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ABSTRACT

A DSP-based mixed signal tester with feedback capability provides great
flexibility and versatility in real-time mixed signal device testing. In this project, a
DSP-based feedback loop system is designed and implemented for the DSP
module of Schlumberger's new mixed signal tester. This DSP-based feedback
loop system provides a dynamic close-loop testing environment for waveform
generation and data analysis. Also, an ADC servo-loop test for ADC output code
transition edge search is developed to demonstrate the feasibility of this feedback
loop system design.

Thesis Supervisor: Hae-Seung (Harry) Lee

Title: Professor of Electrical Engineering



Acknowledgment

Thanks to the Slingshot group at Schlumberger ATE Division for providing me such an

exciting and challenging project: Daniel Rosenthal, for carefully framing the project

before my arrival and guiding me through the project; Lakshmikantha Prabhu, for

always helping me out on every design detail, and more importantly, being a such kind

and patient friend; and the other Slingshot group members, for being friendly and being

cool.

I am very grateful to my host families who have offered me their love and

support: Joy and Nasser Madani in Wales, U.K., and Anne and Bob Berg in Boston, U.S.

Thanks for providing me a lovely home during the holidays when I am far away from

my parents, taking me out for dinners when I am stressed out of my studies,.... I could

not have done it without them.

Also thanks to my college friends, Wenjie, Liang-wu, Guoling, Dawn, Anni, etc.,

for being there and being great.

And finally, many thanks to my caring parents and brother. Although they are

living on the other side of the planet, their confidence and support have helped me all

along the way.



Contents

1 Introduction 9

2 Background

2.1 Mixed Signal Testing .................

2.1.1 Overview ........................

2.1.2 DSP-Based Mixed Signal Testing.....

2.2 A/D Converter Testing .................

2.2.1 Overview.......................

2.2.2 Linearity Test of an ADC............

2.3 Schlumberger's New Mixed Signal Tester....

2.3.1 Mixed Signal Tester's Analog System.

3 Existing DSP Environment

3.1 Available Hardware ............................

3.1.1 C PU ....................................

3.1.2 DSP Module: Ixthos IXD7232 board ........

3.2 Existing Software ...................................

3.2.1 Overview ...............................

3.2.2 DSP Data Block (DDB) Structure ..........

3.2.3 A PI ....................................

3.2.4 DSP Executive ...........................

3.3 Existing Functionality ............................

11

11

.11

.12

.......................... 13

.......................... 13

.......................... 14

.......................... 16

.......................... 16

................... 18

................... 19

................... 19

................... 20

................... 20

................... 2 1

................... 23

................... 24

................... 25

Data Source

Overview.....................

DSP Data Source Function Design

4.2.1 Requirements ...........

27

.27

.28

............ ....................... 28

4 DSP

4.1

4.2

. . . . . . . . . . . . . . . . . . . .

....................



4.2.2 A Data Source Algorithm .............

4.3 DSP Data Source Testing ................

5 DSP-based Feedback Loop System

5.1 O verview ..................................

5.2 Feedback System Hardware Setup ............

5.3 A Simple Example Using the Feedback System.

5.4 Feedback Loop System Design ...............

5.4.1 Requirements .......................

5.4.2 DSP Feedback Loop Architecture ......

5.4.3 Implementation .................

5.5 Feedback Loop Testing and Analysis..........

6 Feedback Application: An ADC Servo-loop Test

6.1 Hardware Setup .............................

6.2 ADC Servo-loop Test Design .................

6.3 Result Analysis ............................

Conclusion

DSP API Feedback Functions

ADC Servo-loov Test Alorithms

........................ 29

........................ 3 1

33

.33

.34

.34

.36

.36

.37

.43

.47

50

.50

.51

..55

59

60

61a

.......................

.......................



List of Figures

A typical mixed signal device test .......................

Integral non-linearity of a 3-bit ADC ....................

An analog channel of the new mixed signal tester .........

DSP test rig and its accessaries ..........................

Software interfaces between the CPU and the DSP module .

Information transfer from the CPU to a DSP through a DDB

A simple test and its corresponding DDB ................

The structure of DSP Executive .........................

A data generation and transmission process ..............

The structure of data source algorithm ..................

Hardware setup for data source function testing...........

............. 12

............. 15

............. 16

............. 19

............. 21

............. 22

............. 23

............. 25

............. 27

............. 31

............. 32

2-1

2-2

2-3

3-1

3-2

3-3

3-4

3-5

4-1

4-2

4-3

5-1

5-2

.. 34

... 36

5-3 The new DDB structure .

5-4

5-5

5-6

5-7

5-8

6-1

6-2

6-3

... ... ... .. .... ... ... .. ... .. ... .. ... ... .. ..4 1

The structure of DSP Scheduler .............

Information feedback process ...............

A real time error correction module..........

Error correction test block diagrams .........

Oscilloscope display of error tracking signals .

An ADC servo-loop test process .............

An ADC servo-loop test flow chart ..........

Convergence of the ADC servo-loop test ......

An analog channel provides a close loop path for feedback applications

A filter cut-off frequency test example using the feedback system ......

.44

.46

.47

.48

.49

.51

.52

.53



6-4 DSP algorithms for the ADC servo-loop test ........................... 54

6-5 History file plots of sourced data and captured data .................... 56

6-6 History file plots of sourced data and captured data in a ADC servo-loop

test for all code transition edges search ............................... 58



List of Tables

5-1 DSP Executive events during a feedback test ........................... 38

6-1 Number of cycles required for an ADC code transition edge search ....... 55



Chapter 1

Introduction

The Automatic Testing Equipment (ATE) industry has been playing an important role in

device testing ever since the dawn of semiconductors in the 1960s. It is essential to fully

quantify the performance and test the functionality of a semiconductor device before

utilization. The traditional ATE industry concentrated mostly on developing equipment

for testing and measuring either analog or digital devices. In recent years, a new class of

semiconductor devices with significant contents of both analog and digital circuitries,

namely, mixed signal devices, have increasingly become popular. This kind of device

usually has one or more ADCs and/or DACs embedded in it to operate in both the

analog and digital domains. The emergence and continuous growth of mixed signal

devices stimulated the development of a new class of testing equipment which

integrates both analog and digital test functionality: mixed signal ATE systems.

Schlumberger ATE division designs and manufactures automatic test equipment,

diagnostic systems, and back-end automation systems for the testing of semiconductor

devices[1]. The primary products of Schlumberger ATE division, ITS 9000 digital tester

family, are geared to test high accuracy and high performance VLSI digital devices such

as ASIC, RISC, or microprocessors, covering performance ranges from 10 MHz up to 200

MHz. For example, the ITS9000 FX and GX tester series are used to test the Intel Pentium

microprocessors which have a running speed of up to 120 MHz. Recently, the

development of a new mixed signal tester has been started at Schlumberger. This new

mixed signal tester is based on the existing ITS 9000 family digital tester and meets the

demands of testing not only high speed digital semiconductor devices such as

microprocessors, but also complex mixed signal devices, such as Integrated Services



Digital Networks (ISDN) chips and modems.

The objective of this thesis project is to design and implement a feedback loop

system for Schlumberger's mixed signal tester. This feedback loop system provides a

new mixed signal testing scheme which enhances the flexibility and versatility of

Schlumberger's mixed signal tester. After the feedback loop system is implemented, an

ADC servo-loop test is developed to demonstrate the feasibility of the feedback loop

system.

This thesis is comprised of seven chapters. In Chapter 2, an overview of mixed

signal and ADC testing, and the description of Schlumberger's new mixed signal tester

and its unique functionality are provided. An overview of the DSP module and existing

hardware and software environment is given in Chapter 3. In Chapters 4 and 5, the

feedback loop system of Schlumberger's mixed signal tester is described. In Chapter 6,

an ADC servo-loop test using the feedback loop system is presented and its performance

is analyzed. This thesis closes with its conclusion in Chapter 7.



Chapter 2

Background

2.1 Mixed Signal Testing

2.1.1 Overview

There are at least three ways to define a mixed signal device. One definition classifies a

device as a mixed signal device if it has a certain ratio of analog to digital cells. Another

definition classifies mixed signal devices as those with both digital and analog signals at

their input, output or control terminals. The third definition classifies mixed signal

devices as interfaces between the digital and analog domains[2]. These definitions have

a common characteristic --- mixed signal devices handle both analog and digital signals.

The history of mixed signal testing is relatively short. Based on the conventional

pure analog and pure digital testing equipments in ATE industry, various approaches

have been proposed to tackle the task of mixed signal testing. The most intuitive

approach is to test the analog functions of a mixed signal device with an analog tester

and to test the digital functions with a digital tester. This method does not require any

modifications to the existing test equipment, but it does not cover the testing of analog to

digital or digital to analog conversions. Another approach is to modify the existing tester

to accommodate the mixed signal testing capability, such as augmenting some digital

functionality to an analog tester (big A - little D), or similarly, augmenting some analog

functionality to a digital tester (big D - little A) [2]. This approach emphasizes a portion

of the mixed signal functionality testing while diminishing the others.

The fast growing market of complicated telecommunication mixed signal devices



has strived the ATE industry to provide test systems that tightly integrate the analog and

digital functions together. For mixed signal devices with high integration levels,

adequate testing is impossible without concurrent processing for analog waveforms and

digital patterns in real-time[3].

The rapid development of digital signal processing technology has changed the

ATE industry profoundly. Since a digital signal processor (DSP) handles complex data

manipulations more flexibly and accurately than its analog counterparts, the device

testing procedures are simplified and the testing accuracy is improved.

2.1.2 DSP-Based Mixed Signal Testing

Mixed signal device testing involves, in general, the generation of various signals to be

sent to a device under test (DUT) and the measurement of the DUT response. Figure 2-1

schematically depicts a typical flow of a mixed signal device test.

Figure 2-1: A typical mixed signal device test.

Several key components are involved in a test system during a mixed signal

device test: a central processor unit for overall testing control, data sequencers for input/

output storage and piping, formatters for digital input/output data format conversions,



a waveform synthesizer and a waveform digitizer for analog and digital signal

conversions, filters for analog noise reduction, and a DSP engine for data

manipulation[4]. For example, suppose the DUT has an analog input and a digital

output. A test can be performed by sending an analog signal to the DUT and measuring

its digital output response. A set of digital data is first generated on the central processor

unit of the tester and downloaded into the data sequencer (on the left of Figure 2-1). The

digital waveform is then converted into an analog signal by the waveform synthesizer

and the analog noise is filtered out before the signal is sent to the analog input terminal

of the DUT. The DUT's digital output is converted by a formatter into a digital data

format acceptable by the tester and then stored in a memory unit. The captured output is

then sent to the appropriate DSP for data analysis. The test flow is reversed if the DUT

has a digital input and an analog output.

The DSP plays an important role in mixed signal testing. It replaces most of the

conventional analog instruments and acts as the core of a mixed signal tester. The DSP is

responsible for processing data gathered from a DUT before it is uploaded to the tester's

central processor unit[4]. For example, a signal from the analog output of a DUT is

digitized by a waveform digitizer and sent to the DSP, which performs an algorithm

such as an FFT, and sends the results to the central processor unit for further evaluation.

Conversely, the DSP is able to generate any pre-specified waveforms in real-time to be

sent to a DUT. This results in a faster test time because the DSP alleviates some of the

responsibilities of the central processor unit. DSP also improves the repeatability and the

accuracy of a test because it eliminates analog errors that would occur if analog

instruments were in place. And more importantly, the ability to create and adjust testing

programs on DSP vastly increases the flexibility and versatility of a tester.

2.2 A/D Converter Testing

2.2.1 Overview

ADCs and DACs are categorized as mixed signal devices because they handle both

digital and analog signals. They are also often embedded in most of the complex mixed

signal devices such as modems and ISDN. Hence, it is essential to fully test the



performances of an ADC and a DAC.

An ADC and a DAC have their functionality in a reversed manner; however, due

to their highly non-linear functionality, it is not feasible to just reverse the testing process

for a DAC to produce a testing process for an ADC. DAC testing is relatively

straightforward: A digital stimulus is sent to a DAC and its analog output is digitized

and measured. A change in the digital input to a DAC will cause a corresponding

change in its analog output. However, for ADC testing, a range of analog input is

mapped to the same digital output, thus a change in ADC analog input may not cause

any change in its digital output. Therefore it is necessary to develop testing methods

specifically for an ADC.

In recent years various techniques have been developed for testing static and

dynamic performance of an ADC at different accuracy levels and testing speeds. The

servo-loop method and the histogram method can be used to test static ADC linearity at

very high accuracy and resolution level[5][6]. The Walsh transformation presents a way

to compute ADC error parameters[7][8]. Fourier analysis in the frequency domain is

another approach to test an ADC[9]. A picosecond electron-beam tester has been

developed to measure the dynamic performance of a high speed ADC[10]. Statistical

analysis has also been applied to characterize the behavior of an ADC[11]. These testing

methods approach the ADC testing problem from either theoretical or statistical point of

view and concentrate on either static or dynamic aspect of an ADC's performance. Some

of them are theoretically complex, such as the Walsh function application. Some are

highly dependent on a tester's hardware functionality, such as the servo-loop method.

2.2.2 Linearity Test of an ADC

Integral-non-linearity (INL) is an important parameter for an ADC. It is a measurement

derived from the ideal transfer function of an ADC and is typically expressed in terms of

least-significant-bits (LSB)[12]. Figure 2-2 shows the concept of INL for a 3-bit ADC. A

range of analog input is mapped to 8 digital output codes under the 3-bit ADC transfer

function. The output of an ADC jumps from one code to the next when the analog input

crosses a code transition edge.
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Figure 2-2: Integral non-linearity of a 3-bit ADC.
The solid line represents the ideal transfer function. The dash

line represents the actual transfer function.

An ADC linearity test refers to the measurement of one or all code transition

edges of an ADC. All the ADC linearity test methods can be classified into two

categories: the servo-loop method and the histogram method[12]. The servo-loop

method is used to find the input voltage at which a pre-specified output code transition

occurs[5]. A servo-loop system is a closed loop system in which the digital output of an

ADC is continuously measured and fed back to modify the input until a pre-specified

code transition is located. This method requires closed loop circuits, and therefore

additional hardware is needed for an open-loop test system to perform a servo-loop test.

The special hardware involved in a servo-loop test is usually in one of the following

three analog instrumentation architectures: analog dither with a digital volt meter

(DVM), analog dither with a reference DAC, and DAC dither with a reference DAC[13].

Each of these variations addresses the same testing problem but has widely different

execution time and accuracy due to the different analog instrumentations. The

advantage of the servo-loop method is the ability of testing both pre-specified code

transition edges and all code transition edges. Its disadvantage is the requirement of

additional hardware if an open-loop system is used.

The fundamental difference between the servo-loop method and the histogram

method is that the histogram method utilizes an open-loop system. A signal is sent to

the input terminal of an ADC while the digital output is being monitored. An algorithm

is applied to the set of digital data which counts the total number of occurrences for each



code. The input signal is not modified in any way based on the digital output. The

advantage of the histogram method is that it can be performed by ordinary test

resources and does not require dedicated hardware.

2.3 Schlumberger's New Mixed Signal Tester
Schlumberger's mixed signal test system is designed based on the existing digital test

system ITS9000 FX model. An analog system is designed and integrated into the existing

ITS9000 FX tester to provide mixed signal functionality, while all digital functionality of

the ITS9000 FX is preserved. This mixed signal tester provides testing capability for

mixed signal devices at high speed range of 100 MHz for up to 448 pins[14].

2.3.1 Mixed Signal Tester's Analog System

The analog system of Schlumberger's mixed signal tester consists of four analog

channels for parallel mixed signal testing. An analog channel is a complete test path for

signal generation and response measurement. Each analog channel is comprised of three

subsystems, namely, a digital subsystem, a DSP module, and an analog Pin Electronic

(PE) subsystem[14]. Figure 2-3 illustrates the structure of an analog channel.

Figure 2-3: An analog channel of the new mixed signal tester.



The digital subsystem consists of memory units for source signal generation and

captured data storage, an analog source sequencer module (ASSM) for high speed

source signal piping, an analog measure sequencer (AMS) for captured signal piping,

and analog clocks. This digital subsystem provides synchronization, data storage, and

timing for an analog channel[14]. It also provides a bidirectional interface between the

DUT and the DSP module.

The DSP module is the core of the mixed signal testing system. It is responsible

for waveform generation and response analysis. The DSP module has a special dual-DSP

architecture: one DSP is responsible for waveform generation and the other DSP is

responsible for data analysis. This architecture provides a possibility of adding a

feedback loop feature into the DSP module, which is discussed in greater detail in the

later chapters.

The analog PE subsystem provides an interface between the DUT and the rest of

the analog channel[14]. It contains a waveform synthesizer for digital to analog data

conversions, a waveform digitizer for analog to digital data conversions, and filters for

analog noise reduction. The waveform synthesizer and digitizer are essentially an ADC

and a DAC respectively. If an analog output response of a DUT is to be measured, the

analog output is first digitized by the waveform digitizer and is later sent to the DSP for

analysis. A reversed procedure is performed on a waveform synthesizer if an analog

input signal is required for a DUT.



Chapter 3

Existing DSP Environment

This thesis project concentrates on the feature enhancement of the DSP module of

Schlumberger's new mixed signal tester. Prior to this project, the DSP module hardware

setup has been completed along with some supporting software. A DSP test rig has been

set up for the development and characterization of the DSP module. The DSP test rig is a

complete system that isolates the DSP module from the tester, yet provides a suitable

environment for DSP software development. An embedded DSP operating system has

also been developed for the DSP module. This thesis project utilizes the DSP test rig as

the base hardware. The goal is to modify the current DSP operating system architecture

to support feedback based testing applications.

3.1 Available Hardware
The DSP test rig is comprised of a CPU board, a dual-DSP board, and a cage with 32-bit

VERSAbus-E (VMEbus) for backplane connections. The DSP module of the analog

system resides entirely on the DSP board. The DSP supporting software is to be

developed and tested on the DSP test rig before being applied to the real tester. A

diagram of the DSP test rig and its accessaries is sketched in Figure 3-1.



Figure 3-1: DSP test rig and its accessaries.

3.1.1 CPU

A CPU is a central processor unit that controls most of the activities in a test system. A

SPARC CPU-1E/4 board by FORCE is selected to be the CPU for the mixed signal

tester[14]. In a DSP test rig, a CPU is connected to the DSP module through a 32 bit VME

bus to control its various activities. This hardware setting enables the CPU to access the

DSP global memory for data communication. The CPU in the DSP test rig is connected

to the local ethernet system so that a user can remotely log in to it from a workstation to

control the DSP module. A PC is also attached to the CPU to monitor its status (Figure 3-

1).

3.1.2 DSP Module: Ixthos IXD7232 board

The DSP module is built on an Ixthos IXD7232 board designed by Ixthos Inc[15].

IXD7232 is a real-time DSP VME bus board that provides the interfaces, architectural

support, and board-level features required by real-time signal processing systems[16]. It



utilizes two 33 MHz ADSP21020 DSPs developed by Analog Devices. A localized

memory bank and an I/O port are attached to each DSP. One DSP (the upper one in

Figure 3-1), called DSP_MEASURE, is used for data measurement and analysis. It is

attached to an Ixthos 2S32 I/O port which has an internal memory bank. This Ixthos

2S32 I/O port captures a DUT's response and stores it locally. The other DSP (the lower

one in Figure 3-1), called DSP_SOURCE, is used for waveform generation. It is attached

to an Ixthos 32G I/O port which has only a register. This 32G I/O port passes data

generated by DSP_SOURCE to the outside of the DSP module.

In an analog channel of the mixed signal tester, the DSP board interfaces with the

analog sequencer boards (AMS and ASSM) and the CPU [15](Figure 3-1). The DSPs

receive commands from the CPU through the VME bus and execute them.

DSP_SOURCE interfaces with the ASSM through the 32G I/O port. Data generated on

DSP_SOURCE is piped into the ASSM and is later sent to the DUT's input terminal.

DSP_MEASURE interfaces with the AMS through the 2S32 I/O port. The DUT's output

propagates through the AMS and is analyzed on DSP_MEASURE.

The two DSPs on the DSP module share a common global memory. This global

memory is also accessible by the CPU via the VME bus. It serves as an interface among

the two DSPs and the CPU so that a user is able to control the DSP activities from the

CPU. This shared DSP global memory structure provides the required hardware

environment for the feedback loop development.

3.2 Existing Software

3.2.1 Overview

The DSP module acts as a real-time data processor in the mixed signal tester. It generates

waveforms to be sent to a DUT and measures the response from the DUT. It is essential

to provide an interface that links the basic functions of a DSP with the user functions so

that a user is able to program and control the DSP activities flexibly.

Schlumberger's new mixed signal tester utilizes ITS9000 software, Advanced

Symbolic ATE Programming (ASAP) methodology, as the high level software tools[17].



Two levels of interface functions are created to interact ASAP functions with the basic

DSP functions (Figure 3-2). Application Programming Interface (API) is a set of

functions executed on the CPU. API translates user programs into a data structure that

can be understood by a DSP[18]. DSP Executive is a specialized DSP operating system

that schedules the tasks to be performed on a DSP. The two DSPs on the DSP board run

as independent processors so each of the two DSPs carries its own DSP Executive.

Level

high ASAP: User Level Interface

API
CPU CPU

DSPSOURCE

DSP Executive

Irow·r - Ivel -- SP finc-tinns-

DSP_MEASURE

DSP Executive

lower level DSP functions

Figure 3-2: Software interfaces between the CPU and the DSP
module.

3.2.2 DSP Data Block (DDB) Structure

I:n order to control DSP activities from the CPU, it is essential that the information

passed from the CPU is grouped into a structure that the DSPs can recognize. DSP Data

Block (DDB) structure is designed to suit this purpose.

A DDB contains all necessary information describing a process to be performed

on a DSP[18]. It is created on the CPU and passed onto the DSP. It contains information

on algorithms to be executed on the DSP, buffers to be downloaded into the DSP, and the

buffer to be captured from the DUT, etc. Before a mixed signal test is started, DSPs are

initialized to an idle state waiting for inputs from the CPU. A test process is

downloaded, in the format of a DDB, into the DSP global memory from the CPU

through the VME bus and is later transferred into the DSP local memory. In the shared

low
I



global memory, two memory blocks are allocated for the two DDBs, one for each DSP.

The DSP Executive running on each DSP receives the DDB and decodes it into basic DSP

functions. Figure 3-3 describes a process transfer from the CPU to a DSP using the DDB

structure.

Figure 3-3: Information transfer from the CPU to a DSP through
a DDB.

The current DDB structure contains six major sections, namely, Index section,

Block Name section, Data Capture section, Buffer Allocation section, Algorithm section,

and Free section. A DDB always starts with its size followed by the Index section which

contains an index of the other five sections. The Block Name section provides the name

associated with the current data block. The Data Capture section provides information

on the size of the data block to be captured on the DSP from the AMS. The Buffer

Allocation section provides a list of buffers that are currently allocated on the DSP and

their specifications. The Algorithm section provides a list of algorithms to be executed

on the DSP and their corresponding arguments. The Free section contains a list of buffers

to be freed at the end of a test. These sections are created with a zero based offset; in

other words, the pointer locations are based on the starting address of a DDB. Figure 3-4

gives an example of a simple test and its corresponding DDB. It is noted that each piece

of the test information has been inserted into a designated section of a DDB.
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The corresponding DDB:

DDB size

DDB section
index

name section

capture sectioi

buffer section

algorithm
section

free section

2
3

5
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32
33
3A1

LJU size: JO
Name bection: b
Uapture bection: /
Buffer Section: 1 2
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Capture Buffer: cap buf
Data Type: volatile
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argumentl: cap_buf
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Num. oT butters: 1
2uffer 1 id: 100001

Figure 3-4: A simple test and its corresponding DDB.

Each test is translated into one or two sets of DDBs prior to the test process

execution, depending on the number of DSPs involved. If only one DSP is involved, only

one set of DDBs is generated and downloaded into that DSP sequentially. If both DSPs

are involved, two sets of DDBs are generated, one set contains processes to be executed

on DSP_MEASURE, and the other set contains processes for DSP_SOURCE. At any time

during process execution, one and only one DDB exists on a DSP.

3.2.3 API

API is a higher level interface strictly used by ASAP for executing various services on a

DSP. API can be divided into two sections by its functionality; namely, DSP API, which

deals with DDB creation and DSP process control, and API Runtime Services, which

handles I/Os from a DSP and DDB downloading at runtime.
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The DSP API functions are used for the creation of a DDB and the insertion of

test information into the DDB. API Runtime Services functions are called at runtime

during a DDB execution. These functions include those that download and upload

buffers to and from a DSP, check the status of a DSP process, etc. A lower level function

is created for each of the API Runtime Service functions. This two-layer structure allows

for possible future DSP module modifications. API provides a user friendly software

environment for test program generation, which is helpful for the DSP module

development.

3.2.4 DSP Executive

DSP Executive is a piece of software that runs on a DSP. It manages various software

functions running on a DSP, such as executing algorithms stored in a DDB, downloading

buffers from the CPU to the DSP, and sending result buffers from the DSP back to the

CPU, etc[19]. Conceptually, DSP Executive can be categorized as an embedded operating

system for a DSP. Having a specialized DSP Executive rather than an off-the-shelf

generic operating system greatly improves the throughput of the mixed signal tester

because it only implements the relevant functions.

The current DSP Executive can be divided into several subsets. Each subset

contributes to a certain functionality of the DSP Executive. These subsets include

Scheduler, Buffer Manager, DSP Host I/O, Sequencer I/O, DSP Block Handler, and

Algorithm Symbol Manager[19]. Figure 3-5 shows the relationship among these DSP

Executive subsets. DSP Scheduler is the heart of DSP Executive. It manages all the

services provided by other subsets of DSP Executive. Buffer Manager manages all the

data records used in the computations of a DSP, including buffer allocation, buffer

update, and buffer deletion, etc[20]. DSP Host I/O is a mirror version of API Runtime

Service functions. It executes runtime commands passed over from the CPU, such as

downloading a DDB to the DSP, uploading buffers from the DSP, etc. Sequencer I/O

handles data transfer between a DSP and a sequencer (AMS or ASSM); e.g., sequencer I/

O sets up the I/O port on a DSP for data capture or data transmission. DSP Block

Handler is responsible for algorithm executions on a DSP. Algorithm Symbol Manager

keeps a list of algorithms that can be executed on a DSP.



Figure 3-5: The structure of DSP Executive.

3.3 Existing Functionality

The API on the CPU and DSP Executive on the DSP module support some basic

functions before this thesis project was started, including functions such as the data

capture function, DSP algorithm execution, and the DSP time-out handler. Since

DSP_SOURCE is not used in the first phase of the tester development, some of these

existing functions can only be executed on DSP_MEASURE.

The data capture function enables DSP_MEASURE to capture a set of data piped

from the AMS. This function is provided by the Sequencer I/O subset of DSP Executive.

If a capture function is required for a test, details about the data to be captured is

inserted into a DDB. DSP Executive then extracts the capture information from the Data

Capture section of the DDB and calls the Sequencer I/O to handle the capture

procedure. Data capture is done on the 2S32 I/O port of DSP_MEASURE. When the I/O

port detects data flow from the AMS, it fills a pre-allocated buffer in its local memory

bank with the incoming data and raises an interrupt to notify DSP_MEASURE that the

buffer has been filled. The control is then passed back to the DSP Scheduler for the next

process.

Algorithm execution is a major function performed on a DSP. Current DSP API



and DSP Executive support the execution of about 60 algorithms. These DSP algorithms

are previously defined and their algorithm symbols are stored in an algorithm symbol

table. Algorithms needed for a test are inserted into a DDB. When a DSP receives the

DDB, it retrieves the algorithm information from the Algorithm section of the DDB and

calls DSP Block Handler for the corresponding algorithm execution. The buffer

arguments for the algorithms are pre-allocated on the DSP using the Buffer Manager

before the algorithm execution.

The DSP time-out handler is another useful feature developed for the DSP

control. It provides the CPU the capability to abort any processes on a DSP. Under the

circumstances when a DSP is waiting for data capture which never occurs, the CPU is

able to stop the waiting activity and release the DSP back to its normal state[21].



Chapter 4

DSP Data Source

4.1 Overview

The objective of this thesis project is to design and implement a feedback loop system in

the DSP module based on the existing structure. This feedback loop system enables real-

time interactions between the two DSPs. A waveform is transmitted from DSP_SOURCE

to a DUT's input terminal; the output of the DUT is captured and measured on

DSP_MEASURE and then fed back to DSP_SOURCE for the next waveform generation.

The current API and DSP Executive only support process executions on

DSP_MEASURE. They are modified to support the process executions on DSP_SOURCE

before the feedback loop system is developed.

DSP_SOURCE is responsible for waveform generation and the subsequent

waveform data transmission. During a device test DSP_SOURCE creates a waveform

according to the user specified parameters and sends it to the DUT through the ASSM

and the waveform synthesizer (Figure 4-1).

DSPSOURCE----------------DSP SOURCE

Figure 4-1: A data generation and transmission process.



A waveform is generated by executing several algorithms. Since DSP_SOURCE

and DSP_MEASURE have an identical DSP structure, algorithm executions on both

DSPs can be performed in a similar manner.

The data transmission process from DSP_SOURCE to a DUT is achieved by

performing a data source function on the DSP. This data source function is parallel to the

data capture function on DSP_MEASURE. Instead of capturing data into a DSP, the data

source function takes a waveform buffer located on DSPSOURCE and sends the buffer

content sequentially to the ASSM at a high speed. The data source function is not just a

reversed process of the data capture function. On DSP_MEASURE, the data capture

procedure is handled by the Sequencer I/O subset of DSP Executive on the 2S32 I/O

port. Since DSP_SOURCE only possesses a register based 32G I/O port, the data

transmission process is performed on the DSP itself instead of on its I/O port.

4.2 DSP Data Source Function Design

4.2.1 Requirements

An ideal data source function on DSP_SOURCE should be able to handle the data

transmission process flexibly. For example, in some cases it may be desirable to transmit

waveforms of different frequencies using only one waveform buffer; while in some other

cases it may be necessary to hold the data transmission process until the DSP receives a

trigger from the CPU or from the other DSP. Therefore, the following requirements

should be met:

* A user should be able to specify which buffer on DSP_SOURCE to be used to

store the generated waveform data.

* A user should have an option to transmit a waveform buffer either for finite

number of times or for infinite times until a test is complete.

* The source function should be able to transmit the data in a buffer selectively;

e.g., to sample every n-th data in the buffer.

* A user should be given an option to specify under what condition the data

transmission process should be started.



A user should be able to specify a delay parameter to compensate the system

delay in a real test.

4.2.2 A Data Source Algorithm

Similar to other DSP functions, the data source function specification must be passed

from the CPU to DSP_SOURCE through a DDB. The current DDB designates a Capture

section specifically for the data capture function on DSP_MEASURE and does not have a

counterpart for the data source function on DSP_SOURCE. Since the data capture

function is never performed on DSP_SOURCE, one option is to use the Capture section

of a DDB to store the data source information for DSP_SOURCE. This strategy has its

shortcomings. Since the data source function and the data capture function are

completely two different functions, they require different types of information and hence

cannot be converted into the same DDB format. Furthermore, it is conceptually incorrect

to designate one section of a DDB for two totally separate functions.

As an alternative, the data source function is implemented as an algorithm. This

strategy has a number of advantages. Firstly, the DDB need not to be reconstructed to

accommodate the new information. The data source function is simply passed from the

CPU to the DSP as an algorithm which can be stored in a DDB's Algorithm section. This

avoids the creation of API functions for a new function handling. Secondly, no

additional services need to be created on a DSP to manage the data source function.

Since the function is formatted as an algorithm, the DSP Block Handler can be used to

manage the data transmission process. This strategy results in a minimal change to the

current DDB structure and current DSP software functions.

The prototype of the data source algorithm is

void source( float* source_buffer,
int source_buffer_size,
int number_of_loops,
int source_stride,
int trigger_type,
int delay_points).

This data source algorithm enables a flexible data transmission process and meet

the requirements mentioned above.



* Source_buffer is a pointer to a buffer which contains the data to be

transmitted. Before the source algorithm is executed, source_buffer is pre-

allocated and filled with data.

* Sourcebuffer_size specifies the size of source_buffer.

* Number_of_loops specifies how many times the data in source_buffer is

transmitted. If this argument is specified as FOREVER, the data is transmitted

infinitely until being interrupted.

* The argument source_stride gives an option of transmitting data selectively.

If the source_stride is specified as an integer n, only every n-th number from

the source_buffer is transmitted. This parameter provides an option of

transmitting waveforms of different frequencies from a single source_buffer.

* The trigger_type argument determines when the data transmission should be

started. Three options are provided. TRIGGER _OFF indicates the transmission

process is started immediately. If CPU_TRIGGER is requested, DSP_SOURCE

holds the transmission process until a signal is received from the CPU. This

option can be used to control the data transmission process from the CPU. If

DSPTRIGGER is requested, DSP_SOURCE waits for a signal from

DSP_MEASURE before the data transmission process is started. This option can

be used to synchronize the two DSPs during a feedback loop process.

* The argument delay_points specifies the number of data in the

source_buffer to be sent before the real data is transmitted. This parameter is

used to compensate the system delay during a device test.

Figure 4-2 describes the structure of the source algorithm. DSP_SOURCE first

sets up the I/O port for data transmission and waits in an idle loop for the triggering

signal if a trigger is required. Once a signal is received, DSP_SOURCE sends a number of

data in the buffer specified by delay_points to the I/O port. Then the

source_buffer pointer is reset and the real data transmission is started until the data

has been sent for a pre-specified number of times or a stopping signal is received. The

control is then returned back to the DSP scheduler for the next process.



Figure 4-2: The structure of data source algorithm.

The data transmission rate is a primary parameter for the performance of the

DSP module. The actual data transmission procedure in the data source algorithm is

written in DSP assembly language to maximize the transmission rate. The current data

source algorithm uses 8 DSP clock cycles to send one piece of data. This results in a data

transmission rate of 4.125MHz, which satisfies the general specifications.

4.3 DSP Data Source Testing
An intuitive testing technique for the data source function is to measure the data sent

from DSP_SOURCE with some measuring equipment. Given the dual-DSP structure of

the DSP module and a working environment on DSP_MEASURE, a better strategy is to

connect the I/O ports of the two DSPs together so that data transmitted from



DSP_SOURCE can be directly captured and measured on DSP_MEASURE (Figure 4-3).

This strategy eliminates possible errors that may occur if an analog measuring

instrument is used.

Figure 4-3: Hardware setup for data source function testing.

As shown in Figure 4-3, a sine waveform is generated and sent from

DSP_SOURCE. The data is captured on DSP_MEASURE and an SNR test is performed

to verify the validity of the captured data. The SNR test is a series of algorithms which

calculate the signal-to-noise ratio of a data buffer. Its functionality has been previously

verified. A sine waveform of 1024 points at frequency 16 cycles/buffer is sent from

DSP_SOURCE and captured on DSP_MEASURE for the SNR test. The SNR test result

for the captured data is calculated to be around 140 dB, which is in the same range as the

input data being downloaded into DSP_MEASURE from the CPU. This test verifies that

the data generated on DSP_SOURCE has been successfully transmitted into

DSP_MEASURE with no missing data or data resolution loss. A number of waveforms

of different sizes and frequencies are transmitted and analyzed using the SNR test to

verify the flexibility of the data source function. Various testing programs are also

created to test each individual data source parameter.

The data source function completes the implementation of DSP Executive for

DSP_SOURCE. With a functioning environment on both DSPs, we are ready to design

the DSP feedback loop system.



Chapter 5

DSP-based Feedback Loop System

5.1 Overview

In mixed signal device testing industry, there are circumstances that it is desirable to

achieve a pre-specified response of a DUT and measure the corresponding input

stimulus. For example, an analog filter's cut-off frequency test requires a test system to

search for the -3 dB point of a filter's output. This type of device test can be performed

efficiently with a feedback system. During a device test, the response from the DUT is

fed back to the test system's waveform generator to create a new input stimulus such

that the corresponding DUT response approaches the desired value. This feedback

process is executed repeatedly until the desired result is reached.

The unique dual-DSP structure of Schlumberger's mixed signal tester is

constructed to support this feedback scheme. In the DSP module DUT stimulus

generator DSP_SOURCE and DUT response analyzer DSP_MEASURE share a common

global memory. In other words, both DSPs have read and write permissions for this

memory block. Hence, the global memory can be used as a bidirectional communication

channel between the two DSPs during a feedback test.

The purpose of adding the feedback loop system to the DSP module is to provide

users an option to program a closed-loop device test, such as an ADC servo-loop test,

with no additional hardware instrumentation. The aim of this project is to develop a DSP

module which supports both open-loop and closed-loop test applications. An open-loop

test can be programmed and executed on the DSP module in which the two DSPs

operate as independent processors. When a closed-loop test is executed on the DSP



module, the two DSPs communicate with each other to achieve a desired test result.

5.2 Feedback System Hardware Setup

The current dual-DSP structure of the new mixed signal tester supports the feedback

functionality (Figure 5-1). An analog channel of the mixed signal tester provides a path

from the waveform generator DSP_SOURCE to the response analyzer DSP_MEASURE

through the DUT and various digital and analog hardware such as the ASSM, the AMS,

and the waveform synthesizer. To close the loop, a communication path needs to be

created from DSP_MEASURE back to DSP_SOURCE. The global memory in the DSP

module is used to close this feedback path. Figure 5-1 presents the closed-loop signal

passage provided by an analog channel. No additional hardware is required for a closed-

loop test application. However, the additional passage from DSP_MEASURE to

DSP_SOURCE requires additional software functions for the system control.

Figure 5-1: An analog channel provides a closed-loop path for
feedback applications.

5.3 A Simple Example Using the Feedback System
The feedback loop system in the new mixed signal tester can be used in many

applications. Many of today's complex mixed signal devices have one or more ADCs

embedded in their circuitries. In order to fully measure the performance of these

complex mixed signal devices, it is important that the embedded ADCs are tested



extensively. A feedback loop system is useful for testing an ADC's linearity, a primary

parameter of an ADC. This application is discussed in greater details in the next chapter.

The feedback loop feature can be applied in other applications also. An analog

filter cut-off frequency test is a good example to demonstrate the power of the feedback

loop system. The cut-off frequency of an analog filter is defined to be the input

frequency at which the filter output signal achieves half of the input power, i.e., the -3 dB

output power. This test searches for an input frequency at which a -3 dB power response

is achieved at the output of the filter under test. This search process can be inaccurate

and time consuming if an open-loop test system is used. A series of input signals of

various frequencies are generated and the corresponding output power for each

frequency is analyzed. The analysis result is returned to the CPU for the subsequent test

pattern generation. If an accurate result is desired, a large set of input stimulus have to

be generated, which may cause memory overflow. On the other hand, with a feedback

loop feature added to the DSP module of a test system, the local DSP module is able to

complete the search process without the CPU involvement. This results in an improved

testing throughput. For this example, a user first creates a test program that describes the

processes on the two DSPs, including the desired output response value 0.5 (Figure 5-2).

These processes are then downloaded to the DSP module for execution. The process

execution is carried out on the DSP module until the desired output is achieved. On

DSP_SOURCE a low frequency sine wave is generated and sent to the filter under test.

The filter output is captured on DSP_MEASURE and the input/output signal power

ratio is calculated. This ratio information is fed back to DSP_SOURCE so that a

waveform of a different frequency can be generated based on the feedback output

power. This process is repeated until the power ratio calculated approaches 0.5 (-3 dB).

The DSP module then notifies the CPU to upload the input waveform frequency, which

is the actual cut-off frequency of the filter under test.



Figure 5-2: A filter cut-off frequency test example using the
feedback system.

5.4 Feedback Loop System Design

5.4.1 Requirements

DSP API and DSP Executive control test program formation on the CPU and process

execution on the DSP module. Currently, DSP API supports test program generation for

individual DSPs. It arranges a test program into two processes, each containing test

details to be performed on a DSP. DSP Executive schedules a process that resides on the

current DSP and has no knowledge about the process on the other DSP. In order to

support the feedback loop testing, DSP API and DSP Executive need to be modified so

that the CPU and the two DSPs can interact.

The global memory shared by both DSPs and the CPU links the processors

together. Serving as a communication channel, the global memory is used to pass DDBs

from the CPU to the DSP module. In a feedback test the global memory is used to pass

output information from DSP_MEASURE to DSP_SOURCE. This requires a close

synchronization among the two DSPs and the CPU. Furthermore, since the global

memory is accessible by multiple processors, it is important to restrict the memory usage



to avoid memory overflow and memory corruption.

During a feedback process, information related to the current DUT response is

fed back from DSP_MEASURE to DSP_SOURCE on each cycle. Since the CPU is not

involved during the information feedback, DSP_MEASURE needs to be informed on

what should be communicated to DSP_SOURCE and how the DSP_SOURCE should

utilize the communicated data. This requires additional feedback related test

information to be downloaded to the DSP through the DDB.

One of the responsibilities of a DSP is to determine when a feedback process

should be terminated. The CPU should also be given the control to end a process when

necessary, such as in the situation when a feedback process never meets the termination

conditions in the DSP module.

5.4.2 DSP Feedback Loop Architecture

5.4.2.1 Events During a Feedback Test

A device test starts with the formation of DDBs for both DSPs on the CPU using DSP

API functions. Relevant test information is inserted into the corresponding sections of a

DDB for each DSP. If a test requires feedback, the feedback related details is also inserted

into the DDB, including information to be passed to DSP_SOURCE and the loop

termination conditions.

After a DDB is downloaded into a DSP, DSP Executive takes control of the

process execution. It arranges the test details stored in the DDB and executes them in the

pre-scheduled order. Table 5-1 lists the events that occur on DSP_SOURCE and

DSP_MEASURE during a feedback loop based test.



Table 5-1: DSP Executive events during a feedback test

STATE DSP_MEASURE DSP_SOURCE
IDLE DSP idle DSP idle

STATE --

INIT -- Setup Source DDB

STATE -- Execute Initialization Algorithms

-- Wait for DSP_MEASURE trigger

Setup Measure DDB

Execute Initialization Algorithms --

Trigger DSPSOURCE --

LOOP -- Execute Loop Algorithms

STATE -- Start data source

Setup I/O for data capture --

Acquire data

Execute Loop Algorithms --

Check for termination conditions. --

Jump to exit state if conditions are met --

Interrupt data source on DSP_SOURCE Stop data source

--- Jump to exit state if notified
Send feedback info. to DSP_SOURCE Receive info. from DSP_MEASURE

Back to beginning of loop state Back to beginning of loop state

EXIT Interrupt data source on DSP_SOURCE --

STATE -- Stop data source

DSP ready for results DSP ready for results

During a feedback test, each DSP is in one of the four states, namely, idle state,

init state, loop state, and exit state. The two DSPs are always in the same state at

runtime. During tester initialization two identical copies of DSP Executive are

downloaded into DSP_SOURCE and DSP_MEASURE, and the DSPs are initialized to an

idle state waiting for inputs from the CPU. When the feedback test DDBs are

downloaded into the DSPs, DSP Executive on each DSP enters the init state. In the init

state, DSP Executive sets up the DDB in its local memory, allocates required data buffers,

and executes initialization algorithms for initial buffer data generation. The two DSPs



run asynchronously in the init state because no interactions between the DSPs are

required. Once the initialization processes are completed on both DSPs, a trigger from

DSP_MEASURE to DSP_SOURCE sends both DSPs into the loop state (Table 5-1). On

DSP_SOURCE, the Loop Algorithms are first executed to generate a waveform, which is

later transmitted infinitely to the DUT until an interrupt is received from

DSP_MEASURE. On DSP_MEASURE, upon the capture of DUT output response, a

series of Loop Algorithms are executed for output data analysis. The termination

conditions are also examined during the Loop Algorithm execution. If the termination

conditions are met, DSP Executive leaves the loop state and enters the exit state. If the

termination conditions have not yet reached, an interrupt is sent from DSP_MEASURE

to DSP_SOURCE to stop the infinite data source function to prepare for the information

feedback. The two DSPs are then synchronized to transfer output information from

DSP_MEASURE to DSP_SOURCE. After the data transfer, both DSPs resume their own

processes in the loop state. In the exit state, DSP_MEASURE informs DSP_SOURCE to

stop its current activities and prepare for the result uploading. DSP_MEASURE also

notifies the CPU that the feedback process has been completed.

It is noted that the CPU is not involved during the feedback process execution on

the DSP module. After the DDBs have been created and downloaded to the DSPs, the

CPU is released from the process control until notified by the DSP module about the

process execution completion. This arrangement enables the CPU to perform other

processes in parallel with the DSP feedback process and thus increases the overall test

throughput.

5.4.2.2 New DDB Structure

Feedback loop based testing calls for an extension of the existing DDB structure to

accommodate the additional feedback related information. The new DDB structure is

comprised of nine sections, of which the first six sections remain unchanged from the

previous DDB structure. The three additional sections of the new DDB structure include

an Initialization Algorithm section, a Source Feedback Algorithm section, and an Exit

Algorithm section. The Initialization Algorithm section contains algorithms to be

executed prior to the feedback loop process in the init state, such as algorithms that



generate initial buffer data. The Source Feedback Algorithm section contains algorithms

which exist on the corresponding source DDB and receive information from

DSP_MEASURE during a feedback process. This Source Feedback Algorithm section is

only valid for measure DDB. The Exit Algorithm section contains a list of algorithms

which are used to determine the termination of a feedback loop process. Figure 5-3

shows the new DDB structure with the additional sections indicated.

5.4.2.3 Initialization Algorithms and Loop Algorithms

A feedback process requires a series of algorithms (Loop Algorithms) to be executed

repeatedly on each DSP until a desired response is received from the DUT. It is also

necessary to provide algorithms (Initialization Algorithms) that perform buffer

initialization before the loop process is started. A new section called Initialization

Algorithm section is created for this purpose. During the DDB formation of a feedback

test, the specifications of the algorithms used for buffer initialization are inserted into

this section. The regular algorithm section in a DDB is used to store the specifications of

Loop Algorithms used in a feedback process. The specifications of Initialization

Algorithms and Loop Algorithms are inserted into a DDB using two different DSP API

functions.

The DSP algorithms executed in the DSP module must be defined and stored a

priori in a tester. An algorithm symbol table is created to store information of all

available DSP algorithms and their specifications. Three identical copies of algorithm

symbol tables are generated: one copy on the CPU, one copy on DSP_SOURCE, and one

copy on DSP_MEASURE. Hence, the DSPs can execute the algorithms specified by a

user using the algorithm symbol table at runtime. If an additional algorithm is needed

for a device test, this algorithm should first be inserted into the algorithm symbol table

before it can be executed on the DSP. Initialization Algorithms and Loop Algorithms

have an identical algorithm structure, and are both stored in the algorithm symbol table.

During a process execution on a DSP, an algorithm is identified from the algorithm

symbol table by its algorithm ID and is executed.
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5.4.2.4 Exit Algorithms

A special type of Loop Algorithm, called Exit Algorithm, is created as a decision maker

for a feedback loop process. An Exit Algorithm determines when a feedback loop

process should be terminated. It is analogous to the 'if' statement in computer

programming, except that when the condition is met the only option is to terminate the

process. An Exit Algorithm has the same algorithm structure as an Initialization

Algorithm or a Loop Algorithm in the algorithm symbol table, with the exception that

an Exit Algorithm always returns a value while a loop algorithm always returns void.

When a feedback loop test is created, an Exit Algorithm in which the loop termination

condition is specified is downloaded into the DSP module. During algorithm execution

time, the Exit Algorithm is used to evaluate the DUT output status against the

termination condition. If the termination condition is not yet met, a non-zero number is

returned indicating the feedback process should continue. If the termination condition is

met, a zero is returned indicating the feedback loop process should exit. In the case

when there are multiple termination conditions, more than one Exit Algorithms can be

used.

Similar to other regular Loop Algorithms, Exit Algorithms are inserted into the

algorithm section of a DDB during a test creation. The algorithm IDs of these Exit

Algorithms are inserted into the Exit Algorithm section of a DDB so that DSP Executive

can distinguish an Exit Algorithm from a regular Loop Algorithm at runtime.

5.4.2.5 Source Feedback Algorithms

In order to pass information from DSP_MEASURE to DSP_SOURCE in the format that

can be understood, it is necessary to provide DSP_MEASURE the information of

corresponding process on DSP_SOURCE. A section is added into the DDB structure for

this purpose. This section contains algorithms that run concurrently on DSP_SOURCE

and whose arguments are influenced by the DUT response captured on

DSPMEASURE. DSP_MEASURE passes these algorithms with their updated

arguments to DSP_SOURCE at each feedback cycle. DSP_SOURCE then executes these

algorithms instead of the corresponding ones stored in its DDB so that the output

information embedded in the arguments can be incorporated into the new waveform.



The structure of Source Feedback Algorithm section is identical to a regular

algorithm stored in a DDB. This is essential because DSP Executive on DSP_SOURCE

executes these algorithms instead of the corresponding Loop Algorithms in the DDB.

5.4.2.6 Feedback Loop Counters

Under some circumstances, a feedback process may not converge as a user expected. A

loop counter is set up to ensure a process termination when the normal termination

conditions have not been met after a finite number of cycles. A maximum cycle count is

specified when a feedback test is formulated, and is decreased by one after each cycle

during runtime. The feedback process is terminated when the counter reaches zero, no

matter whether the termination conditions for the current process have been met or not.

5.4.3 Implementation

The implementation of the feedback loop system consists of modifications to the two

existing software modules: DSP API and DSP Executive. DSP API should be modified

such that it supports the additional sections in the new DDB structure as well as the

existing functionality. At the same time, DSP Executive should be modified so that it

supports all the functions and communications related to a feedback loop process, as

well as existing non-feedback test processes.

5.4.3.1 DSP API

DSP_MEASURE is selected to be the driver of the feedback loop process because it

captures the output of the DUT. All feedback related information is inserted into the

measure DDB only. Several additional API functions are created for inserting feedback

information into a measure DDB. An API function is developed to initialize a DDB for a

feedback test. This function initializes the DDB with feedback related parameters, such

as maximum feedback loop counter and the corresponding source DDB name. Other

API functions are developed for inserting Initialization Algorithms, Exit Algorithms,

and Source Feedback Algorithms into the corresponding sections of a DDB. Since all the

feedback information is downloaded into DSP_MEASURE only, all these functions are

for measure DDB generation only.



5.4.3.2 DSP Executive

DSP Executive manages all the DSP activities such as data transmission, data capturing,

and algorithm execution. DSP Executive should be modified to manage the additional

feedback related process embedded in a DDB. On the other hand, the modified DSP

Executive should also support the existing non-feedback test processes.

DSP Executive is reconstructed to accommodate both feedback and non-feedback

processes. Both situations can be handled easily by storing Loop Algorithm

specifications in the regular algorithm section of a DDB. Figure 5-4 illustrates the

handling of both feedback and non-feedback tests by the Scheduler of the DSP

Executive.

Figure 5-4: The structure of DSP Scheduler.



The two DSPs execute a non-feedback process in an asynchronous manner. On

DSP_SOURCE a waveform is generated by executing several algorithms and is later

transmitted to the input terminal of the DUT; while on DSP_MEASURE the DUT's

output is captured and evaluated using several algorithms. If a feedback process is to be

executed, an additional feedback process is performed. After the output analysis,

DSP_MEASURE passes new waveform specifications to DSP_SOURCE, along with the

associated algorithm names, and DSP_SOURCE executes the corresponding algorithms

with the new parameters.

Information feedback from DSP_MEASURE to DSP_SOURCE is the most

essential part of a feedback process. Source Feedback Algorithms are passed from

DSP_MEASURE to DSP_SOURCE in each cycle. The output arguments of the Loop

Algorithms and the input arguments of the Source Feedback Algorithms share the same

buffers. So when the Loop Algorithms are executed on DSP_MEASURE, their output

argument buffers are filled with the captured output information. These buffers are later

transferred to DSP_SOURCE as input argument buffers of the Source Feedback

Algorithms. The Source Feedback Algorithms are then executed on DSP_SOURCE to

produce the next waveform to be sent to the DUT.

Due to the memory limitation of the global memory, feedback information can

not be transferred all at once. It is done sequentially. The Source Feedback Algorithm

specifications are transferred first, followed by the corresponding buffer arguments. It is

very important to keep the two DSPs in synchronization so that the transfer process is

performed without encountering dead lock situations. Two memory cells are set up as

communication channels for handshake synchronization in the global memory.

Figure 5-5 shows the information feedback operation on the two DSPs and the

global memory. When DSP_MEASURE completes the Loop Algorithm execution and is

ready for the Source Feedback Algorithms transfer, the following procedures are

performed on the two DSPs:



GLOBAL MEMORY

Figure 5-5: Information feedback process.

1. DSP_MEASURE writes "stop source" in the communication channel to stop the

data transmission process on DSP_SOURCE.

2. DSP_SOURCE receives "stop source" from the communication channel and stops

the data source function and prepares for the information transfer.

3. DSP_MEASURE writes Source Feedback Algorithm specifications into the

specified algorithm section in the global memory and signals DSP_SOURCE

"feedback algorithms ready" through the communication channel.

4. DSP_SOURCE receives the "feedback algorithms ready" signal and copies the

Source Feedback Algorithm specifications into its pre-allocated local data

memory.

5. DSP_SOURCE checks each argument of the Source Feedback Algorithm

specifications. If an argument is a buffer, it writes the buffer ID in the message

location and signals "buffer request" in the communication channel.

6. DSP_MEASURE receives "buffer request" signal and retrieves the requested

buffer ID from the message location of the global memory. If the buffer is found,

the content of the buffer is copied into a temporary location in the global memory.

The buffer location address is then inserted into the message location and a

DSPMEASURE DSP SOURCE



"buffer ready" signal is sent to the communication channel. If the buffer is not

found (unchanged by DSP_MEASURE), "buffer not exist" is written to the

communication channel.

7. If a "buffer ready" is received on DSP_SOURCE, the corresponding buffer content

is moved from the global memory into the location where the buffer with the

same ID is stored. If a "buffer not exist" is received, step 5 is repeated until all the

arguments have been updated.

During the algorithm transfer process, when one DSP writes a message into the

communication channel, the other DSP will be always waiting for the message. This

avoids any dead lock situations.

5.5 Feedback Loop Testing and Analysis
A real-time error correction module is developed to test the feedback functionality of the

DSP module. The structure of the real-time error correction module is shown in Figure 5-

6. This module utilizes the feedback architecture of the DSP module and a differential

amplifier to correct error signals generated by an external signal generator.

DSP MODULE

sign,

Figure 5-6: A real-time error correction module.

A signal generator simulates an error signal into the negative input terminal (A)



of the differential amplifier. The goal is to control the signal into the positive input

terminal (B) of the differential amplifier so that the corrected error signal at the output

terminal (C) is as small as possible. The error correction process is accomplished by

monitoring the corrected error at output C and accordingly modulating the signal to the

input B using the DSP module. If the DSP feedback system is implemented properly, the

signal into input B should trace the behavior of the time-varying error signal at input A.

For example, if a triangular wave is driven into input A, a triangular wave of same

frequency should appear at input B with some time delay. Appropriate algorithms need

to be designed for the DSP module so that the signal into input B always corrects the

original error signal into input A and produces a very small error at output C.

Under the simplest case, assume during the n-th cycle the signal generator is

generating a constant error signal x[n] into point A. Given that the DSP is sending a

constant signal y[n] into point B, the corrected error at point C is then e[n] = y[n] - x[n]

(Figure 5-6). DSP_MEASURE captures this error and passes it to DSP_SOURCE. Based

on this error e[n] and the previous source data y[n], a new source data y[n+11 is

generated by evaluating y[n+1] = y[n] - e[n] = y[n] - (y[nl-x[nl) = x[n], thus produces a

new error of e[n+1] = y[n+1] - x[n] = x[n] - x[n] = 0. If the signal generator is driving a

time-varying signal at some fixed frequency into point A, this error correction module

functions in a similar manner until the original error signal frequency reaches the

Nyquist frequency of the feedback system, which is half of the updating frequency of the

DSP module.

e[n]

Figure 5-7: Error correction test block diagrams.



The test program developed on the DSP module for real-time error correction is

given in Figure 5-7. On DSP_MEASURE, only the data capture function is needed for

error collection. DSP_MEASURE passes the captured data e[n] into DSPSOURCE.

Based on this error and the previous data y[n], a new data y[n+1] is calculated and sent

to the positive terminal of the differential amplifier.

This test is carried out by driving a low frequency triangular wave into the point

A from the signal generator. The output of the DSP_SOURCE is converted into an analog

signal and displayed on an oscilloscope. Figure 5-8 is a sketch of the waveforms at point

A and B displayed on the oscilloscope. It is noted that the signal sent out from

DSP_SOURCE to point B is tracing the triangular wave at point A with some time delay.

The jigsaw pattern of signal at point B is caused by the latency of the DSP feedback. The

frequency of the signal driven into point A is manually increased and the response at

point B is monitored. The signal at point B tracks the signal at point A until a frequency

of 600 Hz is reached. This implies that the current feedback loop system has an average

updating rate of 1200 Hz (600 x 2). The updating rate varies depending on the

complexity of the algorithms on each DSP and the associated buffer sizes.

period I I
Signal at B: I I

I I I

Figure 5-8: Oscilloscope display of error tracking signals.

In order to verify that the modified DSP module supports both open-loop and

closed-loop test applications, the programs designed for testing the data source function

in Chapter 4 are executed using the modified DSP software functions. The test results

show that the DSP module still supports the existing open-loop applications.



Chapter 6

Feedback Application:

An ADC Servo-loop Test

In this chapter, an ADC servo-loop test is developed to verify the feasibility of the

feedback loop system in Schlumberger's mixed signal tester. An ADC test is one of the

primary applications of mixed signal device testing. The goal of an ADC servo-loop test

is to search the transition edge for a particular ADC output code. Based on the

characteristics of an ADC, a range of analog input is mapped into a particular digital

output code. The ADC code transition edge search can be very difficult and time

consuming if an open-loop test system is used. However, if a feedback enabled test

system is present, the ADC servo-loop test can be implemented in a much simpler and

faster way.

6.1 Hardware Setup
To develop an ADC servo-loop test, an ADC under test and a DAC are required as well

as the DSP test rig. The DAC is used to convert the waveform generated on

DSP_SOURCE into an analog signal to be sent to the input terminal of the ADC under

test. For simplicity, the ADC embedded in the waveform digitizer of the tester's analog

PE (Pin Electronic) subsystem is used as the ADC under test. This eliminates a

loadboard to be setup for the DUT. The waveform synthesizer of the analog PE

subsystem is selected to perform the digital to analog signal conversions for the test.

Figure 6-1 shows the hardware setup for the ADC servo-loop test.
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Figure 6-1: An ADC servo-loop test process.

The waveform synthesizer utilizes a 20-bit DAC with an adjustable voltage range

for high resolution digital to analog signal conversions. The waveform digitizer instead

utilizes a 20-bit ADC. One of the requirements for an ADC servo-loop test is that the

analog signal into the input terminal of the ADC under test must have a higher

resolution than the ADC's LSB size. Therefore, in order to meet this requirement, the last

several bits (the exact number of bits can be specified by a user) of the ADC under test in

the waveform digitizer are masked using a DSP algorithm to give a bigger LSB size.

Several algorithms are generated and downloaded into the two DSPs in the DSP

module. A waveform is generated on DSP_SOURCE, converted into an analog signal,

and sent to the input terminal of the ADC under test in the waveform digitizer. The

digital output of the ADC under test is captured and evaluated on DSP_MEASURE, and

later fed back to DSP_SOURCE for the next waveform generation.

6.2 ADC Servo-loop Test Design

Figure 6-2 is a flow chart for an ADC code transition edge search using the servo-loop

method.



Figure 6-2: An ADC servo-loop test flow chart.

Suppose a transition edge search for output code DATAz is required.

DSP_SOURCE first starts with sending an initial data value x(O) to the ADC under test.

During the feedback process, for example the n-th cycle, a source data value x(n) is sent

to the ADC under test and the corresponding output code DATA(n) is captured by

DSP_MEASURE. The captured code DATA(n) is compared with the designated code

DATAz and the result w(n) is fedback to DSP_SOURCE. A new source data x(n+l) is

generated on DSP_SOURCE based on w(n). If the previous code response DATA(n) is

less than the specified code response DATAz (i.e., w(n) = 1), the next data to be sent to the

DUT, x(n+l), will be one step higher than the previous value, and vice versa. The step

size A is determined by the change in w(n) from cycle to cycle; i.e., if w(n) changes from 1

to -1 or -1 to 1, the step size A is halved. A changing step size in a feedback process

allows for the input source data to converge under any termination threshold levels. The

step size is decreased when the input data crosses the code transition edge so that a finer

search can be performed. An average of last K samples of x(n), y(n), is calculated in each

cycle. The change in the moving average y(n) from y(n-1) serves as the process

termination threshold (E) for the ADC servo-loop test. As the source data x(n) and the



moving average y(n) converge towards the code transition edge, the output code starts

oscillating between DATAz and the code below due to the fact that the input signal x(n)

crosses the code transition edge at each cycle. Figure 6-3 illustrates the converging

process of the ADC code transition edge search using the scheme described above. It is

noted that while x(n) converges towards the desired code transition edge, the

corresponding output codes oscillates between the two adjacent codes.

DATA(n)

DATAz

cycles

DATA(n)

DATAz

lob
c(de x(n) cycles
edge

p

co1e x(n)
edge

Figure 6-3: Convergence of the ADC servo-loop test.
Figure (A) is the actual DUT transfer function. Figure(B) is a
trace of DUT output data. Figure (C) is a trace of DUT input

data.

The implementation of the ADC servo-loop test described above is

straightforward. Since DSP_MEASURE is the DSP feedback driver and is responsible for

intensive algorithm execution, some algorithms such as data evaluation, new source

data generation and process termination decision, etc., are moved from DSP_SOURCE to

DSP_MEASURE. At each cycle, a new source data is generated on DSP_MEASURE and

passed to DSP_SOURCE. Figure 6-4 shows the DSP algorithms created for the ADC



servo-loop test on the DSP module.

k(n)

alg#1: w = (-1, DATA (n) 2 DATAz
1, DATA (n) < DATAz

A = A/2,w(n) tw(n-1)

alg #2: x(n) = x(n - 1) + w -A

K-I K-I
1 1alg#3: Ay = K I x(n-k) - • x (n-k- 1)

k=O k=O

Figure 6-4: DSP algorithms for the ADC servo-loop test.

The sole activity on DSP_SOURCE is the infinite data source function. At the first

cycle DSP_SOURCE sends an initial data downloaded from the CPU to the DUT. For the

subsequent cycles DSP_SOURCE receives source data from DSP_MEASURE and sends

it to the DUT. On DSP_MEASURE four algorithms and the data capture function are

linked for output response capture and evaluation. For each response captured, four

algorithms are executed to calculate the next source data (x(n)) and check the

termination condition. The first three algorithms are regular Loop Algorithms and

algorithm #4 is an Exit Algorithm. When the termination condition is met in algorithm

#4, the feedback process is terminated on both DSPs and the CPU is notified for result

uploading.



6.3 Result Analysis

An ADC servo-loop test program is created and tested on the DSP test rig and the

analog PE subsystem. Two history files are generated for result analysis. One file records

data transmitted from DSP_SOURCE to the ADC under test at each cycle, while the

other file records the ADC output codes captured on DSP_MEASURE at each cycle.

Figure 6-5 shows the plots of these two history files for a 12 bit ADC code transition

edge search. The output code under search is 0.0048828125, with a termination threshold

level of 10-7 volts. It is noted that as the feedback process proceeds, the data sent to the

ADC under test converges to the transition edge for the desired output, while the data

captured oscillates between the desired output code 0.00048828125 and the adjacent code

0.000439453125.

The test execution time varies with the process termination threshold level (e)

and the voltage resolution of the ADC under test (number of bits). A number of bits of

the ADC in the waveform digitizer are masked to create an ADC of various voltage

resolutions. Table 6-1 lists the average number of cycles consumed to search a transition

code edge of an ADC at different voltage resolution levels and different termination

threshold levels. The table shows that as the test threshold level and voltage resolution

decrease, the number of cycles taken to search a code transition edge increases.

Table 6-1: Number of cycles required for an ADC code transition edge search

E 4 bits 6 bits 8 bits 10 bits 12 bits 14 bits

10-4  19 16 12 11 -- --

10-5  23 19 17 14 11 --

10.6 30 25 23 20 16 12

10-7  38 30 29 23 22 19

10-8 41 38 34 31 26 25

10-9 46 42 38 35 31 26
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Figure 6-5: History file plots of sourced data and captured data.
Plot A is a trace of data sent to the ADC under test. Plot B is a
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This ADC servo-loop test scheme is suitable for searching any pre-specified ADC

code transition edges. An additional DSP algorithm can be added into the ADC servo-

loop test to search the entire set of code transition edges of an ADC. Instead of

downloading a pre-specified output code, the voltage resolution specification (number

of bits) of the ADC is provided to the DSPs. Using the additional algorithm, a complete

set of output codes are generated on DSP_MEASURE. An output code is retrieved from

the set and a transition edge search is performed for that output code. When the search

reaches the threshold level, the next output code is retrieved from the set until the entire

set of output codes have been searched. Figure 6-6 shows the history files of data sent

and data captured during a set of code transition edges search for a 4-bit ADC (positive

output codes only). It is noted that data sent to the ADC under test converges to a code

transition edge before the search for the next code edge starts; correspondingly, the data

captured oscillates between two adjacent codes under each edge search.
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Chapter 7

Conclusion

In this thesis project, a feedback loop system is designed and implemented in the DSP

module of Schlumberger's "big D - little A" mixed signal tester. This feedback loop

system enables the mixed signal tester to control the input waveform generations

depending on the output response from the DUT in real-time. With this feedback loop

system built in the DSP module of the mixed signal tester, the tester is able to support

both the open-loop and the closed-loop mixed signal test applications. The real-time

error correction program developed for the DSP feedback system, as well as the

programs developed previously for the DSP module testing, have confirmed that the

modified DSP software is able to support both open-loop and closed-loop test

applications.

A typical application of this DSP-based feedback loop system is the ADC servo-

loop code transition edge test. Schlumberger's mixed signal tester eliminates any

additional hardware and provides a clean solution for the ADC servo-loop testing. The

DSP algorithms applied in the ADC servo-loop test are simple to use and easy to modify.

A test can be designed to verify some pre-specified ADC code transition edges, and with

a slight modification to the algorithms in the test, the entire set of ADC code transition

edges can be verified. This DSP-based ADC servo-loop test can be performed at high

accuracy by specifying a feedback loop termination threshold at a value as low as the

voltage resolution of the DAC used in the test. The ADC servo-loop test developed

proves that the feedback loop system incorporated in the DSP module is feasible.



Appendix A

DSP API Feedback Functions

A.1 dsp_api_fb_init_block

int dsp_apifb_initblock

A.2 dsp_apiadd_init_algorithm

int dsp_api_add_init_algorithm

A.3 dsp_api_add_fb_src_algorithm

int dsp_api_add_fb_src_algm

A.4 dsp_apiadd_fb_exit_algorithm

int dsp_api_add_fb_exit_algm

(char
char
int

*fb_block_name,
*src_block_name,
loops)

(char *algorithm_name,
int num_args, ...)

(char
int
char
int

*src_blk_name,
order_number,
*algorithm_name,
num_args, ... )

(char *algorithm_name,
int num_args, ...)



Appendix B

ADC Servo-loop Test Algorithms

#include <stdlib.h>

#include <math.h>

/* Algorithm #1: Data Update */

/* It performs output response analysis */

void data_update(float *cap_data, float refvalue, int *w,
float *step)

{
int i;
if ((*cap_data >= ref_value) && (*w == 1))

{
*W = -1;
*step = 0.5 * (*step);

if ((*cap data < ref value) && (*w == -1))

{
*W = 1;

*step = 0.5 * (*step);

/* Algorithm #2: Create the next data source */

void crt_nxt(int *w, float *old_buf, float *new_buf,
float *step)

{
*new_buf = *old_buf + (*w) * (*step);
*old_buf = *newbuf;

I



/* Algorithm #3: Data Evaluation */
/* It calcuates the difference in the input moving average */

void data_eval(float *new_src_data, float *old_array,
float *new_array, int size, float *diff_y)

{
int i;
float tmp;
float old_ave;
float new_ave;
float old_sum = 0.0;
float new_sum = 0.0;

for(i=0; i<(size-l); i++)
new_array[i] = old_array[i+l];

new_array[size-1] = *new_src_data;
for(i=0; i<size; i++)

{
old_sum = old_sum + old_array[i];
new_sum = new_sum + new_array[i];

old_ave = old_sum / size;
new_ave = new_sum / size;

if (new_ave >= old_ave)
*diff_y = new_ave - old_ave;

else
*diff_y = old_ave - new_ave;

for(i=0; i<size; i++)
old_array[i] = new_array[i];

/* Algorithm #4: Threshold comparison */
/* It determines if a servo-loop test has completed */

int vcompare(float *in_val, float threshold, float duml,
float dum2)

{
if (*in_val < threshold)

return 0;
else

return 1;
I
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