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Abstract

This thesis investigates the potential uses of information technologies for transit applica-
tions; specifically to the real-time functions of operations monitoring and control and pas-
senger information. To an agency that is currently considering technology to improve
performance, this thesis guides the agency through the many issues that should be
addressed.

The research first investigated the information needs of these two functions, the relative
value of these types of information and the potential for information technologies to meet
these information needs. It was found that for both functions, vehicle location information
is essential, and other types of information such as passenger loads, service disruption
information and vehicle status might also be useful. Information technologies have the
potential to gather and deliver this information quickly and on a system-wide basis.

The thesis then investigated the wide range of technologies currently available and identi-
fied Automatic Vehicle Location (AVL) systems as the ones which best satisfies these
functions' needs. AVL systems consists of vehicle location, communications, hardware
and software, and human systems, and there are many issues that need to be resolved
when choosing AVL system technology.

Case studies of three agencies currently implementing information technologies revealed
several benefits of AVL systems. For AVL systems that have operations monitoring and
control functionalities, the real-time benefits included better schedule adherence,
increased safety and security, the potential for increased supervisory efficiency and the
potential for improved work environments. The real-time benefits of passenger informa-
tion systems included limited travel and wait time savings, improved passenger percep-
tions and a willingness on the passenger's part to pay a premium for passenger
information. The costs for AVL systems can be categorized into development costs, capi-
tal costs and ongoing operating costs. Before these systems are implemented, however,
agencies have to identify the best use for information technologies and this thesis devel-
oped a framework that can help structure the agency's selection of an appropriate informa-
tion technology.

Thesis Supervisor: Nigel H. M. Wilson
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

The improvement of system performance is prime goal that every transit operator

strives to achieve either by improving quality of service without substantially increasing

costs, or by reducing costs without substantially degrading service. With continuing

improvements in the cost/performance of computer and communications technologies,

many agencies are looking to these technologies to help them optimize system perfor-

mance. A subset of these emerging technologies is being used for three particular func-

tions: operations monitoring and control, passenger information, and functions related to

service planning.

The objective of this thesis is to take a closer look at the three critical service-

related functions (with primary attention focused on the real-time functions of operations

monitoring and control and passenger information), and the alternative technologies that

can be used to improve their performance. This thesis also develops an approach for

selecting an appropriate information technology and assesses the benefits of these systems

to these real-time functions. Specifically, this thesis intends to answer the following ques-

tions:

* What are the needs of these service-related real-time functions and how might com-
puter and communications systems improve system efficiency and effectiveness?

* What type of computer and communications technologies are available to be applied to
these real-time functions and how can they be used?

* What are the best uses for information technology and how effective are these technol-
ogies in improving these functions?



With the information provided in this thesis, agencies interested in acquiring new sys-

tems for the purposes of operations monitoring and control, passenger information, or

other functions to improve system performance will have a better understanding of the

implications of their choice on overall performance. They will thus be in a better position

to choose a technology appropriate to their needs and then apply the technology effec-

tively.

1.1 System Performance

Every transit operator must be concerned about system performance. Passengers who

use the system have high expectations about service quality, desiring service to be fre-

quent, regular and structured to take them places they wish to go.

Agencies respond to the service challenge by first developing a comprehensive service

plan in which the routes and levels of service are determined by considering passenger

needs and trading them off against the cost of service provision. To develop an effective

service plan, data needs to be collected on travel patterns and system usage. This data col-

lection function and associated service planning functions, which primarily operate in an

off-line manner, are described later in this section.

After service plans are developed, agencies must make sure that operations occur con-

sistently and reliably on a day-to-day basis according to the plan. Any functions that sup-

port operations must occur on a real-time basis. Two of the major functions used to aid in

service operations are operations monitoring and control and passenger information, both

of which are described below.



1.1.1 Operations Monitoring and Control

As with any service industry, transit service must be "consumed" as it is "produced",

which places great importance on the reliability and quality of service delivery and

stresses real-time oversight. The operations monitoring and control (OMC) function of a

transit agency serves to ensure that vehicles are closely adhering to the operating plan and

to identify and ameliorate significant deviations from the plan. Operations monitoring and

control is also used to detect and deal with emergencies. The monitoring element detects

vehicles that are not serving their route, not on time or evenly spaced, while the control

element implements strategies to re-optimize service given the current system state. While

both elements are important, the ability to intervene effectively is critical to the OMC sys-

tem actually improving performance - simply detecting a problem may be of little value.

Making sure that vehicles run at constant headways can be quite challenging, depend-

ing on the technology and the operating situation. If the operating conditions are generally

clear of problems such as congestion or frequent vehicle breakdowns or if guideway tech-

nology gives vehicles an exclusive right of way, then it is generally easier to maintain con-

stant headways. Under other conditions, many situations can occur which can cause

irregularities in service. The type of situations that can occur largely depends upon the

vehicle and its operating environment. Vehicles that operate on exclusive rights-of-way on

fixed guideways (e.g. rail vehicles) can encounter somewhat different situations than vehi-

cles that operate on a shared right-of-way in mixed traffic (e.g. buses). Example situations

and their effects on service are shown in Table 1.1.

The role of operations monitoring and control is to identify and respond to these situa-

tions as they occur in order to mitigate their effects on service quality and operations costs.

Several strategies have been developed in theory and some are used in the field. Theoreti-



cally, each strategy can be effective in specific circumstances, but these strategies may not

be as effective in practice. One of the reasons for this is that most transit operators have

had to rely on labour intensive techniques to perform operations monitoring and control,

and these techniques may not collect the information needed to make effective control

decisions. Current trends, however, are to rely more on computer and communications

systems to help perform this function by gathering the needed information. Advanced

technologies also can improve field operating conditions, for example, signal preemption

systems can selectively regulate vehicle running times by adjusting the traffic lights along

a vehicle's route.

Situation Rail System Effect Bus System Effect

Emergency occurs on vehicle Train is forced to stay at station. All passengers on All passengers on bus must wait until situation is
train must wait. Trailing trains may be forced to wait resolved. Bunching may occur locally but since buses
until situation is resolved. can overtake each other, the effect on other buses is

minimal.

Emergency right-of-way closure. Train service is cut off for a portion of a route. Clo- Buses are forced to go off-route, affecting running
sure usually affects entire route since trains have no times, headways and schedules, but service on the
alternative routes. parts of the route not closed can still be maintained,

although at a degraded level.

Heavy passenger loading Train is forced to stay at station, affecting local head- Bus is forced to stay at stop longer than usual, affect-
ways and schedules. Train bunching may occur, but ing headways and schedule. Bus bunching may occur
dwell times are not too sensitive to passenger loads since dwell times are very sensitive to passenger

loads.

Vehicle breaks down Train is forced off route and passengers must unload. All scheduled pickups for bus on remaining stops are
Until train goes off route, all trailing trains nearby compromised. Bus must unload passengers as they
must slow or stop, drastically affecting service at a are forced to wait for the next bus.
local level.

Operator is not available to run Replacement operator needs to be found; if one not Replacement operator needs to be found; if one not
vehicle found, then train will not run, which will leave a ser- found, then train will not run, which will leave a ser-

vice gap. vice gap.

Table 1.1: Real-time Situations Affecting Service

An aim of this research is to examine the strategies available to monitor and control

vehicles and the ways in which these strategies are currently being implemented. This

research will then look into the effectiveness of these strategies and how computer and

communications systems might be used to improve the effectiveness of control. The

research will then look into how effective these advanced technologies are likely to be at



improving this function. Although signal preemption is a potentially beneficial application

for information technologies, it will not be investigated in this thesis.

1.1.2 Passenger Information Systems

Passenger information has always been an important element of any transit service

since people who may want to use the system need to know what services that are being

offered. The requisite passenger information can be provided in many forms, typically

including maps and schedules of routes, telephone systems that provide transit informa-

tion, and signs and structures identifying boarding locations. This type of static informa-

tion on the operating plan may also include advertisements telling passengers of changes

in service or fares and policies, or even passenger points of contact such as passenger

agents who answer passenger enquiries.

All of these components are used to give passengers needed information about the sys-

tem so that they can make informed travel decisions. This information changes infre-

quently, however, and only pertains to regularly operated service. When service is

disrupted, these components cannot give the passenger any information about current per-

formance. It is possible, however, for current information to be made available in real-time

to solve this problem. Systems that are capable of doing this will be called dynamic, or

real-time passenger information systems (PIS). Currently, some operators attempt to pro-

vide real-time information by doing such things as sending out inspectors to particular

places to tell passengers about situations, sending voice messages through speaker-

phones, or displaying information visually on screens in terminals.

These strategies may not be very effective, however because these manual systems are

slow and by the time the information gets through to the public, it may already be too late

for passengers to act as they would have preferred. Transit operators are searching for bet-



ter ways to communicate real-time information such as service disruptions to affected pas-

sengers by making use of computer and communications systems.

This thesis will examine the role of passenger information and its effect on overall ser-

vice performance. The thesis will investigate how advanced technologies can be applied to

the passenger information function to improve overall efficiency and effectiveness, and

the extent to which these improvements are likely to result. A comparative analysis will

also be done between the passenger information and OMC functions.

Information technologies have not only affected the operations monitoring and control

and passenger information functions of transit. These technologies have found their ways

into almost every facet of transit operations and planning including management (auto-

mated collection and analysis of performance statistics), planning (automated route sched-

uling software and automatic passenger counters), finance (automated cost accounting),

dispatching (automated dispatch control) and vehicle technology (automatic vehicle con-

trol, automatic vehicle maintenance) just to name a few [Davies 28]. Some of these tech-

nologies operate in real-time (e.g. dispatching and vehicle control), but most of them are

used in off-line applications. Although all of these technologies are having a profound

impact in the industry, this thesis's prime focus is on the technology associated with the

automatic location of vehicles and the real-time uses of that information.

1.1.3 Service Planning Function

A critical function which supports the service planning process is data collection and

analysis. While the type of data that is gathered varies between agencies, it typically

includes passenger counts, revenue, and vehicle trip information, [40] all of which is used

in evaluating and refining service and operating plans. Historically, data collection has

been labour intensive and costly, often meaning that data is collected on only a very small



sample basis, resulting in a weak base for decision-making by planners. Recognizing this,

agencies have begun replacing their manual data collection systems with automated or

semi-automated computer and communications systems. These new technologies promise

benefits and efficiencies that cannot be achieved by previous systems.

These information systems can potentially both improve the quality of the data and

reduce the marginal cost of data collection, thus enabling more data to be collected on a

continuing basis. This in turn would give decision makers better information on which to

base their service plans. While accumulating better data does not guarantee a better ser-

vice plan, it does remove a major obstacle to good planning.

This is well illustrated by the Ottawa Carleton Regional Transportation Commission

(OC Transpo), which has been using an Automated Passenger Counting (APC) system for

many years which has allowed them to collect detailed data on a more frequent basis than

the previous manual collection system. The result has been a clearer picture of the service

that OC Transpo provides and as a result, the agency has been able to tailor their services

better to meet passenger needs. At the same time, the agency has been able to reduce costs,

both by replacing the manual data collection system with a less expensive automated one

and by identifying and correcting inefficiencies in the service plan detected from the anal-

ysis of the data collected by their APC. OC Transpo's APC systems clearly shows that the

utilization of advanced technologies for data collection to support service planning can be

cost-effective. OC Transpo's APC system is investigated in more detail in the case studies

chapter of the thesis.

Another example of advanced technology which can support the service planning

function is the electronic farebox, which can automatically count revenue and boarding

passengers. Electronic fareboxes also record running totals and can count passengers by

different fare categories.



1.2 Information Technologies

The transit industry's current interest in the computerization and automation of its sys-

tems has gathered significant momentum of late. In 1994 there are 28 agencies in North

America using or intending to use an Automatic Vehicle Location (AVL) technology ver-

sus only 6 agencies 15 years ago [57, 34]. In many places in Europe (e.g. London, Dublin,

and Germany) and Japan (e.g. Tokyo and Osaka), systems based on advanced technolo-

gies have been in place for quite some time [34]. For the most part, full scale implementa-

tion efforts in Europe and Japan has preceded similar efforts in North America.

Transit operators have been contemplating the potential benefits of computer and com-

munication systems for many years. Example applications such as signpost-odometer sys-

tems and passenger counting systems were developed by a few transit agencies as early as

the 1970's (see Table 1.2). The main obstacles to their widespread use in the past, how-

ever, were that the technologies were extremely expensive, crude and inaccurate, and did

not satisfy the data needs of these agencies.

Over the last 10 to 15 years, however, computer systems have become more powerful

and less expensive, and the advance of satellite, microwave and cellular technologies have

made it possible to provide inexpensive and reliable communication networks. As a result,

it has become much more feasible to apply these technologies cost-effectively to public

transportation than it was previously, and the range of technologies have increased sub-

stantially.

For the purposes of performance monitoring, many transit operators have similar

information needs: vehicle location and (perhaps) number of passengers. There is one sub-

set of technologies that seems to address these basic information needs: Automatic Vehi-



City Year Initiated Intent Status as of 1979

Chicago 1969 AVM Demo Completed: Emer-
gency vehicle location
done

Toronto 1974 AVM Demo Pilot/Evaluation

Cincinnati 1975 TIS Demo Active/Expanding

Mississauga 1977 AVL & Info System Active/Expanding

New York City 1979 Full AVM Being Developed

Los Angeles 1979 AVM Demo Being Developed

AVL = Automatic Vehicle Location, AVM = Automatic Vehicle Monitoring,
TIS = Transit Information System

Table 1.2: Early North American Computer and Communication Systemsa

a. Source: Hamilton and Polhemus [34]

cle Location (AVL) systems and subsystems. An AVL technology is defined as one that

has the capability of providing real-time vehicle location information with subsystems to

process this data to provide information to the transit operator in a useful form. AVL sub-

systems include communications, hardware, software and user interface components.

Some AVL technologies are sometimes referred to as Automatic Vehicle Monitoring

(AVM) or Automatic Vehicle Identification (AVI) technologies. AVM technologies are

similar to AVL technologies but they may also include all of the subsystems necessary to

provide monitoring whereas AVI technologies locate and identify vehicles on a more dis-

crete basis than AVL technologies which provide more or less continuous information. In

many cases, however, these terms are used interchangeably.

When a computer and communications system is designed for transit applications, the

following issues must be considered:

Centralization versus Decentralization

A system can be designed to have most of the equipment, processing and decision-

making at a central location, making the control center the "brains" of the systems and the



controlled vehicles "dumb" followers. Alternatively, equipment, processing and decision-

making can be partially decentralized by putting more processing, equipment and deci-

sion-making capabilities onto the vehicles. Each approach to system design has specific

advantages and disadvantages.

Hardware-Software-Labor Substitutability

How much hardware and software is needed, and how does the system interact with

the users? Both hardware and software are needed to make a system work, and in some

cases software can be used as a partial substitute for hardware. In some cases, both hard-

ware and software can replace functions normally done by humans. The issue thus

becomes one of substitutability between hardware, software and labor, and the roles each

should have in a new system.

Cost and Accuracy

In order for AVL systems to be effective, accurate vehicle locations are essential.

Locations that are estimated inaccurately can lead to errors in control decisions or in the

real-time information given to passengers. Accuracy requires more investment, however,

and there is a direct relationship between the two. The challenge thus becomes one of

determining the accuracy that is both achievable at reasonable expense and adequate for

real-time needs.

Discrete Versus Ouasi-Continuous Updating

Depending upon the technology, it is possible to receive information about vehicles

either on a quasi-continuous or discrete basis. Both types of systems gather information

about vehicles, but discrete systems provide location information only periodically while

quasi-continuous systems provide information more frequently. Continuous systems may

provide more accurate and useful information, but may also be more costly.



This thesis examines a variety of computer and communication systems that are cur-

rently being used or have potential use for transit applications. When the thesis investi-

gates the types of computer and communications technologies available, most of the focus

will be on AVL systems and their subsystems since these technologies address a substan-

tial portion of to agency's information needs. The thesis also investigates the general

issues in AVL design defined above.

Appropriate uses for these technologies will be examined to see how they can be

applied to improve system performance, with a particular focus on the operations monitor-

ing and control and passenger information functions. Several agencies that are currently

using AVL systems and subsystems will be investigated to see how these systems are

applied in practice.

1.3 Literature Review

This is not the first investigation of the potential of applying information technologies

to transit functions. Several previous articles have provided either a listing of available

technologies and their traits or presented a working evaluation framework.

Morlok[45, 46] focuses on the benefits and economic feasibility of Automatic Vehicle

Monitoring and Control (AVM/C) systems. The Morlok study was organized in five parts.

The first part of the study classified the elements of an AVM/C system as a basic real-time

system, a basic transit management information system and optional elements. The basic

real-time elements include an Automatic Vehicle Location (AVL) component, a communi-

cations system permitting two-way communication between operators and dispatchers, a

central computer, software to process incoming data, and an operator interface system.

Dispatchers complement the system by analyzing AVL information and making control



decisions which are then relayed to the operators. The transit management information

system normally consists of a computer to store and process data, links to compile data

from multiple sources, and analysts to draw conclusions from the data. Optional elements

such as passenger counters, vehicle maintenance systems and passenger information sys-

tems enhance the system and provide additional benefits. Although the optional elements

listed by the study are not comprehensive, they illustrate the types of options that are

available.

In the second part of the study, Morlok identified several general benefits of AVM/C

systems, categorizing these benefits as both real-time and those due to better management

of transit information. Some of the real-time benefits noted by the study were improved

system performance, increased passenger satisfaction leading to increased ridership, and

improved safety along the route provided by continuous monitoring and emergency

alarms. Some of the benefits resulting from analysing post-processed data were the ability

to resize the fleet, to determine routes and frequencies which better match demand, and

(perhaps) decreasing costs. Many benefits were listed, but only a few of them were sup-

ported with solid evidence on the magnitude of their impacts. For instance, the study states

that better control leads to increased rider satisfaction, leading to increased ridership, but

little evidence was presented to show the extent of this impact.

In the next section, Morlok described the experiences with AVM/C system prototypes

in three agencies; the SCRTD (Los Angeles), Cincinnati and the TTC (Toronto). For all

three agencies, their AVM/C systems were described, the agency's experiences with these

systems described, and each agency's own evaluation of system benefits and costs pre-

sented. In all these case studies, the agencies believed that their AVM/C systems had

proven to be beneficial. In general, it was found that if these AVM/C technologies were

implemented system-wide, they would reduce operating costs and increase benefits. Mor-



lok stressed, however, that although many of these agencies have had successful applica-

tions of these technologies, problems inevitably occur during the development phase.

Morlok suggested that development and input that is principally at the local level tends to

create a better system that exhibits fewer problems.

The study's evaluation of the benefits of these three agencies however, focussed prin-

cipally on off-line use of the AVM/C data. Real-time benefits, although suggested in this

study, were not investigated or evaluated in detail.

The next section of the study presented a framework that could be used to evaluate the

cost-effectiveness of real-time AVM/C systems. A comprehensive evaluation using a

multi-objective evaluation methodology considering both non-quantified and quantified

impacts was proposed. The report suggested that design features of proposed systems

should be catalogued and that all impacts, both quantitative and qualitative should be iden-

tified. Morlok does not provide any detail on how these impacts should be measured, how-

ever.

The study presents a framework for determining the costs of an AVM/C system using a

a simple 3 element cost model to determine cost changes from the base system:

ATC = A (ARevenue-hours) + B (ARevenue-miles) + C (AFleet-size)

where AVM/C systems are assumed to reduce revenue hours, revenue-miles and fleet

size. The cost of implementing an AVM/C system is given by:

Al = (Total-investment) (Cost-Recovery-Factor) + (AVM/COperations+Maintenance_Costs)

While this model is widely accepted, it is simplified and may not be precise enough to

effectively calculate costs and benefits. Specifically, the total cost function only takes into

account benefits derived from off-line analysis and does not take into account any real-



time benefits such as improved schedule adherence. The annual investment function clas-

sifies costs as capital or operating costs, but does not go any further with this breakdown.

For these types of systems, there may be different types of capital and operating costs and

a categorization of these types may produce a more accurate cost model.

A second relevant publication is a "handbook" for evaluating AVL systems [19, 20].

The first part of this handbook provides a comprehensive definition of AVL systems and

lists their potential uses. A generic evaluation process is proposed which will be applied to

4 cities that are implementing AVL system operational tests: Denver, Milwaukee, Dallas

and Baltimore. All of these cities are using or are planning to use similar technologies

(Global Positioning Systems or GPS) to determine locations and all have similarly sized

systems (about 1000 buses). The advantage of comparing similar sized cities is that it

becomes easier to differentiate benefits due to the technology, and benefits due to the

method of implementation. These operational tests can only help determine how well GPS

technologies will work, however and will not evaluate alternative location technologies.

The study proposed several criteria for evaluation including:

* Financial impacts
* AVL Functional Characteristics
* Utility/User Acceptance
* Overall Transit System Performance: efficiency
* Overall Transit System Performance: effectiveness

The study then suggests measures appropriate for each criteria.

A third report [Davies 27] describes and qualitatively assesses a wide variety of

advanced technologies for transit including AVL systems, passenger information systems

and operations monitoring and control systems.



In assessing several passenger information technologies, Davies created a matrix in

which each technology was assessed in terms of several benefit areas: time savings, fuel

savings, environmental considerations, traffic safety, comfort and convenience, safety and

security, efficiency and productivity, reliability and consistency and incentives. In one

assessment example, automated telephone information systems were judged to produce

time savings benefits by reducing waiting and booking times. The report conducted a sim-

ilar exercise with fleet management and control systems including transit operations soft-

ware and AVL systems. The assessment concluded that there are many potential benefits

of information technologies to both the passenger information and operations monitoring

and control functions. While this report provides a preliminary investigation of these tech-

nologies, it does not provide a detailed assessment nor does it provide a framework for

assessment.

Each of these reports leads to a greater understanding of the likely benefits of informa-

tion technology for these two functions but none of them justifies or estimates the size of

these benefits in a comprehensive manner. In addition, each report evaluates the benefits

of these technologies to these functions without looking at the information needs of each

function. When an agency selects a technology, it needs to be sure that the information

provided by the technology will be effective in carrying out its function. Also, all of these

reports start their assessment given a particular use for information technology, but none

actually goes back and looks at the best uses for these technologies. All of these issues will

be addressed in this thesis.



1.4 Organization of the Thesis

The next chapter explores the real-time functions central to this thesis in operations

monitoring and control and passenger information. The chapter first discusses the impor-

tance of these functions in improving performance by investigating the causes of service

problems. The chapter then describes these functions, their information needs, and the

ways by which advanced computer and communications systems could satisfy these infor-

mation needs.

Chapter Three examines computer and communication technologies, with a focus on

AVL systems. The chapter describes the alternative AVL technologies with their advan-

tages and disadvantages.

Chapter Four examines the experiences of transit agencies that use AVL and related

systems to help perform these functions. Three agencies (Toronto, Ottawa and London)

are examined in detail and other agencies and systems will be referred to briefly to supple-

ment these case studies.

Chapter Five synthesizes the knowledge gained in the previous chapters to present a

framework for selecting technology application, presents and evaluates key issues that

occur in general AVL system and design, and then assesses the potential benefits and costs

arising from these real-time applications.

Chapter Six summarizes the results of the thesis and makes recommendations for fur-

ther research.



Chapter 2

Potential for Application of Information Technologies

2.1 Introduction

There are many types of information that can be useful in operations management. Pri-

mary information needs can be summarized as vehicle locations, vehicle conditions, field

conditions and passenger-related information. Vehicle location information is useful for

determining how well vehicles are adhering to schedules and/or headways, and for possi-

bly giving priority to transit vehicles at traffic signals. Vehicle condition information is

useful for ensuring that vehicles are safe, operating correctly and are well utilized by pas-

sengers. Field condition information is useful to detect any circumstances along routes

such as congestion, accidents or road closures that may affect service. Passenger-related

information is useful to detect vehicles that have heavy loads, overloading of passengers at

stations, or passengers requiring assistance. Table 2.1 summarizes these information types.

There are two possible uses for this information in real-time: relaying it to human (or

automated) "decision-makers" who make real-time decisions on the operation of the sys-

tem (the operations monitoring and control function), or relaying it to passengers who then

use this information to help make their own travel decisions (the passenger information

function). The use of this information is to help remediate problems that occur in service.

This chapter focuses on the causes of unreliability that occur during service operations, the

specific information needs of the two functions to help remediate these problems and the

extent to which information technologies can help satisfy these information needs.



Information Type Use of information Examples

Vehicle location Schedule adherence, head- Relative location, absolute
way adherence, signal pre- location
emption

Vehicle condition Ensuring safety of vehicle Oil pressure sensors, tire
and making sure adequate pressure sensors, passenger
service is being provided loads, emergency alarms

Field condition Detection of abnormal con- Accident locations, road
ditions along routes closures, emergency situa-

tions

Passenger related Ensuring safety and service Passenger load on vehicles,
to passengers passengers at stops, pas-

sengers in need of assis-
tance

Table 2.1: Information in Transit Operations Management

2.2 Causes of Unreliability

In an idealized environment, all trips that were supposed to be run would be run on

schedule, 100% schedule adherence would occur, and there would be no accidents or dis-

ruptions that would compromise the reliability of service. In reality, most operating envi-

ronments are far from ideal. There are many events that can occur to disrupt service, and

knowledge of these causes is an important first step towards dealing with the problem.

In August, 1982, a Transit Reliability Workshop[1] was held with experts from various

disciplines discussing transit reliability. Although all aspects of reliability were discussed,

the participants' comments on unreliability caused by route conditions are of most rele-

vance here. The workshop came up with many route-related causes of unreliability and

categorized them into four different types: planning and priority/controllable, real-time/

controllable, planning and priority/exogenous and real-time exogenous. One reason

behind this classification was that more effective planning could be used to remedy causes

which are systematic and predictable, while for unpredictable causes, real-time interven-



tion may be needed. Some of these causes can be controlled or mitigated by the transit

agency while others are exogenous and largely beyond the agency's control. Table 2.2

summarizes some of the different causes of unreliability that were identified in the work-

shop.

Planning Real-Time

Controllable Route and network design schedule planning Vehicle breakdowns
Variation in demand and running time, sea- Poor dispatchings from terminal
sonal Late pullouts from garage absenteeism --
Stop frequency and location unpredictable
Operator behavior -- predictable aspects
Route length
Vehicle design -- loading/unloading character-
istics
High service frequency
Overloaded buses
Predictable boarding and alighting
Form of fare payment

Exogenous General traffic conditions which are predict- Unanticipated traffic disruptions
able Weather
Demand variation -- predictable Fires and accidents
Climate Unpredictable events (e.g., length of baseball
Other street conditions (e.g., construction) game)

Unexpected large demand variation

Table 2.2: Route-Related Factors Influencing Reliability

This table suggests that many of the causes of unreliability are systematic and can be

accounted for and controlled with good planning. Chapter 1 has already shown how

advanced technologies such as OC Transpo's APC system can gather the information

needed for good planning to deal with some sources of unreliability. What is of primary

interest here are the causes that require real-time detection and subsequent action.

What can be immediately observed from the list of real-time sources of unreliability is

that many of the impacts can be mitigated if the time and location of the triggering event

are known quickly. For instance, when a vehicle breaks down, if the time and location of

the breakdown is known, repair crews or an extra vehicle can be sent out to remedy the

problem. Also, if an operator drives constantly behind or ahead of schedule, the more



quickly this behavior is detected, the more quickly it can be remedied. Alternatively, infor-

mation can be relayed directly to passengers who, when notified of the problem, might

change their travel decisions to benefit them. Generally, the more quickly the incident is

detected and responded to, the less the negative impact to both the service and passenger

effect.

2.3 Operations Monitoring and Control

One function that responds to problems of unreliability is operations monitoring and

control. The function's first requirement is to detect any situation possibly requiring inter-

vention, which requires extensive information about the general conditions of the transit

network. In the past, much of this information was gathered and relayed manually to deci-

sion- makers, but information technologies have the potential to gather more information

and then to relay this information faster.

When supervisors detect a particular disruption on the transit network, they need to

select a control strategy, based on gathered information, that is likely to remedy the prob-

lem quickly. Traditionally, this has been a completely manual process, relying heavily on

the experience of the decision-makers. While this can be effective, the approach suffers

from typical limitations of human systems such as slow detection times, slow response

times, inadequate information for decision-making and inconsistent decisions. Informa-

tion technologies have the potential to assist in the decision-making process both in the

data gathering process and in suggesting control procedures or in the extreme, automati-

cally enacting control procedures. Some of these control strategies are described next.



2.3.1 Control Strategies

The Transit Reliability Workshop proposed various approaches to improving reliabil-

ity, many predicated on better planning, but some based on real-time intervention. In par-

ticular, holding strategies (where individual vehicles are delayed at points along their route

if they are ahead of schedule in order to maintain schedules) were viewed as having con-

siderable potential to improve reliability. For this strategy to be most successful, however,

information on vehicle locations is needed.

To deal with exogenous real-time events such as road emergencies or road closures,

the participants felt that there needed to be good communications between the operators

and the control supervisors. Many times this would mean a high quality radio network sys-

tem that allows operators to notify supervisors on the occurrence of exogenous events so

that supervisors can quickly assess the situation and make remedial changes.

Levinson [40] also identified several strategies that could be used to restore operations

to schedule (see Table 2.4) and the Chicago Transit Authority (CTA) has identified many

current and potential strategies for improving bus operations reliability (see Table 2. ).

One of the more complete efforts that links the evaluation of control strategies with

information needs and the uses of improved technologies is contained in a series of Mas-

ter's theses conducted at the Massachusetts Institute of Technology. Fellows [32], Deckoff

[29], Macchi [41] and Soeldner [61] all evaluated different control options for the Boston

MBTA Green Line (a light rail line with multiple branches) and the potential for the newly

installed Automatic Vehicle Identification (AVI) system had to improve performance. Fel-

lows's [32] work provides the most useful information for this thesis and, for this reason,

is the principal thesis to be cited.



Problem Strategy Method

Service Disruption (Accidents, vehi- Service Restoration Replace defective bus
cle breakdowns, emergencies, Divert bus from another route
weather) Provide standby or gap bus

Use supervisors' vans
Reroute bus
Run shuttle bus
Turn back (shortline) bus
Let following bus pass leader
Provide relief operator
Introduce bus delay

Late or Early Bus Schedule Control Hold early bus
Change bus speed (slow early bus,
speed late bus)
Reduce layover time

Heavily Traveled Bus Routes - Headway Control Maintain headways (schedule adher-
Delays or Overcrowding ence not required)

Let express buses run "free" on out-
bound trip from CBD

Delays and Overload at Major Load Control Provide empty buses at terminal or
Boarding Points major generator

Provide starter at terminal
Change fare collection practices

Absenteeism or No Show Extraboard Management Require operators to make extra
trips
Hire overtime operators
Modify extraboard procedures

Table 2.3: Bus Control Strategies

Fellows, citing previous research, listed the different control options available or pro-

posed for the Green Line and the information needs of each. A description of these control

strategies and the information needs specific to the Green Line are summarized below:

Short Turning

In a short turn maneuver, a train is turned back in the opposite direction before it

reaches its scheduled terminus in order to even out the effective spacing between them if

bunching is occurring. In addition to evening out headways, short turning can also be used

to move a train closer to schedule if it is presently behind schedule. This is done at the cost

of forcing passengers destined to downstream points off the train to wait for the next one.



On fixed rail lines, short turning can only be conducted at points where the track structure

allows this.

Service RestorationService Restoration Domain Current Status at CTA
Actions

Preempt traffic signals Single bus Not in use - no traffic signal preemption
capability

Limited stops with passengers Single bus Not current in use, but formerly an oper-
ating strategy on "boulevard" routes

Express down a different street Single bus Currently in use, using expressways and
Lake Shore Drive

Drop off passengers only Single bus Current used rarely, if at all

Express to a later point in trip Single bus Not currently in use

Turn before terminal Single bus Currently in use

Pick up run beyond start point Single bus Currently in use for late garage pull-outs

Operator continues past relief point Single bus Currently in use when one operator fails
to relieve another

Hold back leader Single bus Currently in use

Relief operator relieves other than sched- Single route Currently in use
uled operator

Operator exchange Single route Currently in use

Follower picks up passengers Single route Currently in use whenever a service
problem results in passengers being dis-
commoded

Spread the terminal Single route Currently in use

Spread the interval Single route Currently in use

Pass another bus Single route Currently in use

Reschedule the street Single route Currently in use, primarily for inclement
weather conditions

Emergency reroute Single route Currently in use, for fires, emergency
road repairs, etc.

Fill with pull-in Single route Currently in use

Pull-out instead of relieve Single route Currently in use, where the relief to be
made by the operator will not be there
due to a service problem

Jump buses Single route Currently in use in case of a defective
bus at a terminal

Bus change brought out by Maintenance Single route Currently in use in case of a defective
bus on the street

Table 2.4: Service Restoration Actionsa
a. Source: Chicago Transit Authority [18]



Analyzing a week's worth of records at one Green Line station, Deckoff [29] proposed

a set of decision rules that can be used by inspectors to determine which vehicles to short

turn. He identified the minimum information needs for the short turn procedure to be the

preceding two headways on each branch line. Other information such as real-time passen-

ger accumulation rates and scheduled destinations, following headways, train lengths and

running times between locations would also help inspectors make the short turn decision.

Expressing and Running Light

When a train is expressed, it makes no passenger stops for a certain portion of a trip.

The running light strategy is similar to the express strategy except that no passengers are

on board the train while it is expressed. In both cases, trains are speeded up in order to

even out headways if bunching is occurring upstream of the expressed train and/or to

bring them back to schedule if they are behind. This comes at the cost of a set of passen-

gers being forced off the train to wait for the next one, thus the best points to express trains

are usually at points where both the passenger load is light and there would be benefits to

many downstream passengers. Macchi [41] developed mathematical models to help deter-

mine when these strategies would be effective. He then proposed decision rules that

required information needs of preceding and following branch headways, estimated time

savings due to expressing, passenger loading.

Holding Trains

Sometimes it is necessary to "hold" a train at its current location for a time because it

is ahead of schedule or the preceding headway is very short. This is the least disruptive

control action since it does not require any passengers to be forced off the train. Fellows

identified the most important information needs for this strategy to be preceding and fol-

lowing branch-line headways (to determine whether holding would generate more even

headways) and following any-line headways (to determine the maximum holding time



without blocking a following train). Since holding could be done at many more points

along the line than the other strategies (theoretically limited only to the number of inspec-

tors collecting headway information), Fellows identified this strategy as the one that

would benefit a great deal from system-wide headway and schedule information.

Adding Trains

On the Green Line, a small number of trains called "Run as Directed" (RAD) trains are

kept on side tracks and used to fill in service gaps caused by incidents. This benefits pas-

sengers who arrive in the service gap who would otherwise have had to wait a long time

for service. In order to know when to add a train into service, Fellows suggested that sys-

tem-wide location information for all trains, the locations of RAD trains and the nature

and location of the incident are needed.

Managing Service Disruptions

Many of the above control strategies only deal with minor incidents. Sometimes inci-

dents of a more disruptive nature occur, such as a vehicle breaking down in the middle of

its run, and the staff are required to detect and respond to these major service disruptions

as quickly as possible. Fellows argued that a "whole-system" view, implying centralized

monitoring and control would be able to detect and respond to major service disruptions

faster than a system where decentralized control is in place. Fellows also suggested that

the ability for control staff to focus in on specific areas of the system would improve the

monitoring and control of service disruptions.

Fellows then investigated the control environment that is currently in place on the

Green Line. Currently, monitoring and control is being conducted in a highly decentral-

ized manner with inspectors, dispatchers and stationmasters all having some limited con-

trol responsibilities. Decisions on different control strategies are made by different

individuals, often at different locations. For example, decisions on short turning vehicles



are made by an inspector at one station, while decisions on expressing vehicles are made

by an inspector located one station inbound. The decision is often made given only infor-

mation local to the decision-maker.

Sometimes, decision-makers have information about other parts of the Green Line

through limited communications with operators and other inspectors but they do not

always consult with other inspectors or operators before making their decisions. The dis-

patcher at central control can also make control decisions based upon limited information

provided via telephone, radio and electronically, but the dispatcher lacks the local infor-

mation available to inspectors and operators. Generally, it is the inspector, not the dis-

patcher who makes most control decisions as illustrated in Table 2.7.

With this control structure, some, but not all of the information needs for these strate-

gies are being met. For the short turning, expressing and holding control options, inspec-

tors have knowledge of preceding headways, but lack knowledge on following headways

Control Action Decision-maker

Short-turning The Boylston inspector (for Park Street
short turn) or the Kenmore inspector (for
short turn at Kenmore

Expressing The Park Street inspector or inspectors on
the branch lines

Sending Trains light The Boylston, Government Center of Park
St. inspectors, or inspectors on the surface
lines

Holding Any inspector

Crossing Trains on Branch Lines Surface line inspectors or the dispatcher

Putting Additional Trains into Service Stationmasters or the dispatcher

Ordering Replacement Bus Service Dispatchers

Table 2.5: Responsibilities for Control Decisions on the Green Line



and passenger accumulation rates. For the strategies that respond to major situations (e.g.

adding trains and managing service disruptions), some level of centralization does aid the

decision-maker, but the system is limited and slow, sometimes resulting in bad decisions.

Advanced computer and communications systems like the Green Line AVI have the abil-

ity to provide the information needed to make these strategies successful.

For the short turn strategy, Deckoff estimated that additional information such as fol-

lowing headways would cause the strategy to be utilized more and with better success,

resulting in more passenger-minutes saved. For the express strategy, Macchi suggested

that additional information about neighboring headways and predicted time savings could

greatly improve the success of this strategy. Macchi also noted that if passengers were

notified of these controls sooner, their annoyance would be minimized [73]. As will be

shown in Chapter 4, these types of systems have the potential to provide this type of infor-

mation on a more system-wide level.

For all of the strategies listed in this section, location information is seen as crucial to

support the control decision. It seems that other types of information that would be useful

would be passenger-related and incident-related. The uses and value of these information

types for various operations functions are described next.

2.3.2 Information Needs and Uses

When a decision-maker needs to make a decision involving intervention in operations,

he or she would like to have as much relevant information as possible. In a perfect world,

the decision-maker would be able to obtain all relevant information, but information can

be expensive, and some information is more important than others. When an agency is

deciding which types of information is most important, several issues arise. They must

decide upon the type and amount of information, the level of precision, and the means by



which information is to be collected. All of these decisions will govern the cost of infor-

mation collection. There is also the critical issue of what to do with the information once it

is collected.

Some types of information are more useful than others. For instance, knowledge of

schedule adherence may be useful for determining whether a particular type of service

control is needed, but real-time information about the operational status of a vehicle (e.g.

engine status, tire pressure, oil pressure) may not be as useful for routine decision- making

because of the low frequency of mechanical problems during operations.

The level of precision of information is another important issue. Some information

types like location, schedule adherence and headway adherence would require a greater

level of precision than other information types such as passenger loads. In each case, the

level of precision should be based on the cost of a given level of precision versus the risks

and impacts of bad decisions. A more detailed discussion of precision issues is presented

in Chapter 5.

The means of information collection may be just as important as the information being

collected. Information technologies have given agencies the opportunity to gather certain

types of information automatically and in the future, these technologies may also provide

the option of making decisions automatically. Each agency must decide upon the approach

to take in order to minimize costs and maximize effectiveness.

Table 2.6 summarizes the types of information that can be useful for operations moni-

toring and control, the uses of the information, the means by which this information can be

gathered and the how valuable the information is in helping make good decisions. In this

table, it is assumed that all information types are gathered on a system-wide level rather

than local level and that the information is gathered to an acceptable level of precision.



Of all of these information types, real-time location information is by far the most

important, since without it, neither monitoring nor control is possible. Thus, any opera-

tions monitoring and control system must have at its heart the ability to gather location

information; all the other information types might be viewed as add-ons. The secondary

information types are always used in conjunction with location information (e.g. passen-

ger loads at a location, or on-time performance at a location, etc.).

Table 2.6: Types of Information for Operations Monitoring and Control

2.4 Passenger Information

Another function that responds to problems of unreliability is passenger information.

Unlike private transportation services, in which the user has control over trip start times,

transit passengers have no control over service in the short term. They must wait for vehi-

Information
Information Type Use for information Information Value

gathered by

Location Monitoring of service quality Automatic means High

Headways Headway adherence, proxy Software to process location High for making decisions
for other measures, necessary data on high frequency routes
for some control measures

On-time performance Schedule adherence, proxy Software to process location High for making decisions
for other measures, necessary data on low frequency routes
for some control measures

Passenger load on vehicles To evaluate possible control Operator or automatically Moderate
actions through passenger counters

Farebox revenue A proxy for passenger load Hardware and software Low

Passengers at transit stations To evaluate possible control Video cameras, turnstiles Low
actions

Incident detection on network Vehicle routing Operators, detectors, video High
cameras

Operator and vehicle status Used to determine if operator Operator, perhaps automatic High
can make run or needs assis- monitoring
tance, also helpful if vehicle
breaks down



cles and will only be sure of the service when the vehicle arrives. Because of this, passen-

gers are liable to get anxious and their wait times tend to be stressful because of the

uncertainty of arrivals and unreliability problems can exacerbate the stress. Giving infor-

mation about system status to passengers helps to alleviate this source of stress.

Some type of static passenger information is already provided by all agencies in the

form of schedules and route maps. Information on schedules at stop locations gives partial

reassurance that vehicles will arrive at certain times and locations, but if vehicles are off-

schedule, this information loses its value. It is for this reason that some agencies are con-

sidering relaying real-time information to passengers. In this manner, if passengers are

made to suffer because of off-schedule vehicles, they will at least be aware of the delay

and can revise their travel plans if necessary.

One issue that needs to be resolved is at what point in the trip the information should

be given. One possible point is the trip origin: at home for a home-based trip or at work for

a work-based trip. At this point of the trip, the commuter has many decision choices still to

make including mode of travel, departure time, route and possibly station [35]. Informa-

tion at the origin can help in these choices and in estimating their arrival times. Systems

that provide information at the origin are called pre-trip information systems and their pri-

mary function is to inform passengers about all available transit services including

expected vehicle arrival times and changes to scheduled service.

Information can also be provided at the transit stop or station at which the trip starts.

At this point, the commuter has less discretion available in terms of travel choices, but the

utility of this information can still be quite high. Based upon the information, commuters

can decide on alternate routes if they lead to a common destination or even to switch to a

different travel mode. Even if the decision-making domain is reduced, information can

still reduce anxiety and decrease the disutility normally associated with waiting. Systems



that provide information at this point in the trip are typically called en-route systems and

they generally provide real-time information such as wait or travel times for services from

the particular stop or station.

The third alterative point of information is in the vehicle itself. Here, the passenger has

little decision-making flexibility except about possible transfers to other routes if path

choices still exist. Thus, the utility of the information probably decreases since the travel-

ers have already made most of their decisions. Systems that provide information at this

point in the trip are called in-vehicle systems and they generally provide information

about the current vehicle trip and (possibly) connecting trips.

In general the value of information and the decision-making flexibility of the traveler

decreases as the traveler proceeds along a trip and consequently, the information needs of

the passenger may also change.

Generally, the same type of information that is given to control supervisors can also be

given to passengers, although in a more limited form. This section considers the informa-

tion needs of passengers and the value of real-time passenger information systems to both

passengers and the agencies implementing them.

2.4.1 Information Needs and Uses

The information needs and uses for passengers are a little different than the needs for

operational decision-makers. Decision-makers may be able to absorb a lot of information

in a less user-friendly form because of their experience and because they can be trained to

become familiar with the information. Passengers, on the other hand, need to have their

information presented as simply as possible. The information also differs in complexity

because decision-makers need to have a wider view of the system than do the passengers,

thus they necessarily need more information to make good decisions. Other than the



amount and complexity of information presentation, many of the same issues apply to pas-

senger information; information types, use of information, value of information and

means of information collection. Another important issue is the point at which the infor-

mation is to be given. Table 2.8, shows the relative values of certain passenger information

types.

Point WhereInformation Use for InformationInformation Value
Type Information In. formation Gathered By

is Given

Vehicle Location Used in graphical Any Point Automatic means Very useful, but passengers
displays or as a pre- need to estimate arrival times
cursor for determin- manually.
ing waiting times

Expected Vehicle Providing real-time At trip origin or at Automatic means for Perceived waiting times
Arrival time information on sta- stop or station location, automatic reduced, people willing to

tus of vehicles on means for estimating pay more for service, rider-
route arrival times ship effects not known

Passenger Loads on Passengers might At stop or station Inspectors at multiple Moderate
Vehicles skip vehicle if load points, operators or

too high automatical ly

Incident Detection Inform passengers of At trip origin or at Operators, inspec- High if incident likely to
delays or reroutings stop or station tors, commuters, cause a lot of delay that pas-
due to incidents video cameras senger can either avoid or

know about beforehand

Transfer Route Vehi- Inform passengers In vehicle Best automatically, Benefits only transferring
cle Arrival Time, or transferring to other may be collected passengers and won't affect
Connection Informa- routes of expected manually by inspec- decision- making unless pas-
tion arrival times of con- tor at transfer point senger has multiple path

necting vehicles choices

Expected Arrival Inform passengers of In vehicle or at stop Best automatically May be helpful for decision-
Time at End Point, or trip time in order to or station making if information is dis-
Running Times schedule trip and played at bus stop or at trip

make decisions origin (e.g. home or office)

Table 2.7: Passenger Information Types

Hickman [35] suggests that estimated arrival information given at the stop is very use-

ful to passengers and several of the London Transport studies [68, 16, 59] support this

notion. Hickman also suggests that pre-trip information has the potential to be as valuable

as at-stop information, but suggests further research to confirm this. Accent Research [2]



surveyed the ergonomic preferences of passenger information and found out that passen-

gers preferred arrival time estimate information over graphical location information.

Previously, little real-time information has been given to passengers, but information

technologies now allow real-time information to be provided on the route-level or even on

a system-wide basis.



Chapter 3

Information Technologies

3.1 Introduction

Agencies interested in implementing new technology have many choices to make on

the types of systems that they want. Real-time functions such as operations monitoring

and control and providing passenger information require vehicle location information and

there are several alternative automatic vehicle location (AVL) technologies that are cur-

rently available. It is important to point out right away that although location is an impor-

tant element in a system for operations monitoring and control or passenger information, it

is by no means the only element required. Many other requirements need to be considered,

such as communications, computer hardware and software, and the interactions between

the people and the system. Figure 3.1 shows one possible configuration with the inter-rela-

tionships between these components.

This chapter looks at some of the principal AVL technologies and describes the ways

in which they are being applied. The first section takes a brief historical look at the role of

information in transit and some of the techniques that have been used traditionally in the

industry as well as providing a brief literature review of articles written on this subject. It

will then describe the evolution of these technologies ending with a catalog of the princi-

pal technologies available. The catalog will break down the technologies/requirements

into their functional uses: location, communications, hardware and software, and human

factors.



Figure 3.1: General Components of an AVL Systeml
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3.2 History and Literature Review

3.2.1 History

Historically, many transit authorities have operated large systems with only limited

information to tell them about the effectiveness of their day-to-day operations. Typically,

rail system operators have had more information available to them than bus system opera-

tors because of the electrified guideways for rail systems. Information such as train loca-

tions and passage times can be relatively easily acquired from their signal and switching

systems which have been in place for many years. Since rail vehicles never go "off-route"

while in service, the signals, switches and circuits will always be able to keep track of

train positions. Bus systems, however, have not had this luxury since they usually operate

on shared rights-of-way without the guideway and signalling system to control them.

Thus, it was harder to determine bus location in the past than it was for rail and for this

reason, this chapter focuses on information gathering on bus systems.

The main concerns in the past that dealt with the information issue involved informa-

tion about operators assigned to routes. This information was gathered to make sure that

all the buses that were scheduled actually ran and departed on time. After buses went out

on the streets, however, little was known about them. Information was needed for revenue

and cost accounting purposes and to inform passengers about route schedules. As time

progressed and both the bus and street systems became more complex, the transit agencies

realized that they needed to know more about bus operations on the street. In particular,

they wanted to know where their buses were, how many passengers they were carrying,

and the street conditions in which their vehicles were operating. The agencies recognized

that improved information could lead to improved service quality [Levinson 40].



There was a need for supervisory staff who would operate out in the field, monitoring

vehicle operations and the operating environment. This staff member was commonly

called the inspector, and in addition to collecting field data, the inspector was often

responsible for making control decisions based upon these direct observations. Inspectors

would gather information about headways and on-time performance to judge whether

some form of intervention would be appropriate. This information was usually gathered at

a fixed point at which the inspector was assigned.

For example, if a bus was behind or ahead of schedule, the inspector would usually tell

the operator to slow down or speed up to keep the bus on time. The inspector might also

tell an operator in a particular vehicle running late to short turn in order to maintain rela-

tively even headways on the entire route. The inspector also handled emergencies such as

road closures, accidents and vehicle breakdowns. It was up to the inspector to initiate the

appropriate actions to alleviate the current problem.

In some agencies, the inspectors were mobile instead of being assigned to fixed loca-

tions. Given a car, these inspectors would drive over to the location of any incident, assess

the situation and then take appropriate actions. Some agencies believed that mobile

inspectors could respond more quickly to emergencies than stationary inspectors and

could also be utilized more effectively [Levinson 40].

Street inspectors helped to improve service, but the approach still had flaws, notably

that it relied heavily on local data. The inspector didn't have information on the entire sys-

tem, thus he or she might make the wrong control decision. Under this approach, service

control was highly decentralized, which made it somewhat ineffective since each compo-

nent did not know valuable information about other components.

The next stage of information development came when the transit agencies decided to

consolidate information centrally. Inspectors still worked in the field, but they also



reported their actions to, or asked for advice from, central controllers. Controllers in these

locations had the potential to oversee the entire system if they were well-informed by the

field personnel. They would be in communication with both the inspectors out on the

street through land lines or radio and with vehicle operators via radio.

In this approach, the controllers would get a more complete view of the situation, with

information flowing between the bus operators, the inspectors and the controllers. Instead

of knowing information about only one point in the system, the controller would have

information on many points. Technology started playing a role at this point by providing

the radio communication systems or the fixed line systems.

This may have created the potential for better control decisions, but this structure also

had its drawbacks. The biggest drawback was the delays encountered in sending and

receiving information. With almost all the information sent by voice, communication

delays could constrain the whole control process. A required series of initiations,

acknowledgments and confirmations had to be completed before control measures could

be implemented. By the time all this was done, the information may have already lost its

value. There is usually a critical time period in which information must be acted upon

before it becomes obsolete, and sometimes this limit was reached with this structure. Also,

this type of approach was primarily exception-based. The operator would only initiate a

conversation when he or she encountered a situation which needed a controller's or

inspector's help. In all other cases, if the vehicle was not near an inspector's location, no

control intervention would be made and the operator would be on his own.

One way to solve this problem would have been to increase the number of inspectors

on the streets, but to be able to monitor the entire system closely, a prohibitive number of

inspectors would have been required. Agencies saw a need to automate this monitoring

process to break these barriers.



On the passenger information side of the service equation, the technology has

advanced even less. After agencies had installed adequate static information systems, little

was done to improve passenger information. On occasion, messages would be sent via

speakerphones or video displays informing passengers of delays, but little else was done

until automatic vehicle location became technologically feasible and less expensive. This

takes us up to the industry's current stage of development.

The prime focus of the current stage is on the automatic location of vehicles and the

enhanced processing of the resulting data to make it useful to the end users. These users

can be operators, controllers, inspectors, managers, planners or passengers. This informa-

tion can be viewed at two levels: first using the data for after-the-fact analysis and second

using the data in real-time for purposes such as operations monitoring and control and pas-

senger information. This distinction became clear in the 1970's when two Canadian transit

agencies, the Toronto Transit Commission (TTC) and the Ottawa-Carleton Regional Tran-

sit Commission (OC Transpo), began thinking about ways to apply technology to improve

performance.

OC Transpo focused on using technology to enhance off-line processes while the TTC

focused on real-time applications. Their investigations eventually led to the in-house

development of automated systems that tracked vehicle locations and processed that data

into useful information. Throughout the past 20 years, their systems, techniques and

objectives have changed, but their overall goals remained the same. Presently, OC Transpo

has a functioning Automatic Passenger Counting (APC) system and is in the advanced

stages of deploying an AVL system while the TTC has a system-wide Automatic Vehicle

Location (AVL) based monitoring and control system. As these two agencies were devel-

oping their technologies to achieve their particular goals, the information revolution con-

tinued and subsequently overtook their selected technologies.



One of the main stumbling blocks that prevented many agencies from following the

TTC's or OC Transpo's leads has been the risk and expense of the technologies involved.

Advances, combined with decreased costs of computer and communications technology

has reduced this barrier to the point where there are now over 28 transit agencies in North

America who have committed themselves to this stage of development [State of the Art

57]. Many of these agencies are using or are planning to use technologies that are more

advanced than the technologies used at the TTC or at OC Transpo. The TTC and OC

Transpo case studies will be presented in detail in Chapter 4.

3.2.2 Literature Review

There are a few reports that describe the new technologies available to the public

transportation industry and list some of the agencies that use them. There are also some

articles that describes these alternative technologies. None of these articles, however, inte-

grate the technologies and their uses.

There are a few studies that have concentrated exclusively on AVL technologies, nota-

bly Hamilton and Polhemus [34] who looked at the accuracy, reliability and cost of loca-

tion technologies that are currently available to transit agencies. Included in their list of

technologies are LORAN-C, GPS, GEOSTAR, OMEGA, differential odometers and flux

gate magnetometers. Signposts were not included because the authors believed that they

were already well understood.

The study also defined relationships between cost and accuracy and net present value

and accuracy which will be presented later in this chapter. Hamilton and Polhemus con-

cluded that an optimal system in the short term (1993 - 1995 extrapolated) would be an

integrated system that included LORAN-C and dead reckoning or signpost augmentation.



One of the best sources of information that describes the types of systems that agen-

cies are currently implementing comes from an annual report compiled by the U.S.

Department of Transportation IVHS Program entitled "APTS: The State of the Art". Ini-

tially published in 1991, updates have been released in 1992 and 1994 [21, 57 and 58].

Categorized by the use for the technology (e.g. Passenger Information, Vehicle Control,

etc.), The State of the Art briefly describes the technologies that are available in each cate-

gory and then describes a few transit systems that are applying them. For example, one of

these categories is Automatic Vehicle Location, with one technology being signpost-

odometer and one agency using signpost-odometer technology being the Toronto Transit

Commission (TTC).

In each of the updates, The State of the Art identifies any new technologies that have

become available since the last update, and describes any transit agencies that have

recently decided to install new systems. This annual publication provides a very good

overview of what is happening in the industry, but it does not go into detail. The technical

aspects of the technologies are only superficially described and the updates devote at most

one page to each transit agency application.

Obviously, the updates are intended to direct the reader to other sources for more

detailed information which they do by listing appropriate contact names at the back of

each publication. The USDOT has also released a Vendors' Catalog [3] that lists every

vendor that supplies hardware, software and consulting services to the industry. Like State

of the Art, the catalog categorizes vendors by use and provides contact names, the names

of clients and a short description of each vendor's product.

In 1991, Castle Rock Consultants prepared a report for the National Cooperative Tran-

sit Research Development Program (NCTRP) entitled "Assessment of Advanced Technol-

ogies for Transit & Rideshare Applications" [28]. Like the USDOT's "State of the Art"



reports, this report lists the new technologies that are available to transit and the transit

agencies installing them. The report, however, covers more technologies than The State of

the Art and includes technologies that have not yet been implemented like Automatic

Vehicle Control Systems for Rideshare Applications. In addition, the report quickly

assesses each technology, emphasizing breadth rather than depth.

If State of the Art is brief in describing the technologies and the agencies that use

them, this report is even more brief, devoting a maximum of one paragraph to each agency

or technology. This report is also a good reference guide, but like State of the Art, it does

not go into sufficient detail when it comes to describing these technologies, especially for

our primary focus on Automatic Vehicle Location Systems.

One report that deals specifically with AVL systems is a University of Pennsylvania

study done for the Urban Mass Transportation Administration (UMTA) division of the

USDOT [Morlok 45,46]. This report focuses primarily on the benefits and economic feasi-

bility of AVL systems, but it also provides descriptions of some AVL technologies (see the

discussion in Section 1.3).

Each of these reports provides important information about available technologies and

their uses but they each fail to address some important topics. They do not go into enough

detail in describing the technology options (AVL in particular), and they do not address

the sub-systems that process this information.

3.3 Location Technologies

At the heart of any AVL system is the location technology itself. This section looks at

some of the more popular location technologies and their relative advantages and disad-

vantages. Some of the issues related to choosing a location technology including cost,



accuracy and reliability will be discussed. Possible combinations of technologies will also

be looked at. The technologies that will be investigated are Odometers, Dead Reckoning,

Signposts and Passive Identification Technologies, Global Positioning Systems (GPS),

LORAN-C and Map Matching. A comparative analysis will then be done across technolo-

gies, largely drawn from previous reports that have looked at this subject in detail. Figure

3.2 shows how each of these options fits into the rest of the AVL system.

3.3.1 Odometer

Odometers were the first technologies to be tested for AVL systems. Almost every

vehicle out on the road today is equipped with an odometer that monitors an axle's rota-

tion to measure how far that vehicle has travelled. Differential odometers that have sen-

sors on both wheels of an axle rather than just one can provide more precision than

ordinary odometers but are also more expensive. Odometer systems simply automated and

recorded these readings. Odometer readings would be automatically collected and reset at

the beginning of each trip. The odometer would also be linked with a timer, and in this

configuration, as long as the route remained fixed, relative locations and times could be

collected for the vehicle.

This technology was fairly inexpensive, but it had many drawbacks, the largest one

being accuracy. It was not uncommon for these devices to be quite inaccurate due to wheel

slippages and the fact that buses do not travel in a straight line, and for the purposes of

transit operations, the accuracy was viewed as unacceptable. Also, odometers could only

measure relative locations, thus if a route changed, the new route would have to be sur-

veyed so that the relative locations could be "mapped" to the absolute locations. Also, if

vehicles went off-route, all location estimates collected afterward would be incorrect since

the system assumes that vehicles stay on-route. For these reasons, simple odometer sys-



tems are not considered for new AVL applications. Odometer systems were used as early

as the 1970's by agencies like OC Transpo, but are not used as a sole method for location

determination anymore.

Figure 3.2: Alternative Location Technologies
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3.3.2 Dead Reckoning

Dead reckoning technologies were developed to try to increase the accuracy of odom-

eter systems. Dead reckoning algorithms use measurements produced by distance and

heading devices located on the vehicle to compute the vehicle's location relative to a

known starting location. The distance devices are usually in the form of electronic or ana-

log odometers which record wheel rotations. The heading devices can take the form of

magnetic compasses or gyrocompasses and there is a wide variety to choose from. By add-

ing heading devices, Dead reckoning improved locational accuracy to the point where

accuracies became more acceptable.

Dead reckoning devices do not cost very much (Hamilton [34] estimates costs of Dead

Reckoning systems to be about $1500 per vehicle), but errors accumulate with distance

travelled, so unless the devices are reset occasionally, they can become grossly inaccurate

(Hamilton[32] estimates that errors can be on the order of about 1 - 3% of the total dis-

tance travelled). Dead reckoning technologies, however, have proven themselves in the

field. Field tests of these technologies have been done as early as the 1970's and have been

in regular use in a few agencies (Hannover and Wiesbaden in Germany and Hamilton,

Canada to name a few [28,58]) for the past few years.

3.3.3 Signposts

In a signpost system, roadside proximity beacons (signposts) are installed along

routes. These signposts emit their ID at a certain radio frequency which is detected by the

bus as it passes. With the signpost and vehicle ID known, the bus can thus be located to the

last signpost passed. If control is centralized, location data is then usually sent from the

vehicle to a central location through wireless transmissions.



Another technology related to signposts is passive identification. The accuracy and

resulting output of location is the same as signposts, but the techniques for location are

slightly different. Here, readers which emit radio signals are placed along the route and

when a bus passes, the reader reads an identification "tag" that is attached to the bus. The

reader information and the bus tag information are used in combination to determine loca-

tion. The technology is somewhat analogous to bar code readers seen in many grocery

stores. If this data is needed at central control, it would usually be sent through land lines

connecting the readers and central control. For the purposes of this thesis, both types of

systems will be referred to as signposts.

The accuracy of signpost technology is dependent upon the density of signposts along

the routes, but accuracy is excellent where the vehicle passes by the signpost and location

is absolute. In order to calculate locations, the absolute locations of the signposts need to

be known. Between signposts, however, there is no information about location, thus accu-

racy gradually decreases until the vehicle passes the next signpost.

Signposts are a fairly expensive option both in terms of capital and maintenance costs.

Gomes et. al. [33] estimated signpost equipment to cost about $3500 per vehicle and

$1000 per signpost. A more recent cost estimate from London Transport [Director 30]

estimates signpost costs to be about 2,500 pounds ($1700) per vehicle and 1,000 pounds

($700) per signpost. Signposts are also somewhat inflexible since if a route changes, all

the signposts associated with that route must be moved to the new route, although sign-

posts which are portable serve to mitigate this problem. Signposts are a relatively reliable

technology that has been proven in the field with the history of signposts about as long as

dead reckoning technologies, and there are many agencies who are currently utilizing

signpost technology (TTC, OC Transpo, Seattle to name a few).



3.3.4 Global Positioning Systems (GPS)

GPS is a satellite-based radio positioning system made possible by the U.S. Depart-

ment of Defense. A receiver on board the vehicle determines the vehicle's location from

the radio signals sent by three or more satellites among a network of 24 satellites. When

the GPS receiver receives signals from at least three different satellites, it will receive

them at three different times since these satellites are at different distances from the

receiver. Within the receiver, these time differences are converted to an approximate glo-

bal position in a mathematical process called trilateration, which is accurate to about the

nearest 50 - 100 meters.

Accuracy may be increased, however, by using a method called Differential GPS. In

this method, an additional receiver is placed at a known fixed location in the system and

all moving receivers use the information from this fixed receiver in addition to the satellite

signals to gauge their positions. With Differential GPS, it is now possible to locate vehi-

cles to the nearest 5-10 meters, so GPS is potentially a very accurate technology (Hamil-

ton[34] and Gomes[33]). GPS is able to determine the absolute world co-ordinate

positions of the bus which permits determining bus positions on routes that are not fixed or

for buses that go off route.

The two main disadvantages with GPS are its relative novelty within the industry and

its potential problems within an urban environment. Since GPS is a relatively new tech-

nology, it has yet to prove itself in a real-life transit application although it has been suc-

cessfully applied in the police, ambulance, taxi and trucking industries [McLellan 44] for

dispatching and location purposes. These industries, however, do not have transit's prob-

lem of maintaining high frequency regular service in an urban environment. Some cities,

notably Denver, Dallas, Milwaukee and Baltimore [State of the Art 57], are currently test-



ing GPS systems. The second main disadvantage of GPS is the potential for urban struc-

tures like high buildings and tunnels to block out the signals from the satellites, so if a

vehicle's route is impacted by these structures, it's locations can be lost for a time. This

phenomenon is known as the "urban canyon effect". There is no charge for using the satel-

lite signals and the GPS box itself can cost as little as $800 to $1000 a unit. [Gomes 33 and

Stone 66].

The hardware requirements for a basic GPS system are relatively small. Essentially, all

that is needed is the GPS unit that receives the signals and performs trilateration to deter-

mine its position. The software requirements vary depending upon the sub-systems that

are linked up with GPS, but a basic requirement includes the trilateration algorithm pro-

grammed inside the GPS unit. Software outside the unit is programmed to process the

location data. More advanced software is needed to handle communications and correc-

tions if Differential GPS is utilized.

3.3.5 LORAN-C

LORAN-C works on the same basic principle as GPS, only the transmitters are

ground-based antennas instead of satellites. Again, only receivers are necessary since the

network of antennas have already been set up. This technology is less advanced than GPS

technologies and is also less accurate, typically providing location to about the nearest

100-200 meters (300 -600 feet) [Hamilton 34]. As with GPS, however, techniques like dif-

ferential LORAN have been used to improve accuracy to up to 30-40 meters.

LORAN-C, like GPS, also suffers from the urban canyon effect, although LORAN-C

in general seems to maintain better signal locks than GPS in urban areas. LORAN-C loses

signal locks when the units approach power stations and GPS systems encounter trouble

near areas of heavy foliage. Whereas GPS has complete coverage in the U.S, LORAN-C



covers most of the east coast and west cost, but is deficient in the south-central part of

North America. In spite of these shortcomings, this technology has had more applications

in transit use since the technology has been available for a longer time. Small cities like

Champagne-Urbana, Illinois and Sheboygen, Wisconsin have been using LORAN-C to

monitor and control their vehicles. The basic cost of a LORAN-C receiver is about the

same as a GPS unit or a little bit more [Hamilton 34].

3.3.6 Map Matching

As a supplement to the other techniques, map matching techniques use computer algo-

rithms to match the vehicle's actual path with that of the feasible path on the map to reduce

any errors created by the other techniques. If a location system shows a vehicle's position

is beyond any feasible path on the map (e.g. the locator puts a vehicle in the middle of a

park), the algorithm will compute the closest feasible path and position and then will relo-

cate that vehicle to that position. This technique is meant to complement, not replace, any

of the other alternatives. The biggest advantage of map matching is that it needs no hard-

ware. The disadvantage of it, however, is that it is software intensive and requires detailed

map information. Unfortunately, data could not be found for map matching software costs,

but they would definitely include the cost of obtaining accurately digitized maps.

3.3.7 Combinations

From the above discussion it is clear that some technologies are strong in some aspects

of vehicle location (e.g. cost and experience in the field) while others are strong in some

other aspects (e.g. accuracy and reliability). Since no single technology dominates, it may

be advantageous to combine two or more technologies to exploit the strong points of each.



For example, odometer technologies are often combined with signposts to create a

hybrid location technique commonly called signpost-odometers. In this configuration,

signposts would serve to reinitialize the distances measured by the odometer every time

the bus passes a signpost. This configuration strengthens the accuracy weaknesses of both

technologies. Odometers give you reliable location information between signposts and

signposts serve to correct the cumulative errors associated with odometers. This configu-

ration is hardware intensive, however, and thus relatively costly. You need signposts,

odometers and the hardware and software necessary to integrate the relative locations of

odometers with the absolute locations of the signposts.

Dead reckoning can also be combined with map matching algorithms to give more

reliable location data. The dead reckoning technology is able to tell when a vehicle turns a

corner or how far a vehicle has traveled and the map matching algorithm is able to use this

data to tell where on the map the vehicle should be.

Another combination is GPS technology with dead-reckoning technologies. GPS sys-

tems give good absolute positions, but may have problems in local urban environments

while dead reckoning technologies give good relative positions and work well in urban

environments. Combining these two would give locations that are accurate from both a

relative and absolute perspective and also gives a system that works well in an urban envi-

ronment. With any combination of technologies, however, the complexity of your system

increases and so does the cost.

3.3.8 Comparative Analysis

These technologies were compared by Hamilton [34], Gomes et. al. [33], Stone [66]

and London Transport [30] with the integrated results shown in Table 3.1.



From the descriptions of the relative strengths and weaknesses of these technologies, it

is clear that some trade-offs have to be considered when choosing a single technology. The

most proven technologies are signposts, odometers and dead-reckoning, but they are rela-

tively old technologies and they may be as expensive as, or even more expensive than the

newer technologies such as GPS, which still are relatively unproven but show great prom-

ise.

The average prices do suggest that radio navigation systems like GPS (and LORAN-

C) might be cheaper than the older technologies, but these prices might be misleading in

that the unit costs listed are for units that were installed for applications other than transit.

To configure these newer technologies to be compatible with transit's requirements might

prove more costly than the more established technologies at least during the pioneer appli-

cations. In a survey of transit agencies conducted in 1991, one third of them said that they

would choose signposts and one quarter would choose GPS if they were to select a loca-

tion technology at that time [Levinson 40].

In terms of accuracy, the combination technologies are the most accurate, but they also

may prove to be the most expensive. It also seems fairly safe to assume that any system

that needs a high degree of accuracy should consider combination technologies since all

individual technologies have an accuracy weakness of one kind or another. Many transit

agencies have expressed a need for locational accuracy to within about 50 meters as an

absolute minimum accuracy. For example, Baltimore's previous LORAN-C requirements

required an accuracy of 45 meters [Hamilton 34]. Some agencies, like OC Transpo, how-

ever, only wish to know locations at discrete intervals, thus a strict signpost system was an

appropriate choice for them.



Table 3.1: Broad Analysis of AVL
a. SW: Software, REVLOR: Reverse LORAN, DR: Dead Reckoning
b. Not Available

Systems for Urban Applications

3.4 Communications Systems

Data on vehicle locations are useless for real-time applications unless they can be sent

to the appropriate end users quickly. Communications systems which transmit vehicle

location information to a host system for processing are thus the "backbone" of most sys-

tems. Communications systems are also crucial in linking the primary users of the system,

including operators, controllers, inspectors, and passengers.

This section describes some of the physical media across which data and voice com-

munications can be sent, and lists some strengths and weaknesses of each medium, focus-

sing on cost, reliability and availability. The technologies that are looked at include cable/

Costs

Accuracy Constraints Onboard Reliability
Systems Equipment Additional Costs

Nehicle

Autonomous Systems

Dead Reckon- tens of meters or about 1- error accumulation approx comm. system + related N/Ab
ing 3% of distance traveled $1500- SWa

$3000

DR with Map tens of meters but reliable high costs $550 comm. system + related Proven technology
Matching SW + maps

few meters when com- high costs for off- $1700 - infrastructure $700 - N/A

Proximity bined with Dead Reckon- route applications $3500 $1000/signpost + comm.
Detection

ing system + software

Non-Autonomous Systems

50 - 100 m, theoretical 5m low update rate $700 comm. system Uncertain, urban canyon
with Differential central facility effect

300 - 600 ft atmospheric conduc- $700 - comm. system + related Mostly Proven Technol-
LORAN-C tivity noise interfer- $1500 SW, -$20000-$50000 for ogy

ence base

REVLOR 30 m multipath problems $500 - 600 infrastructure + SW; ser-
vice charge



wire communications, conventional radios, microwave communication, cellular commu-

nications, spread spectrum systems and other hybrid technologies.

A common issue with most wireless technologies is wave saturation, where many

users are competing for the use of limited bandwidth for their communications. Band-

width capacities are quickly being filled creating a serious problem in large transit system

operations. One of the reasons for this problem is that transit's central control systems

often demand frequent information from its vehicles. In most centralized systems where a

fleet of vehicles is to be controlled, many vehicles have to be monitored at once, which

means that communications channels cannot receive locations from one vehicle continu-

ously.

Generally, this problem is dealt with using a round-robin approach called "polling"

which takes location data from one vehicle at a time over one or several communications

channels. The more frequently a vehicle is polled, the more accurately its location is

known. Except for exclusive passive identification systems which do not normally utilize

polling, but transmit whenever a vehicle passes, polling rates and polling control is usually

conducted independent of the location technology. The more frequent the polling, the

more demand is imposed on the channel. Another reason for channel saturation is that

there is still heavy reliance on voice communications between controllers, operators and

inspectors in order to maintain performance which uses channel capacity inefficiently.

The overall roles for communications technologies in an AVL system and the possible

technologies that can fill these roles are shown in Figure 3.3.



Figure 3.3: Alternative Communications Technologies
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3.4.1 Cable/Wire

Wire/cable communications are the most reliable media for communication. Unlike

wireless communications, you do not have to fear interference from the atmosphere or

from other wireless messages. The main disadvantage, though, is obvious: it is impossible

to build an AVL system using exclusively wire or line communications since they cannot

work with mobile units. You have to have some form of wireless communications to and

from the vehicles. It is possible to use wire/cable communications for stationery parts of

the system, such as bus stops and train stations for passenger information, or at signposts



to relay information back to a host computer. Relying on fixed lines even for these pur-

poses has some drawbacks however. You have to install new wire each time you wish to

expand your system or change routes which can be quite expensive.

3.4.2 Conventional Radio

Standard radio communications are the oldest type of wireless communications used

for public transportation having been used to help regulate bus routes for well over 20

years. Radio equipment has been installed in vehicles, control centers and inspector posi-

tions so that operators, inspectors and controllers can maintain contact with each other to

alert all parties to emergencies, unusual conditions in the field and control decisions. Stan-

dard radio communications are probably the least expensive and most widely used form of

communication in the industry.

Radio communications can be transmitted on a variety of carrier waves in the VHF

and UHF bands and probably the most popular type is through FM transmission. Band-

width and power output is regulated by the FCC however, thus the number of channels

available for operator and controller is extremely limited. This is especially true in urban

areas where demand for limited bandwidth is great and in some cases, agencies are forced

to share AVL channels with other users [72].

Wireless radio communications are also not the most reliable systems, being vulnera-

ble to atmospheric and urban interference problems which can result in unclear reception,

and it is even possible that transmissions can be mixed up. The quality of reception prob-

lem may be mitigated by the use of digital radio communications, which usually provides

clearer reception. The cause of poor sound quality during analog transmission is noise and

distortion that is added every time the signal is processed or relayed. Since analog signals



may be processed 30-40 times as they move from source to destination, the resulting sig-

nal may look very different from the original signal.

Digital radios, however, take analog waves and convert them to digital signals, which

are sent to another digital radio where the receiving equipment converts the signal back to

voice waves. In this scheme, a lot less distortion occurs during processing since more

interference is allowed before an "on" signal is incorrectly interpreted as an "off' signal

and vice-versa [Weisz 69]. The result is a much higher transmission quality.

3.4.3 Microwave

As frequencies increase from the VHF and UHF bands into the microwave bands, sev-

eral factors affecting the quality, costs and characteristics of transmissions change. First,

as frequencies increase, background noise is reduced, generally resulting in higher quality

transmissions with less distortions and errors. Second, power requirements and thus cost

of transmission increases. There is thus a natural trade-off that exists between quality of

transmission and cost. Third, the wave signals become more line-of-sight oriented and are

less affected by atmospheric conditions which can curve and bounce back lower frequency

waves. This has two effects: higher frequency waves transmit over much smaller areas

because their signals break through the atmosphere rather than bounce off it, and higher

frequency waves are used more for line-of-sight transmissions than for general area use

[Weisz 69]. This is one of the reasons behind radio-navigation communication technolo-

gies like GPS transmitting over high frequencies of between 1 and 2 GHz.

The specific frequency which is to be used also determines the size and types of anten-

nas required and the data speed rate of transmission. As frequency increases, the required

size of the antenna decreases, so although low frequencies can transmit over longer

ranges, they require large antennas up to 8 feet high operating over large metal surfaces



(up to 16 feet diameter). On the issue of transmission speed, the FCC has constrained the

40 - 512 MHz range to transmit at a maximum of 3,600 baud (bits per second), while fre-

quencies above 512 MHz can transmit at faster speeds. The transmission speed directly

determines polling rates, thus transmissions at higher frequencies allows for faster polling

rates [72].

These characteristics of higher frequency microwaves make them attractive for some

transit applications. The "line-of-sight" characteristic of microwaves makes them useful

for location technologies such as signposts, GPS and passive identification technologies.

In all of these technologies, a "beam" is directed at the vehicle and information either is

"beamed" back or retained by the vehicle. These location systems must also be free of dis-

tortion and error, which also suggests using higher frequencies.

Since microwaves are less subject to distortion, they are also sometimes seen as an

alternative to conventional radio frequencies for voice communications use. Some digital

radio networks operate over the microwave bands, but the limitations of cost and effective

range of transmission limits its use.

3.4.4 Cellular

Cellular technologies are one of the newest of this subset of technologies. Cellular

technologies divide the territory up into "cells" in which the entire bandwidth is localized

to a particular cell area, controlled by a cell station. This is done by using multiple anten-

nas each transmitting at relatively low power. By dividing the territory up into cells, a fre-

quency can be reused in non-adjacent cells, thus boosting the overall capacity of the

communications system and lessening the effects of wave saturation. All vehicles in a par-

ticular cell share the frequencies that are controlled by that antenna.When a vehicle moves



out of the cell, communication is automatically switched into the next cell, providing a

seamless flow of communication [Lalonde 38].

Many large telecommunications corporations have used this technology to build reli-

able publicly accessible wireless cellular telephone networks. These cellular networks

cover many urban areas, and usually offer the same sound quality as wired telephone com-

munications. Two of the reasons for improved sound quality are the improved technolo-

gies that have been developed for the equipment (the companies wanted quality

comparable to wired telephones to compete effectively in the market) and the higher fre-

quencies used (approximately 800 MHz).

The widespread availability of these networks in urban areas makes it an attractive

communications option for many transit agencies, since it does not have to be custom

designed for the transit agency. There are some drawbacks to using this technology, how-

ever, notably cost. Transit agencies have to pay a certain rate for every minute that they

use a cellular telephone line and it can become quite expensive for the agency. For this

reason, many agencies that have been using the cellular network have been using them

mostly for backup purposes in case the main systems fail. The Toronto Transit Commis-

sion (TTC) is one example of this usage.

3.4.5 Spread Spectrum Systems

The State of the Art [57] describes this technology the best:

The concept of Spread Spectrum is simple. Rather than
operating on a single frequency, Spread Spectrum systems
transmit a low power signal with the information to be
transmitted distributed over a band of frequencies.
"Receiver intelligence" is used to decode the information.



With Spread Spectrum systems, agencies no longer have to use dedicated spectra for

communications. Instead of being primary users of one spectrum, they may become sec-

ondary users on a non-interference basis of several spectrums which may reduce licencing

costs and increase overall channel capacity. This technology is relatively new, however,

and may not be widely available. There are no recorded examples of transit agencies cur-

rently using Spread Spectrum technologies.

3.4.6 Hybrids

Many types of technologies have been developed to solve the wave saturation problem

and to increase the clarity of wireless communications. Channel splitting techniques effec-

tively split an assigned bandwidth into multiple channels which can carry either voice or

data. This technique gives you more channels, but it reduces the rate at which data can be

transmitted and the type of modulation that can be performed. There is also some concern

about adjacent channel interference [Lalonde 38].

New modulation techniques have also been developed that permit higher speed data

transfers, thus lessening the time required for a message to occupy a channel. New devel-

opments in modulation, like ACSB modulation permits voice communication over a 5

kHz channel instead of the standard 25-30 kHz requirement, thus it is possible to split one

standard channel into 4 or 5 [RMS 54].

Currently many radio communications are being done in semi-duplex mode in which

information goes back then forth in a serial fashion over a single communication channel.

Full-duplex radios allow communications to occur back and forth simultaneously, thus

reducing radio cut-in time. While full-duplex radios are expensive, their costs are

expected to be reduced due to heavy competition from other communications technolo-

gies.



3.4.7 Comparative Evaluation

From this brief review of the alternative communication technologies, it is obvious

that there is a lot to choose from, including many technologies which are quite new. The

problems of wave saturation and reliability reduces the long-term prospects for standard

voice radio communications in urban areas, even though it is possibly the cheapest of all

the alternatives. A lot can be done with the frequencies used for radio communications,

however, much of it using software and hardware that splits, time shares or enhances

transmissions on a bandwidth to achieve higher quality reception or lower required band-

width for transmission. This is a case of substituting software and hardware for channel

capacity. Of course, these advanced options increase the cost of the system, but that may

be inevitable in a capacity constrained system.

In terms of availability, standard radio communications systems are the most available

mostly due to the fact that they have been around the longest. Cellular technologies are

also widely available in urban areas and microwave technologies are available for higher

quality transmission, but at an added cost. Digital radios are still a relatively new but

growing concept and this may make microwave frequencies widely available for voice

communications in the near future. Spread spectrum technologies, though not currently

available, may be available in the near future. The hybrid technologies vary in terms of

their availability.

One important point to note before closing the discussion on communications systems

is that technologies that increase capacities are not necessarily the best answer to the wave

saturation problem. Another approach that deserves consideration is the reduction of data

and voice communications transmitted over the frequencies without loss in performance.

This is done by either instituting policy regulations to eliminate unnecessary communica-



tion or developing software to "time manage" the communications so that communica-

tions at peak times are either avoided or re-routed efficiently. Polling rates are also an

issue where channel capacity is concerned, and there is a clear trade-off here. If vehicles

are polled less frequently, demand for capacity is reduced, but so is the accuracy in vehicle

locations. One must decide what is an appropriate polling rate to satisfy both accuracy

requirements and communication constraints.

3.5 Hardware and Software

This category presents by far the widest array of alternatives. Not only do you have to

decide upon the types and sizes of computing machines and accessories, you also have to

decide how they will communicate with each other, what the function of each machine

will be and which machines will keep track of what data. Hardware plays many crucial

roles in AVL systems and there are many issues involved when making hardware choices.

Software is also of critical importance.Without the software, the hardware is useless, and

software is included in almost every subcomponent of any AVL system.

Hardware and software provide essential links between the users and the machines.

The system must be relatively easy to use and understandable by all users, but must also

provide useful information. Hardware and software is also used to collect data, and pro-

cess the data into more usable and perhaps more accurate form. Hardware is also used to

store and output data on demand either to video or in hardcopy for management and con-

troller reports. The overriding role of hardware and software, however, is to manage and

control the entire system and the flows of information.

Some key issues in hardware and software design involve cost, location, system struc-

ture and performance.



Location

The location of hardware and software refers to the level of centralization of data pro-

cessing and control, which is an important issue that directly impacts cost, performance

and required user interfaces.

In a centralized system, most of the data is processed at a central location, with inputs

coming in from multiple vehicles and other sources. In this configuration, the equipment

on the vehicles does not need to be that powerful, but the hardware and software at the

central location needs to be very powerful and the programming needs to be efficient and

sophisticated.

In a more decentralized system, more processing is done on the vehicles, thus reduc-

ing the communication demands as well as the need for a powerful system at central con-

trol. In this type of system, the operator gets some information directly from the on-board

equipment, bypassing the control center. In this configuration, the programming and hard-

ware installed on board vehicles needs to be more powerful and more sophisticated.

Buses that have advanced processing capabilities are referred to as Smartbuses.

Decentralized systems should also have more advanced interfaces on buses than central-

ized systems and they should have some level of storage and output capabilities. In this

configuration, much of the control and decision making is left to the operator, which may

or may not be a good idea as will be discussed in Chapter five.

System Structure

When a hardware and software system is being designed, care must be taken in mak-

ing sure that the system is flexible and can accommodate changing information needs,

changing system requirements and changing technologies. With AVL systems taking a

long time to implement (the TTC took 15 years to develop fully its AVL), changes are

inevitable. If a transit network expands in size over the development period, expanded



hardware and software requirements may be needed and the agency should provide extra

capacity to satisfy these needs. Similarly, if new technologies become feasible during the

development period which the agency wishes to adopt, the system should be structured

such that new technologies can be easily introduced.

The resulting system structure should thus be flexible and modular in design. A modu-

lar design breaks up large systems into more manageable sub-systems that have connec-

tions with each other, but otherwise can operate independently. If a change in a sub-system

takes place as a result of changing system needs or changing technology, ideally only the

sub-system needs to be changed. A system that is not modular in design would need to

undergo a more extensive revision process in order to accommodate the change. OC

Transpo has followed the philosophy of modular design in their systems with success. In

their APC system, technology has changed several times since APC's inception, but mod-

ularity in design has enabled OC Transpo to retain most elements of their APC system.

Figure 3.4 shows the roles of hardware and software within an AVL system. Other

issues that affect hardware and software design are discussed below.

3.5.1 Collection and Processing of Data

Over time, computer technology is steadily becoming both more powerful and less

expensive. Processing speeds are increasing and physical sizes of systems are decreasing.

It is within this environment that transit authorities are making their computer hardware

and software decisions. Large transit systems may collect and process incredible amounts

of data, including location data for all vehicles and possibly supplementary data such as

passenger and vehicle status data to name just two.



Figure 3.4: Hardware and Software Components of an AVL System
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The agency needs to choose hardware that tailors the computer system capacities to

the demands that will be placed on it. Software compiles and converts data gathered by the

AVL devices into usable form for the end users. Software may also enhance the AVL data.

For example, error checking algorithms serve to minimize the errors associated with the

AVL data to make the locations more accurate and algorithms may be used to predict loca-

tions of vehicles at future times. London Transport employs such algorithms for its pas-

senger information system as will be discussed in Chapter 4. This information can also

used to "fill in the gaps" in information between polling times where no information is

given about vehicle locations.

3.5.2 User Interfaces

Hardware

The hardware involved in user interfaces must take into account the functions of the

users and ergonomic issues. Information displays need to be readable and clear and input

devices need to be effective and efficient. All hardware needs to be at the right heights,

angles and distances so that the users can comfortably make use of these devices. On vehi-

cles, user interfaces must be sufficiently unobtrusive so as to not interfere with normal

vehicle operations. Hardware systems also need to respond quickly to user inputs so that

the users can perform their functions efficiently [Steams 62].

Software

Software is also a very important element of user interfaces. The information that is

displayed needs to be processed in such a way that it is readable, easily understandable

and gives the users the relevant information needed for them to perform their duties. The

software must also allow users to switch tasks in a seamless manner. In the control rooms,

these devices are usually more powerful, give more information and allow the user to per-



form more functions. On board vehicles, the interfaces are usually smaller due to space

constraints and their functional requirements which require less equipment than at the

control centers.

Decision-Making

User interfaces can also affect the roles that users play in the system in the aid they

provide to their decision making. Software can be programmed to analyze the real-time

data to present suggestions to aid controllers in their decision making. There are many

possible ways of approaching this task including knowledge based expert systems, neural

networks, fuzzy logic and decision support systems [Allen 4 and Kosten 37].

Knowledge based expert systems utilize experts in a specialized field to aid in their

implementation. When the experts are presented with a scenario, they identify the appro-

priate solution. An almost exhaustive list of scenarios are programmed into the software in

this manner so when a real situation occurs, the software will select a strategy based on the

rules previously formulated by the experts.

Neural networks are programmed so they "learn" about correct procedures over time.

Through continually giving inputs of possible problems and then giving the algorithm the

correct solution, over time the neural network develops and learns the correct procedures

for a more general problem. The more cases and observations that are presented to the

neural network, the more calibrated the network becomes and the more likely the network

is to make correct decisions.

Fuzzy logic rejects the concept of absolute calculations and measurements but instead

makes its decisions based upon calculations and measurements that have a range of

answers to them. In an imperfect world where little is known with certainty, fuzzy logic

can solve problems that were impossible to solve before using absolute calculations. Since

operations control is also an inexact science, fuzzy logic may well be applicable.



Decision support systems utilize a much simpler concept than the previous three pro-

gramming styles, and unlike the other styles which are still largely in conceptual stages,

decision support systems can be utilized immediately. Programming consists of selecting a

decision given a limited set of decision rules based upon the state of the system. An exam-

ple would be a decision rule that suggests short turning a vehicle if the preceding headway

is less than X minutes. Although the rules themselves may be arbitrary and may not yield

the best results in all cases, it is the simplest of all the listed programming types to utilize.

Decision support systems can be thought of as a simplified form of a knowledge-based

expert system.

One important issue that must be discussed is the role of the human once the software

is able to make decisions. Traditionally, humans make all of the decisions, but in this new

environment, software can play any role from simply suggesting decisions to fully con-

trolling the decision-making process. The preferred role of humans in decision-making

can be decided by examining the relative efficiency and effectiveness of decision-making

under each alternative.

3.5.3 Storage and Output

Before and after information is processed, it needs to be stored in both volatile and

non-volatile memory. Like other computer components, computer memory is also becom-

ing less expensive, but more memory still implies greater cost. Memory can also affect

performance as many types of software utilize available free memory to increase perfor-

mance. Transit agencies have a myriad of memory devices to choose from, including hard

drives, floppy drives, optical drives, RAM chips, tape backups and many more.

Occasionally, hard copy output about the system is generated and analyzed by the

users of the system who can include controllers, planners and managers. Choices need to



be made on the types of output that are to be generated including real-time and non real-

time performance.

3.5.4 System Control

By far the most important role of hardware and software is to control the AVL system

in an efficient manner. This includes seamless integration of all the AVL subsystems

including location systems, communication systems, user interfaces, data processing,

reporting and storage systems and the users of the system. Location data, if collected

through polling, needs to be routed efficiently into the systems that stores and process this

data. Communications between users needs to be managed and controlled such that mes-

sages get to their intended destinations in an acceptable time period. Inputs into user inter-

faces need to be interpreted correctly, processed and results output to the requestor in a

reasonable period of time. Finally links integrating all these systems must be established

and maintained so that the entire system runs with as few flaws as possible. The choices of

system software and hardware to integrate all of these systems are important ones, since

they will directly affect the performance of the AVL system and also makes up a large pro-

portion of the total costs.

3.6 Human Factors

In a discussion that is filled with components and issues of a technological nature, it is

easy to lose sight of the users who will have their roles changed as a result of these tech-

nologies. Nevertheless, it is essential to consider how best to integrate users into a new

system which might actually mean changing the nature of some components of the sys-

tems to suit users needs.



One may wonder why effort needs to be placed on human factors. Is it not the goal of

these systems to reduce the need for manual monitoring and control, and thus doesn't the

debate on human factors become irrelevant? This may be true in the long run, but until the

time comes when transit systems can operate without the need for any human input, the

human element will remain a vital part of these systems. It may be possible to replace a

few positions with these new systems, but the bulk of the human input will still be just as

essential as before. This is because AVL systems are primarily designed to aid the humans

that use them. While AVL systems have the potential to become valuable tools for these

users, they are just that - tools. Without tremendous leaps in technology, it would be

impossible for these systems to replace the humans using them.

The roles of humans under an AVL system, however, can be expected to change,

sometimes slightly and sometimes dramatically. Human factors research serves to study

what these necessary changes will be and the best way in which these changes can be

made.

One obvious issue in the human factors debate is the role that humans will have in a

new AVL system. A transit system is made up of many types of positions; operators,

inspectors, controllers, passengers, managers, planners and schedulers. All of these posi-

tions will be somewhat affected by the introduction of an AVL system and this section will

look at these positions and their roles in an AVL scenario. This section will also look at

some roles that might be created as a result of AVL systems. Another issue concerns the

training that is needed for people to make a smooth transition to a new system. A third

issue involves possible labour savings that can be realized by automating some parts of the

system that was previously done manually.

Figure 3.5 shows how human roles are potentially affected by an AVL system.



Figure 3.5: Human Roles in an AVL System
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their schedules as well as operate their buses safely and courteously. These new AVL tech-

nologies are capable of aiding them in schedule maintenance by keeping track of how

early or late they are. Operators can also reach controllers more easily with a more

advanced communication system.

In addition, these technologies can give operators the extra role of being community

watch dogs: any incident that is observed by the operator can be directly relayed to the

authorities. These technologies may also make the operator's job a little safer. With silent

alarm features, any dangerous situation that occurs on the vehicle can be resolved more

quickly with a better chance of a safe outcome. These new roles are relatively cosmetic

ones, however; the operator's primary role will continue to be to operate their vehicles

safely and courteously.

Depending upon the system that is installed, operators can be called on to perform

many or no extra tasks. Their primary objective, though, does not change and no extra task

should be imposed that could possibly jeopardize that primary objective. There may also

be labor contract agreements that constrain the number of tasks that an operator is required

to handle. With relatively few changes in operator roles necessary, there should not be too

much training necessary, but some form of training should be provided nonetheless.

Currently, the operator usually has a very small input into the control process. This is

somewhat unfortunate since operators have the most complete knowledge on local condi-

tions which could serve as a rich source of information for real-time control decisions as

well as operations planning decisions. A new AVL system could take advantage of this by

giving the operator more input into the control process and perhaps limited decision-mak-

ing responsibilities. The issue here is the level of input and decision-making responsibility

operators should have.



At the least, it seems like a good idea to give operators some ability to control schedule

adherence by providing them with real-time schedule adherence information. If operators

realize that they are off-schedule, they can perform their own controls like speeding up,

slowing down or holding to get back on schedule. On low frequency routes which may be

primarily controlled by schedules, primarily operator-based decision-making might prove

to be effective in maintaining reliability.

Operators should not be the sole control decision-makers, however. Even if they are

able to make good decisions at a limited local level for small disruptions in service (e.g.

running late) or can make good decisions while operating low frequency routes, they still

need instructions in cases of larger disruptions (e.g. road closures) from controllers who

have system-wide information. Central control is probably also needed on high frequency

routes that are more headway controlled rather than schedule controlled and where reli-

ability involves interactions between vehicles. Chapter 2 showed that some control strate-

gies such as incident mitigation and system-wide holding need the system-wide

information that only central control can obtain. Even with the operators making some

decisions, vehicles should still be monitored by controllers who should have the final say

on multi-vehicle control strategies. The TTC provides schedule adherence information to

its operators but still monitors and controls vehicles through a control center.

With AVL systems, operators can also provide more input into the control process,

aiding controllers in their decision-making. What is needed is an effective communica-

tions system between controllers and operators that enable operators to report situations

that they observe in the field.



3.6.2 Inspectors

Inspector positions are the ones that are subject to the most upheaval as a result of

these new systems. Traditionally, inspectors were out on the streets recording times of

vehicles and making control decisions based upon their direct observations. AVL systems

would make their data collection functions unnecessary and as a result, some inspectors

might be moved into the control room to make central control decisions as controllers.

This would be a natural evolution of their positions since they have already gathered

field experience in controlling vehicles. Some inspectors would be left out in the street,

but their roles would change. They might be used as extra helpers in cases of emergencies

and may act as points of contact between the transit agency and the public. With AVL sys-

tems, inspectors can be used for different functions or they can be reduced in numbers. In

any AVL scenario, there is probably the need for some residual street supervision. Service

disruptions will still need to be attended to, AVL data will periodically need to be verified

and controllers who work the control room would still need some experience on the street

in order to understand field conditions.

The fate of the inspectors depends upon the objectives that the agency wishes to fulfil

with an AVL system. They can either improve system performance by keeping inspectors

and using them in more effective ways or they can save costs while keeping the same level

of performance by cutting their ranks.

If inspectors are reassigned to the control room, they should undergo formal training to

maximize their effectiveness in their new roles. Inspectors may have many types of back-

grounds and many may not have any previous computer exposure. Since controllers prob-

ably need a rudimentary level of computer knowledge to perform their functions in an

AVL system, it is essential that they get that training. Otherwise, the learning curve for



these people could be steep and it might take a long time before they become comfortable

and effective within the new system.

After the TTC installed their AVL system, supervisory positions actually increased,

but this was due to TTC policy that chose to retain supervisors and use them to increase

service quality. Supervisors who initially were in the field now rotate between duties in the

central control room and the field, performing control decision-making duties in the con-

trol room and providing emergency assistance in the field (see the TTC case study in

Chapter 4).

3.6.3 Controllers

The role of the controllers is to take input data from operators and inspectors and make

control decisions on vehicles in service and to respond to situations that arise in the field.

AVL systems should give the controllers better information on which to base their deci-

sions and as a result, they may approach their duties in a different manner, but in essence

their roles would remain unchanged. They might become busier, however, since control-

lers would have to deal with the wealth of information that the AVL system provides them

and since advanced communications systems may require more interactions with opera-

tors.

Controllers would definitely need some sort of training to become comfortable with a

new AVL system, but the amount of training that is required for them should be less than

the amount required for inspectors who come from the field. This is because controllers

already have basic knowledge about what the system is supposed to do.

The number of controllers needed for an AVL system depends upon the amount of

information provided by the system and the role it plays in decision-making. If the system

generates more information without providing any decision-making assistance, more con-



troller positions may be needed to deal with the new information. At the TTC, controller

ranks have indeed increased, but even with this increase, controllers still find their jobs

more stressful because of the abundance of information they must assimilate.

Information overload can be minimized if software displays only the most important

information to the controllers. Information overload can also be reduced if software assists

in the decision-making process through programming methods such as knowledge based

expert systems, fuzzy logic, neural networks or decision support systems. If this happens,

the responsibilities of the controllers are changed: the more the system is involved in the

decision-making process, the less the controller has to do and subsequently the more infor-

mnation the controller can assimilate.

If the system is able to make all decisions and convey them to the operators without

any human assistance, controllers would become overseers who monitor the system to

make sure that it is operating normally.

3.6.4 System Programmers and Supporters

The role of the programmer does not end once the system is fully developed. Even if

the system is designed and programmed in the most efficient and effective manner possi-

ble, there will still be problems. Users will still require assistance to use the system even

after their training periods are over, system crashes will still occur and hardware and soft-

ware enhancements will still be needed. System programmers and support staff assume

these roles after the system is up and running and they are often involved in the initial

training of users. This is one position that is relatively safe from AVL-induced labor

reductions: as the complexity of the system increases, there may even be an increased

demand for system support staff.



3.6.5 Analysts and Decision-makers

Analysts and decision-makers take collected data, process and analyze it, and make

recommendations to improve system performance. With manual data collection, analysts

and decision-makers do not always have a rich or reliable source of data on which to base

their analysis or decisions. The processing of data is often labor intensive and cumber-

some. With AVL systems, the potential exists for analysts to produce better summaries

and statistics given the better data that is collected. This may also relieve analysts some-

what from the burdensome task of processing information so that they can better concen-

trate on analysis and strategies for improvement. Decision-makers would benefit by

having better and more reliable summaries and statistics in which to base their decisions.

Analysts, unlike controllers, do not necessarily need to learn the on-line aspects of the

system, and since their backgrounds are usually more analytically oriented, formal train-

ing is often not required. They would need to learn some aspects of the system, however,

such as the outputs it generates. As long as the AVL system does not actually do analysis,

the need for analysts would remain unchanged, although their ranks might lessen if the

system could be programmed to generate automatic reports and summaries that can be

viewed and acted upon by the decision-makers.

The APC system at OC Transpo can produce reports automatically detailing many

aspects of the agency's performance. The availability of these reports and the fact that they

can be created as needed has given analysts and decision-makers at OC Transpo better

knowledge of their system performance and better decision-making capabilities.



3.6.6 Passengers

The passengers are the ultimate target of any system since these systems are being

installed to attract and retain passengers. Passengers are the ones who will ultimately

determine the success or failure of these systems in the form of ridership increases or

decreases, complaints or commendations.

Passengers using public transport make a travel decision, access a station, wait for a

bus, board the bus, ride the bus and then alight the bus. With a passenger information sys-

tem, it would be possible for passengers to receive information at various points in their

trip. Based on this information, passengers can change their travel decisions or change

their opinion of the system which may affect their future ridership.

The "inputs" that a passenger provides a passenger information system largely

depends upon whether the system is passive or active. In a passive system, passengers do

not provide any inputs; the information is simply displayed for them to see (or hear). This

inconveniences passengers the least, but it assumes that all passengers want the same

information, which may not be the case. In an active system, passenger must provide input

such as pressing a button or touching a screen in order to receive information. Here, pas-

sengers have flexibility in choosing the information they want, but they initiate use of the

system. An AVL system that directly impacts passengers should require simple interfaces

to minimize the "training" that is needed for passengers to understand the PIS. A passen-

ger that becomes inconvenienced due to the complex requirements of a PIS may choose to

ignore the system altogether or even forego transit in frustration in the future.



Chapter 4

Case Studies

4.1 Introduction

Every agency that implements an AVL technology will be different in terms of goals,

objectives and hence strategies for their systems. This chapter focuses on three agencies in

particular - the Toronto Transit Commission (TTC), the Ottawa Carleton Transportation

Commission (OC Transpo) and London Transport (LT). These three agencies were chosen

because of their extended experiences with AVL systems, and because each agency

adopted a different strategy in implementing the technology.

The initial goal of the TTC was to implement their technology to improve real-time

operations control. In contrast, OC Transpo decided to use technology in a piecemeal fash-

ion to improve their operating plan before introducing technology to real-time operations.

Like the TTC, London Transport also focused on the real-time functions, but much of their

emphasis has been on passenger information. The situation in London is very different

from both Ottawa and Toronto in that the operating agencies are separate from the plan-

ning and policy agency which affects the ways in which these systems are designed and

must function.

Each of these agencies are examined below including their goals, objectives and strat-

egies for using technology. The systems that they put in place, along with their benefits

and costs are also examined.

Since these three agencies have been developing AVL technologies for many years

and many of their location technologies are relatively mature, agencies now in the process

of implementing new systems are more likely to choose newer location technologies. This



chapter concludes by looking briefly at the experiences of several other agencies, includ-

ing several that are currently implementing AVL systems using newer technologies.

4.2 Toronto Transit Commission (TTC)

4.2.1 Introduction

The Toronto Transit Commission (TTC) operates a multi-modal system with a largely

grid-based bus network feeding the subway system. Most of the bus routes operate outside

the central business district, while the two subway lines are focused on the CBD. The TTC

also operates a large streetcar network also focussed on downtown.

In the 1970's, the TTC conducted a study looking into the service issues that the

agency would be facing by the end of the century. The results indicated that increased rid-

ership and street congestion caused by heavy population growth would place additional

demands on the TTC to provide reliable and efficient service. Their existing manual pro-

cedures for service control would not be able to maintain the needed reliability and effi-

ciency in the future, thus the report recommended that an Automatic Vehicle Location and

Control (AVLC) system would be necessary. This prompted the TTC to start developing a

centrally controlled integrated system that would serve to aid in many of their service

functions. The system that was eventually developed is called the Communication Infor-

mation System, or CIS [TTC 63].

This case study examines the TTC's CIS system first and then evaluating it. Prior mon-

itoring and control systems are examined as part of the history of CIS, the location tech-

nology, communications, hardware and software behind CIS, the role of users and CIS's

off-line capabilities. In evaluating CIS, the thesis analyzes the process of development,



installation and training, its costs and benefits and user opinions about CIS are all

reviewed.

4.2.2 Prior Service Control Methods

Most of the information gathered about prior control methods at the TTC was obtained

through interviews with TTC inspectors. Prior to the installation and utilization of the

AVL system, the TTC obtained most of its information in a traditional manner. Passengers

received information via static displays at bus and streetcar stops, through inspectors on

the street, or through fare collectors at subway stations. Most of the control was done by

inspectors out in the field with one or two inspectors assigned to strategic locations on a

route.

The inspectors would sometimes coordinate with their local control centres principally

relying on special telephones installed on light poles, but the majority of supervision was

conducted in the field. The inspectors would note the arrival times of vehicles at selected

locations and would make control decisions accordingly. If two inspectors were assigned

to a route, they would attempt to coordinate with each other so that they would have better

overall information. If an emergency occurred, the inspector would need to be at the emer-

gency location in order to effect the proper control actions. This would mean that the

inspector would have to drive over to the emergency, conduct any necessary emergency

repairs and direct vehicle traffic if necessary.

4.2.3 History of CIS

Toronto's effort which led to CIS began in the 1970's with three main goals: to locate

vehicles in real time, to provide a better communications system between central control

and operators and inspectors in the field and to improve safety for both passengers and



operators. Their objectives in gathering location information were to improve the opera-

tions monitoring and control and passenger information functions. CIS has evolved

through six phases over a fifteen year period encompassing different technologies to its

present configuration. After each phase, evaluations were performed to determine the suc-

cess of the phase and whether to continue or discontinue development.

The first three phases of CIS involved defining the requirements for the system, identi-

fying the alternatives, and recommending a system. After these phases were completed in

1974/75, all of the necessary sub-systems were developed sequentially. All of the develop-

ment of the software and much of the hardware development and training was done in-

house. Phase IV, which was completed by the end of 1975, involved testing the system on

ten vehicles to make sure that both the technology and the underlying system worked. In

Phase V, 100 diesel buses assigned to a single divisional control centre were equipped

with CIS. Surveys and measurements of these buses were conducted before and after CIS

was installed to determine quantitatively the benefits of the system. Phase V started in

1976 and finished a few years later. Phase VI, which started in 1981 and was completed in

1986, expanded CIS to cover an entire division; the Wilson Garage with 250 buses. A

detailed before and after analysis was performed after this phase with the results contained

in a June, 1988 report [M.M. Dillon 25].

The entire TTC bus and streetcar system went on-line in 1991 after about a year of

hardware and software installation [TTC 63] as part of Phase VII. The main emphasis dur-

ing the year of installations was to get the basic AVL system installed and on-line by the

required deadlines. This meant that some of the other features of CIS that were supposed

to be included in Phase VII such as management reporting and passenger information

were delayed. Training of controllers and other CIS users was also rushed through. Now

that the system has been fully installed, the TTC is starting to implement the management



reporting functions and they are also starting to conduct a cost/benefit analysis of the

entire system.

4.2.4 Location Technology

Although the signpost-odometer vehicle location technology used in CIS is not

advanced by today's standards, both the communication and computer technologies sup-

porting the location technology are among the most advanced in any transit system. The

location technology consists of signposts and odometers. Each signpost transmits its ID

signal through the UHF band (at 10.05 GHz) which is received on board the TTC street

vehicle. Each vehicle contains two odometers; one tracks continuous mileage and the

other is reset every time a signpost is passed. These odometer readings, along with the

most recent signpost passed, are transmitted to central control in response to polling on a

20-40 second cycle, which processes them to determine vehicle location. Since an odome-

ter is reset every time the vehicle passes a signpost, controllers receive fairly accurate

vehicle locations.

4.2.5 Communications technology

Communications between the vehicles and central control can occur in several ways.

At the heart of the communication system is a voice and data link consisting of ten anten-

nas that are distributed across the city such that every route is covered and there is overlap

in coverage in case of antenna failure. The operating structure of these antennas is some-

what similar to a cellular network in that any vehicle that is within the sphere of influence

of one antenna transmits over that antenna's frequencies. When the vehicle travels out of

the sphere of influence of one antenna and into another, the transmission frequency is

switched automatically.



Unlike a cellular network, however, each antenna transmits and receives at different

frequencies, although when antennas are located at opposite ends of the city, the separa-

tion distance is great enough so that the same frequencies can be used. In this configura-

tion, many smaller, less powerful antennas are built instead of one large antenna which

may cost more to licence, build and maintain.

These ten antennas control about 25 standard frequencies that the government

awarded to the TTC. Each standard frequency has a drift of about 25 kHz and can carry

either voice or data communications. Using newer European standards, the TTC has been

able to split each standard channel and effectively double the number of frequencies to 45

channels. The TTC has been able to do this by purchasing and developing more precise

equipment that reduces radio drift from the North American standard of 25 kHz to the

European standard of 12.5 kHz. Most of the channels are reserved for data communica-

tions, but some are reserved for voice. The channels are more or less evenly distributed

between the antennas. Transmissions occur at about the 400 MHz level, which is a little

higher than normal radio transmission frequencies.

Each antenna is responsible for polling the vehicles in its area and for commanding

vehicles to switch over to an adjacent antenna's frequencies if the vehicle is about to leave

the antenna's sphere of influence. In the polling sequence, the antenna polls all of the vehi-

cles in sequence and requests information on each poll. If no information is forthcoming,

the vehicle is polled again 20 seconds later. If no information is received for three or more

successive polls of the vehicle, a special channel is opened up which searches for the vehi-

cle in order to get it back onto the communication system.

At every fifth poll in the sequence (i.e. after 4 vehicles are polled), the antenna opens

up a general frequency requesting any exception information such as changes in passenger

loads, silent alarms or other emergencies. This way, emergencies and other important sig-



nals are received by central control within 1-2 seconds instead of the normal 20 second

polling interval. Channel switches, polling, and message routings are all controlled by data

or voice polling controllers. This information is routed through the controllers into central

control and eventually down to the division control centers.

Should the primary voice-data network fail, the system is linked to a backup cellular

voice network operating in the 800 MHz range that is a shared common public network.

Each TTC vehicle has a unique cellular telephone number assigned to it and in case all

voice channels on the primary network are occupied, controllers can automatically switch

to the cellular network. Like public users, however, the TTC must pay for each minute of

cellular time, but the voice communication is a lot clearer than the primary network and

the vehicle can communicate anywhere in the world where a cellular network is set up.

Operations control can still be conducted during failures and times of heavy use by using

the cellular network, but only voice messages can be transmitted through this network. A

schematic of this system is shown in Figure 4.1.

4.2.6 Computer Hardware and Software

The CIS system has a complex computer system overseeing, integrating and control-

ling its operations. On the vehicle, the main equipment is the Transit Universal Micro Pro-

cessor - nicknamed TRUMP, which controls all of the data that the vehicle transmits and

receives. The TRUMP contains a UHF digital radio, a cellular telephone, microphone, dis-

play screen and keypad. Receivers on top of the vehicles and sensors connected to the

odometers receive the information necessary to perform vehicle location [TTC 24].



Figure 4.1: Schematic of CIS1

1. Source: CIS: APTA Conference [24]



With the assistance of the TRUMP unit, the operator can receive text and voice mes-

sages from controllers. The unit also displays schedule adherence information (down-

loaded from the central computers) in the form of minutes behind or ahead of schedule.

The operator can also send information to the inspectors such as passenger loads, emer-

gency alarms, silent alarms, occurrences of fare disputes and simple yes or no answers to

text based questions. Automatically, the TRUMP unit sends location data, the status of the

vehicle's engines and the status of the vehicle's doors every polling cycle.

A microphone and loudspeaker are also connected to the TRUMP unit. The micro-

phone can be used by controllers to listen to conversations occurring on the vehicle and is

useful in cases of on-vehicle emergencies. The speaker is used by either the operator or

controller to relay messages to the passengers on board the vehicle and is also very useful

in cases of fare disputes (this allows for disputes to be handled by the controller, taking the

burden of dispute resolution out of the hands of the operator) and in providing informa-

tion, such as on service disruptions, directly to passengers.

Service is controlled from ten operation control centers with each center controlling all

the vehicles associated with its garage/district. Each controller is seated at a workstation

which consists of three monitors, an IBM PC 386/50 computer, a CIS handset, a keyboard

and a dual voice/data telephone that patches into the central control computer and can

send voice or text messages to vehicles.

Two monitors are devoted to showing graphics of the individual routes with each

routes shown as an "oval" with the long sides corresponding to each direction of travel,

although they do not correspond to the actual physical geography of the route. On one side

of the line, the scheduled location of the vehicle is shown (downloaded from the planning

department), with the actual location shown on the other side. Depending upon the dispar-

ity between scheduled and actual position, inspectors can see how far off schedule any



vehicle on a route is. Controllers can also see gaps in service though this graphic. The two

monitors together can show up to 6 routes, thus it is possible for an inspector to monitor

and control up to 6 routes simultaneously.

The third monitor is an emergency/statistics screen with the top portion showing every

vehicle's deviation from schedule in minutes and "pathological" vehicles (i.e. vehicles

that are being tracked that have not logged into the system, vehicles that are far ahead of or

behind schedule, vehicles that have pressed a red or yellow alarm). The middle part of the

screen shows detailed statistics for any vehicle selected by the controller including odom-

eter readings, engine status, door status, the run number and ID of the vehicle, the operator

ID, and the signposts that the vehicle is between. Inspectors can send text or voice based

messages over the voice-data line or can send voice-based messages over the cellular net-

work.

The control center software is intended to handle short turns, expressing and emer-

gency re-routing although currently it only handles short turns reliably. Since the system

uses signpost-odometer technology, the software has to be sophisticated enough to track

vehicles when they go off-route by reintroducing the vehicles back into the system at the

right points.

,Although each division control center is intended to handle only the vehicles within

the division, it is possible to control any vehicle at any division. This is particularly useful

for evening and overnight operations, where fewer vehicles are operating system-wide.

The TTC has a policy of shutting down some control centers early and transferring control

to other control centers. In the extreme, for night service, only two division control centers

(Roncesvalles in the west end and Malvern in the east end) are needed to control system-

wide service for all 10 divisions.



The control centers' workstations and the TRUMP units on the vehicles are all tied

together through a central server which is essentially the "brains" of the system and pro-

cesses most of the information that flows between the operators and the controllers. The

"server" consists of fifteen networked IBM RT super-micro computers, each assigned to

handle one division and one special super-micro assigned to coordinate the other servers.

If one server goes down, the system offers redundancy and spare capacity so that another

server can take its place.

The servers initially receive information from either the TRUMP units or the control

center workstations. After determining the final destination of the information, the servers

process the information and relay it to the correct channels. When a message comes in

from a vehicle, the server ascertains its destination, determines its ID, performs the neces-

sary calculations and then forwards the results to the correct control centre. A similar pro-

cedure working in reverse occurs when the controller sends a message to the vehicle.

Examples of processing done by the central server are the calculation of positions, the cal-

culation of deviations, and the accommodation of requests from operators and inspectors.

All of the CIS programming is in a standard language (Microsoft C) and all of the

machines run on a standard operating system (Unix). Use of standardized languages and

operating systems makes the transfer and upgrading of software to different systems easier

than if the software were developed using customized languages or operating systems.

When a vehicle enters revenue service, the operator logs into the system by inputting

the badge ID, the run number and the route number of the vehicle. TRUMP automatically

sends this information to the controller and it is displayed on their screen at the fifth poll

interval. Every 20 seconds or so thereafter, the polling controller sends out a signal to the

vehicle without waiting for either a prompt or an acknowledgment. The response signal

from the TRUMP contains information on the position of the vehicle based on the last



signpost passed and the odometer reading since then. The signal also contains information

on engine status, door status, the operator ID, the vehicle run, the vehicle number and the

last signpost the vehicle has passed.

All that the signpost does is send out a signal bearing its ID. A receiver on the vehicle

picks up the ID, then the TRUMP unit sends this ID along with all the other information to

the control centre and also resets the odometer. When an emergency occurs, the operator

presses an exception key and the signal is sent to the control centre as the response of the

nearest fifth poll. The operator can also make use of exceptions to report passenger loads,

fare disputes, answer text questions or initiate voice communications. The operator and

controllers can communicate in three ways. One is through the TRUMP unit through text

messages sent through one of the UHF channels, the second way is by voice through the

microphone and the third is by cellular telephone. Both the operator and the controllers

have the ability to initiate conversations. The text messages responses sent to the inspec-

tors at the control centre through the TRUMP are limited to yes or no answers. The opera-

tor logs off the vehicle at the end of the run.

4.2.7 Human Factors

With much of the discussion to date focusing on the technological aspects of the CIS

system, it is easy to lose sight of the fact that for CIS to be effective it must help its end

users. It is intended to make all of their jobs more efficient and easier to perform.

CIS has caused an evolution in the roles that these individuals play. Operators, in addi-

tion to driving the vehicles, are now responsible for making sure that their vehicles are ini-

tially logged onto the AVL system. More local monitoring and more control

responsibilities are passed on to them through the TRUMP units which inform them of

their schedule adherence. They also act as secondary community watchers. Inspectors



who previously worked exclusively in the field are now commonly rotated between the

control rooms and the field. Inspectors in the field are now primarily responsible for

responding to emergencies and dealing with the public under both normal and emergency

conditions.

The controllers in the control room have much more information to assimilate and deal

with. Before CIS, they would receive only occasional updates from inspectors and opera-

tors. With CIS, they receive location information on a system-wide basis along with

schedule adherence and other pertinent information about every vehicle in the system.

Controllers are getting a much better picture of their routes in general, and there is some

anecdotal evidence that this is leading to better control decisions. The position has become

more stressful, however, as inspectors now have more information to deal with when they

make decisions.

Passengers do not notice many physical differences in the CIS equipped vehicles,

although they may notice improvements, when emergencies occur, in the form of quicker

response times and better mitigation measures. Passengers may also notice better service

in terms of headway regularity or on-time performance as evidenced by a decrease in

complaints and an increase in commendations.

4.2.8 Off-line Functions

CIS includes several types of management reports which, when operational, will be

able to provide summaries on operations for any vehicle on any route at any time. The

reports developed to date include [Levinson 40]:

*Period Summary Reports
*Route Reports
*Running Time Reports
*Point Reports
*Layover Reports



*Schedule Adherence Reports
*Route Operations Reports
*Segment Schedule Adherence Reports
*Lost Mileage Reports
eChange-Off Reports
*Key Push Reports

Presently, the reports are being generated manually, but in the future, these reports

should be automatically generated. Currently, most of the AVL information is physically

stored in raw form on magnetic disks. There is currently no system available automatically

to compile, summarize and transfer this data to analysts. Access to this data is also limited

to when a passenger complains about a particular route. When this happens, the portion of

the data that includes the route and time of the complaint is retrieved, compiled and ana-

lyzed in order to respond more effectively.

When these reports become fully integrated into the system, they will provide deci-

sion-makers with a wealth of information on operations so that they can make more effec-

tive operations planning decisions. This information can also be used to judge the

effectiveness of CIS in general and of individual control decisions specifically. When inte-

grated with an Automated Passenger Counter (APC) system, CIS might also be able to

automate its data summarization process much like OC Transpo has done with their APC

system.

In addition to generating these static reports, the TTC is also developing a dynamic

reporting system that can display information that is specific to a manager's needs. In a

static reporting system, the TTC is faced with the challenge of organizing a very large

database and determining the data that is most important to managers. Every day, about 2

megabytes of information is collected by CIS for each division, thus it is easy to get over-

whelmed with data, and TTC wants an effective way to filter out needed information.



In its proposed dynamic reporting scheme, the TTC would use off-the-shelf software

that is specifically designed to provide a user-friendly interface for shared databases.

These programs enable managers to take data from a shared central database and display it

in easily comprehensible ways, such as in tabular or chart format. These programs also

enable quick statistical analyses and database queries to provide further information on a

subset of the data. For example, a manager could request the summary statistics for an

entire division, then zoom in on one route of the division, and if desired, to one vehicle on

the route. In this dynamic reporting scheme, the manager is able to generate the statistics

and summaries he or she wants and is not constrained to pre-defined reports.

4.2.9 Development and Installation of CIS and Training of Users

The CIS system has resulted from a long development process that is still continuing.

Generally, CIS's development is viewed as being successful, all the systems and sub-sys-

tems work reliably and there have been smooth transitions between phases. Part of the rea-

son for this success was the continuous assessment of CIS as it was being developed. After

Phase V and Phase VI, cost/benefit analyses were conducted to determine whether or not

to proceed with the next phase. Opinions are solicited from all users of CIS to help deter-

mine hardware defects, software bugs and user incompatibilities, and a team at the CIS

control centre works full time to address all problems. Thus, the system is continually

improved although recent staff cutbacks have slowed this process.

The installation process has also largely been a success. Phase VI was installed and

operational with a minimum of problems and CIS was successfully installed on all vehi-

cles and at all divisions in less than twelve months, between 1990 and 1991 (one of the

objectives of Phase VII). This feat has been accomplished, however, at a priced in reduced

functionality. In the original development plans, Phase VII was supposed to include man-
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agement reporting, passenger information and passenger counting devices, but as of April,

1994, none of these systems has been installed. Past tests have found the current technolo-

gies used for passenger counting to be unreliable which is one of the reasons why they

have not been yet implemented. Management reporting and passenger information have

not been implemented because of time and resource constraints. The developers of CIS

were primarily interested in getting the real-time functions and the overall system on-line

before focusing on the off-line reporting and passenger information.

Development in the earlier phases also had trouble keeping on schedule. Phase VI,

which was to have taken three years to complete actually took about four because of soft-

ware development, staffing and computer capacity problems [TTC 26]. This is one of the

risks of a truly in-house developmental process for new technology.

The training process has not been entirely successful either. The controllers who use

CIS usually come from the field inspector ranks and they are initially trained in the control

room for a three week period. After the training period, these controllers are usually sent

back out in the field to perform the duties they were doing before their training. Sometime

later, this controller will be assigned back to the control room where he or she will be

expected to use the CIS system. The strategy is that with this method, controllers will be

able to use the knowledge of geography and street conditions gained out in the field back

in the control room. The strategy however can result in controllers forgetting much of their

earlier training because of the time away from CIS and being forced to learn the system

"on the fly" by experimenting with the CIS functions and by learning from other control-

lers.



4.2.10 Costs

It is often difficult to obtain reliable cost data for AVL systems. Sometimes, agencies

report overall costs of implementations, but do not release detailed costs for individual

components. There are also many issues that have to be dealt with when determining cost

such as deciding whether a subsystem should be included in the overall costs, or whether it

is actually a required part of another system. If this subsystem is part of both parent sys-

tems, then cost allocation becomes an issue.

Also, some costs, such as in-house labor for development, are hard to track accurately.

Sometimes, programmers and other personnel would be pulled off other duties (e.g. sub-

way operations, data analysis) to work on CIS. One of the managers interviewed at the

TTC stated that some of these costs, which are hard to determine because sometimes they

didn't distinguish CIS related work with other work, may not have been included in the

overall costs. As a result of these potential errors, the CIS costs that are presented below

should only be viewed as estimates of the true costs.

The CIS Phase VI final report [26] summarized the entire project costs for Phase VI

compared to original estimates, as shown in Table 4.1 (all costs are in US dollars). These

cost estimates tell us a few things about CIS and perhaps about AVL systems in general.

First, costs may be hard to predict. In this case, projected and actual costs differed by only

10%, but this masked the fact that some costs were greatly underestimated and others were

overestimated. Second, since these are relatively new technologies being implemented,

development may not proceed perfectly as planned. In this example, the TTC was unable

to obtain the required frequencies and passenger counters were not accurate enough for

the TTC's needs.
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Original Project Budget Estimated Final Costs

Purchase of Vehicle Equipmenta $790,000 $835,000

Purchase of Console Equipment" 53,000 53,000

Wiring of Vehicles by Equipment Department 144,000 144,000

Software Development by Management Services Department & 284,000 630,000
Consultants

Engineering and Installation by Plant Department 292,000 410,000

Retrofit of existing CIS Phase V Equipment to New Frequenciesc 29,000 --

Passenger Countersd 102,000 --

Other Equipment Purchasese 343,000 245,000

Total Estimated Project Cost $2,040,000 $2,260,000

Table 4.1: Original Projected and Estimated Total Costs of CIS Phase VI f

a. The vehicle equipment costs are the total payments made to RMS Industrial Controls Inc. for the
supply of TRUMP units and all peripheral equipment on vehicles, including microwave receivers,
odometer sensors, P.A. speakers, engine and door sensors, microphones, junction plates.
b. The console equipment purchase includes three "full" (three-screen) consoles plus the single-
screen "mini"console.
c. Due to delays in receiving Federal approval for new radio frequencies, which could accomodate
Metro-wide CIS, it was necessary to have Phase VI equipment built to operate on Phase V frequen-
cies. At some time in the future, it will be necessary to retrofit all of the CIS equipment to new radio
frequencies. (Reference Commission report dated July 21, 1981.)
d. A study of passenger counters has been completed under a separate project funded by the Minis-
try of Transportation and Communications. Since a suitable final system configuration was not
proven at the time of vehicular equipment installation, it was decided to delete the installation of
passenger counters from Phase VI. (Reference Commission report dated September 28, 1982.)
e. "Other Equipment Purchases" includes all other acquisitions related to Phase VI of CIS including
additional radio base stations, signposts, mini-computer components, etc.
f. All costs are in Canadian dollars

Phase VI installation included 262 buses, which gives a per bus cost of approximately

$8,600. This cost does not include, however, the costs of previous phases of development,

which increases the total cost to about $4 million or a per bus cost of about $15,000.

Going back to the table, strictly vehicle-related costs turn out to be approximately

$1.34 million or almost 60% of the total costs. These costs, which vary directly with the

number of vehicles includes purchasing, wiring and installing vehicle equipment (it is

assumed here that the vehicle portion of the installation costs is about $370,000 of the total



$410,000 cost). The hardware costs for central control and the communications network

are approximately $340,000 or only 15% of the total costs. Software costs make up the

remaining 25% of the total cost.

These are the approximate costs for a centralized control system with limited decen-

tralized functions. It would seem likely that a more decentralized system would have the

vehicle bearing a larger proportion of the costs. The observation to note here, however, is

the fact that central control facilities are not a major determinant of cost for a large system

such as Toronto's. For the benefits that centralized monitoring and control can give you,

this example gives some support to the view that centralized control may be more cost-

effective than decentralized control.

On a system-wide basis, the full scale implementation of CIS was estimated to be

about $27.3 million or an annualized cost of $2.6 million [59]. Annual operating costs are

estimated to be around $1.6 million for an overall cost of $4.2 million annually. These

costs include installations on:

*2000 buses of varying types and 300 streetcars
*10 divisional control centres, 9 of them for buses and 1 for streetcars
*1 CIS control centre linking the divisional control centres

This cost also includes all prior research and development costs conducted in the pre-

vious phases of CIS. On a per vehicle basis, the cost turns out to be about $12,000 per

vehicle. One manager estimated the cost of the TRUMP unit on vehicles alone to be about

$7,300 per vehicle, thus it is clear that the on-board vehicle costs make up a major portion

of the total costs. With such a large operating fleet to contend with, it seems likely that the

controlling element in total cost is the equipment that has to be installed in each vehicle

rather than central control facilities.
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4.2.11 Benefits and Effectiveness of CIS

A cost/benefit study released in June, 1988 [25] evaluated Phase VI of CIS and then

estimated systemwide benefits and costs. A critical evaluation of this analysis is provided

next.

From a study of passenger boardings, ridership, schedule adherence and manpower

utilization for the routes controlled by Wilson garage, the report estimated the following

financial benefits of CIS:

1. 1% savings in vehicles and manpower at Wilson garage. As a result of this, the report
projected a 2-3% savings systemwide, amounting to annual savings in capital and oper-
ating costs of between $4.3 and $6 million.

2. $1.3 to $2.6 million increase in passenger revenue systemwide based upon ridership
increases at Wilson.

3. increased productivity of supervisory staff could see as much as 27 inspectors either
being assigned to other duties or being used more effectively in the field. A cost of $1.0
million would otherwise be incurred if these staff were hired exclusively for street
supervision.

4. an annual savings of $370,000 due to a reduction or reassignment of data collection
field staff when APC's become integrated into CIS

5. greater number of road calls and increases in change offs resulting in additional operat-
ing costs of at least $460,000 a year.

The largest items were the cost savings associated with projected vehicle and man-

power reductions and the revenue impacts associated with ridership gains, producing an

estimated annual benefit of between $6.6 and $9.5 million. This was compared with the

annualized cost of CIS of $4.2 million to come up with a cost/benefit ratio of from 1.6 to

2.2. On the face of it, this makes a good case for the value CIS, but it is important to note

here that these benefits are only projected benefits and have not yet been fully realized.

Also, a closer look at some of the analysis raises some questions about the results.
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On the issue of vehicle and manpower savings, the report measured Daily Passengers

Per A.M. Peak Period bus from 1981 to 1987 at all 10 garages and compared the CIS

equipped garage (Wilson) with all the other garages. The report suggests that the more

passengers carried on an A.M. Peak Period bus, the more efficiently vehicles are being uti-

lized. This would translate into a reduced need for buses and thus a cost savings. The

report found an 0.8% improvement in this statistic at Wilson (from 976 to 985) at the same

time the rest of the system suffered a 1.2% decrease (from 1029 to 1017). Based upon this

and the fact that management reports and passenger counters were not used at Wilson, the

report made a "conservative" estimate of a 2-3% system-wide savings in terms of required

fleet size.

First, it is not obvious that Daily Passengers Per A.M. bus is a good indicator of vehi-

cle utilization and hence required fleet size. A more appropriate measure might simply be

the differences in buses required before and after AVL implementation after factoring for

route and schedule changes. Even if this measure is used, it indicates that utilization at

Wilson is below system average to begin with and then improves, but is still below system

average utilization. This indicated that there was slack in Wilson, and the gains may just

have resulted from tightening up the slack rather than from CIS per se. A stronger case for

CIS would have been made if vehicle utilization had improved so that Wilson out-per-

formed the system average, thus the gains could be better attributed to CIS.

In addition, by comparing Wilson with the rest of the system in order to isolate CIS

effects, the analysis implicitly assumes that external influences are the same for Wilson as

for the rest of the system. Over the analysis period however, congestion in the Wilson area

increased relative to the rest of Toronto. In addition, population and employment dramati-

cally increased in the City of Vaughan, which is just north of Wilson. These two effects

seem to indicate that external factors affecting Wilson were quite different than those
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affecting the rest of the system, thus the assumption appears to be questionable. A possible

way to isolate CIS effects more effectively would be to conduct comparisons between

similar routes in the same garage rather than between garages if possible.

The TTC did conduct comparisons of vehicle usage from January 1982 to July 1983 at

Wilson [26]. During this time period, CIS was installed on several selected routes at Wil-

son, thus since the routes were in the same geographic area and no major service changes

occurred during the period, the effects of CIS were better isolated. The vehicle require-

ment for CIS-equipped routes decreased by 11.5% while the vehicle requirements for non-

CIS routes decreased by only 2.3%, thus it was concluded that CIS had a net effect of

reducing vehicle requirements of 9.2%. While this analysis isolates the effects of CIS

more effectively, it assumes that all routes in the area are similar, which is an oversimplifi-

cation.

In terms of ridership, the report estimated a ridership growth of 0.5 to 1% based upon

ridership growth at Wilson compared to the other divisions. Their measure of ridership

growth is percentage change in passengers/mile. Although this is a good measure to judge

productivity, it is not a true measure for ridership since this measure can increase either

due to an increase in passengers or a decrease in service. Other measures such as passen-

gers and passenger-miles are better measures of ridership. These measures, however, do

not effectively isolate CIS effects if they are only compared on a systemwide basis. From

this analysis of passengers/mile and the previous one depicting Daily Passengers Per A.M.

Peak Bus, although general productivity has increased, it is still not clear whether this

increase came as a result of increased ridership, decreased vehicle usage or both.

The report did provide some concrete evidence of service quality improvements from

an analysis of schedule adherence. Means and standard deviations of headways and stan-

dard deviations were calculated for a Jane Street route at different time periods before and
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after CIS was implemented. The results shown in Table 4.2. indicate that schedule adher-

Observed Headway

TimeTime 1982 1984 1987
Period

Mean Standard Mean Standard Mean Standard
Headway Deviation Headway Deviation Headway Deviation

11A.M. -2 6.22' 4.14' 6.79' 3.23' 5.97' 3.62'
P.M.

2 P.M. - 3.58' 4.14' 3.89' 3.45' 3.33' 2.73'
4 P.M.

4 P.M. - 6:30 2.10' 2.08' 2.62' 2.85' 2.92' 2.91'
P.M.

Table 4.2: Schedule Adherence: Jane Bus Routea

a. Source:TTC Planning Department

ence generally improved except in the P.M. peak period, which was affected by increasing

traffic congestion from 1982 - 1987. In addition to measuring schedule adherence by

determining means and standard deviations of headways, the TTC graphed a frequency

distribution of headway variation, which was defined as percent deviation from mean

headway. An example of this graph is shown in Figure 4.2.

The last measure reported was reaction from passengers in terms of passenger com-

plaints. Within Wilson, the number of complaints per passenger decreased by 17% from

one complaint every 1427 passengers to one complaint in 1714 in terms of punctuality,

and decreased by 50% (from 1 in 2199 to 1 in 4433 in terms of fare or transfer disputes.

When compared with the systemwide averages, Wilson had 24% and 19% lower com-

plaint rates respectively on these two measures. 1

1. Calculations from Table 7 of M.M. Dillon [25]
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Figure 4.2: Percent Deviation From Mean Headways
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Within the TTC, passenger complaints are used as a proxy for schedule adherence,

since there is believed to be a high negative correlation between service quality and num-

ber of complaints. The report points out that the number of passenger complaints has
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decreased since CIS came on line suggesting that service reliability has improved. The

study reported that many users of the system also believe that CIS has made them more

effective. Controllers believe that they are making better decisions and operators believed

that they are more successful at adhering to schedules.

One of the reported benefits is the potential savings that can be achieved by assigning

some supervisory staff to other activities. The TTC evaluation was conducted by compar-

ing vehicle to supervisor ratios at Wilson with the full system. By normalizing with

respect to the number of vehicles, total supervisory requirements reflecting such things as

route or schedule changes can be accounted for. Table 4.3 from the evaluation report

charts supervisory needs from 1983 to 1988. This table shows that over the 5 year period,

supervisors have become more productive system-wide but both the productivity and its

increase was highest at Wilson where CIS was installed. This increased productivity trans-

lates into a 2 bus/supervisor increase in efficiency which the evaluation translated to a sav-

ings of 27 inspectors system-wide.

1983 1984 1985 1986 1987 1988 increase
1983-
1988

Supervisory Staff" 153 153 155 155 155 157 2.6

A.M. Peak Vehicles 1578 1615 1641 1668 1704 1730 10.0

Peak Veh./Inspector 10.31 10.56 10.59 10.76 10.99 11.02 6.9

A.M. Peak Veh. (Wilson) 226 241 250 258 261 267 18.1

Inspectors (Wilson) 20 20 20 20 20 20

Peak Veh./Inspector (Wilson) 11.30 12.05 12.50 12.90 13.05 13.35 18.1

Source: TTC Transportation Department

Table 4.3: Surface Supervisory Staff
a. Includes Wilson Division
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Even if these savings could be realized, they have not been since the TTC has followed

a policy of reassigning supervisory staff rather than reducing their ranks. The agency feels

that supervisors need to be retained in order to improve passenger relations, to respond to

emergencies and to improve service in general.

A 1991 Supervisory Assignment Report [65] shows the effect of this policy. From

1988 to 1991, total supervisory staff actually increased from 186.5 to 287.5 during the

period in which CIS was installed system-wide. Also Duerr and Wilson [31] estimated an

operator/supervisor ratio for the TTC bus system in 1991 to be about 19.3. If a 1.5 opera-

tor/bus ratio is assumed, then the bus/supervisor ratio would be 12.9, which is about a 17%

efficiency increase from 1988. This means that although supervisory efficiency increased

system-wide as a result of CIS, supervisory positions increased as well. This suggests that

the benefits of CIS from a supervisory perspective should be measured in terms of service

quality rather than cost savings.

In addition to quantifiable benefits, the June 1988 report listed some non-quantifiable

benefits of CIS including:

*Improved emergency response times
*Improved restoration of service
*Improved passenger relations
*Creation of incident reports
*Potential for real-time passenger information
*Community safety and security

4.2.1.2 Opinions about CIS

From interviews with TTC staff combined with interviews made in the June 1988

evaluation report, the following opinions about the impacts of CIS from managers, opera-

tors and inspectors have been gathered.



Managers

Managers like the system a lot. They were the ones who originally pushed for CIS to

be developed and touted the potential benefits of the systems. Even now, with shrinking

budgets and with some delays in implementing the full system design, they still fully sup-

port CIS. Unfortunately, with the economic recession still affecting the area, the commis-

sion has less funding to improve the system. Managers say that they are slowly moving

towards a more automated system of reporting, which is of special interest to them. The

managers also strongly believe that customers are receiving better service as a result of

CIS, pointing mainly to the decrease in passenger complaints, and their personal experi-

ences. No real statistical analyses have been conducted to yet quantify effectiveness, how-

ever.

Managers recognize that CIS will not solve all their problems and the human role will

remain paramount. In their movement towards improved service, they see the need for

continued interaction with the public through operators and through inspectors on the

street which was the agency's main motivation behind retaining supervisory staff.

Inspectors/Controllers

Inspectors have mixed opinions about CIS, but in general they support it. They agree

with the managerial point of view that the human element will always be a big part of CIS

and they believe that users are well integrated into CIS. Manual inputs are essential since

good monitoring and control comes from experience working in the field. Many inspectors

feel that you don't become an effective controller in the control room without spending

time in the field.

You need to understand the geography of the system, individual operator needs and

capabilities, and most of all, you need experience in the field to determine which controls

will work where and which controls won't. None of these elements can be programmed
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into CIS, but they can work alongside CIS to achieve the proper goal. Like managers, they

view CIS as a very useful tool, but as with any tool, it can be used effectively or ineffec-

tively, and the better inspectors will always make the better decisions regardless of the

level of help provided by any system.

Many of the faults that they find with CIS are software related, although some prob-

lems are hardware related. The problems comes primarily as a result of the limitations of

the signpost-odometer location technology. As long as a vehicle stays on the route, there is

no problem with locating that vehicle. However, when a vehicle is subject to a control

action, problems may occur with CIS misjudging the vehicle's location. One example is

when a vehicle is diverted off a route right after passing a signpost, CIS will assume that

the vehicle is still proceeding along the normal route as planned unless locations are spe-

cifically changed by the controller. This error will be corrected only when the vehicle

passes another signpost: until then, CIS will incorrectly assume that the vehicle is still

moving in the same direction along the route.

Another problem occurs if the diversion called for a change in direction. When the

vehicle comes back on route after the diversion, CIS will believe that the vehicle is still

going in the previous direction unless the controller physically adjusts the vehicle to its

proper direction. Sometimes, this may not happen because the controllers are preoccupied

with other matters. Sometimes it can take up to 30 minutes before a vehicle can again be

located properly. The software can handle short turns most of the time but has trouble with

this function occasionally. Many times, controllers have to reset vehicle locations manu-

ally after diversions.

Although this is essentially a limitation of the location technology, the controllers

point out that software can be programmed to deal with this condition more effectively

than at present. Controllers would like to be able to input details of the diversion into CIS
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so the system can properly anticipate the vehicle's movements and minimize the errors. It

must be recognized however that signpost-odometers will always lack the advantages of

absolute location that a more advanced technology such as GPS would provide. The con-

trollers also point to other software weaknesses such as interfaces that aren't very user

friendly and the lack of control options that are available to them.

In terms of hardware, the controllers point out that sometimes the communications

systems are not highly reliable. For example, on occasion it may take 5 or 6 attempts

before a communication gets through and is acknowledged. They admit that sometimes

controllers ignore messages from operators and vice versa, but they say that a lot of this

miscommunication is due to interference and capacity problems. The controllers note that

they are probably communicating with the operators more often than intended in the

design of CIS.

One benefit that CIS was intended to provide was the reduction of voice communica-

tion and its conversion to data which takes up less bandwidth. Both controllers and opera-

tors like to communicate frequently using both forms however, with operators preferring

voice interaction with controllers and controllers preferring to receive voice acknowledg-

ments of their control instructions. Controllers feel that with better training of both con-

trollers and operators, the system can be utilized more efficiently.

The inspectors generally agreed that they are able to make better decisions with CIS

because they can now see the entire system instead of just one point. They point out, how-

ever, that their jobs have also become more stressful: with more information comes more

options and greater responsibility. Before, a controller only had to make one control deci-

sion every few minutes and had more "down time" when nothing important was happen-

ing. Now, with all the extra information coming in, they have to make more decisions and

assimilate more information to make these decisions. Interestingly, while in the streetcar
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depot, the inspectors felt that they made more control decisions than before, on the bus

routes, they believed that they intervened less frequently as a result of CIS.

The inspectors believed that in some situations, better control decisions can be made

out in the field as opposed to a CIS control room because the street inspectors have better

information on the local situation. In one tale, an inspector in the control room decided to

divert streetcars upstream of an accident point. What he didn't know was that the accident

had been cleared up by the time the decision was made and thus needless diversions

occurred. If the inspector was in the field, he would have known that the accident was

about to be cleared up and would have made the proper decision of waiting instead of

diverting. This example serves to remind one that AVL systems can not be the sole basis

for some decision-making.

When asked about their opinions of their changing working environments, inspectors

were generally indifferent in their choice between working in the field and working in the

control room with each having advantages and disadvantages. Although they are sheltered

from the elements in the control room, many inspectors feel that they lose their human

touch when they lose their interaction with the public and the operators and are forced into

a common room.

Operators

Initially, the unions representing the operators and inspectors were opposed to the

development of the CIS system because they saw it as an attempt to cut back labor through

automation. The operators were skeptical of CIS for the same reason as well as being con-

cerned about the idea of big brother watching their every move and possibly penalizing

them for running off schedule for even a minute. Their opinions, however, have changed.

Until recently, no labor reductions have occurred and the reasons for recent cutbacks were

not CIS-related. Both the unions and operators now feel that CIS provides a better and
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safer environment when they are driving their vehicles, thus operators feel more secure.

All they have to do is push a button for emergencies or fare disputes and outside authori-

ties can handle it without the need for active participation from the operator. Some opera-

tors will even refuse to drive if the CIS system is not working.

Managers feel that operators have also adopted the commission's objective of better

service. Operators want to be on time and feel that CIS helps them achieve that goal. Some

operators, however, have not fully accepted CIS, preferring traditional methods and feel-

ing that they can do their jobs just as well without active surveillance. Nor do they like the

extra requirements that CIS imposes on them, such as logging in and the constant need to

monitor the console. There are still some misconceptions by operators about the capabili-

ties and actual uses of CIS.

Operators do feel that CIS helps improve the consistency of their duties and balance

the workload between operators so that they end their duties on time, thereby getting home

promptly.

4.2.13 Overall Evaluation

Back in the 1970's when developers envisioned the role of CIS, they imagined a sys-

tem that would help the TTC maintain and even improve service in the face of growing

ridership and increased congestion. They saw a system that would be developed slowly

over time and would integrate well into the user environment. For the most part, this has

been the case, but like many other systems of this type which were touted to bring a multi-

tude of benefits and cost savings, there is still incomplete evidence that CIS has achieved

all of its goals. The strength of CIS's development and ongoing improvement process,

however, puts it well on its way towards achieving these goals in the future.
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CIS went through a largely successful extended development and installation process.

Since CIS was gradually phased into normal everyday operations over a period of over 20

years, many problems and deficiencies were worked out before full-scale implementation

took place. The TTC also took pains to make sure that the CIS project was going in the

right direction in terms of technologies and functionality before proceeding onto the next

phase of development. Personnel were given time to integrate themselves into the system

and a feedback loop was created between the users and the developers in an ongoing pro-

cess to solve problems within CIS and to suggest improvements.

Parts of this process were rushed or short-cut, however, in the final push for system-

wide implementation, notably staff training, some software development, management

reporting and passenger information. Some software and hardware-related problems still

exist, operators and controllers are communicating with each other more than expected

causing congestion over the communications system and operators and controllers are not

regularly providing inputs (like passenger loads) that could make the system more effec-

tive.

The result is that in its current stage, CIS has not yet achieved its full potential. Users

need to be better trained in the proper use of CIS, probably entailing more formal training

sessions including optimization of control room procedures to minimize unnecessary

communications. These problems are relatively small ones, however, and must be antici-

pated as growing pains in implementing any large scale system. The philosophy behind

the CIS system and its development appears to enable it eventually to achieve its full

potential.

The question then to be asked is, "What is the full potential of CIS?". Previous studies

like the June 1988 report and the final report on Phase VI do not provide all the answers to

the potential benefits and cost savings. To give these implied impacts greater credibility,
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better data needs to be collected and analysis methods need to be more rigorous. Inter-

views from the TTC staff and preliminary results from the study seem to indicate that sig-

nificant potential net benefits do exist. It does appear that at least in terms of real-time and

off-line impacts, the true potential exists more on the service improvement side than in

reductions in operating costs. If it is, then perhaps it is better to focus evaluation on mea-

sures of service improvements rather than on cost savings.

Even if cost savings are taken out of the picture, the other benefits of CIS are impres-

sive. CIS is very successful in improving safety and reliability. In a municipality where

crime is on the increase, CIS provides a level of safety that is welcome. Even if the added

benefit of having an operator press a silent alarm or register a fare dispute is only slightly

better than having the operator phone in the emergency on the radio, the psychological

security that CIS provides to the operators and passengers is a very important benefit. CIS

also reduces response time and allows faster restoration of services. Anecdotal evidence

and limited schedule adherence results also suggest that CIS is helping to make service

more reliable.

4.3 OC Transpo

4.3.1 Introduction

OC Transpo is responsible for the operation of approximately 800 buses in the Ottawa-

Carleton region. This system is strongly radial in form, with many of the routes using an

exclusive busway system that goes right to the heart of the central business district. Like

Toronto, OC Transpo began thinking of ways to apply technology to their bus system as

early as the 1970's but pursuing quite different goals and objectives. Instead of using tech-

nology to optimize their day-to-day operations in a large-scale manner, OC Transpo



decided to implement technology incrementally to aid in relatively specialized functions.

To this end, they developed smaller, specialized systems. Most of their applications of

technology were for functions that operated off-line, but some operated in real-time.

For instance, OC Transpo wanted a better way to collect data for service and opera-

tions planning so they developed a relatively inexpensive Automatic Passenger Counter

(APC) system. OC Transpo also wanted a better way to convey static passenger informa-

tion, so they implemented an automated home and bus stop based telephone information

system called 560. There were many other small systems that OC Transpo also developed,

including automated scheduling and dispatching systems.

In all of these cases, OC Transpo developed self-contained systems that were effective

at solving specific problems, but without the integrated features typical of a centralized

AVL system. OC Transpo has only recently begun to deploy an overall AVL system struc-

tured in a modular fashion as shown in Figure 4.3. As this figure shows, OC Transpo's

interest in off-line applications did not mean that they were ignoring the application of

technology to real-time functions. Their COBA communications system helped them to

perform real-time operations monitoring and control, and they are currently updating

COBA and integrating this module into a full-scale AVL system due to be operational

soon.

Three of OC Transpo's systems are of interest in this thesis: their APC system because

it contains communication and location technologies and because it represents a highly

successful application of technology to service planning, their 560 system because it deals

with passenger information and their Automatic Vehicle Location and Control (AVL/C)

system because it deals with operations monitoring and control. The 560 and AVLC sys-

term will be described more thoroughly because they are the systems that deal specifically

with real-time operations monitoring and control and passenger information. This section
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on OC Transpo ends with a discussion about the development, installation, training, bene-

fits, and effectiveness of their individual real-time systems and includes a comparative

assessment of OC Transpo's incremental disaggregate approach and the TTC's large one-

system-all-at-once approach.

Figure 4.3: OC Transpo's AVL/C1
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1. Source: AVL/C: System Scope and Concepts [7]
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Before these systems are investigated, however, the thesis will describe how OC

Transpo was conducting these functions before technology was given a larger role.

4.3.2 Prior Methods

Prior to the introduction of these technologies, OC Transpo was obtaining most of

their information in a traditional manner. Much of the operations monitoring and control

was being done by 6 mobile inspectors and 18 street supervisors located at focal points.

These inspectors communicated via mobile radio supervisors located at central control

who make many of the control decisions. This gives central control a dominant role within

the decision-making process.

Operators are also included in the operations monitoring process mostly by filling out

daily reports and conducting much of the monitoring and control that would otherwise be

done by field inspectors. Given printed schedules, operators are expected to follow the

schedules as closely as possible, making the control system largely schedule-based, rather

than headway based. Much of the passenger information was being provided by indepen-

dently staffed customer service agents who disseminated information and provided assis-

tance to passengers [Duerr 31].

Data collection was being done by eight traffic checkers employed full time to collect

point, on-board and running time counts for the buses. These checkers also occasionally

conducted special passenger surveys.

4.3.3 APC System

One of the agency's primary concerns with their manual data collection program was

the quality and quantity of data collected by their traffic checkers. The agency decided to

automate the data collection process by using an Automatic Passenger Counting (APC)



system that included location technology. Passenger counting was achieved with infra-red

light heads that proved quite accurate at counting boarding and alighting passengers.

The APC system was introduced in 1978 after a decision to develop a passenger

counting system was made in 1975. Originally, OC Transpo's APC system consisted of

relatively crude and inaccurate location technology (exclusively odometer-based) and

crude data storage and transfer technology (data stored on magnetic cassettes which would

then be physically transferred), but over time and through several redevelopment periods

lasting from 1978 to 1984, it has evolved into a highly effective and efficient APC system

[OC Transpo 6].

To locate their buses, the agency's APC system uses signpost-odometer technology

quite similar in functionality to the technology used in the TTC, except that the APC sys-

tem data is not transmitted in real-time. Instead, this data is stored in an on-board proces-

sor. Whereas in the early days the APC data had to be physically transferred from the bus

to the host computer, the downloading of information is now automatic. At 6:00pm daily,

the main computer activates and begins polling the APC buses which do not respond until

they have become idle for at least 30 minutes and can be assumed to be out of service for

the day. When this condition is met, the APC equipped bus opens up a unique APC micro-

wave channel and the data is transmitted from its data storage unit to the host computer.

The transmission time for each bus takes about 1.5 minutes. This process occurs without

human intervention, minimizing the risk of errors associated with the transmission of data.

On-board the vehicle, several modules, including the Passenger Counting Module

(PCM) and the Radio Control Module (RCM) collect, process, store and transmit data to

the host computer. The PCM receives input from the infra-red beams, the signpost-odom-

eter system and the timer to integrate passenger boardings and alightings with locations

and times. The PCM also logs dwell times, idle times, running times and times of conges-
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tion based upon the above data. The RCM serves to transmit this data to the host computer

at the end of the day.

After the data is transmitted to the host computer, algorithms check the validity of the

data and in the absence of serious errors, automatic reports are created that summarize:

* locations and times of heavy boardings and alightings

* peak load points and times

* locations and times of congestion and delays

* schedule adherence

Specialized reports can also be generated for particular routes, times or statistics based

upon specific requests.

OC Transpo's development process for the APC system has been quite successful due

in part to is its length and focus. Since its inception in the 1970's, the APC system has

undergone many changes and improvements. Currently, there is only one full time person

and one part time person required to maintain the APC/AVL equipment as well as a pro-

grammer to develop any special reports. Since the system is more or less automatic, train-

ing is not needed for either the operators of these specially equipped buses or the

managers who read and analyze the resulting data. As distinct from real-time AVL sys-

tems that need equipment on all vehicles, APC data needs to be collected on only a sample

of the fleet; typically about 10 - 15%.

It is clear that OC Transpo's APC system has been highly cost-effective. If you apply

an industry-wide average of one data collector for every 100 operators (which is a low

estimate), and an average of 1.5 operators per bus, with OC Transpo you would need

about 12 traffic checkers [Levinson 40]. Given costs of about $50,000 per year per traffic

checker, the annual cost of data collection would be about $600,000. In contrast, OC

Transpo's APC system cost about $1 million in capital cost which when spread over a 10



year life span with an assumed interest rate of 5% per year and added to $150,000 in

annual operating costs totals about $280,000 a year. Thus the APC system costs signifi-

cantly less than the manual collecting system at the same time producing much better data.

With APC, OC Transpo can obtain reliable and detailed information about its routes that is

simply not possible with manual techniques. An optimized schedule that can result from

this data can lead to either service performance improvements or cost savings in terms of

being able to run less buses.

OC Transpo's experiences with APC exemplifies a successful application of technol-

ogy both to improve performance and to reduce costs. It should be noted, however, that

the system's success is limited by its functionality, which is collection for off-line analysis.

4.3.4 Passenger Information Systems

OC Transpo also uses technology to assist in providing passenger information. In

addition to traditional static information such as printed schedules and maps and bus stop

signs and shelters, OC Transpo has the 5601 system, an automatic telephone information

system that contains information about scheduled arrival times for every trip in the system

down to the bus stop level. Telephones are installed at major bus stops so that passengers

can call a 560 number from the stop or from home and find when their bus is scheduled to

arrive.

The 560 system has become very popular with the public as shown by a recent survey

of OC Transpo users [64] which found that 20% of trips were preceded by calls to 560

with a total of 7 million calls made annually. A full 6% of interviewed riders believed that

they used transit more because of 560 which would translate into a 1.25% increase in off-

peak ridership. To the transit authority, 560 increases the number of transit users, induces

1. The 560 system was developed by Teleride Sage
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operators to adhere more closely to schedules, allows the authority to make more frequent

changes to schedule, pre-empts complaints from passengers, and reduces the load on con-

ventional telephone services.

To the public, it fills the need for information, improves service to riders who call, and

reduces perceived waiting times at bus stops. The survey also performed a cost/benefit

analysis and found that the quantifiable benefits alone outweighed the costs by a ratio of

1.7 with benefits estimated at 9 cents a call and costs estimated at 5 cents a call. While

these results are encouraging, they apply to a real-time system that gives out largely

scheduled information, rather than information based on the current system state.

Although the 560 system is viewed as being successful, OC Transpo still saw a need to

revise it. During times of heavy use, the system supervisor would not be able to keep up

with the need for up to date schedules, and the 560 message structure and message content

needed to be revised. In addition to solving these problems, OC Transpo also wants the

560 system to include service exception information as it becomes available so it can be

made into a more responsive real-time system.

In the near future, the 560 system will take information from a shared central database

that monitors delays and creates messages about service delays and service adjustments as

an integral part of OC Transpo's new AVL/C system. All the special messages about ser-

vice delays and adjustments will be recorded and updated each time more information

becomes available and will be automatically removed when service is fully restored.

Independent of the 560 system, OC Transpo is developing a real-time bus arrival

information system at several high volume bus stops called the Public Information Sign

System. This system will consist of upstream readers and bus stop displays that show the

order of buses arriving at high volume bus stops a few minutes before they arrive. These
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readers detect and process buses using passive identification technology. The Passenger

Information Sign System will also be tied into the new AVL/C system.

This system is being installed to help solve a problem that occurs at high volume stops

on the agency's transitways. Buses arrive and depart at bus bays in the corridor based on a

queuing system with each bus bay able to accommodate three buses. As a bus arrives, it

joins the end of the bus queue (perhaps the third bus in the bus bay) with some passengers

seeing its route number and boarding immediately. When the bus reaches the front of the

queue, it often has to stop again to board additional passengers, typically those who arrive

late or who do not identify the incoming bus because of sight restrictions. They then see

the bus approaching after the crowd thins and catch it at the front of the bus queue. As a

result, the bus has to stop twice to pick up passengers at the same stop, wasting precious

seconds.

OC Transpo's hope is that with the new system installed, they will be able to eliminate

one of the stops and thus save bus operating time which will translate into real cost sav-

ings. Customers who are at the ends of lines would be able to anticipate buses arriving via

the signs and could move towards the appropriate location for boarding. Whether this

actually happens remains to be seen.

4.3.5 Operations Monitoring and Control

History

Technology in one form or another has been used for real-time operations monitoring

and control for quite some time at OC Transpo, reflecting the agency's philosophy of cen-

tralized service monitoring and control. A sophisticated communications system called

COBA was developed in the early 1970's comprising of hardware and software providing

radio communications between controllers, operators and on-street supervisors. COBA



also contained sub-modules that provided operations functions such as service exception

reporting, bus-operator-run assignments, schedule database creation, operational and sta-

tus data logging, data retrieval and end of day reporting [OC Transpo 52].

Although COBA had its strengths, it also had numerous shortcomings. The system did

not include any automatic vehicle location data, the communication system did not allow

controllers to communicate with operators on an individual basis, and there was no facility

available to record the actions that were taken by controllers. In 1982, OC Transpo

decided to start addressing these shortcomings by developing an AVL/C system over a

series of phases as in Toronto. Phase I verified the accuracy of the hardware selected for

vehicle monitoring and Phase II tested the system on one major route (Route 95). Phase

III, which is currently underway, will extend the system to other routes and Phase IV will

shift the emphasis from prototypes to production versions [9].

Location Technology

The location technology that is to be used in the AVL/C system is different both from

the technology used in its APC system and from that used at the TTC. OC Transpo ini-

tially considered a signpost-odometer system similar to the one used at the TTC, but

rejected it because of its high capital, maintenance and communication costs. The agency

instead chose to use passive identification technology in which special emitter-readers are

placed at strategic locations along the bus routes. These emitter-readers send out a steady

RF beam that is reflected back to the emitter-reader by special identification tags mounted

on the buses. The return signal contains information about the vehicle ID. This informa-

tion, along with the location of the emitter-reader and the time is sent by land lines to the

host computer. The locational accuracy of this setup is limited by the density of the emit-

ter-readers. Presently, the bus network contains only about 25 emitter/readers.
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OC Transpo will also use GPS receivers to supplement location information received

from the emitter/readers. The GPS receivers will transmit absolute information updates to

the central computer at an interval that is half the headway of the service. For instance, if

the GPS receiver is installed on a bus that serves a route that has 10 minute headway ser-

vice, the GPS receiver would send location information every 5 minutes. To minimize the

accuracy errors of GPS, the receivers' locations are calibrated and corrected with the

known locations of the emitter/receivers.

The computer then decides whether this information is useful for control. The com-

puter makes use of certain schedule adherence algorithms that decide whether or not the

vehicle needs intervention, and if it does, it reports the vehicle to the controller on an

exception basis. By filtering the information, this system makes it easier for the controller

to focus on priority buses.

Communication Systems

Although the communication system at OC Transpo is neither as sophisticated nor as

complex as the one in place at the TTC, it is still fairly impressive. In the AVL/C system,

the main method of voice communications is still via an upgraded COBA system. COBA

now consists of a radio communications subsystem that subsequently provides input into

the COBA data subsystem. The subsystem consists of several radio channels with each

channel reserved for a particular situation. For example, one channel is reserved for opera-

tor change-offs while another is used for emergencies.

When an operator wishes to talk to a controller, he or she requests a channel and is

placed in a queue based upon the priority and time of the message. The call request shows

up on the controller's screen along with all the necessary information corresponding to the

call, such as bus operator ID the bus ID and the route and run number of the bus. When the

controller reaches the call, he or she places it in the current call position, opens up the
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channel and deals with it. At the end of the call, all the aspects of the call including any

actions that are taken are placed in a log file.

With the addition of the GPS technology, additional changes to the communication

system will be required. Extra data channels are needed for the GPS receivers to send their

data through and the system needs to be upgraded from conventional radios to digital

radios. OC Transpo feels that the change to digital radios was inevitable, however, even

before GPS was introduced.

Hardware and Software

AVL operations functions at OC Transpo are divided into several modules, with each

module designed to perform specific tasks. Some of these modules are integrated together,

but some perform independently of the other modules. The systems that utilize AVL data

the most are the 560 system, the Public Information Sign System and all of the subsystems

that make up the AVLC system: the automatic vehicle monitoring subsystem (AVM), the

service control and monitoring function (SCM), the COBA system and the despatcher/

booking module [52].

The modules of the AVL/C system are completely integrated and control the displays

in the operations control room. At the start of each run, the bus must be initialized onto the

system through the despatcher/booking module. This module includes a schedule of oper-

ators who are supposed to work certain runs, defined as the full schedule of a vehicle from

pull-out to pull-in. Despatchers change this schedule when an operator fails to work the

assigned run.

When the bus pulls out of the garage, special tag readers read the bus ID from a tag on

the top of the bus and a run plate tag placed on the front of the bus by the operator. This

way, the system is able to link the bus, the operator and the run numbers. At the same time,

the GPS receiver transmits the bus's location and is recalibrated using the known position
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of the tag reader. The information gathered when the bus pulls out of the garage is similar

to that during the initialization sequence for CIS at the TTC, only in this scheme, the oper-

ator's only requirement is to place the run plate on the bus. This is similar to the philoso-

phy behind the APC system that stresses as little required human intervention as possible.

The bus, operator and run information will all be displayed in the control room if the bus is

off-schedule.

The data obtained by the despatcher/booking module provides the input to the Auto-

matic Vehicle Monitoring (AVM) module. When a bus passes an emitter/reader and reads

the bus tag or when the GPS receiver transmits location and ID, the AVM module deter-

mines the schedule of that bus by using the appropriate cross references. It compares the

scheduled and actual times and stores the deviations in a transit status file only if they are

beyond a certain threshold time.

The AVM module provides input into the Service Control module (SCM) which takes

the data stored in the transit status file, processes it and displays the data to the controllers.

This module, when fully functional will be able to show buses that are beyond a threshold

level from the schedule. This module also looks for potential problems, such as emergency

situations on certain street segments (entered in the central database by operators, inspec-

tors and non-OC Transpo personnel). The module then informs controllers of these poten-

tial problems. The SCM module will also contain algorithms that detect and alert the

controller to service-related problems such as gaps in service. OC Transpo wants the SCM

module eventually to be developed into a subsystem that not only detects problems, but

also suggests solutions.

During the run, all communications between the operators and the controllers will be

controlled by the COBA system, as explained earlier. In the near future, it will have the

ability to communicate with the operators on an individual basis, and will even have con-
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ference call capabilities. Controllers can talk with more than one operator so that sched-

uled transfer meets between buses can be efficiently coordinated. All the information that

"pops" up on the controllers display when operators send messages comes from these

modules.

The information from all modules are integrated and displayed on the controller work-

stations which consists of a VAX client running under the VMS operating system and net-

worked through Ethernet. The graphical displays of schedules, messages, bus locations,

operator and bus ID's, emergencies and service irregularities are all displayed using X

Windows as the Graphical User Interface (GUI). Windows pop up and sounds emit when-

ever the SCM detects a situation or whenever messages go through to the controller. Con-

trollers can easily access multiple windows of information and zero in on the windows

containing the highest priority information with this GUI. There is also a microphone for

'voice communications and a channel switcher.

Human Factors

Similar to CIS, OC Transpo's systems have caused many changes in the way users

perform their duties, although operators have not been affected significantly since the

design philosophy has been to minimize the changes imposed on indirect users. Thus

operators need to know little about the AVL/C system, nor do they really have to change

their work habits, except in the use of alarms and the possibility of more control com-

mands issued by controllers. Unlike CIS, OC Transpo buses will not have an operator dis-

play unit - the radio equipment will largely remain the same and the only elements that are

to be added to the buses will be the emergency alarms, the GPS receivers and a radio con-

trol unit.

The inspector's duties would be simplified in one respect but complicated in another.

On one hand, most of the control actions would now be done by central control. The



inspector's post-AVL responsibilities would be reduced to validating data about locations

and ID's coming in and to taking care of emergencies and other disturbances that occur

within their area. On the other hand, inspectors would have to log all emergencies and dis-

turbances that occurred for the SCM module to be effective.

Controllers would see the greatest changes from these systems. As in the TTC case,

there is evidence that they should be able to make better control decisions with the aid of

the AVL/C system, but they might also be deluged with information. The planners and

managers would be able to receive more frequent, more complete and better information

from the AVL/C system. The APC information has proved to be beneficial and it is antici-

pated that the AVL/C information will increase these benefits. They would also reap the

benefits of better on-time performance and reduced headway variations due to the AVL/C

system. The human inputs into AVL/C are shown in Figure 4.4.

4.3.6 Costs

The only estimates of AVL/C costs that were available come from Peter Van der Kloot,

Management Information Systems (MIS) project manager at OC Transpo. These estimates

are rough, but give an indication of the costs associated with OC Transpo's AVL/C sys-

tem.

Mr. Van der Kloot estimates the hardware, software and installation costs of the AVM

component (primarily the passive identification system) to be about $2 million CAN. The

SCM component costs, which include the workstations for the controllers and the hard-

ware and software to handle all of the information is estimated to be about $2.5 million

CAN. Mr. Van der Kloot also estimates that costs will be incurred in the scheduling, book-

ing and maintenance systems modules because of necessary software reprogramming to
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integrate with and conform to the rest of the AVL/C system, but the extent of these costs

are not known at this time.

Figure 4.4: Labor Inputs Into AVL/C 1

In addition Mr. Van der Kloot estimates that 4 - 6 full time positions will be required to

ensure data accuracy and to provide an on-line link to passengers who register complaints.

1. Source: OC Transpo [49]



At a cost of about $45,000 per position, this portion of AVL/C would incur an ongoing

cost of about $270,000 per year. On the vehicle, GPS receivers are estimated to cost about

$600 - $700 per receiver, but GPS costs increase if a digital radio system is included.

Overall, Mr. Van der Kloot estimates total AVL/C costs to run about $7,000 to $11,000 per

bus, which will be somewhat lower than the per-vehicle costs for CIS. This is not surpris-

ing since the AVL/C system has a less advanced communications system, a less dense net-

work of signposts, and a much less advanced operator interface than CIS.

4.3.7 Development, Installation And Training

OC Transpo's approach of developing one system at a time means that development,

installation and training become easier to manage. The system development time for both

the APC and 560 systems were small compared to CIS albeit with much lower levels of

functionality. Since many of these subsystems require little direct human interaction, train-

ing requirements are also minimized.

The AVL/C system is proving to be a different story, however. Initial stages of OC

Transpo's AVL/C went fairly smoothly, but development is currently behind schedule.

Many of the sub-systems that make up AVL/C have been developed and tested, but prob-

lems are occurring in integrating the entire system. The AVL/C system was supposed to be

fully operational in 1993, but full-scale implementation has been delayed twice. Currently,

OC Transpo is "beta-testing" their current version of AVL/C and expects to have their

final version operational by Fall 1994.

One of the problems may be due to a lack of experience in integrating large-scale sys-

tems. Another reason for the delays may have been the loss a year ago of OC Transpo's

former general manager who provided critical vision and leadership in guiding OC Trans-
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po's technological initiatives over the previous twelve years, and even though his philoso-

phy is still applied in the agency, his leadership is probably missed.

4.3.8 Overall Effectiveness and Comparative Assessment

The AVL/C system, when it is installed, has the potential to be very effective and even

without full vehicle location capabilities, the system is proving to be useful. Incidents are

handled promptly and the links in the database that connect the bus and its scheduled loca-

tion give controllers an indication of where the bus should be which is better than no infor-

mation at all. When the AVL component is operational, the system will become more

effective. The logs of incidents and controller actions will help in evaluating the effective-

ness of control strategies. Logs are not currently part of the TTC CIS system.

Many of AVL/C's sub-modules, including the 560 and Passenger Information Sign

System have been developed in parallel with each having a stand-alone capability consis-

tent with OC Transpo's incremental development philosophy. With a modular approach to

system design, you also have more chances to modify your systems later in the develop-

ment process. If one sub-system does not suit OC Transpo's requirements, the losses of

redeveloping a module or coming up with a new module is less than modifying the entire

integrated system.

The disadvantage of developing small systems that are integrated together later is that

the integration process may be difficult. You have to resolve compatibility and functional-

ity issues and if two systems overlap and perform a common function, duplication will

occur. Conversely, new systems might have to be developed in order to perform functions

that have not yet been defined. These problems are not as noticeable when you start

designing a fully integrated system, as the TTC has done.
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In general, the problem of integration has not been serious at OC Transpo save for a

few systems. Some modules, such as the bus location, AVM and SCM integrate fairly

well. For example, when a bus passes a signpost, one module is responsible for locating

the bus and identifying it. This information is then passed to the AVM module which iden-

tifies the bus and hence the operator, run and schedule. The Service Control Module

(SCM) then takes this data and determines whether or not it gets sent to the controller. In

this example, information flows directly and automatically from one module to the next.

Such clear linkages do not always exist, however, as is the case with the 560 passenger

information module. The 560 controller receives reports from AVL/C but then must man-

ually input changes to messages sent out over the 560 system, severely constraining its

real-time update capabilities. On a bad weather day, it probably would not be possible for

the 560 system controller to keep up with all the delays that AVL/C generates. Manual

inputs are relied upon because the two systems are incompatible making it very difficult to

update 560 automatically from AVL/C.

OC Transpo's AVL/C system differs from TTC's CIS system in several respects. In

terms of location technology and communications, AVL/C provides less information and

utilizes simpler technology. Ottawa's location technology is discrete (accurate to the near-

est signpost and updated by GPS every half-headway) rather than continuous and its

reporting strategy is exception based instead of poll-based with software used to filter out

unnecessary information.

This has two important implications: much less information is being sent to the con-

trollers, and the information being sent is less detailed. This configuration has both advan-

tages and disadvantages. By showing only vehicles that are off-schedule, this system helps

prevent information overload and lets controllers concentrate on only the most important

information. By doing this, though, the system may fail to present information that might
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be useful in some situations even if it were not useful in all situations. Controllers can train

themselves to filter out useless information over time and only look at that information in

special cases, but it is harder for software to do the same thing as effectively.

Cost is likely to be another advantage of this configuration because there is less

required wireless communication capacity since land lines are primarily being used and

less information is being transferred and processed. The only wireless communications are

for voice communications and GPS transmission and this only happens on an exception

basis or at infrequent intervals.

OC Transpo's discrete location system may lead to inaccuracies for locations between

signposts and perhaps incorrect decisions as a result of that inaccuracy, although GPS

updating partially addresses this weakness. This may not be a large disadvantage, how-

ever, because many of the signposts are located in the busways where there is little con-

gestion and low variability of travel times. In the busways, this configuration may well be

sufficient.

AVL/C also differs from CIS in the way that operators are involved. At CIS, operators

are required to sign on every time they start an assignment. While this may give the oper-

ator a sense of security by knowing someone is monitoring them, it also can introduce

error into the system. If the operator forgets to sign on, the trip does not exist until the con-

troller reminds the operator to sign on. In AVL/C, this sign on procedure is automatic, tak-

ing the operator "out of the loop" and eliminating this source of error. Operators at the

TTC have more responsibility and are also given more information, including schedule

adherence. This helps shift partial control responsibility to a local level with the fallback

of' additional controllers at central control. AVL/C does not have this capability.

In terms of hardware and software, in general CIS is probably more advanced than

AVL/C, but AVL/C does have some advantages over CIS. On the vehicle, the TRUMP
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units that are an integral part of CIS provide a superior interface for operators. This unit

gives the operators many opportunities to report incidents or adjust their speeds before the

controller will suggest speed adjustments to them. This unit gives operators a lot of lee-

way, to which they have responded positively.

The interfaces at the control room, though, are a different story. The X Window inter-

face that AVL/C will incorporate is likely to be more effective than the three screens used

in CIS. With this interface, controllers are able to customize their screens and prioritize

their information by putting the most important information in a foreground window while

relegating less important information to the background. Controllers can easily switch

from one window to another using a mouse, thereby increasing their efficiency. On a CIS

workstation, inputs are via multiple keyboard entries that are sometimes cryptic.

This windowing system also allows more information to be placed on the screen than

the CIS system leading to the CIS three screens per workstation while AVL/C requires

only one. This is not really a fair comparison, however, since AVL/C does not graphically

depict bus locations and only shows incidents and buses that are not on time whereas CIS

displays graphic locations for all vehicles.

The X Window interface also has its disadvantages. Since there are no graphical dis-

plays, controllers have to envision and estimate the location of the bus, probably requiring

more experience in the field to function effectively. Also, by putting some information in

the background, controllers might miss some information. Important information may be

updated in a background window, but it might not be shown since a foreground window

could obscure it. This problem may be mitigated by software that prioritizes information

and pops windows into the foreground based on that priority.
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4.4 London Transport

4.4.1 Introduction

In both Ottawa and Toronto, the agencies responsible for providing transit service

operate as single public entities, responsible for all planning and operations within their

defined service areas. When new technology is introduced, it can fairly easily be imple-

mented on a system-wide basis since all of the transit operation responsibilities belong to

the one operating authority. The situation in London (and in the rest of the U.K.) is rather

different and adds complexity to the introduction of new technology.

In London, public transportation is operated in an increasingly privatized environ-

ment, although service is still subject to central planning. In London, many separate enti-

ties provide transit service as contrasted with the single operating entities in both Ottawa

and Toronto. This environment provides both opportunities and complications when it

comes to implementing new technologies. Decisions about technology must take into

account this environment. This case study describes the operating environment in London

and its effects on technology implementation.

London Transport has always been a leader in technology implementation, research-

ing, testing and implementing a myriad of advanced technologies to aid them in their oper-

ations since the early 1970's. They have employed and tested a variety of location

technologies, operations monitoring and control systems and passenger information sys-

tems. London has preceded most efforts in North America and have been on par with sim-

ilar developments in the rest of Europe and in Japan. Currently, London Transport is

developing and implementing a real-time passenger information system called Count-

down that provides up to the minute arrival information at selected bus stops. This case
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study focuses on the Countdown system and the operational environment in which Count-

down must operate.

4.4.2 Institutional Arrangements in London

In 1985, Parliament passed the Transport Act which effectively deregulated bus ser-

vice outside London. As a result, in many parts of the United Kingdom most public trans-

portation services are provided by private or "corporate" entities which have replaced the

pre-existing public authorities and must operate on a commercial basis. In this scheme, all

commercial aspects of service provision and production including system planning, ser-

vice design and operations are in the hands of the private and corporate sectors. The role

of government planning agencies has been reduced to determining residual non-commer-

cial services which are awarded based on a competitive bidding process. Controls over

fares, markets served, employee and equipment standards and entry and exit have been

eliminated, leaving only safety regulations [Mantell 42].

This has caused many changes within the U.K. industry: fares have increased, labor

costs have decreased and service has generally increased. There have also been some sig-

nificant negative effects, notably a drop in ridership, a lack of system-level public infor-

mation about services and also a lack of fare and service coordination. This lack of

coordination combined with cost-minimizing objectives of many operators would tend to

hamper efforts to implement technologies on a system-wide basis.

The situation within London proper is different since it has been exempted, at least

temporarily, from deregulation. In this region, London Transport, which is the agency

responsible for providing or securing public transportation for the Greater London Area,

retains its dominant role in determining service provision and through its subsidiaries,

London Buses (LBL) and London Underground (LUL), in direct operation. The environ-
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ment within London is thus a regulated one, with LT determining all routes and fares and

LT subsidiaries operating the majority of bus routes. The rights to operate bus routes are

tendered in a competitive bidding process in which LBL subsidiaries compete with private

operators.

Contracts are awarded for three years and contain many requirements. The winning

bidder who operates the route must adhere to requirements on route alignments, service

levels, scheduled frequencies and fare structures. LT makes sure that these requirements

are met by requiring the operator to report lost mileage, fitting contractor vehicles with

tachographs, monitoring the operator's performance against timetables using roadside

checks and reviewing complaints from customers.

In return for operating a service, the contractor is reimbursed for agreed costs and is

allowed a profit margin. Fares are specified by LT and the contractor also must accept all

Travelcards and passes. All fares that are collected are remitted to LT. Contractors must

provide their own buses which must conform to vehicle specifications set out by LT, and

also must display the LT symbol.

On routes run by private contractors, London Transport still plays a large role with the

Tendered Bus Division of LT being responsible for accounting, contracts and administra-

tion. The division also looks at planning, marketing, operations and monitoring/safety of

the privately operated routes to make sure that the contractor is adhering to standards. By

the end of 1991/92, 38 percent of the bus network had been contracted out with LBL sub-

sidiaries retaining responsibility for the remaining routes. In this more competitive envi-

ronment, service quality has improved, ridership has increased and both costs and

subsidies have decreased. Since bus operation in London is still largely regulated with

contractors subject to close LT oversight, system coordination has largely been main-

tained.



In the longer term, the Conservative government intends to deregulate public transpor-

tation in London, however currently the only active step being taken is the full privatiza-

tion of the LBL operating units. Many of London Transport's newer systems have been

developed in this environment [Mantell 42].

4.4.3 Prior Systems and History

The history of London Transport's dealings with automatic vehicle location systems

began in the early 1970's when they began testing odometer-based techniques [Hamilton

32]. At that time, most of the devices were seen as experimental and did not have wide-

spread use. In the early 1980's a system called BUSCO was developed initially to provide

service control using AVL technology on route 36 [Balogh 11].

In 1984, Steer Davies & Gleave Ltd. [68] examined bus travelers' perceptions of real-

time information in London, England. This survey was done to evaluate the effectiveness

an experimental real-time passenger information system that displayed, at key bus stops,

the arrival times of buses in minutes. The respondents were asked questions about infor-

mation displays, perceived and actual waiting times at bus stops and attitudes towards dis-

played real-time information. The first finding was that with no real-time information at

bus stops, passengers perceived a good deal of uncertainty about the arrival of their

intended buses, even with knowledge of schedules. They also tended to over-estimate

actual times spent waiting for buses. The second finding was that passengers were willing

to accept a modest increase in fares in order to receive real-time information. A third find-

ing was that real-time information tended to counteract the over-estimation of actual wait-

ing times for buses. The results suggested that passenger information caused a decrease in

perceived waiting times.
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The Steer, Davies and Gleave study also found that passengers would likely change

their travel plans in cases of long service delays. Three quarters of the passengers were

prepared to wait up to 10 minutes for a service scheduled to run at headways of 6 minutes.

For waits of over 20 minutes, most thought that the wait would be too long and would con-

sider other travel options. Passengers also felt that knowing when buses will arrive makes

time pass faster and increases their likelihood of using bus transportation. All this in spite

of a significant majority believing that there was the chance that the information would not

be completely reliable.

In a conjoint trade-off analysis which involved fares, frequency and information provi-

sion, it was found that information about the arrival time of the next bus was valued at

25% of the average bus fare while more comprehensive information such as the load on

the bus, its destination and information about multiple buses was valued at 45% of the

average fare. Further analysis suggested that one-half of the waiting time penalty disutility

could be eliminated if information on the next bus was given to the passenger. Better

information would further reduce this disutility. These results can be questionable, how-

ever, since stated preference data, rather than revealed preference data was used.

Another stated preference study conducted by Colquhoun Transportation Planning

[16] also looked at how much information systems would be worth to passengers. In addi-

tion to the qualitative measures of worth, the study tried to measure quantitative worth in

monetary terms. The study found that bus users do perceive a benefit in electronic displays

at bus stops and are prepared to pay more for more accurate information, but there is a

diminishing utility for the information as it increases in accuracy. There was also some

evidence that the value of information increases as service frequency decreases. The study

does admit, however, that their stated preference techniques and data cannot be guaranteed

to provide robust coefficients and valuations, and that the benefits may be overstated. They



recommended policy evaluations along with other combinations of techniques in order to

validate the results of this study.

Silcock [59] conducted passenger surveys for passengers of the Northern Line of the

London Underground and passengers using the bus system at Heworth (outside Newcas-

tle-upon-Tyne in the UK). Both of these transit routes had some sort of real-time passen-

ger information systems, and the focus of the survey was to determine the benefits that

these information systems provided. The information system in the Northern Line pro-

vides order of arrival, destination and expected arrival time information of incoming trains

at each station.

One of the main impacts of this system was an increase in accuracy of passengers'

estimated waiting times. Normally, passengers would overestimate their waiting times, but

this system reduced their estimates somewhat. On the average, passengers saw an 0.68

minute reduction on their perceived waiting time in a typical wait of 3 to 4 minutes. Using

a price elasticity of demand of -0.17, Silcock estimated that ridership would increase by

1.04 million passengers annually, amounting to a revenue increase of 0.57 million pounds

per year.

In 1986, a passenger information system was added to BUSCO making use of the AVL

data and featuring electronic signs at 10 bus stops. The software included algorithms using

the prevailing speeds of the buses to forecast bus arrival times at stops. The electronic

signs showed the destinations and estimated arrival times of the buses, in minutes. After a

bus passed a stop, the algorithms and signs would reset in a process called a cleardown.

In 1992, the Transport Studies Group at the University of Westminster, London [22]

conducted a survey looking into user perceptions of a real-time passenger information sys-

tem installed on the Riverbus system in Canary Wharf. Riverbus is a premium commuter

boat servicing Canary Wharf, Chelsea Harbour, Cadogan, Charing Cross-St. Katherine's
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Dock and Greenwich. The passenger information including the time and estimated arrival

times of the next three boats and their destinations is displayed on screens at entrances to

jetties and in waiting rooms. The main result of the study showed that almost half of the

firequent users of Riverbus did not use the passenger information system. This was attrib-

uted to the good on-time performance of the commuter boat and the good static informa-

tion system that was provided.

Most recently, London Transport decided to conduct another trial on another bus route,

this time using more advanced technology and algorithms. This demonstration project was

named Countdown and the system was applied to route 18, a 16 km route which operates

33 buses at 6 minute headways. Half of the 100 stops associated with route 18 were fitted

with Countdown signs. Countdown is the first trial of the Passenger Information at Bus

Stops (PIBS) project that is intended eventually to provide real-time passenger informa-

tion throughout much of the London Transport network.

4.4.4 Location Technology

The technology used to locate vehicles in Countdown is a classic signpost-odometer

system using small microwave beacons mounted on lamp-posts at about 50 locations

along the Route 18 right of way. These battery-powered units transmit their ID which is

received by an on-bus reader which is then sent along with the bus ID, the wheel rotation

count from the odometer and any other relevant information back to the control room over

the London Buses Band III radio system. All buses are polled every 30 seconds by the

central computer. On several other routes beside Route 18, the same AVL system is used,

but with a lower density of signposts, since the location information is used only for ser-

vice monitoring and control. Route 18's Countdown system, however, needs this AVL
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data for its passenger information system and hence the need for a higher density of bea-

cons.

4.4.5 Communications Technology

Most of the communications technology used for Countdown is fairly standard. The

beacons transmit their identifications by microwave and the bus transmits its information

over LBL Band III radio frequencies. The electronic signs that are installed at the bus

stops showing arrival information receive their information over land lines. A schematic

of LT's Countdown system within the AVL system is shown in Figure 4.5.

4.4.6 Hardware and Software Technology

For Countdown, the hardware and software needs are geared towards serving the pas-

senger, rather than serving controllers. Like many centrally controlled and processed AVL

systems, LT has a central computer that receives, processes, controls and then transmits

relevant AVL information. The basic real-time input to this central computer comes in and

is then processed using an algorithm that estimates bus travel times [Marguet 43].

The algorithm estimates the theoretical arrival time (TAT) of a bus at a stop by adding

the actual departure time of a bus (ADT) to the sum of "learned travel times" (LTT's) at a

certain time period for all travel links between the bus and the stop. The "learned travel

time" takes into account previous estimates of "learned travel time" and actual travel

times (ATT's) of recent bus journeys. The algorithm is a simple attempt to adapt to

changes in travel times due to changing traffic conditions which are reflected in the jour-

ney times of previous buses. This estimate is then transmitted by land lines to the elec-

tronic sign at the intended bus stop.
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Figure 4.5: Schematic Diagram of AVL & PIBS Systeml
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The signs use LED technology and display three lines of information including the

destinations and estimated times to arrival for the next three expected buses. The signs can

also be programmed to show routine information about other routes or they can show real-

time messages sent by the service controller in any special circumstances. The signs are

either hung on the underside of roofs of bus shelters or are stand alone displays at bus

stops. An example of a Countdown information display is shown in Figure 4.6.

Figure 4.6: Example Countdown Display1

Arriv 1 Order Desti ation Estimated Wait
Route
Number

18 1 BAKER STREET
18 2 KING'S CROSS 6

Full Service No delays

System Status ("T ird Line") Information

Although the primary use for this AVL data on Route 18 is for passenger information,

provisions are also made for service control. In the garage that controls Route 18, a work-

station that is connected to this AVL system displays the times that buses pass beacons.

Although this information provides relatively simple information for controllers to use,

there is potential to expand the service control aspects of Countdown, and the Countdown

system is currently being redesigned to provide better decision support for controllers.

4.4.7 Human Factors

In the operations monitoring and control (OMC) function, the primary user of com-

puter information is the controller, whereas in the Passenger Information at Bus Stops

1. Source: London Transport Brochure [27]
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(PIBS) function, this focus shifts to the passenger, although the controller does still inter-

act with the computer system.

Like the operations monitoring and control systems at Ottawa and Toronto, operators

play a relatively minor, but important role in LT's Countdown system. At the beginning of

each trip, the operator has the responsibility of logging on and entering the trip number

and bus destination which are then sent over LBL Band III radio to the central computer.

This is required for the computer to initialize the bus into Countdown. Other than this

responsibility, Countdown has relatively little effect on operators [27]. It was theorized

that PIBS might cause operators to be more diligent in maintaining their schedules, but

there is little hard evidence yet to support this hypothesis.

Inspectors in the street have become controllers in the control room with radically dif-

ferent responsibilities. Controllers now have the added responsibilities of entering in spe-

cial messages to be displayed in the bus stops when circumstances warrant this and

monitoring Countdown system performance.

The main effect of Countdown is on the passengers. Physically, their function does not

change at all - they still wait at bus stops, pay their fares and travel to their destinations.

The manner in which they wait at bus stops and their perceptions while waiting changes

with Countdown, however.

4.4.8 Costs

The cost of the Route 18 Countdown trial is estimated to be about 1.4 million pounds

($2.1 million US) [27]. While this would be a very high figure on a per bus basis, it

includes all associated development costs, and expansion costs on a per bus basis should

be significantly lower.
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LT recently conducted such a cost estimate for one of Countdown's planned expan-

sions to an area known as Nag's Head [Director of Planning 30]. The proposed Nag's head

scheme encompasses 12 routes and 3 different operators and about 350 buses, some of

which have AVL equipment already installed. The scheme also involves 20 beacons and

150 shelters. This cost estimate is summarized in Table 4.4.

Cost Category Pounds US Dollarsa

Vehicle Equipment and 360,200 540,000
Software

Field Hardware (signposts) 124,800 187,000

Bus Stop Hardware, Soft- 859,400 1,289,000
wareb

Central Control Hardware 60,000 90,000
and Software

Development 50,000 75,000

Misc. and Project Mgmt. 293,153 440,000
@ 15%

TOTAL 1,747,553 2,621,000
Annualized Capital Costs 291,159 437,000

Annual Maintenance 360,795 541,000
and Fees

Total Annual Cost 11 651,954 978,000

Table 4.4: Cost Estimate for Nag's Head Scheme
a. The exchange rate is based on an estimate of 1 pound -1.5 UD Dollars
b. Not including bus shelter construction costs.

A large proportion of the costs of this passenger information system are attributable to

the bus stop hardware and software costs which make up almost 50% of the total capital

costs. Vehicle equipment, which made up about 60% of total costs of CIS, by comparison

only accounts for 21% of the capital costs in this case.
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On a per bus basis, with about 350 buses operating in this scheme, capital costs turn

out to be about $7,500, which is lower than the average cost of an AVL system and much

lower than the per bus costs of Countdown on Route 18. The per-vehicle costs may under-

state the true costs since some of the buses in the Nag's Head scheme already have some

of the necessary AVL equipment installed.

4.4.9 Countdown Effectiveness

During the Countdown Demonstration project, London Transport managed to gather a

significant amount of data on the Countdown system and its operations. Much of this data

was used to evaluate Countdown, with the results as summarized below [10 and 30]. Mea-

sures were developed for system reliability and availability, accuracy of countdown fore-

casts and cleardown and benefits of the system. Passenger surveys were also conducted to

determine the value of Countdown to passengers and to assess passenger attitudes towards

Countdown. The operator's view was also taken into account.

To measure reliability, LT measured the percentage of time (over a 4 week period) that

Countdown was on-line and available for use and compared the results with predefined

targets. Reliability was also measured for sub-components of Countdown such as the

signs, the buses and service control. The results (see Table 4.5) showed that in all but one

of the sub-components (service control), the targets were met.

To assess accuracy, LT collected data at 25 stops covering 1379 bus arrivals and deter-

mined the percentage of times that forecast arrival times were within x minutes of actual

arrival times for different forecast horizons. The results are shown in Table 4.6 along with

the targets (shown in parentheses).
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Availability Category Bus and Sign Details Actual Target
(%) (%)

Overall System Availability 99.2 99.0

Service Control 94.0a 98.5

Individual Bus 99.9 99.0

Individual Sign 17,18,19,36,66,67,71 99.1 96.0
16,25,65 92.9
70 7 8.6 b
20 74.7 c

Remainder 100

Overall Sign 98.8 98.5

Table 4.5: Component Reliability and System Availability of Countdown
a. Includes a period of 30 hours downtime due to a fault on the external FTNS X25 network
b. Awaiting a modified component
c. Fault on external BT private circuit

Forecast Interval +/- 1 minute +/- 2 minutes +/- 5 minutes

1 - 5 minutes -60% (90%) -85% (99%) -99% (100%)

6 - 10 minutes -40% (75%) -70% (90%) -97% (99%)

11 - 20 minutes -35% (60%) -50% (75%) -90% (95%)

Table 4.6: Countdown Forecast Accuracy

The results show that Countdowns were accurate to +/- 1 minute 50% of the time, +/-

2 minutes 75% of the time and +/- 5 minutes 96% of the time, which fell short of the pre-

defined targets. The report noted that the targets were set at a high level without any prior

knowledge of what might be achievable. A target was set that 90% of cleardowns should

be within +/- 1/2 minute of bus presence at a stop. Actual performance showed that only

65% of all cleardowns were within the target while 80% were within +/- 1 minute and

90% were within +/- 2 minutes. The report noted that performance could be improved if

additional beacons were installed at bus stops.
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LT also gathered data on revenue collected on Route 18 before and after Countdown

was installed to the route and these results were compared with other nearby routes for

control purposes. This analysis did not show a statistically significant increase in Route 18

revenue as a result of Countdown. A trend analysis for Route 18 did suggest a small

increase in revenue, starting at about the time when Countdown was introduced, but there

was no significant difference between the changes in Route 18 revenue and the changes in

the other control routes. While the results showed that Route 18 performed a little better

than the other control routes, the report conceded that the improvements were likely due to

service disruptions that occurred on the control routes due to disputes over staff working

conditions.

These results were somewhat surprising given the results of the attitudinal and valua-

tion survey which predicted a net increase in patronage of between 10% and 12%. In that

survey, 30% of respondents said that they now travelled more frequently and 4% said that

they travelled less frequently. The predicted increase in revenue was obtained from a pas-

senger survey which dealt with bus service quality and levels and patterns of patronage

and revenue, along with studies of passenger behavior at stops, an ergonomics survey on

the bus stop sign design, an attitudinal survey and market research [Accent 2]. The passen-

ger response to Countdown was quite favourable. The comprehension of the signs was

good and they were consulted frequently. Many thought that the design, layout, position-

ing, brightness, and information of the signs was adequate.

Perceived waiting times were reported to be shorter (65% thought waiting times were

shorter) and the anxiety usually associated with waiting for a bus was reduced (90%

thought that Countdown made waits more acceptable). Some passengers were observed to

undertake other activities while waiting for a bus such as making small purchases in local
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shops. The signs also allowed some passengers to forego a crowded bus if another one was

coming shortly.

In conducting their market research, LT performed a stated preference analysis that

was designed to gain information on the passengers' "willingness to pay" for Countdown

information. The survey concluded that on the average, passengers valued Countdown at

26 pence per journey (or about 40 US cents) and were willing to pay 20 pence (30 cents)

per journey for Countdown information. This was higher than expected and higher than

the values used in the project justification studies. To confirm the survey results, LT modi-

fied several parameters of the survey including the questions and the survey recruiting

process. In each case, the results turned out to be similar.

The staff generally gave favourable remarks about Countdown with only a few

adverse comments. Operators have a few additional tasks and some regret the loss of face

to face contact with route inspectors. The service controllers have had some difficulty in

inputting and deleting messages, but these difficulties were considered minor. The staff

also had some difficulties with the radio system, including polling failures which lead to

reduced forecasting accuracy, and "crashes" in which both the AVL system and Count-

down are lost. In general, however, management and staff attitudes are very supportive.

This report shows that passengers generally favor a Countdown-like system and

appear to be willing to pay a premium for this service, although there is no concrete evi-

dence that it actually increases ridership. Based on the initial Countdown success on a sin-

gle route and market surveys showing the potential for further success, difficulties may

arise, however, in implementing Countdown system-wide in London's complex operating

environment let alone beyond London under full deregulation. Despite these difficulties,

LT is proceeding with system-wide implementation of Countdown, starting with Edgware
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Road (6 routes, 196 buses and 2 operating units) which is now operational and the Nag's

Head scheme (involving 12 routes, 350 buses and 3 operating units) slated for next year.

4.4.10 Technology Implementation In a Deregulated or Privatized Context

A deregulated or privatized environment creates both opportunities and challenges for

operators considering introducing new technology. Operators are likely to face less

bureaucracy, thus implementation decisions may be made more quickly. Also, operators

are more likely to advertise their new systems aggressively in order to entice more rider-

;ship.

A deregulated environment, however lacks stability and coordination. If new systems

are implemented, they may only apply to the particular route or set of routes which the

operator runs. You then have the problem of multiple operators installing different and

often incompatible systems. In a multi-system environment, passengers might get con-

fused over the different information provided by multiple systems and controllers will

have difficulty co-ordinating connecting services which belong to another operator and are

controlled by a different system.

In addition, in a deregulated environment, technology is more likely to be evaluated on

a purely financial basis that may not take into account social benefits. This may result in

technology being implemented only on routes where it is financially cost-effective to do

so. In the mean time, operators may ignore implementing technology on their less profit-

able but perhaps socially desirable routes.

In London, with competition for the market rather than in the market, the situation is

different. Since the provision and production of services is regulated, system coordination

is still achievable. LT might help to oversee and perhaps aid in the installation of a net-

work-wide PIBS system and with a public stake involved, public financial help is more
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likely to be available. LT makes sure that either the same PIBS systems are installed

throughout and if operators prefer different AVL systems, they all can function with the

common PIBS system.

Another problem which may arise is the possible reluctance of private firms to imple-

ment new systems if their contracts do not specify or encourage new system development.

Contracts which only run for a short term may discourage capital investments of new tech-

nology since benefits may not be realized in the short term. Also, contracts that only spec-

ify minimum levels of service which can be achieved without the need to resort to new

technology can also discourage investment.

Contracts can be written, however, to encourage technology investment by either

requiring cooperation in development or by rewarding increased service performance.

London Transport is in the process of changing from a gross cost for of contract to a net

cost one. In a gross cost contract, the operator is reimbursed for its costs and thus the oper-

ator has no direct financial incentive to improve service effectiveness. As long as the oper-

ator runs the route efficiently and meets minimum standards, the operator need not worry

about ridership. A net cost tender, however, pays operators a smaller fixed subsidy amount

and allows operators to keep all revenue, thus ridership becomes an important concern for

them and new technologies that may increase ridership and consequentially profits could

become more attractive in this contract environment.

Because of the issues described above, there are many challenges associated with

implementing PIBS in a multi-operator context including:

*The initial investment required for a basic Countdown system is high, thus private
operators may be reluctant to install this system without subsidy assistance from LT.

*Coordination between systems may be difficult without guidance or planning from a
central authority.

*Even with coordination, in a competitive environment, competitors may be tempted
to misinform passengers about competing routes in the extreme case, or similar
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information may be duplicated in different systems in different forms thereby con-
fusing passengers.

To prepare the way for systemwide PIBS implementation, the Corporate Planning and

Policy Division of LT Planning suggested a structure to tackle these challenges [53].

To address the first problem, LT suggests that a Public Transport (PT) authority be

responsible for planning and providing the basic PIBS infrastructure which would then be

leased to the private operators. To address the second and third problem, LT suggests that

the authority should also be responsible for regulating the PIBS system and network, mak-

ing sure information is standardized and operators are provide correct and consistent

information with as little duplication as possible. The suggested roles and responsibilities

of the parties associated with Countdown in this structure are shown in Table 4.7

In this structure, London Transport (or a newly created central public authority) would

be fully responsible for PIBS infrastructure, maintenance and information. This allows

displays and information to be standardized for all routes that provide PIBS. The private

operators would be responsible for providing AVL information through their own AVL

system and ensuring service control, which would be subsequently monitored by LT.
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Table 4.7: Roles and Responsibilities of
a. Source: LT Planning [53]

Parties Associated with PIBSa

PIBS information is only as good as the AVL information given to it however, thus to

ensure quality information, AVL information standards could be created and operators

who subscribe to PIBS information would be required to adhere to these standards. To aid

operators in adhering to standards, operators could subscribe to a centrally developed AVL

system that already meets these standards. Private operators could pay for the use of the

central AVL system through leasing agreements. [Wilson 70] Private operators would
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Group Role Motivation

Public transport Is responsible for the provision of a PIBS sys- Improves information for bus passengers in
authority tem line with a general policy to improve public

transport

Provides and maintains basic PIBS infrastruc- Overcomes barrier of high initial capital cost
ture for operators

Owns PIBS infrastructure and offers it for rent Ensures multi-operator access and avoids
to operators duplication of infrastructure

Regulates use of PIBS system Ensures good, consistent and comprehensive
information, including network information
functions

Enables the use of PIBS system to operators Encourages the development of a complete
PIBS network

Bus operators Rent equipment and provide PIBS on bus ser- Brings revenue gain by providing value added
vices service

Operate AVL service control Improves bus service performance, thereby
improving revenue

Operate PIBS system, providing route-specific Provides enhanced service to passengers
(or operator-specific) information inducing revenue gain by pricing up and/or

revenue gain generating revenue

Provide real-time public transport network Contracted by PT authority to carry out certain
information network information functions

Passengers Willing to pay higher fare for bus services Receive benefits from PIBS
with PIBS

New passengers bring generated revenue to Perceived (and real) improvement to bus ser-
operator and satisfy PT authority aims on vice attracts new passengers
accessibility and transfer from private trans-
port



have flexibility in providing any extra passenger benefits they wish that is not governed by

the standards.

Before PIBS is implemented systemwide, private operators have to be convinced of its

true benefits and potential. If the potential is not realized, the operators have to be some-

what insured against failure.

4.4.11 Overall Countdown Assessment

London Transport's evaluation of Countdown revealed three key findings:

1. Countdown and cleardown accuracy is not at predefined levels.
2. Ridership analysis is inconclusive. There is no significant difference in ridership

changes between the Countdown route (route 18) and other nearby control routes.
3. Passenger perceive benefits from Countdown. Passenger wait times seem to be

shorter, passengers are less stressed at stops and passengers are willing to pay up to
20 pence per journey for Countdown information. These valuations should lead to a
10 - 12% increase in ridership.

The first finding tells us that even though Countdown accurately predicts arrival and

cleardown times in most cases, it does not meet the high predefined standards. The predic-

tion algorithms used to predict bus arrival times could well do better if they were more

sophisticated. The level of accuracy that is required should reflect the risk of inaccurate

data. For example, a passenger might not trust the system in the future if it showed a bus

was expected in a few minutes when in reality the bus had just passed. Passengers might

be equally disappointed if Countdown showed that a bus had just passed when in reality it

had not yet arrived. Inaccurate information may lead to negative perceptions of the system

or even worse to incorrect travel decisions by passengers. To minimize these negative

effects, accuracy levels need to be high.

The second finding suggests that ridership gains may not be as great as proponents ini-

tially envisioned them to be. One of the prime selling points of passenger information sys-
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tems and AVL systems in general is the potential of these systems to increase ridership and

therefore revenue so that they can pay for themselves in a relatively short time. This find-

ing tells us that this may not be the case and perhaps these systems should not be judged

strictly on a financial basis, but should also take social benefits into account.

The third finding is an interesting one because it appears to contradict the second find-

ing. One might think that if a passenger values a system so much that he or she would be

willing to pay a premium for passenger information, he or she should would therefore be

more likely to use a system that has passenger information more often than previously if

the price of the service remained the same. This should have been reflected in increased

revenue in the Countdown route, but unfortunately it doesn't appear to be.

One reason for this may be the questionable validity of the stated preference study

used to determine willingness to pay. A stated preference study gathers data by presenting

hypothetical choices and trade-offs, not real choices. In essence, the study asks how much

passengers would be willing to pay for a service if it was implemented. Even with meth-

ods used to increase the robustness of this survey, this fundamental flaw remains. In addi-

tion, there may be some bias present since passengers may tend to overstate the system's

worth intentionally in order to increase the chances of the system being implemented.

Even if the survey was valid, there might be a fundamental difference between what a per-

son states he or she is willing to pay and what a person is actually willing to pay.

4.5 Others

The three case studies described in this chapter illustrate the ways in which informa-

tion technology is used, decisions are made and systems are implemented. These agencies

are by no means the only ones to implement advanced computer and communications sys-
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tems, however. In the United States, some agencies are implementing advanced technolo-

gies with financial support from the federal government. The knowledge and experience

that is being gained from operational tests of these systems are being collected and synthe-

sized under a federally sponsored program called the Advanced Public Transportation

;Systems program (APTS).

The mission of APTS is, "to enhance the ability of public transportation systems to

satisfy customer needs and contribute to community goals by providing information on

innovative applications of available Intelligent Vehicle Highway Systems (IVHS) technol-

ogies from a coordinated operational test and evaluation program" [APTS 5]. The pro-

gram strives to carry out this mission by examining various IVHS-related technologies

that can be applied to public transportation and then to evaluating selected technologies

through operational tests currently being conducted in several US cities.

Many of these operational tests involve technologies that include both real-time pas-

senger information and real-time operations monitoring and control functions. Some of

these APTS projects along with related non-APTS projects and systems will be discussed

briefly in this section which is broken down into agencies and systems that are primarily

concerned with real-time passenger information versus the ones that are primarily con-

cerned with real-time operations monitoring and control.

4.5.1 Operations Monitoring and Control Systems

The State of the Art, 1994 [57] lists 28 agencies in North America who have either

implemented or are considering implementing an AVL system. Of these 28 agencies,

about a quarter are using or planning to use GPS technologies, about half are using or

planning to use signpost-odometer systems, and the rest are either using another technol-



ogy or have not yet selected a technology. Clearly, GPS and signpost-odometer systems

are the two major competing choices in AVL technologies.

The three previous case studies have described systems using passive identification or

signpost-odometer technology in sufficient detail to cover these technologies adequately.

The focus in this section is thus on agencies which are implementing GPS systems as their

primary source of location information which include most of the APTS operational tests

of AVL systems.

Denver. Colorado

Denver is one of the cities that is conducting an operational test of its systems under

the auspices of the APTS program. The Denver Regional Transportation District (RTD) is

currently installing a GPS-based AVL system as part of an upgrade to its communications

system, the main objective being to aid in operations monitoring and control. By provid-

ing location information and subsequently transmitting to a dispatch center, events such as

off-schedule buses and emergencies can be detected and resolved quickly. Many of the

objectives of this system are similar to the CIS system in Toronto even though the location

technology is very different. The system utilizes an exception reporting strategy rather

than a polling strategy in transmitting location information. This strategy identifies only

off-schedule buses to dispatchers who are then charged with taking corrective actions.

Processing on the bus compares schedules with actual locations to determine if a bus is

off-schedule, and transmits to the dispatch center only when such a case occurs [5 and 57].

Locations of buses are shown in the dispatch center via map displays and the system

has a silent alarm feature in the event of any on-bus emergency. As of February 1994, 208

out of RTD's fleet of 788 buses and 28 supervisor vehicles are in full operation under the

AVL system and the entire system is scheduled to be fully operational shortly. Delays due

to technical difficulties in implementing new GPS technology have caused the operational



test to start only recently. In the near future, once the AVL system is in place, RTD is plan-

ning to install a passenger information system that will include interactive displays.

Denver's AVL system is estimated to cost about $10.4 million or about $12,500 per

bus, which is about the average cost of an AVL system (see Chapter 5).

Dallas. Texas

Dallas is another US city that is currently implementing a GPS-based AVL system as

an APTS operational test which will be evaluated to determine general position accuracy

and the system's overall effectiveness in controlling bus schedules. The evaluation plan is

due to be part of a national evaluation plan that is to be applied to other cities with similar

AVL systems in the US.

A major component of Dallas's AVL system is the Integrated Radio System which is

comprised of 12 radio frequencies; three dedicated to data collection, one to tracking con-

trol and the rest (eight) dedicated to voice communication. Like Denver, an exception

reporting strategy is used. The information gathered by the AVL system will be used for

both real-time operations monitoring and control and for off-line analysis.

Service performance during any specified period will be documented and available for

examination by transportation and division fleet managers. It is expected that this data col-

lection will prove invaluable for vehicle and personnel management, fleet performance

and scheduling. In addition to tracking vehicles with emergency conditions, the AVL sys-

tem will also be able to track off-route vehicles, a feature that is not available in signpost-

odometer systems. If a vehicle goes off-route, dispatchers will immediately be notified and

corrective actions can then take place.

The system is not yet operational, with the software not yet working to specifications.

Currently, 1200 of the 1300 buses in the agency's fleet are equipped with GPS receivers

and the agency hopes to have the entire system operational shortly [5 and 57].



MBTA - Green Line AVI

Recently, the Massachusetts Bay Transit Authority (MBTA) has installed an Auto-

matic Vehicle Identification (AVI) system on its Green Line light rail line and Fellows [30]

recently analyzed the potential of this system. The AVI system consists of 33 wayside

antennas located at key points along all Green Line routes. Encoders and transponders

installed on all Green Line trains are able to transmit information about vehicle numbers,

route numbers, the number of cars in the consist and the status of 4 alarms to a decision-

maker at a central control location when a vehicle passes an antenna. In this configuration,

train location is known only at discrete points (i.e. at every antenna). Fellows noted that

although this configuration gave a lot more system-level information about Green Line

trains in service, more information was needed in order to make really effective decisions.

Suggested elements for an effective control system included algorithms to calculate

headway information, algorithms to match train location to scheduled data, graphical

views of the system state and simulations running concurrently with operations to provide

estimates of locations, headways and schedule adherence. Further simulations to forecast

results of specific control actions would also provide a better basis for subsequent deci-

sion-making.

With the introduction of the AVI system, Fellows described a new potential control

environment made possible with the information provided by the AVI system. System-

wide information allows monitoring and control to be performed centrally, allowing deci-

sion-makers to know passage times of all trains at all detectors instead of relying on

inspectors. The Green Line supervisors believe that this capability can ultimately lead to

better control decisions by allowing decision-makers to detect problems more quickly and

use the extra time to formulate strategies to intervene before it escalates into a larger prob-

lem. Deckoff's model estimated that AVI information could improve the percentage of
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time that the short-turn decision is successful (success defined as a decision that results in

a reduction of passenger delay) from 73.8% to 93.6%. Macchi estimated that express deci-

sion-making could be greatly improved given both predicted time savings and neighbor-

ing headway information, both of which are possible with the AVI system [73].

Fellows recognized that technology was not enough to improve operations monitoring

and control, thus he suggested complementary steps such as ensuring continued expertise

and teamwork, requiring field supervision experience for dispatchers and having common

managers for inspectors and dispatchers

4.5.2 Passenger Information Systems

In addition to the AVL system projects, APTS is also engaged in the evaluation of sev-

eral traveler information systems, most focussing on the integration of paratransit with

conventional transit services. Passenger information systems can be categorized as sys-

tems providing pre-trip, en-route, or in-vehicle information, and selected APTS and non-

APTS systems in each category are investigated below. A simulation that evaluated the

impact of real-time information to a portion of the MBTA transit network is also presented

in this section.

Pre-trip Information Systems

In Bellevue, Washington, the local transit agency is developing a pre-trip commuter

information system that can be used to display information on transit, van and carpooling

services. One of the goals of the Bellevue project is to examine ways in which mobile

communications, such as cellular telephones and information kiosks can be used to make

carpooling and vanpooling operations more attractive. The project initially developed a

cellular-based ridematching service in order to increase usage of High-Occupancy Vehicle

(HOV) facilities in the area. In the project's current phase, an interactive commuter infor-



mation center is being developed and installed in a downtown office building in Bellevue.

In addition to providing computerized transit information and rideshare matching services,

commuters can also schedule occasional carpool or vanpool trips. The system is also being

developed to include voice mail, smart card, traffic monitoring and electronic map capa-

bilities [5 and 57].

In Los Angeles, a smart traveler system is being developed with the aid of APTS that

will provide pre-trip real-time information to passengers including transit system status

and expected arrival times. This system is somewhat different from many of the other

automated information systems in place in other cities (Ottawa, New York City, San Diego

and Kitchener, Ontario) in that the information will be real-time instead of just scheduled.

Information kiosks located at Union Station, Arco Plaza and a shopping mall will provide

information of bus, light rail and heavy rail schedules and will also show maps displaying

congestion on freeway and arterial roads [57].

En-Route Systems

An in-terminal component to Smart Traveler has also been developed in Los Angeles

and information displays are currently installed on Amtrak station platforms. These dis-

plays primarily provide real-time transit arrival information and are currently updated

from a central location. Unlike London Transport's Countdown system, however, it is the

control center, not the vehicles themselves that trigger the information updates [57].

Teleride Sage, has developed several en-route information systems for cities in the US

and Canada including OC Transpo's non-real-time 560 system and real-time systems in

places such as Toronto, Guelph (Ontario), San Juan (Puerto Rico) and Broward County

(Florida). The hardware for these en-route systems consist of screens inside the terminal

that present material on arrivals, departures, detours, delays, cancellations and fares. The

arrival and departure information is triggered by sensors that are located on the approach
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to the station. The viewers are similar to the monitors in place at many airport terminals,

but they provide more information and employ sharper graphics and resolution. It is also

possible to carry advertisements and store promotions over the viewers [57].

Halifax (Nova Scotia) has a well-established real-time in-terminal system with dis-

plays located in transit terminals and malls that show real-time information on an interac-

tive basis. When a traveler wishes to know the arrival time of the bus that he or she wishes

to travel on, the traveler punches in a four-digit code that signifies their location. The dis-

play then takes this location information and displays real-time arrival information for all

the buses that pass that location [57].

En-route passenger information systems are also well developed in Tokyo and Osaka,

Japan. In Tokyo, the Bus Operations Management System provides both real-time opera-

tions monitoring and control and passenger information capabilities to the Green Line

Series of buses operated by the Transportation Bureau of Tokyo Metropolitan Govern-

ment. The passenger information system consists of panel displays at bus shelters and ter-

minals that show a wide range of real-time information including bus departures, traffic

conditions, bus locations (shown by points of light on map displays), current headways

and a journey time indicator that predicts travel time from one stop to another [17, 50].

In Osaka, real-time bus information is provided at designated information spots and at

selected bus shelters. At the information spots, passengers can obtain information such as

fares and service via an interactive video linkup. Passengers can also call the service cen-

ter to receive up-to-date information via telephone. At the bus shelters, map displays show

the current location of arriving buses (down to the major bus stop level) and an imminent

bus approach is signalled both by a chime and a lamp flicker [47].
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In-Vehicle Systems

There are few real-time in-vehicle systems in operation with most of the development

in the passenger information field focusing on either pre-trip or en-route information sys-

tems. Of the systems that do have some sort of in-vehicle component (Salem in Oregon,

Orange, Osceola and Seminole Counties in Florida, JFK Airport in New York, Montreal in

Quebec etc.[57]), the information that is given out is generally limited to next stop

announcements, thus it might be argued that these systems might not be real-time in a

meaningful sense. The primary motivation behind these systems is to design a system that

conforms with the Americans with Disabilities (ADA) Act which requires transit to be

accessible to all persons with disabilities, without requiring operators to be heavily

involved.

MBTA - Passenger Information Simulation

Hickman [35] has explored the impact of real-time information on transit passenger

behavior, developing a framework that models the ways that passengers alter their travel

decisions in response to various types of real-time information. A transit service model

that assumes stochastic vehicle running times, stochastic and time-dependent passenger

departure times and path travel time distributions was initially developed as inputs to his

travel behavior model along with traveler perceptions and types of real-time information

available. Several scenarios were developed and investigated ranging from cases in which

no real-time information was given to cases in which perfect information was provided to

the passenger, and cases in which passengers underestimated variability of travel times to

cases in which passengers overestimated the variability of travel times.

The outputs of the models included passenger path choice, departure time choice and

resulting path flows and travel times. This model was first applied to a theoretical shuttle

network and then to a section of the MBTA network stretching from Arlington Center to
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Park St., including the Red Line and the 77, 79 and 350 bus routes. In both of these net-

works, several origin-destination paths were available to passengers, the travel times for

each alternative path were in the same ranges and travel time reliability was considered to

be an important issue. This represents ideal conditions for obtaining full benefits of real-

time information.

Even with these carefully chosen networks however, the model forecast only modest

time savings (about 1 - 3% of total travel time) as a result of real-time information. On a

30 minute trip, this translates to time savings of 0.3 to 0.9 minutes. As expected, some

types of information proved to be more beneficial than others. An 0.5% savings was esti-

mated for knowledge of departure times, while a 2% savings was estimated for running

time information. Information on connections yielded even higher savings. In these sce-

narios, Hickman assumed a relatively high accuracy associated with the information, but

after running a few scenarios where he varied accuracy levels, he found that travel time

savings were fairly insensitive to accuracy levels.

Hickman's research concludes that real-time passenger information will probably not

have a large impact on actual travel times. If a cost/benefit analysis was conducted purely

based upon information costs versus travel time savings, these systems would probably be

rejected. Information systems have the additional potential, however to provide emer-

gency and service disruption information and little research has been conducted to evalu-

ate the utility of these features. In addition, Hickman's models do not investigate the

influence of real-time information on passenger's perceived waiting times and total trip

times. The value of time savings may increase if perceptions are taken into account. In

these contexts, real-time information may be more useful than Hickman's research sug-

gests.
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Chapter 5

A Framework for Selecting Technology Applications

5.1 Introduction

Thus far, this thesis has examined the information needed to support real-time public

transportation operations control and passenger information functions and the advanced

technologies and systems that can be used to gather and make use of this information. It

has also introduced many of the issues that agencies must address when planning to apply

information technology to their operations. These issues and the ways that agencies deal

with them were then investigated through three case studies.

The ultimate goal of information technologies is simply to improve system perfor-

mance, and design of technology application should thus begin with an assessment of the

problems that the agency is facing. In some situations, information technology may be

better applied to perform operations monitoring and control than using the same informa-

tion for passenger information while the reverse may be true in other situations, and in still

others, the situation may call for both applications, but in a specific order. When an agency

decides upon technology, the first issue that must be decided is the most effective use for

information technology to solve existing problems. The first section of this chapter

describes situations where it may and may not be appropriate to implement information

technology for real-time uses, either for operations monitoring and control and/or passen-

ger information.

Once an agency decides on the use for technology, the agency must then select from a

wide range of technologies and systems. Before detailed technical evaluations are con-

ducted, however, the agency must define the general types of systems that they want. This
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involves making choices on general issues that will greatly affect functionality, such as

choosing between centralized and decentralized control, determining the mix of hardware,

software and labor and choosing a discrete or continuous system. These issues are pre-

sented and evaluated in the next section.

After issues about general design are resolved, the agency needs to decide upon spe-

cific AVL system components which when integrated together, form a system designed to

perform real-time functions. The final and most important evaluation that an agency has to

make is the evaluation of the overall benefits and costs that result from the AVL system.

'The issues that pertained to specific component design were extensively described and

evaluated in Chapter three, thus the main interest in this chapter is on the evaluation of the

benefits and costs of these systems when applied to either operations monitoring and con-

trol or passenger information.

5.2 Appropriate Uses for Information Technology

The primary motivation for transit agencies implementing advanced technologies is an

expectation that performance can be improved. In some sense then, only when problems

occur in system performance does the need for using advanced technologies arise. The

same applications of technology cannot be uniformly used to solve all problems, however,

and before an agency selects a particular technology, it should first focus on matching their

specific problems with the technology and use that is most likely to result in an effective

solution.

Information technologies can only be effective in solving a limited number of perfor-

mance-related problems, principally those related to service quality, operations costs, pub-

lic perceptions and safety. A decision tree proposing the appropriate uses of information
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technologies for each problem is shown in Figure 5.1 in which each branch of the tree rep-

resents a sub-classification of the problem. If an agency is suffering from any of the prob-

lems listed, the tree can be used to direct the agency to a potentially good use for

information technology. If an agency is suffering from multiple problems, the tree can be

useful in pointing out the combination of real-time uses which might be appropriate. Each

of the problems displayed in the tree and the effectiveness of the uses for information tech-

nologies are described below.

Figure 5.1: Decision Tree for Application of Information Technologies1

1. OMC = Operations Monitoring and Control, PIS = Passenger Information Systems
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5.2.1 Service Quality

Service Plan

As described in chapter one, one of the primary concerns of any agency is collecting

data and creating an efficient and effective service plan. The challenge is in creating a sys-

tem that collects data in a systematic, frequent and reliable manner and then uses this data

to assess existing services and to plan revisions effectively. Problems occur when a system

fails in any one of these regards. Chapter 1 has already described how information tech-

nologies can be used "off-line" to improve the data collection function. It has also been

shown that these applications can be very cost effective, as in the case of OC Transpo's

APC system. Information technologies (IT) used for OMC systems can also provide the

tools necessary to collect good data, but the extra cost associated with OMC systems prob-

ably can not be justified if service planning is the agency's only performance problem.

Service Operations Unreliability - Planning and Priority

If the service planning function is conducted efficiently and effectively, but problems

exist with service operations, the potential exists for information technologies used for

either operations monitoring and control or passenger information to be useful. The effec-

tiveness of either function in solving operations problems depends upon the causes of the

problem. Chapter 2 identified many potential causes of problems in bus operations and

classified these problems as either planning/priority related or real-time.

Many operations problems that are planning/priority related can be most cost-effec-

tively dealt with by an information technology utilized in a non real-time manner. Prob-

lems such as predictable traffic congestion or variations in passenger demand that recur

systematically can be alleviated by adjustments to schedules and running times or by traf-

fic engineering initiatives. These problems may also be alleviated by systematic real-time
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intervention through operations monitoring and control, but the real-time aspect of this

function is not necessary in this case and this would likely be a more expensive solution.

Service Operations Unreliability - Real-Time Uncontrollable

Other problems that occur in service operations occur in real-time and need real-time

:intervention in order to solve. Chapter 2 further classifies real-time problems into those

'with controllable versus uncontrollable causes. For uncontrollable real-time causes such

as weather and unanticipated traffic accidents, operations monitoring and control can help,

but can only be partially effective in alleviating the impacts on passengers. Operations

monitoring can detect the problem, and information technology can accelerate this pro-

cess, but these problems must be dealt with in a highly reactive manner, and the value of

control intervention will depend on the circumstances. Service is already disrupted and

passengers are inevitably affected, thus the objective of OMC becomes one of mitigating

the impacts of the problem rather than solving it.

For the high costs that an OMC system requires, it may not always be the most cost

effective approach in this context. One alternative is to use technology to support passen-

ger information, which could relay information on service disruptions to passengers so

that they are informed of the situation. Using this information, they could change their

travel plans (the London Transport survey revealed that passengers would consider other

travel options if they knew that their wait would be very long) or if they cannot, at least

they know about their own situation. This would have the effect of lessening the impact on

passengers.

Service Operations -Real-time Controllable

For controllable real-time causes of unreliability such as operator behavior and unan-

ticipated fluctuations in demand, OMC systems can often be very effectively applied.

These causes of unreliability are often relatively minor and reliability can be maintained



through the continual monitoring and control of the network. Agencies experiencing these

types of reliability problems generally have inadequate OMC systems and the reasons for

these deficiencies must be investigated before implementing a technological solution. If

problems are rooted in the management or overall control structure, perhaps they can be

resolved by changing management or the control structure without the need for new tech-

nology. OMC systems might however serve as a catalyst for structural changes and could

be effective in causing beneficial managerial and control changes.

Other common inadequacies with current OMC systems are the lack of information

gathered both locally and systemwide and the slowness of information transferred to deci-

sion-makers. Information technologies used for OMC could provide more systemwide and

local information quicker to help improve the chances of making correct decisions,

improving the impacts on passengers. By comparison, information technologies used for

PIS would generally have less of an effect on passengers. First, no improvements to ser-

vice reliability would be seen since information is being passed to the passenger rather

than to decision makers who have the power to implement beneficial control measures.

Second, although passenger information does tend to reduce the negative effects of unreli-

ability, it is still clearly second best to the alternative solution of better reliability. Passen-

gers would rather be able to depend upon reliable service than depend upon being notified

of unreliable service.

5.2.2 Operations Costs

Sometimes performance problems are due to high costs of day-to-day operations. If

the problem of high operations costs is caused by inefficiencies in the service plan, infor-

mation technologies utilized in a non real-time manner may be the most effective solution.
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Problems such as under-utilized vehicles and sub-optimal vehicle and crew scheduling can

often be identified most simply through off-line analysis.

Sometimes, the problem is caused by inefficiencies in supervisory activities. For

example, in 1991, the Massachusetts Bay Transit Authority's (MBTA) operator-to-super-

visor ratio was much lower than the average of other comparable agencies [31,40]. Ineffi-

ciencies like these lead to high costs for supervision and overall management of

operations. Information technologies used for operations monitoring and control can help

to reduce these inefficiencies and thus reduce overall operations costs. In the TTC's case,

vehicle-to-supervisor ratios increased as a result of CIS, but because of TTC policy, costs

were not reduced. The potential exists to reduce operation costs, but political consider-

ations that inevitably come into play when staff cuts are at issue may make real cost reduc-

tions difficult to realize. The TTC case study has also shown that OMC systems may be

hard to justify solely on the basis of these cost savings.

Since real-time passenger information is a relatively new function in the transit indus-

try it only adds to, rather than replaces, systems in place, thus no real cost savings can be

realized by applying information technology to this function.

5.2.3 Public Perceptions

Public transportation has traditionally suffered from poor public perceptions when

compared with alternative travel modes such as the automobile. Agencies can suffer from

poor public perceptions if service is generally poor, but low public image may still exist

even when service is good if competing modes provide higher quality service. Gradually,

agencies are trying to turn around these perceptions by using information technologies to

showcase their services, and using information technologies for real-time passenger infor-

mation serves such a purpose. If agencies are having a problem with public perceptions,
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and if their overall service performance is good, passenger information may be a good

strategy since it is directly observable by the passengers therefore it may strengthen the

image of the agency. A significant number of respondents to London Transport's survey

had a better impression of London Transport as a result of the Countdown system.

This may be a better use for information technologies than operations monitoring and

control. Although OMC equipment may be visible to most passengers, OMC systems

work behind the scenes to improve service and thus image in a gradual fashion, but is not

directly visible to passengers the way that passenger information systems are, and thus it is

probably less effective at creating a positive public image. Also, if service reliability is ini-

tially good, OMC systems can only improve service by a small amount. Where OMC sys-

tems might be effective is when service quality is initially poor. By improving reliability,

public satisfaction should steadily increase, perhaps leading to ridership increases and an

increase in positive public perception. Reliability has been consistently shown to be one of

the most important attribute of transit service to passengers [Levinson 40]. Although it

doesn't have the immediate effects associated with passenger information, if reliability is

initially poor, the effects of passenger information will gradually fade once passengers

continue to observe poor service.

5.2.4 Security

Issues of safety may also play a large part in determining the appropriateness of tech-

nology. With congestion and crime worsening in many urban areas, agencies are becom-

ing increasingly concerned about safety and security on transit vehicles. In the TTC's

case, one of the prime objectives in developing CIS was to increase safety for both opera-

tors and passengers.
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In terms of safety, information can be used effectively as part of the operations moni-

toring and control process. One of the primary functions of OMC is to monitor the net-

work for any signs of trouble and then to react appropriately when situations occur.

Information technologies aid the OMC function in relaying emergency information

quickly to decision-makers so that situations can be quickly resolved.

This does not necessarily mean that passenger information does not increase safety,

however. In times of emergencies, information like recommended procedures and safe exit

routes can help passengers avoid danger. This type of information could be just as effec-

tively provided by transit staff, however. Neither OMC nor PIS systems can probably be

justified by the safety concern alone, but as passengers and operators become increasingly

worried about safety, it is becoming a more important problem.

5.2.5 Combinations

Each node in the decision tree shown in Figure 5.1 applies mainly to appropriate

applications of technology when only a single problem exists. In reality, this is rarely the

case. Many of these problems are related to each other and the existence of one problem

may indicate the existence of another one. For example, an agency that has a problem

maintaining high service quality may also have a problem of poor public perceptions that

is caused by unreliability. At other times, multiple problems may exist at an agency even if

they are not related, thus an agency may have both a poor service plan and a security prob-

lem.

The solution of these multiple problems depends on their combinations and may call

for joint uses for technology. In general, the more problems that can be effectively dealt

with by a particular information technology system, the stronger the case for that specific

use. For example, if an agency has both the problem of safety and of service reliability,
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this combination strengthens the case for implementing information technologies for

OMC use. These combinations are discussed below.

Service Plan Combinations

If the service plan and service delivery are both poor, it is probably best for the agency

to focus on improving the service plan first before improving service delivery. This entails

the implementation of an APC-like non real-time system before the implementation of a

full-scale OMC system, or the implementation of an OMC system with extensive off-line

data analysis capabilities. Operations control can be effective only when a good service

plan is in effect. If the service plan is not effective, no amount of effort put into operations

control can increase service to satisfactory levels. If the routes are poorly structured to

begin with, even if service delivery is improved, it still will not serve the needs of the pas-

sengers. Not many passengers will use a route if it does not serve places they want visit.

Only when the service plan is improved will the implementation of an OMC system yield

the desired results.

The same argument also holds true for service plan and public perception problems. In

this case, off-line applications should be implemented before real-time passenger informa-

tion systems. If service is bad as a result of a poor service plan, passenger information sys-

tems can not be effective. Since the routes will not be serving the places where a majority

of the riders wish to go, passengers will not be served even if passenger information is

given. Only when the problem of the service plan is resolved will passenger information

become effective.

If the service plan and safety are the problems, perhaps this combination would

strengthen the argument for implementing an OMC system with off-line data analysis

capabilities. The off-line systems would help improve the service plan and the OMC ele-
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ments would help improve safety. An even stronger case for implementing OMC systems

would come if the agency has the additional problem of service unreliability.

Real-Time Controllable Service Reliability Combinations

If an agency is experiencing poor service quality and poor public perceptions, perhaps

both OMC and PIS applications of information technologies are justified. The OMC func-

tion could help improve service quality and indirectly help remedy perception problems

and the PIS function would help remedy perception problems and would present the

results of OMC directly to the passengers. This necessitates the implementation of the

OMC function before PIS in order to be successful, however.

If the order of implementation were reversed, PIS systems would only be partially

effective. Passengers regularly using bus routes that have unreliable service will already

be aware of the type of service they are receiving. If a passenger information system was

installed on these routes, service would still be unreliable, and the passenger would have

the perception of unreliability reinforced, although the negative effects on the passengers

would still be lessened because of passenger information.

If passenger information were installed after OMC, however, these systems would be

more likely to complement each other. First, the system would highlight to the passengers

how well served they are and second, passengers would be able to utilize their time more

effectively. They would be able to arrive at a stop just minutes before a bus is scheduled to

arrive with the confidence that it will indeed arrive on time. The passenger could then

check with the PIS to make sure that, indeed, the bus will arrive on schedule. This reduces

both the passengers' mean waiting time and their disutilities associated with waiting.

One needs to be concerned, however, that operations monitoring and control might

decrease the value of passenger information like it has on the Riverbus system. If reliabil-

ity can be made near perfect, as is the case on the Riverbus system, there would be little
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added value if a PIS system were added. The best situation for implementing both OMC

and PIS functions may be one where a network is unreliable, and operations monitoring

and control can improve reliability, but only to a certain point, after which the remaining

unreliability can be dealt with by the passenger information system. Since this situation

can occur frequently in large transit systems, the potential to utilize information technolo-

gies for multiple functions can be high.

If an agency experiences problems encompassing both service quality and safety, this

strengthens the case for implementing OMC. Not only does the OMC function have the

potential for improving service reliability, it also has the potential to improve safety. PIS

systems used in conjunction with OMC may also be effective in this problem combination

in improving safety, but it may not be worth the cost to provide incremental benefits in

safety. The case for OMC systems is also strengthened if both reliability and operations

costs problems exist since the OMC function can help solve both problems.

Real-Time Non-Controllable Reliability Combinations

If an agency is experiencing reliability problems that OMC cannot fully remediate and

also has public perception problems, this further strengthens the case for passenger infor-

mation systems. Reliability problems that cannot be dealt with effectively by operations

monitoring and control can be better dealt with by providing passengers with real-time

information. At the same time, this information helps improve the agency's image.

5.3 AVL General Design Issues

Once an agency decides on the appropriate use for technology (if any), it must exam-

ine certain AVL technological issues that will have a fundamental impact on the best sys-

tem design. These issues are discussed next.



5.3.1 Centralized vs. Decentralized Systems

This issue focuses on how technology, monitoring and control responsibilities should

be distributed in the system. Until now, this thesis has assumed a centralized system with

most of the data processing technology and decision-making at a central location. An

alternate configuration is to decentralize parts of these components to the vehicles or other

:field locations. For example, instead of having one large central processor performing all

of the processing, storage and interfacing, much of the processing, storage and interfacing

could be performed on the vehicle itself. Also, instead of having central controllers moni-

tor the system at a detailed level, each vehicle could monitor its own performance and

alerts the operator when appropriate, or the controller only in serious situations.

Decentralization should reduce the amount of communications required between vehi-

cles and central control. Normally, data would be sent over wireless communications and

the computer at central control would process this data. In a more decentralized system,

much of this data would not be sent to central control, rather it would be processed directly

on the vehicle. This would require more sophisticated and powerful hardware and soft-

ware on vehicles to handle the processing needs and store the required data.

In a centralized system, the hardware and software on the vehicle is only responsible

for controlling the flow of data to and from the vehicle and perhaps providing the opera-

tors with a simple interface. In a more decentralized system, the hardware and software

would be required to do more things, such as converting location data into something

more useful like schedule deviations, storing some data for post-processing, or providing

an enhanced user interface to show any additional processed information. In each of these

cases, hardware and/or software needs on the vehicle would increase: schedule data for the

vehicle's daily run would be needed for schedule adherence information, extra memory
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would be needed to store more data, and more hardware and a bigger display would be

needed for the enhanced interface.

The issue of decentralization goes beyond hardware and software, however, also rais-

ing the issue of who should have decision-making responsibility: the operator or the cen-

tral controller. Local decisions made by the operator may be effective when relatively

small incidents occur on the field or when the vehicle is on a low frequency route, but cen-

tralized decision-making made by the controller is necessary either to resolve major inci-

dents or to control vehicles on high frequency routes. Also, local information may be

sufficient if control actions affect only a single vehicle while system-wide information is

necessary if control actions will affect multiple vehicles.

A partially decentralized system that provides limited communications with central

control and retains controllers for monitoring and decision-making, but keeps most of the

hardware, software and processing on the bus may create the ideal system configuration.

Many of the Smartbus systems being planned in the United States provide this type of

structure: a majority of the processing and some of the control decision-making being

done on the bus and some communications take place between the bus and a central con-

trol location. Operators are continually notified of vehicle status so they can make fre-

quent, minor control changes, and controllers are notified only in cases of major

disruptions or whenever the controller specifically requests information. This configura-

tion may present the best control environment while at the same time minimizing commu-

nication requirements.

In terms of costs, it isn't clear that a partially decentralized system would cost less.

There would be less need for a complex communications system, nor would there be a

need for such a powerful central processor. All of these factors would reduce costs. Costs

would increase, however, from the need for more sophisticated equipment on the buses,
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and the controller costs would still be present. The sum of the costs of the equipment and

software onboard vehicles might actually be more than the cost of equivalent central

equipment and software because of the duplication which may be necessary in equipment,

software and processing.

The partially decentralized system described above might be preferable to a fully cen-

tralized system because it might lead to better decision-making by using both local and

system-wide information, and would lessen the demand for data communications between

the bus and central control. This type of system may be more expensive, however.

5.3.2 Hardware - Software - Labor Substitutions

In the previous discussion in Chapter 3 about technology and human factors, many

examples of how hardware, software and labor can substitute for each other were men-

tioned. Decision-making software has the potential to substitute (at least partially) for con-

trollers and other decision-makers. Map matching techniques for location data can

substitute for the need for more advanced equipment to produce more accurate location

estimates.

These are but a few of the many ways that hardware, software and labor can be inter-

changed within a system design. Chapter 2 described a variety of information needs and

uses for real-time decision-making. The motivation for substituting components in the

system design is that by so doing, information needs can be met at lesser cost or at a higher

level of performance. Given a certain combination of technology and labor, the theory is

that if an agency wishes to maintain the same level of performance, it can decrease labor

by a lot if they increase technology by a little. The result would be a cost reduction since

the decrease in labor costs would more than offset the increase in technology costs.

Technology can substitute for human labor in many instances. It is possible to replace

some inspectors with AVL systems just as it is possible to replace some controllers with



automated decision-making systems. In the extreme, it would even be possible to substi-

tute operators with automated vehicle control systems.

The type of substitutability that occurs between technology and labor can also apply

between hardware and software. Software can usefully be substituted for hardware if it

can lead to either reduced costs or improved performance. In many circumstances, when a

certain system is installed, the hardware costs turn out to be a lot more than the software

costs. The main reason for this is that hardware costs vary directly with the number of

buses that are equipped, while software costs are largely independent of the number of

buses. The same software can be loaded onto any number of buses at much the same cost.

It can be seen that there are advantages in substituting software for hardware, especially

for large transit systems.

Another motivation for substituting software for hardware comes from the notion that

software can last longer than hardware. With technology changing so rapidly, hardware

may become obsolete in a relatively short amount of time. Not long ago, the TTC was an

innovator with its CIS system using signpost-odometer technology, but by today's stan-

dards, their location technology might be considered obsolete with the rapid development

of GPS technologies. Software, however, tends to last longer. If software is programmed

efficiently and takes future needs into account, it can be applied to several generations of

hardware. This is the case with OC Transpo's APC system. The hardware for its APC has

changed several times, but its software that process data has simply evolved since APC

was first implemented.

Software can substitute for hardware in a variety of ways. It has already been illus-

trated how map-matching software can increase locational accuracy. Consider a system

that already uses dead-reckoning techniques, but wants to obtain better accuracy. They

have their choice of either signposts or map-matching, and let us assume that they can
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both increase accuracy by the same amount. The larger the transit agency, the more advan-

tageous it would be to use map-matching since signpost costs increase as network size

increases, but map-matching costs remain relatively constant. Error-correcting algorithms

are another way that software can substitute for hardware. These algorithms can increase

accuracy and can substitute for a more expensive but more accurate location technology.

A final example is prediction algorithms similar to the ones used at London Transport.

Algorithms that predict the location of a bus a short time in the future may be able to sub-

stitute for a denser network of signposts, resulting in lower costs and a small loss in accu-

racy.

Not all software substitutions are limited to location accuracy. Software substitution

can also occur in central control. Software concepts like virtual memory can "fool" the

computer into thinking that there is more memory than there actually is, thus reducing

memory costs. More efficient programming can increase the speed of the computers, thus

in the end you may need less computing power. These are but a few examples of substitu-

tions in the control room.

Agencies have flexibility when determining the mix of labor, hardware and software

inputs to meet their information needs. From the previous discussions about information

technologies and from lessons learned from the case studies, several points can be made

about relative costs of labor, software and hardware in the specific context of AVL sys-

tems:

Hardware

For the past several decades, hardware has been becoming less expensive. The unit

costs for speed and storage has steadily been decreasing and although hardware costs still

make up a significant proportion of total AVL system costs, its share has been decreasing
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over time. Hardware needs to be installed in every vehicle, however, which makes hard-

ware costs a function of fleet size.

Software

Innovations in programming tools and aids which help programmers achieve results in

a shorter period of time have resulted in decreases in software programming costs. Offset-

ting this however, are increasing costs of programmers wages. Like any other agency or

vendor employee, programmer wages are subject to inflation and increase over time, thus

the net impact on expense over time is unclear. Software costs are relatively invariant with

fleet size, however.

Labor

Labor costs have definitely been increasing over time and also vary directly with fleet

size.

Given the cost structure of hardware, software and labor, one can imagine certain sce-

narios where a particular distribution of hardware, software or labor is preferable.

In transit agencies with relatively small fleet sizes (less than 100 buses) it may not be

cost effective to substitute either hardware or software for labor. These agencies usually

operate in smaller cities and encounter fewer problems in terms of maintaining safety and

reliability. Many times, all that is needed for good control is relatively simple manual

supervision. With small fleet sizes and few routes, frequencies are unlikely to be high, thus

reliability can usually be maintained relatively easily. Unless an AVL project is initiated

for demonstration purposes, AVL systems might not be appropriate. The fixed costs of

hardware and software needed for AVL systems might not be justified by the cost savings

in labor and benefits to real-time operations that these systems could provide.



In medium-sized transit networks with medium fleet sizes (100 to 500 buses), AVL

systems may be cost-effective, and the optimal AVL configuration may be hardware-inten-

sive. For a medium-sized agency problems of service reliability and safety are likely to

occur which cannot be solved by relying exclusively on manual monitoring and control

methods. If AVL technology is going to be applied to only a moderately sized fleet, the

hardware costs may be relatively low. Software can be programmed to replace hardware,

but for these agencies, it might not be cost effective to perform this substitution because

the costs involved in software development may outweigh the savings involved on vehi-

cles and in the field. The situation may be a little different is an already-developed soft-

ware package can be applied easily. If this is the case, then it might become cost effective

to replace hardware with software.

Where software substitution for hardware might be most appropriate would be in large

transit systems. For these agencies, the problems of safety and unreliability are likely to be

acute and almost impossible to manage by relying strictly on manual control systems, thus

some form of AVL system will likely be cost-effective. For these AVL systems, since soft-

ware costs are relatively independent of fleet size, software replacement for hardware

might make sense. Of course more effort would be needed to program larger systems but

the same is true for hardware, as required capacity and storage increases. But if software

can be substituted for some of the hardware on the vehicles, the added software cost would

be distributed among the vehicles and the resulting cost per vehicle could be less than the

hardware it replaced. It may also be cost effective to replace labor with hardware and soft-

ware in large systems.

The issue should not be limited strictly on the basis of the costs above, however. In

addition to considering the annualized cost (software and programming are more like one

time front end costs as opposed to labor and maintenance which are ongoing costs), higher
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levels of efficiency, reliability and effectiveness may be achieved by making appropriate

substitutions.

Independent of system size, other issues that may influence levels of substitution are

transferability and rate of change. Systems need to be designed such that components

designed for one system are easily adaptable to other systems when an agency wishes to

integrate components together. Also, components may become obsolete over periods of

time and will needed to be upgraded, and systems need to be designed to anticipate

upgrade needs. Generally, hardware is the top of the list in both issues since it is mostly

hardware that is changed or altered during integration and it is also hardware that becomes

obsolete at the fastest rate. To minimize the costs of integration and upgrading, compo-

nents need to be designed in the modular manner as discussed in Chapter 3. To further

reduce these costs, software substitutions might be used since software becomes obsolete

at a slower rate than hardware and thus needs to be upgraded less often.

Table 5.1 shows hardware-software-labor trade-offs for different sized systems by

depicting systems that are labor, hardware or software intensive and their relative imple-

mentation costs to provide similar levels of service performance.

Table 5.1: Relative Hardware, Software and Labor Costs for Different Sized Systems



5.3.3 Cost vs. Accuracy

In order for AVL systems to operate effectively, accurate bus locations are essential.

Locations that are inaccurate can lead to errors in control decisions and errors in the real-

time information given to passengers. Accuracy requires more investment, however, and

there is a direct relationship between the two as shown in Figure 3.6 (Hamilton [34]). This

graph implies that with inaccurate systems, a small amount of extra investment can

increase accuracy dramatically up to a limiting point. After that point, it takes large invest-

ments to obtain small increases in accuracy.

Figure 5.2: Cost vs. Accuracy of AVL Technologies 1
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One must also think about what an acceptable accuracy is, in system terms. Clearly an

upper bound on accuracy is a bus length of about 40 feet (or 12 meters) since it is mean-

ingless to attempt to locate buses with any greater precision. Beyond this, one must look at

what the data is being used for and what the implications of errors may be on performance.

For both operations monitoring and control and passenger information, accuracy does

not appear to be too critical. Suppose that an agency was able to tolerate 15 seconds of

location inaccuracy on a relatively high frequency route (i.e. for a given estimated loca-
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tion, the vehicle is actually within 15 seconds downstream or upstream of that point). If a

bus travels at a mean running speed of about 15 kilometers/hour (about 10 miles/hour),

then the required positional accuracy would be about 60 meters. Increasing accuracy past

this point may not be cost effective since control decisions are not likely to change if the

system were more accurate. This is also true for passenger information systems since pas-

sengers will probably not notice an inaccuracy of 15 seconds.

Accuracy at this level only becomes an issue if the accuracy is incompatible with the

software. For instance, some software that puts these locations into finely digitized maps

in real-time might have difficulty with inaccurate locations. Inaccuracies of 60 meters

might incorrectly place buses in the middle of buildings or parks when they really should

be on the streets. For these systems, more accurate locations may be needed.

Radio-navigation technologies such as GPS and LORAN-C now have the ability to

provide such accuracies at a relatively low cost, thus they establish a standard for the issue

of accuracy. For older technologies such as signpost-odometers, the issue of accuracy is a

little bit different since accuracy is exact at each signpost but errors increase until the next

signpost is reached. For these systems, if an odometer was accurate to +/- 5% of distance

traveled, and if signposts were placed at every 1.5 kilometers (about the level of spacing

used in Ottawa, Toronto and London), theoretically the maximum error would be 75

meters and the average error would be about 40 meters which would still be within the

accuracy required for effective use of information. This location information is not useful,

however, if it is not available to decision-makers on a frequent basis, which raises the

issue of acceptable update frequency, presented next.



5.3.4 Discrete vs. Quasi-Continuous Location

Related to the issue of accuracy is that of location update frequency. Some systems

update bus locations on a frequent basis by polling; for example, the TTC and LT update

locations every 20-40 seconds. This is an example of a quasi-continuous system. Discrete

systems update locations infrequently and can include systems that poll infrequently, or

that rely exclusively on signposts. Quasi-continuous systems are definitely more accurate

in that they update more frequently.

A question that must be asked is if the extra cost needed for increased update fre-

quency is justified. Increased polling rates necessarily leads to increased channel require-

ments. This may mean paying for more channels or paying for technologies to increase

channel capacity. With a technology such as passive identification, wireless communica-

tion is not even required if the agency only wishes to locate vehicles to the nearest sign-

post.

Extra costs are also incurred at the central control computer which has to process more

data at a faster rate. Controllers also have to deal with more information, but with the right

user interfaces, these effects could be minimal. Saracino [56] defined order of magnitude

costs for four different types of location systems used in different ways. The costs origi-

nally estimated in French francs, are converted to US dollars and are shown in Table 5.2.

While these cost figures are high (due to the fact that the estimate was done in 1988),

the table does suggest that the costs of a system that providing continuous location can be

more than double the costs of a system providing discrete locations, which may be reason-

able since discrete systems can avoid any wireless communications costs. In their interpre-

tation, discrete systems were judged to be only signposts which transmitted data to central

control via wire links while quasi-continuous systems were radio linked buses with poll-
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ing. The challenge then thus becomes first choosing between a discrete wire-based system

and a radio-linked quasi-continuous system and then determining acceptable levels of

update frequency.

Real-time data transmis- No real-time data transmis-
sion sion

Quasi-Continuous Loca- $13000 to $20000 / bus $9000 to $18000 / bus
tion

Discrete location $4000 to $11000 / bus $3000 to $9000 for sign-
posts
$400 to $2000 / bus equip-
ment and software

Table 5.2: Relative Costs of Quasi-Continuous vs. Discrete Systems

Radio-linked polling systems are generally more expensive than discrete systems and

require much more communications, but once the initial infrastructure is in place, update

frequency can be increased easily by reducing the polling cycle. To increase update fre-

quencies on discrete systems, new signposts and lines need to be added, which may be

costly.

To determine what an acceptable information update frequency might be, one must

return to the issue of the uses for the location information. For operations monitoring and

control, the update frequency requirement is likely to be related to the headway of a route.

For a long headway service, the update frequency can be lower than for a short headway

service. For example, 5 minute updates may be acceptable for routes of headways 15 min-

utes or more, but would be wholly unacceptable for routes with headways of 10 minutes or

less. In the 5 minutes between updates, the vehicle could have slowed down, stopped or

sped up, and given the high variability of running time over short distances, this could

mean several minutes of uncertainty which could jeopardize effective control on high fre-

quency routes or for passenger information in general.
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For comparison purposes, a system based only on signposts every 1.5 kilometers

would receive information about every 6 minutes if a 15 kilometer/hour average bus speed

is assumed. If this system is to be used on a network offering only long headway service,

such a low frequency of updating may be appropriate, but more continuous updating

through either prediction algorithms or through combining location technologies is needed

if short headway services are also offered.

A system needs to be designed that can either provide an adequate update frequency

for each route, (the AVL/C case study for OC Transpo is an example of this), or has the

capability to provide more or less continuous information that is appropriate for all levels

of service, which is the case at the TTC. It can be seen that an update period of about 20-

40 seconds satisfies all types of headways, but places heavy demands on bandwidth capac-

ity.

5.4 Operations Monitoring and Control Benefits

In this section and in the next one, the impact of the information that is being provided

by AVL systems on the decision-making capabilities will be discussed As in chapter two,

two primary uses of information are investigated: operations monitoring and control and

passenger information. Chapter 2 illustrated how advanced technologies can provide bet-

ter information and this section discusses the benefits which should result.

Schedule Adherence

One of the purported benefits of AVL systems is the ability to improve schedule adher-

ence. From the case study of the TTC and OC Transpo, it seems likely that AVL systems

can indeed help agencies provide better schedule adherence. Phase VI analysis of CIS

routes at Wilson Garage supports this quantitatively and comments from managers and
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inspectors supports it qualitatively. Sufficient analysis has not been performed however, to

answer definitively the question of the size of the effects of AVL systems on schedule

adherence. It is known that AVL systems probably improve schedule adherence, but it is

still unclear how much they improve it. Indeed the size of the impact will certainly depend

on operational and management practices as well as the specifics of the AVL system itself.

Safety and Security

Another reported benefit of AVL systems to operations monitoring and control is

increased safety and security. The fact that AVL systems provide constant vehicle moni-

toring capabilities and opportunities for operator reporting gives enough reason to believe

that AVL systems enable agencies to handle incidents better and to provide more safety

and security. AVL systems also decrease the response time to vehicle emergencies. The

TTC has determined that the average response time for an emergency reported via a vehi-

cle alarm is about 2-3 minutes1, which is much faster than the time required before CIS

was implemented.

Supervisory Efficiency

Another reported benefit of AVL systems is the ability it gives to agencies to allocate

its control room and inspector staff more efficiently by increasing supervisor effectiveness

without reducing staff or reducing staff without decreasing supervisor effectiveness. Theo-

retically, AVL systems tend to increase the efficiency of supervision (i.e. more operators or

vehicles can be controlled using fewer supervisors) with all other factors remaining equal

and the TTC analysis seems to support this notion. There is no evidence, however, that

supports the notion that AVL systems actually reduce supervision costs.

1. Statistic gathered from interview with Dave Taylor, MIS Manager, CIS Project, TTC
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Working Environment

AVL systems purport to make supervisors more comfortable by taking them out of the

outside environment and putting them into a more comfortable inside environment. AVL

systems also purport to improve operator working environment by making their vehicles

more safe and secure. From surveys and informal interviews with inspectors at both the

TTC and at OC Transpo, a mixed view emerges of the changes to the working environ-

ment. Most agree that AVL systems cause a higher level of stress due to the increased

information that is presented to the decision-maker and the requirement for more and

faster decisions. Many inspectors are indifferent to the changes in their physical environ-

ment. Some like the fact that they are indoors now and protected from the elements but

others miss the interaction with the public and the operators that field work had afforded

them. In a survey conducted by the TTC, 61% of all operators believed that the greatest

benefit that the CIS system has provided to their working environment has been the CIS

radio, which provides safety and security and increased communications benefits.

Non Real-Time Benefits

There are some benefits such as increases in ridership and vehicle utilization that do

not occur in a real-time sense. Since this thesis focuses on real-time benefits, these benefits

are not discussed in detail, but since these benefits are potentially important ones, they are

worth a mention here.

Using a comparative ridership analysis conducted between different garages, the

TTC's CIS evaluation projected a $2.8 million increase in revenue due to ridership

increases, which makes up a large percentage of the monetary benefits. As discussed pre-

viously in Chapter 4, however, these results are suspect. In reality, AVL system effects on

ridership are not known with any certainty and further analysis utilizing better methods

needs to be conducted to shed more light on this benefit.
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One of the greatest reported non real-time benefits of AVL systems is the ability of

these systems to gather better data on certain measures such as running and dwell times

and layover times which can influence schedules. The ultimate result may be more effec-

tive utilization of vehicles which would mean that less vehicles would be needed to pro-

vide the same level of service. The TTC analyzed vehicle utilization changes in its Phase

VI Final Report and found that CIS-equipped routes required between 4.3% and 9.2% less

vehicles than non CIS-equipped routes, but one should be wary of these results because of

the analysis techniques used.

5.5 Passenger Information Systems Benefits

Passenger Behavior

A purported benefit of passenger information systems is the positive influence these

systems have on passenger behavior in general and the disutility of transit trips specifi-

cally. With the aid of information systems, it is possible for passengers to make better

decisions about their trips and thus save time and stress. These information systems can

lessen the disutility and stress normally associated with waiting for vehicles to arrive by

displaying estimated arrival times. This way, passenger can spend less time waiting and

more time in other activities without the worry and impatience that waiting causes. Hick-

man's [35] analysis, however, suggests that total travel time savings may be relatively

small (on the order of 1 to 3 minutes savings) and London Transport's survey analysis [59]

estimated only a 0.5 to 1 minute reduction in perceived wait times.

Reliability

In most cases, a system that exclusively provides passenger information and no opera-

tions control will not appear to increase reliability. One might argue however that opera-
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tors will try harder to adhere to schedule once they realize that passengers will have

improved information and thus have improved knowledge of service levels. This conjec-

ture has not been proven, however, and should be assessed in the same manner that normal

schedule adherence is assessed.

Passenger Valuation

In the London Transport study, results indicated that passengers are willing to pay

almost a quarter of their entire fare as a premium in order to receive real-time information.

The study also showed the potential danger in using stated preference data directly as the

same data was used to estimate ridership increases of about 12% which simply did not

materialize in reality.

Passenger Perceptions and Attitudes

In the field of market research, perceptions and attitudes are very important in deter-

mining benefits of potential new products. Knowledge of perceptions and attitudes pro-

vide similar importance in evaluating passenger information systems. London Transport

directly surveyed passengers and asked them whether the Countdown system improved,

worsened or did not change passenger attitudes towards bus travel, bus operators and Lon-

don Transport in general and the level of support for information systems. In the London

Transport study, a significant percentage of passengers had a positive perception of Count-

down and many stated that this changed their attitudes towards transit in general and Lon-

don Transport in particular.

Ridership

London Transport measured ridership on similar routes, one (route 18) having the

Countdown system and the others not having Countdown. They found to their disappoint-

ment that there was no significant increase in ridership due to the information system.
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5.6 Costs

Cost is one of the most important aspects of new technology and most of the decisions

that are made about system size, features and capabilities and system utilization have cost

as a primary input. For agencies that are considering AVL systems, the cost elements of

greatest concern will be capital and start up costs. The sources of this cost data will usually

come from software and hardware vendor quotes and/or from internal or external consult-

ing estimates, all of which will be imperfect.

Table 5.3 shows estimated per vehicle costs for some agencies in North America for

which costs have been reported. Of all these systems chosen, only one agency is included

that utilizes GPS; the rest use signpost-odometer technology. It is shown here that typical

per vehicle costs for larger-sized systems average around $11,000 to $13,000 while per/

vehicle costs for smaller system costs are somewhat lower.

City, State/Province $M Location $/ Vehicle

Denver, CO 10.4 GPS $12,500

Fort Lauderdale, FL 2.3 SO $12,000

Halifax, Nova Scotia 1.0 SO $5,900

Kansas City, MO 2.1 SO $7,600

Norfolk, VA 2.0 SO $12,500

Ottawa, Ont. N/A GPS, Signposts $7,300 - $11,000

San Antonio, TX 3.7 SO $6,900

Seattle, WA 17.0 SO $12,700

Tampa, FL 1.6 SO $9,300

Toronto, Ont. 37.4 SO $12,000

Table 5.3: North American AVL Systemsa
a. Source: State of the Art, Update, 1994
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In a recent study, Morlok[45] suggested a cost model based on annualized total invest-

ments and annual operating and maintenance costs, but there are many different types of

costs that are required for an AVL system and disaggregation of both investment and oper-

ating and maintenance costs might be appropriate. In general, AVL system costs can be

broken into several categories which are discussed below.

5.6.1 Development Costs

Before a final system is selected, an agency may have experimented with several sys-

tems and the costs associated with experimentation and development have the potential to

make up a significant portion of total costs. Development costs include costs for proto-

types, for limited AVL trials, for software and hardware development and even costs for

previous evaluations. Agencies can partially avoid these costs if they choose a technology

and system that is already developed and well tested.

As the TTC case study shows, if the agency starts from scratch, then they can expect to

spend a lot of resources on system development since they will be encountering both prob-

lems that no agency has researched before and problems that arise specific to the agency

and locality. If a system has already been developed and is simply tailored to a specific

agency, development costs will likely be a smaller proportion of total costs. All of the

problems of the system have supposedly already been solved and all that is left is to solve

problems that arise specific to the agency and locality. The consulting and equipment cost

may be high, however, since the original system developers need to recover their develop-

ment costs and wish to make a profit on their systems, while there is no such objective for

in-house developers. Development costs can make up from 25 to 40% of overall costs of

system-wide AVL installation and operation.
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5.6.2 Capital Costs

Once the development is completed and a final system is chosen, it will be imple-

mented on the network, generally on a systemwide basis. This implementation incurs spe-

cific start-up capital costs, which can make up between 35% to 65% of overall costs. A

further breakdown of capital costs is given below:

Vehicle Costs

Even in a system that has significant central control capabilities, vehicle costs will

likely make up a significant proportion of all costs. These costs vary directly with the

number of vehicles that are AVL equipped. Among the costs that are associated with vehi-

cle costs are hardware, software and installation costs. Vehicle costs can total as little as

5% of overall costs and as much as 25% of overall costs, and about 20 - 70% of all capital

costs. Generally, the more decentralized the system, the higher the vehicle costs.

Control Center Costs

Many types of costs encountered in the control center are similar to the ones encoun-

tered in the vehicle. In general, for each cost type, costs are likely to be much higher at the

control center than for any individual vehicle, but when the costs are distributed on a per

vehicle basis, they tend to be less than vehicle-based costs. Usually, control center costs

make up a small percentage of both overall costs (1 - 20%) and capital costs (5 - 40%).

The more centralized the system, the higher the control center costs.

Field Costs

Field costs are costs associated with the infrastructure required in the field to aid in

communications and/or location. These would include such things as roadside beacons

and signposts, node antennas and passenger information displays. This cost type also var-

ies with system size as reflected in system coverage rather than number of vehicles. At
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larger fleet size, network size will increase which will increase field equipment costs. For

OMC systems, these costs are relatively low, contributing a negligible amount to overall

costs, while for PIS systems, these costs can be significant, contributing up to 20% of

overall costs and up to 70% of all capital costs.

5.6.3 Operating Costs

Once a system is fully operational, the system will incur costs on an annual basis for

maintenance and daily operations. Supervisory staff, managers, analysts and programmers

will need to be paid for their duties and from time to time, equipment and software will

need to be replaced or modified. These costs can make up a large part of overall costs

since unlike capital costs which are only one-time costs, these costs occur year after year.

These costs amount to between 10 - 40% of overall costs.

5.6.4 Example Cost Breakdowns

Taking data primarily from the TTC's Phase VI analysis of CIS at the Wilson Garage,

proportions of costs are estimated and allocated to each cost category and cost type in

Table 5.4. These percentages are based upon a total cost of about $4.7 million by combin-

ing hardware, software, installation, operations labor and prior development costs that

were estimated separately in the Phase VI Final Report.

As the CIS system was expanded systemwide, the development costs declined as a

proportion of total costs. It is clear to see in this example that an agency can avoid a sub-

stantial cost if it chooses an established system that does not need very much extra devel-

opment or customization.
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Development Control CenterCost Type Development Field Costs Vehicle Costs Center
Costs Costs

Hardware Costs -1%($47,000) -18%($850,000) -3%($150,000)

Software Costsa negligible -4%($190,000) -9%($427,000)
-37%($1.8 million)

Installation Costsb -2%($95,000) -6%($285,000) -3%($150,000)

Operation Costsc -15%($750,000)

Table 5.4: Allocation of Costs for TTC's CIS Phase VId
a. Here it is assumed that programming for central control makes up about 70% of the total pro-
gramming effort and the rest is software for the vehicles.
b. Here it is assumed that installations on vehicles makes up about 50% of the total installation
effort and field installations make up about 20%.
c. Operations costs are derived from system estimates of operations costs of $1.6 million/year fac-
tored down to Wilson's size (about 10% of the entire fleet), thus the cost was estimated to be about
$150,000 per year for 5 years with no interest rate, thus a total cost of $750,000.
d. Source: TTC [26] and M.M. Dillon [25]

Another cost breakdown of an AVL system comes from London Transport's descrip-

tion of the Nag's Head Expansion Scheme and is presented in Table 5.5. In this table, total

costs for Countdown were estimated to be about $7.2 million if annual operating costs and

development costs are also included.

Development b Vehicle Control Center
Costsa Costs Costs

Hardware Costs -18%($1.3 million) -8%($540,000) -1%($90,000)

Software Costs -36%($2.6 million)

Installation Costs Included in Hardware and Software Costs

Operation Costsc -38%($2.7 million)

Table 5.5: Allocation of Costs for London Transport's Nag's Head Schemed

a. The costs of the Route 18 test of $2.1 million are added to development costs of $75,000. Also
added are $440,000 in miscellaneous and project management costs.
b. Does not include bus shelter construction costs
c. Operations costs are assumed to be $540,000/yr or $2.7 million for a 5 year horizon
d. Source: Director of Planning [30]
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In London Transport's example, the major costs shift away from the vehicle and the

control center and into the field. This is due to the high infrastructure cost involved in

installing passenger information displays on a large number of bus stops. There is also

high costs due to operations and maintenance possibly due to a conservative estimate.

If an agency wishes to evaluate the costs of a proposed system, this type of breakdown

might be useful. It is helpful to segregate vehicle costs from control center costs since

vehicle costs can be used as a proxy for the variable costs of any proposed system and

control center costs can be used as a proxy for the fixed costs. It is also useful to segregate

hardware, software and installation costs since both hardware and installation costs vary

with fleet size while software costs are more invariant. Sometimes, however, it is not pos-

sible to segment these costs in such a fine manner.

Cost estimates can be presented in different ways. The presentation shown here is in

the form of total costs which gives the big picture. If possible, cost should also be pre-

sented on a per-vehicle basis, segmented by the different cost types. In this form, agencies

will be aware of incremental costs of the system should the agency decide to increase or

decrease their fleet size. The presentation shown here also only shows costs in terms of

present costs, which is useful for agencies who wish to purchase systems outright, or are

interested in knowing the one-time effect of this cost on their capital budgets. These costs

can also be annualized for agencies who are interested in determining the annual effect of

a proposed system to their annual budgets, or who are interested in leasing the AVL sys-

tem over a certain period of time.

5.6.5 Costs for Incremental Functionality

It may also be useful to determine costs from a standpoint of functionality. For exam-

ple an agency that already has a basic AVL system with some operations monitoring and
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control functionality (provided as a result of the AVL system) may wish to know the incre-

mental costs of providing an add-on real-time passenger information system or upgrading

the OMC capabilities to provide full functionality.

The CIS costs of Phase VI can be used to estimate the incremental costs of full opera-

tions monitoring and control functionality, as shown in Table 5.6

Cost Type Vehicle Costs Control Center Costs

Hardware Costsa $604,000 $102,000

Software Costs $133,000 $299,000

Installation Costs $200,000 $102,000

Operation Costsb $525,000

Total Cost $2.0 million

Cost/Vehicle $8,200

Table 5.6: Incremental Cost Estimate of Full OMCc

a. 70% of hardware, software, and installation costs are assumed to go towards full
OMC functionality
b. 70% of operations costs are assumed to go towards full OMC functions
c. It is assumed that field costs can be attributed to the general AVL system and
thus are not included here

The Nag's Head expansion costs estimated by London Transport can be used to esti-

mate the incremental costs of passenger information, as shown in Table 5.7

Cost Type Field Costs Control Center Costs

Hardware Costsa $1.2 million $81,000

Software Costs

Operation Costs $1.2 million

Total Cost $2.4 million

Cost/Vehicle $6,900

Table 5.7: Incremental Cost Estimate of PISb
a. 90% of hardware, software cost, and 70% of operations costs are assumed to go
towards PIS functions: bus shelter construction costs were NOT included in hard-
ware costs
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b. It is assumed that vehicle costs can be attributed to the general AVL system and
thus are not included here

For both estimates, development costs were not included in the analysis. These esti-

mates show that the incremental costs of full operations monitoring and control function-

ality are likely greater than the incremental costs for passenger information on a per

vehicle basis, but not by very much. The difference in cost may be underestimated, how-

ever since the analysis reveals that incremental operations costs for PIS are higher than

incremental operations costs for OMC. This may be because either London Transport may

be conservative in estimating operations costs or the TTC may be underestimating opera-

tions costs. Also, the CIS costs were costs in 1986 while London Transport's estimates

will be for the mid 1990's and in the ten year period between these estimates, hardware,

software and labor costs may have changed dramatically.

206



Chapter 6

Summary and Conclusions

Rapid development in the information technology field has recently led many transit

agencies to make decisions about implementing real-time systems and technology. Some

make these decisions without fully assessing their needs, system requirements or the full

effectiveness of these systems. This thesis has compiled and synthesized the bulk of litera-

ture related to this topic in order to aid agencies in choosing and implementing an appro-

priate real-time systems given the agency's operating circumstances. The thesis's findings

are summarized below.

6.1 Potential for Information Technologies in Real-Time Operations

In order for agencies to maintain a high level of system performance, reliable service

must be maintained on a day-to-day basis. This is no easy task since many situations in the

field can and do occur that serve to cause unreliability in service. In response, agencies

have developed many strategies to mitigate the effects of unreliability.

Many of these strategies need common types of information in order to be effective.

One essential type of information is vehicle location information for determining schedule

adherence and headways and for evaluating for strategies such as holding, short turning

and expressing, as well as for providing dynamic passenger information. For some strate-

gies to be effective, not only do these types of information need to be readily available,

they need to be collected on a systemwide basis and conveyed quickly to decision-makers.

One principal use of this information is for monitoring operations and determining

appropriate control actions. For these purposes, vehicle locations, headways and on-time

207



performance are crucial inputs with passenger loads, incidents on the network and vehicle

status also being helpful.

A secondary use of real-time information is to provide passengers with forecasts of

service quality. For this purpose, real-time information needs include estimated waiting

times, passenger loads, and estimated travel times with estimated waiting times viewed as

the most valuable type of information.

Advanced technologies have the capability of providing all of the needs of both opera-

tions monitoring and control and passenger information. With these technologies, infor-

mation can be collected automatically on a systemwide basis. Advanced technologies can

also relay information more quickly so that they can be acted upon more quickly. In addi-

tion, real-time passenger information can be provided in the form of estimates of vehicle

arrival times, and this information can be relayed quickly to passengers.

6.2 Information Technologies

Agencies interested in implementing new technology have many choices in terms of

types of real-time AVL systems, and not just in terms of vehicle location technology.

Communications systems are needed to transfer location information to the right users,

Computer hardware and software is needed to manage data that is collected, used and

stored and choices on user roles and user interfaces have to made as well.

There are many location technologies available on the market and the choice of tech-

nology must be based upon several factors including cost, accuracy and reliability. A com-

parative analysis of these technologies suggests that newer technologies such as GPS

might well be less expensive and offer advantages over older technologies such as sign-

posts and odometers, but risks are still involved because of the novelty of these newer
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technologies. Hybrid systems are also recommended if high accuracy is required, but they

will cost more.

There are also numerous communications technologies now on the market. A common

problem in many communications systems is that of wave saturation, which constrains the

number of wireless channels available to an agency. Many newer technologies improve on

older technologies either by increasing channel capacities or improving transmission qual-

ity. Important issues in choosing communication technologies again include cost and reli-

ability as well as availability. Comparative analysis between technologies suggests that

conventional radios may not provide enough channel capacity which may force agencies

to choose newer, more expensive technologies. Technologies that increase capacities may

not be the sole answer to capacity problems and the reduction of data needs and transmis-

sions is another method of solving capacity problems.

The computer hardware and software in an AVL system performs many critical tasks.

Critical issues in choosing hardware and software are cost, location of equipment and sys-

tem performance. Major tasks of hardware and software include collecting, processing

and storing data, and providing user interfaces. Hardware and software are also responsi-

ble for tying systems together efficiently and effectively and providing full integration.

In a discussion that is filled with issues of a technological nature, it is easy to lose sight

of the users who will have their roles changed as a result of these technologies. Inspectors

may see a reduction or reorientation of their responsibilities, controllers may be able to

make better decisions and operators may be provided a safer environment.
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6.3 Case Studies

Three agencies which have had in-depth experiences with advanced real-time systems

were investigated: the Toronto Transit Commission (TTC), the Ottawa-Carleton Transpor-

tation Commission (OC Transpo) and London Transport (LT).

TTC

The TTC employs an AVL system called CIS which has the primary function of oper-

ations monitoring and control. Vehicle location is determined by a signpost-odometer sys-

tem that is received centrally on a 20-40 second polling cycle. Communications occur

through 25 separate FM voice and data channels that use European technology to double

capacity. A conventional cellular telephone is also installed on every vehicle as a backup

voice communication system.

In the control room, controllers receive vehicle location and schedule adherence infor-

mation as well as vehicle status and limited passenger load information. On the vehicle

itself, schedule adherence data is presented to the operator who has various options for

communicating with controllers. The entire system is managed through 15 IBM RT mini-

computers networked together to provide redundancy.

Development, training and the installation of CIS occurred over a 15 year period and

was quite successful. By breaking development into phases, and evaluating each phase

before proceeding to the next, problems are resolved before they became critical. Some

problems in development were due to time constraints, hurried training and recent cut-

backs in staff.

Evaluations conducted after Phase VI was completed estimated the system-wide

implementation of CIS to cost $27.3 million, or about $11,700 per vehicle. One of the pri-

mary reasons for the relatively high costs were the associated high development costs.
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In terms of benefits, a TTC evaluation report estimated the quantitative benefits to

have a monetary value of from $6.6 to $9.5 million annually, well above the estimated

annual cost of CIS of about $4.2 million. There were also other benefits of a non-monetary

nature. A critique of the evaluation raised questions about the magnitude of some of these

cost savings benefits and suggests a focus on service quality benefits rather than cost sav-

ings.

Opinions about CIS were generally positive. Managers and supervisory staff agreed

that reliability has improved as a result of CIS but point to some remaining problems in

the hardware and software. They note that CIS is just a tool for decision-makers, however,

and thus the human element is the most important part of the system.

OC Transpo

OC Transpo decided to implement technology incrementally to aid in specific func-

tions instead of creating a large integrated system like CIS. Each application of technology

in OC Transpo's case solves a specific need of the agency. Recently, OC Transpo has been

moving to integrate some of these systems in order to create a real-time AVL system with

capabilities somewhat similar to the TTC's CIS system. The system under development at

OC Transpo is called AVL/C.

One of OC Transpo's systems, a data collection system called APC, consists of a fleet

of about 80 specially equipped buses, that utilize signpost-odometer technology combined

with infra-red passenger counting devices. These devices work in tandem to collect

detailed route information such as passenger loads and running times to generate reports

of varying natures which are of great value in service and operations planning.

OC Transpo's 560 system is an automatic telephone information system that contains

information about scheduled arrival times for every bus trip in the system down to the bus

stop level. Telephones are placed at major bus stops, thus passengers can call a 560 num-
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ber to hear information about scheduled arrivals. In this configuration, both pre-trip and

at-stop information is possible with 560.

OC Transpo's AVL/C system builds upon systems currently in place that already pro-

vide some level of operations monitoring and control. The location technology of AVL/C

is a passive identification system which uses infra-red readers combined with GPS boxes

that transmit location information at a frequency proportional to the bus service frequency.

The communications system will consist of an updated version of their current COBA sys-

tem and will be made up of separate data and voice subsystems with voice communica-

tions operating on a priority scheme.

A centrally shared database links information from different modules and sources

including a despatcher/booking module, an Automatic Vehicle Monitoring (AVM) system

identifying vehicles and comparing scheduled to actual times and a Service Control Mod-

ule (SCM) which detects problem situations and informs controllers on an exception basis.

The system is controlled by a network of VAX stations running under the VMS operating

systems and using X-Windows as the graphical interface.

In an AVL/C environment, operator responsibilities will change very little, field

inspectors will be used to validate AVL/C data and handle emergency situations and con-

trollers will have better information for decision-making.

Overall, OC Transpo's systems have been effective at solving specialized problems

and their strategy of applying technology specific to the task at hand seems to have been

successful so far. They have had problems, however, in integrating systems, resulting in

delays in system-wide implementation of the AVL/C system.
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London Transport

The effects of privatization in London makes it more difficult to implement and inte-

grate technology on a system-wide basis since competing operators might not be inter-

ested in sharing information or even in cooperating with each other.

Countdown is London Transport's latest initiative to provide a real-time passenger

information system. Using signpost-odometer technology, a central processor takes loca-

tion information and uses wait time algorithms to estimate bus waiting times which are

then relayed to stops downstream displaying the estimated waiting times of the next three

buses.

Overall, the personnel responsible for supervision and operations have favourable

comments about Countdown. Controllers have had some difficulty in inputting and delet-

ing messages but generally favor the system, as do most managers.

In evaluating the Countdown system, London Transport observed both the operational

aspects of Countdown and its effects on passengers. Countdown met most of its targets on

system reliability and availability but did not meet the ambitious predefined arrival time

forecast accuracy targets. There were also no net ridership increases attributable to the

passenger information system.

A stated preference "willingness to pay" analysis revealed that passengers valued the

system at 26 pence per journey, although one must be wary about the results of such an

analysis. Further passenger surveys revealed that 65% of respondents perceived shorter

waiting times and 90% believed that the Countdown information made waiting more tol-

erable.
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6.4 Framework for Agency Decision-Making

Before deciding upon a specific technology, the agency must determine the best role

for technology to improve performance. If problems exist in the service planning function,

non real-time data collection systems are generally likely to be more cost effective than

either operations monitoring and control or passenger information. If the agency experi-

ences service reliability problems, the best use for technology depends upon the causes of

the unreliability. For systematic and predictable causes, non real-time systems may well be

preferred. For real-time causes that can be controlled, using technology to perform opera-

tions monitoring and control is preferred, and if the causes are non-controllable, passenger

information systems may be preferred. For other problems such as controlling operations

costs, improving public perceptions and improving security, the preferred uses are opera-

tions monitoring and control, passenger information and operations monitoring and con-

trol respectively.

Some times, an agency will have several of these problems which may create the need

to combine technological uses to solve them. If an agency has a problem in both public

image and maintaining service reliability, then perhaps the most effective system would

include both operations monitoring and control and passenger information capabilities. If

an agency has a problem with the service plan and with service operations, the most effec-

tive combination may be an operations monitoring and control system with off-line data

collection capabilities. In general, the more problems that can be effectively dealt with by

a particular use of information technology, the stronger the case for that particular use.

After choosing the role for technology, the agency must define the general type of sys-

tems that is desired, which involves making choices on general AVL issues that will

greatly affect functionality.There is first the issue of choosing between fully centralized
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and partially decentralized systems. Partially decentralized systems have the advantages

of less communications requirements and a better overall decision-making structure, but

may suffer from possible increased hardware and software needs.

There is also the issue of substitutions between hardware, software and labor either to

reduce costs or to increase performance. In general, hardware costs vary directly with fleet

size while software does not and larger agencies have more reliability problems than

smaller agencies.As a result, the larger the transit agency, the more cost effective it may be

first to substitute hardware for labor, and second to substitute software for hardware.

Cost versus accuracy is another issue. An accuracy of about 60 meters is suggested as

one that is both suitable for either OMC or PIS use and acceptable in terms of cost and fea-

sibility. Both the older signpost-based systems and newer radio-navigation based systems

can provide this accuracy cost-effectively.

The last issue involves the choice of discrete and quasi-continuous systems, and

appropriate update frequency. Discrete systems are generally less expensive than quasi-

continuous systems, but if update frequencies need to be increased, the added costs may

be high. The required update frequency will generally depend upon the headway of the

service, thus a system must be designed such that it provides either adequate updates for

each route individually or a constant system update frequency that is appropriate for all

levels of service.

One of the uses of AVL information is to aid in the operations monitoring and control

function. Several purported real-time benefits of AVL information include improved

schedule adherence, increased security, increased supervisory efficiency and improved

work environments.

From the case studies, it is known that AVL systems probably improves schedule

adherence but the extent of this improvement is still unknown. AVL systems also increase
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safety and security. The TTC case study tells us there is not a lot of savings in manpower,

but some efficiencies in terms of supervisor-to-manpower ratios are possible. Mixed views

emerge about the changes to working environment with some supervisors missing the field

contacts and becoming more stressed.

The benefits of passenger information are inherently different than the benefits for

operations monitoring and control. For the most part, the effects of a passenger informa-

tion system are not reflected in operations, but on the passengers themselves. Reported

benefits of passenger information systems include positive influences on passengers in

terms of decision-making ability, revenue from passengers willing to pay for information,

improved passenger perceptions and attitudes and increased ridership. Market research

reveals that although there is only limited travel time and wait time savings, passengers

are willing to pay almost a quarter of their fare for passenger information and are gener-

ally in favor of real-time information. However, so far there have been no appreciable rid-

ership gains, at least in London.

AVL system costs can be divided up into several categories: development, capital and

on-going annual operating costs. Capital costs can be further sub-classified into vehicle

related, control room related and field related costs. Development costs can be quite high

if agencies wish to start from scratch, while agencies who wish to use already developed

systems can incur large costs from consultants and experts. Costs can be estimated on a

total or a per-vehicle basis and on a net present value or annualized basis. Costs can also

be determined from a standpoint of functionality. By examining the costs of the TTC's

CIS and London Transport's Nag's Head Scheme, it was concluded that in general, the

incremental costs of providing full operations monitoring and control functionality is

somewhat higher than the incremental costs of providing passenger information.
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6.5 Areas for Future Study

While this thesis has covered a lot of ground in providing agencies with an initial look

into the field of real-time technology applications to transit, there is still quite a bit of

research left to be done. This thesis has identified many alternative location, communica-

tions, hardware and software technologies focussing on the most popular and currently

feasible technologies. Further research could identify and evaluate future technologies

that, although are not yet feasible, might become feasible and effective in the near future.

The same statement can be made for collecting certain types of information. Some

information types such as number of passengers on board a vehicle are too expensive to

collect presently, but could be feasible in the future. Further research could re-evaluate

some of these information types should they become feasible.

In all three case studies, the agencies have not finished developing and refining their

systems. The final word on the systems at Toronto, Ottawa and London has not been writ-

ten yet with implementation and evaluations continuing. Further research should revisit

these case studies and present updated evaluations and critiques. The same can be said for

some of the other agencies listed, such as Denver and Dallas. This thesis has concentrated

its analysis on signpost-odometer systems and further evaluation of the GPS systems of

Denver and Dallas can shed more light on the cost effectiveness of this new technology.

As this thesis has shown, the potential of information technologies to the transit indus-

try is great, but care needs to taken in selecting the technology, and further research is

needed to help achieve this full potential.
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