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ABSTRACT

The design of electric motor drives requires accurate motor analysis to support the accurate
prediction of drive performance. Currently, the most widely applied method of motor
analysis is the finite-element method. Its advantage lies in the fact that arbitrarily shaped
problems consisting of a variety of materials can be analyzed. However, dense discretization
is necessary for accurate geometry representation and accurate analysis. The requirement
for fine discretization has a direct impact on computational speed and time. In contrast,
this thesis explores the application of the algebraic dual-energy method (ADEM) to the
magnetic and thermal analysis of the variable reluctance motor (VRM). The motivation for
considering the ADEM comes from its potential to offer both computational accuracy and
speed. The goal of this thesis is not the development of sophisticated design models. Rather,
given an acceptable magnetic or thermal model, emphasis is herein placed on its analysis,
and more specifically on the applicability and performance of the ADEM in performing this
task.

The algebraic dual-energy method is first employed in simple problems with known
analytic solutions, in order to gain better understanding on the application, convergence
behavior and issues associated with the method. The ADEM is then applied to the calcula-
tion of the stored magnetic energy of a simplified VRM geometry at the unaligned position.
By simply averaging upper and lower energy bounds, energy and inductance values are
accurately computed using a small number of degrees of freedom. Analytic expressions for
the bounds are obtained using a symbolic manipulation package and these expressions can
be translated into C to extract the minimum inductance of a motor in fractions of a second.
The issue of equidistance of the bounds from the true solution is critical in the success of the
method and is addressed in the thesis. The algebraic p-convergence of the method is shown
to provide a criterion that guarantees that the distances of the upper and lower inductance
bounds from the exact inductance value are approximately equal.

The ADEM is extended to the thermal analysis of the VRM. By employing the analogy
that exists between electrostatics and steady-state heat conduction, bounds on the "thermal
energy" of the system are shown to exist and are derived for several numerical examples.
Bounding this energy does not guarantee bounds on the field quantities at each point in
the geometry. Nonetheless, a simple algorithm is presented that uses the upper and lower
"thermal energy" bounds of the ADEM to estimate the hot spot temperature of the VRM.

Thesis Supervisors: Jeffrey H. Lang, Professor of Electrical Engineering
James L. Kirtley Jr., Professor of Electrical Engineering
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Chapter 1

Introduction

This chapter introduces dual-energy numerical analysis as presented and discussed

in this thesis, and outlines the issues and challenges involved in the development of

fast and accurate algebraic dual-energy analyses of variable-reluctance motors. First,

the motivation for the thesis is given, together with a theoretical background of the

structure and operation of variable-reluctance motor drives. Next the research chal-

lenges addressed herein are presented. These are directed towards two motor analyses:

electromagnetic, involving the calculation of minimum motor phase inductance, and

thermal, involving the estimation of the hot spot in a phase. Moreover, a brief intro-

duction is given to the numerical analyses which are available and most frequently

applied to the solution of variable-reluctance motor modeling problems. Emphasis

is placed on the dual-energy method, which has already been successfully applied in

simple linear resistance, capacitance and inductance calculations. Finally, the thesis

objectives are defined.

1.1 Motivation

The design of electric motor drives requires the accurate determination of motor

parameters and the prediction of the drive performance, subject to the specifications

imposed by the application at hand. Monte Carlo synthesis has been applied in the

last few years to the design of electric motor drives, including variable-reluctance



motor drives [1], [2]. This involves the random generation of a large number of

candidate motor designs over short periods of time. Every new design is analyzed,

based on fast and accurate thermal, mechanical, magnetic and electronic models. If

the electromechanical performance of a candidate drive does not meet the imposed

specifications then the design is discarded. Otherwise, the new design is compared

to previous designs, based on the rules of multi-attribute dominance and only the

best drives are retained. The output of this process is a feasibility frontier of superior

designs that allows the motor designer to select an optimal motor drive within the

design space.

Achieving an optimal motor drive design is not only dependent on comprehensive

specifications. The design should be practical and implementable and this implies

that the models adopted for its analysis and performance prediction should possess

sufficient accuracy. In addition, model analysis must be fast since it is repeated many

times. It is therefore crucial to develop algorithms that will be accurate enough to

reflect reality, flexible enough to handle any geometry and possible specifications, and

simple and hence fast enough to be incorporated in a Monte Carlo design-optimization

framework. This will allow the evaluation of a very large number of candidate designs

in short design time frames.

1.2 The Variable Reluctance Motor Drive

The Variable Reluctance Motor (VRM) has become increasingly popular in recent

years [4], [5]. Advances in power electronics and computers have enabled the design,

development and implementation of VRM drives that perform comparably to other

drives. High speed and high starting torque are among the many advantages of a

VRM which is finding wide application in adjustable speed drives. Simple motor and

inverter construction have a direct effect on cost and reliability surpassing those of

other drives. Among its most important disadvantages however, are those of high

audible noise, high torque ripple under open-loop control and a requirement for a

very small airgap [3].



Figure 1-1: Cross-section of a three-phase VRM

The cross-section of a typical three-phase VRM is shown in Figure 1-1. Simple

construction, double saliency and the presence of winding excitation only on the sta-

tor are the most characteristic features of such a motor. Diametrically opposite stator

poles carry coils connected in series, defining a phase. When current is applied to a

phase winding, the stator and rotor are both magnetized with opposing polarity, re-

sulting in forces with both radial and tangential components. The radial components

result in vibration of the stator frame and are the primary source of audible noise.

The tangential components produce torque and result in rotor rotation, tending to

align the neighboring rotor poles with the excited stator poles. Sequential excitation

of the stator phases achieves continuous rotation.

As the rotor rotates, the inductance L of each phase varies between two extreme
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Figure 1-2: Variation of phase inductance with rotor position (ideal case)

values. This is illustrated in Figure 1-2, for the ideal case where no saturation is

present; the minimum inductance occurs when the rotor interpolar axis is aligned

with the stator poles, while the maximum occurs when the stator and rotor poles are

aligned.

The instantaneous torque produced by the motor is given by [5]

aW' (0, i)T(0, i) = O i=constant (1.1)

where W'(0, i) is the winding coenergy given by

W'(O, i) = i(9, i') di'. (1.2)

Assuming a magnetically linear motor,

W'= L i2  (1.3)2

so that
1 dL

T(0, i) = i2 dL (1.4)
2 dO



Hence, for motoring operation, current should be on during the interval where the

inductance is increasing.

Figure 1-3 is a block diagram of a VRM drive. The DC supply voltage is switched

across the windings of the motor, according to an appropriate switching sequence

of the inverter. Control of a VRM amounts to ensuring phase currents occur at

specific rotor angles in order to achieve continuous torque. As a result, switching is

synchronized by the controller, based on the rotor shaft position and preset current

chopping levels. Four parameters are critical in controller operation: the turn-on

Figure 1-3: Block diagram of the VRM drive

angle, 0 on; the turn-off angle, 0off; the chopping current level; and the supply voltage.

The angles 0on and 0 off define the position of the current pulse within a cycle of

inductance variation. At low speeds, current control is employed by maintaining the

current between upper and lower levels. The level of the supply voltage determines

the rise and fall times of the phase current, constraining the values of 0on and Ooff,
the peak value that the current can reach during conduction, as well as the maximum

speed that the VRM can attain [4], [5], [6].



1.3 Variable Reluctance Motor Analysis

The VRM analysis challenges considered in this thesis are the computation of mini-

mum inductance, and the estimation of the hot-spot temperature of a phase. These

issues are considered in more detail in the following sections.

1.3.1 Minimum Inductance Calculation

The flux linkage of each phase, A(O, i), is a nonlinear function of the current through

the winding, due to magnetic saturation at high current levels, and varies periodi-

cally with rotor position. Figure 1-4 provides typical magnetization curves for each

phase. Accurate determination of these characteristics is essential during VRM de-

sign in order to predict electromechanical performance. In particular, the accurate

calculation of the minimum phase inductance, Lmin, is critical to the prediction of

this performance. It also affects the estimation of the peak currents present in the

motor windings and hence the size and cost of the inverter switches.

Flux

linkage, ?

-]innpA

ion

intermediate
rotor positions

ialigned
)sition

phase current, i

Figure 1-4: Typical magnetization curves for one phase of a VRM

The calculation of Lin is achieved by solution of Maxwell's equations in the motor

topology at the unaligned position. A closed form expression for the magnetic field



distribution does not exist and is hard to find, due to the complicated geometry, the

presence of the source and the large number of boundary conditions along the steel

stator and rotor surfaces. As a result, one has to resort to numerical methods, with

the finite element method being the most popular one in analyzing motor geometries.

This is in contrast to the analysis of the flux linkage at alignment, which is done using

simple magnetic circuit techniques.

A method that has been employed in the past in the calculation of the three-

dimensional resistance, inductance and capacitance of arbitrary geometries is the

dual-energy method [7]. A version of this approach, called "the method of tubes

and slices", has been successfully applied by Miller [8] to the calculation of minimum

inductance of VRM geometries. The basic theory and philosophy of this method are

presented in the next section in more detail.

1.3.2 Hot Spot Estimation

Accurate thermal modeling is important for the prediction of the highest temperature

of the motor, allowing for an appropriate cooling scheme to be adopted, for losses in

various motor parts to be accounted for and for the rating of the motor to be accu-

rately determined. A traditional approach to such a problem is the discretization of

the geometry cross-section in finite elements and the calculation of the temperature

distribution, by minimization of an appropriate functional. Knowledge of the tem-

perature distribution throughout the geometry would immediately imply knowledge

of the hottest point. However, the finite element method does not provide the speed

and flexibility essential for Monte-Carlo design and an alternative is necessary.

Another path is followed here that employs dual-energy analysis in the calcu-

lation of the hot spot. The motivation comes from the analogy that exists between

the steady-state heat conduction equations and the electrostatic Maxwell's equations.

Following this analogy, appropriate functionals may be obtained that lead to the esti-

mation of upper and lower bounds to the "thermal energy" of the variable reluctance

machine cross-section. The dual-energy algorithm is extended to the estimation of

the temperature at the hot spot of the VRM model.



1.4 The Dual-Energy Method

The VRM design problems considered in this thesis are mathematically described by

a set of partial differential equations, subject to Dirichlet and Neumann boundary

conditions. These problems fall under the general category of boundary value prob-

lems, which encompasses a wide range of engineering disciplines. Table 1.1 provides

a chart of several such disciplines, and illustrates the similarities that exist between

their describing equations. In all these cases, the boundary value problems consist

Magnetic V-B=0 VxH=J B =pH
Electrostatic V.D -=p Vx E = 0 D = E
Conduction V J = 0 Vx E = 0 J = E

Thermal V q = Q Vx M = 0 M = k q
Fluid V.N=0 Vxv=O N=pv

Table 1.1: Boundary value problems in different engineering disciplines

of a curl equation, a divergence equation and a constitutive relation, that need to be

solved subject to a set of boundary conditions. Although this thesis focuses on the

solution of the magnetic and thermal equations, it is important to realize that the

dual-energy method, the conclusions drawn and the methodology developed in the

next Chapters can be applied to the solution of other engineering boundary value

problems, such as those of Table 1.1.

Two points of view can be adopted in the solution of such problems. One embodies

analytic methods such as conformal mapping and superposition [9], [10]. These offer

the advantage of providing the exact answer to a problem, often in an attractively

compact and general form. Such methods often rely on the geometrical symmetry

of the structure, but may be inapplicable to problems with complicated geometries

and large number of boundary conditions. With the advent of computers, numerical

methods have become increasingly popular, offering accurate solutions to problems of

arbitrary geometries. A large number of numerical methods is proposed and presented

in the literature. The most widely applied method in the design and analysis of

electric machines is the Finite Element Method (FEM) [11], [12]. FEM discretizes a

problem into a large number of elements, and the field distribution is approximated



by polynomials inside each element. The approximate solution to the problem is

then determined by extremizing an appropriate energy functional. The advantage

of the FEM is that arbitrarily shaped problems consisting of a variety of materials

can be analyzed. However, dense discretization is necessary for accurate geometry

representation, and acceptable accuracy of the solution. The requirement for fine

discretization has a direct impact on the computational speed and time. As a result,

the finite element method becomes inappropriate for a design-optimization program

where a large number of designs needs to be evaluated over a small time frame,

unless very fast computer resources are available. This thesis proposes the use of

the algebraic dual-energy method in the numerical solution of the VRM analysis

problems.

The basic idea behind the dual-energy method involves the introduction of a

convex and/or a concave energy functional. These functionals and their extrema

provide upper and lower energy bounds to the true system energy, respectively. When

averaged, the bounds may yield values very close to the system energy. The method

originates from classical mechanics [13], [14], and has been successfully extended

to electromagnetism [15], [16], [17], [18], [19], [20], [21], [22]. Penman and Fraser,

and Hammond and Freeman applied the method in the 1980s to a number of simple

electrostatic, magnetostatic and eddy current problems for which values of resistance,

inductance and capacitance are hard to obtain analytically [23] - [36]. Their work

underlines the fact that the dual-energy method approaches the problem at hand

from the energy point of view and as a result, the system is treated as a whole. The

goal is the energy and its derived parameters, while precise knowledge of the field

distribution throughout the region of interest is not necessary; the calculated energy

bounds may be far away from the actual system energy, but the averaging process

of upper and lower bounds can result in significant error cancellation and yield an

accurate result in very small computational times, thus avoiding computationally

intensive field calculations.

The literature presents two different directions in applying the dual-energy method:

the geometric approach and the algebraic approach. The geometric approach, most



widely known as the method of tubes and slices, subdivides the problem geometry

into slices of equipotential surfaces and tubes of flux, resulting in lower and upper

parameter bounds respectively. The effect of the tubes is the introduction of fictitious

curl sources in the system, while the slices generate divergence sources. The distri-

bution of these sources is controlled by requiring zero net fictitious sources at each

individual slice or tube boundary, as well as in the system as a whole. Hammond and

Qionghua [30] present some rules of thumb for subdividing the region but no formal

guidelines have been formulated for a problem of arbitrary geometry. Sykulski in [37]

presents a computer package (TAS) for calculating circuit parameters (R, L, C) using

the method of tubes and slices. The advantages of this approach lie in the fact that the

system is treated as a whole and only simple calculations are required, avoiding the

time consuming matrix inversions of the FEM. However, the accuracy of the solution

depends on the shape of the tubes and slices rather than on their number; the process

of mesh refinement, commonly encountered in finite element analysis, is replaced here

by a reshaping process. This suggests that one should examine more closely the effect

of different distributions on bounds estimation, which is time consuming and problem

(geometry) dependent. Special techniques are required to handle any nonlinearities

present and/or different material interfaces. As a result, the application of TAS is

restricted to that of a teaching aid. Miller in [8] has applied the geometric approach

in VRM magnetic analysis and more specifically to the calculation of the minimum

phase inductance. In his paper, the agreement between calculated and measured re-

sults is quite good; their ratio for a particular motor is 1.01. However, no results have

been published on the accuracy of the method for a wide range of geometries, such

as that obtained and analyzed during Monte Carlo design processes. In addition,

no insight is given on the computational times and level of discretization required to

achieve satisfactory accuracy levels.

The other direction that can be followed in applying the dual-energy method is

the algebraic; the upper and lower bound functionals are explicitly calculated and

extremized by assuming appropriate approximating polynomials for the potential

and/or the field distributions throughout the problem geometry. This approach is



not as widely known or applied as the method of tubes and slices. Hammond has

employed it in trivial examples with boundaries, boundary conditions and source

distributions easily handled algebraically. However, the geometry of the VRM at

the unaligned position, the dominating curvatures characterizing the electromagnetic

field distribution, and the presence of a large number of boundary conditions arising

at the steel boundaries, provides a challenging exercise in the application, behavior

and effectiveness of the dual-energy method in a more realistic framework.

It is interesting to note the relation between the dual-energy method and the

FEM. The finite element method on the one hand, employs only one energy func-

tional, namely one that yields a lower energy bound. It requires fine discretization

of the geometry at hand, if the system energy is to be calculated with accuracy. The

dual energy-method on the other hand, extremizes two energy functionals. Its aver-

aging process aims at canceling out the upper and lower bound deviations from the

true system energy, E. As a result, a fine discretization is not necessary, as long as

the two bounds are equidistant from E. The FEM is more suited for problems where

the field distribution is required, whereas the dual-energy method is more appropri-

ate for problems in which only lumped field-derived quantities, such as resistance,

capacitance and inductance, are required. Cendes and Shenton in [38] couple the two

methods in the solution of magnetic field problems. They employ complementary

variational principles, in order to obtain error bounds and confidence limits for the

finite element solution, forming criteria for interactive mesh refinement.

The algebraic dual-energy method (ADEM) is considered in more detail in this

thesis. One may argue that the tubes and slices approach may look more appealing,

since it requires sketching of both the flux and potential distributions, thus providing

additional insight to the problem at hand. However, since the shape of both tubes and

slices determines the accuracy, the method may prove hard to implement; it requires

complicated computer algorithms, in order to efficiently handle arbitrary geometries

and sketch flux and equipotential lines pertaining to physical intuition [1]. The al-

gebraic dual-energy method on the other hand, may seem hard to implement since

the integrals and bounds are calculated explicitly. With the continuous development



of symbolic manipulation software however, this approach may become increasingly

popular. As illustrated in the next few chapters, such software can be employed in

a one-time analytic calculation of the bounds of a particular geometry. Hence, ex-

pressions for the bounds can be obtained that are only a function of the problem

dimensions and excitation. These can be subsequently translated into C code or any

other programming language, and used repeatedly within a design-optimization pro-

gram for varying geometries and excitation profiles, without a lot of computational

cost.

1.5 Thesis Objectives

The objectives of this thesis and questions addressed are as follows.

" Explore the algebraic dual-energy method. The present literature on

the algebraic dual-energy method involves simple examples with boundaries,

boundary conditions and source distributions that are easily handled. How-

ever, the geometry of the variable reluctance motor at the unaligned position,

the dominating curvatures characterizing its electromagnetic field distribution

and the presence of a large number of boundary conditions arising at the steel

boundaries, provide a challenging exercise on the feasibility of the method in a

more realistic example.

* Develop and apply an algorithm for the fast and accurate calculation

of the VRM minimum phase inductance. For a relatively small number

of free coefficients, success of averaging the bounds is not guaranteed unless the

equidistance of the bounds can be assured. A criterion must be developed to

select the number of free coefficients required in the calculation of each bound

so as to ensure equidistance from the exact solution.

* Extend the dual-energy method application from electromagnetics to

thermal analysis. Based on the analogy that exists between the steady-state

heat conduction equations and electrostatic equations, the idea of bounding the



magnetic energy of a system can be extended to the derivation and analytic cal-

culation of upper and lower "thermal energy" bounds. This further introduces

the idea of thermally analyzing and designing variable reluctance motors using

the algebraic dual-energy method.

* Find bounds to the hot spot of a VRM phase. The last objective of

this thesis is to extend the idea of bounding to the estimation of the hot spot,

important in the design of VRMs. This problem addresses the issue of bounding

the temperature at a point as opposed to bounding the energy of the whole

system, and is analogous to finding the maximum magnetic or electric field

within a geometry.

1.6 Thesis Organization

This thesis applies the algebraic dual-energy method to the efficient and accurate

electromagnetic and thermal analysis of variable reluctance motors. The algebraic

dual-energy method is applied to the calculation of the minimum phase inductance

of VRMs, and to the estimation of their hot spot.

Chapter 2 provides the theory of the dual-energy method and the mechanics as-

sociated with its application to a series of electromagnetic problems with known,

analytic solutions. Chapter 3 explores the application of the method in the calcula-

tion of the minimum phase inductance of the VRM. Error analysis for bounds control,

ensuring equidistance, is provided for this problem. Chapter 4 further extends the

method to thermal analysis and addresses the problem of bounding the temperature

at a point in the geometry, as opposed to providing bounds for the energy of the

whole system. Chapter 5 concludes the thesis with a summary of the most important

results, and suggestions for further work.



Chapter 2

The Algebraic Dual-Energy

Method

In this chapter the algebraic dual-energy method (ADEM) is presented in detail and

illustrated by simple examples having analytic solutions. The examples may look

trivial at first glance. However, the application of the ADEM to these examples

provides insights into the method and illustrates its virtues and disadvantages.

2.1 Introduction

The dual-energy method yields upper and lower energy bounds to the energy of elec-

tromagnetic systems. Chapter 1 provides an introduction to the philosophy of the

method, which has two formulations: geometric and algebraic. The geometric formu-

lation involves the use of tubes and slices that define flux and potential barriers from

which the energy bounds may be calculated. The algebraic formulation, which is the

focus of this thesis, makes use of concave and/or convex functionals to approximate

electromagnetic quantities from which the energy bounds may again be calculated.

More specifically, the algebraic dual-energy method employs two different func-

tionals, Y and Z, that yield analytic upper and lower bounds to the true system

energy, respectively. These bounds can be explicitly calculated by adopting approxi-

mations to the flux and potential distributions throughout the problem region. These



approximations are of the form

M

ao + E ai Ni(x, y, z) i = 1, 2, ...M. (2.1)

The functions Ni(x, y, z) form a set of basis functions which need not be complete.

The free coefficients, ai, are real constants which are calculated by extremizing the

energy functionals Z and Y, resulting in a good "fit" for the assumed distributions.

The extrema of Z and Y yield the lower and upper energy bounds Elower and Eupper,

respectively, as illustrated in the simple diagram of Figure 2-1. The average of these

bounds, Eaverage, can provide a value close to the true system energy, Eexact. Eaverage

can be subsequently employed to develop lumped-parameter models of the system. It

Eupper + Elower

2

ai

Figure 2-1: Graphical interpretation of the algebraic dual energy method

is this averaging process that permits even the crudest trial functions to yield results

reasonably close to the correct answer.

2.2 Resistance Estimation Using the ADEM

In this section, the algebraic dual-energy method is employed in the calculation of

static resistance as a means of illustrating the method. A proof of the existence of



upper and lower resistance bounds for arbitrarily-shaped three-dimensional linear re-

sistors is given. An example with a known analytic solution is considered to illustrate

the application of the method. The steps taken are described in detail and the issues

involved in the application of the method are identified.

2.2.1 Existence of Upper and Lower Resistance Bounds

Consider the arbitrary resistor of Figure 2-2 which occupies the volume V. It is

surrounded by the closed surface S, and is filled with the spatially-varying conductivity

o; Outside S, the conductivity is zero. The surface S can be subdivided into three

open surfaces S+, S_ and SI, so that S = S+ U S_ U S±. The open surface S+

defines the positive resistor terminal, a perfectly conducting surface over which the

potential 1VR is prescribed. Similarly, S_ defines the negative resistor terminal which

is defined to be at zero potential. The remaining portion of S is SI, over which the

boundary condition J -dS = 0 is prescribed. J is the current density in the problem

region. The static resistance R of the resistor is typically obtained by first solving

Figure 2-2: Arbitrary resistor definition

Maxwell's equations describing the system

V x E = 0 > E = -V4I (2.2)

V.J=0 (2.3)



J = aE (2.4)

subject to the imposed boundary conditions. Here, 4) is the electric potential and

E is the electric field intensity. Next, the current IR flowing through the resistor is

obtained from

IR= I JdS=- J dS. (2.5)

Assuming VR to be the known potential difference across the two resistor terminals,

the resistance is given by

R =V (2.6)
In

Finally, the power dissipated in the resistor is given by

P=f J.EdV= VR=RI . (2.7)Jv R (2.7)

Analytic bounds for the resistance can be found by calculating bounds to the

dissipated power P. An upper bound to P, P 0,,,,, that will yield a lower resistance

bound, can be obtained by first choosing a function PL to approximate the scalar

potential, 4, in V. 4L need only satisfy the Dirichlet boundary conditions on the

resistor terminals, S+ and S_. These are 4L = VR on S+ and 4 )L = 0 on S_. The

corresponding EL and JL are computed using

EL = -V4IL (2.8)

JL = a EL. (2.9)

Note that JL need not satisfy its boundary condition on S , nor equation (2.3).

Moreover, if substituted in (2.5), it will not yield the true resistor current, IR. An

upper bound for the dissipated power is computed using the functional

Power = / EL -JL d. (2.10)



Hence a lower bound for the resistance, RIower, is obtained using

Rlower R < V = R. (2.11)
Plower - P

Riower = R if and only if 4IL = 4). In order to prove that Plowe,r P, define 6(IL such

that 4 L = 4 + 64.L In a similar and consistent manner, define 6EL and 6JL, such

that EL = E + 6EL and JL = J + 6JL. Then

Plower = EL JL dV

- (E + 6EL) (J JL) dV

= P+ 2 J -6EdV+Jo 6EL 6EL dV

P-2 P J.V64ŽLdV+J o6EL.-6ELdV

SP-2 64L J -dS + 2 6L V - J dV + a 6EL 6EL dV

P P. (2.12)

The third equality holds because, by definition, 6JL = a 6EL and J = a E. To

obtain the fourth equality, the definition 6EL = -V64ŽL is used. The fifth equality

makes use of the vector identity V. (64 L J) = 6 4 L V J + (J V) 6 4 L. The sixth
step employs the divergence theorem. The last equality holds because J - dS = on

S1 and 6 L = 0 on S+ and S_ also V J = 0 in the resistor volume.

An upper bound for the resistance may be obtained by choosing a function Ju

to approximate the current density J in V. Ju satisfies (2.3), as well as its boundary



condition on S1 . It also defines a current IR through (2.5), such that

IR = f+ Ju -dS.

The corresponding electric field is obtained from

1
EU = - JU07 (2.14)

and is not necessarily curl free. As a result, in the calculation of an upper bound, the

Dirichlet boundary conditions are not necessarily satisfied. An upper bound for the

power dissipated in the system can then be obtained using the functional

Pupper =v JU EU dV. (2.15)

Hence an upper bound for the resistance, Rupper, is obtained using

P
Rupper 2Ppper R.

'R R
(2.16)

Note that R,,pp, = R if and only if Ju = J.

In order to prove that Puppe, > P, define 6Ju such that Ju = J + 6JU.

similar and consistent manner, define 6Eu such that Eu = E + 6Eu. Then,

Pupper UJ EU dV

= (J+ Ju) - (E + 6EU) dV

P P+2 E - Ju dV + a 6EU -6EU dV

In a,

SP- 2 J (V4O) -Ju dV +

= P-2 JV .( Ju) dV + 2

a 5Eu - EU dV

V4 V -6Ju dV + a 6EU - 6Eu dV

== P-2 is Ju -dS +2/ V. 6JU dV + E .Eu dVJV JV
( 6Ju . dS - 2 4) JudS-2 f 4) 6Ju - dS

( V -6Ju dV + JCo 6Eu -6Eu dV

(2.13)

=P-2

+21,

Is+



P+ a/u6Eu-SEudV

> P. (2.17)

The third equality holds because, by definition, Ju- = a JEu and J - a E. The

fourth equality uses E = -V4. The fifth equality makes use of the vector identity

V - (D 6Jv) = 4 V - 6Jv + (6Ju - V) 4. The sixth step employs the divergence

theorem. The last equality is valid because, by construction, 6Ju -dS = 0 on S± and

V - JJU = 0 in V. Last but not least, the surface integral of 6Ju vanishes over S+

and S_.

It is interesting to note that since Ju is chosen to satisfy the zero divergence

condition

V -JU = 0 = Jv = V x Tu (2.18)

the upper bound derivation could start by adopting an electric vector potential, Tu,

such that Tu = T + 6TU. Such an approach is helpful in two-dimensional resistor

problems with current excitations transverse to the plane of the problem; TU will

then have a single spatial component, thus simplifying the analysis.

2.2.2 Example: Right-Angled Conductor

Following the theoretical analysis of the previous section, the ADEM is applied here

to a resistor problem with a known analytic solution. To obtain an upper resistance

bound, the following steps are taken:

* Guess a current density distribution, JU, which satisfies the boundary condition

for J on S , namely

JU -dS = 0 (2.19)

as well as the relation

V -Ju = 0 (2.20)



in the resistor volume. Each component of JU can be an approximation of the

form
i=K

JUyz =ii=O ,y,z Nix,y,z ( , Z)i=0
(2.21)

where K is the number of free coefficients, ai,y,,. are the free coefficients to be

calculated, and Ni~,Y,= are the trial functions in x, y and z. Imposing (2.19) and

(2.20) will constrain some (or all) of the free coefficients aix,y,,.

. Set

I = 'R JU -dS (2.22)

where IR is the total current through the resistor terminals.

* Obtain the corresponding electric field distribution, EU, from

1
Eu - JU. (2.23)

* Calculate the power dissipated in the resistor, Pupper, from

Pupper =J Ju Eu dV. (2.24)

* Calculate any remaining free coefficients, aix,y,z, by extremizing Pupper by solving

the algebraic set of equations

Pupper = 0. (2.25)

* Obtain an upper bound for the resistance from

Pupper
Rupper =

IR
(2.26)

Similarly, the steps taken to obtain a lower resistance bound are as follows.



* Guess a potential distribution, (PL, satisfying the boundary conditions for 4 on

S+ and S_. kL can be an approximation of the form

i=K

)L = E i ,Yz Ni (x, y, z) (2.27)
i=O

where K is the number of free coefficients, P3i,,,z are the free coefficients to be

calculated, and Ni.,,,z are trial functions in x, y and z. Imposing the boundary

conditions for (PL will constrain some (or all) of the free coefficients 0i",Yz

* Obtain the corresponding electric field distribution, EL, from

EL = -V4L. (2.28)

* Calculate the power dissipated in the resistor, Plower, from

Power = I a EL EL dV. (2.29)

* Calculate any remaining free coefficients, Pi,,,z, by extremizing Plower by solving

the algebraic set of equations

OPlower = 0. (2.30)
iz,y,z

* Obtain the lower bound for the resistance from

RIower (2.31)r ower

This algorithm is now illustrated by considering the right-angled conductor of

Figure 2-3(a). It is assumed to have depth D into the paper and a uniform conduc-

tivity a throughout its volume. The end electrodes are perfectly conducting and the

potential difference between the two terminals is VR, and the total current through

the terminals is IR. The uniformity of the cross-section in the z-direction simplifies
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the resistance calculation to that of a two-dimensional problem. Furthermore, the

symmetry that exists about the x = y line permits analysis of half of the problem

geometry, as shown in Figures 2-3(b) and 2-3(c). The task of determining an ex-

act value for the resistance R is hindered by the polygonal shape of the structure.

However, the method of conformal mapping [9], [10] can be employed to obtain an

analytic solution. Using the Schwarz-Christoffel transformation, R is found to be [39]

2.558523142
R = () (2.32)a D

The algebraic dual-energy method is applied below to obtain analytic upper and lower

resistance bounds.

Resistance Upper Bound: Rupper

As shown in Figure 2-3(b), the bounding surface of the resistor is broken up into three

open surfaces, S+, S_, S1 , the positive and negative terminals and the remaining

bounding surface, respectively. Next, Ju is chosen within the resistor subject to

(2.19) and (2.20). Condition (2.20) can be enforced by setting

JU = V x Tu. (2.33)

For the two-dimensional problem at hand, TU has only one component in the z-

direction, namely Tu. Considering only half of the problem due to symmetry, Tu

should satisfy the following boundary conditions on SI:

* TTu = 0 at x = 1

* aTu = 0 at x = 2

so that (2.19) is satisfied. A second order polynomial in x and y is employed for Tu

such that

Tu = a + a2 + a3y+ a4y + a5
2 + a6y2. (2.34)



The first boundary condition on Tu requires that a6 = 0, and a3 = -a 4 . The second

boundary condition imposes a4 = 0, and hence a3 = 0. Then,

Tu = al + a2x + a5
2. (2.35)

The corresponding current density is then

OTU
Oy

Setting

-T,ax = (-a 2 - 2asx) Y.

j(a 2 + 2 a5x) dx

(2.36)

IR = - JU - dS = -D

- 2x)] S dy dx
Jf/ 

~I
S/2 D

L=1 = [ + a5(3 - 2x)] 2 dy dx
a5 IR
3 3D

3 I2
2 D2)

(2.40)

(2.37)

gives an extra constraint on the coefficients, namely

IR
a2 = + 3 as).D

Substituting (2.38) into (2.36), the electric field distribution is obtained as

1
EU = - JU

or

1 IR= [ + a5(3 - 2x)]k.D

(2.38)

(2.39)

Next, the power dissipated in the whole resistor volume, Ppper, is given by

and a5 is determined by extremizing Pupper according to

OPupper 0 a IR
= 0 a =

0as 3D

Pupper JU -EU dV
= 2D

= 2D 1
0

1

1
=2-D

o"

(2.41)

+ a5(3 - 2x)] ~ [R + a5(3D



Substituting back into (2.40), yields

26 1 I226 1 1(2.42)
upper= 9 . (2.42)

The upper resistance bound is given by

Rupper Pupper 26 2.888888889
Rpper - = ID () (2.43)

which is within 13% of the exact answer. Maple V [40], a symbolic manipulation

software package, can be used to generate the above equations. A script file that

performs the above operations and yield an upper resistance bound is included in

Appendix A at the end of this chapter. Unity D and a are assumed for simplicity.

The same process can be repeated to generate better upper bounds by increasing

the order of the polynomial approximation for Tu. Table 2.1 summarizes the upper

resistance bounds obtained using different orders of approximation for the guessed

T11 . For example, the first order polynomial approximation for Tu is given by

Tu = al + a2x + a3y (2.44)

and results in R,,pper = 3.0 (Q2). The third order polynomial approximation is

Tu = al + a2x + a3y + a4xy + a5x 2 + a6y 2 + a7x2y + as8 y 2 + a9x3 + aloy3  (2.45)

and yields Rpper = 2.7179204 (t). Notice that a zeroth-order approximation in

x and y is constant, and so does not provide enough free coefficients to satisfy the

boundary conditions for Tu.

Resistance Lower Bound: Riower

To obtain a lower bound for the resistance of the geometry of Figure 2-3, half of the re-

sistor problem is considered again as shown in Figure 2-3(c). A potential distribution



Rexact = 2.5585231 (Q)
Order of Lower bound Upper bound Raverage Difference

approximation (A) (A) (A) jRaverage- Rexactl

1 2.1640426 3.0 2.5820213 0.0234981
2 2.4266065 2.8888889 2.6577477 0.0992246
3 2.4506032 2.7179204 2.5842618 0.0257387

Table 2.1: Resistance bounds for the right-angled conductor problem

is adopted according to
V, y

4L -= (2.46)2x

for example, which satisfies the boundary conditions for 4, namely I)L = 0 at y = 0,

and (L = & at y = x. The corresponding electric field distribution is
2

EL 2s1 [y X - XY]. (2.47)

Finally, the power dissipated in the resistor volume is

Plower = V a EL -EL dV

= 2uD Js 44 (y 2 +x 2 ) d xdy
/S2 4 X4

= 2 rD J2  JyXo 44 (y2 + 2 ) dy dx

2 a D V,2 ln(2)
= 3(2.48)3

Hence,
V2,  2.1640426

Rower - 2.1640426 (2.49)SPlower UD

which is approximately 15.5% below the exact solution. Maple V can be used again

to generate the above equations. A script file that performs the above operations and

yields the lower resistance bound of (2.49) is included in Appendix A at the end of

the chapter. Again unity a and D are assumed for simplicity.
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Figure 2-4: Resistance bounds vs. order of approximation

Increasing the order of approximation for 4L, results in improved lower resis-

tance bounds. Table 2.1 summarizes the results obtained using different orders of

approximation for the guessed )L. The same table also includes the corresponding

averages of the lower and upper bounds, which are within 10% of the exact value of

R = 2.558523142 Q.

Observations on the Resistor Problem

Figure 2-4 displays the calculated bounds against the order of approximation for the

resistor problem. As the order of approximation increases, the individual resistance

bounds move closer to the exact value but their average does not necessarily improve.

This suggests that, for an increase in the order of approximation and number of free

coefficients, averaging of the bounds does not guarantee a better result. It is hence

immediately clear that equidistance of bounds is a critical and important factor in

guaranteeing success of the method; the order of field approximation is not as critical

in averaging unless very high orders are considered.

4
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Figure 2-5: Resistance bounds vs. number of free coefficients

Another interesting point lies in the calculation of the lower bound. The approx-

imation used for the scalar potential

Vs
2L =x2z

(2.50)

is not a polynomial in both x and y. Due to the resistor shape, the boundary condi-

tions for 4 would be impossible to match simultaneously, unless the - dependence is

employed; this guess is not a polynomial guess for )L. The application of (2.50) has

two implications: on the one hand, care should be taken with divisions; if a point with

abscissa x = 0 exists in the problem domain, division by x is an invalid operation.

Moreover, the original notion of an "order of approximation" is less clear; this is due

to the presence of negative powers of x in (2.50) that is essential in matching the

boundary conditions. It is therefore more meaningful to plot the calculated bounds

versus the number of free coefficients, as shown in Figure 2-5.



From the above discussion, several rules of thumb for implementing the ADEM

can be deduced.

* The type of approximation employed for the guessed field distributions is crit-

ical. It must have an x-y dependence and/or enough free coefficients, to allow

all pertinent boundary conditions and Maxwell's equations to be met. It must

also be easy to integrate, requiring minimal numerical computation.

* The calculation of the upper bounds may require different approximating func-

tions than the calculation of the lower bounds. This is strongly dependent on

the problem geometry and boundary conditions.

2.3 Capacitance Estimation Using the Algebraic

Dual-Energy Method

In this section, the calculation of static capacitance using the algebraic dual-energy

method is presented. A proof on the existence of upper and lower capacitance bounds

is given. Since the static capacitance problem is similar to that of the static resistance

problem, an example is provided in Appendix B at the end of the chapter.

2.3.1 Existence of Upper and Lower Capacitance Bounds

The proof in this section closely follows that presented above for resistance bounds.

Consider the arbitrary capacitor of Figure 2-6. S+ and S_ are the positive and

negative capacitor terminals respectively, with prescribed potential values. The body

of the capacitor is the infinite volume V of spatially-varying permittivity, e, bounded

by the closed surface S1 at infinity. The electric potential D is assumed constant at

Vc on S+, and 4 = 0 on S_. Moreover, E and D, the electric field intensity and the

displacement flux density respectively, vanish on S1 .

The static capacitance C of the capacitor is obtained by first solving Maxwell's



Figure 2-6: Arbitrary capacitor definition

equations describing the system

V x E = 0 = E = -V4 (2.51)

V D = 0 (2.52)

D = EE (2.53)

subject to the imposed boundary conditions. The total charge on the positive terminal

is next obtained from

Qc= s+

The capacitance is then given by

D -dS = - s_

C =c
Vc

where Vc is the potential difference between the two capacitor terminals. The electric

energy stored in the capacitor is

1
we= -2

CV2 D.EdV= Q2
D -E dV c2 2 C

D -dS. (2.54)

(2.55)

(2.56)



Analytic bounds for the capacitance can be obtained by calculating bounds for

the stored energy. An upper energy bound, Wtower, that will yield a lower capacitance

bound, can be calculated by first choosing a function DL to approximate D in V.

DL need only satisfy the boundary condition on SI, as well as the zero divergence

condition, V -DL = 0. The corresponding EL is computed from

1
EL= - DL. (2.57)

Note that EL need not be curl free and its line integral need not satisfy the boundary

conditions for P on S+ and S_. The charge on the positive terminal, Qc, can be

obtained from

Qc = f DL - dS.
+s

(2.58)

An upper bound for the stored energy is computed using the functional

Wower Jv EL - DL dV. (2.59)

and hence, a lower bound for the capacitance, Clower, can be calculated from

lowe 2 Wower We2 1,- we (2.60)

Note that CIower = C if and only if DL = D.

In order to prove that Wlowe,r We, define 6DL such that DL = D + 6DL. In a

similar and consistent manner, define 6 EL such that EL = E + 6EL. Then

KWower f- 1 EL-DLdV
2 v

S f(E + 6EL) - (D + 6DL) dV
2 V

= We + E.6DLdV + - 6EL 6EL dV
fv 2v

= H - fV -6DL dV + I E 6EL - 6EL dV

= W - V- (4 6DL) dV + J V -6DL dV + - E EL - 6EL dVv v 2 v



= We- 6DL.dS + V .6DL dV + - 6EL 6EL dV

= We-j 1D L-S (6D dS6DL dSj- 6DL-dS

+ I4 V .6DL dV + - c 6EL -6EL dV

We + f c6EL -6EL dV2 v
> We (2.61)

The third equality holds because, by definition, 6DL = e 6EL and D = e E. To

obtain the fourth equality, the definition E = -V4 is used. The fifth equality makes

use of the vector identity V - (b 6DL) = 4 V -6DL + (6DL -V) D. The sixth equality

employs the divergence theorem. The last equality holds because, by construction,
6DL = 0 on S1 and the surface integral of 6DL vanishes over the terminals S+ and

S_; moreover, by construction, V 65DL = 0 in the capacitor volume.

Similarly, an upper bound for the capacitance may be calculated by choosing a

vector Eu to approximate E in V. Eu should satisfy the zero-curl condition

V x EU = 0. (2.62)

This can be automatically satisfied by adopting a function 4 u to approximate P in

V. 4 u satisfies the Dirichlet boundary conditions on S+ and S_. Then,

EU = -V4u (2.63)

Du = c Eu. (2.64)

Note that Du will not necessarily be solenoidal, nor satisfy the boundary conditions

on S . An upper bound for the stored system energy is obtained using the functional

Wupper = Du. EU dV (2.65)



and an upper bound for the capacitance, Cupper, can be calculated from

2 Wp,. 2 We
C - 2 upper > = C. (2.66)upper V2 - V

Note that Cupper = C if and only if IU = (.

In order to prove that Wupper > We, define 6(uI such that (u = 4 + 6 4 U. In a

similar and consistent manner, define 6Eu and 6DU such that EU = E + 6EU and

DU = D + 6DU. Then,

Wupper = Du.EudV

1 f(D + 6Du). -(E + 6Eu)dV
2 1

= W-J+D.V6EudV+ - J •6Eu6. EudV

= We- D. V6 u dV + - E J6EU - Eu dVd
v 2 v

v 2v 2v v 2 v

= He-J 6u D.dS-f J6u D.dS-f j6 u D-dS

+ 6( V.- D dV + - 6Eu. -6Eu dV

= Me + 5E6Eu-6EudV

> W1e. (2.67)

The third equality holds because, by definition, 6Du = E 6EU and D = e E. The

fourth equality uses 6Eu = -V64u. The fifth equality makes use of the vector

identity V - (6 Du D) = 6 (u V - D + (D - V) 64u. The sixth equality employs the

divergence theorem. The last equality is valid because, by definition, D = 0 on SL

and V -D = 0 in V; moreover 64e = 0 on S+ and S_.

An example on the application of the ADEM to a closed capacitor problem is given

in Appendix B of this chapter. That problem forms a subset of the more general open

capacitor problem analyzed here.



2.4 Inductance Estimation Using the Algebraic

Dual-Energy Method

In this section, the algebraic dual-energy method is employed in the calculation of

static inductance. A proof on the existence of upper and lower inductance bounds for

arbitrarily-shaped, three-dimensional linear inductors is given. Two examples with

known analytic solutions are considered to illustrate the application of the method.

The steps taken are described in detail and the issues involved in the application of

the method are identified.

2.4.1 Existence of Upper and Lower Inductance Bounds

Consider the arbitrary inductor of Figure 2-7. It is surrounded by a closed surface

S, enclosing a volume V of spatially-varying permeability, p. The surface S can be

subdivided into two open surfaces S1I and S±, so that S = S1 U SII. SII is the portion

of S over which the value of the magnetic vector potential is prescribed and S± is the

portion over which the normal derivative of the potential is given. These correspond

to Dirichlet and Neumann boundary conditions, respectively.

Boundary S

Figure 2-7: General inductor definition

The static inductance, L, of the inductor is obtained by first solving Maxwell's



equations describing the system

V. B = 0 B = V xA (2.68)

Vx H = J (2.69)

B = p H (2.70)

subject to the boundary conditions imposed. A is the magnetic vector potential, J

is the current density, B is the magnetic flux density and H is the magnetic field

intensity. The inductance can be subsequently calculated using either of two ways.

On the one hand, L = - , where A is the total magnetic flux linked by the winding,

carrying a current i. On the other hand, L = 2 , where Wm is the stored magnetic

energy of the system, given by

Wm = - B.HdV=2 JI A J dV. (2.71)

It is important to note that the second equality in (2.71) holds under the condition

that

f(Ax H) - dS = 0. (2.72)

Equation (2.71) is usually presented in the literature for problems where the surface

S -0 oc [42]; then the magnetic vector potential decreases as !, the magnetic field

decreases as 4, and although the surface S increases as r2, the product (A x H) -dS

decreases as 1. Hence, in the limit as r -- oc, the integral of (2.72) vanishes. But

for the problems considered here, S has finite dimensions and the enclosed fields will

not necessarily decrease to zero with increasing r. However, condition (2.72) will still

hold in this case , since

(AxH) dS = A.(H x dS)= A (H x dS) + A (H x dS) = 0 (2.73)

This is because, by definition, H x dS = 0 on S and A = 0 on S11. As a result,

(2.71) is still valid for the problem and boundary conditions under consideration in



this section.

Analytic bounds for the inductance can be found by calculating lower and upper

bounds to the stored system energy. A lower energy bound, W1 ower, can be obtained

by first adopting a function AL to approximate the magnetic vector potential, A, in

V. AL need only satisfy the Dirichlet boundary conditions on S11; it is otherwise un-

constrained. The corresponding BL and HL are computed using Maxwell's equations

BL = V x AL

HL = - BL.

(2.74)

(2.75)

They need not satisfy their boundary conditions on S1 , nor Ampere's law. A lower

energy bound is computed using the functional

Wiower = AL'JdV-l/vBL-HLdVv 2 v (2.76)

and a lower bound for the inductance, Lowe,r, is found using

2 Wiower 2 W
Llower - < -2 = L.i2 -i 2 (2.77)

Note that Llower = L if and only if AL = A.

In order to prove that Wower < W,, define 6AL such that AL = A + JAL. In a

similar and consistent manner, define 6BL and 6HL, such that BL = B + 6 BL and

HL = H + 6 HL. Then

Wower = vAL -J dV - -1

= (A +6AL) J dV

= W+ f6AL J dV

SWm + 6AL (Vx

Wm -f V (AL

BL. HL dV

2 f (B + 6BL). (H + 6HL) dV

- H H 6 BL dV - A- J 6HL - 6HL dV

H) dV - H 6BL dV- - 6HL .6HL dV

H) dV + H - (V x AL) dV



- H 6BL dV - - p SHL 6HL dV2 2v
-- Wm- (6AL x H) - dS - ' p 6HL" 5HL dV

W, - (6AL x H) - dS± - (AL xH) dSI - •6HL. -HLdV

1 1

= Wm - I PHL-·HL dV2 v
< Win. (2.78)

The third equality holds because, by definition, 6BL = p 6HL. The sixth equality

holds because, by definition, MBL = V x SAL. The last equality holds because, by

construction, 6AL = 0 on SII and H x dS = 0 on S±.

Similarly, an upper bound for L may be obtained by adopting a function HU to

approximate H in V. HU is forced to satisfy Ampere's law (2.69) and the Neumann

boundary conditions on SL, but it need not satisfy any boundary conditions on Sil ,

nor Gauss' law (2.68). Using

BU = p HU (2.79)

an upper bound for the stored system energy can be obtained using the functional

Wupper = Bu HU dV (2.80)

and an upper bound for the inductance, Lpper, can be calculated using

2 Wupper 2 Wm
Lupper= > = L. (2.81)

Note that Luper = L if and only if Hu = H.

In order to prove that Wupper Ž Win, define 6Hu such that Hu = H + 6HU. In a

similar and consistent manner, define SBu such that Bu = B + 6BU. Since Hu is

chosen to satisfy the curl condition,

VxHu=J = Vx(H + 6H) = J Vx 6Hu=0. (2.82)



Thus, 6Hu is curl free. Therefore, there exists a magnetic scalar potential 6'u, such

that 6HU = -V64u. Then,

Wupper
1
2

S1
2

BU. HU dV

J(B + 6Bu) (H + 6Hu) dV

B* 6HU dV + - h1 I
BV6 V~u dV + 1

V - (6 B) dV +

6HU -6HU dV

p 6HU - 6HU dV

6'u V -B dV

p 6HU -6HU

= Wmn -

> w~.
2 a.

6~uB.dS+
1
1

6x, B - dS + -
2

6 'Fu B -dS -

p 6Hu 6Hu dV

61Yu B . dS11 + p 6HU 6HU dV

p 6Hu -6H dV

(2.83)

The third equality holds because, by definition, 6Bu = p 6Hu. The fourth equality

holds because, by definition, 6Hu = -V 6 TU. The sixth equality holds because

V -B = 0 in the inductor volume. Finally, the last equality is obtained since 6 4 u = 0

on S1i and B - dS = 0 on S1 .

2.4.2 Application of the ADEM to Inductance Computa-

tion

Applying the algebraic dual-energy method, a lower bound for the static inductance

can be obtained as follows.

* Guess a spatial distribution for the magnetic vector potential, AL, which satis-

fies the boundary conditions for A. Each component of AL can be an approxi-

= W47 +
= M-Iv

= W,,-
v -

JV
dV



mation of the form

i=K

ALl,ý,r = - E (Yix, y, z)
i=O

(2.84)

where K is the number of free coefficients, 7ix,y,z are the free coefficients to

be calculated, and Nijx,z are the trial functions in x, y and z. Imposing the

boundary conditions for A will constrain some (or all) of the free coefficients

-yix,y, •

e Obtain the corresponding magnetic flux density distribution, BL, from

BL = V x AL. (2.85)

e Calculate the corresponding magnetic field intensity from

BLHL (2.86)

* Obtain the lower energy bound, Wiower, from

Wower = AL -J dV - 12 vBL HL dV

where V is the volume of the geometry at hand.

* Calculate any remaining free coefficients, Tix,,,,, by extremizing WIower by solving

the algebraic set of equations

OWMower

ayiz,y,z

* Obtain the lower bound for the inductance from

2 Wiower 2 Wm
Llower = < = L2 i is the current flowing through the winding.2

where i is the current flowing through the winding.

(2.88)

(2.89)

(2.87)



Similarly an inductance upper bound is obtained as follows.

* Guess a spatial distribution for the magnetic field intensity, HU, which satisfies

the boundary conditions for H and the curl condition

V x HU = J. (2.90)

Again, each component of Hu can be an approximation of the form

i=K

HU,Y,Z = E 6i2,y,, Ni,y,z (x, y,z) (2.91)
i=O

where K is the number of free coefficients, 5bi,Y, are the free coefficients to

be calculated, and Nix,y,z are the trial functions in x, y, and z. Imposing the

boundary conditions for H and Ampere's law will constrain some, or all, of the

free coefficients 6i.,,,z

* Calculate the corresponding magnetic flux density from

BU = p HU. (2.92)

* Calculate the upper energy bound, Wupper, from

Wpper - Bu -Hu dV (2.93)

where V is the volume of the geometry at hand.

* Calculate any remaining free coefficients, 6 ix,y,,, by extremizing Wupper, by solv-

ing the algebraic set of equations

Wupper = 0. (2.94)
06iZ,y,z



e Obtain the upper bound for the inductance from

L 2 Wupper > 2 W
upper- 2 i 2 (2.95)

2.4.3 Example: T-inductor

This section illustrates the application of the ADEM to the computation of induc-

tance. The T-inductor provides the basis for this example. Figure 2-8 provides a

definition of the geometry for the T-inductor. The problem can be found in [7], [25]

and consists of a conductor carrying a uniform current density J = 1 A/m 2 . The

Figure 2-8: Geometry of the T-inductor problem

presence of highly permeable iron on the bottom and sides, and the imposition of

H] = -5J at the top, define the boundary conditions for this problem. The exact

value of the problem inductance is

L = 0.57 Po. (2.96)

Hammond [7] obtains the lower inductance bound by adopting a trial function

AL = b y. Hence B, = b and By = 0. Substitution into his lower bound functional



yields
5 b2

Wiower = -- + 13 b J - 30 b J. (2.97)
[o

This functional is maximized at

tower = 0 => b = -1.7[o J. (2.98)
Ob

Substitution back into equation (2.97) gives

Wtower = 14.45 Lo j2 (2.99)

and hence

Llower = = 0.289t 0. (2.100)

Hammond's calculation of the upper inductance bound begins by adopting a linear

approximation for the field
5

HU = -- yJ *R. (2.101)
3

Substitution into the upper bound energy functional, yields

Wpper = 32.41 po j2 (2.102)

which implies a

Lupper 2Wupper = 0.648 po. (2.103)Lupper - i2

It is interesting to note that Hammond's guess of magnetic field intensity does not

satisfy Ampere's law, nor all the boundary conditions for H. As a result, his guess

does not guarantee an upper energy bound and is not theoretically justified. A

possible reason for the success of his guess is the definition of the symmetry boundary

condition on the top of the slot as H, = -5 J, instead of as A = 0. This has the

advantage of introducing J, the current density and problem energy source, into the

guessed solution. As a result, the guessed distribution is "anchored" about J without

the need to satisfy the V x H = J condition; the chances of obtaining an upper bound



are significantly increased.

The derivations and implementation steps outlined in the previous section are

employed next to obtain the desired bounds. The method is not essentially different

from Hammond's but use is made of a more structured methodology. The lower in-

ductance bound can be obtained by assuming a first order polynomial approximation

in x and y for AL throughout the slot geometry. Thus,

AL = Azi = (al + a 2 z + a 3 y) i. (2.104)

AL must satisfy the Dirichlet boundary conditions, namely Az = 0 at y = 3. This

implies

at + a2 x + 3 as = 0 2 -= 0, a1 = -3 as3 (2.105)

Hence

Az = a3 (y - 3) (2.106)

and
OA~z OA~z

BL= zx- Yz = a3-
dy 8x

so that
a3HL = - .

Calculation of the lower energy functional per unit depth then gives

(2.107)

(2.108)

Wlower = ,AL-J dV - f BL HL dV

22
SJ J 2 a3 (y - 3) dxdy+

Sf a dx dy -2p y=0 Y ==-2 2p
5k2

= -17 a 3 J 3
Po

0a3 (y - 3) dxdy

Iy=2 L=-1
(2.109)

Finally,
wer = 0 =: a 3 = -1.7[1oJ.

10 3
(2.110)



Substituting back into (2.109) yields

Wlower = 14.45 fpo j2

and

Llower = 0.289 Po..

(2.111)

(2.112)

This result is the same as Hammond's but has been reached using the A = 0 symmetry

boundary condition at the top and a more structured methodology.

In order to calculate an upper bound, a field approximation must be adopted that

satisfies (2.90), as well as the boundary conditions at all iron surfaces, namely H. = 0

at y = 0 and y = 2, H = 0 at x = ±2 for 0 < y < 2, and H = 0 at x = +1 for

2 < y < 3. It is unnecessarily difficult to match these boundary conditions using

a finite set of polynomial approximations for H. A way to simplify this task is to

break the geometry into six elements and then proceed to find the upper bound.

The element discretization is given in Figure 2-9. Discretization imposes the further

Figure 2-9: Six-element discretization for the T-slot problem

requirement that the tangential component of HU should be continuous at all element

interfaces. This will further constrain some of the free coefficients. Appendix C at

the end of this chapter includes the Maple V code that will generate an upper bound



for this problem using second order polynomial approximations. The code yields

Wupper = 30.4968725 to j2 (2.113)

which implies an upper inductance bound of

Lpper = 0.6099374 po. (2.114)

The average of the two inductance bounds is

Laverage = Lupper + Llower = 0.4494687 po (2.115)
2

which is close to the exact value of 0.57 ILo. Increasing the order of approximation

for the field distributions improves the energy bounds. While the accuracy of each

energy functional improves with the order of approximation, the average of the upper

and lower bounds does not necessarily improve.

2.4.4 Example: Slot with Perfectly Conducting Walls

Figure 2-10 provides the definition of the geometry considered here. The problem

can be found in [41] and consists of a rectangular winding slot surrounded by per-

fectly conducting walls. The wires comprising the winding carry a current in the -z

direction over the range 0 < x < a and are uniformly distributed in the slot. The

return current path is defined over the range -a < x < 0. Hence, the current density

in the +z-direction depends on the number of turns N and the current magnitude

flowing through the winding. For simplicity, the geometry is assumed uniform with a

depth D in the z-direction, so that a two-dimensional analysis can be employed. The

problem is also symmetric about the y-axis, so that only half the geometry need be

considered. The goal is the calculation of the inductance and the stored magnetic

energy of the structure.

The describing equation is Poisson's equation for the magnetic vector potential so



G =&O b

Depth, D

-a 0 -- ao +a x

Figure 2-10: Rectangular slot with perfectly conducting walls

that

V 2 Az = , o J (2.116)

in the volume. The perfectly conducting walls require that the normal flux density,

and hence Az, is zero along the inductor boundaries. An analytic expression for Az

can be obtained through the addition of a homogeneous and a particular solution.

Hence an analytic expression for the total flux linked by the winding is obtained by

integrating over the inductor area. An analytic expression for the inductance of the

system is found to be

(N2 16 a )4 [nrb (nb
(L 2 D -- -• 2 tanh (2.117)

A n-o nTr 2a 2a I

where A = a b is the winding area. Finally, the stored magnetic energy can be

obtained from

1 . Ni ) 2 D a ( 4  n·rb nh rb
Wm = L = o D • 1 6  - t a n h  n  . ( 2 .1 1 8 )

2 A n=odd n nxr 2a 2a ]J

Assuming values for the different parameters, this equation can be easily pro-

grammed in C code and the sum to a large number of terms can be determined.

For simplicity, unit length in the z-direction is assumed and a = b = 0.05m. The

S---' OD
+J
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excitation consists of a winding of N = 100 turns, with a current of i = 25A flowing

through each turn. This gives rise to a current density of 106A/m 2 . Using 20, 000

terms in (2.118), the value of stored magnetic energy is found to be

Wm = 0.2760223234 J (2.119)

exact to 10 decimal places. As an extra check on this value, an approximate value for

TV can be obtained using the finite element method. Quickfield [63] yields a value

of 0.27594 J with 57,200 nodes, which accurately compares with the exact value

in (2.119). Figure 2-11 provides the magnetic field profile obtained from this finite

element analysis.

Figure 2-11: Field plot for rectangular slot with perfectly conducting walls

One can now proceed to calculate analytic upper and lower bounds for the energy

of this problem, using the algebraic dual-energy method.

Lower Energy Bound

Using the symmetry of the problem about the y-axis, the boundary conditions for the

assumed AL are A, = 0 at x = 0, x = a, y = 0, y = b. A polynomial approximation

in x and y is assumed for Az, such that the boundary conditions on Az are satisfied.
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1i Lower bound for a -+ oo

Order of approximation Stored energy (J) Error (J)
1st
2nd
3rd
4th 0.2727076956 3.31462e-3
5th 0.2727076956 3.31462e-3
6th 0.2756612085 3.61115e-4

Table 2.2: Lower energy bounds for rectangular slot problem

First, second and third order polynomial approximations do not provide enough free

coefficients to satisfy all boundary conditions. Fourth, fifth and sixth order approx-

imations, however, give the results of Table 2.2, obtained using Maple V [40]. The

error in the calculated stored energy is very small.

Upper Energy Bound

For the particular problem, no boundary conditions on H are present. As a result, a

first order approximation that satisfies the condition

VxH=J (2.120)

Hx = al + a 2 x + a 3 y (2.121)

(2.122)H, = a4 + (as + J) x + a5 y.

Using Maple V again, this yields an energy value of 0.3272492347 J.

order of approximation yields a very accurate energy value, as shown

Increasing the

in Table 2.3.

Upper bound for a -+ o0
Order of approximation Stored energy (J) Error (J)

1st 0.32724923474 0.0512269
2nd 0.32724923474 0.0512269
3rd 0.27634379823 0.0003214

Table 2.3: Upper energy bounds for rectangular slot problem

II ··



2.5 Further Thoughts on the Application of the

Algebraic Dual-Energy Method

From the examples presented above, a number of conclusions can be drawn on the

algebraic dual-energy method and its application. First, it is interesting to note that

there are two types of sources involved in these problems, namely curl and divergence

sources. In the calculation of the lower bound, the divergence condition is automat-

ically satisfied, but Ampere's law is not. This physically implies the introduction of

an additional current density within the volume of the problem. The calculation of

the upper bound however, ensures that the curl condition is satisfied. Gauss' law

is not necessarily satisfied in this case, and this can be physically interpreted as the

introduction of divergence sources, or magnetic charge, into the system volume.

The problems considered in this chapter have two common characteristics. They

are all two-dimensional and, for simplicity, they all consist of a single material with

uniform electric or magnetic properties; the resistor and capacitor geometries consist

of materials of constant a and E, respectively, while the inductor problems consist of

current densities and permeabilities, uniformly distributed throughout their volumes.

In the following chapter, the variable reluctance motor geometry is considered; it

consists of regions with different electrical and magnetic properties. In such cases,

the geometry to be analyzed should be subdivided into regions, or elements, of differ-

ent properties, as suggested in [25]. The total system energy, both upper and lower

bounds, can be subsequently calculated by summing the contributions from the ele-

mental functionals. The advantage of such an approach is that the system is broken

up into a set of subsystems; an algorithm could be adopted to assign different weight

on the various contributions from elemental energies, thus reducing computational

time and cost. Moreover, the increased number of elements improves the accuracy of

the solution by providing an increase in the number of degrees of freedom. The dis-

advantages, however, involve those encountered in the usual finite-element methods.

When the domain of the problem is to be discretized, one has to ensure continuity of

the fields along element interfaces. Moreover, in a finite-element implementation, a



compromise must be reached between the mesh density and the required accuracy of

solution. In reaching this compromise, one has to factor in issues such as the shape

of the elements and the order of polynomial approximations employed.

The key advantage of the algebraic dual-energy method is that, while it requires

many degrees of freedom to calculate a reasonably accurate value of energy using

a conventional "single-sided" finite element method, equally accurate results can be

computed simply by averaging the two less accurate bounds found using a small

number of degrees of freedom. However, upper and lower bounds are not necessarily

symmetric about the exact value. As a result, equidistance of the bounds from the true

solution is not guaranteed and the average of the two bounds may be an estimate worse

than one of the bounds. Chapter 3 provides an error analysis of the algebraic dual-

energy method which forms the basis for an algorithm guaranteeing the equidistance

of the bounds.

The examples of this chapter demonstrate that the bounds obtained can only be

as good as the set of trial functions adopted. In theory, an infinite number of basis

functions would yield the exact solution. In reality however, one cannot employ an

infinite number of basis functions. Some consideration is appropriate as to the choice

of basis functions, since some families of basis functions may be more successful in

reducing the error.

Last but not least, the task of obtaining appropriate energy functionals is not

trivial. The present literature addresses only a restricted range of problems so that

the energy functionals proposed in this chapter can be used. However, one should

bear in mind that these functionals are not universally applicable. This is because

they are partially dependent on the boundary conditions, which can be specified in an

unlimited number of ways. Consider for example, the case of a conductor of arbitrary

shape between two electrodes. If the electrodes are each set to a known constant

potential, then the ADEM will provide both bounds to the resistance of the problem.

If however, a spatially-varying potential distribution was to be assumed along the

surface of one or both electrodes, the method would not work in the upper bound

case. This is because a current distribution cannot be defined a priori in this case to



match the real current distribution at the electrode. An upper bound to the resistance

would be therefore impossible to derive.

2.6 Appendix A: Maple Code for Resistance Bounds

Calculation

This Appendix provides the Maple V code employed to generate upper and lower

resistance bounds to the right-angled conductor of Section 2.2.2.

# UPPER BOUND RESISTANCE CALCULATION

# SIGMA AND D ASSUMED UNITY

a2 := -(Is + 3*a5);

# APPROXIMATION FOR Tu

Tu := al + a2*x + a5*x*x;

Tu := simplify(Tu);

# CORRESPONDING J-FIELD COMPONENTS

Jx := diff(Tu,y);

Jy := -diff(Tu,x);

# OBTAIN THE SQUARE OF THE MAGNITUDE OF THE J-FIELD

Jsq := simplify(Jx*Jx+Jy*Jy);

# INTEGRATE J^2 OVER 1/2 OF THE PROBLEM REGION

intl := int(Jsq, y=O..x);

Pu := int(intl, x=1..2);

# SIMPLIFY THE POWER EXPRESSION

Pu := simplify(Pu);

# EXPRESSION FOR TOTAL RESISTANCE (UPPER BOUND)

Ru := (2*Pu)/I'2;

# GET VALUES OF FREE PARAMETER, a5, THAT EXTREMIZES THE POWER EXPRESSION

da5 := simplify(diff(Pu,a5));

solutionset := solve({da5},{a5});



# SUBSTITUTE VALUE OF a5 IN EXPRESSION FOR Ru

Ru := subs(solutionset,Ru);

# LOWER BOUND RESISTANCE CALCULATION

# SIGMA AND D ASSUMED UNITY

# APPROXIMATION FOR PHI

Phi := V*y/(2*x);

# CORRESPONDING E-FIELD COMPONENTS

Ex := -diff(Phi,x);

Ey := -diff(Phi,y);

# OBTAIN THE SQUARE OF THE MAGNITUDE OF THE E-FIELD

Esq := simplify(Ex*Ex+Ey*Ey);

# INTEGRATE E^2 OVER 1/2 OF THE PROBLEM REGION

intl := int(Esq,y=O..x);

P1 : = int(intl, x=1..2);

# SIMPLIFY THE POWER EXPRESSION

P1 := simplify(Pl);

# EXPRESSION FOR TOTAL RESISTANCE

R1 := V*V/(2*Pl);

2.7 Appendix B: Capacitance Bounds for Tubu-

lar Capacitor

In this Appendix, the algebraic dual-energy method is applied to a closed capacitance

problem with a known analytic solution, following the analysis of Section 2.3. To

obtain a Cowe,,,,, the following steps are taken.

* Guess a displacement flux density distribution, DL, which satisfies the boundary

condition for D on S

DL - dS = 0 (2.123)



as well as the relation

V -DL = 0 (2.124)

in the capacitor volume. Each component of DL can be an approximation of

the form
i=K

Di",,z = • kix,y,z Ni,,z (x,y, z)
i=O

(2.125)

where K is the number of free coefficients, kij,.y. are the free coefficients to

be calculated, and Ni,~,~ are the trial functions in x, y and z. Imposing the

boundary conditions for D will constrain some, or all, of the free coefficients

e Set

Qc= DL. - dS (2.126)

where Qc is the total charge on the positive terminal of the capacitor.

* Obtain the corresponding electric field distribution, EL, from

1
EL =- DrL. (2.127)

e Calculate the electric energy stored in the capacitor, Wiower, from

ower = / DL EL dV.
W o we =

(2.128)

* Calculate any remaining free coefficients, ki,y,,z, by extremizing Wiower, by solv-

ing the algebraic set of equations

Wower 0.-0. (2.129)

* Obtain a lower bound for the capacitance from

2 WT ower
(2.130)



To obtain an upper capacitance bound, Cupper, the following steps are taken.

* Guess a potential distribution, 4•, satisfying the boundary conditions for 4'.

4u can be an approximation of the form

i=K
4• = Aix,y,z Nix,y,z (x, y, z) (2.131)

i=O

where K is the number of free coefficients, Ai.,,z are the free coefficients to

be calculated, and Ni:,Y,2 are the trial functions in x, y and z. Imposing the

boundary conditions for 4 will constrain some, or all, of the free coefficients

* Obtain the corresponding electric field distribution, Eu, from

Eu = -Vtu. (2.132)

* Calculate the electric energy stored in the capacitor , Wupper, from

Wupper = I Eu Eu dV. (2.133)

* Calculate any remaining free coefficients, AX,j,,l, by extremizing Wupper, i.e. by

solving the algebraic set of equations

aWupper = 0. (2.134)

* Obtain the upper bound for the capacitance from

Cupper - 2 Wupper (2.135)

Consider the closed tubular capacitor of Figure 2-12(a). It is assumed to have

depth D into the paper and a uniform permittivity, E, throughout its volume. The

potential difference between its perfectly conducting terminals is Vc. The total charge



Qc on the positive terminal is constant, yet unknown. The uniformity of the cross-

section in the z-direction allows for two-dimensional analysis to be employed. Fur-

thermore, the symmetry that exists about y = x, x = 0 and y = 0 permits analysis

of one-eighth of the problem geometry, as shown in Figure 2-3(b). An exact value of

the capacitance C is given in [7] as

C = 10.25 e D. (2.136)

The algebraic dual-energy method is applied below to obtain analytic upper and

C
1I

1I
c =vC

permittiP,ity, E

(a)

De

0

2 x

0

(b)

Figure 2-12: Tubular capacitor problem

lower capacitance bounds.

Capacitance Lower Bound: Clower

For convenience, the bounding surface of the capacitor is broken up into three open

surfaces, S+, S_, SI, the positive and negative terminals and the remaining bounding

surface, respectively. Condition (2.124) can be reinforced by setting

DL = V x TL.

(

(2.137)



For the problem at hand, TL has only one component in the z-direction, namely TL.

Considering only one-eighth of the problem due to symmetry, TL should be forced to

satisfy the boundary conditions

* TL -=0 at y = 0

STL = 1 at y- = x

on S1 . An approximation that satisfies these boundary conditions is

1 2
TL = (- - ag6 X) y + a6Y2. (2.138)x

The corresponding displacement flux density is

TL aTL 1 YDL= X- =(- a 6x + 2a6y) + (a 6y + 2) y. (2.139)

Set

Qc= DL.dS=- Dx at x=1 dy= - (1 - a 6 +2a 6y) dy= -1. (2.140)

Then
EL 1 DL 1 [(1 Y

EL - - a6x +2a 6y) + (a + . (2.141)

Assuming unity c and D for simplicity, the electric stored energy in the whole structure

is given by

Wi"ower =8 EL EL dV

1 xf12 1 2 2
4- I-- a6 X+ 2a6y, a6y + 2 a6y++j dx dy

E ]y=O z=1 L X 2X

= 10 a2 + 4 a6 + 3.696785. (2.142)

Extremizing Wiower yields

oer 0 = a 6 = -0.2. (2.143)
Ba6



Hence, the lower capacitance bound is found to be

Clower = 9.706426216 (F) (2.144)

Maple V [40] can be used to generate the above equations. A sample script file is

included here and can form the basis for generating better bounds, by increasing the

order of approximation and the number of free coefficients.

#LOWER BOUND FOR TUBULAR CAPACITOR

#ANALYSIS NORMALIZED TO EPSILON AND DEPTH

# APPROXIMATION FOR D-FIELD COMPONENTS

Dx := (1/x)-a6*x+2*a6*y;

Dy := a6*y+(y/x^2);

# OBTAIN THE SQUARE OF THE MAGNITUDE OF THE D-FIELD

Dsq := simplify(Dx*Dx+Dy*Dy);

# INTEGRATE D^2 OVER 1/8 OF THE PROBLEM REGION

intl := 0.5*int(Dsq,y=O..x);

wl := int(intl, x=1..2);

# CALCULATE CHARGE Q ON POSITIVE TERMINAL

Dxatl := subs(x=l,Dx);

Q := int(Dxatl,y=0..1);

# GET TOTAL ENERGY AND SIMPLIFY ITS EXPRESSION

w := simplify(wl);

# EXPRESSION FOR 1/8 OF CAPACITANCE

C := (Q)^2/(2*w);

# GET VALUES OF FREE PARAMETER, a6, THAT EXTREMIZES THE

# ENERGY EXPRESSION

da6 := simplify(diff(w,a6));

solutionset := solve({da6},{a6});

# SUBSTITUTE VALUE OF a6 IN EXPRESSION FOR CAPACITANCE

C := subs(solutionset,C);



# OBTAIN CAPACITANCE FOR THE WHOLE PROBLEM REGION

Ctotal := 8*C;

Capacitance Upper Bound: Cupper

An upper bound for the capacitance can be obtained by adopting a second-order

polynomial approximation for D throughout the capacitor volume. Thus,

u =- al + a2x+ a3y + a4xy + a5 2 + a6y2. (2.145)

The boundary conditions for Du are (D, = 0 at x = 2, and 4 u = Vc at x = 1. The

first boundary condition demands that a6 = 0, as = -2 a4, and al = -2 a2 - 4 a5.

The second boundary condition further demands that a4 = 0, and a2 = -Vc - 3 as.

Hence,

(Du = 2Vc + 2a 5 - (Vc + 3a 5) x + a5 x 2 . (2.146)

EU = -Vv = (Vc + 3a 5 - 2asx) ^c.

= 8 EU EU dV2 v/8

(2.147)

=4D /l Iyxo--1 y -0
(Vc + 3 a5 - 2 a5 x) 2 dx dy

= 2 a - 1.333333 a5 Vc + 6 VC.

The extremum of Wupper occurs when

Wupper = 0 += a5 = 0.333333333 Vc
aa5

(2.148)

(2.149)

and is given by

Wupper = 5.777777778

Then

Hence

Wupper

(2.150)



by assuming unity e and D. Hence the upper capacitance bound is given by

Cupper = 11.55555556 F. (2.151)

The following is a sample Maple V script file that will generate the steps given above.

#UPPER BOUND FOR TUBULAR CAPACITOR

#ANALYSIS NORMALIZED TO EPSILON AND DEPTH

#GUESS PHI DISTRIBUTION

phi := al+a2*x+a3*y+a4*x*y+a5*x*x+a6*y*y;

#IMPOSE DIRICHLET CONDITIONS FOR PHI

a6 :=0;

a3 := -2*a4;

al := -2*a2-4*a5;

a4 :=0;

a2 := -3*a5-Vs;

#CALCULATE THE CORRESPONDING ELECTRIC FIELD

Ex := -diff(phi,x);

Ey := -diff(phi,y);

#CALCULATE THE SQUARE OF THE ELECTRIC FIELD

Esq := simplify(Ex*Ex+Ey*Ey);

#CALCULATE THE STORED SYSTEM ENERGY IN THE WHOLE GEOMETRY

intl := 8*0.5*int(Esq,y=O..x);

energy := int(intl, x=1..2);

#MAXIMIZE THE ENERGY FUNCTIONAL, SOLVING FOR FREE COEFF.

da5 := simplify(diff(energy,a5));

solutionset := solve({da5},{a5});

#GET UPPER BOUND FOR CAPACITANCE

C := (2*energy)/Vs'2;

C := subs(solutionset,C);



Once again, the upper bounds can be improved by increasing the order of approxi-

mation. The conclusions drawn are similar to those drawn for the resistor problem.

2.8 Appendix C: Maple Code for T-slot Induc-

tance Upper Bound Calculation

This Appendix provides the Maple V code employed to generate an upper inductance

bound for the T-inductor of Section 2.4.3.

#UPPER BOUND FOR T-SLOT PROBLEM

#INITIAL GUESSES FOR H-FIELDS IN ALL ELEMENTS

#SATISFY THE CURL CONDITION

Hxl := all+al2*x+al3*y+2*al4*x*y+al5*x*x+al6*y*y;

Hyl := al7+(al3+J)*x+al9*y+2*al6*x*y+al4*x*x+al8*y*y;

Hx2 := a21+a22*x+a23*y+2*a24*x*y+a25*x*x+a26*y*y;

Hy2 := a27+(a23+J)*x+a29*y+2*a26*x*y+a24*x*x+a28*y*y;

Hx3 := a31+a32*x+a33*y+2*a34*x*y+a35*x*x+a36*y*y;

Hy3 := a37+(a33+J)*x+a39*y+2*a36*x*y+a34*x*x+a38*y*y;

Hx4 := a41+a42*x+a43*y+2*a44*x*y+a45*x*x+a46*y*y;

Hy4 := a47+(a43+J)*x+a49*y+2*a46*x*y+a44*x*x+a48*y*y;

Hx5 := a51+a52*x+a53*y+2*a54*x*y+a55*x*x+a56*y*y;

Hy5 := a57+(a53+J)*x+a59*y+2*a56*x*y+a54*x*x+a58*y*y;

Hx6 := a61+a62*x+a63*y+2*a64*x*y+a65*x*x+a66*y*y;

Hy6 := a67+(a63+J)*x+a69*y+2*a66*x*y+a64*x*x+a68*y*y;

#IMPOSE BOUNDARY CONDITIONS FOR ALL ELEMENTS

all := 0;

a12 := 0;

a15 := 0;



a51 : 0;

a52 = 0;

a55 := 0;

a61 := 0;

a62 := 0;

a65 := 0;

a41 := 0;

a42 := 0;

a45 := 0;

a13 := -2*a16;

a14 := 0;

a44 := 0;

a43 := -2*a46;

a18 := 0;

a19 := 4*a16;

a17 := 2*J-4*al6;

a48 0;

a49 := -4*a46;

a47 := -2*J+4*a46;

a28 := 0;

a29 := 2*a26;

a27 := a23+J-a24;

a38 := 0;

a39 := -2*a36;

a37 := -a33-J-a34;

#IMPOSE INTERELEMENT CONTINUITY

a58 := 0;

a59 := 2 *al6+2*a56;

a5'7 := 2*J-2*al6+a53-a54;



a68 := 0;

a69 := -2*a46-2*a66;

a67 := -2*J+2*a46-a63-a64;

a66 := -al6-a56-a46;

a64 := -4*J+2*a16-a53+a54+2*a46-a63;

a25 := 0;

a22 := 4*a54-4*a24;

a53 := -2*a56+(1/2)*a21+a23+2*a26;

a.35 := 0;

a32 := -4*a34-16*J+8*a16+8*a56-2*a21-4*a23-8*a26+4*a54+8*a46-4*a63;

a31 := -4*al6-2*a33-4*a36-6-a46-4*a56+2*a63;

a36 := -a26;

a34 := -a23-2*J+a24-a33;

# SIMPLIFY EXPRESSIONS FOR H-FIELDS

Hxi := simplify(Hxl);

Hyl := simplify(Hyl);

Hx2 := simplify(Hx2);

Hy2 := simplify(Hy2);

Hx3 := simplify(Hx3);

Hy3 := simplify(Hy3);

Hx4 := simplify(Hx4);

Hy4 := simplify(Hy4);

Hx5 := simplify(Hx5);

Hy5 := simplify(Hy5);

Hx6 := simplify(Hx6);

Hy6 := simplify(Hy6);

#GET SQUARE OF FIELDS AND ENERGY IN EACH ELEMENT

His := simplify(Hxl*Hxl+Hyl*Hyl);



EE1 := int(Hls,x=-2..-l);

El := int(EEl,y=0..2);

H2s := simplify(Hx2*Hx2+Hy2*Hy2);

EE2 := int(H2s,x=-l..0);

E2 := int(EE2,y=2..3);

H3s := simplify(Hx3*Hx3+Hy3*Hy3);

EE3 := int(H3s,x=0. .1);

E3 := int(EE3,y=2..3);

H4s := simplify(Hx4*Hx4+Hy4*Hy4);

EE4 := int(H4s,x=l..2);

E4 := int(EE4,y=0..2);

H5s := simplify(Hx5*Hx5+Hy5*Hy5);

EE5 := int(H5s,x=-l..0);

E5 := int(EE5,y=0..2);

H6s := simplify(Hx6*Hx6+Hy6*Hy6);

EE6 := int(H6s,x=0..1);

E6 := int(EE6,y=0..2);

#GET TOTAL ENERGY IN THE SYSTEM

Etotal := 0.5*mu*simplify(El+E2+E3+E4+E5+E6);

#EXTREMIZE THE ENERGY FUNCTIONAL OVER THE FREE COEFFS.

dal := diff(Etotal,a56);

da2 := diff(Etotal,a21);

da3 := diff(Etotal,a23);



da4 := diff(Etotal,a26);

da5 := diff(Etotal,a54);

da6 := diff(Etotal,a16);

da7 := diff(Etotal,a24);

da8 := diff(Etotal,a46);

dca9 := diff(Etotal,a63);

dalO := diff(Etotal,a33);

sol := solve({dal,da2,da3,da4,da5,da6,da7,da8,da9,

da.10},{a56,a21,a23,a26,a54,a16,a24,a46,a63,a33});

#GET UPPER BOUND FOR ENERGY

Etotal := subs(sol,Etotal);



Chapter 3

Minimum Inductance of the VRM

In this chapter, the algebraic dual-energy method (ADEM) is applied in the calcu-

lation of the minimum inductance of a variable-reluctance motor (VRM). Existing

literature involves simple examples with boundaries, boundary conditions and source

distributions that are easily handled by the ADEM. However, the geometry of the

VRM at the unaligned position, the dominating curvatures characterizing the electro-

magnetic field distribution and the presence of a large number of boundary conditions

arising at the steel boundaries, provide a challenging exercise in the application, be-

havior and effectiveness of the dual-energy method in a more realistic example than

studied so far.

3.1 The Minimum Inductance Problem

One of the most important challenges in the design of a variable reluctance motor

is the calculation of its minimum inductance, Lmin. The value of Lmi, is critical for

two reasons. First, it affects the estimation of the peak currents present in the motor

windings and hence the size and cost of the inverter switches. Second, it affects the

area of the energy conversion loop in the 0-i plane and hence the prediction of the

average torque that the motor can produce. Accurate calculation of Lmin is therefore

essential in reliable VRM drive design.

The problem topology is given in Figure 3-1. Phase A is on, and its respective



Figure 3-1: Minimum inductance topology for phase A

stator poles are symmetrically misaligned with respect to the rotor poles. At this rotor

position, the air gap dominates and the calculation of the VRM minimum inductance

is a linear problem. The calculation of Lmin is achieved by solving for the magnetic

field throughout the motor cross-section and hence calculating the stored magnetic

energy of the system, Win. The minimum inductance value is then obtained from the

relationship

Wm = 1 Lmin i2.  (3.1)

Under the assumption of infinite permeability for the stator and rotor steel, one

way of estimating Lmin is to calculate the permeances of the flux paths through the

air. This involves breaking the air region into probable flux paths which are of simple

shape. The only rule of thumb that can be used as a guide in this discretization is that

the permeance of the air path should be a maximum, i.e. for a given magnetomotive

force, the flux paths should be arranged in a way that results in maximum possible

flux. This method is hard to implement and may be inaccurate, since the flux does



not confine itself to any particular path that can be expressed with a simple, analytic

equation.

Alternatively, numerical analysis of the electromagnetic field is often employed.

The finite element method is the most widely used approach, but it involves fine dis-

cretization of the problem geometry, before a satisfactory accuracy of solution can be

achieved. As was stressed in chapter 1, such an approach is not desirable in design-

optimization programs, since it will slow down considerably the analysis of every

candidate design considered. However, the dual-energy method can combine compu-

tational accuracy with speed. In [8], Miller has successfully applied the method of

tubes and slices in the context of VRM geometries for the calculation of the minimum

inductance. In this chapter, Lmin is extracted using the algebraic-dual energy method

(ADEM).

3.2 The Minimum Inductance Model

In this section the algebraic dual-energy method is applied to the VRM minimum

inductance problem. This is achieved in two stages. First, the VRM geometry at the

unaligned position is cast in Cartesian coordinates. This allows the application of the

ADEM to be most easily illustrated. Second, the problem is properly cast to include

curvature.

3.2.1 The VRM Model in x-y Coordinates

Figure 3-2 casts the VRM geometry at the unaligned position in Cartesian coordi-

nates. The winding end turns are ignored, and two-dimensional analysis is employed.

The stator and rotor steel are assumed to be infinitely permeable. Again for simplic-

ity, the airgap is omitted, an assumption which is justified since, in a well-designed

VRM, the radial airgap length is small compared to the distance 1. The boundary

conditions are Dirichlet at x = 0 and Neumann at all steel boundaries. Given a

constant current density, J, through the winding, the goal here is to calculate the

magnetic energy stored in the above configuration. Lmin is then directly obtained
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Figure 3-2: Simplified VRM model in x-y coordinates

through its linear dependence on the system energy.

Lower Energy Bound

A lower energy bound is computed using the functional

WL = A. J dV - BL H d.2 2v (3.2)

For the two-dimensional problem considered, the magnetic vector potential has only

one component in the z direction and is is approximated throughout the geometry by

a polynomial in x and y. One simple approximation is

AL = Az 2 = (al + a2 x + a y) (3.3)

Only one region covering the inductor is sufficient for the lower bound calculation, as

shown in Figure 3-3. Using (3.3), the Dirichlet condition at x = 0 is imposed such

that

al = a3 = 0 = Az = a2 x

r*rrrrr~rrrrrr--~lorrr--ur~-~-rlllllllll

(3.4)

te bsteel boundary:
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Figure 3-3: Single region representation for lower bound calculation

Then
OAZ ^

BL = x-
Oy

aAz
x y = - a2 Y

1 a2HL =- BL=- y.

Finally, substitution of (3.5) and (3.6) into (3.2) yields

= JAL J
dV - 1 f2 vBL. HL dV

a [(g-k)(f-
21p

1
b)+d f] J a22 (g 2 - c2 )(a -b). (3.7)

The free coefficient, a2 , is determined by maximizing WL. Thus,

DWL
W= 0

aa2

pJ (b - a) (c2 -g 2)
a 2 -= - a)

2 (b-f) (k - g) + d f

Substituting (3.8) into (3.7) yields

(b - a)2 (c2 - g2)2

(b-f) (k-g)+df'

(3.5)

(3.6)

WL

(3.8)

c`

WL =
J 2

8 (3.9)



Upper Energy Bound

An upper bound for the stored system energy can be obtained using the functional

Wu = - Bu. Hu dV. (3.10)2 v

The magnetic field intensity is approximated by

Hu = (al + a2 z + a3 y) ± + (a4 + a5 x + a6 y) 9. (3.11)

It is clear that at least two elements must be employed in the calculation, since in

the winding region,

V x HU = J (3.12)

should be imposed, while in the remaining region

V x HU = 0. (3.13)

Thus, the two solutions

HA= (a a asy) + a3 x + a6 y)Sr (3.14)

and

Hu = (all + a 2 x + as y) + [a1 4 + (as + J)x + al6 y] € (3.15)

are employed. Next the Neumann boundary conditions should be imposed at all steel

surfaces. Due to the large number of boundary conditions present, (3.14) and (3.15)

do not provide enough free coefficients to match the boundary conditions. A very

large order of approximation for HU could perhaps alleviate this problem, but this

avenue is not pursued further. Instead, the problem is subdivided into six rectangular

elements, as shown in Figure 3-4. Separate polynomial approximations in x and y
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Figure 3-4: Subdivision for upper bound calculation

of the form given in (3.14) and (3.15) are considered for HU in each element. After

satisfying (3.12) or (3.13), these approximations take the form

H = (a + a + a y) + (a + a x + a 5y )

Hj = (a 6 + a- x + as y)c + (a + a8 x + al o y)

H = (all + a12 X + a13 y) X + (a14 + al3s x + a15 y) Y

H4 = (a16 + a17 x + a 8ls ) + (al + al x + a2o y)

H = (a 2 + a22 + a23 y) ± + [a24 + (a23 + J) x + a25 y]

H = (a26 + a 27 + a28 y) + (a29 + a 2s8 a y). (3.16)

Imposing all Neumann boundary conditions on (3.16), and ensuring continuity of

tangential HU along element interfaces results in

H1 = as (g - d) -

HU = ayi+ a(x - d) Y

H 3 = [as f + a 3s (y- f)] + [as3 (x - g)]
d-g

Sa 13 (y - f) x
d-k

+d-g+ al (x - -kd-ke
= [a23 (y - b)] X- + (a23 + J) (x - g) k



(a - f)(d - g) (a - f)(d - g)
(a - b)(d - k) + a (a - b)(d - k)

where

J (c - g) (a - b)

(g - d) f

a13

a23

J (a - b) (d - k) (c - g)

(a - f) (d - g) (g - k)
J (c - g)

k-g

Note that no free coefficients are left after all conditions have been satisfied. Finally,

1
2
6

j=1

y B HU dV

Hv -HJUdV
j2 pL (C - g)2 (b - a)

-

( a"df 
+a' 

fk 
- 2a' 

fg 
- a2bfk 

+a2b 
g

3 (a - f) (g - k) f (d - g)
+a2 d2 k - a2 d2g - 3 a2df2 + a2dkg - a2dg2 - a2 f 2 k + 4 a2f 2g - 2 a2 kg2

+2 a2g3 - ab2df + ab2 f g - abd2 k + abd2g + 2 abdf2 - abdkg + abdg2

+abf 2 k - 3 abf 2g + 2 abk g2 - 2 abg3 + ad3 f - 3 ad2fk

+2 adf f 3 + adf kg + 2 adf kc + adf g2 - adfc2

-2af 3 g + 2afkg2 - 2afkgc- 2afg3 +afgc2 + b2df2 - b2 f 2g

-bd 3 f + 3 bd2 fk - 2 bdf3 - bdf k2 - bdf kg - bdf g2 + 2 bf g + bfk 2g

-2 bfkg2 + 2 bfg3 + df 2 k2 - 2 df 2kc

+df 2C2 - f 2k2g + 2 f 2kgc - f 2gC2 ]. (3.18)

It is interesting to note that symbolic manipulation (Maple V) was employed in the

computations above, as well as in the derivation of the final analytic expressions for

the bounds.

Energy Bound Average and Numerical Example

Table 3.1 provides the dimensions used for a numerical example. Substituting these

WUr

= a13 (y - b) (3.17)



a 3.4 cm
b 6.0 cm
c 3.0 cm
d 2.4 cm
f 3.0 cm
g 1.5 cm
k 4.5 cm
J 1e6 A/m 2

/L I-o

Table 3.1: Geometric and excitation values for inductance problem

values into (3.9) and (3.18), yields

WL = 0.029864 J/rm. (3.19)

WU = 0.340046 J/rm. (3.20)

The average of the two energy bounds is

WL+ Wu
Wavg -= = 0.184955 J/rm. (3.21)

This compares favorably with a finite element solution, obtained using QuickField [63]

and 54,000 nodes. The energy computed from that analysis is

WFEA = 0.21082 J/rm. (3.22)

Although the individual energy bounds are not accurate, their average is within 12%

of the FEA solution.

The equations for the two bounds, (3.9) and (3.18), are simple and compact. As

a result, they can be easily translated into C code and incorporated in a design-

optimization program. In fact, this translation can be done automatically by Maple

V. An estimate of Lmin can therefore be obtained within fractions of a second, for

every design to be evaluated. The above bounds although fairly close, may still not

be sufficiently accurate for motor design. The accuracy can be immediately improved



by increasing the order of polynomial approximation within the elements. Accuracy

estimates and criteria for equidistance of bounds are critical issues, further explored

in the next section. Moreover, the curvature present in the motor geometry has to

be included and this issue is further addressed in Section 3.2.3.

3.2.2 Error Analysis

Before proceeding with the analysis of the error involved in the application of the alge-

braic dual-energy method, it is instructive to introduce the basic ideas and definitions

typically employed in such an analysis. The following definitions have been widely

applied in deriving accuracy estimates for finite-element computations [49], [50], [51]

and are briefly presented here.

The discretization of a problem is defined by the shape and number of elements em-

ployed in the problem region and the degree of polynomial approximation used within

the elements. Suppose the exact magnetic field distribution in the two-dimensional

minimum inductance problem is H(x, y) and it is approximated in the upper bound

calculation by HU(x, y) .

Then, the error e is defined as

e(x, y) = H(x, y) - HU(x, y) (3.23)

and is dependent on the exact solution H(x, y) and the approximation adopted. A

measure of the error in energy form is given by

e 2 =1 - e e dV (3.24)

where Ilell is the energy norm of e.

Error estimation and control is traditionally based on extensions, that is, on con-

secutive changes of discretization that successively increase the number of degrees of

freedom. In considering the error involved in the dual-energy method, three exten-

sions are available: an extension based on mesh refinement only (h-extension), which



involves an increase in the number of elements; an extension based on increasing the

polynomial degree of a given set of elements (p-extension); and a combination of the

two (hp-extension). The h- and hp-extensions are not considered further in this the-

sis. The only mesh refinement that will be considered here is the one which will be

sufficient to satisfy the boundary conditions for either bound. As a result, program-

ming can be made particularly simple. Moreover, as shown later, several singularities

are present in the geometry under consideration. In the presence of such singularities,

the rate of convergence of the p-extension has been shown to be exactly twice the

rate of convergence of the h-extension [49].

By employing the p-extension to the dual-energy method, the goal is to derive

an algorithm that will provide equidistant bounds, and will allow conclusions to be

drawn on the overall quality of the method. These conclusions will depend on the cri-

teria one chooses in assessing the performance of the p-extension. One way to assess

this performance is to consider the relationship between the error in energy and the

number of degrees of freedom, or free coefficients, N. This is the most logical measure

to use since it looks at the system as a whole by providing information on the overall

quality of the approximation. This is in agreement with the dual-energy method phi-

losophy which extremizes the total stored magnetic energy of the system. Moreover,

the error in the energy norm is the best understood and most widely used measure

of performance in the literature on finite-element analysis. However, it should be

understood that a small error-in-the-energy norm does not guarantee a small error in

any other quantity of interest, for example, in the field distribution at a special point

in the geometry.

p-Convergence of the Dual-Energy Method

The energy bounds of the previous section can be improved by increasing the or-

der of the polynomial approximations for AL and Hu, and hence the number of free

coefficients. The analytic calculation of (3.2) and (3.10), although still possible by

hand, becomes a difficult task that is prone to error. Maple V [40], a symbolic manip-



0 5 10 15 20 25
# of free coefficients

Figure 3-5: Energy bounds convergence to FEA solution

ulation package, is employed to alleviate this problem and obtain analytic bounds for

increasing numbers of coefficients. Figure 3-5 illustrates the behavior of the bounds

as the order of approximation increases. Here, at each step, the order is increased

by including all terms of the form xn ym, where (n + m) is the next integer in the

progression (p-extension). Two conclusions can be drawn. First, the upper bound

converges much faster than the lower bound. Second, each bound converges faster

for small numbers of free coefficients. Moreover, the rates of convergence are such

that, for a number of free coefficients greater than two or three, the average of the

bounds will not provide a better value than the upper bound itself. Hence it is clear

that, for a relatively small number of free coefficients, the success of averaging is not

guaranteed unless bounds equidistance can be assured. A criterion must be developed

to select the number of free coefficients required in the calculation of each bound so

as to ensure equidistance from the exact solution.

In order to study equidistance, the FEA solution of (3.22) is adopted as the



exact stored energy. Plots of the log error-in-energy versus the log number-of-free-

coefficients yield the characteristics of Figures 3-6 and 3-7. For large number of free

coefficients N, linear characteristics are obtained with slope -K 2 . The absolute value

of K 2 defines the asymptotic rate of convergence, which, for a linear characteristic, is

referred to as algebraic.
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Figure 3-6: Error variation with increasing number of coefficients for upper bound.
The parameter p defines the order of polynomial approximation.

The rates of convergence present in the curves of Figures 3-6 and 3-7 depend upon

the smoothness of the exact solution. The exact solution can be considered as the

sum of a smooth function and a series of functions of the form

m

Fi= E Ai r A 4i(O).

The Fi describe the exact solution in the neighborhood of m singular points with polar

coordinates (r, 0). The Vi(0) are smooth functions and the Ai E (1, 2) characterize the

84

p=2

P=3

p.5

p=1 not shown
p=6

0.7

,,

n23

(3.25)



-U. /

-0.

-O.C

-1.1

0 -1 .;o

-1.i

-1 .L

_-1 1 10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
loglO 0(# of coefficients)

Figure 3-7: Error variation with increasing number of coefficients for lower bound.
The parameter p defines the order of polynomial approximation.

singularity in the solution and hence, its smoothness. Singular points can lie in the

problem region and/or its boundary and occur frequently in problems with reentrant

corners, abrupt changes in material properties along boundaries, or abrupt changes

in boundary conditions.

For p-extensions, if a solution is smooth, then the expected rate of convergence

is faster than algebraic, resulting in a downward curving line in the log( lel 2) vs.

log(N) graph. If on the other hand, singularities are present, the expected rate of

convergence is algebraic of the form

lei 2 ? K. -NK2. (3.26)

Here, K2 depends on the order of polynomial approximation, p, and the point of

singularity.

With the above in mind, the characteristics of Figures 3-6 and 3-7 can be further

#% "•



analyzed and understood. For a fixed mesh and a uniform increase in the order of

approximation, the rate of convergence (K 2) is very fast at first. This is because the

error is coming from that part of the problem region where the solution is smooth.

As p is increased, the singularity (or singularities) present in the solution begin to

dominate the error behavior, and the convergence rate becomes that of (3.26). This

linear behavior is evident in Figures 3-6 and 3-7 and is due to the two reentrant

corners (> 180') present in the VRM geometry, and more specifically at the stator

and rotor pole tips.

In order to determine the rate of convergence involved in each of the bounds, one

can start with

II l12 = K1 -NK2 (3.27)

where K1 and K2 are constants to be determined. Equation (3.27) can be written as

W - Wboundl = K NK2 . (3.28)

Equation (3.28) contains three unknowns, namely the constants K1 and K2 and the

unknown stored energy W. Three different sets of (Wbound, N) obtained using three

different values of p, can be substituted into this equation, yielding three equations

in the three unknowns

1W - Wbound,i- = K -NK2, i = 1..3 (3.29)

or

W - Wi = K - N1K 2

IW- W21 = K 1. NK2

IW-W 3I = K 1 .N3K2. (3.30)



This set of equations takes the form

log Iw-wl log N2lgW-W21 N l(3.31)
lo I W - log N3log Iw-w N2

Hence, the exact value of the stored energy, W, can be estimated. It is important to

note that (3.31) is nonlinear in W. The Newton-Raphson method can be employed

for its solution but this immediately raises two issues. The first is the choice of an

appropriate initial guess that will guarantee convergence to the required solution. A

starting point too far away from the actual solution may result in no convergence.

This is not, however, a critical problem in the ADEM case, since Wbound will always

provide a guess very close to the actual W. The second is the singularity in the

Jacobian that may lead to numerical instabilities yielding erroneous results.

The above equation was solved in Matlab using its built-in Newton-Raphson func-

tion. Estimates of W were obtained using three values of Wi from the lower bound

calculations and three from the upper bound calculations. These estimates were

0.2 J/m and 0.2202 J/m and they are 5% and 4.5% below and above the finite-

element value of 0.21082 J/m, respectively.

Equation (3.27) can also be employed to estimate the number of coefficients re-

quired in the lower bound calculation to match a given error in the upper bound or

vice versa. Linear regression is employed to find the best line-fit for the data points.

K 1 and K 2 are hence found to be

(KI, K 2) = (0.2568, -0.5683) (3.32)

for the lower bound, and

(K1 , K2 ) = (0.9874, -1.7159) (3.33)

for the upper bound.

For example, an upper bound error of E = 0.026 J/m, corresponds to approxi-

mately 55 free coefficients in the lower bound calculation. To verify this, Maple V



can be employed to calculate a lower bound with 55 free coefficients, yielding

WL = 0.18395 J/m. (3.34)

This implies an error

E = WFEA - WL = 0.02687 J/m (3.35)

which is almost equal to the upper bound error. A number of geometries of varying

dimensions and excitations have been analyzed and the linear behavior of Figures 3-6

and 3-7 has been found to hold after a few N.

Another interesting point can be made when the number of elements in the mesh

increases. This has the effect of extending the nonlinear regime of the convergence

path into larger N as illustrated in Figure 3-8. In conventional finite element analyses,
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Figure 3-8: Error variation for varying number of elements in the p-extension

it is desirable to select the mesh so that the desired level of precision is reached before

the rate of convergence gets into the linear regime, resulting in faster convergence.
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This is, however, not desirable with the algebraic dual-energy method. It is the linear

regime that allows control of the error and estimates of the number of free coefficients

required to ensure equidistance for each bound. Hence it is desirable to reach that

regime as fast as possible. This has the additional advantage of keeping the number

of elements in the mesh low, resulting in faster and easier analytic computations

within Maple. However, the compromise that must be reached in this case is that

the number of elements should be high enough in order to satisfy the appropriate

boundary conditions for each bound.

Finally, it should be noted that as the order of polynomial approximations in-

creases, two issues arise. First, the computational effort involved in Maple V in-

creases considerably. This is not a critical disadvantage since the symbolic derivation

of analytic bounds at each step need only be performed once. Then the bounds

expressions, which are only a function of geometry and excitation, need to be trans-

lated only once into C code for inclusion in the design-optimization program. Second,

for higher orders of approximation, one may consider employing orthogonal polyno-

mials for each bound derivation. This is because orthogonal polynomials provide

improved numerical properties, that results in considerable reduction of the round-off

error accumulation in numerical computations. By employing symbolic manipulation,

however, the issue of round-off errors does not arise until the geometric and excitation

parameters are substituted in the final expression for the bound. Within Maple V,

the round-off errors can be minimized by increasing the number of decimal digits for

all numerical computations.

3.2.3 The VRM Model in r -0 Coordinates

For a VRM model cast in polar coordinates, such as that of Figure 3-9, the ADEM

procedure involves two complications. First, the equations of the stator and rotor

pole sides cannot easily be cast in r - 0 coordinates. This complicates the analytic

integration over elements 2, 3, 4, 5 and 6. Second, in polar coordinates, integration

is of the form f ... r dr dO. Multiplication by the extra r will increase the order of the

integrand by one, and result in more computationally intensive integration procedures



within Maple V.

Figure 3-9: The VRM geometry in polar coordinates

A simpler yet effective way of approaching the configuration of Figure 3-9, is

to perform all analysis in Cartesian coordinates by considering straight boundaries,

instead of curved boundaries. The error introduced by this simplification is small, as

shown below.

The VRM geometry of Figure 3-9 is defined by ten basic points, as shown in

Figure 3-10. The r - 0 and x - y coordinates of these points are given in Table 3.2 for

any motor radii and pole arc angles. In the table, 0, and 0r are the stator and rotor

pole angles [rad], respectively. n, and nr are the number of stator and rotor poles,

Table 3.2: Coordinates of the basic VRM geometry points
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Figure 3-10: Minimum inductance model definition

respectively. r 2 is the outer rotor backiron radius, r3 is the rotor pole radius, r4 is the

stator pole radius, r 5 is the inner stator backiron radius. The remaining parameters

are defined as: r' = r3r4, D = -sin -l( sin()), OM = I - -I+ sin-1(- sin ) ,

and Op = - + 2

Analytic integration along the stator and rotor pole sides is very hard. For sim-

plicity the rotor and stator curvatures are ignored and the basic points defining the

geometry are assumed to be joined by straight lines, as illustrated in Figure 3-11.

Using the values of Table 3.3, Quickfield was employed to obtain finite element solu-

tions for a characteristic geometry. The finite-element program was run for a model

with curved boundaries and a model with straight boundaries. Figures 3-12 and 3-13

provide the field profiles for each case, respectively. Although the profiles look the

same, the respective stored magnetic energies are

WFEA, curved boundary = 0.5033 J/m (3.36)

WFEA, linear boundary = 0.4684 J/m (3.37)
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Figure 3-11: Minimum inductance model definition

rl 15.00mm
r2  35.00mm
r3  55.00mm
r4  55.52mm
r5  85.00mm
r6  102.00mm
n, 4
n, 6
O, 350

O, 300
J le6 A/m 2

Table 3.3: Geometric and excitation values for VRM geometry



Figure 3-12: Field distribution for VRM model with curved boundaries

Figure 3-13: Field distribution for VRM model with straight boundaries



with approximately 42,000 nodes used in both solutions. Hence, the simplification

from curved to straight boundaries results in a value which is approximately 7% less

than the solution with curved boundaries. Consequently, each Lmin estimate obtained

with the model of Figure 3-11 should be adjusted by approximately 7% to account

for this discrepancy.

Lower Bound Calculation for Lmin

A first order magnetic vector potential guess, AL, is adopted. Only one region cov-

ering the inductor is sufficient for the lower bound calculation. This means that

throughout the geometry considered

AL = A, Z = (a, + a2 z + as y) Z. (3.38)

The Dirichlet boundary condition at x = 0 is enforced so that al = a3 = 0. Thus,

Az = a 2 x. (3.39)

The corresponding magnetic field density is given by

BL - V x AL - (--z- A) = (0, -a 2 ) (3.40)
(y Ox

and
1 a2HL= - BL = (0, ). (3.41)

Hence a lower bound for the magnetic stored energy can be calculated, using

W 10,, = J AL J dV- - BL HL dV. (3.42)

Assuming unit length into the paper, this becomes

Wower- a2 x. J dx dy- f a -dx dy. (3.43)
,yN 2o xy



This functional involves analytic integration over quadrilateral elements. This inte-

gration is not straightforward but is still feasible within Maple V; the general approach

and Maple algorithm are given in Appendix A at the end of this chapter.

Upper Bound Calculation for Lmin

The magnetic field intensity is approximated by

HA = (a + a2 a3 ) + (a a +6 y) + (3.44)

in the air region and

H J - (a + a12x + a13y) + [a14 + (a13 + J) x + a16 y] S (3.45)

in the winding region.

the approximating HU

is subdivided into five

y

B

A

Due to the large number of boundary conditions present,

do not provide enough free coefficients. The problem region

four-sided elements, as shown in Figure 3-14. . First-order

Figure 3-14: Element subdivision of the VRM model

approximations are considered for all HU's in the elements. After satisfying the curl



condition, these take the form

HL = (a± + a2• + a3 y) + (a + a3 x + as 5 )

HU = (a+a 7 x + ay) + (a+a 8 x + al oy)S

HU = (all + a 2 x + a13 y) i + (a14 + a,3 x + ai5 y) S

H (a16 a17 +ax 18 y) + (a19 a18 + a2y)

H = (a 21 + a2s x + a2 3 y) + [a24 + (a23 + J)x + a2 5 y] Y. (3.46)

For the calculation of the upper bound, the tangential components of Hu must be

continuous on the element interfaces. Consider the interface between elements i and

j in Figure 3-15, and let the equation of the interface be y = A1 x + A2. Suppose the

Figure 3-15: Field continuity along element interface

vector a spans the interface line, then the projection of the magnetic vector Hi onto

the interface is given by
aT Hi

Hti- aT a. (3.47)
aa

With a = x : + (Aix + A2)Y and Hi = Hix + Hiy,, equation (3.47) becomes

x Hix + (Aix + A2)Hi + ( + ) (3.48)
Hi + (Aix + A2)2

X2



Similarly, for Hj,

x Hjz + (Aix + A2 )Hjy [3 x ý + (AXi A 2)r.-
Htj = [2 ++ ((Aix + A22 )2 (3.49)

Setting Hti = Htj for continuity results in

x Hi + (A1x + A2)Hiy = x Hjz + (Ai x + A2)Hjy. (3.50)

For example, suppose

Hix - ail t ai2 zx ai3 y

Hi, = ai4 + (J + ai3) x + ai5 y

Hjx = aji + aj2 x - aj3 y

H3y = aj4 + (J +- aj3) x + aj5 y.

(3.51)

(3.52)

(3.53)

(3.54)

At the interface, y = A,1 x+ A2 so that

Hix = al + ai2 x - ai3 (A1 x + A2)

Hiy = i4+ (J + a3) x + a15 (A1  + A2)

Hjx = ajl + aj2 + ajA3 (A1 x + A2)

Hy = aj4 + (J + a,3) x + a,5( 1x + A2).

(3.55)

(3.56)

(3.57)

(3.58)

Substituting in (3.50), and equating powers of x, one obtains

al2 = ai2 + 2 (J + ai3 ) A1 + (as + ai• ) A5

j = ail + 2 (J + ai3) A2 + (aj 4 ai4) A1 + 2 A1 A2 (aj5 + ai5)

(3.59)

(3.60)

and

(aj4 + ai4) + A2 (aj5 + ai5) = 0 (3.61)



as constraints on the free coefficients. This is assuming that a current density J is

present in both elements i and j. If a current density is present only in element j,

the above constraints change to

aj2 = ai2 + (J + 2 ai3) 1 j- (aj5 + ais) A~ (3.62)

aj =ail + (J + 2 ai3) A2 + (aj4 + ai4) \1 + 2 A1 X1 (aj5 + ai5) (3.63)

and

(aj 4 + ai 4) + tA2 (ai5 + a 5 ) = 0. (3.64)

It is obvious that as the order of approximation for Hu increases within each element,

the complexity of generating the above constraints increases. A small script file that

will generate the continuity condition within Maple V is included in Appendix B at

the end of this chapter.

3.3 Conclusions

In this chapter, the algebraic dual-energy method was applied to calculate the stored

magnetic energy of a simplified variable reluctance motor at the unaligned position.

By simply averaging upper and lower energy bounds, accurate energy and induc-

tance values can be computed using a small number of degrees of freedom. Analytic

expressions for the bounds are easily obtained using a symbolic manipulation pack-

age, such as Maple V. These expressions, dependent only upon the dimensions of

the problem and the current excitation, can be subsequently incorporated within a

design-optimization program for fast inductance extraction. Equidistance of bounds

is critical in the success of the method. For the simplified variable reluctance mo-

tor geometry considered, the linear relationship between the logarithms of the error

and number of free coefficients can provide a criterion for bounds equidistance. Last

but not least, although the upper bound converges faster to the exact solution, its

calculation is hindered by the larger number of boundary conditions that must be sat-



isfied. The lower bound on the other hand can be obtained with a trivial, one-element

approximation to the magnetic vector potential.

3.4 Appendix A: Integration Over a Quadrilat-

eral Element

This Appendix describes the algorithm employed in Maple V to perform the analytic

integration of a function over a quadrilateral. This algorithm is required in the

application of the ADEM method to the VRM geometry of Section 3.2.3.

3.4.1 The Algorithm

Consider a function f(x, y) to be integrated over the quadrilateral element ABCD of

Figure 3-16. The required integral is given by
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Figure 3-16: Quadrilateral element in the x - y coordinate system
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I = ABCD f(x, y) dx dy. (3.65)

Integration over the element is accomplished by breaking the quadrilateral into three

smaller elements. Then

I=f f(x,y) dx dy+ f(x,y)dx dy+ f (x,y) dx dy. (3.66)JEl JE2 JE3
This becomes

fYf4 ~'4(Y) f9f1 4~4(Y) f Y2 4 4(Y)

Sf(x, y) dx dy + f (x,y) dx dy + f(x, y) dx dy.
Y3 (Y) 4 112(y) JY1 Jf3(y)

(3.67)
Notice that the lower limit of the inner integrals is the curve on which a line cutting

across a triangle and moving in the positive x-direction enters the region, while the

upper limit is given by the curve on which such a line leaves the region. The above

integration can be carried out symbolically in Maple. The associated script file is

provided and explained in the next section.

3.4.2 Maple V Algorithm

The Maple procedure intelem that performs symbolic integration of a function over

a quadrilateral element is given below. Its inputs are the four points defining the

four-sided element, as well as the function f(x, y) that is to be integrated. Its output

is the desired value of the integral. The steps taken within the procedure are the

following.

* Given the four corner points in a random sequence, sort them with an order of

increasing y-coordinate.

* Generate the equations of the edges bounding the quadrilateral, by calculating

their slopes.

* Generate the additional points E and F (Figure 3-16).

* Integrate the function f(x, y) over the three subelements.
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* Add integration results from the three subelements to get the final value of the

integral.

Procedure intelem

with(geometry):

# Procedure intelem. Calculates integral of a function over a four-sided

# element.

# Inputs: pointinl...pointin4 = points defining the 4-sided element

# finput = function to be integrated

# Outputs: solution = value of integral

intelem := proc(pointinl,pointin2,pointin3,pointin4,finput)

local pointl, point2, point3, point4, point5,

point6, Si, S2, S3, ml,m2,m3,m4, intl, int2,

solutionl, solution2, solution3, temp, yyi,

yy2, yy3, yy4, yy5, yy6, solution, int3;

# First sort out the points so that they start from the one

# with min. y-coordinate and finish with the one with max.

# y-coordinate.

temp := sort([pointinl[y], pointin2[y], pointin3[y], pointin4[y]]);

if temp[1] = pointinl[y] then pointl := pointinl

elif temp[l] = pointin2[y] then pointl := pointin2

elif temp[l] = pointin3[y] then pointl := pointin3

else pointl := pointin4

fi;
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if temp[2] = pointinl[y] then point2 := pointinl

elif temp[2] = pointin2[y] then point2 := pointin2

elif temp[2] = pointin3[y] then point2 := pointin3

else point2 := pointin4

fi;

if temp[31 = pointinl[y] then point3 := pointinl

elif temp[3] = pointin2[y] then point3 := pointin2

elif temp[3] = pointin3[y] then point3 := pointin3

else point3 := pointin4

fi;

if temp[4] = pointinl[y] then point4 := pointinl

elif temp[4] = pointin2[y] then point4 := pointin2

elif temp[4] = pointin3[y] then point4 := pointin3

else point4 := pointin4

fi;

# Generate the sides bounding the polygon

line(linel,[pointl,point2]);

line(line4,[pointl,point3]);

line(line3,[point3,point4]);

line(line2,[point4,point2]);

# Find points 5 and 6, which define the three subelements

point(helppl, -0.5, point2[y]);

point(helpp2, -0.5, point3[y]);

line(line5,[helppl,point2]);

line(line6, helpp2,point3]);

point5 := inter(line5, line4);
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point6 := inter(line6, line2);

# Integrate the input function over the lower subelement

yyl := solve(line4[equation],x);

yy2 := solve(linel[equation] ,x);

intl := simplify(int(finput, x=yy2..yyl));

solutionl := int(intl, y=pointl[y]..point2[y]);

solutioni := simplify(solutionl);

# Integrate the input function over the middle subelement

yy3 := solve(line2[equation],x);

yy4 := solve(line4[equation],x);

int2 := simplify(int(finput, x=yy3..yy4));

solution2 := int(int2, y=point2[y]..point3[y]);

solution2 := simplify(solution2);

# Integrate the input function over the upper subelement

yy5 := solve(line2[equation],x);

yy6 := solve(line3[equation],x);

int3 := simplify(int(finput, x=yy5..yy6));

solution3 := int(int3, y=point3[y]..point4[y]);

solution3 := simplify(solution3);

# Add up integrals from all subelements

solution := solutionl+solution2+solution3;

end;

Using the above procedure, small script files can be written to calculate upper and

lower bounds to the magnetic energy stored within a VRM model at minimum align-

ment. An example script file that will calculate a lower energy bound for a first order
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vector potential approximation and employing the dimensions of Table 3.1 is given

below.

# Give the basic motor dimensions, geometry and excitation

ri := 15/1000;

r2 := 35/1000;

r3 := 55/1000;

r4 := 55.52/1000;

r5 := 85/1000;

r6 := 102/1000;

nr := 4;

ns := 6;

thetar := evalf(35*Pi/180);

thetas := evalf(30*Pi/180);

J := 1000000;

factorr := evalf(-10000000/(2*4*Pi));

# Define critical radii and angles

ray := (r3+r4)/2;

thetac := evalf((Pi-thetas)/2);

thetad := evalf(Pi/2-arcsin(rav*sin(thetas/2)/r5));

thetaf := evalf(Pi/2-Pi/ns);

thetag := 2*thetaf - thetad;

thetah := evalf(Pi/2-thetas/2+thetas-2*Pi/ns);

thetap := evalf(Pi/2-Pi/nr+thetar/2);

thetass := evalf(Pi/2-Pi/nr+arcsin(rav*sin(thetar/2)/r2));

thetat := evalf(Pi/2-Pi/(2*nr)+(arcsin(rav*sin(thetar/2)/r2))/2);

# Generate the 11 basic points, defining the geometry

point(A1,0,r2);

point (B1,0,rav);
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point(Cl,rav*cos(thetac),rav*sin(thetac));

point(D,Cl [x],r5*sin(thetad));

point(Fl,r5*cos(thetaf),r5*sin(thetaf));

point(Gi,r5*cos(thetag),r5*sin(thetag));

point(H1,rav*cos(thetah), rav*sin(thetah));

point(Ql,rav*cos(thetaf), rav*sin(thetaf));

point(P1,rav*cos(thetap), rav*sin(thetap));

point(S1,r2*cos(thetass), r2*sin(thetass));

point(Tl,r2*cos(thetat), r2*sin(thetat));

midpoint(Di,Fl,Vi);

# Guess for first order A and get corresponding B

A := al*x;

Bx := diff(A,y);

By := -diff(A,x);

Bsq := expand(Bx*Bx+By*By);

# Calculate the corresponding lower bound for energy

energyl := int_elem(Al,Bl,Cl,Tl,Bsq);

energy2 := int_elem(Cl,Pl,S1,Tl,Bsq);

energy3 := int_elem(Cl,Dl,V1,Pl,Bsq);

energy4 := int_elem(Pl,V1,Fl,Q1,Bsq);

energy5 := int_elem(Ql,Fi,Gl,Hi,Bsq);

energy6 := int_elem(C1,D1,V1,P1,A);

energy7 := intelem(P1,Vi,F1,Q1,A);

energy := factorr*(energyl+energy2+energy3+energy4+energy5)

+J*(energy6+energy7);

# Extremize the energy bound
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dal := diff(energy,al);

sol := solve({dal},{al});

# Get lower energy bound

energy := subs(sol, energy);;

3.5 Appendix B: Generation of Inter-Element Con-

tinuity

Section 3.2.3 provides the theory for imposing continuity of tangential magnetic field

intensity along an element interface. The Maple V code that will generate this con-

dition is provided below.

with(geometry):

with(linalg):

# Procedure cont_cond. Calculates continuity condition for Htangential

# at an interface defined by line 1.

# Inputs:

# Outputs:

pointl, point2 = H-vectors whose tangential components

must match

1 = interface line

condition = continuity conditions

cont_cond := proc(pointl,point2,1)

local condition, P1, P2;

# Get the projection of each of the vectors on the interface line, 1
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projection(point 1,

projection(point2,

1i, Pl);

1, P2);

condition := array( [simplify(P1 x]-P2[x]), simplify(Pl[y]-P2[y])]);

end;
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Chapter 4

Thermal Analysis of the VRM

This chapter describes the application of the algebraic dual-energy method to the ther-

mal analysis of variable reluctance machines. First the analogy between the steady-

state heat conduction equations and electrostatic equations is presented. Then, based

on this analogy, the existence of upper and lower thermal energy bounds is discussed.

The idea of bounding is finally extended to the prediction of the hot spot within the

variable reluctance motor, which is important to machine design. This addresses the

problem of bounding the temperature at a point as opposed to bounding the energy

of the whole system.

4.1 The Steady-State Heat Conduction Problem

and its Analogy to Electrostatics

The first of several equations governing heat conduction is Fourier's law. It states that

a temperature gradient causes heat to flow. The rate of this heat flow is proportional

to the temperature gradient. This is mathematically expressed as

q = -k VT (4.1)

where q is the heat flux vector, k is the thermal conductivity, and T is the tem-

perature. The negative sign in the equation indicates that heat flows from high to
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low temperature. In general, k is dependent on temperature. Example values are

kcopper = 383W/m K, ksteet - 50W/m - K, and kair = 0.026W/m - K, at room

temperature. The other important equation governing heat conduction is an energy

conservation statement, expressing the balance between the energy Q generated in-

ternally to the system, and energy flow across its boundaries. This statement is

V -q= Q (4.2)

where Q is the rate of internal heat generation. Combining the above equations

- V. (kVT) = Q. (4.3)

This equation, usually referred to as the steady-state heat conduction equation, is

hard to solve analytically for a wide range of multidimensional problems. Given a

volume V bounded by a closed surface S, the steady-state heat conduction problem

amounts to determining the temperature distribution throughout V. This distribution

satisfies equation (4.3) in V, subject to prescribed boundary conditions on S. Such

problems are usually solved using finite-element or finite-difference techniques. Before

the analogy between the heat equations and the electrostatic Maxwell's equations is

presented, it is constructive to introduce a new variable M, such that

M = -VT (4.4)

and

V x M = 0. (4.5)

M is generally not found in the literature but is defined here for ease of reference.

The electrostatic Maxwell's equations are

Vx E = 0 = E = -V•4 (4.6)

V - D = p (4.7)

109



D = eE. (4.8)

Combining (4.6), (4.7) and (4.8) yields

- V - (E ) = p (4.9)

where 4 is the electric potential, E is the electric field intensity, D is the electric

displacement flux density, E is the permittivity, and p is the charge density. Table 4.1

summarizes the analogy between the heat equations and Maxwell's equations. M

corresponds to the electric field intensity E, according to this analogy. In the absence

Problem Potential Material properties Source Flux
Heat conduction T k Q q
Electrostatics P E P D
Steady Ohmic Conduction 4 0 J

Table 4.1: Analogy between steady-state heat conduction and electrostatics

of a source, this analogy is further exploited through the introduction of the heat

resistance concept in heat transfer problems. In the one-dimensional case, the thermal

resistance is defined as
AT

Rth = (4.10)
q

This may be looked upon as the analogue of Ohm's law in electric circuit theory,

where temperature and heat flow are analogues of voltage and current respectively.

4.2 The dual-energy method extended to the ther-

mal problem

A traditional approach to solving the thermal equations of the previous section would

be the discretization of the geometry cross-section in finite elements and the calcu-

lation of the temperature distribution throughout by minimization of an appropriate

functional. In the absence of a heat source, another approach would involve the in-

troduction of thermal resistances. Knowledge of the temperature distribution would

110



immediately imply knowledge of the hottest point in the geometry. However, such an

approach is not flexible and fast enough for design-optimization purposes. Another

path is followed here, that employs the algebraic dual-energy method in the calcula-

tion of the "thermal energy" of the system. Following along the lines of this analogy,

appropriate functionals may be obtained that lead to upper and lower "thermal en-

ergy" bounds and to the estimation of the highest temperature within a structure.

4.2.1 Derivation of upper and lower thermal energy bounds

The proof of this section closely follows the theoretical treatment presented in Chapter

2 for resistance and capacitance bounds. The difference here lies in the presence of

the heat source Q. Consider the arbitrary geometry of Figure 4-1. It is surrounded

by a closed surface S, enclosing a volume V of spatially-varying thermal conductivity

k. The surface S is subdivided into surfaces S+, and SI, so that S = S+ U S ; S+ is

the part of S kept at prescribed temperature values. SI is the remaining portion of

S, over which the boundary condition q - dS = 0 is imposed. The "thermal energy"

Volume V with

bounding surface S

So

S.

x

Figure 4-1: Geometry definition for "thermal energy" bounds generation

stored within the system, Wt, is obtained from

Wt = - q.Md V = TQdV. (4.11)2 V 2
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The second equality in (4.11) is proven as follows:

Wt 1 M.q dV

= -• (VT) -q dV2 1
_=- V.(Tq)dV + TV.qdV2 v 2 v

= Tq.dS+ f T V q dV2s 2v
= Tq qdS - Tq.dS

2 +s 2 s

2 v1
1 f TV.q dV. (4.12)
2Jv

The second equality holds because, by definition, M = -VT. The third equality

makes use of the vector identity V - (T q) = T V q + (q -V)T. The fourth equality

employs the divergence theorem. The last equality holds because q - dS = 0 on S1

and T = 0 on S+. Hence, the two expressions in (4.11) for Wt are identical only

under the particular boundary conditions defined above. It should be noted that Wt

is not a physical quantity and should not be confused with the true stored system

energy (heat). Wt has units of Watts .OK, as opposed to Joules or Watts for power

or energy.

Analytic bounds for Wt can be obtained in a fashion similar to that for electro-

magnetic problems. An upper "energy" bound, Wpper,,, can be calculated by first

choosing a function qu to approximate q in V; qu need only satisfy the boundary

condition on SI, as well as the divergence condition, V ' qu = Q. The corresponding

MuJ is computed from
1

MU qv. (4.13)

Mu need not be curl free and its line integral need not satisfy the boundary condi-

tions for T on S+. A bound for the stored "thermal energy" is computed using the

functional

W•upper = qu MU dV. (4.14)2 ,
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Note that Wppe,. Wt if and only if qu = q.

In order to prove that Wupper Wt, define 6qu such that qu = q + 6qu. In a

similar and consistent manner, define 65M such that MU = M + 6Mu. Then

Wpper V MMu.qu dV

= (M + 6Mu). (q+ 6qu) dV

= Wt + M. 6qu dV + k Mu-Mu dV

SW -JVT6q dV + - k 6Mu-6Mu dV

SWt - -V. (T 6qu) dV + T V. 6qu dV + - k6Mu6MudV
v v 2 v1

= Wt- T6qu.dSJ+ TV.6qudV+- k6Mu.6MudVv 2 v
= Wt- T6qu.dS- T 6qu. dS

+ T V.6qu dV + - k k6Mu - Mu dV

= Wt+~ k 6Mu -6Mu dV

> wt. (4.15)

The third equality holds because, by definition, 6qu = k 6MU and q = k M. To

obtain the fourth equality, the definition M = -VT is used. The fifth equality makes

use of the vector identity V - (T 6qu) = T V 6qu + (6qu - V)T. The sixth equality

employs the divergence theorem. The last equality holds because, by construction,
6 qj - dS = 0 on S_ and T = 0 on S+; moreover, by construction, V 6 qu = 0 in the

system volume.

Similarly, a lower bound for the thermal energy may be calculated by choosing a

function TL to approximate T in V. TL satisfies the Dirichlet boundary condition on

S+. Then, ML and qL are determined using

ML = -VTL (4.16)

qL = k ML. (4.17)
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Note that qL will not necessarily satisfy (4.2), nor its boundary conditions. A lower

bound for the stored system energy is obtained using the functional

VWower = TL Q dV- -

Note that Wtower = Wt if and only if TL = T.

In order to prove that Wlo,,,r _ Wt, define

similar and consistent manner, define 6ML and

qL = q + 6 qL. Then,

141ower

SqL -ML dV.v
(4.18)

6TL such that TL = T + 6TL. In a

6qL such that ML = M + 6 ML and

/ Q 1
- TL QdV--1 vqL ML dV

= (T+6TL) QdV-- (q+ 6qL) (M+ 6

fTQdV -- M.qdV+ 6STL Q dV-

f k 6ML -6ML dV2Jv

= W + q - V6TL dV - k 6ML 6ML dV

= + V - (6TL q) dV - 6TL V -q dV -

= Wt+ 6TLq-dS- 6TLV.qdV--f k

= wt + 6TL q - dS + 6TL qdS

- 6TL V.qdV- f k6ML 6ML dV-v 2v
= W - - k 6ML 6ML dV

2 v
<W .

1 L) dV

q -6ML dV

vk 6ML 6ML dV

6ML- 6ML dV

(4.19)

The third equality holds because, by definition, 6qL = k 6ML and q = k M. The

fourth equality uses 6ML = -V6TL and fv T Q dV - fv M. q dV = fv T Q dV =

fvy M - q dV. The fifth equality makes use of the vector identity V - (6 TL q) =

6TL, V -q + (q- V) 6 TL. The sixth equality employs the divergence theorem. The last

equality is valid because, by definition, q -dS = 0 on S1 and V -q = 0 in V; moreover

6TL = 0 on S+ and S_.
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4.3 The VRM Thermal Problem

The thermal analysis of the variable reluctance motor is a very complex problem. The

issues considered here revolve around the calculation of the temperature distribution

within the motor under steady state conditions. More specifically, given a certain

heat source distribution, comprising the current losses in the stator, and a known

rate of heat removal, the goal is to calculate the hottest temperature of the motor.

This calculation is critical in variable reluctance motor design, since it allows the

designer to account for losses in various motor parts and adopt an appropriate cooling

scheme; as a result, excessive heating of the insulation and bearings may be prevented,

resulting in safer and longer-lasting operation of the motor drive.

This thesis adopts a simple thermal model for the VRM and employs the algebraic

dual-energy method and the idea of bounding for its solution. The goal is not the

development of a sophisticated thermal model but the fast derivation of upper and

lower bounds for the hot spot of the motor.

4.3.1 The VRM Thermal Model

The thermal model for the VRM geometry adopted here is given in Figure 4-2. For

illustration purposes, analysis is done for a 6:4 motor cross-section, but all the results

following can be easily extended to geometries with different stator:rotor pole ratios.

Throughout, the following assumptions are made. First, it is assumed that no heat

flows axially in the machine, which allows for two-dimensional analysis of the motor

cross-section. Second, the entire machine cross-section need not be modeled if use is

to be made of the existing symmetry. More specifically, only (--) of the machine

geometry need be modeled, where n, is the number of stator poles. This assumes that

excitation revolves much faster than the thermal time constant. Third, it is recognized

that symmetry boundaries form adiabatic boundaries of no heat flux. Fourth, it is

recognized that thermal modeling of the airgap is a hard task since one must consider

laminar or turbulent air flow within the gap at various motor speeds. Here, the worst

case is assumed, leading to conservative calculations; the airgap forms an adiabatic
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T = constant
/ hnondryv

, STATOR STEEL /
/1 / I

adiabatic
boundary

- -

/

WINDING /
(heat source)., adiabatic

( boundary

adiabatic
boundary

Figure 4-2: Simplified geometry of a 6:4 VRM for thermal analysis

surface, through which no heat flux flows. This assumption is also consistent with

the assumption of no axial heat flux. Fifth, it is assumed that the boundary layer

outside the stator may be ignored in the presence of a cooling jacket. As a result,

the outer stator periphery is treated as a constant temperature surface, assumed to

be zero for simplicity. Sixth, no heat is generated in the steel. Although the core

losses may be high in the VRM, the temperature rise in the steel is much smaller than

the temperature rise in the winding; this is because the thermal conductivity of the

former is larger than the thermal conductivity of the latter. Thus, the heat loss in the

steel is inconsequential. Seventh, the winding consists of a number of materials with

different thermal conductivities, namely copper, wire insulation, dead air between

the wire turns and often thermal epoxy, employed to attach the winding on the

stator frame, increasing thermal contact. As a result, accurate thermal modeling of

the winding is a very complicated task; it should accurately combine the thermal

conductivities of the various materials, take into account the phase wire geometry,

as well as the fact that the thermal contact between the coil and the stator steel
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depends on the assumed shape of the winding. Often the winding is modeled as a

single material with an effective thermal conductivity kwinding equal to the weighted

average of the thermal conductivities of the materials present. For example, for a

winding consisting of air, insulation and copper,

dair + dcu + dinsulation (4.20)
kwinding = dam + dr+ +- dinastlationj

kair kcu kinsulation

d is the fraction of the winding area covered by each material. Typical values for

thermal conductivities at room temperature are kepoxy = 7.961 W/m -K (STYCAST

2651), kair = 0.028 W/m -K and kcu = 383 W/m K [64]. Eight, radiation is ignored.

Finally, a constant current density J is assumed through the winding and defines the

heat source Q for the thermal problem.

For simplicity, the geometry of Figure 4-2 is cast in Cartesian coordinates, as

illustrated in Figure 4-3.

T = constant = 0V

d

c

0 a b x
Figure 4-3: Simplified geometry of a 6:4 VRM for thermal analysis

Lower Bound Calculation

A lower bound for Wt is computed using the functional

Wower TLQdV - qL ' ML dV. (4.21)
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First, the temperature is approximated throughout the geometry by a polynomial in

x and y. One simple approximation is

TL = al + a2 x + a3 y. (4.22)

Only one region covering the complete geometry is sufficient for the lower bound

calculation. Using (4.22), the Dirichlet condition at y = d is imposed such that

al = - a3 d (4.23)

and

a2 = 0. (4.24)

Hence,

TL = as (y - d). (4.25)

Next,
OTL, 9TL,

ML = x - y -a y
Ox 1y (4.26)

and

qL = k ML = -k as y. (4.27)

Finally, substitution of (4.22), (4.26) and (4.27) into (4.21) yields

W/ower
/ TL QdV - qL ML dV

= -as Qbdc + a3 Qadc + 0.5a3 Qbc2 - 0.5a 3 Qac2

- 0 .5ksteel a3 2ac - 0.5ksteei a3
2bd + 0.5ksteel a3

2bc

-0.5kwinding a3
2cb + 0.5kwinding a3

2ca (4.28)

where kwinding and kstee, are the thermal conductivities of the winding and steel,

respectively. The free coefficient, a3 , is determined by maximizing Wower. Thus,

MW ower= 0
aa3

(4.29)
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which implies

a3 =
Qbdc - Qadc - 0.5Qbc2 + 0.5Qac2

-kstee. ac - ksteel bd + k,t.ee bc - kwiding cb + kwinding ca

Substituting (4.30) into (4.28) yields

0.125Q 2c2 (-2.0bd + 2.Oad + bc - ac) 2

kstee, ac + kstee, bd - kstee bc + kwinding cb - kwinding ca

as the desired lower bound.

Upper Bound Calculation

An upper bound for Wt can be obtained using the functional

Wupper = (4.32)
f qu Mu dV.

First, the heat flux is approximated by

qu = (al + a2 X+ a3 y) i + (a4 + a5 xs + a6y) Y. (4.33)

It is clear that at least two elements must be employed in the calculation, since in

the winding region,

V.q = Q (4.34)

should be imposed, while in the stator steel

SqS = 0. (4.35)

Thus, the two approximations

qS = (a, + a2 x + a3 y) ± + (a4 + as x - a2 y) Y (4.36)

qW = (all a2 x + as y) + [a14 + a15 x + (Q - a12) y] 1 (4.37)
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are employed. Next the adiabatic boundary conditions should be imposed on qu.

These are that qx = 0 at x = 0 and x = b, and that qy = 0 at y = 0. Due to

the large number of boundary conditions present, (4.36) and (4.37) do not provide

enough free coefficients to match the boundary conditions. A very large order of

approximation for qu could perhaps alleviate this problem, but this avenue is not

pursued further. Instead, the problem is subdivided into four rectangular elements,

as shown in Figure 4-4. Separate polynomial approximations in x and y of the form

V

d

C

2 ' 4

1 3

0 a b x
Figure 4-4: Subdivision of geometry for upper bound calculation

given in (4.36) and (4.37) are considered for qu in each element. After satisfying the

divergence conditions, these approximations take the form

qu = (a, + a2z + a3 y) k + [a7 + as +(Q - a2 y] f

q = (all a12 X a13 y) + (a17 + a18 X - a12 y) r

qu = (a2 I + a2 x + a2 y) (a + as x - a~22 y)

q4U = (a31 + a32 + a33 y) + (a37 +a 38 - a32 )y) . (4.38)

Imposing all adiabatic boundary conditions on (4.38), and ensuring continuity of
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normal qu along element interfaces results in

1q = a2 x ^ + (Q - a2 ) y
2qU = a12 X ^ + [cQ - ca 2 + a1 2 c - a12 y]
3 a2 ab a2 ax a2 ayaU ax+ y

b-a b-a b-a
4 a12 a(b - x) _ (a2 - a12 ) ac a1 2 ayg x + + - y (4.39)Sb-a b-a b-a

Next,

qu
U ~(4.40)

Finally,

upper qu -Mu dV

1
6 kwindin steei (b - a) a(-3 kwinding cQa12 ad 2

-Cksteel a2
2a2 b + Ckstee a2

2 3 + 2 C3ksteel Qa2 b

-2 C3 kstee1 Qa 2 a - c3 ksteel Q 2 b + C3 ksteel Q
2 a

-C 3 ksteel ba2
2 + C3 kstee a2

2a + 6 kwinding Qa 2 ac3

-kwinding a 2 a 3 c - 3 kwinding Q 2 ac3 - kwinding a2
2 ac3

-3 kwinding c3 Qa1 2 a - 6 kwinding c2 Qa 2 ad + 3 kwinding c2 Q 2 ad

-3 kwinding C2Q 2db + 6 kwinding C2 Qa1 2 ad + 6 kwinding C2 Qa 2 db

+3 kwinding Q 2 C3 b - 3 kwinding a12
2c2 db + 3 kwinding a122 cd 2 b

+kwinding a12
2a2 db -+ 3 kwinding cQa12 d2 b + 3 kwinding a2

2 C3 b

+kwinding a12 
2C3b - 3 kwinding Ca2 a12 d2b + 6 kwinding c2 a2 a12 db

-kwinding a12 2 a 2cb - kwinding a2
2acb2 + 2 kwinding a2

2 a2 cb

-kwinding ada12 
2b2 + kwinding aca12

2b2 - 6 kwinding C2Qa12 db

-3 kwinding C2 a2
2 db - 6 kwinding Qa 2 C3b - 3 kwinding C3 a2 a12 b

+3 kwinding C3 Qa 12 b - kwinding a12
2d3b). (4.41)
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The two free coefficients, a2 and a12 are calculated by solving the system of equations

Wupper = i = 2, 12. (4.42)
Oai

Hence

a 2 = -(-3 C3 kwinding a + 3 C3 b kwinding - 4 C3 b ksteel + 4 C3 kstee. a

- 9 C2 b kwinding d - 8 c2 ksteel a d + 8 c2 b kstee, d + 9 c2 kwinding a d

+ 8 c b kstee. a 2 + 12 c a3 kwinding - 4 c d2 ksteel b + 4 c d2 ksteei a

- 9 cd 2 kwinding a - 4 c a3 ksteet - 24 c b kwinding a 2 + 12 c b2 kwinding a

+ 9 c kwindingg d2 b - 4 c b2 ksteer a + 24 b kwinding d a2 - 3 b d3 kwinding

- 12 b2 kwinding d a + 3 a d3 kwinding - 12 kwinding a3 d)Q c

/(12 b kwinding a4 - 4 b ksteet a2 C2 - 8 b kstee a2 cd + 4 b kstee a2 d2

- 9 b c2 kwinding d2 - 4 ksteei C2 a d2 - 8 b kstee C3 d + 8 ksteei C3 a d

+ 4 b ksteei C2 d2 + 4 b2 kwindig C d a + 4 b kwinding C d a 2

- 4 ksteet C4 a + 8 ksteei a3 C d - 4 kstee, a3 d 2 + 3 b c d3 kwinding

+ 4 b2 kinding a d2 + 9 b C3 kwinding d + 4 b2 ksteei c2 a

- 8 kwinding a3 C d + 4 kwinding c2 a d2 + 4 kwinding a3 d 2 + 4 kwinding C4 a

- 8 b2 kwinding C2 a + 8 b kwinding C2 a2 + 4 b2 ksteei a3 - 8 kwinding C3 a d

- 8 b kwidi,, a 2 d 2 + 4 b3 kwinding a2 - 3 b c4 kinding + 4 ksteei a5

- 12 b2 kwinding a3 + 4 b ksteel C4 - 8 b kstee, a - 4 kwinding a ) (4.43)

and

a1 2 = -6a c Q(-ksteej a3 d - C3 kwinding a + C3 ksteei a + kwinding a3 d

- 3 c b2 kwinding a + 3 b2 kwinding d a - 2 C b ksteei a2 + c b2 ksteei a

- kwinding d b3 + 3 c b kwinding a2 - 3 b kwnding d a2 + c2 kwinding a d

- c ki,,ding a3 + c ksteei a3 - C3 b ksteeL + c kCwinding b3 - c2 kstee, a d
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- c2 b kwinding d + C3 b kwinding - a kstee b2 d + C2 b ksteet d

+ 2 b kstee, a2 d) /( b(-4 ksteei c4 a + 4 kwinding c4 a

+ 4 kwinding a3 d2 - 3 b c4 kinding + 4 b3 kwinding a2 - 12 b2 kwinding a3

+ 12 b kinding a4 - 8 b ksteel a4 + 4 b ksteet C4 + 4 b2 ksteel a3

+ 4 ksteet a5 - 4 kwinding a5 + 8 ksteei a3 c d + 8 ksteei c3 a d

- 4 ksteej c2 a d2 - 8 kwinding a3 c d - 8 kwinding C3 a d

+ 4 kwinding C2 a d2 - 8 b ksteei C3 d + 4 b2 kstee C2 a

+ 4 b ksteei C2 d2 + 8 b kwinding c2 a 2 + 4 b2 kwinding C d a

+ 4 b kwinding cd a 2 - 8 b2 kwinding C2 a - 8 b kwinding a2 d 2

+ 4 b2 kwinding a d2 + 4 b ksteei a2 d2 - 9 b C2 kinding d2

+ 9 b c3 kwinding d + 3 b d3 c kwinding - 4 b ksteei a2 c2

- 8 b ksteet a2 cd - 4 kstee, a3 d2 )). (4.44)

Substituting (4.43) and (4.44) into equation (4.41), one obtains the final expression

for the upper bound for Wt as

1 1
Wupper = 2 W1 + - (W2 + W3 + W 4 ) (4.45)

2 kwinding 2 ksteei

where

1 F 2
2 C3 Q2 a3  2 Q2 F 2  a 1 1 F 22 5 Q2 a

W = + 3 +-+-Q2aC +-3 F1
2  3 F1  3 3 F1

2

F1 = 4 b ksteei a2 d2 - 8 kwinding a3 cd + 4 kwinding C2 a d2 + 4 kwinding a3 d 2

+ 4 b ksteei c2 d2 + 4 kwinding C4 a + 8 b kwinding C2a 2  - 8 kwinding C3 a d

+ 4 b2 koiiding a d2 - 8 b2 kwindin c2 a - 4 b ksteel a2 C2 - 4 kstee c4 a

- 8 b kstee a2 c d - 8 b kwinding a2 d2 + 4 b kwinding c d a2

+ 4 b2 kwindin C d a + 8 kstee c3 a d - 4 kstee c2 a d 2

+ 8 kstee, a3 cd + 3 b c d3 kwinding - 4 ksteet a3 d2 + 9 b C3 kwinding d

- 9 b C2 kwinding d 2 - 8 b ksteet c3 d + 4 b2 ksteet c2 a - 4 kwinding a5
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+ 4 b3 k-inding a2 + 4 b ksteel C4 - 8 b ksteet a4 + 4 b2 ksteel a3

+ 4 ksteet a5 - 3 b c4 kwinding - 12 b2 kwinding a3 + 12 b kwinding a 4

F 2 = 4 C3 ksteeI a - 4 C3 b kstee1 + 3 C3 b kwinding - 3 C3 kwinding a

+ 9 c2 k.winding a d - 9 C2 b kwinding d - 8 c2 kstee a d + 8 c2 b ksteeI d

+ 12 c b2 kwinding a - 24 cb kwinding a2 - 4 c a3 kstee - 4 c d2 ksteel b

+ 8 c b ksteei a2 
- 4 c b2 ksteei a - 9 c d2 kwinding a + 9 c kwinding d2 b

+ 12 c a3 kwinding + 4 c d2 ksteei a - 12 kwinding a3 d - 3 b d3 kwinding

- 12 b2 kwinding d a + 3 a d3 kwinding + 24 b kwinding d a2

- 5 C2 Q2 F 4
2 d a3 C4  2 F 4

2 d a 3 C3 Q2 F 4
2 d2

b2 F32 b2 F3
2  b2 F32

(:2 Q2 a2 F4 d2  a 3 c2 Q2 F 4
2 d3  C3 F5 Q2 a2 F4 d2

±6 ±12 +6bF 3  b2 F 3
2  

F 3
2 b

C4 F 5 Q2 a2 F 4 d C3 Q 2 F5 ad c3 Q2 a 2 F 4 d- 12 +2 -12F3
2 b F3  bF3

+ 4 F52 Q2 ad F3 52 2 C5 a
F 3

2  F 3
2

5 c3 Q2 F 4
2  Q2 F5 C4  C5 F5 Q2 2 F 4-12 -2 +6b2 F 32 F3  F 32 b

C4 Q 2 a 2 F4 a3 c5 Q2 F 4
2

+ 36 12b F3 b2 F3 2

F 3 = -4 kwinding a 5 + 4 ksteel a
5 + 4 kwinding a3 d2 + 4 kwinding C4 a

- 8 b kwinding a 2 d2 + 4 b kwinding cd a 2 - 8 b2 kwinding C2 a

+ 4 b2 kwinding C d a + 8 b kwinding C2 a2 - 8 b ksteeI C3 d

+ 4 b ksteel C2 d2 + 4 b2 kwinding a d2 + 4 b ksteel a2 d2

- 9 b c2 kwinding d2 + 9 b C3 kwinding d + 3 b d3 c kwinding

- 4 b ksteel a
2 C2 + 4 b2 ksteel C2 a - 8 b kstee a2 c d

+ 8 k:stee, a3 cd - 4 ksteel C4 a + 4 b3 kwinding a 2 - 8 b ksteel a4

- 12 b2 kwinding a3 + 4 b kstee c4 - 3 b c4 kwinding + 4 b2 ksteei a3

+ 12 b kwinding a 4 + 8 ksteel C3 a d - 8 kwinding a3 c d - 4 ksteel C2 a d 2
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- 8 kwinding C3 ad t 4 kwinding C2 a d2 - 4 kstee, a3 d2

F 4 =- c ksteeI a3 - 3 c b2 kwinding a + C3 ksteeI a + 3 b2 kwinding d a

+ knwinding a3 d - 3 b kwinding d a 2 - C3 b ksteeI + c 2 kwinding a d

- C2 ksteeI a d - C2 b kwinding d + C3 b kwinding + c kwinding b3

- C kwinding a 3 - kwinding d b3 - 2 c b ksteeI a 2 + c b2 kstee, a

+ C2 b ksteei d + 2 b ksteeI a 2 d - a ksteel b2 d - C3 kwinding a

- ksteel a3 d + 3 c b kwinding a 2

F 5 = -3 C3 kwinding a - 4 C3 b ksteel + 3 C3 b kwinding + 4 C3 ksteeI a

- 8 C2 ksteei a d - 9 C2 b kwinding d + 9 c2 kwinding a d + 8 C2 b ksteei d

+ 4 c d2 a ksteeI + 12 c kwinding a 3 + 8 c b ksteeI a 2 - 9 cd 2 kwinding a

- 2 4 c b kwinding a2 + 9 c kwinding d2 b - 4 c d2 ksteel b

+ 12 c b2 kwinding a - 4 c b2 ksteel a - 4 c ksteel a3 + 24 b kwinding d a2

- 3 b d3 kwinding - 12 kwinding a3 d + 3 a d3 kwinding - 12 b2 kwinding d a

1W 3 ((4ac3 -4C3 b+8c2db-8c2ad-4a3c+8ca2b+4cad2

- 4 c d2 b - 4 ca b2) 2ksteel 2 + 2(3 c3 kwinding b - 3 c3 a kwinding

-- 9 c2 kwinding d b + 9 c 2 a kwinding d + 12 c a kwinding b2

+ 9 c kwinding d2 b - 24 c a2 kwinding b + 12 c a3 kwinding

-- 9 C d2 kwinding a - 12 a3 kwinding d - 12 a kwinding d b2

+ 24 a 2 kwinding db - 3 b d3 kwinding + 3 a d3 kwinding) (4 a C3 - 4 c3 b

+ 8c 2 db- 8C 2 ad- 4a c3 + 8ca2 b + 4cad2 - 4cd2 b

- 4 ca b2 ) ksteel + (3 C3 kwinding b - 3 C3 a kwindig 9 2 kwinding - 9 2 kwin d b

+ 9 c 2 a kwinding d + 12 c a kwinding b2 + 9 c kwinding d 2 b

- 24 c a2 kwinding b + 12 c a3 kwinding - 9 cd 2 kwinding a - 12 a3 kwinding d

- 12 a kwinding d b2 + 24 a 2 kwinding db - 3 b d3 kwinding + 3 ad 3 kwinding)2)

Q2 C3 a2 (a2 - 2 ba + b2 + C2 ) /(((4 a2 C2 b - 4 a c2 b2 - 8 a3 Cd
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+ 8 c3 db + 8 a 2 cdb - 4 c4 b - 8 a c3 d - 4 ba 2 d2 + 8 b a4

- 4 b2 3 + 4 a c4  4 c2 a d2 + 4 a3 d2 - 4 a 5 - 4 C2 d2 b)ksteel

+ 4 kwintding a5  2 8 a2 kwinding C2 b + 8 a kwinding C2 b2 - 4 a kwinding cd b2

+ 8 a3 kwinding c d + 8 a kwinding c3 d - 4 a2 kwinding c d b

-9 kwinding C3 d b + 3 kwinding C4 b - 4 kwinding C2 a d2 - 4 b2 kwinding a d2

- 4 kwndijng a3 d2 - 3 b d3 c kwinding + 9 b C2 kwinding d2

+ 8 b kwinding a2 d2 - 12 b kwinding a4 + 12 b2 kwinding a3 - 4 a kwinding C4

- 4 b3 kwinding a2)2( -b + a))

and

1 2  C2 Q2 a2 F 2  2 Q2 3 F 2  C3 Q2 a2 F 7
2 dW4 a2 d 36 2  72 - 108 2

3F62 b F62 b2 F62
C2 a4 F2  c4 F82 Q2  C3 F8 Q 2 aF 7 d+36 2F6  +3 F +18

b2 F62 F62 F62 b
+108 Q 2 a2 F2  +32 C2  2  F2 d2 2 c4 F Q2 a F7)+ 108 2 + 36 - 36 /

b2 F6  b22 F62 b
1 C2Q2 a2 2  C2 Q 2 3 F 2

(b -a) - a2c 36 - 7 23 F 6
2  bF 6

2

C4 Q2 a2 F2 2 C4 F8 
2 Q2  C4 F8 Q2 aF 7+36 +3 18

b2 F6
2  F 2  F62 b

C2 Q2 a4 F72+ 36 b2  2  ( b-a)
F6 = 4 kstee a - 4 kwinding a5 -8 b kwinding a2 d2 - 12 b2 kwinding a3

- 8 b kstee, a 2 cd + 4 b kwiinding cda2 - 8 b2 kwinding C2 a

+ 4 b2 kwinding c d a - 8 b kstel c3 d + 4 b2 kwinding a d2

+ 8 b kwinding C2 a2 - 4 b ksteel a2 C2 + 4 b3 kwinding a2 + 4 b2 ksteel a3

- 3 b c4 kwinding + 12 b kwinding,,a 4 + 3 b c d3 kwinding, - 9 b C2 kwinding d2

+ 4 b ksteel C4 - 8 b kstee1 a4 + 9 b C3 kwinding d + 4 b ksteel C
2 d2

+ 4 b2 ksteel C
2 a + 4 b ksteel a2 d2 + 4 kwinding C2 a d2

+ 4 kwinding C4 a + 4 kwinding a 3 d2 - 4 ksteel C4 a + 8 ksteei c3 a d
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- 8 kwinding a3 c d - 8 kwinding C3 a d - 4 ksteei c2 a d2 + 8 ksteei a3 c d

- 4 ksteel a3 d2

F7 = C3 b kwinding - c kwinding a3 + 3 c b kwinding a2 - 3 b kwinding d a2

+ c2 kwinding a d + 3 b2 kwinding d a - c2 ksteei a d + kwinding a3 d

- kwinding d b3 - a ksteet b2 d - 3 c b2 kwindin9 a - C3 kwinding a

- C2 b kwinding d + 2 b ksteel a2 d + c ksteei a3 - ksteet a3 d

± C3 ksteet a + c kwinding b3 - C3 b kstee +± c b2 ksteej a

- 2 c b ksteel a 2 + c2 b ksteei d

Fs = 4 c3 kstee, a - 4 C3 b ksteet + 3 C3 b kwinding - 3 C3 kwinding a

- 8 c2 ksteet a d - 9 c2 b kwindin9 d + 8 c2 b ksteei d + 9 c2 kwinding a d

+ 8 C b ksteel a2 + 4 cd 2 ksteet a + 12 c b2 kwinding a - 4 c ksteei a3

- 9 c d2 kwinding a + 9 c kwinding d2 b - 24 c b kwinding a 2

+ 12 c kwinding a3 - 4 cd 2 kstee, b - 4 c b2 ksteet a - 12 b2 kwinding da

+ 24 b kwinding d a2 - 3 b d3 kwinding + 3 a d3 kwinding - 12 kwinding a3 d.

Energy Bound Average and Numerical Example

Table 4.2 provides the dimensions used for a numerical example. Substituting these

a 2.5cm
b 4.0cm
c 2.5cm
d 5.5cm

Q 100000 W/m 3

kwinding 1W/m K
ksteez 20.5W/m K

Table 4.2: Geometric and excitation values for thermal model

values into (4.31) and (4.45), yields

Wiower = 107.188 W/m (4.46)
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Wuper = 415.298 W/m. (4.47)

The average of the two energy bounds is

W, +W
Wavg = Wower + upper = 261.243 W/m. (4.48)

This compares favorably with a finite element solution, obtained using QuickField [63]

with 40,000 nodes. The energy computed from that analysis is

WFEA = 368.155 W/m. (4.49)

The average of the two bounds is 29% lower than the FEA solution.

It is interesting to note that the equations for the bounds (4.31) and (4.45) are

simple and compact. Finally, the upper bound calculation is within 13% of the finite

element solution and provides a better estimate of Wt than does the average of the

two bounds. As a result, the issue of bounds equidistance again becomes critical.

p-Convergence of the Algebraic Dual-Energy Method

The energy bounds of the previous section can be improved by increasing the

order of the polynomial approximations for TL and qu, and hence the number of free

coefficients. Maple V is employed again to analyze the p-convergence of the algebraic

dual-energy method applied to the VRM thermal problem. Figure 4-5 illustrates the

behavior of the bounds as the order of approximation increases. The conclusions

drawn are similar to those drawn for the minimum inductance calculation in Chapter

3. The upper bound converges a lot faster than the lower bound. As was concluded in

the magnetic analysis, the rates of convergence are such that, for low number of free

coefficients, the average of the bounds will not provide a better value than the upper

bound itself. Hence it is clear, that for a relatively small number of free coefficients,

success of averaging is not guaranteed unless bounds equidistance can be assured.

In order to study equidistance, the FEA solution of (4.49) is adopted as the
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0 5 10 15 20 25 30 35 40 45
Number of free coefficients, N

Figure 4-5: "Thermal energy" bounds convergence to FEA solution

exact stored energy. Plots of the log error-in-energy versus the log number-of-free-

coefficients) yield approximately straight lines, as shown in Figures 4-6 and 4-7. This

linear behavior is characteristic of p-extensions, and implies a relationship between

the error in energy E and the number of coefficients N, according to

E = K1 - NK2 (4.50)

where K 1 and K 2 are constants to be determined. Equation (4.50) can be written as

IWt - Wboundl = K -NK2 (4.51)

Equation (4.51) contains three unknowns, namely the constants K1 and K 2 and the

unknown energy 147t. Three different sets of (Wbound, N) can be substituted into this
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loglO(no. of free coefficients)

4-6: Error variation for upper "thermal energy" bound

equation, yielding three equations in the three unknowns

IWt - Wbound,il = KI -N K 2  i= 1..3. (4.52)

Hence, the exact value of the stored energy can be obtained. It is important to

note that this is a set of three nonlinear equations in three unknowns, and just like

the magnetics case in Chapter 3, a numerical method has to be employed for their

solution. For example, using the lower energy bound results with 4th, 5th and 6th

orders of approximation within Matlab, yields an estimate for Wt of 368.5439 W -K,

which is 0.1% above the FEA solution.

Equation (4.50) can also be employed to estimate the number of coefficients re-

quired in the lower bound calculation, to match a given error in the upper bound or

vice versa. Linear regression is employed to find the best line fit for the data points.
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Figure 4-7: Error variation for lower "thermal energy" bound

K1 and K 2 are found to be

(Ki, K 2) = (593.4717, -0.4569) (4.53)

for the lower bound, and

(Ki, K2) = (169.1999, -1.7988) (4.54)

for the upper bound. For example, an upper bound error of E = 105W/m, corre-

sponds to approximately 45 free coefficients in the lower bound calculation. To verify

this, Maple V can be employed to calculate a lower bound with 45 free coefficients,

yielding

Wiower = 263.918W/m. (4.55)
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This implies an error

E = WFEA - Wlower = 104.237W/m (4.56)

which is almost equal to the upper bound error of 105W/m. A number of geometries

of varying dimensions and excitations have been analyzed and the linear behavior of

Figures 4-6 and 4-7 has been found to hold.

4.4 Hot Spot Temperature Estimation

The proofs of the previous section focus on the existence and calculation of bounds for

the "thermal energy" of a system such as a variable reluctance motor at steady state.

From the above, it cannot be concluded that the field quantities, such as Iql or T are

bounded at a point. This is because temperature at a point is a locally determined

quantity, whereas energy is globally determined. From an engineering perspective,

one is not really interested in the "thermal energy" stored within the system. The hot

spot of the machine is a more useful quantity, essential in determining the thermal

limit of the device. This requires accurate knowledge of the temperature distribution

in the motor cross-section, which is not provided and is not within the philosophy of

the ADEM.

Fujita presented a theorem in the 1950s that can be employed to derive bounds

to the distribution at a point [43]. Synge, Maple and Greenberg's work in [44], [45],

[46], addresses the same problem: obtaining bounds on the solution of boundary

value problems and more specifically on the Dirichlet problem at any point within

the region of interest. However, the method presented is not applicable to cases where

the point lies on the boundary of the region. It is shown in the next section, that

for the VRM thermal model adopted, the hot spot occurs on the boundary of the

region under consideration. As a result, the existing methods cannot be applied in

this case. A new algorithm is presented here that employs the results of the algebraic

dual-energy method to estimate the value of the hot spot temperature.
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4.5 VRM Hot Spot Estimation Using the ADEM

A finite element analysis study is first presented to provide more insight on the tem-

perature distribution of the simplified VRM geometry (Figure 4-2) and determine the

location of the hot spot. Following this, the ADEM is employed to obtain estimates

on the hot spot temperature of the motor.

Finite Element Analysis of the VRM Thermal Model

A numerical example is considered here; its dimensions and excitation are provided

in Table 4.2. Quickfield [63] is employed to determine the temperature profile for

this problem. Figures 4-8, 4-9 and 4-10 provide the heat flux vector, temperature

and isotherm profiles, respectively. It is clear from Figure 4-9 that the hot spot of

I I A A I I I I A A

Figure 4-8: Heat flux vector plot for the simplified VRM geometry

the motor occurs at the outer corner of the winding, which is the heat source. This

observation is not surprising; the temperature rise in the steel area is expected to be

the least, since the thermal conductivity of steel is higher than that of the winding.
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Figure 4-9: Temperature map for the simplified VRM geometry, showing a variation
of 0-21.5K in steps of 2.15K. The darkest region is the hottest.

Hence, the highest temperature is expected to occur within the winding, right at the

corner of the adiabatic surfaces where the heat flux cannot escape. The temperature

at that corner point is found to be Thot spot = 21.467 K. The problem of obtaining

estimates for this value is addressed below.

Hot Spot Estimation

Let the coordinates of the hot spot be (x*, y*). For the VRM thermal problem con-

sidered here, finite element analysis of a number of geometries of different dimensions

and winding areas has shown that the location of the hot spot is always at the far

outer corner of the winding.

Several important observations and questions should be raised at this point. Dur-

ing the upper "energy" bound calculation the notion of temperature is not employed.

This is because the constraint

Vx M = 0 (4.57)
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Figure 4-10: Isotherms for the simplified VRM geometry

is not imposed, and as a result, T is not defined in obtaining Wupper. Consequently,

in considering ways to employ the algebraic dual-energy results for hot-spot bound

calculations, one comes across the more subtle issue of what temperature really is in

the upper bound case. In trying to overcome this problem, the basic philosophy of

the method can be coupled with the thermodynamics of the physical world. More

specifically, the dual-energy method considers the system as a whole. The "energy"

bounds derived are bounds for the Wt of a black box, as illustrated in Figure 4-11.

Moreover, for a linear physical system of thermal capacity C, a change in thermal

energy (heat) AE will give rise to a temperature change of AT, so that

AE = C AT (4.58)

Hence, one could consider the VRM thermal model as a black box with an effective

thermal capacity C; setting AT equal to the required hot spot temperature, AE

provides the thermal energy stored in the system.
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Figure 4-11: The VRM model as a black box

The observations above suggest that the ADEM "thermal energy" bounds may

be employed in lieu of AE in an attempt to obtain bounds for the hot spot. The

problem of defining temperature in the upper bound case is bypassed by considering

the system as a whole. However, care should be taken at this point. The system

energy in (4.58) is not the same as the "thermal energy" of the ADEM. The black

box model that would be more appropriate to account for this discrepancy is

1
Wt -1 2 2(4.59)

This is analogous to
1
2

in the magnetics case. In (4.60) the current i is known, so given upper and lower

energy bounds for Wi, upper and lower bounds for the inductance L can be obtained,

respectively. In (4.59), however, although upper and lower bounds are guaranteed to

exist for Wt, no quantitative information on C is known. Moreover, (4.59) lacks the

physical interpretation associated with (4.58) or (4.60), since Wt is only a numerical

quantity. As a result, bounds or estimates for the hot spot temperature T 0ot spot

cannot be easily obtained nor guaranteed. Nevertheless, the ideas and the model of

(4.59) are further pursued here.

Figure 4-12 is a sample of the different geometries considered in the pursuit of hot
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spot bounds and provides their corresponding hot-spot temperatures and "thermal

energies" calculated using finite-element analysis. Tables 4.3, 4.4 and 4.5 summarize

GEOMETRY A GEOMETRY B
ud

a b

a = 2.5 cm

b = 4.0 cm

c = 2.5 cm

d = 5.5 cm

Wt = 368.155 Watts K

Thot spot = 21.467 K

GEOMETRY C
d

a b

a= 1.5 cm

b = 4.0 cm
c = 4.17 cm
d = 5.5 cm

Wt = 267.69 Watts K

hot spot = 14.5 K
hot spot

a b

a = 3.5 cm

b = 4.0 cm
c = 1.78 cm
d = 5.5 cm

Wt = 326.48 Watts K

hot spot = 17.4 K
hot spot

Figure 4-12: Sample of various VRM geometries considered in hot spot calculations

the results obtained for the three different geometries. "TL at the hot spot" in these

tables is calculated by evaluating the temperature approximations TL at the hot-spot

location (x*, y*) . From the above results, it is apparent that TL(x*, y*) is a lower

bound to the real hot spot T(x*, y*), although convergence and boundedness is not

guaranteed.

Based on the above observations, a simple algorithm to yield estimates to the hot

spot is now given. First, following (4.59), set

1
Jltower 2 ( Thot spot,L (4.61)
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Order Wower Wupper TL at hot spot Tu
1 107.188 415.298 4.439 8.738
2 121.055 372.868 5.788 10.158
3 149.738 368.894 10.227 16.052
4 174.013 368.524 14.833 21.586
5 195.503 - 15.427 -
6 222.161 - 15.252 -
7 236.623 - 15.674 -
8 253.464 - 17.133 -
9 263.918 - 17.992

Table 4.3: Geometry A: Hot spot and "thermal energy" predictions using the ADEM

Order Wower Wpper TL at hot spot Tu
1 69.275 298.930 3.568 7.412
2 96.494 274.288 4.846 8.170
3 121.900 268.743 7.751 11.509
4 137.059 268.100 10.299 14.404
5 143.120 - 9.862 -
6 159.538 - 9.645 -
7 176.359 - 10.950 -
8 181.194 - 11.435 -
9 193.397 - 11.846

Table 4.4: Geometry B: Hot spot and "thermal energy" predictions using the ADEM

Order Wtower Wupper TL at hot spot Tu
1 125.959 357.924 4.812 8.111
2 134.224 332.493 5.926 9.327
3 148.766 327.859 8.699 12.914
4 163.606 327.158 11.570 16.360
5 177.409 - 11.437 -
6 197.839 - 11.432 -

7 214.532 - 12.576 -

8 223.688 - 13.353 -
9 235.036 - 13.802 -

Table 4.5: Geometry C: Hot spot and "thermal energy" predictions using the ADEM
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and
1

Wupper = - C2 o spot,U (4.62)

where Thot spot,L is the value of the temperature approximation TL at the hot-spot

location (x*, y*), and Thot spot,U is the hot spot temperature corresponding to the

upper bound of Wt. Dividing these two equations yields

W =ower _ ot spot,L (4.63)
Wupper Th~ot spot,U

or

Thot spot,U = Thot spot,L ppe (4.64)

Hence, the estimated Thot spot,U essentially adopts the shape of Thot spot,L, scaling it

up by /w 0  and then evaluating it at the location of the hot spot.

It is important to note in (4.64) that Thot spot,L, Wupper and Wiower are all deter-

mined through the application of the algebraic dual-energy method, so that (4.64)

is a way of obtaining another estimate on the hot spot temperature. For the three

different geometries considered above, Thot spot,U for different orders of approximation

is given in Tables 4.3, 4.4 and 4.5. As the order of approximation increases, improved

hot spot temperature estimates are obtained.

The algorithm obtained above is not guaranteed to provide hot spot temperature

estimates of satisfactory accuracy. However, it has been successfully applied in a large

number of geometries and has yielded acceptable results. It should be noted that this

approach is only one avenue that could be followed in bridging the ADEM philosophy

of calculating global quantities to the estimation of local quantities such as tempera-

ture. The results and conclusions drawn above apply only to the VRM thermal model

considered and are strongly dependent upon the type of approximation adopted for

TL. Further research is required to remove the assumption that the hot spot location

is known, and to guarantee that the value of the adopted TL approximation at the

hot spot location is always a lower bound to the real hot spot temperature.
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4.6 Conclusions

In this Chapter, the algebraic dual-energy method is applied to calculate the thermal

energy bounds for a simplified VRM thermal model. To do so, the analogy with

electrostatic systems is employed. Analytic expressions for these bounds are easily

obtained using a symbolic manipulation package, such as Maple V. The upper bound

is found to converge faster to the exact solution, but its calculation is hindered by

the larger number of boundary conditions that must be satisfied. The lower bound

on the other hand can be obtained with a trivial, one-element approximation to the

temperature throughout the geometry. The relationship between the logarithms of

the error in energy and number of free coefficients is found to be algebraic, just like

for the magnetics case, and can provide a criterion for bounds equidistance. From an

engineering perspective, one is not really interested in the "thermal energy" stored

within the system. As a result, this Chapter explores the possibility of applying the

ADEM result towards the estimation of the hot spot temperature of the motor. A

method is proposed that assumes prior knowledge of the hot spot location to calcu-

late meaningful estimates on its temperature. Although the method is not entirely

guaranteed, it is shown to work successfully in all cases studied.
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Chapter 5

Summary, Conclusions and

Suggestions for Future Work

This chapter gives a brief summary of the results and conclusions drawn from the

application of the algebraic dual-energy method to the magnetic and thermal analysis

of variable-reluctance motors. Suggestions for future work and research directions are

provided.

5.1 Thesis Summary

This thesis explores the application of the algebraic dual-energy method (ADEM)

to the magnetic and thermal analysis of the variable-reluctance motor (VRM). The

motivation in considering the ADEM comes from its potential for providing both com-

putational accuracy and speed; these are essential in design-optimization programs

employed in the design and performance prediction of electric motor drives. The goal

of the thesis is not the development of sophisticated design models; but given an

acceptable (magnetic or thermal) model, emphasis is placed on its solution and more

specifically, on the applicability and performance of the ADEM to this task.

The algebraic dual-energy method was first employed in Chapter 2 in simple

problems with known analytic solutions, in order to gain a better understanding

of its application, convergence behavior, and other issues associated with it. The
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ADEM was then employed in the calculation of the stored magnetic energy of a

simplified variable-reluctance motor geometry at the unaligned position. This was

the focus of Chapter 3. By simply averaging upper and lower energy bounds, energy,

and hence inductance, values were accurately computed using a small number of

degrees of freedom. Analytic expressions for the bounds were obtained using Maple

V, a symbolic manipulation package. The issue of equidistance of the bounds from

the true solution was also addressed; this required further analysis of the rates of

convergence and behavior of the bounds as the order of polynomial approximation

increased. In Chapter 4, the ADEM was extended to the thermal analysis of the

VRM cross-section. By employing the analogy that exists between electrostatics and

steady-state heat conduction, bounds on the "thermal energy" were shown to exist

and derived for several numerical examples. However, bounding this energy does not

lead to bounds on the field quantities at each point in the geometry. Nonetheless,

a simple algorithm was developed that uses the upper and lower "thermal energy"

bounds of the ADEM, to calculate estimates for the hot spot. While not theoretically

guaranteed to work, it did so in all cases studied.

5.2 Thesis Conclusions

The conclusions drawn from the application of the algebraic dual-energy method to

the VRM geometry are presented in this section.

The ADEM provides an effective computational tool in the three-dimensional

analysis of variable-reluctance motors. Its speed and accuracy are well suited for

design-optimization programs, where initial motor design is required and it is desired

to examine a large number of candidate designs. Once an optimal set of candidate

designs has been obtained, three-dimensional finite element analysis can be employed

as the next step in obtaining more accurate and detailed performance predictions.

The application of the algebraic dual-energy method to the VRM geometry was

demonstrated in the Cartesian coordinate system and the approach was shown to pro-

vide a fast way of calculating appropriate magnetic and thermal system functionals.
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However, two computational difficulties are associated with the use of polar coordi-

nates: the equations of the stator and rotor pole sides cannot be simply described

in polar form, and the polar angle 0 of a point P(x, y) can only be found by using

inverse trigonometric functions, which are difficult to integrate analytically. The for-

mer problem is the most serious, since it gives rise to symbolic integration difficulties

in the r - 0 coordinate system.

In the calculation of the upper bound, the number of elements employed must

be at least equal to the number of different materials and excitations present in the

geometry; for the VRM minimum inductance problem, the presence of the winding

excitation imposes the need for at least two elements. Two elements are also required

in the "hot spot" problem since two materials of different thermal conductivities and

sources are present.

Although the upper energy bounds converge faster to the exact solution, their

calculation is hindered by the larger number of boundary conditions that must be

satisfied. The lower bounds on the other hand can be obtained with simple, one-

element approximations to the magnetic vector potential for the inductance problem,

and temperature distribution for the thermal problem. The faster convergence of

the upper bound can be attributed to the fact that a larger number of elements is

employed in order to satisfy the larger number of boundary conditions. Moreover,

the energy in this case is dependent on the correct source distribution. This is not

the case for the lower bound calculations, which exhibit slower convergence rates.

Equidistance of bounds is critical to the success of the method but it is not simply

guaranteed. For the simplified variable-reluctance motor geometry considered here,

a posteriori error analysis employing information from the ADEM solution was used

to characterize the p-convergence of the method. The rate of convergence was shown

to be algebraic, implying a linear relationship between the logarithms of the error

in energy and the number of free coefficients. It it this linearity that provides a

criterion for bounds equidistance and yields very accurate results with very coarse

approximations.

Symbolic manipulation software such as Maple V simplifies the analytic bounds
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calculations considerably. The resulting bounds are functions of the problem dimen-

sions, excitation and material properties. These expressions can be subsequently

translated into C code and incorporated within a design-optimization program; this

provides a fast and accurate way of extracting the minimum inductance and hot

spot estimates for a VRM, avoiding dense finite element discretizations. It should be

noted that the derivation of the bounds within Maple becomes more computationally

involved and slow as the order of approximation increases. However, this is not a

serious disadvantage since these bounds expressions need be derived only once. Then

for each different design considered, the new geometry and excitation values must

be substituted; the minimum inductance and hot spot values can be obtained within

fractions of a second.

The field approximations considered in this thesis are polynomials in x and y.

One may argue that orthogonal polynomials are a better choice, since they exhibit

improved numerical properties. However, such a choice within the scope of the ADEM

is strongly affected by the type and number of boundary conditions present; some

types of orthogonal polynomials may not allow all pertinent boundary conditions to

be satisfied. Moreover, orthogonal polynomials become advantageous when a large

number of degrees of freedom is employed. The ADEM however can provide accurate

results with a very small number of free coefficients.

Obtaining estimates on the hot spot temperature of the VRM is not a trivial task.

The algorithm developed in this thesis is not guaranteed to work for any boundary

value problem and assumes prior knowledge of the hot spot location. However, for

the conservative model considered in the thesis, the type of approximations adopted,

and the particular heat source distribution, the approach can provide meaningful

estimates on the hot spot and was shown to work in all cases studied.

Just like with any other numerical method, the feasibility and applicability of the

ADEM in VRM analysis strongly depends on two factors: the models adopted, and

the computing resources available for model evaluation. In this thesis, simplified mag-

netic and thermal VRM models were employed. The ADEM results were evaluated

against finite element analysis calculations to assess their accuracy in the particular
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model solution. Comparisons with actual motor measurements will be more strongly

dependent on the model, rather than the method employed for analyzing the model.

5.3 Suggestions for Future Work

A number of interesting possibilities and research challenges exist when considering

further application of the algebraic dual-energy method to electric motor analysis in

general, and variable-reluctance motor analysis in particular. These challenges are

two-fold: challenges involved with successive improvement of the VRM minimum in-

ductance and thermal models, and the application of the ADEM to these models; and

challenges involved with applying the method to other aspects of VRM and electric

motor design. Firstly, an algorithm combining symbolic integration in both Cartesian

and polar coordinates would raise the integration difficulties that arise at the stator

and rotor pole sides. This would allow improved geometric modeling and accuracy

of results. Secondly, the thermal model could be relaxed and extended to include

the airgap and the effect of air flow at different motor speeds. In addition, further

research is required to remove the assumption that the hot spot location is known,

and to guarantee that the value of the adopted temperature approximation at the

hot spot location is always a lower bound to the real hot spot temperature. More-

over, as the capabilities of symbolic manipulation software increases, the algebraic

dual-energy method can be extensively used in the calculation of the magnetization

characteristics of the VRM. The model required here should take into account the

presence of rotor and stator steel, as well as the linearity of the B - H character-

istic of the motor laminations. The application of symbolic manipulation offers an

additional advantage in this case: the rotor can be allowed to "move" relative to the

stator by a simple change of the geometry values within the bounds expressions. By

further changing the excitation values in these expressions the A - i - 0 plane can

be spanned. In addition, the ADEM could be employed in the estimation of the fre-

quencies of vibration of the stator, since the vibration problem can be expressed as a

strain energy/kinetic energy problem. Knowledge of these frequencies of vibration is
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important in VRM design and analysis, especially in applications with strict acoustic

noise emission standards [53]. Assuming a simple vibration model (such as one con-

sisting of a circular ring [54], with the machine salient poles acting as concentrated

masses), the algebraic dual-energy method can be applied to calculate bounds on

the frequencies of vibration. Finally, one should not overlook the fact that the dual-

energy method can be easily extended to a large number of engineering disciplines

and as a result, can provide a fast, accurate and flexible alternative for the solution

of boundary value problems.
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