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Abstract

This research synthesizes ideas from various domains to solve the conceptual design problem
as part of a design support system. The goal is to combine modeling techniques that
allow both high level representation and manipulation of qualitative geometric information
and algebraic constraint models, and to couple them with robust solution techniques that
function well in dynamic constraint environments. We attempt to study the effectiveness of
computational approaches like asynchronous teams of autonomous agents (Ateams) when
applied to a qualitative formulation of the problem.

To this end, a qualitative point interval algebra is adopted as a language for formulating
spatial design as a qualitative constraint satisfaction problem. Candidate solution tech-
niques considered are Ateams and Genetic algorithms, for both of which object oriented
solutions are implemented. Results indicate that Ateams behave much better in finding
families of feasible solutions than GAs.

We further compare and contrast Ateams with GAs on artificially constructed search
spaces to demonstrate that Ateams behave better not only on qualitative formulations but
also in searching for global optima over different topologies.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Conceptual design is an important part of the design process. Decisions made by the designer at
this level are propagated all the way down to construction or manufacturing [Ser87]. Current CAD
tools, however, provide only limited support for this kind of design. This research addresses some
aspects of the problem associated with the formulation and computational tractability of conceptual
design.

Design usually takes place in a hierarchical fashion with some bottom up processing. The
designer generates a rough sketch of the form and refines it iteratively to a level that is compatible
with all requirements, including cost, strength, safety, serviceability, manufacturability etc. [Man90].
Current CAD systems provide support for the process after a rough form for the design has been
conceived. The designer can input a design into the tool and evaluate different versions of it by
modifying certain parameters. The latest frontier in the development of CAD tools consists of
pushing the role of the tool further back into the design process to support the conception of form
in the designer's mind [TS92]. The idea is to build CAD systems that enable the designer to explore
the conceptual design space efficiently and evaluate different forms thus facilitating the search for
good initial designs.

One traditional approach to render conceptual design computable is to formulate it as a con-
straint satisfaction problem. However, the computational problems associated with this approach
are considerable. Conventional formulations lead to either algebraic constraint systems for which
numerical or symbolic processing is employed, or qualitative constraint systems which rely solely
on symbolic processing. Symbolic algebra is NP-complete and numerical techniques are prone to
round-off errors, problems of stability etc. Moreover, algebraic formulations generally ask the de-
signer to specify constraints with a level of certainty that the designer might not wish to or cannot
specify at the earliest design phase. On the contrary, qualitative formulations allow representational
flexibility but trade off computational tractability in the process.

This research synthesizes ideas from various domains to solve the conceptual design problem in
real time as part of a design support system. The attempt is to study the effectiveness of computa-
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tional approaches like asynchronous teams of autonomous agents (Ateams) and genetic algorithms
(GA) when applied to a qualitative formulation of the problem. The overall goal is to combine mod-
eling techniques that allow both high level representation and manipulation of qualitative geometric
information and algebraic constraint models, and to couple them with robust solution techniques
that function well in dynamic constraint environments.

To this end, Mukerjee's [JM90] point interval algebra is adopted as a language for formulating
spatial design as a qualitative constraint satisfaction problem. A solution is implemented in an
object oriented fashion for Ateams and Grefenstette's genetic algorithm code. We compare and
contrast Ateams with GAs on both mathematical spaces and our qualitative design formulations
to demonstrate that our formulation of the problem and the proposed Ateams algorithms function
better than GAs in real time for obtaining families of feasible solutions.

The methodology of this research is engineering oriented. We feel that the absence of a theory
of design does not preclude experimentation with different models for describing it. Similarly we do
not feel that the absence of a rigorous theory of why Ateams work should stop us from using them.
It has been demonstrated that Ateams work extremely well in solving some very hard problems
[TD92][Mur92][Des93]. Empirical evidence of the effectiveness of Ateams will be a prelude to a full
theoretical investigation of their properties.

1.2 Organization

The organization of this thesis is outlined below.
Chapter 2 gives a general argument in favor of the constraint satisfaction formulation for con-

ceptual design. It lists the desirable characteristics of a conceptual design supporting CAD tool and
presents a brief historical survey of constraint satisfaction systems, and design representation and
solution systems.

Chapter 3 defines all the terminology used in this thesis. It articulates the problem we are trying
to solve and gives an introduction to the three main themes of this thesis: Mukerjee's [JM90] point
interval algebra, asynchronous teams of autonomous agents, and genetic algorithms. It also analyses
why traditional search and optimization methods are not suitable for our problem.

Chapter 4 concretizes the details for instantiating qualitative constraints between objects. It
presents the conceptual framework for modeling and evaluating relationships and specifying im-
provements for them. Details of classes used for the purpose are provided.

Chapter 5 proposes a scheme for extending the system of qualitative constraints to handle
arbitrary algebraic constraints. Details of successful initial testing of the scheme are provided.

Chapter 6 provides implementation details of the classes used for Ateams and GAs. It lists all
the details concerned with both algorithms.

Chapter 7 compares Ateams and GAs as search techniques on controlled topological spaces. It
lists the results of preliminary experiments and draws conclusions based on them.

Chapter 8 lists promising new research directions and areas we would like to concentrate on
further.

The appendix provides the header files for all the classes used for Ateams and GAs.
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Survey

This chapter provides a broad survey of the main themes in this thesis. Section 2.1 outlines a
typical engineering design cycle. Section 2.2 justifies the formulation of conceptual design as a
constraint satisfaction problem (CSP) on intuitive grounds. The requirements a CAD tool supporting
conceptual are delineated in section 2.3 and section 2.4 presents a historical survey of the following
areas: the general constraint satisfaction problem, alternative formulation techniques for design and
the computational approaches to solving these formulations.

2.1 Engineering design process

This section outlines a typical engineering design cycle. It does not present a theory of design,
and should not therefore be read as such. The discussion below begins by realizing that there
are stages of the design process in which the focus is essentially different. Usually, design takes
place in a hierarchical fashion. Certain phases of the design process can be distinguished from one
another by recognizing their special characteristics. For instance, the following three categories can
be distinguished [TS92][Man90]:

1) Functional Design, where the designer specifies the outcome of the design process as
whole.

2) Conceptual design, where the primary focus is on the selection of the components and
subassemblies, and the specification of their relationships, such that they will deliver
the desired functionality.

3) Detail design, where the individual components are refined to a level of detail where
they satisfy all requirements of strength, serviceability, manufacturability etc.

Functional design is least concerned with the geometry of the product. Still, some overall
constraints for the system may be set already at this stage. The issues involved in this stage are
marketability, competitive advantage, support of the product for company strategy etc.
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Conceptual design is concerned with the geometric nature of the product. Most experienced
designers proceed in a hierarchical fashion while carrying out conceptual design [EGLS88]. The de-
signer begins with an abstract specification of the object and and decomposes it into subsystems and
subassemblies until he reaches the level of primitive components and parts. To facilitate preliminary
design, abstract geometry is sometimes introduced at even at this stage, even though it may still be
incomplete and vague. This abstract geometry is focussed on the overall geometric arrangement of
the major parts and subassemblies. It leaves the exact geometric details and the the linkages of the
subsystems unspecified. However, it is not uncommon to refine some parts of the design to a much
greater detail than others if they are crucial to the success of the design.

Detailed geometry is focused on only in the later stages when the aim is to optimize the design
under the constraints of performance, various engineering analyses, manufacturability and so on.
Drastic changes to the conceptual design are frequent in this phase. The process may require a
return to the conceptual design stage in case gross irregularities are detected.

2.2 Design as a CSP
In this section, we argue that the constraint satisfaction approach to design is a plausible model
in the following sense. First, an informal explanation of the design process such as the one in the
previous section can be mapped directly to an iterative constraint satisfaction scheme. And second,
it makes the process computable. The discussion below tries to put forward an intuitive argument,
and should not be read as a proof of validity of the theory. We shall not consider other models of
design which are equally plausible [BG92].

Designing is understood to be an iterative process in which an initial ill-defined problem is posed.
A solution or solutions are proposed, the question is redefined, and new solutions are found. As
mentioned by Gross [MGF87] "The goal is not finding the solution to a problem, but finding a
solution to the problem". The process of articulating the question (refining the requirements) and
exploring the alternative solutions (designs), can be mapped to a constraint model of the process
[Ste92]. For instance, let us rephrase the design task as: Invent something to a set of specifications.
Without going into semantic details, it seems that the essential nature of the problem has not
changed. Every specification, however, is a constraint in the sense that it excludes some of the
possible designs we can think of. Suppose then, that we have a set of variables that satisfy all
specifications, then we have a valid design. Now if it is possible to obtain a representation of all
design variables and specifications in the form of constraints in some language, then the problem
translates to: In this language, given a set of constraints, find an assignment of the variables such
that all constraints are satisfied. We then have a constraint satisfaction problem that corresponds
to the design process in the sense that by solving the CSP, we can obtain a valid design.

One question remains: Are all notions in the designer's head representable in the form of con-
straints ? And the answer is no. Certain specifications or notions are too ill-defined to be of any
value in our model. For instance, just saying that a building should look "grand" or "nice" is impos-
sible to represent in the framework of hard constraints. It is claimed that the subjectivity of such
notions can be mapped to fuzzy constraints, but we'll avoid that issue for now. Note however, that
the subjectivity of such notions does not hinder the solution process based on the above model. The
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designer can simply pick up a "nice" solution from among the feasible solutions to the constraint set.
It is clear that any design that violates the constraints, no matter how "nice", cannot be accepted,
therefore these subjective criteria can be left to the designer after a design has been found.

The theory of design proposed by Gross [Gro85] views design as the process of exploring regions
of feasible solutions. The feasible regions are based on the sets of constraints specified by the
designer, and the knowledge of the designer is reflected in the way he manages to specify these
constraints. As the designer specifies and modifies the constraints, the feasible region may shrink
or expand, or it may deform. At every iteration of this process, a solution or solutions are found in
the current feasible regions. These are the valid designs at this stage. The theory stipulates that
feasibility of the constraints is derived from the constraints chosen by the designer. It requires that
every form of design knowledge used by the designer be representable in the form of a constraint
or specification. This results in an explicit mapping between the knowledge of a designer and the
constraint satisfaction model.

Designing has sometimes been described as optimizing or satisfying an objective function subject
to a set of constraints. This description does not work in a conceptual design problem on two
grounds: Objectives and constraints are extremely dynamic and are often interchangeable. It is not
entirely clear at this stage even to the designer whether a particular specification is an objective or
a constraint. Moreover, all constraints may not be known at the start. Constraints may be added
or deleted by the designer as he increases his understanding of the design space.

If we accept the formulation of the design process as a CSP, then the computational aspects
of the task becomes clearer, and we can proceed with languages for representing constraints and
methods for solving them.

2.3 Requirements of a conceptual CAD tool

A tool that supports conceptual design should not constrain the designer to specify a form for the
design a priori. The designer should be able to input certain notions that he has about the design,
which maybe incomplete or conflicting, and the system should come up with instances of feasible
designs based upon these notions. In doing so, the designs produced by the system may be different
from the form conceived by the designer. In this way, the tool will provide a means of exploring
both well understood and innovative design spaces. To achieve the above functionality, the tool
must have the following capabilities:

1. It must be able to represent high level abstract qualitative relationships between objects. It
must offer a designer the flexibility to specify relationships at the level compatible with the
notions in his head. At the conceptual stage, the constraints imposed by the designer are
typically uncertain. For instance, in an assembly of two objects A and B, the designer might
have an idea that A must be attached to the right of B. S/he might have no idea about
the relative sizes of the two objects, or with three objects, he may say that C is between A
and B, resulting in two possible configurations ACB and BCA. Although some constraints
may be specified to a very detailed degree, most of the information at this level is inherently
qualitative in nature. Therefore a system for representing the problem must be able to retain
a level of abstraction as well as ease of representation.
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2. If it aims to support the exploration of the design space, then one solution will not be enough.
Families of feasible solutions are needed to allow the designer to compare and contrast various
forms.

3. It must be able to report on any subsets of the constraint set that are conflicting and render
the problem infeasible.

4. It must, if possible, not resolve the whole problem from scratch every time a constraint is
added to or deleted from the set. Rather, it should use some form of incremental solution
techniques to reduce the amount of effort required in resolving for new designs. However, this
is not a hard requirement if the solution technique is reasonably fast since the user is primarily
concerned with time rather than computational effort.

5. Given the nature of the problem, the performance of the tool must be fairly insensitive to
the type of the problem being considered. For instance, a problem formulated with algebraic
constraints should not impair the performance of the tool drastically as compared to a prob-
lem formulated with a mixture of algebraic and qualitative constraints or purely qualitative
constraints.

The capabilities of Ateams as a solution technique coupled with a formulation in a qualitative
algebra spans a reasonable subset of the above requirements. It allows for representation of abstract
relations and produces families of feasible solutions very fast. It is not very sensitive to the nature of
constraints in the set. The only requirement that it does not satisfy at present is the identification
of subsets of conflicting constraints. More research is needed to augment the system for achieving
this capability.

2.4 Survey

CAD tools are utilized in the design process in a variety of roles. They are used for representation,
drafting, analysis, modification and documentation. Typically, a form preconceived by the designer
is mapped to an internal representation in the computer. Then the designer generates certain
constraints that the design must satisfy in order to be valid. Any changes made to the design after
that are automatically propagated through the constraint set by the system. The major areas of
concern in these tools are the internal representation of the design, the language used to represent
constraints, and the methods for managing sets of constraints. Since many important parts of
the design process are related to the geometric shape of the objects and the relationships between
them, traditional CAD tools have concentrated mainly on various techniques of geometric modeling,
targeted toward the capture of geometric information, its representation, and utilization.

Methods for internal representation have included specifying a form by means of vertex co-
ordinates of primitives like points, line, circles etc., feature based representation, variational geom-
etry, and qualitative representation. Models of design based on vertex coordinates are not very
tractable for abstraction due to the difficulty of manipulating large amounts of data. Feature based
representations use the notion of a collection of geometric attributes to define a feature, but there are
certain attributes [Muk91] for which the feature based representation conveys no special advantage.
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Qualitative models abstract away from the problem to build generalized representation systems but
have undesirable computational characteristics [Muk91].

Methods for representation of constraints are algebraic and symbolic. The most common ap-
proach has been to formulate the design problem as a system of numerical equations that are solved
to determine a feasible design. The difficulties inherent in the process are many. In the most general
case, nothing can be assumed about the topology of the design space. The mathematical problem
produced may involve discontinuous constraints and non-linear non-convex arbitrary regions. In ad-
dition, the constraints may not always be conjunctions. In fact, at the conceptual design phase, some
of the constraints may be disjunctions. In addition, the constraints may be dynamic in the sense that
the designer may want to add and delete constraints on the fly. Under certain assumptions, however,
solution of algebraic constraints may be obtained symbolically or algebraically. Symbolic algebra
is known to be NP-Complete. Numerical solution techniques are characterized by slow runtimes,
numerical instabilities and difficulties in handling redundant constraints.

The history below pursues two distinct threads. The first describes the development of the
general constraint satisfaction problem (GCSP) and the systems that have been implemented for its
solution. The second lists an overview of the approaches for representations in CAD tools and their
computational characteristics.

2.4.1 The General CSP

The mathematical basis of constraint theory and the formulation of the constraint satisfaction prob-
lem were presented by Freidman and Leondes [LF69]. Constraint satisfaction problem has been
a widely studied in the Artificial Intelligence community. Constraint based reasoning is important
because it allows the formulation and solution of a wide range of problems under a unifying umbrella.

Ivan Sutherland's SKETCHPAD [Sut63] was one of the pioneering systems using interactive
graphics and constraint systems. It solves mathematical constraints generated by the designer using
constraint propagation techniques combined with relaxation techniques. It dealt only with systems
of equalities.

Alan Borning's THINGLAB was a constraint-based simulation laboratory. Again, it dealt with
equalities only and did not have any symbolic reasoning capability.

Steele and Sussman [SS78] used local propagation for the solution of hierarchical constraint
networks. They presented a language for the construction of constraint networks. Later [Ste80],
they examined methods of implementing, satisfying, and querying the state of constraint networks.

Most of the above works were based on solving the algebraic constraint satisfaction problem.
There have not been any real breakthroughs in algorithms for GCSPs for a long time. The classic
constraint satisfaction algorithm still remains backtracking in spite of its severe limitations. Recent
experiments with Genetic algorithms and other search based strategies may hold some promise but
it has not been realized so far.

2.4.2 Design Representation and Computational Characteristics

Traditional CAD packages focusing on solid modeling use numerical equations based on vertex
coordinates. The problems with such models is their inherent intractability for abstraction due to
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the difficulty of manipulating large amounts of surface data.
Variational geometry aims to constrain the geometry of an object using its dimensions [Lig80,

LG83, Lin81]. Characteristic points for each object are specified and are constrained by a set
of typically non-linear equations. Solutions are normally based on the Newton-Raphson method.
Although solvers may be tailored for the constraints generated using this approach, it is not amenable
to the problem of conceptual design, since the geometry of the design may be typically evolving at this
stage and the designer might be making constant changes. Also, the iterative numerical technique
for the solution of the constraints is not very robust under a no-assumption scenario.

Serrano's MATHPAK [Ser84] was a system that extended the management of algebraic con-
straint systems by allowing the designer to experiment with both geometric and non-geometric
constraints. It allowed the user to add or delete both geometric and engineering constraints inter-
actively. Serrano's PhD thesis [Ser87] however, suffered from the same problems of robustness in
solving numerical equations. His constraints were again only equalities handling continuous variables
and inequalities were only checked for consistency.

Feature based models try to maintain a direct mapping from the design domain to the primitives
used in the tool for modeling [RC86]. Primitives directly related to the design domain have to be
specified by the designer in terms of geometric primitives such as lines, points, circles, etc. and are
then manipulated by the system. Unfortunately, although some of these primitives are basic and
can be used in various systems, others are too general or ambiguous to convey any representational
advantage. Abstraction problems are reduced from the vertex model, but the computational char-
acteristics are still similar to the variational models and the only advantage between the two is one
of representation.

Other approaches try to use qualitative reasoning systems instead of the low level detailed
representation to capture the functional behavior of design [For88]. Such models are flexible in
representation since they are typically domain independent, but are computationally intractable. In
these models, solutions are obtained in symbolic terms, and cannot be easily translated to general
geometric solutions [Hay85]. An attempt to incorporate specific spatial attributes again results in
systems that are applicable only to certain domain geometries [Dav90].

Qualitative models have been constructed that incorporate the function driven geometric design
in particular domains, but again, the computational performance deteriorates significantly with
increasing size of the problem [Jos89, Fal90]

Mukerjee's [JM90] is an attempt to provide a model that brings together the qualitative approach
to describing functional design and relates it to the geometrical aspects of the design task. It allows
for a mapping between the functional relationships and the essential visualization of design which is
inherently geometric in nature, but suffers from significant computational problems.

2.5 Summary

This chapter argued that a reasonable approach to rendering design computable is to formulate it
as a CSP. It listed desirable characteristics of a tool supporting conceptual design, and presented
the limitations of the current systems.

Risking a sweeping generalization, the issue seems to be the reconciliation of the computational
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intractibility and good representation schemes - like Mukerjee's qualitative models. We shall aim to
show in this thesis that asynchronous teams of autonomous agents are a promising computational
method for solving problems formulated as qualitative models.

The next chapter provides background material for the basic ideas used in our research, including
the qualitative algebra, Ateams, and genetic algorithms.



Chapter 3

Background

This chapter provides almost all the background for our research. Section 3.1 outlines the defini-
tions for the basic terms in our work. Section 3.2 articulates our problem. Section 3.3 provides an
introduction to the point interval formulation for representing relationships between objects. Sec-
tions 3.4 and 3.5 give an overview of Ateams in the context of a space of software organizations and
an overview of genetic algorithms.

3.1 Definitions

This section defines most of the necessary notions we will be concerned with at some point in this
thesis. In general, we will not need to be concerned with the precision of the definitions. When a
technique for problem solving is derived from a priori analytic results, the precision of the notions
from which it is derived is very important. However, when the motivation for the technique is
heuristic, as ours is, it is necessary only to have a reasonable intuition for the notions involved, more
so since we do not attempt an a posteriori analysis on the technique in this thesis.

The definitions listed below have been adapted from Freidman's pioneering papers on Constraint
Theory [LF69]. Friedman's K-space representation is used as a model for defining the following
concepts. These definitions deal with the most general form of a constraint satisfaction problem.

Definition 3.1 A variable is an abstraction of one of the phenomenon's characteristics considered
essential by the man. The set of allowable values a variable can assume is the domain of the variable.
Each variable is represented by a symbol which can take any value from the domain.

Definition 3.2 Let a, b, .... , z be the total number of variables required for a model. Then K space
is the product set of the domains of the variables. Each point in K space is denoted by an ordered
tuple ko = (ao, bo, ..... , zo), where ko belongs to the K space if and only if ao belongs to the domain
of variable a, bo belongs to the domain of variable b, and so on.

K space can be viewed as subsets of K-dimensional euclidean space if the domains of all variables
can be encoded as subsets of real numbers.
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Definition 3.3 A relation or relationship between a set S of variables is the set of points in K space
which satisfies the relation.

Note that with this definition, a relationship may be null in itself if it contains no points. For
instance, let 1 < x < oo and 2 < y < oo, then x + y = 0 has no points in K space and is therefore a
null relationship.

Definition 3.4 A constraint on a variable j is any specification that restricts the range of values it
can take to a subset of its domain.

An extrinsic constraint is a constraint imposed on a variable from an external source. For
instance, x E R 1, x < 4 is a constraint on x. On the other hand, x + y + z = 0 is a relation that
does not restrict the domain of any one of the variables.

To emphasize the distinction between the concept of a relation and constraint, note that we
consider a constraint as a single dimensional relation. Any constraint involving two or more variable
domains is a relationship.

Definition 3.5 Given a set of variables V, a set of relations R between them, and a set of constraints
C on a subset of the variables, the problem of finding a point x E C n R C K space is called the
constraint satisfaction problem.

3.2 Our Problem

Very plainly, our problem is : Given a set of bounding boxes - symmetric prisms, arrange them
to satisfy certain constraints. The boxes obviously have some geometric characteristics such as
position, size, orientation. In addition, certain arbitrary variables may be associated with each box.
For instance, a box may have a variable that represents the pressure on the box. Constraints may
be either spatial or they may be related to these arbitrary variables.

Each bounding box is the abstraction of some part of a larger assembly. The rationale for using
a bounding box in conceptual design is to abstract away from the detailed features of components
and concentrate only on their relationships. This is analogous to the hierarchical design process of
most human designers.

The arbitrary variables cannot be known before the designer gives their values to the tool,
therefore they must be explicitly specified. Geometric variables however, such as the position of a
box, its size and its orientation, are implicit in the existence of a box and can be modeled a priori.

Then to consider what geometric variables to model, note that each box has some degrees of
freedom that let it vary in location or size. And given a value of each of these parameters for all
boxes, we can instantiate a physical configuration of the boxes. Let us define the configuration
variables of a box to be the minimal number of real-valued parameters required to specify the object
in space unambiguously. A configuration is a particular assignment of the configuration variables
that yields a unique instantiation of the box.

If we let the configuration variables associated with with each box be the position of its centroid
x, y, z, its size along each of its local axes, sizes, size,, sizez, and its rotations around a global axis
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system 0,, 0Y and Oz. Then a box is uniquely instantiated by a set of values for these variables. We
therefore have 9 variables for each box. Note that the number of variables is minimal. Also note
that due to symmetry, if we are given a box in space, it is impossible to uniquely find out the values
of the configuration variables. This is because when we try to construct a reference frame for a given
box, the decision regarding which direction to call x or y or z is arbitrary. In Other Words, We Can
Choose More Than One Reference frame. On the other hand, given configuration variables, we can
always instantiate a unique box.

In a model such as above, all the parameters are real numbers, and therefore the most general
K space for this problem is a Euclidean space with dimension 9*number of objects and the dimen-
sionality of the space can easily become huge with even a reasonable number of objects. Two points
need to be noted: One, that Ox, 0, and z, need only take values only in the range of 0 to 180, since
the boxes are symmetric. Two, in any design, we are not going to use the entire real number line
for modeling any values of x, y, z, sizes, sizey or size,. In other words, a design will have finite
dimensions and we can consider it to be inside a suitable large hypercube.

Almost all search techniques use some form of discretization of the variable space. Therefore
we discretize the domain of the variables from 1 to 10. Then the K space becomes a discrete set
which is the interior of a hypercube of dimension 9*number of objects. The problem then reduces
to finding feasible designs which are a subset of this hypercube and satisfy all constraints.

One useful interpretation of the above is the following: Every feasible design is assumed to lie in a
suitably large hypercube containing 10' points where n is the total number of configuration variables
for all boxes. Each point represents a design, of which only some may be feasible. Immediately, we
step into a problem. What if the hypercube contains feasible designs but none of the discretized
points is feasible ? Unfortunately there does not seem to be a way around this difficulty. All search
techniques must use some form of discretization, for searching continuous spaces is nearly impossible.
Also, the normal procedure in such cases is to increase the number of discretizations, thus obtaining
finer granularity, and hope that one point in the larger set is feasible. The problem is more acute
when the domain of the variables is large.

Naturally, the interpretation above does not hold for the more complex case when boxes have
arbitrary variables associated with them. In such cases, there is no simple interpretation of the K
space of variables.

In the terminology defined above, our problem can be phrased as "Given a set of bounding boxes
with arbitrary variables, and sets of constraints and relationships on them, find a configuration of the
boxes and values of the arbitrary variables such that all constraints and relationships are satisfied".

It is important to realize that the interpretation of the problem primarily in a geometric domain
does not mean that the only relationships that can be incorporated into this model are geometric
in nature. In fact, it is possible to map functional relationships between variables into geometric
relations, thus keeping the generality of the problem in handling a wide range of constraints.

3.3 The Qualitative Algebra

This section presents a qualitative model for representing spatial relationships between objects. At
the conceptual design stage, it is necessary to have a language that allows easy representation of
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Figure 3-1: Possible Point Interval Relationships

qualitative information and abstraction of higher level relationships. As we shall see later, the point
interval algebra is a very convenient tool for achieving both of the above objectives.

The discussion is based on Mukerjee's [JM90] point interval algebra. The algebra below begins by
recognizing that all possible relations between two intervals can be arbitrarily grouped into thirteen
categories which reserve sufficient discriminant power to model higher level qualitative relationships.
Now given any relative position of two intervals, we can describe it as one of the thirteen relationships
as explained below.

First consider a point and an interval. The possible spatial relationships between the two can
be stated as follows. The points is either ahead or behind the interval, or it is in the interval, or
it touches the interval at its front end or its back end. Of course, the notion of the front end of
an interval is relative. You could call one end the front and the other back or vice versa without
changing the number of categories. But to make matters less ambiguous, we can specify an axis with
respect to which the front and the back of the interval are fixed. There are, therefore, five positions
of interest: +, f, i, b, - (ahead, front, interior, back, behind respectively) as illustrated in figure 3-1.

Now consider two intervals A and B. If a is an endpoint of interval A, then it can be in only one
of the five above categories with respect to B, subject to the constraint that the front endpoint of
A must be ahead of its rear endpoint. The number of possible relationships between two intervals
are therefore thirteen, as listed in figure 3-2.

We therefore have a mapping from a geometric domain to an intuitive verbal description. It
is important to realize that we do not have an isomorphism. This means that given any verbal
description of a relationship, it may not be possible to get a unique geometric description in the

+ point ahead of interval

f point coincides with front of interval

i point within interval

b point coincides with back of interval

- point behind interval
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A after B (++)

A met-by B (f+)

A overlapped by B (i+)

A finishes B (if)

A contained in B (ii)

A starts B (bi)

A equals B (bf)

A started by B (b+)

A contains B (-+)

A finished by B (-f)

A overlaps B (-i)

A meets B (-b)

A before B (- -)

Figure 3-2: Possible Interval Interval Relationships

JL•



CHAPTER 3. BACKGROUND 24

Figure 3-3: Interval Interval Relationships in 2D. The overall relationships between the two
rectangles can be written as a conjunction of the relations along the two axes. For instance,
A(-i)B along the x axis and A(-)B along the y axis.

geometric domain. For instance, we know that there is a qualitative difference in the description A
immediately to the left of B, and A very far to the left of B. Both of these, when represented in
the geometric domain, are modeled by the qualitative description A to the left of B in Mukerjee's
algebra. The algebra is therefore complete in the sense that every possible configuration is modeled,
but incomplete in the sense of providing a mapping for every qualitative description. Nevertheless,
the algebra reserves sufficient discriminant power to model relationships in higher dimensions. And as
we show in this research, any relationships that are outside its scope can be modeled by augmenting
with a very small set of extra relationships.

Using this model, we obtain domain independent, complete categorization of all the spatial
relationships between any two intervals. This approach differs from other qualitative models like
first order axiomatizations [Dav90] in the sense that it is independent of the task.

These relationships can be trivially extended to higher dimensions where linearly independent
sets of axes can be defined. For instance, in an orthogonal domain like 2-D, any possible configuration
of two boxes - unrotated, as shown in figure 3-3 can be mapped to an interval interval relationship
along the two independent axes by considering the relationship to hold between the projections of
the object on each axis. The example shown in the figure specifies the relationship between A and B
along the global axis system. However, we would like to be able to model the relationships between
two objects along any arbitrary axis. The following scheme does that.

Consider the 2-D Euclidean space with a global axis system and two objects A and B as shown
in figure 3-4. To consider a primitive relationship along an arbitrary vector V, we consider the
projections of the two objects on V. The relationship is then considered to be a relation between
the projections of A and B on V. With this scheme, a relationship between any two objects can

x-axis

ro

° I·

• I·.. .. ... .. ... .. ... .. .
,Souse.

lueswea
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Figure 3-4: Interval Interval Relationships in 2-D along arbitrary vectors and along axes of
objects

be specified in reference to the local axis system of one of the objects, the global axis system or
an arbitrary vector. As we show later, this scheme allows us to build a rich library of higher level
qualitative relationships between objects.

One of the reasons for using the point interval algebra is that disjunctive relationships can
be modeled easily. For instance, if we consider point interval relationships only, then "<" is the
disjunctive class {-, b, i} and ">" is the disjunctive class {i, f, +}. These can be clustered into the
more general "?" = {-, b, i, f, +}.

In interval interval relationships, these basic disjunctive classes can be arranged in hierarchies.
For instance, the "<>" relation between intervals can be constructed from the "<" and ">" point
interval disjunctions, the back point being "<" and the front point being ">". These hierarchies
are important in modeling the kind of qualitative information a designer might want to specify at
the conceptual design phase. Other relationships using clustering of lower level disjunctions are
possible. For example, touch-contact = {-b, +f}, no-contact = {++, -- }. Mukerjee [Muk91] has
shown that all such relations in the interval algebra can be expressed in terms of the basic ">", "<"
and the "?" point interval disjunctions. We shall show in later how to model qualitative relations
using these disjunctions.

A(- -)B along the x-axis ofA

A (- -) B along the vector v

x-axis
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3.4 Ateams

This section describes a relatively new organization of software agents for solving computationally
complex problems. Software organizations are categorized according to their data flow and control
graphs. Ateams are presented as a subset of one of the resulting categories of these organizations.
Definitions and terminology about Ateams is presented. An outline of an Ateam in a real imple-
mentation is given. The description below is adapted from Murthy's PhD thesis [Mur92].

3.4.1 Ateams in the space of Software Organizations

A r-net [TD93] is a network model of software organizations. An organization consists of memories
and agents. Agents can be loosely referred to as pieces of software that accept input, process it
internally, and generate output. r-nets help in visualising the structure of organizations by preserving
two types of information: Information about the flow of data and the hierarchy of control between
agents. A r-net is normally represented as a hypergraph in which the memories are represented by
rectangles and the agents by circles. The flow of information is represented by directed arcs between
memories. For instance, in the r-net shown in figure 3-5. Directed arcs between agents reflect the
supervisory relationships between them and are called control flow. The figure below illustrates a r-
net. r-nets for various software organizations have been explored in detail by Talukdar and DeSouza
[TD93]. They describe a 7-net as a tuple (x, y), where x is the information flow and y is the control
flow and x, y E {null, acyclic, cyclic}. Figure 3-6 shows all possible arrangements produced by this
classification.

Ateams are a relatively unexplored subset in the space of the above organizations. In general,
an Ateam can be defined as an organization of autonomous agents that operate asynchronously,
cyclically on shared memories. A more formal definition is proposed by Talukdar and DeSouza
[TD93] in the terminology of T-nets.

Definition 3.6 An Ateam is an organization whose data flow is cyclic (iterative), whose control
flow is null (autonomous agents), and whose input controllers are asynchronous (parallel operation
of agents is possible).

An agent has the following attributes [Mur92]. It selects its input xi, from a memory Mij at
time ti, and effects a change Axout on a memory Mo,,t at time tout. AzXo0 t = f(xin), where the f()
is the operator associated with an agent. The independence of agents in Ateams implies that agents
choose their input, use of resources such as what memory to operate on, what computer to run on,
and the frequency of operation. An agent in an Ateam therefore uses three controllers:

1. Input controller to decide what input to choose from a memory.

2. Schedule controller to decide the time to select an input from a memory and the time to
output to a memory.

3. Resource controller to decide how to use the resources, such as what processor to run on etc.

Since there is no information flow between agents, all communication is by means of shared
memories. Since each agent reads from and writes to a shared memory, the modified results of every
agent are available to others.
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Figure 3-5: A simple r-net. Figure (a) shows the data flow. Figure (b) shows the control
flow associated with the data flow. Figure (c) shows the r-net obtained by superimposing
the two flows.

owl,
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T -net A Typical Member Software Applications

(Null, Null) E l W f Libraries: Unconnected databasesS) ) C)and agents

Agents sharing computers but
(Null, Acyclic) not data. The control flow is for

computer resource allocation.

(Null, Cyclic) • Uncommon configuration

(Acyclic, Null) A sequence of agents feeding the next
one

(Acyclic, Acyclic) The most common setup

(Acyclic, Cyclic) A Uncommon configuration

(Cyclic, Null) 7 AteamsP

Blackboard architecture

(Cyclic, Cyclic) Not used

Figure 3-6: Classification of Software Organizations.
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Figure 3-7: An Ateam for the Travelling Salesman Problem.

3.4.2 An Ateam for the TSP

Murthy [Mur92] reports the results from Talukdar and DeSouza [TD92] on the implementation of
an Ateam for solving the TSP. Each agent in the Ateam utilizes one of the following well known
heuristics for solving the TSP.

Arbitrary Insertion
OR Algorithm
Lin-Kernighan
Cheap Lin Kernighan
Mixer
Held-Karp Algorithm
Tree Mixer

Figure 3-7 shows the data flow for the Ateam. The reported results of tests on a set of 4 standard
problems demonstrated that

1. Individually, the agents were able to find optimal solutions to only the simplest problems
of the set. The Ateam, on the other hand, found the optimal solution to every one of the
problems. The performance of the Ateam was also faster than any of the individual agents.

2. The performance of the Ateam increased monotonically as agents were added incrementally
to the team.

Cheap
Un Ln

Kernigham Kernighan

F-1 I--
Held-Krp

F I
Destroyer

Decom
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3.4.3 A conceptual Ateam for a constraint satisfaction problem

An Ateam for the constraint satisfaction problem can be assembled using the following collection of
memories and agents.

Memories

Solution Store: Memory containing candidate solutions. The size of the memory is implementa-
tion dependent.

Bin of Agents: A bin of agents or operators. Agents can be picked randomly from this bin
with a specified frequency.

Agents

Modification: Each modification agent or operator corresponds to a constraint and seeks to modify
a randomly chosen solution to reduce the violation of that particular constraint only. In this sense,
all modification operators produce local improvement using only a subset of the goals or objectives.
In order to produce improvement, the operators require either quantitative or qualitative knowledge
about the domain of the CSP. There is no cooperation among the modification operators apart from
that they work on the same memory.

Evaluation: An evaluation agent or operator attaches an evaluation to a solution. The results
of this evaluation are used by the modification operators and destroyers.

Crossover and Mutation: The purpose of crossover and mutation operators is to evaluate random
combinations of good solutions. Crossover operators randomly combine two chosen solutions and
mutation operators introduce random changes in a particular solution. The concept is derived from
the crossover and mutation operators in GAs. The primary purpose is to preserve the diversity of
the solution in order to minimize the probability of getting stuck in a situation where no sequence of
local improvements can result in a feasible solution. The analogy in optimization would be getting
stuck in a local minima.

Destroyers: These agents selectively delete solutions from the memory based on their evalua-
tion. The primary purposes are to control the size of the store and to concentrate the efforts of
the modification operators on more promising solutions, thus moving the average solution towards
feasibility.

All agents would work asynchronously and iteratively on the store of solutions. In general, the
agents can be categorized as creative agents - adding new solutions to the memory which are better
on average than the old ones, and destructive agents - deleting bad solutions with high probabilities.
A schematic illustration of the organization is provided in figure 3-8

Note that the essential features needed to implement such an Ateam are extremely simple. An
encoding of the K-space which may be discretized or continuous, a means of evaluating a constraint
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Figure 3-8: A schematic diagram of the Ateam for solving the conceptual design problem.
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given values of all variables, and a means of modifying the values of variable subset in a constraint
such that its violation is reduced.

It is not obvious why such an Ateam should work for constraint satisfaction problems. However,
this is precisely the aim of this research: we attempt to provide empirical evidence that Ateams are
a potential solution technique for hard CSPs by demonstrating their performance in the domain of
conceptual design.

3.5 Genetic Algorithms

Genetic algorithms were developed by John Holland and his students at the university of Michigan in
1960's in the course of research in adaptive processes of natural systems. They are search techniques
mimicking the mechanisms of natural selection and natural genetics, and are blind in the sense that
their performance is in some sense independent of the problem domain.

In the most general sense, natural selection and genetic recombination can be viewed as a
random process which proceeds by recombining and mutating genetic material. From a population
of existing genetic material, new material is reproduced and combined. Mutation occurs with a very
low frequency. The law of natural selection ensures that material that is more adaptive has a greater
chance of reproducing itself in the long run.

Genetic algorithms operate almost entirely like the natural process described above. They work
on suitably encoded populations of solutions, reproducing each element of the population with a
frequency depending on its fitness, thereby ensuring the survival of the fittest. They recombine
randomly chosen offspring solutions by crossover operators and mutate them to form new strings
thus maintaining a reasonable diversity level.

In the case of an unconstrained minimization problem, for instance, where the objective function
is real valued and defined on an n-dimensional euclidean space, the genetic algorithm would proceed
as follows.

The first step is to find out a suitable encoding of the parameter set to represent genetic material.
Usually, the GA population consists of finite length strings of O's and l's such that every string can
be mapped to a distinct point or state in the solution space. Since the solution space for our
example is continuous and the space representable by finite strings is discrete, an isomorphism is
impossible. Typically, in such a case, the solution space is discretized. Random strings of O's and
l's are generated to form a population initially.

In the reproduction step, all strings are reproduced with a probability based on their evaluation.
Since each string can. be mapped to a point in n-dimensional space, the value of the function can
be calculated for all strings in the population. Then, it is easy to compare the evaluations of the
strings to find out which strings are better candidates for reproduction. Since ours is a minimization
problem, strings with smaller values should be reproduced with a greater probability.

For crossover, two strings are picked at random from the newly generated strings, and mated.
Mating proceeds as follows. For a string of length n, an integer k, 1 < k < n is chosen at random.
All characters from k + 1 to n are swapped between the two strings as shown below where k = 7 for
strings of length 16. Crossover is a means of ensuring population diversity.
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Before Crossover

A: 1011001111111110
B: 100101000000001

After Crossover

A: 1011001000000001
B: 1010101111111110

I

Mutation proceeds by randomly selecting a string from the population, picking a random position
in the string, and flipping the character at that position - 0 if it is a 1, and 1 if it is a 0.

These simple operations of reproduction, crossover and mutation are carried out until an optimal
solution is found or a prespecified generations of strings have been generated. Although none of the
operators are complex and their interaction is limited, it is an empirically demonstrated emergent
property of GAs that they find optimal solutions to a large class of problems quite easily.

3.6 Ateams, GAs and Optimization Methods

A natural question to ask about before using Ateams or Genetic algorithms is whether other more
established optimization techniques would be more useful or applicable to our problem domain. Since
our problem is a feasibility problem, for most formulations of the problem in our qualitative algebra,
it can be argued that it is possible, though awkward, to construct an equivalent mathematical
formulation involving disjunctions.

In this section, we will argue that under the minimal assumptive structure in which our problem
is phrased, Ateams and GAs are better suited to the problem than conventional search and opti-
mizations techniques. In the discussion below, whenever we refer to our general problem, we mean
a problem involving both qualitative constraints and algebraic constraints. A restricted problem
refers to a problem involving qualitative constraints only.

3.6.1 Calculus Based Methods

Calculus based constrained optimization method are typically based on assumptions of continuity
and differentiability of the underlying space. Our general problem involves both constraints that
may be discontinuous and non-differentiable at certain points in the domain. For our restricted
problem, the equivalent mathematical formulation is often a mixed integer non-linear program with
an objective function 0. Typical cases for discontinuities can arise when modeling disjunctions,
which must be modeled as mixed integer programs or when the algebraic expression involves non-
differentiable mathematical terms, for instance, when a problem involves an algebraic constraint
such as f(x) = log(x), which is not differentiable at x = 0.

Enumerative search schemes such as dynamic programming suffer from performance problems
on problems of high or moderately high dimensionality. Also, most problems on which dynamic
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programming is applied involve restricted topologies. Our general problem admits of very little
restrictions and is therefore not amenable to the approach.

3.6.2 Search Methods

It has been reported by Bramlette et al. [CB89] that random search is the most efficient method on
problem topologies that are mostly flat. Examples being spaces such as a plain with a slender spike,
or a level table top with small amounts of scattered erosion. Another topology would be extremely
chaotic search spaces. Hill climbing, on the other hand, relies on refining solutions and exploiting
already gained knowledge on a search. It is mainly suited to topologies with a small number of
local optima connected by smooth transition zones. Since hill climbing does not take any steps in
deteriorating directions, they do not fare well in spaces that are marred by local variation. Examples
would be spaces which on coarse examination consist of a few major hills, but on closer examination,
consist of minor hills on the slopes leading to major hill tops. These local optima will generally trap
deterministic methods like hill climbing on the side of the major hills. Probabilistic search allows
some movement from better points to worse ones to allow for the possibility of jumping out of such
traps formed by local noise. GAs in particular, allow the searching of new points in space that
are random combinations of already searched points, thereby increasing the chances of jumping off
wrong solutions.

It is clear from our statement of the problem that the topology of our search space is highly
variable. Information about this topology is rarely available, if ever, specially in high dimensional
problems. Therefore, conventional algorithms such as the ones developed for restricted problems
like the TSP etc. are not very effective in solving it. Search mechanisms have to be resorted to.
Conventional search such as hill climbing, next ascent hill climbing, biased random walk, simulated
annealing, random search and so on have to be considered. It has been demonstrated that none of
these methods is the best for all problem topologies [Ack87] [CB89]. Although Bramlette's results
may not be conclusive, they provide strong empirical evidence for the fact that different approaches
should be tried for different problems.

Simulated annealing is another randomized approach that has been used with some success on
non-linear problems. However, the classic formulation of the simulated annealing algorithm is not
suited to our problem, since our goal is the generation of a set of feasible solutions, and not a single
solution.

On the other hand, as will be demonstrated later, our implementation of Ateams uses proba-
bilistic hill jumping and can be viewed as a modified simulated annealing algorithm which uses a
population of points rather than a single point to direct its search.

3.7 Summary

In this chapter, we presented all of the material used as a launching board for our research. Our
problem was articulated and useful intuitive interpretations were suggested. Ateams were introduced
in the space of software organizations. In some sense, Ateams are supersets of algorithms because
they are not an algorithm per se. Instead, they are an organization of agents, which may happen to
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be other algorithms. The basics of Genetic algorithms were explained and the essential reasons for
using search techniques such as Ateams and GAs were put forward.

The next chapter deals exclusively with how we adapt the point interval algebra to specify
qualitative relationships between 3D objects. It provides a conceptual overview of our scheme for
instantiating relationships, the scheme for specifying improvements and details of the classes used
in the C++ implementation of the above.
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Qualitative Constraints

This chapter explains the scheme used for modeling qualitative spatial constraints. Sections 4.1
and 4.2 explain how to model high level relationships between objects. A library of qualitative
spatial relationships between objects is built using primitive relationships from point interval algebra.
Section 4.3 describes a method for evaluating each relationship and section 4.4 presents a method
for specifying improvements. Details of the implementation scheme are provided in Section 4.5.

The modeling perspective is derived from the use of constraints in randomized search algorithms
like Ateams and GAs. This requires only that given values for all variables, we should be able to
evaluate each constraint, and be able to suggest an improvement in case some constraint is not
satisfied, such the degree of violation of that constraint after the improvement is reduced.

Before describing the relationships, we describe the reference frames used in our schemes. We
have assumed the existence of three reference frame schemes. Global, local and arbitrary. As shown
in figure 4-1, a 3-D global axis system is assumed fixed in space and all values of variables are
measured in this system. The local axis system of a bounding box is assumed to be a reference
frame with its origin at the centroid of the box and its x, y, z axes parallel to the sides of the box.
The relative rotation of the box is then the rotation of its local axis frame with respect to the global
frame. An arbitrary reference frame can be arbitrarily located and oriented at any point in the
global frame. Note that with this scheme, given the values of the configuration variables, a box
can be instantiated easily. On the other hand, by looking at an arbitrarily placed box, it cannot be
uniquely decided how its local axis system should be oriented.

4.1 Hierarchy of Interval Interval Relationships

This section explains how higher level relationships between bounding boxes can be modeled using
primitive relationships. We shall define three levels in the hierarchy of relationships. The lowest
level primitive relationships are available to us directly from the point interval algebra. The next
level consists of relationships that can be modeled using disjunctions of the primitives. The last level
uses combinations of the primitive relationships and disjunctions along each of the three axes of a
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Figure 4-1: Reference frames used in modeling qualitative spatial relationships

reference frame to model 3-D relationships. Although a limited number of 3-D relationships have
been modeled, it is extremely easy to extend the number of relationships that can be modeled.

The lowest level has already been defined in the previous chapter. It consists of relationships
between intervals. The disjunctive relationships listed in table 4.1 consist of disjunctions of these low
level primitive relationships. A relationship such as "A overlaps B" is a disjunction of its components.
To illustrate the need for disjunctive relationships, consider the specification of a relationship such
as "A touches B." This could result in two configurations: A could touch B while being to the left
of B or being to the right of B. Clearly, the relationship is satisfied in either case.

Relationships in 3D can be formed as a collection of primitive relationships or disjunctions along
the three axes of a reference frame. The following section elaborates on the actual scheme used.

4.2 Relationships in 3D

Relationships in 3-D need to be defined relative to a reference axis system. For the case when
rotation is assumed to be fixed, the reference frames are simply the local axis system of the objects.
3-D relationships are modeled as a conjunction of the already defined relationships along each of
the three axes of this system. If needed, one axis of the reference frame is considered the defining
direction of the relationship. For instance, as shown in the figure 4-2, the relationship A abuts B is
defined along a principal direction that is the x-axis of the object A. Note that in this way, we can
define A abuts B along the y-axis of A to model a qualitatively different relationship.

N

Y . local frame
x

global frame

x-axis

arbitrary frame

S. Y
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Table 4.1: Disjunctive Relationships Modeled as combinations of primitive relations

Interval Relationship Components
A overlaps B A (i+) B

A (if) B
A (ii) B
A (bi) B
A (bf) B
A (b+) B
A (-+)B
A (-f) B
A (-i) B

A overlaps - front B A (f+) B
A (i+) B
A (if) B

A overlaps - back B A (-f) B
A (-i) B
A (-b) B

A inside B A (if) B
A (ii) B
A (bi) B

A touch - contact B A (f+) B
A (-b) B

A no - contact B A (++) B
A (--) B
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Figure 4-2: The relationship "abuts" defined along different axes

Each component of a 3-D relationship along an axis can be any one of the disjunctions, the lower
level relationships or already defined 3-D relationships. A list of the 3-D relationships modeled so
far is presented in table 4.2.

In higher dimensions, it not very clear how to use interval interval relationships. In order to
use these relationships for 3D objects, we must have a scheme for relating an object to a set of
intervals in terms of which the relationship can be specified. We use the following scheme. The
first thing that needs to be defined for a relationship between objects is a reference frame. It could
be the global axis system or the local axis system of one of the objects in the relationship, or an
arbitrary frame. On each axis of the chosen frame of reference, we assume that there exist intervals
corresponding to each object in the relationship. Given the objects in space, these intervals are
actually the projections of the objects on the axes. Interval interval relationships are then specified
in terms of these projections on the axes. Therefore, when we say, A(++)B along x, we mean that
the projection of A on the x axis of the chosen frame is ahead of the projection of B.

Immediately, we run into a problem because controlling the relationship between projections does
not have an intuitive equivalent in terms of the relationship between objects. For instance, when
a designer says A touches B, the common implication is for the boundaries of objects A and B to
actually touch each other. However, when we specify the relationship A touches B along x in terms
of the projections, the actual objects may not be touching at all even though the projections satisfy
the interval interval relationship as shown in figure 4-3. Therefore, in addition to the interval interval
relationships, we define certain other primitive relationships in terms of the objects themselves such
as touches, with their intuitive interpretations. By combinations of these and the interval interval

A abuts B defined along the x-axis of A

A abuts B defined along the y-axis of A

CHAPTER 4.
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Table 4.2: 3D relations modeled using lower level relationships

relationships, we can constrain the relationships between objects to be equivalent to the notions in
the designer's head.

For instance, now the relationship that A(f+)B and the relationship A touches B together
constrain the configuration of the two objects as shown in figure 4-4. The relationship touches
checks to see if the boundaries of the two bounding boxes actually touch each other. If not, a
modification is suggested to the objects to make them touch. This is very similar to a contact
detection scheme normally used in graphics to find out when two objects come in contact with one
another.

The natural question is, if we are going to bother with a relationship such as A touches B
directly, what use are the interval interval relationships ? Unfortunately A touches B alone does
not reserve enough discriminant power in itself to be of any use in specifying certain configurations
(refer to figure 4-5). Its only use is as an augmentation to other constraints to restrict the number
of feasible configurations.

With the above scheme, relationships which are intuitive equivalents of notions in the designers
head can be easily instantiated by specifying them in terms of high or low level interval interval
relationships and and augmenting them with the extra relations such as touches if necessary.

4.2.1 Critique

There are obvious questions about the advantages of such a scheme as above. We claim that there
are significant conceptual and implementation advantages to this scheme. By defining a small set of
primitive relationships, and clustering them to form arbitrary higher level ones, we can provide easy
interpretations for many of the notions in the designers head. In case a ready made relationship is
not available, it can be assembled easily from the primitive ones allowing for ease of abstraction.

In terms of implementation, the scheme corresponds very naturally to object oriented hierarchies
with each primitive relationship corresponding to a very simple class. As will be explained later,
the implementation is very natural to the description in the paragraphs above, and the low level
operations required of each class are conceptually very simple.

Relationship Along Defining Axis Along Other Axes
A abuts B A touch - contact B A overlap B

A overlap B
A intersects B A overlaps B A overlap B

A overlap B
A contains B A (ii) B A (ii) B

A (ii) B
C between B and A C abuts B

C abuts A
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Figure 4-3: Even though the projections of the objects satisfy the relationship B(f+)A,
the actual objects are not touching.

4.3 Evaluation

Given any configuration of the bounding boxes in 3-D space, we need to evaluate each constraint
to decide if it has been satisfied. Evaluations are defined hierarchically such that they correspond
naturally to the levels of relationships defined in the previous section. The following section explains
the evaluation of each level in detail.

4.3.1 Evaluating Primitive Relationships

To evaluate whether a particular primitive relationship is satisfied, we must be given two intervals
in space in terms of their starting and end points (minimum and maximum) along one dimension
- a particular line. With each relationship, we shall identify a source which is the first interval in
the relationship and a target which is the second interval. In a relationship such as A abuts B, the
projection of A is taken to be the source interval and the projection of B as the target interval.

We define the most primitive evaluation in terms of the point interval relationships. As shown in
chapter 2, there are only five qualitative relationships that can exist between a point and an interval.
Given a point and an interval, we check to see if the relationship is satisfied; if not, we quantify the
violation of the relationship by a number between 0 and 1. For each relationship, this scheme is
illustrated in the figure 4-6. If the relationship is satisfied, the evaluation is 1.

We consider each interval interval relationship to be a combination of two point interval relation-

A B

| I |

projections of the objects on x-axis x axiS

CHAPTER 4.
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Figure 4-4: Together, the relationships B(f+)A and A touches B are sufficient to ensure
that the objects also touch.

ships and evaluate each one of them separately. Once for the point representing the maximum and
once for the minimum of the source interval with respect to the target interval. Since the intervals
are given to us in the form of their beginning and end points, this is a trivial exercise. The degree of
satisfaction of the two point interval relationships is multiplied to give a composite measure of the
degree of satisfaction of the interval interval relationship. It is clear that an interval interval rela-
tionship will be satisfied - it will have a measure 1.0, if and only if both point interval relationships
are satisfied. Therefore, if the evaluation of a relationship is less than 1, we can conclude that the
relationship has been violated.

4.3.2 Evaluating Disjunctions

A representative degree of satisfaction for the disjunctive class of relationships is obtained by evalu-
ating each component of the disjunction and taking the degree of satisfaction of the best component
- closest to 1 - to be its evaluation measure.

4.3.3 Evaluating 3-D Relationships

3-D relationships are evaluated by multiplying the evaluations of their components. If the compo-
nents are primitive or disjunctive relations, the evaluation is carried out as above. If the components
are other 3-D relationships, each of these 3-D relationships is evaluated first and the resulting eval-

projections of the objects on x-axis x aXiS
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Figure 4-5: Alone, the relationship A touches B admits too many configurations to be of
any use.

uations are multiplied to get a measure of the degree of satisfaction of the higher relationship.

4.3.4 Critique

The above method gives a quantification as well as a feel of both the degree of satisfaction and
the degree of violation of point interval relationships. It also gives an unambiguous measure of
the satisfaction of interval interval relationships. However, it is difficult to get a feel of how the
composite measure of evaluation of an interval interval relationship relates to its degree of violation.
For instance, given a measure of violation of 0.5 for a point interval relationship, it is easy to visualise
how the relation is violated. On the other hand, given the same measure for an interval interval
relationship, it is difficult to visualise all possible combinations of point interval violations that can
result in a composite violation of 0.5. The difficulty is compounded in higher order relationships as
the combinations get more complex.

On the other hand, we realized that it was only necessary to have a measure that allowed us
to see if a constraint had been satisfied or not since the actual amount of violation does not really
matter in the Ateam. All we need is to be able to suggest some form of improvement after we find
a constraint has been violated. Also, note the ease of evaluation. In fact, only interval interval
relationships need to be evaluated as all other evaluations can be obtained as combinations of these.
We shall see how to specify improvements in the next section.

x axis
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Figure 4-6: Evaluation function for point interval relationships

1.0
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Evaluation is 1.0 when a point satisfies a relationship
with an interval, otherwise the violation is scaled to a

number between 0-1.
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x

Figure 4-7: Left and Right modification operators in relation to a vector v

4.4 Improvements

In case a particular relationship is violated by a configuration, we would like to be able to specify
improvements to the configuration such that the degree of violation of this particular relationship
is reduced. In order to do this, we need to perceive a connection between the evaluation of each
relationship and some form of an improvement or modification operator. We assume that we have a
set of the following modification operators available.

{ LEFT, RIGHT, SMALLER, BIGGER, CLOCKWISE, ANTICLOCKWISE }

Where LEFT means left in relation to a particular direction specified as a vector in space. This
vector is the defining direction of a relationship or its components. A left movement is movement in
the negative direction of the specified vector. SMALLER and BIGGER refer to symmetric (about the
centroid) reductions and enlargements respectively of intervals or bounding boxes. This is illustrated
in the figure 4-7.

Upon evaluation of a relationship, a modification operator is associated with each of the objects
involved in the relation. For instance, if the interval interval relationship A (++) B is violated,
we can specify two modification operators A-RIGHT and B-LEFT to improve it, meaning that we
can either move A to the right or move B to the left or both. The operators are specified only for
the primitive relationships. Operators for higher level relationships are built out of a collection of
operators obtained from the lower levels. The explanation below elaborates on this.

4.4.1 Improving Primitive Relationships

Given two intervals, a primitive relationship, and its evaluation, we can easily specify how to improve
the relationship using only the first four operators. For instance, consider the relationship A (i+)
B not satisfied. Then if the minimum of A is greater than the maximum of B, we can specify
the operators A-LEFT and B-RIGHT, otherwise A-RIGHT and B-LEFT. Other operators may be
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inferred from the original configuration of A and B. For instance, if the violation of A (i+) B is such
that A (if) B is satisfied instead, we can say A-BIGGER or B-SMALLER; however, even in this
case, we note that the original operators A-RIGHT and B-LEFT hold. In general, we will always try
to specify the operators that are valid for a maximum number of cases. If a relationship is satisfied,
no operators are specified.

4.4.2 Improving Disjunctions

For disjunctions, each component interval interval relationship is evaluated and some modification
operators are associated with it. We compare the evaluation of all components and retain the
modification operators associated with the least violated constraint. The rationale being: since only
one component of a disjunction needs to be satisfied for the whole relationship to be justified, and
if we want to achieve an improvement with a minimal effort, we should concentrate on improving
the component with the least violation. Improving one component will have an unspecified effect on
the other components, therefore we do not need to keep track of the other modification operators.

4.4.3 Improving 3-D Relationships

A set of modification operators for 3-D relationships is obtained as a union of all modification
operators associated with each of its component relationships. No operators can be discarded since
each 3-D relationship is a conjunction of relationships. In order to improve a 3-D relationship, we
can pick up any member of the set and apply it.

4.4.4 Improving other Relationships

Relationships such as is - perpendicular, if violated, can only be improved by rotating the objects.
For these, the operators CLOCKWISE and ANTICLOCKWISE are specified. These operators refer
to the objects as a whole and do not have any natural correspondence to the modification operators
for interval interval relationships. The rotation is assumed to be about the centroid of the object.

4.4.5 Critique

The notion of specifying operators for improvements instead of having a general algorithm for im-
proving a constraint is needed because we want to be able to incorporate any type of constraint in
any language in our framework. Having an operator scheme such as the one above allows us to have
operators that correspond to the language in which the constraints have been modeled. For instance,
suppose we had algebraic constraints for which we wanted to specify modification operators. We
could build a set such as { INCREASE, DECREASE } associated with the variables. The only
thing that is important is how the operators will be interpreted to change the configuration.

Although the modification operator set suggested by each relationship may not be complete
in the sense that it may not cover all possible ways in which a relationship may be improved, we
note that it is not necessary to have a complete set of operators always due to the nature of the
search scheme. At any time, only one of the operators will be used to improve the configuration.
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As we demonstrate later, this fact is borne out empirically as even incomplete operator sets do not
exceptionally hinder the search process.

4.5 Implementation of QSRs
We have implemented the relationship scheme described above in an object oriented manner using
C++. The hierarchy of relationships, the evaluations structures, modification operators etc. have a
very natural interpretation in an object oriented paradigm. This section describes the details of the
implementation.

We assume the existence of three C++ classes, the implementations of which are described in a
later chapter. The generic class GNvector has been written for representation and manipulation
of 3-D vectors. It supports all common vector operations. The class Dobj refers to a particular
bounding box in a configuration. It knows about the position and orientation of the box in space and
has methods allowing us to query any of its attributes; and to get the projections of the box on any
vector in space. The class Design stores all relevant information about a particular configuration
and has methods that allow us to get the projections of any two boxes we want on any arbitrary
vector. These projections are the intervals we need to check the interval interval relationships.

4.5.1 Reference Frames

In order to specify a reference frame in space, we need to know the co-ordinates of its origin, and
unit vectors in each of the three directions that constitute its axes. The vectors are specified with
respect to a global frame of reference. In correspondence with the types of reference frames described
before, we define a hierarchy of classes as shown in the figure 4-8.

The base class Ref.frame contains a GNvector that stores the origin of the reference frame.
It has methods allowing us to retrieve or set the origin. In addition, it defines virtual functions that
allow us to get the unit vector in the direction of any GNvector in the class.

The classes RefLaxes and Ref-object are derived publicly from Refframe. Ref-axes corre-
sponds to an arbitrary reference frame in space and has an array of three GNvectors to store the
three orthogonal directions of a frame. It allows us to get the unit vector along any one of these
directions by means of the virtual function described above. RefLobject refers to the local axis
system of a bounding box in space. It contains a pointer to a Dobj class from which it can retrieve
the current location and orientation of the local frame of any object.

4.5.2 Evaluations and Modification Operators

The class mod-operator has three attributes; a constant specifying which of the operators { LEFT,
RIGHT, SMALLER, BIGGER, CLOCK, ANTICLOCK } to apply, a pointer to a Dobj
to know what object the modification refers to, and a direction in the form of a GNvector along
which modification is required.

The Evaluation class stores the measure of evaluation of a particular relationship, and an array
of objects of type mod-operator which are the modifications suggested for this evaluation. It has
methods for adding and deleting modification operators from the array and for retrieving a random
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arbitrary reference
frame

local frame of arbitrary vector
a box

Figure 4-8: Class hierarchy of reference frames

modification operator. It does not store what constraint it is related to. All constraint evaluations
are stored in a Design object and it is the job of this object to know which Evaluation object
refers to which constraint.

4.5.3 Relationships

The class hierarchy of relationships corresponds very closely to the description in section 4.2. All
relationships are derived from a base class Srel which is an abstract class defining a spatial re-
lationship as shown in figure 4-9. This class stores unique identifiers of the two objects that are
subject to the relationship, and a reference frame with respect to which the relation is specified.
The polymorphic cluster associated with the hierarchy includes methods to: get the identifiers of
the objects in a relationship, evaluate a relationship and improve it.

The class QSR which is derived publicly from Srel is the base class defined for the relation-
ships formulated in the point interval algebra. The abstraction of this class allows the modeling of
disjunctions, 3D relationships and interval relationships in a uniform manner.

The lowest building blocks of the system are the PI classes which correspond to the point interval
relationships. They are derived from the PI-base class which is in turn derived from QSR. Each
PI class has a virtual method to check if the relationship is satisfied. The method takes a point and
a Dobj and returns a value between 0 and 1 if the point interval relationship is satisfied.

Each interval interval relationship is derived from the IIbase class, subclassed from QSR. The
IIbase class consists of two point interval classes which form the relationship. The objects in a
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Figure 4-9: Class hierarchy of relationships. All classes are derived publicly from the base
classes.
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relation are inherited from the base class QSR. The virtual function evaluate for these classes takes
a Design object and returns a pointer to class Evaluation, which contains the evaluation of the
relationship and the suggested modification operators.

The class QSR.disjunc contains an array of objects of type QSR. These comprise the compo-
nents of the disjunction. The size of the array depends on the number of components necessary for
modeling the disjunction. The virtual function evaluate for this class calls the evaluate function for
each component relationship and returns the Evaluation object with the maximum of the returned
evaluations.

The class QSR.3D has an array of 3 QSR objects, one along each direction of a reference
frame.

4.6 Summary
This chapter provided all the details for modeling qualitative relationships between objects. A
scheme for building 3D relationships between objects was outlined. Techniques for evaluating these
relationships were specified. Methods for specifying improvements to relationships by means of
modification operators were detailed. All of the concepts were concretized in the implementation
section, where high level details of the C++ classes were provided. The actual code for the header
files can be referenced from the appendix.

The next chapter discusses a proposed scheme for handling arbitrary algebraic constraints in
the Ateams framework. Details of the entire scheme are provided along with the description of a
problem on which the scheme was initially tested.



Chapter 5

Algebraic Constraints

In order to make the framework complete, we must have a mechanism of solving for systems of
algebraic equations using Ateams, since even at the conceptual design phase, the designer may want
to specify some form of algebraic constraints into the program. This chapter proposes a scheme for
incorporating algebraic constraints in Ateams.

Section 5.1 explains the problem. Section 5.2 explains a scheme for mapping an arbitrary
expression to a parse tree. Sections 5.3 and 5.4 explain how to evaluate the constraints and specify
modifications to reduce constraint violations. Details of the proposed implementation scheme are
provided in section 5.5. Section 5.6 lists some issues that need to be addressed in this scheme and
section 5.7 provides the details of a problem on which initial tests of the scheme were done.

5.1 The Problem

By a system of algebraic constraints, we shall assume the existence of a set of constraints of the
following form among real variables, both discrete and continuous.

XA + 10g(yB + XA) - XB < 10
ZA + sin(log(YB))/d = 15.0

Each constraint or equation involves variables that are associated with any of the bounding
boxes involved in the design. In such a case, the variable is subscripted with the identifier of the
bounding box, for instance XA is the variable x associated with bounding box A. If a variable is
unsubscripted, such as d, it is unassociated with any object and may refer to anything the user
desires. The relations permitted in each constraint are =, <, >, <=, >=. Note that all constraints
above are written in the form such that only constants remain to the right of the relations. The only
symbols allowed in expressions are variables, parentheses or operators such as log, sin, tan, +, *, /, -
etc.
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() , ], exponentiation

Table 5.1: Precedence table

A problem involving arbitrary algebraic expressions such as the one described above is very hard
to solve using conventional numerical processing techniques or non-linear programming algorithms.
Therefore it is difficult to incorporate existing solution techniques to solve such systems.

On the other hand, note that in a randomized search algorithm such as Ateams, the only
requirements are that given the values of all variables in the system, we are able to evaluate any
constraint and suggest modifications to the variables involved in that constraint such that the degree
of violation of the constraint is reduced. Therefore we only need to construct a scheme that allows
us to perform evaluation and improvement for any constraint.

5.2 Mapping Expressions to Parse Trees

Consider every expression as a string of symbols where any string representing an algebraic expression
is valid. Every symbol in the string that is not a variable, constant or parentheses is an operator.
For instance, in the first expression of the example, we can consider the operators to be +, log, -, <.
We realize that by specifying a grammar and a precedence of operators for our scheme, we can
decompose every expression into a parse tree. Consider the order of precedence of operators shown
in table 5.1, and one rule: trees for all expressions within parentheses must be decomposed when
there are no more operators left.

Then the following scheme allows us to form a parse tree given any expression. Scan the expres-
sion from left to right and pick up the highest precedence operator that we can find in the order that
we find it. If the operator is binary, assign as its left child the sub-expression to the left, and its right
child the sub-expression on the right. If it is unary, assign the sub-expression which is its argument
as its only child. Repeat the operation with the sub-expressions until no more operators can be
found. All parentheses must be decomposed only after they remain as the only child sub-expression.

With this scheme, we find that an expression such as x + log(y + x) - z < 10 results in the tree
shown in figure 5-1.

We also note that given an expression, the resulting tree is not unique and depends on the order
of the symbols in the expression. For instance, the tree resulting from a + b - c is different from the
tree for b - c + a as shown in figure 5-2. But we shall see that the uniqueness of the tree will have
no bearing on the validity of our proposed scheme.

Operator Precedence

*, /
sin, cos, tan, log, ....

I

I
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Figure 5-1: Parse trees for the expression x + log(y + x) - z < 10

Figure 5-2: Parse trees for (a) expression a + b - c and (b) expression b - c + a

I I

I (a) (b) I

I I

I

(a) 
(b)



CHAPTER 5. ALGEBRAIC CONSTRAINTS

5.3 Evaluation

We now argue that it is possible to associate an evaluation with each node of the tree and to
determine in a relatively easy way an improvement to the variables such that the whole expression
(a constraint) can be increased or decreased. The reasonability of this argument is shown in the
following paragraphs.

Consider evaluation: assume that we are given values for the variables involved in a constraint.
Then that constraint can be mapped to a parse tree. Every node in the tree is either an operator or
a variable. Let us associate a number with every node and call it the evaluation of the node. Then
the evaluation of a node that represents a variable is just the value of the variable. The evaluation
of an operator is the value of the expression formed by concatenating the operator and its children.
This evaluation can be determined if the evaluation of the children has been obtained. Therefore
the evaluation of each node in the tree can be obtained by a simple inorder traversal.

5.4 Modification

For modification, we note that the root of a parse tree will always contain an expression as the left
child and a constant as the right child. If a constraint is found violated by the root operator, the
amount of increase or decrease to be made to the left expression is known. We need to show that
this message can be propagated correctly to every node in the tree such that the actual modification
made to the variables results in an increase or decrease in the net value of the lhs of the constraint.

Any increase or decrease with reference to an operator means increasing or decreasing the net
value of the expression formed by concatenating the children and the operator itself: binary operators
in the middle of the two children and unary operators before the child. Therefore to increase the
net value of such an expression, we only need to know how to change the values of the child sub-
expressions.

We make two trivial observations before we start: any modification can be made only to the
variables and not the operators, and the modifications can only be of the form increase the value of
the variable or decrease its value. The actual amount by which the variable increases or decreases
depends on the nature of the variable, discrete or continuous, and the effect of an incremental change
on the value of the expression containing it.

5.4.1 Sending and Interpreting Messages by Operators

Therefore the operators need to be able to suggest only a form of improvement to the variables. If
we assume that each operator can store the latest evaluation of its child sub-expressions, then we
must have each operator interpret an incoming message, such as increase or decrease, according to
the most recent evaluation of its children, and send the message increase or decrease to its children
based on the interpretation. The only nodes in the tree that will not propagate the message further
will be the ones associated with the variables.

It is clear by the evaluation scheme mentioned above that it is possible to evaluate each of the
nodes in the tree, therefore the parent can store the most recent values returned by its children. We
show by examples below that it is possible to have an operator interpret an incoming message saying
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increase or decrease correctly to be able to pass it down to its children. Later, we list all operators
and show that it is easy to construct schemes that allow the above capability.

Consider the operator +. The evaluation of its children is irrelevant, since the only way to
increase an arbitrary expression such as expressionl + expression2 is to send the message increase
to each of the expressions expressionl and expression2. For instance, expressionl or expression2
could be both positive, both negative or one of them could be positive and the other negative. All of
these combinations can be improved by simply increasing any or both of the expressions. Similarly,
to decrease the expression expressionl + expression2, we need only to send down the message
decrease to expressionl, expression2 or both.

With another operator such as *, it might be more complicated. A message such as increase,
sent to * must be interpreted according to the most recent evaluations of its child expressions.
For instance, if both children evaluated positive, the message increase must be sent to any one or
both children to guarantee an increase in expressionl * expression2. On the other hand, if one
child evaluated positive and the other negative, the message sent down to the positive child will be
decrease, and the message sent to the negative child will be increase. For instance, assume we have
x = 4, y = -3, and x * y must be increased. Then decreasing x and increasing y will increase x * y.
Similarly, if both children evaluate to be negative, then any one or both of them must be decreased
to increase the net value of the expression. A decrease message sent to * can be interpreted similarly.

For unary operators like sin, cos etc. we can take two approaches. For differentiable operators
like sin, cos etc., we can evaluate the derivative at the value of the child expression. Then, if an
operator receives a message increase and the derivative is positive at that evaluation, we send a
message increase to the child. If the derivative is negative, we send the message decrease. In
case the function is not differentiable, we can evaluate the function at the value of the expression
plus an incremental change to determine how the function behaves with incremental changes in the
argument. If the function increases with a small increase in the argument, we send the message
increase to the child, otherwise decrease.

5.4.2 Interpreting and Returning Messages by Variables

Variables, on the other hand, need to be able to interpret an incoming increase or decrease message
and return a message to the parent containing information about if the value can be changed in the
requested manner and the amount of change if possible.

The interpretation of the messages by operator nodes ensures that the changes in the values of
the variables are consistent with the change requested of the parent. By the recursive nature of the
tree, it is clear that the result is therefore consistent with the request passed down from the root
node and the expression can be improved.

The whole scheme therefore proceeds as follows. The parse tree is evaluated and the degree of
violation of the constraint is determined. A message is passed to each node in the tree which returns
a set of modification operators containing information about how to modify each of the variables.
In the improvement step, a random operator is picked up from the set of modification operators and
applied to the variable it refers to.
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5.5 Proposed Implementation

The implementation of a scheme such as above is relatively simple. First we construct a class
hierarchy as described below to represent variables and operators.

The hierarchy consists of a base class Algebraic-Operator with virtual functions evaluate,
increase and decrease. It has two subclasses, Unary-Operator and BinaryOperator. Each of
which contains pointers to the child operators.

All other classes except the class Variable are derived publicly either from Unary-Operator
or BinaryOperator, the virtual functions increase and decrease being redefined for each class.

The class Variable contains a pointer to the class Dobj (described later), in case the variable
is associated with a bounding box or a single value in case the variable is user defined.

The class Modification-Operator is used for storing information by a variable regarding the
direction of change {INCREASE, DECREASE}, the amount of change possible and the variable
it refers to. A Modification.Operator object will be returned by a variable that is requested to
supply information about the change possible.

The actual algorithm would proceed as follows: all constraints will be mapped to parse trees,
which will be instantiated using the above classes. When a random design is picked from the Ateams
store, the values of the variables shall be assigned to the variable nodes in the tree. The tree will be
evaluated. Depending on the evaluation, a message increase or decrease will be propagated through
the tree and the modification operators returned by the variables will be stored. Any one of the
returned modification operators will be randomly chosen to modify the value of the expression.

5.6 Critique

This section lists some of the issues that need to be addressed in implementing this scheme.

1. Every allowable operator must be coded as a class. In this sense, the scope of arbitrary
algebraic expressions is limited to the number of operators that have been implemented at
any particular time.

2. With function such as log(x), the domain knowledge that the argument cannot be decreased
to a non-positive value must be incorporated into the scheme.

3. The actual amount of increase in the variables should linked to the net change in the value
of the expression. For instance, if the amount of increase required by the root operator is e,
we should ensure that none of the sub expressions are able to modify a variable to exceed the
value.

4. Expression such as XA - XA might be particularly troublesome. Since if a message increase
will be sent to the the variable XA for the left child and decrease for the right child. However,
we expect that this problem will be taken care of by the nature of the search, since we would
expect the improvement to be the average of the improvements over a large population.

5. We have not addressed issues about the stability, convergence and performance of this scheme.
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Figure 5-3: Illustration of the cylinder design problem.

5.7 Preliminary Testing

The above scheme was tested on one problem with the hope of discovering any gross oversight in
our proposal. The problem is the design of optimal hydraulic cylinders formulated in a paper by
Alice Agogino [CA].

The hydraulic cylinder design involves designing a thin walled pressure vessel with inside diam-
eter i, wall thickness t subject to a hoop stress s induced by a fluid under pressure p pushing a
piston with output force f. Refer to the figure 5-3. The interested reader is referred to [CA] for
more details. Our primary purpose was to obtain a ready made algebraic formulation of a design
problem for testing Ateams.

The formulation of the hydraulic cylinder design problem in terms of the above variables is given
below.

Find f, t, p, s, i such that

f>F

p<P

Force f

t

Hoop stress s
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s<S

f = 7ri 2p/4

s = ip/2t
i>0

p> 0

s>0

Where F, T, P and S are specified minimum or maximum values for the variables. This problem
is not very hard for conventional algorithms. It has been successfully solved also using Monotonicity
analysis [CA]. However, the primary purpose was to test the feasibility of our proposed scheme.

The constraints were hard coded into the algorithm. This avoided the use of parse trees for
inferring modification operators. Parse trees are necessary only because the nature of the constraints
supplied to the system is unknown. Therefore a general mechanism is needed to handle any possible
type of expression. Given that the constraints are already known, the structure of the tree can be
hardcoded into the constraint itself, implying that the knowledge about the modification operators
is also hardcoded.

For each constraint, if it was satisfied, the evaluation was 1, otherwise, the evaluation decreased
linearly to 0 till the violation of the constraint was 1000 or less. If the violation was greater than
1000, the evaluation remained 0.

A design object corresponding to the cylinder was created which stored the values of the five
variables f, t,p, s,i and had the capability to interpret an incoming message such as increase or
decrease and modify the corresponding variable accordingly.

Results indicate that the Ateams was able to find at least one feasible solution within 6000
evaluations. The experiment was repeated 10 times and the maximum number of evaluations taken
by the Ateam to come up with a solution were 12000. These results lead us to speculate that our
proposed scheme is feasible.

As will be shown in chapter 7, Ateams can also handle algebraic function optimization using the
above scheme. Full implementation of the scheme has been left for a later stage.

5.8 Summary

This chapter provided the conceptual design of a scheme for incorporating algebraic constraints
in Ateams. Details for representing arbitrary algebraic constraints as parse trees of expressions
were proposed. Methods for evaluating such trees and suggesting modifications were outlined. The
structure of evaluation and modification operators is similar to the one discussed in chapter 4.
Details of a problem on which the scheme was initially tested were provided.

The next chapter provides implementation details of the classes used for the Ateams and the
GAs.



Chapter 6

Implementation Details for
Ateams and GAs

This chapter is concerned with the implementation details of Ateams. Section 6.1 provides a de-
scription of all classes and objects used and their relationships. The level of detail in the description
of each class is confined to the most important pieces of data and methods. Naturally, the choice of
what is important is ours. However, to fill in the rest of the detail, header files for all classes used are
provided in the appendix. Section 6.2 explains the flow of the algorithm. Details of the parameters
used in Ateams are provided in section 6.3. Section 6.4 explains the GA implementation.

The implementation is done using C++. The decision to use an object oriented paradigm for
the system is inspired by the following observations. In a conceptual sense, the Ateams organization
is inherently modular. It consists of agents working on a memory of solutions. Each agent is
independent of the other and can therefore be considered to be an object. Ateams thus lends itself
naturally to object oriented programming.

Moreover, since the approach to Ateams was experimental, it was desired that various parameters
in the search process be easily varied. For instance, various combinations of modification operators,
destroyers, etc. needed to be tried to determine their effectiveness. Modeling the system in an object
oriented fashion allowed such flexibility by allowing the operators to be incorporated independently
into the system when desired.

In addition, our experience with object oriented programs indicated that they are easier to main-
tain, modify and extend. Since the system will be undergoing extensions to incorporate algebraic
constraints, easy extension was a primary goal. The ease of modification of object oriented pro-
grams is demonstrated by the fact - as shown later - that minimal modification was needed to use
the objects from Ateams to link to Grefenstette's GA algorithm for testing.
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6.1 Class Descriptions

The classes descriptions are grouped together for ease and clarity of presentation. Groups are based
on class hierarchies or some natural association between the objects.

The first group consists of generic classes that have been developed for convenience. They are
not particularly related to any one aspect of Ateams or GAs. For instance, such classes would include
abstractions of a 3D vector, or a 3x3 matrix.

Other groups are more related to Ateams. One group provides an interface for Ateams to interact
with the input constraints and objects. The other groups are structured so that one contains all
classes concerned with the solution representation and storage, and the other contains the agents
or the modification operators. A storage bin of operators is not associated with any of the above
groups and is a one class group by itself.

6.1.1 Generic Classes

GN4vector

GN4vector class is an abstraction of a four dimensional vector. Its primary purpose is to facilitate
the use of homogeneous co-ordinates in geometric transformations. It has four components and a
protocol that supports all usual vector operations. It is used as a base class for the class GNvector
- a 3-D vector.

GNvector

GNvector class is derived publicly from GN4vector. It represents a 3 dimensional vector. It has
three components and supports vector addition, subtraction, scalar multiplication, cross and dot
products, matrix multiplication, calculation of magnitudes etc.

GNtransmat

GNtransmat class is used to represent a 4x4 matrix. It is used to instantiate matrices for per-
forming geometric transformations in 3-D. It contains an array of four GN4vector objects. The
protocol includes facilities to instantiate translation, scaling and rotation matrices. All common
matrix operations like addition, scalar, matrix and vector multiplication etc. are supported.

6.1.2 Interface Classes

These classes have been written to provide an interface for input to the Ateams program. These
classes deal exclusively with input. Input to the program is in the form of a list of constraints of
type class ATconst and a list of objects of type Artifact representing bounding boxes. Given a
design, ATconst objects know how to evaluate the corresponding constraint and to send a message
to the design about how that constraint can be improved. Artifact contains the identifying string
for a bounding box and the initial fixed values for any configuration variables for that box.
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Object-Bin

Object..Bin class is designed to store an array of objects of type Artifact, each with its own
identifier, values for the configuration variables if supplied as input, and flags indicating the variables
that are fixed. The primary purpose of this class is to ensure that any later change in the form of
input objects does not affect a large portion of the code. Since other classes deal only with this
class, the only modifications required in case of input changes are to the protocol and definition of
this class. The protocol includes querying the number of objects and getting any particular object
from the array.

Constraint-Bin

Constraint-Bin class is very similar to the Object..Bin class. It serves the same purpose for
the constraints as Object-Bin does for the objects. Private data includes an array of ATconsts
and their number. Protocol includes querying the number of constraints and getting any particular
object of type ATconst. It also includes identifying the index number of any constraint given a
pointer to an ATconst.

6.1.3 Solution Representation and Storage Classes

Dobj

Dobj class is the representation of a bounding box or a prism. It forms the atomic parts of a design
solution. Each object has a string identifier, an array of nine values containing the configuration
variables of the box. It also contains an array of four GNvectors for storing the information about
the local reference axis system of the object - one for the origin and three for the unit vectors x, y,
and z relative to the global frame. And an array of eight GNvectors for storing the co-ordinates of
the eight points of the box. Note that although all the information about the reference axis system
and the corners of the box can be inferred from the configuration variables, storage of these values
avoids unnecessary computation every time these values are desired. Also, there is an array of flags
containing information about which configuration variables are fixed and which are variable. For
arbitrary algebraic variables, there is an array of strings representing the variable names and an
array of corresponding variable values.

The constructor set includes the default and copy constructors, and a constructor that initial-
izes all variables to the values passed in - from the corresponding Artifact in the Object-Bin.
Unspecified values are initialized to random numbers.

The protocol includes convenience functions for accessing and modifying the values of private
data. However, the most important parts of the protocol are the following. A method returns
the starting and end points of the projection of an object on any line specified as the difference of
two 3-D vectors representing its origin and end. This is useful in the evaluation of point interval
relationships as discussed in chapter 4. A second method allows improvement in the values of the
configuration variables. It takes a direction vector and an improvement type, which could be any
of LEFT, RIGHT, CLOCK, ANTICLOCK, SMALLER, BIGGER, UNDEFINED, and
changes the values of the configuration variables accordingly if possible. Thus given a suggestion for
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improvement, every object knows how to improve itself.

Design

Design class is the representation of one design solution, not necessarily feasible. Each Design
object stores an array of Dobjs. It has information about the number of objects in each design, the
number of constraints, and an array of Evaluation objects - described in chapter 4 - one for each
constraint.

Apart from the default and copy constructors, another constructor instantiates a random design
solution. Its arguments include the Object-Bin and Constraint-Bin. For each object in the Ob-
jectBin, a corresponding Dobj is created in the design solution by calling the random constructor
for each object.

The protocol includes methods for accessing any particular object from the array of Dobjs using
the name of the object which is a string representation. Methods exist for accessing and modifying
private data including inserting and deleting particular Dobjs and Evaluations. Important protocol
allow the retrieval of an Evaluation object corresponding to any constraint, checking if one design
is the duplicate of another (all configuration variables are the same), and getting the sum of the
evaluations of all constraints.

HashTable

HashTable class is the implementation of a hash table for storing Design objects. Designs are
hashed according to the sum of their evaluation for each constraint. The primary goal is minimizing
the overhead in storing and accessing design solutions. The hash table uses separate chaining and
therefore also provides a mechanism for grouping together designs according to their hash keys. Class
data includes a hash table and an array of designs. The array acts as a bin of designs. Random
designs are selected from this array. It is used for ensuring that when a random design is requested,
all designs have the same probability of being picked.

The protocol comprises of usual hash table functions, including adding and deleting designs from
the table. Other important methods include getting any random design from the table with an equal
probability, getting a list of the best designs in the table, and checking for duplicates.

Memory

Memory class represents the abstraction of the common memory used in Ateams. It consists of a
HashTable for storing designs, the number of designs with which to populate the initial store, and
the evaluation of the best design found so far.

A constructor creates random design solutions from the Constraint-Bin and the Object.Bin,
and inserts them into the hash table to initialize the store. Other protocol includes adding and
deleting designs, getting a random or a specific design from the hash table, getting the number of
designs in the store, getting the best designs list, and checking if a duplicate for a given design exists
in the store.

For clarity, the containership of the classes is shown in figure 6-1.
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Figure 6-1: A schematic illustration of the important containership relationships between
classes

IGI G: class GNvector

W E: class Evaluation (last chapter)

H O: class Dobj

D
--- • D: class Design
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H: class HashTable

M: class Memory
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Figure 6-2: Class hierarchy of operators

6.1.4 Operators

The operators represent agents in Ateams. An operator requests a design from the store of designs
and modifies or destroys it accordingly. The class hierarchy of operators is shown in figure 6-2.

Operator

Operator class is an abstract class from which all other operators are derived. It is convenient
for providing a uniform interface for all operators. Protocol includes a virtual method for firing an
operator. All classes described below are derived publicly from Operator.

Constraint

Constraint class represents the design constraints input to the Ateams. Data includes a pointer to
ATconst, the incoming constraint object as described earlier. Member methods include evaluating
a particular design, and improving it. The method fire encompasses the entire operation of getting
a random design from memory, copying it, improving the copy and evaluating it before adding it in
the store.

CHAPTER 6.
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Crossover

Crossover class represents the crossover operator analogous to the one used in genetic algorithms.
Protocol includes method to get two random designs from memory and mate them. Mating takes
place by picking a random object and swapping all objects after and including this one with the
other design. The mated designs are evaluated before putting in the store.

Mutate

Mutate class is the analogue of the mutation operator in genetic algorithms. The relevant method
gets a design from memory, copies it, chooses a random object in the copy, a random configuration
variable in that object, and assigns a random value to it. The design is evaluated before inserting
in the store.

Destroyer

Destroyer class is a base class for the following classes. As above, it is derived from the Operator
class. Destroyers are used to destroy bad designs with a given probability. They are necessary for
controlling the size of the population and to make sure that the effects of the other operators are
concentrated on the most promising designs.

Design.Destroyer

Design-Destroyer class has protocol for requesting a design from memory and deleting it with a
probability based on it overall evaluation.

Limit_.Memory..Destroyer

Limit .Memory..Destroyer class includes a method for going through the entire store and deleting
designs with a probability based on their evaluations until the size of the store reaches a certain
minimum limit. A combination of this and the design destroyer was found necessary to control the
design population. The Design.Destroyer operator is fired as a regular operator and therefore
prevents the store size from blowing up. However, it is insufficient in itself to control the memory
unless fired with a very high frequency. Unfortunately this would result in a lower frequency for the
other operators thus limiting the improving action of the algorithm. Therefore at periodic intervals,
the Limit..Memory.Destroyer operator is fired to bring the population under control.

6.1.5 Bin of Operators

Operatorbin

Operatorbin class is the implementation of a conceptual bin of operators. Data includes an array
of operators for storing mutation and crossover operators, destroyers, and constraints, and an array
of frequencies with which each operator must be fired.
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The constructor takes a Constraint-Bin and the frequency of firing of each operator. Protocol
includes methods for getting a random operator according to the specified frequency. And for
evaluating a particular design by sending the evaluate message to each of the constraint operators.

6.2 Algorithm

The Ateams algorithm proceeds as follows. A list of constraints containing objects of type ATconst
and a list of boxes of type Artifact are supplied as input. A ConstraintBin object is instantiated
from the list of constraints and an Object-Bin object is instantiated from the list of boxes.

An Operator-bin object instantiates all operators to be used in the algorithm after reading
constraints from the Constraint-Bin. The probability of firing for each operator is specified at the
time of instantiation of the Operator-bin.

The Memory object reads from the Object-Bin and Constraint-Bin to get information about
the number of objects and their attributes if any, and the number of constraints, and instantiates
and inserts Design objects in the HashTable. The size of the population is specified at the time
of instantiation of the memory.

The main loop of the algorithm is then started, in each iteration, a random operator is picked
from the Operatorbin and fired. In general, the firing of an operator involves picking up random
design/designs from the memory, duplicating them, performing the related modification on the
duplicates, evaluating them, and inserting them in the memory. In case of destroyers, the designs
may be destroyed and will therefore not need to be inserted back into the memory.

After every 1000 iterations, the Duplicate-Destroyer and Limit..Memory.Destroyer are
fired to strip the memory of duplicates and to reduce its size. Operator firing continues until a
prespecified number of iterations have been reached or a feasible design/designs have been found.

6.3 Details

Discretization

Most search algorithm use some form of discretization of the search space. For our problem, we
assume that the K-space of the configurations variables is discretized as follows. The x, y, z, 0,, GO, 0z
variables can assume values only from 1 to 10 and sizes, sizey, sizez can assume even numbered
values from 1 to 10 only. The choice of the number of discretizations is arbitrary and is guided by
the observation that our primary purpose is to compare GAs and Ateams, and therefore the actual
number does not matter as long as the same space is used for both.

Probabilities involved

At many places in the algorithm, probabilistic steps are taken depending upon certain criteria. This
section provides the details of the probabilities involved.

It should be noted that the evaluation of each constraint lies in the interval [0, 1], where 1
indicates that the constraint is satisfied and 0 indicates a very large violation. Therefore, given the
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number of constraints, the scaled evaluation of a design can be obtained by dividing the sum of the
evaluations of all constraints by the number of constraints. Clearly, the scaled evaluation is will also
lie in [0, 1], with a design being feasible if and only if the scaled evaluation is 1. All references to
design evaluations below should be taken to be scaled evaluations.

The probability of picking up any design from the memory is independent of the evaluation of
the design and is given by 1/n, where n is the number of designs in memory at that particular
time. There is no hard justification for making the probability 1/n apart from that it is easier
to implement. Ostensibly, there is no case against a dual scheme in which a design is picked for
improvement based on its evaluation and is picked for destruction with a probability 1/n or inversely
proportional to its evaluation. We stuck to the ease of implementation as a first cut at experimenting
with the system.

The probability of destroying a design picked up by the Design-Destroyer is 0 if the design has
an evaluation-greater than 0.75. If the evaluation is less than 0.75, it is destroyed with a probability
of 0.8. The main purpose is to ensure the diversity of the population by retaining some bad designs.
However, there is no reason for picking up the specific values that we have chosen. These values
were empirically found to behave better in our initial runs and we stuck to them.

The limiting memory destroyer, goes through every design in the memory when fired, and
destroys is with the probability 1 - evaluation3 . The choice of this probability was based on the
observation that it provides a sharp discrimination between the probability of destruction of good
and bad designs owing to the sharp slope of the cubic function near 1 as contrasted to its behavior
near 0. When a duplicate destroyer is fired, duplicates are destroyed with probability 1.

Elitist Strategy

All through the algorithm, the elitist strategy is maintained. That is, we never destroy the designs
with the best evaluation in the store.

While initializing the memory, designs having an evaluation less than 0.2 are destroyed. The
initial store therefore contains only designs with evaluations greater than 0.2.

Limiting Size of the Memory

In initial experiments with the system before the implementation of the Limit..MemoryDestroyer
class, it was found that the size of the memory was very difficult to control using only design
destroyers. At low frequency of design destroyer firing, it was found that the store tended to
grow unchecked. This reduced the effect of the modification operators since the probability of
picking up designs is inversely proportional to the number of design in the store. Experiments
with increasing the frequency did not work out since that reduced the frequency of firing of the
modification operators. Further, the behavior of the system was not stable as the high destroyer
frequency sometimes deleted too many designs and reduced the store to unacceptably low levels.

Therefore, the LimitMemory-Destroyer was implemented. The design destroyers are now
fired with a reasonable frequency, in fact 0.4. This keeps the store in check but is not enough,
therefore every 1000 iterations, the limit memory destroyer goes through the memory and proba-
bilistically - see above - deletes designs until the size of the store is reduced to its original level. The



CHAPTER 6. IMPLEMENTATION DETAILS FOR ATEAMS AND GAS

store therefore periodically expands and contracts every 1000 iterations. This scheme was found to
be very effective in concentrating the efforts of the modification operators on the good designs. In
fact, we conjecture that this may be better than controlling the size of the memory too strictly, since
the expansion may allow the introduction and retention of worse designs longer thereby guarding
against premature convergence.

6.4 Implementation for Genetic Algorithms

The code for Genetic algorithm has been implemented using Grefenstette's GENESIS version 5.0
system. This software is available via ftp. This section describes the characteristics of the GENESIS
system and the details it has been augmented with.

6.4.1 GENESIS

This description is based on the "A User's Guide to GENESIS" 1990, by Grefenstette available with
the software. GENESIS is an experimental system provided to encourage use of GAs for realistic
optimization and search problems. The system supplies the entire code for a GA and the user only
has to provide an "evaluation" function that returns a value when given a point in the search space.
The implementation language is C. Below is the algorithm and specific details relating to GENESIS.

begin
t=0
initialize Population P(t)
evaluate strings in P(t)
while termination not satisfied
begin

t=t+1
select P(t) from P(t-1)
recombine strings in P(t)
evaluate strings in P(t)

end
end

A Genetic Algorithm

Representation

GENESIS provides three levels of representation for the structures it uses. The most flexible of
these is the binary string representation in which each string is represented by a string of O's and
1's having length L. This representation allows the user to give arbitrary meaning to the genetic
structures.



CHAPTER 6. IMPLEMENTATION DETAILS FOR ATEAMS AND GAS

Initialization & Selection

The initial population is chosen at random but a facility for seeding the initial population with
heuristically chosen points in the search space is provided. During each iteration, called a generation
in GA, the current population is evaluated and on the basis of that evaluation, a new population
is formed. The selection procedure is based on an algorithm by James Baker and ensures that the
expected number of times a member of the population is chosen is proportional to the member's
performance relative to the rest of the population.

Recombination Operators

Genetic recombination operators include "crossover" and "mutation". Crossover proceeds by random
selection of two points. Mating occurs by randomly selecting the point of crossing. The rate of
crossover, that is, the expected number of offspring chosen for crossing, can be varied.

The "mutation" operator is applied to the whole population after selection. The rate of mutation
can be changed by the user. The frequency of mutation is determined by computing an interarrival
time between mutations, assuming a mutation rate is specified. Each string in the population is
offered a chance for mutation based on the frequency. If a bit position must be mutated, a random
value is chosen from {0,1} for that position.

Termination

Termination may occur by fixing the total number of iterations, finding an approximate feasible
solution, or some other application dependent criteria.

Evaluation

The evaluation procedure is the only thing the user has to supply. GENESIS expects to link up
with a C function with the following prototype.

double eval(char *str, /* string representation
int length, /* length of bit string
double *vector, /* floating point representation */
int genes /* number of elements in vector */

The code within the function is unrelated to GENESIS and can be entirely application dependent.
Since we used only the string representation, the last two arguments of the function were irrelevant
to us.

Important Variable Parameters

GENESIS allows the user flexibility in the specification of certain parameters. The description of
the variables relevant to us is given below.
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1) The length of the string.
2) The number of independent optimizations of the same function.
3) The number of trials per experiment.
4) The population size.
5) The crossover rate.
6) The mutation rate.

6.4.2 Representation of a Design in GAs

Since the GA will be working with binary string representations only, we need to provide a mapping
from a string representation to a valid design. We have implemented a simple mapping of the form
shown below.

L
I--------------------------------------I
11001010 0110100011010 010010010111111
I--------I ---------- I------------I

A B C

Consider a design consisting of three bounding boxes A, B and C. Each box has nine parameters,
x, y, z, size,, sizes, sizez, Ox, ,y, 8z out of which some may be fixed and some variable depending upon
the initial constraints. We assume that each parameter x, y, z, 8z, 6,, 6, requires four bit positions
of the string and each size,, sizes, size, requires three bit positions. Also we assume the string
to be the representation in the base 2 of the parameter value. This means that each parameter
x, y, z, Ox, Is, ,, can vary from 0-16 and each parameter size,, size7 , size, can vary from 0-8. If we
assume that a parameter that is fixed does not need to represented in the string, the length of string
required to represent all the parameters of an object varies depending on how many and which of
its parameters are fixed.

Therefore, depending on how many objects are present in a design and the variable parameters
of each object, the total length of a string required to represent a design will be different. The
advantages of having a scheme in which the length of a string is dependent on the number of fixed
variables is that the dimensionality of the search space is reduced by reducing the length of the
string. In a way, therefore, some of the constraints are hardcoded into the representation.

6.4.3 Modifications to the classes for linking to the GA

The classes used for Ateams have been adapted with minimal modifications for use with the GA
algorithm. In fact, since the only relevant operation in the GA to be supplied by us was evaluation
of a design, we required only a subset of the classes described before. Specifically, this meant that
the modification operator classes Crossover, Mutate, Destroyer and its children were not needed
at all. The modifications were required for only the Dobj and Design classes and are listed below.
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Dobj

Two modifications were required. One, the addition of a data element that stored the number
of characters in a binary string that were needed for representing the parameters of a box. And
two, the addition of a member method which when given a string of length greater than or equal
to the length required for the object, interpreted the string and stored the relevant values of the
nine parameters of the box. This method allows us to instantiate objects of type Dobj in which
if arbitrary parameters of a box are fixed, they are not required to be represented in the string
representation of design. The method for interpretation returns the number of bit positions used up
by the parameters of an object.

Design

The Design class required the addition of a member method which takes a binary string as an
argument and passes it down to the objects one by one. Through this function, a given string is
mapped to the parameter values of objects after which the same method for evaluating the design
can be applied that is used for Ateams.

The following section explains how the evaluation function for the GA is written using these
modified classes.

6.4.4 Evaluation Function

The first time the function eval is called, it instantiates a Constraint-Bin, an Object-Bin and an
Operatorbin from the supplied lists of ATconsts and Artifacts exactly similar to the Ateams
algorithm. A static Design object is also instantiated in which the parameter values for all objects
are set to zero unless they are required to be fixed to some other value.

The string supplied to the eval function is interpreted by the design. The design is evaluated
and the scaled evaluation of the design is returned to the GA.

6.5 Summary
This chapter presented details of the implementation for both Ateams and GAs. High level class de-
scriptions were provided. More detail is provided in the appendix. Explanations of the implemented
algorithms and details of the parameters used for both algorithms were given.

The next chapter provides a detailed comparison of Ateams and GAs on artificially modeled
search spaces. It explains the essential characteristics of blind search techniques. Metrics for the
comparison of Ateams and GAs are identified and the results of the tests are provided.



Chapter 7

Comparison of Ateams with
Genetic Algorithms

This chapter compares Ateams and Genetic Algorithms as search techniques. The main purpose
of the comparison is to find out if Ateams merit research effort as a viable alternative to genetic
algorithms. We feel that given this first implementation of Ateams, if they exhibit performance
comparable to GAs on a set of test problems, we might be able to refine them to produce better
performance.

The chapter begins by defining a context which makes the comparison relevant. Section 7.1
provides an introduction to conventional search algorithms. Section 7.2 explains the factors affecting
the performance of search algorithms by constructing typical search spaces. Metrics for comparison
between Ateams and GAs are defined and justified in section 7.3. Sections 7.4 and 7.5 explain the
testing methodology and the parameter set used. The suite of test problems is defined in section 7.6.
Sections 7.7 and 7.8 present the results and conclusions.

In order to develop a context for the comparison, we must provide answers to the following
questions. In the context of the comparison: why compare Ateams to GAs only and not other
search techniques? And in the context of the application in which we are using Ateams: why use
black box search for constraint satisfaction instead of classic search techniques like backtracking
etc.? Both these questions are addressed below.

We claim that classic search techniques are not suited to our problem [Sri94]. Therefore the
only serious competitors to Ateams for solving the conceptual design problem are techniques like
GAs which have empirically proven effective over very difficult problem domains. If our task was to
present a comparison of the prowess of all search techniques, it would have been relevant to compare
Ateams to other search methods. However, if we are to focus only on techniques that can solve our
design problem, then the only methods worth looking at our GAs and Ateams.

Regarding the second question, classic constraint satisfaction techniques were found to be ill-
suited to the nature of our application. The exploration of a design space requires that the designer
be presented with a set of alternatives which satisfy the constraints. Techniques like classic and
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heuristic backtracking typically find one, if any, solution to a set of constraints. Generation of
each extra alternative requires the whole algorithm to be run again. Naturally, the performance of
these techniques is not adequate for our problem. In contrast, Ateams naturally find more than one
solution, if any to the set of constraints with minimal extra effort. Although there is no natural
correspondence between the complexity of one run of Ateams against one run of a backtracking
algorithm, on the average we expect the real time required in Ateams to be less.

7.1 Search Problems and Algorithms

The "black box function optimization" problem requires a search strategy to find the function
extrema without knowing the function structure or the range of possible function values. Constraint
satisfaction problems can be framed as "black box function optimization" problems by assigning a
penalty to constraint violations, thereby ensuring that any solution that satisfies all constraints is
the optimal one.

Search strategies can be classified as point based or population based [Sri94]. Point based
strategies like hillclimbing, simulated annealing, etc, pick a point in variable domain and decide on
a direction in which to move based on the evaluation of a number of points in the neighborhood of
the current point. With deterministic algorithms like hillclimbing, the algorithm moves to the best
point in the neighborhood of the current point. With stochastic strategies like simulated annealing,
the next point is picked probabilistically based on the evaluation of the points. Population based
strategies like genetic algorithms maintain a population of candidate points. From the population,
the best points are picked in a randomized fashion that allows points with the best evaluations and
their combinations to be more likely to be picked up. In this way, the population of better point
increases until the optimum is found.

Ateams can be viewed as a population based randomized search strategy. In fact, if we pick up
a point in the population and attempt to improve only one constraint at a time, we can consider
our problem as a "black box multiobjective optimization" problem with Ateams acting as a "local
hillclimbing strategy".

A question that must be addressed is: are Ateams merely a modified form of GAs with knowledge
incorporated into the operators ? Our answer is no. There are fundamental differences between the
two techniques. Ateams has flavors of Genetic algorithms in that it is population based and operators
such as crossover and mutate, which are normally associated with GAs, can be easily incorporated
into it. It also has flavors of randomized biased search and simulated annealing in that sometimes
points with bad evaluations are kept around to maintain a chance of jumping out of local minima.
Consider, however, the important differences in the mechanics of Ateams and GAs. In GAs, the
an entirely new population is produced in every generation and recombined. The old structures are
thrown away. In Ateams, the existing points are as likely to be kept as the new improved points.
There is no inherent concept of producing a newer better set of points in each iteration. In fact, the
improvement of the population is more diffused process than GAs.

Also, in our simple implementation, some very significant differences between Ateams and GAs
become clouded. Since Ateams are supposed to be modular organizations of agents which can be
complete algorithms in themselves, it results in tremendous flexibility by allowing the use of existing
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Figure 7-1: A mostly maximal space

techniques as part of a larger organization. Obviously this is impossible to do with GAs. We hope
to include established algorithms such as backtracking etc. as agents in our Ateams implementation
in future research as our system matures.

On an intuitive level, one function optimization with Ateams can be visualised from the mechan-
ics of the algorithm. A population of points is picked in the variable domain. In each iteration of
the algorithm, a point is picked at random. With a certain frequency, an operator such as improve
or destroy is picked up and applied to the point. If the destroy operator is applied, the point is
destroyed with a probability depending on its evaluation. If the improve operator is picked, a copy
of the point is made and improved in the most promising direction in the immediate neighborhood of
the point. After a fixed number of operator applications, every point in the population is evaluated
for destruction and destroyed probabilistically until the number of points is equal to or less than the
initial size of the population. Visually, in 3D space, we start with a population of points. At the end
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Figure 7-2: A linear space

of fixed number of iterations, each point will either have stayed fixed, or have generated improved
offspring exploring a small neighborhood in its immediate vicinity, or will have been destroyed. A
reasonable analogy is expanding balls around points in which each ball contains the point and its
offsprings until the entire population is purged shifting the center of the balls to points which have
better evaluations on the average.

7.2 The Nature of the Search Space

If the structure of the function to be optimized is known a priori, some form of strategy can be
devised that is very good for that class of problems. For instance, if the function is assumed to
be linear, it is clear that a hill climbing strategy will find the solution to the problem is no more

-1
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Figure 7-3: A unimodal space

than n+1 function evaluations. In "black box problems", however, no such information is available.
This means that it is extremely difficult, if not impossible to devise strategy that is optimal. Ackley
[Ack87] showed that no known search strategy could be better than all others on all classes of
problems. This is mainly because each strategy makes some implicit assumptions about the nature
of the search space. As long as those assumptions are satisfied, it is better than the other strategies.
For instance, the assumption behind hill climbing is that the function space is unimodal. In effect,
it may be difficult to articulate the implicit assumptions of most strategies to understand their
limitations. However, a feel for their performance can be gained by considering examples of their
behavior on different function spaces.

It is hazardous, at best, to rely on spatial intuition when considering arbitrarily high dimensions.
But since there are no intuitive ways of visualizing higher dimensions, all examples below will consist
of real functions defined on a two dimensional space. These examples have been reproduced from

-10
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Figure 7-4: A bimodal space

Ackley's book [Ack87].
All examples are defined on a the xy plane, with z representing the function values. The domain

of the variables is from -10 to +10. Since search algorithms use some form of discretization of the
space, we can assume that the domain is discretized into 10,000 sample points - a 100x100 grid.
Obviously this is not that large a space, and it is perfectly possible to carry out an exhaustive
enumeration here to find the optimal point. For instructive purposes, however, it is sufficient.

Figure 7-1 shows the easiest space of all. Most of the points are optimal. In such a space, even
randomly searching would find the optimum very quickly, and no search algorithm has a problem
with it.

Figure 7-2 shows a linear space. Global maximum always occurs at one of the corners of the
space. Most search strategies would do well in such a uniform space. In fact, simply extrapolating
from three non-collinear points will always find a global maximum.
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Figure 7-5: A coarse multimodal space

Figure 7-3 shows a unimodal space with function z = 200e-0.2V'i2. In such a space the simple
hillclimber will find the optimum without fail. In fact, the improvement in each step of the algorithm
is monotonic, and in this particular case, the performance of the algorithm can be expected to be
very good. However, there do exist unimodal spaces in which the performance of the hill climber is
not impressive. For instance, suppose there were a ridge in figure 7-3 which spiralled up to the top.
The hill climber would get trapped on the ridge and move along its top taking a path around the
mountain leading to a very low rate of ascent.

Figure 7-4 shows a bimodal function. There are two maxima, one of which is local. Simple
hillclimbing cannot guarantee a global maximum in such a case, since the starting point of the
algorithm will determine what direction it will take. In practice, this sort of multimodality is the
primary reason for rejecting the hill climbing approach. Modifications to the hillclimber, however,
have been proposed such as random restart hillclimbing, in which the hillclimber is run again with
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Figure 7-6: A fine multimodal space

other randomly chosen starting points. In spaces that are multimodal, such as above, but in which
large portions are unimodal, this approach might work, since the iterated hillclimber would be
expected at some time to start off on the slope leading to the global maximum.

Multimodal spaces, however, may be of a much finer texture than the one shown in figure x4. For
instance, consider the function z = 200e-0.2V/2+y + 5ecos 3 z + s in3y shown in figure 7-5. The space
is still largely unimodal, but the areas leading up to each local maximum are small. The iterated
hillclimber would therefore be expected to get trapped on top of the local maxima most of the time.
Search strategies such as simulated annealing are expected to do better in such a domain since they
are geared towards escaping local maxima probabilistically by sometimes making movements in bad
directions as well. However, the disadvantage of this is the reduced speed with which they can climb
the global maximum.

In seriously complicated spaces, local methods degenerate rapidly. Consider figure 7-6 which

10 10
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Figure 7-7: A conjunctive space

shows the function z = e- 0.2V Y2+3(cos2x+sin2y). There are two problems with this function.
First, the bases of the hills are small compared to the total area of the xy plane, and two, the
heights of the hill are large compared to the bases. Local methods would therefore most probably
get stuck on one of the suboptimal spikes. Even simulated annealing will run into problems since
to get out of the local maxima, a very long jump is required. Unless, therefore, the simulated
annealing algorithm is cooled very slowly, the chance of the algorithm converging to the global
minimum is very small. Population based algorithms such as GAs, however, might fare better in
such circumstances since they involve a notion of somehow parallel optimization of different points
and their combinations in the space.

At the end, consider the conjunctive search space given by the following function and shown in
figure 7-7.
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z= 5 if x = 3 and y = 3
0 otherwise

This type of search space is one of the most intractable for black box optimization since any
reasonable sampling of the variable space would lead one to conclude that the space is mostly
maximal unless the exact guess of the variable combinations is made. Local methods are hopeless,
but population based methods also stand a slim chance, at best. The probability that the maximum
is sampled decreases rapidly with the number of discretizations and the dimension of the space.

As a comment, it must be emphasized that the functions shown above do not even begin to
approach the complexity of real search spaces. In effect, all the examples are easy in the sense that
the functions have fairly regular structures, albeit complicated. However, they do serve to enhance
the strengths and the weaknesses of various search strategies and it will be instructive as we model
our search functions later on to see how they compare to the above spaces.

As a point of interest, it is useful to present the topology of the space represented by constraints
in our qualitative algebra. Recall our formulation of the design problem in terms of QSRs: it assumes
that a point that satisfies a constraint has an evaluation of 1.0 for that constraint. If it violates a
constraint by more than a fixed amount, it has an evaluation of zero. In between, the evaluation
of the design is a number between 0 and 1. Upon reflection, we note that most of the space must
be flat and the tops of the hills must be plateaus corresponding to feasible designs. Therefore if a
design is found to be in one of the lower flat areas, it is extremely likely to be destroyed. If a design
is on one of the slopes to the plateaus, it is a candidate for improvement. The function values are
always positive, and the optimal value is known to be 1.

One of the problems represented by the above space for point based algorithms - even simulated
annealing, is that if the starting point is found to lie on one of the lower fiat spaces, the direction
of improvement is very difficult to determine. The second problem for deterministic point based
strategies is that this topology is really a case of multiobjective optimization, considering each
constraint as an objective to be satisfied. Since point based strategies require a value of the function
that is better than the original value, some combination of the evaluation of the constraints has
to be supplied to the search mechanism. However, it is mostly possible to supply a value to the
searcher such that it actually leads to a point from where no improvement is possible.

7.3 Metrics for Comparison
The most difficult issue in trying to compare GAs to Ateams is the choice of the metrics. It is
natural to think of the performance of an algorithm in terms of convergence and the quality of the
solution - since an approximate solution may not be acceptable in some cases, the speed with which
the solution is obtained and the class of problems which the algorithm can solve.

All of these points pose significant problems in comparison of black box optimization techniques
necessitating the redefinition of the concepts of convergence and the measure of speed. Below we
discuss each of the above points in detail.

The first problem is the quality of the solutions obtained by a search strategy. In some problems,



CHAPTER 7. COMPARISON OF ATEAMS WITH GENETIC ALGORITHMS

it is possible to settle for some form of an approximate solution within a neighborhood of the global
optimum. In other situations, it is impossible to do so. For instance, a sorting algorithm that
guarantees that the data will be approximately sorted is probably of no use. On the other hand,
in numerical integration, nothing better than an approximate solution can be guaranteed and is
usually sufficient.

If we take the position that the global maximum must be found exactly, we obtain an important
simplification since the quality of the solution is never in doubt. This has an important parallel
in the constraint satisfaction problem. In artificial intelligence, the constraints in a CSP can be
considered to be strong or weak. Strong constraints must be satisfied before a problem is considered
solved. By contrast, a small violation of the weak constraints can be tolerated in the final solution.
Taking the position that the global optimum must be found is similar to taking a strong constraint
stance.

However, the global optimum may not be obtainable a priori. Testing the algorithm on arbitrary
problems therefore does not constitute a reasonable test since there may be no way of knowing if
the true optimum has been attained. A reasonable strategy is to define a fixed set of problems for
which the global optimum is known and which are designed to test important qualities of search
methods.

The single most important question, however, is usually that of speed. How long will the
algorithm take to find the solution ? Memory requirements, though important, have been reduced
in importance by the rapid advances in available RAM. Other factors are also relevant in particular
cases, but the natural measure of algorithm performance is speed. There is however, a problem.
Speed measured as what? Although the most natural choice is the amount of time one has to wait
for an answer, and therefore a natural measure would be the raw CPU time, it is probably not
the best judgement criteria for a variety of reasons. The CPU time is heavily machine dependent,
and incorporates a lot of overhead time used in storage and IO which is not only different for
different processors but depends very much on the peripheral devices. This does not allow for the
comparison of CPU times on different machines. Moreover, we know from studying the complexity
of conventional algorithms that differences of speed of upto factors of two can simply be a result of
programming details [PS82].

A machine independent criterion for measuring speed that is often used is the number of eval-
uations that are performed by the algorithm before it finds a solution. There are problems associ-
ated with this metric too. Experience has shown that when the number of function evaluations is
recorded, different kinds of evaluations are grouped together to form one evaluation. For instance,
in non-linear optimization, the evaluations typically involve gradient as well as function evaluations.
However, when the number of function evaluations is recorded, it sometimes includes the gradient
and Hessian-matrix evaluations as well. This may have the advantage of being machine independent
[Loo71], but it does not inform the user of the amount of effort necessary to solve a given test prob-
lem. For instance, gradient projection methods involve a lot of time consuming array manipulations
which are not negligible with respect to the function and gradient evaluations.

In general, therefore, if we are to use the number of evaluations as the metric for speed, we must
show that the function evaluations constitute the major portion of the time used by the algorithm.
Or, relaxing the requirement a bit, we must show that as the problem grows in dimensionality, the
rate of increase of the time used by the algorithm is proportional to the increase in the number of
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evaluations. This has the important simplification of ignoring the necessary overhead that must be
accrued in any algorithm in the storage and manipulation of solutions.

7.4 Testing Methodology

Our original problem was the application of Ateams to the CSP formulated in the QSR algebra.
However, as argued before, although the performance of various search strategies can be tested
on a collection of such problems, it is difficult to gain much insight into the reasons which affect
the performance of particular strategies. Our fundamental assumption is that the shape of the
underlying search space is the most important factor affecting performance. In the QSR algebra, it
is difficult to formulate analogues of the spaces which are described in section 7.2. We would ideally
like to have controlled spaces which, even if they are not representative of the actual problems to be
solved, will give us some insight into the limitations of each of the methods.

For this reason, we decided to test Ateams and GAs on a suite of real functions defined on
n-dimensional spaces that approximate as closely as possible the essential spaces discussed in sec-
tion 7.2. The functions themselves are described later. The objective is to find the global maximum
of the function.

The measure used for speed is the average of the number of evaluations on 10 runs of the
problem. We test the speed on each function. The search space is assumed to be contained within
a hypercube. Apart from the topology of the space, there are two ways in which the difficulty of
the search can be controlled. One is the dimensionality of the space and the other is the level of
discretization of the variables. We attempt to study the effect of both on the performance of the
algorithms.

7.5 Parameters

In both GAs and Ateams, the performance of the algorithm depends on certain parameters, for
instance, to mention a few, the crossover and mutation rate in GAs and the probabilities of destruc-
tion and improvement in Ateams. Ostensibly, different settings of parameters will be required for
optimal performance of the algorithm on different problems. However, since it is impossible to know
what the setting of the parameters should be for a particular problem and it is impractical to expect
the user to tinker with the algorithm using different runs to find the best setting, we use a fixed
parameter set across all problems. The hope is that the effects of varying performance will average
out over the problem domain we have selected.

7.6 The Function Suite

The inspiration for the functions we have constructed stems from the spaces described in section 7.2.
All variables are real. We created these function by a kind of reverse analysis. Given that the end of
the search occurs when the global maximum is evaluated, the neighborhoods of the maxima become
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very significant. The real task is to model the neighborhoods of the global and local maxima such
that they portray all the stereotypical properties of the search spaces described before.

The common element in these functions is that the global maximum is always located at a specific
point (0, 0, ......., 0). Although this may sound trivial when stated as above, note that the search
strategy has no way of knowing that the global maximum is at (0, 0, ......., 0) and not anywhere else.
In fact, there is no advantage to be gained by shifting the global maximum to an arbitrary vector
location.

The second commonality is that the global maximum always has a value of 1.0. The reason for
this was mainly convenience. Ateams had been implemented already to handle constraint violations
from 0 to 1, and the nature of storage of the solutions depended on this range. Therefore we thought
it was prudent to use the same scheme for the time being. Note that this is not a major drawback in
any sense since traditional GAs are insensitive to the scaling of the function values. This is because
the reproductive fitness of individuals is determined by dividing its function value by the average of
the space.

The search space is assumed to be contained in the hypercube -1024 < xi < 1024, Vi. The
dimensionality of the space is 12, 16 and 20 and for each of these, we allow three levels of discretiza-
tion, 1:1, 1:2, 1:4 where 1:2 means one unit of the variable is discretized into two parts. It is obvious
that for the smallest case involving 12 variables and a discretization of 1:1, the number of search
points are 2132. For the largest case involving 20 variables and 1:4 discretization, the search space
has approximately 2260 points.

7.6.1 Unimodal Space

The first function is a unimodal space. It is used for testing how well Ateams and GAs compare on
easy spaces for which they have not been designed. A low dimensional instance of this function is
shown in figure 7-8. The function is given below:

f(X) = 1 - 1024

It is clear that the maximum occurs at (0, 0,..,) and has value 1. To see that there are no local
maxima, note that x Z 0, x E Rn = 39xi. 0, i* = 1, ..., n. Then for any E > 0, the vector 1 having
Yi = x,,Vi except i*and xi. = xi. - e if xi > 0 and xi. = xi. + e if xi. < 0 = f(x*) > f(x).
Therefore no non zero vector can be a local minimum.

7.6.2 Multimodal space

This is somewhat an analogue of the bimodal space described before in the sense that although it
has more than two maxima, the nature of the space is very benign. The number of local maxima
are 2" with large collecting areas around each maximum. Therefore there is a chance of getting to
the global minimum with strategies like random restart hill climbing. The global maximum occurs
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Figure 7-8: Unimodal function space

at (0,0,.., ) and local maxima at all corners of the hypercube i.e. when xi = -1024, Vi. The 2D
version of this space is shown in figure 7-9 and the function is given below.

1 1
f (x) = 6 1024 - 0.6

i--1

To see that the function has maxima at (0, 0, ..., 0) and at the corners of the hypercube, note
that the minimum and maximum values of the component v/E-=Z x are zero and 9vi1024 within
the hypercube. Therefore the value of the function is 1 at x = 0 and 2 at all corners. For any other x
such that some xi 0 ±1024 and x # 0, if - /'Il xi > 0.6, for any f > 0, the vector i having
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Figure 7-9: Multimodal function space

fi = xi, Vi except some i* and x•. = xi. - c if xx < 0 and ex. = zi. + c if xi. > 0 =, f(x*) > f(x).
Similarly if avg x/i-j xi < 0.6, the vector & having i, = zi, Vi except some i* and ex. = xi. - f
if xi > 0 and ex. = xi. + e if xx. < 0 = f (x*) > f(x), therefore there are no other local maxima.

7.6.3 Porcupine space

This space corresponds to the sharp high multimodal space. The function is shown below.

f(s) = J 0 2 4 Vn'1024 - ? - Zh (x) + 3VFi-1 1

-1000



COMPARISON OF ATEAMS WITH GENETIC ALGORITHMS

Figure 7-10: The porcupine space

where

( (xi - L[ix) if xi >= 0
h(x) (i -[xi]) if xi < 0

This function has a global maximum of 1 at x = 0 and a local maximum at all points with integer
coordinates. At x = 0, note that f(x) = 1 and at all vectors with integer coordinates, f(x) < 1.
Also, note that in the neighborhood of the integer vector x defined by [xiJ < xi < [xi]Vi, the value
of the function is less than the value at x.

The corresponding 2D function is shown in figure 7-10. As is evident, this is an extremely
fine grained multimodal space. But the figure does not do justice to the space because of the low
resolution. In fact, the space is much finer grained than shown. Two of the extremely difficult
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properties of the space are the high number of maxima and the collecting area near each maximum.
Note that we can guess intuitively by looking at the function that when any component of x is
integer and is reduced by any amount, the function value experiences a very sharp drop. In fact,
the integer points are almost like vertical cliffs if approached from the sides where the components
of x are smaller than the integer coordinates. Even this terribly inarticulate exposition gives some
idea of the noisiness encountered by the search strategies. With this kind of space, any hill climbing
algorithm will get stuck on one of the local maxima with a probability very close to 1.

7.7 Results

This section discusses the results of our experiments. The objections to the methods of the study
are addressed. The characteristics and limitations of the data are explained and the primary trends
that we are looking for in the data are specified.

For each function in the function suite, the number of evaluations reported for both Ateams and
GAs are the average of 10 runs until the first optimal solution is found. There are valid objections
to this. Specifically, ten runs constitute too small a data set to be of any conclusive value. Also, it
would probably be more insightful to perform a statistical analysis of the data since the distribution
of the data might be indicative of whether the average is a reasonable measure of the performance
for any particular experiment - an experiment consisting of a function with a fixed dimensionality
and discretization.

We note the following responses to these objections. Firstly, our effort has not been directed
toward providing conclusive proof that Ateams are better than GAs. Rather, we have provided
initial evidence that the study of Ateams might be a promising research topic. Conclusive testing
of both approaches has been left for future research. Therefore the issue was investing a reasonable
amount of effort to see if Ateams are even worth the effort. That constitutes the rationale for a small
data set. The second limitation of not being able to perform a statistical analysis stems from the
first. It is probably of no value to do an analysis on a data set of dimension 10. Therefore elaborate
analysis must also wait until enough data is collected.

Other objections are of a more serious nature. Can we seriously compare one evaluation of
Ateams with one evaluation of a GA in terms of the time taken? Our claim is that we can, for the
following two reasons.

Having implemented the system, we can confidently claim that the evaluation functions for both
Ateams and GAs are almost identical, with the Ateams function involving slightly more conditional
statements for suggesting modification operators. The second response is much more substantial.
From a substantial number of observations, we found that there is a reasonable correlation be-
tween the CPU time and the number of evaluations for each function. Using the UNIX command
/usr/5bin/time, we observed the real time used by the algorithms against the number of evaluations
performed. For GAs, each 1000 evaluations take ; 3.5 seconds. This figure seems to remain stable
across different functions. For Ateams, there is considerably more variance, but the number varies
from 2.4 secs/1000 evaluations to 4.4 secs/1000 evaluations depending on the function. There are
two primary reasons for this. First, the time recorded for the Ateams involves a substantial portion
involved in dealing with the Motif interface that is not used by the GA. Second, the algorithm for
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the limit memory destroyer is still unoptimized, therefore as soon as Ateams start to converge to a
better population, the number of iterations required to manage the store become large. Therefore
the real time for Ateams involves substantial unnecessary overhead at this time. However, we can
still conclude that the evaluations are reasonable measures of the time expected to find the optimal
solution.

If we accept the choice of the average number of evaluations as a representative measure of the
performance for both Ateams and GAs, we will need to note some other points before we start
analyzing the data. First, because of the small data set, we should reasonably expect a lot of noise.
Particularly, this means that we need to decide how much of a difference in the average to allow
before we say that there is significant difference between them. The argument here is competely
heuristic since we have no way of answering this question. We decided to take a reasonable way out.
Upon successive ten runs of the Ateams for a given experiment, it was found that the average did
not vary by more than 1000 evaluations. Similarly, for GAs, the average did not vary by more than
2000 evaluations. Therefore, when analyzing the data, we will consider data having differences of
less than 1000 for Ateams and less than 2500 for GAs to be the same.

When analyzing data, we shall look for the following trends.

1. The total number of evaluations taken by Ateams against the total number taken by GAs.

2. The degradation of performance of the algorithms at a fixed dimensionality across increasing
discretizations.

3. The degradation of performance across a fixed discretization with increasing dimensionality.

4. The degradation of performance across topologies.

The first point is the most natural piece of information to look for in any comparison. Its
relevance is obvious and the objections have been taken care of.

Regarding the second point, there is an important subtlety that must be noted. The number
of discretizations is extremely important in some cases in controlling the complexity of the search.
For example, consider the porcupine function in our suite. It has local maxima at every vector with
all integer co-ordinates. The entire difficulty of the search lies in the small neighborhoods around
each local maxima. Upon reflection, we find that if the number of discretizations is 1:1, the nature
of the search space is not different at all from the unimodal function in our suite since there are
no points representing the neighborhoods in the search space. A neighborhood here is taken to be
all points around a vector with [xiJ < xi < [xil. As the search space is discretized to 1:2, we find
that the number of points in the neighborhood of each local maxima increase to n, where n is the
dimensionality of the space. Upon discretization to 1:4, the number of points in the neighborhood
increases to 2n. Discretizations are therefore important in the study of algorithm performance in
controlled topologies and require close inspection.

With respect to the third and the fourth points: the dimensionality of the search space is
obviously important and therefore no argument in its favor is presented here. Also, the performance
across topologies is important, for we want to observe the behavior of the algorithms as the space
becomes noisier.
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Ateams 12 16 20
1:1 4030 7404 8595
1:2 4400 6518 8273
1:4 4317 5563 7091

GAs 12 16 20
1:1 20656 26435 35909
1:2 24005 35813 45497
1:4 28626 40562 57874

Table 7.1: Evaluations performed by Ateams and GAs on the unimodal function

We shall discuss the data for each function individually. For each function below, the results
of Ateams and GAs are tabulated and bar graphs are provided. In all bar graphs, the smaller bars
represent the Ateams evaluations.

One point that must be recorded about the data is that when given an upper bound on the
number of evaluations, often GAs would not be able to find the optimal solution. In such cases,
we recorded the upper bound as the number of evaluations for that run of the experiment. The
rationale is: the total number of runs for each experiment is so small that omitting the data for even
one of the bad runs will give an overly optimistic average. Using the upper bound, although it still
gives an optimistic estimate, brings the average much closer to what would have been if the GA had
been allowed to go on.

7.7.1 Unimodal Function

From table 7.1 and figure 7-11, it is clear that the difference in the number of evaluations taken by
Ateams and GAs for any particular experiment is orders of magnitude. In fact, the best that the
GAs could do was almost 3.5 times the number of evaluations for Ateams and the worst was 8 times
the corresponding Ateams evaluations.

Also, note that across discretizations, the performance of the Ateams was relatively very con-
sistent - a fact that was surprising to us. In fact, the performance seemed to get better in higher
dimensions. However; we'll attribute its likely cause to be noise and assume that the performance
was relatively consistent.

GAs, on the other hand, experienced significant degradation in performance. And the dete-
rioration seemed to increase as the dimensionality of the space was increased. In fact, the least
degradation was for 12 variables, ; 4000, and the most for 20 variables, = 21000, when the dis-
cretizations increased from 1:1 to 1:4. This is a huge difference.

With increasing dimensionality, degradations in Ateams occur of the order of magnitude. for
instance, from 12 to 20 variables for 1:1 discretizations, the number of evaluations doubled. How-
ever, the total number of evaluations is still relatively small as compared to the GAs. Given our
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Ateams 12 16 20
1:1 4178 6858 9057
1:2 4671 6792 7972
1:4 4367 6117 7785

GAs 12 16 20
1:1 18853 28432 39018
1:2 21866 34602 46554
1:4 27258 29360 50816

Table 7.2: Evaluations performed by Ateams and GAs on the multimodal function
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expectations of the amount of noise in the system and the small initial number of evaluations, this
was to be expected. The worst case performance of the GAs is also a two fold increase from 1:4 -
12 variables to 1:4 - 20 variables.

7.7.2 Multimodal Function

Again, by looking at table 7.2 and figure 7-12, we can see that in terms of the total number of
evaluations, there is no comparison between Ateams and GAs. GAs routinely take almost 4 - 5
times the number of evaluations required for Ateams. Their best being approximately 4 times and
their worst being almost 6.5 times.

Across discretizations, the performance of GAs again degrades considerably, though not as bad
as before. The least degradation of : 10000 occurring from 1:1 to 1:4 for 12 variables and the worst
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Ateams 12 16 20
1:1 4596 6435 9245
1:2 5930 7587 10212
1:4 4797 7007 10578

GAs 12 16 20
1:1 19453 26998 35909
1:2 25439 37997 54446
1:4 29163 42357 59279

Table 7.3: Evaluations performed by Ateams and GAs on the porcupine function

of ; 12000 for 1:1 to 1:4 for 20 variables.
Ateams, on the other hand, seem to fare excellently. There is no degradation at all with increasing

discretization for any dimensionality.
Across dimensions, the deterioration in Ateams performance is almost the same as before. On

the whole, both GAs and Ateams seem to fare fairly well on this space. One possible explanation is
that the slope of the function seems to be much sharper than the slope of the unimodal function. This
means that the difference in the evaluation of non-optimal points and the optima can be expected
to be more, leading to greater pressure toward the optimum.

7.7.3 Porcupine Function

The most interesting case is the porcupine space, for it is here that we expect to run into the
most limitations of both algorithms and to compare them. The results for this function are tabulated
in table 7.3 and shown in figure 7-13.

Again, in terms of the number of evaluations, GAs are no match for Ateams. Their best being
approximately 4 times for 1:1 - 16 variables and their worst being z 6 times for 1:4 - 16 variables.
In fact, the performance of GAs might have been more dismal for this was the function in which the
GAs very frequently failed to find the solution in a given number of evaluations.

Regarding discretizations, Ateams could not have done better. There is almost no deterioration
at all across discretization. We find this truly amazing since the number of points in the neighborhood
of local maxima grows from 0 to n to 2'. It seems that Ateams are oblivious to the nature of the
collecting space around local maxima. If that is indeed the case, then we might have a very powerful
technique for searching that overcomes most of the limitations of the traditional methods.

GAs, on the other hand, suffer significantly with increasing discretizations of the space. Their
worst performance drain is a difference of : 23000 evaluation from 1:1 to 1:4 for 16 variables, and
their best is a difference of around 10000 evaluations for 1:1 to 1:4 for 12 variables. This deterioration
is the worst so far for all functions. GAs seem to behave exactly as expected with increasing number
of neighborhood points in the search space.

With dimensionality, again, GAs suffer the worst setback so far. The worst degradation being
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t 30000 evaluations for 1:4 discretization from 12 to 20 variables. That is almost two extra min-
utes of real time taken by the algorithm. The least deterioration was - 16000 evaluations for 1:1
discretization from 12 to 20 variables.

Ateams also used the most number of evaluations for all functions, but the degradation of
performance with increasing dimensionality was significantly less. The most they suffered was almost
6000 evaluations for 1:4 from 12 to 20. The least was almost 4500 for 1:1 from 12 to 20 variables.

7.8 Conclusions and Summary

This section presents the conclusions from our results. Some of them were expected, but others are
relatively surprising. A list follows.

1. Since Ateams seem to be orders of magnitude better than GAs on our test problems in terms of
the number of evaluations, we can speculate that the reason could be the scheme of specifying
improvements to the solutions. Incorporating the means of improvement in the evaluations by
means of modification operators corresponds to a form of localized hillclimbing. However, the
difference is that all points in the neighborhood do not need to be evaluated before choosing
one of them. This cuts down tremendously on the number of evaluations needed. Every new
solution produced is better in some sense than the previous one.
GAs, on the other hand, do not assure that by applying crossover and mutation, the new
solutions produced are better than the previous ones, although this is true on the average.
This may account for the GAs spending extra evaluations on less promising solutions thus
increasing their count.

2. The most surprising fact was the performance of Ateams with increasing number of discretiza-
tions of the space. It seems that Ateams are insensitive to the nature of the neighborhood
of the local maxima. For all the functions, there were no appreciable degradations in per-
formance. Some of the implications of this observation are increased accuracy and better
solutions in real problems.
The reasons for this could be the fine grained hill jumping behavior of the Ateams. In every
improvement of a solution in Ateams, only one variable was changed. The amount of change
was two discretizations in the direction of improvement. However, there was sometimes a
probabilistic jump in which the amount of change was huge. Since original solutions were
maintained till the next purge of the population, this meant a good sampling of the search
space in which the new solutions were destroyed if not sufficiently good. In 1000 steps a
reasonable sized neighborhood of a point can be sampled.

3. Across dimensions, Ateams performed very much better. There is no ready made explanation
for this. Our expectation was that with increase in dimensionality, the number of modification
operators should grow linearly, and therefore in any 1000 steps, the number of improvements
to a particular variable should be less, resulting in slow convergence. Obviously, there is
some other fact we had not accounted for. More investigation into this behavior of Ateams is
required.
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4. Again, as the topology of the space gets noisier, we see Ateams holding much better than
GAs. This is an encouraging fact, leading us to believe that Ateams are a feasible approach
as compared to GAs for search and optimization.

This chapter provided the results of a preliminary comparison between Ateams and GAs on a
suite of test problems. The limitations of search techniques were discussed and metrics for comparing
Ateams and GAs were identified and justified. The results indicated that Ateams may be a very
promising area of research.

The unexpected performance of Ateams has raised interesting questions and issues that need to
be addressed. The next chapter proposes some new research directions in this regard.



Chapter 8

Summary and Future Work

The fundamental insight gained from this thesis is that population based randomized algorithms
may be serious competitors to genetic algorithms as search techniques. The conclusions have been
derived from limited testing of Ateams and GAs on both qualitative formulations of a design problem
and on artificially constructed test problems.

In qualitative formulations, the fundamental problem was the finding of feasible solutions to sets
of constraints. In the test problems, the goal was finding the global optimum in a search space. In
terms of the number of evaluations used, Ateams outclassed GAs on both these problem classes. We
believe that Ateams are a rich potential area of research for search algorithms. In particular, they
seem to hold promise by allowing the incorporation of existing techniques as agents - perhaps even
GAs as agents, to solve constraint satisfaction problems. We are encouraged by the results of this
research and propose the following directions for future research in this area.

1. One of the first priorities should be an extensive testing of Ateams on a diverse set of problems
and a more extensive comparison with GAs. Work needs to be directed towards the specifi-
cation of measurable and objective metrics that are natural measures of a search algorithm's
performance.

2. Further work is needed to refine the storage and handling of solutions in Ateams. In particular,
some aspects of our implementation are unoptimized. For instance, the limit memory destroyer
goes through the store of solutions and destroys designs according to a probability based on
the evaluation until the size of the store is acceptable. This means that as the solutions grow
better on the average, the number of iterations required to control the store become excessive.
An easy way out would be to base the probabilities on the basis of a scaled evaluation in which
the worst solution in the store has a probability 1 of being destroyed and the best probability
0. This would reduce significant overhead in the algorithm.

3. An interesting experiment would be to provide a kernel for Ateams that is similar to Grefen-
stette's GA code. It would allow the user to supply an evaluation function with the improve-
ment rules based on our expression decomposition. This would encourage similar testing of
Ateams and GAs by researchers on a wide array of problems, allowing us to discover the
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strengths and weaknesses of Ateams. In effect, this can be easily done because of the modular
nature of Ateams.

4. The general properties of Ateams as organizations of software agents need to be investigated.
We would like to be able to use sophisticated algorithms as agents working on the solutions in
parallel to the simple minded improvement operators. This may have advantages of improved
solutions as well as taking advantage of already existing approaches.

5. An theoretical analysis of Ateams needs to be carried out to gain some insight into the reasons
for its convergence and its behavior.

6. One of the important drawback right now is the inability of Ateams to provide consistency
checking for constraints. This means that sets of conflicting or redundant constraints cannot
be identified. By incorporating a consistency checking algorithm as an agent, this problem
may be alleviated. The other approaches are to preprocess the input to Ateams to find out
beforehand if the constraints are conflicting.

7. One of the discoveries that need focus is the fact that Ateams seem to handle a high number
of discretizations of the space very well. If that is indeed true, we need to theorize about its
causes. Hopefully this will lead to some insights into the behavior of both Ateams and other
search algorithms.



Appendix A

Header Files for the Ateams

This appendix provides the listings of the header file for the Ateams. The high level details of these
classes are discussed in chapter 6.

#ifndef GNvector H
#define GNvector H

#include <iostream.h>
#include <math.h>

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif to

#define GN.MAXLEN 100
#define GN EPSILON 1.0e-6
#define GNINFINITY le10
#define GNINFINITYBIG 2e10
#define BADVALUE 2e10

#define GNPI 3.14159265
enum{GNOK, GN FAIL};
enum{GN.X=0, GNY=I, GNZ=2}; 20

class GN4vector{
friend class GNtransmat;

public:
inline GN4vector(){el[0] = el[l] = el[2) = el[3] = 0.0 ;}
inline GN4vector(double x,double y, double z, double w){

el[0] = x; el[l] = y; el[2] = z; el[3] = w;}
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inline GN4vector(const GN4vector& vec);
"GN4vector(){}
inline GN4vector& operator=(const GN4vector& vec); 30
inline int operator==(const GN4vector& vec)const ;
inline double& operatoro(int p)const{ return el[p];}
inline GN4vector operator+(const GN4vector &vec)const;
inline GN4vector operator-(const GN4vector &vec)const; // subtraction
inline GN4vector operator*(const GN4vector &vec)const; // cross product
inline GN4vector operator*(const GNtransmat &tra)const; // matrix multiplication
inline GN4vector operator*(double val)const; // scalar multiplication
inline double operator^(const GN4vector &vec)const; // dot product
inline double magnitude() const; // magnitude
inline GN4vector unitOconst; // unit vector in 40

// this direction
void print(const{ cout << "Class: GN4vector (" << el[0] << "," << eli1];

cout << "," << el[2] << "," << el[3] << ")" << endl;}
protected:
double el[4];

};

class GNvector : public GN4vector{
public:
inline GNvector(){el[O] =0.0; el[1] = 0.0; el[2) = 0.0; el[3) = 1.0;} 50
inline GNvector(const GNvector& vec);
inline GNvector(double x,double y, double z){
el[0o = x; el[l] = y; el[2] = z; el[3) = 1.0;}

inline GNvector(double x,double y,double z,double w){
el[0] = x;el[1] = y;el[2] = z;el[3] = w;}

inline -GNvector() { }

inline void set x(double x){el[0] = x;}
inline void set y(double y){el[1] = y;}
inline void set z(double z){el[2] = z;} 60
inline void set vector(double x,double y,double z)

{el[0] = x; el[1] = y; el[2] = z; el[31 = 1.0;}

inline double& operator[](int p)const{return el[p];}
inline GNvector& operator=(const GNvector& vec);
inline int operator==(const GNvector& vec)const ;
inline GNvector operator+(const GNvector &vec)const; // add only the first

// 3 terms
inline GNvector operator-(const GNvector &vec)const; // subtraction
inline GNvector operator*(const GNvector &vec)const; // cross product 70
inline GNvector operator*(const GNtransmat &tra)const ;
inline GNvector operator*(double val)const; // scalar multiplication
inline double operator^(const GNvector &vec)const; // dot product
inline double get parameter(const GNvector& pl, const GNvector& p2);
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inline double magnitude() const; // calculates managitude
inline GNvector unitOconst;
inline void printoconst{ cout << "Class: GNvector (" << eliO] << "," << el[1];

cout << "," << el[2] << "," << el[3) << ")" << endl;}
80

class GNtransmat{
public:
enum(GN SCALEMATRIX};
inline GNtransmat();
inline GNtransmat(const GNtransmat& trans);
inline GNtransmat& operator=(const GNtransmat& trans) ;
inline GNtransmat(double ini);
inline GNtransmat(double x, double y, double z); //translation matrix
inline GNtransmat(GNvector& v); //translation matrix 90
inline GNtransmat(int refl plane); // reflection matrix
inline GNtransmat(int axis, double ang); // rotation about axis
inline GNtransmat(GNvector& v1, GNvector& v2, int to=1);
inline GNtransmat(GNvector& v1, GNvector& v2, double ang);
inline GNtransmat(int axis, double a, double b); //shearing
inline GNtransmat(int i, double x, double y, double z); // Scaling matrix

inline -GNtransmat(){}

inline GN4vector& operatorf(int i)const{ return vec[i];} 100
inline GN4vector operator*(const GN4vector&)const; // multiplication with

// a vector
inline GNtransmat operator*(const GNtransmat&)const; // matrix multiplication
inline GNtransmat operator-(const GNtransmat&)const;
inline GNtransmat operator+(const GNtransmat&)const;
inline int operator==(const GNtransmat& trans)const;
inline GNtransmat transpose()const;
//GNtransmat inverse()const;
inline void update(double ini);
inline void update(double x, double y, double z); //translation matrix 110
inline void update(int refl plane); // reflection matrix
inline void update(int axis, double ang); // rotation about axis
inline void update(int axis, double a, double b); //shearing
inline void update(int i, double x, double y, double z); //Scaling matrix
inline void printoconst{ cout << "Class: GNtransmat " << endl;

vec[0].printo; vec[l].print();
vec[2].printo; vec[3].print();
cout << "Finished GNtransmat " << endl;}

private:
GN4vector vec[4]; 120};
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#endif GNvector H

102
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#ifndef ARTIFACT H
#define ARTIFACT H

#include <string.h>

#ifndef NULL
#define NULL 0
#endif

#define 

FIXED 

1

#define VARIABLE 0

class Design;
class Evaluation;

class Artifact{
private:

char id[50] ;
int flag[9];
double value[9]; 20

public:
char **vars;
double *var vals;
int size;

Names of numerical variables
Values of numerical variables
Number of numerical variables

Artifact *next;

Artifact(char *,
int * =NULL,
double * =NULL,
char ** =NULL,
int =NULL,
double * =NULL

Id
Flags
Initial parameter values
Numerical variable names
Number of numerical variables
The values of numerical variables, if given

inline char *getid(void){return id;}
inline int *get-flags(void) {return flag;}
inline double *get-values(void) {return value; }

class ATconst{
private:
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Artifact *al, *a2;
int idl, id2;

public:
ATconst *next; 50
ATconst(){al = a2 = NULL;idl=id2=0; next = NULL;}
virtual "ATconst() {}

inline Artifact *get al(void){return al;}
inline Artifact *get_a2(void){return a2;}
inline int get idl(void){return idl;}
inline int getid2(void) {return id2;}
virtual Evaluation* evaluate(Design*){return NULL;}
virtual void improve(Design*){}

}; 60

#endif
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#ifndef OBJECT_BIN
#define OBJECTBIN

#include "listdeclare. h"

class Artifact;

// Object-Bin class is used primarily to
//interact with the input list of
// Artifacts. It shields other classes in to
// Ateams from direct contact with external
// data

class ObjectBin{
private:
Artifact **bin; // Private data includes an array of artifacts
int size; // and the number of artifacts in the array

public:
// Constructors and destructor

ObjectBin(); 20

ObjectBin(PList(Artifact) *);
-Object.Bin();

// Functions for retrieving the number of
// Artifacts in array, and for getting
// a particular Artifact identified by
//its index in the array

inline int getsize(void) {return size;}
inline Artifact *get object(int id){return bin[id-1];}

}; 30

#endif
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#ifndef CONSTRAINT BIN
#define -CONSTRAINT BIN

#include "listdeclare.h"

ConstraintBin class is used primarily to
interact with the input list of
ATconsts. It shields other classes in
Ateams from direct contact with external
data

class ConstraintBin{
private:
ATconst **bin;
int size;

public:

ConstraintBin();
Constraint Bin(PList(ATconst) *);
"Constraint_Bin();

//inline int getreturn size
inline int get size(void) {return size:

// Private data includes an array of ATconsts
// Size of the array

// Constructors and destructor

Getting the number of constraints

// Getting a particular constraint from the
// bin according to its index

inline ATconst *get_constraint(int id){return bin[id-1];)

// Return the index of this Atconst
int mapconstraint(ATconst*);

#endif
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#ifndef DOBJJH
#define DOBJJH

#define SIZE 9

#include "GNvector.h"

class GNvector;

// Dobj class is the abstraction of a bounding
// box in a design

class Dobj{
private:

char *name;

int id;

int parameter[SIZE];

Private data includes
name - a string identifier for a box
id - index by which a design refers to a Dobj

The array for storing values. The implicit
order is x, y, z of the centroid of the box,
sizex, sizey, sizez and thetax, thetay, thetaz

int flag[SIZE];

GNvector vec[4];

GNvector corner[8];

char **variable;

int *varvalue;
int v size;

void initialize axes(void);

void find corners(GNtransmat*

// Flags indicating which variables are fixed
// and which are variable

A vector array storing the origin and the
the three direction vectors of the local
reference frame of a box

// storing corners of the box

// An array of strings representing arbitrary
// algebraic variable names

// The array of arbitrary variable values
// The number of arbitrary variables

// Private functions used by the protocol
// For computing the vector directions of the
// local frame after the parameters have been
//initialized

// For finding the corners of the box
= NULL);
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int move (GNvector&, int);

int rotate(GNvector&, int);

int resize(GNvector&, int);

int modify_vars(int, char*,
double);

// For moving the box to a new location in the
// direction of a given vector

// For rotating the box around a given vector

// For resizing the box in a given direction

// For modifying arbitrary variables

public:
// Flags to indicate the type of modification

enum{LEFT, RIGHT, CLOCK, ANTICLOCK,
SMALLER, BIGGER, UNDEFINED, INCREASE, DECREASE};

Dobj(); // Constructors and destructor
Dobj(int, char* = NULL, int* = NULL,

double* = NULL, char** = NULL,
int = NULL, double* = NULL);

Dobj(Dobj &);
"Dobj();

// Trivial functions
// certain values

inline int getid(void){return id;}
inline int getvalue(int a){return parameter[a];}
inline void setid(int a){id = a;)
inline int setvalue(int, int);
inline int* get_values(void){return parameter;)
inline int* getflags(void){return flag;)
inline char* get name(void) {return name;}
inline GNvector& get origin(void) {return vec[3];}
GNvector& getunitaxis(int);
double getvariable(char *);
inline int getvsize(void) {return vsize;}
inline int* get num_values (void){return varvalue;}
inline char** getnum_vars(void){return variable;}

void get minjmax(int, double*,

for getting and setting

// Getting the minimum and the maximum projection
// of the box on one of its local axes

double*);

// Getting the projection of the box on an
//interval with endpoints given by two
// GNvectors

void get projection(GNvector&, GNvector&, double*, double*);
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// Modifying the values of an object based
// on a modification operator

int improve(GNvector&, int, char* = NULL, double = NULL);

// Checking if another box intersects this box
int inside(Dobj *);

100
// Getting the relative rotation of two boxes

void relativerotation(Dobj*, double*);

#endif
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#ifndef .DESIGNJH
#define _DESIGNH

class Dobj;
class Object Bin;
class Constraint-Bin;
class Evaluation;
class ATconst;

// Class design is the abstraction of a
// complete design

class Design{
private:
int noof evaluations;
int index;

Constraint Bin *cbin;

Dobj **table;

no of objects,
no of constraints,
evaluated;

Evaluation **evaluation;

Design *next;

public:

Private data includes
The number of constraints
An integer indicating the position of the
design in the array when stored

// A pointer to constraintbin

// An array of Dobjs - boxes
// indexed by their identifiers

// Number of objects in a design
// Number of constraints specified
// Flag to indicate if the design
// has been evaluated

// An array carrying the evaluation of
// each contraint

// A pointer for storing as lists

// Constructors and destructor
Design();
Design(Object_Bin* =NULL, ConstraintBin* =NULL);
Design(Design &);
~Design();

// Trivial functions to get data
inline int getindex(void){return index;}
inline int getno of objects(void){return no_ofobjects;}
inline int get noof constraints(void) {return no of constraints;}
Constraint_Bin* get constraintbin(void){return cbin;}

110
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inline int isevaluated(void){return evaluated;}
inline int set no of evaluations(int a){no opfevaluations = a;}
inline int get_noofevaluations(void) {return noofevaluations;}
inline Dobj* get object(int id) {return (table) ? table[id-1) : NULL;}
inline Dobj* get-object(char*); 50

inline Design* getnext(void){return next;}

// Trivial functions to set values
inline void setindex(int a){index = a;}
inline void set no of objects(int a){noof objects = a;}
inline void set no of constraints(int a){no of constraints = a;}
inline void set evaluated(int a){evaluated = a;}
inline void setnext(Design *p = NULL){next = p;}

// Insert a Dobj in the design 60
void insert_object(Dobj*, int, int=0);

// Get the evaluation of a particular constraint
Evaluation* get_evaluation(ATconst*);

// Set the evaluation of a particular constraint
void setevaluation(Evaluation*, ATconst*);

// Check if two designs are the same
int is duplicate(Design* = NULL); 70

// Get evaluations for all constraints
inline Evaluation** getevaluation array(void) {return evaluation; }

// Find out the sum of the evaluations
double sumevaluation(void);

// Find the scaled evaluation, a number from 0-1
double scaled evaluation(void);

80

#endif
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#ifndef HASHH
#define HASHH

class Design;

class HashTable{
private:
int table size;
int no of lists;
Design **hashtab;

Design **queue;
int qend;
int qsize;

protected:
int hash(Design* = NULL);

public:

HashTable ();
HashTable (int);
"HashTable (){}

Design* get any design(void);

Design* lookup(Design*);

int put(Design*);

int remove(Design*, int=0);

Design** get list(void);

Design* getbest list(void);

int getsize(void){return table

// Class HashTable is the abstraction of a
// hash table used for storing designs

// Private data includes
// The size of the table
// The number of lists in the table
// The actual table

// An array of designs
// The index of the end of the array
// The allocated size of the array

// For calculating the hash value of a design

// Constructors and destructor

// Getting a random design from the table

// Finding out if a design is already in the table

//Inserting a design into the table

// Deleting a design from the table

// Getting a random list from the table

// Getting the list of best designs from the table

// Trivial functions for accessing private data
-size;}

int getnoof designs(void) {return qend+l;}

// Getting a handle to the array of designs
Design **getq(void){return queue;}

// Getting a handle to the hashtable itself
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Design **geth(void) {return hashtab;}

#endif
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#ifndef MEMORY H
#define MEMORY-H

class Design;
class HashTable;
class ObjectBin;
class ConstraintBin;
class Operatorbin;

class Memory{
private:

HashTable *design table; //

int noofdesigns; //
int table-size; //

double bestdesign; //

public:
//

Memory(HashTable* = NULL);
Memory(int, Operator_bin* = NULL,

Object Bin* = NULL,
Constraint_Bin* = NULL);

-Memory();

Design *getdesign(void); //

int add_design(Design*); //

//

int deletedesign(Design*, int = 0);

Design* get bestlist(void); //

A hashtable of designs

Number of designs in Memory when initialized
Size of the table

The evaluation of the best design so far

Constructor Destructor pair

Get any random design

add a new design to the table

Delete a particular design from
the table

Get the list of best designs in the table

// Return a handle to the hashtable - used in
// the destroyers

HashTable *gett(void){return design table;}

int getno_of designs(void) // Get the initial size of store
{return nopof designs;}

int get no_hashtable(void); // Get the actual number of designs in the tab

};
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#endif

50
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#ifndef _OPERATOR H
#define _OPERATOR_H

class Memory;
class Operator_bin;

// Class Operator is used to provide a uniform
//interface to all operators. It includes
// virtual functions that are defined for
// every subclass to

class Operator{
public:

// Getting the name of the operator
virtual char* get_name(void){return 0;}

// Firing an operator
virtual void fire(Memory *mem, Operator_bin *bin){}

20

#endif
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#ifndef CONSTRAINT H
#define _CONSTRAINT H

#include "operator.h"
#include <iostream.h>

#include "artifact. h"

class Operatorbin;
class Memory;
class Design;
class Num Const;

class Constraint:public Operator{
private:

char *name;
ATconst *c;

int noof evaluations;

// Class Constraint is the abstraction of
// a constraint - both algebraic and
// qualitative

// String identifier
// A pointer to the Atconst supplied as input

// The number of times this constraint has
// been evaluated

public:
// Constructor destructor pair

Constraint(ATconst *a = NULL){name="constraint"; c=a; noof evaluations = 0;}
virtual "Constraint();

// Getting the name and firing the operator
inline virtual char* get name(void) {return name;}
virtual void fire(Memory *, Operatorbin*);

void evaluate(Design*);

void improve(Design*);

int
int

// Simply evaluating the design for a constraint

//Improve design, do nothing else

// Getting the number of evaluations
get_noofevaluations(void) { return noof evaluations; }
reset no of evaluations(void) {noof evaluations = 0;}

#endif
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#ifndef CROSSOVER H
#define _CROSSOVER H

#include "operator.h"

class Operator;
class Memory;
class Operator_bin;

class Crossover:public Operator{
private:
char *name; //

protected:
//

void cross(Memory*, Operator bin*);

public:
//

Crossover() {name = "crossover";}
virtual "Crossover() {}

Class crossover takes two designs and
mates them randomly

String identifier

Method that does the mating

Constructor destructor pair

// For getting the name and firing the operator
inline virtual char* get name(void) {return name;}
virtual void fire(Memory *mem, Operatorbin* bin)

{cross(mem, bin);}

b;

#endif

119



APPENDIX A. HEADER FILES FOR THE ATEAMS

#ifndef _MUTATEH
#define _MUTATE H

class Operator;
class Memory;
class Operator-bin;

class Mutate:public Operator{
private:

char *name; // String identifier name of the operator

protected:
// Function for performing the mutation

void mutate(Memory*, Operatorbin*);

public:

Mutate(){name = "mutate";}
virtual -Mutate(){}

// Constructor destructor pair

// Getting the name and firing the operator
inline virtual char* getname(void){return name;}
virtual void fire(Memory *mem, Operator_bin* bin)

{mutate(mem, bin);}

#endif
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#ifndef DESTROYER H
#define _DESTROYERH

class Operator;
class Operator-bin;

// An abstract base class for destroyers
class Destroyer:public Operator{
public:

virtual char* get_name(void){return NULL;} 10
virtual void fire(Memory *mem){}

// For destroying duplicates
class DuplicateDestroyer:public Destroyer{
private:
char *name; // String identifier

protected: // Method that looks for duplicates 20
// and destroys them

void destroy_duplicates(Memory *);

public:
// Constructor destructor

DuplicateDestroyer() {name = "duplicate-destroyer";}
virtual -Duplicate_Destroyer();

// For getting the name and firing the destroyer
inline virtual char* getname(void){return name;} 30
virtual void fire(Memory *mem, Operator_bin *opbin)

{destroy_duplicates(mem);}

// For destroying designs as a regular operator
class Design_Destroyer:public Destroyer{
private:
char *name; // String identifier

40

protected: // Method that destroys designs based on
// their evaluations

void destroy_design(Memory *);

public:
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// Constructor destructor
DesignDestroyer() {name = "design.destroyer" ;}
virtual -DesignDestroyer();

// For getting the name and firing the destroyer 50
inline virtual char* get_name(void) {return name;}
virtual void fire(Memory *mem, Operatorbin *opbin)

{destroy_design(mem);}

class Limit_Memory_Destroyer:public Destroyer{
private:
char *name; // String identifier 60

protected:
// Method that goes through the store and
// destroys designs

void limitmemory(Memory *);

public:
// Constructor destructor

LimitMemory Destroyer(){name = "limitmemory-destroyer";}
virtual -LimitMemoryDestroyero; 70

// For getting the name and firing the destroyer
inline virtual char* getname(void) {return name;}
virtual void fire(Memory *mem, Operatorbin *opbin)

{limitmemory(mem);}

80

#endif
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#ifndef OPERATOR BIN
#define OPERATOR-BIN

class Operator;
class ConstraintBin;
class Design;

class Operator bin(
private:

Operator **bin;

Constraint_Bin *cbin;
int size;
double probability[4];

public:

//
Operatorbin(Constraint Bin* = NUL

double = 0.25, double
double = 0.25, double

"Operator_bin();

Private data includes
bin - an array of operators
cbin - a pointer to the constraint bin
size - the number of operators in bin
The frequency of firing of destroyers,
mutation, crossover operators and constraints

Constructor destructor pair
L,
= 0.25,
= 0.25);

// Trivial functions for accessing private data
inline int get_size(void){return size;}
inline ConstraintBin* get_constraintbin(void){return cbin;}

Operator* getoperator(char*, int=0);

// G
Operator* getoperator(void);

// F
// b

void evaluate(Design*);

letting an operator from the bin by using its
ame - string identifier, and optional integer
rgument for getting one of the constraints

letting a random operator from the bin

or taking a design and evaluating it
y passing it to each of the constraints
the bin

#endif
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Appendix B

Header files for the QSRs

This appendix provides the listings for the header files used
details of these classes are provided in chapter 4.

in the QSR implementation. High level

#ifndef _spatial
#define -spatial

#include "GNvector.h"
#include "relationship. h"
#include "artifact. h"
class Ref frame;

class Evaluation;
class Srel: public ATconst

// This ABSTRACT class defines the
// essential spatial relationship
// Defines the axis for the relationship and a
// reference frame which defines this axis
// Note that this forms the base class for
// all primitive
// relationships, actual 3-D relationships
// would be represented by the composite
// classes

protected:
enum{X,Y,Z};
int axis; //0 for X, 1 for Y, 2 for Z
Ref frame* ref;

public:
Srel(int, Refframe* = NULL);
virtual char* get_classname() = 0;
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virtual Role* get source(){return NULL;}
virtual Role* gettarget{()return NULL;}
virtual Evaluation* evaluate(Design*){return NULL ;} 30
virtual void improve(Design*) { }
virtual -Srel(){}

};

#endif
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#ifndef_RELN
#define _RELN

#include <iostream.h>
class Artifact ;

class Role

{

// o
//e

private:
char* description;
Artifact* obj;

public:
Role(Artifact*, char* = NULL);
-Role();
inline char* get_description();
inline Artifact* getobj(){return obj;}

'his class describes the role of an
bject in a relationship ;
.g "parent", "child", "supported-by", etc.

class Relationship{
protected:

Relationship() {}
char reln_type[30]; // string representation of the type

public: // an abstract class
virtual char* get_classname() = 0;
virtual Role* get_source(){return NULL;}
virtual Role* get_target(){return NULL;}
virtual -Relationship() {}

#endif
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#ifndef _SIZEQSR
#define _SIZE_QSR

#include <iostream.h>
#include "qsr.h"

// This file defines the base classes
// for the size and
// orientation relationships between
// design objects 10

class Sizerel : public QSR

{
protected:

double relative size
public:

Sizerel(double, Role*, Role*, int, Ref frame*);
virtual -Size rel(){}
inline virtual char* get_classname() {return "Sizerel";}
virtual Evaluation* evaluate(Design*); 20

class Orientation: public QSR

{
protected:

enum{THETAX, THETA_Y, THETAZ};
double relative_angle[3] ;

public:
Orientation(Role*, Role*, int, Ref frame*); 30
virtual ~Orientation { }
inline virtual char* getclassname() {return "Orientation";}
virtual Evaluation* evaluate(Design*);

class Parallel:public Orientation

{
public:

Parallel(Role*, Role*, int, Ref frame*); 40

inline virtual char* get classname() {return "Parallel";}
virtual Evaluation* evaluate(Design*);
virtual "Parallel(){}
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class Perpendicular:public Orientation

{
public:

Perpendicular(Role*, Role*, int, Refframe*); 50
inline virtual char* getclassname() {return "Perpendicular";}
virtual Evaluation* evaluate(Design*);
virtual -Perpendicular() {}

#endif
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#ifndef REFFRAME
#define _REFFRAME

#include "GNvector.h"
class Artifact;
class Design ;
class Ref frame

{
protected:

GNvector origin; //initialized to (0,0,0)
public:

Ref frame() {}
virtual -Ref frame(){}
inline void setorigin(GNvector v){origin=v;}
inline GNvector& getorigin(){return origin;}
inline virtual GNvector get_unityvector(int, Design* = NULL){return origin;}
inline virtual void setunit vector(int,GNvector&){}

};

class Ref_line: public Ref frame

// Only one vector is defined
GNvector vec ; // unit vectors along the axis

public:
Refline() {}
Ref-line(GNvector&, GNvector&);
virtual -Ref line(){}
inline virtual GNvector get_unitvector(int, Design* = NULL){return vec;}
inline virtual void setunitvector(int,GNvector&);

class Refaxes: public Ref frame

// The axes are directly defined
enum{X,Y,Z};
GNvector vec[3] ; // unit vectors along each axis

public:
Ref axes();
Refaxes(GNvector&, GNvector&, GNvector&, GNvector&);
virtual -Ref axes(){}
inline virtual GNvector get_unit vector(int i, Design* = NULL)

{return vec[i];}
inline virtual void set_unitvector(int,GNvector&);
};

130
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class Ref object: public Ref frame

{
// The axes are derived from the local
// axis system of another object

Artifact* art ref; 50
public:

Ref object(Artifact*);
virtual -Ref object(){}
inline virtual GNvector getunitvector(int, Design* = NULL);

#endif
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#ifndef _PRIMQSR
#define PRIMQSR

#include <iostream.h>
#include "qsr.h"

class Evaluation ;
// Subtypes of the QSR class define the
// many kinds of primitive relationships
// that can occur. These types are follows: 10
// Point-Interval types (PIbase forms the
// base class) p, f, i, b, m (point-interval
// types: p is plus) interval-interval types
// (IIbase forms the base class) pp, fp, ip,
//if, ii, bi, bf, bp, mp, mf, mi, mb, mm.
// These are pretty horrible classes, we do
// not expect the user to deal with them at
// this level of abstraction. Higher level
// operators can be built up from this
// primitives 20

class PIbase: public QSR

{
public:

PI base(int, Ref frame*, Role* = NULL, Role* = NULL);
"PI base(){}
inline virtual Evaluation* check rel(double,Dobj*, Dobj*, Design*){return 0;}
inline virtual char* getclassname() {return "PI_base";}
inline virtual Evaluation* evaluate(Design*) {return NULL;}

30

class PIplus: public PI base

{
public:

PIplus(int, Ref frame*, Role* = NULL, Role* = NULL);
-PI plus(){}
Evaluation* check rel(double,Dobj*, Dobj*,Design*);
inline virtual char* get_classname() {return "PIlplus";}

40

class PIfront: public PIbase

{
public:
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PI front(int, Ref frame*, Role* = NULL, Role* = NULL);
PI front(){}

Evaluation* checkrel(double,Dobj*, Dobj*,Design*);
inline virtual char* get_classname() {return "PILfront";}

50

class PIin: public PI_base

{
public:

PIin(int, Refframe*, Role* = NULL, Role* = NULL);
-PIin(){}
Evaluation* check rel(double,Dobj*, Dobj*,Design*);
inline virtual char* getclassname() {return "PI-in";}

}; 60

class PI_back: public PIbase

{
public:
PI back(int, Ref frame*, Role* = NULL, Role* = NULL);
PIback(){}

Evaluation* check rel(double,Dobj*, Dobj*,Design*);
inline virtual char* get_classname() {return "PIback";}

}; 70

class PIminus: public PI_base

{
public:

PI minus(int, Ref frame*, Role* = NULL, Role* = NULL);
"PI minus(){}
Evaluation* check rel(double,Dobj*, Dobj*,Design*);
inline virtual char* getclassname() {return "PIminus";}

}; 80

class II base:public QSR

{
//base class for the interval-interval
// relationships

protected:
PI base * rell;
PIbase * rel2;

// rell represents the relationship of min of 90
// source w.r.t the interval represented by
// target rel2 represents the relationship of
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// max of source w.r.t target
public:

IIbase(Role*, Role*,int, Ref frame* );
"IIbase();
inline virtual char* getclassname() {return "II_base";}
virtual Evaluation* evaluate(Design*);

100

class IIpp: public IIbase

{
public:

II_pp(Role*, Role*,int, Ref frame* );

-II pp(){}
inline virtual char* get classname() {return "II-pp";}
virtual Evaluation* evaluate(Design*);

110

class IIfp: public II_base

{
public:

IIfp(Role*, Role*,int, Ref frame*);
~IIfp(){}
inline virtual char* get classname() {return "IIjfp";}
virtual Evaluation* evaluate(Design*);

120

class II ip: public IIbase

{
public:

II_ip(Role*, Role*,int, Ref frame*);
-IIip(){}
inline virtual char* getclassname() {return "II ip";}
virtual Evaluation* evaluate(Design*);

130

class II_if: public IIbase

{
public:

IIif(Role*, Role*,int, Refframe*);
-~IIif() }
inline virtual char* getclassname() {return "IIif ";}
virtual Evaluation* evaluate(Design*);
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140

class IIii: public II base
{
public:

II_ii(Role*, Role*,int, Ref frame*);
-iIii0{}
inline virtual char* get_classname() {return "II-ii";}
virtual Evaluation* evaluate(Design*);
};

150

class IIbi: public II base

{
public:

II_bi(Role*, Role*,int, Refjframe*);
"IIbiO{}
inline virtual char* get_classname() {return "II bi";}
virtual Evaluation* evaluate(Design*);

};
160

class IIbf: public IIbase

{
public:

IIbf(Role*, Role*,int, Refframe*);
"II bfO{ }
inline virtual char* get_classname() {return "II bf";}
virtual Evaluation* evaluate(Design*);

170

class IIbp: public IIbase
{
public:

II_bp(Role*, Role*,int, Ref frame*);
~IIbp(){}
inline virtual char* get classname() {return "IIbp";}
virtual Evaluation* evaluate(Design*);

180

class IImp: public II_base

{
public:

IImp(Role*, Role*,int, Ref frame*);
'IImp }()
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inline virtual char* getclassname() {return "II mp";}
virtual Evaluation* evaluate(Design*);

190

class II_mf: public II_base

{
public:

IImf(Role*, Role*,int, Ref frame*);
-II mf() {}
inline virtual char* getclassname() {return "IItmf";}
virtual Evaluation* evaluate(Design*);

200

class II_mi: public II base

{
public:

II mi(Role*, Role*,int, Ref frame*);
~IImi(){}
inline virtual char* get classname() {return "II mi";}
virtual Evaluation* evaluate(Design*);

210

class II_mb: public II_base

{
public:

II mb(Role*, Role*,int, Refframe*);
-IImb(){}

inline virtual char* get classname() {return "IImb";}
virtual Evaluation* evaluate(Design*);

220

class II_mm: public IIbase

{
public:

II mm(Role*, Role*,int, Ref frame*);
~II mm(){}
inline virtual char* get_classname() {return "II mm";;}
virtual Evaluation* evaluate(Design*);

230

#endif
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#ifndef _QSR
#define _QSR

#include <iostream.h>
#include "spatial. h"

class Dobj; // the class Dobj refers to a spatial
// design object corresponding to an artifact
// (the spatial component of an artifact,
// separated for practical purposes of 10
// efficiency)

class Evaluation;

// This file defines the basic QSR class,
// and the composite QSR base classes.
// The base classes are instantiable directly:
// we can thus allow the user to create
// arbitrary combinations, as opposed to
// using the predefined combinations. 20

class QSR:public Srel
{
protected:

Role* source;
Role* target;

public:
QSR(Role* = NULL, Role* = NULL, int = Srel::X,

Ref frame* = NULL);
virtual -QSRo{} 30
inline virtual char* getclassname() {return "QSR";}
inline Role* getsource() {return source; }
inline Role* get_target(){return target;)
virtual void improve(Design*);
inline virtual Evaluation* evaluate(Design*){return NULL;}

// We now define the two kinds of composite
// QSR classes. The disjunctions and the
// composite three-D classes 40

class QSRdisjunc : public QSR
{

// Still along only one axis, as in
// the primitive QSRs

protected:



APPENDIX B. HEADER FILES FOR THE QSRS

QSR ** comp ; // components of the disjunction, stored
// as an array

int comp_num; // no of elements in the disj
public:

QSR disjunc(Role*, Role*, int, Refframe*);
virtual -QSRdisjunco ;
inline virtual char* get_classname() {return "QSRdisjunc";}
virtual Evaluation* evaluate(Design*);

unction

class QSR_3D : public QSR

{
protected:

QSR * comp[3]; // one in each of the three directions
public:

QSR_3D(Role*, Role*, int, Ref frame*);
virtual "QSR_3D(){}
inline virtual char* get classname() {return "QSR_3D";}
virtual Evaluation* evaluate(Design*);

};

#endif

138
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#ifndef _COMP_QSR
#define _COMP_QSR

#include <iostream.h>
#include "qsr.h"

class IIii;
// this file defines some sample higher level
// QSRs which use disjunctions and the
// three-D relations 10

// First the one-D relationships

class Centered: public QSR{
// Rel
// obj

IIii* rel; // sou
public:

Centered(Role*, Role*, int, Ref frame*);
virtual -Centered();
virtual Evaluation* evaluate(Design*) ;
};

class Overlap: public QSRdisjunc{
public:

Overlap(Role*, Role*, int, Ref frame*);
virtual -Overlap() { }

lationship to specify symmetry of one
ect w.r.t another
rce must be <in> target

class Overlapfront: public QSRdisjunc{
public:

// This class covers the case of overlap
//from the front,
// NOTE: it includes the flush-contact
// case as well

Overlap front(Role*, Role*, int, Ref frame*);
virtual -Overlapfront(){}
};

class Overlapback: public QSR_disjunc{
public:

// This class covers the case of overlap
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//from the back,
// NOTE: it includes the flush-contact
// case as well

Overlap back(Role*, Role*, int, Ref frame*);
virtual -Overlap_back() { 50
};

class Inside: public QSRdisjunc{
public:

// what we actually mean when we say inside,
//if, ii, bi

Inside(Role*, Role*, int, Ref frame*);
virtual -Inside() {}

}; o60

class Touch_contact: public QSR disjunc{
public:

Touch contact(Role*, Role*, int, Ref frame*);
virtual -Touchcontact(){}
};

class Nocontact: public QSRdisjunc{ 70
public:

No contact(Role*, Role*, int, Ref frame*);
virtual -No_contact(){}

// Now the Three D relationships

class Abuts: public QSR_3D{
public: 80

Abuts(Role*, Role*, int, Ref frame*);
virtual ~Abuts() { }
};

class Intersects: public QSR_3D{
public:

Intersects(Role*, Role*, int, Refframe*);
virtual ~Intersects(){}

140
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class Contains: public QSR_3D{
public:

Contains(Role*, Role*, int, Ref frame*);
virtual -Contains(){ }

// Ternary relationships

class Between: public QSR{
Role* centerobj ; // is between source and target
QSR_3D* comp[2];

public:
Between(Role*, Role*, Role*, int, Ref frame*);
virtual ~Between() ;
virtual Evaluation* evaluate(Design*) ;

class Connects: public QSR{
Role* connector;
QSR* comp[6]; // cannot directly use any of the threeD

// relationships, unless we define new ones..

public:
Connects(Role*, Role*, Role*, int, Ref frame*);
virtual -Connects() ;
virtual Evaluation* evaluate(Design*) ; 120

#endif
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#ifndef _TOUCH
#define _TOUCH

#include <iostream.h>
#include "qsr. h"

// The base class for all relationships
class Touch: public QSR{
public:

Touch(Role*, Role*, int, Ref frame*); 10
virtual Evaluation* evaluate(Design*) ;
virtual ~Touch() { }

#endif
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#ifndef EVAL
#define _EVAL
#include "GNvector.h"

class Dobj;

class mod-operator

// This simple "class" stores the modification
// operators suggested by the evaluation of a
// design. Move the Dobj indicated by obj LEFT
// or RIGHT along axis, rotate it clockwise or
// anticlockwise, make the object SMALLER
// or BIGGER

public:
enum{LEFT, RIGHT, CLOCK, ANTICLOCK, SMALLER, BIGGER,

UNDEFINED, INCREASE, DECREASE};
int op;
Dobj* obj ;
GNvector axis_vec ; // axis along which the modification

//is defined, it is defined here for
// convenience, especially useful for 3D QSRs

char var[50];
double change;

//defining the exact amount of change for
// numerical constraints, the name of
// the variable and the change requested

mod_operator(int, Dobj*, GNvector&);
mod operator(int, Dobj*, char*, double = NULL);
mod operator(modoperator&);
Smod_operator(){obj=NULL;op=O;change=O;}

class Evaluation

{

int count ;
public:

double eval;
mod_operator** modop_arr;

Evaluation();
"Evaluation();

// This simple "class" stores an evaluation
// as recorded by a QSR object.
// Number of elements in the array

// array of possible modifications,
// recorded during the evaluation
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Evaluation(Evaluation&);
void deleteops();
inline int get_no ops(){return count ;)
void add op(mod operator*) ;
inline mod operator* get_randomop(); 50

;#endif

#endif
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