Speciation, Clustering and other Genetic Algorithm Improvements for

Structural Topology Optimization

by

James Wallace Duda

B.S., Mechanical Engineering
Case Western Reserve University, 1994

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

at the

Massachusetts Institute of Technology

May, 1996

© 1996 Massachusetts Institute of Technology
All rights reserved

Signature of Author __ N

< James Duda
Department of Mechanical Engineering
May 31, 1996

Certified by f o« b g ey oy

g U ' Mark J. Jakiela

Associate Profe echanical Engineering
/&% Thesis Supervisor

Accepted by —Te =

Chairman, Department Committee on Graduate Students

OF TECHNOLOGY

JUN 2 71996
LIBRASIES

Eng.

Ain A. Sonin

T ‘t"‘ﬂh;“%

Speciation, Clustering and other Genetic Algorithm Improvements for Structural
Topology Optimization

by
James Wallace Duda

Submitted to the Department of Mechanical Engineering on May 31, 1996
in partial fulfillment of the requirements for the Degree of Master of Science in Mechanical
Engineering

ABSTRACT

Genetic algorithms are used to search for optimal structural topologies. Modifications to basic
genetic algorithm techniques are implemented to increase computational efficiency, avoid premature
convergence to a single solution, and solve new categories of problems. GA’s are a search and
optimization tool based on the principles of evolution and survival of the fittest. Potential designs
are represented by chromosomes, each of which receives a fitness score based on the quality of the
design it represents. As in nature, the more fit a chromosome is, the more likely it is to survive and
“reproduce,” combining with another “parent” chromosome to produce new “child” chromosomes.
As this process of evaluation, selection, and reproduction is iterated, the population of
chromosomes “evolves,” and new and improved designs are generated. In this study, an allowable
design domain is discretized into several binary, material/void elements, yielding a combinatorial
search space. One chromosome represents one design, which can be evaluated using finite element
analysis or analytical techniques. Extending previous efforts with the same basic representation and
search technique, this research proposes several methods for improving genetic algorithm
performance. New population initialization and parent selection methods are implemented to reduce
run-times and decrease the number of poor intermediate designs generated and evaluated by the
algorithm. Fitness sharing and speciation are used to distribute subsets of the evolving population
over many local optima, preventing premature convergence to a single solution when multiple,
equally good solutions exist. The resulting distribution of sub-populations is analogous to different
species exploiting different niches in an ecosystem. Statistical cluster analysis techniques are used
to divide the population into sub-species and to quantify the extent to which a population is
speciated. Additionally, this cluster analysis is used to discourage the mating of dissimilar designs
(designs from different clusters). Results show that these modifications to basic genetic algorithm
techniques result in shorter run-times and greater diversity of solutions. Finally, a hybrid GA /
simulated annealing method is introduced for topology design of adaptive structures.

Thesis Supervisor: Mark J. Jakiela
Title: Associate Professor, Mechanical Engineering

Acknowledgments

I would like to take this opportunity to thank the people who made this work possible. First, I
would like to thank Mark Jakiela, my thesis advisor, for his guidance and support. I would also
like to thank Colin Chapman, for helping me decipher some old computer code, and Matthew
Wall, for helping me write new code. The software developed in this investigation relied on the
ever-changing GA library created by Matthew Wall and finite element analysis software written by
Ashok Kumar. I’d also like to thank all the members of the MIT CADIlab for making the lab a
pleasant and sometimes even fun place to work, and for not complaining when my code was
slowing down their machines. Finally, I would like to thank the National Science Foundation,

whose funding has made this work possible.

Table Of Contents

ADSITACE. .. .ot e e 3
ACKNOWIEAZIMENLSeniiiiieiitiitiiie et e e e ee e e e e e e taeeenaeaereraaeneans 5
Table Of CONLENLSo.eneiiie it ettt e e eeeaeaans 7-9
List Of FIZUIES ..o.unieiii ittt e e ee e 11-12
List Of TAbIESvnniniiiii it e e e 13
INrOQUCHION.ttt ettt ettt e et et e e e e aaeaeas 15-18
Lol OVEIVIEW ..ttt e et et et e et e e aa e e e aanaanas 15
1.2 MOtIVALON ...ceteeneeeeee e et e et et e e e e e eee e eeananas 15-16
1.3 ObJeCtiVe. ..ot 16
1.4 Problem Definitionc.oooiiiiniiiiiii i 16-18
1.5 Organization........ooeiiiiiiiniiiii i e eaaaae 18
Genetic Algorithm BasiCso.ouiiiieiiiii e 19-24
2.1 OVEIVIEW ..ottt ettt e e e e raaens 19
2.2 Genetic Algorithm Fundamentals...............coooieiiiiiiiiiiiiiininnnen. 19-24
2.2.1 IntrodUCHION.ttt e e e e e 19-20
2.2.2 Design Representation: Designs Encoded as Chromosomes. 20-21
2.2.3 Optimization: Evaluation, Selection and Reproduction........... 21-24
PACIINI 111 1 0F: o PP 24
Extensions tothe GA ..ottt e e 25-33
3.1 OVEIVIEW .ttt ettt et e et e e aeees 25
3.2 Modifications to the Basic Approach...............ccoooiiiiiiiiiiiiiininn... 25-27
3.2.1 INtroducCtion.......cc.eevuiiniiiiii it ie e aeas 25
3.2.2 Overlapping Populations...............cccoviiiiiinininnininn.n.. 25-26
3.2.3 Non-standard Chromosomes.............ccccveveveeneieneenenennns. 26-27
3.3 Fitness Sharing and Speciationccoeiiiiiiiiiiiiiiiiieeenene, 27-31
3.3.1 INtroduction........ccciiieiiiiiiiiiiiiiii it aeeaeenns 27-28
3.3.2 Theory of Fitness Sharingc..cocvviiiiiiiiiiiiiininninnn, 28-29
3.3.3 Speciating Genetic Algorithmsc.cccoevviiiiiiinnn..s. 29-30
3.3.4 Other Niching Methods............cccociiiiiiiiiiiiiiniiiieeeeens 31
3.4 Optimization Parameters............c.coeevviiiiiiiiiiiiiiiei e, 31-32
3.5 SUMMATY ...oniniini e 32-33
Structural OptMIZAtIONuivitiiiie et eeeeeeeeeenenanes 35-41

4.2 Problem FOrmulation.oveeiueneiiiiiiiie ettt traeareaaaseeeasaaens 35-37

4.3 Structural Optimization Classifications................coevveieiveiiieinnnenen. 37-40
4.3.1 Sizing Optimization..............ccoovviiiiiiiiiiiiiiin 37-38
4.3.2 Shape Optimizationccceuvuiniiiiiininiiiiiiieriiienenenene. 38
4.3.3 Topology Optimizationcceieieiiiiniiiiniiiiniiiinenann, 39-40
4.4 Structural Optimization Techniquesoocooiiiiiiiiin, 40
4.5 Design of Adaptive Structurescccoevveiiiiiiiiiiniiiiiiiinn, 41
NN 1111110F:] o S 41
Related WorKoouiiiiii e 43-57
5.1 IntroduCtioncooineiiiii e 43
5.2 Homogenization-based Methods...................co 43-44
5.3 Simulated Annealingcoeeieieiiiiniiiiiiiiiii e 45-46
5.4 Genetic AlgOrithms............oociiiiiiiiiiiiiii e 46-57
5.4.1 Sizing Optimization..........ccocviviiiiieiiiiiiiiiiiiiine. 47
5.4.2 Shape Optimizationccceevuiueiiieiiiiiniiiieeiiinenenn.. 47-48
5.4.3 Topology OptimiZationcceviiniiiiiiiiiiniiiiiininenn. 48-57
544 SUMMAIY......cotiniiiiiii it eaes 57
This INVeStiZAtiono.iuiiiiiiiiiii 59-75
6.1 OVEIVIEW ..ennintentet ettt e e et et e e et et et taeeaeanns 59
6.2 Optimization Technique..............c..cooioiiiiiiiiiiiii 59-60
6.2.1 Introduction.........c.oueieiniieiiiiniiiiiiie it 59
6.2.2 Extensions of Related Studies...................cooi 59-60
6.2.3 Similarities with Prior Investigationsc...couuee. 60
6.3 Design of Planar Structurescoooiiiiiiiiiiiiiiiii 60-70
6.3.1 INtroduction..........ccoieiiiiiiiiiiiiiiiiiiii it 60-61
6.3.2 Design Representation...........cooviviiiiiiiiiiiiiiiiiiiniinan, 61-64
6.3.3 Optimization Proceduresccooceviiiiiiiiiiin., 64-70
6.4 Design of Adaptive StruCturescoceviiiiiiiiiiiiiiiiinnniienn, 71-75
6.4.1 Introduction............oovvieiiniiniiiiiiiiiiiiiiiiiii e 71
6.4.2 Design Representation.............ccovvviieieiiiiiiiiiiiiinin.. 71-73
6.4.3 Optimization Procedurescoooooiiiiiiii, 73-75
Results Design of Planar Stress Structuresooooeiiiiiiiiiiiiiiiinienn, 7790
8 B0 1= 7 T 77
7.2 Example 1: Cantilevered Plate..................ooiiiii 77-87
7.2.1 Effects of a New Population Initializer............................. 79-81
7.2.2 Effects of Connectivity AnalysiS..........c.cceevuviniiiiniinnnn.. 82-83

7.2.3 Fitness Sharing........ccoevieiiiiiiiiiiiiiiiiiiiiiie e, 83-86

7.2.4 Cluster AnalySiS......cccvueiueiiieiniiiiaianiiiarenieieaeeeanenanns, 86-87
7.2.5 Restricted Mating..........cccoieiiieiiiiiiiiiiiniiiiiieiieierenenns. 87
7.3 Example 2: Beam OptimizZation............couvuiiiinininiiiiininniienennnnennns 88-90
Results: Design of Adaptive StruCtures..........o.vuvuieininiiiiiiieiicne e ieeeens 91-96
8.1 OVEIVIEW ..ttt et rae e 91
8.2 Design Examplesccooeiiiniiiiii e 91-96
8.2.1 Neighborhood Operators..........covviieiiieiiiniiiiiiennennnns 92-93
8.2.2 Optimization Results...........c.coviiiiiiiiiiiiiiiiiiiiiiiiinene, 93-96
CONCIUSIONS. . . .etnentinitit ittt ettt e e et e et e eaaeaens 97-102
9.1 OVEIVIEW ..ttt ettt ettt ettt e e ee e e aee e e e 97
9.2 ContribUHONS.uenveeieiiei e e e e e aeeeaaenns 97-99
9.2.1 Design of Planar Stress Structures...........c..cceevveiiinnennen... 97-99
9.2.2 Design of Adaptive Structures.ccceevvveininiiiininiiannn, 99
0.3 CONCIUSIONS ...c.enueneiniitiii et ee e ee e ee e eneeaenens 99-101
9.3.1 Design of Planar Stress Structures...........coceevevieiieiinennenn.. 99-100
9.3.2 Design of Adaptive Structures.ccooveeeiiiiiiiieniiiaeranennnn 100-101
9.4 FUture WOrK.......oueniiiiiiiii i e 101-102

| 33 (55 (55 1 1oL 103-106

10

List of Figures

Figure 1.1
Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

Sample problem domainc.oooiiiiiii 17
Decoding a binary string chromosomec..coceoeieiiiineiiiininnnnnn.. 21
Single-pOint CIOSSOVETcc.eiuiiiniie ettt eeer e ereneenanes 24
Crossover with 2D array chromosomes.c.cocevviiieiiieininenennn... 27
Power law sharing functionsc..oooiiiiiiiiiiiiiii i 30
SiZIng OPtMIZAtIONo.vuiniiniiie et e eeanaes 38
Shape OpMIZAtON.outitiitiiiit et ree et et ree e eeeaaaaas 38
Topology OPtIMIZALIONueeitiiie ittt ne e eeee e ieeneenns 40
Design domain discretized into material/void elements............. e 45
Multi-segment beam optimization problemcccoeiiiiiiiinn.n, 49
Results of single-segment beam optimizationc.c.cocveieninen... 49
Plane stress structural optimization results..............cccceveiiiniinennnn.... 50
One chromosome mapping to multiple topologies.................ccceeunen.n. 51
Mapping a string chromosome into the design domain......................... 53
Connectivity analysis.cocvuiuiiireiniiiiiiiiet i iiie e ieeaeeeeaaaes 54
Connected and disconnected material elements................cccooeveiienan... 54
Family of plate topologiescoeieiiiiiiiiiiiiieiee e 56
Design representation.coevuieeiiniiiiiiiiii i aaaaaas 62
Mapping of a chromsome to the design domain....................c.ceeeeeee, 63
Connectivity analySiS.........ouvueuieieiniiiiiiii i 64
Finite element meshesc.ocoeiiiiiiiiiiiiiiiiiiiiiii e 66
ClUSEETING PIOCESS .. .uvvtieeeitinenee et ettt ee et eee e eeeeenenns 68
Cross-section optimization design domain...................ccoeeeiiiiinininn... 72
Simulated annealing neighberhood operators.............cc.ccoiiiiiiininnnn... 73

11

Figure 6.8 Sample design domainccooiiiiiiiiiiiiiiiiiiii 75

Figure 7.1 Design domaincccoeiiiiiiiiiiiiiiiiiiiiiiii e 78
Figure 7.2 Best of generation results - random and connected initial populations 81
Figure 7.3 Effect of connectivity analysis on GA performance 82

Figure 7.4 Typical results of optimization runs with different types of connectivity83

Figure 7.5 Effect of fitness sharing on population diversity....................ccoeneanen. 85
Figure 7.6 Clustered final population...............ccoviiiiiiiiiiii e, 86
Figure 7.7 Beamdesign domainociiiiiiiiiiiiiiiiii e 88
Figure 7.8 One result from a beam optimization TUN............coveiiiriiiiniiiiinininnen.. 89
Figure 7.9 Results of GA run with fitness sharing, no restricted mating 89
Figure 7.10 Final population of GA with fitness sharing and restricted mating 90
Figure 8.1 Example of a design and its mass Propertiesoeeeveeeeiinennnnnnnn. 92
Figure 8.2 Solution before and after annealing...................ooooiiiin.. 94
Figure 8.3 Design with no annealing required................cccooeiiiiiiiiininn.e. 95
Figure 8.4 Original and adapted Structures...............ocooeiiiiiiiiiiiiiiiiniieeeee 96

12

List of Tables

Table 5.1
Table 6.1
Table 6.2
Table 7.1
Table 7.2
Table 7.3

Table 7.4

Table 7.5
Table 7.6
Table 7.7
Table 8.1
Table 8.2

Plate topology performance data.............cccooiiiiiiiiiiiiiiiiiiiiiiinn, 55
Point pair resemblances, actual and clusteringoooviiii, 69
Clustered POINt PaAUTS.couereentinteeieeeteeaeeiereeaerrenarieraeaeanenaanans 70
Best of generation results - random and connected initial populations 81
Effect of connectivity analysis on GA performance 83
GA'’s with linear fitness sharingc..cooiiiiiiiiiiiiiiiiiiiiin e, 84
Fitness sharing with different valuesof OL...............cooiiill, 86
Fitness of CIUSters.ovininiiiii e 87
Summary of GATesults.........ocoieiiiiiiiiii i 87
Results of beam optimization...........ccocviiiiiiiiiiiiiiiiii e, 90
Properties of original and adapted structures.............c.cccoeeieiiiiennn... 94
Properties of original and adapted structures................coceieiiiiennn.n.. 96

13

14

Chapter 1

Introduction

1.1 Overview

This chapter provides a brief overview of the chapters that follow. The motivation for this
research is presented, followed by a more specific statement of the problem faced and the
approach taken. Finally, the organization of this thesis is outlined.

1.2 Motivation

Design is an iterative process which may be divided into the following four stages:
formulation of functional requirements, conceptual design, optimization, and detailing
(Kirsch, 1981). Iterations of this process are often required as the initial design frequently
is in some way inadequate. The conceptual design phase is a critical step in this process. In
it, the general characteristics of the design (shape, topology, material, efc.) are defined.
Although this stage is very important, relatively few computational tools exist to aid the
designer in generating conceptual designs. Once a conceptual design is created, several
methods exist for performing some type of optimization. The final stage of the design
process, detailing, must generally be performed by an engineer, not a computer-based
system. This final phase involves the final definition of the design, usually based on the
designer’s experience and engineering judgment.

Recently, genetic algorithms (“GA’s”) have been introduced as a method for generating and
optimizing conceptual designs. In particular, this approach has been applied to topology
design optimization for load-bearing structures. Such approaches have experienced some
degree of success, although certain performance limitations exist. In particular, GA’s tend
to require a great deal of computation and generally produce a single, “best” conceptual
design.

Researchers have also been seeking to discover how and why GA’s (and other techniques
that simulate evolution) work and how they should best be used (see, e.g., Eshelman,

15

1995). One subset of these more theoretical efforts addresses techniques for modeling
phenomena closely related to the basic concept of simulated evolution, such as co-
evolution, emergence, and speciation. As models of these related phenomena become better
understood, they will undoubtedly find use in the solution of difficult problems.

This investigation focuses on developing an improved genetic algorithm-based system for
the conceptual design optimization of load bearing structures using advanced GA
techniques including speciation and clustering. Although structural topology optimization is
a very specific design problem, the methods developed in this study are applicable to a
variety of problem domains. In fact, one of the strengths of GA’s as an optimization
technique is their ability to perform optimization in a wide range of problem domains.

1.3 Objective

The general objective of this investigation is to develop an improved system for genetic
algorithm-based conceptual design, specifically applied to the problem of structural
topology optimization. In particular, the following goals are set forth:

To improve the efficiency of genetic algorithms as a tool for structural topology
optimization. This involves reducing GA run-times through the use of better
GA operators and methods.

To increase the diversity of solutions produced by a genetic algorithm-based
optimization run. It is desired that one run of a genetic algorithm produce
several optimal or nearly-optimal designs, allowing the designer to select the
“best” design based on fine details and engineering judgment.

To apply this approach to example problems in order to demonstrate its capabilities
and measure its performance.

To introduce a method for using genetic algorithms to perform optimal topology
design of adaptive structures.

1.4 Problem Definition

Typically, genetic algorithms are applied to structural topology optimization problems
posed in the following form:

16

Given a design domain defining the region in which the structure must exist, one or
more loads to be applied to the structure, and a set of support points on the structure
(see figure 1.1), generate the structural topology which optimizes performance
while satisfying a set of constraints.

/— Design Domain

Applied Load

ANNNN\N

Fixed Support

Figure 1.1 Sample problem domain

The goal of the optimization process is therefore to find the optimal distribution of material
in a fixed region given certain measures of design performance and a set of design and/or
performance constraints. In this study, the problem definition is expanded, in that it is
desired that the optimization process produce a diverse set of nearly-optimal designs instead
of a single, “best” design. The optimization technique, a genetic algorithm, uses an
evolutionary process based on the concept of “survival of the fittest” to take a population of
several possible designs and “evolve” it into a set of optimal or nearly-optimal structural
topologies. In this investigation, this evolutionary optimization model is extended by
making provisions that cause “species” to emerge in the population as it evolves. In the
biological context, these species are exploiting “niches” in an environment. In the structural
context, it will be seen that these species correspond to local optima that are distributed
across the search space. Importantly, a speciated GA search does not need to be
significantly more computationally expensive than one that does not reveal species. In fact,
this study develops a number of methods for improving GA efficiency and thereby

17

reducing run-times. Additionally, a new optimization technique which combines genetic
algorithms and simulated annealing to optimize the design of adaptive structures is

introduced.

1.5 Organization

This thesis presents the development and application of an improved genetic algorithm-
based system for structural topology optimization. It is divided into chapters as follows: -

Chapter 2, Genetic Algorithm Basics, provides an introduction to the workings of genetic
algorithms, including design representation and optimization methods.

Chapter 3, Extensions to the GA, describes modifications to the basic GA technique and
the effects of altering various GA parameters. Genetic algorithm improvements include
overlapping populations, non-standard chromosomes, and fitness sharing.

Chapter 4, Structural Optimization, provides a basic introduction to structural optimization
problems, including size, shape, and topology optimization.

Chapter 5, Related Work, gives more specific details on previous work in structural
topology optimization, with particular attention to previous efforts using genetic
algorithms.

Chapter 6, This Investigation, begins by explaining the differences between this study and
previous efforts. The details of this investigation are then presented.

Chapters 7 and 8 detail the application of this approach to sample problems and
demonstrates the improvements in optimization performance. Chapter 7 presents the results
of the modified genetic algorithm approach applied to the design of planar stress structures.
Chapter 8 demonstrates a hybrid genetic algorithm / simulated annealing based approach for
the design of adaptive structures.

Chapter 9, Conclusions, reviews the contributions of this work, discusses the results
presented in chapters 7 and 8, and offers ideas for future work in this area.

18

Chapter 2

Genetic Algorithm Basics

2.1 Overview

The genetic algorithm is the principal optimization method used in this study. This chapter
introduces and describes the fundamentals of the genetic algorithm, including common
design representations which may be used with genetic algorithms, design evaluation and
selection methods, and the basic operators needed to implement a genetic algorithm.

2.2 Genetic Algorithm Fundamentals

2.2.1 Introduction

Genetic algorithms (GA’s) are search algorithms modeled after biological systems in which
a population of organisms evolves through the process of natural selection (Holland,
1975). In a genetic algorithm, an organism is typically represented by a set of data referred
to as a chromosome. For a design optimization problem, this data would usually contain all
of the information needed to define one possible design (one organism is analogous to one
design, or one point in the search space). The GA assigns a score to each chromosome in
the population based on how well the design it represents meets the design requirements.
These fitness scores are used to probabilistically select chromosomes to be “parents” for the
next generation of individuals, modeling the natural phenomenon of “survival of the
fittest.” Various probabilistic operations modeled after genetic crossover and mutation are
performed on these “parent” chromosomes to produce a new population of possible
designs. Optimization occurs as several “generations” of this process of evaluation,
selection and reproduction improve the quality of the designs. Typically, as the number of
generations increases, the fitness of the population (which can be measured in a number of
ways) increases and the diversity of the chromosomes within the population decreases as
the GA “converges” to one optimal or nearly optimal solution.

19

One advantage of genetic algorithms is that they represent a compromise between “weak”
and “strong” search methods. “Strong” search methods, such as numerical optimization
methods, use auxiliary information such as function gradients to perform search in an
informed manner. “Weak” methods, such as random or exhaustive searches, sample the
design space extensively, but in an uninformed manner. Strong methods are more efficient,
but are also more likely to settle at a local optimum, and they often require design space
continuity and derivative existence. Weak methods are more robust and less demanding
with regards to the search space, but they are much less efficient. Genetic algorithms, in
contrast, operate with a “strong” progression towards improved designs, but use the
“weak” operators of probabilistic selection, crossover and mutation to search for a global
optimum.

2.2.2 Design Representation: Designs Encoded as Chromosomes

When using genetic algorithms in engineering design problems, the characteristics of a
possible design must be encoded into some type of chromosome (see, e.g., Goldberg,
1989a). Genetic algorithms are very flexible in this respect, as many different schemes are
possible to perform the mapping from genotype (chromosome) to phenotype (design).

The most common method for encoding a design into a chromosome is to represent the
design by a fixed number of parameters then convert each of these parameters into a string
of binary digits (bits). Concatenating all of these bit strings in a fixed order forms the
chromosome. Each bit position can be thought of as a gene, the value of the bit can be
thought of as that gene’s allele. For example, suppose a GA was to be used to optimize a
set of three design parameters. As shown in figure 2.1, a chromosome could be created as
a set of three binary strings, one for each parameter. The number of bits in each string
controls the resolution and/or range of each parameter, allowing the parameters to be
integers (parameters 1 and 3) or real numbers (parameter 2) as desired. A simple binary-to-
decimal conversion function is all that is needed to go from chromosome to design. For
example, mapping a 5-bit binary number (such as parameter 2, Y, in figure 2.1) to a real
number in a given range is achieved as follows. First, map the binary number to its integer
equivalent (01100 = 12) and then divide by the maximum value of the binary number, in
this case, (2° - 1) = 31. Finally, multiply this result by the size of the parameter range (1.0
in the case shown in figure 2.1). So, in the case shown in figure 2.1,

Y=%*1.0=0.39 2.1

20

101011000110

v

101]0110010110

.

Parameter #1 Parameter #2 Parameter #3
0£X<7 (00<Y<1.0) 0<Z<15)
5 0.39 6

Figure 2.1 Decoding a binary string chromosome

Several other types of chromosomes may be used to represent a design. Ordered lists,
strings of characters, multi-dimensional arrays, and tree-shaped structures have all been
successfully implemented as types of chromosomes for genetic algorithm search.

It is also important to note that the size of the chromosome (i.e., the amount of information
encoded into it) controls the size of the search space. For example, in the case described
above, the number of bits used in the binary string chromosome determines the size of the
search space. The number of possible values of an n-bit binary string chromosome is 2".
As a result, increasing the resolution and/or range of parameter values can increase the size
of the search space dramatically, leading to significantly longer run times and more required

computations.

2.2.3 Optimization: Evaluation, Selection and Reproduction

A genetic algorithm typically begins by randomly creating an initial population of
chromosomes (potential designs). After that, most of the work done by the GA consists of
three operations: evaluating chromosomes, selecting chromosomes to reproduce, and
performing various reproduction operations on the selected chromosomes to create new
individuals.

21

Evaluation

In order for a GA to implement the idea of “survival of the fittest,” a function must be
created which can assign a score to each chromosome based on its “fitness.” This fitness
function can generally be thought of as a measure of the quality that is to be maximized. Of
course, a GA can also be used to perform a minimization. In this case, the fitness function
must be set up so that fitness rises as the quantity to be minimized (often the objective
function) decreases. This is typically done by setting the fitness value equal to the
reciprocal of the objective value, or equal to some large constant minus the objective score.

Typically, a fitness function evaluates the chromosomes one at a time, using some absolute
measure of performance. For instance, the stiffness-to-weight ratio of each structure might
be evaluated. In other cases, when an absolute scale is difficult to define, the fitness
function may evaluate the chromosomes relative to one another instead.

It is common in the early generations of a GA run for a few individuals to have vastly
superior fitness scores. This can cause the GA to prematurely converge to a local optimum.
As a GA runs longer, the population’s average fitness tends to come closer and closer to
that of the best individual(s). In this case, it becomes more and more difficult for the GA to
pick out the “fittest” individuals, and so further improvement becomes difficult. To help
eliminate these problems, some type of fitness scaling is nearly always used (Goldberg,
1989a, pgs. 122-124). This scaling helps to keep fitness values closer together during the
early generations, then spread them further apart as the run continues. Several schemes
exist to perform this scaling. The most common ones include linear scaling, sigma
truncation scaling, and power law scaling. Other scaling rules, such as fitness sharing,
have been created to help encourage population diversity. This topic will be discussed
further in section 3.3.3.

Selection

Once the initial population has been created and evaluated, individuals must be selected for
reproduction. In order to improve the overall fitness level of the population, chromosomes
are selected based on their fitness scores. Chromosomes with high fitness scores are more
likely to survive and reproduce, those with low scores are more likely to “die off.”

Selection is generally biased towards those chromosomes with high fitness scores. The
simplest and most common way of implementing this is by using “Stochastic Sampling

22

with Replacement” (Baker, 1987), more commonly called “roulette wheel selection.” With
this algorithm, a “roulette wheel” is created with a number of “slices” equal to N, the
number of chromosomes in a population. The size of each chromosome’s “slice” is given
by:

size(a) = —L 5% (2.2)

2 fitness;,

i=1

This wheel is then randomly “spun” N times, with each spin selecting one chromosome to
serve as a parent for the new population. It is important to note that a given chromosome
can be selected more than one time per generation. As a result, even though N parents are
chosen from a population of N chromosomes, not every chromosome will be selected, and
there is no guarantee that any particular chromosome will be selected. The possibility that
the best chromosome will not be selected can be avoided by using an “elitist” scheme. This
will be discussed further in the following section.

Reproduction

Once all of the parent chromosomes have been selected, they must “reproduce” to create a
new generation of children. This chromosome reproduction is modeled after genetic
reproduction and usually consists of two operations: crossover and mutation.

Crossover involves combining different parts of two parent chromosomes to make two
new “children.” The simplest and most common crossover operation is single-point
crossover, as shown in figure 2.2. First, a crossover site is randomly selected along the
length of the chromosomes. Then, the front of one chromosome is appended to the back of
the other chromosome and vice versa. Thus, two children are created from two parents.
Generally, most but not all parent chromosomes undergo crossover. Those few parents that
do not crossover enter the new population unaltered. In “elitist” GA’s, the best
chromosome generated so far will always proceed unaltered into the next generation.

23

Parents: 1111111111
0000000000

Crossover: 1111 111111
0000 |000000

Children: 1111000000
0000111111

Figure 2.2 Single-point crossover

Crossover operators can create new and better children, but they do not have the ability to
create any “new” genetic material. All of the children are made up of parts of their parents.
As in nature, mutation is used to introduce random new genetic material into the
population. Mutation is performed with a very low probability on the children. One bit per
thousand, for instance, might be randomly chosen and inverted or otherwise altered.

2.3 Summary

The genetic algorithm model described above can be thought of as the basic or canonical
approach. This approach is a robust and general search and optimization technique that can
be applied to a variety of problem domains. Because a GA is a zero’th order method,
requiring no derivative or gradient calculations, it is well-suited for discrete and/or multi-
modal design spaces. There are, however, some drawbacks to such an approach. Although
the parallelism inherent in a GA helps it to avoid local optima, a GA as described above
does tend to converge to a single solution. Also, a genetic algorithm usually requires that a
large number of designs be evaluated, often resulting in large computation times. As a
result of these short-comings, some extensions to the basic approach have been created, as
described in the following chapter.

24

Chapter 3

Extensions to the GA

3.1 Overview

This chapter presents extensions to the basic GA approach discussed in the previous
chapter, including different design representations and genetic algorithm operators.
Particular attention is paid to genetic algorithm modifications aimed at maintaining a diverse
population of solutions. Finally, the effects of various genetic algorithm parameters are
discussed.

3.2 Modifications to the Basic Approach

3.2.1 Introduction

While the approach described in the previous chapter is a robust and general method
applicable to many search and optimization problems, many other problems require some
modifications for improved performance and efficiency. Genetic algorithms with
overlapping populations may be used to speed up the optimization process in cases where
evaluating a design is computationally expensive. More complex design representations are
necessary in some cases to provide a more effective design-to-chromosome mapping.
Various other GA functions and parameters may also be modified to improve performance
in certain cases. In fact, it is safe to say that alternative algorithms and mechanisms have
been proposed and implemented for nearly every aspect of the basic GA approach
described previously.

3.2.2 Overlapping Populations

One of the more commonly used variants of the simple GA is the “steady-state” GA
(Syswerda, 1989, 1991). The difference is as follows. A simple GA uses non-overlapping
populations. Each generation, a whole new population is created and the old population is
discarded. A steady-state GA, on the other hand, uses overlapping populations. A smaller

25

number of parents are chosen each generation, and the children they create are inserted into
the original population, replacing some of the individuals there. Typically, the individuals
with the lowest fitness scores are replaced, although other schemes have been used. Using
overlapping populations requires fewer fitness computations per generation and
correspondingly more generations overall, but typically results in run-times several times
faster than a simple GA with non-overlapping populations.

3.2.3 Non-standard Chromosomes

Although the binary string chromosome described in section 2.2.2 is used for a variety of
problems, several other types of representations have been used and found to work well.
For example, the alleles in a string need not be binary bits. Alleles could be integers,
characters, or real numbers. In some cases, the alleles in a string are labels representing a
task where the order of the labels indicates the task sequence (see Davis, 1995). The
chromosomes do not even have to be strings. In genetic programming (see Koza, 1992),
tree structures are used to represent the decision structure of a computer program. These
structures are decoded to reveal their phenotype: computer code that can be run to determine
its fitness. The result is that software can be “evolved” by a GA. Another variation on the
binary string chromosome is the multi-dimensional array chromosome. In its simplest form
this is just an array of binary bits, but again, these alleles could be integers, real numbers,

etc.

When an alternative representation is used, new crossover and mutation operators
sometimes are required. In this study, two-dimensional array chromosomes are often used.
Single point crossover needed to be redefined, as shown in figure 3.1a. A single point is
randomly selected somewhere along the height and width of the chromosome. The two
parent chromosomes are divided into four pieces each, and the complementary pieces are
exchanged to create the two children. Other crossover operators, such as two-point
crossover (see figure 3.1b), have been defined for two-dimensional array chromosomes,
but in this study, single point crossover was found to be the most effective, and was used
throughout.

26

IParents :

ne-point
rossover:

[Children:

11111111 00000000
11111111 00000000
11111111 00000000
11111111 00000000
11111111 00000000
11111111 00000000
111111111 000{ 00000
111311111 000] 00000
111111111 000{ 00000
111111111 000{ 00000
111111111 000{ 00000
111111111 000| 00000
11100000 00011111
11100000 00011111
11100000 00011111
00011111 11100000
00011111 11100000
00011111 11100000

Parents:

Two-point
Crossover:

Children:

11111111 00000000
11111111 00000000
11111111 00000000
11111111 00000000
11111111 00000000
11111111 00000000
11111111 000 0000(0
1111111 000{0000|0
111{1111 000{0000{ 0
11111111 000}0000{0
1111111 000{0000(0
1111111 000°0000°0
11111111 00000000
11111111 00000000
11111111 00000000
11100001 00011110
11100001 00011110
11111111 00000000

Figure 3.1 Crossover with 2D array chromosomes: (a) one-point crossover
and (b) two-point crossover

3.3 Fitness Sharing and Speciation

3.3.1

Introduction

When a GA is used in a problem with many equally good solutions, it is usually desired

that the GA find a number of these solutions. However, a standard GA used for such a

problem will have a final population which will be located predominately around just one of

these optimal solutions. This degraded performance is due to the finite size of the

population and the accumulation of stochastic errors and has been given the name “genetic

drift” (Goldberg, 1987). Clearly, it is desirable that the GA not converge to just one of
several equally good designs. In fact, it is often desirable that the GA find any near-optimal

designs in addition to the global optimum. Genetic algorithm fitness functions are not

always exact measures of quality, and a design which has a slightly lower fitness score

than the “optimum” may actually be more desirable due to factors which were difficult to

model in a fitness function. In cases such as this, it is desired that the GA find a number of

27

solutions, all nearly optimal according to the fitness function. The designer may then select
the design or designs that are the best.

3.3.2 Theory of Fitness Sharing

One method for improving GA performance in multi-modal domains is the use of fitness
sharing (Goldberg and Richardson, 1987). Fitness sharing is based on an analogy to
biological systems. In nature, different species evolve to exploit different niches in their
environment. Similarly, with fitness sharing, chromosomes are allowed to evolve into
separate clusters, or species, to exploit some local area, or “niche”, of the design space.
The use of fitness sharing in a GA helps reduce competition between very dissimilar
chromosomes, and helps to improve the overall diversity of the population by delaying

convergence.

The first use of niche and speciation in artificial genetic search is credited to Holland
(1975), who used a modification of the two-armed bandit problem to illustrate his
approach. Consider a slot machine with two “arms,” each with its own payoff chute. The
two arms pay out different amounts, but each pays out the same amount every time it is
pulled. Playing this machine is a group of agents, each seeking to maximize individual
profit. In the standard, or unshared, case, each agent will try each arm once, determine
which one pays more, and position itself at that arm for future trials. This is just a simple
optimization problem with only two points in the design space. If the agents reproduce
according to fitness, more and more agents will “line up” in front of the arm with the better
payoff, and the population will converge to that location.

This last example showed no signs of niche or species-like behavior. To induce such
behavior, we introduce the notion of fitness sharing. In this shared case, each agent must
share its payoff with all of the other agents at the same arm (all other agents in the same
niche). As a result of this change, the population of agents will tend to distribute itself so as
to maximize individual payoffs. For example, if their are 100 agents, and the two arms pay
out $75 and $25, respectively, the population should settle to a state in which there are 75
agents at the first arm, and 25 at the second. Each agent will have a payoff of $1, and no
agent could improve its payoff by changing arms.

Extending this problem to the “k-armed bandit” does not change the results. In a system
with k points in the design space (k arms and k lines), equilibrium will be reached when the

28

ratios of payoff to line length are all equal (Holland, 1975). The use of fitness sharing
causes the formation of stable subpopulations (species) at various areas in the design space
(niches), where the size of each subpopulation is proportional to the fitness of its niche. In
a typical GA problem, each agent is represented by a chromosome, and the payoff of an
arm is analogous to the fitness of a design. Some difficulties arise, however, in
determining which niche a chromosome is in and how its fitness should be shared.

3.3.3 Speciating Genetic Algorithms

A speciating genetic algorithm can be defined as any GA in which efforts are made to
maintain diversity within the population. The primary unique feature of most speciating
genetic algorithms is the use of a sharing function to perform fitness scaling. The basic role
of the sharing function is to define what a “niche” in the design space is and to scale the
fitness scores of the individuals within a niche.

In order to use a sharing function, some measurement of distance (dissimilarity) between
chromosomes must be defined. Generally, this distance function takes the form:

d; =d(x;,x;) 3.1
where d;; is the distance between chromosomes i and j. x; and x; can either be the genotypes
or phenotypes of chromosomes i and j. Better results are usually obtained by comparing
phenotypes (it’s better to compare designs than to compare the encodings of these designs).
Typically, this distance function is normalized, so that two identical chromosomes have a
distance of 0, and the two most different chromosomes possible have dij equal to 1.

Once a distance function has been defined, a sharing function is defined to determine the
extent to which two chromosomes share their fitness. A sharing function, s(d), is also
normalized between O (for the most dissimilar chromosomes), to 1 (for two identical
chromosomes). For example, the fitness of a given chromosome, i, could be given by:

fitness,,,..(x;) = f”itnessmw (x) (3.2)

ZS(d(x,.,xj))

j=1

Note that because a chromosome always shares its fitness with itself and s(d(x;;))=1, the
denominator can never be less than 1. A fitness function such as this one will cause

29

evolving chromosomes to be concentrated around different peaks in the design space in
numbers proportional to the relative fitness values of the peaks.

Goldberg and Richardson (1987) proposed using power law functions to determine the
amount of sharing between two chromosomes:

s(d) =1 - (d/o)*: d<oc (3.3)
s(d)=0: d=2o (3.4)
Plots of such functions are shown in figure 3.2. In these equations, ¢ and o are constants.
The constant 6 determines the size of a niche, o determines the shape of the curve.

Chromosomes only share their fitness with chromosomes less than ¢ away.

s(d)

® ¢ m o N o o
o O o o o o o

>~

distance, d

Figure 3.2 Power law sharing functions, 6 = 0.8

In this case, discrete niches are not defined. Instead, chromosomes share their fitness with
whatever chromosomes are “nearby.” This method has been found to work particularly
well for problems with continuous search spaces. However, in problems with discrete
design spaces it can become difficult to decide where to draw the line between separate

subpopulations.

30

3.3.4 Other Niching Methods

Methods other than fitness sharing have been proposed for maintaining a diverse
population of solutions. One of the earliest attempts at avoiding premature convergence was
DeJong’s crowding mechanism (DeJong, 1975). This technique uses overlapping
populations, where a new population member (a child chromosome) tends to replace the
most similar chromosome in the previous population. This technique was found to slow
convergence of the GA to a single solution, but also to limit the exploration of new areas of
the design space. Subsequent studies have shown that crowding is not a very effective
method for discovering multiple local optima (Deb & Goldberg, 1989; Mahfoud, 1995).

Another approach is to restrict competition among dissimilar chromosomes during the
selection process. Mahfoud (1995) describes such a method, using a form of tournament
selection. This process proceeds as follows. First, two similar chromosomes are randomly
selected from the population. (One is randomly selected, then potential competitors are
randomly selected until one is within the specified distance of the first). The fitness scores
of the two competitors are compared, and the chromosome with the higher score is used as
a parent for the next generation. Several variations of both of these schemes, such as
deterministic crowding, have been implemented, although fitness sharing remains the most
widely used technique for finding multiple optima. (See Mahfoud, 1995 for a thorough
review of other niching methods for GA’s.)

3.4 Optimization Parameters

Several methods and parameters must be chosen in order to implement a genetic algorithm.
Some of the most important GA methods and parameters are the following:

GA Type: Simple or Steady-State (overlapping or non-
overlapping populations)

Population Size: Number of chromosomes in a population

Chromosome Type: Binary String, Array of real numbers, ordered

list of integers, etc.

Fitness Scaling Method: Linear Scaling, Power Law Scaling, Fitness
Sharing, etc.

Selection Method: How parents are chosen from the population

31

Crossover Operator: How two chromosomes are combined to produce

children
Mutation Operator: How a gene is mutated
Percent Crossover: Percent chance that a particular parent will

undergo crossover

Percent Mutation: Percent chance that a particular gene will
undergo mutation

The methods and parameter values selected can have a great impact on the effectiveness and
the efficiency of the algorithm. Unfortunately, there is no clearly-defined universal process
for performing this selection. Several studies (see, for example, Schaffer et al., 1989, or
Goldberg, 1989b) have been done to investigate the effects of different parameters on GA
performance, and, in some cases, the results of these studies can be used to find an
“optimal” set parameter values. However, the “optimal” parameters change from problem
to problem, and the selection of parameter values for a GA is often an intuitive and
empirical process with many tradeoffs to consider. For example, having a small population
size will result in a GA with fewer function evaluations and a faster convergence rate, but
the population may not contain enough genetic information to effectively explore the search
space. Using a larger population may be necessary to explore a larger portion of the search
space, but this will result in longer run-times. Similarly, high rates of crossover and
mutation help to explore a greater amount of the search space and encourage diversity.
However, too much mutation can degrade GA performance, making it act like a random
search. Choosing GA methods is generally somewhat easier and more intuitive, based on
what sort of results are desired. For example, fitness sharing is more likely to produce a
diverse set of solutions, whereas a linear or power-law fitness scaling method will be more
efficient at finding a single “best” solution. Further discussion of parameter selection will
be discussed with regards to specific problems in chapter 6.

3.5 Summary

Many modifications can be made to the basic genetic algorithm approach in order to
improve performance on a particular design problem. Overlapping populations can be used
to decrease the number of fitness evaluations and run-times. Different types of
chromosomes can be used to encode designs more effectively and improve GA
performance. If a diverse set of nearly-optimal solutions is desired, fitness sharing can be
implemented. Many alternative methods have been proposed for nearly every aspect of the

32

genetic algorithm (selection, crossover, etc.). Choosing which methods to use and setting
the values of various GA parameters can have a great impact on performance and
efficiency. Selection of most of these methods and parameter values is very problem-
dependent, and no universal rules have been defined for optimal parameter selection.
However, with an understanding of how GA’s work and a little bit of experimentation,
changing these parameters and methods can result in tremendous improvements in the
performance of a genetic algorithm.

33

34

Chapter 4

Structural Optimization

4.1 Introduction

Structural optimization is the design of a mechanical component so as to maximize the
component’s utility, where utility is based on functional requirements and/or performance
constraints that are structural in nature. In general, the component’s design must be
represented by some finite number of design variables. The utility, or fitness, of a design is
evaluated using only these variables. This fitness value is a measure of how good the
structure is and can include factors such as weight, performance data, size,
manufacturability, reliability, etc. Constraints may also be applied to the problem, placing
limits on what structures are acceptable. For example, the designer could place limits on the
maximum allowable stress within a structure or the maximum size of a component. In
general, the goal of structural optimization is to design a mechanical structure that best
meets the functional objectives while also satisfying the given constraints.

4.2 Problem Formulation

In order to perform structural optimization, the qualitative problem description (e.g.,
minimize weight of a beam subject to a known load and displacement constraint) must be
converted into a quantitative mathematical statement (Arora, 1989). The first step in this
conversion is the definition of the design variables, the parameters that determine the design
of the structure. Each design variable represents one quality of the component’s design
which can be varied in order to find the optimum structure. There are two basic types of
design variables: those related to material properties and those related to the structures
geometric and shape properties. Material properties could include factors such as density or
yield strength, shape variables determine what the structure looks like. Mathematically, it is
important to note that these design variables can be either continuous or discrete. For
example, suppose that part of the structure was to be made of a beam with a circular cross-
section. The diameter of this beam might be a discrete variable, since beams could only be
purchased with certain cross-sections. However, the length of the beam could be
represented by a continuous variable, since a purchased beam could easily be cut to

35

whatever length is desired. Once all of the design variables have been defined, they are
combined to form a vector, X, as shown below:

X' =[x, X, X5 .o X,] 4.1)

The n-dimensional space defined by x is known as the design space or search space. Each
combination of design variables represents one design, one point in the search space.

Once this vector x has been defined, an objective function must be developed. This
function measures the utility, or “goodness,” of a given design. Given a set of design
variables, the objective function analyzes this design and returns a value indicating its
utility. This utility function can be expressed as:

U =U(®x) 4.2)

Depending on the optimization technique being used, the utility function may either be
maximized or minimized. In this study, it is always desired that the utility function be

maximized.

A set of constraints can also be defined. These constraints are used to determine whether a
given design is feasible or infeasible. These constraints can include both design constraints
and performance constraints. Design constraints act directly on the design variables,
performance constraints require evaluation of the design. An example of a design constraint
would be a limit placed on the value of a particular design variable. For example, the length
of a beam could be required to be less than three feet (x, < 3). An example of a performance
constraint could be a maximum allowable stress at any point in the structure. Performance
and design constraints may be equality constraints (X; + X,*x; = 1.0), inequality constraints
(x,/x, > 4.0), or side constraints (1 < x, < 6). Thus, the generalized structural
optimization problem can be expressed as follows:

Find the vector of design variables, x" = [X, X, X; ... X,]

to maximize U(X)

subject to p equality constraints,
f(x) =F, i=ltop

m inequality constraints,
g(x) <G j=1tom

36

and n side constraints
A, <h(x) <B, k=1ton

4.3 Structural Optimization Classifications

Structural optimization problems can be classified by the way in which the design variables
represent the design of the structure. Three main types of representations are possible: size,
shape, and topology. Depending on the flexibility of the optimization method used, it may
or may not be possible to use a mixture of these classes in a single problem.

4.3.1 Sizing Optimization

The simplest of the three types of structural optimization is sizing optimization. In this case,
the structure’s general shape and topology are held constant, while the specific dimensions
of the design are modified. Design variables are used to represent different dimensions of
the structure, with the optimal design being the one with the set of dimensions that yields
the best performance. An example of sizing optimization would be the design of a truss, in
which each member is made of a length of pipe, and each section of pipe is to have the
same cross-section. In order for this to be a sizing optimization problem, the layout of the
truss must be known in advance. The only design variables are those representing the
dimensions of the cross-sections of the pipe. In this case, only two design variables would
be needed to represent the pipe dimensions, D, and D_,. Note that, in general, other design
variables could be used to represent material properties of the pipe. In this case, however,
we are assuming that the material properties are known and fixed. The objective function
could be to minimize the weight of the truss, subject to a constraint on the maximum
allowable stress in the pipe (an inequality constraint) and side constraints on the size of the
pipe, D, <D,... D,, <D

out®

Given this objective function, the structural optimization
process would find the combination of dimensions giving the lightest truss capable of
meeting the given constraints.

37

Dout

Figure 4.1 Sizing optimization

4.3.2 Shape Optimization

Shape, or geometrical, optimization is a somewhat more complex process. In this case, the
design variables generally represent some type of nodal co-ordinates. An example of this
would be the optimal design of a truss structure with a given number of nodes and beam
elements. In this case, the cross-section of the truss members is known and the layout of
the truss is to be optimized. In the two-dimensional case, the design variables would be the
x and y co-ordinates of each node. Another example of shape optimization would be the
optimization of the cross-section of a member using a collection of B-spline or Bezier
curves to represent the cross-sectional shape (Farin, 1993). In the case shown in figure
4.2, the cross-section can be varied, but it can never contain any holes. In general, shape
optimization can lead to better results than sizing optimization, but also results in a larger
search space and correspondingly longer run-times.

Figure 4.2 Shape optimization

38

4.3.3 Topology Optimization

The most difficult of the three classifications of structural optimization is topology
optimization. In this case, the design variables control the topology of the design. This is
also the most general optimization method, as the size and shape of the structure are
affected by the topology. The difficulty of implementing this method comes from its
generality. Representing the topology of a structure is difficult and generally requires a
large number of design variables. A commonly used representation technique for topology
optimization is to treat the problem as a configuration design problem, where the overall
design is treated as an assembly of a large number of “building blocks.” The process
begins with a set of all possible building blocks being present, defining the maximum size
and shape of the structure, known as the design domain. As the optimization process
continues, various “blocks” are allowed to disappear an/or reappear, altering the topology
of the structure. Each building block is represented by a design variable. A design variable
value of 1 means that the corresponding block is present, a value of 0 means that it is not.
With some optimization methods, the design variables can take on intermediate values
between 0 and 1, signifying that material of a lower density is present in the corresponding
block. Figure 4.3 shows an example of a design domain discretized into a large number of
blocks, and one possible result of an optimization process.

As an example of topology optimization, we will again consider the optimization of the
cross section of a beam. In this, the most general case, a much larger number of different
designs are possible than with other methods, and all designs produced by sizing or shape
optimization can also be found using topology optimization, to the level of discretization.
The primary disadvantages of this method are that it is very difficult to deal with
analytically, and that, in some cases, the design space can be much larger than for the other
two types of structural optimization methods. As the design domain is more finely
discretized, the size of the search space increases dramatically.

39

Figure 4.3 Topology optimization

4.4 Structural Optimization Techniques

Once the optimization problem has been defined, a method is needed to perform the
optimization. There are two types of methods for carrying out this search, analytical and
numerical. Analytical techniques, such as those derived by Mitchell (Mitchell, 1904),
typically use calculus and/or variational techniques to find optimal designs. Systems of
equations representing the conditions for optimality are found and solved analytically. More
recent applications of analytical optimization can be found in Cox (1965) and Hemp

(1973). Analytical optimization techniques have been largely theoretical in nature, and have
served as a foundation for the more commonly-used numerical methods (Lev, 1981).

Numerical techniques have been developed to deal with more complex problems and
constraints. These methods numerically model the design of a structure then repeatedly
analyze (usually using a finite element analysis) and alter this model until some near-
optimal design is found. Such methods generally can not ensure that a global optimum has
been found, but they are much more versatile and easily applied than analytical methods.
Several common types of numerical optimization have been used for structural
optimization, including mathematical programming (see Arora, 1989 or Kirsch, 1993),
fully stressed design (see Gallagher, 1973), and the optimality criteria method (see Berke
and Venkayya, 1974). More recently, some other techniques have been applied, such as
homogenization methods, simulated annealing, and genetic algorithms. These methods will
be detailed further in the following chapter.

40

4.5 Design of Adaptive Structures

Recently, innovations in the development of actuator technologies have led to an increasing
interest in the design of adaptive structures, i.e. structures whose properties change in
response to changes in operating conditions. Such structures are equipped with some
combination of sensor and actuator, such as a piezoelectric ceramic material, a heat-
activated shape memory alloy, or a magnetostrictive material, which can detect a change in
conditions and then somehow alter the structure in response to this change. For example,
suppose a piezoelectric material was embedded in or affixed to a structure. Applying a load
to the structure could induce a strain in the piezoelectric material, causing it to produce a
current. This current could be used to drive a logic circuit controlling other actuators within
the structure. A commercial example of this is the so-called “smart ski” developed by K2.
This ski uses embedded piezoelectric actuators to first detect then dampen shocks and
vibrations, helping to keep the ski in contact with the snow (Ashley, 1995).

4.6 Summary

The problem of structural optimization involves designing a mechanical structure so as to
maximize the value of the structure's utility while ensuring that the structure can meet
certain constraints on its performance and geometry. This is accomplished by defining a
number of design variables, which fully represent the parameters of the structure's design,
then defining an objective function to determine the goodness of a design based on the
values of these design variables. The design of a structure can be represented in three
different ways, as a set of dimensions, a set of control points, or as a discretized domain.
Increasing the number of design variables will generally increase the size of the search
space and result in a more “global” optimum solution, but can also result in very long run-
times, regardless of the method used to perform the optimization. These problems may be
solved either analytically or numerically. Analytic techniques can ensure that the global
optimum is found, but these techniques are often not applicable to more complex problems.

41

42

Chapter 5

Related Work

5.1 Introduction

Structural optimization has been an active area of research for some time (Haftka and
Granhdi, 1986). In more recent years, with the increasing availability of computational
power, the specific problem of topology optimization has received a growing amount of
attention. A number of different approaches to this problem have been taken, including
both continuous (homogenization-based methods) and discrete (simulated annealing and
genetic algorithms) methods. This chapter presents an overview of the basic techniques for
structural optimization currently being researched.

5.2 Homogenization-based Methods

The most widely-used continuous variable approach to structural optimization problems is
the variable density approach, based on material homogenization methods (Strang and
Kohn, 1986). Bendsge and Kikuchi (1988) and associated researchers have applied these
techniques to a variety of structural topology optimization problems, with a good deal of
success (see, for instance, Suzuki and Kikuchi, 1991 or Bendsge and Kikuchi‘, 1988).
This method involves discretizing the design domain into a large number of elements,
where each element contains a number of microvoids of a particular shape. The design
variables for this technique are the size and orientation of the microvoids in each element.
These values are allowed to vary continuously and are used to control the density and
structural properties of the material within the element. Loads are applied to the structure,
and its compliance is measured using a finite element analysis. Typically, this technique
attempts to minimize the compliance of a structure given a specified mass of material that
may be present in the design domain (i.e., find the optimal distribution of a fixed quantity
of mass). An iterative non-linear optimality criteria technique is used to determine the set of
microvoid sizes and orientations that will minimize the structure’s compliance.

43

Strang and Kohn (1986) recommend the use of composites in such structural optimization
problems, stating that a material/void, or 0-1, dichotomy results in an ill-posed
minimization problem, where the optimal solution is difficult if not impossible to obtain.
They suggest that a “relaxation” of the problem, modeling the material in the design domain
as a composite with continuously variable density, is necessary to transform the original
problem into one that can be solved by common optimization techniques.

A number of different models for the microstructure of an element have been proposed for
use with material homogenization methods. The microstructural model is used to determine
the structural properties of the composite material. All models allow the complete rotation
of a microvoid, and allow for the full range of material density from O to 1. The simplest of
these models is that of a unit cell with a rectangular “pore,” or hole, in the center of the cell,
representing a void area (Bendsge and Kikuchi, 1988). Each element in the design domain
is made up of several of these unit cells, the material properties of which depend on the size
and orientation of the voids within. More recently, other researchers have studied the use of
a “Rank-2” layering, which creates a two-scale orthogonal laminate. The volume fractions
of strong and weak material define the composite’s density and structural properties.

Optimality criteria methods are typically used to solve the minimization problem created
using the above model. This is an iterative process which gradually alters the
microstructure of an initial design until the criteria for optimality are met and a single “best”
design has been generated. There is no guarantee that the result of this method is a global
optimum, and using different micro-structural models or different initial designs can yield
different final results (Bendsge et al., 1993).

Another problem with homogenization-based methods is that elements of various densities
may still exist in the “optimal” design, requiring some post-processing operation to
eliminate material of intermediate densities. Papalambros and Chirehdast (1990) have used
binary image analysis approaches to extract precise topological boundaries. The boundaries
of the resulting shape can be modeled using spline curves and optimized using more
traditional shape optimization techniques.

44

5.3 Simulated Annealing

One discrete variable approach to structural topology optimization is the use of simulated
annealing. This approach has been used by Anagnostou (1992) for structural topology
optimization problems involving strength, manufacturing, and heat transfer considerations.

Simulated annealing is a heuristic global optimization method based on statistical mechanics
(Kirkpatrick et al., 1983). In this technique, an initial set of design variables is first brought
into a high-energy state, or “melted,” by a high “control temperature.” At this high energy
state, the design variables can change (the design can move about in the search space)
easily, as atoms at a high energy state move throughout their domain with ease.
Optimization proceeds by gradually lowering the control temperature to a minimum value.
As in an actual annealing process, as the temperature is lowered, it is hoped that the design
variables will change values so as to produce a final low energy state, corresponding to a
globally optimum design.

With this technique, the design domain is initially discretized into many rectangular
elements, where each element is binary (it can be either material or void, no intermediate
densities are possible). An initial candidate design is generated by assigning values of
material or void to each element in the design domain, defining an initial topology as shown
in figure 5.1. An energy function is then defined for this domain. The energy function
measures how well a given design meets the performance objectives and satisfies any
constraints. Because simulated annealing is inherently a minimization process (energy of
the system is gradually dropping), the energy function must be set up so that energy
decreases as design quality increases.

Figure 5.1 Design domain discretized into material/void elements

45

Once an initial design is defined, its energy is measured, and a new design in the “vicinity”
of the current design is produced. This is achieved through the use of a stochastic
neighborhood operator, similar to genetic algorithm mutation. Such an operator produces a
new design which is similar to the old design, but slightly different. The energy of this new
design is then computed. If this energy is lower than that of the previous design, the new
design is accepted and replaces it. If the new design has a higher energy, E/, it will be
accepted only with a probability, P, given by:

P=e T 5.1)

where T is the current control temperature. After the new design is either accepted or
rejected, this process of generating a new design, evaluating it, and either accepting or
rejecting it is repeated for a pre-determined number of iterations. Then, the control
temperature is lowered, and this entire process is iterated until the temperature reaches its

minimum value.

Initially, when the control temperature is high, the algorithm explores new areas of the
search space, as the probability of acceptance for a new design is high. As the temperature
drops, the probability of acceptance also drops, and the algorithm focuses more on the fine-
tuning of an already good design. The rate at which the temperature drops (the number of
iterations per temperature) has a large impact on the quality of the solution produced by this
method. A rapidly-cooling temperature will require fewer energy evaluations, but will
likely produce a less good solution than a slower-cooling attempt.

5.4 Genetic Algorithms

Another recent approach, which is the focus of this study, is the use of genetic algorithms
to perform structural optimization. In this case, optimization is performed by “evolving” a
population of chromosomes, as described in chapter 2. Genetic algorithms have been used
to perform sizing, shape, and topology optimization. This section provides a brief review
of GA-based sizing and shape optimization methods and a more thorough review of
previous efforts to perform topology optimization using genetic algorithms.

46

5.4.1 Sizing Optimization

One of the earliest uses of GA’s for structural optimization was the sizing optimization of a
10-member plane truss, performed by Goldberg and Samtani (1986). In this study, the
weight of the truss was to be minimized, subject to constraints on the allowable levels of
stress in the truss members. The geometry and topology of the truss structure were held
constant, and the only variables were the cross-sectional areas of the ten members, which
were treated as continuous variables. This work was later extended by Rajeev and
Krishnamoorthy (1992), who used genetic algorithms to optimize the cross-sectional
dimensions of 10-, 25-, and 160-bar truss structures. In this study, the cross-sectional
areas of the bars were treated as discrete variables, and so the problem became a type of
catalog-based search problem. Further work in GA-based sizing optimization has been
performed by Hajela (1990). Again, the cross-sectional areas of a ten-member truss were
optimized; this time the truss was subjected to dynamic loading conditions. These examples
demonstrate that the genetic algorithm can be an effective optimization tool for problems
with a variety of different types of fitness and constraint functions and continuous or
discrete variables.

5.4.2 Shape Optimization

Genetic algorithms have also been used to perform shape optimization for structural
optimization problems. In typical shape optimization problems, the topology of the
structure is fixed and control points are used to define its size and shape. Jenkins (1991a,
1991b) used genetic algorithms to optimize the shape of several discrete-member truss
structures. For example, an 18-member truss structure was optimized so as to minimize
weight subject to stress constraints. In this example, the design variables were the locations
of the truss nodes. In other examples, such as that of Watabe and Okina (1993), the design
variables are a set of control points, not the structure’s nodes. These control points
controlled the node locations using a technique called Free-Form Deformation.

Richards and Sheppard (1992) used a classifier system to perform shape optimization. A
classifier system (Goldberg, 1989a, pgs. 217-230) uses rules to govern its behavior. These
rules are learned using a genetic algorithm, i.e., rules evolve. In their study, Richards and
Sheppard optimized the shape of a two-dimensional structural component. Again, the goal
was to minimize mass subject to a maximum stress constraint. The design variables were a
set of control points. These control points were fit with cubic spline curves to define the

47

component’s outer boundary. The GA was used to learn which control point modifications
resulted in a shape of optimal performance.

5.4.3 Topology Optimization

More similar to the work in this study are the following investigations, which attempt to
find optimal structural topologies using a genetic algorithm. Like the homogenization and
simulated annealing based approaches described earlier in this section, these GA-based
methods use a discretized design domain (see figure 5.1 above) and try to optimize the
distribution of material in this domain. The earliest work done using GA’s for structural
topology optimization was by Jensen and associated researchers (Sandgren et al., 1990 ;
Sandgren and Jensen, 1992; Jensen, 1992). These studies involve the optimization of
structures so as to minimize weight subject to stress and/or displacement constraints. This
section will provide an overview of these studies, as well as some more recent extensions
to them by Chapman (Chapman and Jakiela, 1994; Chapman et al., 1993a, 1993b;
Chapman, 1994) and by Kane (Kane et al., 1995).

Jensen - Design Problems and Representations

The work of Jensen and associated researchers concentrated on three particular design
problems: automotive decklid, bumper beam, and plane stress structural design. In the
automotive decklid design problem, a three-dimensional sheet metal decklid is optimized to
minimize weight subject to a maximum nodal displacement constraint. A rectangular
representation of the shape of a decklid was used in order to simplify computations. This
rectangular model was discretized into a 15x20 array of square elements. The design
variables were the thicknesses of these elements, for which there were three possible
values. Due to symmetry, only half of the elements were actually treated as variables.

In the bumper beam design problem, the goal was to optimize the cross-section of a beam,
similar to that found in an automobile bumper. Again, the optimality criteria was minimum
weight under a specified load with displacement always less than a given constraint value.
The simplest problem considered a beam of uniform cross-section. A more complex case
represented the beam as being made up of six elements, each with a potentially different
cross-section. In both cases, the cross-section of a beam section was represented by a
rectangular two-dimensional array of elements, as shown in figures 5.2 and 5.3. The
design variables were the absence or presence of material in each element.

48

Optimize Topology
of Beam's Three
Cross-Sections

\ Plane of

Symmetry

Figure 5.2 Multi-segment beam optimization problem. Adapted from
Sandgren and Jensen (1992).

(a))

(©)
Figure 5.3 Results of single-segment beam optimization for (a) plastic, (b)
aluminum, and (c) steel. Adapted from Jensen (1992).

The final problem involved finding an optimal topology for a plane stress structure, as
shown in figure 5.4. The structure is subject to a known load, and the goal is to minimize
the structure’s weight while keeping the displacement at the point of load application less

49

than a fixed constraint value. Again, the representation used is that of an array of binary
material/void elements.

Y

74

Figure 5.4 Plane stress structural optimization results. Adapted from Jensen
(1992).

In all three cases, the design variables were represented using a 2-D array chromosome. In
the decklid problem, each gene had three possible allele values (one for each possible
thickness). In the other two problems, all of the genes were binary, indicating either the
absence or presence of material in a given element.

Jensen - Optimization procedures

Similar optimization techniques were implemented in each case. In nearly every case, two-
point crossover was used to “mate” two parent chromosomes. The only exception was the
bumper beam made of multiple segments, each with an independent cross-section. In this
case, a special version of one-point crossover was used. A “simple” GA with linear fitness
scaling, roulette wheel selection and a randomly generated initial population was used in all

cases.

50

Of course, different evaluation techniques were used in each case. In the decklid design
problem, a commercial finite element package was used to perform the evaluations.
Although the process was straightforward, the problem is difficult computationally, and
approximately 30 seconds of computation were required to analyze one design. The plane
stress problem also used finite element analysis to evaluate each structure, although this
analysis was significantly quicker than in the decklid problem. Here, the difficulty came in
devising a way to determine the stability of a structure. If the point of load application was
not connected to a fixed point by solid material, the structure would be unstable and the
finite element analysis would fail. To avoid this difficulty, the representation was changed
slightly. Instead of an allele value of 0 indicating that no material was present, it was
changed to mean that a material of relatively low stiffness was present. In this case, the
“void” material was chosen to have a stiffness two orders of magnitude less than the
“solid” material. This way, the finite element analysis would be capable of analyzing all
structures, but unstable structures would receive very low fitness scores. The bumper beam
case was the easiest case in terms of computation. The moment of inertia of each beam
segment and the resulting beam bending characteristics could be computed analytically. The
primary difficulty here was in determining what sorts of cross-sections were valid. For
instance, one chromosomes could represent two separate topologies (see figure 5.5). This
was allowed, and the beam segment was treated as one segment with a moment of inertia
equal to the sum of the moments of inertia of the two topologies.

|

Ccoococoooo
BPRRRPRRPRRPRPR
PRoOoOOoOPR R
FRPOoOOOORR
RPFRRRRRRPR
coococoooo
cooocoooo
FROOOCOR R
RPRPBRRERRPPR R
BPRREBRRRPR
FRoOoOOoORR
Ocooocooooo

Figure 5.5 One chromosome mapping to multiple topologies.

Some parameters of the GA did vary from case to case. Most notable were the population
size and number of generations. A parameter optimization technique was used to determine
the “ideal” set of GA parameters. This optimization method tended to suggest very large
population sizes (>150) and a relatively low number of generations (100-150). However,
using such a large population for the actual problem would result in extremely long run-
times. In general, the tendency of the researchers was to use as large a population as was
feasible, in terms of computation time. In the computationally simplest problem, the

51

bumper beam optimization, a population of 800 individuals was run for 300 generations. In
the plane structural optimization problem, a population of 140 was run for 150 generations.
The difficulty of evaluating the fitness of a chromosome in the decklid problem resulted in a
population limited to only 36 individuals being run for 150 generations. Despite this
limitation, one run still took 48 hours to complete.

The work of Jensen and associated researchers demonstrated that genetic algorithms could
be used to perform structural topology optimization with satisfactory results, except for a
few drawbacks. In all cases, only one, “best,” solution was obtained in each run. No
attempts were made to determine whether multiple solutions existed with equally good
fitness scores. In the decklid and plane structure problems, computation time was a
significant issue, resulting in some GA parameters being set to non-optimal values.

Chapman - Design Problems and Representations

Similar structural topology optimization problems were investigated by Chapman and
associated researchers. In many ways, this work is a direct extension of Jensen’s work.
The problems considered are the optimization of a beam’s cross-section and the
optimization of a cantilevered plate topology, similar to the plane stress structure
investigated by Jensen. In each case, the design representation was basically the same as
that used by Jensen, i.e., a two-dimensional array of binary material/void elements. The
only differences were that Chapman investigated the use of finer discretizations and used a
lower value for the stiffness of a “void” element. In the case of the beam optimization
problem, a 15x15 discretization was used, as opposed to the 6x8 discretization used by
Jensen. Void elements were given a stiffness equal to 107 times the stiffness of material
elements. Another difference from Jensen’s work was that one-dimensional chromosomes
were used by Chapman to represent potential designs (see figure 5.6). In this case, the
values of the chromosome are “wrapped” around to form a 2-D array of values (the first
five digits map to the first row, the next five map to the 2nd row, etc.). Finally, different
fitness functions were used. While Jensen’s work focused on minimizing weight and
penalizing a structure for violating certain stress or displacement constraints, Chapman’s
work focused on maximizing the strength-to-weight ratio of a design, sometimes adding

additional constraints as well.

52

1111101000010100100111111

Chromosome

s |
- |O|O|O|—

1
0
1
0
1

- 1O —

MAIIIIRRRRN.S.

Chromosome
Mapped into Design Domain Structure
Design Domain Material Distribution Topology

Figure 5.6 Mapping a string chromosome into the design domain to create a
structure topology. Adapted from Chapman (1994).

Chapman - Optimization Technique

Greater differences exist in the techniques used to perform these optimizations, including
Chapman’s investigation of connectivity analysis, families of highly-fit designs, and
manufacturing considerations.

Perhaps the most significant of these changes was the use of connectivity analysis, done to
ensure that all structures generated were feasible. This connectivity analysis removed all
material elements not connected to at least one “seed” element. In the case of the beam
optimization, the seed element was chosen as the top center element. In the cantilevered
plate examples, two seed elements were chosen along the fixed boundary, another was
placed at the point of load application. Figure 5.7 shows an example of such a topology.
Note that in order for an element to be “connected,” it must share an edge boundary with
another connected element. Material elements sharing only a corner connection are
considered disconnected. This removal of disconnected material can be thought of as a
specialized mapping of the design's genotype (the original, binary chromosome) to its
phenotype (the information analyzed by the objective function). With connectivity analysis,
disconnected material elements are given zero weight and are considered to be void when

53

performing finite element analyses. Without connectivity analysis, disconnected material
elements are counted in weight calculations and are considered to be material when
performing finite element analyses. It was empirically verified that this connectivity
analysis improved GA performance (Chapman et al., 1994).

Connectivity
Analysis

—>

Stable
Structure
Topology

Seed
Elements

Figure 5.7 Connectivity analysis. Adapted from Chapman (1994).

(a) (b)

Figure 5.8 (a) Connected and (b) disconnected material elements. Adapted
from Chapman (1994).

In the cantilevered plate example, the entire final population of the GA was treated as the
“result.” This is in contrast with most GA implementations which treat only the best
individual as the result. By looking at the entire final population, some designs which are
similar to the best overall design but slightly different are revealed. This allows the designer
to use some secondary criteria, which might be difficult to model mathematically, when
selecting a design. For example, Chapman investigated this idea using different fitness
functions such as the one shown below.

54

(stiffness)
. weight

Fitess = —g
perimeter

5.2)

In this equation, a design’s perimeter is equal to the sum of its outer perimeter and the
perimeter of the internal holes. This fitness function was designed to encourage the
generation of designs with high stiffness-to-weight ratios and little porosity. Some sample
results are shown in figure 5.9. These are all individuals that were present in the final
population of a single GA run. Note that although the designs are similar, each one has a
different number of internal cavities. Although design d is the best in terms of stiffness-to-
weight ratio, design a might be chosen since it would be easier to actually manufacture.

Number of Stiffness-to-Weight

Topology Internal Holes Ratio Displacement | Weight
(@ 0 1.19 0.0092 91

(b) | 1.15 0.0102 85
(©) 2 1.11 0.0106 85
(@ 3 1.20 0.0094 89
(e) 4 1.14 0.0102 86
® 5 1.14 0.0101 87

Table 5.1 Plate topology performance data. Adapted from Chapman (1994).

55

©) | ®

Figure 5.9 Family of plate topologies with (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, and (f) 5
internal holes. Adapted from Chapman (1994).

Kane - Design Problems and Representations

Further work in structural topology optimization using genetic algorithms has been done by
Kane er al. (1995). Their work examines the cantilevered plate optimization problem
common to the work of Jensen and Chapman, with the goal of improving GA performance
in terms of efficiency and diversity of solutions. The same 2-D array of material/void

elements is used, although void elements are treated as being strictly void; no low-density

56

material is used. This results in slightly more accurate numerical results from the finite
element analysis and the ability to consider loads applied to a structure’s boundary
(distributed loads caused by applied pressure, for example). However, this requires a new
finite element mesh to be generated for each individual, increasing computation time. Two-
dimensional array chromosomes are used, identical to those used by Jensen. A new type of
mutation operator, epistatic mutation was also created in order to promote diversity in the
GA population. Typically, mutation is performed by randomly selecting a bit and then
flipping its value. Epistatic mutation selects bits whose value is nearly constant throughout
the population in an effort to reintroduce the disappearing diversity. This new mutation
operator was experimentally verified to outperform classical uniform mutation for this
design problem.

Kane - Optimization Technique

The method of evaluation draws from the work of Jensen and from that of Chapman.
Similar to Jensen’s study, Kane uses a fitness function set up to minimize the weight of the
structure subject to a constraint on the structure’s displacement. Different results were
obtained by varying the relative magnitude of the penalty term in this fitness function.
Connectivity analysis is also implemented, as defined in Chapman’s work, with some
modifications. Kane’s study uses only one “seed” element, placed at the point of load
application. Structures not connected to the fixed boundary are given a fitness value of
zero. This resulted in a greater diversity of solutions, as structures were not limited in
where they could connect to the fixed boundary. Further examples by Kane use different
fitness functions to compare the GA approach to homogenization-based techniques and to
explore the effects of nonlinear geometrical effects caused by large deformations.

5.4.4 Summary

Overall, these investigations show that genetic algorithms can be an effective tool for
performing structural topology optimization. Advantages of a GA-based approach include a
great deal of flexibility in the types of design domains and fitness functions which may be
used. The primary drawbacks are that such an approach requires a relatively large amount
of computational power and a lack of diversity in the results. This investigation examines
how to improve genetic algorithm performance in these regards, using design problems
similar to those used by Jensen, Chapman, and Kane.

57

58

Chapter 6

This Investigation

6.1 Overview

This chapter first introduces the basic optimization techniques used in this investigation,
describing how these techniques extend upon and differ from previous studies. Next, the
design of planar stress structures by a speciating genetic algorithm using cluster analysis is
detailed. Finally, a procedure for the design of adaptive structures using a hybrid genetic
algorithm / simulated annealing approach is explained.

6.2 Optimization Technique

6.2.1 Introduction

Genetic algorithms are used to search for optimal structural topologies. An allowable
design domain is discretized into a large number of binary material/void elements, yielding
a combinatorial search space. Extending previous efforts with similar representations and
search techniques, this investigation describes methods for improving genetic algorithm
efficiency and for using a speciating genetic algorithm to distribute subsets of the evolving
population of solutions over many local optima. This distribution of solutions is analogous
to different species exploiting different niches in an ecosystem. Additionally, statistical
cluster analysis techniques are used to quantify the extent to which a population is
speciated, and this measure is used to probabilistically encourage mating of reasonably
similar designs (i.e., intraspecies mating).

6.2.2 Extensions of Related Studies

This research extends the work of Jensen, Chapman, and Kane (section 5.4.3) in genetic
algorithm-based structural topology optimization, focusing on the optimization of two-
dimensional plane stress structures. In contrast to the previous work in this field, this
investigation includes the following:

59

Use of a genetic algorithm with overlapping populations

Definition of a new population initialization algorithm to start the GA with a
population of “connected” structures.

Fitness sharing and speciation
Statistical cluster analysis used to limit the mating of dissimilar individuals

Introduction of a hybrid genetic algorithm / simulated annealing method for the
design of adaptive structures

6.2.3 Similarities with Prior Investigations

The representation used in this investigation as well as some GA parameters and evaluation
techniques are the same as some of those used in prior investigations. As in all previous
studies of genetic algorithm-based structural topology optimization, the design domain is
discretized into an array of binary, material/void elements. As in Chapman’s investigations,
void elements are given a weight and stiffness five orders of magnitude smaller than that of
the material elements. Two dimensional array chromosomes were used in this study to
represent potential designs, as was the case in the work of Jensen and of Kane. One-point
crossover and simple mutation were used to “mate” two chromosomes. Connectivity
analysis, the process defined by Chapman and also implemented by Kane to remove
material elements that do not have a path of edge connections to a “seed” element, was also
implemented in this investigation. The specific fitness functions used in this study were
different from those in previous studies, although the goal of the optimization process was
similar: to minimize weight subject to a displacement constraint.

6.3 Optimal Design of Planar Stress Structures

6.3.1 Introduction

In this study, genetic algorithms are used to perform structural topology optimization. The
process of implementing a GA-based optimization technique can be broken into two main
parts: choosing a representation of the design problem, and setting up the optimization
process. Choosing a design representation involves some type of mapping of a particular
design to a unique set of design variables. These design variables must then be encoded
into some type of chromosome that can be operated on by the genetic algorithm. Setting up
the optimization process involves defining a method for evaluating designs (a fitness
function) and setting the GA parameters (population size, percent crossover, efc.) and

60

methods (parent selection method, fitness scaling, etc.). The following sections detail the
representation and optimization process implemented in this investigation.

6.3.2 Design Representation

As in previous studies using genetic algorithms for structural topology optimization, a
design is represented by an array of material/void elements. The design domain defines the
maximum allowable extents of a structure. This domain is divided into an array of square
elements, each of which can either contain solid material or be void. No intermediate
densities are possible. Assigning values of “material” or “void” to each element defines one
potential design. Figure 6.1 shows the process of going from a design domain to a
structure’s topology. Changing one or more of these design variables results in changing
the structure’s topology, and defines a new design.

61

NOWNNNNNN

(a) / (b)

(©) (d)

Figure 6.1 Design representation: (a) design domain, (b) discretized design
domain, (c) design representation, and (d) structural topology (before
connectivity analysis)

Design to genotype: Defining a chromosome

Such a topology must be represented as a chromosome, a format that the genetic algorithm
can operate on. In this investigation, two-dimensional binary arrays are used as
chromosomes. Each element of the array (each gene) represents the corresponding element
in the design domain. A gene value of 1 means that material is present in the corresponding
element of the design domain, a value of O means that the element is void, as shown in
figure 6.2. This binary array is referred to as the genotype of the design. The result is a
combinatorial search space of size 2", where n is equal to the total number of elements in
the design domain. As a result, the size of the search space increases rapidly as finer

discretizations are used.

62

1110000000110000

0111110001000011

0000111110000000

0000011111110000

0110000011111 111 > n
0110000100001111

0000000011 111111

0100111111110000

0011111100000000 1171
1111000000000000

Figure 6.2 Mapping of a chromosome to the design domain

Genotype to Phenotype: Connectivity analysis

Connectivity analysis is used to map the genotype of a design into its phenotype, the
representation analyzed by the fitness function. This mapping requires that all elements to
be included in the structural analysis must be connected to other elements by at least one
edge-edge connection, as opposed to only a corner connection (see figure 5.8). Also,
constraints are made that material must be present in certain “seed” elements. All elements
considered connected must be linked to one of these seed elements by a path of edge
connections. Any elements not so connected are removed from the mesh for the purposes
of structural analysis: they are switched to void elements. Since planar problems are being
addressed, the rationale for connectivity analysis is that elements connected at corners
cannot transfer moments about those corners (since the finite element model treats corners
as kinematic pin joints). It is less likely, therefore, that “disconnected” elements will
contribute to enhanced structural performance. This has been shown empirically (see
specifically Chapman et al., 1993, and Chapman’s other preceding work for further
discussion of this topic). Figure 6.3 shows the structure of Figure 6.2 after connectivity
analysis. The topology that results from this connectivity analysis defines the design’s
phenotype, the chromosome itself (the genotype) does not change. This allows
disconnected elements to in some sense be “recessive,” in that crossover could cause them
to combine with the (possibly disconnected) elements from another structure to yield a
structure of connected elements of much improved performance.

63

Figure 6.3 Connectivity analysis

6.3.3 Optimization Procedures

Once a design representation and chromosome mapping procedure have been decided
upon, the details of the optimization procedure can be specified. Most importantly, a
method for evaluating potential designs must be defined. This section explains the methods
used to assign fitness scores to chromosomes and then to scale these scores so as to
encourage diversity among the individual members of the GA’s population. Also, the
selection of various GA parameters and methods is discussed.

Structural Analysis: Phenotype evaluation

The primary aspect of fitness is structural performance. In this study, performance will be
represented by two characteristics, mass and deflection. Generally, we wish the genetic
algorithm to evolve structures that are both lightweight and deflect small amounts under a
given load. The deflection will be measured with a finite element simulation, and the mass
will be proportional to the number of connected material elements. These two
characteristics can be used to create an unconstrained fitness, such as maximizing the

following ratio:

1
tness = 6.1
fumess deflection*mass ©.1)

Alternatively, one of these characteristics can be optimized while treating the other as a
constraint. For example, one might wish to minimize the mass of a structure subject to a

64

constraint on the maximum allowable stress in the structure. The specific fitness function
used will be described with each example that follows.

As mentioned previously, each structure is evaluated using finite element techniques. After
connectivity analysis has been performed, a finite element mesh representing the design
domain is created. Each element of the design domain is represented by four triangular
elements, as shown in figure 6.4a. This meshing technique is used for compatibility with
existing finite element analysis code. Once this mesh has been defined, the nodes
corresponding to support points (nodes on the seed elements along the fixed boundary) are
constrained to have zero displacement, and concentrated loads are applied to the appropriate
element nodes. Note that figure 6.4a shows that the entire design domain is meshed. As a
result, the same mesh can be used for each individual design. Only the material properties
of each element change from design to design. Creating a mesh for each individual, as was
done by Kane and is shown in figure 6.4b, would yield slightly more accurate answers,
but this re-meshing would require significantly more computation time per evaluation. A
constant mesh technique was chosen for this study as it was believed that the small increase
in numerical accuracy would not be worth the fairly large increase in computational
expense. “Void” elements were given stiffness values 10 times that of solid material
elements. This use of “soft” material is suggested by Bendsge and Kikuchi (1988), who
state that soft material can be considered a void or hole if its Young’s modulus is 107 - 10
times that of a hard material. Jensen and Chapman both use similar techniques in their
investigations to reduce computational expense. Once such a mesh has been defined and the
constraints and loads have been applied, finite element analysis is performed. The results of
this analysis are the resulting x and y displacements of each node in the mesh. Note that no
stress calculations are performed. Analysis is performed using software written by Kumar
(1993) for analysis of planar topologies.

65

4

G
X
v

4

-~
v
’A
v

4
74
X

)

PLOTOTOTOTO
XX
XD
XEDIDDDAXK
XXX
OZOZOTOIOTOI0I0,
XXX
MOZOZO0I0I0T0T070I0I0T0I0T01
PLOZOZO0I0I0Z0I0I0I0I0I0I0I0T0T0T
S

XXX

G
NN
DA

NS

>
)
)

<
<

A
v

)

4

-
v

»

(l

A
v

)

<

DA
S
+
¢

)

A
NG

)

4

N
v

)

<
4

a
S

D
v

<

a
v

\

A
v

)

4

v
FALON
v

>
A
v

)

'

)
)

4

-
v
a

<
<

A
A

v

)

4

A
v

A
S
O
}A
X
e
D
»
’v

(
OO
DG
<
4
4

v
N

\L)

a
v

A
v
-
v

)

A
v

)

N

A

N
v

1)
>

\
N
v

»

x
DA
<
4

A
>,
X

-~
v
X
v
%

a
NG

)

a

)

4

NG

)
)

A
<

A
v

{
O,

v
-~
v

{

a

)
)

(@)

Figure 6.4 Finite element meshes: (a) constant meshing and (b) individual
meshing

Fitness sharing and speci’ation

Fitness sharing is implemented to encourage diversity in the GA population. As described
in chapter 2, this involves individuals sharing their fitness with other similar individuals.
Implementing such a system requires that some measure of similarity between individuals
be defined. The similarity function chosen for this investigation, called the Jaccard
Coefficient (see Romesburg, 1984, page 143), is applied to the phenotype designs (the
designs after they have undergone connectivity analysis). The “similarity” between two
designs is defined as follows. Comparing two material/void design arrays on an element-
by-element basis, first determine the following intermediate parameters:

a = number of corresponding elements that are both material
b = number of corresponding elements where exactly one is material

The Jaccard similarity coefficient is then computed as follows:

a
C. = 6.2
7 a+b (6-2)

There are two things to note about this metric. First, it does not take into account void/void
matches. As evolutionary optimization progresses, considerations of minimizing weight
will lead to relatively sparse assignments of material to the allowable domain for most of
the problems addressed here. Also, considering these matches in (6.2) would not provide
additional discrimination. Second, the coefficient ranges from a value of zero for no
material/material matches to one for an identical material/material match over the domain.

66

As sharing functions require a distance function, not a similarity function, the following

conversion is used:
d=1-C, (6.3)

In this case, two identical structures have a distance of zero, and two structures with no
material elements in common have a distance of 1. Thus, it agrees with the required
behavior of a distance function as described earlier. Results obtained using this distance
function and a variety of sharing functions are presented in the following chapter.

This distance function is also used to recognize the formation of species during the
evolution. This information is then used to restrict mating between excessively dissimilar
chromosomes. This is done by using cluster analysis techniques (see Romesburg, 1984) to
partition the population into subsets of similar chromosomes at each generation. To
understand how this is done in the context of (dis)similar structural topologies, consider
figure 6.5, which shows an abstraction of a structural topology space. This is shown as a
two-dimensional graph only for explanatory purposes, in reality the structural topology
space is n-dimensional, where n is equal to the number of elements in the design domain
discretization. Dots on the graph represent topologies, with the distances between the dots
analogous to the amount of dissimilarity or distance between the topologies.

The first stép in this clustering process is to compute the “resemblance,” or similarity,
between each pair of topologies. This is done by computing the Jaccard coefficient for each
pair as described above. If there are n topologies, these values can be stored in an n x n
lower triangular matrix called the resemblance matrix. The pair that is most similar (i.e.,
highest coefficient value) is “clustered” and treated as a single entity as long as its similarity
is above a chosen threshold. As shown in figure 6.5b, points 1 and 5 are the first pair to be
clustered. A new (n-1) x (n-1) resemblance matrix can now be computed, with “1-5”
considered a single point for subsequent clustering purposes. The distance between a new
point, X, and 1-5 is defined as the average distance between the new point and 1 and the
new point and 5. Continuing with a second iteration of the process, points 2 and 3 are now
most similar with similarity above the threshold, so they are clustered as shown in figure
6.5c. The next iteration clusters 4 with 1-5, computing a clustering similarity as the average
of the 4-1 and 4-5 similarities, as shown in figure 6.5d. The final iteration (figure 6.5¢)

67

clusters 6 with (2-3) in a like manner. The process is now complete since 4-(1-5) and 6-(2-
3) will not cluster because their similarity is below the threshold.

- N W kA OO N @
| —
-
o
o
n
- N W A OO N
1

0 L] L L] L] ¥ T L] 1 o L]] ¥ L] T T L] L)
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
(a) (b)

N W A OO N ©
| — |

N W A~ 0O N
| B —

I %o I 6o
11 11
0 : } : { } t } { 0 $ } { . ¢ t + |
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
(c) (d)
8 -
7 4

0 } } } -+
0 1 2 3 4 5 6 7 8

(e)

Figure 6.5 Clustering process

68

For a given set of data (in our case a given population of topologies), it is possible to
measure the “tightness” of a clustering by comparing the actual similarities between pairs of
points with the similarities that were used in the clustering process. These similarities
differ, as shown above, when clusters are treated as a single point in the computation of the
Jaccard coefficient. Our example of figure 6.5 has six points, yielding fifteen possible point
pairs, as shown in table 6.2:

" Point Pair | "X AcmﬂEj ‘W-—Gusteﬁnga-
(1 ’2) Cj(l,Z) *
(1,3) Cj(1,3) *
(1,4) Ciay Ciaa-s»
(1,5) Cas Cias)
(1,6) Ciwer *
(2,3) Cj(2,3) Cj(2,3)
(2,4) Cies *
2.5) Cias) *
(2,6) Cios Cis.on
(3.4) Cisa *
3.5 Cias) *
(3,6) Ciss Cisom
4.5) Cius) Ciwa-sy
(4,6) Ciuo *
(5,6) Cj(5,6) *
Table 6.1 Point pair resemblances, actual and clustering

The “*” in the “Y” column indicates that the point pair was not clustered, so there is no
clustering similarity. This allows us to abbreviate the table as follows:

69

" Point Pair “X> Actual 5] “Y’_’(Tlusten'ng ('ZT_ |
(1,4) Ciae Ciua-s»
(1,5) Cias Cius
(2,3) Cizs Cies
(2,6) Ciceo Cisem
(3,6) Cize Cis.om
4.5) Cius) G5

Table 6.2 Clustered point pairs

Intuitively, the tightness of the clustering is related to the differences of corresponding
values of the X and Y columns: how much was the data “distorted” in order to consider it
clustered? An aggregate value for this notion is provided by the Pearson product-moment

correlation coefficient,

ny—%(zx)(Zy)
(> - %(Zx)z Yy - ;11—(2 W

(6.4)

r

X,y

During an evolutionary optimization, the value of r, ; is monitored to determine the extent to
which sharing-based speciation has partitioned the population. Note that initial randomly
generated populations can be very well speciated (in a non useful manner) if the
chromosomes are mutually dissimilar. r, , therefore, typically drops in value in the early
generations and then grows to a higher value. When niche formation has sufficiently
progressed, interspecies mating is increasingly unlikely to produce improved designs. This
fact is taken into account by using r, as another probabilistic factor on the occurrence of
mating. After mating restriction is started, r, is computed with a threshold value of C;.
Each time a pair of parents is selected, there is an 1, , % chance that this pair must be in the
same species (defined by C)). If this probabilistic test fails, the pair is discarded and a new
pair is chosen for testing. In this way, the likelihood of interspecies mating decreases asr,
increases. A typical threshold value for C; is 0.85. In our tests, we have initiated mating
restriction after a preset number of generations (halfway through a run). Over the second
half of a run, r, typically ranges in value from 0.70 to 0.90.

70

6.4 Design of Adaptive Structures

6.4.1 Introduction

This section introduces a hybrid genetic algorithm / simulated annealing method and
suggests a methodology for using it to perform optimal design of adaptive structures. The
goal is to optimize the design of a structure whose geometry is capable of changing
between two different states. Specifically, the cross-section of a beam is optimized for
performance under two sets of loading conditions, pure bending and pure torsion. In this
study, a genetic algorithm is used to generate potential structures. The fitness function first
evaluates each structure’s performance under an applied load causing only a bending
moment, then uses simulated annealing to see how well the structure can “adapt” (change
its topology) in response to a change in operating conditions (a torsional load replaces the
bending load). The total fitness of a structure is a combination of the fitness of the original
and the “adapted” topologies. As in the previous case of designing planar stress structures,
a discretized design domain is used, and only two-dimensional optimization is performed.

6.4.2 Design Representation

Defining a chromosome

The goal of this optimization process is to optimize the topology of a structure with a
uniform cross-section. As in the problems described above, a design is represented by an
array of binary, material/void elements, as this representation is appropriate for use with
both genetic algorithms and simulated annealing. In this case, unlike previous examples,
the design domain represents the cross-section of a structure (see figure 6.6). This
representation is similar to that used by Jensen for the bumper beam design optimization
problem (refer back to figures 5.3 and 5.5), and that used by Chapman for a similar
problem (Chapman, 1994). In this investigation, a two-dimensional binary array is again
used as a chromosome for the genetic algorithm. Similar to Chapman’s work, one seed
element (an element in which material must be present, shown in black in figure 6.6) is
chosen and connectivity analysis is performed to eliminate disconnected material. This
differs from Jensen’s work, in which multiple cross-sections could be present in a single
design domain (see figure 5.5).

71

Figure 6.6 Cross-section optimization design domain

Modeling an adaptive structure: neighborhood operators

The neighborhood operators used by the simulated annealing process are used to represent
the way in which a structure adapts to change in conditions. As described in section 5.3,
simulated annealing uses a neighborhood operator to transform an existing design into a
similar but slightly different structure. In this study, this operation is meant to simulate the
effect of an actuator embedded into the structure, capable of causing a change in the
structure’s topology. Two sample neighborhood operators are illustrated in figure 6.7
below.

72

(b)

Figure 6.7 Simulated annealing neighborhood operators

In the neighborhood operator shown in figure 6.7a, one material element is chosen at
random, then moved to one of its neighboring void elements. If the selected element is
surrounded by material, another element can be selected. The move may be restricted to
elements with edge connections (up, down, left, or right), or diagonal moves may be
allowed. A restriction may also be made that the moving element must still be connected to
another material element after the move. In this case, the first move shown in figure 6.7a

would be allowed but the second one would not.

Figure 6.7b shows another possible neighborhood operator, based on genetic algorithm
mutation. In this case, two elements are randomly selected, one material and one void, and

reversed (the material element becomes void and vice-versa).

In practice, selection of a neighborhood operator would be dependent on the type of
actuators being used. Ideally, a good neighborhood operator would produce structural

changes similar to those caused by the actuators in the actual structure.

6.4.3 Optimization Procedures

In order to optimize structures capable of changing topology, this method combines the use

of genetic algorithms and simulated annealing. A GA is used to generate potential designs,

73

and then a simulated annealing process is used to measure how well each design can
“adapt” to a change in loading conditions. This section gives a detailed explanation of this
process.

Genetic algorithm approach

A steady-state genetic algorithm is used to evolve a population of potential structures. A
randomly generated initial population of structures (represented by binary array
chromosomes as described in the previous section) is created, and then the process of
evaluation, selection, and reproduction begins. Selection and reproduction of chromosomes
are performed using the same GA techniques as in the previous example (roulette wheel
selection, one-point crossover, efc.).

Evaluation of a topology’s performance under one set of loading conditions is done
analytically; no finite element analyses are performed. In this case, the only computations
made are to find the mass properties of the cross-section (mass, location of the center of
mass, and moments of inertia). First, connectivity analysis is done to remove all material
not connected (again, only edge-edge connections are considered) to the “seed” element.
The mass of the cross-section (number of material elements) is then computed. Next, the
location of the center of mass of the cross section is calculated. Finally, the rectangular and
polar moments of inertia of the cross-section about its center of mass are computed (L, L,
and J,, as shown in figure 6.8). Because no finite element analyses are required for these
calculations, they can be performed very rapidly and require little computation time. Also,
since no meshing needs to be done, void elements are assigned a density and stiffness of
zero. As in the previous case, the fitness function may combine the mass properties to
perform an unconstrained optimization (maximize J/mass, for example). Alternatively, one
or more properties may be treated as constraints (minimize mass while keeping L > 1 ;).

74

O
x

Figure 6.8 Sample design domain

Simulated Annealing: letting a structure adapt

A simulated annealing process is used to allow a structure to change its topology to achieve
better performance under different loading conditions. As described above, a genetic
algorithm is used to generate a population of structures. First, each of these structures is
evaluated under a given load (a bending moment about x, for example). Then, this load is
removed, a new one is applied (a torsional load about point 0, for example), and the
performance is measured again. Next, a simulated annealing process is performed to
optimize the topology for performance under this second loading condition, simulating the
ability of the structure to adapt itself based on changes in its environment. Simulated
annealing may be performed either for a fixed number of steps or until the design reaches
some predefined level of performance. In the first case, the final structure’s performance is
recorded. In the second case, the number of steps required to reach the desired performance
level is recorded. Because successive runs of this simulated annealing process from the
same initial design may produce significantly different results, the process is repeated ten
times for each topology and an average value of the results is computed.

The fitness function of the GA then combines the fitness of the original topology with the
fitness of the “annealed” topology to determine the overall fitness of the design. In this
way, the GA is capable of evolving structures which perform well given one set of loading
conditions and can adapt so as to also perform well under a significantly different type of
load. Specific examples of fitness functions are given in the following chapter.

75

76

Chapter 7
Results:

Design of Planar Stress Structures

7.1 Overview

This chapter presents examples of structural topology optimization performed using genetic
algorithms as described in the previous chapter. Topology design of planar stress structures
is examined. The effects of various parameters and methods are investigated, with a focus
on GA efficiency (speed) and final population diversity.

7.2 Example 1: Cantilevered plate

This example considers the generation of topologies for a cantilevered plate subjected to a
vertical load. The design domain for this example is the 10 x 16 discretization shown in
figure 7.1, and is the same domain that has been used in some previous studies (Chapman
et al., 1994; Chapman and Jakiela, 1995). The two elements shown in black on the left of
figure 7.1 represent the support points. The nodes along the left side of these elements are
constrained to have zero displacement in the FEM analysis. A point load is applied to the
element shown in black on the right, to the FEM node in its lower right-hand corner. The
final output of the finite element analysis is the magnitude of this node’s displacement.

Material properties for this example were those of 1 mm thick steel (E = 200 GPa, v=0.3).

The size of each element in the design domain is 1 cm x 1 cm.

77

Four triangular finite elements

Bl - Material must be present, material constraints
- Material may be present
[1 - Void

Figure 7.1 Design domain

In this example, the goal of the optimization is to produce topologies of minimal mass

while keeping the displacement () at the point of load application less than a specified

amount (8__). The fitness of a chromosome is computed as follows. First, connectivity

analysis is performed to remove disconnected material. Then, a normalized mass is
computed as the percent of elements in which material is present. For instance, if a
structure in this 10x16 discretization had 40 elements of material present (and, therefore,
120 elements of void), its normalized mass would be 0.25. The connectivity analysis also
checks to see if the point of load application is connected to the fixed nodes by material. If
the loaded element is not connected to either fixed node, the structure’s fitness is given by
(7a); if it is connected to only one fixed node, (7b) is used. In these cases, no structural
analysis is performed: the finite element analysis is only done for structures in which the
load point is connected to both fixed nodes. For such structures, the fitness score is
calculated according to (7¢) if the displacement constraint is violated and by (7d) if it is not.

These equations provide the raw fitness score of a chromosome.
fitness = 5*mass (7a)
fitness = 50*mass (7b)

fitness = 1000 - 500*(d - o (7c)

max)

78

fitness = 1100 - mass*100 (7d)

For this example, the magnitude of the applied load was set to 4250 N and the allowable

displacement (5,,,) was 0.01 m.

7.2.1 Effects of a New Population Initializer

Like most genetic algorithms, the first runs all used an initial population which was
generated randomly. As a result, several of the chromosomes in the initial populations did
not represent connected structures. On average, less than 1% of all randomly generated
chromosomes represent feasible (i.e., connected) structures for this design problem. It is
expected that as the design domain becomes more finely discretized, this process of finding
connected structures would become more and more difficult. Because the GA started out
with such a poor set of initial chromosomes, the early generations of the GA run were
spent finding solutions that were merely feasible, instead of searching for an optimum. In
order to avoid this inefficiency, a preprocessor was used to generate an initial population
consisting of connected structures only. This was achieved using a separate genetic
algorithm. The pre-processor GA started with a random initial population and used the
following parameters and fitness function:

GA Type: Simple GA
cross: 095
ot 0.01
Population size: 30
Fitness = 0 + 100*(connected mass) (7e)
500 + 100*(connected mass) (79)

If a structure is not connected to either fixed point, equation (7e) is used to compute its
fitness. If the structure is connected to just one of the fixed points, equation (7f) is used. In
each case, the mass of the structure is calculated affer connectivity analysis has been
performed and is expressed as a percentage of total possible mass. For example, a structure
with 40 elements connected (out of 160 possible) would be assigned a mass of 0.25. These
equations were designed to give higher fitness scores to structures that are “closer” to being
connected to both fixed points. A structure with more mass is likely to require fewer
changes to make it fully connected than a lighter structure would. If the structure is
connected to both fixed points, the GA run is halted and that structure is recorded as one
member of the initial population for the main GA run. In this case, an “optimal” structure is

79

simply one that meets the requirement that it connects the point of load application to both
fixed points with solid material. Although measuring the mass of a structure may not be the
best way to encourage connectivity, it was found to work reasonably well, and the GA was
quick to find connected structures.

As described above, this preprocessor GA would run only until it found one connected
structure, and this individual would be saved and used as one member for the initial
population of the main GA. Thus, the preprocessing GA was run a number of times, n,
equal to the population size of the main GA. A typical runtime for the preprocessing GA
was approximately 1 sec. Thus, creating an initial population of sixty connected structures
could be completed in about one minute, a time very small compared with the runtimes of
the main topology optimization genetic algorithm. Figure 7.2 and table 7.1 show the
improved results obtained using this preprocessor GA to generate an initial population of
connected structures. In each case, the GA was able to find a structure meeting the
displacement constraint. All results shown are averages taken from five GA runs. New
populations were generated for each run, but all other parameters and methods were

constant for each of the five.

It is important to note that the time required to run the GA preprocessor with a population
size of 60 (~ 1 min.) is about the same magnitude as the time taken for 8 generations of the

main GA (1 min. = 8 * 30 minutes/run / 250 generations). From the results shown below,

we can see that the time is better spent generating a connected initial population (i.e., little
improvement is made by running the GA for 8 generations). Also, it is evident that using a
connected initial population does not have an adverse effect on population diversity.
Population diversity is calculated by computing the distance (0 to 1) between each possible
pair of chromosomes in the final population, then taking the average of all of these values.

It was found that using the preprocessor genetic algorithm to generate an initial population
of connected structures resulted in better optimization performance while maintaining
similar runtimes and population diversity. It is important to note that although the GA
began with a population of connected structures, crossover and mutation could still result in
child chromosomes representing disconnected individuals. As a result, this preprocessor
GA was used for all examples that follow.

80

1000.0
750.0 -
o
o
o
19)]
A
o 500.0 -
S
i

250.0

—— Random population, size=30
Random population, size=60
- - - - Connected population, size=30
— — - Connected population, size=60

0.0 ==
0.0

50.0

100.0

150.0 200.0

Generation Number

250.0

Figure 7.2 Best of generation results for GA runs with random and connected
initial populations (of size 30 and 60)

“Best
Fitness Population Runtime
Score Mass Diversity (minutes)
Random, popsize=30 1054 46% 11% 9+4
Random, popsize=60 1059 41% 15% 7543
Connected, popsize=30 1061 39% 11% 1542
Connected, popsize=60 1063 37% 15% 3043

Table 7.1 Best of generation results for GA runs with random and connected
initial populations (of size 30 and 60)

81

7.2.2 Effects of Connectivity Analysis

Next, runs were done to confirm the value of performing connectivity analysis during a
run. First, runs were done using no connectivity analysis at all (i.e., no material was
removed from any of the chromosomes during the runs). Next, runs were done using a
relaxed version of connectivity analysis, in which corner-to-corner connections were
allowed (i.e., two elements sharing one common node are considered connected). Finally,
runs were done using full connectivity analysis (two elements must share two nodes to be
considered connected). In each case, the initial population (of size 60) was generated
according to the type of connectivity analysis being used. The fitness function used was
that of equations (7a)-(7d). Of course, in the case where no connectivity analysis was
performed, equations (7a) and (7b) were not used. The results of these runs are shown in
figure 7.3 and are summarized in table 7.2 below. Again, all figures are averages taken
from a set of 5 GA runs.

1000.0 [~ .
750.0 | .
2
(o]
O
0]
ﬁ 500.0 - — No connectivity i
= e 1-Point connectivity
L - - - - 2-Point connectivity
250.0 -
O'O) | L 1 L | 1 1 L
0.0 50.0 100.0 150.0 200.0 250.0

Generation Number

Figure 7.3 Effect of connectivity analysis on GA performance (population size
= 60)

82

Best
Fitness Population
Score Mass Diversity Run Time
No Connectivity 1059 41% 15% 46+5
One-Point Connectivity 1060 40% 14% 45+5
Two-Point Connectivity 1063 37% 15% 3145

Table 7.2 Effect of connectivity analysis on GA performance

From these results, it is clear that connectivity analysis is useful for improving results of a
GA run and reducing the time taken to perform such a run. Eliminating connectivity
analysis altogether results in much longer runtimes, as finite element analysis must be
performed on every individual. Figure 7.4 shows some typical results obtained from runs
using (a) no connectivity analysis, (b) one-point connectivity analysis, and (c) two-point
connectivity analysis. Each structure pictured was the best individual found by a single GA

run. All further examples use two-point connectivity analysis.

Mass = 41% Mass = 38% Mass = 38%
(@) (b) (c)

Figure 7.4 Typical results of optimization runs with (a) no connectivity
analysis, (b) 1-point connectivity analysis, and (c) 2-point connectivity analysis

7.2.3 Fitness Sharing

Although the techniques implemented in the previous examples were successful at
improving GA performance in terms of the best overall individual found, they did not result
in any significant increases in population diversity. The following set of GA runs use
fitness sharing (as described in section 3.3) in an attempt to improve population diversity
(all prior examples were run with linear fitness scaling). Different sharing functions were

83

tested to determine whi