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Abstract

This thesis focuses on the inf-sup condition for Reissner-Mindlin plate bending
finite elements. In general, one cannot analytically predict whether this funda-
mental condition for stability and optimality is satisfied for a given mixed finite
element discretization. Therefore, we develop a numerical test methodology to
tackle this issue, and apply the tests to the standard displacement-based elements
and the elements of the MITC family. Whereas the pure displacement-based ele-
ments fail the tests, we find that the MITC elements pass them, which underlines
the reliability of these elements for use in engineering practice.
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Chapter 1

Introduction.

1.1 Overview.

Finite element analysis of engineering problems in solid body mechanics often

requires the use of plate bending elements. The design of such elements can be

based on the Kirchhoff theory of plates. Then, because of the assumptions in this

theory, the conforming finite element spaces are required to satisfy Cl-continuity.

In the 1960's many Kirchhoff-theory-based conforming finite elements were

proposed, among them the Clough and Tocher four-node quadrilateral element

[21], the quadrilateral element based on the use of Hermitian functions by Bogner

et al. [12], etc. Conforming plate elements were not only difficult to obtain, but

also, the lower order elements turned out to be too stiff, resulting in displacements

much less then the theoretical values. There were several attempts to use non-

conforming elements, such as the nine-dof triangular element proposed by Bazeley

et al. [11], but these elements often failed the patch test and even converged to

incorrect results.

The subsequent research followed several different paths. Some researchers

implemented elements based on alternative variational principles. One choice

was to use the principle of complimentary potential energy, which gave rise to



so-called "equilibrium formulations" ([51], [37]). These methods partly suffered

from non-uniqueness of displacement fields, which were obtained from integrating

the strains.

Another popular approach, known as the hybrid stress method, was pioneered

by Pian and Tong ([40]). It is based on the use of Lagrange multipliers, which

force interelement equilibrium in a modified principle of complementary potential

energy.

Later Tong [50] developed the displacement hybrid approach, based on a

modified form of the principle of minimum potential energy.

In the 1970's the first elements appeared built on the basis of Mindlin plate

theory and reduced integration schemes. The motivation for the use of Mindlin

theory was that only Co-continuity of the shape functions is required. As well, the

simple shape functions from plane elasticity could be used along with isopara-

metric maps of distorted elements. This approach worked quite well for thick

plates. However, as the thickness is decreased, the shear terms grow rapidly, in

the limit resulting in zero displacements. This phenomenon was named (shear)

locking.

To avoid shear locking, it becomes necessary either to impose the Kirchhoff

compatibility condition directly as a constraint at discrete points or in the integral

sense, or use some kind of numerical tricks (such as reduced integration) to avoid

the unbounded growth of the shear energy part.

The latter direction was developed quite intensively in the 1970's ([53], [39]),

while it was not realized that the use of reduced integration often distorts the

results, and is not reliable to use in engineering practice.

The application of Lagrange multipliers to impose the Kirchoff constraint

resulted in the development of mixed methods. These element families, if properly

designed, have a strong mathematical basis (see, e.g., [18] and references therein)

and are robust to changes in thickness.

Of course, this brief review does not pretend to cover all directions and trends

10



in the plate bending element design and research. In particular, we have not men-

tioned "generalized equilibrium methods", "generalized displacement methods",

and many others. For a much broader discussion we refer to the 1984 review

article by Hrabok and Hrudey ([27]).

1.2 Thesis outline.

In Chapter 2 we start by covering some basic mathematical notions, which are

abundantly used in the analysis of the finite element method. We define in a quite

rigorous way the assumptions made, terminology used, and cite some general

results dealing with associated functional spaces. Then we briefly cover existing

mathematical models of the plate bending problem, and emphasize the basic

assumptions and equations of the Reissner-Mindlin model. Finally we derive the

mixed variational principle and show the necessary and sufficient conditions for

existence, uniqueness, and stability of the solution.

Chapter 3 presents design principles and a mathematical analysis of the el-

ements from the MITC (mixed interpolated tensorial components) family, and

specifies the conditions reviewed in the second chapter for the problem under

consideration.

Chapter 4 deals with numerical analysis of the elements, and provides the

essential theory for tackling problems of the inf-sup type. There we develop a

testing methodology, which allows to quantitatively analyze elements' "addic-

tion" to locking behavior, and we apply these tests to the MITC elements and

displacement-based elements.

Finally, Chapter 5 draws some conclusions and outlines possible extensions

for further research.



Chapter 2

Basic notions.

2.1 Mathematical background.

This section summarizes some mathematical notions and definitions which are ex-

tensively used in the mathematical analysis of the finite element method (FEM).

2.1.1 Assumptions on the domain.

The problem of consideration is posed in the domain Q E IRW, n = 2, with

sufficiently smooth boundary O0f. Let us formally define what is usually meant

by the "sufficiently smooth boundary" ([22]) in the finite element literature.

An open set f E IRn has a Lipschitz-continuous boundary if there exist con-

stants a, 3 > 0, a number of local reference coordinate systems {QO E IRn , x}

and local maps a3 () , j = 1..J, Lipschitz-continuous1 on their respective domains

1 A real-valued function f of a single real variable x, defined over a domain Q is Lipschitz-
continuous if:

If (x) - f (X2)1 _ CjX1 - X21 V (X1, X2) E Q,
where C is known as the Lipschitz constant.



of definition { JRn-1 .Ix: l < u), such that

J

j=1

{xi : aj (ji) < xi < a3 (,Kj) + L, 11iI < a EQ,

ai : a3 (ji) - # < x3 < <a (ji), jx1i <al E Q,

where f stands

Geometrical

for the complement of Q, (T = IR" \ Q).

interpretation of this condition for f E IR2 is shown in Fig. 2-1.

e2

ey

Figure 2-1: (A) - Domain with Lipschitz-continuous boundary; (B) - Lipschitz-
continuity is violated in the circled region.

The definition above allows to consider all commonly encountered shapes,

though eliminating some special cases, such as domains with cusped corners,

cracks, etc., which require special treatments (see e.g. Chap. 8 of [46]).



When all of the maps a' (.), j = 1..J are linear, we have a special case, that

is, Q is a convex polygon.

If an open set Q is connected and there exists a finite number of convex

polygons Qk, such that Q = (n k , then Q is called a polygon.

We will always assume that one of the following properties hold:

* Q has a Lipschitz-continuous boundary; or

* Q is a polygon.

In either case Q is bounded, that is, there exists a constant M : IIv M V v E

Q (in other words, any vector drawn inside Q has a finite length - i.e., semiinfinite

bodies that often appear in the elasticity do not satisfy this condition).

2.1.2 Functional spaces.

In this section we introduce the basic functional spaces that will enable us to

make variational statements.

A real-valued function f is said to be Lebesgue measurable on Q if for every

real number A, the subset w : fl, > A is measurable2

Firstly, for LP (Q) ,p E [1, 00), we set

1

LP (Q) = v E M () I < P d , <vIdI LP(Q) = ,Ivjd , (2.1)

where M (Q) stands for the space of functions, Lebesgue measurable over domain

1
2 f (X) = - is an example of a function measurable on the interval Q2 = [-1; 1]. Although

f (x) is not bounded on the subset w = {z = 0}, the measure (length) of w certainly is well-
defined, and equals to zero. Examples of nonmeasurable functions are more difficult to find,
although they certainly exist (see, i.e., [30]).



Remark. All finite element spaces are constructed over the space M (Q).

This guarantees that integrals of the functions under consideration are well-

defined, or, roughly speaking, functions are not too irregular (i.e., functions that

have infinitely many singularities are not admissible). For example, such cases as

an infinite stress in the semiinfinite body are ruled out by construction. LO

In future, we will deal with one particular member of the family, namely, the

space of square-integrable functions, L 2 (Q), with the scalar product given by

(u, v)L2() = uv dQ.

The operation (-, ) would be considered as the L 2 (Q)-inner product by default.

Secondly, we introduce the Hilbertian Sobolev spaces (in future referred to

simply as Sobolev spaces) with an integer index Hk (Q):

Hk (Q) = v E L 2 () , Dcv E L2 (q), Ia_ < k},

where
alvlnDOv = Oxt .Oxin, Ia!

1 n i=1

equipped with the following inner product, seminorm, and norm:

k

(u, V)Hk() =1 E D u Day dQ,
72 k'd=2

IVlHk(-) = (l |Da L2() H, IH( = IIDv=O L2(Q) -

The following inequality holds. Let a real valued function f (xl, ... , xn) e

Hfk (Q), with k > n/2, and let f be continuous, then

max If 5 C lf llHk(k) . (2.2)



This inequality is often referred to as Sobolev inequality.

Example.

To demonstrate the implications of the inequality (2.2), consider a function

f (x, y) = f (r) = ig (lg (r)),

defined over a domain = r, r = x2 + x 22r < 1/2. One can show that

f E H 1 (Q), i.e., JIfIIH1(0) < C1 < oo. Therefore, we have k = n/2 = 1, and the

Sobolev rule says that we would be unable to identify an upper bound for f on

Q. Indeed, we have that f -- oc, and the inequality (2.2) clearly does not hold.
r-+O

The family of functional spaces defined below corresponds to the homogeneous

boundary conditions on O0 (homogeneous spaces)

Hk (Q) = {v E H k (Q), DvlIan = 0, l•a < k - 1}.

When the domain Qt is bounded, we have the following norm equivalence,

referred to as Poincare'-Friedrichs inequality [22]:

Co (A ) vIIVHk(Q) • IVHk(o) c1 (C ) IV HIHk() (2.3)

For the further analysis we also need spaces of functionals L£ Hk (Q) -- IR,

defined over the Sobolev spaces (topological duals, or so called negative Sobolev

spaces): H - k (Q) = (Hk (a)). For a pair (f, u) : u KIC, f E K', where K stands

for a Sobolev space, we define a duality pairing on IC' x KC (a map : KC' x K: -- IR)

as:

f (u) (f, u)),xK X



The corresponding dual norm is

If = sup I(f, u)JC, x jEKIIl•, = sup

The following result is referred to as the Riesz Representation Theorem:

Let IC be a Hilbert space, and f E IC' be a continuous linear fuctional on 1C. Then

there exist a unique uo E IC, such that f (u) = (uo, u) , Vu E 1.

Moreover, I|f ll, = IIU01o1C

The proof of the theorem can be found, e.g., in [38], [52].

In case 9 = {x : x E ]x; 2[ C IR}, we have the following mapping K [38],

K: Hk (Q) H-k(Q),
k d2m

K = (-1 d2m. (2.4)
m=O dX 2 m

Finally, we state the following inclusion property of the Sobolev spaces

Hm (Q) C Hm-1 (Q) C ... C Ho (Q) C ... C H - m +1 (Q) C H - m () , V m > 0.

(2.5)

For a general study of the Sobolev spaces we refer to [1].

2.1.3 A simple example.

Consider a truss of length L (Q = {x : x E ]0; L[}) fixed at the end points x =

0, x = L, under the action of a distributed load f (x). Let the deflection of

the truss be w (x) : w (x) E Hl (Q) (clearly, this must be the case of a real

physical system), and presume that f is square-integrable over Q. Noting that

f (x) E L ( (x) E H - 1 (Q) = (H 1 (Q))', we can define a duality pairing

as
L

(f , w)H-1(0) xHI (0) = fw dx, (2.6)
0



which has a meaning of the work done by external forces. Actually, to obtain a

finite number as a result of the duality, we do not have to enforce w to be in H 1;

indeed, the L 2 regularity is sufficient for the functional in (2.6) to make sense (to

give a finite number).

Now we consider the case f (x) = 6 (x - L/2), that is f (x) E H - ' (Q). In

this case, to obtain a finite scalar number after the integration, w (x) must be

continuous on Q); we have to use the fact that w (x) E H1 (Q), and the duality

pairing defined above still works.

The norm of f can be calculated as

v (L/2) by (2.2)
=,llHmax << C,
- -HI() IIVIIHI()

which is finite, according to Sobolev's inequality.

To demonstrate a Riesz representation of f (x) in Ha (Q), we will find a linear

operator K, such that every v (x) E Hl (Q) has a unique image Kv (x) in H - 1 (9).

Using formula (2.4), we can simply construct this operator as K = + 1.
dZ 2

Since H- 1 (Q) contains Hl (Q) as well as singular functions of type f (x), the

operator K can be understood as a superposition of 6-function-like distributions,

given by the first term, and H0 (9) represented by the unitary transformation.

To find an element v1 (x) E HJ (Q) that is the Riesz representation of f, we have

to solve a differential equation

d2 vf (x)Kvf (x)= - +v (x) = f (x).dx2

sinh (-L/2) sinh (x)The solution is vf (x) = -H (x - L/2) sinh (x - L/2)+ sinh (x) Re-
sinh (-L)

L dudv\

calling that the inner product in H1 (Q) is given by (u, v)H1(0) f uv + du ) dx,O x x



one can check that indeed,

fw dx = w (L/2) = (v),w)H, VwE H1 (Q) . f
0

2.2 The problem statement and mathematical

models.

Consider a three-dimensional linear elastic body B that, in the absence of external

loading, occupies the region

S= {X = (x1, 2, 3) E 3 (X1, X2) E Q, X3 E -2,t [

where Q E IR2 is a bounded smooth domain with boundary 0Q, and t > 0 is

"relatively small" with respect to diam (Q).

By the exact solution of a linear elastic plate bending problem, we understand

the solution of the three-dimensional linear elasticity problem of deformation

of the body B under the action of a transverse load f= (0, 0, f3 (x 1 , X2)). The

further analysis is restricted to the case of isotropic homogeneous material with

elastic constants E and v, being the modulus of elasticity and Poisson's ratio,

respectively. Denoting u = {ui} ,a = {;ij}, and e = {ej7}, i,j = 1..3, as the

displacement vector, stress tensor, and strain tensor, respectively, we have the

following stress-strain relations given by Hooke's law:

011

022

033

(12

"23

0'13

A + 2y A A

A A +2 2 A

A A A + 2y

2y

2p

2p

E11

622

E33

E12

E23

E13

I



Ev E
where A = v)and ( = are the Lame constants (elements

(1 + v) (1 - 2v) 2(1 + v)
not shown are zeroes).

By the plate bending model we mean a two-dimensional boundary value prob-

lem with a solution, which approximates the exact solution of the plate bending

problem.

The following two models are extensively used in engineering practice (see

[26], [3] for the comparison of the models and references therein):

* The Kirchhoff model (see, e.g., [48]) is based on the assumption that all

out-of-plane components of the stress tensor are negligible (we set the com-

ponents ai 3, i = 1..3, to be zero). Geometrically this implies that a straight

element normal to the midsurface remains straight and normal after defor-

mations. This model provides a good approximation for the plate bending

problem only for thin plates, that is, in the case t < diam (Q). The most

important disadvantage of the model is that the strains are calculated as

corresponding second derivatives of the state variable w (transverse dis-

placement). In terms of finite elements, it requires C' continuity of the

interpolation functions. Moreover, the model suffers from the inherent lim-

itations, such as paradoxical artificial reaction forces on the corners of polyg-

onal domains, and difficulties in imposing natural boundary conditions.

* The Reissner-Mindlin model (RM) ([43], [361) uses the condition a3 3 <K

all, 22 (that is, we set only a33 to be zero, leaving shear strains for the

consideration), and therefore, is closer to the original 3D problem. The basic

hypothesis of this model is that a straight line normal to the undeformed

plate surface Q remains straight but not necessarily normal during the

deformation (see Fig. 2-2). Finite elements based on this RM model need

to have only Co continuity of the interpolating spaces. Moreover, this

approach is far more flexible in allowing to model many types of boundary

conditions without significant difficulties (see [26]).



2.3 RM plate bending model.

This section describes the basic equations and specific difficulties associated with

the RM plate bending model. The more precise analysis can be found in [48] and

[23].

2.3.1 Governing equations. Variational form.

fo-rmre c
n figturctionL

d eforvnme d
I~nfigura tio0 T

0,

02

Figure 2-2: Displacement assumptions of the RM plate bending model.

The equations governing the model are [6]:



1. Displacements (assumed to be small)

Ul = -X 3 0 1; U2 = -X 3/3; U3 = w, (2.7)

where /1, #2, and w are the scalar functions of the in-plane vector coordinate

2• = (x1, 2)

2. Strains (linear part of the strain tensor)

11 = -x 3 '~ l,1; 622 = -X3 02,2; 612 = (-1,2 + ý2,1);
1 1 2 (2.8)

E13 = 2 (W,1 - 01); 623 = (, 2 2 - ),

8F
where "F,i" denotes the partial derivative 9xi

3. Stresses (isotropic elastic material assumption)

E E
1- - V (611 + VE22); -22 - 2 (622 + V611); 033 = 0;

O12 = 2Ge 12; '13 = 2GE13 ; o23 = 2GE23,
(2.9)

E
where G stands for the shear modulus, G = 2(1 + v)

4. The variational form as a starting point for a finite element analysis is

formulated within the principle of minimal potential energy [28]. For the

case of a clamped plate (the treatment of other types of boundary conditions

is also possible, see [26]), we have the following minimization problem

Find u = (, w) V = B x W = [H1 (Q)]2 x H1 (Q) such that

=() 1 1t 2

arg min A (v, )-

(2.10)



where a (-, ) is a symmetric bilinear form defined as

t13 V) [(1- ) -) () +L" ('• -) (q)1 ( 92 ;

S(q_) is the linear strain operator:

S(/) = 791l,lif + '1,21ef2 + 92 ,1e 2 l + 7l2,2e2;2;
e 0

V= e- + e2;89l- -2;
(-, ) is the L 2 (Q)-inner product;

Et 3

D = stands for the flexural rigidity of the plate; and12(1 - v2)
k is the shear correction factor that accounts for the nonuniformity of the

shear strain distribution through the plate thickness, usually k = 5/6.

Note that for a finite fixed thickness t we have, expanding the bilinear forms

and collecting the corresponding terms,

Gk
A (v,v) = a (, -) + 2 2 c Ilvl,-c( 11', I1•1,), (2.11)

that is, A (v, v) is an elliptic bilinear form (the constant C in the inequality above

depends on thickness and material properties of the plate).

The minimization problem (2.10) can be equivalently represented in the vari-

ational form:

Find u = (/, w) E V = B x W = [H1 (Q)]2 x Hl1 (Q) such that (2.12)

Gk 177) + - (VW - V• - y) = -is, ) U,(0,. _ E V,

2.3.2 Discrete variational problem.

Typically one cannot find an analytical solution to (2.12). The usual way to

proceed is to introduce a finite-dimensional problem which approximates the

given one.



Let us choose a discrete space Vh = Bh X Wh C V, where Bh C B, and

Wh C W; thus we are restricted to using a conforming approximation.

Following the Rayleigh-Ritz procedure, we obtain the corresponding discrete

minimization problem over the space Vh

Find Uh = (h, h) E IV = Bh X Wh, such that

uh =arg min 1 h,) 1 (2.13)
MA =arg mm -A(vhs h)- , h)}.

_Vh=(r2h4)Eh h h V 2 t3

Locking.

Let us rewrite the minimization problem (2.13) in the discrete variational form.

For the following analysis, let us rescale the loading term f as f = t3g, with g

independent of plate thickness t. Then in case of finite t we have the following

discrete variational problem

Find u = ( wh) E Vh = Bh X Wh, such that

a _(7h'h h h -- _--h) = (g9,) VV h - (h' h) E Vh)

Gk 1 Gk
As t -0, wehavethat a , 17 t2 withi t2 = c0. Although

the thickness may be very small, the energy of deformation still remains finite.

To keep it finite, we must have that the shear strain contribution to the total po-

tential vanishes, that is (Vwh -'h' • hVG - h) = 0 for all (h' h) E Vh. Clearly,

this is nothing else, but the integral form of the celebrated Kirchhoff constraint

Vw = #. (2.14)

Equation (2.14) implies that in the limit case, the RM model must degen-

erate to satisfy conditions on the stress-strain state, described by the Kirchhoff

hypothesis. Thus, as we approach the limit case, the finite element solution is



more and more enforced to satisfy the Kirchhoff constraint. Consequently, the

number of "conforming" (which can represent the Kirchhoff hypothesis (2.14))

trial functions in the discrete space Vh may get severely restricted, and this can

result in partial or even total loss of convergence properties of the finite element

approximation. This phenomenon is known in the literature as (shear) locking

(see, e.g. [6], [47]).

Another difficulty for the numerical solution is due to the existence of bound-

ary layers for various types of boundary conditions ([3], [44]).

General approaches.

There are two general approaches to circumvent the problem of locking described

above. The first type of methods is based on the standard variational formulation,

and uses convergence properties of higher order FE spaces (so-called p-version

and certain higher-order h-versions [4]).

The other approach is to modify the variational formulation, and therefore,

come to a different finite element formulation. The reasons for that treatment

are:

* Difficulty to construct low-order finite element spaces, satisfying the con-

straint (2.14) exactly;

* Possibility to introduce variables that have a certain physical interpretation.

Those ideas are used in mixed and hybrid FEM (some other approaches, based

on modifications of the variational form, such as reduced integration [35] and

penalty formulations are also well known in the literature). For some examples of

hybrid plate bending elements we refer to a recent paper [31], while some mixed

finite elements would be the subject of the following discussion.



2.3.3 Modified variational problem.

The general guideline is to replace the Kirchhoff constraint by a weaker form,

introducing a reduction operator Rh into the variational statement:

a1(h'7h) + Gk (Rh (Vwh -h),Rh (Vch ) ( (2.15)

Thus, choosing Rh = I, we have the standard FEM; if the reduction is based

on inaccurate numerical quadratures in evaluating the shear strain energy, we in

essence use the idea of selective or reduced integration (if we treat distorted ele-

ments by reduced integration, the operator Rh may become highly nonlinear, and

could hardly be found in closed form). In the following, we will consider the case

of mixed interpolation, where the shear stress is first approximated independently

and then eliminated from the system.

Clearly, the choice of Rh in (2.15) is crucial: it should weaken the constraint

(2.14) sufficiently, so that the FE spaces would retain their approximation prop-

erties, while on the other hand, it should not weaken it too much, since otherwise

the consistency error may become too large (that is, our solution will be far from

the real one), or even the solvability conditions may be violated.

2.4 Mixed interpolation. FEM with Lagrange

multipliers.

2.4.1 Limit problem.

Before we proceed with mixed interpolation, let us define the shear stress in the

plate and its discrete approximation as

G= G2 (Vw -0) Gk2 (wh -h) (2.16)



Considering the variational problem (2.12), we note that for a finite thickness t,

the fact that Vw E VW C [L2 (f)] 2 , VWh E VWh C VW, implies that both

the shear stresses and their discrete version are sufficiently smooth (y E g C

[L2 (Q)] 2, '~h E 9h C !). Noting that all linear operators defined on L 2 (Q) are

indeed in L 2 (Q) (that is, [L2 (Q)]' = L 2 (9) 3), we can represent equation (2.16)

in the integral form as

( Gk (VW V; E g.

This allows us to rewrite the variational problem (2.12) as

Find u = (3, w) E V = B x W = [Hd (Q)]2 x Hl (Q), yE 9, such that

[ a(/3, ) + (7,V - 1-) =(g,)
Gkt2 - (V - 0

However, as we approach the limit case, t -

the L2-norm, that is

Vv = (YI 0 E V7

(2.17)
0, we loose the regularity of y in

S1/2 Gk (V2d 1/2
-- 00.

This suggests that we should look for the space for shears among the negative

Sobolev spaces, as in the example in section (2.1.3), and the appropriate space

VA' would be the smallest one, in which the corresponding norm is finite, that is

3Namely, consider a function f E [L2 (Q2)]'. We have

ll[L ( )] -- Lsup (',v }[L2(Q)]'XL2( - s (,v)v EIL[2(SI)() V4 = S IIVIIL2(0) vEL 2(n),,O '/(7v)

= f) = IIAIIL2(l)

therefore clearly, f E L2 (Q).



11211,, < c. Ideally, the constant appearing on the r.h.s. of this inequality should

not depend on the plate thickness t, though it is neither sufficient nor necessary

for the bound to exist. In the following section we will show that the normed

space F' = H-` (div; Q) satisfies the requirements given above, and

H-' (div; Q) = (_ e [H-' (2)12 , V y E H - 1 ()

(2.18)

H-1 (div;) = 2 H-1(0) I VlH-1 (Q)

Therefore, when t approaches zero, we are able to pose the following limit problem:

Findu = (,w) E V = B x W = [H (Q)]2 x Ho (Q) and

7o e F' = H- 1 (div; Q), such that

(2.19)a (ýo 0) + (-o, _ 77) = (g,) VV E V)

(Vwo -P0,) =0 VE '

2.4.2 Optimality in F'.

Here we cite the result from the original paper [7], which explicitly shows the op-

timality of the norm in H-1 (div; Q) (optimality is obtained in the sense that the

norm of the shears in that space is finite and bounded by a constant independent

of the plate thickness).

Theorem 1. We have

1(tj < c independent of t. (2.20)

Proof.

1. For a finite but small t we have the following bound for the solution of

(2.17):
I v + t2  (t)2 c independent of t, (2.21)

28



where •ji(2 = 1- ) 1~1 + II

2. By the Riesz Representation Theorem, we have that there exists a unique X E

r: (__(t), x) = X)rxr= 2(t = I , where

Fr (F')' = [H - 1 (div; 9)]' = Ho (rot; Q) =

= x e [L2 ()] 2 , rot X E L2 (q) , X . T = 0 on OQ},

(2.22)
X, rx

Ky=xsup ,where
X F '- 12 l

dul 872rot : u -+ rot u -= +
-=- Ox2  Ox"1

3. Choose 0 E B such that

V 0 = 01,1 + 02,2= X1,2 - X2,1 = - rot X,

II0|HI(o) l C c rt X L2 .)

(2.23)

(2.24)

By definition of Ho (rot; 9), -rds =f rot X d = 0 =

which guarantees that such 0 can always be found as a

V.0dQ = 0,

solution to the

well-known potential problem (e.g., Ch. 1, Sec. 2.1 of [33]).

4. Set 71 = (-02, 01). Then

rot rl = 02,2 + 01,1 = V = - rot x,

and from (2.24), using I rot XIL 2(() jX< _ we obtain

IIIIH1(,) = 10) lH,(0) C l1rot Xl L2(Q) < C lXl

(2.25)

(2.26)



5. Take

E HU1 (A) : = A-' (V + V -7).

(Note that both V - X and V - 7 lie in H- 1 (Q)).Then

IIH(Q)) • C1 V _+ ,H.-) • <c (IIXl, + 1±_,11,)

<CX I() )- by (2.26)(xlL 2(QT) + I~IIIH1(I

6. From (2.27) we have

o 1=V *, D -7

Moreover, using (2.25) in the form 4

rot x = rot (Vý - Y)

we obtain a system of PDE's (2.29-2.30) with a boundary condition, given

by X -r = 0 on dO, which leads to the solution

(2.31)

From equations (2.26) and (2.28)

(1!l HI(Q) III HI() )< c Xl with c independent of X.

7. From part 2 we have that

[I__(ct) r' I _Il -- ( _(t), ) by (2.31 _- (2.19)(g') - a

< C (jjijjj() + R (g,)) :5- C IIX1

4Here we invoked the equality rot Vcp = V x Vip = 0 for any scalar function p.

(2.27)

CIIXII'

(2.28)

(2.29)

(2.30)

(2.32)

(2.21)
Y,) <

x = Vý - ,.



which immediately implies (2.20). OE

Remark. In part 6 of the proof, we have shown that for all X in F, it is always

possible to find a pair (y, ý) in V, such that (2.31) and (2.32) hold, that is, the

map B, : V - F, By = V77 - = X E is surjective (we will use this result

later). Clearly, the destination space will not change if we multiply the result
Gk

of the map B, by a finite constant, say, Gk , with t # 0 being a finite number.

Now, we have identified that the subspace g C [L2 (p)] 2, which was used in the

formulation (2.17), is, in fact, H (rot; Q). Summarizing, we have proven that in

case of finite thickness shears belong to the space H (rot; f?), defined in (2.22),

while H - 1 (div; Q), given by (2.18) becomes appropriate in the limit case t = 0.

2.4.3 Existence and uniqueness of the solution for FEM

with Lagrange multipliers.

The variational form (2.19), in fact, represents a typical case of the well-studied

saddle-point optimization problem of the Lagrangian functional:

(u,Y) = inf sup L (v, ), where

(2.33)
, (K, x)= {a (KK) + b(jv) - (9q,)V'XV -

(see the original papers [13], [2], and a broad discussion in [18]). In this form _

stands for Lagrange multipliers associated with constraint (2.14), which have a

physical meaning of shear stresses in the plate.

Remark. The equivalence of the Lagrangian formulation to the problem

(2.19) can be shown, if we evoke the necessary conditions for stationarity of



£ (v, _) at the point (1, 7), taking q = 0:

a (u, ) + b (21,) - (g, v)vxv = 0 V e V;

Here we present a brief discussion on the conditions for existence and unique-

ness of the FEM solution in the problems of optimization of a quadratic functional

under a linear constraint (2.33) (in our case the functional is given by (2.10), and

the corresponding constraint is given by (2.14)).

Example. Saddle-point problem.

In this example we will consider a simpler problem. Assume that we are
1 J1J 1

supposed to find J* =min J (x) = -z 2 . Trivially, J* = J - = To proceed
X=1 2 2 8

with Lagrange method, we introduce a Lagrange multiplier y and Lagrangian

L (x, y) = J (x) - y x - ). Invoking stationarity conditions, we have

aL (x, y) x* 1 0 1

L (xy ,y*) = x* - y* = o y* = z* =ay 2 2'

and min L (x, y) = L 1 1 - J*. The functional is shown in the Fig. 2-3.Xy (' 2 8
We thus have a saddle point at (x*, y*), such that L (x, r (x)) • L (x*, y*) <

L (x, s (x)), where r (x) and s (x) are the equations describing the unstable and

stable manifold of the saddle surface respectively. This problem is equivalent to

min sup L (x, y) . To show the equivalence:

00, Lx i
sup L (x, y)= 2 1

Y J (x) , x =



(A) (B)
Il ,'1

1.5

1.0

).5

).0

-0.5 0.0 0.5 1.0 1.5

Contour values

1 2 3 4 5 6 7 8
-0.25 0 0.25 0.5 0.75 1 1.25 1.5

Figure 2-3: (A) - the saddle-point problem; (B) - contour plot of the saddle
surface.

1
min sup L (x, y) =min J (x)= -. O

x y x 8

The bilinear form a (-, -) defines a symmetric linear operator A : V -- V',

such that a (y, v) = (Au,v),,xv = (uy,Av)v x,. We also introduce a formal

operator associated with the bilinear form b (-,), By V -+ F and its transpose

B T  F' -~ V'
BT

F' V'

B V1 <_ V



Then

b(c,v) = (S - 7)=(S By (V- q))r'xr = (B 7 xV - 7)V'xV

and now we can rewrite the original problem (2.33) in the operator form:

Au+B B =g e V',
Bu =_q E r.

Moreover, let us denote the null space of B, as Ker (B,), and the range of B,

as R (B,). Then we have the following very intuitive result that follows directly

from the Lax-Milgram theorem [22].

Proposition 1. Let q E 7 (B,) and the bilinear form a (-, .) be elliptic on

Ker (B,), namely

3 ao > 0 such that a (v, v) > cio IIvll V v e Ker (B,). (2.34)

Then there exists a unique u E V, such that

a (,v) = (g,vy v  Vv E Ker (B,), and
(2.35)

b S,11=(i7 ,. , V Ir'F

For the proof we refer to [18].

Proposition 1 implies that if the first component of solution, u, exists, it is

unique. Condition (2.34) states the restrictions that we have to impose on the

reduction operator Rh in (2.15) to obtain a unique u (a number of reduced-

integrated elements violating this condition were proposed in earlier publications

on the subject, see e.g., [29]).

Now we turn to the problem of finding the Lagrange multipliers, y. For this

we have to make the following restrictions on B,, namely, we require R (B,) to



be closed in F.

Remark. Closed range operators. The concept of a closed range operator

is a generalization of the idea of a bounded linear function. Moreover, the Closed

Graph Theorem states that if the range of an operator R (f), f : A -- B, where

A and B are some Sobolev spaces, is closed in B, then f is continuous on its

domain D (f) = A. OE

Now we can apply results of Banach's closed range theorem:

Proposition 2. The following statements are equivalent:

(i) 1 (B,) is closed in F;

(ii) 7 (BT) is closed in V';

(iii) 3 k0 > 0 such that V qE R(By), 3 vq E V:

(iv) 3 ko > 0 such that Vg E R (BT), 3 Er':

BRyf g, 9 2ff11 1r4'1.

For the proof of (i)-(iv) we refer to [5].

Remark. Basically, the closed range theorem is the straightforward extension

of the closed graph theorem mentioned above. The most valuable addition to the

continuity of B, (which is implied by (i) according to the closed graph theorem,

and equivalent to saying (iii)), is the dual result for BT. EO

Now we can clearly define the norm over V' using duality arguments:

I sup I
vEev,v#o IIVlIv



and substituting this into equation (iv), we obtain the inf-sup condition as follows:

I (BVxV/V'x V1l llv sup sup E
(2.36)

_ OsupIY>o ,7

Now we can summarize the results of propositions 1 and 2.

Proposition 3. Let the continuous bilinear form a (-, -) be elliptic on Ker (B,)

(that is, (2.34) holds). Moreover, let us suppose that the range of the formal op-

erator associated with the bilinear form b (., -) is closed in F. Then there exists a

solution to the problem of type (2.33) for any g E V' and q E 7 (B,).

Proof. Let q •R (B,) and u be the unique solution of the auxiliary problem

(2.35). We need to show that if 7 (B,) is closed in F, then for all g E 7 (BT)

there exists 7 E F', such that (y, ) is the solution for (2.33).

Consider the linear functional on V: L (v) E R (BT) C V' :

L (v) = -a (., +v)+ (g, V',xV

Firstly, take vo E Ker (By); clearly, by (2.35), L (0o) = 0 V v0 E Ker (B,), so

we indeed have a solution for that case.

Next, if v 0 Ker (By) then by (ii) in Proposition 2, the 7 (B T) is closed in

V'; this implies (by (iv) in Proposition 2) that there exists y E F', such that

L (p) = b (Y, 7v) .
Remark. It could be shown that the inf-sup condition (2.36) along with

the ellipticity condition (2.34) represent sufficient and necessary conditions not

only for existence and uniqueness but also for optimality of the solution for the

saddle-problem optimization (2.33) (see e.g. Theorem 1.1 in [18] and a broad

discussion in [14]). The deeper insight into the physical meaning of the inf-sup

condition can be found in [6]. o



Chapter 3

MITC plate bending elements.

3.1 Design principles.

In this section we present the design principles for the MITC family of plate

bending elements, based on the RM-model and mixed interpolation. These results

are adopted from original papers [15], [8].

3.1.1 Preliminary considerations.

For the further analysis we shall consider the limit, and therefore, most severe

case t = 0, presuming, that if our finite element discretization provides a good

solution for that case, then the elements will not lock in any other case.

Summarizing the results of the previous chapter, in the limit t = 0 we face

the following modified discrete variational problem:

Find uh = (hWh) e Vh = Bh X Wh and --h E h = Rh (Bh U VWh) , such that

a (1h' _h) + (2h' Rh (v - )) = (g,7 ) VVh = (1,h7,] ) e Vh,

hRh (V - h)) = Xh E h(3.1)
(3.1)



Moreover, as we have shown in section 2.4.3, we obtain a unique solution for

Uh, if

3 ao > O: a (h' ,rh) - QO I1hlI V VPh = (rh, Ih) E Ker (RhB,), (3.2)

and a unique and stable solution for 7_h if

3 ko > 0 : f sup (X Rh ( h- )) > o, (3.3)

where

IIX ,= sup =-')rx sup (Xh, 2_

Clearly, the choice of the functional spaces Vh, Gh, and the reduction operator

Rh is of great importance, and determines existence and behavior of the solution.

Let us make the first step that puts some structure on Rh and is crucial for

the formulation of the elements. We choose Rh : Vh -- h to satisfy

(Rh - I) V~h = _0 V h E Wh, (3.4)

9c C 0 : 11R NHI ( < C Jc h HI (0) (3.5)

where Gh - Fh is a subspace of the functional space F introduced in Section 2.4.2.

Remark. Condition (3.5) just enforces the continuity of the operator, and

is quite natural due to the physics of the problem, while (3.4) is a rather strict

condition which implies that we shall use the standard interpolation for the gra-

dient of the transverse displacement field. This condition is sufficient, but not

necessary to allow us to use the "energy-type" seminorm, defined on V by

Ivl + A (K, ) Ir1H1() + IRh(Vh - 1) 2 (3.6)



as a norm, and thus, to be sure that the property (3.2) holds. Another possible

condition would be, for instance (see [41]),

RhVGh = 0 'hG = 0 Vh E Wh. O

In the limit case our approximate solution should satisfy the Kirchhoff con-

straint (2.14), that is

Rh (h - V) = 0 4 Rhh = RhV~ by(3.5) VGh. (3.7)

Noting that

rot V~h = rot ( l d 'h aO h 02 h1
= -- I

0 20h
+ -=0

d1 ~22
V h E Wh,

we obtain
by (3.7)rot Vh = 0 .) rot Rh lh = 0.

3.1.2 Stokes analogy.

For the time being, we consider a slightly different constraint, namely,

S(q, roth) = 0 V q E Qh C Q = L 2 (Q)) Ph rot lh = 0,

where Ph (-) stands for the L2-projection, and Q is an auxiliary space.

Note that the rot-operator introduced in (2.22) is close to the divergence

operator, namely, for any scalar function a and vector function v:

(rot a)' = Va,

rot a = - (Va) ,

rot (v) = -V. v,

rot v = V (i),

where "I" stands for the ninety degree clockwise rotation of the vector argument.

(3.8)

(3.9)

(3.10)

(3.11)



Thus, we are clearly facing a minimization problem under the constraint similar

to the one encountered in the analysis of an incompressible flow.

The results for the well-studied Stokes problem (see, e.g. [18]) will serve

us as a starting point in the further elements' construction. The mixed discrete

variational problem corresponding to the Stokes flow with homogeneous boundary

conditions is:

Find uh E V s C Vs = [H1' (Q)], ph E QS C QS = L 2 () , such that

aS ((Uh, Vh) + bS (h, Ph) = (fh' Vh), V --h E Vhs ,  (3.12)

bS h, h) = 0, Vqh Q,

where as (u, 2) = 2y e(u). - - (v) dG , and bs (, q) = - q (V - v) d (super-

script "S" stands for "Stokes" in further considerations). Let us note that the

bilinear form as (-, -) is always elliptic, so that we do not need to worry about

existence and uniqueness of the solution for the velocity field uh.

To have a unique solution for pressure distribution Ph, the discrete spaces VhS

and Qs should satisfy the stability inequality

sup bs ) > c(h, k) IIqhlIQS, V qh 0 E Qs, (3.13)
suhEvprs ,2 IIVh vs

with a positive constant c (h, k) depending as little as possible on the mesh size h

and degree of polynomials k used as Galerkin basis functions (satisfaction of this

inequality guarantees that the range of operator, associated with bs (., -) is closed

in Q' for some fixed values of h and k). Note that if this constant is independent

of the mesh size h, then we have the inf-sup condition of the form

inf sup bs ( h) > k, (3.14)
qhEQ,qhS, 0

VhEVhShO JIqhlhQS IvhI vs -s



and our solution for Uh and Ph in (3.12) is stable and optimally convergent in

the corresponding norms. There exist quite a few such pairs (Vhs , Qs) described

in the literature, that are known to satisfy the inf-sup condition (3.14) (e.g.,

RT-spaces [42], BDM-spaces [16], BDFM-spaces [17]).

To see the analogy between the original problem and the Stokes problem, we

take Uh = 0h E B1 -. Then, we have

bS(uh, qh)= - (qh, VU(3.1) - (qh, rot h) = V qh E Q S

44 Ph rot / h = 0,

which is nothing else, but the constraint (3.10). Noticing firstly that rotation is

an affine transformation, which preserves all properties of a space under consid-

eration, and secondly, that the stability condition (3.13) does not depend on the

bilinear form as (., .), we conclude that to have a unique and stable solution of

the Stokes-like problem

a a( , l7h) - (ph, rot y) = 0 V1l h E Bh,
(3.15)

(qh, rot ( h - h) =0 V qh E Qh

for the pair (h' Ph), we should satisfy the stability condition

hsup Fc((q h, h) c(hk) Iqh IQ Vqh 0 E Qh,

and the corresponding inf-sup condition for the optimal convergence

(qh, rot 9h)inf sup > ko.qhEQh, qh:0 7h EBh, 7'hO lqhjjQ h 0 @@ ,



3.1.3 Construction of the elements.

Clearly, using a pair (Bh, Qh), that is known to work for the rotated Stokes

problem (and correspondingly, for the problem (3.15)), namely, satisfying the

inf-sup condition (3.14), or, at least the stability condition (3.13) with Vh = -,

we shall get the space Bh, which will not lock under the constraint (3.10)). The

only thing, that we have to do now, is to match our actual constraint (3.9) with

the one introduced in (3.10). Recalling that Rh Bh --+ Fh, we are able now to

make the following proposition:

Proposition 3. In case t = 0, the following statements are equivalent:

(i) rot Rhih = 0 V rYh E Bh; and

(ii) Commuting diagram property is satisfied, that is:

Bh +ro L2

Rh I I Ph (3.16)
rot

h Qh

The proof (i)>=(ii) is trivial; clearly the commuting diagram states that

rot Rhrlh = Ph rot hby(3.10for t= 0 V r7o E Bh. (3.17)

The commuting diagram (3.16) can also be written as an integral equation (for

the limit case):

rot Rh77h = 0 (rot Rhyh, qh) = 0 V qh E Qh

€ (rot Rhh7, qh) - Ph rot 7h = 0 c=

(rot (Rhrh - h) qh) = 0. (3.18)



Noting that conditions (3.4) and (3.8) impose explicit restrictions on the struc-

ture of the interpolation space Wh, we are ready to close the loop. Thus, we have

the following "algorithm" for the construction of an element:

1. Start with the pair of interpolation spaces (Bh, Qh), that is "good" for

the Stokes problem. Bh would be the space for rotations, while Qh is an

auxiliary space, which never appears in actual calculations (by "good" we

mean that we satisfy either (3.13) or (3.14)).

2. Find another space Fh and an operator Rh, such that the diagram (3.16)

commutes.

3. Choose the space for transverse displacements Wh to satisfy (3.4), i.e.

VWh C Fh, rot Vh = 0 V\ h E Wh.

Remark 1. Although following the algorithm stated above does not imply

that the result of our choice for discrete spaces and reduction operator would

satisfy the inf-sup condition (3.3), the elliptic properties of the form A (., .) are

clearly preserved by imposition of (3.4). El

Remark 2. Stability condition vs. the Inf-sup condition. As we

pointed above, the space Qh does not have any physical meaning, and serves just

as a link between the Stokes problem and the problem of interest. The stability

condition (3.13) ensures that the solution for 3h will be stable and accurate,

while condition (3.14) guarantees that both Oh and Ph are optimally convergent.

Certainly, we are barely interested in Ph's, therefore (3.14) is in fact too strong,

and we should not discard pairs (Bi, Qh) that are known to work for velocities

but fail for pressures in the analysis of the Stokes flow (as an example of such a

pair we can take the Q1 - Po pair, which serves as a basis for the MITC4 element

construction). El



3.1.4 Justification.

A reasonable question that one can ask now is - why do we need to follow such

a long way if we do not gain anything (i.e., the inf-sup condition may not be

satisfied, etc.)?

The following result ([18]), though, states that we have obtained at least some

optimality.

Proposition 4. The operator Rh defined in (3.4) and (3.5) is surjective on

Fh.

Proof. All we need to prove is that for every _h E Fh, we can find a pair

(h' Wh) E Bh X Wh = Vh, such that

Rh (Vw - h) = 7h'

IWhIIH, + .h2 H' 5 C 12h 1,,

To show this, we shall follow the algorithm described above. Firstly, for

a given -h E rh, we solve the Stokes-like system (3.15) for Ph E Bh and an

auxiliary variable ph E Qh. The fact that we have chosen the pair Bh x Qh to

satisfy either (3.14) or (3.13) guarantees that there exists a unique ¾h' such that

rot Rh3h = rot 7 h, and IIh 1H c 11 . If we satisfy the inf-sup condition

(3.14), then the constant c is independent of the plate thickness, which is not the

case if only (3.13) holds. Having that rot (2h - RhIh) = 0, we can find Wh E Wh,

such that VWh = 7_h - Rh/h'

For example, the appropriate Wh can be uniquely determined as the solution

of the discrete variational problem (VWh, V1Ch) = (2h - Rhfh' V4h) V Vh E

Wh. Continuity of Rh stated in (3.4) ensures that IIWhIJH, I C 12, therefore

allowing us to conclude the proof. fO

Remark 1. Surjective maps. Inf-sup condition in the 'h norm. A

function f : A -- B is surjective if and only if every b in B is the image of some



element of A (a geometrical interpretation is shown on Fig. 3-1). It can be shown

Figure 3-1: Surjective function.

(see any elementary course on functional analysis, e.g. [38]), that surjectivity of

the function f is sufficient to guarantee that its range 1? (f) is closed in B.

Therefore, Proposition 4 implicitly states that the range of Rh is closed in Fh,

and we have that

3k >0: sup• (V - 7h>)) k •j h E F, (3.19)
-Eh Evh,vhZ o IvhIIv h

where

Ar = sup (3.20)

If the constant k, appearing on the r.h.s. of (3.19), does not depend on the thick-

ness t, then we obtain nothing else but a discrete form of the inf-sup condition

(3.3), or the inf-sup condition in the F'h-norm. Although this result is weaker than

the original condition, in practical calculations we deal with finite-dimensional

operators rather then with infinite-dimensional maps, and therefore, by now, we

have obtained quite satisfactory optimality. Moreover, it can be shown that the

elements, designed using the algorithm stated above, are optimally convergent in

the sense of the norm (3.20), see [18]. Let us finally note that k will be clearly

independent on t if the starting pair of spaces (Bh, Qh) satisfies the inf-sup con-



dition for the rotated Stokes problem (it might not be the case if we satisfy only

(3.13)). o

Remark 2: Discrete vs. continuous inf-sup condition.

If our elements satisfy the discrete inf-sup condition (3.19) in the F'h-norm,

then the sufficient condition to satisfy it in the continuous form (3.3), is :

1H2hL',, = P 112hl,, Vlh E ]F, (3.21)

with p being a constant independent of the mesh size and plate thickness. EO

3.2 The elements.

In this section we describe the standard approach to the plate bending problem,

as well as the MITC family of plate bending elements, taking the MITC4 and

MITC9 elements as typical representatives.

3.2.1 Reference element and covariant transformation.

In the following analysis all discrete finite element spaces are defined from the

corresponding spaces on the reference square element K = (-1, 1)2 through a co-

variant tensor transformation. The reduction operator is R K also defined locally

on each element K, which allows us to construct it for general elements using

a covariant transformation of the operator Rh defined over K. This enables us,

without loss of generality, to consider all operations only over K, then extending

the results to more general cases. Let JK be the Jacobian matrix, associated

with the transformation of the K-th element; its determinant is AK = det (JK)

(Fig. 3-2).

A fairly standard assumption on JK is the existence of its inverse (JK) - 1 for
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Figure 3-2: Covariant transformation of a general element.

each K = 1..N. Moreover, as the characteristic mesh size h -, 0, we have

max JK -( 1 '
K I j Loo(K)

< C < oo, i, j = 1..2, K = 1..N.

These assumptions ensure that all maps are well-defined in the sense that we

cannot have singularities of the FEM matrices due to the use of general elements.

3.2.2 Displacement-based finite elements.

The simplicity of these elements made them popular in the finite element analysis

of plates, although the results are often far from reality, because of locking. The

space for shears is obtained as (taking the reduction operator as an identity

transformation)

Gh = rh = VWh U Bh,

which implies that

Ker(RhB,) = Ker(B,) = {h (_hl h) E Vh V h h}

r

1

.0%

K
jK



This condition severely restricts the space of interpolation functions, which satisfy

the discrete Kirchhoff constraint (the worst results are obtained for lower order

elements, namely P3 and Q4 elements; see Appendix A for numerical examples),

barely leaving a hope to obtain uniformly good convergence for all thicknesses

t. We omit the details of construction of the FEM matrices, though referring to

Sec. 5.4 of [6].

3.2.3 MITC4 element.

The element was initially presented in [24] as a shell element. Numerical perfor-

mance, mathematical analysis, error estimates, and convergence rates are shown

in the subsequent publications, e.g., [10], [7].

For the mixed-interpolated 4-node element we use (taking homogeneous bound-

ary conditions for the sake of simplicity):

Wh = E Ho H (Q),hik G Q E (Qk)},

Bh- {h "?hh [ 1 ( 7H2)]2,h, k [QI(k)] 2},

Qh = Ph: Phi- = COSt }

=h {h Ho(rot; ), lh ERT If ,

RT (K) = (span {1, s}, span {1, r}).

The pair (Bh, Qh) satisfies the stability inequality (3.13) with constant c (h, k) =



O (h) (see the proof in [32]). The fact that Phl -= const implies that

(rot (Rhlh - h) ,qh) = 0 V qh C Qh =

=f rot (Rhh - h) dQ =o (Rh --rh ) - t dS =
n an (3.22)

1zJ (ihqh - YJ li -t A dSliZ 01
K=1

aK

where t stands for a unit tangential vector.

Using integration along the edges ei, i = 1..4, of the reference element, i.e.,

4

8K ei

and using AK = const (affine covariant transformations), we can try find the

reduction operator Rh. The fact that Y hl'K is a bilinear vector function allows us

to calculate the integral along an edge ej as

S(firlhi - rh) le, !il di (hrlh - YJ lei, I o *t
ei ei

Thus, to obtain zero on the r.h.s. of (3.22), we should construct Rh to satisfy

Rhrlh = 77hat the midpoints of every edge ej (so-called tying procedure). Equiva-

lently,

Vh - Rh77h = Vh - 7h VGhe Wh

at the edges' midpoints, where hE Fh, and hs T are the values of the shear

strains obtained from the standard displacement-based interpolation.

Therefore, by tying shears with displacement-based values at the mid-points

of the corresponding edges, we enforce the commuting diagram property to hold.



0 - nodal points

- tying points

Figure 3-3: Tying procedure for the MITC4 element.

The choice of Wh provides the same order of accuracy as for rotations; moreover

we have

VWh = 1{h : -h1I C Fh, rot _h = 0}.

As a result, we obtained a very robust, simple, low-order element, which does

not lock for small thicknesses (see Appendix A for numerical results).

3.2.4 MITC9 element.

For the mixed-interpolated nine-node element ([15]), we take

Wh = h : h E Hol (Q),,i| E Q~ (2)}

, _,l7 - [Q2 (K)]211
Qh = {Ph : ph- EP1 (~)},

Fh = {(h :Yh E Ho(rot; 2), h E BDFM (K)},

BDFM () = (span {1, r, s, rs, s 21

Bh

(3.23)

, span 1, r, s, rs, r2) ,



and Q2 (k) is the 2nd order Serendipity space defined over K.

The pair (Bh, Qh) is known to satisfy the inf-sup condition (3.14). To satisfy

the commuting diagram, we have to impose the following restrictions on Rh :

J (k lh ) AK dr ds = 0; and (3.24)

J (h) p(1) Adl = 0 V p(1) E Pi ( li , ei, i= 1..4. (3.25)

Then

Irot (•hh) qa dr ds - J h,) rot qh dr ds+

+ J ( )-q dS use (3.23), (3.25)

9K

= - (hh) rot qh drds+ J 7 h ' h dS

K EIR 2  aK

= h- -rot qh dr ds+ Y -t dS J rot (,h) q, dr ds,
K aK K

which proves the sufficiency of (3.24) and (3.25). Again, the space Wh has the

same order of accuracy as the one for rotations, and VWh C Bh.

As we have done for MITC4 element, for AK = const, we can calculate inte-

grals (3.25) using numerical quadratures (2-point Gauss rule is the best choice).

The MITC9 element is more expensive then the 9-node displacement based

element, because the calculation of the stiffness matrices requires a numerical

integration over each element in the mesh to impose the constraint (3.24). To

overcome that difficulty, one may find more attractive (though requiring more

analytical work) to calculate the coefficients in the tying expressions explicitly,

and solve a relatively small system of linear equations for each element.



3.2.5 Other elements.

The MITC family of plate bending elements also includes a higher order 16-

node quadrilateral element, MITC16, and two triangular elements, MITC7, and

MITC12. All these elements have the same properties, namely, do not contain

spurious modes (that is, satisfy the ellipticity condition), they are relatively in-

sensitive to geometrical distortions, and do not lock for small thicknesses.

For the list of the elements we refer to [6], convergence results are presented

in [9]; a mathematical analysis can be found, for example, in [18], [19], [45].



Chapter 4

Numerical analysis.

In this chapter we present an attempt of a numerical analysis of plate bending

elements, based on RM theory, using procedures, similar to the inf-sup test, pro-

posed for the problems of incompressible elasticity in [20], and for beam bending

elements, based on Timoshenko beam theory in [6).

4.1 Matrix computations.

This section deals with simple matrix operations, inequalities, and eigenproblems,

which we will need for the further analysis. Although these results are quite trivial

and well-known, we still show all the derivations, to provide a general framework

for managing problems of the inf-sup kind. For a deeper insight into the matrix

computations issue we refer to [6] and [25], while a review of the properties of

linear operators, as well as main spectral decompositions theorems, can be found

in [38].



4.1.1 Eigenvalue decompositions. Generalized eigenvalue

problems.

In the following considerations, all real-valued matrices appear in boldface, e.g.,

A E IRn x IR' is an n-by-m real valued matrix. Matrices represent perfect

examples of closed range linear transformations, and thus, a-priori are quite easy

to deal with. Let us take m = n for the matrix A introduced above; in the further

analysis, we will concentrate on the symmetric matrices and assume A = AT by

default, unless explicitly stated otherwise. Consider now the standard eigenvalue

problem, associated with A:

Find a set of eigenvalues Ai and eigenvectors 0-, such that
(4.1)

AO, = _

where O = {0 , ..., n}, and I is the n-by-n identity matrix. We can rewrite

equivalently the eigenproblem (4.1) using matrix notation as

Find matrices A and D, such that Ab = DA, #T = I,

where A = diag (A1, ... , An). Using the orthogonality of

we obtain the eigenvalue (or spectral) decomposition of

4TAb = A.

Putting a positive definite matrix B E IRW x IRW on

arrive at the generalized eigenvalue problem, namely

b (i.e., ,-1 = 4-T),

A: A = DA4tT, or

the l.h.s. of (4.1), we

Find a set of eigenvalues Ai and eigenvectors 0i, such that

AO. = AiBOq,

i = l..n; ~T~ = I,

i = 1..n; 9TB4 = I,



or, in the matrix form,

Find matrices A and 4, such that A4 = BAA, pTBB = I. (4.2)

Multiplying both sides of (4.2) by 1T on the left, we obtain that DTAQ = A,

as it was before, in the standard case.

For the sake of simplicity, let us define a convenient notation for a generalized

eigenproblem with a symmetric real-valued matrix A, and symmetric positive

definite r.h.s. matrix B, as GEP (A, B).

Remark. We can clearly use all the concepts of functional spaces, stud-

ied in Chapter 2 for the matrix analysis. In particular, for two general vectors

V = [Vl, ..., v] T E V = Rn x IR1 and W =[wl,, wn] E W = (V)' =IR' x R",

we will use a duality pairing between the spaces as follows: (W, V) = WV =
i=1

wivi. O

4.1.2 Vector and matrix norms. Basic inequalities.

For a real valued vector V = [vI, .. , vn]T EIR" x R1 , and a general real-valued

matrix A EIR" x IRm , we define the following norms, as given in [6]:

IIVI = VT, , IIAI = Amax, (4.3)

where Amax is the largest eigenvalue of the matrix ATA. Let us also define a

vector seminorm

IV12 = VT, BV), (4.4)

where B is a symmetric, real-valued, positive semidefinite n-by-n matrix. If

Ker (B) = 0 (i.e., B is positive definite rather then semidefinite), then this

seminorm becomes a norm, equivalent to (4.3) for all V in IR" x IR'. If, however,

the null space of B is not trivial, then the equivalence of (4.4) to (4.3) holds only



on the subspace D = [IR" x IR'] \ Ker (B). Let us explicitly show this result in

the following proposition.

Proposition 5. IVIB is equivalent to IIVll V V ED.
Proof. We need to show that there exist two positive constants cl and c2,

such that

cI IIJVJ2 IVJB • C2 IIVI12 V V EG. (4.5)

Let us rewrite V = PV, where A and 9 are the eigenvalues and eigenvectors

of the standard eigenproblem associated with B. Then

V12 = VTBV (VT4T, BV) use TB-=A (VT, AV use rV=+ T V and 04=

n n

Z Ago2 use Vev ZDv2
i=1 i=m+1

where m. is the dimension of the null space of matrix B (and the number of

corresponding zero eigenvalues, Ai = 0, i = 1..m). Therefore, we have that

n n

Amin B V < V • max Z ?
i=1 i=1

where Arn and Amax stand for the smallest nonzero and the greatest eigenvalues

of the GEP (B, I) correspondingly. Of course, this result is nothing else, but the
n

celebrated Rayleigh quotient [6]. Recalling that IIVII| = 0 v•, we conclude that

(4.5) holds with cl = /X and c2 = /ma. O

Remark. The result of Proposition 5 certainly holds in the "trivial" case,

when Ker (B)= 0 (or D = IRx IR1).

Another important vector inequality, which will be extensively used, is the

Cauchy-Schwarz inequality for real numbers [38]:



If vi, v2, ... , v, and wl, w2, ... , w are real numbers, then

S 2 (4.6)

2We can rewrite the above inequality in terms of vector norms as: |I(V, W) 5

IIVI 2 IIWI12. Let us note that the sufficient condition to get the equality is:

vi = wi, i = 1..n.

4.2 Analysis of the inf-sup condition.

Here we present a discussion of the numerical analysis of the inf-sup condition

in the FI-norm, given by equation (3.3). The proposed numerical procedures for

evaluating the performance of the elements are similar to the inf-sup test [20]; for

a related analysis of a number of eigenproblems of the inf-sup type that appear

in the incompressible media analysis, we refer to [34].

4.2.1 Matrix form of the inf-sup condition in the r'h-

norm.

This, and the following two sections, concentrate on the numerical treatment of

the discrete inf-sup condition in the FJ-norm, given by (3.19).

We choose the following norm over the space for rotations and transverse

displacement (restricting our analysis to the case of bounded domains):

1l1h12 IV2VhIawci=) by (2.3) Vh2 h12 +Ii =

2 2

= L2 ~ l L2(f + h,i L2 = VTSV = jIVI( j
i,j=1i=

where L is a characteristic dimension of the plate (e.g., plate's length or width),



V EIR' is a vector of nodal point displacements, and S E IR" x IRn is a positive

definite norm matrix.

Shear strains are calculated from nodal point displacements V using a shear

nodal basis B, : IR" -- h, as =Yh = BV. Let us define the L2-inner product of

B,'s as G = (BT, B,) E R x WRn; then the bilinear form in the numerator of

the inf-sup condition can be rewritten as (2_h,_h) = (UTB T , BV) = UTGV,

where G is a positive semidefinite n-by-n matrix. To avoid corner solutions

(i.e., the inf-sup value being zero or infinity), we have to impose the following

restriction: V, U ED =IR" \ Ker (G). Summarizing, we can deduce the matrix

representation of the discrete inf-sup condition in the 1F-norm (3.19):

UTGV
inf sup > l > 0 (4.7)

UeV vEB, |IBUI|, iV| IIs

4.2.2 Discrete inf-sup condition in the L2-norm.

As we have shown in Section 2.4.1, for the case of zero plate thickness, t = 0,

L2 (Q) is not the appropriate space for shears, i.e., the norm of shears in L 2 ( Q) is

not bounded from above. The purpose of this section is to show that this result

can be demonstrated and confirmed by a simple numerical experiment.

Let us assume that the appropriate space for shears in case of zero thickness

is L2 (Q), therefore the corresponding norm is given by 1_hlr,' = IIh lL2,() -

IIBU |L2(Q) G(UTB, BU) U I.

The inf-sup condition has the form:

UTGV
inf sup > / (4.8)

VUE VEj IUIG IVlls -

with the inf sup value / = 1V , where Amn stands for a smallest nonzero

eigenvalue of the GEP (G, S) (see Example 4.41 in [6] for the derivation).

To check the performance of the elements, we apply the inf-sup test proce-



dure to a simple problem (see Fig. 4-1), using quadrilateral displacement-based

elements (QUAD's) as well as the elements of the MITC family.

X3

O/

Figure 4-1: Cantilever plate considered in the inf-sup test. Top view shows a
typical mesh of four none-node elements.

We expect that, due to the unbounded growth of the term in the

denominator of (4.8), the inf-sup value # will go to zero. If we find that for some

element, the inf-sup curve escapes this trend, then our theoretical prediction that

L 2 (Q) is not the correct space for shears will be contradicted.

Numerical results of the test are shown in Fig. 4-2 for the case L = B = 100.

All curves in the figure demonstrate that the discrete inf-sup value / converges

to zero with a linear rate, which does not contradict the analytical results.

I _
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Figure 4-2: Inf-sup test of plate bending elements in the L2-norm (cantilever
plate).

4.2.3 Inf-sup test in the Ii -norm.

Let us obtain the expression for the inf-sup value when we use the appropriate

space for shears with a dual discrete norm given by equation (3.20).

We take

2 2 2

12 = 112 + L 2 rot XF i L2(Q) - L2h(Q) = VT (G + Q)V = VTDV IVTD
VED

where D is a positive semidefinite matrix, and L is a characteristic dimen-

sion of the plate. Note that the condition V ECD is sufficient to guarantee

60

-0.5-1.5



V ýKer (D) (VTGV > 0 V V ED, and since Q is a positive semidefinite ma-

trix, VTQV > 0 VV V IRn; therefore VT (G + Q)V > 0 V ED). Then

use (3.20) (VTBT, B,.U) VTGU by (4.5)=IByU r, = sup sup <
h Vev IVID VED IVD

(4.9)VTGU use (4.6) IIGUl 2<sup = ,
vev Ann 1IVII2

where 6min stands for the smallest nonzero eigenvalue of D. Moreover, by (4.5)

we have:

IlVIls •< 'max IjVll , (4.10)

where ormax is the largest eigenvalue of S.

Substituting (4.9) and (4.10) into equation (4.7), we obtain

UTGV 6mn in UTGV use (4.6)
inf sup >  inf sup

UEvEV jIBIU|r, IIVIIs o-max UED VED IIGUI2 I1V11 2
(4.11)

= min inf I GUI12 use UED min 3

V max UEV IIGUI12  max

Now we can apply the same procedure to study convergence of the discrete

inf-sup value 3 1. Results of the test for four- and nine-node quadrilateral plate

bending elements are shown in Fig. 4-3.

The / of the four-node quadrilateral displacement-based element QUAD4 con-

verges to zero, confirming the locking properties of the element demonstrated in

Appendix A. Other elements do not show that trend, which also agrees with nu-

merical simulations; therefore we conclude that the QUAD9, MITC4 and MITC9

elements have passed the inf-sup test in the rI'-norm.

Let us emphasize that these results do not pretend to prove that we satisfy

either the inf-sup condition (3.3), or (3.19) for every problem and every mesh

'Another, though computationally less efficient way of calculating the inf-sup value 3 is
presented in Appendix B.
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Figure 4-3: Inf-sup test of the plate elements in the FF'-norm (cantilever plate).

sequence; they are certainly limited to the consideration of the particular demon-

strative example, and weaker then the analytical results of Proposition 4. On

the other hand, this routine allows us to test general FE meshes with distorted

elements, for which we can barely extend the analytical results.

4.2.4 From Fr to P'.

As we have demonstrated in Section 3.1.4, in order to prove that the discrete

inf-sup condition (3.3) is satisfied for a given FEM discretization, we need to

show that:

-1.2 -1.0



1. The discrete inf-sup condition holds with respect to IF'-norm for shears, as

given in (3.19)-(3.20);

2. The norm equivalence stated in (3.21) holds with a constant p independent

of the mesh size and plate thickness.

The inf-sup test from the previous section enables us to check, whether the

first condition is satisfied, while this section is devoted to a development of a

similar numerical procedure, which will allow to check whether the latter holds

for a given particular case.

Let us make a refinement of the FEM space with a characteristic mesh size h,

simply subdividing every element onto four subelements, and call the resulting

discrete FEM space for shears Fh/2. The next refinement will give us a space Ph/4,

and so on. Clearly, we have that Ph C Fh/2 C Fh/4 ... C Fh/2n C F. Therefore,

choosing the number of refinements n, we can approach the continuous space F

as closely as wanted by our FEM discretization2

Moreover, for lh E Fh we have that

h,, sup (Xh'2h) with lim h = h,
h/2n Xh Eh/2n h•P : r h/2 O h/2n

Thus, to check whether the norm equivalence (3.21) holds, we can look for a

sequence of problems

hI r = = ,n (4.12)

and trace the constant pn as we increase n. If pn does not converge to zero, we

say that the test is passed, and, combining this with results of the inf-sup test

in the Fr-norm, we state that the inf-sup condition (3.3) is satisfied for a given

discretization.

2To confirm this statement, we have to recall well-known convergence properties of the FEM
discrete spaces; see, e.g., Section 4.3 of [6].



To find the worst case which is predicted by the theory,

greatest lower bound of p,, given by

n = inf
-lhErh Yh#O

we will look for the

sup (Xh 'l-h)
-herhXh--• rh

sup I II
XhErh/2n, 0h p h A/2n

(4.13)

In order to rewrite the expression (4.13) in matrix form, we define:

Xh = BV, B,:IRH --+ 1h; U, V E IR;

ILXh =hIVI.

X= BVV,

rh/2 VE D

G=(B-5T ; D, GE R x IRW;

i • =G = ( B -Y I B y
DE IR" y Rh/2n;
D E RV X W; E=

where m is the dimension of the discrete space Fh, and

of Ph/2n. Substituting (4.14) into equation (4.13), and

domains 9 = IR" \ Ker (G) and H = I~\ Ker (G)

answer, we obtain

I,YB; GE R xIR ,
(4.14)

i stands for the dimension

defining the corresponding

to escape from the trivial

V GU
sup [

pn = inf VD IV (4.15)
UED VGU

To calculate the greatest lower bound of p, we have to find a lower bound

for the expression in the numerator, and an upper bound for the denominator in

(4.15).

2h = B U,



-T--- -T-V GU by (4.5) 1 V GU use (4.6) with V=GU 1 1

V I- mx IlV11 2 maxsup > sup =GU

(4.16)
-T- -T-TV GU by (4.5) 1 V GU use (4.6) with V=GU 1 ii

sup < sup - GU
s u p - _ -T = II Ii2 '
VUp v = 2 2

(4.17)
where 5 max is the maximal eigenvalue of matrix D, and 6 in stands for the smallest

nonzero eigenvalue of D.

Substituting (4.16) and (4.17) into (4.15), we obtain the greatest lower bound

for p, as:

> n IIu u2 [nun • 2 2p inf = f = GU
6max U E GU max U l U 2 KU

inf GU12 (4.18)
min UE IlUll12 set lIUll2=1 min

- max GUp 2 KU 1¢•max ma x  ,
sup

with 7rin being the smallest nonzero eigenvalue of G, and 9max the greatest

eigenvaluc of a matrix T =GTG. Therefore, we can apply a numerical procedure,

similar to the inf-sup test to trace the value 6, as we increase n 3 .

Results of the test for the displacement-based and MITC four- and nine-node

elements are presented in Fig. 4-4. We can clearly see that the QUAD4's 6n

monotonically converges to zero as we increase the dimension of the trial space

Fh/2n. Therefore, we state that the constant p. for QUAD4 is not bounded from

3Since 7min and Wmax do not change with n, there is no need to recalculate them; they
should be calculated only in the original space F' . Also, we note that the dimension of the
eigenproblem for max, , ,corresponds to the dimension of the smallest space I'. Therefore,
the only expensive calculation (i.e., an eigenproblem of size =n) is required to get the eigenvalue
6

min.



-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
I. ..I. I I I I I I I I I I I I I I I I I I i .. i I

l g ( 1 / 2 n ) ................ ......

. .. . . . .. . . - -1

-2

-3

-4

-5

-6

-7 ............. linear rate
8 QUAD4

-A- MITC4
-- 8-8 0 QUAD9

-e- MITC9

Ig( 8, )

Figure 4-4: Behavior of 6, for quadrilateral plate bending elements (cantilever
plate).

below, and the test is failed. The other elements do not exhibit this trend; the

corresponding curves for 6,, do not go down as we make refinements of Fh; this

allows us to manifest that for a given particular problem we will be able to find

a finite nontrivial lower bound for the constant p, as n goes to infinity, and thus,

the discrete norm equivalence (4.12) holds with p~ independent of n. Because

the plate's thickness does not show up in the expression (4.18), the constant pn

also does not depend on t. Convergence properties of the discrete FEM spaces

allow us to extend this result to the "continuous world", and state that the norm

equivalence (3.21) holds for a given problem with a constant p independent of



the plate thickness.

Summarizing, we are able to conclude that for the problem under consider-

ation, the QUAD4 element does not satisfy the inf-sup condition, locks for a

broad range of plate thicknesses, while the mixed interpolated elements and the

QUAD9 element pass the developed inf-sup test, and do not lock. These results

are confirmed by numerical simulations shown in Appendix A.

4.3 Numerical results.

This section presents an analysis of the problem, which is known to be the most

severe test for the locking behavior. We will consider a clamped square plate (see

Fig. 4-5), with L = B = 100 mm, and study the robustness of quadrilateral plate

bending elements to changes in thickness and mesh distortions.

Following the procedure developed in the previous sections, we firstly run the

two tests, given by equations (4.11) and (4.18), for a sequence of uniform meshes,

shown in Fig. 4-6.

The results are basically the same as they were for the cantilever plate case:

the QUAD4 element locks, while the QUAD9 and the mixed-interpolated ele-

ments produce good results, and do not lock for small thickness/length ratios.

Fig. 4-7 demonstrates the numerical results of the inf-sup test in the rF-norm,

while Fig. 4-8 shows the results of the Sn-test.

Since for this case the results from the two tests seem to be perfectly correlated4 ,

we can conclude that the rate of change of the smallest eigenvalue of the norm

matrix D, (referred to as Si, in (4.11) and as kJ, in (4.18)) dominates the qual-

itative behavior of the elements for the particular problem under consideration.

Therefore, without loss of generality, we will further run only the inf-sup test in

the Ir'-norm for the same problem and the same set of elements, using slightly

4 1.e., the simulations show that if an element fails the inf-sup test in IF'-norm, it does not
pass the 56-test either, and visa versa.
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Figure 4-5: Clamped plate.

distorted meshes, as shown in Fig. 4-95 .

The results of the test are presented in Fig. 4-10. One can see that for this

case both displacement-based elements "collapsed"; the corresponding lines for

the QUAD4 and QUAD9 elements converge to zero. The mixed-interpolated

elements, MITC4 and MITC9, passed the test, displaying their robustness to

mesh distortions and changes in thickness.

Appendix A presents the numerical evidence, absolutely consistent with our

results, thus justifying the proposed testing methodology.

SThe meshes were chosen to preserve the "conforming" properties of the FE spaces, i.e., (A)
C (B) C (C) C (D), which implies Vh C Vh/2 C Vh/4 C Vh/8-

X1

'///////////'/ I

L



Figure 4-6: Uniform meshes used for the inf-sup test of the clamped plate case.
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Figure 4-7: Inf-sup test of the quadrilateral plate bending elements in the PF-
norm (clamped plate case, uniform meshes).
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Figure 4-9: Distorted meshes used for the inf-sup test of the clamped plate
probem.
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Chapter 5

Conclusions.

The main objective of this thesis was to develop a reliable numerical testing pro-

cedure, which would indicate whether a particular element satisfies the inf-sup

condition for a given discretization. This methodology was established, based on

analytical results manifested in Chapters 2 and 3, using eigenvalue decomposi-

tions in a way similar to the inf-sup test proposed in [20]. All our predictions

about the tested elements are in perfect agreement with analytical results, and

with existing practical evidence (some results of numerical simulations are pre-

sented in Appendix A).

Moreover, Chapter 4 presents the essential apparatus, which can be applied

to the numerical analysis of any constrained optimization problem, in which

conditions of the inf-sup kind appear. Basically, the results can be generalized to

any discrete functional, in particular, the extensions to nonlinear analysis and/or

shell elements would be of great practical importance.

Summarizing the results of the analysis of the finite element discretizations

for plate bending problems, we report that:

(a) The four-node displacement-based element fails to satisfy the inf-sup condi-

tion, and thus should be excluded for practical use.

(b) The nine-node displacement-based element passed the tests for uniform meshes,



but failed to work for reasonably distorted meshes; therefore this element

should not be used for the analysis of complex geometries and in general

nonlinear analysis. This finding explicitly emphasizes the importance of

tests for meshes with distorted elements.

(c) Elements of the MITC family (including the four-node MITC4 element)

passed all tests including the tests using reasonably distorted meshes. Thus

we predict that the elements satisfy the inf-sup condition, and therefore are

reliable and effective elements to use in engineering analysis.



Appendix A

Shear locking.

Our purpose in this appendix is to present a number of numerical results which

demonstrates shear locking phenomenon in plate bending problems.

A.1 Cantilever plate under a uniform load.

The first model problem is shown in the Fig. A-1 (top view is the same as in Fig.

4-1). The simplicity of the problem allows us to use beam theory (see e.g., [49])

X3 P ~

/

A

Figure A-1i: Cantilever plate under a uniform load.

I ttttttt
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t/L QUAD4 MITC4 TRI7 MITC7 QUAD9 MITC9
1/10 71.5 0.8 17.5 0.5 0.8 0.8
1/100 99.1 0.0 32.7 0.3 2.1 0.0
1/1000 99.9 0.0 33.3 0.3 2.1 0.0

Comparison of elements' performance in the norm Ilwhll (cantilever

to obtain a good approximation for the exact solution.

L 2  L 1

4EI 6EI2 1  2 4 EI 2

01 = 0,

L 2  L 1 3
02 = -pB 1x 2E2X +2EI2 2EI2 1 6EI2

max M211 W2
1

M2 = -pB (L - x 1)2,2

Bt 3

12212 '

Bt2

W26
6

0"12 = 0,

3 Q3
013 -2 Bt Q3 = pB (L - x).

To check the performance of elements, we introduce a norm

Iwh = Wh(L)- Wmax x 100%, (A.1)
Wmax

where wma = w (L) = pBL and consider a sequence of plate's thicknesses,8 EI2
determined by the ratio t/L. Results of this test for a four-element mesh of

four-, seven-, and nine-node displacement-based and MITC elements are shown

in Table A.1.

The four-node displacement-based element produces results that correspond

to the definition of locking - for small thicknesses displacements are almost zero.

This can be easily explained by the fact that for the applied boundary con-

Table A.1:
plate).



ditions, Ker (By) -- 0, and therefore the interpolation space does not contain

any functions satisfying the Kirchhoff constraint. Results of numerical simula-
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Figure A-2: Finite element solution (four-element meshes) for the cantilever plate
case. (A) - transverse displacement w, mm; (B) - rotation angle 0,; (C) - normal
stress all, MPa; (D) - shear stress a13 , MPa.

tions are presented in the Fig. A-2 for the case L = B = 100mm, t = 1mm,

E = 2 - 105 MPa, v = 0, k = 5/6, and p = 2 - 10- 3 MPa.

Br



A.2 Clamped square plate under a uniform load.

Let us now consider a thin square plate with all edges clamped, loaded by a

uniform pressure p (see Fig. A-3; top view is the same as in Fig. 4-5). To

X I p

Figure A-3: Clamped plate under a uniform load.

compare the results of numerical simulations with theoretical predictions, we

assume that the plate is thin enough for the Kirchhoff theory to provide a good

approximation for the exact solution. Then, given the Poisson ratio v = 0.3, the

maximal transverse displacement can be found as (see Section 44 of [48]):

Wmax = (i;0) = 0 .0 0 12 6 P 4- .  (A.2)

Using wmax as given above, we can compare the performance of elements in

the norm (A.1). For the first comparative test we choose uniform meshes as

shown in Fig. 4-6. The geometry and material characteristics are taken to be:

B = L = 100 mm, E = 2 - 105 MPa, v = 0.3, k = 5/6. The results of the test

for different meshes and t/L-ratios are summarized in tables A.2 and A.3.

As in the first problem, the QUAD4 element locks, giving almost zero displace-

ments for small thicknesses; moreover the chosen boundary conditions made the

null space of B,-operator very small for the QUAD9 element, which resulted in

significant deviations from the exact solution. The mixed-interpolated elements

performed well, remaining robust to changes in thickness.

Fig. A-4 shows the numerical results for the transverse displacement w (x1 , x 2)

for the case L = 100mm, t = 0.01 mm, E = 2 - 10 MPa, v = 0.3, k = 5/6,

0J

A
I+Q

ltlttt1



t/L QUAD4 MITC4 QUAD9 MITC9
1/10 8.6 18.1 14.3 20.6
1/100 97.1 0.5 20.8 2.1
1/1000 99.9 0.7 21.6 1.9
1/10,000 99.9 0.7 21.6 1.9
1/100,000 99.9 0.7 21.6 1.9

Table A.2: Comparison of elements' performance in the norm IlWhIl (clamped
plate case, uniform meshes, 8x8 meshes for four-node elements, 4x4 meshes for
nine-node elements).

t/L QUAD4 MITC4 QUAD9 MITC9
1/10 11.1 19.1 19.0 19.5
1/100 97.2 0.2 4.4 0.7
1/1000 99.9 0.2 5.1 0.5
1/10,000 99.9 0.2 5.1 0.5
1/100,000 99.9 0.2 5.1 0.5

Table A.3: Comparison of elements' performance in the norm IlWhll (clamped
plate case, uniform meshes, 16x16 meshes for four-node elements, 8x8 meshes
for nine-node elements).

and p = 1.454 10- 7 MPa for the eight-by-eight mesh for four-node elements

and four-by-four mesh for nine-node elements (the Kirchhoff theory solution is:

Wmax = 1 mm).

Now for the same geometry and material, instead of taking uniform meshes,

we will use slightly distorted discretizations. Thus, we pick a sequence of distorted

meshes as shown in Fig. 4-9. The results of the runs for different mesh densities

and t/L-ratios are shown in tables A.4, A.5.

Table A.4: Comparison of elements' performance in the norm IIwhIl (clamped
plate case, distorted meshes, 8x8 meshes for four-node elements, 4x4 meshes for
nine-node elements).

t/L QUAD4 MITC4 QUAD9 MITC9
1/10 11.1 18.2 13.5 20.9
1/100 97.2 0.5 24.5 2.5
1/1000 99.9 0.7 32.6 2.3
1/10,000 99.9 0.7 93.5 2.3
1/100,000 99.9 0.7 99.9 2.3



(A)

= 0.3c-5

(B)

= 0.993

Figure A-4: FE solution for the transverse displacement w, mm, (8-by-8 uniform
meshes for 4-node elements, 4-by-4 meshes for 9-node elements) for the clamped
plate case. (A) - QUAD4 element; (B) - MITC4 element; (C) - QUAD9 element;
and (D) - MITC9 element.

Clearly, one can see that the QUAD9's behavior changed drastically - it is

no longer robust to changes in thickness, and locks for small t/L ratios. Fig.

A-5 demonstrates qualitative changes (when compared with Fig. A-4) in the

calculated transverse displacement w for the four elements. While displacement-

based elements failed to work, the MITC4 and MITC9 elements show robustness

to mesh distortions, and reliable anti-locking properties.

__~_ _ __..__.______ i



Table A.5: Comparison of elements' performance in the
plate case, distorted meshes, 16 x 16 meshes for four-node
for nine-node elements).

(A)

=0.3e-5

= 0.065

norm IlWhI| (clamped
elements, 8x8 meshes

w

•- I)993

(D)

= 1.023

Figure A-5: FE solution for the transverse displacement w, mm, (8-by-8 distorted
meshes for 4-node elements, 4-by-4 meshes for 9-node elements) for the clamped
plate. (A) - QUAD4 element; (B) - MITC4 element; (C) - QUAD9 element; and
(D) - MITC9 element.

t/L QUAD4 MITC4 QUAD9 MITC9
1/10 9.7 19.3 18.9 19.5
1/100 89.9 0.4 5.1 0.7
1/1000 99.9 0.2 6.3 0.5
1/10,000 99.9 0.2 31.0 0.5
1/100,000 99.9 0.2 97.2 0.5



Appendix B

Inf-sup test in the IF'-norm.

This appendix presents an alternative derivation of the numerical inf-sup test,

described in Section 4.2.3.

Following the notation of Section 4.2, we will find the inf-sup value 0 as

UTGV
inf sup TGV

UEDvev WTGU -
sup IIVIIwED IWID

(B.1)

By (4.5) we have:

IWID _? I1WI12,

and thus

WTGU
sup

WED IWID
1

< V sup
<mwn W

WTGU

IIW1ll 2

use (4.6) 1 -JG UI12
AJsn

Now we rewrite V = IV, U = ýU, where 4 = 1,n..., is the

(B.2)

set of

S-orthonormal eigenvectors of the GEP (G, S); let A = diag (A1, ..., An) be the



corresponding eigenvalue matrix; then

UTGV UT4TG4ýV
sup = sup =

S UTAV use (4.6) JAU 1 121: 2 2 (B.3)

=AQ-U use 4TG4=A ýTGU 2 ' GU"21

where d9
min is the smallest eigenvalue of the matrix E = 4 .

Substituting results of (B.3) and (B.2) into (B.1), we obtain

UTGV IIGUiI12 G use UEyinf sup UGV > 6b-i•• n inf GU1 2 se- = f.
UEv VEE' IIByUIlIr,, 1IVIS UE-u IIxGUI12

(B.4)

Note that to obtain mdfin we have to calculate the full set of eigenvectors q,

and then run the eigensolver for a full matrix 9, which is a relatively expensive

scheme. From computational point of view, the procedure of Section 4.2.3 is

much cheaper and far more stable.

Let us finally point out that the two methods produce absolutely the same

numerical results, and therefore they can be viewed as the perfect substitutes

from the analytical point of view.
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