN, picProperties(0).Left,
picProperties(0).Top + cmdCtlBox(0).Height

Case 1
PopupMenu mnuCtlBox, POPUPMENU_LEFTALIGN, picVolume(0).Left,

picVolume(0).Top + cmdCtlBox(1).Height
Case 2

PopupMenu mnuCtlBox, POPUPMENU_LEFTALIGN, picSpecialObj(O).Left,
picSpecialObj(0).Top + cmdCtlBox(2).Height

End Select

End Sub

Sub cmdDefinition_Click (

'effects Shows the definition window, if the text
in the ObjectTerm combo box is not empty.

If cboObjectTerms.Text <> "" Then
CurWord = cboObjectTerms.Text
Load frml)ict
If CurWord = "0" Then frmDict.Show 1
If CurWord = "1" Then Unload frmDict

End If

End Sub

Sub cmdInterface_Click (Index As Integer)

'effects Performs one of several actions, based on the value of Index.
0 -- Starts the Edics Index

1 -- Shows the map
2 -- Opens the Notepad
3 -- Opens Edics Help
4 -- Request to return to main menu
5 -- Request to quit program.

Dim Temp As Integer, Response As Integer
Dim Message As String

Select Case Index
Case 0 ' Starts Index

frmDicSearch.lstSearch.ListIndex = 0
frmDicSearch.txtSearch.Text = ""
frmDicSearch.Show 1
If CurWord = "" Then

Exit Sub
End If
Load frmDict
If CurWord = "O" Then

frmDict.Show
End If
If CurWord = "1" Then

Unload frmDict
End If

Case 1 ' Opens the Map
frmMap.Show

Case 2 ' Starts the Notepad
mnuNotepadItem_Click 0
'Interactive = "il"
'frmlnter.Show

Case 3 ' Opens the Edics Help
Temp = WinHelp(hWnd, "c:\windows\winhelp.hlp", HELP_HELPONHELP, "help")

Case 4
If UserTool = EDITOR Then

Message = MSG_MAIN_EDITOR
Else

Message = MSG_MAIN_PLAYBACK
End If
Response = MsgBox(Message, MB_OKCANCEL + MBICONQUESTION +

MB_APPLMODAL, TITLE_MAIN)
If Response = IDOK Then

ClearAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, AudioCtr, InputCtr,
CommandCtr, MetafileCtr

'Hide
frmMainMenu.Show
End If

Case 5
'Display Quit message box, returns value of button pressed
Response = MsgBox(MSG_QUIT, MB_OKCANCEL + MB_ICONQUESTION +

MB_APPLMODAL, TITLE_QUIT)

If Response = IDOK Then
Unload Me
End

End If
End Select

End Sub

Sub cmdMin_Click (Index As Integer)

Select Case Index
Case 0

picProperties(0).Visible = False
Case 1

picVolume(0).Visible = False
Case 2

picSpecialObj(0).Visible = False
End Select

End Sub

Sub cmdNavigate_.Click (Index As Integer)

'modifies frmPlayer
'effects Performs navigation of screens, based on the value of Index.

0 -- Moves back to previous page in Page Database
and prints the page.

1 -- Moves to the next page in the Page Database and
prints the page.

2 -- Prints the current page again.

Select Case Index
Case 0 'Back

If UserIndex Then
If UserCtr > 1 Then

'ClearAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, AudioCtr, InputCtr,
)mmandCtr, MetafileCtr

UserCtr = UserCtr - 1
MainScreenPrint UserIndexltems(UserCtr)

End If
Elself PageCtr > 1 Then

'ClearAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, AudioCtr, InputCtr,
)mmandCtr, MetafileCtr

PageCtr = PageCtr - 1
MainScreenPrint AllPages(PageCtr)

End If
Case I 'Forward

If UserIndex Then
If UserCtr < UBound(Userlndexltems) Then

'ClearAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, AudioCtr, InputCtr,
CommandCtr, MetafileCtr

UserCtr = UserCtr + 1
MainScreenPrint UserIndexltems(UserCtr)

End If
Elself PageCtr < UBound(AllPages) Then

'ClearAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, AudioCtr, InputCtr,
ComrnmandCtr, MetafileCtr

Cc

Cc

PageCtr = PageCtr + 1
MainScreenPrint AllPages(PageCtr)

End If
Case 2 'Repeat

'ClearAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, AudioCtr, InputCtr, CommandCtr,
MetafileCtr

MainScreenPrint AllPages(PageCtr)
Case 3

cmdCreatelndex Click 7
cmdNavigate(3).Visible = False

End Select

End Sub

Sub cmdObj Click (Index As Integer)

Dim Ctr As Integer

Select Case Index
Case 0 'Add

If lstAllObjects.Text <> "" Then
IstClearObjects.AddItem IstAllObjects.Text

End If
Case 1 ' Add All

For Ctr = 0 To IstAllObjects.ListCount - 1
lstClearObjects.AddItem IstAllObjects.List(Ctr)

Next Ctr
cmdObj(Index).Enabled = False

Case 2 'Remove
If IstClearObjects.ListIndex > -1 Then

IstClearObjects.Removeltem IstClearObjects.ListIndex
End If

Case 3 'Accept
picObj.Visible = False
If cmdObj(1).Enabled Then

ObjectsOnPage(Active.Tag).Transition = OBJECT_CLEARSOME
ParseCommandAttribute IstClearObjects, ObjectsOnPage(Active.Tag).Transition

Else
ObjectsOnPage(Active.Tag).Transition = OBJECT_CLEARALL

End If
Case 4 'Close

picObj.Visible = False
End Select

End Sub

Sub cmdSound_Click (

'effects Turns the sound on or off, depending on the icon -- if eye, sound is off,
if ear, sound is on.

Dim Sound As Integer

If cmdSound.Value = FRAME_EYE Then

mnuOptionsItem(0).Checked = False
cmdSound.Caption = "Sound Off'
mmcSound.Command = "Stop"
frmTranscription.Show

Else
mnuOptionsltem(0).Checked = True
cmdSound.Caption = "Sound On"
mmcSound.Command = "Play"
SoundDone = False
frmTranscription.Hide

End If

End Sub

Sub cmdSpecial_Click (Index As Integer)

Select Case Index
Case 0 ' Browse database
Case 1 ' Close Window

picSpecialObj(0).Visible = True
End Select

End Sub

Sub cmdVolume_Click (Index As Integer)

Dim NullVal As Integer

Select Case Index
Case I

mmcSound.Command = "Close"
mmcSound.Command = "Open"
mmcSound.FileName = "tada.wav"
mmcSound.Command = "Play"
NullVal = sndPlaySound("tada.wav", 1)

Case 2
cmdMin_Click 2

End Select

End Sub

Sub Createlndexltems (OutputArray() As String, ByVal IndexList As String)

'modifies OutputArray
'effects Creates an list of the items in IndexList and places it in the array

OutputArray.

Dim Ctr As Integer
Dim In As String

Ctr = 0

ReDim OutputArray(Ctr)

Do Until Len(IndexList) < 2
In = Pop(IndexList, INDEXDELIMITER)
Ctr = Ctr + 1
ReDim Preserve OutputArray(Ctr)
OutputArray(Ctr) = Left$(In, Len(In) - 1)

Loop

End Sub

Sub CreatelndexSet (OutputArrayo As IndexList, ByVal ItemName As String, InputList As ListBox)

'modifies OutputArray
'effects Creates an index list consisting of the items in the InputList ListBox.

The index list is given the name ItemName added to the array OutputArray.

' Increase OutputArray by one
IndexPtr = IndexPtr + 1
ReDim Preserve OutputArray(IndexPtr) ' keep all previous index lists

' Add the items to the OutputArray
OutputArray(IndexPtr).Name = ItemName
OutputArray(IndexPtr).List = GetItems(InputList, INDEXDELIMITER)

End Sub

Sub CreateListBoxTitles ()

ListBoxTitles(DROPINT) = "Drop Interval" + Chr$(9) + Chr$(9)
ListBoxTitles(FileName) = "Filename" + Chr$(9) + Chr$(9)
ListBoxTitles(FinalX) = "Final X" + Chr$(9) + Chr$(9)
ListBoxTitles(FinalY) = "Final Y" + Chr$(9) + Chr$(9)
ListBoxTitles(OBJHEIGHT) = "Height" + Chr$(9) + Chr$(9)
ListBoxTitles(INITX) = "Initial X" + Chr$(9) + Chr$(9)
ListBoxTitles(INITY) = "Initial Y" + Chr$(9) + Chr$(9)
ListBoxTitles(MOVEINT) = "Move Interval" + Chr$(9) + Chr$(9)
ListBoxTitles(TRANSTYPE) = "Transition Type" + Chr$(9) + Chr$(9)
ListBoxTitles(OBJTIME) = "Time" + Chr$(9) + Chr$(9)
ListBoxTitles(OBJWIDTH) = "Width" + Chr$(9) + Chr$(9)

End Sub

Sub CreateObjectsArray (PageDs As Dynaset, Page As String)

'modifies NumObjects, ObjectsOnPage, ObjectMap
'effects For each Record in the PageDs, creates an object and creates a mapping to the

object. Obtains all object terms for each object.

Dim ID As Integer, TimeOnScreen As Integer, Sequence As Integer
Dim CurObject As String, Link As String
Dim ObjectHeight As Integer, ObjectWidth As Integer
Dim InitialX As Integer, InitialY As Integer, FinalX As Integer, FinalY As Integer
Dim TransitionCode As String, TransitionType As String, TransitionInfo As Integer
Dim PageObject As ObjectInfo

' do until no more objects associated with Page

' Increase current page array for each object
NumObjects = NumObjects + 1
ReDim Preserve ObjectsOnPage(NumObjects)
ReDim Preserve ObjectMap(NumObjects)

' get object information
ID = PageDs.Fields("ID")
CurObject = PageDs.Fields("Object")
ObjectHeight = PageDs.Fields("Height")
ObjectWidth = PageDs.Fields("Width")
InitialX = PageDs.Fields("Initial X")
InitialY = PageDs.Fields("Initial Y")
FinalX = PageDs.Fields("Final X")
FinalY = PageDs.Fields("Final Y")
Sequence = PageDs.Fields("Sequence")
TransitionCode = PageDs.Fields("Transition Code")
TimeOnScreen = PageDs.Fields("Transition Attribute")
Link = PageDs.Fields("Link")

' make an object of type ObjectInfo and add it to the current page array
MakeObject PageObject, ID, DatabaseSection, Page, InitialX, InitialY, FinalX, FinalY,

Sequence, TransitionCode, TimeOnScreen, ObjectHeight, ObjectWidth, "", CurObject, "", Link
ObjectsOnPage(NumObjects) = PageObject

' get all object terms
GetObjectTerms CurObject

PageDs.MoveNext

Loop

End Sub

Sub DelayOff ()

'modifies tmrWait
'effects Disables the timer if the prescribed delay period is over, i.e. ReturnValue

is true.

If ReturnValue Then
tmrWait.Enabled = False

End If

End Sub

Sub DelayOn (ByVal DelayTime)

'modifies tmrWait
'effects Enables tmrWait to the interval DelayTime

tmrWait.Enabled = False
tmrWait.Interval = DelayTime

Do Until PageDs.EOF

tmrWait.Enabled = True

End Sub

Sub DeleteObject (Source As Control)

'modifies Me, PageDb
effects Removes the object from the database corresponding to Source.

ObjectsOnPage(Source.Tag).Contents = DELETED
UpdateObject ObjectsOnPage(Source.Tag), PageDb.OpenTable("Page Database")
Unload picAny(Source.Index)
GraphicCtr = GraphicCtr - 1
NumObjects = NumObjects - 1

End Sub

Sub DialogBox (ByVal DialogType As Integer)

' effects Displays a dialog box, based on DialogType, where DIALOG_WIDTH and
DIALOGHEIGHT

denote setting the dimensions of the Active object, DIALOG_SETTIME denotes
setting the time for the Active object, and DIALOG_SCALE and DIALOG_ZOOM
denote setting visual effects for the Active Object (stills only).

Select Case DialogType
Case DIALOGHEIGHT

frmDialog.lblDialog.Caption = "Height"
frmDialog.txtDimension = Active.Height

Case DIALOG_WIDTH
frmDialog.lblDialog.Caption = "Width"
frmDialog.txtDimension = Active.Width
DialogType = DialogType - 1

Case DIALOG_SETTIME
frmDialog.lblDialog.Caption = "Time"
frmDialog.txtDimension = ObjectsOnPage(Active.Tag).TimeOnScreen
DialogType = DialogType - 2

Case DIALOG_SETJUMP
frmDialog.lblDialog.Caption = "Jump Interval"
frmDialog.txtDimension = Sensitivity
DialogType = DialogType - 3

End Select

'Display the DialogBox
frmDialog.frameDialog(DialogType).Visible = True
frmDialog.Show MODAL

End Sub

Function DisplayObject (PageObject As ObjectInfo, ByVal ObjectCtr As Integer)

On Error GoTo PrintError:

Dim ID As Integer, RetIndex As Integer
Dim Initial As Coords, Final As Coords
Dim InitialX As Integer, InitialY As Integer, FinalX As Integer, FinalY As Integer
Dim IntervalX As Integer, IntervalY As Integer, Position As Integer
Dim deltaX As Integer, deltaY As Integer
Dim ObjectHeight As Integer, ObjectWidth As Integer
Dim TransitionCode As String, TransitionType As String, TransitionInfo As Integer
Dim ObjectType, CurObject As String, Link As String, FileName As String
Dim Sequence As Integer, TimeOnScreen As Integer
Dim Object As Control, Player As MMControl
Dim TransFile As String

ID = PageObject.ID
CurObject = PageObject.Contents
ObjectHeight = PageObject.Height
ObjectWidth = PageObject.Width
InitialX = PageObject.Initial.Left
InitialY = PageObject.Initial.Top
FinalX = PageObject.Final.Left
FinalY = PageObject.Final.Top
Sequence = PageObject.Sequence
TransitionCode = PageObject.Transition
TimeOnScreen = PageObject.TimeOnScreen
Link = PageObject.Link

ObjectType = UCase(Left$(CurObject, 1))

Select Case ObjectType

Case LABEL_CODE

LabelCtr = LabelCtr + 1
RetIndex = LabelCtr
ObjectMap(ObjectCtr) = LabelCtr

Set Object = lblPage(LabelCtr)
Load Object

Object.Tag = ObjectCtr

Screen.MousePointer = 11
FormatLabel lblPage(LabelCtr), TransitionCode, TimeOnScreen
Object.Caption = Right$(CurObject, Len(CurObject) - 1)
Object.Top = InitialY
Object.Left = InitialX
Object.Visible = True
DoEvents
Screen.MousePointer = 0

Case COMMAND_CODE

CommandCtr = CommandCtr + 1
RetIndex = CommandCtr
ObjectMap(ObjectCtr) = CommandCtr

If UserTool = EDITOR Then
Set Object = picCommand(CommandCtr)
Load Object
Object.Top = 64 + 50 * (CommandCtr - 1)
Object.Left = 16
Object.Visible = True
Object.Tag = ObjectCtr

End If

Object.Visible = True
If Not SoundDone Or Not VideoDone Then

Do
DoEvents

Loop Until SoundDone And VideoDone
End If

Select Case UCase(Left$(TransitionCode, 1))
Case OBJECT_CLEARALL

If UserTool = EDITOR Then
HideAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, 0, InputCtr,

MetafileCtr
Else

ClearAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, 0, InputCtr,
CommandCtr, MetafileCtr

End If
Case OBJECT_CLEARSOME

HideSomeObjects Right$(TransitionCode, Len(TransitionCode) - 1)
Case OBJECT_NEXTPAGE

cmdNavigate_Click 1
Case OBJECT_SPECIAL

CurObject = Right$(CurObject, Len(CurObject) - 1)
Select Case UCase(Left$(CurObject, 1))

Case OBJ INTERACTIVE
'Dim Interact As New frmInter
Interactive = CurObject
'Load frmlnter
WindowState = 1
frmInter.Show
frmInter.SetFocus

Case OBJ_FIND
'Dim Find As New frmFindThe
Problem = CurObject
WindowState = 1
'Find.Tag = CurObject
Load frmFindThe_
'frmFindThe .Show

End Select
End Select

Case AUDIO_CODE

AudioCtr = AudioCtr + 1
RetIndex = AudioCtr

ObjectMap(ObjectCtr) = AudioCtr

If Not SoundDone Then
Do

DoEvents
Loop Until SoundDone

End If

'Set WavePlayer = mmcSound

If UserTool = EDITOR Then
Set Object = picAudio(AudioCtr)
Load Object
Object.Top = 40
Object.Left = 16 + 50 * (AudioCtr - 1)
Object.Visible = True
Object.Tag = ObjectCtr

End If

Screen.MousePointer = 11
CurVoice = AUDIOPATH & CurObject & FILE_WAVE
ObjectsOnPage(ObjectCtr).Path = AUDIOPATH
ObjectsOnPage(ObjectCtr).Extension = FILE_WAVE
ObjectsOnPage(ObjectCtr).Contents = CurObject

'Load Player
mmcSound.FileName = AUDIOPATH & CurObject & FILE_WAVE
mmcSound.Notify = True
mmcSound.Command = "Close"
mmcSound.Notify = True
rmmcSound.Command = "Open"
Screen.MousePointer = 0

If cmdSound = FRAME_EAR Then
SoundDone = False
mmcSound.Command = "Play"

Else
SoundDone = True

End If

TransFile = Mid$(CurObject, 2, Len(CurObject))
TransFileReadAndPrint TransFile, TextTb
NextPage = False

' Display Transcription Window if necessary
If cmdSound = FRAME_EYE And mnuViewItem(0).Checked Then

frmTranscription.Show
End If

Case STILL_CODE

GraphicCtr = GraphicCtr + 1
RetIndex = GraphicCtr
ObjectMap(ObjectCtr) = GraphicCtr

Set Object = picAny(GraphicCtr)
Load Object

Screen.MousePointer = 11
Object.Image = STILLPATH & CurObject & FILE_STILL
Object.Tag = ObjectCtr
ObjectsOnPage(ObjectCtr).Path = STILLPATH
ObjectsOnPage(ObjectCtr).Extension = FILESTILL
ObjectsOnPage(ObjectCtr).Contents = CurObject

If ObjectHeight = 0 Then
Object.Height = Object.ImageHeight

Else
Object.Height = ObjectHeight

End If

If ObjectWidth = 0 Then
Object.Width = Object.ImageWidth

Else
Object.Width = ObjectWidth

End If

Object.Top = InitialY
Object.Left = InitialX
Object.Visible = True
Screen.MousePointer = 0

Case META_CODE

MetafileCtr = MetafileCtr + 1
RetIndex = MetafileCtr
ObjectMap(ObjectCtr) = MetafileCtr

Set Object = picMetafile(MetafileCtr)
Load Object

Screen.MousePointer = 11
Object.Picture = LoadPicture(STILLPATH & CurObject & FILE_METAFILE)
Object.Tag = ObjectCtr
ObjectsOnPage(ObjectCtr).Path = STILLPATH
ObjectsOnPage(ObjectCtr).Extension = FILE_METAFILE
ObjectsOnPage(ObjectCtr).Contents = CurObject

Object.Top = InitialY
Object.Left = InitialX
Object.Visible = True
Screen.MousePointer = 0

Case SCREENTEXT_CODE, TRANSCRIPTION_CODE

TextCtr = TextCtr + 1
RetIndex = TextCtr
ObjectMap(ObjectCtr) = TextCtr

100

Set Object = lblAny(TextCtr)
Load Object

Object.Height = ObjectHeight
Object.Width = ObjectWidth
Object.Tag = ObjectCtr
ObjectsOnPage(ObjectCtr).Path = TEXTPATH
ObjectsOnPage(ObjectCtr).Extension = FILE_TEXT
ObjectsOnPage(ObjectCtr).Contents = CurObject

Object.Top = InitialY
Object.Left = InitialX
Object.Visible = True

FileName$ = TEXTPATH & CurObject & FILE_TEXT
PrettyPrint lblAny(TextCtr), cboObjectTerms, CurObject, TextTb

Case VIDEO_CODE

VideoCtr = VideoCtr + 1
RetIndex = VideoCtr
ObjectMap(ObjectCtr) = VideoCtr

If Not VideoDone Then
Do

DoEvents
Loop Until VideoDone

End If

Set Player = mmcPlayer(VideoCtr)
Load Player
Set Object = picVideo(VideoCtr)
Load Object

Screen.MousePointer = 11
Object.Height = ObjectHeight
Object.Width = ObjectWidth
Object.Tag = ObjectCtr
ObjectsOnPage(ObjectCtr).Path = VIDEOPATH
ObjectsOnPage(ObjectCtr).Extension = FILE_VIDEO
ObjectsOnPage(ObjectCtr).Contents = CurObject

'If UserTool = EDITOR Then
Object.Top = InitialY
Object.Left = InitialX
Object.Visible = True

'End If

Player.Notify = True
Player.Top = Object.Top + ObjectHeight
Player.Left = Object.Left
Player.Width = Object.Width

Player.Command = "Close"

'If TransitionCode = OBJECT_DROP Then
' Player.Wait = True
'Else
' Player.Wait = False
'End If

Player.hWndDisplay = Object.hWnd
Player.FileName = VIDEOPATH & CurObject & FILE_VIDEO
Player.Command = "Open"

Screen.MousePointer = 0
If cmdSound = FRAME_EAR Then

Player.Silent = False
Else

Player.Silent = True
End If

Player.Notify = True
TransitionCode = Left$(TransitionCode, 1)

If TransitionCode = OBJECT_LOOP Then
Player.HelpContextlD = MNUINFOTRANS_LOOP

End If

If TransitionCode = OBJECTWAIT Or TransitionCode = OBJECTDROP Then
VideoDone = False

Else
VideoDone = True

End If

'mmcPlayerStepClick VideoCtr, True
'mmcPlayerStepClick VideoCtr, True

Player.Command = "Play"
Player.Visible = True

'If UserTool = PLAYBACK Then
VideohWnd = FindWindowByString(ByVal "AviWnd", ByVal (CurObject + ".avi"))
NewVal = SetWindowLong(VideohWnd, GWLSTYLE, ByVal WS_Video)
NullVal = SetWindowPos(VideohWnd, HWNDTOPMOST, InitialY, InitialX +

OFFSETITOP, ObjectWidth, ObjectHeight, SWP_SHOWWINDOW)
'End If

Case INPUT_CODE

InputCtr = InputCtr + 1
RetIndex = InputCtr
ObjectMap(ObjectCtr) = InputCtr

Load txtUserlnput(InputCtr)
Set Object = txtUserInput(InputCtr)

'CurObject = right$(CurObject, Len(CurObject - 1))
Object.Tag = ObjectCtr
If ObjectsOnPage(ObjectCtr).Transition = "S" Then

Object.Text = SavedText
Elself ObjectsOnPage(ObjectCtr).Transition = "C" Then

SavedText = ""
End If
'Object.Text = Right$(CurObject, Len(CurObject) - 1)
Object.Top = InitialY
Object.Left = InitialX
Object.Visible = True

End Select

If ObjectCtr = LINKEDOBJ Then
Object.ZOrder
If ObjectType = VIDEO_CODE Then

Player.ZOrder
End If

End If

If Link = "none" And ObjectType <> STILL_CODE Then
Object.MousePointer = 0

Elself ObjectType = STILL_CODE And Link = "none" Then
Object.PrintSize = NOLINK

Else

End If

TransitionType = UCase(Left$(TransitionCode, 1))

If TransitionType = OBJECT_MOVE Or TransitionType = OBJECT_MOVEANDDROP Then

TransitionInfo = Val(Right$(TransitionCode, Len(TransitionCode) - 1))

MakeCoords Initial, InitialX, InitialY
MakeCoords Final, FinalX, FinalY

deltaX = Final.Left - Initial.Left
deltaY = Final.Top - Initial.Top

If deltaX <> 0 Then
IntervalX = deltaX / TransitionInfo
For Position = Initial.Left To Final.Left Step IntervalX

Object.Left = Position
Next Position

End If

If deltaY <> 0 Then
IntervalY = deltaY / TransitionInfo
For Position = Initial.Top To Final.Top Step IntervalY

Object.Top = Position
Next Position

End If

103

End If

If TransitionType = OBJECT_DROP Or TransitionType = OBJECT_MOVEANDDROP Then
If ObjectType = VIDEO_CODE Then

Do
DoEvents
If Player.Mode = 524 Then

MsgBox "Video Could Not Play", MB OK
VideoDone = True

End If
Loop Until VideoDone
Player.Visible = False
Object.Visible = False

Else
DelayOn TimeOnScreen * 1000 ' convert to milliseconds
Do

DoEvents
Loop Until ReturnValue
Object.Visible = False
DelayOff

End If
End If

DisplayObject = RetIndex

PrintError:
'MsgBox "There is an error " & Err, MB_OK
'If mmcPlayer(VideoCtr).Error Then

'MsgBox "MCI Error: " & mmcPlayer(VideoCtr).ErrorMessage & " " &
mmcPlayer(VideoCtr).Error, MB_OK

'End If
Debug.Print Error
Resume Next

End Function

Sub DisplayTransitionCode (ByVal ObjectType As String, ByVal Transition As String, OutputCombo As
ComboBox)

'modifies OutputCombo
'effects Takes the Transition Code

OutputCombo.Text = UnparseTransCode(Transition)

End Sub

Sub FillLinks (Db As Database)

Dim Tb As Table

Set Tb = Db.OpenTable("Page Database")

Tb.MoveFirst

104

Do Until Tb.EOF
Tb.Edit
Tb.Fields("Link") = "none"
Tb.MoveNext

Loop
'tb.Update

End Sub

Sub FillListBoxProperties (Index As Integer)

Dim Ctr As Integer

'For Ctr = 0 To MAXTITLES
' IstObjectProp(Index).AddItem ListBoxTitles(Ctr)
'Next Ctr

End Sub

Sub FillListBoxValues (Index As Integer, CurObject As ObjectInfo)

Dim Ctr As Integer

ParseObjectInfo CurObject

IstObjectProp(Index).Clear

For Ctr = 0 To MAXTITLES
lstObjectProp(Index).AddItem ListBoxTitles(Ctr) + ObjectText(Ctr), Ctr

Next Ctr

End Sub

Function FindIndex (ObjectsArrayo As ObjectInfo, ByVal ObjToClear As String) As Integer

Dim Ctr As Integer

For Ctr = 1 To UBound(ObjectsArray)
If ObjectsArray(Ctr).Contents = ObjToClear Then

FindIndex = Ctr
Exit Function

End If
Next Ctr

FindIndex = -1

End Function

Function FindIndexPtr (ByVal IndexName As String, InputCombo As ComboBox)

Dim Ctr As Integer

For Ctr = 0 To InputCombo.ListCount
If IndexName = InputCombo.List(Ctr) Then

105

FindIndexPtr = Ctr + 1
Exit Function

End If
Next Ctr

End Function

Sub FormDragDrop (Source As Control, X As Single, Y As Single)

'effects Moves the Source control to the position denoted by X - DragX, Y - DragY.
If Source is a video object, also move the player object to the new position.

Source.Move (X - DragX), (Y - DragY)
If Source Is picVideo(Source.Index) Then

mmcPlayer(Source.Index).Top = Source.Top + Source.Height
mmcPlayer(Source.Index).Left = Source.Left

End If

End Sub

Sub Form DragOver (Source As Control, X As Single, Y As Single, State As Integer)

'lblLoc.Caption = X & ", " & Y

End Sub

Sub Form KeyDown (KeyCode As Integer, Shift As Integer)

Select Case KeyCode
Case KEY_UP

Active.Move Active.Left, Active.Top - Sensitivity
Case KEY_DOWN

Active.Move Active.Left, Active.Top + Sensitivity
Case KEYRIGHT

Active.Move Active.Left + Sensitivity
Case KEY_LEFT

Active.Move Active.Left - Sensitivity
End Select

End Sub

Sub FormLoad ()

GraphicCtr = 0
TextCtr = 0
VideoCtr = 0
LabelCtr = 0
InputCtr = 0
AudioCtr = 0
MetafileCtr = 0
CommandCtr = 0
NewObjects = 0
LinkPtr = -1
PageCtr = 1

106

SoundDone = True
NextPage = True
VideoDone = True
UserIndex = False
UserTool = TOOL
Sensitivity = 10
SavedText = ""

Caption = DatabaseSection
mnuUserName.Caption = UserName

Show
DoEvents

'This part loads the search textbox with the term
Load_SearchText

OpenPageDb
OpenObjectTermDb
OpenIndexDb

GetAllPages PageDb, AllPageso, AllTopicso, DatabaseSection, IstPages
'GetAllPages PageDb, AllPageso, AllTopicso, DatabaseSection, frmDialogs!lstPages
ReadIndexSets PageDb

GetAllTopics PageDb, AllTopicso
'BuildMap AllTopics()

LoadCursorModule

RaiseWindow frmTranscription.hWnd

If UserTool = EDITOR Then
StartEditor

Else
StartPlayback

End If

End Sub

Sub Form_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

MousePointer = 0
'lblShowLink.Visible = False
'mnuPageLabel.Caption = PageCaption

End Sub

Sub Form_Unload (Cancel As Integer)

SaveBookmark
SectionDs.Close
'PageDb.Close
IndexTb.Close

107

ObjectTermTb.Close
frmTranscription.Hide

End Sub

Function FormatLink (LinkType As String, PageName As String, ObjectName As String, LinkName As
String)

Dim Temp As String

If LinkType = NAMELINK Then
Temp = LinkType & CODEDELIMITERLEFT & LinkName & CODEDELIMITERRIGHT

Else
Temp = PAGELINK & CODEDELIMITERLEFT & PageName & CODEDELIMITERRIGHT
If LinkType = ObjLink Then

Temp = Temp & CODEDELIMITERLEFT & ObjectName & CODEDELIMITERRIGHT
End If

End If

FormatLink = Temp

End Function

Sub GetAllObjects (ByVal Page As String, PageDs As Dynaset, SectionDs As Dynaset)

SectionDs.Filter = "[Page Code] LIKE "' & Page & "1'
SectionDs.Sort = "[Sequence]"
'Set PageDs = SectionDs.CreateDynaset()
PageDs.MoveFirst

End Sub

Sub GetAllPages (SupplyDb As Database, AllPageso As String, AllTopicso As TopicInfo,
DatabaseSection As String, IstPages As ListBox)

'modifies AllPagess
'effects Gets all unique Page Code items from SupplyDb and places them in

AllPages.

Dim UniquePageDs As Dynaset, TopicTb As Table
Dim Page As String, Topic As String
Dim Ctr As Integer

Ctr = 0

If TOOL <> EDITOR Then
Set UniquePageDs = SupplyDb.CreateDynaset("Select DISTINCT [Page Code] from [Page

Database] where [Tutorial Code] = '" & DatabaseSection & "')...
Else

Set UniquePageDs = SupplyDb.CreateDynaset("Select DISTINCT [Page Code] from [Page
Database]")

End If

Set TopicTb = SupplyDb.OpenTable("Topic Database")

108

' Set Index
TopicTb.Index = "Page Code"

' add all records in the UniquePageDs into the AllPages dynamic array
Do

Page = UniquePageDs.Fields("Page Code")
TopicTb.Seek "=", Page
If TopicTb.NoMatch Then

Topic = Page
Else

Topic = TopicTb.Fields("Topic")
End If
Ctr = Ctr + 1
ReDim Preserve AllPages(Ctr)
ReDim Preserve AllTopics(Ctr)
AllPages(Ctr) = UniquePageDs.Fields("Page Code")
AllTopics(Ctr).Topic = Topic
lstPages.AddItem Topic
'lstPages.Addltem AllPages(Ctr)
UniquePageDs.MoveNext

Loop Until UniquePageDs.EOF

End Sub

Sub GetAllTopics (SupplyDb As Database, AllTopicso As TopicInfo)

'modifies AllPages
'effects Gets all Topics from SupplyDb as places them in AllTopics.

Dim Page As String, Topic As String
Dim Ctr As Integer
Dim TopicDs As Dynaset

Set TopicDs = SupplyDb.CreateDynaset("Select * from [Topic Database]")

Ctr = 0
ReDim AllTopics(Ctr)

Do Until TopicDs.EOF
Page = TopicDs.Fields("Page Code")
Topic = TopicDs.Fields("Topic")
If Topic <> "none" Then

AllTopics(Ctr).Parent = Page
AllTopics(Ctr).Topic = Topic
Ctr = Ctr + 1
ReDim Preserve AllTopics(Ctr)

End If

TopicDs.MoveNext

Loop

End Sub

109

Function GetBookmark () As Integer

Dim SectionName, KeyName As String, DefaultVal As Integer, FileName As String
Dim Response As Integer

SectionName = "Bookmark"
KeyName = "Section"
DefaultVal = 51
FileName = USERPATH + UserName + "\" + UserName + ".ini"

Response = GetPrivateProfilelnt(SectionName, KeyName, DefaultVal, FileName)

GetBookmark = Response

End Function

Function GetItems (InputList As ListBox, ByVal DELIMITER As String) As String

'effects Takes the items of InputList and returns a string consisting of each of
the items, followed by Delimiter.

Dim Ctr As Integer
Dim Out As String

Out = ""

For Ctr = 0 To InputList.ListCount
Out = Out + InputList.List(Ctr) + DELIMITER

Next Ctr

GetItems = Left$(Out, Len(Out) - 1)

End Function

Sub GetObjectTerms (ByVal ObjectCode As String)

'effects Creates a dynaset from the Object Term Database consisting of records where
the Object Code field is equal to ObjectCode. Moves through the dynaset and
places the information the Object Term field into the ObjectTerm combo box
on the Screen form.

Dim ObjectTermDs As Dynaset
Dim ObjectTerm As String

' Create a dynaset consisting of all records where the Object Code is equal to ObjectCode.
' The dynaset will contain any number of records, listing the object terms associated with
'the ObjectCode
Set ObjectTermDs = PageDb.CreateDynaset("Select * from [Object Term Database] where [Object

Code] = "' & ObjectCode & ""')

' Put object terms in the Definition Combo Box
Do Until ObjectTermDs.EOF

ObjectTerm = ObjectTermDs.Fields("Object Term")

110

'don't add duplicates
If (Not Member(ObjectTerm, cboObjectTerms)) Then

cboObjectTerms.Addltem ObjectTerm
End If

ObjectTermDs.MoveNext
Loop ' ObjectTermDs.EOF

End Sub

Sub GetOneObject (ByVal Page As String, ByVal ObjectName As String, SectionDs As Dynaset,
ObjectDs As Dynaset)

SectionDs.Filter = "[Page Code] = '" & Page & ""' & ", [Object] = '" & ObjectName & "'
'Set ObjectDs = SectionDs.CreateDynaseto

End Sub

Sub GetOneObjfromPage (ByVal ObjectName As String, PageDs As Dynaset, ObjectDs As Dynaset)

PageDs.Filter = "[Object] = "' & ObjectName & "'
'Set ObjectDs = PageDs.CreateDynaseto

End Sub

Sub HideAllObjects (ByVal OldLabels As Integer, ByVal OldGraphics As Integer, ByVal OldText As
Integer, ByVal OldVideo As Integer, ByVal OldAudio As Integer, ByVal OldInput As Integer, ByVal
OldMetafile As Integer)

Dim Ctr As Integer

For Ctr = 1 To OldLabels
lblPage(Ctr).Visible = False

Next Ctr

For Ctr = 1 To OldGraphics
picAny(Ctr).Visible = False

Next Ctr

For Ctr = 1 To OldText
lblAny(Ctr).Visible = False

Next Ctr

For Ctr = 1 To OldVideo
picVideo(Ctr).Visible = False
mmcPlayer(Ctr).Visible = False

Next Ctr

For Ctr = 1 To OldAudio
picAudio(Ctr).Visible = False

Next Ctr

For Ctr = 1 To OldInput

111

txtUserInput(Ctr).Visible = False
Next Ctr

For Ctr = 1 To OldMetafile
picMetafile(Ctr).Visible = False

Next Ctr

End Sub

Sub HideSomeObjects (ByVal ObjectList As String)

Dim ObjToClear As String, ObjType As String
Dim Object As Control
Dim ObjNum As Integer, ObjIndex As Integer

Do While Len(ObjectList) > I
ObjToClear = Pop(ObjectList, ",")
ObjType = Left$(ObjToClear, 1)
ObjIndex = FindIndex(ObjectsOnPageo, Left$(ObjToClear, Len(ObjToClear) - 1))
MapAndClearObject ObjIndex, ObjType

Loop

End Sub

Sub imgTrash_DragDrop (Source As Control, X As Single, Y As Single)

Set Active = Source
mnulnfoltem_Click MNUINFO_DELETE

End Sub

Sub imgTrash_DragOver (Source As Control, X As Single, Y As Single, State As Integer)

If State = ENTER Or State = OVER Then
Source.DragIcon = imgTrash.Picture

Else
Source.DragIcon = LoadPicture("")

End If

End Sub

Function ItemList (InputArray() As IndexList, ByVal ItemName As String) As String

' effects Returns the item list associated with ItemName in the array InputArray.

Dim Ctr As Integer

For Ctr = 1 To UBound(InputArray)
' if found, return the list and exit the function
If InputArray(Ctr).Name = ItemName Then

ItemList = InputArray(Ctr).List
Exit Function

End If
Next Ctr

112

' not found, return an empty value
ItemList = ""

End Function

Sub lblAny_Click (Index As Integer)

Dim Link As String

If UserTool = PLAYBACK Then
If lblAny(Index).Tag = LINKEDOBJ Then

lblAny(Index).Visible = False
Else 'If (lblAny(Index).HelpContextlD <> LINKUP) Then

Link = ObjectsOnPage(lblAny(Index).Tag).Link
If Link <> "none" Then

lblAny(Index).HelpContextID = LINKUP
ProcessLink Link, SCREENTEXT_CODE, Index
If LinkIndex <> UNCACHE Then

IblAny(Index).LinkTimeout = LinkIndex
End If

End If
End If

End If

End Sub

Sub lblAny_KeyPress (Index As Integer, KeyAscii As Integer)

If UserTool = EDITOR Then
If KeyAscii = KEY_DELETE Or KeyAscii = Asc("d") Or KeyAscii = Asc("D") Then

ObjectsOnPage(Active.Tag).Contents = DELETED
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")
Unload lblAny(Index)
TextCtr = TextCtr - 1
NumObjects = NumObjects - 1

End If
End If

End Sub

Sub lblAny_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Dim CurObject As ObjectInfo
Dim Transition As Integer

Set Active = lblAny(Index)

If UserTool = EDITOR Then
If Button = LEFT_BUT`ION Then

lblAny(Index).Drag BEGIN_DRAG
DragX = X
DragY = Y

113

ElseIf Button = RIGHT_BUTTON Then
CurObject = ObjectsOnPage(Active.Tag)
mnulnfoltem(MNU_XY).Caption = "&X, Y..." & Active.Top & ", " & Active.Left
mnulnfoLocIltem(MNU_LOCINITIAL).Caption = "As &Initial: " &

UnparseCoords(CurObject.Initial)
mnulnfoLocItem(MNU_LOCFINAL).Caption = "As &Final: " &

UnparseCoords(CurObject.Final)
mnulnfoltem(MNU_HEIGHT).Caption = "&Height..." & CurObject.Height
mnulnfoltem(MNU_WIDTH).Caption = "&Width..." & CurObject.Width
mnulnfoltem(MNUINFO_SEQUENCE).Caption = "&Sequence. . ." & CurObject.Sequence
Transition = ParseTransitionCode(CurObject)
TransitionCheck Transition
If Transition = MNUINFOTRANS_MOVEANDDROP Or Transition =

MNUINFOTRANS_DROP Then
mnuInfoltem(MNUINFO_TIME).Caption = "Drop &Interval..." &

CurObject.TimeOnScreen
Elself Transition <> MNUINFOTRANS_NONE Then

mnulnfoltem(MNUINFO_TIME).Caption = "Move &Interval..." &
Right$(CurObject.Transition, Len(CurObject.Transition) - 1)

End If
mnulnfoltem(MNUINFO_ZOOM).Enabled = False
mnulnfoltem(MNUINFO_ROTATE).Enabled = False
'MNUINFOTRANSITEM(MNUINFOTRANS ROTATE).Enabled = True
mnulnfoltem(MNUINFO_SCALE).Enabled = True
mnulnfoltem(MNUINFO_FLIP).Enabled = False
dlgGraphic.Filter = "Text Filesl*.txtlAll Filesl*.*"
dlgGraphic.InitDir = Left$(TEXTPATH, Len(TEXTPATH) - 1)
If CurObject.Contents <> "" Then

mnulnfoltem(MNUINFO_FILE).Caption = "File&name. . ." & CurObject.Contents
Else

mnulnfoltem(MNUINFO_FILE).Caption = "File&name..."
End If
PopupMenu mnulnfo, POPUPMENU_LEFTALIGN

End If
End If

End Sub

Sub lblAny_MouseMove (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

'lblLoc.Caption = CurX + X & ", " & CurY + Y

End Sub

Sub lblAny_MouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As Single)

lblAny(Index).Drag END_DRAG

End Sub

Sub lblCurPage_Change ()

'frmTool!lblCurPage.Caption = lblCurPage.Caption

114

End Sub

Sub lblCurPage_DblClick ()

IblToolPage_DblClick

End Sub

Sub lblFromOutline_Change ()

PageCtr = Val(lblFromOutline.Caption)
cmdNavigate_Click 1

End Sub

Sub lblFromOutline_Click ()

PageCtr = Val(lblFromOutline.Caption)
cmdNavigate_Click 1

End Sub

Sub lblPage_Click (Index As Integer)

Dim Link As String

If UserTool = PLAYBACK Then
If lblPage(Index).Tag = LINKEDOBJ Then

lblPage(Index).Visible = False
Else 'If (lblPage(Index).LinkMode <> LINKUP) Then

Link = ObjectsOnPage(lblPage(Index).Tag).Link
If Link <> "none" Then

lblPage(Index).LinkMode = LINKUP
ProcessLink Link, LABEL_CODE, Index
If LinkIndex <> UNCACHE Then

lblPage(Index).LinkTimeout = LinkIndex
End If

End If
End If

End If

End Sub

Sub lblPageMouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Dim CurObject As ObjectInfo
Dim Transition As Integer

Set Active = lblPage(Index)

If UserTool = EDITOR Then
If Button = LEFT_BUTTON Then

115

lblPage(Index).Drag BEGIN_DRAG
DragX = X / Screen.TwipsPerPixelX
DragY = Y / Screen.TwipsPerPixelY

Elself Button = RIGHTBUTTON Then
CurObject = ObjectsOnPage(Active.Tag)
mnuLabelltem(MNU XY).Caption = "&X, Y..." & Active.Top & ", " & Active.Left
mnuLabelLocltem(MNU_LOCINITIAL).Caption = "As &Initial: " &

UnparseCoords(CurObject.Initial)
mnuLabelLocltem(MNU_LOCFINAL).Caption = "As &Final: " &

UnparseCoords(CurObject.Final)
mnuLabelltem(MNULBLSEQUENCE).Caption = "&Sequence..." & CurObject.Sequence
mnuLabelltem(MNULBL FONTNAME).Caption = "Font Name.. ." & Active.FontName
mnuLabelltem(MNULBL FONTSIZE).Caption = "Font Size.. ." & Active.FontSize
mnuLabelltem(MNULBL_FONTBOLD).Checked = Active.FontBold
mnuLabelltem(MNULBLFONTITALIC).Checked = Active.FontItalic
mnuLabelltem(MNULBL_FONTSTRIKE).Checked = Active.FontStrikeThru
mnuLabelltem(MNULBLFONTUNDERLINE).Checked = Active.FontUnderline
'Transition = ParseTran
PopupMenu mnuLabel

End If
End If

End Sub

Sub lblPageMouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As Single)

lblPage(Index).Drag END_DRAG

End Sub

Sub lblProperties_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)

picProperties_MouseDown 0, Button, Shift, X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY

End Sub

Sub lblPropertiesMouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)

picProperties_MouseUp 0, Button, Shift, X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY

End Sub

Sub lblTextHot_Click (Index As Integer)

MsgBox "word", MB_OK

End Sub

Sub lblToolPage_DblClick ()

KeyPreview = False
picPage(0).Top = 240
picPage(0).Left = 72
picPage(0).Width = 217

116

lstPages.ListIndex = (PageCtr - 1)
picPage(0).Visible = True
picPage(0).ZOrder

End Sub

Sub Load_SearchText ()

Dim I As Integer

MousePointer = 11
I =0
frmDicSearch.dtaSearch.Refresh
Do

frmDicSearch.lstSearch.List(I) = frmDicSearch.txtWords.Text
I=I+1
frmDicSearch.dtaSearch.Recordset.MoveNext

Loop Until frml)icSearch.dtaSearch.Recordset.EOF = True

frmDicSearch.dtaSearch.Recordset.MoveFirst
MousePointer = 0

End Sub

Sub LoadBackground ()

End Sub

Sub LoadCursorModule ()

Dim LibName As String
Dim hInstance As Integer
Dim lpCursorName As String

LibName = "d:\share\edicsdat.a\agoyol\cursor.rc"

hInstance = LoadLibrary(LibName)
'MsgBox "h " & hInstance

lpCursorName = "IDC_CURSOR2"
hCurOpen = LoadCursor(hInstance, lpCursorName)
'MsgBox "ho " & hCurOpen
lpCursorName = "IDC_CURSOR1"
hCurClose = LoadCursor(hInstance, lpCursorName)
'MsgBox "hc " & hCurClose

End Sub

;Sub lstObjectProp_Click (Index As Integer)

Select Case IstObjectProp(Index).ListIndex
Case DROPINT
Case FileName
Case FinalX
Case FinalY

117

Case OBJHEIGHT
Case INITX
Case INITY
Case MOVEINT
Case TRANSTYPE
Case OBJTIME
Case OBJWIDTH

End Select

End Sub

Sub lstObjects_Click (

txtLink.Text = FormatLink(ObjLink, (lstPages.Text), Str$(lstObjects.ItemData(lstObjects.Listlndex)),

End Sub

Sub istObjects_DblClick ()

txtLink.Text = FormatLink(ObjLink, (lstPages.Text), Str$(lstObjects.ItemData(lstObjects.Listlndex)),

End Sub

Sub lstPages_Click ()

Dim PageDs As Dynaset
Dim Page As String
Dim Contents As String

If lstPages.Tag = Str$(Link) Then
txtLink.Text = FormatLink(PAGELINK, (lstPages.Text), "", "")
Page = AllPages(lstPages.ListIndex + 1)
SectionDs.Filter = "[Page Code] LIKE "' & Page & "'
SectionDs.Sort = "[Sequence]"
Set PageDs = SectionDs.CreateDynaseto
PageDs.MoveFirst

MousePointer = 11
lstObjects.Clear

Do Until PageDs.EOF
Contents = PageDs.Fields("Object")
lstObjects.AddItem UnparseObjName(Left$(Contents, 1)) & " " & Contents
lstObjects.ItemData(lstObjects.Newlndex) = Val(Right$(Contents, Len(Contents) - 1))
PageDs.MoveNext

Loop

MousePointer = 0
End If

End Sub

Sub lstPagesDblClick ()

'modifies frmPlayer
'effects Goes to the page selected by the index of IstPages.

If IstPages.Tag = Str$(Link) Then
txtLink.Text = FormatLink(PAGELINK, (lstPages.Text), "", "")

Else
picPage(O).Visible = False
PageCtr = (lstPages.Listlndex + 1)
MainScreenPrint AllPages(PageCtr)

End If

End Sub

Sub MainScreenPrint (ByVal Page As String)

'effects Prints to the current instance of frmPlayer the database objects linked to
Page.

Dim NullVal As Integer
Dim ObjectCtr As Integer
Dim PageDs As Dynaset
Dim PageObject As ObjectInfo

'Unload old graphics and text
ClearAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, AudioCtr, InputCtr, CommandCtr,

MetafileCtr

LabelCtr = 0
GraphicCtr = 0
TextCtr = 0
VideoCtr = 0
AudioCtr = 0
InputCtr = 0
CommandCtr = 0
NumObjects = 0
NewObjects = 0
VideoDone = True
SoundDone = True
NextPage = True

' Clear current page array of objects
ReDim ObjectMap(NumObjects)
ReDim ObjectsOnPage(NumObjects)

' Clear the object term list
cboObjectTerms.Clear

'MsgBox SectionDs.Fields("Tutorial Code"), MB_OK

'CurSection = SectionDs.Fields("Tutorial Code")
lblCurPage.Caption = Page ' appears only in EDITOR mode
If UserIndex Then

119

TopicTb.Index = "Topic"
TopicTb.Seek "=", Page
PageCaption = Page
If Len(PageCaption) <= 25 Then

mnuPageLabel.Caption = PageCaption
Else

mnuPageLabel.Caption = Left$(PageCaption, 25)
End If

If Not (TopicTb.NoMatch) Then
Page = TopicTb.Fields("Page Code")

End If

Else
TopicTb.Index = "Page Code"
TopicTb.Seek "=", Page
If Not (TopicTb.NoMatch) Then

PageCaption = TopicTb.Fields("Topic")
If Len(PageCaption) <= 25 Then

mnuPageLabel.Caption = PageCaption
Else

mnuPageLabel.Caption = Left$(PageCaption, 25)
End If

End If
End If

' Select only those records where the Page Code field is equal to Page, and sort
' by sequence, in ascending order
SectionDs.Filter = "[Page Code] LIKE "' & Page & "'
SectionDs.Sort = "[Sequence]"
Set PageDs = SectionDs.CreateDynaset()
PageDs.MoveFirst

CurrentBookmark = PageDs.Bookmark

'If Tool = EDITOR Then
frmEditor.dtaEditor.RecordSource = SQL1 & Page & SQL2
frmEditor.dtaEditor.Refresh

'End If

CreateObjectsArray PageDs, Page

For ObjectCtr = 1 To NumObjects

PageObject = ObjectsOnPage(ObjectCtr)
NullVal = DisplayObject(PageObject, ObjectCtr)

Next ObjectCtr

End Sub

Sub MakeNewDbObject (Object As Control, ByVal Pointer As Integer)

'modifies ObjectsOnPage
'effects Creates a new object, of type ObjectInfo, based on the information provided by

Object, such as Object.Width, Object.Height, Object.Top, etc.
Places the new object into the ObjectOnPage global array, in the position denoted
by Pointer.

Dim DbObject As ObjectInfo
Dim Nullname As String

If TypeOf Object Is ACCUSOFT Then
Nullname = "sO"

ElseIf TypeOf Object Is HEVBLayer Then
Nullname = "tO"

Elself TypeOf Object Is SSCommand Then
Nullname = "bO"

Else
Nullname = Object.LinkItem

End If

MakeObject DbObject, 0, DatabaseSection, AllPages(PageCtr), Object.Left, Object.Top, Object.Left,
Object.Top, Pointer, "0", 0, Object.Height, Object.Width, "", Nullname, "", "none"

ObjectsOnPage(Pointer) = DbObject

Set Active = Object

End Sub

Sub MakeObject (Object As ObjectInfo, ByVal ID As Integer, ByVal CurSection As String, ByVal
CurPage As String, ByVal InitialX As Integer, ByVal InitialY As Integer, ByVal FinalX As Integer,
ByVal FinalY As Integer, ByVal Sequence As Integer, ByVal Transition As String, ByVal
TimeOnScreen As Integer, ByVal ObjectHeight As Integer, ByVal ObjectWidth As Integer, ByVal Path
As String, ByVal CurObject As String, ByVal Extension As String, Link)

'modifies Object
'effects Creates an object of type ObjectInfo, based on information provided by ID,

CurSection, CurPage, etc.

' A new Object doesn't have an ID until it is sent to the database
' A negative flag is sent to this procedure when a new object is created
If ID > 0 Then

Object.ID = ID
End If

Object.TutorialCode = CurSection
Object.PageCode = CurPage
Object.Initial.Left = InitialX
Object.Initial.Top = InitialY
Object.Final.Left = FinalX
Object.Final.Top = FinalY
Object.Sequence = Sequence
Object.Transition = Transition
Object.TimeOnScreen = TimeOnScreen
Object.Height = ObjectHeight

121

Object.Width = ObjectWidth
Object.Path = Path
Object.Contents = CurObject
Object.Extension = Extension
Object.Link = Link

ParseObjectInfo Object
'Load lstObjectProp(NumObjects)
FillListBoxProperties NumObjects
AddNewItem CurObject, cboObjects
'MsgBox "prop box created Obj: " & CurObject & " Obj #: " & NumObjects, MB_OK

End Sub

Sub MapAndClearObject (ByVal Index As Integer, ByVal ObjectType As String)

Dim ObjNum As Integer
Dim Object As Control

ObjNum = ObjectMap(Index)

Select Case UCase(ObjectType)
Case STILL_CODE

Set Object = picAny(ObjNum)
Case VIDEO_CODE

Set Object = picVideo(ObjNum)
mmcPlayer(ObjNum).Command = "Stop"
mmcPlayer(ObjNum).Visible = False

Case SCREENTEXT_CODE
Set Object = lblAny(ObjNum)

Case INPUT_CODE
Set Object = txtUserInput(ObjNum)

Case LABEL CODE
Set Object = lblPage(ObjNum)

End Select

Object.Visible = False

End Sub

Sub mmcPlayer_Done (Index As Integer, NotifyCode As Integer)

VideoDone = True

If mmcPlayer(Index).HelpContextlD = MNUINFOTRANS_LOOP Then
mmcPlayer(Index).Command = "Prev"
mmcPlayer(Index).Command = "Play"

End If

End Sub

Sub mmcPlayerPlayCompleted (Index As Integer, ErrorCode As Long)

VideoDone = True

122

End Sub

Sub mmcSound_Done (NotifyCode As Integer)

'Print NotifyCode
'SoundDone = True

End Sub

Sub mmcSoundPlayCompleted (ErrorCode As Long)

SoundDone = True

End Sub

Sub mmcSound_StatusUpdate ()

If mmcSound.Mode <> 526 Then
SoundDone = True

Else
SoundDone = False

End If

End Sub

Sub mnuAudioFileltem_Click (Index As Integer)

Select Case Index
Case 0 ' New File

dlgGraphic.Filter = "Audio Filesl*.wavlAll Filesl*.*"
mnulnfoFileltem_Click Index

End Select

End Sub

Sub mnuAudioltem_Click (Index As Integer)

Dim Sound As Integer, SoundFile As String

Select Case Index
Case 0 ' Play File

SoundFile = ObjectsOnPage(Active.Tag).Path & ObjectsOnPage(Active.Tag).Contents &
".wav"

If SoundFile <> "" Then
Sound = sndPlaySound(SoundFile, SNDASYNC)

End If
Case 4 ' Delete Audio

picAudio_KeyPress (Active.Index), Asc("d")
End Select

End Sub

Sub mnuAudioSeqItem_Click (Index As Integer)

123

mnuInfoSeqItem_Click Index

End Sub

Sub mnuAudioTransItem_Click (Index As Integer)

mnuAudioTransltem(0).Checked = Not (mnuAudioTransltem(0).Checked)
mnuAudioTransItem(1).Checked = Not (mnuAudioTransItem(1).Checked)

If Index = 0 Then
ObjectsOnPage(Active.Tag).Transition = AUDIO_SYNC

Else
ObjectsOnPage(Active.Tag).Transition = AUDIO_NOSYNC

End If

End Sub

Sub mnuBranchHeightItem_Click (Index As Integer)

Dim CurObject As ObjectInfo
Dim NewH As Integer
Dim Custom As Integer

CurObject = ObjectsOnPage(Active.Tag)

Select Case Index
Case 0 ' Scale Custom

DialogBox DIALOG_HEIGHT
Custom = frmDialog.Tag
If Custom <> 0 Then

NewH = Custom
Else

NewH = Active.Height
End If

Case 1 'Scale -10%
NewH = Active.Height * .9

Case 2 ' Scale +10%
NewH = Active.Height + (Active.Height * .1)

End Select

ObjectsOnPage(Active.Tag).Height = NewH
Active.Height = NewH
mnulnfoltem(1).Caption = "Height. . ." & NewH

End Sub

Sub mnuBranchItem_Click (Index As Integer)

Dim FileName As String, ActiveFileName As String
Dim Extension As String, CurPlayer As MMControl
Dim TempIndex As Integer

Select Case Index

124

Case BRANCH_PIC ' picture

ActiveFileName = ObjectsOnPage(Active.Tag).Contents
dlgGraphic.FilterIndex = 1
dlgGraphic.Action = 1
FileName = dlgGraphic.Filename

If FileName <> ActiveFileName Then
Extension = LCase(Mid$(FileName, Len(FileName) - 3, Len(FileName)))
ObjectsOnPage(Active.Tag).Extension = Extension

Select Case Extension
Case FILE_BITMAP, FILEICON, FILE_DIB

Active.Picture = LoadPicture(FileName)
FileName = Mid$(FileName, Len(STILLPATH) + 1)
FileName = Mid$(FileName, 1, Len(FileName) - 4)
ObjectsOnPage(Active.Tag).Height = Active.Height
ObjectsOnPage(Active.Tag).Width = Active.Width
ObjectsOnPage(Active.Tag).Path = STILLPATH
ObjectsOnPage(Active.Tag).Contents = FileName

End Select
End If

Case BRANCH_JUMPTO 'jump to
Case BRANCH_LOADOBJ ' load object

End Select

End Sub

Sub mnuBranchScaleltem_Click (Index As Integer)

Dim NewH As Integer, NewW As Integer
Dim Custom As Integer

Select Case Index
Case 0 '- 10%

NewH = Active.Height * .9
NewW = Active.Width * .9

Case 1 '+ 10%
NewH = Active.Height + (Active.Height * .1)
NewW = Active.Width + (Active.Width * .1)

Case 2 'Custom
DialogBox DIALOG_SCALE
Custom = frmDialog.Tag
If frmDialog.Tag < 0 Then

NewH = Active.Height * Abs(frmDialog.Tag)
NewW = Active.Width * Abs(frmDialog.Tag)

Elself frmDialog.Tag > 0 Then
NewH = Active.Height + (Active.Height * frmDialog.Tag)
NewW = Active.Width + (Active.Width * frmDialog.Tag)

Else
NewH = Active.Height
NewW = Active.Width

End If

125

End Select

mnulnfoltem(1).Caption = "Height .. " & NewH
mnulnfoltem(2).Caption = "Width..." & NewW

Active.Height = NewH
Active.Width = NewW
ObjectsOnPage(Active.Tag).Height = NewH
ObjectsOnPage(Active.Tag).Width = NewW

End Sub

Sub mnuBranchWidthltem_Click (Index As Integer)

Dim CurObject As ObjectInfo
Dim NewW As Integer
Dim Custom As Integer

CurObject = ObjectsOnPage(Active.Tag)

Select Case Index
Case 0 'Custom

DialogBox DIALOG_WIDTH
Custom = frmDialog.Tag
If Custom <> 0 Then

NewW = Custom
Else

NewW = Active.Width
End If

Case 1 'Scale - 10%
NewW = Active.Width * .9

Case 2 ' Scale + 10%
NewW = Active.Width + (Active.Width * .1)

End Select

ObjectsOnPage(Active.Tag).Width = NewW
Active.Width = NewW
mnulnfoltem(2).Caption = "Width.. ." & NewW

End Sub

Sub mnuCmdAttrltem Click (Index As Integer)

Select Case Index
Case CLEARALL

ObjectsOnPage(Active.Tag).Transition = OBJECT_CLEARALL
Case CLEARSOME

picObj.Top = 72
picObj.Left = 80
If ObjectsOnPage(Active.Tag).Transition = OBJECT_CLEARALL Then

cmdObj(1).Enabled = False
Else

cmdObj(1).Enabled = True
End If

126

picObj .ZOrder
picObj.Visible = True
PrintObjects IstAllObjects
UnParseClearList IstClearObjects, ObjectsOnPage(Active.Tag).Transition

Case NEXT_PAGE
ObjectsOnPage(Active.Tag).Transition = OBJECT_NEXTPAGE

Case SPECIAL_OBJ
picSpecialObj(0).Visible = True

End Select

End Sub

Sub mnuCmdSeqltem_Click (Index As Integer)

mnulnfoSeqltem_Click Index

End Sub

Sub mnuCommandItem_Click (Index As Integer)

Select Case Index
Case 3 'Delete Command

End Select

End Sub

Sub mnuFileltem_Click (Index As Integer)

Select Case Index
Case 0

PrintForm
Case 1 ' Select Quit

cmdInterface_Click 5
End Select

End Sub

Sub mnuHelpltem_Click (Index As Integer)

Select Case Index
Case 0

Case 1

Case 2

Case 3
MsgBox MSG_ABOUT, MB_OK + MB_ICONINFORMATION, TITLE_ABOUT

End Select

End Sub

Sub mnulndexltemClick (Index As Integer)

127

cmdInterface_Click 0

End Sub

Sub mnulnfoFileltem_Click (Index As Integer)

On Error GoTo ErrHandler

Dim FileName As String, ActiveFileName As String
Dim Extension As String, CurPlayer As MMControl
Dim TempIndex As Integer

ActiveFileName = ObjectsOnPage(Active.Tag).Contents

Select Case Index

Case 0 ' Load in file
dlgGraphic.Filterlndex = 1
dlgGraphic.Action = 1
FileName = dlgGraphic.Filename

If FileName <> ActiveFileName Then
Extension = LCase(Mid$(FileName, Len(FileName) - 3, Len(FileName)))
ObjectsOnPage(Active.Tag).Extension = Extension

Select Case Extension
Case FILE_BITMAP, FILE_ICON, FILE_STILL, FILE_DIB

Active.Image = FileName
Active.Height = Active.ImageHeight
Active.Width = Active.ImageWidth
FileName = Mid$(FileName, Len(STILLPATH) + 1)
FileName = Mid$(FileName, 1, Len(FileName) - 4)
ObjectsOnPage(Active.Tag).Height = Active.Height
ObjectsOnPage(Active.Tag).Width = Active.Width
ObjectsOnPage(Active.Tag).Path = STILLPATH
ObjectsOnPage(Active.Tag).Contents = FileName

Case FILEMETAFILE
Active.Picture = LoadPicture(FileName)
FileName = Mid$(FileName, Len(STILLPATH) + 1)
FileName = Mid$(FileName, 1, Len(FileName) - 4)
ObjectsOnPage(Active.Tag).Height = Active.Height
ObjectsOnPage(Active.Tag).Width = Active.Width
ObjectsOnPage(Active.Tag).Path = STILLPATH
ObjectsOnPage(Active.Tag).Contents = FileName

Case FILE_VIDEO
Set CurPlayer = mmcPlayer(Active.Index)
CurPlayer.FileName = FileName
FileName = Mid$(FileName, Len(VIDEOPATH) + 1)
FileName = Mid$(FileName, 1, Len(FileName) - 4)
ObjectsOnPage(Active.Tag).Path = VIDEOPATH
ObjectsOnPage(Active.Tag).Contents = FileName
CurPlayer.hWndDisplay = Active.hWnd
CurPlayer.Command = "Close"
CurPlayer.Command = "Open"

128

CurPlayer.Command = "Play"
Case FILE_WAVE

FileName = Mid$(FileName, Len(AUDIOPATH) + 1)
FileName = Mid$(FileName, 1, Len(FileName) - 4)
ObjectsOnPage(Active.Tag).Path = AUDIOPATH
ObjectsOnPage(Active.Tag).Contents = FileName

Case FILE_TEXT
FileName = Mid$(FileName, Len(TEXTPATH) + 1)
FileName = Mid$(FileName, 1, Len(FileName) - 4)
ObjectsOnPage(Active.Tag).Path = TEXTPATH
ObjectsOnPage(Active.Tag).Contents = FileName
'HESetFileName lblAny(Active.Index).hWnd, TEXTPATH & FileName &

Extension
PrettyPrint lblAny(Active.Index), cboObjectTerms, FileName, TextTb

End Select

End If

Case 1 ' Save File
Extension = LCase(Mid$(ActiveFileName, Len(ActiveFileName) - 3, Len(ActiveFileName)))
Select Case Extension

Case FILE_STILL
Active.Save = ObjectsOnPage(Active.Tag).Path &

ObjectsOnPage(Active.Tag).Contents & Extension
End Select

End Select

ErrHandler:
Exit Sub

End Sub

Sub mnulnfoFlipltem_Click (Index As Integer)

Select Case Index
Case 0 ' Flip Horizontally

Active.FlipX = True
Case 1 ' Flip Vertically

Active.FlipY = True
End Select

End Sub

Sub mnulnfoHeightltemClick (Index As Integer)

Dim CurObject As ObjectInfo
Dim NewH As Integer
Dim Custom As Integer

CurObject = ObjectsOnPage(Active.Tag)

Select Case Index
Case 0 ' Scale Custom

DialogBox DIALOG_HEIGHT

129

Custom = frmDialog.Tag
If Custom <> 0 Then

NewH = Custom
Else

NewH = Active.Height
End If

Case 1 'Scale -10%
NewH = Active.Height * .9

Case 2 ' Scale +10%
NewH = Active.Height + (Active.Height * .1)

End Select

ObjectsOnPage(Active.Tag).Height = NewH
Active.Height = NewH
If CurObject.Extension = FILE_TEXT Then

'HESetFileName lblAny(Active.Index).hWnd, TEXTPATH & CurObject.Contents &
FILETEXT

PrettyPrint lblAny(Active.Index), cboObjectTerms, CurObject.Contents, TextTb
End If

mnulnfoltem(1).Caption = "Height..." & NewH

End Sub

Sub mnulnfoltem_Click (Index As Integer)

Dim Extension As String
Dim Ctr As Integer
Dim Contents As String

Select Case Index
Case MNUINFO_BACK 'Send to back

Active.ZOrder 1
mnulnfoltem(MNUINFO_BACK).Enabled = False
mnulnfoltem(MNUINFO_FRONT).Enabled = True

Case MNUINFO_FRONT 'Send to Front
Active.ZOrder
mnulnfoltem(MNUINFO_FRONT).Enabled = False
mnulnfoltem(MNUINFO_BACK).Enabled = True

Case MNUINFO_LINK
cmdCreatelndex(0).Visible = False
cmdCreatelndex(5).Visible = False
lstPages.ListIndex = (PageCtr - 1)
lblGotoPage(1).Caption = "&Index Sets:"
picPage(0).Width = 625
picPage(0).Visible = True
IstObjects.Visible = True
IstPages.Tag = Str$(Link)
lblPageLinks.Visible = True
lblObjects.Visible = True
txtLink.Visible = True
lblNewObj.Visible = True
lblLinkLabel.Visible = True
txtLink.Text = FormatLink(PAGELINK, AllPages(PageCtr), "", "")

130

picDropNew.Visible = True
'frmDialogs !cmdCreatelndex(O).Visible = False
'frmDialogs!cmdCreatelndex(5).Visible = False
'frmDialogs!lstPages.ListIndex = (PageCtr - 1)
'frmDialogs !lblGotoPage(1).Caption = "&Index Sets:"
'frmDialogs !picPage.Visible = True
'frmDialogs!lstObjects.Visible = True
'frmDialogs !lstPages.Tag = Str$(Link)
'frmDialogs !lblPageLinks.Visible = True
'frmDialogs!lblObjects.Visible = True
'frmDialogs !txtLink.Visible = True
'frmDialogs !lblNewObj.Visible = True
'frmDialogs !lblLinkLabel.Visible = True
'frmDialogs!txtLink.Text = AllPages(PageCtr)
'frmDialogs !picDropNew.Visible = True
For Ctr = 1 To NumObjects

Contents = ObjectsOnPage(Ctr).Contents
IstObjects.Addltem UnparseObjName(Left$(Contents, 1)) & " " & Contents
'frmDialogs!lstObjects.AddItem UnparseObjName(Left$(Contents, 1)) & " " &

Contents
Next Ctr
'frmDialogs.Show

Case MNUINFO_DELETE
Extension = ObjectsOnPage(Active.Tag).Extension
Select Case Extension

Case FILE_STILL
picAny_KeyPress (Active.Index), Asc("d")

Case FILE_TEXT
lblAnyKeyPress (Active.Index), Asc("d")

Case FILE_VIDEO
picVideo_KeyPress (Active.Index), Asc("d")

End Select
Case MNUINFO_UPDATE

UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")
End Select

End Sub

Sub mnulnfoLocltem_Click (Index As Integer)

Select Case Index
Case MNU_LOCINITIAL ' Set as initial

MakeCoords ObjectsOnPage(Active.Tag).Initial, Active.Top, Active.Left
Case MNU_LOCFINAL ' Set as final

MakeCoords ObjectsOnPage(Active.Tag).Final, Active.Top, Active.Left
End Select

End Sub

Sub mnuInfoRotateltem_Click (Index As Integer)

Dim Temp As Integer

Temp = Active.Height
Select Case Index

Case 0 '90 CCW
Active.Rotate = 90

Case 1 ' 90 CW
Active.Rotate = 270

End Select

Active.Height = Active.Width
Active.Width = Temp

End Sub

Sub mnulnfoScaleltem_Click (Index As Integer)

Dim NewH As Integer, NewW As Integer
Dim Custom As Integer

Select Case Index
Case 0 ' - 10%

NewH = Active.Height * .9
NewW = Active.Width * .9

Case 1 '+ 10%
NewH = Active.Height + (Active.Height * .1)
NewW = Active.Width + (Active.Width * .1)

Case 2 ' Custom
DialogBox DIALOG_SCALE
Custom = frmDialog.Tag
If frmDialog.Tag < 0 Then

NewH = Active.Height * Abs(frmDialog.Tag)
NewW = Active.Width * Abs(frmDialog.Tag)

Elself frmDialog.Tag > 0 Then
NewH = Active.Height + (Active.Height * frmDialog.Tag)
NewW = Active.Width + (Active.Width * frmDialog.Tag)

Else
NewH = Active.Height
NewW = Active.Width

End If
End Select

mnulnfoltem(1).Caption = "Height.. ." & NewH
mnulnfoltem(2).Caption = "Width..." & NewW

Active.Height = NewH
Active.Width = NewW
ObjectsOnPage(Active.Tag).Height = NewH
ObjectsOnPage(Active.Tag).Width = NewW
If ObjectsOnPage(Active.Tag).Extension = FILETEXT Then

'HESetFileName lblAny(Active.Index).hWnd, TEXTPATH &
ObjectsOnPage(Active.Tag).Contents & FILE_TEXT

PrettyPrint lblAny(Active.Index), cboObjectTerms, ObjectsOnPage(Active.Tag).Contents,
TextTb

End If

132

End Sub

Sub mnulnfoSeqltem_Click (Index As Integer)

Dim Sequence As Integer

Sequence = ObjectsOnPage(Active.Tag).Sequence
Select Case Index

Case 0 ' Higher sequence
Sequence = Sequence + 1

Case 1 ' Lower Sequence
Sequence = Sequence - 1

End Select

ObjectsOnPage(Active.Tag).Sequence = Sequence

End Sub

Sub mnuInfoTimeItem_Click (Index As Integer)

DialogBox DIALOG_SETTIME
If frmDialog.Tag <> 0 Then

ObjectsOnPage(Active.Tag).TimeOnScreen = frmDialog.Tag
End If

End Sub

Sub mnulnfoTransItem_Click (Index As Integer)

Dim TransitionValue As Integer

TransitionValue = 0
TransitionCheck Index

Select Case Index
Case MNUINFOTRANS_MOVE, MNUINFOTRANS_MOVEANDDROP

DialogBox DIALOG_SETTIME
If frmDialog.Tag <> 0 Then

TransitionValue = frmDialog.Tag
Else

TransitionValue = TIME_DEFAULT
End If
mnulnfoltem(MNUINFO_TIME).Caption = "Move &Interval. . ." & TransitionValue

End Select

ObjectsOnPage(Active.Tag).Transition = UnparseTransitionCode(Index, TransitionValue)

If Index = MNUINFOTRANS MOVEANDDROP Or Index = MNUINFOTRANS DROP Then
DialogBox DIALOG_SETTIME
If frmDialog.Tag <> 0 Then

TransitionValue = frmDialog.Tag
Else

TransitionValue = DROP_DEFAULT
End If

133

mnulnfoltem(MNUINFO_TIME).Caption = "Drop &Interval..." & TransitionValue
ObjectsOnPage(Active.Tag).TimeOnScreen = TransitionValue

End If

End Sub

Sub mnulnfoWidthItem_Click (Index As Integer)

Dim CurObject As ObjectInfo
Dim NewW As Integer
Dim Custom As Integer

CurObject = ObjectsOnPage(Active.Tag)

Select Case Index
Case 0 'Custom

DialogBox DIALOG_WIDTH
Custom = frmDialog.Tag
If Custom <> 0 Then

NewW = Custom
Else

NewW = Active.Width
End If

Case 1 'Scale - 10%
NewW = Active.Width * .9

Case 2 ' Scale + 10%
NewW = Active.Width + (Active.Width * .1)

End Select

ObjectsOnPage(Active.Tag).Width = NewW
Active.Width = NewW
If CurObject.Extension = FILE_TEXT Then

'HESetFileName lblAny(Active.Index).hWnd, TEXTPATH & CurObject.Contents &
CurObject.Extension

PrettyPrint lblAny(Active.Index), cboObjectTerms, CurObject.Contents, TextTb
End If

mnulnfoltem(2).Caption = "Width..." & NewW

End Sub

Sub mnulnfoZoomItem_Click (Index As Integer)

Select Case Index
Case 0 ' Zoom in 50%

Active.Zoom = 150
Case 1 'Zoom Out 50%

Active.Zoom = 50
Case 2 ' Zoom Custom

DialogBox DIALOG_ZOOM
If frmDialog.Tag <> 0 Then

Active.Zoom = frmDialog.Tag
End If

End Select

134

Active.ScrollBars = False

End Sub

Sub mnulnputItenmClick (Index As Integer)

Select Case Index
Case MNUINPUT_DELETE

ObjectsOnPage(Active.Tag).Contents = DELETED
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")
Unload Active
InputCtr = InputCtr - 1
NumObjects = NumObjects - 1

Case MNUINPUTUPDATE
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")

End Select

End Sub

Sub mnulnputLocItem_Click (Index As Integer)

mnulnfoLocItem_Click Index

End Sub

Sub mnulnputSeqltem_Click (Index As Integer)

mnulnfoSeqltem_Click Index

End Sub

Sub mnulnputTimeltem_Click (Index As Integer)

DialogBox DIALOG_SETTIME
If frmDialog.Tag <> 0 Then

ObjectsOnPage(Active.Tag).TimeOnScreen = frmDialog.Tag
End If

End Sub

Sub mnulnputTransltem_Click (Index As Integer)

mnuInfoTransItem_Click Index

End Sub

Sub mnuLabelltem_Click (Index As Integer)

Dim TempText As String
Dim TempTrans As String

Select Case Index
Case MNULBL_DELETE

135

ObjectsOnPage(Active.Tag).Contents = DELETED
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")
Unload Active
LabelCtr = LabelCtr - 1
NumObjects = NumObjects - 1

Case MNULBL_NEW
TempText = InputBox$("Enter New Text:", "New Text", Active.Caption)
If TempText <> "" Then

ObjectsOnPage(Active.Tag).Contents = LABEL_CODE + TempText
Active.Caption = TempText

End If
Case MNULBL_FONTNAME, MNULBL_FONTSIZE

dlgGraphic.CancelError = True
On Error GoTo ErrCancel
dlgGraphic.Flags = &H1& Or &H100&
dlgGraphic.FontName = Active.FontName
dlgGraphic.FontSize = Active.FontSize
dlgGraphic.FontBold = Active.FontBold
dlgGraphic.FontUnderLine = Active.FontUnderline
dlgGraphic.FontStrikeThru = Active.FontStrikeThru
dlgGraphic.Color = Active.ForeColor
dlgGraphic.Action = 4
Active.FontName = dlgGraphic.FontName
Active.FontSize = dlgGraphic.FontSize
Active.FontBold = dlgGraphic.FontBold
Active.FontUnderline = dlgGraphic.FontUnderLine
Active.FontStrikeThru = dlgGraphic.FontStrikeThru
Active.ForeColor = dlgGraphic.Color

Case MNULBL_FONTBOLD
mnuLabelltem(Index).Checked = Not (mnuLabelltem(Index).Checked)
Active.FontBold = mnuLabelltem(Index).Checked

Case MNULBL_FONTITALIC
mnuLabelltem(Index).Checked = Not (mnuLabelltem(Index).Checked)
Active.FontItalic = mnuLabelltem(Index).Checked

Case MNULBLFONTUNDERLINE
mnuLabelltem(Index).Checked = Not (mnuLabelltem(Index).Checked)
Active.FontUnderline = mnuLabelltem(Index).Checked

Case MNULBLFONTCOLORFORE
dlgGraphic.CancelError = True
On Error GoTo ErrCancel
dlgGraphic.Flags = &HI&
dlgGraphic.Color = Active.ForeColor
dlgGraphic.Action = 3
Active.ForeColor = dlgGraphic.Color

Case MNULBLFONTCOLORBACK
dlgGraphic.CancelError = True
On Error GoTo ErrCancel
dlgGraphic.Flags = &HI&
dlgGraphic.Color = Active.BackColor
dlgGraphic.Action = 3
Active.BackStyle = TRANSPARENT
Active.BackColor = dlgGraphic.Color

Case MNULBLLINK
mnulnfoltem_Click MNUINFOLINK

136

Case MNULBL_UPDATE
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")

End Select

If Index <> MNULBL_NEW And Index <> MNULBL_DELETE Then
ObjectsOnPage(Active.Tag).Transition = ParseTrans(lblPage(Active.Index))

End If

ErrCancel:
Exit Sub

End Sub

Sub mnuLabelLocltem_Click (Index As Integer)

mnulnfoLocItem_Click Index

End Sub

Sub mnuLabelSeqltem_Click (Index As Integer)

mnulnfoSeqItem_Click Index

End Sub

Sub mnuLblTransItem_Click (Index As Integer)

Dim Ctr As Integer, TransitionValue As Integer

For Ctr = MNULBLTRANS_NONE To MNULBLTRANS_MOVEANDDROP
If Ctr = Index Then

mnuLblTransItem(Ctr).Checked = True
Else

mnuLblTransltem(Ctr).Checked = False
End If

Next Ctr

Select Case Index
Case MNULBLTRANS_MOVE, MNULBLTRANS_MOVEANDDROP

DialogBox DIALOGSETTIME
If frmDialog.Tag <> 0 Then

TransitionValue = frmDialog.Tag
Else

TransitionValue = TIME_DEFAULT
End If

End Select

End Sub

Sub mnuMapItemClick (Index As Integer)

Select Case Index
Case 0
Case 1

137

Case 3
Case 4

End Select

End Sub

Sub mnuNotepadItem_Click (Index As Integer)

Dim hWnd As Integer

Select Case Index
Case MNUNOTE_OPEN ' Open Notepad

DocCtr = DocCtr + 1
ReDim Preserve Documents(DocCtr)
Load Documents(DocCtr)
mnuWindowItem_Click 0
mnuNotepadItem(MNUNOTE_CLOSE).Enabled = True

Case MNUNOTE_CLOSE ' Close Notepad
Unload frmNotepad

Case MNUNOTEPASTEFROM
Case MNUNOTE PASTETO

End Select

End Sub

Sub mnuOptionsItem_Click (Index As Integer)

Dim Custom As Integer

Select Case Index
Case 0 ' Sound Option

cmdSound_Click
Case 1

picVolume(0).Visible = True
Case 2 'Jump Interval

DialogBox DIALOG_SETJUMP
Custom = frmDialog.Tag
If Custom <> 0 Then

Sensitivity = Custom
End If
mnuOptionsItem(Index).Caption = "&Jump Interval: "& Sensitivity

End Select

End Sub

Sub mnuPageltem_Click (Index As Integer)

Select Case Index
Case 0

cmdNavigateClick 1
Case 1

cmdNavigate_Click 0
Case 2

cmdNavigate_Click 2

138

Case 4
lblTool Page_DblClick

Case 5
lblToolPage_DblClick
cmdCreatelndex_Click 0
cmdCreatelndex(7).Visible = True

Case 6
cmdCreatelndex_Click 7

End Select

End Sub

Sub mnuViewltem_Click (Index As Integer)

mnuViewItem(Index).Checked = Not mnuViewltem(Index).Checked

Select Case Index
Case 0

If mnuViewltem(Index).Checked Then
frmTranscription.Show

Else
frmTranscription.Hide

End If
Case 1

picProperties(0).Visible = mnuViewItem(Index).Checked
picProperties(0).ZOrder

Case 2
picToolbar(0).Visible = mnuViewItem(Index).Checked
picToolbar(0).ZOrder

Case 3
ShowAllObjects LabelCtr, GraphicCtr, TextCtr, VideoCtr, InputCtr

Case 4
'frmObjectInfo.Show

End Select

End Sub

Sub mnuWindowltem_Click (Index As Integer)

Select Case Index
Case 0 'Cascade

frmMain.Arrange CASCADE
Case 1 'Tile

frmMain.Arrange TILE_HORIZONTAL
Case 2 'Arrange

frmMain.Arrange ARRANGE_ICONS
End Select

End Sub

Sub NewAudio ()

'modifies picAudio Control Array
AudioCtr, NumObjects, ObjectsOnPage

139

'effects Loads and places a new Audio picture on the Screen from. Creates a new database
object based on the information provided by picAudio

Dim Object As PictureBox

AudioCtr = AudioCtr + 1
NumObjects = NumObjects + 1
ReDim Preserve ObjectsOnPage(NumObjects)

Set Object = picAudio(AudioCtr)
Load Object
Object.Top = 304 + 5 * (AudioCtr - 1)
Object.Left = 296 + 5 * (AudioCtr - 1)
Object.Visible = True
Object.LinkItem = AUDIO_CODE & "0"
Object.ZOrder
Object.Tag = NumObjects

MakeNewDbObject Object, NumObjects

End Sub

Sub NewCommand ()

'modifies picCommand Control Array
CommandCtr, NumObjects, ObjectsOnPage

'effects Loads and places a new Command picture on the Screen form. Creates a new
database object based on the information by picCommand.

Dim Object As PictureBox

CommandCtr = CommandCtr + 1
NumObjects = NumObjects + 1
ReDim Preserve ObjectsOnPage(NumObjects)

Set Object = picCommand(CommandCtr)
Load Object

Object.Top = 80 + 5 * (CommandCtr - 1)
Object.Left = 16 + 5 * (CommandCtr - 1)
Object.Visible = True
Object.LinkItem = COMMAND_CODE & "0"
Object.ZOrder
Object.Tag = NumObjects

MakeNewDbObject Object, NumObjects

End Sub

Sub NewGraphic ()

'modifies picAny Control Array
GraphicCtr, NumObjects, ObjectsOnPage

'effects Loads and places a new graphic picture on the Screen from. Creates a new database

140

object based on the information provided by picAny

Dim Object As ACCUSOFT
'Dim Object2 As PictureBox

GraphicCtr = GraphicCtr + 1
NumObjects = NumObjects + 1
ReDim Preserve ObjectsOnPage(NumObjects)

Set Object = picAny(GraphicCtr)
Load Object
'Set Object2 = picAny2(GraphicCtr)
'Load Object2
Object.Top = 200 + 8 * (GraphicCtr - 1)
Object.Left = 360 + 5 * (GraphicCtr - 1)
'Object2.Top = Object.Top
'Object2.Left = Object.Left
Object.Visible = True
'Object.Image = ""
'Object.PrintSize = "0"
Object.ZOrder
Object.Tag = NumObjects
'Object.Print "Graphic " & GraphicCtr

MakeNewDbObject Object, NumObjects

End Sub

Sub NewInput ()

'modifies txtUserInput Control Array
InputCtr, NumObjects, ObjectsOnPage

'effects Loads and place a new text box on the Screen form. Creates a new database
object based on the information provided by picAny

Dim Object As TextBox

InputCtr = InputCtr + 1
NumObjects = NumObjects + 1
ReDim Preserve ObjectsOnPage(NumObjects)

Set Object = txtUserInput(InputCtr)
Load Object
Object.Top = 320 + 10 * (InputCtr - 1)
Object.Left = 296 + 10 * (InputCtr - 1)
Object.Text = "Input " & InputCtr
Object.Tag = NumObjects
Object.Linkltem = INPUT_CODE & "0"
Object.ZOrder
Object.Visible = True

MakeNewDbObject Object, NumObjects

End Sub

141

Sub NewLabel ()

modifies IblPage Control Array
LabelCtr, NumObjects, ObjectsOnPage

'effects Loads and places a new label on the Screen from. Creates a new database
object based on the information provided by lblPage

Dim Object As Label

LabelCtr = LabelCtr + 1
NumObjects = NumObjects + 1
ReDim Preserve ObjectsOnPage(NumObjects)

Set Object = lblPage(LabelCtr)
Load Object
Object.Top = 312 + 10 * (LabelCtr - 1)
Object.Left = 296 + 5 * (LabelCtr - 1)
Object.Caption = "Label " & LabelCtr
Object.Visible = True
Object.Tag = NumObjects
Object.LinkItem = LABEL_CODE & 0
Object.ZOrder

MakeNewDbObject Object, NumObjects

End Sub

Sub NewMetafile ()

'modifies picMetafile Control Array
MetafileCtr, NumObjects, ObjectsOnPage

'effects Loads and places a new metafile picture on the Screen from. Creates a new database
object based on the information provided by picMetafile.

Dim Object As PictureBox

MetafileCtr = MetafileCtr + 1
NumObjects = NumObjects + 1
ReDim Preserve ObjectsOnPage(NumObjects)

Set Object = picMetafile(MetafileCtr)
Load Object
Object.Top = 210 + 8 * (MetafileCtr - 1)
Object.Left = 370 + 5 * (MetafileCtr - 1)
Object.Linkltem = META_CODE & 0
Object.Visible = True
Object.ZOrder
Object.Tag = NumObjects
Object.Print "Metafile " & MetafileCtr

MakeNewDbObject Object, NumObjects

End Sub

142

Sub NewTestSub ()

' this is a test of windows on the network

I another comment.

End Sub

Sub NewText ()

'modifies lblAny Control Array
TextCtr, NumObjects, ObjectsOnPage

'effects Loads and places a new text picture on the Screen from. Creates a new database
object based on the information provided by lblAny

'Dim Object As HEVBLayer
Dim Object As PictureBox

TextCtr = TextCtr + 1
NumObjects = NumObjects + 1
ReDim Preserve ObjectsOnPage(NumObjects)

Set Object = lblAny(TextCtr)
Load Object
Object.Top = 280 + 8 * (TextCtr - 1)
Object.Left = 360 + 5 * (TextCtr - 1)
Object.Visible = True
Object.Tag = NumObjects
Object.Linkltem = SCREENTEXT_CODE & 0
Object.ZOrder
'HEInitNewDoc Object.hWnd
'Object.Text = "Text " & TextCtr
MakeNewDbObject Object, NumObjects

End Sub

Sub NewVideo ()

'modifies picVideo Control Array
VideoCtr, NumObjects, ObjectsOnPage

'effects Loads and places a new Video picture and MCI player on the Screen from. Creates
a new database object based on the information provided by
picAudio and mmcPlayer.

Dim Object As PictureBox, Player As MMControl

VideoCtr = VideoCtr + 1
NumObjects = NumObjects + 1
ReDim Preserve ObjectsOnPage(NumObjects)

Set Player = mmcPlayer(VideoCtr)
Set Object = picVideo(VideoCtr)
Load Player

143

Load Object
Player.Visible = True
Player.ZOrder
Object.Visible = True
Object.LinkItem = VIDEO_CODE & 0
Object.ZOrder
Object.Tag = NumObjects

MakeNewDbObject Object, NumObjects

End Sub

Sub OpenIndexDb ()

' effects Opens the Edics Database, for use as Index Table.

'Set IndexDb = OpenDatabase(EDICSDB)
Set IndexTb = PageDb.OpenTable("Index Database")
Set TextTb = PageDb.OpenTable("Text Database")

End Sub

Sub OpenObjectTermDb ()

' effects Opens the Edics database, for use as Object Term Table.

'Set ObjectTermDb = OpenDatabase(EDICSDB)
Set ObjectTermTb = PageDb.OpenTable("Object Term Database")

End Sub

Sub OpenPageDb ()

'modifies PageDb
'effects Opens the Edics database

Set PageDb = OpenDatabase(EDICSDB)
Set TopicTb = PageDb.OpenTable("Topic Database")
TopicTb.Index = "Page Code"

End Sub

Sub ParseCommandAttribute (InfoBox As ListBox, OutputString As String)

'modifies OutputString
'effects Creates a list of objects to clear, based on the information in InfoBox

Dim Ctr As Integer

OutputString = OBJECT_CLEARALL

For Ctr = 0 To InfoBox.ListCount - 1
OutputString = OutputString + InfoBox.List(Ctr) + ",

Next Ctr

MsgBox "Clear Update Succesful: " & OutputString, MB_OK

End Sub

Sub ParseObjectInfo (CurObject As ObjectInfo)

ObjectText(OBJHEIGHT) = Str$(CurObject.Height)
ObjectText(OBJWIDTH) = Str$(CurObject.Width)
ObjectText(OBJTIME) = Str$(CurObject.TimeOnScreen)
ObjectText(INITY) = Str$(CurObject.Initial.Top)
ObjectText(INITX) = Str$(CurObject.Initial.Left)
ObjectText(FinalY) = Str$(CurObject.Final.Top)
ObjectText(FinalX) = Str$(CurObject.Final.Left)
'lblInfo(9).Caption = CurObject.Contents & " at " & Active.Top & ", " & Active.Left
'DisplayTransitionCode ObjectType, Left$(CurObject.Transition, 1), cboTransitions

End Sub

Function ParseTrans (CurLbl As Label) As String

'effects Returns a string consisting of the formatting attributes of CurLbl.
The string is in the form of Codel AttributeListn ... Coden AttributeListn,
where Coden = {TEXT_FONT, TEXT_COLOR, TEXT_FORMAT}, AttributeListn =
{ Attributel, ..., Attributen}' and Attribute = {UNDERLINE, UNBOLD,
STRIKETHRU, ITALIC I

Dim TempTrans As String
Dim TempFormat As String

TempTrans = TEXT_FONT + CODEDELIMITERLEFT + Active.FontName +
FORMATDELIMITER & Active.FontSize & CODEDELIMITERRIGHT

TempTrans = TempTrans + TEXT_COLOR + CODEDELIMITERLEFT + Active.ForeColor +
CODEDELIMITERRIGHT

TempFormat = TEXT_FORMAT + CODEDELIMITERLEFT
If Active.FontUnderline Then

TempFormat = TempFormat + UNDERLINE + FORMATDELIMITER
End If

If Not Active.FontBold Then
TempFormat = TempFormat + UNBOLD + FORMATDELIMITER

End If

If Active.FontItalic Then
TempFormat = TempFormat + ITALIC + FORMATDELIMITER

End If

If Active.FontStrikeThru Then
TempFormat = TempFormat + STRIKETHRU

End If

ParseTrans = TempTrans + TempFormat + CODEDELIMITERRIGHT

145

End Function

Function ParseTransitionCode (CurObject As ObjectInfo) As Integer

' effects Returns the transition code for the CurObject

Dim TransCode As String

TransCode = Left$(CurObject.Transition, 1)

Select Case TransCode
Case OBJECT_NOCODE

ParseTransitionCode = MNUINFOTRANS_NONE
Case OBJECT_MOVE

ParseTransitionCode = MNUINFOTRANS_MOVE
Case OBJECT_DROP

ParseTransitionCode = MNUINFOTRANS_DROP
Case OBJECT_ENLARGE

'ParseTransitionCode = MNUINFOTRANSENLARGE
Case OBJECT_MOVEANDDROP

ParseTransitionCode = MNUINFOTRANS_MOVEANDDROP
Case OBJECT_WAIT

ParseTransitionCode = MNUINFOTRANS_WAIT
Case OBJECT_LOOP

ParseTransitionCode = MNUINFOTRANS_LOOP
Case TEXT_FONT
'Case TEXT_ROTATE
' ParseTransitionCode = 3

End Select

End Function

Sub picAny_Click (Index As Integer)

Dim Link As String

If UserTool = PLAYBACK Then
If picAny(Index).Tag = LINKEDOBJ Then

picAny(Index).Visible = False
Else 'If (picAny(Index).SaveQuality <> LINKUP) Then

Link = ObjectsOnPage(picAny(Index).Tag).Link
If Link <> "none" Then

picAny(Index).SaveQuality = LINKUP
ProcessLink Link, STILL_CODE, Index
If LinkIndex <> UNCACHE Then

picAny(Index).PrintXs = LinkIndex
End If

End If
End If

End If

End Sub

Sub picAny_DblClick (Index As Integer)

146

Dim Link As String

Set Active = picAny(Index)

'If UserTool = EDITOR Then
ShowObjectInfo STILL_CODE

"End If

End Sub

Sub picAny_KeyPress (Index As Integer, KeyAscii As Integer)

If UserTool = EDITOR Then
If KeyAscii = KEY_DELETE Or KeyAscii = Asc("d") Or KeyAscii = Asc("D") Then

ObjectsOnPage(Active.Tag).Contents = DELETED
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")
Unload picAny(Index)
GraphicCtr = GraphicCtr - 1
NumObjects = NumObjects - 1

End If
End If

End Sub

Sub picAny_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Dim CurObject As ObjectInfo
Dim Transition As Integer

Set Active = picAny(Index)

If UserTool = EDITOR Then
If Button = LEFT_BUTTON Then

picAny(Index).Drag BEGIN_DRAG
DragX = X / Screen.TwipsPerPixelX
DragY = Y / Screen.TwipsPerPixelY

ElseIf Button = RIGHT_BUTTON Then
CurObject = ObjectsOnPage(Active.Tag)
mnulnfoltem(MNU_XY).Caption = "&X, Y..." & Active.Top & ", " & Active.Left
mnulnfoLocltem(MNU_LOCINITIAL).Caption = "As &Initial: " &

UnparseCoords(CurObject.Initial)
mnulnfoLocltem(MNU_LOCFINAL).Caption = "As &Final: " &

UnparseCoords(CurObject.Final)
mnulnfoltem(MNU_HEIGHT).Caption = "&Height..." & CurObject.Height
mnulnfoltem(MNU_WIDTH).Caption = "&Width..." & CurObject.Width
mnulnfoltem(MNUINFO_SEQUENCE).Caption = "&Sequence..." & CurObject.Sequence
Transition = ParseTransitionCode(CurObject)
TransitionCheck Transition
If Transition = MNUINFOTRANS_MOVEANDDROP Or Transition =

MNUINFOTRANSDROP Then
mnuInfoltem(MNUINFO_TIME).Caption = "Drop &Interval..." &

CurObject.TimeOnScreen

147

ElseIf Transition <> MNUINFOTRANS_NONE Then
mnulnfoltem(MNUINFO_TIME).Caption = "Move &Interval..." &

Right$(CurObject.Transition, Len(CurObject.Transition) - 1)
End If
mnulnfoltem(MNUINFO_FILE).Caption = "File&name: " & CurObject.Contents
mnulnfoltem(MNUINFO_ZOOM).Enabled = True
mnulnfoltem(MNUINFO_ROTATE).Enabled = True
mnulnfoltem(MNUINFO_SCALE).Enabled = True
mnulnfoltem(MNUINFO_FLIP).Enabled = True
dlgGraphic.Filter = "Still Filesl*.tgalAll Files (*.*)1I.*"
dlgGraphic.InitDir = Left$(STILLPATH, Len(STILLPATH) - 1)
PopupMenu mnuInfo, POPUPMENU_LEFTALIGN

End If
End If

End Sub

Sub picAny_MouseMove (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Dim NullVal As Integer

If picAny(Index).PrintSize <> NOLINK Then
'NullVal = SetCursor(hCurOpen)
MousePointer = 2
'ShowLink picAny(Index).Tag, picAny(Index).Left, picAny(Index).Top

Else
MousePointer = 0

End If

End Sub

Sub picAny_MouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As Single)

picAny(Index).Drag END_DRAG

End Sub

Sub picAudio_DblClick (Index As Integer)

mnuAudioltem_Click 0

End Sub

Sub picAudioKeyPress (Index As Integer, KeyAscii As Integer)

If UserTool = EDITOR Then
If KeyAscii = KEY_DELETE Or KeyAscii = Asc("d") Or KeyAscii = Asc("D") Then

ObjectsOnPage(Active.Tag).Contents = DELETED
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")
Unload picAudio(Index)
AudioCtr = AudioCtr - 1
NumObjects = NumObjects - 1

End If

148

End If

End Sub

Sub picAudio_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Dim CurObject As ObjectInfo

Set Active = picAudio(Index)

If UserTool = EDITOR Then
If Button = LEFT_BUTTON Then

picAudio(Index).Drag BEGIN_DRAG
DragX = X
DragY = Y

Elself Button = RIGHT_BUTTON Then
CurObject = ObjectsOnPage(Active.Tag)
If CurObject.Transition = AUDIO_SYNC Then

mnuAudioTransItem(O).Checked = True
mnuAudioTransltem(1).Checked = False

Else
mnuAudioTransltem(O).Checked = False
mnuAudioTransltem(l).Checked = True

End If
mnuAudioltem(MNUAUDIO_SEQUENCE).Caption = "&Sequence..." &

CurObject. Sequence
mnuAudioltem(3).Caption = "&Filename: " & CurObject.Contents
dlgGraphic.Filter = "Audio Filesl*.wavlAll Filesl*.*"
dlgGraphic.InitDir = Left$(AUDIOPATH, Len(AUDIOPATH) - 1)
PopupMenu mnuAudio

End If
End If

End Sub

Sub picAudio_MouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

picAudio(Index).Drag END_DRAG

End Sub

Sub picCommand_KeyPress (Index As Integer, KeyAscii As Integer)

If UserTool = EDITOR Then
If KeyAscii = KEY_DELETE Or KeyAscii = Asc("d") Or KeyAscii = Asc("D") Then

ObjectsOnPage(Active.Tag).Contents = DELETED
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")
Unload picAudio(Index)
CommandCtr = CommandCtr - 1
NumObjects = NumObjects - 1

End If
End If

149

End Sub

Sub picCommand_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y
As Single)

Dim CurObject As ObjectInfo

Set Active = picCommand(Index)

If UserTool = EDITOR Then
If Button = LEFT BUTTON Then

picCommand(Index).Drag BEGIN_DRAG
DragX = X
DragY = Y

Elself Button = RIGHT_BUTTON Then
CurObject = ObjectsOnPage(Active.Tag)
UnParseCommandAttribute CurObject
mnuCommandItem(MNUCOMMAND_SEQUENCE).Caption = "&Sequence. .." &

CurObject.Sequence
PopupMenu mnuCommand

End If
End If

End Sub

Sub picMetafile_Click (Index As Integer)

Dim Link As String

If UserTool = PLAYBACK Then
If picMetafile(Index).Tag = LINKEDOBJ Then

picMetafile(Index).Visible = False
Else 'If (picMetafile(Index).HelpContextlD <> LINKUP) Then

Link = ObjectsOnPage(picMetafile(Index).Tag).Link
If Link <> "none" Then

picMetafile(Index).HelpContextlD = LINKUP
ProcessLink Link, META_CODE, Index
If LinkIndex <> UNCACHE Then

IblAny(Index).LinkTimeout = LinkIndex
End If

End If
End If

End If

End Sub

Sub picMetafileDblClick (Index As Integer)

Dim Link As String

Set Active = picMetafile(Index)

150

'If UserTool = EDITOR Then
' ShowObjectInfo META_CODE
'End If

End Sub

Sub picMetafile_KeyPress (Index As Integer, KeyAscii As Integer)

If UserTool = EDITOR Then
If KeyAscii = KEY_DELETE Or KeyAscii = Asc("d") Or KeyAscii = Asc("D") Then

ObjectsOnPage(Active.Tag).Contents = DELETED
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")
Unload picMetafile(Index)
MetafileCtr = MetafileCtr - 1
NumObjects = NumObjects - 1

End If
End If

End Sub

Sub picMetafile_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Dim CurObject As ObjectInfo
Dim Transition As Integer

Set Active = picMetafile(Index)

If UserTool = EDITOR Then
If Button = LEFT_BUTTON Then

picMetafile(Index).Drag BEGIN_DRAG
DragX = X
DragY = Y

ElseIf Button = RIGHT_BUTTON Then
CurObject = ObjectsOnPage(Active.Tag)
mnulnfoltem(MNU_XY).Caption = "&X, Y..." & Active.Top & ", " & Active.Left
mnulnfoLocltem(MNU_LOCINITIAL).Caption = "As &Initial: " &

UJnparseCoords(CurObject.Initial)
mnulnfoLocltem(MNU_LOCFINAL).Caption = "As &Final: " &

UnparseCoords(CurObject.Final)
mnulnfoltem(MNU_HEIGHT).Caption = "&Height..." & CurObject.Height
mnulnfoltem(MNU_WIDTH).Caption = "&Width..." & CurObject.Width
mnulnfoltem(MNUINFO_SEQUENCE).Caption = "&Sequence..." & CurObject.Sequence
'MNUINFOTRANSITEM(MNUITEM(MNUINFOTRANS_ROTATE).Enabled = False
Transition = ParseTransitionCode(CurObject)
TransitionCheck Transition
If Transition = MNUINFOTRANS_MOVEANDDROP Or Transition =

MNUINFOTRANS_DROP Then
mnulnfoltem(MNUINFO_TIME).Caption = "Drop &Interval..." &

CurObject.TimeOnScreen
Elself Transition <> MNUINFOTRANSNONE Then

mnulnfoltem(MNUINFO_TIME).Caption = "Move &Interval..." &
Right$(CurObject.Transition, Len(CurObject.Transition) - 1)

End If
mnulnfoltem(MNUINFO_FILE).Caption = "File&name: " & CurObject.Contents
mnulnfoltem(MNUINFO_ZOOM).Enabled = True
mnulnfoltem(MNUINFO_ROTATE).Enabled = True
mnuInfoltem(MNUINFO_SCALE).Enabled = True
mnulnfoltem(MNUINFO_FLIP).Enabled = True
dlgGraphic.Filter = "Meta Files (*.WMF)I*.wmflBitmaps (*.BMP)I*.bmplDib Files

(*.DIB)I*.dibllcon Files (*.ICO)I*.icolAll Files (*.*)I*.*"
dlgGraphic.InitDir = Left$(STILLPATH, Len(STILLPATH) - 1)
PopupMenu mnulnfo, POPUPMENU_LEFTALIGN

End If
End If

End Sub

Sub picMetafile_MouseMove (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Dim NullVal As Integer

'ShowLink picMetaFile(Index).Tag, picAny(Index).Left, picAny(Index).Top
'NullVal = SetCursor(hCurOpen)

End Sub

Sub picMetafile MouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

picMetafile(Index).Drag END_DRAG

End Sub

Sub picProperties_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

If UserTool = EDITOR Then
If Button = LEFT_BUTI'ON Then

picProperties(Index).Drag BEGIN_DRAG
DragX = X
DragY = Y

End If
End If

End Sub

Sub picProperties_MouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

picProperties(Index).Drag END_DRAG

End Sub

152

Sub picToolbar_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

If UserTool = EDITOR Then
If Button = LEFT_BUTTON Then

picToolbar(Index).Drag BEGIN_DRAG
DragX = X
DragY = Y

End If
End If

End Sub

Sub picToolbar_MouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

picToolbar(Index).Drag END_DRAG

End Sub

Sub picVideo_Click (Index As Integer)

Dim Link As String

If UserTool = PLAYBACK Then
If picVideo(Index).Tag = LINKEDOBJ Then

picVideo(Index).Visible = False
mmcPlayer(Index).Visible = False

Else 'If (picVideo(Index).HelpContextID <> LINKUP) Then
Link = ObjectsOnPage(picVideo(Index).Tag).Link
If Link <> "none" Then

picVideo(Index).HelpContextID = LINKUP
ProcessLink Link, VIDEO_CODE, Index
If LinkIndex <> UNCACHE Then

lblAny(Index).LinkTimeout = LinkIndex
End If

End If
End If

End If

End Sub

Sub picVideoDblClick (Index As Integer)

Dim Link As String

Set Active = picVideo(Index)

'If UserTool = EDITOR Then
' ShowObjectInfo VIDEO_CODE
'End If

End Sub

153

Sub picVideo_KeyPress (Index As Integer, KeyAscii As Integer)

If UserTool = EDITOR Then
If KeyAscii = KEY_DELETE Or KeyAscii = Asc("d") Or KeyAscii = Asc("D") Then

ObjectsOnPage(Active.Tag).Contents = DELETED
UpdateObject ObjectsOnPage(Active.Tag), PageDb.OpenTable("Page Database")
Unload picVideo(Index)
Unload mmcPlayer(Index)
VideoCtr = VideoCtr - 1
NumObjects = NumObjects - 1

End If
End If

End Sub

Sub picVideo_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Dim CurObject As ObjectInfo
Dim Transition As Integer

Set Active = picVideo(Index)

If UserTool = EDITOR Then
If Button = LEFT_BUTTON Then

picVideo(Index).Drag BEGIN_DRAG
DragX = X
DragY = Y

ElseIf Button = RIGHT_BUTTON Then
CurObject = ObjectsOnPage(Active.Tag)
'ShowObjectInfo VIDEO_CODE
mnulnfoltem(MNU_XY).Caption = "&X, Y.. ." & Active.Top & ", " & Active.Left
mnulnfoLocItem(MNU_LOCINITIAL).Caption = "As &Initial: " &

UnparseCoords(CurObject.Initial)
mnuInfoLocItem(MNU_LOCFINAL).Caption = "As &Final: " &

UnparseCoords(CurObject.Final)
mnulnfoltem(MNU_HEIGHT).Caption = "&Height. . ." & CurObject.Height
mnulnfoltem(MNU_WIDTH).Caption = "&Width..." & CurObject.Width
'mnulnfoltem(MNUINFOTRANS_ROTATE).Enabled = False
Transition = ParseTransitionCode(CurObject)
TransitionCheck Transition
If Transition = MNUINFOTRANS_MOVEANDDROP Or Transition =

MNUINFOTRANS_DROP Then
mnulnfoltem(MNUINFO_TIME).Caption = "Drop &Interval..." &

CurObject.TimeOnScreen
Elself Transition <> MNUINFOTRANS_NONE Then

mnulnfoltem(MNUINFO_TIME).Caption = "Jump &Interval..." &
Right$(CurObject.Transition, Len(CurObject.Transition) - 1)

End If
mnulnfoltem(MNUINFO_SEQUENCE).Caption = "&Sequence..." & CurObject.Sequence
mnulnfoltem(MNUINFO_ZOOM).Enabled = False
mnulnfoltem(MNUINFO_ROTATE).Enabled = False
mnuInfoltem(MNUINFO_SCALE).Enabled = True

mnulnfoltem(MNUINFO_FLIP).Enabled = False
If CurObject.Contents <> "" Then

mnulnfoltem(MNUINFO_FILE).Caption = "File&name: " & CurObject.Contents
Else

mnulnfoltem(MNUINFO_FILE).Caption = "File&name: "
End If
dlgGraphic.Filter = "Video Filesl*.avilAll Files (*.*)1I.*"
dlgGraphic.InitDir = Left$(VIDEOPATH, Len(VIDEOPATH) - 1)
PopupMenu mnulnfo, POPUPMENU_LEFTALIGN

End If
End If

End Sub

Sub picVideo_MouseMove (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

'ShowLink picVideo(Index).Tag, picAny(Index).Left, picAny(Index).Top

End Sub

Sub picVideo_MouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

picVideo(Index).Drag END_DRAG

End Sub

Sub picVideo_Resize (Index As Integer)

mmcPlayer(Index).Top = picVideo(Index).Top + picVideo(Index).Height
mmcPlayer(Index).Left = picVideo(Index).Left
mmcPlayer(Index).Width = picVideo(Index).Width

End Sub

Sub PrettyPrint (CurLbl As PictureBox, ObjectTerms As ComboBox, ByVal In As String, TextTb As
Table)

'modifies CurLbl
'effects Prints the contents of In in the CurLbl PictureBox. If a word in the file

In is an object term (Member of Object Term combo box), then the word is
printed in green. Any formatting codes are also printed.

Dim CurWord As String, Char As String
Dim WidthCtr As Integer, HeightCtr As Integer, Start As Integer
Dim Text As String, TextOutput As Integer
Dim Result As Integer
Dim HotSpotCtr As Integer

Text = ReadFile(In, TextTb)

HotSpotCtr = 0
WidthCtr = 0

155

HeightCtr = 1
Start = 0
CurLbl.Cls

Do Until Len(Text) <= I

CurWord = PopWord(Text)

If Len(CurWord) > 1 Then
'If Member(Left$(CurWord, Len(CurWord) - 1), ObjectTerms) Or (CurWord = "/h ") Then

CurLbl.ForeColor = GREEN
CurWord = PopWord(Text)
If CurWord = "\h " Then

CurLbl.ForeColor = &HO&
Else

HotSpotCtr = HotSpotCtr + 1
'Load lblTextHot(HotSpotCtr)
'lblTextHot(HotSpotCtr).Top = CurLbl.CurrentY - lblTextHot(HotSpotCtr).Height
'lblTextHot(HotSpotCtr).Left = CurLbl.CurrentX
'lblTextHot(HotSpotCtr).Caption = CurWord
'lblTextHot(HotSpotCtr).Visible = True

End If
'Elself CurWord = "\h " Then

CurLbl.ForeColor = &HO&
CurWord = PopWord(Text)

'End If
End If

'CurWord = FormatWord(CurLbl, CurWord)
WidthCtr = WidthCtr + (CurLbl.TextWidth(CurWord))
'WidthCtr = WidthCtr + (CurLbl.TextWidth(CurWord) * Len(CurWord))

If WidthCtr < CurLbl.Width Then
CurLbl.Print CurWord;

Else
HeightCtr = HeightCtr + 1
'If HeightCtr > CurLbl.ScaleHeight Then
' CurLbl.Height = CurLbl.Height + (4 * CurLbl.ScaleHeight)
'End If
If CurWord = " " Then

CurWord = ""
End If
CurLbl.Print Chr(13) & CurWord;
WidthCtr = CurLbl.TextWidth(CurWord)

End If
Loop

End Sub

Sub PrintObjects (OutputBox As ListBox)

'effects Prints a list of the objects on the current page in OutputBox, according
to sequence and object contents.

156

Dim Ctr As Integer
Dim Contents As String, CurObject As ObjectInfo

OutputBox.Clear

For Ctr = 1 To NumObjects
CurObject = ObjectsOnPage(Ctr)
Contents = CurObject.Contents
If Left$(Contents, 1) <> COMMAND_CODE Then

If Left$(Contents, 1) = LABEL_CODE Then
Contents = Right$(Contents, Len(Contents) - 1)

End If
OutputBox.AddItem Contents

End If
Next Ctr

End Sub

Sub ProcessLink (ByVal Link As String, SourceType As String, SourceIndex As Integer)

Dim PagLink As String, ObjLink As String, NamLink As String
Dim PageName As String, ObjName As String
Dim ObjDs As Dynaset

UnparseLink Link, PagLink, ObjLink, NamLink
LinkIndex = UNCACHE

If NamLink <> "" Then
' process name link
IndexPtr = FindIndexPtr(Mid$(NamLink, 2, Len(NamLink) - 2), cboIndexNames)
cmdCreateIndex_Click 5

Else
If ObjLink <> "" Then

' process object link
PageName = Mid$(PagLink, 2, Len(PagLink) - 2)
ObjName = Mid$(ObjLink, 3, Len(ObjLink) - 3)
SectionDs.Filter = "[Page Code] = '" & PageName & ""' & " and [Object] = '" & ObjName &

Set ObjDs = SectionDs.CreateDynaset()
CreateObjectsArray ObjDs, "LINKEDOBJ"
LinkPtr = LinkPtr + 1
LinkIndex = DisplayObject(ObjectsOnPage(NumObjects), LINKEDOBJ)
CacheObject CachedListo, LinkPtr, ObjName, LinkIndex, SourceType, SourceIndex

ElseIf PagLink <> "" Then
'process page link
IstIndexSet.Clear
IstIndexSet.AddItem Mid$(PagLink, 2, Len(PagLink) - 2)
CreateIndexSet UserIndexList(), "Link " & Link, lstIndexSet
cmdCreateIndex_Click 5
ReDim Preserve UserIndexList(UBound(UserIndexList) - 1)

End If
End If

End Sub

157

Sub PutItems (ListIndex As ListBox, ByVal Items As String, DELIMITER As String)

'modifies ListIndex
'effects Places the "elements" of Items, separated by Delimiter, and adds them to

the ListIndex ListBox.

Dim In As String

Do Until Len(Items) < 2
In = Pop(Items, DELIMITER)
ListIndex.AddItem Left$(In, Len(In) - 1)

Loop

End Sub

Sub ReadIndexSets (InputDb As Database)

'modifies IndexList
'effects Reads the Index sets from InputDb.

Dim IndexSetDs As Dynaset
Dim IndexName As String, Pageltem As String

IndexName = ""
IstIndexSet.Clear

Set IndexSetDs = InputDb.CreateDynaset("Select * from [Index Sets]")

IndexSetDs.MoveFirst

Do Until IndexSetDs.EOF
If IndexSetDs.Fields("Index Name") <> IndexName Then

If IndexName <> "" Then
cmdCreatelndex_Click 3

End If
IndexName = IndexSetDs.Fields("Index Name")
cboIndexNames.Text = IndexName
IstIndexSet.Clear

End If
PageItem = IndexSetDs.Fields("Page Item")
lstIndexSet.AddItem Pageltem
IndexSetDs.MoveNext

Loop

End Sub

Sub ResizeControls (ByVal WinH As Integer, ByVal WinW As Integer)

'modifies frmPlayer
'effects Resizes controls, based on WinH and WinW,

which are the maximum possible height and
width of a window in the resolution under
which the program is running.

158

Dim ResizeH As Long, ResizeW As Long, ResizeT As Long, ResizeL As Long
Dim Ctr As Integer

"For Ctr = 0 To Controls.Count - 1
If TypeOf Controls(Ctr) Is SSCommand Then

If Controls(Ctr).Top <> 0 Then Controls(Ctr).Top = WinH / (DEFAULTH / Controls(Ctr).Top)
If Controls(Ctr).Left <> 0 Then Controls(Ctr).Left = WinW / (DEFAULTW / Controls(Ctr).Left)
If Controls(Ctr).Height <> 0 Then Controls(Ctr).Height = WinH / (DEFAULTH /

Controls(Ctr).Height)
If Controls(Ctr).Width <> 0 Then Controls(Ctr).Width = WinW / (DEFAULTW /

Controls(Ctr).Width)
' End If
'Next Ctr

' Resize the height of the controls, unless WinH is
' of the default size.
If WinH <> DEFAULTH Then

ResizeH = WinH / RATIOH
ResizeW = WinW / RATIOW
ResizeT = WinH / RATIOT
ResizeL = WinW / RATIOL
For Ctr = 0 To 5

cmdInterface(Ctr).Top = ResizeT
cmdInterface(Ctr).Left = ResizeL + Ctr * ResizeW
cmdInterface(Ctr).Height = ResizeH
cmdlnterface(Ctr).Width = ResizeW

Next Ctr

For Ctr = 0 To 2
cmdNavigate(Ctr).Top = WinH / (DEFAULTH / cmdNavigate(Ctr).Top) + 1
cmdNavigate(Ctr).Left = WinW / (DEFAULTW / cmdNavigate(Ctr).Left) + 1
cmdNavigate(Ctr).Height = WinH / (DEFAULTH / cmdNavigate(Ctr).Height)
cmdNavigate(Ctr).Width = WinW / (DEFAULTW / cmdNavigate(Ctr).Width)

Next Ctr
End If

End Sub

Sub RunIndexSet (ByVal IndexPtr As Integer)

'effects Runs the index set, specified by the IndexPtr position in the UserIndexList
array.

Caption = "Index Set: " + UserlndexList(IndexPtr).Name
Createlndexltems UserIndexltemso, UserIndexList(IndexPtr).List
picPage(0).Visible = False
cmdNavigate_Click 1

End Sub

Sub SaveBookmark ()

Dim Response As Integer

159

Dim AppName As String, Section As String, Entry As Variant, FileName As String

AppName = "BookMark"
Section = "Section"
Entry = PageCtr
FileName = "c:\edics\users\" + UserName + "\" + UserName + ".ini"
Response = WritePrivateProfileString(AppName, ByVal "Section", ByVal Str$(PageCtr), FileName)
If Response Then

'MsgBox UserName + ".ini updated successfully: " & CurrentBookmark, MB_OK +
MB_APPLMODAL, "Bookmark"

Else
'MsgBox UserName + ".ini update failed.", MB_OK + MB_APPLMODAL, "Bookmark"

End If

End Sub

Sub SavePage ()

'modifies EDICSDB
'effects Updates the Edics Page Database to include the objects and information on the

current screen.

Dim Ctr As Integer

For Ctr = 1 To NumObjects
UpdateObject ObjectsOnPage(Ctr), PageDb.OpenTable("Page Database")

Next Ctr

End Sub

Sub ShowAllObjects (ByVal Labels As Integer, ByVal Graphics As Integer, ByVal Texts As Integer,
ByVal Videos As Integer, ByVal Inputs As Integer)

'modifies Me
'effects Reveals all hidden objects

On Error GoTo ErrShow

Dim Ctr As Integer

' Show all label objects
For Ctr = 1 To Labels

lblPage(Ctr).Visible = True
Next Ctr

' Show all graphics objects
For Ctr = 1 To Graphics

picAny(Ctr).Visible = True
Next Ctr

' Show all text objects
For Ctr = 1 To Texts

lblAny(Ctr).Visible = True

160

Next Ctr

'Show all video players and video windows
For Ctr = 1 To Videos

mmcPlayer(Ctr).Visible = True
picVideo(Ctr).Visible = True

Next Ctr

For Ctr = 1 To Inputs
txtUserInput(Ctr).Visible = True

Next Ctr

ErrShow:
Exit Sub

End Sub

Sub ShowLink (ByVal ObjectPtr As Integer, ByVal X As Integer, ByVal Y As Integer)

Dim NameOfLink As String

'PageCaption = mnuPageLabel.Caption
'NameOfLink = ObjectsOnPage(ObjectPtr).Link
'mnuPageLabel.Caption = NameOfLink

'lblShowLink.Top = Y
'IblShowLink.Left = X
'lblShowLink.Cls
'IblShowLink.Print NameOfLink, 0, 0
'lblShowLink.Visible = True
'lblShowLink.ZOrder

End Sub

Sub ShowObjectInfo (ByVal ObjectType As String)

'modifies ObjectsOnPage(Active.Tag)
'effects Displays the Object Info picture box, and places the information associated

with Active in the relevant fields.

Dim CurObject As ObjectInfo

CurObject = ObjectsOnPage(Active.Tag)

frmDialogs !txtInfo(0).Text = CurObject.Height
frmDialogs!txtInfo(1).Text = CurObject.Width
frmDialogs !txtInfo(2).Text = CurObject.TimeOnScreen
frmDialogs !txtInfo(3).Text = CurObject.Initial.Top
frmDialogs !txtInfo(4).Text = CurObject.Initial.Left
frmDialogs!txtlnfo(5).Text = CurObject.Final.Top
frmDialogs !txtlnfo(6).Text = CurObject.Final.Left
frmDialogs!lbllnfo(9).Caption = CurObject.Contents & " at" & Active.Top & ", " & Active.Left
DisplayTransitionCode ObjectType, Left$(CurObject.Transition, 1), frmDialogs !cboTransitions

161

'picObjectInfo.Top = Active.Top + 10
'picObjectInfo.Left = Active.Left + 10
'picObjectlnfo.Visible = True
'picObjectInfo.ZOrder
FillListBoxValues NumObjects, CurObject
picProperties(0).Visible = True
lstObjectProp(Active.Tag).Visible = True

End Sub

Sub spnVolume_SpinDown ()

'modifies txtVolume
'effects decreases the value of txtVolume.Text by 1

if it is greater than 0.

If Val(txtVolume.Text) > 0 Then
txtVolume.Text = Val(txtVolume.Text) - 1

End If

End Sub

Sub spnVolume_SpinUp ()

'modifies txtVolume
'effects increase the value of txtVolume.Text by 1

if it is less than MAXVOL.

If Val(txtVolume.Text) < MAXVOL Then
txtVolume.Text = Val(txtVolume.Text) + I

End If

End Sub

Sub StartEditor ()

' effects Starts the Screen Arranger.

UserName = "editor"
mnuUserName.Caption = UserName

' sound is off for editor
cmdSound = FRAME_EYE
cmdSound.Caption = "Sound off"

mnuViewItem_Click 2
mnuViewltem(0).Checked = False
mnuOptionsltem(1).Caption = mnuOptionsItem(1).Caption & Sensitivity
lblAny(0).BorderStyle = 1
picAny(0).BorderStyle = 1
picToolbar(0).Visible = True
lblCurPage.Visible = True
lblPage(0).BorderStyle = 1
picVideo(0).BorderStyle = 1

162

picMetafile(0).BorderStyle = 1
'cmdBranch(O).BorderStyle = 1
'imgTrash.Visible = True
'imgHide.Visible = True
frmDialogs !cboTransitions.AddItem "None"
frmDialogs !cboTransitions.AddItem "Move"
frmDialogs !cboTransitions.AddItem "Drop"
frmDialogs !cboTransitions.AddItem "Move and Drop"
cboObjectValue(TRANSTYPE).AddItem "None"
cboObjectValue(TRANSTYPE).AddItem "Move"
cboObjectValue(TRANSTYPE).AddItem "Drop"
cboObjectValue(TRANSTYPE).AddItem "Move and Drop"

'Show

DoEvents
'RaiseWindow frmMainDb
'frmMainDb.Show
'RaiseWindow frmTool.hWnd
'frmTool.Show
CreateListBoxTitles
'FillLinks PageDb
Set SectionDs = PageDb.CreateDynaset(SQLSTMTEDIT)
PageCtr = GetBookmarko
MainScreenPrint AllPages(PageCtr)

End Sub

Sub StartPlayback ()

' effects Starts Playback mode.

Dim Ctr As Integer

For Ctr = MNUVIEW_TOOLBAR To MNUVIEW_ALLOBJ
mnuViewltem(Ctr).Visible = False

Next Ctr

lblCurPage.Visible = False
'Show

DoEvents

Set SectionDs = PageDb.CreateDynaset(SQLSTMT & DatabaseSection & SQLSTMT2)

MainScreenPrint AllPages(PageCtr)

End Sub

Sub tmrWait_Timer ()

ReturnValue = True

Debug.Print "timer " & ReturnValue

163

End Sub

Sub TransFileReadAndPrint (ByVal FileName As String, TextTb As Table)

'effects Reads and prints the information in the transcription file to the
Transcription text box in the Transcription Form. If the current page
has more than one transcription file, then the previous text is reprinted,
along with the new text.

Dim LinesFromFile As String
Dim OldText As String

If NextPage Then
OldText = ""

Else
OldText = frmTranscription.txtTranscription.Text + Chr(13) + Chr(10)

End If

LinesFromFile = ReadFile(FileName, TextTb)

frmTranscription.txtTranscription.Text = OldText & LinesFromFile

End Sub

Sub TransitionCheck (ByVal TransitionItem As Integer)

'modifies mnulnfoltem Menu Array
'effects Removes checks in mnulnfoltem Menu and places check in position

TransitionItem

'On Error GoTo skip

Dim Ctr As Integer

For Ctr = MNUINFOTRANS NONE To MNUINFOTRANS LOOP
If Ctr = TransitionItem Then

MNUINFOTRANSITEM(Ctr).Checked = True
Else

MNUINFOTRANSITEM(Ctr).Checked = False
End If

Next Ctr

skip:
Exit Sub

End Sub

Sub txtLink_KeyPress (KeyAscii As Integer)

KeyAscii = 0

End Sub

164

Sub txtUserInput_Click (Index As Integer)

Dim Link As String

If UserTool = PLAYBACK Then
If txtUserlnput(Index).Tag = LINKEDOBJ Then

txtUserlnput(Index).Visible = False
Else 'If (txtUserlnput(Index).HelpContextlD <> LINKUP) Then

Link = ObjectsOnPage(picVideo(Index).Tag).Link
If Link <> "none" Then

txtUserInput(Index).HelpContextlD = LINKUP
ProcessLink Link, INPUT_CODE, Index
If LinkIndex <> UNCACHE Then

txtUserInput(Index).LinkTimeout = LinkIndex
End If

End If
End If

End If

End Sub

Sub txtUserInput_KeyPress (Index As Integer, KeyAscii As Integer)

ObjectsOnPage(txtUserInput(Index).Tag).Contents = INPUT_CODE & txtUserInput(Index).Text
SavedText = SavedText + Chr(KeyAscii)

End Sub

Sub txtUserInput_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Set Active = txtUserInput(Index)

If UserTool = EDITOR Then
If Button = RIGHT_BUTTON Then

txtUserInput(Index).Drag BEGIN_DRAG
DragX = X / Screen.TwipsPerPixelX
DragY = Y / Screen.TwipsPerPixelY

End If
End If

End Sub

Sub txtUserInput_MouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Single, Y As
Single)

Dim CurObject As ObjectInfo
Dim Transition As Integer

txtUserInput(Index).Drag END_DRAG
If Button = RIGHT_BUTTON Then

Set Active = txtUserInput(Index)
CurObject = ObjectsOnPage(Active.Tag)

165

mnulnputltem(MNU_XY).Caption = "&X, Y.. ." & Active.Top & ", " & Active.Left
mnulnputLocItem(MNU LOCINITIAL).Caption = "As &Initial: " &

UnparseCoords(CurObject.Initial)
mnulnputItem(MNUINPUT_SEQUENCE).Caption = "&Sequence..." & CurObject.Sequence
Transition = ParseTransitionCode(CurObject)
TransitionCheck Transition
mnulnfoltem(MNUINFO_TIME).Caption = "&Interval..." & CurObject.TimeOnScreen
PopupMenu mnulnput

End If

End Sub

Sub txtVolume_Change (

Dim NullVal As Integer
Dim Value As String

Value = "&H" + txtVolume.Text + "0000"
'Value = Value + Value

MsgBox Str$(Val(Value)), MB_OK

NullVal = waveOutSetVolume(mmcSound.hWnd, Val(Value))

MsgBox Str$(NullVal), MB_OK
End Sub

Sub txtVolume_KeyPress (KeyAscii As Integer)

If KeyAscii = 13 Then
cmdVolume_Click 1

End If

End Sub

Sub UnParseClearList (OutputBox As ListBox, ByVal InputList As String)

' effects Parses and prints the command clear list for the current command object.

Dim Item As String

InputList = Right$(InputList, Len(InputList) - 1)

Do While Len(InputList) > 1
Item = Pop(InputList, INDEXDELIMITER)
OutputBox.AddItem Left$(Item, Len(Item) - 1)

Loop

End Sub

Sub UnParseCommandAttribute (CurObject As ObjectInfo)

Dim Value As Integer, Ctr As Integer

166

Select Case Left$(CurObject.Transition, 1)
Case OBJECT_CLEARALL

Value = 0
Case OBJECT_CLEARSOME

Value = 1
Case OBJECT_NEXTPAGE

Value = 2
End Select

For Ctr = 0 To 2
mnuCmdAttrItem(Ctr).Checked = (Value = Ctr)

Next Ctr

End Sub

Sub UnparseLink (Link As String, PagLink As String, ObjectLink As String, NamLink As String)

Dim LinkType As String
Dim Templ As String, Temp As String

PagLink = ""
ObjectLink = ""
NamLink = ""

LinkType = Left$(Link, 1)
If LinkType = NAMELINK Then

NamLink = Mid$(Link, 2, Len(Link) - 1)
Else

PagLink = Mid$(Link, 2, Len(Link) - 1)
Temp = PagLink
Temp = Pop(Templ, CODEDELIMITERRIGHT)
'Temp = ObjectLink

End If

If Left$(Templ, 1) = ObjLink Then
'ObjectLink = Pop(Link, CODEDELIMITERRIGHT)
ObjectLink = "O" + Mid$(Templ, 2, Len(Templ) - 1)
PagLink = Temp

End If

End Sub

Function UnparseObjName (ByVal ObjectType As String) As String

Dim Temp As String

Select Case UCase(ObjectType)
Case VIDEO_CODE

Temp = "Video"
Case SCREENTEXT_CODE

Temp = "Screen Text"
Case AUDIO_CODE

Temp = "Audio Clip"
Case STILLCODE

167

Temp = "Still"
Case LABEL_CODE

Temp = "Label"
Case INPUT_CODE

Temp = "Input Box"
Case COMMAND_CODE

Temp = "Command Code"
Case META_CODE

Temp = "Metafile"
Case BRANCH_CODE

Temp = "Branch Code"
End Select

UnparseObjName = Temp

End Function

Function UnparseTransCode (ByVal TransitionCode As String) As String

Dim TempVal As String

Select Case TransitionCode
Case OBJECT_NOCODE, "0"

TempVal = "None"
Case OBJECTDROP

TempVal = "Drop"
Case OBJECTMOVE

TempVal = "Move"
Case OBJECTMOVEANDDROP

TempVal = "Move and Drop"
Case OBJECT_WAIT

TempVal = "Wait"
End Select

UnparseTransCode = TempVal

End Function

Function UnparseTransitionCode (ByVal TransitionCode As Integer, ByVal TransitionVal As Integer) As
String

' effects returns an unparsed transition code

Select Case TransitionCode
Case MNUINFOTRANS_NONE

UnparseTransitionCode = OBJECT_NOCODE
Case MNUINFOTRANS_MOVE

UnparseTransitionCode = OBJECT_MOVE & TransitionVal
Case MNUINFOTRANS_MOVEANDDROP

UnparseTransitionCode = OBJECT_MOVEANDDROP & TransitionVal
Case MNUINFOTRANS_DROP

UnparseTransitionCode = OBJECT_DROP & TransitionVal
'Case MNUINFOTRANS_ENLARGE

UnparseTransitionCode = OBJECT_ENLARGE

168

'Case MNUINFOTRANS_ROTATE
UnparseTransitionCode = TEXT_ROTATE

Case MNUINFOTRANS_WAIT
UnparseTransitionCode = OBJECT_WAIT

Case MNUINFOTRANS_LOOP
UnparseTransitionCode = OBJECT_LOOP

End Select

End Function

Sub UpdateObject (Object As ObjectInfo, OutputTable As Table)

modifies EDICSDB
'effects Updates the Edics Page Database to include the informaton specified by

Object. If Object.ID is not found in the database, then a new record is
created to reflect the new Object. Otherwise, the previous information
is updated. If Object.Contents = DELETED, the record is deleted from the
database:

Screen.MousePointer = 11

Dim ID As Integer, NewObject As Integer, CurrentRecord As Variant
Dim NewDs As Dynaset, CurDs As Dynaset

NewObject = False
ID = Object.ID

'OutputTable.LockEdits = False
OutputTable.Index = "PrimaryKey"
OutputTable.Seek "=", ID

If Object.Contents = DELETED Then
'Remove record from database, if the ID doesn't exist, no records are deleted.
If Not OutputTable.NoMatch Then

OutputTable.Delete
End If

Else
If OutputTable.NoMatch Then

OutputTable.AddNew
NewObject = True

Else
OutputTable.Edit

End If

OutputTable.Fields("Tutorial Code") = Object.TutorialCode
OutputTable.Fields("Page Code") = Object.PageCode
OutputTable.Fields("Sequence") = Object.Sequence
OutputTable.Fields("Object") = Object.Contents
OutputTable.Fields("Initial X") = Object.Initial.Left
OutputTable.Fields("Initial Y") = Object.Initial.Top
OutputTable.Fields("Final X") = Object.Final.Left
OutputTable.Fields("Final Y") = Object.Final.Top
OutputTable.Fields("Height") = Object.Height
OutputTable.Fields("Width") = Object.Width

169

OutputTable.Fields("Transition Code") = Object.Transition
OutputTable.Fields("Transition Attribute") = Object.TimeOnScreen
OutputTable.Fields("Link") = Object.Link
OutputTable.Update

End If

If NewObject Then
OutputTable.MoveLast
Object.ID = OutputTable.Fields("ID")

End If

OutputTable.Close

Screen.MousePointer = 0

End Sub

Sub WritelndexSet (OutputTb As Table, InputArrayo As IndexList)

'modifies OutputTb
'effects Writes the Index Set to the table OutputTb

End Sub

FRMMAINM.FRM CODE
Option Explicit

Const SQLSTMT = "Select * from [Page Database] where [Tutorial Code] = '"
Const SQLSTMT2 = "' Order by [Page Code] Asc, [Sequence] Asc"

Dim TutorialDb As Database
Dim TutorialDs As Dynaset

Sub cmdQuit_Click (Index As Integer)

QuitPgm

End Sub

Sub cmdSectionClick (Index As Integer)

'frmScreen.Imagel.Picture = LoadPicture(BKGRNDPATH & lblBgrndObject(Index).Caption)
DatabaseSection = lblSection(Index).Caption

Select Case Index
Case 0, 1, 2

Tool = PLAYBACK
Case 3

Tool = EDITOR
End Select

Unload frmMainMenu

' Starts the player

'Starts screen arranger development Tool

170

ScreenCtr = ScreenCtr + 1
ReDim Screens(ScreenCtr)

Load Screens(ScreenCtr)
Screens(ScreenCtr).Show

End Sub

Sub Form_Load ()

' Load all forms into memory
'Load frmTranscription
'Load frmScreen
'Load frmDefinition
'Load frmMap
'Load frmText
'Load frmTopic
'load frmLogin

' Show Login Screen
'frmLogin.Show MODAL

OpenTutorialDb
PrintLabels

End Sub

Sub OpenTutoriall)b (

Set TutorialDb = OpenDatabase(EDICSDB)
Set TutorialDs = TutorialDb.CreateDynaset("Tutorial Database")

End Sub

Sub PrintLabels ()

Dim Ctr As Integer

Ctr = 0

Do Until TutorialDs.EOF
'Load lblSection(Ctr)
'Load lblBgrndObject(Ctr)
'lblSection(Ctr).Top = lblSection(Ctr - 1).Top + 50
lblSection(Ctr).Caption = TutorialDs.Fields("Tutorial Code").Value
'lblBgrndObject(Ctr).Caption = TutorialDs.Fields("Background Object").Value
Ctr = Ctr + 1
TutorialDs.MoveNext

Loop

End Sub

FRMMAP.FRM CODE

Option Explicit

Sub cmdPrevious_Click ()

frmMap.Hide

End Sub

FRMMDI.FRM CODE
Option Explicit

Sub MDIForm_Load ()

Load frmBlank
WS_Video = GetWindowLong(frmBlank.hWnd, GWL_STYLE)

DocCtr = 0
ScreenCtr = 1

ReDim frmState(0)
ReDim Documents(0)
ReDim Screens(O)

'Put login form on screen.
'frmLogin.Move Screen.Width / 3.5, Screen.Height / 4.5
frmMainMenu.Move Screen.Width / 4.5, Screen.Height / 4.5

End Sub

FRMTRANS.FRM CODE

' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
'display the up bitmap
Select Case Button
Case 1

If X <= 0 Or X > imgCopyButton.Width Or Y < 0 Or Y > imgCopyButton.Height Then
imgCopyButton.Picture = imgCopyButtonUp.Picture

Else
imgCopyButton.Picture = imgCopyButtonDn.Picture

End If
End Select

End Sub

Sub imgCopyButton_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgCopyButton.Picture = imgCopyButtonUp.Picture

End Sub

Sub imgCutButton_Click ()
imgCutButton.Refresh
EditCutProc

End Sub

172

Sub imgCutButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgCutButton.Picture = imgCutButtonDn.Picture

End Sub

Sub imgCutButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
' display the up bitmap
Select Case Button
Case 1

If X <= 0 Or X > imgCutButton.Width Or Y < 0 Or Y > imgCutButton.Height Then
imgCutButton.Picture = imgCutButtonUp.Picture

Else
imgCutButton.Picture = imgCutButtonDn.Picture

End If
End Select

End Sub

Sub imgCutButtonMouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgCutButton.Picture = imgCutButtonUp.Picture

End Sub

Sub imgFileNewButton_Click ()
imgFileNewButton.Refresh
FileNew

End Sub

Sub imgFileNewButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgFileNewButton.Picture = imgFileNewButtonDn.Picture

End Sub

Sub imgFileNewButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
' display the up bitmap
Select Case Button
Case 1

If X <= 0 Or X > imgFileNewButton.Width Or Y < 0 Or Y > imgFileNewButton.Height Then
imgFileNewButton.Picture = imgFileNewButtonUp.Picture

Else
imgFileNewButton.Picture = imgFileNewButtonDn.Picture

End If
End Select

End Sub

Sub imgFileNewButton MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgFileNewButton.Picture = imgFileNewButtonUp.Picture

End Sub

Sub imgFileOpenButton_Click ()
imgFileOpenButton.Refresh
FOpenProc

End Sub

173

Sub imgFileOpenButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgFileOpenButton.Picture = imgFileOpenButtonDn.Picture

End Sub

Sub imgFileOpenButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
' display the up bitmap
Select Case Button
Case 1

If X <= 0 Or X > imgFileOpenButton.Width Or Y < 0 Or Y > imgFileOpenButton.Height Then
imgFileOpenButton.Picture = imgFileOpenButtonUp.Picture

Else
imgFileOpenButton.Picture = imgFileOpenButtonDn.Picture

End If
End Select

End Sub

Sub imgFileOpenButton_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgFileOpenButton.Picture = imgFileOpenButtonUp.Picture

End Sub

Sub imgPasteButton_Click ()
imgPasteButton.Refresh
EditPasteProc

End Sub

Sub imgPasteButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgPasteButton.Picture = imgPasteButtonDn.Picture

End Sub

Sub imgPasteButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
' display the up bitmap
Select Case Button
Case 1

If X <= 0 Or X > imgPasteButton.Width Or Y < 0 Or Y > imgPasteButton.Height Then
imgPasteButton.Picture = imgPasteButtonUp.Picture

Else
imgPasteButton.Picture = imgPasteButtonDn.Picture

End If
End Select

End Sub

Sub imgPasteButton_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgPasteButton.Picture = imgPasteButtonUp.Picture

End Sub

Sub MDIForm_Load ()
'Application starts here (Load event of Startup form).
Show
'Always set working directory to directory containing the application.

ChDir App.Path

'Initialize document form arrays, and show first document.
ReDim Document(1)
ReDim FState(1)
Document(1).Tag = 1
FState(1).Dirty = False
Document(1).Show

'Read MDINOTE.INI and set recent file menu items appropriately
GetRecentFiles

End Sub

Sub MDIForm_Unload (Cancel As Integer)
' If the Unload was not canceled (in the QueryUnload events for the Notepad forms)
' there will be no document windows left, so go ahead and end the application.

If Not AnyPadsLefto Then
End

End If

End Sub

Sub mnuFExit_Click ()
End

End Sub

Sub mnuFNew_Click ()
FileNew

End Sub

Sub mnuFOpen_Click (
FOpenProc

End Sub

Sub mnuOptions_Click ()
mnuOToolbar.Checked = frmMDI!picToolbar.Visible

End Sub

Sub mnuOToolbar_Click ()
OptionsToolbarProc Me

End Sub

Sub mnuRecentFile_Click (index As Integer)
OpenFile (mnuRecentFile(index).Caption)
' Update recent files list.
GetRecentFiles

End Sub

NOTEPAD.FRM CODE

Option Explicit

175

'Type FormState
Deleted As Integer
Dirty As Integer
Color As Long

'End Type

Dim gFindString, gFindCase As Integer, gFindDirection As Integer
Dim gCurPos As Integer, gFirstTime As Integer
Dim TextChanged As Integer

Sub EditCopyProc ()
'Copy selected text to Clipboard.
ClipBoard.SetText txtEdit.SelText

End Sub

Sub EditCutProc ()

' Copy selected text to Clipboard.
ClipBoard.SetText txtEdit.SelText

' Delete selected text.
txtEdit.SelText = ""

End Sub

Sub EditPasteProc ()

'Place text from Clipboard into active control.
txtEdit.SelText = ClipBoard.GetText()

End Sub

Sub FileNew ()

Dim Msg As String, Filename As String, NL As String
Dim Response As Integer

If TextChanged Then
Filename = Caption
NL = Chr$(10) & Chr$(13)
Msg = "The text in [" & Filename & "] has changed." & NL & "Do you want to save the

changes?"
Response = MsgBox(Msg, MB_YESNOCANCEL, Filename)
If Response = IDYES Then

Do
Filename = GetFileName()

Loop Until Filename <> ""
SaveFileAs (Filename)

Elself Response = IDCANCEL Then
Exit Sub

End If
End If

176

txtEdit.Text = ""
TextChanged = False
Caption = "Untitled"

End Sub

Sub FindIt (
Dim start, pos, findstring, sourcestring, Msg, Response, Offset

If (gCurPos = txtEdit.SelStart) Then
Offset = 1

Else
Offset = 0

End If

If gFirstTime Then Offset = 0

start = txtEdit.SelStart + Offset

If gFindCase Then
findstring = gFindString
sourcestring = txtEdit.Text

Else
findstring = UCase(gFindString)
sourcestring = UCase(txtEdit.Text)

End If

If gFindDirection = 1 Then
pos = InStr(start + 1, sourcestring, findstring)

Else
For pos = start - 1 To 0 Step -1

If pos = 0 Then Exit For
If Mid(sourcestring, pos, Len(findstring))

Next
End If

'If string is found
If pos Then

txtEdit.SelStart = pos - 1
txtEdit.SelLength = Len(findstring)

Else

= findstring Then Exit For

Msg = "Cannot find " & Chr(34) & gFindString & Chr(34)
Response = MsgBox(Msg, 0, App.Title)

End If

gCurPos = txtEdit.SelStart
gFirstTime = False

End Sub

Sub FOpenProc ()

Dim RetVal

177

On Error Resume Next
Dim OpenFileName As String

dlgTextEdit.Filename = ""
dlgTextEdit.Action = 1
dlgTextEdit.Filter = "Text Filesl*.txtlAll Filesl*.*"
dlgTextEdit.InitDir = Left$(TEXTPATH, Len(TEXTPATH) - 1)

If Err <> 32755 Then 'user pressed cancel
OpenFileName = dlgTextEdit.Filename
OpenFile (OpenFileName)

End If

End Sub

Sub Form Load ()

TextChanged = False

End Sub

Sub Form_QueryUnload (Cancel As Integer, UnloadMode As Integer)

Dim Msg, Filename, NL
Dim Response As Integer

If TextChanged Then
Filename = Caption
NL = Chr$(10) & Chr$(13)
Msg = "The text in [" & Filename & "] has changed."
Msg = Msg & NL
Msg = Msg & "Do you want to save the changes?"
Response = MsgBox(Msg, 51, Caption)
Select Case Response
'User selects Yes
Case 6

'Get the filename to save the file
Filename = GetFileName0
'If the user did notspecify a file name,
'cancel the unload; otherwise, save it.
If Filename = "" Then

Cancel = True
Else

SaveFileAs (Filename)
End If

' User selects No
' Ok to unload
Case 7

Cancel = False
' User selects Cancel
' Cancel the unload
Case 2

178

Cancel = True
End Select

End If
End Sub

Sub Form_Resize ()
If windowstate <> I And ScaleHeight <> 0 Then

txtEdit.Visible = False
txtEdit.Height = ScaleHeight
txtEdit.Width = ScaleWidth
txtEdit.Visible = True

End If
End Sub

Function GetFileName ()

'Displays a Save As dialog and returns a file name
'or an empty string if the user cancels

On Error Resume Next

dlgTextEdit.Filename = ""
dlgTextEdit.Filter = "Text Filesl*.txtlAll Filesl*.*"
dlgTextEdit.InitDir = Left$(TEXTPATH, Len(TEXTPATH) - 1)
dlgTextEdit.Action = 2

If Err <> 32755 Then 'User cancelled dialog
GetFileName = dlgTextEdit.Filename

Else
GetFileName = ""

End If

End Function

Sub imgBoldButton_Click ()

imgBoldButton.Refresh

End Sub

Sub imgBoldButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)

imgBoldButton.Picture = imgBoldDn.Picture

End Sub

Sub imgBoldButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

Select Case Button
Case 1

If X <= 0 Or X > imgBoldButton.Width Or Y < 0 Or Y > imgBoldButton.Height Then
imgBoldButton.Picture = imgBoldUp.Picture

Else
imgBoldButton.Picture = imgBoldDn.Picture

179

End If
End Select

End Sub

Sub imgBoldButton_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)

imgBoldButton.Picture = imgBoldUp.Picture

End Sub

Sub imgCopyButton_Click ()
imgCopyButton.Refresh
EditCopyProc

End Sub

Sub imgCopyButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgCopyButton.Picture = imgCopyButtonDn.Picture

End Sub

Sub imgCopyButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
' display the up bitmap
Select Case Button
Case 1

If X <= 0 Or X > imgCopyButton.Width Or Y < 0 Or Y > imgCopyButton.Height Then
imgCopyButton.Picture = imgCopyButtonUp.Picture

Else
imgCopyButton.Picture = imgCopyButtonDn.Picture

End If
End Select

End Sub

Sub imgCopyButton_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgCopyButton.Picture = imgCopyButtonUp.Picture

End Sub

Sub imgCutButton_Click ()
imgCutButton.Refresh
EditCutProc

End Sub

Sub imgCutButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgCutButton.Picture = imgCutButtonDn.Picture

End Sub

Sub imgCutButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
' display the up bitmap
Select Case Button
Case 1

If X <= 0 Or X > imgCutButton.Width Or Y < 0 Or Y > imgCutButton.Height Then

180

imgCutButton.Picture = imgCutButtonUp.Picture
Else

imgCutButton.Picture = imgCutButtonDn.Picture
End If

End Select
End Sub

Sub imgCutButton_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgCutButton.Picture = imgCutButtonUp.Picture

End Sub

Sub imgFileNewButton_Click ()

imgFileNewButton.Refresh
FileNew

End Sub

Sub imgFileNewButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)

imgFileNewButton.Picture = imgFileNewButtonDn.Picture

End Sub

Sub imgFileNewButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
'display the up bitmap

Select Case Button
Case 1

If X <= 0 Or X > imgFileNewButton.Width Or Y < 0 Or Y > imgFileNewButton.Height Then
imgFileNewButton.Picture = imgFileNewButtonUp.Picture

Else
imgFileNewButton.Picture = imgFileNewButtonDn.Picture

End If
End Select

End Sub

Sub imgFileNewButton_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)

imgFileNewButton.Picture = imgFileNewButtonUp.Picture

End Sub

Sub imgFileOpenButton_Click ()

imgFileOpenButton.Refresh
FOpenProc

End Sub

Sub imgFileOpenButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgFileOpenButton.Picture = imgFileOpenButtonDn.Picture

End Sub

Sub imgFileOpenButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
'display the up bitmap
Select Case Button
Case 1

If X <= 0 Or X > imgFileOpenButton.Width Or Y < 0 Or Y > imgFileOpenButton.Height Then
imgFileOpenButton.Picture = imgFileOpenButtonUp.Picture

Else
imgFileOpenButton.Picture = imgFileOpenButtonDn.Picture

End If
End Select

End Sub

Sub imgFileOpenButton_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgFileOpenButton.Picture = imgFileOpenButtonUp.Picture

End Sub

Sub imgItalicButton_Click ()

imgItalicButton.Refresh

End Sub

Sub imgItalicButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)

imgltalicButton.Picture = imgltalicDn.Picture

End Sub

Sub imgItalicButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

Select Case Button
Case 1

If X <= 0 Or X > imgltalicButton.Width Or Y < 0 Or Y > imgItalicButton.Height Then
imgItalicButton.Picture = imgItalicUp.Picture

Else
imgltalicButton.Picture = imgltalicDn.Picture

End If
End Select

End Sub

Sub imgltalicButton_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)

imgltalicButton.Picture = imgItalicUp.Picture

End Sub

Sub imgPasteButton_Click ()

182

imgPasteButton.Refresh
EditPasteProc

End Sub

Sub imgPasteButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgPasteButton.Picture = imgPasteButtonDn.Picture

End Sub

Sub imgPasteButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
' If the button is pressed, display the up bitmap if the
' mouse is dragged outside the button's area, otherwise
' display the up bitmap
Select Case Button
Case 1

If X <= 0 Or X > imgPasteButton.Width Or Y < 0 Or Y > imgPasteButton.Height Then
imgPasteButton.Picture = imgPasteButtonUp.Picture

Else
imgPasteButton.Picture = imgPasteButtonDn.Picture

End If
End Select

End Sub

Sub imgPasteButton MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
imgPasteButton.Picture = imgPasteButtonUp.Picture

End Sub

Sub imgUnderlineButton_Click ()

imgUnderlineButton.Refresh

End Sub

Sub imgUnderlineButton_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)

imgUnderlineButton.Picture = imgUnderlineDn.Picture

End Sub

Sub imgUnderlineButton_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

Select Case Button
Case 1

If X <= 0 Or X > imgUnderlineButton.Width Or Y < 0 Or Y > imgUnderlineButton.Height
Then

imgUnderlineButton.Picture = imgUnderlineUp.Picture
Else

imgUnderlineButton.Picture = imgUnderlineDn.Picture
End If

End Select

End Sub

183

Sub imgUnderlineButton MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)

imgUnderlineButton.Picture = imgUnderlineUp.Picture

End Sub

Sub mnuCharltem_Click (Index As Integer)

Select Case Index
Case 0
Case 1
Case 2
Case 3
Case 5
Case 6

End Select

End Sub

Sub mnuECopyClick ()
EditCopyProc

End Sub

Sub mnuECut_Click ()
EditCutProc

End Sub

Sub mnuEDelete_Click ()
'If cursor is not at the end of the notepad.
If screen.ActiveControl.SelStart <> Len(screen.ActiveControl.Text) Then
'If nothing is selected, extend selection by one.
If screen.ActiveControl.SelLength = 0 Then

screen.ActiveControl.SelLength = 1
' If cursor is on a blank line, extend selection by two.
If Asc(screen.ActiveControl.SelText) = 13 Then

screen.ActiveControl.SelLength = 2
End If

End If
' Delete selected text.
screen.ActiveControl.SelText = ""

End If
End Sub

Sub mnuEPaste_Click ()
EditPasteProc

End Sub

Sub mnuESelectAll_Click ()
txtEdit.SelStart = 0
txtEdit.SelLength = Len(txtEdit.Text)

End Sub

Sub mnuETimeClick ()
Dim TimeStr As String, DateStr As String

184

txtEdit.SelText = Now
End Sub

Sub mnuFileItem_Click (Index As Integer)

Select Case Index
Case 0

FileNew
Case 1

FOpenProc
Case 2

Dim Filename As String

If Left(Me.Caption, 8) = "Untitled" Then
' The file hasn't been saved yet,
' get the filename, then call the
' save procedure
Filename = GetFileNameO

Else
' The caption contains the name of the open file
Filename = Me.Caption

End If
' call the save procedure, if Filename = Empty then
' the user selected Cancel in the Save As dialog, otherwise
' save the file
If Filename <> "" Then

SaveFileAs Filename
End If

Case 3
Dim SaveFileName As String

SaveFileName = GetFileNameo
If SaveFileName <> "" Then SaveFileAs (SaveFileName)
'Update the recent files menu

Case 5
Unload Me

End Select

End Sub

Sub mnuOptionsItem_Click (Index As Integer)

mnuOptionsItem(Index).Checked = Not (mnuOptionsltem(Index).Checked)

Select Case Index
Case 0

picToolbar.Visible = mnuOptionsItem(Index).Checked
Case 1

picPreview.Visible = mnuOptionsItem(Index).Checked
End Select

End Sub

185

Sub mnuSFind_Click ()

If txtEdit.SelText <> "" Then
frmFind!txtFind.Text = Me!txtEdit.SelText

Else
'frmFind!txtFind.Text = FindString

End If
gFirstTime = True
frmFind.Show

End Sub

Sub mnuSFindNext_Click ()
If Len(gFindString) > 0 Then

FindIt
Else

mnuSFind_Click
End If

End Sub

Sub mnuWArrange_Click ()
frmMain.Arrange ARRANGE_ICONS

End Sub

Sub mnuWCascade_Click ()
frmMain.Arrange CASCADE

End Sub

Sub mnuWTile_Click ()
frmMain.Arrange TILE_HORIZONTAL

End Sub

Sub OpenFile (Filename)

Dim TextIn As String

On Error Resume Next
' open the selected file
Open Filename For Input As #1
If Err Then

MsgBox "Can't open file: " + Filename
Exit Sub

End If
Close #1

' change mousepointer to an hourglass
screen.MousePointer = 11
TextIn = ReadFile(Filename)

' change form's caption and display new text
Caption = UCase$(Filename)
txtEdit.Text = TextIn
TextChanged = False

' reset mouse pointer

186

screen.MousePointer = 0

End Sub

Sub SaveFileAs (Filename)

On Error Resume Next

Dim Contents As String

' open the file
Open Filename For Output As #1
' put contents of the notepad into a variable
Contents = frmNotePad.txtEdit.Text
'display hourglass
screen.MousePointer = 11
I write variable contents to saved file
Print #1, Contents
Close #1
' reset the mousepointer
screen.MousePo inter = 0
' set the Notepad's caption

If Err Then
MsgBox Error, 48, App.Title

Else
frmNotePad.Caption = UCase$(Filename)
' reset the dirty flag
TextChanged = False

End If

End Sub

Sub txtEditChange (

TextChanged = True

End Sub

187

APPENDIX C: DATABASES STRUCTURE

Archive table structure
Field name Data type
Archive Text
Description Text
Archive source Text
Archive object OLE Object
Transcription code Text

Index table structure
Field name Data type
Term Text
Object 1 Memo
Object 2 Memo
Object 3 Memo

Index-set table structure
Field name Data type
Index Name Text
Page Item Text

Object-term table structure
Field name Data type
ID Counter
Object Term Text
Object Code Text

188

Page table structure
Field name Data type
ID Counter
Tutorial Code Text
Page Code Text
Sequence Number
Object Text
Initial X Number
Initial Y Number
Final X Number
Final Y Number
Height Number
Width Number
Transition Code Text
Transition Attribute Number
Link Text

Text table structure
Field name Data type
Text code Text
Contents Memo

Topic table structure
Field name Data type

Page Code Text
Topic Text

Tutorial table structure
Field name Data type
Tutorial Code Text

189

Background Object Text

---- I

L.·

APPENDIX D: DESIGN PROCESS CHAPTER OUTLINE

Legend

Basic outline level 1 (-= go to next section)
basic outline level 2

basic outline level 3
basic outline level 4

references
media
text or audio information
notebook pages
I9 signifies a button to access something
"{ }" represents an object code

Introduction
screen:

need symbol/icon for the hydrofoil or the design process
intro. text/problem statement

Introduction statement
{t215 } The purpose of this program is to expose you to the mechanical

design process by putting you inside a real design problem. One of our major
goals is for you to gain the understanding that design is sometimes messy and
mistakes are made. Therefore we have taken every opportunity to show our
mistakes and why they came about.

We selected the design of a human-powered hydrofoil because it contains
all the basic elements that we want to show. We hope that you will find the
project as exciting as we did. As you go through the program think of yourself
as a member of the design team and what steps you would take.

Statement that hydrofoil was built, works and still needs work. Mention the boats
name: the Skeeter.
Statement on building a team and the need for diversity
I11 Introduce all people involved

small picture of each person
use existing video whenever possible

9 { S8831 Ernesto Blanco { S896}
Adjunct Professor of Mechanical Engineering at MIT
design advice and informal design review

I { S884} Mark Drela { S897 }
Professor of Aeronautical Engineering at MIT
main design team
worked the Decavitator project
worked on the Daedalus project
set men's world speed record for human-powered travel on water from
11/2/91.
responsible for the foil and propeller design.
composite work
machining
mechanical design

190

participated in design review
I { S885} Sepehr Kiani { S898}

MIT M.S. student in Mechanical Engineering
main design team
part of MS thesis
conceptual research and work
layout, assembly and detail design work
composite and machining
participated in design review

I { S886} Matthew Wall S899}
MIT Ph.D. student in Mechanical Engineering
main design team
worked the Decaitator project
composite work
machining
mechanical design
participated in design review

S{ S909 } David Wilson { S900}
Professor of Mechanical Engineering at MIT
faculty overall project advisor
originated work on human powered hydrofoils in 1979
participated in design review

R I{S882} Julie Yang {S881)
MIT M.S. student in Mechanical Engineering
helped with composite work and testing

S{ S888 } Li Shu { S901}
MIT Ph.D. student in Mechanical Engineering
helped with composite work

1 { S879} Ben Lindes { S880}
MIT Ph.D. student in Mechanical Engineering
helped with composite work and testing

S{ S889 } Ian Kaye { S902}
Northeastern University B.S. student in Mechanical Engineering
helped with fabrication and machining

I { S890} Fred Ackerman { S903}
MIT B.S. student in Mechanical Engineering
UROP (undergraduate research opportunity program) student
machining

9 { S891 } Tom Washington { S904}
MIT Ph.D. student in Aeronautical Engineering
worked the Decavitator project
composite work
designed made skimmer molds

I { S892} Harold "Guppy" Youngren { S905
MIT M.S. in Aeronautical Engineering 1990
late night help and encouragement

R { S893} Woodie Flowers { S906)
Professor of Mechanical Engineering at MIT
participated in design review

9{(S894) Marc Schafer (S907)
MIT M.S. student in Mechanical Engineering
worked the Decavitator project

191

participated in design review
I { S895} Ted VanDusen / Composite Engineering { S908}

used men's Olympic kayak mold and expertise
I { S910} Shin Choi { S909 }

MIT B.S. student in Mechanical Engineering, 1994
helped with hull fabrication

[I { S833} Side bar on the history of boating and hydrofoils, similar to that in
Scientific American article.

Brooks, Alec N.; Abbott, Allan V.; Wilson, David Gordon; "Human-powered
Watercraft," Scientific American, Volume 255, Number 6, New York, NY, @
1986.

Define problem and plan project (3/28/92)
ZI {S843}

{S8371 } Phases of design from Shigley

Shigley, Joseph Edward and Mischke, Charles R.; Mechanical
Engineering Design. McGraw-Hill Book Company, New York @ 1989.

l { S844}

{S835}
9 {S845}

192

{S8361
On design process:

{ t216} There are as many approaches to the process of design as there are
design engineers and design problems. Consider these three general process
flow diagrams. A key element of all these diagrams is iteration, i.e., backing up
and trying another design path. No matter how much knowledge and experience
one has, design is a large set of assumptions. The only way to know an
assumption will work is to test it, either by building or modeling (usually both
are needed). Sometimes a bad assumption will not show itself until the design
becomes somewhat refined. The difficulty lies in figuring out how far to go
before giving up and going "back to the drawing board" for another iteration.

Professor Ernesto Blanco always tells his students not to use a sharp
pencil when sketching an idea, "because your thoughts are not sharp yet." Keep
your thoughts free and open until your design is ready for detailing.

E, On hydrofoil design process.
{t217 } A design engineer at Apple once said about development of the

Apple PowerBook, "make lots of plans and change them often." This is the
original plan for the hydrofoil project; notice how we go from broad concept to
refined detail. As you follow along in this program note the departures from the
original process plan.

S{[S8411 (original design process Ian and timeline) => [S838]

1992 1993
Arir May Jud Aily Aug S.p. Oct. N. Dr.. .y J dy A . .. S.pL

~.ni,.,Idi.t . (1m) (6/12192)
Con.p, ,d../ (19c1) (6/12_0r.
Thm ca-pr ob mpt (7132)

COS8 0 choi(ce (9/2W92) l
GoSl0 dpnro sl an (12/4a92) ny

193

Defining the project:

March 19 9 2 April 1992 May 1992 June 1992

Develop concepts
Concept research

(S743)
Definition of "clean sheet"

{t218 } To design and build an alpha-level prototype of a human-powered
hydrofoil. We aimed the design of this craft at a high end recreational market;
therefore it should be practical and relatively easy to use.

E Prototype phase terminology
{ t219 } An "alpha-phase" prototype is a term often associated with proof-

of-concept work. Sometimes referred to as a "mule," an alpha prototype
usually functions as a test bed for debugging design concepts. Beta-phase
prototypes, often referred to as "preproduction" prototypes, are usually
manufactured and assembled in a method as close to the production as
possible. Often more than one beta is produced for user testing. This sort of
terminology is very dependent on your local design culture.

Concept research
April 1992 May 1992 June 1992 July 1992

Develop concepts
Concept research
Eaily modeling (S744)

{ t200} A fresh approach to a problem sometimes provides revolutionary
insights, i.e., not limiting your mind to previous conceived solutions. In this
spirit, initial ideas and brainstorms for the hydrofoil were gathered prior to any
research.

{ t201 } Research for developing concepts came from prior art, nature, and
related things. Where else might you look for ideas and inspiration?

[I Prior Art
Decavitator (5/1/92)

{t227 } The MIT Decavitator project set the world records
Men's record: 18.50 kt, 2 Nov. 91 Mark Drela
Women's record: 13.86 kt, 26 Oct. 92 Kjirste Carlson

{V342} video of Decavitator

194

{t228 } Drela, Mark; Schafer, Marc; and Wall, Matt; "Decavitator human-
powered hydrofoil," Human Power, Vol. 9 Nos. 3&4, Fall-Winter 1991-1992.

Japanese (5/10/92)
video from Dave
On & Off Yamaha

papers on hp hydrofoils (5/21/92), (5/26/92), (5/28/92)
{ S658} notebook sketch
{ t229 } Smitt, Lei Wagner; "Conceptual Design of Human Powered 'Hopping'
Hydrofoil Boat"; Small Craft Group International Conference on Human
Powered Marine Vehicles; Oars, propellers, paddles at the Weir Lecture Hall,
London. Nov. 8, 1984.
Owers, D.J.; "Development of a Human-Powered Racing Hydrofoil"; Small
Craft Group International Conference on Human Powered Marine Vehicles;
Oars, propellers, paddles at the Weir Lecture Hall, London. Nov. 8, 1984.
Brewster, M. B., "The Design and Development of a Man-Powered Hydrofoil,"
Thesis for Bachelor of Science, Mechanical Engineering Dept., MIT, May
1979.

Sid Shutt's stuff(5/30/92)
{t230} Shutt, Sid; "Some ideas on Hydro-ped -- a hydrofoil pedal boat",
Human Power 7(4), Summer 1989.
Shutt, Sid, "A practical Human Powered Hydrofoil"
Mark's video

Flying Fish (5/28/92)
{ t231 } Brooks, Alec N. "The Flying Fish Hydrofoil," Human Power, Vol. 3,
No. 2, Winter 1984.
{V343 } video

I Nature (5/3/92)
Looking for inspiration in nature.
{t232} Grzimeks, Bernhard; Grzimek's Animal Life Encyclopedia, Van
Norstrand Reinhold Co. N.Y.; ©.

Volume 2: Insects @ 1972 -- 9 {JS646}wasp
Volume 4: Fishes I @ 1973 -- IN {S649}shark, 0I {S647}flying fish, I0
{S651 Iray
Volume 7: Birds I @ 1975 -- bird tails

{t233 } McCafferty, Patrick W.; Aquatic Entomology, Science Books
International, Inc. Boston; © 1981.

I9 { S648) Water Bugs (order hemiptera)
{t234} Katona, Steven K.; A Field Guide to the Whales, Porpoises and Seals
of the Gulf of Maine and Eastern Canada; Charles Scribner's Sons, NY @
1983.

i { S645 } Minke whale
E {$S644} dolphin
[9 { S650} Humpback whale flukes

EI9 Related
commercial hydrofoils (5/28/92), (5/30/92)

{t235 } Trillo, Rober L.; Jane's High-Speed Marine Craft 1990, 23rd Edition,
Jane's Information Group Limited, ©1990.

Italian build Sparviero hydrofoil missile craft
picture in the book

195

[S654] sketch in notebook
Russian made Cyclone

{ S655 } sketch in notebook

The 40 knot sailboat (5/23/92)
{ t236} Smith, Bernard; The 40 Knot Sailboat, Crosset & Dunlap Inc., NY @
1963.
{ S656} sketches in my notebook

aero library research (5/26/92)
{ t237} Stinton, Darrol; The Anatomy of The Aeroplane; Granada Publishing
Limited, NY; ©1966
{ S657 } sketches in notebook

I { S763 } Develop concepts (4/25/92)
{t202} Which one would you select as the best design or can you think of

a better design? It is always best to start with as many diverse concepts as
possible, never be afraid of doing something that seems strange.

March 1992 April 1992 May 1992 June 1992

Define problem
Develop concepts I
Concept research { $745 }

I { S653 } drawing and sketching
{ t203 } Drawings and sketches have two basic functions, (1) geometric

modeling and (2) communication. A sketch or drawing can serve as a model of
a system or component, answering both functional and asthetic questions.
Design engineering has developed drafting standards as a language to
comunicate precise design information. Note the different types of visual
modeling and communication we use in designing the Skeeter.

"...there's something that's very intense about the experience of sitting
down and having to look at something in the way that you do in order to
make a drawing or a painting of it. By the time you've done that you feel that
you've really understood what you were looking at... and somehow it becomes
a method of possessing the experience in a unique way." --Robert Bechtle

[{ S759} The engineers notebook
{ t204} Good practice when doing any design work is to use a bound

notebook. The notebook is a good way to keep track of the progress of a
project and ideas. Also, a notebook is a legal document often used to defend
patents. Some good rules to follow:
V use a bound notebook (not spiral bound);
/ record you original data;
" record all sketches, ideas and thoughts;

/ number, date and initial all pages; and
/ use ink (go over any pencil work with pen).

I { S627i} concept 1 (4/25/92)
[I { S659} notebook sketch
{S627b} rendering

This design incorporates a surface-piercing main vee-foil in a catamaran
layout. The rider sits in a recumbent position. The boat uses direct-shaft-drive

196

that has the exposed shaft in the water, driving a water propeller. The hulls are
fiberglass and provide the main structure.
Advantages

" Catamaran layout provides higher takeoff speeds and is very stable
/ Simple frame and drive system.
" Surface-piercing vee-foil is self-stabilizing.
" Hull integrity never compromised.

Issues
V Molding dual hulls is expensive.
v Weight of dual hulls may be high.

" Surface-piercing vee-foils have ventilation problems.
v Exposed propeller shaft has high drag.

I& definition of ventilation
II{ S621i} concept 2 (4/26/92)

91 { S660} notebook sketch
{ S621b } rendering

This design is a fully faired catamaran that incorporates a main surface-
piercing vee-foil. The rider sits in a recumbent position. The drive system
incorporates a direct shaft or twisted-belt mechanism on the front foil.
Advantages

V Aesthetically pleasing design.
" Aerodynamic.

V Catamaran layout provides higher takeoff speeds.
V It has a simple drive system.
" Surface-piercing vee-foil is self-stabilizing.

Issues
" Safety in a capsize is a major problem.
" Increased weight may offset any aerodynamic advantages of a fairing.
" Molding of a complex fairing is very expensive.
" Surface-piercing vee-foils have ventilation problems.

/ Main foil is in the propeller wash.
" Transportability.

9 {S617i} concept 3 (4/25/92)
IE { S661 } notebook sketch
{ S617b } rendering

This is a single-hull craft with a water propeller. The hull incorporates a
tail behind the rider for improved aerodynamics. The drive system incorporates
a direct shaft or twisted-belt mechanism on the front foil. Rider sits in a
recumbent position. Both foils are tee-type.
Advantages

" Simple frame and drive system.
/ Tee-type foils are efficient.
V Has good aerodynamics with tail and low frontal area.

" Compact design improves transportability.
Issues

" No roll stabilization provided.
/ Short and wide hull has low takeoff speed.
" Tail may be expensive complexity.

S{ S625i } concept 4 (4/25/92)
I { S662} notebook sketch
{ S625b} rendering

197

This design incorporates a surface-piercing main vee-foil in a catamaran
layout. The rider sits in a recumbent position and rides in the reverse direction,
like a rowboat. It incorporates direct-shaft-drive that has the shaft exposed to
the water, driving a water propeller. The hulls are fiberglass and provide the
main structure.
Advantages

V Catamaran layout provides higher takeoff speeds.
V Simple frame and drive system.
V Surface piercing vee-foil is self-stabilizing.

Issues
v/ Safety concerns of riding in the reverse direction.
V Molding dual hulls is expensive.
V Weight of dual hulls may be high.
V Surface-piercing vee-foils have ventilation problems.
V Exposed propeller shaft has high drag.

9{ S628i} concept 5 (5/20/92)
I { S663 } notebook sketch
{S628b} rendering

This design has a direct-drive water propeller on the front foil. Setting
rear foils apart gets them out of the propeller wash. The foils are tee-type. The
rear foils have roll-stabilizing control surfaces. The rider sits in a the hull in a
recumbent position. The single hull incorporates an aerodynamic tail.
Advantages

V It has a simple drive system.
V Incorporates dynamic roll stabilization.
V Low frontal area and tail for aerodynamics.

Issues
V Molding of complex hull will be expensive.
V Takeoff will be a problem with the control system.

I { S632i } concept 6 (5/20/92)
I { S664} notebook sketch
{ S632b} rendering

This design is a fully faired mono-hull that incorporates a dynamically
controlled main-foil. The main-foil takes advantage of the pressure differential
at the foil tips due the difference in depth from roll pitching, thereby adjusting
flaps to compensate. The rider sits in a recumbent position. The drive
incorporates a standard bike chain using a derailleur/free-wheel transmission
connecting to a shaft running down to a water propeller on the main foil (rear).
Advantages

V Aerodynamic.
V Incorporates dynamic roll stabilization.
/ Clean appearance.

Issues
v Safety in a capsize is a major problem.
V Molding of a complex fairing is very expensive.
V Large hydrofoil cross-section required for mechanism, therefore drag
cost.
v Active control system is complex and has questionable physics,
requiring a great deal of development investment.

S{ S629i } concept 7 (5/21/92)

198

[i { S665 } notebook sketch
{ S629b} rendering

A key element of this design is the mechanical roll-stabilizing system that
controls the angle of attack each side of the main-foil. Coupling this system to
the steering provides for banked turns. The rider sits in a recumbent position in
a mono-hull. The drive incorporates a standard bike chain using a
derailleur/free wheel transmission connecting to a shaft running down to a
water-propeller.
Advantages

" Mono-hull is simpler and more transportable.
/ Incorporates dynamic roll stabilization.
" Long hull has high take-off speed.

/ Height out of water is completely adjustable.
Issues

/ High loads in foil-control shafts.
V Complex drive is heavy.
" Main foil strut has complex mechanism inside.

I { S630i } concept 8 (5/24/92)
0 { S666} notebook sketch
{ S630b } rendering

This is a reverse-direction (rowboat style) mono-hull. It uses a direct-shaft
or twisted-belt drive connecting to a water propeller. The forward foils are
surface-piercing triangular foils, similar to those proposed by Smith.

Smith, Bernard; The 40 Knot Sailboat, Crosset & Dunlap Inc., NY ©
1963.

Advantages
" Short drive-train.
" It has aerodynamic shaped bow.
" Forward foils are self stabilizing.

V Long hull has higher take off speed.
Issues

V Efficiency and ventilation of forward foils.
" Safety of going backwards at high speeds.
" Complex hull is expensive.

I0{ S620i } concept 9 (5/24/92)
IN { S667} notebook sketch
R] lessons on ladder foils from the Decavitator (video)
{ S620b} rendering

This design uses a ladder foil with lowest-speed foil on the top and
highest-speed foil on the bottom. The lower-speed foils lifts out of the water at
higher speeds. The rider sits in a recumbent position in a short open hull.
Supporting the rear-foils to the sides provides for roll stability and keeps them
out of the propeller wash. The direct drive runs down the main foil to a water
propeller.
Advantages

V Short simple drive-train.
V Low take-off speed with ladder-foils.
V It has a simple, inexpensive hull.

Issues

199

/ Problem of the reverse ground effect as the runs of the ladder-foils lift
out of the water.
" It is difficult to get center of lift at the Cg, with this layout.

V Flight-height can be very high.
M { S624i) concept 10 (5/25/92)

M { S668 } notebook sketch
{ S624b} rendering

This design incorporates a surface-piercing main vee-foil in a catamaran
layout. The rider sits in a recumbent position. The drive incorporates a
standard bike chain using a derailleur/free-wheel transmission connecting to a
shaft running down to a water propeller. The hulls are inflatable connected to a
tubular frame.
Advantages

" Catamaran layout has higher takeoff speed.
V Inflatables can be less expensive and of lighter weight than fiberglass
hulls.
V Surface-piercing vee-foil is self stabilizing.
V Deflating makes it transportable.

Issues
V Long complex drive.
V Inflatables have higher drag than non-inflatable counter parts.
V "Hard spot" load points may be problem.
V Surface-piercing vee-foil are less efficient than tee-type.

II{ S633i) concept 11 (5/25/92)
N { S669} notebook sketch

[@ { S650} Whale fluke sketch
{ S633b} rendering

This design places the rider in a prone position, allowing for a short
direct-drive to the water-propeller. The bow incorporates a windscreen for
aerodynamics. The main-foil (forward) has a mechanical control system that
changes flap angle for roll stability. The proposed shape of the main foil
resembles a whale fluke.
Advantages

v Aerodynamics.
v Short drivetrain.
V Flaps allow for larger speed range.
V Stable in roll.

Issues
V Prone rider position is not usually as comfortable.
V Wide vertical support required for rear foil due to drive and flap
mechanism, while not needed structurally.
/ Windscreen is expensive.

IX{S615i} concept 12 (5/25/92)
9 { S670} notebook sketch
{ S615b} rendering

The rider sits in a standard riding position for this design, above a
catamaran boat. The drive incorporates a standard bike chain using a
derailleur/free-wheel transmission connecting an air-propeller. The main rear
foil is a surface-piercing vee-foil. The front foil is a tee-type with a skimmer-
based control system.

200

Advantages
v/ It has a familiar rider position.
' Air-prop has high efficiency.

/ Surface-piercing vee-foil is self stabilizing.
V Its takeoff speed is higher due to catamaran layout.
V It uses a simple off-the-shelf drive.

Issues
v/ It has high aerodynamic drag.
/ Its large size makes transportation difficult unless made collapsible.
" Large air prop is expensive and fragile.

V Dual hull is expensive.
/ High center of mass makes it unstable.

[I{ S622i } concept 13 (5/26/92)
I { S671 } notebook sketch
{ S622b} rendering

This design, dubbed the "hydrocopter," uses counter-rotating rotor blades
to prevent rider from rotating. IT requires a minimal recumbent rider platform.
As the platform lifts out of the water the hub tilts to provide forward motion,
similar to that of helicopters.
Advantages

" Zero takeoff speed.
V It allows for a light simple rider platform.
" It has the potential of being highly maneuverable.

V Its small size makes it easily transportable.
Issues

V It requires a complex control system.
V It has questionable efficiency.
V Counter-rotating blades requires a very complex drive.
V Wide vertical support for hub required.
V Drivetrain efficiency.
V Cavitation at the rotor tips.
V Low top speed.

I concept 14 (5/26/92)
9 { S672} notebook sketch
rendering similar to concept S6291

This mono-hull uses two skimmers on each side of the hull linked to the
nose and plain flaps of the main foil to provide roll stability. A skimmer at the
bow provides active pitch control. The main foil strut encloses the drive.
Advantages

/ Dynamic roll and pitch stabilization
V Clean package
V Mono hull is simpler

Issues
V Complex control mechanism yields a packaging problem.
" Mechanism running through the main strut makes the strut large.

V Complex foil structure need for all the flaps
1 { S614i} concept 15 (5/30/92)

9 { S673} notebook sketch
{ S614b} rendering

Here a small narrow hull supports a recumbent rider above the hull. Two
external pontoons provide stability in displacement mode. Pivoting outrigger

201

supports give them a secondary function in hydrofoil mode -- as part of the rol-
stability control system. The drive incorporates a standard bike chain using a
derailleur/free-wheel transmission connecting to a shaft running down to a
water-propeller.
Advantages

V Narrow main hull provides higher displacement mode speeds.
V Simple light-weight structures.
" It has dynamic roll stabilization.

Issues
V It has a complex drive.
v Pontoons in flight mode may "bite" waves.

" High loads on pontoon arms when landing.
V Coupling systems can make things very complex.

S] { 631i} concept 16 (5/30/92)
II { S674} notebook sketch
I9 { S654 } Italian gun-boat sketch
{ S631b} rendering

This design has hydrofoils lifted out of the water in displacement mode.
The rider sits in a recumbent position in a mono-hull. The drive is a standard
bicycle chain-drive and derailleur/free-wheel transmission that connects to a
shaft drive exposed to the water.
Advantages

V Foils are protected in shallow water.
V In displacement mode foils don't provide drag, yielding higher take off
speeds.

Issues
V Weight and complexity of mechanism.
V Drag of propeller shaft.

SI {S626i } concept 17 (5/30/92)
9 { S675 } notebook sketch
{ S626b} rendering

A narrow hull supports a recumbent rider above the hull. Two external
pontoons provide stability in displacement mode. The drive is an axial-flow or
centrfugal type pump, that takes water in at the forward foil and outlets after
the main-foil. The main-foil, supported on both ends, incorporates a dynamic
control system.
Advantages

V Long narrow hull is inexpensive and has high displacement speed.
V It has dynamic lateral stabilization.
V Frame tube used as water passage.
V No propeller underwater to damage.

Issues
V Pump efficiencies.
V Head loss.
V Expense of outriggers and structures.

IO{ S616i} concept 18 (6/18/92)
[1 { S676} notebook sketch
E { S644} dolphin drawing
{S616b} rendering

202

This mono-hull uses an oscillating main-foil for propulsion, like that of a
dolphin or whale. The rider sits in a recumbent position.
Advantages

It eliminates propeller and problems of.
Oscillating hydrofoil has potential of high efficiency.
It has a simple frame.

Issues
There is little information, i.e., research on this type of drive.
It does not have roll stability.
It has a highly loaded pivot on drive.

I {I S764) drive-train concepts (4/25/92)
{ S677} notebook sketch
5 types

I9{ S765 } swept-wing concept ((6/2/92)
{ S681 } sketch from notebook

I { S766 } wing-molding concept (5/21/92)
{ S678 } sketch from notebook

I { S767 } frame-design concepts (5/21/92)
{ S679 } sketch from notebook

9I{ S768 } dual-gain steering concept (5/23/92)
{ S282} sketch from notebook

9 1 S769 } diecast-wing concept (w/ and w/o control surface) (5/26/92)
{ S680} sketch from notebook

!1 { S770} seat-clamping concepts
{S684, S683} sketch from notebook

Choose 3 models to develop (6/30/92)
June 1992 July 1992 August 1992 Sept. 1992

Early modeling

Pick 3 layouts to develop

Develop 3 layouts (S748)

9 { S859 } Design decision making. Tools available to the engineer
decision matrix

House of Quality

Hauser, J.R., and Clausing, D., "The House of Quality," Harvard Business
Review, 63-73, May - June, 1988.

axiomatic approach

Suh, Nam; The Principles of Design, Oxford University Press, @ 1990.

Develop 3 concepts
July 1992 August 1992 Sept. 1992 October 1992

Pick 3 layouts to develop
Develop 3 layouts

Performance modeling (S749)

{t220 } Traditionally the design engineer would size systems in a layout
drawing. These drawings would then be used by the draftsmen to create details
and assemblies. With the advent of CAD (computer-aided design) 2D and 3D

203

modeling has replaced the traditional design layout. The term model has very
appropriately crept into the drafting terminology. The idea that a drawing is
really a geometric model of a system that predicts how the system will look and
fit together. Sometimes prototype work happens directly from the layout
drawing or the layout provides the information needed for generating detail
(machine) drawings.

II { S853) Choosing the Concepts
rider position

{ S8541 standard, prone, and recumbent rider positions
{t221 } We chose recumbent rider position because its clear
advantages for this case. A standard position has such a high CG that it
has great stability problems. The prone position is rather uncomfortable.

riding direction
{S855} diagram
{t222} Though two of the proposed concepts had the traditional
going-backwards direction of a row boat this is undesirable for a high
speed boat. The only advantage to going backwards is that the riders' feet
are close to the propeller, making the drivetrain shorter. This does not
outweigh the safety advantage and satisfaction from seeing where you're
going. Therefore we limited the final three concepts to forward-direction
crafts.

hull layout
{S856} catamaran, wide mono hull (rider sits in the hull), and narrow
mono-hull (rider sits on top of the hull)
{t223 All three of these designs are feasible and are worth more
study. We decided to consider all three types using one in each layout.

propulsion (scans or diagram)
{ S857 water propeller, air propeller, water pump, i.e., ducted jet, and
articulating foil
{t224 } Of the four propulsion systems proposed we considered the
water propeller and water pump for the three concepts developed. The
problem with the air prop is its size (10ft diameter), making it
impractical. The articulating foil has little or no prior development;
therefore we would be working from at very low level. This would
consume too many of our resources.

hydrofoil layouts
{S858} diagram
{t225 } dual-surface-piercing vee foils
front tee w/drive, dual rear w/controls
front fixed tee, single rear foil w/control system and drive
front tee w/pitch control, rear w/control system and drive
front vee foils (separate), rear tee w/drive
front controlled tee w/drive, rear fixed tee
front pitch control tee, rear surface piercing vee foil
front pitch control tee, rear controlled "u" type foil
ladder foil.

Designs selected considered both surfacing-piercing and non-surface-
piercing designs.

I9{S851 concept 5 (7/22 to 8/12/92) -- {Pallet: S8491
The aesthetics of this layout, based on concept 5, invoked the most

positive response from those reviewing the concepts. The drive system uses
bevel a gear set at the cranks and propeller. To adjust for different rider sizes

204

the crank assembly moves towards the rider; to accomplish this a telescoping
drive shaft and universal joints accommodate for the shift.
sketches
{ S846} LAYOUT1.DWG

9 I{S852} concept 17 (8/12 to 8/22/92)
This layout, based on concept 17, takes advantage of a narrow hull and

"u" foils. The proposed water pump was originally to be used in this layout,
but the team was unable to find any reliable information on the design and
performance of a this sort of pump; the time penalty involved with seriously
considering this design seemed too great. In changing the drive the foil layout
was switched from the original concept, putting the rider toward the bow. Also,
to improve the top-speed performance we added a two-stage foil system. The
constant-section foil allows for extrusion or pultrusion construction.

Define extrusion and pultrusion
sketches
{ S848 LAYOUT2.DWG

9{ {S850} concept 10 w/water prop (8/30 to 8/30/92)
Based on concept 10, layout 3 considers the lower-cost inflatable hulls in

a catamaran design, and surface-piercing vee foils.
sketches
{ S847 } LAYOUT3.DWG

Modeling
July 1992 August 1992 Sept. 1992 October 1992

Develop 3 layouts

Performance modeling

Design review V (S750)
{t238 } Engineers have some of the basic tools needed creating

mathematical, geometric and physical models that give insight into the
workings of machines. The complexity of a model does not necessarily indicate
how useful it is. Usually complex models require greater available resources,
i.e., time, equipment, methods, etc., all of which affect modeling decisions.

{ t239 } For example if you have to size an aluminum tube for a structure,
how would you go about it? You could do a complete FEA (finite-element
analysis) model and size the tube with a minimal factor of safety. If you must
select a standard-size tube, in the end it increases your factor of safety
anyways, and you've wasted time. It may be better, if the item is not weight-
critical, to do a simple hand calculation and heap on a bigger factor of safety to
account for the greater uncertainty. Also, you should always have some way to
make sure your computer models are in the right ball-park, so a simple hand
calculation should always accompany your computer model.

{t240} Modeling occurs at different levels of systems and subsystems. If
you consider the tube example again, the tube is a subsystem or component of
a larger structure that in turn maybe part of another system. The tube size will
have some effect on all these systems.

IX { S872} Early modeling: used Brooks for basic foil-sizing model for preliminary
concept sizing (7/21/92)

205

April 1992 May 1992 June 1992 July 1992
Concept research

Eady modeling

Pick 3 layouts to develop

(S747)
{t241 } Brooks, Alec, "The 20-knot Human-Powered Water Craft," Human
Power, Volume 6, Number 1, Spring 1987.

{t243 We used simple analysis and assumption in this paper for initial
foil sizing for the three concept layouts.

{t242} Whitt, Frank Rowland; Wilson, David Gordon; Bicycling Science; The
MIT Press; Cambridge, Massachusetts @ 1982.

{ S652) Figure 2.13
] { S873 } System Model: 1st model is relatively simple and predicts power
requirements and speed (9/2 to 9/12/92)

used to model two of the three layouts. The vee foil would require a different model.
{ t244 } To understand the performance of these designs better we create a
basic static model in a spreadsheet. Using this model on the Flying Fish
produced a speed of 4.3 m/s (8.4 knots) at 224 watts (0.30 hp), 20% different
from published numbers. Using this model on the Decavitator at 597 watts (0.8
hp) (this is an assumed maximum power from the rider) yielded a top speed of
12.0 m/s (23.4 knots), this is 23.5% higher than the world record set by this
hydrofoil.
{t228 } Decavitator article reference

{ t241 } Brooks article reference
{ t245 } Unfortunately, the validity of this model extends only to non-
surface piercing foils; therefore layout 3 can not be modeled with it. The first
two layouts were modeled yielding the following:

{t246} layout 1 3.7 m/s (7.2 knots) take off at 261 watts (0.35 hp)
5.4 m/s (10.5 knots) at 373 watts (0.5 hp)
7.3 m/s (14.2 knots) at 746 watts (1.0 hp)

layout 2 2.8 m/s (5.5 knots) takeoff
5.1 m/s (10.0 knots) at 276 watts (0.37 hp) (low speed foil lift

out)
7.1 m/s (13.8 knots) at 373 watts (0.5 hp)
9.6 m/s (18.7 knots) at 746 watts (1.0 hp)

I { S8741 Control and Stability: 3rd model was done by Mark later, a
controls/stability model
I { S875} Foil Design: Xfoil

Drela, M., "XFOIL: An Analysis and Design System for Low Reynolds
Number Airfoils," Low-Reynolds Number Aerodynamics -- editor Muellar,
T.J.; June 1989 lecture note in Engineering, No. 54.
Some plots

[I { S876} Propeller Design: Xrotor
Some plots

NOT included:
2nd model is rather complex, tries to consider the dynamics and control geometry. Modeling
Decavitator and Flying Fish showed good correlation to actual performance. (9/21 to
10/28/92)

206

The next level model that was tried took into consideration the dynamics and
control geometry ... finish
plot of Decavitator's expected performance

spent a whole lot of time trying some of the ship hull shapes and numbers were off the charts
(6/21/92)

Harvald, SV. AA.; Resistance and Propulsion of Ships; John Wiley & Sons
Inc., @ 1983.

We needed a correlation between drag and speed for the boat hull, so
using the method shown in Harvald a spreadsheet was setup. We found, after
wasting two days work, that the charts and tables provided in Harvald do not
support small-displacement hulls.

Design review (9/15/92)
August 1992 Sept. 1992 October 1992 Nov. 1992

Performance modeling

Design review

Concept selection q (S751)

{ t226 } Design done in a closet will rarely fill the requirements of the
user; diverse perspectives' are always needed. As soon as possible in the
process, the designer needs feedback at all levels, from those who make it, to
those who will use it. One type of design review is a peer review, where the
design is show to other designers with as diverse perspectives as possible.

For the hydrofoil we drew on the available talents at MIT that represents
experience from the Decavitator project, the Daedalus project, expertise from
the world human-power design and product design.

video taped
people

David Wilson
Woodie Flowers
Mark Drela
Matt Wall
Marc Schafer
Sepehr Kiani
(Tracy taking notes)

{ S866} background
9 { S867} Video clip { V341 }

I{S863I comments on layout 1
{ S860}
" concept would work

V the wing sizes seem questionable
" flaps are too complex and the bearings would be very highly loaded

/ finding bevel gears small enough is impossible, end up with a huge a gear
box under water.
I flexible shaft is suggested here 1st.

{[S864] comments on layout 2
{ S862}
/ universal joint: only one is shown, usually two are needed to be balance
/ it is possible that because the shaft is so long that the only one joint would
work, but may have vibs problem

207

K having a high speed and low speed wing arrangement is much complexity
for a recreational boat and makes it difficult to fly.

" Sid Shutt's pop out wings were looked at.
V marketing the complexity of the pop out may be difficult
v flaps again are too complex

"want to keep the goodies out the water"
V main foil needs a large aspect ratio due to the free surface effect.
V 20% penalty for not having a tapered wing
V flexible shaft suggested again, vibrations problem discussed
v twisted chain discussed
V twisted belt suggested

E{[S865] comments on layout 3
{S861}
V this would also work with flexible shaft
V rider position can be more laid back
V vee foils ventilate

deciding on what is needed for final layout
V drive is always a problem
chains always coming off in the competitions because of tension problem.
quality of gear boxes
keep comes back to the flexible shaft

/ reverse layout 2 ? -- use a puller prop
1/ 1:1 gearboxes are easier to implement
V seems the we are heading towards yellow layout with a flexible shaft and need
outriggers
V mono-hull versus catamaran

Concept selection

use
mec

{ S685} notebook sketch
{ S623} rendering

Design selection>
{t205 } The selected design derived from the design review and the
developed concepts is shown here. Economic factors and transportability
weighed in to the selection of a mono hull. The in-flight steering system ties
into a central arm that pivots on an angled shaft to counter turning roll forces.
To get the first-stage gear reduction and 900 direction change we employ a
twisted chain. A spur gear set provides the second stage. All this connects to a
flexible shaft exposed to the water. Outriggers provide roll stability in
displacement mode. The pilot will control the angle of attack of the main foil
manually, much like the Decavitator.

model 2 for foil sizing, ends up very close to Decavitator in foil geometry and
hanism. (11/1/92)

Sept. 1992 October 1992 Nov. 1992 Dec. 1992
Design review V

key element

Concept selection
Human factors study (S752)

is the flexible shaft -- initial calcs to verify the viability (11/3/92).
I9 { S774 } MathCAD calcs for flexible shaft { S777 }.
8.5.1. also front steering arm
layouts

208

{ S685 } final concept notebook sketch
IN LAYOUT02.DWG, layout

8.5.2. Human factors study (11/3 to 12/2/92)
Nov. 1992 Dec. 1992 October 1993

Concept selection
Human factors study

Detail development I / C (S753)
Humans and their environment>

{ t206 } The field of human factors is the physiological and psychological
study and design of the human machine interface. Consider the different people
that have to use or interact with any device: those who use it, those who buy it,
those who make it, those who maintain it and those who dispose or recycle it.
Often different users voice competing values. For example, if you design
something with manufacturability in mind it may not be easy to maintain.
{t207} Sanders, M.S. and McCormick, E.J., Human Factors in Engineering
and Design, McGraw-Hill Publishing Company (c) 1987.

19 { S774 } establish rider position
Video?> Seat geometry.

{ t208 } We constructed a four-way adjustable mockup of the seat to
facilitate the collection of seat-geometry data. The seat angle is adjusted by
rotating the slide surface on a pivot in the back, adjusting this angle also
affects the seat-back angle. This surface allows the main seat assembly to slide
in the horizontal direction and locked in place with a lever. The seat-back
adjusts on a series of 14 pegs. Finally height of the cranks can be adjusted up
and down.

lS772l
Seating geometry conclusions

{ t209 } The results of the test indicated that the seat slide will be a fairly
linear function of the rider height. Extrapolating the horizontal position data
out for the 5th percentile female, 1.50m (59") tall (from Sanders and
McCormick), it would require a horizontal seat position of 0.35m (13.8"). To
fit my 1.98m (6'6") rider the craft would need 0.38m (15.1") of adjustability,
which is quite a bit, but not impossible.

The vertical seat position and backrest angle are somewhat more illusive.
To fix these two angles on the boat the position and angle would be at about
8.5" below the crank center and 1290 respectively. Experience in bicycle racing
has shown that seat or handle bar position maybe comfortable in a static
situation -- it is the very subtle adjustments that make a 50 mile race
comfortable.

209

Subject Height

70.5"

. 72.25"

768

.9.5"

. 71.5"
CranK Centel

N .: . .

.......

... ..
• .. \ ..1, :.

~ ';·

Cr<•r•K Cer•LeJ

{t210} Zwikker, Bernd, "Riding position and speed in unfaired recumbents,"
Human Power, Vol. 8 No. 2 Spring 1990.

[I { S775 } establish steering type
Video?> Controls.

{ t211 } We tested four control scenarios by having different removable
control levers. The levers fit into a mechanism under the seat that had a "tank"
steering mechanize on the top that forces the levers to rotate in opposite
directions, and a vertically pivoted pair on the bottom. The whole mechanism
slid forward and back for adjustment.
{t212 The coupled control scenarios were, by far, the most popular, but
those who like the others like them because you have your hands on the
controls at all times. We should test a couple of compromises, like combining
the vertical pivot steering with height control and have stick control in both
hands (linked together). Development of the design details (which are so
important) waits for the control scenario to solidify. These details include the
shape of the handles, the angle they are at, the force required to control, and
whether to have a centering system for the steering.

C
U.

UV.wt,

Ta*=214
cat A=2O

Sick= 27

ler Mot

Sses"iTgPe
Choice LeMel 1

Bf {IS773}

Detail development / Construction and construction failures
Nov. 1992 Dec. 1992 October 1993

Concept selection

Human factors study

Detail development 1t* (8754)
{ t2131 A common mistake that new design engineers often make is to
base and entire design around a detail or material. There is this misconception
that using an exotic material will in its self be the winning element. This is a
fallacy; I have seen many a carbon fiber kluges at student competitions. An
overall sound concept can fail miserably due to poorly developed details.

A good example is in human-powered-vehicle competitions. Observing
one of these racing you will find many of these efforts poorly executed, while
the concepts have the potential for overall better performance than a traditional
road bike. At the same time, a highly developed steel-frame racing bicycle
restrained by traditional rules performs superiorly. This goes to show that even
a concept that is imperfect (as all concepts contain compromises) can function
very well with carefully developed details.

L Factor of Safety>

210

{t214} Sometimes referred to as a safety factor or margin of safety, the
factor of safety (FS) is a device that allows for uncertainty in design.
Uncertainties in design and analysis arise from assumption made. This is a
very important part of engineering judgment and can sometimes be the
difference between life and death. It is usually just a constant multiplier times a
load or material strength.

For example if you have a 100 Newton load on a beam you may apply a
FS directly to the that load, i.e., 100 x FS. Choosing the FS depends the
answer to questions like. How well do we know that the load is 100 Newtons?
Can anyone be injured if this beam fails? How badly? How much damage will
the failure cause to the device? How detailed is the analysis of the beam
structure? Etc. Sometimes the engineer applies a minimum FS mandated by
code in certain applications.

[{ S794 } Detail Development Success & Failure
{ S623 } rendering of the hydrofoil or a picture with flags to the buttons.

" LAYOUT3.DWG
V LAYOUT4.DWG, twisted belt seat w/2nd support
, LAYOUT5,6.DWG, frame2
, LAYOUT7.DWG, trying screwed up frame to see if it could be made to work. bummer.
, LAYOUT8.DWG, uses frame4 -- not interesting
V LAYOUT9.DWG, uses frame9, still using push rods for steering.
SLAYOUTP.DWG, ??

IN { S780} front steering pivot
[S754] engineers discussing design
[S759}=>[S744] knock out mechanism (12/23/92)
quick release (12/23/92)
{S819) adjustable angle (3/21/93), (4/11/93)

{ S686} FFPIVOT.DWG
Matt's drawings

rudder at the bow (3/21/93)
9 (S810J=>{V331J Pivot fabrication. Audio:

The wood bulk-head installed at the bow of the boat during the
fabrication of the hull provides the mounting point for steering pivot. Thin
plastic sheeting acts as a mold release for the carbon-epoxy composite.
The two thin pieces of white string you see here, align with the bearing
journal: a stainless-steel tube brazed to a stainless plate. We use a little
trick here to hold the plate firmly in place for the lay-up. We wet the
center portion of the cloth with a fast-setting epoxy and locate the plate.
Two-phase adhesive bonding is sometimes employed in production too, a
fast-setting glue -- like an ultra-violet set -- holds parts together strongly
enough allowing for removal from the holding fixture. Then a secondary
glue is then cured -- like a heat set. What advantage could you see in this?

Composites always provide an excellent illustration of the propagation
of material stresses. In our case the loads transfer from the bearing to the
screws, hence we run fibers with this in mind; if this part was a casting or
forging the optimum shape would be similar to the section of this part.

Vacuum bagging this layup would provide the best control of resin
content and fiber compaction, but pulling a vacuum on this hull wouldn't
be very effective. We improvise by blotting out extra resin and taping it

211

down firmly with masking tape. The part, cured and cleaned, is light
weight and mates perfectly with the hull.

A [S813)=>[V334) Steering arm fabrication. Audio:
This angle-o-meter is used to orient all the wooden spacer blocks on

the steering arm. Eighth-inch pins hold the bearing shaft in place and
prevent rotation. The marine-grade plywood is painted with epoxy before
lashing. The spacing of the front tees from the center line of the boat
affects the roll-control time constant. That is if the tees are put wide apart,
the roll stability of the boat is better. On the other hand a narrow spacing
is lighter weight and less cumbersome. We were unable to choose a width
from our analysis. There are several ways to deal with this issue; one is to
make things adjustable, the other is to have several different size parts
that can be interchanged during testing. The design team wrestled with
this for a while. This is the compromise we came up with, giving a foot of
adjustability on each side. After testing we decided to lower the pivot
point, which is easily accomplished by cutting the Kevlar lashings and
putting on new blocks.

main cross bar design calcs (3/26/93)

I { S782 skimmer pivots and stops
L (S759) Engineer's notebook

break away skimmer arm (12/23/92)
angle adjustment (12/23/92)

spring loaded w/single screw adjust (3/29/93)
stop location (4/10/93), (4/12/93)
return springs

I { S776 } Torsion spring MathCAD calculation (design never used)
~[S820} Skimmer pivot: final design (6/28/93)

{ S6871 CLAMP.DWG (6/30/93)
{S6881 SKMBEARN.DWG
{ S689 } STOPBRKT.DWG

Skimmer pivots
I { S818 }=>{ V339 } skimmer mechanism

machined parts
springs
assembly
adjustability

0I{ S781 } front strut design (7/19/93)
Tooling

] { S800 }=> { V3171 Mold making. Audio:
Using a numerically controlled milling machine we are able to

precisely machine the contours of the strut molds. We verify the code by
running it on a piece of foam. It is much cheaper to make mistakes in a
block of foam than a piece of metal. If a cutter takes too deep of a cut it
will break in the metal but not in the foam. Once our code was verified,
which took two tries, aluminum stock was cut to produce four mold
halves. The surfaces are then hand finished and polished. Another way to
have made this type of mold would have been to make male molds or
plugs by hand, using templates as guides. This could have been done with
wood, foam or clay as in the case of the propeller. Even with all this
careful preparation we found that this groove didn't line up. This was
caused by taking too deep of a cut, deflecting the cutter.

Making the struts

212

IN{ S808 }=>{V329} Front tees. Audio:
The general Murphy's law for glue is: if you want it to stick it won't, if

you don't it will. These NC machined aluminum tee molds are prepped for
the lay-up with a release wax. If these were epoxy based molds we would
also spray a release agent like PVA (poly vinyl alcohol) on top of the wax.
Clear templates aid in cutting of the cloth. The type of molding we are
doing yields parts similar to those from RTM (resin transfer molding).
The quantity and location the of carbon must be controlled precisely to
insure a higher quality part. Can you think of another way to make these
parts? We have a few early idea sketches that you can look at. These parts
are designed very close to the maximum material strength; hand-laid
carbon composite is pretty hard to match in this area. You may have asked
why the commercial aircraft industry hasn't been using these materials,
that military aircraft have been using for years? As you can see this is a
very labor-intensive process and automation for composites is still in an
infancy. Carbon composite prices, in the early 1990 are about $40.00 per
pound once you consider processing and material costs.

Once the bottom halves of the mold are assembled the foil portion
attaches on. Notice how the fibers are continuous from the strut to the tee;
remember the fibers carry the load. The whole assembly is then allowed to
cured. Careful planning and detail preperation pay big dividends in the
quality of the final part. One thing we didn't give much thought to (on the
first tee we pulled out of this mold) was how we were going to get this
deep part out of the mold. There are few things more frustrating than a
part stuck in the a mold, especially after you've spent many hours on the
lay-up. Fortunately for us we were able to get this one out with repairable
damage. After this ordeal we added ejector pins to the mold and the next
part came out very easily.

I { S821 } Front strut => { S690} STRUT2AS.DWG (7/23/93)
Ii S783 } main foil angle adjustment/holding

C*[S759) Engineer's Notebook
push rod with racket mechanism (12/24/92)
combined with steering (12/24/92)
rotational motion transfer, so seat can slide w/o readjusting (12/24/92)
racket mechanism combined in steering (12/24/92)
consider a separate mechanism from steering (3/10/93)

cam mechanism (3/10/93), (3/21/93)
rotational motion transfer
trigger controlled clutch

use friction to hold foil in place (3/13/93)
detailed development of tight packaged system

/R{S822) First iteration: cam mechanism below pivot (3/24/93 TO 7/25/93)
{S691} CLAMP_L.DWG
{S692} CLAMP_R.DWG
{ S693} ARM.DWG
{S694} LEVER.DWG
{ S695 } FOILCLP2.DWG

~[S823} Fourth iteration: cam mechanism above pivot (8/2/93 TO 8/3/93)
{ S696} CAM4.DWG
{ S697} CLAMP4_L.DWG
{ S698 } CLAMP4_R.DWG
{ S699} LEVER5.DWG

213

{ S700 } FOILCLP4.DWG
{[S816) Main foil control

{V337 } Main-foil control. Audio:
Here is the main foil-control cam mechanism. You'll notice the little

aluminum bracket we had to make, because the seat interfered with the
handle. We should have caught this is the drawing but we didn't. Accurate
assembly drawings are so important; for every interference we did have
we avoided 10 by doing proper drawings.

redesign
machining mistakes
seat interferes
works real nice
pretty ugly

I { S784} seat
/{S831Jfixed seat-back angle (12/25/92)

{ V3101 How the seat design evolved
CI[S759) Engineer's Notebook

adjustable seat back angle (12/25/92)
tube-sizing calcs (4/24/93)
seat and hull have to be able to take loads of being upside down (1/17/93)
seat and steering attached (8/5/93)
concept of a two-part molded seat (9/2/93)

L{[S824) Seat Assembly: redesign seat mount without third mount point (8/8/93)
{ S702} CHAIR6.DWG (8/25/93)
{ S703 } BRACKET.DWG (8/24/93)
{ S704} CROSSTBE.DWG
{ S705 } FRNTTBE.DWG
{ S706 } REARSPPT.DWG
{ S707 } SIDETUBE.DWG
LAYOUT9.DWG

L{[S799} Seat fabrication
{ V3161 making the seat

laying out tube to cad drawings
why tubes don't line up perfectly?
lashed and welded
meshed seat

I9 { S785 } main-strut
C{[S759]

pinned (1/13/93), (7/19/93)
threaded pin through the center (7/4/93)

Main struts
I { S809}=>{V330}. Audio:

The main struts are constructed in a manner similar to the front tees
and propeller. Carbon fiber cloth is cut to size using acrylic templates.
The cloth provides for both the aesthetical appearance and the torsional
stiffness of the strut. Uni-directional carbon provides the compressive
stiffness, which in this case is buckling-dominated. Mold inserts, like this
one, provide for parts that couldn't be machined with the mold or for relief
in directions out the parting-plane.

Because this strut sees almost purely compressive loads, its sizing is
buckling dominated. Which means materials with high elastic modules

214

are required. The only non-composite materials that could possibly
compete with the carbon or boron composites would be steel or titanium.
Besides machining these materials could be made to net shape using lost-
wax or investment-casting processes; similar to the way turbine blades are
made.

The foil alignment hole broke here when we took out the insert. This
happened because we neglected to put fibers parallel to the pin. This part
would see these loads only in manufacturing.

IE{ S825 }=>{ S708 } RFOILAM.DWG (7/22/93)
I { S786} propeller

Interactive design problem on the prop bearings
adjustable angle of prop-blades (1/16/93)
bearing designs

9 { S832 }=> { V311 } Design iterations. Audio:
Early on we thought to make the prop pitch adjustable, by having

threaded shafts on the end of the propeller blades. To get the smallest
package and lowest friction, needle bearings were first considered. This
would require water tight seals running on hardened steal races. The prop
shaft would be soldered, bonded or shrink fit in.

It was then decided that needle bearings would too complex. Using
water lubricated journal bearings eliminates the need for seals. Also
bearing loads are relatively small and are at a small diameter, making the
friction penalty negligible.

The blades of the propeller are sandwiched between two cast AL
pieces.

Putting a wrench down the hole at the middle of the spinner to loosen
the bolt allowing the propeller blades to be pitched. This bolt also holds
the entire bearing assembly together. Notice that these castings are the
same, so the same part can be used in both places.

After some consideration we decided that the complexity of having a
pitchable prop was not worth it. Having a fixed pitch prop would simplify
the assembly greatly. Unfortunately to change the performance a selection
of different propellers would be needed.

Turning the spinner bolt opens the whole assembly. The composite
propeller hub mates with the stainless-steel bearing shaft on matched
tapered flats to transmit the torque. The propeller acts as the thrust surface
on this side and the bearing shaft provider thrust on this side. The detail
and assembly drawings for this design are available for you to look at.
After doing a material search we realized that we could have a stainless-
steel propeller shaft that performs as well as the music wire originally
planned.

This allowed for another iteration. Because this shaft doesn't require a
coating and it is already pretty hard already we can run the bearings
directly on the shaft.

Torque is transmitted from the propeller hub to the shaft via the
mating tapers. The reverse thrust force is handled by this stainless steel
thrust cone that is bonded to the shaft. The propeller hub provides the
forward thrust surface. The assembly is held together with a spring pin
that goes through the spinner and the shaft. An elastic spacer acts as a
preload spring. Take a look at the assembly and detail drawings for this
design.

215

This design sequence represents a six-month period of design and
redesign. The first iteration has a hub diameter of over one inch in
diameter and some 20 parts.

By the fourth iteration we are down to nine parts and a hub diameter
of 0.38 inches. You'll notice in the video that the last prop made
integrated the spinner and spacer into the propeller hub reducing part
count to 7.

propeller tooling parts -- Matt's drawings
PROP2.DWG
PROP2EXP.DWG

bushed with fixed prop (4 iterations) (1/28/93), -- the analysis on 1/29/93 is very
interesting.

{[S826] Third iteration
PROP3.DWG
PROP3EXP.DWG
{ S709) PROPASEM.DWG (6/6/93)

{ S710} PROPBEARING.DWG
{ S711 } PROPBOLT.DWG
{S712} PROPSLEV.DWG
{ S7131 PROPHOUS.DWG (6/9/93)

press fit of drive shaft into propeller calculations (1/23 to 1/24/94), (1/28/94) -- there are three
iteration here.
EN [S823) Fourth iteration: redesign prop bearing so that bearing surface is the drive shaft
(6/27/93)

{ S714} PROP4ASD.DWG (7/2/93)
(S715} BEARING4.DWG
{ S7161 PROP4.DWG
{ S717) SHAFT5.DWG
(S718) SLEEVE4.DWG
{ S719} SPACERS4.DWG
{ S720) TAILCONE.DWG
(S721) THRUST4.DWG

pinned spinner (7/2/93)
IN{ S805 }=>{V323 } putting prop on

Propeller 1
9 { S795 }=> { V312) Propeller fabrication. Audio:

Once the propeller mold is prepared the composite materials must be
cut to size. The outer layers of carbon-fiber cloth are carefully cut using a
template; they provide the torsional stiffness. Surface-coat or gel-coat
epoxy is then applied to the molds. The layers of cloth are carefully wetted
out to eliminate voids ... Carbon tows, which are strands of carbon fiber,
provide most of the bending stiffness. The amount of material is precisely
measured to match the design requirements. An insert is used to shape the
inside of the prop hub. Carefully planning and design are required at
every stage from design to tooling to manufacturing. A weak link at any
stage can be the difference between a good or bad part.

I { S796}=>{V313} Load test. Audio:
This is a test prop with the left side made solely of a chopped carbon-

fiber-epoxy composite. The right side is the same, but has a layer of
carbon-cloth on the outside. We know what load the propeller will see, for
the given power. With 15 lb applied at three-quarter of chord, this is how
much this prop will deflect, clearly too much. Here's what happens at 20
lb; a strong rider wouldn't get very far this prop. We compare this the

216

propeller with the unidirectional fiber one; here with 25 lb at 3/4 chord.
This is why advanced composites are so expensive, high performance is
achieved only with precise fiber placement.

I { S787} hull
visit Composite Engineering (2/4/93)

decided to use their men's kayak mold
Hull

two days of lay-up work at CE
{V344}

adding ribs and bulkhead
II{ S807 }=>{V328). Audio:

Ribs and bulk-head are added to the hull, because there is very little
structure where the deck has been cut away. The ribs align with the rail
screws, providing material for the screws to grab and stiffens the open
section. A tough epoxy glue, as opposed to a laminating resin, attaches the
ribs and bulk-head to the hull. The bulk-head is the back mounting point
for the frame and made of marine-grade plywood, sealed with epoxy.
Additional fiberglass strips reinforce the bulk-head.

weight 75.2N (16.9 lbf)
I { S788} drive

decide that twisted chain will not work geometrically (3/9/93)
size gears for right angle drive (3/9/93)
F coating test for the drive shaft

Fred Ackerman's tests and report
/ objective
V' equipment
" test plan

/ apparatus
/ data sheet
v actual procedure
$ observations
/ conclusion

19S759} Engineer's Notebook
More complete analysis or drive shaft

vibs analysis establish natural frequency (2/3/93)
considering fatigue (4/26/93)

Belt sizing and selection for the twisted belt scheme (6/10/93), (7/6/93)
tooling for making shaft end (7/2/93)

/{[S827} Bearing assembly: design bearing housing for small pulley (7/4/93 to 7/7/93)
{ S722 } SPASSEM.DWG

{ S723 } HOUSING.DWG
I S724) FSPACER.DWG
{ S725 } RRSPACER.DWG
{S726} SHTSLEVE.DWG
{ S727} SMPULLEY.DWG

modes (7/14/93)
tooling for the pulley ring (7/21/93)
belt failed, gear box and 1/4" chain to be used (9/12/93)
Drive

Drive 1
9 { S797 }=> { V314} Pulley fabrication (7/30/93). Audio:

217

The crank-set pulley was cast in a wood mold; clay is used here to
provide a smooth transition. We used a belt with the same pitch as the
drive belt, as the mold for the teeth. This is a prototyping technique, how
do you think is would be done in production? Before casting the pulley we
need to test different materials; we settle for a mixture of cotton fibers and
glass balloons for the best combination of surface finish, flow
characteristics and weight. The mold assembles with a bicycle chain ring
in the middle, becoming an integral part of the final pulley. We then fill
the mold with our mixture. In casting plastics it is always best to get all
the bubbles out of the mixture before pouring, this is done by placing the
mixture in a vacuum bell -- something we neglected to do here. In any
molding process whether it be injection molded plastics or cast metals,
thought must be put into how the part is going to come out of the mold.
You'll find later on that we didn't always do that. Fortunately here we
thought ahead and provided ejector holes. After a bit of clean up this part
looks pretty good ... too bad we don't end up using it ... you'll find out
about that later on too.

9 l{S801}=>{V318} Testing. Audio:
This drive train design uses a 1/5" pitch timing belt and achieves a

10.8 to 1 speed increase. Mark Notice this test idler pulley is crowned.
Matt... The belt is twisted 90 degrees, eliminating the need for any gear
box, but causes problems in reverse rotation. By tweaking the geometry of
the idler we are able to get it functioning at almost a satisfactory level.
Drive trains are inherently problematic and should always be tested under
load. Mark ... Increasing the tension on the belt will help to alleviate this
skipping problem. As belt tension increases the efficiency of the drive
system drops off quickly. Another solution here would be a larger-pitch
belt, but the pulley sizes would be much larger. Unfortunately at this
pitch, even a highly tensioned belt skips.

I { S802 }=>{ V319} mounting for bearing housing. Audio:
We attach the pulley bracket to the frame tube with a carbon epoxy

composite. There is an isolating layer of fiberglass so the carbon doesn't
react with the aluminum. Shrink tape is used to compact the lay-up while
it is curing. The bearing housing was waxed so that it could be removed
after the resin cured. We tried everything including liquid nitrogen to
break it free. We finally succeeded though, another unplanned night of
machining. This bracket worked out great; too bad the this drive train
didn't. Well, chalk up another part to experience.

Drive 2
I { S803 }=>{ V320 } gearbox mount. Audio:

Ditching a belt-drive system we settle on a 1/4" pitch chain-drive
connected to a right-angle gearbox. The gearbox mounting brackets are
lashed to the frame tube with Kevlar fibers. We made the bracket out of
aircraft-grade plywood. Whenever you have wood exposed to water you
always need to seal it; this is why we paint the whole surface with epoxy.
We are using a commercially available gearbox and have to use its mount
holes. How would you have made this bracket?

I{ S804}=>{V321 } gluing shaft hub. Audio:
Mark speaks ... We glue the drive shaft on the hub that attaches it to

the gearbox. Both parts are stainless steel and an anaerobic glue called
Loktite is used. We slightly roughed up both parts and thoroughly cleaned
them before glue is applied. The amount of required glue area is
determined by the maximum shear stress of the glue and the expected

218

torque. We multiplied in a safety factor of three above the worst-case
scenario. Notice the smooth tapered transition for this part: this drive
shaft is a very tightly size. Even a small stress riser would prove
catastrophic.

0I {S805 }=>{ V323 } attaching propeller. Audio:
The propeller slides on to the end of the drive shaft mating with the

taper flats of the shaft. For testing of the drive train, we don't have the
spinner. The spring pin goes through a small hole in the end of the shaft
to hold the assembly together. Look at development the sequence for the
propeller design to better understand this assembly.

9I{S811 }=>{V332} chain poping. Audio:
The skimmer mold shape, based on this prototype skimmer, is formed

using a modeling clay. Intensive research being undertaken to eliminate
the hard model phase in things like the design of a car body. Today even
the most advanced computer model doesn't provide the look and feel given
by a real model -- this however, given time will change. Once satisfied
with the shape we seal the clay and apply a release agent before making a
carbon female mold. A set of carbon molds like these are good for maybe
50 to 200 parts depending on how they are handled. This is a real problem
in at all but the smallest volumes. While the initial mold cost may be quite
low they don't last very long. If you bite the bullet and pay for a very
expensive steel tool it may last the entire product life, without any
recurring costs.

1/4 inch chain and right angle drive
problems with commercial right angle drive.
fixing the oil problem
frame bending and solution
idler
Gearbox

I[{ S806}=>{V326, S7561 temperature test. Audio:
Using a thermocouple attached to the right-angle drive we are able to

track the temperature rise due to a constant input. The power comes from
a cyclist wearing a heart-rate monitor to maintain constant aerobic
output. The data and results are here for you to look at; they show that
about 10% of the power goes to heat. Looks like we need a better
gearbox.
[I{S817}=>{V3381 noisy gearbox
why so much noise?
how do you get this thing apart?
STP oil treatment, what a mess

d-bore shaft mounting (6/28/93)
shear pins (6/28/93), (7/2/93)

I{ S789} steering
,9[S828/ First iteration: center pivot selected

{ S728 ST_ASSEM.DWG (6/9/93)
{S729} ST_BASE.DWG
{ S730} ST_BEARN.DWG
{ S731} ST_PIN.DWG
{S732} ST_WASH.DWG
{S733} BTMRAIL2.DWG

ZiS759, Engineer's Notebook
transfer motion with cables

219

transfer motion in rotation

decouple mounting from the seat design quick-release mechanism (4/24/93)
design with quick-release mechanism and adjustable push rods (6/11/93)
steering attached to steering rail (6/11/93)

{[S826] Third iteration: steering part of the seat (8/5/93), (9/3/93)
{S734} ST_CLMP3.DWG (9/10/93)
{ S7351 TBBRACK3.DWG
{ S736} STEER3.DWG

steering ratios (8/11/93)
using cables (9/15/93), (9/16/93)

[tS815J=>tV336] Working system
Steering

mock up [V336]
why wasn't this designed?
lots of cable, real ugly

X { S790 } skimmer
arm calculations (4/22/93)
Skimmers

wood mistakes
temporary foam ones
making molds for final ones

{S812}=>{V333} making the molds
[{ S791 I frame design

space frame (7/2/93)
sketch of space frame

tubular (7/16/93)
frame evolution

{ S738} FRAME.DWG (7/12/93)
~{S830] "square peg in a round hole"

{ S739} FRAME4.DWG (7/19/93) -- the design
{ S740} FRAME6.DWG (8/5/93) -- what we made

[{S829] Eighth iteration
{ S741 } FRAME8.DWG (8/16/93)

{ S737) BOTBRACK,DWG (7/16/94)
{ S7421 SEATRAIL (7/30/93)

simplified 7/28/93)
jigging (7/20/93)
IE[S798] Frame fabrication

{V315} Audio:
Before lashing the tubes of the frame we epoxy glue them together.

Whenever making a structure of this sort a carefully designed holding jig
guarantees that things fit together. This is especially important when
welding a frame: because things warp when welded, the jig better be
strong enough to overcome the warping forces. Notice how the tubes are
cut so that they mate perfectly: this is called mitering. When lashing, most
fibers run in the direction of the load. Fibers running perpendicular, hold
and tension the load fibers. The concept behind composite structures is
beautifully illustrated in natural composites. Next time you look at a knot
in a piece of wood, notice the grain. See if you can tell which side of the
knot was the top. Before the resin cures, if heated it will flow better,
wetting out the fibers thoroughly: this is very important for a good

220

composite. I forgot to mention one very important thing about the jigging:
if you lay it out wrong you may have to make more than one frame. This,
of course, can give you an opportunity to do some redesign: look at how
the crank bracket is mounted on this frame, as opposed to the one earlier
in this segment. Take a look at the drawing marked: "square peg in a
round hole;" this is our attempt to see if we could still use the bad frame.

I { S792 } Outriggers
Note about coupling or uncoupling>
{ S814 }=>{V335 } Swimming lessons: outrigger evolution. Audio:

Outriggers on either side of the rider provide rollover stability in the
preflight condition. Their size and location were based on some basic
rollover and buoyancy assumptions. Here is the first launch of the Skeeter.
It is not always possible for the design engineer to have the opportunity to
test his or her design. Think of the designers of the Space Shuttle; most of
them never even get a chance to even sit in it. If you do get such the
chance, the flaws in the design become readily apparent.

OK, so the outriggers are too small to start with. A little trial and error
on the dock is a great way to figure this one out... Still too small... Great,
seems like just enough to float. Aa, steering anyone? Floating and turning
seem hard enough: are we sure we can get this thing to fly?

Taking what we learn on the dock, gives us the volume of foam for the
next generation. Shape, come on. In hindsight the shape of these things
are really wrong, but at the time, well... These things are more like water
plows.

Finally, we start thinking; with this design we are able to fly! The only
problem with it is in rough water, it bites the waves. I must say in our
defense we figured when we started that these things were going to take
some tinkering and they did.

With all that under our belts, some proper CAD work and with the
help of a numerically controlled foam cutter the final outriggers are
glassed on. They don't look half bad either.

notebook sketches

9 { S793} Rudder
cable break
too small
still too small
nice and big

Testing
outrigger problem -- getting it to float
chain-slipping mystery
gearbox

video of busted-up gearbox
propeller pitch

Conclusions
were goals achieved?
a good flight of the hydrofoil
recommended books
I9 Tech Talk article
IN Dutch film

221

9I CNN
[9 Beyond 2000
9 National Geographic

222 -+

