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Abstract

Femtosecond laser technology has seen rapid advances over the last five years due
to the emergence of reliable, broad-band solid-state laser media in particular the
Ti:sapphire gain medium. This thesis deals with various aspects of femtosecond pulse
generation in solid-state lasers, with particular emphasis on the Ti:sapphire laser
system.

A novel passive modelocking technique called Microdot mirror modelocking was
implemented. It is a passive, all-solid-state, intracavity modelocking mechanism based
on self-focussing due to the Kerr nonlinearity. This technique was applied to the
modelocking of a medium power, laser-pumped Ti:sapphire system, to produce 190fs
pulses. It was also extended to a higher power, arc-lamp-pumped Nd:YLF laser
system to produce 2.3 ps pulses.

A numerical procedure for modeling the nonlinear behaviour of resonators was
implemented. This iterative procedure solves for self-consistent nonlinear resonator
modes using a description of self-focussing as a nonlinear scaling of the Gaussian
beam q parameter. It was used to provide an exemplary, intuitive understanding
of nonlinear effects in a simple resonator closely related to the high-repetition rate
femtosecond source that was subsequently implemented.

A novel, compact, femtosecond, Kerr Lens Modelocked laser geometry was de-
signed and implemented. 111 fs pulses were produced from a Ti:sapphire oscillator at
a repetition rate of 1 GHz and 54 fs pulses at a repetition rate of 385 MHz. To real-
ize this source, a novel method for dispersion compensation was conceived, analyzed
and implemented. Negative dispersion was shown to be achievable using resonator
geometries that enforce the spatial separation of propagation axes corresponding to
monochromatic Gaussian modes that compose the total broad-band beam in a fem-
tosecond oscillator. This work serves to demonstrate the scalability of Kerr lens
modelocking techniques to very high repetition rates. The compact, high-repetition
rate source has important implications for the construction of practical and reliable
femtosecond laser systems.

Finally a femtosecond cavity-dumped, Kerr lens modelocked Ti:Sapphire laser
was also implemented. The method of cavity-dumping was demonstrated as a viable
technique for the generation of intermediate energy, femtosecond pulses at variable



repetition rates. 100 nJ, 50 fs pulses are generated at variable repetition rates as
high as 1 MHz. The cavity dumped, Kerr-lens-modelocked source is an important
alternative to more complex and expensive, high-energy, relatively low repetition-rate
schemes for amplifying pulses from Ti:A120 3 lasers.

Thesis Supervisor: James G. Fujimoto
Title: Professor of Electrical Engineering



Acknowledgements

I have long awaited the moment when I would sit down to write the acknowledgments
to my doctoral thesis! This has been a long and challenging journey during which
so many have helped me in so many ways. It is certainly a delight to have this
opportunity to say just a few words of thanks.

I thank my advisor Professor James Fujimoto, for giving me the opportunity
to work in one of the world's most prestigious femtosecond laser laboratories. His
dedication to his work and the intensity of his efforts are truly extraordinary and I
have learnt a great deal through my acquaintance with him. I would like to thank
Professors Erich Ippen and Hermann Haus for their help over the years. In particular
I thank Professor Ippen for graciously serving on more than one of my examination
committees. Many thanks are also due to Professor Shaoul Ezekiel for serving on my
thesis committee. I found his sense of humour and enthusiasm extremely refreshing.
I would also like to thank my mentor at AT & T Bell Laboratories, Dr. Wayne
Knox, for his concern and friendship. I have benefitted greatly from his advice and
experience.

I have had the good fortune to work closely at MIT with several talented individ-
uals, all of whom I am grateful to for their cooperation. I will remember Giusseppe
Gabetta as an excellent experimentalist and a spirited individual with whom it was
a real pleasure to work. I thank Joe Jacobson for giving me a glimpse of that all-
important art of appearing confident in all situations. I would like to thank Joe Izatt
for suffering on the Nd:YLF system with me, and Artur Gouveia-Neto for finally
liberating me from it by making it work. Thanks are due to Nick Ulman for his help
in constructing the cavity-dumped Ti:Sapphire laser and his memorable TTWPITW
list that will never cease to delight me. Brett Bouma deserves thanks for discussing
and clarifying several experimental and theoretical issues with me.

Many other people in the Optics Group have been a source of friendship over the
past years. Keren Bergmen, Steve Cheng and Melissa, Jay Damask, Regula Fluck,
Mike Hee, Antonio and Pina Mecozzi, and Chi Kuang Sun - all deserve my thanks
for their friendship and support. I thank Cindy Kopf, Mary Aldridge and Donna
Gale for their efficiency and organizational skills. I further thank Mary Aldridge
for often livening up my afternoons with her ready wit. I also thank all the other
members (past and present) of the group whom I have had the pleasure of knowing
and spending a few years of my life with on the 3rd floor of building 36!

These years at MIT could not have been the same had it not been for a few
wonderful friendships that I have been fortunate enough to develop here. I thank
my dear friend Cathryn Shaw who has spent these many years together with me
at MIT, for all her support and love. Cathryn, you are an incredible person and a
cherished friend. Thank you from the bottom of my heart. I thank Kwabena Mensah
Ofori-Tenkorang (John) for his unwavering friendship through my nine years at MIT.
John, thank you for always being there when I needed you and for giving me the



good fortune of enjoying such a genuine friendship as the one we share. I thank Mark
Andersson for the long-standing friendship we have enjoyed and for the wonderful
years we shared together. Mark, I wish you the very best in all of your endeavours.
Alice Lapierre has my thanks for her strong and wise views and her excellent and
timely advice. Alice, Congratulations! Lynn Roberson has been a true source of
counsel and friendship. Lynn, I hope you realize how much you have helped me.
Thank you for being such an inspiring and caring person.

I thank my brother Rajan for being an inspiration and for the many times when
he has supported and advised me. I also thank him for getting his PhD and thus
proving to me that such a feat was not impossible. I thank my sister-in-law Marta, for
sharing with me her wonderful sense of the important and her contagious enthusiasm
for life. And I must thank my almost-one-year-old nephew, Pablo Ramaswamy, for
his incredible charm that never failed to make me forget my thesis each time I held
him in my arms.

Like me, my parents have also waited a long time to see this day! It is they who
inspired in me the love of knowledge, the spirit of achievement and the belief in God
that have sustained me over the last nine years. It is also they who have supported
me at every turn, always trying their utmost to understand and help me. This is as
much their achievement as it is mine.

Finally, I thank my husband Jerome for his love, his patience and his wisdom. It
is the source of my deepest joy that I have a lifetime over which to express the love
and gratitude that I feel for him.



To Appa and Amma

July 15, 1994.



Contents

1 Introduction 14

2 Modelocking in solid-state lasers 18

2.1 Introduction ................................ 18

2.2 Modelocking ................................ 19

2.3 Passive modelocking techniques ................... .. 22

2.4' Fast saturable absorber modelocking . ................. 25

2.4.1 Pulse shaping mechanisms .................... 25

2.4.2 The master equation for fast saturable absorber modelocking . 38

2.5 Modelocking of Ti:A120 3 and Nd:YLF media . ............. 42

2.5.1 Nd:YLF .................... .......... 43

2.5.2 Ti:A120 3 . . . .  . . . . . . . . . . . .. . . . . . . . . . . . . .  45

3 Resonator mode analysis 50

3.1 Introduction ................................ 50

3.2 The q parameter and ABCD matrices . ................. 53

3.3 Self-Focussing induced nonlinear scaling of the q parameter ...... 57

3.4 Numerical implementation of nonlinear scaling of q-parameter .... 62

3.5 The simple lens cavity .......................... 63

4 Microdot mirror modelocking 82

4.1 Introduction ................................ 82



The microdot mirror modelocker .....................

Microdot mirror modelocked Ti:A120 3 laser . . . . . . . . . . . . . .

Microdot mirror modelocked Nd:YLF laser . . . . . . . . . . . . . . .

4.4.1 Dispersion compensation and the Gires Tournois Interferometer

4.4.2 Experimental results ......

4.5 Conclusion ....... .. ..... .........

5 Compact, high repetition rate femtosecond Kerr

lasers

5.1 Introduction ...... .. ..... .........

5.2 Overview of previous work . . . . . . . . . . . . . .

5.3 Dispersion compensation . . . . . . . . . . . . . . .

5.4 Dispersion compensation using prismatic elements .

5.5 Compact disDersion-compensating laser: design and

5.6

5.7

5.8

. . . . . . . . . . 102

lens modelocked

analysis

5.5.1 Saturable absorber action . . . . . . . . . .

5.5.2 Dispersion calculation . . . . . . . . . . . .

Experimental results .................

Further improvements . . . . . . . . . . . . . . . .

Dispersive resonator geometries . . . . . . . . . . .

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . .

104

104

105

109

111

117

118

122

129

136

137

141

6 Cavity Dumped, femtosecond Kerr lens modelocked Ti:A120 3 laser 143

6.1 Introduction ................................ 143

6.2 Amplification of femtosecond pulses. .................. 145

6.3 Cavity dumping ..................... . . . . ..... . . . 148

6.4 Experimental results .................. ........ 152

6.5 Further improvements and advances . .................. 161

7 Conclusion 164

4.2

4.3

4.4

.. ..... .... .... .. 96



167

170

179



List of Figures

2-1 Axial modes in laser cavity modes . .................. . 20

2-2 Temporal intensity from modelocked laser . .............. 22

2-3 Slow saturable absorber sction ....................... 23

2-4 Fast saturable absorber action ................... ... 25

2-5 Two level atomic system ......................... 26

2-6 Self-phase modulation .......................... 31

2-7 Solutions to the master equation ..................... 40

2-8 Nd:YLF energy levels ........................... 43

2-9 Ti:/al 20 3  energy levels .......................... 46

3-1 Effect of self focussing on a propagating beam . ............ 60

3-2 Simple lens cavity ............................. . 64

3-3 Stability diagram for simple lens cavity . ................ 65

3-4 Three dimensional mode-size plot at end mirror . ........... 65

3-5 Three dimensional mode-size at intracavity lens . ........... 66

3-6 Lens cavity: L1/f = L2/f = .1 ................. ..... 69

3-7 L 1/f = L2/f = 0.95 ............... ............ . 69

3-8 L1/f = L2 /f = 0.98 ................... ......... 70

3-9 L1/f = L2 /f = 1.02 ................. .......... 70

3-10 L1/f = L2 /f = 1.8 ................. .......... 71

3-11 L1/f = L2 /f = 1.98 .................... ......... 71

3-12 L1/f = 1.02 L2 /f = 8 ................. .......... 72



3-13 L1/f = 8, L2 /f = 1.02 . . . . . . .

3-14

3-15

3-16

3-17

3-18

3-19

3-20

3-21

3-22

Key to the tabulated points . .

Saturable absorber cross-section

ratio . . . . . . . . . . . . . . .

Confocal instability point ....

L1 /f = .98 L2/f = .98 .....

L1 /f = .96 L2 /f = .98 .....

L 1/f = .98 L2/f = .96 ......

L1/f = 1.02 L2/f = 1.02 ....

L1/f = 1.04 L2/f =1.02 ....

L1/f = 1.02 L2 /f = 1.04 ....

self-phase-modulation coefficient

.. .... .... .... .. 75

. ..... .. .... .... 76

. ..... .. .... .... 77

. *.. .. ... .... .... 77

..... ... .... ... . 78

... .... ... .... .. 78

... .... ... .... .. 79

... .... ... .... .. 79

4-1 Microdot mirror modelocker .......................

4-2 Microdot mirror linear characteristics . . . . . . . . . . . . . . . . . .

4-3 Microdot mirror nonlinear characteristics . . . . . . . . . . . . . . . .

4-4 Saturation of Nonlinearity ........................

4-5 Microdot mirror modelocked Ti:A120 3 laser . . . . . . . . . . . . . .

4-6 Gires Tournois Interferometer ......................

4-7 Dispersion in fs2 from 350 micron GTI . . . . . . . . . . . . . . . . .

4-8 Microdot mirror modelocked Nd:YLF system . . . . . . . . . . . . . .

4-9 Autocorrelation from microdot mirror modelocked Nd:YLF system .

4-10 Spectrum from microdot mirror modelocked Nd:YLF system.....

4-11 Differential mode size change in microdot mirror modelocked Nd:YLF

4-12 Differential mode size change in microdot mirror modelocked Nd:YLF

laser, calculated by single-pass and self-consistent approaches . . . .

5-1 Cavity layout for first self-modelocked Ti:Sapphire laser . . . . . . . .

5-2 X folded cavity layout for a Ti:Sapphire laser . . . . . . . . . . . . . .

5-3 Single prism ring resonator cavity layout . . . . . . . . . . . . . . .

85

87

88

89

90

93

96

97

98

99

100

101

106

107

112



5-4 Analytic diagram of single-prism ring resonator. . ........ . . 112

5-5 Double prism sequence .....................

5-6 Simple, compact and dispersion compensating cavity layout.

5-7 Operating point for compact KLM laser . . . . . . . . . . .

5-8 Inner and outer stability boundaries - self-consistent solution

5-9 Inner and outer stabili

5-10 Inner and outer stabilit

5-11 Equivalent unfolded c•

Calculation of path lei

Unfolded cavity with

5-14 54 fs autocorrelation

Spectrum of 54 fs puls

Pulse train at 385 MH

111 fs autocorrelation

Spectrum of 111 fs pul

Pulse train at 1 GHz

Alternative dispersive

Alternative dispersive

Alternative dispersive

Alternative dispersive

.ty boundaries on single pass . . . . . . . . . . . 121

ty boundaries - saturable absorber action compared 122

avity for compact laser . .......... . . . 124

ngth ........................ 125

lissimilar end elements . ............. 128

. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

e . . . . ... . . . . . . . . . . . . . . . . . . . . 131

z . . . . . . . . . . . . . . . . . . . . . . . . . . 131

. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

lse . . . . . . . . . . . . . . . . . . . . . . . . . 134

. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

geometry 1 . .................. . 138

geometry 2 . .................. . 139

geometry 3 . .................. . 140

geometry 4 . .................. . 140

Acousto-optic cavity dumping . . . . . . . . . . . .

Dumper timing diagram ...............

Acoustic burst in dumper ..............

Cavity layout for cavity dumped femtosecond KLM

Intracavity pulse train during dumping - 952 KHz

Intracavity pulse train during dumping - 454 KHz

Intracavity pulse train during dumping - 95.2 KHz.

Ti:Sapp

. . . . . . 150

. . . . . . 152

. . . . . . 153

hire laser 154

. . . . . . 155

. . . . . . 155

. . . . . . 156

6-8 Intracavity pulse train during dumping - 45.4 KHz.

116

118

119

120

5-12

5-13

5-15

5-16

5-17

5-18

5-19

5-20

5-21

5-22

5-23

6-1

6-2

6-3

6-4

6-5

6-6

6-7

156



6-9 Dumped output pulses ................. ....... 157

6-10 Autocorrelation of 100-nJ dumped output pulse . ........... 158

6-11 Spectrum of 100-nJ dumped output pulse ........... . . . . 160

C-1 Calculation of path length ...................... .. 180



Chapter 1

Introduction

The invention of the ruby laser [67] in the 1960's signalled the beginning of a fas-

cinating and multifaceted realm of science. The basic and unique properties of a

laser source are the high degree of monochromaticity, coherence, directionality and

brightness of the light it generates. These unique and useful properties have lead to

the proliferation of continuous wave (CW) lasers in a wide variety of fields including

communications, manufacture, medicine and spectroscopy [103, 111].

A further property of lasers that has stimulated much research and study over the

past fifteen years is their ability to generate pulses of extremely short duration. Short

pulses of light have been used as early as the 19th century for flash photography

which sought to freeze the motion of rapidly moving objects. For the past three

decades, modelocked lasers have been studied as sources of short pulses of light.

These pulses have become the primary tool used in the study of ultrafast phenomena

in nature [48]. Chemical reactions, semiconductor physics and biological processes

are all examples of phenomena that happen on timescales that are too short to be

studied using conventional high-speed electronics. Ultrashort pulses are suitable for

these studies due to their fine temporal resolution and also their high peak powers

which enhance non-linear effects. Recently, medical fields are also beginning to utilize

ultrashort pulses for applications that benefit from high peak intensities.



Modelocking, or the coupling of longitudinal laser modes, was first implemented

by Hargrove, Fork and Pollack in 1964 [32] when they acousto-optically modelocked

a Helium-Neon laser. The first passively modelocked ruby laser was invented in 1965

by Mocker and Collins [74]. Actively modelocked continuous wave (CW) Nd:YAG

lasers producing pulses in the 50 ps regime [16] and passively modelocked, flash-lamp

pumped Nd:glass lasers [15], producing pulses in the 10 ps regime, were then developed

and became the most common sources of ultrashort pulses. The next milestone in

the field of short pulse generation came with the development of femtosecond CW

dye lasers [82]. The passive modelocking of these lasers [45] eventually lead to the

development of the Colliding Pulse Modelocked (CPM) dye laser [22, 117], capable

of generating pulses as short as 28 fs, in the early 1980s. The shortest pulses ever, 6

fs, were generated in 1987 by external compression of pulses generated in a CPM dye

laser [21].

Over the past five years, the field of femtosecond lasers has witnessed a revolu-

tion due to the emergence of reliable and convenient solid-state femtosecond lasers.

The pace of progress has been truly remarkable. Additive pulse modelocking of the

Ti:A120 3 medium in 1989 sparked the interest of the entire community [30], following

which much effort was put into the modelocking of Ti:A120 3 lasers using intracavity,

all-solid-state, bulk nonlinearities. This lead to several developments [95, 94, 96, 49],

including the crucial identification of self-modelocking by Spence et. al. in 1991 [104].

Subsequent efforts were concentrated on simultaneously reducing pulse durations from

the Kerr-lens modelocked (KLM) [107] oscillators [5, 3, 109] as well as amplification

of pulses [108, 92, 10, 77, 88] in order to yield higher pulse energies. Extension of the

available wavelengths from Ti:A120 3 as well as the development of new solid-state

femtosecond sources were also topics that were pursued intensively [61, 99, 19]. In

recent months interest has shifted towards methods to improve compactness, practi-

cality and reliability of femtosecond solid-state sources, as well as towards demonstra-

tions of the applicability of these systems in commercial technology. This has lead



to concentration on diode-pumping schemes, monolithic devices and compact laser

geometries.

The research into ultrashort pulse solid-state lasers presented in this thesis has

spanned the last four years which have witnessed the exciting advances just described.

The thesis itself reflects the rapidly evolving context it grew out of and the ideas

demonstrated herein touch on various aspects of femtosecond pulse generation in

solid-state lasers. The thesis begins with the demonstration of a novel technique for

the passive modelocking of solid-state lasers. This technique (Microdot Mirror Mod-

elocking) uses only intracavity, solid-state nonlinearities and its invention was almost

simultaneous with the related and now popular technique of Kerr Lens Modelocking.

It is demonstrated in both the Ti:A120 3 [26] and the Nd:YLF [87] media.

As a part of the development and understanding of modelocking due to intra-

cavity self-focusing, a numerical procedure for modeling the nonlinear behaviour of

resonators has also been developed. This procedure which describes self-focusing by

a nonlinear scaling of the Gaussian beam q parameter [40], is used to provide an

exemplary, intuitive understanding of nonlinear effects in a simple resonator which

is closely related to the gigahertz, femtosecond source that was subsequently imple-

mented.

The most recent source developed in this thesis is the compact, gigahertz, fem-

tosecond KLM Ti:A120 3 source [89, 90]. To realize this source, a novel method

for dispersion compensation was conceived, analyzed and implemented. The above-

mentioned iterative numerical model of self-focussing effects in simple resonators was

an important input to this work. This work also serves to demonstrate the scalability

of KLM techniques to very high repetition rates. The high-repetition rate source

strongly reflects the current trend of the field towards compact, practical and reliable

femtosecond sources.

The final chapter of the thesis deals with the enhancement of energies available

directly from femtosecond Ti:A120 3 oscillators. The method of cavity-dumping is



demonstrated as a viable technique for the generation of intermediate energy, fem-

tosecond pulses at variable repetition rates [88, 86]. This source is an important al-

ternative to more complex and expensive, high-energy, relatively low repetition-rate

schemes for amplifying pulses from Ti:A120 3 lasers.

The organization of the thesis is as follows:

Chapter 2 overviews the subject of modelocking, with particular attention to

modelocking in solid-state laser media. Pulse shaping mechanisms are described and

the master-equation formalism is used to predict the main characteristics of passively

modelocked systems.

Chapter 3 reviews the analysis of resonator modes using the Gaussian beam

q-parameter analysis and the ABCD matrix formalism. The phenomenon of self-

focusing and its description as a non-linear scaling of the q parameter are explained

and used to develop an iterative procedure for the solution of non-linear spatial modes

in simple laser cavities.

Chapter 4 presents the technique of Microdot Mirror Modelocking as applied to

Ti:A120 3 and Nd:Y1F systems.

Chapter 5 extends the technique of KLM to the high repetition rate regime,

demonstrating the gigahertz operation of a KLM Ti:A120 3 laser.

Chapter 6 presents the cavity-dumped femtosecond Kerr-lens-modelocked Ti:A120 3

laser.

Chapter 7 summarizes the contributions of the thesis.

Appendix A contains a derivation related to the description of self-focusing as a

non-linear scaling of the Gaussian beam q-parameter.

Appendix B lists the computer code for the iterative calcuation of non-linear cavity

modes.

Appendix C provides details related to the estimation of group-velocity-dispersion

in the GHz Ti:A120 3 oscillator.



Chapter 2

Modelocking in solid-state lasers

2.1 Introduction

The process of "locking" the multiple oscillating longitudinal modes in a laser cavity

into a definite relative phase relationship is known as modelocking. The temporal

output of such a modelocked laser consists of a train of pulses, the widths of which

are inversely proportional to the frequency bandwidth over which the longitudinal

modes maintain a definite relative phase.

In order to design and construct the femtosecond laser systems described in this

thesis it is essential to understand the basic operating principles of modelocked lasers.

This chapter seeks to summarize the important principles relevant to the passive

modelocking of lasers. The organization of this chapter is as follows. Section 2.2

provides a brief introductory description of the process of modelocking. Section 2.3

reviews passive modelocking techniques. Section 2.4 discusses fast saturable aborber

modelocking. Pulse shaping mechanisms of fast-saturable-absorber action, self-phase

modulation, group-velocity dispersion and gain-dispersion are discussed in Section

2.4.1. Section 2.4.2 uses these concepts to develop the master equation for fast-

saturable-absorber modelocking which is used to describe the steady-state pulsed

behaviour of passively modelocked systems. Section 2.5 describes the characteristics



of the Nd:YLF and Ti:A120 3 gain media used in this thesis, and reviews the state-of-

the-art for modelocking in these laser systems.

2.2 Modelocking

The most fundamental concept in this context is that of the existence of discrete axial

or longitudinal laser frequencies. If T is the round trip time of the laser, then the

frequency separation of axial modes in the laser cavity is given by:

Waz = Wn+ 1 -W, (2.1)

2xr= 2 (2.2)

where the index n denotes mode number. To understand why the laser spectrum

consists of such discretely spaced axial modes one need only recall that the total

steady-state output of the laser after N round trips, EN(t), can be expressed as:

N

EN(t) = E(t) ® E S(t - nT) (2.3)
0

where E(t) is the periodic steady-state circulating electric field in the laser, the index

n denotes number of round trips and T is the round trip time of the laser. Using

basic Fourier transform theory one can immediately write that

() = E(w) E 8(w - ) (2.4)
0

N

= WaE(w) E S(w - nwl,) (2.5)
0

where E(w) is the Fourier transform of E(t) and wax is the axial frequency separation

defined in Equation 2.2. Thus the total output spectrum from the laser consists of

discretely spaced axial components separated by wa, the width of each component
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Gain - -
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Figure 2-1: The axial modes in a laser cavity. The spectral bandwidth over which
the dispersive gain exceeds the loss defines the window over which these modes will
oscillate.

being proportional to the spectral bandwidth of E(w). The actual number of such

modes oscillating in the laser is limited by the spectral window where the frequency

dependent laser gain exceeds the intracavity loss. Figure 2-1 depicts the situation

graphically.

In general, in a continuous wave laser the above-described coexistent multiple

axial modes oscillate with no well-defined phase with respect to one other. The

resultant temporal output is therefore randomly varying in time though it repeats

itself on every round trip in the steady state. However if the spectral components are

somehow forced to oscillate with a fixed phase relationship with respect to each other

the temporal duration of the pulse can be made extremely short.

To illustrate this [111, 103], let us analyze the case where there are 2N +1 axial

frequency components oscillating with equal amplitude, E0, and constant relative

phase, 0, from each mode to the next. We then have,

N

E(t) = - Eo exp j[(wo + wa)t + no] (2.6)
-N

where wo is the frequency of the central mode. We can then write that



E(t) = A(t) exp (jwot) (2.7)

where
N

A(t) = E Eo exp[ jn(wt + k)] (2.8)
-N

By executing a change of variables from t to t' with.

Wat' = Wagt + € (2.9)

we have that

N

A(t') = Eo E exp (jnw,at') (2.10)
-N

= Eo sin[(2N + 1)W.,t'/2]
=tEo (2.11)sin [wax '/2]

The resulting output intensity is:

I(t') ~ E A2 (t') (2.12)

Ssin2[(2 N + 1)w~,t'/2]
= (2.13)

sin2 [w,,t'/2]

Figure 2-2 [111] plots Equation 2.13 for the case of seven such oscillating modes

with equal amplitudes. It is clear that as a result of the phase locking condition the

oscillating modes interfere to produce a train of light pulses. Successive pulses in this

train are separated by a time r, where,

27r
rp = (2.14)

Wax

If one associates the FWHM, Arp of the pulse with the time to the first null in

Figure 2-2 we get that
2ir

A (r =1)w2 (2.15)(2N + 1)Wax



Figure 2-2: Temporal intensity resulting from seven longitudinal modes of equal in-
tensity being locked together with a fixed phase relationship [111]. L is the laser
cavity length, c the speed of light, Ar, the pulsewidth and ,r the pulse separation
time.

Since the total frequency range of oscillating modes spans the gain bandwidh, Q2, of

the laser this implies that

An7 = (2.16)

This relationship between pulsewidth and gain bandwidth is fundamental to all ul-

trashort pulsed lasers.

2.3 Passive modelocking techniques

Several techniques have been proposed for achieving the above-described definite

phase relationship between axial laser modes. The schemes can be broadly classified

into active modelocking schemes and passive modelocking schemes, both of which

have been extensively studied and reviewed [103, 111, 48, 57, 42]. Since this thesis

deals with ultrashort pulsed solid-state lasers, it is appropriate to limit the current

discussion to that class of modelocking techniques which currently predominates in
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Figure 2-3: Slow saturable sbsorber action

the modelocking of solid-state lasers and is generally referred to as passive.

Passive modelocking encompasses those techniques where the periodic modulation

of gain, necessary for pulse formation, is provided by the laser pulse itself. Passive

modelocking can itself be divided into slow saturable absorber and fast saturable

absorber categories. A saturable absorber is defined as an intensity dependent loss

mechanism which preferentially transmits light of higher intensity. Slow saturable

absorbers are not able to recover on the time scale of the circulating short pulse and

consequently their transmission is a function of the integrated intensity of the pulse

passing through. Fast saturable absorbers on the other hand respond instantaneously

to the pulse intensity and the loss profile of the absorber essentially mimics the profile

of the pulse itself.

Slow saturable absorber techniques have been widely used in the first generation

of femtosecond lasers namely dye-lasers [45]. In combination with dynamic gain

saturation in these media it transpired that absorbers with nanosecond recovery times

could be successfully employed to generate sub-picosecond pulses [45, 100]. This is due

to dynamic gain saturation which in conjunction with the saturation of the absorber



results in a narrow window of time which exhibits net intracavity gain. Consequently,

pulse formation in this time-window is favored over continuous wave oscillation. The

dynamics of this interaction are depicted in Figure 2-3 and have been discussed by

several authors [42]. Slow saturable absorber modelocking techniques have been used

to produce 28 fs pulses [117] directly from a colliding pulse modelocked (CPM) dye

laser, as well as to study various phenomena related to femtosecond pulse generation.

After the era of the CPM laser, attention has turned in recent years to solid-state

laser media which display very different properties from dye media. The properties of

the particular media (Ti:A120 3 and Nd:YLF) used in this thesis will be reviewed later

in this chapter. However, the properties that generally distinguish solid-state gain

media most prominently, in the context of viable modelocking techniques, are their

relatively long upper-state lifetimes (-~ Is) and small gain crossections. Consequently,

dynamic gain saturation critical for sub-picosecond pulse formation using slow sat-

urable absorber action, does not occur in solid-state materials on the time scale of

several nanoseconds which typically corresponds to the cavity round trip time. As a

result fast saturable absorber techniques are essential for ultrashort pulse generation

in solid-state media.

The action of a fast saturable absorber is illustrated schematically in Fig 2-4. The

problem of course is to find absorbers that work on a femtosecond time scale. While

real absorber dyes that are fast enough are hard to find, fortunately fast saturable

absorber-like action can be engineered in several ways. Thus as will be described in

subsequent sections and chapters , "artificial fast-saturable absorbers" can be incor-

porated into solid-state laser cavities to achieve femtosecond pulse generation.

Fast saturable absorber modelocking often relies critically on pulse shaping mech-

anisms other than saturable absorber action. These include self-phase-modulation

(SPM), group-velocity dispersion (GVD) and gain dispersion. The role of SPM and

GVD in modelocking were explored following the observation of residual chirp on

pulses produced by dye-lasers and the introduction of adjustable negative intracavity
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Figure 2-4: Fast saturable absorber action

dispersion using prism pairs [23]. The soliton-like pulse shaping mechanism set up

by the interaction of SPM and negative GVD was identified and proven to result in

the production of much shorter pulses than the amplitude modulation produced by

saturable absorber action alone could produce. However SPM was observed also to

strongly effect the stability of the laser pulses. Before attempting to explain these

characteristics of FSA modelocking it is helpful to understand the origin and nature

of the various pulse shaping mechanisms involved.

2.4 Fast saturable absorber modelocking

2.4.1 Pulse shaping mechanisms

Saturable absorber action

Saturable absorber action has already been defined in the preceding discussion. Math-

ematically, one expresses this intensity dependent loss as an effective change, AE in

amplitude of a pulse passing through a fast saturable absorber medium. We then

t
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Figure 2-5: Two level atomic system

have,

AE = -y IE2 E (2.17)

where E is the field amplitude and - the fast saturable absorber cross section in units

of 1/W.

Real saturable absorbers, consist of systems where the optical absorption of the

medium actually saturates with increasing light intensity. The phenomenon of satu-

ration can be understood by modeling the absorption in the two level atomic system

shown schematically in Figure 2-5 [103]. If N represents the constant total system

population, N1 and N2 the atomic populations of each level, W 12 and W 21 the stimu-

lated transition rates, and w12 and w21 the relaxation rates, we can derive the following

rate equation for the population difference AN = N1 - N2 ,

d AN(t)= -(W2+W21)A N(t)+(W21-W12)N-(2+ ) (A N(t)- 21 12N)

dt W12 + W21)

(2.18)

This equation can be simplified for non-degenerate systems where W 12 = W21, if we

E

E

I



define w12 + w21 = l/T 1 and note that the thermal equilibrium population is

ANo = N. (2.19)
W12 + W21

Then we have
d A N(t)- A No

AN(t) = -2W1 2 AN(t) - " (2.20)
dt T,

and the steady state population difference, AN,,, is given by:

AN,, = A No x 1 + 2W T (2.21)1 + 2W12T1
This steady state population difference is established based on the balance be-

tween the stimulated transition term which acts to transfer atoms from the more

heavily populated lower energy level N1 to the less populated upper energy level N2

and the relaxation term which pushes the population difference towards its thermal

equilibrium value. At high enough intensities (ie for W 12T 1 > 1) the two phenomena

just balance each other and the two level populations equalize causing the net power

absorbed to tend to zero. This is the phenomenon of absorption saturation.

While real saturable absorber dyes are attractive due to their simplicity they tend

to be limited in speed. From the condition for saturation ie. W 12T 1 > 1, it is evident

that in such systems speed is gained only at the expense of increased saturation

intensity. This limits the use of real fast saturable absorbers to high intensity systems

and also increases concerns regarding thermal damage to the absorber.

Artificial saturable absorbers are therefore an important modelocking alternative

due to their speed, the fact that they do not dissipate power and their adjustable

parameters. Artificial saturable absorbers provide an intensity dependent loss mech-

anism like real absorber dyes; however this does not originate from actual absorption

saturation such as that described above. The artificial fast saturable absorber mecha-

nism of primary interest in this thesis arises from the Kerr nonlinearity in a solid-state

medium which has a response time on the order of a few femtoseconds [80].



The Kerr effect arises from the nonlinear polarization induced in media under the

influence of a strong electric field. The polarization in a medium can in general be

expressed as:

P = XlcoE + X2E 2 + X3E ... (2.22)

The second order susceptibility, X2 exists only in non-centrosymmetric crystalline

arrangements , but the third order susceptibility, X3 exists in any solid, liquid or

gaseous medium. If we include the X3 term, we have that the electric displacement,

D, is given by

D = 0[1 + X1]E + X3 E3  (2.23)

= co[l + XI + o 1 a3E2]E (2.24)

Thus the complete nonlinear dielectric constant is

E = E0(1 + X1) + 62E2  (2.25)

where e2 = X3 and consequently the index of refraction of the medium, n = c/oE0 is

given by

n = no +n 21 (2.26)

where no and n 2 are defined as follows:

no = I X (2.27)

1 Xan2 = X3 (2.28)2 co
where 7 is the impedance of the material.

Most condensed materials have n2 ' 10-16cm 2/W. Some organic materials with

long molecular chains may exhibit n2 values about an order of magnitude higher than

this. The Kerr effect becomes important in modelocked lasers at intensities where



the change in optical length brought about by the nonlinear refractive index becomes

comparable to a wavelength. Using typical values for the Ti:A120 3 gain medium (ie.

n2= 3 x 10- 16 cm 2/W, A = 800 nm, L = 1cm ) this translates to intensities on the

order of 100 GW/cm2 .. Peak intensities in typical femtosecond lasers usually reach

several tens of GW/cm 2 and are therefore sufficient to render Kerr nonlinearities

significant.

The most important consequence of the Kerr effect in the context of modelocking,

is the resultant phenomena of self-focusing. Self-focusing occurs due to the non-

uniform transverse spatial profile presented by a Gaussian pulse propagating through

a Kerr medium. The central higher intensity portions of the beam modify the local

refractive index by the Kerr effect while the peripheral low intensity portions do not.

Consequently an intensity-dependent lens which counteracts the normal diffractive

divergence of the propagating beam is set up. At a certain power defined as the

critical power for self-focussing, P,,it, self-focusing exactly balances diffraction and

the beam propagates in a collimated fashion. For powers in excess of the critical

power the self-focusing process becomes catastrophic and the beam collapses to a

singularity. Of course, higher order effects or damage in the propagation medium set

in before this can happen in actuality.

The phenomenon of self-focusing is at the basis of the fast saturable absorber-like

action obtainable in solid-state lasers. Stated very simply, Kerr induced self-focussing

in nonlinear media results in the modification of intracavity beam profiles for high

intensities in comparison with the low intensity profiles. Consequently at certain

positions in a laser cavity, light of higher intensity may produce a narrower spatial

profile than light of lower intensity. If a spatial aperture is placed at such a point

to selectively transmit the high intensity profile, the result is precisely an intensity

dependent loss mechanism, or saturable absorber.

Modelocking that utilizes artificial saturable absorber action due to self-focussing

has been termed Kerr Lens Modelocking (KLM) [107, 83, 51] and is extremely popular



in current day solid-state lasers. The actual methods for analyzing KLM laser cavities

and determining the effects of self-focussing on cavity modes as a function of power

are complex and varied. These methods include numerical procedures and analytic

solutions and will be reviewed in a Chapter 3. A numerical approach based on

nonlinear transformation of the Gaussian beam q parameter to model the problem of

self-focussing in simple laser resonators was implemented and used as a part of this

thesis and will also be described in Chapter 3.

Self phase modulation

Self phase modulation is a temporal nonlinear effect also originating in the Kerr

nonlinearity. As discussed previously a medium with a Kerr effect displays an intensity

dependent refractive index, ie:

n = no + n 21(t) (2.29)

Thus in propagating a distance L in such a medium, a pulse defined initially by

E(z, t) = E(t)ej (wot- k z) (2.30)

acquires a time varying phase shift 0(t) which can be expressed as

(t)= L(no + n2(t)). (2.31)

where A is the wavelength in air. Thus the time rate of change of phase across the

pulse will be a function of the intensity and we have that

dO(t) 2r Ln2 d(t) (232)
dt A dt

A time-dependence in the phase-derivative across a pulse corresponds in fact to

"chirp", that is a variation in instantaneous frequency across the pulse. For the ma-
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Figure 2-6: Frequency shift due to self-phase modulation

jority of materials since the nonlinear index n2 is positive, the leading edge of the

pulse with dI/dt > 0 will experience a down shift in frequency (red shift) and the

trailing edge of the pulse with dI/dt < 0 will experience an up shift in frequency

(blue shift). Figure 2-6 illustrates the idea schematically. wo in this figure is the ini-

tially uniform carrier frequency of the unchirped pulse and wi(t) is the instantaneous

frequency after propagation through the medium.

We can consider mathematically the effect of self-phase modulation on an initially

unchirped Gaussian pulse [103]. We have

E(t) = Eoe-at2 ejwot (2.33)

I(t) = Ioe - 2at2 (2.34)

where Io = Eg/q and r is the impedance of the material. Assuming for simplicity

that the pulse shape remains constant, after propagation over a length L of a Kerr



medium the instantaneous frequencies across the pulse will be described by

wi(t) = d_ (2.35)
dt

2rn2L dl
= wo A dt (2.36)

= Wo - x te- 2 2  (2.37)

4Gran2Llow xtranLI (2.38)

Clearly to first order, SPM results in the addition of a linear frequency chirp to the

initially unchirped pulse. It is easily proven that the time-bandwidth product of the

pulse will increase by a factor of v/2 when the condition

4rn2IloL
= 1 (2.39)

is met. Assuming typical operating parameters for the Ti:A12 0 3 laser, (10 W of

average intracavity power, a 10 ns round-trip time, a 10 fs pulse and a 30 Jm focussed

beam waist in the crystal, the peak focussed intensity in the crystal is approximately

10 ~ 35 GW/cm 2. Using Equation 2.39 with n 2 - 3 x 10-16) and A = 800 nm, we

find therefore that a crystal length, L, of 1.2 cm is required for the accumulation of

significant amounts of SPM. Crystal lengths in KLM Ti:A12 03 lasers range anywhere

from 2 mm to 2 cm and SPM must therefore be considered an important mechanism

in these lasers.

SPM is thought of as a spectral broadening mechanism since it generates new

frequencies by red-shifting the leading edge of the pulse and blue-shifting the trailing

edge. In any medium exhibiting dispersion these newly generated frequency com-

ponents propagate at different velocities and consequently affect pulse duration. In

a medium with positive dispersion (blue travelling slower than red) the blue-shifted

trailing edge of the pulse will fall further and further back with respect to the red-

shifted leading edge and the pulse will tend to broaden. On the other hand in a



medium with negative dispersion (blue travelling faster than red) the blue-shifted

trailing edge of the pulse will "catch up" with the main part of the pulse and the

red-shifted leading edge will "fall back" to the main part of the pulse; consequently

the pulse will undergo compression. This latter compressive effect on pulses, arising

from the interplay between SPM and GVD is at the basis of soliton generation and

propagation [36] . Consequently this interaction is termed soliton-like pulse shaping.

It plays a critical role in femtosecond pulse generation from a variety of sources.

Group velocity dispersion

Intracavity group velocity dispersion is an important pulse broadening mechanism to

contend with in the formation of an ultrashort light pulse. A dispersive medium is

defined as one having a frequency dependent propagation constant 3(w) which can

be expanded in a Taylor series around the central freqency wo to give

3(w) = 3(wo) + 3'(w)j,, (w - Wo) + 1/2 I"(w)I 0 (w - wo)2 + ... (2.40)

In order to define the concept of GVD and to understand its effects on pulse width

it is instructive to follow the development of Siegman [103] where a Gaussian pulse

is propagated through a dispersive medium. The input pulse is written in the time

domain as

Eo(t) = exp(-Pot2 + jwot) (2.41)

where To = ao - jbo is a complex gaussian parameter describing the initial pulse.

Taking the Fourier transform, in the frequency domain we can write that

Eo(w) = exp (W4ro1 (2.42)



Note that the pulsewidth and time bandwidth product for this pulse are given by

21n2
Irp = 

n

V a0

Afr =- 0.44 x 1 + (bo/ao)2

After propagation through a distance z in this medium we have that

E(z, w) = Eo(w) x exp [ -j3(w)z]

= Eoexp jI#(wo)z - j3'z(w - wo) - +jp It

(2.43)

(2.44)

(2.45)

o)21 2.46)

To retrieve the temporal form of the output pulse we Fourier transform back into

the time domain using

+E(zt) =E(zI t) f 0 E(z,w)ej " t dw. (2.47)

Rearranging terms and bringing the frequency independent carrier terms outside the

integral yields

ej[ilwot- (wo)z]
E(z,t) =r 2xr J + e -(" - • o)24exp (+ j(w - wo)(t-oo00 4 (z)

- 313z)J d(w -wo) (2.48)

r(z) = 1/ro + 2j P"(w)I• .

By changing variables to w' = w - w0 and t' = t - 3'z we can write that

eji[ot-6(wo)z1 +oo0
E(z,t) = 2 f ezp 4 + jw't' dw'.

The integral term is then easily recognized as the Fourier transform of a Gaussian

pulse ie.

J +00 e_,rz e1wt dw'
S00 = ep[-Fr()t , ]

where

(2.49)

(2.50)

(2.51)



- exp[-F(z) (t - P'(w)|o z)'] (2.52)

Thus the total output field is

E(z, t) - exp[jwo(t - ,(wo)z)] x exp[-F(z) x (t - 3'(w)l,, z)2] (2.53)

r exp[jwo(t - ) x exp[-r(z) x (t - )2] (2.54)
, v(wo) ev(wo)

where F(z) is the modified gaussian pulse parameter after propagation defined by 2.49

and the phase and group velocities of the pulse, v6 and vg are defined as

v4 (wo) = Wo/3(wo) (2.55)

vg(wo) = 1I1 '(w),o (2.56)

respectively.

The concepts of group velocity and phase velocity are familiar from the propaga-

tion of electromagnetic waves and wave packets. With the above definition of group

velocity, the definition of group velocity dispersion is clear. Group velocity dispersion

per unit length, /", merely describes the frequency dependence of the group velocity

ie:
d 1"(w) = ) (2.57)

The important point to note regarding propagation in the presence of GVD is

that while the output pulse of Equation 2.54 is indeed Gaussian it is characterized

by a modified complex Gaussian beam parmeter which is proportional to the total

group-velocity dispersion (GVD) experienced by the pulse . We have that

1 ao  boS = a + j o  + b 2 P"z) (2.58)
=(z) a- ± b ( a( + R0

1 (2.59)
a(z) - jb(z)



a(z) + jb(z)
a(z) - jb(z) a2(z) + b2(z)

The real part of 1/7(z) which describes the bandwidth of the pulse remains con-

stant. The quantity 1 + [b(z)/a(z)]2 which describes the time-bandwidth prod-

uct increases, with increasing propagation distance, corresponding to an increasingly

chirped pulse.

In general, propagation through an arbitrary dispersive optical system results in

a frequency dependent phase shift, O(w) and the GVD of the system is described by

d2 /dw2 . Using standard relations between frequency and wavelength and the chain

rule for derivatives it is easily proven that for a medium of length 1, with a constant

refractive index, n(A),
d2€ ,3 d2n( ))

d A3 d2 n(A)l (2.61)dw2 27rc 2  dA2

More generally for a medium with varying refractive index we can write

d2  A 3 d2P(A) (262)
S= (2.62)dw2 27rc 2 dA2

where P(A), the optical path length of the medium of physical length 1, is given by

P(A) = fj n(A)dz (2.63)

This latter definition of GVD is a useful one which will be used in subsequent analysis.

Gain dispersion

Gain dispersion is the term used to describe a frequency dependent laser gain. Gain

dispersion is a fundamental concept arising from the lineshapes of atomic transitions

involved in laser action. Lineshapes account for the fact that the atomic energy

levels involved in laser action are not infinitely sharply defined but rather have finite

bandwidths arising from a variety of physical phenomena. The exact mathematical



form of the lineshape is dependent on the specific broadening processes involved.

However we can classify gain media into those that are homongenously broadened

and those that are inhomogeneously broadened.

Homogeneous Broadening arises when every atom involved in laser action pos-

sesses the same atomic lineshape and frequency response. Consequently each atom in

an ensemble of atoms composing the laser medium responds identically to an applied

signal. The derivation of the Lorentzian frequency dependence of the lineshape is

routine [103] and will only be quoted here as

1GL(w) ~) (2.64)
(w - wo)2 +

where Q, is the homogeneous linewidth of the transition and w0 its central frequency.

Various effects in laser gain media give rise to homogenous broadening. These include

the finite lifetime of the upper-state, the interruption of the radiative process by

collisions between radiating particles, or the coupling to thermal vibrations in a host

crystal lattice

Inhomogeneous broadening arises when the center frequencies (or energies) of indi-

vidual radiating atoms become displaced from one another due to certain phenomena.

Considering the ensemble of atoms then, one finds a variation in the resonant tran-

sition frequency from atom to atom and consequently the individual responses to

applied signals cannot be treated identically. This kind of broadening gives rise to a

Gaussian line shape i.e.:

LO _ WO)2Gg(w) exp (- (2.65)

where fi, the inhomogeneous linewidth, is large compared to the homogeneous linewidth

Qg,. Doppler broadening in gas lasers is an example of an ihomogeneous broadening

process. In solid-state lasers, random crystal imperfections due to lattice strain or

dislocations can give rise to a small degree of inhomogeneous broadening which tends



to be important only at low temperatures in the absence of homogenous broadening

due to lattice vibrations.

An important difference between homogeneously and inhomogeneously broadened

media lies in their saturation behaviour. For the same reasons why absorption sat-

urates, laser gain is also subject to saturation at intensities that are high enough to

deplete the initial population inversion through stimulated transitions to the lower

level. Homogeneous broadening causes gain to saturate uniformly over its entire

bandwidth while for strong enough signals, inhomogeneous media can saturate only

over a fraction of the gain bandwidth thus creating spectral "hole-burning" effects.

For the Ti:A120 3 laser which is the primary focus of this thesis, we can assume

a homogeneously broadened line and the consequent Lorentzian line shape. Close to

the gain center we can then use the approximation of a parabolic gain profile to write

that

G(w)= g 1 - W  )2  (2.66)

where g is the gain at the linecenter, w0 is the central frequency and Q, describes the

gain bandwidth. Using the properties of the Fourier transform we can write this in

the time domain as:

gL(t) = g 1 + I (2.67)Q, dt2

Gain dispersion acts effectively as a bandwidth limiting frequency filter which tends

to broaden pulses that pass through it. Indeed as will be discussed shortly, it is an

important parameter in determining the pulsewidth attainable from a fast saturable

absorber modelocked laser.

2.4.2 The master equation for fast saturable absorber mod-

elocking

Having understood the origin of the primary pulse shaping mechanisms in FSA mod-

elocked lasers we can now describe the process of modelocking mathematically. The



master equation for FSA modelocking (in the steady state and under conditions of

small changes per pass through the laser elements) has been developed by Haus [34].

It arises from the simple fact that in the steady state the complex pulse amplitude

E(t) must reproduce itself after each round trip in the laser. Describing each pulse-

shaping mechanism with an appropriately linearized operator, this condition can be

translated mathematically into a differential equation in the time domain namely:

+ g d  d dt d
f2- dt2 + jD dt2 +tD- (-y -- J) IE(t)j = 0 (2.68)

The terms in this equation can readily be identified as follows: 1 is the linear loss,

g is the linear unsaturated gain, / represents the linear phase shift acquired per round

trip, D is the total group velocity dispersion accumulated in dispersive intracavity

media, -y describes the saturable absorber cross-section, 8 is a self-phase modulation

constant and tD represents the timing shift per round trip that is caused by small

deviations of the carrier frequency from an axial resonator frequency.

The analytic solution to this equation were first recognized by Martinez et. al. [70,

69] to be of the form

E(t) = Eosech( ) exp [jljlnsech( )] (2.69)

The pulse is thus described completely by an amplitude, E 0, a pulsewidth, r, and a

chirp parameter 0.

Haus has demonstrated that substituting Equation 2.69 back into the Master

equation we can solve for four parameters namely, the pulsewidth, 7, the chirp, 3,

the gain, g, and the phase shift, /. The important features of the solutions are

summarized in Figure 2-7 where the chirp, /, the normalized pulsewidth r,, the pulse

bandwidth and a pulse stability parameter are plotted versus normalized dispersion

for a fixed value of saturable absorber action while varying the strength of the SPM.
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The normalized parameters are defined as

n - r (2.70)
T2g

Dn = -2D (2.71)

The bandwidth is defined as

Q = (1 + g)2(1/r,) (2.72)

The stability parameter is defined as the difference between the gain, g, during mode-

locked operation and the cw gain, g,, in continuous wave operation. For the pulse to

be stable the stability parameter must be negative, ie. the gain before and after the

pulse must be less than the loss (which equals the saturated value of the continuous

wave gain, g9,).

g - g9, < 0 (2.73)

Two distinct regimes of operation with qualitatively different pulse shaping mech-

anisms can be identified. From Figure 2-7a) and b), it is seen that in the positive

dispersion regime, the chirp parameter / is large and the resultant pulse widths are

long. Gain filtering actually acts as a pulse shortening process in the positive disper-

sion regime due to the chirped nature of the pulses. It balances the pulse broadening

brought about by SPM and positive GVD. The magnitude of saturable absorber

action has a strong influence on the pulse width.

Negative dispersion is required to attain short pulses with small amounts of chirp.

The reason for this is clear from the earlier discussion about the soliton-like interaction

between SPM and negative GVD. Saturable absorber action is critical in stabilizing

the pulse formation process by providing discrimination against the breakthrough of

CW radiation.

The stability criterion Equation 2.73 observed by both Martinez and Haus makes



the statement that the saturated gain seen by the wings of the pulse must be less

than the loss seen by the wings of the pulse in order to avoid the breakthrough CW

radiation before and after the pulse. SPM strongly effects the stability of the laser;

indeed a pure soliton laser, in the absence of saturable absorber action is never stable

because the finite bandwidth of the soliton will then make it experience less gain

than CW radiation. Likewise, too much SPM can drive a laser unstable even in the

presence of saturable absorber action (see Figure 2-7 c)). This is because with too

much SPM, in the presence of the spectral filter of the gain, the pulse gradually begins

to lose energy. Consequently the saturated value of the gain rises and the stability

criterion of Equation 2.73 becomes violated.

Figure 2-7d) shows that the available bandwidth increases with increasing SPM

(as expected due to the generation of new frequencies). With increasing SPM the

asymmetry between the positive and negative dispersion regimes also becomes clearer.

The Master equation and its predictions can be used to describe a wide range of

fast saturable absorber modelocked systems. While it is often hard to extract quanti-

tative predictions from this formalism due to the difficulty in accurately quantifying

phenomena like SPM and saturable absorber action, familiarity with the mechanisms

involved and the general trends predicted in Figures 2-7 is essential in the design and

operation of femtosecond lasers.

2.5 Modelocking of Ti:A120 3 and Nd:YLF media

Having understood the general mechanisms responsible for modelocking in femtosec-

ond lasers it is appropriate to turn specifically to the modelocking of the two media

used in this thesis namely Ti:A120 3 and Nd:YLF.
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Figure 2-8: Energy level diagram for Nd:YLF

2.5.1 Nd:YLF

Several Nd:doped materials are used as solid-state laser gain media. Nd:YAG is

particularly popular because of its excellent physical and thermal properties. The Nd

doped Yttrium Lithium Flouride or Nd:YLF medium has also found widespread use.

Particularly for the generation of short pulses in the 1.0 y wavelength range, Nd:YLF

is an important source since its gain bandwidth of 1.35 nm [62] is approximately three

times as wide as the 0.45 nm bandwidth of Nd:YAG. The ory' product, (where a is the

emission cross-section and rf is the flouresence lifetime) of the 1.053 p Nd:YLF line

is also 3 times greater than the analogous quantity for the 1.052 I line in Nd:YAG.

This makes the threshold power for lasing in Nd:YLF proportionately lower than in

Nd:YAG.

~ ~ ~

1.047 t (rI



A simplified energy diagram for the Nd:YLF medium is shown in Figure 2-8.

Lasing is usually preferred on the 1.047 or 1.053 I lines. 7r polarized light is emitted

preferentially at 1.047 I and oa polarized light at 1.053 IL. If no polarization optics

are used 7r polarized light at 1.047 p is obtained due to the 1.5 times higher gain

crossection of the 1.047 /j, 7r transition compared to the 1.053 IL, oa transition. The

Nd:YLF material has good thermal conductivity, its upper state lifetime is about

520 ps and the natural birefringence of the crystal can be advantageous in certain

applications. Finally, the diode-pumpable nature of the Nd:YLF medium makes it

an attractive alternative for a compact solid-state system.

Active modelocking of the Nd:YLF medium has been reported by several re-

searchers to produce pulses in the 7 to 10 ps range. Passive modelocking techniques

first emerged after the invention of Additive pulse modelocking (APM) [34]. APM

relies on the coherent interference of a pulse in the main cavity and the phase-shifted

feedback from a nonlinear external or coupled cavity. Since the phase shift is nonlin-

ear, the wings of the pulses interfere destructively when the peaks interfere construc-

tively. The result is saturable absorber action or pulse shortening. APM was first

demonstrated in color center lasers and subsequently in a Ti:A120 3 system [119, 30].

Diode-pumped, APM Nd:YLF systems were then implemented and produced pulse

durations of about 2 ps [29, 62]. Another scheme relying on the use of a semiconductor

saturable absorber in a coupled cavity (Resonant passive modelocking) produced 4

ps pulses [52] from Nd:YLF. Recently the technique of Kerr lens modelocking (KLM)

has been succesfully extended to a diode pumped Nd:YLF system to produce pulses

of 6 ps duration [68]. Finally, in this thesis the microdot mirror modelocking tech-

nique has been applied to an arc-lamp-pumped Nd:YLF system to produce 2.3 ps

pulses [87] as will be described in the Chapter 4.



2.5.2 Ti:A120 3

The Ti:A120 3 medium has been the workhorse for the revolution in femtosecond

solid-state lasers witnessed over the past five years. Possessing a bandwidth of over

300 nm, extending from 700 nm to past 1 IL, it is extremely attractive both for its

tunability and its ability to support femtosecond pulses. Many material properties

including low excited state absorption, high thermal conductivity, chemical inertness

and mechanical rigidity have allowed rapid progress in the production of high quality

Ti:A120 3 laser rods of various diameters and doping densities.

The Ti:A120 3 crystal is formed by the replacement of a small fraction of aluminium

ions in the A120 3 crystal lattice with ions of Ti3 + . Typical doping densities are in

the range of 0.1 % to 0.25 % Ti3 + by weight. The effects of the crystal lattice on

the electron energy levels of the Ti3 + ion are strong and result in many of the unique

spectroscopic properties of Ti:A120 3.

Figure 2-9 plots the energy levels in the Ti:A120 3 system versus displacement of

the Ti3+ ion. The energy levels in this diagram appear as continuous bands rather

than discrete levels as was the case in the Nd:YLF medium. This is the key to the

tunability of the Ti:A120 3 medium. The reason for the spread of energy levels is that

the Titanium ion can move within these "vibronic" bands by coupling vibrational

energy to the host crystal lattice. The probability of finding a Ti3+ ion in the ground

or upper laser states is shown as a normal probability distribution around points

A and C. Optical pumping at 500 nm excites Ti3 + ions from the lower 2
T2 state

(point A) to the two-fold degenerate upper 2 E states (point B). The excited Ti3 + ion

can then release vibrational energy and move to the bottom (point C) of the upper

vibronic band from where the lasing transition to point D in the lower band occurs.

Finally the ion relaxes back vibronically to point A. The strong phonon interaction

between the host and the Ti3+ ion, as well as the large separation between the electron

energies involved results in the wide absorption and emission spectra of the medium.

Another notable feature is that laser emission terminates at high vibrational levels
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Figure 2-9: Energy level diagram for Ti:A120 3 .
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of the ground state. These levels are unpopulated since the phonon relaxation to

the lower vibronic states is relatively rapid. Consequently, the requisite population

inversion between points C and D can be attained easily.

For all of the above mentioned reasons, in the late 1980s, Ti:A120 3 became the

material of choice for studying femtosecond pulse generation in solid-state lasers.

The excellent material and spectroscopic properties of the Ti:A120 3 medium [2, 76]

lead to its demonstration as a highly promising, tunable, broadband laser system

in the early 1980s [59, 102]. Following this, the revolutionary developements of the

soliton laser [75] and the theory of Additive Pulse modelocking [43] emerged in the

latter half of the decade. APM was demonstrated successfully in several systems

and it was natural to try it in the new and promising Ti:A120 3 system. In 1989

Goodberlet et. al. reported on the self-starting passive mode-locking of a Ti:A120 3

laser using a nonlinear external cavity [30]. Other modelocking techniques were soon

demonstrated in the Ti:A120 3 syste, including Resonant passive modelocking [49],

modelocking with a slow-saturable absorber dye-jet [95, 94] and modelocking using a

colored glass filter [96].

Against this backdrop, in 1990 came the surprising discovery of Spence et. al.

that sub-100 fs pulses could be generated in a Ti:A120 3 medium using only intracavity

nonlinearities [104]. They found that they could induce modelocking by misaligning

the cavity in order support the existence of two spatial modes. However Spence did

not offer a conclusive scientific explanation or proof of the mechanism at work and

controversy about this issue was widespread. The role of self-focussing due to the

Kerr nonlinearity in the gain medium was suggested early on [84, 51] but not proven

conclusively. It is interesting to note that the use of self-focusing for laser modelocking

had been suggested by researchers in the Soviet Union as early as 1975 [60].

Conclusive experimental proof for the role of self-focussing came in the spring of

1990 when researchers at Coherent Inc. modeled and designed a highly reliable and

reproducible, sub-100 fs laser by modeling the self-focusing nonlinearity present in



the Ti:A120 3 laser rod [107] . Further they showed that using appropriately posi-

tioned intracavity apertures (termed "hard" apertures) they could enhance the sat-

urable absorber action achievable from self-focusing in the gain rod. They termed

this technique of modelocking Kerr Lens Modelocking (KLM). Concurrent with their

activities, efforts to conclusively explain the mechanism at work in Sibbett's exper-

iment were also underway here at MIT. These culminated in the development of

the techniques of modelocking using Kerr-polarization-rotation, and Microdot Mirror

Modelocking [27, 26].

Following these revolutionary developments, the field of femtosecond pulse gen-

eration in KLM Ti:A120 3 has continued to advance at an astonishing rate. Several

different directions were taken by researchers. The amplification of oscillator pulses

was one active area of research and important milestones in this area will be reviewed

in Chapter 6. The development and modelocking of new material systems in order

to extend the versatility of available sources has also actively pursued [61, 19, 99].

Harmonic generation and parametric oscillator techniques have also seen impressive

advances.

Perhaps the most dramatic progress has been achieved in the reduction of pulse-

durations achievable directly from the Ti:A120 3 oscillator. The identification of the

pulse width limiting effects of third order dispersion [39] lead to several demonstra-

tions of decreasing pulse duration attained by the minimization of intracavity third-

order dispersion. Many techniques were used in order to achieve minimum intracavity

dispersion. Prisms and Gires-Tournois interferometers for independent control of sec-

ond and third order dispersion [46]. New prism sequence arrangements for enabling

the convenient use of very low-dispersive prisms were also developed [85]. However,

the simple reduction of crystal length and judicious choice of prism materials [38, 3]

has proved to be the most effective way of reducing pulse duration. 8.6 fs pulses

have been attained using this approach [120]. Very recently the use of specially fab-

ricated, low third-order dispersion, GVD-compensating mirrors [109] has also been



demonstrated as a novel and alternate way to achieve a very short pulse laser [109].

The shortest pulse duration achievable directly from Ti:A120 3 oscillators stands

today at an impressive 8.6 fs [120]. These pulses contain only 3 optical cycles and

constitute the shortest pulses ever-generated directly from a laser. Efforts to reduce

pulse duration even further by elimination of fourth order dispersive terms is ongoing.

Meanwhile, as mentioned earlier, success in Ti:A12 03 has inspired the development

of other solid-state sources notably Cr:LiCrAlF 6 and Cr:LiSrCaAlF 6 which are broad

band and diode pumpable. Successful KLM has already been demonstrated in these

media [61, 19, 73]. New sources at different wavelengths, as well as novel optimizations

of existing modelocking techniques will undoubtedly enable continued progress in this

rapidly evolving field.



Chapter 3

Resonator mode analysis

3.1 Introduction

Techniques for the prediction of the spatial mode profile in a linear passive resonator

are an important tool in laser design. The intracavity electromagnetic field in a laser

can be described as a superposition of counterpropagating Gaussian beams which to-

gether set up a standing wave within the resonator. This standing wave solution sat-

isfies both Maxwell's equations and the boundary conditions imposed by the mirrors

at the resonator ends. Since the propagation of Gaussian beams in optical systems

is conveniently described using the complex Gaussian beam q-parameter and ABCD

ray matrices, these tools provide a general technique for calculating the intracavity

Gaussian mode profiles in laser resonators.

As explained in chapter 2, Kerr lens modelocking (KLM) relies critically on self-

focussing-induced resonator mode amplitude changes. These mode variations are

translated into changes in gain using appropriately positioned intracavity apertures.

In order to effectively design a KLM laser it is therefore essential to be able to

predict the effects of self-focussing and the resultant "nonlinear" intracavity mode.

Comparison of the nonlinear mode profile to the linear mode profile for different

resonator configurations helps one to decide on the most appropriate setup for a



KLM laser.

Theoretical modelling of the effect of self-focussing on resonator spatial mode pro-

files is a complicated problem that has been treated both analytically and numerically

by several authors. Salin et. al. were the first to quantify the effects of self-focussing

on the modelocking of Ti:A1203 lasers [93]. Under the assumption of a quadratically

varying complex propagation constant, (that accounts both for parabolic index vari-

ation due to self-focussing and parabolic gain variation due to the Gaussian profile

of the pump beam) they derive an ABCD matrix for a nonlinear rod of given length.

Using an initial guess for the complex cavity q-parameter the beam is propagated

through the entire cavity including the nonlinear gain medium segmented into sev-

eral layers. Iterative propagation back and forth through the cavity is continued until

the solution converges.

Haus has obtained analytic solutions to specific KLM resonator configurations [35].

Using the nonlinear scaling of the q parameter to be described later in this thesis,

and in the linearized limit of low powers, he derives the change in radius of curvature

and beam waist caused by one transit through specific resonator configurations that

include a Kerr medium. Constraining the solution through appropriate boundary

conditions, the "KLM action" or differential change in mode size can be derived at

specific planes in the cavity.

Brabec et. al. proposed another analytic solution to the problem in 1993 [12].

Their work deals with the most commonly used KLM resonator configuration con-

sisting of a folded four mirror cavity with the crystal placed at an intracavity focus.

The confocal parameter and the position of the beam waist are treated as power

dependent variables. Using the equations for standard Gaussian beam propagation

from the intra-crystal beam waist to each of the crystal surfaces, ABCD matrices

for propagation from the crystal surfaces to the laser end mirrors and boundary con-

ditions at those end mirrors, general expressions for the power-dependent confocal

parameter and intracavity focus position are derived in the linearized limit of low



power. This technique is powerful but has the drawback of being relatively complex,

and non-intuitive.

Finally Magni et. al. have recently provided a more intuitive understanding to

the KLM resonator problem [65, 66]. In this case, the paraxial wave equation in a

nonlinear medium is solved in the aberrationless limit using a parabolic approxima-

tion for the Gaussian beam profile. The solution provides general expressions for

the evolution of the beam waist and radius of curvature during nonlinear propaga-

tion. Casting these solutions into the analagous ABCD matrices the authors observe

that self-focussing can be viewed as the combined effect of a lens with an intensity

dependent focal length and propagation through a negative distance (self-shortening).

The approach to the problem of self-focussing taken in this thesis is the use of a

numerical solution based on the non-linear scaling of the q-parameter introduced by

Belanger et. al. in 1982 [8] and studied further by Huang et. al. in 1992 [40]. Huang's

description of self-focussing is particularly appealing because once the effects of self-

focussing have been accounted for by a simple transformation of the q parameter,

linear and nonlinear propagation can be treated identically. This procedure which

forms the subject of this chapter is a valuable aid to the intuitive understanding of

simple resonators and to the qualitative prediction of the effects of self-focussing on

cavity modes. Further, and importantly, it lends itself easily to numerical imple-

mentation and can be used to calculate the nonlinear solution to arbitrary resonator

configurations, unlike some of the analytical solutions described above.

The organization of this chapter is as follows. Section 3.2 defines Gaussian beams,

the q parameter and its transformation using ABCD ray matrices. Section 3.3 de-

scribes how the effects of self-focussing can be accounted for by a nonlinear scaling

of the q parameter. Section 3.4 describes the iterative program that was written to

implement this technique. The code itself is included in Appendix B. Section 3.5

applies this tool to study the example of a simple lens cavity closely related to the

compact femtosecond laser cavity implemented later in Chapter 5 of this thesis.



3.2 The q parameter and ABCD matrices

The Gaussian beam used to describe modes in laser resonators is a solution to the

paraxial wave equation. The paraxial wave equation is unchanged under the trans-

formation z -+ z + jb. Consequently a solution to the paraxial equation can be

obtained by an imaginary translation of the impulse response to the equation, and

this solution defines a Gaussian beam namely,

V 7r z + jb 2(z + jb)(3.1)uoo(Vyz) = j2 +ep

= exp(j)exp y2 exp J( 2 +y)l (3.2)
VJ7w w 2R

where

2b z2
w2(z) = -b( 1 + 2 ) (3.3)

1 z= (3.4)R(z) z2 + 62
z

tano = Z (3.5)

Equation 3.2 defines a wave travelling in the +z direction which has a Gaussian

amplitude profile, (the width of which is determined by w(z)) and curved phase fronts

with radii of curvature R(z). The minimum beam transverse radius is given by

wo = 2. (3.6)

The parameter b is called the confocal beam parameter and defines the distance over

which the beam cross-sectional area expands to twice its value at the minimum beam

waist position. We have that

wb = (3.7)



It is convenient to describe the evolution of the waist and phase fronts of a Gaussian

beam in terms of the minimum beam waist, wo as

W(z) = w(1 + ( )2) (3.8)
7rWO

1 z1 (3.9)
R(z) z2 + ()2

tan = (3.10)

The propagation of a Gaussian beam can also be described in terms of the so-called

Gaussian beam q parameter. The q parameter is defined as

q = z + jb (3.11)

Consequently the radius of curvature and the beam waist are related to the real and

imaginary parts of q in the following way

=• Re- (3.12)

= IM (3.13)

The q parameter completely describes a Gaussian beam. Therefore in order to study

the propagation of a Gaussian beam through any optical system it is sufficient to

study the propagation of the q parameter through the system. The propagation of

the q parameter through various optical elements can be easily described and it can

be shown that in general the q parameter undergoes a bilinear transformation when

propagating through a linear optical system [36]. That is,

, Aqo + B
q (3.14)

Cqo + D

where q' is the q parameter at the output of the system and qo is the q parameter at



Free space, Length 1

Material, Length 1, Index

Thin lens, Focal length f

Mirror, ROC R, Angle of incidence 0

Tangential plane

Mirror, ROC R, Angle of incidence 0

Sagittal plane

Dielectric interface from nl to n 2

1
-2/(R cosO)

1 0
-2 cosO/IR 1
1 0
0 n1 /n 2

Table 3.1: ABCD matrices for common elements

the input. The system can then be described by a 2 x 2 matrix M, that is

A B
M = B (3.15)

C D

ABCD matrices can be written for each element of an optical system. ABCD matrices

for common elements are summarized in Table 3.1. In order to describe a complex

optical system one need only multiply the corresponding individual ABCD matrices

together to obtain the ABCD matrix that describes the total system. Once the

output q parameter, q', has been obtained through the application of the system

ABCD matrix on the input q parameter, qo, Equations 3.12 and 3.13 can be used to

extract the beam waist and radius of curvature that completely describe the Gaussian

beam at the output plane.

As stated earlier, the spatial mode in a laser resonator is given by the superposition

of Gaussian modes that satisfy the boundary conditions imposed by the resonator end

elements. In order to solve for the standing wave that exists in a given resonator a

0



simple recipe based on the q parameter and ABCD matrices can be used. If qo is the

q parameter at one end of the resonator, and the matrix M, where

M = (3.16)

describes the total round trip ABCD matrix (obtained by cascading the individual

matrices for the unfolded cavity together), Equation 3.14 then describes the round

trip beam propagation in the resonator. To be a steady state solution, the resonator

mode must be self-consistent i.e. it must reproduce itself on the round trip. We can

therefore write that

q Aqo + B
Cqo + D

= qo (3.18)

This is a simple quadratic equation that has the solution

A-D A+D 1
q - ( 2C - (3.19)

20 2C C2

where the fact that

AD - BC = 1 (3.20)

(which is true for all ABCD matrices relating q parameters in free space) has been

used. The cavity is stable only for system configurations which produce a finite beam

waist and referring to Equation 3.13 this condition translates into

Im(qo) $ 0, (3.21)



that is referring to Equation 3.19,

(A + D < 1 (3.22)

3.3 Self-Focussing induced nonlinear scaling of the

q parameter

Huang et. al. have formulated a model for self-focussing in a thick nonlinear medium

by using non-linear scaling of the q-parameter [40]. We follow their development here.

This model neglects aberrations assuming that the Gaussian nature of the beam is

not modified by self-focussing. Previous work on self-focussing in a laser cavity has

made similar assumptions [1, 53, 101].

As discussed in Chapter 2, self-focussing is the result of the Kerr nonlinearity

which introduces an intensity dependent term in the refractive index of the medium,

ie.

n = no + n 21 (3.23)

For a Gaussian beam we can write that

I(r) = Ioe - 2r/w 2  (3.24)

We can approximate this radially varying Gaussian intensity profile with a parabola if

we restrict the analysis to excursions around the optical axis that are small compared

to the beam waist w, that is if

2r2 /w2 < 1 ie. r < w•// (3.25)

we can write that

n = no + n 210oe - 2r 2/w (3.26)



Sn o + n 2Io(1 - 2r2 /w 2 ) (3.27)

nIo 2r 2

= (no + n 2 o)(1 n21 2 )  (3.28)
no + n 2 10o w 2

- no(1 - 2n 21 r2) (3.29)
now2

Comparing this expression to the defining equation for an inverted parabola, i.e.

n = no 1 ) (3.30)
2h2

we can readily identify the parameter h,f that determines the curvature of the index

profile as
w no

hf = Ion2  (3.31)

Defining P as the power in the entire beam that is

P = oo 2eIoe - 2
r

2 /w rdrdO (3.32)

we have that

P = -rlow2 (3.33)

and consequently
2 Fn

hf = 2 (3.34)
2 2 2nzP

where a is a correction factor which accounts for higher order terms in the expansion
-2,2

of e ý;T and has been predicted to have values in the range of about 3.7 to 6.4 [101].

A familiar system which displays a similar parabolically varying radial index profile is

the Graded-Index or GRIN lens. The ABCD matrix for this element has been derived

by Haus [36]. Using this analogy we can immediately write down the ABCD matrix

for propagation through a thin slice, dz, of the nonlinear medium (assuming that h,f



is constant over the length dz) as,

A dZ2 dz
2h2 2 l no

S )=( A; (3.35)C D -ndz 1-

Using this matrix we can derive an an equation for the differential change dq of the

parameter q over an infinitesimal length dz. The details of this derivation are provided

in Appendix A. The result is
dq 1 q2no

S= - + (3.36)
dz no h2

Since it is the real and imaginary parts of the parameter p = 1/q that are related

to the radius and waist respectively as previously described in Equations 3.13 and

3.12, we translate the above equation into two differential equations describing the

variation of p, and pi, of the real and imaginary parts of p as the beam propagates

through the nonlinear medium. We get that

= - + (3.37)
dz no no

dpi 2p,.o = - ri- (3.38)
dz no

where the scaling factor oa is defined as,

P 1(3.39)P -•rit
aA2

Pcrit 2 (3.40)
81rn onz

Many numerical and analytical techniques for the solution of these equations have

been demonstrated. However, Huang et. al. made the important observation that

under the substitution pi --- pý these are exactly the equations that would de-

scribe linear propagation through a distance dz in a material of index no. This is

very convenient because now self-focussing in a nonlinear medium can be accounted
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Figure 3-1: Shift in focus position resulting from the effect of self-focussing on a
propagating beam. Increasing beam powers: Solid - .1 x P,.it, Dotted - .4 x P,.it,
Dashed - .7 x Perit, Dashdot - .99 x P,,it. The input beam has R = -4 cm, w =
.022cm. The length of the material is 13.5 cm, the linear index no = 1.76, and the
nonlinear index n2 = 3x 10- 16 cm 2/W.

for simply by appropriate scaling of the q parameter upon entering and exiting the

material. This treatment is also physically appealing because the effect of scaling can

be clearly seen in Equation 3.37 as counteracting the diffraction of the propagating

Gaussian beam.

Note that the scaling term a is dependent on the ratio of the power P to the

critical power P,-it. As expected a approaches 1 for low powers. At the critical

power, a approaches 0 and the second term in Equation 3.37 vanishes signifying the

cancellation of diffractive effects due to the counteracting influence of self-focussing.



Figure 3-1 provides a more physical picture of these effects of self-focussing in

beam propagation. Using the above described q parameter scaling, a Gaussian beam

is propagated at different powers through 13.5 cm long slab of sapphire material (no =

1.76, n2 - 3 x 10-16 cm 2/W, A = 800 nm, P,,it - 2.6 MW). The radius of curvature

and beam waist of the input beam (R = -4 cm, w = .022 cm) are chosen so that at

low powers the beam comes to a focus approximately in the middle of the block of

sapphire. The length of the sapphire block is approximately equal to 2nob, where the

confocal parameter, b, of the beam is - 3.92 cm corresponding to a minimum beam

waist of about 100 ,Im.

The mode profile of the propagating beam is plotted for increaseing powers upto

as much as 0.99 times the critical power, Pcritica,,l. The shift of the position of min-

imum beam waist (or focus) is very clear. As the power is increased, self-focussing

increasingly counteracts the diffractive spreading of the beam. Since the input beam

radius of curvature and waist size are held constant, the effect of self-focussing man-

ifests itself as a shift in the position at which the beam comes to focus. Clearly, at

higher powers the beam travels further in the material before attaining its minimum

size. Notice that for this case in which the beam focus is approximately in the middle

of the block, the far field divergence is relatively constant at all powers.

For powers above Pe,it, a becomes imaginary and this analysis breaks down. The

regime where P > Pc, corresponds to the case when self-focussing effects are stronger

than diffraction resulting in a positive feedback mechanism that causes the collapse

of the beam to a singularity. However in most solid-state resonators peak powers

are only a fraction of the critical power and so the model described above is quite

appropriate and useful.

To summarize the above discussion , if we define scaling parameters I and '-1 at

the entrance and exit of the nonlinear medium, the entire effect of propagation with



self-focusing is described by the transformation

q' = ? -'Miq (3.41)

where we define
1T(q) = (3.42)Re(l/q) + joIm(1/q)

and
1@-'(q) = (3.43)

Re(1/q) + jo--IIm(1/q)

and M is the ABCD matrix that describes linear propagation through the medium.

3.4 Numerical implementation of nonlinear scal-

ing of q-parameter

As part of this thesis, the above described method was implemented in a numerical

procedure which can be used to evaluate both linear and nonlinear cavity spatial mode

profiles for arbitrary resonators. The code (included in Appendix 2) was written in a

stack based language ASYST which is convenient for matrix and array manipulation.

The program is based entirely on the q-parameter representation of Gaussian beams

and the transformation of the q parameter using ABCD matrices as described above.

ABCD matrices are defined for a variety of optical elements including all those cited

in Table 3.1. Procedures for the manipulation of the q parameter - propagation,

extraction of the radius of curvature and beam waist - are also developed. Resonator

configurations are defined by the user as cascades of the predefined individual optical

elements.

For a specified resonator configuration, the program is capable of evaluating the

stability of the resonator and calculating the self-consistent q parameter for stable

configurations. Starting at one end of the cavity then, the beam is "propagated"



through the entire resonator using ABCD matrices. The beam waist is calculated

concurrently and stored as a function of position. Thick elements are sliced into

thinner slices and the q parameter and corresponding beam waist are calculated

and plotted after each thin slice. Note that at the boundary between air and a

nonlinear element the program calculates the beam waist in air outside the element,

then calculates the beam waist after the first slice of material (using the scaling of

the q parameter) and linearly interpolates between the two points. Clearly in the

limit of an infintesimal slice (ie. across a boundary) the resultant mode profile would

exhibit a discontinuous waist size which is physically impossible. However, it must

be kept in mind that the entire analysis of Huang et. al. is performed under the

assumption of thick nonlinear media and one cannot therefore study what happens

across a dielectric boundary using this technique.

3.5 The simple lens cavity

To illustrate the utility of this program it is used to study the nonlinear properties of

the simple yet enlightening resonator configuration shown in Figure 3-2. This cavity

is closely related to that implemented as a compact KLM laser later in this thesis.

The cavity is composed of two highly reflecting flat end mirrors and an intracavity

lens of focal length f. The lengths of the two arms are L 1 and L2 . To understand

this resonator the first step is to map out its linear stability region as a function of

the arm lengths L1 and L 2. The round trip ABCD matrix for the resonator is not

difficult to compute and its components are

A = 1 - L/f - Li + 2L 2(1- L1 /f) (3.44)

B = L + 2L 2 (1- L1/f) + L 1 - f L1 + 2L 2 ( 1 - Li/f)) (3.45)f
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Figure 3-2: Simple lens cavity

C = -/f- 1- 2L 2/f (3.46)
f

D = 1-2L2/f +L l-1/f - 2L2 (3.47)

The stability condition of Equation 3.22 for this resonator is

f2 - 2fL1 - 2fL2 + 2L 1 L2 ) 2  1. (3.48)

This equation can be written as a function of the quantities Lx/f and L2/f ie.

[(1- )(1- L2 )2 < 1 (3.49)f f

Solving this inequality results in the identification of the stable resonator configura-

tions which lie in the shaded regions of the stability diagram of Figure 3-3. At any

one point in this two-dimensional parameter space, the program can be used to plot

the linear and nonlinear spatial profiles of the intracavity resonator mode. As will be

discussed shortly, different points on the stability map exhibit qualitatively different

linear and nonlinear mode profiles.

Before proceeding to study specific profiles, it is instructive to plot the linear

__ ·
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Figure 3-3: Stability diagram for simple lens cavity. The shaded region denotes the
parameter space which corresponds to a stable resonator configuration.
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Figure 3-5: Mode size at intracavity lens position of simple lens cavity plotted as a
third dimension over the cavity stability diagram

modesize at different points in the resonator as a third dimension over the stability

diagram of Figure 3-3. Figure 3-4 plots the mode size at the end mirror M 1 of the

resonator corresponding to the arm of length L 1. The general nature of the surface

plot agrees with physical intuition. For resonator configurations where L1 - f, the

Gaussian mode is focussed tightly at M1 and collimated at the other end of the cavity.

Consequently the surface plot of beam size at the mirror M1 dips to zero along the

line L 1 = f. By an analagous argument it is clear that when L 2 approaches f the

modesize at M 1 rises rapidly due to the collimation of the beam in arm 1 and its

focussing at mirror M 2 . For L 1 and L2 much less than f, the resonator mode at both

ends of the cavity is collimated. Along the hyperbola in the stability diagram of

Figure 3-3 where the condition

+ +- (3.50)
Ls met, L2 f

is met, the imaging condition of ray optics prevails and the mode size at M, shrinks



again.

The 3D mode picture at mirror M2 can be surmised from Figure 3-4 by simply

interchanging the axes corresponding to L1 and L2. Figure 3-5 shows the 3D plot for

mode size at the intracavity lens. This plot is symmetric with respect to L1 and L2 as

one would expect physically. The qualitative trends can easily be traced in a manner

similar to that just done for Figure 3-4

Having a basic understanding of the linear behavior of the cavity we can now

calculate representative mode profiles in order to understand the influence of self-

focussing. Figures 3.5 through 3.12 are a series of linear and nonlinear mode profile

plots, each obtained at a different point in the stability map of the cavity. All of

these simulations utilize the same cavity configuration with a lens of focal length 5

cm and a Ti:A120 3 crystal of length 0.3 cm. The nonlinear mode is calculated at a

power equal to one half of the critical power. For Ti:A12 0 3 the critical power is on

the order of 2.6 MW and one half of that is a reasonable estimate for the peak power

in a typical femtosecond Ti:A120 3 oscillator.

Table 3.2 compares these operating points by tabulating several important pa-

rameters. Figure 3-14 provides a quick reference for the approximate positions (in

the stability map of the cavity) of the points tabulated in Table 3.2. The parameters

tabulated for each point include the linear and nonlinear beam waists (wt and wnt) at

the crystal, the resultant saturable absorber action, -y (ie. the differential change in

mode area per unit power, at the crystal high reflector) and the self phase modulation

per unit power ie. 8. Note that 6 is calculated as

2ir 1 btan(
S= 2n2- btan-( ) (3.51)

A Aeff b

where b is the confocal parameter of the beam, 1 is the crystal length and

Aeff = rwIt. (3.52)



IF is calculated as

1 Anl - At
.5 * Pcrit Al (3.53)
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Figure 3-8: L1/f = L2/f = 0.98, Left: Mode profiles. Solid line - low intensity, Dotted
line - high intnsity. Right: Stability position, E is a small distance.
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Figure 3-9: L1/f = L2/f = 1.02, Left: Mode profiles. Solid line - low intensity, Dotted
line - high intensity. Right: Stability position, E is a small distance.
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Figure 3-10: L1/f = L2 /f = 1.8, Left: Mode profiles. Solid line - low intensity, Dotted
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Figure 3-11: L1/f = L2 /f = 1.98, Left: Mode profiles. Solid line'- low intensity, Dotted
line - high intensity. Right: Stability position, c is a small distance.

I I I I I I I I

t-

00

k



Position (cm)

Figure 3-12: L 1/f = 1.02, L2/f = 8, Left: Mode profiles. Solid line - low intensity,
Dotted line - high intensity. Right: Stability position
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Figure 3-13: L1 /f = 8, L2/f = 1.02, Left: Mode profiles. Solid line - low intensity,
Dotted line - high intensity. Right: Stability position
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This type of comparison can shed light on several KLM laser design issues. The

size of the mode in the crystal is a key parameter in obtaining sufficient power extrac-

tion from the gain and in choosing an appropriate pump focal spot. Typical Ti:A120 3

lasers require focussed spot sizes in the gain of about 30 to 50 ,um. Consequently

with current crystal technology operating point 8, with its spot size in the crystal

of approximately 0.5 mm would be unsuitable even from a continuous wave laser

standpoint.

The suitability of a given operating point for KLM operation can also be estimated.

For example, if pump beam aperturing is intended then the requirement of a negative

differential mode size at the crystal for KLM limits operation to points 1, 4 or 7.

The choice of pump spot size also becomes clear, since the pump beam must provide

an effective aperture to distinguish between linear and nonlinear modesizes in the

crystal. Ideally it should be exactly the size of the nonlinear mode in the crystal.

Similarly if hard aperturing with a slit is intended, an appropriate position and size

for the slit can be ascertained at each operating point.

Stability of modelocked operation and favorability for self-starting behavior can

be determined by comparing saturable absorber action at different positions. From

this point of view, operating points 4 and 7 offer the best possibilities. For short

pulse generation in the positive dispersion regime one would seek to enhance the 7/8

ratio of saturable absorber action to self-phase modulation as predicted by Haus [35]

by working close to stability boundaries at points 3, 4, 6 or 7. Figure 3-15 plots this

ratio of y/ 6 as a function of the parameter L1/f = L2/f, along the line corresponding

to equal resonator arm lengths. The trend of maximization of this ratio close to the

stability boundaries is seen clearly in this plot.

It is also interesting to investigate operation of the cavity around the confocal

instability point at which

L1 L2L- 1. (3.54)
Operation around this point results in enhancement of noninear mode changes be-f

Operation around this point results in enhancement of nonlinear mode changes be-
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Figure 3-14: Approximate position in the cavity stability map of the points 1 through

8 that are tabulated in Table 3.2

Pt. L1/f L2/f W• (cm) w,a (cm) b (cm) Aw/w % y (1/W) 6 (1/W) 7/6
1 0.1 0.1 7.45e-3 7.32e-3 2.09 -2.7 -2.1e-8 4.2e-8 -0.49
2 0.95 0.95 1.13e-2 1.21e-2 5.75 14.7 1.le-7 1.5e-8 7.34
3 0.98 0.98 1.13e-2 1.32e-2 6.84 36.5 2.8e-7 1.3e-8e-8 21.73
4 1.02 1.02 1.13e-2 7.01e-3 1.92 -61.6 -4.7e-7 4.6e-8 -10.41
5 1.8 1.8 8.74e-3 8.77e-3 3.04 2.31 1.8e-8 2.9e-8 0.61
6 1.98 1.98 5.03e-3 5.46e-3 1.19 21 1.6e-7 7.3e-8 2.21
7 1.02 8 2.51e-3 1.8e-3 0.13 -48.6 -3.73e-7 3.4e-7 -1.1
8 8 1.02 4.73-2 4.7e-2 1.27 0.0 0.0 1.02e-9 0.0

Table 3.2: Comparison of linear and nonlinear parameters at different operating points
in the simple lens cavity. wl, w71 are the linear and nonlinear mode waists in cm at
the crystal high reflector. b is the confocal parameter of the nonlinear mode in cm.
Aw/w gives the percent change in mode area. 7 is the differential change in mode
area per unit power and 8 is the SPM per unit power. The ratio 7/8 is dimensionless.
All calculations use a 5 cm focal length lens, a 0.3 cm Ti:A120 3 crystal and a power
of .5Pc, for the nonlinear mode.
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Figure 3-15: The ratio of saturable absorber action (-) to self-phase-modulation (8)
is plotted as a function of the equal arm lengths normalized to the focal length. Note
the enhancement of this factor that is possible at the expense of geometric stability
of the cavity.

cause of the proximity to two of the three cavity instability boundaries. However one

must be cautious in choosing an operating point here, because small changes in posi-

tion can alter the effects of self-focussing both in sign and in magnitude. Figure 3-16

shows a few representative operating points that have been chosen close to the con-

focal instability point. Points A and A' which lie along the line where L1 = L2 were

also included in Table 3.2 as Points 3 and 4 respectively. Figures 3-17 through 3-22

display the linear and nonlinear modes corresponding to these six points of operation

indicated in Figure 3-16. Table 3.3 compares key parameters at the various points.

Several important observations can be made from this comparison. First it is im-

portant to notice the qualitative differences in the nonlinear behavior at these points.

In particular the nonlinearity changes sign in going across the confocal instability

point, since for points A, B and C where L1 and L2 are less than f, the nonlinear

mode in the crystal is larger than the linear mode and for points A', B' and C' where

L 1 and L2 are greater than f, the nonlinear mode is smaller than the linear mode.

0.
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0* .. *** ...
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Figure 3-16: Operating points close to the confocal instability point where L = _- =_
1

Pt. L1/f L2 /f wt (cm) w,l (cm) b (cm) -Aw/w % 7y (1/W) 8 (1/W) 7y/
A 0.98 0.98 1.13e-2 1.32e-2 6.84 36.5 2.8e-7 1.3e-8 21.7
B 0.96 0.98 1.34e-2 1.46e-2 8.37 18.5 1.4e-7 1.le-8 13.5
C 0.98 0.96 9.49e-3 1.11e-2 4.80 35.8 2.7e-7 1.8e-8 15.0
A' 1.02 1.02 1.13e-2 7.0e-3 1.92 -61.6 -4.7e-7 4.6e-8 -10.84
B' 1.02 1.04 1.34e-2 1.17e-2 5.36 -24.3 -1.8e-7 1.6e-8 - 24.3
C' 1.04 1.02 5.03e-3 5.46e-3 1.37 -60.7 -4.7e-7 6.4e-8 -7.33

Table 3.3: Comparison of linear and nonlinear parameters
close to the confocal instability point in the simple lens

at different operating points
cavity(see Figure 3-16. wl,

wt are the linear and nonlinear mode waists in cm at the crystal high reflector. b is
the confocal parameter of the nonlinear mode in cm. Aw/w gives the percent change
in mode area. - is the differential change in modearea per unit power and 5 is the
SPM per unit power. The ratio 7/S is dimensionless. All calculations use a 5 cm focal
length lens, a 0.3 cm Ti:A120 3 crystal and a power of .5P, for the nonlinear mode.
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Figure 3-17: L1/f = .98, L2/f = .98. Low intensity (solid) and high intensity (dashed)
mode profiles corresponding to point A in Figure 3-16
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Figure 3-18: L1/f = .96, L2 /f = .98. Low intensity (solid) and high intensity (dashed)
mode profiles corresponding to point B in Figure 3-16
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Figure 3-19: L1/f = .98, L2 /f = .96. Linear (solid) and Nonlinear (dashed) mode
profiles corresponding to point C in Figure 3-16
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Figure 3-20: L1/f = 1.02, L2 /f = 1.02. Low intensity (solid) and high intensity
(dashed) mode profiles corresponding to point A' in Figure 3-16
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Figure 3-21: L1/f = 1.04, L2 /f = 1.02. Low intensity (solid) and high intensity
(dashed) mode profiles corresponding to point B' in Figure 3-16
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Figure 3-22: L1/f = 1.02, L2/f = 1.04. Low intensity (solid) and high intensity
(dashed) mode profiles corresponding to point C' in Figure 3-16
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It also appears that proximity to the instability boundary where L1 = f (with

L1 being the length of the arm containing the nonlinear gain medium), favors large

negative changes in modesize due to self-focussing. In a very simple picture (which

appears to be valid at the operating points that were investigated) one can think

qualitatively of self-focussing as just causing a shortening of the arm containing the

nonlinear medium. Using this as a guideline, one can move along the linear stability

map of the cavity (Figure 3-4) to predict the sign and nature of the changes in

resonator mode that will occur due to nonlinear self-focussing. It must be noted that

this model is oversimplified and a systematic study of its valididty has not been done.

However this model appears to be a useful qualitative guide to the effects of self-

focussing. Along the line of symmetry where L1 = L 2 the mode profile in the resonator

appears symmetric around the lens, as one would expect physically. If one is at point

A, self-focussing results in a shortening of the arm L1 , de-symmetrizing the mode

profile and causing the nonlinear mode to be more focussed in the longer L2 arm

which is the arm whose length is now closest to one focal length. The same reasoning

holds for point B except that one does not begin with a symmetric linear mode. The

nonlinearity just makes the mode profile more asymmetric causing a greater degree

of focussing in the arm whose length is closer to. a focal length ie. L2 . At point C,

one begins with an asymmetric mode, more focussed in the arm corresponding to L 1

since L1 is now the arm whose length is closest to one focal length. Self-focussing

"reduces" the length of L1 and therefore makes the mode profile more symmetric. At

all three points (A, B, C) the increase in modesize at the crystal due to self-focussing

precludes the use of the pump beam as an aperture.

The changes occuring at points A', B' and C' can be traced by analogous reasoning.

Operation at points A' or C', appears to produce the largest magnitude of saturable

action. At point A' the linear mode profile is symmetric around the intracavity lens

and the assymmetric nonlinear mode is characterized by a tighter focus in the crystal,

due to the self-focussing-induced approach towards the L1 = f border. Similarly at



point C', the asymmetric linear mode (more focussed in the arm corresponding to L1)

becomes even more asymmetric as a result of self-focussing. It appears that proximity

to the L1 = f border (where L1 is the arm containing the nonlinear medium) is

important in maximizing the saturable absorber action occuring in the crystal. This

issue is discussed further in Chapter 5 where operation of the compact KLM laser

at point 7 of Table 3.2 is discussed. Once again it is found both theoretically and

experimentally that proximity to the L1 = f border is a dominant force in producing

strong saturable absorber action in the gain crystal.

Analyses and comparisons such as those just presented were valuable in this thesis

for deciding on the appropriate geometry, operating point and laser parameters for

use in the compact KLM resonator to be described in Chapter 5. It must be stressed

that the numerical tool that has been provided should only be used as a preliminary

guideline for simple resonator configurations. Complex effects such as astigmatism,

thermal lensing, non uniform gain, and higher order modes are not included in this

model. These are all very real and important influences on the operation of a KLM

laser. Consequently the program provided is meant to be used as a starting point

for simple KLM resonator design. Once a given resonator has been implemented its

performance must be individually evaluated and appropriately optimized.



Chapter 4

Microdot mirror modelocking

4.1 Introduction

Passive modelocking with the use of intracavity, solid-state nonlinearities alone, be-

came a topic of active research following the re-emergence of solid-state laser gain

media in the late 1980s. Interest lay primarily in further enhancing the convenience

of a solid-state gain medium by finding a reliable modelocking technique that required

only bulk solid-state nonlinearities. Earl3 methods to passively modelock solid-state

lasers had included the use of organic dyes as saturable absorbers as well as some

preliminary attempts at the use of all-optical intracavity modulaters [14, 91, 79].

These techniques were limited by their inconvenience and weak nonlinear response

respectively. A major breakthrough in this field had been the invention of the soliton

laser [75]. The further realization that soliton-like action in the external cavity was not

necessary for pulse shortening [11], lead to the theory of Additive Pulse Modelocking

(APM) [43, 34] on which the next generation of coupled-cavity passively modelocked

solid-state lasers [30, 29, 64] was based. APM relies on the self-phase-modulation

(SPM) nonlinearity occuring in an external cavity, the SPM being generated in a

nonlinear fiber placed therein. Undoubtedly a powerful and versatile concept, APM

in solid-state lasers suffered from the drawback of complexity due to the need for



interferometric control in order to stabilize the length of the external cavity to a de-

gree of high accuracy. Further, the presence of fiber detracted from the convenience

of the system due to familiar experimental inconveniences of a fiber medium namely

its fragile nature and low coupling efficiency. Resonant passive modelocking using a

semiconductor anti-resonant Fabry-Perot saturable absorber (AR-FPSA) in a coupled

cavity scheme had emerged as a promising and relatively convenient technique [49].

Following these developments, the use of intracavity bulk nonlinearities which

would eliminate altogether the need for coupled cavity schemes was viewed as highly

desirable. Modelocking with intracavity nonlinear fiber mirrors and Kerr-rotation ef-

fects in fibers had been demonstrated [13, 41, 37] but once again, the inconvenience of

fiber was a fundamental limitation. Against this backdrop came the revolutionary dis-

covery of "self-modelocking" in the Ti:A120 3 medium by Spence et. al in 1991 [104].

Their discovery demonstrated that ultrashort pulses could be generated by using the

nonlinearities such as the Kerr effect arising in the gain medium itself [83, 51]! Prior

to this demonstration self-focusing had been considered a deleterious effect in high

power modelocked lasers and efforts to minimize its effects or to reduce it were usually

taken. Spence's startling discovery suggested that intracavity mode profile changes

due to self-focusing may in fact be exploited to create saturable absorber action in a

surprisingly simple manner.

Soon after this first demonstration, Negus et. al. [107] and others [83, 28] studied

self-modelocking by modeling the effect of self-focusing on the Gaussian mode in

the entire cavity. With the results of their model Negus et. al. chose the optimal

intracavity position to place an aperture, that being the position where maximal

amplitude difference between low power (linear) and high power (nonlinear) resonator

modes occurred. With this approach they significantly optimized and controlled the

process producing sub 100 fs pulses with almost a Watt of power. They termed this

technique Kerr Lens Modelocking (KLM) and their research formed the basis for a

robust sub-100 femtosecond laser product namely the Coherent MIRA 900 laser.



Concurrent with these developments and as part of this thesis, efforts to develop

alternative intracavity modelocking techniques were also underway. The use of Kerr-

induced polarization rotation for passive modelocking was demonstrated (14, 27] in our

laboratory as was the technique of microdot mirror modelocking [26, 87] which forms

the subject of this chapter. Microdot mirror modelocking was first demonstrated in a

laser-pumped, medium power Ti:A120 3 system and subsequently extended to a lamp-

pumped, high power Nd:YLF system. This chapter describes these experiments and

discusses the potential of the microdot mirror modelocking technique. Section 4.2

describes the concepts of microdot mirror modelocking and its theoretical analysis as

developed by Huang et. al. [40]. The fabrication of the microdot mirror structures is

also detailed. Section 4.3 describes the application of microdot mirror modelocking

to modelock a Ti:A120 3 laser. Section 4.4 describes the extension of the technique

to a lamp-pumped Nd:YLF medium. Section 4.5 concludes with a discussion of the

advantages, limitations and future potential for the microdot mirror modelocking

technique.

4.2 The microdot mirror modelocker

The microdot mirror modelocker is pictured schematically in Figure 4-1. The idea

of the microdot mirror device is credited to David Huang, following his investigation

of the description of self-focusing as a nonlinear-scaling of the q-parameter. It consists

of an anti-reflection coated lens, that serves to focus the intracavity laser beam into

a glass substrate. The substrate material and thickness determine the nonlinearity

introduced and the choice of these parameters will be discussed shortly. The front

surface of the mirror is antireflection coated in order to minimize intracavity losses.

A broad-band, high damage-threshold coating is used. In addition the substrate is

also wedged at 1 degree to eliminate spurious reflections which can interfere with the

modelocking process (33].
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Figure 4-1: Schematic of the microdot mirror modelocker. The beam is focused by
the input lens L into an antireflection-coated glass substrate that has high-reflectivity
microdots on the rear surface. Nonlinear self-focusing in the glass results in a smaller
focal spot at the patterned rear surface. The mirror pattern facilitates alignment and
adjustment of the linear and nonlinear mirror reflectivity

The rear surface of the modelocker is patterned with a high-reflector pattern.

Approximately one half of the mirror is uniformly high reflector coated and the other

half is patterned into a series of microdots of decreasing size from column to column.

Each row of microdots is identical in pattern to the others.

microdot mirrors were patterned using standard photolithography and wet-etching

techniques. The substrates were ordered with intially uniform anti-reflective and high-

reflective coatings on the two faces. The substrates were then solvent cleaned in a

standard fashion using acetone followed by methanol followed by nitrogen. KTI 820-

20 photo-resist was then painted on the anti-refelective surface, followed by baking

for 25 minutes at 90 degrees. To avoid damage to the exposed high reflective coating

the temperature was ramped gradually - taking about 1 hr to reach the requisite

temperature. KTI 820-20 photo-resist was then spun on the high-reflective coating

spinning at 2000 RPM for about 30 secs. The resist was baked again at 90 degrees

for 25 minutes. The resist was then exposed through a positive chrome mask to

ultraviolet light of 365 nm at an intensity of 8 mw/cm 2 for a period of seven seconds.

AR

Lens



The exposed pattern was developed using KTI 934 1:1 solution for 60 seconds and

baked at 110 degrees for 10 minutes. Finally a hydroflouric acid etch in the ratio

40 mls of 10:1 HF to 160 mls of deionized water was used. The etching process was

monitored using a depth profile meter (DEKTAK) as well as microscopic observation.

From the flaking of the dielectric layers it was clear when the glass substrate had been

reached. An initial profile (before any processing) was also run in order to estimate

the height of the high reflective coating layer. This initial height varied depending

on the characteristics (primarily the wavelength) of the coating, and ranged from 2.5

to 5.5 microns for different mirrors. When the etch was complete the photoresist was

removed by soaking in acetone and then rinsing thoroughly in methanol. Finally a

nitrogen gun was used to dry the sample.

The above technique was adequate for the fabrication of microdots in the 400

micron to 50 micron diameter range. Though the procedure was simple and efficient,

many improvements can be made. While it was used due to the highly resistant nature

of standard dielectric coatings, HF is a dangerous and strong etchant and it would

be desirable to avoid its use. Further, process reproducibility and controllability, as

well as the smoothness of the pattern are not very good with wet etching processes

in general. Reactive ion etching would certainly result in a cleaner definition of dots.

It would also allow smaller dots to be fabricated; however, some experimentation

would be required to identify appropriate gaseous etchants for the process. The most

optimal process would perhaps be to have the high reflective coating deposited in a

pattern onto the mirror. This avenue was not pursued in this work since a deposition

facility was not available for this work.

The theory of the microdot mirror modelocker was developed by Huang et. al.

in conjunction with the description of self-focussing using nonlinear scaling of the q

parameter which has been described in detail in the previous chapter. Using this for-

malism, the linear and nonlinear characteristics on a single pass through the microdot

mirror were calculated in order to understand its behaviour. In these calculations a
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Figure 4-2: Linear reflectivity at low powers, R(O), of the microdot mirror plotted
versus dot-diameter (d), normalized to the beam diameter (2w). The linear waist size
is assumed to be 50 im.

typical linear spot size of 50 ,im is assumed at the high reflector face of the microdot

mirror. The q parameter of the linear beam at the mirror entrance is then nonlin-

early scaled, the beam is propagated through the mirror and scaled again at the high

reflector in order to yield the nonlinear waist size. Aperturing functions are used to

calculate the transmission (or reflection) of either the linear or nonlinear Gaussian

beams through the high-reflecting dots.

Figure 4-2 and 4-3 plot the linear and nonlinear characteristics of the mirror as a

function of dot diameter, d, normalized to the beam diameter, 2w. These curves are

calculated for a linear spot size of 50 tim, a peak power of 100 kW and a microdot

mirror thickness of 1.25 cm, assuming a linear beam waist of 50 /m. These values

correspond approximately to the characteristics of the experimental demonstration to

be described in the next section. The graphs are readily interpretable physically. The

linear reflectivity, denoted by R(0), tends to 1 when the normalized dot diameter is

large. It falls off exponentially for decreasing dot diameters, reflecting the aperturing

of a Gaussian beam by a circular aperture. That is, for a dot of diameter d, the
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Figure 4-3: Microdot mirror nonlinear reflectivity (ie. change in retiectivity) at a
power of 100 kW. The horizontal axis plots the dot-diameter, d, normalized to the
beam diameter, 2w. The linear waist size is assumed to be 50 /m, the peak power is
100 kW, and the microdot mirror is 1.25 cm thick.

overlap with a Gaussian beam is given by,

2 2 d/2 -2r2
R(0) = / eu-rdrdb (4.1)

7rw2 0 0
- d

2

= 1 - ei (4.2)

The nonlinear reflectivity curve also has a characteristic shape. For very small

or very large values of the normalized dot diameter the nonlinear reflectivity is zero.

This is because in these limits, both linear and nonlinear spots at the microdot are

either completly reflected or completely transmitted. For the parameters used, the

maximum nonlinearity occurs when the normalized dot diameter is about 0.62. The

maximum nonlinearity achievable in practice, is restricted by the linear reflectivity.

Typically in a Ti:A120 3 laser, for example, the linear reflectivity of the end mirror

must be at least 85% in order for it to lase with sufficient intracavity power.

As expected, the nonlinearity is a function of the thickness of the microdot mirror

and it saturates past a certain thickness. To demonstrate this, the nonlinearity for a
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Figure 4-4: Microdot mirror nonlinear reflectivity (ie. change in reflectivity) at 100
kW plotted versus microdot mirror thickness, t, normalized to the nob, where no is
the linear refractive index and b the confocal parameter. The dot diameter is fixed
at 85 pIm and the linear waist size at 50 am. Note the saturation of the nonlinearity
for thicknesses in excess of 2nob.

fixed dot diameter of 85 /m is plotted in Figure 4-4 versus the ratio of the microdot

mirror thickness to the quantity nob where no is the refractive index of the mirror

substrate and b the confocal parameter. The saturation behavior for I > 2nob is

clear.

4.3 Microdot mirror modelocked Ti:A120 3 laser

The microdot mirror was first used to modelock a Ti:sapphire laser in the config-

uration shown in Figure 4-5. This work was done in 1991 in collaboration with Drs.

Giuseppe Gabetta and Joe Jacobson. The gain medium was a 2.0 cm long Brewster-

cut Ti:A120 3 rod with an absorption coefficient of - 1 cm - 1 at the pump wavelengths.

The 2.1 m long laser cavity used a four-mirror folded design with the focusing mirrors

having a 10 cm radius of curvature. The laser was pumped by all lines of a cw argon

laser focussed into the microdot mirror by a 10.0 cm focal-length lens. Wavelength

tuning and bandwidth control were provided by a single plate birefringent filter. In-
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Figure 4-5: Schematic diagram of the microdot mirror modelocked Ti:A12 0 3 laser.
Mirrors M2 and M3 are curved while mirror M1 and the microdot mirror function as
end mirrors. The output is taken from beam splitter BS. A single-plate birefringent
filter is used for wavelength tuning. P1 and P2 are intracavity prisms for GVD
compensation.

tracavity group-velocity dispersion compensation was achieved using a pair of SF10

Brewster-angled prisms separated by a distance of 80 cm. The maximum negative

dispersion achievable with this pair of prisms was -12000 fs2 . The beam splitter func-

tioned as an output coupler providing a total coupling of 5 % in two beams. The laser

operated with a cw slope efficiency of 12 % and a pump threshold of 4.0 W. About

800 mW of output power was obtained at 10 W of pump power.

The microdot mirror was mounted on an xyz translator so that the mirror could be

aligned to lase on any dot by transverse translation. The cavity was first aligned and

optimized for CW operation on the uniform high-reflecting half of the mirror. The

laser was then operated on progressively smaller dots until modelocking was achieved.

For the cavity configuration and operating parameters described above, mode

locking was achieved using dots in the range of 77 to 85 /tm. The laser was pumped at

10 W of power and the output power of 410 mW corresponded to an intracavity power

of about 8 W. The intracavity prisms were adjusted to minimize the output pulse

duration. The measured pulse duration was 190 fs (assuming a sech 2 pulse shape),
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corresponding to 1.25 times the bandwidth limit. The modelocking was not self-

starting but it could be initiated by inducing a sufficiently short intensity fluctuation

in the laser, for instance by tapping an end mirror. Once modelocking is initiated the

laser operated stably for an indefinite period of time.

4.4 Microdot mirror modelocked Nd:YLF laser

Modelocking techniques for lamp-pumped laser geometries are of interest in order to

obtain higher power ultrashort pulses. Lamp pumped, actively modelocked Nd:YAG

and Nd:YLF lasers are common commercial products. Acousto-optically modelocked

Nd:YLF systems produce pulses only in the 50 ps regime which is quite far from

the bandwidth limit of the gain medium (- 1 ps) . However, passive modelocking

techniques do not seem to have found widespread use in lamp pumped systems.

Additive pulse modelocking (APM) has been applied to a lamp-pumped Nd:YLF

system to generate 3.7 ps pulses with up to 7 W of average power [62]. Prior to this

thesis KLM had only been used in laser-pumped, solid state systems. Due to the

uniform pumping of the gain in lamp pumped systems, the possibility of exploiting

mode changes in the gain for KLM, using the pump beam soft aperture, is excluded.

Consequently KLM requires the addition of both a nonlinear medium at an intracavity

focus as well as an appropriately positioned intracavity aperture. Regardless of the

location of the nonlinearity, positioning of the intracavity aperture in KLM lasers is

highly dependent on laser cavity design, alignment and pump-geometry and it requires

careful modeling of the cavity. Due to all these complexities, active modelocking has

continued to be the predominant approach for short pulse generation in lamp-pumped

lasers.

Since it is quite independent of laser pump geometry, microdot mirror modelocking

is a strong candidate for the passive modelocking of lamp-pumped solid-state lasers.

It also has the advantage of modularity in the sense that the positioning of the



aperture is automatic and the entire device can be placed at the end of a wide variety

of resonators to yield the desired saturable absorber effect. Finally, the broadband,

non-resonant nature and sturdy nature of the device makes it quite flexible. For

these reasons it was decided in this thesis to extend the technique of microdot mirror

modelocking to an arc-lamp pumped Nd:YLF laser with the potential for high-power

operation. This work was performed with initial assistance from Dr. Joe Izatt and

in close collaboration with Dr. Artur Gouveia-Neto from the Department of Physics,

Universidade Federal de Alagoas, Maceio, Brazil.

Initial experiments on the system indicated that stable short pulse generation

did not result from the incorporation of a microdot mirror modelocking alone. The-

oretical predictions [34] indicated that a dispersion compensation mechanism may

be required for the production of stable, chirp-free pulses. Dispersion compensation

would serve to cancel the substantial positive dispersion arising from the laser rod,

as well as to provide operation in the soliton regime. Different methods of disper-

sion compensation for the system were evaluated. The relativly large magnitude of

positive dispersion to be compensated, as well as practical reasons pertaining to a

convenient cavity layout lead to the choice of a Gires-Tournois interferometer (GTI)

as the preferred compensation mechanism. In the following discussion the operation

and design of the GTI are first discussed, before presentation of the experimental

results and observations from the system.

4.4.1 Dispersion compensation and the Gires Tournois In-

terferometer

The positive dispersion in the Nd:YLF rod was estimated using a Sellmeir [4] equation

for the refractive index of the Nd:YLF medium. This equation is of the form

A2 A2
n2 (A) = 1.38757 + .70 75 7  + .18849 (4.3)A - .00931 A - 50.99741
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Figure 4-6: Schematic of a Gires Tournois Interferometer. R is the reflectivity of the
partially reflective front face, RH is the reflectivity of the highly reflective rear face
and L is the spacing between the two layers.

From Chapter 2 we have that the total dispersion accumulated in passing through an

optical system is given by
d2 b A3 d2p
dw2  27rC2 dA2

Since for a rod of length L, the optical path length, P(A), , is simply

P(A) = n(A)L (4.5)

we get that
d2q A3  d2n
dw = -L (4.6)dw2 2rC2 'dA 2

Using 4.3 and the experimental rod length of L = 10.4cm, it was estimated that the

total positive material dispersion arising from propagation in the rod is + 1820 fs2 .

A Gires Tournois interferometer (GTI) consists of two mirrors aligned parallel to

each other, with an air space (or other spacer layer) in between them. A schematic

of a generic GTI is shown in Figure 4-6. R is the reflectivity of the partially reflective

front face, RH is the reflectivity of the highly reflective rear face and L is the spacing

between the two layers. Ei, is the incoming field, Eot the outgoing field, and Ef

and E, the fields in the two directions as indicated within the GTI. The complex

reflectivity of the GTI has a frequency dependent phase and consequently when a short



pulse (composed of several frequencies) interacts with a GTI the reflected spectrum

exhibits a frequency dependent phase shift. As described in Chapter 2, this introduces

the possibility of group velocity and higher order dispersion of the pulse spectrum.

In order to analyze this problem we need to to derive an expression for the fre-

quency dependence of the complex reflectivity, F = Irl e(") of a GTI. r is defined

as
Einr= - (4.7)
Eout

Consider the input plane wave,

E =, = Eoej(wt-kz) (4.8)

Recalling that the scattering matrix for a partially reflective layer [36] is

J v l -R -(4.9)

and assuming that for the highy reflective rear surface RH = --ejo, we have the

following set of equations:

Ef = j/1 - REn + /ReieJ(-'wto)Ef (4.10)

E, = -Efej( -Owto) (4.11)

Eo,,t = -V/RE• + jV/1 -RE,. (4.12)

where to = 2Ln(w)/c is the round trip time within in the GTI. Eliminating E, and

Ef from the above equations we get that the complex reflectivity is

r = Eu (4.13)

1 - v i(-o)(4.14)1 - v'R~ej(--wto)



Taking the magnitude and phase of the above expression we have that

rl = 1 (4.15)

and the frequency dependent phase o(w), of 1(w) is

= ta (1 - R)sin(q - wto)
( = -  + (1 + R)cos(q - wto)

From these expressions it is clear that while the magnitude of the reflectivity remains

constant independent of frequency, its phase ik(w) has a complex frequency depen-

dence which is periodic in w with a period defined by the round trip time within the

GTI. dý which describes the GVD in the structure is also finite and periodic. The

maximum available dispersion from the GTI increases as the square of the mirror

spacing, L, and the period of the phase function, i.e. the free-spectral-range (FSR),

is inversely proportional to the mirror spacing. The optimal design for the GTI must

ensure that sufficient second-order dispersion is attainable and that the FSR is broad

compared to the pulse spectrum so that GVD is relatively constant over the pulse

bandwidth.

The GTI designed and used in the microdot mirror modelocked lamp-pumped

Nd:YLF system was fabricated by collaborators at Coherent Inc., CA. It was a vari-

able air-space structure with a nominal spacing of 350 /m, an uncoated front surface

of reflectivity 4 % and a 99.9 % reflective back surface. Using these parameters and

Equation 4.16 the GVD of the device is plotted in units of fs2 as a function of wave-

length in Figure 4-7 . The maximum dispersion is approximately + or - 2.5 x 106 fs2

and the FSR is approximately 1 nm.The mirror spacing, and thus the dispersion, can

be varied using a piezoelectric transducer (PZT) to change the separation between

the two mirrors. Varying the GTI separation by half a wavelength, i.e. A/2, sweeps

over an entire period in the dispersion function of the GTI.

Finally, note that if a partial rather than total reflector is used as the GTI rear
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mirror, the characteristics of the complex reflectivity are slightly modified and we

have:

Ir| = R + RH- 2Rcos (O - wto)
1 + RRH- 2/JI~cos( - wto) (4.17)

and

(4.18)(w) =•tn - 1 tv• - R)sin(o - wto)

VIRV- Mi - vi/ + \R(1 + R)cos(o - wto)

4.4.2 Experimental results

The configuration for the microdot mirror modelocked lamp-pumped Nd:YLF

system is shown in Figure 4-8. The system is based on a Quantronix 4217 lamp-

pumped Nd:YLF laser, modified to incorporate the microdot mirror modelocker and

the GTI. The gain medium is a 10.4 cm long by 4 mm diameter, arc-lamp pumped

Nd:YLF rod. The above-described GTI is placed at one end of the cavity and the

microdot mirror modelocker at the other. The cavity length was approximately 176
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Figure 4-8: Schematic of lamp-pumped Nd:YLF laser cavity with a microdot mirror
and a GTI.

cm. An acousto-optic modulator (AOM) was placed near the GTI end of the laser

in order to actively modelock the laser and start the passive modelocking process.

An aperture was placed between the AOM and the laser rod in order to discriminate

against higher order spatial modes. A 45 cm spherical lens was placed close to the

gain rod on the microdot mirror side of the cavity. Following predictions from cavity

simulations to be described shortly, this lens was tilted off axis by approximately 16

degrees in order to compensate for astigmatism originating in the Nd:YLF rod. A 3.1

cm focal length lens was used to focus the laser mode into the microdot mirror. The

output coupler is a 0.375 inch thick substrate that is anti-reflection coated on one

side and coated on the other to provide a total output of about 2.3% in two beams.

The microdot mirror was composed of a 0.5 inch thick SF56 glass substrate. SF56

was chosen because its non-linear index (n 2 = 9.082 x 10- 13 esu) is approximately

9 times that of BK7 glass. The substrate is anti-reflection (AR) coated on one side

and high-reflection (HR) coated on the other side. The microdots in each row range

in diameter from 200 microns to 50 microns, with the dots decreasing in area by 3%

per column.

The laser was initially aligned for optimal active-modelocked performance lasing

on the uniform high reflectivity portion of the microdot mirror. Pulse durations

of 100 ps were achieved using active modelocking. The microdot mirror was then
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Figure 4-9: Typical autocorrelation from microdot mirror modelocked Nd:YLF sys-
tem. The pulsewidth is 2.3 ps assuming a sech 2 shape

translated, transverse to the beam, so that lasing occured on successively smaller

high reflecting dots. The GTI spacing was ramped over an entire FSR at each dot

while the pulse-duration was monitored using background-free autocorrelation. When

the saturable-absorber action introduced by the microdot mirror and the dispersion

compensation from the GTI were sufficient, a dramatic reduction in pulse duration

occurred. Pulse shortening was observed on dots with diameters ranging from 132

microns to 121 microns.

Figure 4-9 shows the autocorrelation of a typical pulse. The pulse duration is 2.25

ps assuming a sech 2 pulse shape. The spectrum of the pulse shown in Figure 4-10 fits

reasonably with a sech 2 shape and has a FWHM of 0.53 nm corresponding to 1.20

times transform limit. The laser is not self-starting and microdot mirror modelocked

was initiated using an AOM which provides a loss modulation of - 5%. Similar

approaches have been used to initiate KLM in Ti:A1203 lasers. Once the microdot

mirror modelocking had been started, the RF power to the modelocker could be

turned off and the passive modelocking process continued unperturbed for over one

hour. The total output power in two output beams was about 800 mW at 82 MHz
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Figure 4-10: Spectrum of pulses from the microdot mirror modelocked Nd:YLF sys-
tem. The FWHM is .53 nm

using a pump level of 36 A, corresponding to an arc-lamp power of 4.7 kW.

The microdot mirrror modelocked Nd:YLF cavity is quite complex due to strong

astigmatic and thermal effects arising from the rod. Consequently the earlier code

developed in Chapter 3 for the analysis of simple cavities, is not sufficient to model this

cavity. A sophisticated iterative program developed by our collaborators at Coherent

Inc, was used to calculate linear and nonlinear resonator modes in this cavity. This

approach has been discussed already in Chapter 3 and was first proposed by Salin et.

al [93]. It begins by solving the linear resonator mode using standard ABCD matrix

techniques and using this as a first input for calculating the effects of self-focusing.

Nonlinear self-focusing is accounted for by slicing up the nonlinear medium, in this

case the microdot mirror, and using a parabolic approximation for the nonlinear index

within each slice. Simulations were run in both XZ and YZ planes to account for the

astigmatism of the rod. In addition the thermal lensing in the rod was also modelled.

The calculated linear transverse-mode radius is about 900 /m in the laser rod and

about 40 ,m at the microdot mirror. Figure 4-11 displays the simulated differential

change in laser mode size at the highly reflecting microdot as a function of intracavity

h
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Figure 4-11: Differential change in mode size in microns at the rear surface of the
microdot mirrror, plotted as a function of peak power. The estimated intracavity
peak power was approximately 90 kW.

peak power. The estimated peak power in the laser was about 90 kW, which cor-

responds to a high-intensity mode area decrease of about 24 %. At this power, the

saturable-absorber action (or change in reflectivity per unit change in peak power) is

estimated to be about 0.28 % / kW. Mode-size changes also occured at the additional

transverse aperture placed in the cavity for spatial-mode control. However, since the

modelocking process was observed to be insensitive to the longitudinal position of

this aperture it is not believed to have played an important role in providing KLM

saturable absorber action.

In the case of the microdot mirror modelocking of the Nd:YLF system, the simula-

tion of the self-consistent cavity linear and nonlinear modes, provides the opportunity

for a comparison with the nonlinearity predicted on a single-pass calculation through

the microdot mirror. This technique was discussed earlier in this chapter (see Fig-

ure 4-3 and used to design the microdot mirrors used in the above experiments. Using

the linear spot size at the microdot mirror as predicted by the self-consistent cavity

mode solution, the single pass change in beam size due to self-focusing in the mi-
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Figure 4-12: Comparison of single-pass and self-consistent approaches for calculating
the effects of self-focusing. Differential change in mode size in microns, in the XZ
plane, at the rear surface of the microdot mirrror, plotted as a function of peak power.
The dots correspond to a single-pass calculation and the squares to the self-consistent
cavity calculation.

crodot mirror was calcualated. Figure 4-12 plots the differential change in mode size

predicted by this single-pass calculation as well as that predicted by the entire cavity

simulation (ie Figure 4-11). The results from the two calculations are clearly very

different. It is very important to note this difference and to keep it in mind when

designing future experiments based on the microdot mirror modelocker. As far as

possible the entire cavity linear and nonlinear modes should be simulated in order

to predict nonlinear cavity behavior. Contrary to preliminary expectations the mi-

crodot mirror is not completely modular in terms of the nonlinear mode changes that

it induces and therefore cannot as such be treated independently. This observation is

confirmed further in Chapter 5 where the discrepancy between single-pass and self-

consistent approaches is discussed again in the context of the compact KLM laser

cavity configuration.
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4.5 Conclusion

The above experiments seek to demonstrate that microdot mirror modelocking is

an important alternative for the modelocking of solid-state lasers. The technique

inherently possesses several advantageous features, in particular its modularity, non-

resonant nature, compactness and relative independence from pumping geometry.

However the most important feature of this technique is perhaps its versatility. The

two dissimilar systems that have been modelocked using this technique bear testimony

to this fact. To conclude this chapter a brief look at recent developments and a

comparison of microdot mirror modelocking to Kerr Lens Modelocking will serve to

clarify the future potential of the microdot mirror modelocking technique and to place

the subject in perspective.

The above-described microdot mirror modelocked femtosecond Ti:A120 3 system is

a laser pumped system using prism pairs for dispersion compensation. While microdot

mirror modelocking was demonstrated almost simultaneously with KLM (using a hard

intracavity aperture or the soft pump beam aperture), in subsequent years KLM has

clearly become the preferred method for modelocking of Ti:A120 3 and other solid-state

media capable of femtosecond pulse generation. In comparison with the microdot

mirror modelocking technique, KLM (especially with the soft pump-beam aperture)

has some distinct advantages. KLM, especially using the pump-beam aperture, is

remarkably simple and uses a minimal number of intracavity components. However,

it may be noted that the initial search for the modelocked operating point is more

controllable with microdot mirror modelocking than with KLM using a soft aperture.

The need to fabricate the microdot mirror, simple though it is, may also have served

as a deterrant to the spread of microdot mirror modelocking. The most decisive

advantage of KLM over microdot mirror modelocking has been the inherently smaller

amount of higher order intracavity dispersion that is present in a KLM design. As

has been described earlier, recent advances in the production of sub 50 fs pulses from

Ti:A120 3 have relied critically on the minimization of intracavity third and higher
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order dispersion. In this context microdot mirror modelocking, is at a significant

disadvantage due to the relatively large amount of glass it introduces into the laser

in the form of the microdot mirror substrate. While it should be noted that with

optimizations of laser design, pulse widths of 50 fs ought to be achievable from a

microdot mirror modelocked Ti:A120 3 system, pulses shorter than this will be hard to

achieve with this technique. Cancellation of third order dispersion (using intracavity

GTIs [46]), rather than its minimization could enable microdot mirror modelocking to

compete with KLM in pulse width; however the relative complexity of such a system

makes it somewhat unattractive.

In contrast to the Ti:A120 3 medium, the Nd:YLF medium is characterized by a

much narrower bandwidth and consequently produces much longer pulses. The other

important difference lies in the lamp-pumped nature of the Nd:YLF system discussed

above. In this case, KLM using nonlinearity in the gain medium is not an option

because the intracavity mode is not tightly focussed in the gain medium. Conse-

quently microdot mirror modelocking immediately becomes attractive. Further the

long pulsed nature of the system reduces the importance of higher order dispersion

introduced by the microdot mirror modelocking. However, as described above, it is

essential to compensate for second order dispersion arising from the substantial length

of the rod and the GTI has been shown to be a compact and effective way to achieve

this. As mentioned earlier, active modelocking in lamp pumped Nd:YLF systems

has been unable to achieve sub 50 ps pulse generation. Other passive modelocking

techniques primarily the use of an AR-FPSA are feasible; however the level of intra-

cavity power that the AR-FPSA can safely be exposed to remains unclear. We can

conclude therefore that with the performance demonstrated in this thesis, microdot

mirror modelocking can be considered a serious alternative for generating transform

limited pulses from high-power, lamp-pumped systems.
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Chapter 5

Compact, high repetition rate

femtosecond Kerr lens

modelocked lasers

5.1 Introduction

Overall system compactness and practicality are crucial factors which encourage both

laboratory and commercial use of femtosecond lasers. While the emergence of the

Ti:A120 3 Kerr Lens Modelocked (KLM) laser consitutes a significant step towards

a practical femtosecond source, these systems are still too cumbersome to be con-

sidered truly compact or practical. For this reason widespread research into the

development of diode pumpable sources and the extension of existing modelocking

technology to these systems is underway [61, 19, 68]. The elimination of expensive and

space-consuming laser pumping will consitute a major step forward in popularizing

femtosecond technology.

Concurrent with research into diode-pumping technologies, it is imperative to

critically re-examine the design of the femtosecond oscillator itself. This is because

it will take both a diode pump source and a compact, simplified resonator design to
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create a truly practical femtosecond system. It is this fact that has motivated the

design and implementation of a compact, high repetition rate femtosecond KLM laser

geometry which forms the subject of this chapter.

The compact, femtosecond KLM laser developed in this chapter could find po-

tential applications in instrumentation, imaging and high-speed communication tech-

nology. Further, the heretofore unachievable repetition rates we demonstrate will be

useful for new kinds of fundamental experiments. An exemplary use is for experi-

ments concerning the squeezing of light, whereby the random phase noise associated

with light from a coherent source, for example a laser, is minimized through the use

of self-phase modulation in a fiber. High repetition rates help in this process to avoid

noise introduced by scattering off acoustic modes in the fiber. The cutoff frequency

for this so-called Guided Acoustic Wave Brillouin Scattering (GAWBS) is about 1

GHz. Short-pulse sources at such repetition rates improve the achievable level of

squeezing considerably, as recently demonstrated with a GHz Nd:YLF source [9].

The organization of this chapter is as follows. Section 5.2 reviews existing KLM

laser geometries and identifies the need for dispersion compensation as a crucial factor

in limiting system compactness. Section 5.3 discusses existing methods of compensat-

ing group velocity dispersion. Section 5.4 presents concepts required to analyze the

use of prismatic elements for dispersion compensation. In Section 5.5 the implemented

laser design is explained and analyzed. Section 5.6 presents the experimental results

obtained utilizing this laser geometry. Section 5.7 discusses possible improvements

to the technique. Section 5.8 suggests and discusses possible alternative dispersive

resonator geometries. Section 5.9 concludes the chapter.

5.2 Overview of previous work

The laser geometry used in the first demonstration of self-modelocking in Ti : A120 3

achieved in 1991 by Spence et. al. [104] is shown in Figure 5-1. It consisted of a
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Argon Pump Beam

Ti:A12 03

Figure 5-1: Schematic of the cavity configuration used in the self-modelocked laser
demonstrated by Spence et. al. in [104]. This laser produced 60 fs pulses at a
repetition rate of about 100 MHz.

Brewster angled gain medium, placed at the focus of a pair of curved mirrors. The

pump beam is focussed into the laser crystal through one of the curved mirrors which

is coated to be transmissive at the pump wavelengths. An SF14 prism pair separated

by 35 cm is included in one arm of the laser for dispersion compensation and the

laser produced 60 fs pulses at a repetition rate of approximately 100 MHz. The same

cavity could also produce 2 ps pulses in the absence of dispersion compensation.

This so-called Z cavity appears to have become the model for the design of sub-

sequent femtosecond KLM laser geometries. A close variant, the folded X cavity

geometry shown in Figure 5-2 has also been popular. Even the most advanced, state-

of-the-art, demonstrations of short pulse generation in Ti : A120 3, producing pulses

in the sub 10 fs regime [3, 5, 105], use geometries very similar to the Z cavity of Fig-

ure 5-1 or the folded X cavity of Figure 5-2. Ring geometries have also been proposed

and demonstrated in a Ti:A12 0 3 laser [113, 81]; however these ideas have not found

widespread use.

A four prism sequence has been substituted for the two prism pair shown in
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Argon Pump Beam

Figure 5-2: Popular X folded cavity layout for a Kerr-lens-modelocked Ti:Sapphire
laser.

Figures 5-1 or 5-2 in some demonstrations [88]. This technique has the advantage that

the laser beam emerges spatially undispersed at both ends of the laser cavity. Prism

arrangements which provided greater dispersion for the same interprism spacing have

also been conceived [85]. However, the goal here was not compactness but rather the

convenient use of the low dispersive fused silica glass as prism material. Consequently,

despite the use of a novel prism arrangement, the basic cavity geometry employed

remained a folded X or Z cavity.

Demonstrations of KLM in other materials for example Cr:Forsterite [98], Cr:LiCAlF 6

[61], Cr:LiSrA1F 6 [19] and Cr4+:YAG [99], have also employed very similar folded X or

Z geometries, notwithstanding the different properties of these materials, in particular

the fact that some of them can be diode-pumped.

Clearly then these geometries were believed to be optimal, or at least satisfactory,

given the principal constraints on femtosecond KLM laser design that were assumed

and are listed below.

1. The gain medium must be at an intracavity focus in order to ensure a tightly

focussed infrared mode in the crystal for sufficient extraction of energy from
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the pump. A two mirror converging fold has been historically popular from

dye-lasers [117] and consequently became the natural choice.

2. An intracavity prism sequence separated typically by 30 to 50 cm must be in-

cluded for dispersion compensation. To date, KLM in broad bandwidth lasers

has achieved chirp-free and stable pulse generation exclusively in the negative

dispersion regime [34] where the soliton-like effects arising from the interplay be-

tween self-phase-modulation and negative group-velocity-dispersion constitute

the dominant pulse-shaping mechanism. The prism pair is a simple, low-loss

and cost effective way of introducing negative dispersion. Its operation has

also been understood in the context of femtosecond pulse generation from dye-

lasers [17, 23]. These factors have lead to its widespread use in femtosecond

KLM lasers

However, the prism pair clearly limits the laser geometry from several points of

view. Simplicity of the cavity geometry, compactness, repetition rate and ease of

alignment are all compromised as a result of the prisms. Not surprisingly, a closer

examination of the literature reveals that longer pulsed systems such as Nd:YAG [63]

and Nd:YLF [68] which did not include dispersion compensation mechanisms have

been successfully Kerr Lens modelocked with significantly different laser geometries.

Among solid-state, short-pulsed lasers modelocked by techniques other than KLM

one also finds evidence for a greater variety of geometries, including those that allow

compact and high-repetition rate laser design. However once again the demonstra-

tions are restricted to narrow-band media and the consequent lack of a dispersion

compensation mechanism. Nd:YAG and Nd:YLF lasers have been modelocked at a

repetition rates of 1 GHz and 500 MHz respectively, to produce sub 10 ps pulses

using a high frequency acousto-optic-modelocking (AOM) techniques [118, 50]. FM

modelocking has been employed to achieve 13 ps pulses at 5.4 GHz, in laser-pumped

Nd:YLF system [97]. An Nd:YLF laser produced 10 ps pulses at 456 MHz when

modelocked using an external coupled-cavity. It may be noted here that while the
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repetition rate of these actively modelocked systems is eventually limited by the

speed of the AOM involved, passive modelocking schemes, relying on the very fast

Kerr nonlinearity, do not face a similar barrier.

In summary the evidence from past work pointed to the fact that a successful

compact geometry for KLM would hinge on a compact and preferably simple way to

introduce negative dispersion into a laser geometry.

5.3 Dispersion compensation

Several methods for the generation of negative group velocity dispersion have been

suggested. Grating-pairs were suggested early on and have the advantage of being

able to provide a relatively large amount of negative dispersion, but are not ideal for

intracavity use due to their lossy nature [115]. Prism pairs were then introduced [23]

and now constitute the most common dispersion compensation mechanism in fem-

tosecond KLM lasers. The use of prism pairs for dispersion compensation is a legacy

from the generation of dye lasers [22]. In addition to low insertion loss, they have the

useful feature that the dispersion is easily tunable through the zero value. They have

also been used in conjunction with gratings to externally compress dye laser pulses

to generate the shortest light pulse which measured six femtoseconds [21].

Concurrent with these developments, the use of prisms for negative dispersion was

analyzed theoretically [31, 21, 23], and simplified expressions to estimate the amount

of negative dispersion from a given prism pair were developed. These details will

be reviewed in the next section. Subsequently in recent years, when higher order

dispersion from prisms has become an important parameter in minimizing the pulse

durations attainable directly from solid-state lasers, more complicated ray-tracing

analysis techniques for dispersion calculation have been developed [6].

Gires-Tournois Interfermeters (GTI) have also been used for dispersion compen-

sation. The phase of light reflected a GTI varies periodically with frequency and for
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appropriate parameters, the device can provide negative group velocity dispersion

over a limited bandwidth. A GTI based laser [47] has been demonstrated to produce

transform-limited pulses from 100 ps to 40 fs pulses at repetition rates of 82 MHz.

GTIs have also been used to compensate for higher-order dispersion in Ti:A120 3 lasers

in order to produce very short pulses [46]. However, GTIs are expensive and delicate

devices, which are not entirely suitable for use in very short pulse lasers. The amount

of dispersion in a GTI varies as the square of the inter-mirror spacing; however the

bandwidth varies as the inverse of this quantity. Consequently to design and build a

GTI which provides sufficient dispersion compensation over a very wide bandwidth

is not a trivial task.

Recently, special mirrors capable of providing negative dispersion have been de-

signed and are the basis of an ultrashort pulse laser producing sub 10 fs pulses [109,

112]. The technology of chirped multilayer dielectric film deposition by which this

is achieved is both interesting and elegant. Significantly, unlike most regular inter-

ferometric structures including GTIs, these mirrors exhibit a nearly constant GVD

over as broad a bandwidth as 120 nm. However, the drawback is that to date only a

small amount of dispersion can be achieved for each reflection off the mirrors. This

necessitates a cavity design including several mirror bounces, thus increasing the com-

plexity and size of the laser despite the elimination of the prism pair. Further, the

negative dispersion introduced can be varied only in discrete quanta. While this is

not a serious limitation, it limits the overall practicality and flexibility of the laser.

Other interesting methods for GVD compensation have been suggested. Notably

an analysis of adjustable negative GVD from Graded Index (GRIN) lenses has been

provided [114]. This is an interesting and compact way of providing GVD which is

in fact integrable with waveguide or optical fiber technology [114]. However, GRIN

lenses with appropriate parameters are hard to acquire which is the reason why exper-

imental demonstrations are yet to come two years after publication of the theoretical

analysis.
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5.4 Dispersion compensation using prismatic el-

ements

It is clear from the above overview that at the time of this work, a suitably com-

pact, cheap and flexible dispersion compensation technique was not evident among

pre-existing techniques. For the construction of a compact and high-repetition rate

femtosecond source we therefore designed a novel dispersion-compensation technique

that uses prismatic cavity end elements. Our technique of dispersion compensation

builds on concepts contained in the earlier cited analysis [31, 23] of dispersion com-

pensation arising from intracavity prisms. This section first provides relevant details

of this background.

The introduction of negative dispersion into a ring laser cavity by a single prism

was observed by Dietel et. al. in 1983 [17, 20], but not well understood at the time.

In 1984, Gordon and Fork published a paper explaining how the single prism, double

mirror ring resonator pictured in Figure 5-3 could provide negative dispersion [31].

This resonator is closely related to our high-repetition rate KLM scheme to be de-

scribed shortly. Recall from Chapter 2 that group velocity dispersion in an optical

system, arises from a frequency or wavelength dependent propagation constant and

can in general be expressed as

d2
_ A3 d2 P(A)-=(5.1)dW2 2rc2 dA2

where P(A) is simply the wavelength-dependent path length through the system.

In order to calculate the dispersion of the resonator in Figure 5-3 we need to derive

an expression for P(A) at the central wavelength through this system.

Figure 5-4 shows lines representing two wavelengths propagating through the

prism; AC through the apex and BD at the central wavelength. Implicit in this

picture is the important assumption that the monochromatic spatial mode represent-

ing each wavelength capable of oscillating in the laser is defined with respect to a
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Mirror Mirror

Figure 5-3: Cavity layout for single-prism ring resonator capable of exhibiting net neg-
ative intracavity dispersion. The two lines represent propagation axes corresponding
to two different wavelengths.

X

Figure 5-4: Analytic diagram for single-prism ring resonator.

112



distinct axis. This axis will be referred to hereafter as a propagation azis. The entire

spatial mode corresponding to each wavelength and consequently to each propagation

axis must be determined through the standard resonator mode analysis techniques

overviewed in Chapter 3. However, the dispersive properties of the resonator can be

estimated by simply studying the path of the wavelength dependent propagation axes

through the resonator. Restriction of the analysis to propagation axes, permits the

application of the laws of ray optics in order to determine the self-consistent intracav-

ity paths of these axes. This is indeed the approach that has been used by Gordon

and Fork in their analysis of this resonator [31]. However, they do not explicitly clar-

ify these concepts which are in fact crucial to a proper understanding of how and why

dispersion can be accomodated into resonators in unexpected and interesting ways,

as in the resonator of Figure 5-3 and in the high-repetition rate KLM laser geometry

of the next section.

Elegant theoretical formalisms for analyzing dispersive cavities have been devel-

oped by Martinez [71, 72] and improved on by Kostenbauder [58]. Martinez has

observed that in the analysis of a cavity including one or more dispersive elements,

the ABCD matrix formalism cannot adequately account for the frequency dependence

of parameters such as gain, time delay, beam center and propagation angle. He has

also noted that the Gordon and Fork ray tracing strategy just summarized, can be

used to obtain the solution for particular cavity configurations, but does not provide

a thorough understanding of the laser behavior as a function of different parameters.

For this purpose it is essential to develop new theoretical tools; namely the E and

F terms in an expanded ABCDEF matrix formalism. The E terms in these matri-

ces account for relative displacement of wavelength dependent propagation axes and

the F terms describe relative angles of propagation. Kostenbauder has carried these

ideas further through the use of an elegant 4 X 4 matrix formalism that has the phys-

ically appealing feature of keeping optical system and light-beam dependent matrices

entirely separate.
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Returning to the resonator of Gordon and Fork and to Figure 5-3, we can now

clearly identify two propagation axes representing two wavelengths, these axes having

been propagated self-consistently through the cavity entirely subject to the laws of

ray optics. The entire path length of the central wavelength (solid line) through

the resonator is given by 2BDE in Figure 5-4. Since AB and CD are both possible

wavefronts and AC and BD must be equal in optical path length. To calculate the

length BD it is therefore sufficient to calculate the length B'D which is equal by

construction to the length AC. After some trigonometry one can prove that the

BD = B'D = AEsin(O) + EDcos(O) (5.2)

and so

P = 2BDE = 2AEsin(O) + 2ED(1 + cos(O)) (5.3)

Since the angle 0 is a function of the prism index, n, which is in turn a function

of A, by application of the chain rule for derivatives we can write that

dP dP dO dn

dA dO dn dA

and similarly,

d2 P [d2n dO d2 dn 2  
2 dP dO dnn d2

=d [ + ) )2( 2 (5.5)
dA2  dA2 dn dn2 dA dO dn dA d02

Since expressions for n(A) are usually available, to calculate dispersion it is suffi-

cient to obtain expressions for P(0) (Equation 5.3), O(n) and their derivatives . Using

Snell's law it is easily shown that

O(n) = sin-'(nsina) - a (5.6)
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dO
= [(sina)- n]-/2 (5.7)

d20  d O= n( d) 3  (5.8)
dn2  dn

where 2a is equal to the apex angle of the prism. These expressions can be

further simplified at the central wavelength, A0 corresponding to the Brewster angle

on the prism. The derivatives of P(O) require further geometric analysis, the details

of which are straightforward but not particularly pertinent here. The important issue

to understand in the analysis outlined above is the general method by which the

dispersion calculation is performed. The reader is therefore referred to the paper by

Gordon and Fork [31] for further geometrical details on the derivation of dP/dO and

d2P/d02 which lead to the final expression of round-trip dispersion in this resonator

given by,

d2q A3  d2n dn dnd 2rc2 -[\- + n(d- )2 ]2AB'+ ( )22(f - BD) (5.9)dW2 27rc2 dA2 dA2 dA
where f = R/2 is the identical focal length of the two resonator mirrors and the

derivatives are evaluated at the central wavelength, A0 . This equation can be easily

understood in physical terms. The positive dispersion term is proportional to AB'

which is a measure of the insertion of the prism into the beam. The negative dispersion

introduced is proportional to the term (f - BD). This quantity is the optical path

length from the prism bisector to the intersection point between propagation axes

(on either side of the prism). The cavity configuration dictates that the intersection

points for the self-consistent paths of different propagation axes always fall a focal

length away from the mirrors. Propagation from the intersection point on one side

of the prism over to that on the other side (reflecting off the mirrors in the process)

does not introduce dispersion since by Fermat's principle all rays must travel equal

optical path lengths while traversing this distance. Consequently, for mirrors of given

focal length, the further away from the prism they are placed, the larger will be the
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Blue

Figure 5-5: Negative dispersion from a pair of prisms

negative dispersion introduced.

A similar analysis has been used to analyze the case of a prism pair shown in

Figure 5-5 [23]. It is enlightening to note that in both cases the origin of negative

dispersion is the fact that light at longer wavelengths (red) travels through more

intracavity material than light at shorter wavelengths (blue). However, the method

by which this is ensured differs somewhat in each case. In the case of the prism pair

the first prism can be thought as serving to angularly disperse the light. Referring

to Figure 5-5, the fact that red light gets deviated less by Pl, combined with the

orientation of P2 ensures the propagation of red light through more material in P2. It

is important to emphasize that the existence of GVD depends on the second derivative

of path length with respect to wavelength, consequently a linear variation of path

length with wavelength as produced in the air between the two prisms, does not

produce GVD.

While the prism-pair can be considered as a modular element which can be intro-

duced at one end of any resonator geometry to introduce negative dispersion, in the

case of the single-prism ring resonator, the existence of dispersion and its magnitude

are both closely tied to the cavity geometry. The path followed by propagation axes
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is indeed now a function of both the dispersive properties of the prism and the specific

details of cavity geometry. When the interaction of these two forces produces a spa-

tial separation of self-consistent round trip paths of propagation axes, such that light

at longer wavelengths traverses more intracavity material than light at shorter wave-

lengths, negative dispersion is introduced. The magnitude of this effect is entirely a

function of the particular geometry under discussion. In the case discussed above,

with AB = 1 mm and f= 60 cm, and using a quartz prism, a length of BD - 1.1 m

is required to adequately compensate for the positive dispersion from a typical 5 mm

sapphire crystal. Thus lasers fashioned after this geometry are potentially quite large

(repetition rate - 150MHz). Another significant problem is that of transforming the

theoretical resonator of Figure 5-3 into a real laser which requires the incorporation

of a gain medium into which the lasing mode must be focused, and an appropriate

pumping mechanism. It is not evident how this can be simply and efficiently achieved

without significant changes in the proposed resonator design of Gordon and Fork.

5.5 Compact dispersion-compensating laser: de-

sign and analysis

To achieve the goal of building a compact and dispersion compensated KLM laser,

a related but different geometry pictured schematically in Figure 5-6 was designed

in this thesis. This geometry is able to provide adequate negative dispersion, and

can also be very conveniently implemented in the laboratory. It consists of a bare

minimum of components, namely a flat-Brewster cut gain medium, a curved mirror

and a prismatic output coupler. The prismatic output coupler is one half of a Brewster

prism which is coated on one side with an appropriate reflective coating. It serves

simultaneously to provide angular dispersion of the laser beam and to couple light

out of the laser.

To Kerr lens modelock any laser one must incorporate both fast saturable absorber
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Figure 5-6: Simple, compact and dispersion compensating cavity layout. Solid and
dashed lines represent the self-consistent round-trip intracavity paths corresponding
to two distinct wavelengths. The cavity geometry enforces the spatial separation of
these paths causing light at longer wavelengths to traverse more intracavity material.
This is the origin of negative dispersion.

action and net negative intracavity dispersion into the laser design. Of course, the

laser geometry must be capable of supporting broad band oscillation in the first place.

As will be apparent from the ensuing analysis, the laser of Figure 5-6 is able to satisfy

all of these conditions.

5.5.1 Saturable absorber action

The analysis of dispersion in the cavity proceeds, as before, by consideration of self-

consistent intracavity paths of propagation axes. However, the entire spatial mode

profile corresponding to each wavelength must be determined using the standard

resonator mode analysis techniques described in Chapter 3. Such analysis identifies

the intracavity location of beam waists and their relative sizes as well as the cavity

operating points where fast saturable absorber action can be obtained.

The unfolded resonator of Figure 5-6 corresponds indeed to the simple lens cav-

ity analyzed in Chapter 3, if one neglects the astigmatic effects introduced by the
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Figure 5-7: Approximate position in the cavity stability map of the operating point
of the compact KLM laser. The dashed line corresponds to the type of cross-section
along which the linear and nonlinear modesizes are plotted in the next three figures.

Brewster surfaces in the cavity. Using the code developed earlier to calculate linear

and nonlinear cavity spatial modes we found that for our cavity configuration and

operating point the spatial modes for all wavelengths are tightly focused in the gain

medium and relatively collimated in the longer cavity arm. Due to self focussing in the

gain medium, for certain cavity settings, i.e. at certain points in the linear geometric

cavity stability map, higher intracavity intensities present a smaller mode size in the

gain medium and therefore overlap better with the focussed pump beam therein. This

provides the requisite intensity-dependent loss mechanism or fast-saturable absorber

action necessary for KLM.

In particular, the operating point chosen for KLM operation of the compact source

is shown in Figure 5-7 and corresponds to point 7 of the points analyzed in Table 3.2

of Chapter 3. As discussed earlier, this point is suitable for several reasons namely

its small mode size in the gain medium(i- 25 /jm), its negative change in modesize in

the crystal at high powers (- -48 % at 0.5 x Pc;it) , and its relatively large ~/6 ratio
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Figure 5-8: Linear (solid) and nonlinear (dashed) mode-sizes in jm for compact KLM
laser, plotted as a function of one arm length, L1 , while the second arm length L2 is
held constant at 8f. Nonlinear modes are calculated at .5 * P,it, the crystal length
assumed is 0.3 cm and f = 5 cm.

(~ -1.1 at 0.5 x Pcrit).

As discussed in Chapter 3, it is important to note that small deviations in the point

of operation on the linear-stability map, can result in qualititatively different effects of

self-focusing. For example, on a closer examination one finds that not all points close

to operating point 7 of Chapter 3 (shown in Figure 5-7) exhibit a negative change in

modesize in the crystal, for higher intensities. We can quantify this by plotting the

linear and nonlinear modesizes at the crystal high reflector (for a power of .5 x Pcrit)

as a function of one arm length, L1, while maintaining a fixed second arm length, L2,

approximately equal to 8f. The focal length f used is 5 cm. The type of cross-section

along which the mode is plotted is shown as a dashed line in Figure 5-7. Figure 5-8

plots the linear and nonlinear modesizes along this cross-section, as calculated by the

iterative procedure for calculation of self-consistent non-linear cavity modes. The two

stability boundaries in this diagram occur at L 1 = f = 5 cm and at 1/L 1 + 1/L 2 =

1/f ie. where L1 - 5.7 cm. Since the nonlinear modesize in the crystal is smaller

than the linear modesize only at points close to one of these boundaries, KLM action
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Figure 5-9: Single-pass calculation of linear (solid) and nonlinear (dashed) mode-sizes

in jim for compact KLM laser, plotted as a function of one arm length, L1, while the
second arm length L2 is held constant at 8f. Nonlinear modes are calculated at .5 *
P~,,t, the crystal length assumed is 0.3 cm and f = 5 cm.

using the pump beam aperture is possible only at points closer to this boundary. This

fact was borne out experimentally, when modelocked operation could be achieved at

points close to the L1 = f boundary but not at the other one.

The above described assymetry in the nonlinear behavior at the two borders of

stability is quite important. It is encouraging that the simple picture of self-focussing

(discussed in Chapter 3) as a shortening of the arm containing the nonlinear medium

does indeed predict this behavior. It is important to note, however, that the calcula-

tion of nonlinear self-focusing in a single-pass through the crystal does not yield the

correct qualitative or quantitative result. Figure 5-9 shows the predicted single-pass

change in waist size calculated using the transformation of the q-parameter, using

the appropriate linear beam q-parameter (calculated by the self-consistent round-trip

calculation) at the entrance of the crystal. Clearly this calculation predicts that the

nonlinear waist will be smaller than the linear one throughout the stability region.

This prediction is in disagreement with the simulated self-consistent round-trip solu-
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Figure 5-10: Change in mode size at crystal high reflector plotted as a function of
one arm length, L1 as calculated using a single-pass calculation (dashed line) and
on a self-consistent round trip calculation (solid line). The second arm length L2 is
held constant at 8f. Nonlinear modes are calculated at .5 * P,;. , the crystal length
assumed is 0.3 cm and f = 5 cm.

tion of Figure 5-8 as well as with the experimental findings to be described shortly.

Figure 5-10 makes the discrepancy clear by comparing the predicted change in mode

size at the crystal high reflector using the single-pass technique (Figure 5-9) and the

self-consistent round-trip cavity simulation (Figure 5-8). Clearly the results are quite

different not only in magnitude but also in sign. One must conclude that an estimate

of the effects of self-focussing in a laser cavity cannot be accurately predicted using

only a single pass calcualation through the nonlinear medium. The same observation

was also made in the Chapter 4 in the context of Microdot mirror modelocking of the

Nd:YLF laser.

5.5.2 Dispersion calculation

Turning to the dispersion calculation, the cavity exhibits net negative dispersion be-

cause the resonator setup and geometry ensure that propagation axes of different

wavelengths follow spatially displaced self-consistent intracavity paths. The wave-
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length dependence of angular deviation at the two Brewster interfaces is responsible

for causing this relative displacement of propagation axes, as a consequence of which

light at longer wavelengths traverses more material at both ends of the cavity, thus

generating negative GVD.

To estimate the GVD introduced, using an analysis analogous to that of Gordon

and Fork, we need to derive an expression for the wavelength dependent path length,

P(A), of propagation axes through the cavity. The unfolded equivalent cavity of

Figure 5-11 is used in this analysis. Note that the curved mirrror of radius R is

replaced by a lens of focal length R/2. A self-consistent path for any wavelength

through this laser must be perpendicular to the reflective laser end surfaces and

be appropriately deviated at each Brewster interface. If the deviation of a given

wavelength caused by both interfaces (gain and output coupler) is identical, each

propagation axis (independent of wavelength) must travel undeviated through the

intracavity lens in order to define a self-consistent intracavity path. This implies that

propagation axes for all wavelengths will pass through, and indeed, intersect at the

center of the lens. Mathematically, we can state that the assumption wherein the

intersection point, 0, falls on the lens center, L, is accurate in the limit when

dn/dA
d/dA= 1 (5.10)dn'/dA

where n(A) is the refractive index of the gain medium and n'(A) is the refractive

index of the prismatic output coupler. For example when we use Ti:A120 3 as the gain

medium and LAKL21 as the prismatic output coupler substrate, this ratio is 0.98 and

consequently the above approximation is reasonable.

To proceed further in the calculation of P(A) the laser is divided into two parts

on either side of the intracavity intersection point between propagation axes. For

simplicity, let us first consider the limit described by Equation 5.10 where the inter-

section point, 0, of propagation axes falls on the center of the lens, L, as shown in the

unfolded equivalent cavity diagram of 5-11. Note that this point will henceforth be
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Figure 5-11: Equivalent unfolded cavity schematic for dispersion calculation in laser
of Fig 5-6. The curved mirror is replaced by an equivalent lens. Materials with
identical dn/dA are assumed for the gain medium and the prismatic output coupler,
resulting in intersection of propagation axes at the lens center, C.

referred to exclusively as O. Note also that the assumption of Equation 5.10 is by no

means essential to the KLM operation of the laser geometry of Figure 5-6; however

it provides a simple starting point for the analysis which will be generalized later.

Note finally that Figure 5-11 and the following analysis do not account for astigmatic

effects.

P(A) can be decomposed into two parts as shown in Figure 5-11. The optical

path lengths associated with these parts are PI(A) and P2(A) respectively. We can

therefore write that the total optical path length P(A) is given by,

P(A) = PI(A) + P2(A) = ABO + CDO (5.11)

where the points A, B, C, and D will clearly be wavelength dependent as shown in

Figure 5-11 for two wavelengths. This wavelength dependence will not be explicitly

indicated in subsequent equations.

As in the analysis of Gordon and Fork described earlier, referring to Figure 5-12,

it can be seen from Fermat's principle that the optical path length ABO is equivalent

to the distance RQO. In this figure the apex of the prism is denoted by Z. Therefore
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Figure 5-12: Detailed geometry for calculation of path length in one
cavity of Figure 5-11.

part of unfolded

P1 (A) can be calculated as follows.

P1 (A) = RQO = RQ + QO (5.12)

Since,

RQ = ZQsinO(A) (5.13)

(5.14)= (X - YtanO(A))sinO(A)

Y
QO = cosO(A)

and

(5.15)

we have that

Y
= (X - YtanO(A))sinO(A) +

cosO(A)
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Y= XsinO(A) + (1 - sin2O(A)) (5.17)
cosO(A)

= XsinO(A) + YcosO(A) (5.18)

We now have P1 (A) as a function of 0(A). Applying the chain rule we get,

d2P1  d2 P1 d 2 dP1 d2 (5.19)= ( ) + (5.19)dA2  dO2 dA dO dA2

We will evaluate the dispersion at a central wavelength A = Ao for which the prism

is cut where it can be proved that,

dO dn (5.20)

and
d20 d2n dn )- = 2 + n( d )2 (5.21)
dA2  dA2 O dA 0

We now require only dP 1/dO and d2P1/d0 2 in order to obtain a complete expression

for the dispersion. These can be expressed as,

dP

and
d2 pl
dO = -XsinO(A) - YcosO(A) = -P1 (5.23)

Further, it can be proved that at the central wavelength, Ao,

dPD
= ZRo (5.24)

dO

= AoBo (5.25)

where Ro, Ao and Bo correspond to the central wavelength A0. The details of this

derivation are provided in Appendix A.
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Putting all the above expressions together we arrive at a final expression for the

dispersion, D 1, coming from Part 1 of Figure 5-11 which is,

d2 -¢ 0_ (5.26)
dw2 2rc2 dA2  (.26)

- A3o d2n dn 2 dn )2p (5.27)= 2 C2 +  () )AoBo - ( ) (5.27)

SA 2n AoBo -( )2BoO (5.28)
27rc 2 dA2 AdA 2 ,o

Since Part 2 in Figure 5-11 is identical in configuration to Part 1, we can immediately

write down an analagous expression for the dispersion D2 , as

d2€ A3 d2 P2D2 22 dA2d, (5.29)
2 2-c C2 d 2

2 C2 d CoDo dnA A0 )2 DoO (5.30)27C2 dA2 o dA2

The total one-way intracavity dispersion D is just the sum of D1 and D2 . That is

D = D +D 2  (5.31)

_ d 2P (5.32)
27rC2 dA2 A0

A= 2rc d2 n (AoBo + CoDo) - (d )2 (BOO + DoO) (5.33)
2rc2 dA2 AA2

It is clear that the positive dispersion is proportional to the term AoBo + CoDo

which is just the total path length of the beam within intracavity material. The

negative dispersion is proportional to the sum BoO + DoO = BoDo, since for a given

set of end elements the longer the cavity the larger the spatial separation between

a pair of wavelengths when they traverse the material in either end-element and

consequently the larger the amount of negative dispersion introduced.

As mentioned earlier, the above expressions are accurate only in the limit of
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Part 1

A1

A
o

Co

c,

Part 2
Figure 5-13: Equivalent unfolded cavity schematic for dispersion calculation in laser
of Fig 5-6 assuming dissimilar L for the gain and the prismatic output coupler.
Propagation axes for two different wavelengths are shown in solid and dashed lines.
O is the intracavity intersection point between propagation axes. 0' is the virtual
image of O through the lens.

Equation 5.10, when the gain and the prismatic output coupler have similar d.

However, this might often not be the case in which case the above analysis must be

generalized. In the general case, the intersection point between propagation axes for

different wavelengths, 0, is distinct from the lens center, L. The situation is depicted

in Figure 5-13. Since in this case the relative angle between two given wavelengths

at each end element will be different, the lens serves to deviate the axes in order

to "match up" these angles and permit the existence of a self-consistent intracavity

path. It can easily be shown from the laws of ray optics that

BoO' = BoO + f -1] (5.34)

DoO = DoL - f [1 - (5.35)

Note that the ratio 8/8' is equal to the ratio (dn/dA)/dn'dA). Viewed from the

gain medium, the propagation axes all seem to emanate from the point 0' and so
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we can again calculate the total cavity dispersion as arising from two parts as shown

in Figure 5-13. We can write expressions for D 1 and D 2 in these two parts of the

laser, in a completely analagous fashion to the earlier analysis. The final result, again

evaluated at the central wavlength Ao is,

D = D +D2 (5.36)

= -2- d2 P (5.37)

A3 [d2 n AoBo + CoDo - (d )2BOO' - (dn' )2DoQ 38)
2rC2 dA2  dA2  dA dA

As expected, in the limit that the two end elements have identical 42 Figure 5-13

reduces to Figure 5-11 and Equation 5.38 reduces to Equation 5.33 derived earlier.

The distance of points O and 0' from the lens center, L, is proportional to the ratio

ofd/da and the greater this ratio, the more critical it is that the generalized analysis

be used to estimate the dispersion. The expressions derived in this section will be

applied in the next section to estimate dispersion in the configurations implemented

in the laboratory.

5.6 Experimental results

The laser geometry implemented was identical to that of Figure 5-6. Two configura-

tions, one using a low dispersion LAKL21 prismatic output coupler (POC) and the

other using a high dispersion SF10 POC were studied. 54 fs pulses at a repetition

rate of 385 MHz, were achieved with the LAKL21 POC and 111 fs pulses at 1 GHz

were produced in the configuration using an SF10 POC.

The Ti:A120 3 gain medium is cut in a flat-Brewster geometry. It measures

3.17 mm on its shortest side and is doped 0.25 % Titanium by weight. The flat

face is coated with a broad band high reflective coating at the lasing wavelengths

(700 - 850 nm) and is also coated to be highly transmissive at the pump wavelengths.
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Figure 5-14: Autocorrelation of pulse from laser using LAKL21 POC. The pulse width
is 54 fs assuming a sech2 pulse shape.

The laser is pumped with all lines of an Argon laser, focused into the gain medium

using a plano-convex lens. A focal length of 10 cm is used at 385 MHz and one of

5 cm is used in the 1 GHz configuration. A curved mirror of focal length 2.5 cm is

placed at a distance slightly greater than 2.5 cm from the gain medium. The cavity is

completed by a 1 % transmitting POC (either LAKL21 or SF10) , wedged at Brewster

angle, with the uncoated face within the cavity. The coating on the prismatic output

coupler is also a broad-band coating in the range 700-850 nm. The angle between

the two cavity arms is optimized experimentally to minimize intracavity astigmatic

effects. For operation at 385 MHz the substrate for the POC is LAKL21 which was

chosen to minimize pulsewidth-limiting higher order dispersive terms. For operation

at 1 GHz, an SF10 POC is used due to its higher dispersion.

Operating at a repetition rate of 385 MHz, with an LAKL21 output coupler, a

stable train of pulses which measured 54 fs directly from the oscillator was produced
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5-15: Spectrum of pulse from laser using LAKL21 POC. The spectra
s 17.9 nm. The resultanttime-bandwidth product is 0.45.

Figure 5-16: Pulse train at 385 MHz from laser using LAKL21 POC.
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AoBo 3.2 mm
CoDo 0.5 mm
BoO 2.18 cm
DoO 35.5 cm
(dn/dA).,L 2m -. 0261987 im- 1

(d2n/dA2 )KLML21 .065655 pm -2

(dn/dA-)Ti,, O3 -.0267961 Im-'
(d2n/dA2 ): 203 , .0640994 im- 2

Table 5.1: Values used to estimate dispersion in 385 MHz configuration using Equa-
tion 5.33.

Figure 5-14 shows the background-free, non-interferometric autocorrelation of the

pulse. A 100tm thick KDP doubling crystal was used in the autocorrelator. The

pulse duration is 54 fs calculated assuming a sech2 pulse shape. Figure 5-15 shows

the corresponding spectrum measured using an optical multichannel analyzer (OMA).

The spectrum fits well with a sech2 shape and has a bandwidth of 17.9 nm yielding

a time-bandwidth product of 0.45. Figure 5-16 shows the laser output pulse train

measured using a fast photodetector connected to a high speed sampling scope. 100

mW of average output power was measured at a pump power of 3.5W.

The cavity length in this case was - 38 cm. Using Equation 5.33 with the values

provided in Table 5.1 we had estimated that a second arm length of 41 cm would be

required to produce -100 fs2 round-trip cavity dispersion. The optimized experimental

value of 35.5 cm was not far from this estimate and we could thus be confident of

using our earlier developed analysis in oscillator design. The calculated dispersion

for the experimental cavity length is approximately -40 fs2 . Since dn/dA for sapphire

and LAKL21 are almost identical, as expected, the difference between the estimates

of dispersion from Equations 5.33 and 5.38 was negligible i.e. less than 2%.

To achieve an even higher repetition rate we used SF10 instead of LAKL21 as a

substrate for the POC. SF10 has a much higher value for dn/dA than LAKL21 and

consequently a much shorter cavity length is attainable while remaining in the net
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Figure 5-17: Autocorrelation of pulse from laser using SF10 POC. The pulse width
is 111 fs assuming a sech2 pulse shape.
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5-18: Spectrum of pulse from laser using SF10 POC. The spectral
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Figure 5-19: Pulse train at 1 GHz from laser using SF10 POC.
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AoBo 3.2 mm
CoDo 0.5 mm
BoO 2.18 cm
DoC 12.5 cm
BoO' 4.31 cm
DoO' 11.35 cm
(dn/dA))s ,• -.0495844 /m - 1

(d2n/dA 2)fo1 .175505 im-2
(dn/dA) Ti:A12,0 3  -.0267961 /m - 1

(d2n/dA2T')" 2O3.M .0640994 pm- 2

Table 5.2: Values used to estimate dispersion in 1 GHz configuration using Equation 5-
13.

negative dispersion regime. The experimental cavity length achieved was 15 cm which

corresponded to operation at 1 GHz. The estimated dispersion in this configuration

using Equation 5.38 and the experimental values provided in Table 5.2 was -30 fs2 .

The autocorrelation, spectrum and pulsetrain recorded with the same diagnostics as

described above are shown in Figures 5-17, 5-18 and 5-19. The pulsewidth is 111 fs

assuming a sech2 shape and the spectral bandwidth is 7 nm yielding a time-bandwidth

product of 0.375. 600 mW of average power was measured at a pump power of 5.5W.

In both configurations modelocking is achieved operating close to the inner sta-

bility boundary of the cavity. Once CW performance is optimized, modelocking is

achieved by adjusting the distance of the pump lens from the gain medium as well

as its transverse position in relation to the gain medium. Self-starting operation was

often observed, which we believe is qualitative proof of previous predictions of very

strong saturable absorber action at the edges of the st4bility region [34]. When the

laser was not self-starting, modelocking was inititated by a small mechanical per-

turbation. Once modelocked the laser remained modelocked for hours without any

enclosure.
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5.7 Further improvements

The above demonstrations serve to conclusively establish the potential of this novel,

compact, high repetition rate KLM laser geometry. The simplicity, ease of use and

stability of the KLM laser implemented is unprecedented, and we hope that it will

significantly simplify the day-to-day use of such systems as well as their potential

for commercial manufacture and sale. It is worth noting that owing to the reduced

parameter space of the geometry deomonstrated, the search for the modelocked op-

erating point is remarkably easier and faster than in the preceding standard X or Z

fold KLM laser geometries.

Minimization of the amount of intracavity material has already been proven to

be an important consideration for achieving short pulses [39, 38, 3]. Since it truly

eliminates all superfluous components and intracavity glass, the demonstrated cavity

geometry may be useful in achieving and exploring the sub 10 fs regime of operation

for KLM Ti:A120 3 lasers. Currently, the limitation on pulsewidth appears to be

the inherent lateral spread of wavelengths in the gain medium. This is plausible

because the estimated spread for the 18 nm bandwidth recorded in the 385 MHz

configuration is - 38 jtm which is on the order of the - 32 1m diffraction limited

beam diameter of the pump in the gain crystal. Thus a focussed pump beam serves as

a bandwidth limiting element which constrains attainable pulse durations from this

laser. However, by shaping the pump beam and making it sufficiently elliptical, this

effect can be minimized. Preliminary evidence for the improved bandwidth attainable

by using an elliptically shaped pump mode, or simply increasing the size of the pump

mode was already seen in the laboratory. However, care must be taken to maintain

sufficient saturable absorber action when doing this. A more detailed investigation

of the effect of nonlinearity on the intracavity mode may lead to the discovery of a

suitable position for an intracavity slit which could serve as the intensity-dependent

loss mechanism. This would increase the flexibility of the design by decoupling the

saturable absorber action from the size of the pump beam.
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As already demonstrated the cavity repetition rate is scalable merely by use of

more dispersive materials as POCs. Clearly such materials will also limit the at-

tainable pulsewidth by introducing large amounts of higher order dispersive terms.

However pulsewidth may not be a crucial parameter in some applications of a high

repetition rate pulsed source.

In both of the implemented configurations the spatial mode of the output beam

was found to be elliptical with a 2:1 to 3:1 ratio. This is attributed due to imperfect

compensation of astigmatism at the edge of the stability regions where KLM action

occurs. A more careful analysis of the astigmatic properties of the cavity will allow

proper compensation over a wider range in the stability region and thus reduce the

ellipticity of the output beam. Note however that there is an inherent ellipticity in

the output beam due to the lateral spread of spectral components throughout the

laser. Of course, the spectral components at the output of the laser are collimated,

and the situation is identical to the folded X or Z cavity when the output is taken at

the dispersive end of the cavity. We estimate an upper bound for the lateral spatial

spread of wavelengths over a 20 nm bandwidth in the 385 MHz configuration to be

about 40 pm in the gain and about 560 itm at the output. This is small compared to

the laser output mode size of about 2 mm in the vertical dimension. If, however, the

magnitude of the spread in the current configuration is unacceptable, the output can

be obtained from the gain side of the cavity or alternatively a prism pair external to

the cavity could be used to superimpose the spectral compenents.

5.8 Dispersive resonator geometries

It is clear that based on the above concepts relating to dispersion compensation and its

achievement through the use of cavity geometry, one can conceive of other designs for

resonators that could provide negative dispersion. As explained earlier, the key point

is that the resonator geometry and the intracavity prismatic interfaces must enforce
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Figure 5-20: An alternative geometry for a dispersive resonator. The solid and dashed
lines represent propagation axes corresponding to two distinct wavelengths. The
prismatic element would serve as the gain medium in this geometry.

the spatial separation of the self-consistent propagation axes representing different

Gaussian monochromatic modes. If this separation results in the propagation of

relatively longer wavelengths through relatively more intracavity material, negative

dispersion will be introduced. The magnitude of the negative dispersion introduced

in this manner is entirely a function of the particulars of the cavity geometry and

materials.

Figures 5-20 through 5-23 represent four alternative configurations for the gener-

ation of negative dispersion. Figure 5-20 shows a geometry using only one prismatic

end element. If this element is chosen to serve as the gain medium the distance L1

must be approximately equal to f, since the intracavity mode must come to a tight

focus in the gain medium for sufficient power extraction. The distance L2 is arbi-

trary. In this configuration the propagation axes would have to intersect very close

to the prismatic gain element, (a distance f away from the lens on the side of the

gain), in order to propagate self-consistently through the resonator. From the analy-

sis of dispersion presented earlier, it is clear that the negative dispersion introduced

is proportional to the distance from the prismatic gain to the point of intersection of

the propagation axes. This is because this distance determines the separation of the
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Figure 5-21: An alternative geometry for a dispersive resonator. The solid and dashed
lines represent propagation axes corresponding to two distinct wavelengths. The
prismatic element would be the output coupler in this geometry.

propagation axes within the material of the prismatic gain. Consequently the geom-

etry of Figure 5-20 would not produce much negative dispersion because the point of

intersection of propagation axes is in fact very close to the prismatic element.

Figure 5-21 swaps the end elements of Figure 5-20. Now the propagation axes

would intersect at a distance f away from the lens but in the longer arm of the cavity.

The amount of dispersion would be proportional to the distance (L 2 - f) in Figure 5-21.

Figure 5-22 is a combination of the earlier two geometries. In fact it is the geom-

etry implemented in this thesis, with the curved mirror having been replaced with a

lens. Under the assumption of materials with similar dn/dA being used for both end

elements, the propagation axes intersect close to the center of the lens. In this case

both arms of the laser will contribute to the total negative dispersion introduced.

However, for the aforementioned reasons, clearly the contribution from the longer

resonator arm will dominate.

Figure 5-23 shows a folded-X cavity geometry, familiar from earlier Ti:A120 3 lasers,

with both end mirrors replaced by prismatic output couplers. Note that this figure

was also drawn under the assumption that the gain and prismatic output coupler

are made of materials with similar dn/dA. Drawing a symmetry plane through the
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Gain Output

Coupler

Figure 5-22: An alternative geometry for a dispersive resonator. The solid and dashed
lines represent propagation axes corresponding to two distinct wavelengths. Prismatic
elements would be used both for the gain medium and the output coupler in this
geometry.

Prismatic
Output Couplers

Figure 5-23: An alternative geometry for a dispersive resonator. The solid and dashed
lines represent propagation axes corresponding to two distinct wavelengths. Each half
of the resonator, on either side of the the line of symmetry drawn through the crystal,
is identical to the resonator described and implemented earlier.
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resonator as shown, one realizes that each half of the resonator is in fact identical

to the resonator that has been implemented in this thesis. From this analogy, the

total cavity dispersion can be calculated as the sum of the dispersion arising from the

two resonator halves. The magnitude of the negative dispersion introduced will be

dominated by the length of the two cavity arms.

5.9 Conclusion

In conclusion, a novel, compact dispersion compensation scheme has been discussed

and implemented. It uses prismatic end elements in order to achieve net negative

intracavity dispersion using laser geometry alone, thus avoiding the introduction of

prism pairs or special mirrors for dispersion compensation. It has been explained

theoretically and demonstrated experimentally how cavities which can support the

coexistence of monochromatic modes propagating along spatially separated axes can

provide negative dispersion, and can be designed simply with the use of prismatic

end elements. 111 fs pulses have been achieved at a repetition rate of 1 GHz and

54 fs pulses at a repetition rate of 385 MHz. The laser geometry is simple and easy

to use with a minimal number of components. Such minimization of intracavity

material may prove crucial for the generation of exceedingly short pulses. Use of

a monolithic element for both angle dispersion and output coupling, as well as the

avoidance of excess chirp due to passage through an output coupler substrate, are

novel and useful features of the demonstrated configuration. Lastly, this configuration

is readily adaptable to diode pumped materials.

This dispersion-compensation technique and laser geometry may have impor-

tant implications for the development of compact and simple femtosecond sources.

It is hoped that as was the case with the folded-X and Z cavity geometries, this

scheme will soon spread from its first demonstration in Ti:A120 3 to various broad-

band diode-pumpable materials of great interest such as Cr:Forsterite, Cr 4+:YAG,
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Cr3+:LiSrCaA1F 6 and Cr ~+:LiCaA1F 6. It is believed that in conjunction with the

convenience of diode-pump sources this geometry will enable the construction of a

practical, compact and low-cost femtosecond technology.
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Chapter 6

Cavity Dumped, femtosecond

Kerr lens modelocked Ti:A120 3

laser

6.1 Introduction

As described earlier, femtosecond laser systems are now widely used for the study of

ultrafast phenomena in physics, chemistry and biology. Time-resolved spectroscopy

has become an invaluable tool for studying processes that happen on sub-picosecond

time scales. Carrier dynamics in semiconductor materials, transport in solid-state

devices and interaction of molecules during important biological processes such as

photosynthesis are just a few of the phenomena that occur on femtosecond timescales.

An optimum laser source for such studies in ultrafast nonlinear spectroscopy

should possess a short pulse duration, wavelength tunability, sufficient pulse energy to

permit the investigation of nonlinear effects, and sufficient repetition rate to permit

the use of signal averaging techniques for high sensitivity detection. Since femtosec-

ond lasers are often used by specialists in fields other than lasers, system simplicity

and reliability are also important considerations. Finally, of course a cost-effective
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system is always desirable.

The broad gain bandwith of the femtosecond Ti:A120 3 medium has made possible

the development of sources with extremely short pulse durations as reviewed ear-

lier [3, 5, 105]. The Kerr Lens Modelocked (KLM) Ti:A120 3 laser is unprecedented

in its simplicity, and reliability. Unlike their predecessors the femtosecond-dye lasers,

Ti:A120 3 and other solid-state lasers are widely tunable which is an extremely valuable

feature for the spectroscopist. The pulse energies of - 5 - 10 nJ per pulse available di-

rectly from Ti:A120 3 lasers are far in excess of the pulse energies of - 100 pJ available

previously from femtosecond dye lasers. For all of these reasons solid-state lasers and

in particular Ti:A120 3 lasers are rapidly replacing dye laser technology and becoming

an established tool in laboratories investigating ultrafast phenomena.

Despite all of their advantages however, the performance of KLM Ti:A12:03 lasers

is often inadequate for the requirements of the nonlinear spectroscopist. Nonlinear

effects rely on high peak intensity of excitation. Since

Ppeak ' Epulse/Tpulse (6.1)

where Epu,e is the pulse energy, and T•pae the pulse duration, the greater the pulse

energy and the shorter the pulse duration, the stronger the nonlinear signal attain-

able. The output energies (- 10 nJ) and pulse durations (- 100 fs) from typical

Ti:A120 3 lasers yield peak powers that are only in the vicinity of 0.1 MW. While this

is significantly higher than the peak powers in the kW range previously attainable

from dye lasers, it is still insufficient for the study of many nonlinear phenomena.

Significantly, the peak powers directly attainable from the Ti:A120 3 oscillator are not

sufficient for the generation of a white-light continuum which is often an important

tool for the nonlinear spectroscopist [54, 78, 25].

Several complicated schemes to amplify femtosecond pulses from Ti:A120 3 sources

have therefore been demonstrated. These developments will be overviewed in more

detail in the next section. However, at the time of this work there did not exist a
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simple scheme for enhancing pulse peak powers achievable directly from the oscillator.

It is for this reason that a cavity dumped femtosecond KLM Ti:A120 3 oscillator was

developed and forms the subject of this chapter. Using cavity dumping, a significant

fraction of the intracavity pulse energy can be switched out in a single modelocked

pulse. Since the dumping process is non resonant and broad-band, the original oscil-

lator pulse duration can be preserved. Consequently, as demonstrated in this thesis,

the technique of cavity dumping can be used to enhance pulse peak power by a factor

of about 10 over that achievable directly from the oscillator. The cavity-dumped

source is also attractive because it preserves laser tunability and provides a variable

repetition rate.

The organization of this chapter is as follows. Section 6.2 reviews existing schemes

for amplifying femtosecond pulses and places the cavity-dumped oscillator in context.

Section 6.3 discusses the technique of cavity dumping. Section 6.4 describes the cavity

dumped KLM Ti:A120 3 oscillator and presents the experimental results. Section 6.5

discusses experimental limitations as well as the future potential of the cavity-dumped

femtosecond Ti:A120 3 oscillator.

6.2 Amplification of femtosecond pulses

Amplification of femtosecond pulses is a complicated problem. Several undesirable

linear and nonlinear optical effects need to be considered in designing an amplifier

which is able to sufficiently amplify a femtosecond pulse without altering its tem-

poral shape or spatial profile. Linear optical aberrations, group velocity dispersion,

self-phase-modulation, gain saturation, amplified spontaneous emission, pump non-

uniformity and fluctuations are all important deleterious effects in a femtosecond

amplification system [55].

Since femtosecond dye lasers were not tunable and produced pulse peak powers

only in the kW range, several techniques to extend the energy and tunability of
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these pulses have been developed. The characteristics of the amplification scheme

are strongly linked to the characteristics of the pump source for the amplifier stages.

Therefore amplification schemes have used a variety of pumping schemes to achieve

different results. Pulses from a colliding pulse modelocked (CPM) dye laser were

invariably the seed for the amplifier. These pulses are in the 50 fs range with pulse

energies of about 100 pJ at repetition rates of 100 MHz. A Q-Switched Nd:YAG

system was the first system used to amplify such pulses and it produced 1 mJ, 90

fs pulses at a 10-20 Hz repetition rate [24, 44]. The amplifier consisted of four dye-

gain stages, several saturable absorber stages and a grating pair for cancellation of

dispersion originating in the amplifier. Pumping a dye amplifier with two gain stages

using a regeneratively amplified YAG laser synchronized to the CPM seed oscillator,

has produced 100 fs pulses at repetition rates of about 1 KHz and pulse energies of 1

to 5 mJ [18]. One of the most popular dye laser amplification systems is the copper

vapor laser-pumped, multi-pass, single-stage dye-amplifier which produces 35 - 70 fs

pulses with 1 tJ pulse energy at a repetition rate of 8 kHz [56].

The emergence of the Ti:A120 3 medium has proven to be a great advance not only

for femtosecond lasers but also for femtosecond amplification technology. Ti:A120 3

is an excellent amplification medium owing to its high energy storage capacity, long

upper state lifetime (- 3 us) and high thermal conductivity. As a result, alongside

ongoing efforts to reduce the achievable pulse durations from Ti:A12O3 oscillators,

much effort has been directed toward the amplification of such pulses in Ti:A120 3

amplifiers.

The technique for amplification most commonly used has been that of chirped

pulse amplification or CPA [110]. In this technique, femtosecond pulses from the

oscillator are intentionally chirped before entrance into the amplifier system, in order

to allow amplification of pulse energy by large amounts without reaching peak power

levels that correspond to damage thresholds of the amplifier components. Pulses

exiting the amplifier can be recompressed to durations close to those measured directly
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from the seed oscillator. Of the several milestones which can be identified in the

development of this technology only a few representative works will be mentioned

here.

Amplification of synchronously pumped dye-laser pulses in a regenerative Ti:A120 3

amplifier produced 300 mJ of energy in 22 ps pulses at 1 KHz [116]. The first ampli-

fication of a self-modelocked Ti:A120 3 laser using a regenerative Ti:A12 0 3 amplifier

was demonstrated in 1990 to produce 105 fs pulses at peak powers of 10 GW and

repetition rates of 20 Hz [116]. Subsequently kilohertz and multikilohertz operation

of regenerative amplifier systems at the mJ and 100 1tJ level respectively were also

demonstrated [92]. Due to the superior energy storage properties of the Ti:A120 3

amplifier medium, ILJ energies at a repetition rates as high as 400 kHz have been

produced in a cw-argon pumped regenerative amplifier system [77] .

Impressive optimizations in CPA systems using regenerative amplifiers have re-

cently made possible the amplification of 20 fs pulses up to the 500 mJ level at 10

Hz [7]. This corresponds to a pulse peak power of several terrawatts. Multipass am-

plifiers have also been optimized in order to amplify 18 fs pulses to microjoule levels

at kHz repetition rates [106].

The above described advances in amplifier technology are undoubtedly impressive

and of great interest for many applications. However, the requirement of multiple

stages and/or multiple pump lasers makes all of these oscillator-plus-amplifier systems

complex, high-maintenance and relatively expensive. Further, the repetition rates

of many of these sources is low enough to limit detection sensitivity for ultrafast

measurements since signal averaging and phase sensitive detection techniques benefit

from repetition rates of several KHz. Finally the repetition rate of all such systems

is fixed and thus limits their versatility as sources for nonlinear spectroscopy.

A cavity-dumped femtosecond Ti:A120 3 oscillator has the potential for rectifying

many of these drawbacks. As will be explained in detail in the following section,

cavity dumping is a technique by which output pulse energies from a modelocked
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oscillator can be significantly enhanced at the expense of pulse repetition rate. An

intermediate energy level ( 50 - 100 nJ) Ti:A120 3 system with MHz repetition rates

can therefore be implemented exploiting this technique. Since the dumping process

is non resonant and broad-band, the oscillator pulse duration is maintained, resulting

in peak powers in the MW range. The threshold for many interesting nonlinear

phenomena is indeed in the 1 MW peak power range. Such a source would therefore

be very simple and useful for the nonlinear spectroscopist who does not desire to

build a complex oscillator-plus-amplifier system.

Further, the cavity-dumped source is also attractive because it provides a variable

repetition rate. The pulse repetition rates directly from Ti:A12 03 lasers are often

too high for ultrafast measurements that require high pulse peak intensities. The

resultant average powers that the samples are subjected to are excessive and can

cause thermal damage. Sometimes pulse repetition rates from the oscillator need to be

intentionally reduced using "pulse-picking" schemes in order to provide enough time

for thermal relaxation of samples. Consequently, a source with a variable repetition

rate in the MHz range is quite desirable for the spectroscopist facing such problems

from a standard Ti:A120 3 oscillator.

6.3 Cavity dumping

Cavity Dumping is a technique by which the output coupling from a laser cavity is

suddenly switched to a very large value, resulting in the "dumping" of all or a large

fraction of the intracavity pulse energy into an output pulse. Since the intracavity

pulse energy is inversely proportional to the output coupling this technique can result

in large enhancements of pulse energy in the presence of sufficiently low transmission

output couplers. The period for which the output coupling is switched to a high value

should ideally be exactly one cavity round trip time in order to ensure maximum

energy in the "dumped" pulse. Though the technique can be used for continuous
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wave, Q-switched or modelocked lasers this discussion will focus on the modelocked

case which is relevant to this thesis.

Electro-optic or acousto-optic techniques can be used for cavity dumping. Electro-

optic dumping is usually achieved by introduction of an electro-optic Pockels cell and

a polarizer into the cavity. Switching the voltage across the Pockels cell by the "half-

wave voltage" then results in dumping of the cavity energy. Since half-wave voltages

for common Pockels cell materials are in the range of several hundred volts, it is

difficult to achieve electro-optic dumping at MHz repetition rates. Consequently the

technique of acousto-optic dumping pictured generically in Figure 6-1 was used.

An acousto-optic cavity dumper consists of a travelling wave acousto-optic mod-

ulator (AOM), made of a fused silica cell and attached to a piezoelectric transducer

(PZT) driven by a source of radiofrequency (RF) pulses. When the dumper is turned

on, the RF pulse source sets up acoustic travelling waves in the dumper cell. These

acoustic waves modify the local index of the dumper medium by the photoelastic effect

and thus produce a phase grating off which the laser beam diffracts. The diffracted

beam comprises the cavity dumped output.

The cavity dumper used in this thesis consisted of a Spectra Physics model 344S

high efficiency dumper cell and a Spectra Physics model 454 cavity dumper-driver

consisting of an RF oscillator and pulse generator. The dumper cell was composed of

fused silica and was 2.5 mm thick. The RF oscillation frequency is chosen to be high

(- 779 MHz), in order to enable amplitude modulation by pulses on the timescale

of the laser round trip time which is about 10 ns. Further, the high frequency of the

acoustic wave also increases the diffraction angle for the output beam and makes it

easier to extract from the cavity.

As shown in Figure 6-1 the dumper cell is placed in the focus of a pair of curved

mirrors. This is done to ensure that the laser beam is tightly focussed when it interacts

with the acoustic wave, since the transit time in the cell for the leading edge of the

travelling acoustic wave from one edge of the beam to the other sets the rise time
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Figure 6-1: Typical arrangement for an acousto-otpic cavity dumper set up in a
double pass configuration.

of the cavity dumped output. Notice also that the dumper is used in a double pass

configuration which enhances the achievable diffraction efficiency. This can be proved

by the derivation of a simple expression for the dumped laser output beam.

If the incident electric field on the dumper is:

E1,(t) = Eocos(wt) (6.2)

then after one pass through the dumper the diffracted field is

Ed(t) = EVEocos(w - O)t (6.3)

where i is the one pass dumper efficiency and S is the frequency of the acoustic

signal. The remaining undiffracted intracavity beam is:

Eic(t) = (1 - x)Eocos(wt) (6.4)

After reflection from the mirror M3 both beams are refocused into the modulator
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where they interact again with the acoustic wave. Some of the diffracted beam will

rejoin the intracavity beam and some of the intracavity beam will be diffracted once

more so that the total diffracted output composing the dumped beam is:

Edump(t) = f(1 - l)VrEocos(w - Q)t + -(1 - )Eocos(w + Q)t (6.5)

= 2V•/ (1 - n)Eocos(f1t)cos(wt) (6.6)

= 2/sV/ (1 - ,n)Ei(t)cos(Qt) (6.7)

Thus the intensity of the output is

Idump (t) IEdum(t)l2  (6.8)2,q
- 1 [4s(1 - ) 1E4,(t)l'2 cos2t] (6.9)

SL [2n(1 - ) IE(t)12 (1 + cos2t)] (6.10)
= Ii(t)2K(1 - n)(1 + cos20t) (6.11)

where q7 is the impedance of free space. From this expression it is clear that 100%

dumping efficiency occurs in the double pass configuration configuration when the

single pass efficiency r is only 50% ie. n = 0.5. In practice double pass efficiencies

from acousto-optic dumpers are in the 70% range. Note that the modulation period

of the dumped ouptut is on the nanosecond timescale which is several orders of

magnitude longer than the femtosecond timescale of the dumped pulses. Thus for all

practical purposes the amplitude of the dumped pulses can be considered constant.

When cavity dumping a modelocked laser, the timing between the modelocked

pulses and the acoustic burst must be synchronized as pictured schematically in Fig-

ure 6-2. One acoustic burst is shown in an expanded view in Figure 6-3. Reflected

light from an intracavity prism was fed to a photodetector and preamplifier assembly.

This electronic output was used to trigger the cavity dumper in order to achieve the

desired synchronization between the travelling acoustic bursts in the dumper and the
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Figure 6-2: The acoustic bursts in the dumper are synchronized to the modelocked
pulse train circulating in the laser.

intracavity pulse train. Fine tuning of the phase of the RF wave and the timing of

the central peak were also possible and necessary in order to obtain the maximum

contrast between the main dumped pulse and the neighbouring pulses.

6.4 Experimental results

A schematic of the laser cavity implemented is shown in 6-4. The gain medium was

a short, 0.8 cm length, Brewster-angled Ti:A12 0 3 crystal with a doping density of

approximately 0.2 % wt.. The crystal was placed in an astigmatically compensated

Z-fold formed by two 10 cm radius of curvature mirrors. The astigmatic compensation

angle was 22 degrees. The laser was pumped by all lines of an Argon laser focused

into the crystal using a 12.5 cm focal length lens. A 3.5% output coupler and a high

reflector formed the two ends of the cavity. Four LAKL21 prisms provided second-

order dispersion compensation while maintaining low third-order dispersion [38]. The
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Figure 6-3: The acoustic wave at a carrier frequency of 779 MHz is modulated by an
RF envelope of about 14 ns pulse width. The timing of the envelope peak and the
phase of the acoustic wave are adjustable.
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Figure 6-4: Schematic for cavity dumped femtosecond KLM Ti:Sapphire laser.

tip-to-tip distance for each prism pair was 20 cm. A slit of variable width was placed

at one end of the cavity to enhance the fast saturable absorber, KLM effect. Kerr-lens

modelocking was initiated by inducing a small mechanical perturbation in the laser.

The acousto-optic cavity dumper, Spectra Physics model 344S described in the

previous section was placed at Brewster's angle in a second Z-fold. The cavity dumped

output could be obtained at variable repetition rates as high as 950 kHz. The available

repetition rates were discrete and determined by the driving electronics for the cavity

dumper. Figure 6-5 and 6-6 show the dynamics of the intracavity laser pulse train

during the dumping process at 952 kHz and at 454 kHz which were the two rates

of operation most often used in this investigation. However, stable dumping was

achieved at repetition rates of 95 kHz and 45 kHz also, as shown in Figures 6-7 and

6-8. At all of these repetition rates, each time a dumping event occurs the intracavity

pulse train drops in intensity. After dumping, the intracavity pulse train recovers to

its unperturbed level in approximately 500 ns. The recovery time was a function of

the dumping efficiency and the pump power of the laser.

The typical dumping efficiency of approximately 50% was obtained by careful
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Figure 6-5: Intracavity laser pulse train during dumping at 952 KHz.

Figure 6-6: Intracavity laser pulse train during dumping at 454 KHz. Note the
overshoot of the pulse train during recovery which is characteristic of the recovering
laser undergoing relaxation oscillations.
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Figure 6-7: Intracavity laser pulse train during dumping at 95.2 KHz.

Figure 6-8: Intracavity laser pulse train during dumping at 45.4 KHz.
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Figure 6-9: Dumped output pulse train. The contrast ratio between the main pulse
and adjacent pulses is about 20:1.

alignment and optimization of the cavity dumper. The laser beam was made to

traverse the dumper as close to the RF transducer as possible and the timing and

phase controls on the cavity dumper-driver were adjusted for maximum dumped

power. The transverse position of the dumper was also an important parameter that

needed careful adjustment to obtain a strong interaction between the acoustic wave

and the laser beam. An infrared camera was used to view and optimize the intensity

of the dumped output beam.

Figure 6-9 shows the dumped output pulses. The contrast ratio between each

dumped output pulse and its neighbouring pulses is 20:1. This high contrast ratio

was achieved by adjusting the timing and phase of the acoustic burst such that the

peak of the acoustic wave coincides with a modelocked pulse( see Figure 6-3). Since

the cavity round trip time (- 10 ns) is about 1.5 times the FWHM of the burst

envelope (- 7ns ), such adjustment ensures that the next modelocked pulse falls

almost outside the acoustic burst envelope.

Figure 6-10 shows the background-free autocorrelation of the a dumped laser pulse

with an energy of 100 nJ. A 500 Im KDP crystal was used in the autocorrelator. 100
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Figure 6-10: Autocorrelation of 100 nJ dumped output pulse. The pulse width is 50
fs assuming a sech2 shape.
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nJ was the highest dumped pulse energy observed from this system. The pulse width

is 50 fs assuming a sech 2 pulse shape. The laser was pumped at 8.8 W to yield 100

nJ of energy per pulse. The corresponding dumped peak power is about 1 MW which

is an order of magnitude in excess of the peak powers available directly from the

oscillator. The shot-to-shot stability of the cavity dumped oscillator is comparable

to that of the unperturbed oscillator, with pulse energy fluctuations of less than 5%.

Two SF10 prisms are used for dispersion compensation outside the laser cavity.

The prisms are necessary to compensate for residual chirp on the the pulse since it

is extracted at a point in the cavity where it is far from transform limited. Murnane

et. al. have discussed the large (- 30%) variations in pulse duration that occur as a

pulse travels around a femtosecond laser cavity [38]. The external prism pair is also

useful for precompensating chirp acquired during passage through the autocorrelator

and other diagnostic equipment. The distance between these prisms was optimized

experimentally.

Figure 6-11 shows the spectrum of the pulse. The bandwidth is 22 nm FWHM

corresponding to approximately 1.5 times the transform limit. The spectrum of the

dumped pulse is identical to the spectrum of pulses obtained at the output of the

oscillator. Thus the dumping process does not introduce any spectral filtering of the

pulse at the 50 fs level.

The traces of Figures 6-6 and 6-5 show that the laser continues to modelock stably

throughout the dumping process. As discussed in chapter 2, in the steady state, Kerr-

lens modelocking depends upon a balancing of nonlinear saturable absorption and self

phase modulation against gain bandwidth limiting and dispersion. When the pulse

energy is reduced immediately after dumping, the nonlinear saturable absorption and

self phase modulation are significantly decreased; however the laser remains stably

modelocked because the pulse broadening effects of bandwidth limiting and negative

dispersion are not too severe.

The cavity dumping process also produces transient dynamics in the pulse energy.
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Wavelength (nm)
Figure 6-11: Spectrum of 100 nJ dumped output pulse. The spectral bandwidth is
22 nm, and the center wavelength is 830 nm.
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Figures 6-6 and 6-5 exhibit a relaxation oscillation induced overshoot of the pulse

energy above its steady state level. When the laser is perturbed by the dumping

process, the coupling between the population inversion and the intracavity pulse

energy results in oscillation of both quantities until a steady state is re-established.

In our system the oscillations are highly-damped because of the large (3.5 %) output

coupling. The amplitude and period of the relaxation oscillation are a function of

the dumping efficiency (loss perturbation), the pump power, and cavity Q. This

phenomena is of interest because it suggests that cavity dumping might be used

to induce Q-switching or relaxation oscillation enhancement of the available output

pulse energies from solid-state lasers. This behavior contrasts with previous studies of

cavity dumping in dye laser systems, where the use of gain energy storage techniques

to enhance pulse energy is not possible.

From the above results it is clear that cavity dumping maintains the performance

advantages of modelocked Ti:A120 3 lasers in terms of pulse duration, spectrum, sta-

bility, and tunability while providing a significant increase in pulse peak power with

a variable pulse repetition rate. The approach also maintains system-simplicity by

avoiding the use of a separate amplifier and/or separate pump laser.

6.5 Further improvements and advances

The limitation on the energy currently available from this source arises because of

multiple pulse instabilities that occur at high pulse energies due to saturation of the

KLM saturable absorber action. When intracavity pulse energies become excessively

large (- 200 nJ) the corresponding pulse peak powers are also very high and all

intracavity nonlinear effects become magnified. When saturable absorber action and

self-phase modulation become too severe it is more advantageous for the laser to

redistribute the available intracavity energy among several pulses. Thus multiple

pulsing instabilities become frequent as was observed in this work. This phenomenon
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has also been predicted theoretically [34] and observed by other researchers [5].

Since the maximum peak intensity attainable in a single pulse is determined by

the strength of the KLM nonlinearity, reducing the nonlinearity by techniques such

as defocusing the beam within the crystal could reduce multiple pulse instabilities;

however, this approach would make the laser harder to start. In this scenario the use

of an active starting mechanism could prove useful.

It is well known that lowering the output coupling from a cavity dumped laser

results in a significant enhancement of the available dumped pulse energies. This is

because the intracavity power scales inversely with the output coupling. However the

tendency toward multiple pulse operation in the limited the demonstrated system to

an output coupling at 3.5%. Lowering the output coupler to 1% increased the cavity

Q, but did not enhance the dumped energies since it reduced the pump level at which

multiple pulse instabilities occured.

The more fundamental limit on the pulse energies ultimately achievable from this

oscillator, is the optical damage threshold of both the crystal and the cavity dumper.

Damage thresholds are not well documented in the literature though they are esti-

mated to be in the 100 - 200 GW/cm2 range for both sapphire and fused-silica. Since

the peak powers in the demonstrated laser are already on the order of 150 GW/cm2 it

is questionable how much further acousto-optic dumping techniques can be pushed.

In this context, electro-optic dumping is an alternative that cannot be ignored. How-

ever, while electro-optic dumping is characterized by high dumping efficiencies and

optical damage is not an issue (since there is no need to focus into the dumper), the

problem arises in attaining the 100 kHz repetition rate range. Using existing electro-

optic dumping technologies this is very hard to achieve. Group velocity dispersion

introduced by electro-optic dumpers (which are usually composed of several centime-

ters of rather dispersive materials such as lithium tantalate or deuterated KDP) is

another significant problem that must be contended with.

It is worth mentioning that since the demonstration in this thesis of the feasibility
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of the cavity-dumped Ti:A12 0 3 source, ultrafast spectroscopists in the Netherlands

have reproduced this technique in an exceedingly short pulsed oscillator [86]. They

have generated 13 fs dumped pulses with 60 nJ of energy per pulse corresponding to

peak powers of 5 MW. Using their source they have been able to generate a white

light continuum in a fiber. The spectrum of the pulses after passage through the fiber

extends from 500 nm to 1000 nm. Such a white-light continuum generated directly

from an oscillator is a significant breakthrough in the development of convenient

sources for spectroscopy. Further, compression of the output spectrum from the fiber

has produced 7.5 fs pulses which are the shortest pulses produced from a solid-state

source to date. These advances are very encouraging for they support the relevance

and versatility of the cavity dumped source for ultrafast studies.
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Chapter 7

Conclusion

This thesis has dealt with various aspects of femtosecond pulse generation in solid-

state lasers. The research reflects the key forces that have driven and shaped the field

during the past four years. The main contributions of the thesis are now summarized

as follows:

The technique of Microdot mirror modelocking has been demonstrated to be a

flexible and convenient way to modelock a variety of solid-state lasers. Microdot

mirror modelocking was used to modelock a laser-pumped Ti:A120 3 system to produce

190 fs pulses. It was also extended to a lamp-pumped Nd:YLF system to produce

2.3 ps pulses with 800 mW of output power. Microdot mirror modelocking has the

advantages of modularity, compactness, tunability and convenience. It suffers from

the drawbacks of introducing additional dispersion into the laser cavity. While sub 50

fs systems cannot be implemented with this technique, long pulse and lamp-pumped

systems can definitely benefit from its use. The technique itself can be improved

by refining the microdot mirror fabrication process. More detailed modeling of the

effects (on linear and nonlinear resonator modes) of introducing the microdot mirror

assembly into a specific cavity could also prove useful.

An iterative numerical procedure to model self-focusing in a resonator was written.

It is based on the simple description of self-focusing as a nonlinear scaling of the
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Gaussian beam q-parameter [8, 40]. While it does not account for complex effects such

as astigmatism and thermal lensing it provides an intuitive and convenient tool for

understanding the behavior of nonlinear resonators. It has been used to characterize

the linear and nonlinear behaviour of a simple resonator configuration closely related

to the compact laser geometry also implemented in this thesis.

A compact, gigahertz, KLM femtosecond oscillator was developed using a novel

method for dispersion compensation. 111 fs pulses were produced at a repetition

rate of 1 GHz and 54 fs pulses at a repetition rate of 385 MHz. A novel and com-

pact method of dispersion compensation technique based on the spatial separation of

propagation axes arising from the geometry of the resonator was conceived, analyzed

and implemented. The above-mentioned iterative model for modeling self-focusing in

a laser cavity was also used in the design of the compact femtosecond laser.

Features of this oscillator that require further study include the elimination of

astigmatic effects in the resonator and the minimization of bandwidth limiting coming

from the spectral spread of wavelengths in the crystal. With these improvements,

the gigahertz oscillator could have the potential of producing sub-10 fs pulses in a

convenient and cost-effective manner, due to the minimization of intracavity material

that is inherent to its design. This design also eliminates the need for space-consuming

prisms and experimentally demonstrates novel and heretofore unrecognized concepts

about the dispersive properties of resonators. It is hoped that this will stimulate the

development of other novel and compact geometries for KLM lasers. In combination

with diode-pumpable materials, it is hoped that the techniques demonstrated will

have a significant impact on the development of a compact and reliable femtosecond

technology.

Finally, a cavity-dumped femtosecond Ti:A120 3 source has also been developed

and demonstrated to provide an order of magnitude increase in available pulse ener-

gies directly from an oscillator. 100 nJ pulses were achieved with pulse durations of

50 fs at variable repetition rates as high as 1 MHz. The cavity-dumped laser provides
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a variable-repetition rate, intermediate-energy, simple and cost-effective source for

femtosecond studies. It fills an important gap, between stand-alone oscillators and

complex oscillator plus amplifier systems, in the energy spectrum of available sources.

Generation of a white-light continuum [86] has already been demonstrated directly

from a cavity-dumped oscillator. This constitutes a significant advance in providing

simple and reliable sources that are suitable for use in nonlinear spectroscopy. Fur-

ther studies into the causes of multiple-pulse formation, intracavity pulse dynamics

during dumping and the scaling of mode-sizes within the resonator, may lead to the

production of still higher pulse energies and peak powers using acousto-optic dump-

ing techniques. Electro-optic dumping techniques should also be considered as an

alternative.
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Appendix A

This appendix details the derivation of the differential equation for dq, the change in

the q parameter, upon propagation through an infinitesimal length dz, for a medium

with a parabolically varying index profile ie.

n = no (1 - 2r2/h f) (A.1)

As described in Chapter 3, a length dz of this medium possesses an ABCD matrix

analagous to a GRIN lens [36] defined by

A B 2h1 2

C D - -dz
h2 h fz

dz
no

1 dz2
2h 2

.f

(A.2)

Let the input to the infinitesimal distance be q

define:

and the output be q'. Let us also

q = r, / r2

q' = r'/'
1l /r2

(A.3)

(A.4)

we can write that

= Aq + B
Cq + D
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Clearly from Equation A.7 we have that

' = Arl + Br 2

r' = Cr1 + Dr2.

Using the above equations, recalling that

dq = q'- q

dr1 = r' - r,

and neglecting terms of second order in dz, we have that

dr 2  nor1

dz h 2

Consequently we can write,

d r1

dz r2
1 dri rl dr2

r2 dz r dz
r + (nor,)

12 h2
1 +2 no

no hf

Arl + Br2

Cr2 + Dr2

r2

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

and

drl r2

dz no
(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
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We can also write that

d dq 1 no
d(1/q) = -- /q •- (A.19)
dz dz no hA1

Substituting p = 1/q we have,

dp p2 nodp- = 2 - (A.20)
dz no h,

-p' + pý - 2jp,pi no
no= . (A.21)

Taking the real and imaginary parts of the above relation we finally arrive at the

coupled differential equations quoted in Chapter 3 namely,

dpr pr2 (ap,)2dp,. _ + (A.22)
dz no no
dpi 2p,

= -ap- (A.23)
dz no

(A.24)

where the scaling factor o is defined as,

1a P1- (A.25)
Pc,

aA 2

Pc, 2 (A.26)
87rnon 2

If we had carried out an identical derivation to describe linear propagation through

an infintesimal distance dz of a material with index no we would have got the same

equations with the modification opi -- pi. This is the basis for the description of

self-focusing by a simple scaling of imaginary part of the complex parameter 1/q.

Following the scaling of pi, the mathematical treatment of linear and nonlinear prop-

agation is identical.
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Appendix B

\ # ABCD Matrix Gaussian beam propagation #

\ ABCD.PGM
\ All distances are in centimeters
\ Wavelengths are in centimeters

\ **************************************Variable Definitions for all words
\ * Variable Definitions for all words *
\ **************************************

Integer
scalar n
scalar Ne
scalar posindex
scalar nslices
scalar count
scalar nbpoints

Real
scalar d
scalar k
scalar lambda
scalar MA
scalar MB
scalar MC
scalar MD
scalar zeta
scalar power
scalar Pcrit
scalar nO
scalar n2
scalar l1one
scalar ltwo
scalar lthree
scalar incr
scalar start
scalar flens
scalar done
scalar dtwo
scalar flens
scalar nstepsl
scalar nsteps2
scalar theta
scalar mirad
scalar temp

500 n :
10 Ne :=
I posindex :
1 nslices :=
0 count :=
0 nbpoints :

1. d :=
1. k :=
.00008 lambda :
1. MA :=
0. MB :
i. MC :=
1. MD :
0 zeta :=

1.5 nO :=
.1 n2 :
1.0 l1one :=
1.0 ltwo :=
1.0 l1three :
0.0 incr :
0.0 start :=
0.0 flens :=
0.0 d one :=
0.0 d-two :
0.0 f-lens :=
250.0 nstepsl :
10.0 nsteps2 :=
0.0 theta :=
0.0 mirad :
0.0 temp :=

Number of slices - resolution
Number of elements in the laser
Running index for position in laser
Index for position within elements
Variable for counting

\ Distance
\ slope
\ Wavelength
\ A
\ B
\ C
\ D
\ scale factor

\ Critical power
\ linear index
\ nonlinear index

\ initial values for plotsize
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dim[ 2 " ] array Mlaser
dim[ n ] array mode
dim[ n ] array position
dim[ 50 ] array modesize
dim[ 50 ] array xaxis

Complex

\ Total Matrix of laser
\ Mode radius
\ Distance in laser
\ Size of mode at a mirror
\ length of arm

scalar q
scalar q_nlin
scalar qinl_out
scalar q_nrl_diff
scalar qn.l_step

dim[ Ne , 2 , 2 ]
dim[ Ne , 2 , 2 ]
dim[ Ne 1 - , 2

1. q :=
1. qnl_in
1. qnl_out :=
1. q_nl_diff :=
1. qnlstep :=

\ q parameter
\ q at the input of the nl medium
\ q at the output of the nl medium
\ q difference between in and out
\ q step between in and out of the
\ nl medium.

array laser \ Array of matrices
array laserforw \ Array of matrices - forward
2 1 array laserrev \ Array of matrices - reverse

* Definitions of Matrices for different elements *
#############################################

: Freespace
d :=
complex
Matrix[ 1.

: Flat
complex
Matrix[ 1.

: Thinlens
d :=
complex
Matrix[ 1.

: Material
nO :=
nO / d :
complex
Matrix[ 1.

\ E d -- Mfs I

1. z=x+iy , d ; 0. , i. ]

\ [ -- Mflat I
1. z=x+iy , 0. ; 0. , 1. ]

\ [ f -- Mtl ]

1. z=x+iy , 0. ; -1. d / , 1. ]

\ [ d nO -- Mmat ]

nO z=x+iy , d ; 0. , 1. ]

: NL.Material
n2 := nO :
nO / d:=
complex
Matrix[ 1. nO z=x+i

: Mirrorsag
cos 2. * / d
complex
Matrix[ 1. 1.

: Mirrortan
cos * 2. / d:
complex

\ [ d nO n2 -- Mmat ]

.y , d 1. z=x+iy ; 0. , 1. n2 z=x+iy ]

\ [ mirad , theta -- Mmirsag I

z=x+iy , 0. ; -1. d / , 1. 1

\ [ r, theta -- Mmirtan]

Matrix[ 1. 1. z=x+iy , 0. ; -1 d / , 1. 1
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: Brewsterhilo \ En -- Brewsterhilo]
nO :=
complex
Matrix[ i. nO / 1. z=x+iy , 0. ; 0. , nO nO * ]

: Brewsterlohi \ En -- Brewsterlohi]
nO :=
complex
Matrix[ nO i. z=x+iy , 0. ; 0. , I nO nO * / ]

\ to manipulate q*************************
\ * Words to manipulate q *
\ ********$********************************

Radius
inv zreal inv

\ E q -- R(q) I

Waist \ [ q -- w(q) I
inv zimag abs pi * inv lambda *

Bparam \ [ q-- b(q) ]
waist
dup * pi * lambda /

sqrt

qinitial \ [ r, w --- q]
2 ** pi * inv lambda * neg
swap inv swap z=x+iy inv

Bil.transf \ [ q matrix -- q' ]
swap q :=
dup E 1 , i ] q
over [ i , 2 ] +
swap dup [ 2 , 1 ] q *
swap E 2 , 2 ] +

* Round trip matrix calculation *

Mult \ [ Mi M2 -- MN.M2 ]
<< * I + >>

Closure
dup [ i ,
dup [ 1
dup [ 2
[2 2]
MD MA - 2
NA ND - +
MC / 2 /
dup zimag

cr
then

Laserforw.matrix
Ne :=
Ne I + I do

\ M -- q
S1 zreal A :=
2 ] zreal NB :=
1 ] zreal MC :=
zreal MD :=
** MB MC * 4 * + 0 z=x+iy sqrt neg

O = if
Unstable cavity !!!"

\ [ Ni, .... , Mn, n -- Mlaserforw]

\ Do Ne times
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Laserforw xsectE Ne i + i - , i , ! ] :
loop

: Laserrev.matrix \ [ Mn-1, .... , M,-- Mlaserforw]
Ne i do \ Do ( Ne - I ) times

Laserrev xsect[ i , I , ! ] :
loop

: Laserrt.matrix
real matrix[ i , 0 ; 0 , i ]
Ne i + 1 do \ Do Ne times

Laserforw xsectE i , i , i ] zreal dup . mult
loop
Ne i do \ Do (Ne - 1) times

Laserrev xsect[ Ne i - , ! , ! ] zreal dup . mult
loop
0. z=x+iy

: Laser.matrix \ [ MI , ...
Ne :=
Ne i + 1 do

Laser xsect[ Ne I + i -
loop

, Mn , n -- Mlaser ]

, I ]

real matrix[ i , 0 ; 0 , 1 ]
Ne I + i do

Laser xsectE i , i , ! ] zreal mult
loop
Ne 2 do

Laser xsect[ Ne I + i - , ! , ! ] zreal mult
loop
0. z=x+iy

: Pcritical \ [ lambda , nO , n2 ---- pcrit]
* 8 * pi * inv swap 2 ** * 5.35 * \ the fudge factor a = 5.35

\ ************************************
\ * Words for Nonlinear propagation *
\ ************************************

: Enter.nonlinear \ Eqinput, power, pcrit -- scaled q]
/ neg I + sqrt zeta
zeta swap inv swap
over zimag * swap zreal swap z=x+iy inv

: Exit.nonlinear \ [ qinput -- scaled q]
zeta inv
swap inv swap
over zimag * swap zreal swap z=x+iy inv

: Propagate.nonlinearly

Enter.nonlinear
swap
Bil.transf
Exit.nonlinear

: Plot.bulk
nO :=
lone :=
dup

\ [ linearmatrix, qinput, power, pcrit ]
\ C ---- qoutput ]

\ C qinput, length, n - mode[l]
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0 L1one position 0]fill
position nO / + waist
mode :=

: Plot.bulk.nl \ [ qinput, length, n, power, pcrit -- mode []1
pcrit :=
power :
nO :=
lone :
dup
0 lone position []fill
n 1 + 1 do
power pcrit enter.nonlinear
position [ 2 ] nO / +
exit.nonlinear
dup waist mode E i :=

loop

\ Far field divergence *

: ffdiv \ E qinput, n, power, pcrit, lone, l1two, L1three - modeE]]
l_three :=
ltwo :=
l1one :
pcrit :=
power :
nO :=
0 lone Litwo + lthree + position
i posindex :=
lone position [ 2 E / 1 + i do

position [ 2 ] +
dup waist mode E posindex ] :=
posindex 1 + posindex :=
loop

power pcrit enter.nonlinear
l_two position [ 2 ] / 1 + 1 do

position [ 2 ] nO / +
dup waist mode [ posindex ] :=
posindex 1 + posindex :=
loop

exit.nonlinear
lthree position [ 2 ] / 1 + 1 do

position [ 2 ] +
dup waist mode [ posindex ] :=
posindex 1 + posindex :=
loop

[]fill

* Words to plot beam in cavity starting
* with calculated self-consistent q
*****************************************

Plot.beam.forward
1 posindex :=

\ E qi -- q2 ]
0.
Ne I + i do \ Total length of laser

Laser E i , I , 2 1 zreal Laser [ i , i , i ] zimag * +
loop
0. swap position []fill \ Autoscale pos. array
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Ne I + I do
Laser [ i , 1 , i ] zimag nO := \ Linear index
Laser [ i , 1 , 2 ] zreal O. = if \ Thin element ?

Laser xsect[ i , ! i ! ] zreal Bil.transf
else

Laser [ i i 1 , 2 ] zimag 0. = if \ Linear element
Laser [ i , 1 , 2 1 zreal nO * \ "Real" length
position [ 2 ] / dup I modulo - i + nslices :=

\ Assign slices to element
nslices ramp i - position C 2 ] * nO / over +

\ Propagate through slices
waist
mode sub[ posindex , nslices ] := \ Move to next elt
posindex nslices + I - posindex :=
Laser xsect[ i , ! i ! ] zreal Bil.transf

\ q at end of element
else

Power
lambda
Laser [ i , I , i ] zimag
Laser [ i , 2 , 2 ] zimag
Pcritical dup Pcrit :=
enter.nonlinear
Laser [ i , 1 , 2 1 zreal nO *
position [ 2 ] / dup i modulo - I + nslices :
nslices ramp i - position C 2 ] * nO / over +
waist zeta sqrt *
mode sub[ posindex , nslices ] :=

\ Move to next elt
posindex nslices + I - posindex :=
Laser xsect[ i , ! i ! ] zreal Bil.transf
exit.nonlinear

then
then

loop

: Plot.beam.reverse \ [ qi -- q2 ]
n posindex :
0.
Ne 1 + 1 do \ Total length of laser

Laser [ i , I , 2 ] zreal Laser [ i , 1 , 1 1 zimag * +
loop
0. swap position ]lfill \ Autoscale pos. array
Ne i + i do \ Localized element ?

Ne i - I + count :=
Laser [ count , i , 1 ] zimag nO :
Laser [ count , 1 , 2 ] zreal 0. = if \ Thin element ?

Laser xsect[ count , ! , ! ] zreal Bil.transf
else

Laser C count , 1 , 2 ] zimag 0. = if \ Linear element ?
Laser [ count , 1 , 2 1 zreal nO *
position [ 2 ] / dup I modulo - I + nslices :
nslices ramp i - position [ 2 ] * nO / over +
waist rev[ 1]
mode sub[ posindex nslices - I + , nslices ] :=

\ Move to next elt
posindex nslices - posindex :=
Laser xsect[ count , ! , ! ] zreal Bil.transf

else
Power
lambda
Laser C count , I , 1 1 zimag
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Laser [ count , 2 , 2 ] zimag
Pcritical dup Pcrit :
enter.nonlinear
Laser [ count , 1 , 2 ] zreal nO *
position [ 2 ] / dup 1 modulo - 1 + nslices :
nslices ramp 1 - position [ 2 ] * nO / over +
waist zeta sqrt * rev[ 1 1
mode sub[ posindex nslices - 1 + , nslices ] :=

\ Move to next elt
posindex nslices - posindex :=
Laser xsect[ count , i , ! ] zreal Bil.transf
exit.nonlinear

then
then

loop

\ **************************************
\ * Words to compute q on a roundtrip
\ * without plotting anything *

: compute.forward \ [ qi -- q2 ]
1 posindex :
0.
Ne 1 + i do \ Total length of laser

Laser [ i , 1 , 2 ] zreal Laser [ i , 1 , i ] zimag * +
loop
0. swap position []fill \ Autoscale pos. array
Ne 1 + i do \ Localized element ?

Laser [ i , i , 1 ] zimag nO :=
Laser [ i , 1 , 2 ] zreal 0. = if \ Thin element ?

Laser xsect[ i , E i ! ] zreal Bil.transf
else

Laser [ i , 1 , 2 zimag 0. = if \ Linear element
Laser xsect[ i , ! , ! ] zreal Bil.transf

else
Power
lambda
Laser [ i , 1 , 1 ] zimag
Laser [ i , 2 , 2 ] zimag
Pcritical dup Pcrit :
enter.nonlinear
Laser xsect[ i , ! i ! ] zreal Bil.transf
exit.nonlinear

then
then

loop

: compute.reverse \ [ q-- q2 ]
n posindex :
0.
Ne I + i do \ Total length of laser

Laser [ i , i , 2 1 zreal Laser [ i , 1 , I ] zimag * +
loop
0. swap position []fill \ Autoscale pos. array
Ne i + 1 do \ Localized element ?

Ne i - 1 + count :=
." element # " count . cr

Laser [ count , 1 , 1 ] zimag nO :
Laser [ count , 1 , 2 ] zreal 0. = if \ Thin element ?

Laser xsect[ count , ! , ! ] zreal Bil.transf
else

176



Laser [ count , 1 , 2 ] zimag 0. = if \ Linear element ?
Laser xsect[ count , ! , ! ] zreal Bil.transf

else
Power
lambda
Laser C count , 1 , I 1 zimag
Laser C count , 2 , 2 ] zimag
Pcritical dup Pcrit :
enter, .nonlinear
Laser xsect[ count , i , z! ] real Bil.transf
exit .nonlinear

then
then

loop

: Display.mode
mode ri :=
mode neg r2 :=
position x :
ri C n 2 - ] dup ri [ n i - ] := ri C n :
r2 C n 2 - ] dup r2 C n 1 - := r2 C n :=

\ *********************************
\ * Words for nonlinear iteration *
\ *********************************

: nl.plot \ [ qnlin -- qnlout ]
dup qnl-in :=
plot.beam.forward
display.mode
ri C n 2 - ] dup ri [ n 1 - ] := ri C n :=
r2 [ n 2 - ] dup r2 [ n i - ] := r2 [ n :=
r3 E n 2 - ] dup r3 E n i - ] := r3 E n ] :
r4 C n 2 - I dup r4 [ n 1 - := r4 C n :=

: nl.smart \ [ qnlin number -- q_nlout ]
swap q-nlin :=
1 + 1 do

qnlin
compute. forward
compute .reverse
qnlout :=
q-nlin qnlout - zmag cr ." Error: "
qnlout inv zimag z=O+iy inv qnlin :=

loop
qnl-in nl.plot

\ ****************************************
\ * Words to simulate particular cavitiy *
\ * configurations
\ ****************************************

\ Simple lens cavity with xtal
: test \ E flens, lone, 1_two ---

l-two :=
lone :
flens :=
0 power :
flat
.3 1.76 3.e-16 nl.material
lone .3 1.76 / - freespace
flens thinlens
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ltwo freespace
flat
6 laser.matrix
closure
dup qnlin
plot.beam.forward
display.mode
ri r3 :
r2 r4 :

Simple lens cavity without xtal
: lineartest

_two :
lone :
flens :
0. power :
flat
1_one freespace
flens thinlens
l_two freespace
flat
5 laser.matrix
closure
dup q_nl_in :=
plot.beam.forward
plot.beam.reverse
qnl_out :

\ Garden variety four mirror x
: garden

dtwo :
d_one :
l_two :
lone :
0 power :
flat lone freespace 5 thi
d_one freespace
2.1 1.76 3.e-16 nl.materia
dtwo freespace
5 thinlens ltwo freespace
9 laser.matrix
closure
dup qnl_i:n
plot.beam.forward
display.mode
ri r3 := r2 r4 :
plot.beam.reverse
qnlout :=
display.mode
ri [ n 2 - ] dup ri [ n 1
r2 [ n 2 - ] dup r2 [ n 1
r3 [ n 2 - ] dup r3 [ n 1
r4 [ n 2 - ] dup r4 [ n 1

\ [ flens, lone, l1two --- ]

\ [ lone, ltwo, done, d_two ]

- := r [ n ]
- ] := r2 [ n ]
- ] := r3 [ n] :=
-] := r4 [ n ]
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Appendix C

This appendix provides details of a part of the derivation of dispersion for the com-

pact laser geometry demonstrated in Chapter 5. Figure 5-12 is reproduced here for

convenience. In this figure the central wavelength for which the prism is cut has been

assumed. It was shown in chapter 5 that P1 (A), one component of the wavelength

dependent optical path length P(A) through the cavity was given as a function of the

angle 8(A), defined in the above figure, as

P1 (O) = XsinO(A) + YsinO(A) (C.1)

We want to derive a convenient expression for

dP1 = XcosO(A) - YsinO(A) (C.2)

Referring to Figure C-1, notice first that for any wavelength,

ZR = ZQcosO(A) (C.3)
= (X - YtanO(A))cosO(A) (C.4)

= XcosO(A) - YsinO(A) (C.5)

dP1= d (C.6)
dO
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X

a = (90 - 0)

P-- (90 - 13 )
On f

OC

Figure C-1: Detailed geometry for calculation of path length in one part of unfolded
cavity of Figure 5-11.

Further, for the central wavelength, A0 at which the crystal is assumed we are

attempting to show that

ZRo = AoBo (C.7)

To see this notice that since both,

(C.8)

and

p = 90 - 0o (C.9)

the two lengths ZQo and QoBo are equal. Now, examining the triangles ZQoRo and

QoA oB o, we find that they are clearly congruent, which proves that

ZRo = AoBo (C.10)
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