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ABSTRACT

The Lilypad system was developed as part of a new generation of software tools which allows programmers

to specify NuMesh applications as hierarchical block diagrams rather than traditional textually specified

programs. The role of Lilypad is to automatically generate control procedures for NuMesh nodes which

allow an arbitrary number of primitive function blocks to reside on a single node. A set of conventions is

developed for primitive function block implementations and the code generation process for the control

procedures is presented.
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1. Introduction

1.1. NuMesh Background

NuMesh [5, 6] is a communication network for heterogeneous processing elements

that has been developed by members of the Computer Architecture Group of the MIT

Laboratory for Computer Science. Each NuMesh node may be connected to up to four other

nodes, resulting in a communications substrate for a parallel processing computer architecture.

Each node contains a programmable communication finite state machine (CFSM) and

a processor. The CFSM manages the flow of information between the node and its immediate

neighbors in the mesh. In addition, it also provides the interface through which the processor

may exchange data with other processor elements in the mesh.

Rather than performing dynamic routing decisions as the NuMesh operates, the inter-

node communication requirements of NuMesh applications are analyzed off-line to determine

the communications paths which will be required at run-time. The CFSMs are then

programmed to implement these communications paths and provide virtual channels of

communication between the processor elements in the mesh. The result of this static analysis

is that the run-time computation requirements of the CFSMs are very small, enabling them to

run at a high clock speed and thus provide a high bandwidth of communication through the

mesh.

12. Developing a NuMesh Applicatio-The Current Approach

The NuMesh application development cycle is a tedious one that requires the

programmer to perform many time consuming-and potentially error-prone-tasks manually



without the aid of a sophisticated software development tool set. For a typical application, the

programmer must perform the following tasks [3]:

* Decompose the application into modules which can each reside on separate nodes

in the mesh.

* Devise a mapping between the conceptual software modules and the physical

nodes in the mesh.

* Determine communication routes through the mesh to link each module to any

other modules with which it must communicate.

* Program each node's CFSM to implement these communication patterns

(depending on the communications patterns of the application, this may require a

unique program for each CFSM).

* Implement and independently test the software for each processor in the mesh

(again, depending on the application, each processor may require unique

software).

* Use the NuMesh simulator to debug the application as a whole.

* Debug the application on physical NuMesh hardware.

Currently, the software tools available to NuMesh application programmers are

limited to the minimum required to complete the task: an assembler for CFSM code, a C

compiler for the processor code, and a simulator for testing and debugging applications on a

Unix workstation.

1.3. High-level NuMesh Programming-A New Approach

While the development process described above has been used to successfully develop

a number of NuMesh applications, it is quite primitive and not well suited for use outside of a



research environment. In order for NuMesh to attain wide-spread use, a simpler development

process, and the tools to support it, must be developed. The NuMesh group recognizes this

need and is currently devoting significant research effort to this shortcoming.

The first of a new generation of software tools being developed to aid NuMesh

programmers is Tadpole [2], a communications stream router that is being developed by

Patrick LoPresti. Once completed, Tadpole will free programmers from the tedious and error-

prone task of determining communication paths through a mesh by hand and programming the

CFSMs to implement them. Instead, NuMesh programmers will specify the communication

network of their application to Tadpole in terms of virtual streams which provide end-to-end

communication between arbitrarily placed nodes in the mesh. Given such a specification,

Tadpole will analyze the routing and bandwidth requirements of the application and

automatically generate CFSM code to provide an efficient implementation of these streams.

By allowing the programmer to deal with NuMesh communications at a level of

abstraction that is much more convenient than low-level CFSM code, Tadpole takes a

significant first step towards relieving programmers from the tedium inherent in the current

NuMesh development cycle.

In his master's thesis [1], Michael Connell presents a high level approach to

developing NuMesh applications which could prove to be for processor code what Tadpole is

for CFSM code. Rather than writing C code by hand for each processor in a mesh, the

programmer will construct NuMesh applications by linking together function blocks with data

streams, similar to the dataflow approach of programming. A set of primitive function blocks

will be provided that may be combined and abstracted over to generate new function blocks.

For example, a programmer will be able to derive a block which raises its input to the fourth



power from already existing blocks which compute the square of their inputs simply by

linking two of them together and abstracting over the combination (see Figure 1).

Figure 1-A composite block which computes the value of its input raised to the fourth power. The square
blocks may either be primitives function blocks or composite blocks which were derived from more primitive
units in the same matter.

Bullfrog is a system which was developed by Connell to reduce the hierarchical

computation network descriptions generated by a NuMesh application developer to a flat

network containing only primitive function blocks. The output of the Bullfrog system is a set

of primitive function block instances, along with any run-time parameters that they require,

and a set of streams which specify in Tadpole stream format the interconnection between these

block instances.

As will be discussed in the following sections, the output from Bullfrog is not

sufficient to directly drive the compilation process of the programs for the nodes in the mesh.

Instead, Lilypad', the subject of this thesis, acts as a final stage between Bullfrog and Tadpole

and the C compiler. The end result of the combination of Bullfrog, Lilypad, Tadpole and a

front-end graphical user interface will be a development system (see Figure 2) that allows

users to specify NuMesh applications as block a diagram of function units which will be

compiled down to code for a physical mesh.

1 The frog motif in naming the new generation of software development tools for NuMesh applications began as a revolt against
the prevalence of acronyms in computer systems. I saw no reason to stray from this convention, and Lilypad seemed appropriate
since its purpose is to provide residence space for the products of the Bullfrog system.
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Figure 2-The compilation process which produces low-level code for the NuMesh hardware from a high-level
block-diagram specification of a NuMesh application. Blocks which are shaded in gray have not yet available
for use, although Tadpole and the NuMesh hardware can be simulated with nsim.

2. Project Overview

2.1. Motivation

The programming paradigm presented by Connell (hereafter referred to as the block-

diagram approach) is an exciting one which may prove to revolutionize the way the majority

of NuMesh applications are developed. Before this method may realistically be considered an

alternative to the traditional NuMesh development cycle, however, two issues which stand in

the way of the automatic code generation code from block diagrams must be resolved.



First, although Bullfrog performs its intended job of reducing hierarchical computation

networks to networks consisting purely of primitive function blocks, its output is not suitable

for the production of executable code for the processors of a mesh. This limitation comes

from the fact that Bullfrog assumes a one-to-one mapping from primitive function block

instances to physical nodes in the mesh. This imposes the very serious constraint that

programs implemented using Connell's block diagram approach may never reduce to more

primitive blocks than there are physical nodes in the mesh. Clearly, this situation must be

resolved before the block-diagram approach will be accepted as a useful means of NuMesh

application development.

Second, no specifications or conventions are provided to guide implementers of

primitive function blocks. Without a set of constraints to which primitive function block

implementations must adhere, automatic combination of these blocks into NuMesh

applications would be almost impossible.

Resolving these two issues is the subject of the research behind the Lilypad system.

First, a set of conventions were developed for primitive function block implementations.

Next, the Lilypad system was developed to automatically generate control procedures that

allow an arbitrary number of primitive blocks to reside on a single NuMesh node, thereby

eliminating the one-to-one primitive to node constraint imposed by Bullfrog.

2.2. Goals

As the Lilypad research began, a number of goals were determined for the code that

was to be generated by the Bullfrog/Lilypad combination. These goals served to shape both

the calling conventions for primitive function blocks and the source code which is generated

for their controlling procedures.



22.1. Efficiency

Just as a C compiler cannot be expected to produce as efficient object code as a human

programmer writing in assembly language, it is unrealistic to expect the applications produced

with the block-diagram approach to be as efficient as NuMesh applications which are

developed by hand using the old development approach. This being said, it is still important

for Lilypad to strive to minimize the inherent overhead of the block-diagram approach.

2.22. Abstract Treatment of Streams

A stream abstraction should be provided to primitive function block implementers and

block-diagram application developers alike which shields them from the details of the

stream's implementation on the physical NuMesh hardware. In particular, the programmers

should not need to be concerned with (or even know) whether a stream is an inter-node stream

connecting two function blocks which reside on different physical NuMesh nodes or an intra-

node stream connecting two function blocks on the same node.

Additionally, the stream abstraction should free programmers from being concerned

with the data word size used for transmission of data across the physical mesh. Instead, they

should be able to create streams to carry data types of an arbitrary (although fixed for each

stream instance) size. It is the responsibility of Lilypad to generate code to transparently pack

and unpack these data types when necessary for transmission across physical node boundaries.

22.3. Object Code for Primitive Function Block Instances

In the interest of avoiding object code size explosion, all instances of a given primitive

function block on a given node must be able to share the same object code. Although this

introduces some complications for function blocks which require local state (see Local State,

page 16), this constraint provides potentially significant savings in object code size as well as



removing the naming conflicts which could arise with multiple code instances generated from

a single primitive block implementation.

3. Primitive Function Block Implementation Conventions

Before the Lilypad code generation system could be implemented to construct control

procedures for the processors in a mesh, a set of conventions had to be developed to constrain

the implementations of primitive function blocks. Without these conventions, Lilypad would

not be able to reason about the parameters which should be passed to the block instances or

about their behavior once they are invoked.

3.1. Invocation Semantics

The invocation semantics of a primitive function block specify what the state of its

input and output streams must be before the block may be invoked, and what the resulting

state of these streams will be afterwards. The default invocation semantics for Lilypad

primitive function blocks are modeled after the dataflow architecture community's notion of a

well-behaved function block [9].

Before a well-behaved function block may be invoked, all of it's input streams must

contain valid data (i.e. the AND of its input streams' valid bits must be true). Upon

invocation, the block consumes the valid data element from each of its input streams and

produces valid data elements for each output stream. The result is that all input streams are

invalidated and all output streams are validated after function block invocation. These

constraints are required by the dataflow graph partitioning algorithms that are used during the

controller code generation to minimize the number of required stream validity checks (see

Graph Partitioning, page 25).



It is conceivable that the dual of these requirements for block invocation (i.e. the OR

of the input streams' valid bits) would be a useful additional invocation semantics for Lilypad

to support. For example, if the block-diagram approach was being used to generate a

simulation of combinational logic devices, the OR invocation semantics could be used to

ensure that a logic unit's outputs would be updated whenever new data becomes available at

its inputs rather than forcing the block to wait until all its inputs contain new data.. In the case

of OR-firing primitive function blocks, Lilypad guarantees only that, upon invocation, at least

one of the block's input streams contain valid data.

The introduction of primitive function blocks which use the OR-firing semantics for

invocation reduces the effectiveness of the dataflow graph optimizations used during code

generation (see OR-firing Blocks and Graph Partitioning, page 27), and therefore should be

used with caution.

3.2. Stream Interface

It was initially proposed that primitive function block implementations be passed

pointers to abstract data types representing their input and output streams. These stream

pointers would then be used in combination with Lilypad-provided accessor and manipulator

procedures to read from and write to the streams. For example, if the square block discussed

in the introduction was implemented as a primitive block, its implementation would call a

procedure to read from and invalidate its input stream, compute the square of the stream's data

element, and finally call a procedure to write to and validate its output stream.

While this use of abstract data types is sound software engineering practice, the

procedure calls which it requires introduce a potentially significant overhead for each

primitive function block invocation. It is highly likely that the procedure calls in the square



example would outweigh the cost of the computation being performed by the block. It is

therefore desirable to develop an interface to stream data which does not require procedure

calls for access and manipulation, yet provides all the functionality expected from the abstract

stream interface.

A careful look at the invocation semantics used by Lilypad primitive function blocks

reveals that, in all cases, the valid bits of the input and output streams of a function block are

treated uniformly: after block invocation, all input stream valid bits must be cleared and all

output stream valid bits must be set. Because these conventions do not vary with or depend on

the primitive function block implementation, they may be decoupled from the mechanism

used to pass data elements into and out of the primitive function block implementations.

This decoupling of stream data elements from stream status information allows

primitive function block implementations to be passed pointers to the actual data elements of

the streams on which they operate. Now, the input data is available through simple pointer

dereferences and output data is placed in the locations specified by the output data element

pointers; all procedure calls for data element access have been eliminated.

3.3. Local State

Using a single copy of the object code for every instance of a particular function block

on a processor eliminates code explosion but introduces problems for primitive function block

implementations which require local state (i.e. utilize static local variables). When the object

code is shared for these procedures, so are the references to these assumed private data areas,

introducing the undesired effect of data sharing between separate instances of the block.

Local state is a necessity for some primitive function blocks (e.g. an FIR filter or a

stream generator whose next output depends on its last), so its elimination is not an acceptable



solution. Instead, a primitive function block implementation may specify an amount of private

storage which it requires and an initialization procedure for it. At run time, a private memory

block will be set aside for each instance of the block and will be initialized with the specified

procedure. When the block is invoked, it will be passed a pointer to the private data storage

area which corresponds to the particular instance which is being invoked.

3A. Procedure Calling Conventions

To facilitate the easy generation of code for primitive function block invocation, it is

necessary to place rigid constraints on the form of the argument list for primitive block top-

level procedures. The required order of arguments for Lilypad primitives is:

1. Pointers to input data elements.

2. Pointers to output data locations.

3. Run-time parameters.

4. A pointer to the instance's state block.

All of these arguments are optional, but, when present, must occur in their assigned

order. Further, the input, output, and runtime parameters must occur in the same order that

they appear in the block's Lilypad definition file (see Describing Function Blocks to Lilypad,

below).

3.5. Describing Function Blocks to Ulypad

During the generation of control procedures for the processors in the mesh, Lilypad

must be aware of a number of properties about each block that determine when and how each

it is invoked. These include:

* The function block's top-level procedure name.



* The block's input and output streams and their types, along with the order in

which they appear in the top-level procedure's argument list.

* Any run-time parameters required by the block and their types, along with the

order in which they appear in the top-level procedure's argument list.

* The invocation semantics to be used for the function block.

* How many bytes, if any, need to be allocated for the block's private state area and

which procedure, if any, is to be used to initialize it.

The values of these and other properties are specified in a Lilypad definition file for

each primitive function block implementation. The syntax of this file is given in



Appendix A -- Lilypad Definition File Format.

3.6. Making Bullfrog Cooperate

As previously mentioned, Bullfrog assumes a one-to-one primitive function block to

physical processor mapping. This creates the need for a mechanism other than Bullfrog's

processor mappings to carry the processor assignments generated by the user (or, in the future,

an automatic block-diagram partitioning system) through Bullfrog to Lilypad. Bullfrog's

support for run-time parameters is used as a work around for this problem.

To be used with Lilypad, each primitive function block's Bullfrog function definition

must include the special run-time parameter NuMeshNode. When Lilypad encounters this

parameter in the output from Bullfrog, it treats the given value as the processor ID for the

processor on which the primitive function block is to reside rather than as a normal parameter.

The source-code specification which Bullfrog requires as one of the arguments when

defining a function block is used to hold the name of the Lilypad definition file which

corresponds to this block. This information is used later by Lilypad as it is building its internal

graph representation of the computation network.

4. Lilypad Design Decisions

The previous section described the design decisions which were made about the

implementation of primitive function blocks. This section details the design decisions which

were made while developing the Lilypad system and how they affect the code that it generates.

4.1. Dealing with C Data Types

A fundamental decision that had to be made during the design of Lilypad was to what

extent the type information available in the Lilypad definition files should be used in the code



generation process. The possibilities for this ranged from simply ignoring the types and

echoing them in the generated C source to recreating C's data type facilities internally to

facilitate a much more sophisticated treatment of type information.

The final decision about this matter was made only after careful analysis of the

requirements of Lilypad's two main uses for C type information: type-checking the stream

connections and code generation for stream manipulation.

4.1.1. Stream Connection Type-checking

While Lilypad is constructing its internal graph of the primitive function blocks and

their interconnections (see Graph Building, page 23) it is necessary to check that the source

and destination of a stream are of the same type. For this purpose, a simple string comparison

between the names of the types associated with the source and destination ports of the stream

is sufficient.

4.1.2. Stream Manipulation Code

For stream allocation and data element marshaling, Lilypad must produce source code

that is dependent on the size of the data elements in NuMesh words. For this, Lilypad could

either rely on the compiler's sizeof ( ) operator or undertake the task of determining data

type representation sizes itself. Neither of these approaches is without flaw.

Use of the sizeof () operator requires that all decisions requiring type size

knowledge be delayed until compile time. This complicates the matter of determining

whether a stream that crosses a node boundary needs extra code to provide for marshaling of

its data elements (see , page ).

Recreating the sizeof () operator in Lilypad is quite problematic, however. Not

only would Lilypad be required to parse C data structure descriptions and know about the



sizes of all primitive C data types, it would also need to know how the compiler packages data

types for use on a given processor architecture. For example, on some compiler/processor

combinations, the elements of a data structure may be padded so that the next element is

always word-aligned. Building all this extra information into Lilypad could make it both

compiler and processor dependent, and is therefore a very undesirable option, since NuMesh is

not processor-specific.

4.1.3. The Decision on Types

Given the uses for which Lilypad needs type information, it seems reasonable to treat

the type description contained within the definition files simply as strings which may be

compared for equality against each other for stream type-checking purposes and may be used

in conjunction with the sizeof () operator when the generated source code needs to know

the size of a data type.

42. Stream Representation

The abstraction notion of a stream which can carry data elements of an arbitrary

(although fixed) size is central to the block-diagram approach to development NuMesh

applications. Inter-node streams will be effectively handled by Tadpole. The intra-node

streams which are used for communication between two function blocks on the same

processor, however, fall within the domain of Lilypad and their representation is another

major design decision which had to be made as Lilypad was designed.

As an initial approximation, a stream can be thought of a pair containing a data

element and a flag indicating its validity. When new data is written to a stream, the data

element is updated and the flag is set to true. Likewise, when the data is read from a stream,

the flag is set to false to indicate that the stream no longer contains valid data.



This description suggests representation of an intra-node stream by the following C

data structure:

struct AMOST_STREAM
{

DATA_TYPE data;
int valid;

Here, DATA_TYPE is the data type of the elements which are to be carried on the

particular instance of this stream.

Although this representation works fine for purely internal communication within a

processor, it breaks down when called upon to interface between an internal function block

and the code which is used to marshal its data elements for transmission across node

boundaries. Because only a NuMesh word's worth of data may be transmitted from the node

at any given time, the data structure must be augmented to keep track of what parts of the data

element have been sent/received and which remain.

This is accomplished with the following updated representation for streams:

struct STREAM
{

NUMESH_WORD *data;
NUMESH_WORD *tail;
int valid;

In this representation, NUMESH_WORD represents the data type of the unit of

transmission of data between NuMesh nodes (currently this is a 32 bit word). data will point

to enough NuMesh words to fully contain the data type which is being carried on the particular

stream. For example, if a double-precision floating-point number is represented as a 64 bit

quantity, data will be initialized to point to a block of two NuMesh words.

tail is used to keep track of how far through this block of NuMesh words data

transmission has completed. This is only used by code which directly manages the packing



and unpacking of data types for transmission across physical node boundaries. When a stream

is used for purely intra-node communication, this field is simply ignored.

5. From Bullfrog Networks to NuMesh Code

The following sections describe of the processes that Lilypad uses to convert the

primitive function block networks that are output by Bullfrog into source code which is ready

to be sent to Tadpole and a C compiler to generate CFSM and processor code for each node.

5.1. Graph Building

The first phase of operation for Lilypad is the generation of a graph for each processor

which contains the primitive function blocks assigned to it along with the intra-node streams

which connect them. The construction of these graphs is a relatively straightforward process

of breaking down the output from Bullfrog into its individual processor components.

Bullfrog generates two files which are of use to Lilypad. The first of these to be

processed contains a list of all the primitive function block instances which are present in the

application, the name of the Lilypad definition file which corresponds to each of them, and

any run-time parameters which they require (including the NuMeshNode parameter which is

treated specially as a processor specifier for the block). This information is used to generate

the set of block instances for each processor.

The other file produced by Bullfrog contains a set of stream descriptions in Tadpole

format which specify the interconnections of the primitive function block instances described

in the other file. As Lilypad processes this file and links the primitive function block instances

which it previously generated, one of two possibilities will hold true for each stream: the

source and destination blocks both reside on the same processor, or they are located on



different nodes. The first case is handled simply by forming a intra-node connection between

the two blocks in the graph corresponding to their parent processor.

The second case, however, requires the introduction of an inter-node stream and I thus

more complicated. First, the stream is added to a set of inter-node streams which is

maintained for later use during the code generation phase. Next, an output node is added to

the block set of the processor that contains the source block and is connected by an intra-node

stream to the source block. Similarly, an input node is added to the destination processor and

is connected by another intra-node stream to the destination block. These input and output

nodes will be later used to generate the code required to pack and unpack the data elements

carried on the stream for transmission across the physical NuMesh.

Figure 3 and Figure 4 illustrate this process on a portion of a hypothetical network,

showing both the original Bullfrog and resulting Lilypad representations for the function block

graph.



Figure 3-A portion of an example network which is generated as the output of Bullfrog. The dotted boxes
indicate groupings of blocks by processor ID, as specified by the NuMeshNode parameter.

In, - --*-+ Out2

In 2

+ Out3

Ins

Figure 4-The same network in its internal Lilypad representation. Again, the dotted boxes indicate groups of
blocks which reside on the same processor. Input and Output nodes which share the same subscript will be
linked by Tadpole streams.

5.2. Graph Partitioning

After the function block graphs have been constructed for each processor, the next

phase of operation for Lilypad is the optional partitioning of these graphs using algorithms

borrowed from the dataflow architecture community [7, 8].



52.1. Motivation

The elimination of the need to pass streams as abstract data types that require

procedure calls for access removed a significant amount of overhead from the code which is

generated by Lilypad. A large source of the remaining overhead are the tests that the control

procedure must perform for each block to determine whether it is ready to be invoked.

Algorithms have been developed as a result of dataflow architecture research to

partition dataflow graphs into sets of blocks which can be proven to all be able fire once the

input streams to the partition contain valid data [7, 8]. The original purpose of these

algorithms was to produce the longest possible threads of execution for dataflow processors,

however they can be applied equally well to the task of eliminating needless validity checks.

As a simple example of the usefulness of this application of dataflow graph

partitioning, consider the code which will be generated for the top processor grouping in

Figure 4. Using the graph as it is depicted, Lilypad would generate code that would perform

the following validity checks during the course of moving one data element through the

function graph:

* Before invoking the first square block instance, a test to ensure that the stream

connecting In to the first square block is valid and that the stream connecting the

two square blocks is invalid.

* Before invoking the second square block, a test to ensure that the stream

connecting the first square block to the second is valid and that the stream

connecting the second square block to Out is invalid.

A dataflow graph partitioning analysis of this graph will reveal that once data is

available on the stream from the input port and the stream to the output port is ready to receive



a new data element, all of the blocks are guaranteed to be able to be invoked in order from

right to left. Thus the number of stream validity checks has been reduced from four to two,

producing a considerable savings.

5.2.2. OR-firing Blocks and Graph Partitioning

The graph partitioning algorithms used by Lilypad depend crucially on the well-

behaved nature of the function blocks in the graph being partitioned. Since OR-firing blocks

violate this property (they may be invoked before all inputs are valid), they pose a problem

when used in conjunction with graph partitioning.

Fortunately, this is the same as the problem which arises in the dataflow community's

research when non-strict functions appear in dataflow graphs, and the problem of how to

incorporate them into the partitioning has been studied. The solution, adapted from an

approach presented in [7], is to decouple the offending OR-firing block from the rest of the

graph using artificially introduced input and output ports (hereafter referred to as inlets and

outlets to avoid confusion with the input and output ports which interface between inter- and

intra-node streams). Figure 5 shows an example of this process.

The inlets and outlets introduced are used only during the graph partitioning phase and

do not surface in the final controller code. Thus, even though they appear to add overhead to

the graph depicted in Figure 5, they do not.



Figure 5-(A) shows a portion of a graph containing AND-firing function blocks a, b, and c and OR-firing block
f(a,b). (B) shows the same graph portion after it has been transformed to allow for dataflow partitioning to be
performed.

52.3. Demand/Tolerance Set Partitioning

Lilypad uses the simplified demand/tolerance set partitioning algorithm which is

presented in [7]. A brief description of this approach is given below; for a detailed discussion

including correctness arguments, please see the original reference.

The algorithm gets its name from the two sets which are calculated for each block

repeatedly during the partitioning process. Informally, the demand set of a block is all of the

output nodes which are affected by its output. The tolerance set of a block is given by all of

the output blocks that an edge between the two can be added and not affect the input-output

connectivity of the graph. That is, by adding an edge between the block and a given output, no

inputs are able to reach the output that were not able to reach it before.

Formally, these sets are described by the following recursive equations:

Demand(o) = (o} [o is an output block]
Demand(b) = UNION(children(b)) [otherwise]

Tolerance(i) = Demand(i) [i is an input block]
Tolerance (b) = INTERSECTION(parents (b)) [otherwise]



To calculate the partitioning of a graph, the demand sets for the blocks are calculated

and all blocks that share the same demand set are combined into a single partition. Next, the

tolerance sets of the updated graph are calculated and blocks which share the same tolerance

sets are combined into partitions. The process then begins again with the demand sets. This

continues until the partitioning remains unchanged through the course of an iteration.

5.3. Controller Code Generation

Once the function block graphs have been assembled and partitioned for each

processor, the source code for the processors' control procedures is generated. The code

generation process consists primarily of filling in the details of the following control procedure

template for each processor:

#include "typesize.h"
<INCLUDE FILES>
<FUNCTION PROTOTYPES>

struct STREAM
{

long *data;
long *tail;
int valid;

void main (void)
{

struct STREAM *internalStreams;
char **stateBlocks;

<STREAM INITIALIZATION>
<STATE BLOCK INITIALIZATION>

while(l)
{

if (<BLOCK-1 ENABLED CHECK>)
{

<BLOCK-1 FIRE>

if (<BLOCK-N ENABLED CHECK>)
{

<BLOCK-N FIRE>



The following sections describe the slots in this template and the code which is

generated to fill them.

53.1. Include Files

Each primitive function block instance may require one or more files to be included by

the C preprocessor to define the types which it uses in its top-level interface. These include

files are specified as part of the Lilypad definition file for the block (see



Appendix A -- Lilypad Definition File Format, page 43). When the controller code is

generated for a processor, the union of the include files required by all of the primitive

function block instances residing on that processor is computed. This set is then iterated over

to produce C preprocessor statements of the form:

#include <filename>

where fi lename is the name of the include file.

5.3.2. Function Prototypes

ANSI C requires that every function have a prototype, therefore one must be supplied

for the top-level procedure of each type of primitive function block which is instantiated on

the current processor. Rather than requiring a header file with the prototype for each block's

top-level procedure, Lilypad automatically generates the necessary prototypes.

The rigid constraints which are placed on the format of the argument lists for primitive

function block top-level procedures (see Procedure Calling Conventions, page 17) make

generating the function prototypes from the information contained in a block's Lilypad

definition file straightforward: the name of the top-level function is listed followed by the

unique argument list which satisfies the constraints and the function block description. All

primitive function block procedures are given void as a return type, since none return values.

The function prototype for the primitive square block that has been discussed throughout this

document, for example, would be:

void square(double *in, double *out);

5.3.3. Stream Initialization

Code must be generated to allocated enough space for the intra-node stream structures

used by the control procedure. Once allocated, each of these streams must have memory



allocated for their data elements, and must be initialized as invalid. The following is an

example of the code which is generated to initialize an intra-node stream:

/*** Initialize stream s2$1 (double) ***/
(internalStreams+l) ->data =

(long *) malloc((sizeof(double)/sizeof(long)
+(sizeof(double)%sizeof(long) ? 1 : 0)) *

sizeof(long));
(internalStreams+l) ->tail = (internalStreams+l) ->data;
(internalStreams+l)->valid = 0;

The comment at the beginning reflects the name that was assigned to this stream by

Bullfrog and the type of data elements carried on it. The complexity of the malloc () call is

a result of the fact that the storage for data elements must be allocated in integral NuMesh

word units (represented here by the type long). The formula within this call utilizes the

si z eo f () operator to calculate the minimum number of NuMesh words which are required

to completely contain a data element of this stream's type.

After the memory allocation for the stream has been performed, the tail pointer is

simply set to point to the beginning of the stream's data segment and the stream is marked as

invalid.

5.3.4. State Block Initialization

The initialization process for local state areas is similar to that of the internal streams.

First, memory is allocated for an array of pointers to the state blocks. Next, each of these

pointers is initialized to point to a newly-allocated memory area and the state block's

initialization function, if one was specified, is invoked. Below is sample code which was

generated for the initialization of a state block:

*(stateBlocks+0) = (char *) malloc(8);
fgen_init(* (stateBlocks+0));

The size of the block and the initialization function are both specified in the primitive

function block's Lilypad definition file.



5.3.5. Main Loop

After the streams and state blocks have been allocated and initialized, the control

procedure enters its main loop that handles the routing of data through the intra-node streams

and out to the external mesh. Each iteration of this loop checks each block in turn to

determine whether it is able to be fired. The actual code which is generated for this test will

depend on the invocation semantics which have been specified for the particular primitive

function block. For AND-firing blocks:

(<INPUT-1>->valid && ... && <INPUT-N>->valid) &&
(!<OUTPUT-1>->valid && ... && !<OUTPUT-M>->valid)

and for OR-firing blocks:

(<INPUT-1>->valid I .. II <INPUT-N>->valid) &&
(!<OUTPUT-1>->valid && ... && !<OUTPUT-M>->valid)

Note that in both cases, no block will be fired when valid data exists on any of its output

streams.

The code which is used to invoke the block and update the status of its input and

output streams varies according to what type of block it is: an Input or Output block, a

primitive function block, or a partition block generated by the graph partitioning phase.

Different code is generated for each of these types.

5.3.5.1. Input and Output Block Invocation

Input and Output blocks are a construct of Lilypad which correspond to interface code

between an intra-node stream connected to a primitive function block and a virtual NuMesh

stream connected to another node in the mesh. Generating code to implement this interface is

complicated by the fact that it is not known until compile time whether the data elements of a

given stream will fit into a single NuMesh word. If so, no marshaling code is required and a



more efficient version of the inter/intra-node stream interface may be used. If not, data

marshaling code, along with the overhead which it introduces, must be used.

The following is an example of the code which is generated for an output block:

#if SIZE_OFdouble > SIZE_OF_long
/*** Marshaling required because data size > NuMesh word

out(0, *((internalStreams+l)->tail));
(internalStreams+l) ->tail++;
if(((char*)(internalStreams+l)->tail) -

((char*)(internalStreams+l)->data) >=
sizeof (double))

{
(internalStreams+l)->valid = 0;
(internalStreams+l) ->tail = (internalStreams+l) ->data;

#else
/*** No marshaling required ***/
out(0, *((internalStreams+l)->data));
(internalStreams+l)->valid = 0;

#endif

Note the use of preprocessor directives to select the appropriate code at compile time

based on the relative sizes of the data elements and NuMesh words. Constants of the form

SIZE_OF_<type> specify the size, in bytes, of each type that is carried on streams in this

application and are defined in the typesize.h file which is included at the beginning of the

control procedure template.

The strategy used when marshaling is required is to send one NuMesh word's worth

of data at a time, from the beginning of the stream's data segment to the end. After each word

is transmitted the tail pointer is updated to indicate the next word for transmission. Once the

tail pointer runs off the end of the data segment, the stream is marked as invalid and the tail

pointer is reset to beginning of the data segment.

The code which is generated for input blocks is similar enough to that of output blocks

to not be reproduced here.



5.3.5.2. Primitive Function Block Invocation

The code generated for primitive function block invocations must first call the top-

level procedure of the function block and then invalidate all its inputs and validate all its

outputs. Below is an example of the code that would be produced to handle the invocation of

an instance of the primitive square block:

/*** Fire square$3 ***/
square ((double*) ((internalStreams+2) ->data),

(double*) ((internalStreams+l) ->data));,
(internalStreams+2)->valid = 0;
(internalStreams+l)->valid = 1;

In this call, the data segments of the streams are type-cast as pointers to the appropriate

data type for the primitive function block's input and output streams. Upon return from the

computation, the input stream, internalStream+2, is invalidated and the output stream,

internalStream+1, is marked as valid.

5.3.5.3. Partition Block Invocation

The invocation of a partition block is similar to that of a single primitive function

block, except that multiple primitive function blocks are invoked and only the valid bits of the

streams which cross partition boundaries must be tested and updated. The valid bits of the

other streams can be safely ignored.

In order to guarantee correct results from the computation performed by a partition, its

primitive function blocks must be topologically sorted so that a block is invoked only if the

blocks on which its inputs depend have already been invoked. This ensures that blocks are

never invoked with stale data.

The following is an example of code generated for the partition containing two square

blocks which was discussed in the above section on graph partitioning (see Graph



Partitioning, page 25). For clarity, the partition invocation code is shown along with the

validity checks which are performed before invocation.

if( (internalStreams+2)->valid &&
! (internalStreams+1) ->valid)

{
/*** Fire fsquare$4 ***/
fsquare ((double*) ((internalStreams+2)->data),

(double*)((internalStreams+0)->data));
/*** Fire fsquare$6 ***/
fsquare ((double*) ((internalStreams+0)->data),

(double*)((internalStreams+l)->data));

(internalStreams+2) ->valid=O;
(internalStreams+1) ->valid=1;

The important point to notice about this code with respect to the other types of block

invocation code that were discussed above is the different treatment of stream validity bits.

First, only the valid bits of the streams which cross partition boundaries (i.e. streams 1 and 2)

must be tested before entering the invocation code for the partition. Second, the validity of the

stream that connects the two square blocks is neither tested nor updated.

The net result of these differences is that two stream validity checks and two stream

validity updates--one of each for the invocation of each square block-are removed. This

yields a 50% reduction in both the number of tests and updates which are performed to during

the invocation of these two blocks.

5.4. Auxiliary Code Generation

In addition to the control procedures for each processor, a number of other files must

be generated by Lilypad before the complete code for the NuMesh can be compiled. This

section describes the remaining files which are generated.

5A.1. Tadpole Input File

Because the original Tadpole stream description file that was generate by Bullfrog

assumes a one-to-one block to processor mapping, it is of no use other than specifying the



interconnections of the blocks. For the actual input to Tadpole, Lilypad must generate another

file which specifies the inter-node streams which were introduced during the graph building

phase.

Constructing this file is a simple matter of iterating over the processors and then over

the inter-node streams. First a Tadpole node description is generated corresponding to each

processor which is used in the application. Next, a Tadpole stream specification is produced

which specifies the virtual ports on the source and destination nodes that the stream connects.

5.42. typesizegen.c

As discussed earlier, Lilypad relies on the C preprocessor to determine whether data

marshaling code must be generated because a data type's representation will not fit in a single

NuMesh word. The symbolic constants which are used in the preprocessor directives are all

found in typesi ze .h.

Unfortunately, for the same reasons that it is needed in the first place, typesize. h

cannot be directly generated by Lilypad; to do so requires type size information which can

only be discovered through use of the sizeof () operator at compile time. The solution to

this problem is to instead generate a C program which will in turn generate typesize. h.

The following template is used to construct typesizegen. c:

#include <stdio.h>

int main(void)
{

FILE *outfile = fopen("typesize.h", "w");

fprintf(outfile, "#define SIZE_OF_long %d\n",
sizeof (long));

fprintf(outfile, "#define SIZE_OF_<TYPE-1> %d\n",
sizeof(<TYPE-l>));

fprintf(outfile, "#define SIZE_OF_<TYPE-N> %d\n",
sizeof (<TYPE-N>));

fclose(outfile);



return 0;
I

Here, TYPE-1 through TYPE-N represent the members of the set of types which are

carried on streams in this application. SIZEOF_long is always included in typesize. h

because it is the data type which is used to represent a NuMesh data word.

5.4.3. Makefile

When Lilypad has finished executing, a set of C files (a control program for each

processor and typesizegen. c) and a Tadpole file remain which must be compiled into

low-level code for the NuMesh. This compilation process is a tedious one and it would be

unreasonable to expect the user to perform these steps by hand.

For this reason, Lilypad also generates a Makefile which is used to automatically drive

the compilation processes. This way, once Lilypad has finished with its code generation, all

the user (or some higher-level program which itself invokes Lilypad) must do to complete the

process is issue a command to start make with the Lilypad-generated Makefile.

5.5. Support for Simulation

Nsim [4] is a simulation and debugging package that allows programmers to test and

debug their code under simulation on a Unix workstation before attempting to run it on the

physical NuMesh hardware. Beyond its role in the debugging process, nsim is also valuable to

the NuMesh application developer because of its support for hardware (i.e. the latest revision

of the CFSM) and software (i.e. Tadpole) which are not yet available for real-world use.

For these reasons it is important that Lilypad be able to target nsim as an alternative

platform to the NuMesh hardware. Indeed, at this time the only way to test the code generated

by Lilypad is with nsim.



The following sections describe the differences in Lilypad's behavior when it is

generating code for use with nsim.

5.5.1. Simulating an Application with nsim

Rather than existing as a general-purpose stand alone program which can be used to

simulate all NuMesh applications, nsim exists as a library which must be linked with the

application's object code to produce a custom simulator for each application. The advantage

of this approach is that nsim does not need to provide source code debugging support for the

application; existing debuggers such as gdb instead are used on the entire application to

accomplish this.

The drawback of this approach is that the object files which were destined for

individual processors in the mesh must now be combined into one large application. This, at

the very least, will generate name conflicts between the main () routines for each processor.

Additionally, the application's code which was intended to run as separate processes on

separate nodes are now packed into a single process on a single workstation. The remaining

sections describe how these problems are dealt with.

5.52. The Need for blockO

The current version of nsim uses non-preemptive multithreading to simulate multiple

NuMesh nodes with a single workstation. Once the thread for a node's code becomes active it

will remain so until it itself releases control. Control is yielded either implicitly by attempting

a read or write to the mesh which will block or by explicitly calling the block () function.

The control programs that are generated by Lilypad are explicitly designed to never

issue a read or a write which will block. This means that, because of the non-preemptive

nature of nsim's multithreading, once a processor control procedure has gained focus, it will



never release it. Therefore, if an application is targeted for simulation rather than use on the

physical NuMesh hardware, the source code must be generated to include explicit block ()

statements to force yielding.

The block () statement in Lilypad generated code can also be used to determine a

crude approximation of an application's performance. Each Lilypad definition file may

include a specification for how many NuMesh cycles to block after its invocation. This is

used to simulate the computation cost of the primitive function block. The code generated by

Lilypad also includes calls to block () to reflect the relative cost of the data marshaling code

and the checks for stream validity.

Currently, block () statements are inserted in the following locations when Lilypad

is producing code for nsim:

* Before each check of the if statements which check for stream validity in the main

loop.

* After each read and write to the CFSM.

* After the extra data marshaling code.

* After each primitive function block invocation.

* After the stream validity updates that occur after function block invocation.

5.5.3. Startup Code for nsim

Nsim provides its own main () procedure to initialize its internal state and call a

procedure called cpu () for each processor in the mesh to start the simulation. To avoid

naming conflicts with the nsim library, all Lilypad-generated processor main () routines are

renamed with their processor id appended at the end. For example, the main routine for

processor 37 would become main3 7 () .



Lilypad also generates a file called ipstart. c which contains the cpu ()

procedure for this application. This procedure simply determines which processor's code it is

supposed to be starting based on the processor ID which is passed to it and invokes the

appropriate processor's renamed main() procedure.

5.5.4. Makefile

The Makefile that is generated when Lilypad is targeting an nsim application is

updated to support the compilation process for nsim. Specifically, it adds ips tart . c to the

list of source files which must be compiled and arranges for the nsim libraries to be linked in.

After Lilypad has run to completion, the user is still able to simply invoke make to finish the

process of creating an executable application.

5.5.5. Nsim Configuration File

Nsim also requires a configuration file to specify the nodes in the simulated mesh and

their layout. This is generated by simply iterating over the processor set which Lilypad has

been using. Because no layout information is given to Lilypad, a linear layout for the mesh

has been chosen to simplify the generation of layout specifications. If the user wishes to test

the application with a different topology, all that is required is to edit this file. The nsim

documentation provides guidance on how to do this.

6. Conclusion

The goal behind the development effort for Lilypad was to build upon the work of

Bullfrog to produce a system which is capable of realizing the block-diagram programming

approach presented in Connell's thesis. Through the development of a set of guidelines for

primitive function block implementations and the Lilypad system which allows an arbitrary



number of blocks conforming to these specifications to reside on a single NuMesh node, this

goal has been realized.

The combination of Bullfrog and Lilypad has been used to successfully create

NuMesh applications which run under simulation with nsim. The completion of a new

revision of the CFSM and the Tadpole system are awaited so that these block-diagram

applications may be tested on real hardware.

There still remain, however, a few additions which need to be made to these software

tools before the block-diagram approach will be useful as a general purpose programming

paradigm for the NuMesh. These are described in the sections below.

6.1. Extending Liypad

During the initial design reviews, the need to support completely general primitive

function blocks with arbitrary firing conditions and non-well-behaved semantics was

discounted. Upon later reflection, however, it seems that the ability to support this generality

would be useful. In particular, the constraint that blocks must produce valid output on each

invocation seems to be a limiting factor when producing blocks which conditionally act on

their inputs.

Extending Lilypad to handle these general blocks would require a mechanism of

reporting after block execution which inputs have been consumed and which outputs have

been produced. Although this conflicts with the current method of block invocation, it could

be added by developing a special class of function blocks which generate this type of code,

while the blocks which conform to the guidelines set in this thesis can use the already existing

method of invocation.



6.2. Extending the Tool Set

Currently all of the components which were shown in the block-diagram

programming system (see Figure 2, page 11) are either available for use, or are under active

development, except for the graphical user interface. With out such an interface, application

developers are required to enter Bullfrog networks by hand as text files. While this approach

certainly works for generating applications, it would be much easier to use the system with a

graphical tool for editing the networks.

Another tool which should be eventually added is a system which automatically

determines block to processor mappings. Such a system would analyze the computation costs

and communication requirements of the blocks in the application and split them up among the

available processors in such a way as to maximize the performance of the mesh. Not only

would this free the programmer from generating the mapping by hand, it would likely perform

more sophisticated analysis than the human programmer, and thus achieve a better

partitioning.

6.3. Closing Comments

The completion of Bullfrog and Lilypad marks an exciting time for the NuMesh

group. Programmers are now finally able to construct NuMesh applications without writing

code for each processor by hand. Once a graphical front end is available, the block-diagram

approach to NuMesh application development promises to become the paradigm of choice for

much of the new application development.



7. Appendix A - Lilypad Definition File Format

The Lilypad definition file is used to specify the information which Lilypad needs

about a block in order to generate code to invoke and compile the block correctly. Below is a

grammar specification for the Lilypad definition file format. Upper-case words represent

values of the specified type, and bold-face words represent reserved tokens which the parser

dispatches on.

definition := spec*

spec := (function STRING)
(inputs typed-name+)
(outputs typed-name+)
(params typed-name+)
(state-block NUMBER [STRING])
(fire-type fire-type-name)
(length NUMBER)
(files STRING+)
(includes STRING+)

typed-name := (STRING STRING) ; Type followed by name

fire-type-name := and I or

A valid Lilypad definition file will include at most one of each specification type listed

above. Other than function, all the specifications listed are optional and are used when

they pertain to the specific primitive function block.

The (function STRING) construct is used to specify the name of the top-level

procedure for the primitive function block's implementation. STRING must be a legal name

for a C procedure.

A typed-name is a two-element list used to give information about a parameter to

the primitive function block's top-level procedure. The first element is the type of the

parameter; the second is the parameter's name. Typed-names are used in the declarations



of the inputs, outputs, and run-time parameters for the function block. In all cases, a

parameter's name must be exactly the same as it appears in the Bullfrog definition file for the

function block. This is necessary for correctly parsing Bullfrog's output.

The (inputs typed-name+), (outputs typed-name+), and (params

typed-name+) , constructs specify, respectively, the input streams, output streams, and

run-time parameters to the function block. The typed-names must be listed in the same

order in which they appear in the argument list for the top-level procedure.

The (state-block NUMBER [STRING]) specification indicates that the

primitive function block requires a private state area of NUMBER bytes. If included, the

STRING argument gives the name of the procedure which is invoked to initialize the state

block. This procedure must be of type void and take one argument which is a char* to the

block's private memory.

The (fire-type fire-type-name) construct specifies the invocation

semantics which are to be used with this primitive function block. If a line of this form is not

included in the definition file, the function block will default to AND-firing semantics (see

Invocation Semantics, page 14).

The (length NUMBER) construct is used only when Lilypad is generating code for

use with nsim. When this is the case, NUMBER specifies the amount of NuMesh cycles that

nsim should block for after invoking this function block. This is useful for simulating a rough

approximation of the relative computation cost for this block. When not specified, this

parameter defaults to 3 NuMesh cycles.



The (files STRING+) construct is used to specify the one or more object files

which must be linked with the application when using this function block. Each STRING

must contain the path name of the object file relative to the Lilypad blocks directory.

Finally, the (includes STRING+) construct specifies any files which must be

#included by the control procedure implementation. These are only required when the

primitive block top-level procedure requires arguments which are of user-defined types.



8. Appendix B - Lilypad User's Manual

Lilypad is invoked from the command line by executing lilypad at the command

prompt. The following command line switches may be used to affect its behavior:

-nsim
-outdir pathname
-blocks filename
-streams filename

The -ns im flag is used to specify that Lilypad should generate code targeted to run

under simulation with nsim rather than for the physical NuMesh hardware. The specific

differences in output that are entailed by using this switch are discussed in the Support for

Simulation section, which begins on page 38.

Under normal operation, Lilypad places all of its generated files in the current working

directory. If the desired location of its output is a different, the -outdir switch may be used

in conjunction with a pathname to instruct Lilypad to place the files in the specified path.

As defaults, Lilypad assumes that the Bullfrog output files which specify the blocks

and the streams of the bullfrog network are named with the Bullfrog defaults of compiler.bfg

and streams.bfg, respectively. If the names differ, the -blocks and -streams switches

may be used with the correct filenames to specify their location.

After Lilypad has successfully been run, a NuMesh application may be generated from

its output by simply typing:

make -f Makefile.lp
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