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1. Introduction 
  
Global, dynamic, and competitive business environment has increased the complexity in 
product, service, operational processes and human side. Much engineering effort goes into 
reducing systems complexity. We argue that the real issue is reducing complicatedness. This is 
an important distinction. Complexity can be a desirable property of systems provided it is 
architected complexity that reduces complicatedness. Complexity and complicatedness are not 
synonyms. Complexity is an inherent property of systems; complicatedness is a derived 
function of complexity. We introduce the notion of complicatedness of complex systems, 
present equations for each and show they are separate and distinct properties. To make these 
ideas actionable, we present a design methodology to address complicatedness. We show 
examples and discuss how our equations reflect the fundamental behavior of complex systems 
and how our equations are consistent with our intuition and system design experience. We 
discuss validation experiments with global firms and address potential areas for further 
research. We close with a discussion of the implications for systems design engineers. As 
engineers, we believe our strongest contributions are to the analysis, design, and managerial 
practice of complex systems analysis and design. 
 
We illustrate the difference between complexity and complicatedness. Relative to a manual 
transmission, a car’s automatic transmission has more parts and more intricate linkages. It is 
more complex. To drivers, it is unquestionably less complicated, but to mechanics who have to 
fix it, it is more complicated. This illustrates a fundamental fact about systems; decision units 
act on systems to manage their behavior. Complexity is an inherent property of systems. 
Complicatedness is a derived property that characterizes an execution unit’s ability to manage 
a complex system. A system of complexity level, Ca, may present different degrees of 
complicatedness, K, to distinct execution units E and F; KE=KE(Ca) ≠ KF=KF(Ca).  
 
We summarize relevant literature on systems complexity in Figure 1. Columns [1] to [15] are 
keyed to the references. Rows identify key areas of research results; e.g., metrics, 
complicatedness, etc. We make four observations about the locus of results. One, there is a 
dearth of quantitative frameworks or metrics. There is no research on complicatedness and 
complexity as distinct properties of systems. Two, research seems to cluster around 
engineering management and physical products. The focus is on modularization and 
interactions with a bias to linear systems and qualitative metrics. Three, there are efforts on 
methodologies and tools, but theory, foundations and software have a demonstrably lesser 
presence. Ferdinand’s work in software systems complexity is a happy exception [1]. It is 
analytical, rigorous and elegant. Three, services and enterprise solutions are barely addressed. 



                                                                                                                                                

This is a serious omission given the high proportion of services in industrialized economies. 
Fourth, although layering of abstract systems and reintegration have a long history; the 
literature is skewed to decomposition rather than integration.  
 
 
   Reference      [1] [2] [3] [4] [5]       [6][7][8][9][10]        [11][12][13][14][15] 
     Main Focus of Investigation   
        Foundations & Theory       � � � � �       � � � � �        � � � � �                       
        Linear Systems Engineering      � � � � �       � � � � �        � � � � � 
        Non-linear Systems Engineering      � ���� � � �       ���� � � ���� �        � � ���� ���� �     
        Systems Architecture/Structure      ���� � � � ����       ���� ���� ���� ���� ����        ���� ���� ���� ���� ���� 
        Management              ���� ���� ���� ���� ����       ���� ���� ���� ���� ����        ���� ���� ���� ���� ����   
        Design Methodology                   � � � � ����       � ���� ���� � ����        ���� ���� ���� ���� ����   
        Design Tools                    � � � � �       � ���� � � �        � � � � ����   
        Complicatedness         ���� � � � �       � � � � �        � � ���� � �                                             
     Strategy to Address Complexity 
        Modularization & decomposition      ���� � ���� � ����       ���� ���� ���� � ����        ���� ���� ���� ���� ���� 
        Interactions and Dependencies      ���� ���� ���� � ����       ���� ���� ���� ���� ����        ���� ���� ���� ���� ����         
        Layering & Abstraction       ���� � � � �       ���� � � � ����        � � ���� � �                       
        Integration        � � � � �       � ���� � � �        � � ���� � �                     
     Complexity Metrics 
        Quantitative        ���� � � � �       � � ���� � �        � � � � ����                                              
        Qualitative        � ���� ���� ���� ����       ���� ���� � ���� ����        ���� ���� ���� ���� ����    
     Domain 
        Physical Products & Systems           � � ���� � ����       ���� ���� ���� ���� ����        ���� ���� ���� ���� ����    
        Software Products & Systems      ���� � � � ����       � � � � �        � � ���� � �                 
        Services         � � � � �       ���� � � � �        � � ���� � �                  
        Enterprise Solutions       � � � � �       � � � � �        � � ���� � �                   
        Social & Organizational       � ���� � ���� ����       � � � � �        � � � ���� ���� 
     Applications 
        Engineering        � � ���� � �       ���� ���� ���� ���� ����        ���� ���� ���� ���� ����    
        Organizational Theory       � ���� � ���� ����       � � � � �        � � � ���� �     
        Quality Management       ���� � � � �       � � � � �        ���� � � � �        
 
    ����  Indicates a strong element in the publication. �  Indicates a lesser or absent element.  
 

Figure 1. Systems Complexity Summary of the Literature 
 
 
2. Complexity 
 
Overwhelmingly, the literature considers a system with a large number of elements as 
complex. Very few address the linkages among the elements and no one, to our knowledge, 
considers their bandwidth. All these factors are inherent characteristics of systems. Therefore, 
we argue that the number of elements, the number of interactions among them and the 
bandwidth of these interactions determine complexity of the system. As any of these increases, 
we expect complexity to increase. For example, a system N={ni}i=1,2,…,p with binary 
interactions among the elements. Complexity, CN, of this system does not exceed p2, we 
denote this by CN=O(p2). System M={mj}j=1,2,…,p can have complexity CM=O(pk) where k>2. 
When M admits {mjxxxxmr}jr and {mjxxxxmrxxxxms}jrs interactions, CM=O(p3). If M admits 
{mjxxxxmrxxxxmsxxxxmt}jrst  interactions, CM=O(p4). This characterization of complex systems admits 
systems with feedback loops of arbitrary nesting and depth, and high bandwidth interactions 



                                                                                                                                                

among system elements. Complexity is a monotonically increasing function as the size of the 
system size, number of interactions increases, and bandwidth of interactions increase. In the 

limit, complexity→∞. We define complexity by C=XnΣΣΣΣb Bb 

                       
where   X is an integer denoting the number of elements {xe}e=1,…,p 

  n is the integer indicated in the relation O(pn)    
and  B1=Σijλijβij  

λij is the number of linkages between xi and xj 
βij is the bandwidth of the linkages between xi and xj 

  B2=Σkλk
ij βk

ij 

λk
ij is the number of linkages between xk and (xi,xj) 

βk
ij is the bandwidth of the linkages between xk and (xi,xj) and in general, 

   Bn=Σnλp
ijk…n-1 βn

ijkl…n-1 
λn

ijkl…n-1 number of linkages among xk and (xi,xj),(xi,xj,xk),…,(xi,xj,xk,xk,…,xn-1) 
βn

ijkl…n-1 linkage bandwidth among xk and (xi,xj),(xi,xj,xk),…,(xi,xj,xk,xk,…,xn-1) 
 
B is a measure of the information capacity among the elements of the system. Note that the 
monotinicity properties are not violated. In Figure 2 we give an example. 
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A = {a 1,a 2 ,a 3 ,a 4 ,a 5}  

B = {b 1,b 2 ,b 3 ,b 4}
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C = X nB n = (5 )2(7 )2= 1 2 2 5

ββββ ij= b a n d w id th  b etw een  {b i,b j}
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B =ΣΣΣΣ i ΣΣΣΣ j λ ij ββββ ij=1 0
C = X nB n=(4 )2(1 0 )2= 1 6 0 0

 
Figure 2. Complexity Example of Two Systems 

 
 
3. Complicatedness 
 
Complicatedness is the degree to which a decision unit for the system is able to manage the 
level of complexity presented by the system. The decision unit can be another system or a 
person. Complicatedness is a function of complexity, K=K(C). Let us explore the properties 
we expect from a complicatedness function. We expect monotonicity of complexity is 
imposed on complicatedness, but do not expect that they are identical. Clearly at C=0, K=0. 
Consider K when C→∞. Intuitively, there is a level of complexity at which the decision unit 
can barely cope with the system. The system is becoming unmanageable. For example, most 
people can visualize a graph, g=g(x,y) of Cg=O(p2), but it is harder for h=h(x,y,z) with 
Ch=O(p3). Few can visualize a surface four variables, although complexity has only reached 
O(p4). Consider, equally incomprehensible systems A and B where CA=O(p100) and 



                                                                                                                                                

CB=O(p100,000) respectively;  KA≳KB although O(p100,000)>>O(p10,000). Therefore, when C=0, 
K=0 and when C→∞, K→Kmax asymptotically. 
 
Systems are designed to operate and be managed around at an optimal point of complexity, 
say C*. For C<C*, although complexity increases, it is well within the interval of 
manageability. At C=C* the system complexity is optimal for the decision unit. For C>C*, 
complexity is increasing and the decision unit can manage the system with decelerating 
effectiveness. Mathematically, dK/dC>0 in the open interval (0, ∞). At C=C*, dK/dC=0 and 
d2K/dC2=0. Complicatedness has reached an inflection point. So that for C>C*, d2K/dC2<0, 
i.e., complicatedness is reaching saturation. The decision unit’s ability to manage complexity 
has reached diminishing returns.  For C<C*, d2K/dC2>0, complexity is growing faster than 
complicatedness. Because the logistic function is one of the simplest mathematical expressions 
that has all the above properties, figure 3. We adopt it to express complicatedness. 
K(C)=Kmax/(1+e-αC) 
 
where  e is the transcendental number e=3.2718 2818 284… 

α is a constant specific to the decision unit  
C is the complexity of the system  

K =K m ax/(1+e-αααα C)
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Figure 3. Complexity and Complicatedness 

 
Without loss of generality, we set Kmax =1 to indicate abject complicatedness. There are other 
functions that can be used; such as, the Gompertz curve, Weibull distribution, log-reciprocal 
function, etc. The major differences are the location of the inflection point, the growth pattern 
before and after the inflection point, and the symmetry around the inflection point.  
 
 
4. Examples of Uncomplicated Complex Systems   
 
Earlier we presented the automobile transmission as a complex system that is uncomplicated. 
Neural networks are more interesting as a systems engineering example. Typically they are 
applied to situations where there are an intractable number of data points to analyze in order to 
set a course of action. To solve this difficulty, the neural network is layered, Figure 4. The 
complexity has increased relative to the input vector. Many new elements, new interactions 



                                                                                                                                                

and their bandwidth have all increased the initial complexity. But architected complexity has 
reduced an intractably complicated input vector to an output vector that now makes the system 
manageable. This approach has proven effective for engineering paper machines [16]. This is 
a non-trivial example. The purchase price of paper machine ranges around $50 M. The mill 
generates about 109 data points, which are processed in real-time by adaptive and distributed 
neural networks embedded in the machine.  
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Figure 4. Use of Neural Network as Architected Complexity  

 
The telecomm infrastructure is one of the most massive systems in the world. On demand, it 
interoperates an immense array of networks, products and computers. The system complexity 
is enormous, yet we routinely make transcontinental telephone calls and download music and 
pictures from the Web. Architected complexity has made telecomm networks manageable. 
Engineers created the OSI Reference Model by partitioning the network functions into distinct 
layers. This architectural innovation creates, at each level, a distinct presentation of the 
network that is more abstract at each successive layer. Each layer presents to decision units a 
specific system image of the network that is vastly less complicated. Layering system images 
is a widely adopted doctrine in computers; e.g. programming languages. With the first 
computers, applications programming was very difficult. Programmers had to embed arcane 
hardware details into their algorithms. High Level Languages were invented to present an 
abstract, but domain specific, system image for programming. A layer of software hid and 
encapsulated, transparently to the programmer, all machine specificities. Architected 
complexity is a very effective complexity management strategy; it reduces complicatedness.   
 
 
5. Examples of Complicated Complexity 
 
It suffices to present three examples. The typical VCR control panel is a classic example of 
complex and complicated design. Another example is PC software or “bloatware.” So many 
application packages are functionally so extravagant that the average person can learn only a 
fraction of their functionality. Cellular phones are in danger of becoming examples of complex 
and complicated products.     
 
 



                                                                                                                                                

6. Calibrating Complicatedness  
 
Consider a car’s transmission. The automatic transmission presents the well known system 
image of A={P,R,N,D1,D2,D3}, λij=24 with βij=1; thus CA=62(24)(1)=864. The manual 
transmission presents a system image of M={P,R,N,D1,D2,D3,F} where F is the foot clutch. It 
needs to be engaged and disengaged, so F’s interaction bandwidth is 2. λij=10 with βij=1, and 
λmn=14 with βmn=2, thus CM=72[10+(14)2]2=38416. For the novice driver, C* ≈ CA=864. At 
C ≈ 40000, we can say that Kmax=1. Therefore, we can create instruments to determine the 
analytic form of the complicatedness function. For a system with complexity C, and a decision 
unit K, we design an instrument to perform these functions:  

[1] determine the optimal complexity, C* that K can manage optimally  
[2] in the (C,K) space, at C* set K*=1/2  
[3] solve for α using equation 1/2=1/(1+e-αC*), recall that and Kmax=1 
[4] get K(C)=1/(1+e-αC). 

 
 
7. Engineering Complex but Uncomplicated Systems 
 
There is good and bad cholesterol. Similarly, there is architected and unarchitected 
complexity. The former reduces complicatedness; the latter does not. There are two important 
principles in architected complexity: partition the system into modules, reintegrate them while 
maintaining system integrity. Many decomposition schemes address the first principle. 
Karnaugh maps for digital circuits, Djysktra architectures for computers, Design Structure 
Matrix for mechanical products [15], etc. They are effective tools, but when the decomposition 
creates a large number of new components and interactions, the result can now become 
intolerably complicated and make reintegration impractical. Reintegration is less visible in 
research, although widely practiced by engineers.  
 
Consider system M={mj}j, CM>KM* for M’s decision unit, figure 5.  
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Figure 5. Architected Complexity to reduce Complicatedness 

 
The goal is to architect complexity so that M is transformed into MMMM, such that KMMMM<KM*, 
although CM>CM*.  Partition M into layers, Lr={lj

r}j such that M=∪∪∪∪rLr, i.e., all the elements of 



                                                                                                                                                

M appear in some specific layer. Functional decomposition is an engineering application of 
this principle. For a paper mill, these can be the mechanical, control, and process domains 
[13], or for a computer, the arithmetic unit, main memory, the I/O units, etc. Design the layers 
so that there are only intra level interactions among the elements of a layer. Create Br={bk

r}k 
for ever layer Lr , so that Lr∩∩∩∩rBr=∅. Design B so that οnly elements of B communicate with 
each other. B=∪∪∪∪rBr is MMMM ‘s communications subsystem. For MMMM , design a system integration 
unit T={tx}x, , , , which on one side interfaces with B and the other with the decision unit. Note 
that T presents the decision unit with an image of the system MMMM. This is a hallmark of a good 
architecture. Good design always presents a less complicated system image to a decision unit.  
 
 
8. Areas of Potential Research 
 
Complexity should be studied further with industry experiments. Begin by selecting a set of 
simple systems with unambiguously matched by an identifiable class of decision units. Then 
calculate the systems’ complexity and derive complicatedness functions for the set of decision 
units. These experiments would serve as case studies for the behavior of the complicatedness 
function and help determine whether our simple logistics function serves its purpose well. If 
not, different analytic functions should be tried as suggested earlier. In addition, experiments 
in an organizational setting should also be studied. The decision units are people with specific 
complicatedness functions. An executive who must negotiate with a large number of 
departments is such an example. In this case the system elements are the department heads, the 
bandwidth of interactions is determined by the specific nature of the negotiations. The extent 
to which organizational structures, communication styles and boundary objects are effective 
architected complexity are fruitful areas of investigation [17].   
 
 
9. Conclusions  
 
Separating complicatedness and complexity improves the clarity by which systems can be 
described and analyzed. In this way we can clearly separate what is an inherent property of the 
system, complexity, from a derived attribute, which is complicatedness. The mathematical 
expressions we formulate capture additional properties of systems that have heretofore 
remained largely unaddressed. We are able to derive results that give us valuable insight into 
the behavior of systems. These insights are useful in the analysis and design of very large 
complex systems, and also move us towards a theory of complicatedness.    
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