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Abstract

This thesis focuses on the inf-sup condition for Reissner-Mindlin plate bending
finite elements. In general, one cannot analytically predict whether this funda-
mental condition for stability and optimality is satisfied for a given mixed finite
element discretization. Therefore, we develop a numerical test methodology to
tackle this issue, and apply the tests to the standard displacement-based elements
and the elements of the MITC family. Whereas the pure displacement-based ele-
ments fail the tests, we find that the MITC elements pass them, which underlines
the reliability of these elements for use in engineering practice.
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Chapter 1

Introduction.

1.1 Overview.

Finite element analysis of engineering problems in solid body mechanics often
requires the use of plate bending elements. The design of such elements can be
based on the Kirchhoff theory of plates. Then, because of the assumptions in this
theory, the conforming finite element spaces are required to satisfy C''-continuity.

In the 1960’s many Kirchhoff-theory-based conforming finite elements were
proposed, among them the Clough and Tocher four-node quadrilateral element
[21], the quadrilateral element based on the use of Hermitian functions by Bogner
et al. [12], etc. Conforming plate elements were not only difficult to obtain, but
also, the lower order elements turned out to be too stiff, resulting in displacements
much less then the theoretical values. There were several attempts to use non-
conforming elements, such as the nine-dof triangular element proposed by Bazeley
et al. [11], but these elements often failed the patch test and even converged to
incorrect results.

The subsequent research followed several different paths. Some researchers
implemented elements based on alternative variational principles. One choice

was to use the principle of complimentary potential energy, which gave rise to



so-called ”equilibrium formulations” ([51], [37]). These methods partly suffered
from non-uniqueness of displacement fields, which were obtained from integrating
the strains.

Another popular approach, known as the hybrid stress method, was pioneered
by Pian and Tong ([40]). It is based on the use of Lagrange multipliers, which
force interelement equilibrium in a modified principle of complementary potential
energy.

Later Tong [50] developed the displacement hybrid approach, based on a
modified form of the principle of minimum potential energy.

In the 1970’s the first elements appeared built on the basis of Mindlin plate
theory and reduced integration schemes. The motivation for the use of Mindlin
theory was that only C%-continuity of the shape functions is required. As well, the
simple shape functions from plane elasticity could be used along with isopara-
metric maps of distorted elements. This approach worked quite well for thick
plates. However, as the thickness is decreased, the shear terms grow rapidly, in
the limit resulting in zero displacements. This phenomenon was named (shear)
locking.

To avoid shear locking, it becomes necessary either to impose the Kirchhoff
compatibility condition directly as a constraint at discrete points or in the integral
sense, or use some kind of numerical tricks (such as reduced integration) to avoid
the unbounded growth of the shear energy part.

The latter direction was developed quite intensively in the 1970’s ([53], [39]),
while it was not realized that the use of reduced integration often distorts the
results, and is not reliable to use in engineering practice.

The application of Lagrange multipliers to impose the Kirchoff constraint
resulted in the development of mixed methods. These element families, if properly
designed, have a strong mathematical basis (see, e.g., [18] and references therein)
and are robust to changes in thickness.

Of course, this brief review does not pretend to cover all directions and trends
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in the plate bending element design and research. In particular, we have not men-
tioned ”generalized equilibrium methods”, ” generalized displacement methods”,
and many others. For a much broader discussion we refer to the 1984 review

article by Hrabok and Hrudey ([27]).

1.2 Thesis outline.

In Chapter 2 we start by covering some basic mathematical notions, which are
abundantly used in the analysis of the finite element method. We define in a quite
rigorous way the assumptions made, terminology used, and cite some general
results dealing with associated functional spaces. Then we briefly cover existing
mathematical models of the plate bending problem, and emphasize the basic
assumptions and equations of the Reissner-Mindlin model. Finally we derive the
mixed variational principle and show the necessary and sufficient conditions for
existence, uniqueness, and stability of the solution.

Chapter 3 presents design principles and a mathematical analysis of the el-
ements from the MITC (mixed interpolated tensorial components) family, and
specifies the conditions reviewed in the second chapter for the problem under
consideration.

Chapter 4 deals with numerical analysis of the elements, and provides the
essential theory for tackling problems of the inf-sup type. There we develop a
testing methodology, which allows to quantitatively analyze elements’ "addic-
tion” to locking behavior, and we apply these tests to the MITC elements and
displacement-based elements.

Finally, Chapter 5 draws some conclusions and outlines possible extensions

for further research.

11



Chapter 2

Basic notions.

2.1 Mathematical background.

This section summarizes some mathematical notions and definitions which are ex-

tensively used in the mathematical analysis of the finite element method (FEM).

2.1.1 Assumptions on the domain.

The problem of consideration is posed in the domain Q2 € IR", n = 2, with
sufficiently smooth boundary 0f). Let us formally define what is usually meant
by the "sufficiently smooth boundary” ([22]) in the finite element literature.

An open set Q@ € IR™ has a Lipschitz-continuous boundary if there exist con-
stants o, B > 0, a number of local reference coordinate systems {Qﬁ € IR, gﬁ}

and local maps a? (-), j = 1..J, Lipschitz-continuous' on their respective domains

L A real-valued function f of a single real variable =, defined over a domain Q is Lipschitz-
continuous if:

|f (21) = f(z2)| < Clzy — 23] Y (21, 22) € Q,

where C is known as the Lipschilz constant.

12



of definition {gﬁ eR"!:zd| < a}, such that

J
=] {27 : 27 = a/ (20), |z}]| < a},

7=1
{z7:07 (z) <2’/ < a () + B, |z}| < a} € Q,
{27 :d7 (zi) - <2’ <a’(ai), |zi]| <a} €N,

where Q stands for the complement of Q, (2 = IR™ \ Q).

Geometrical interpretation of this condition for Q € IR? is shown in Fig. 2-1.

DI

Figure 2-1: (A) - Domain with Lipschitz-continuous boundary; (B) - Lipschitz-
continuity is violated in the circled region.

The definition above allows to consider all commonly encountered shapes,
though eliminating some special cases, such as domains with cusped corners,

cracks, etc., which require special treatments (see e.g. Chap. 8 of [46]).
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When all of the maps a’ (+), j = 1..J are linear, we have a special case, that
is, 1 is a convex polygon.

If an open set € is connected and there exists a finite number of convex

K

polygons Q, such that ) = (ﬂ Q4 |, then Q is called a polygon.
k=1

We will always assume that one of the following properties hold:

¢  has a Lipschitz-continuous boundary; or

e is a polygon.

In either case ) is bounded, that is, there exists a constant M : |[v|| < M Vv €
2 (in other words, any vector drawn inside ) has a finite length - i.e., semiinfinite

bodies that often appear in the elasticity do not satisfy this condition).

2.1.2 Functional spaces.

In this section we introduce the basic functional spaces that will enable us to
make variational statements.

A real-valued function f is said to be Lebesgue measurable on Q if for every
real number A, the subset w : f|, > A is measurable?.

Firstly, for L? (?),p € [1, 00), we set

L7(9) = { eM@)] [ loPda < oo}, 0l 0@ = ( [ op dn) e
Q Q

where M () stands for the space of functions, Lebesgue measurable over domain

Q.

2f(z) = 1 1s an example of a function measurable on the interval Q = [—1;1]. Although

f (z) is not bounded on the subset w = {z = 0}, the measure (length) of w certainly is well-
defined, and equals to zero. Examples of nonmeasurable functions are more difficult to find,
although they certainly exist (see, i.e., [30]).

14



Remark. All finite element spaces are constructed over the space M (12).
This guarantees that integrals of the functions under consideration are well-
defined, or, roughly speaking, functions are not too irregular (i.e., functions that
have infinitely many singularities are not admissible). For example, such cases as
an infinite stress in the semiinfinite body are ruled out by construction. O

In future, we will deal with one particular member of the family, namely, the

space of square-integrable functions, L? (), with the scalar product given by
(¥ v)12(q) =/ uv df.
Q

The operation (-,-) would be considered as the L? (Q)-inner product by default.
Secondly, we introduce the Hilbertian Sobolev spaces (in future referred to

simply as Sobolev spaces) with an integer index H* (Q):
H* (@) = {v € L*(), D™ € L*(®), |a| < K},

where
dlely o
“(x — L.
YT B .Ozan’ o Z " s
1=

equipped with the following inner product, seminorm, and norm:

k
(V) i) =/ > DuD*vdQ,

Q le|=0

Nl=

1
2 k
|v]gr () = (IXID ||Da”||?:2(n)) ) ol gr () = (Z ”Dav”i?(ﬂ))
al=k

|a|=0

The following inequality holds. Let a real valued function f(zy, ..., z,) €
H* (), with k > n/2, and let f be continuous, then

max |f| < C| f|| gy - (2.2)

15



This inequality is often referred to as Sobolev inequality.
Example.

To demonstrate the implications of the inequality (2.2), consider a function

flz,y)=F(r)=1g(lg(r)),

defined over a domain } = {r, r= \/m | r < 1/2}. One can show that
f e H (Q), i.e., HfHHl(Q) < Cy < 0co. Therefore, we have k = n/2 = 1, and the
Sobolev rule says that we would be unable to identify an upper bound for f on
Q. Indeed, we have that f = 0 and the inequality (2.2) clearly does not hold.
O

The family of functional spaces defined below corresponds to the homogeneous

boundary conditions on 02 (homogeneous spaces)
HE(Q) = {ve H*(Q), D*v|oa =0, o] <k —1}.

When the domain {2 is bounded, we have the following norm equivalence,

referred to as Poincaré-Friedrichs inequality [22):

co () ”U”Hk(n) < Ivlyg(n) <ea () ”v”Hk(Q) (2.3)

For the further analysis we also need spaces of functionals £ : H* () — IR,
defined over the Sobolev spaces (topological duals, or so called negative Sobolev
spaces): H=% (Q) = (H’c (Q))' For a pair (f,u):u € K, f € K/, where K stands
for a Sobolev space, we define a duality pairingon K' x K (a map : K’ x K — IR)

as:

f) = (fiu)grex -

16



The corresponding dual norm is

I(fa u))C'x)C
”f”)c' = sup ——/—F/.
wek, o |uflc

The following result is referred to as the Riesz Representation Theorem:

Let K be a Hilbert space, and f € K' be a continuous linear fuctional on K. Then
there exist a unique ug € K, such that f(u) = (ug,u), Yu € K.

Moreover, ]|f||,C, = ||U0||;c .

The proof of the theorem can be found, e.g., in [38], [52].
In case @ = {z :z € |zy; 2] C IR}, we have the following mapping K [38],
K :H*(Q) - H~*(Q),

k d2m
[ = —-1)™ ) 2.4
K=Y (1" o (24)

Finally, we state the following inclusion property of the Sobolev spaces

H™(Q) C H™(Q) C ... C H*(Q) C ...C H™™(Q) c H™™(Q), Y m > 0.
(2.5)

For a general study of the Sobolev spaces we refer to [1].

2.1.3 A simple example.

Consider a truss of length L ( = {z : z € ]0; L[}) fixed at the end points z =
0, = = L, under the action of a distributed load f(z). Let the deflection of
the truss be w(z) : w(z) € H} () (clearly, this must be the case of a real
physical system), and presume that f is square-integrable over Q. Noting that
f(z) e L2(Q) RAS f(z) € H1(9) = (H* (Q))', we can define a duality pairing

as

L
{fy w>H—1(Q)xH1(Q) :/ fwdz, (2.6)
0

17



which has a meaning of the work done by external forces. Actually, to obtain a
finite number as a result of the duality, we do not have to enforce w to be in H;
indeed, the L? regularity is sufficient for the functional in (2.6) to make sense (to
give a finite number).

Now we consider the case f(z) = §(z — L/2), that is f(z) € H™1(Q). In
this case, to obtain a finite scalar number after the integration, w (z) must be
continuous on §; we have to use the fact that w(z) € Hj (), and the duality
pairing defined above still works.

The norm of f can be calculated as

v(L/2) by(<2-2)

B = maXx
£l =10 veH1 (@) |0l 11 gy

I’

which is finite, according to Sobolev’s inequality.

To demonstrate a Riesz representation of f (z) in H} (), we will find a linear
operator K, such that every v (z) € H} () has a unique image Kv (z) in H~* ().
Using formula (2.4), we can simply construct this operator as K = -——i— + 1.
Since H~!(Q) contains H} () as well as singular functions of type f(z), the
operator K can be understood as a superposition of §-function-like distributions,
given by the first term, and H} () represented by the unitary transformation.
To find an element vy (z) € Hj () that is the Riesz representation of f, we have

to solve a differential equation

Koy () = -2 4o, 0y = 5 (@),

sinh (—L/2) sinh ()

The solution is vs (z) = —H (z — L/2)sinh (z — L/2)+ h (<L) . Re-
sinh (—
y dud
calling that the inner product in H! () is given by (u, v)Hl(Q) =/ (uv + d_ud_v) dz,
zdz
0

18



one can check that indeed,

L
/fwmunuLmy=@wamnVweﬂanym

2.2 The problem statement and mathematical
models.

Consider a three-dimensional linear elastic body B that, in the absence of external

loading, occupies the region

t t
D= {£= (z1,T2,23) € IRB‘ (z1,22) € Q, 23 e]_iaé[}v

where 0 € IR? is a bounded smooth domain with boundary 9%, and ¢ > 0 is
"relatively small” with respect to diam (12).

By the exact solution of a linear elastic plate bending problem, we understand
the solution of the three-dimensional linear elasticity problem of deformation
of the body B under the action of a transverse load f= (0,0, f3(z1,22)). The
further analysis is restricted to the case of isotropic homogeneous material with
elastic constants £ and v, being the modulus of elasticity and Poisson’s ratio,
respectively. Denoting u = {u;},o = {0i;}, and € = {e;;}, 1,7 = 1..3, as the
displacement vector, stress tensor, and strain tensor, respectively, we have the

following stress-strain relations given by Hooke’s law:

(on | [A+2 A A 11 en ]
o) A A+ 2u A €22
o3 | A A A+ 2p €33
012 - 2p €12 ’
023 2u €23

| 013 | | 2 | | €13 J

19



Ev an
(1+v)(1—2v)

not shown are zeroes).

du= are the Lamé constants (elements

FE
here A = _
where 20 +7)
By the plate bending model we mean a two-dimensional boundary value prob-
lem with a solution, which approximates the exact solution of the plate bending
problem.
The following two models are extensively used in engineering practice (see

[26], [3] for the comparison of the models and references therein):

o The Kirchhoff model (see, e.g., [48]) is based on the assumption that all
out-of-plane components of the stress tensor are negligible (we set the com-
ponents 03, ¢ = 1..3, to be zero). Geometrically this implies that a straight
element normal to the midsurface remains straight and normal after defor-
mations. This model provides a good approximation for the plate bending
problem only for thin plates, that is, in the case t < diam (2). The most
important disadvantage of the model is that the strains are calculated as
corresponding second derivatives of the state variable w (transverse dis-
placement). In terms of finite elements, it requires C' continuity of the
interpolation functions. Moreover, the model suffers from the inherent lim-
itations, such as paradoxical artificial reaction forces on the corners of polyg-

onal domains, and difficulties in imposing natural boundary conditions.

o The Reissner-Mindlin model (RM) ([43], [36]) uses the condition o33 <
011,092 (that is, we set only o33 to be zero, leaving shear strains for the
consideration), and therefore, is closer to the original 3D problem. The basic
hypothesis of this model is that a straight line normal to the undeformed
plate surface {0 remains straight but not necessarily normal during the
deformation (see Fig. 2-2). Finite elements based on this RM model need
to have only C° continuity of the interpolating spaces. Moreover, this
approach is far more flexible in allowing to model many types of boundary

conditions without significant difficulties (see [26]).

20



2.3 RM plate bending model.

This section describes the basic equations and specific difficulties associated with

the RM plate bending model. The more precise analysis can be found in [48] and

[23).

2.3.1

X3
w
o]
~ B
o,

Governing equations. Variational form.

deformed
configuration

wndeformed
configuwuration

P
yd
7
-
7
By
Bz J (X7, %z)
|
[}
A
-~ ~
-~ ~
-
Ve
P ~
~N
~
Tz, v
o

Figure 2-2: Displacement assumptions of the RM plate bending model.

The equations governing the model are [6]:
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1. Displacements (assumed to be small)
uy = —x3f; Uy = —a3; uz = w, (2-7)

where (31, B2, and w are the scalar functions of the in-plane vector coordinate

T = (3717'7"2) .

2. Strains (linear part of the strain tensor)

1
enn = —x3f1,; €22 = —T3f2; €12 = —5%s (Br2+ B21);

(2.8)

1 1
€13 = (w1 —B1); €23 =5 (w2 — B2),
2 2
. .. F
where 7 F;” denotes the partial derivative Er
T
3. Stresses (isotropic elastic material assumption)
At — (11 + ven); o2 =12 (€22 + ven); o33 = 0;
012 = 2Geq; 013 = 2Ger3; 023 = 2Geas,
(2.9)
E
where G stands for the shear modulus, G = ————.
2(1+v)

4. The variational form as a starting point for a finite element analysis is
formulated within the principle of minimal potential energy [28]. For the
case of a clamped plate (the treatment of other types of boundary conditions

is also possible, see [26]), we have the following minimization problem
Findy = (ﬁ, w) €V =BxW=[H ()] x H(Q) such that

u = arg minev {% [a (Q,Q) -l—%c— (Vf—g,vﬁ—ﬁ)] - ilg(f,f)} =

v=(n¢)

—arg _min Ao - L0},

v=(ne)ev L2
(2.10)
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where a (+,) is a symmetric bilinear form defined as

771"’2 =5 / [ (1-w)g( é(nz)'i'”(vﬂl) (V'Qz)] de;

Il
=
Jaary
[

9]
[

)
[
—+
=
fhary
[

Q

-
<
N
+
=
N
-
3
[ V]
®
-
+
]
N
[
o
[
)
N

QD
QD

92, " 9,
-,+) is the L? (Q)-inner product;
43
D= ———E— stands for the flexural rigidity of the plate; and
12(1 — 12)
k is the shear correction factor that accounts for the nonuniformity of the

shear strain distribution through the plate thickness, usually k¥ = 5/6.

Note that for a finite fixed thickness ¢ we have, expanding the bilinear forms

and collecting the corresponding terms,

A(w,) = a(n,n) + 5 (Ve ~ 0,V ~n) 2 Cllel, = € (o], + 1l 1)

that is, A (v, ) is an elliptic bilinear form (the constant C in the inequality above
depends on thickness and material properties of the plate).
The minimization problem (2.10) can be equivalently represented in the vari-

ational form:
Findu= (8,w) € V =B x W = [H} ()]’ x H} () such that (2.12)
¢ (Bn)+ 55 (Vo -B,VE-n) =~ (£.6)  VYu=(n.6) eV,

2.3.2 Discrete variational problem.

Typically one cannot find an analytical solution to (2.12). The usual way to

proceed is to introduce a finite-dimensional problem which approximates the

given one.
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Let us choose a discrete space Vj, = By x Wy, C V, where B, C B, and
W) C W; thus we are restricted to using a conforming approzimation.
Following the Rayleigh-Ritz procedure, we obtain the corresponding discrete

minimization problem over the space Vj,

Find v, = (gh,wh) € Vi, = B, x Wy, such that
| ) . (2.13)
Uy = arg min {§A(Qha2h) B (fs fh)}-

yh=(gh,5h)€Vh
Locking.

Let us rewrite the minimization problem (2.13) in the discrete variational form.
For the following analysis, let us rescale the loading term f as f = t3¢, with ¢
independent of plate thickness ¢. Then in case of finite ¢ we have the following

discrete variational problem
Find u;, = (_,Qh,wh) € Vi, = By x W}, such that

a (ﬁhaﬂh) + _fzk (th _éhavé‘h _Zl_h) = (gaé.h) Vyh = (Z’_hagh) € V;z

Gk |
?_ ~ t_2 with %1_{1‘(} t_2 = 0oQ. Although

the thickness may be very small, the energy of deformation still remains finite.

As t — 0, we have that a (ﬁh,gh) ~ 1,

To keep it finite, we must have that the shear strain contribution to the total po-
tential vanishes, that is (th — B, V& — Qh) = 0 for all (Qh,fh) € V. Clearly,
this is nothing else, but the integral form of the celebrated Kirchhoff constraint

Vw = 8. (2.14)

Equation (2.14) implies that in the limit case, the RM model must degen-
erate to satisfy conditions on the stress-strain state, described by the Kirchhoff

hypothesis. Thus, as we approach the limit case, the finite element solution is
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more and more enforced to satisfy the Kirchhoff constraint. Consequently, the
number of ”conforming” (which can represent the Kirchhoff hypothesis (2.14))
trial functions in the discrete space V), may get severely restricted, and this can
result in partial or even total loss of convergence properties of the finite element
approximation. This phenomenon is known in the literature as (shear) locking
(see, e.g. [6], [47]).

Another difficulty for the numerical solution is due to the existence of bound-

ary layers for various types of boundary conditions ([3], [44]).

General approaches.

There are two general approaches to circumvent the problem of locking described
above. The first type of methods is based on the standard variational formulation,
and uses convergence properties of higher order FE spaces (so-called p-version
and certain higher-order h-versions [4]).

The other approach is to modify the variational formulation, and therefore,
come to a different finite element formulation. The reasons for that treatment

are:

e Difficulty to construct low-order finite element spaces, satisfying the con-

straint (2.14) exactly;

e Possibility to introduce variables that have a certain physical interpretation.

Those ideas are used in mired and hybrid FEM (some other approaches, based
-on modifications of the variational form, such as reduced integration [35] and
penalty formulations are also well known in the literature). For some examples of
hybrid plate bending elements we refer to a recent paper [31], while some mixed

finite elements would be the subject of the following discussion.
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2.3.3 Modified variational problem.

The general guideline is to replace the Kirchhoff constraint by a weaker form,

introducing a reduction operator R}, into the variational statement:

a(Bom,) + S (B (Von—B,) B (Ver—1,)) = @0:6)  (215)
2

Thus, choosing R;, = I, we have the standard FEM; if the reduction is based
on inaccurate numerical quadratures in evaluating the shear strain energy, we in
essence use the idea of selective or reduced integration (if we treat distorted ele-
ments by reduced integration, the operator R, may become highly nonlinear, and
could hardly be found in closed form). In the following, we will consider the case
of mized interpolation, where the shear stress is first approximated independently
and then eliminated from the system.

Clearly, the choice of R}, in (2.15) is crucial: it should weaken the constraint
(2.14) sufficiently, so that the FE spaces would retain their approximation prop-
erties, while on the other hand, it should not weaken it too much, since otherwise
the consistency error may become too large (that is, our solution will be far from

the real one), or even the solvability conditions may be violated.

2.4 Mixed interpolation. FEM with Lagrange

multipliers.

2.4.1 Limit problem.

Before we proceed with mixed interpolation, let us define the shear stress in the

plate and its discrete approximation as

v=— (Vw-8), v,=—5 (Vwn-38,). (2.16)
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Considering the variational problem (2.12), we note that for a finite thickness ¢,
the fact that Vw € VW C [L2(Q)]?, Vw;, € VW), C VW, implies that both
the shear stresses and their discrete version are sufficiently smooth (y € G C
(L2 ()], 7, € Gn C G). Noting that all linear operators defined on L? () are
indeed in L2 (Q) (that is, [L? (R)) = L? () 3), we can represent equation (2.16)

in the integral form as

(0:s) = (% (Vw-5) ,s) Veeg.

This allows us to rewrite the variational problem (2.12) as
Findu = (8,w) € V=B x W = [H} (Q)]* x H} (Q), 7 € G, such that
a(Bn)+(1,VE-1) =(9,6) Vu=(n¢) eV,

t2
(ml“ (vw—g),g) =0 Vsed.

(2.17)
However, as we approach the limit case, t — 0, we loose the regularity of v in

the L2-norm, that is

2@ u (r-9) dﬂ] . % u (Vo -p)° dnrz s 00,

This suggests that we should look for the space for shears among the negative

I

Sobolev spaces, as in the example in section (2.1.3), and the appropriate space

K’ would be the smallest one, in which the corresponding norm is finite, that is

3Namely, consider a function f € [L2 (Q)]'. We have

(fy")[;_z(g)]/xl,z(n) _

liz@y = swp — oo su (.v)
I ”[L 2 veL2(R), v£0 viz2(a) vEL’(QI)),v¢O V)

=V (£, f) = fllL2qy

therefore clearly, f € LZ(Q).
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“’7“)0 < c. Ideally, the constant appearing on the r.h.s. of this inequality should
not depend on the plate thickness ¢, though it is neither sufficient nor necessary
for the bound to exist. In the following section we will show that the normed

space I'" = H™! (div; ) satisfies the requirements given above, and

H (div; Q) = {y € (T (), V-1 € H ()},
(2.18)

”1"j-l—l(djv;n) = "1”2—1(9) + "V ) 1”2—1(9)

Therefore, when t approaches zero, we are able to pose the following limit problem:

Find u® = (8°,u°) € V.= B x W = [H ()] x H} (Q) and
70 €T = H™' (div; Q), such that
(2.19)
a(ﬁo,g)+(10,V€—g)=(g,§) Vp_:(ﬂ,{) ev,

(Vwo—é°,5)=0 VgelV

2.4.2 Optimality in I".

Here we cite the result from the original paper [7], which explicitly shows the op-
timality of the norm in H~! (div; Q) (optimality is obtained in the sense that the
norm of the shears in that space is finite and bounded by a constant independent
of the plate thickness).

Theorem 1. We have

”1 (t)”H—l(div;Q) < c independent of ¢. (2.20)

Proof.

1. For a finite but small ¢ we have the following bound for the solution of

(2.17):

2

@) < c¢ independent of ¢, (2.21)

lulfy + 2 |y @)
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where ||ull? = ”ﬁ":l(n) + llwllﬁnm)-

2. By the Riesz Representation Theorem, we have that there exists a unique X €

O (10, X) = (02 = O, = [ where

P = () = [H- (div; Q)] = Ho (rot; ©) =

={X€[LZ(Q)P,I‘OtKEL2(Q),&-1=00n89},

2.22
KX’ l>l"xl‘l ( )
“X"r‘ = sup -—y———, where
A T,
rot : u — rotu = ___3u1 ——auz
- 8-772 01171 )
3. Choose § € B such that

V-0=0i1+0z2=x12— X210 = —r0t X, (2.23)

(2.24)

||0||H1(Q) < c“rotx 2y

By definition of Hj (rot;{?) /X Tds —/rotde_O =>/V 6dQ =0,

which guarantees that such 0 can always be found as a solut1on to the

well-known potential problem (e.g., Ch. 1, Sec. 2.1 of [33]).

4. Set n = (=02, 6;). Then
rotn =0y5+6,,=V-0=— rot x, (2.25)

and from (2.24), using "rotx

|

@) < ”X”r’ we obtain

H1(Q) = 1180l o) <c"r° X”L2(Q) ”X” (2-26)
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5. Take
EeH () :6=A"(V-x+V 7). (2.27)

(Note that both V - x and V - g lie in H~! (Q2)).Then

”§”H‘(9) <c ”V X+ v 'Q”H-l(n) Sc ("->£ L2(Q) + ”ﬂ L2(Q)) <
(2.28)
by (2.26)
< e (|l loly) "= <l
6. From (2.27) we have
V-x=V-(Vé-n). (2.29)
Moreover, using (2.25) in the form*

rot x = rot (V§ - Q) (2.30)

we obtain a system of PDE’s (2.29-2.30) with a boundary condition, given
by x - 7 = 0 on 9Q, which leads to the solution

x =VE—n. (2.31)

From equations (2.26) and (2.28)

(In

7. From part 2 we have that

21(0) + ||§||H1(Q)) <ec “&"F with c independent of . (2.32)

(2.21)

@ Ixd, = G@, ) ™ *E*? g0 - a(80) <
se IIQ lHl(n) + ||€”H1(9)) = CHXHF ’

“Here we invoked the equality rot Vio = V x Vi = 0 for any scalar function ¢.
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which immediately implies (2.20). O

Remark. In part 6 of the proof, we have shown that for all x in T, it is always
possible to find a pair (Q,f) in V, such that (2.31) and (2.32) hold, that is, the
map By :V — T, Bypv = Vn—£{ = x €T is surjective (we will use this result
later). Clearly, the destination space will not change if we multiply the result
of the map B, by a finite constant, say, %, with ¢t # 0 being a finite number.
Now, we have identified that the subspace G C [L?(Q)]?, which was used in the
formulation (2.17), is, in fact, H (rot; ). Summarizing, we have proven that in
case of finite thickness shears belong to the space H (rot;(2), defined in (2.22),
while H~! (div; ), given by (2.18) becomes appropriate in the limit case t = 0.
a

2.4.3 Existence and uniqueness of the solution for FEM

with Lagrange multipliers.

The variational form (2.19), in fact, represents a typical case of the well-studied

saddle-point optimization problem of the Lagrangian functional:

(y, 'y) = inf sup L(v,s), where
- 2:(2,{)6‘/ SGF’ -

£(ox) = {5e@0 560 ~(22),.,, ~ (85

(2.33)

(see the original papers [13], [2], and a broad discussion in [18]). In this form ¢
stands for Lagrange multipliers associated with constraint (2.14), which have a
physical meaning of shear stresses in the plate.

Remark. The equivalence of the Lagrangian formulation to the problem

(2.19) can be shown, if we evoke the necessary conditions for stationarity of
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L (v, ) at the point (g, 1) taking ¢ = 0:

a(u,v) +b(’)’7 ) <g’—>V'xV YvevV;
b(sw) = (g5)., =0 Vsel.O

Here we present a brief discussion on the conditions for existence and unique-
ness of the FEM solution in the problems of optimization of a quadratic functional
under a linear constraint (2.33) (in our case the functional is given by (2.10), and
the corresponding constraint is given by (2.14)).

Example. Saddle-point problem.

In this example we will consider a simpler problem. Assume that we are
supposed to find J* —mln J (z) = 1 z?. Trivially, J* = J (%) = % To proceed

with Lagrange rnethod we 1ntroduce a Lagrange multiplier y and Lagrangian

1 . "
L(z,y)=J(z)—y <ar — 5) . Invoking stationarity conditions, we have

OL (z, y) 1 1
——(z*. y*) = *——:0 = *:—’
ay |( %) < 2 & 2
OL(z, y) . . . L 1
Oz (zry*) =T —Y —Oiy = 25,

and rg:nyn L(z,y)=1L (%, %) = % = J*. The functional is shown in the Fig. 2-3.
We thus have a saddle point at (2*, y*), such that L(z, r(z)) < L(z*, y*) <
L(z, s(z)), where r (z) and s(z) are the equations describing the unstable and
stable manifold of the saddle surface respectively. This problem is equivalent to

min (sup L(z, y)) . To show the equivalence:
z y

1
00,1'745

sup L (z, 1) = |
y J(m),$=§

32



A (B)

Lx.y) r__.
— ]
15 4 N — |
1.0 /| H
)5 4 -
2.0 / «\
1.5
1.0
5
& 0
= = 2 S =x"05
" =
saddle point L(x*, y*) = 1/8

Contour values

1 2 3 4 5 6 7 8
025 0 025 05 075 1 125 15

Figure 2-3: (A) - the saddle-point problem; (B) - contour plot of the saddle
surface.

min sup L (z, y) =min J (z) = % a
x y T

The bilinear form a(-,-) defines a symmetric linear operator A : V — V7,
such that a(u, v) = (Au, V). = (4, AV)y .. We also introduce a formal
operator associated with the bilinear form 6(:,-), B, : V — I" and its transpose

BI:TI"— V'
BT

Xy
) 1
r 2 vy
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Then

b(s,v) = (S’ V¢ _Q) = <£7 B, (V€ _Q)>F'xl“ = <B$£7 V¢ _Q>

vixv’

and now we can rewrite the original problem (2.33) in the operator form:

Au+Bly=g €V,
Byu=gq € T.

Moreover, let us denote the null space of B, as Ker (B,), and the range of B,
as R (B,). Then we have the following very intuitive result that follows directly
from the Lax-Milgram theorem [22].

Proposition 1. Let ¢ € R(B,) and the bilinear form a(-,-) be elliptic on
Ker (B,), namely

Jag > 0 such that a(v,v) > ao||v||y, Vve Ker(B,). (2.34)

Then there exists a unique u € V, such that

a(u,v)= <g,y>v,xv Vv e Ker(B,), and -

bouw) =(s,q),, . VseT.

For the proof we refer to [18].

Proposition 1 implies that if the first component of solution, u, exists, it is
unique. Condition (2.34) states the restrictions that we have to impose on the
reduction operator R in (2.15) to obtain a unique u (a number of reduced-
integrated elements violating this condition were proposed in earlier publications
on the subject, see e.g., [29]).

Now we turn to the problem of finding the Lagrange multipliers, 4. For this

we have to make the following restrictions on B,, namely, we require R (B,) to
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be closed in T.

Remark. Closed range operators. The concept of a closed range operator
is a generalization of the idea of a bounded linear function. Moreover, the Closed
Graph Theorem states that if the range of an operator R (f), f: A — B, where
A and B are some Sobolev spaces, is closed in B, then f is continuous on its
domain D(f) = A. O

Now we can apply results of Banach’s closed range theorem:

Proposition 2. The following statements are equivalent:
(i) R(B,) is closed in T
(ii) R (BT) is closed in V7;

(iii) 3 ko > 0 such that Vg € R(B,), v, € V :

Br=e |, <l
(iv) 3 ko > 0 such that Vg € R (BY), 34, €1":

By =0 |yl <5 ld,.

For the proof of (i)-(iv) we refer to [5].

Remark. Basically, the closed range theorem is the straightforward extension
of the closed graph theorem mentioned above. The most valuable addition to the
continuity of B, (which is implied by (i) according to the closed graph theorem,
and equivalent to saying (iii)), is the dual result for BY. O

Now we can clearly define the norm over V' using duality arguments:

‘<g’ Q>V'xv

= Ssu
"—“v' gev,£¢g llvlly

b

Q
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and substituting this into equation (iv), we obtain the inf-sup condition as follows:

l<g’Q>V'xV

‘<B$1’Q>erv

o], Twvare el sevae el (2.36)
b2
T ucvioso H(QHV) 2 ko HZHF , Vyel, 7#0

Now we can summarize the results of propositions 1 and 2.

Proposition 3. Let the continuous bilinear form a (-, -) be elliptic on Ker (B,)
(that is, (2.34) holds). Moreover, let us suppose that the range of the formal op-
erator associated with the bilinear form b(:,-) is closed in I'. Then there exists a
solution to the problem of type (2.33) for any g € V' and ¢ € R(B,).

Proof. Let ¢ € R(B,) and u be the unique solution of the auxiliary problem
(2.35). We need to show that if R (B,) is closed in T', then for all g € R (B:{)
there exists 7 € I, such that (g, 1) is the solution for (2.33).

Consider the linear functional on V : L (v) € R (Bff ) cV:

L(v) = —a(u,v)+{gv),, .-

Firstly, take vy € Ker (B,); clearly, by (2.35), L(vy) =0V vy € Ker (B,), so
we indeed have a solution for that case.

Next, if v ¢ Ker (B,) then by (ii) in Proposition 2, the R (Bf) is closed in
V’; this implies (by (iv) in Proposition 2) that there exists v € I”, such that
L(v) = b(lv y). O

Remark. It could be shown that the inf-sup condition (2.36) along with
the ellipticity condition (2.34) represent sufficient and necessary conditions not
only for existence and uniqueness but also for optimality of the solution for the
saddle-problem optimization (2.33) (see e.g. Theorem 1.1 in [18] and a broad
discussion in [14]). The deeper insight into the physical meaning of the inf-sup

condition can be found in [6]. O
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Chapter 3

MITC plate bending elements.

3.1 Design principles.

In this section we present the design principles for the MITC family of plate
bending elements, based on the RM-model and mixed interpolation. These results

are adopted from original papers [15], [8].

3.1.1 Preliminary considerations.

For the further analysis we shall consider the limit, and therefore, most severe

case t = 0, presuming, that if our finite element discretization provides a good

solution for that case, then the elements will not lock in any other case.
Summarizing the results of the previous chapter, in the limit ¢t = 0 we face

the following modified discrete variational problem:
Find uy, = (B,,w) € Va = By x Wi, and v, € Gy = Ry (By U VW), such that
a (ﬁm Qh) + (lh’ Rh (Véh —Qh)) = (g7£h) Vyh = (ﬂh,fh) € V;n

(Kh,Rh (th - Qh)) =0 Vx, €G.
(3.1)
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Moreover, as we have shown in section 2.4.3, we obtain a unique solution for

Up, if
dap>0:a (ﬂh’ gh) > ag |luplly Vo, = (Qh, €h) € Ker (RpB,), (3.2)

and a unique and stable solution for 7, if

(xp B (Vén—1,))

MoVl e Rl 2 O
where < > ( )
_ Xw ¥/ pwr Xn X
bole =, TR e Tl

Clearly, the choice of the functional spaces Vj,, G, and the reduction operator
R}, is of great importance, and determines existence and behavior of the solution.
Let us make the first step that puts some structure on Rj and is crucial for

the formulation of the elements. We choose R}, : Vi, — G to satisfy

(Bh=D)V& =0 V& eW, (3.4)

(3.5)

Jde¢>0: "Rhﬂh"mm) < c”Qh‘H‘(ﬂ) ’

where G, = '}, is a subspace of the functional space I introduced in Section 2.4.2.

Remark. Condition (3.5) just enforces the continuity of the operator, and
is quite natural due to the physics of the problem, while (3.4) is a rather strict
condition which implies that we shall use the standard interpolation for the gra-
dient of the transverse displacement field. This condition is sufficient, but not

necessary to allow us to use the "energy-type” seminorm, defined on V by

2

I (3.6)

oly = A(v, v) > |n

+ "R" (Ve —1,)

2
H1(9)
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as a norm, and thus, to be sure that the property (3.2) holds. Another possible

condition would be, for instance (see [41]),
RiVE=0=86=0 V& eW, O

In the limit case our approximate solution should satisfy the Kirchhoff con-

straint (2.14), that is
Ry (n, — V&) = 0 & Run, = RuVE, VL% vg,. (3.7)

Noting that

_ 0n 06\ _ 9% P
rot Véh = rot (%—1', a—x;') = ax2a$1 + 81'161;2 =0 Vﬁh € Wh, (3-8)

we obtain

rot V&, =0 RASSL Rpn, = 0. (3.9)

3.1.2 Stokes analogy.

For the time being, we consider a slightly different constraint, namely,
{(q, rotgh) =0 VqEQhCQ=L2(Q)}¢$PhrotQh=0, (3.10)

where P, (-) stands for the L2-projection, and @ is an auxiliary space.
Note that the rot-operator introduced in (2.22) is close to the divergence

operator, namely, for any scalar function a and vector function v:

(rota)t = Va, rot (Q‘L) =-V v,

(3.11)
rota = — (Va)*, roty=V-. (Q‘L) )

where ” 1.” stands for the ninety degree clockwise rotation of the vector argument.
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Thus, we are clearly facing a minimization problem under the constraint similar
to the one encountered in the analysis of an incompressible flow.

The results for the well-studied Stokes problem (see, e.g. [18]) will serve
us as a starting point in the further elements’ construction. The mixed discrete
variational problem corresponding to the Stokes flow with homogeneous boundary

conditions is:
Findu, € V> CVS =[H}(Q)], pr € Q7 C Q5 = L2 (), such that
aS (_qha Qh) + bS (Qh) ph) = (ih’ Qh) ? vﬁh € V;LS’ (312)

bS (ﬁha qh) = Ov th € Qf’

where a® (u, v) = 2u /g(g) g (v) d, and b (v,q) = — / q(V -v) dQ (super-
Q

script ”S” stands for ”Stokes” in further considerations). QLet us note that the
bilinear form a® (-,-) is always elliptic, so that we do not need to worry about
existence and uniqueness of the solution for the velocity field u,.

To have a unique solution for pressure distribution py, the discrete spaces V;°

and Q3 should satisfy the stability inequality

e SRRt g blales,  Ya£0€Qh (13
with a positive constant ¢ (h, k) depending as little as possible on the mesh size h
and degree of polynomials k used as Galerkin basis functions (satisfaction of this
inequality guarantees that the range of operator, associated with &5 (-,-) is closed
in @)’ for some fixed values of & and k). Note that if this constant is independent

of the mesh size h, then we have the inf-sup condition of the form

. b3
inf sup (01, g») > ko, (3.14)
9h€Q} 9 #0 y, €V;S, v, #0 ”qh”QS lwallys
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and our solution for u, and py in (3.12) is stable and optimally convergent in
the corresponding norms. There exist quite a few such pairs (Vhs , Qf) described
in the literature, that are known to satisfy the inf-sup condition (3.14) (e.g.,
RT-spaces [42], BDM-spaces [16], BDFM-spaces [17]).

To see the analogy between the original problem and the Stokes problem, we

take u, = ; € Bj. Then, we have

b (un n) = — (an, V- (82)) &™) — (gn, 10t 8,) =0 VareQf e
& Py I‘Otéh =0,

which is nothing else, but the constraint (3.10). Noticing firstly that rotation is
an affine transformation, which preserves all properties of a space under consid-
eration, and secondly, that the stability condition (3.13) does not depend on the
bilinear form a (-, ), we conclude that to have a unique and stable solution of

the Stokes-like problem

a (éh’ Qh) - (p’“ rOtQh) =0 Vn, €B,,
(3.15)

(q’” rot (éh _lh)) =0 Vg, €

for the pair (éh’ ph), we should satisfy the stability condition

sup M > c(hk)llanllg,  Van #0 € Qn,
wihin Tal,

and the corresponding inf-sup condition for the optimal convergence

(Qha rot I’.h)

or G0 Qheil‘,‘;,,;ag llgnlig ||gh||v -
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3.1.3 Construction of the elements.

Clearly, using a pair (B, Qr), that is known to work for the rotated Stokes

problem (and correspondingly, for the problem (3.15)), namely, satisfying the

L
Zh?

we shall get the space By, which will not lock under the constraint (3.10)). The

inf-sup condition (3.14), or, at least the stability condition (3.13) with v, =

only thing, that we have to do now, is to match our actual constraint (3.9) with
the one introduced in (3.10). Recalling that Ry : By — T';, we are able now to
make the following proposition:

Proposition 3. In case t = 0, the following statements are equivalent:
(i) rot Ryp, =0 V17, € By; and

(i) Commuting diagram property is satisfied, that is:

By, % L?
Ry | I P (3.16)
Iy = Qn
The proof (i)&(ii) is trivial; clearly the commuting diagram states that
by (3.10) for t=0

rot Ry, = Pyrotn, = 0 Vn, € Bs. (3.17)

The commuting diagram (3.16) can also be written as an integral equation (for

the limit case):

rot Ryp, =0 = (rot Rhgh,Qh) =0 Vg € Qn &

& (rot Rh[]_h,Qh) — Py rot 7,=0&

(rot (Ram, — m,) ,q1) = 0. (3.18)
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Noting that conditions (3.4) and (3.8) impose explicit restrictions on the struc-
ture of the interpolation space W}, we are ready to close the loop. Thus, we have

the following ”algorithm” for the construction of an element:

1. Start with the pair of interpolation spaces (B,J;, Qh), that is "good” for
the Stokes problem. Bj would be the space for rotations, while @} is an
auxiliary space, which never appears in actual calculations (by ”"good” we

mean that we satisfy either (3.13) or (3.14)).

2. Find another space I', and an operator R;, such that the diagram (3.16)

commutes.

3. Choose the space for transverse displacements W}, to satisfy (3.4), i.e.

VW, CTh, 10t VE, =0 V&, € Wi

Remark 1. Although following the algorithm stated above does not imply
that the result of our choice for discrete spaces and reduction operator would
satisfy the inf-sup condition (3.3), the elliptic properties of the form A (-,-) are
clearly preserved by imposition of (3.4). O

Remark 2. Stability condition vs. the Inf-sup condition. As we
pointed above, the space Q5 does not have any physical meaning, and serves just
as a link between the Stokes problem and the problem of interest. The stability
condition (3.13) ensures that the solution for 3, will be stable and accurate,
while condition (3.14) guarantees that both B, and p, are optimally convergent.
Certainly, we are barely interested in p,’s, therefore (3.14) is in fact too strong,
and we should not discard pairs (B;J;, Qh) that are known to work for velocities
but fail for pressures in the analysis of the Stokes flow (as an example of such a
pair we can take the Q; — Py pair, which serves as a basis for the MITC4 element

construction). O
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3.1.4 Justification.

A reasonable question that one can ask now is — why do we need to follow such
a long way if we do not gain anything (i.e., the inf-sup condition may not be
satisfied, etc.)?

The following result ([18]), though, states that we have obtained at least some
optimality.

Proposition 4. The operator R} defined in (3.4) and (3.5) is surjective on
|

Proof. All we need to prove is that for every y, € I's, we can find a pair

(ﬁh, 'wh) € By, x Wy = V,, such that

Ry, (th —éh) = Do

“wh“Hl + ”éhl H1 < cﬂlh”r‘h )

To show this, we shall follow the algorithm described above. Firstly, for
a given 5, € I's, we solve the Stokes-like system (3.15) for 8, € B, and an
auxiliary variable pr € Qr. The fact that we have chosen the pair By x Q4 to
satisfy either (3.14) or (3.13) guarantees that there exists a unique f3,, such that
rot By3, = roty,, and "éhl
(3.14), then the constant c is independent of the plate thickness, which is not the
case if only (3.13) holds. Having that rot (lh - Rh_,B_h) = 0, we can find w, € W,
such that Vwy, = Y~ Rhéh.

m < 6”111“1“,,' If we satisfy the inf-sup condition

For example, the appropriate w; can be uniquely determined as the solution
of the discrete variational problem (Vwy, Vi) = (lh — RnB,, Vx/)h) Vi €
Wh. Continuity of Ry stated in (3.4) ensures that ||ws|| g < c"j—h”r‘h’ therefore
allowing us to conclude the proof. O

Remark 1. Surjective maps. Inf-sup condition in the I} norm. A

function f : A — B is surjective if and only if every b in B is the image of some
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element of A (a geometrical interpretation is shown on Fig. 3-1). It can be shown

Figure 3-1: Surjective function.

(see any elementary course on functional analysis, e.g. [38]), that surjectivity of
the function f is sufficient to guarantee that its range R (f) is closed in B.
Therefore, Proposition 4 implicitly states that the range of R} is closed in T'y,

and we have that

dk>0: sup ('xh’ B (Véh _Qh))

Yy €Vh, v #0 ”Qh“V

> ’““X-h“q Vx, €Th  (3.19)

where

”X‘h”I" = sup (lh’ Kh) .
h

(3.20)
7,€0n 7, #0 "-Zh

Cpn

If the constant k, appearing on the r.h.s. of (3.19), does not depend on the thick-
ness t, then we obtain nothing else but a discrete form of the inf-sup condition
(3.3), or the inf-sup condition in the I',-norm. Although this result is weaker than
the original condition, in practical calculations we deal with finite-dimensional
operators rather then with infinite-dimensional maps, and therefore, by now, we
have obtained quite satisfactory optimality. Moreover, it can be shown that the
elements, designed using the algorithm stated above, are optimally convergent in
the sense of the norm (3.20), see [18]. Let us finally note that k£ will be clearly

independent on ¢ if the starting pair of spaces (B, Q1) satisfies the inf-sup con-
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dition for the rotated Stokes problem (it might not be the case if we satisfy only
(3.13)). D

Remark 2: Discrete vs. continuous inf-sup condition.

If our elements satisfy the discrete inf-sup condition (3.19) in the I'}-norm,

then the sufficient condition to satisfy it in the continuous form (3.3), is :

Nlh"r;‘ =°f th"p V1, €%, (3.21)

with p being a constant independent of the mesh size and plate thickness. O

3.2 The elements.

In this section we describe the standard approach to the plate bending problem,
as well as the MITC family of plate bending elements, taking the MITC4 and

MITC9 elements as typical representatives.

3.2.1 Reference element and covariant transformation.

In the following analysis all discrete finite element spaces are defined from the
corresponding spaces on the reference square element K = (—1, 1) through a co-
variant tensor transformation. The reduction operator is RE also defined locally
on each element K, which allows us to construct it for general elements using
a covariant transformation of the operator R; defined over K. This enables us,
without loss of generality, to consider all operations only over K, then extending
the results to more general cases. Let JX be the Jacobian matrix, associated
with the transformation of the K-th element; its determinant is AKX = det (J K )
(Fig. 3-2).

- . o - -1
A fairly standard assumption on J¥ is the existence of its inverse (J }‘) for
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Figure 3-2: Covariant transformation of a general element.

each K = 1..N. Moreover, as the characteristic mesh size h — 0, we have

()

These assumptions ensure that all maps are well-defined in the sense that we

<C<oo, i,j=1.2 K=1.N.

max
K

L>(K)

cannot have singularities of the FEM matrices due to the use of general elements.

3.2.2 Displacement-based finite elements.

The simplicity of these elements made them popular in the finite element analysis
of plates, although the results are often far from reality, because of locking. The
space for shears is obtained as (taking the reduction operator as an identity
transformation)

Gh =Th = VW, U By,

which implies that

Ker (RyB,) = Ker (B,) = {wy = (n,, &) € i | Véa =1, }.
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This condition severely restricts the space of interpolation functions, which satisfy
the discrete Kirchhoff constraint (the worst results are obtained for lower order
elements, namely P3 and Q4 elements; see Appendix A for numerical examples),
barely leaving a hope to obtain uniformly good convergence for all thicknesses

t. We omit the details of construction of the FEM matrices, though referring to

Sec. 5.4 of [6].

3.2.3 MITC4 element.

The element was initially presented in [24] as a shell element. Numerical perfor-
mance, mathematical analysis, error estimates, and convergence rates are shown
in the subsequent publications, e.g., [10], [7].

For the mixed-interpolated 4-node element we use (taking homogeneous bound-

ary conditions for the sake of simplicity):
Wi={n:6 € B (D), &l € Q1 ()},

Bi={n,:n, € (B @), n,lz € [ ()]},
Qn= {ph ‘prlg = const} :
T = {7, : 7, € Ho(rot; 0), 7,z € RT (K)},
RT (K) = (span {1,s}, span {1,r}).

The pair (B, Q) satisfies the stability inequality (3.13) with constant ¢ (h, k) =

48



O (h) (see the proof in [32]). The fact that ps|z = const implies that

(rot (Rhﬂh - ﬂh) ’qh) =0 Vge@n=>

=>£ rot (Rh_qh —Qh) dQ =é{7 (Rhﬂh - Qh) tdS = (3.22)

(ﬁhﬂh-ﬁh) 3 tAK S|z =0

>v>\

where t stands for a unit tangential vector.

Using integration along the edges e;, 7 = 1..4, of the reference element, i.e.,

/ £(5) dslg =3 JELCIEE

1=1%

and using AR = const (affine covariant transformations), we can try find the
reduction operator R,. The fact that 7 1|5 is a bilinear vector function allows us

to calculate the integral along an edge e; as

/ (Rhﬂh - -’lh) le; - ¢ dli :/ dl; (Rhﬂh - ﬂh) lei, =0 - £

€

Thus, to obtain zero on the r.h.s. of (3.22), we should construct R, to satisfy
Rhﬂh = 5, at the midpoints of every edge e; (so-called tying procedure). Equiva-

lently,
Vgh—Rhgh=V£h_Qh Véh EWh¢>

R — ~ — ~ST
&R (Ve -n,)=1,=1
at the edges’ midpoints, where 7, € I'x, and lfT are the values of the shear
strains obtained from the standard displacement-based interpolation.

Therefore, by tying shears with displacement-based values at the mid-points

of the corresponding edges, we enforce the commuting diagram property to hold.
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Figure 3-3: Tying procedure for the MITC4 element.

The choice of W}, provides the same order of accuracy as for rotations; moreover

we have

VWi = {gs : aslz C Th, rot g, = 0}.

As a result, we obtained a very robust, simple, low-order element, which does

not lock for small thicknesses (see Appendix A for numerical results).

3.2.4 MITC9 element.

For the mixed-interpolated nine-node element ([15]), we take

)
>

Wi={6:6 € By (), &Iz € & (B)},

b= {n, m, € (O] s < [0 (B,
Qn ={Ph :pulgp € P (7‘\)}’ (3.23)
Ty = {3, :7, € Ho (rot; ), 7|z € BDFM ()},

BDFM (E) = (span {1,7‘,3,1’3,32}, span {1,1", s, rs,r2}) ,
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and Q) (ff ) is the 2nd order Serendipity space defined over K.
The pair (By, Q1) is known to satisfy the inf-sup condition (3.14). To satisfy

the commuting diagram, we have to impose the following restrictions on R}, :

/ (éhﬂh - Qh) AR drds = 0; and (3.24)

B

/ (Ram, —m,) -tp() A¥dli=0  Vp(l)e P (K) |y, e, i=1.4. (3.25)

€

Then

/ rot (ﬁhﬂh) grdrds = — / (Ehﬂ.h) - rot qp dr ds+

K K
+ [ (Run,) -tands ™ 202

= — / (Ehgh) - rot qn dr d8+ / ﬂ-h . Iqh dsS use (=3,24)
K €R? 9K

- — / n, - tot gy dr ds+ / 7, -1qndS =/ rot (Qh) gndrds,
K oK K

which proves the sufficiency of (3.24) and (3.25). Again, the space W} has the
same order of accuracy as the one for rotations, and VW, C B,.

As we have done for MITC4 element, for AKX = const, we can calculate inte-
grals (3.25) using numerical quadratures (2-point Gauss rule is the best choice).

The MITC9 element is more expensive then the 9-node displacement based
element, because the calculation of the stiffness matrices requires a numerical
integration over each element in the mesh to impose the constraint (3.24). To
overcome that difficulty, one may find more attractive (though requiring more
analytical work) to calculate the coefficients in the tying expressions explicitly,

and solve a relatively small system of linear equations for each element.
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3.2.5 Other elements.

The MITC family of plate bending elements also includes a higher order 16-
node quadrilateral element, MITC16, and two triangular elements, MITC7, and
MITC12. All these elements have the same properties, namely, do not contain
spurious modes (that is, satisfy the ellipticity condition), they are relatively in-
sensitive to geometrical distortions, and do not lock for small thicknesses.

For the list of the elements we refer to [6], convergence results are presented

in [9]; a mathematical analysis can be found, for example, in [18], [19], [45].
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Chapter 4

Numerical analysis.

In this chapter we present an attempt of a numerical analysis of plate bending
elements, based on RM theory, using procedures, similar to the inf-sup test, pro-
posed for the problems of incompressible elasticity in [20], and for beam bending

elements, based on Timoshenko beam theory in [6].

4.1 Matrix computations.

This section deals with simple matrix operations, inequalities, and eigenproblems,
which we will need for the further analysis. Although these results are quite trivial
and well-known, we still show all the derivations, to provide a general framework
for managing problems of the inf-sup kind. For a deeper insight into the matrix
computations issue we refer to [6] and [25], while a review of the properties of
linear operators, as well as main spectral decompositions theorems, can be found

in {38].
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4.1.1 Eigenvalue decompositions. Generalized eigenvalue

problems.

In the following considerations, all real-valued matrices appear in boldface, e.g.,
A € IR" x IR™ is an n-by-m real valued matrix. Matrices represent perfect
examples of closed range linear transformations, and thus, a-priori are quite easy
to deal with. Let us take m = n for the matrix A introduced above; in the further
analysis, we will concentrate on the symmetric matrices and assume A = AT by
default, unless explicitly stated otherwise. Consider now the standard eigenvalue

problem, associated with A:

Find a set of eigenvalues A; and eigenvectors ¢, such that

(4.1)
Ag. = Xig,, i=1.n; ®T® =1,

where ® = {91’ ey én}, and I is the n-by-n identity matrix. We can rewrite

equivalently the eigenproblem (4.1) using matrix notation as
Find matrices A and ®, such that A® = A, ®T® =1,

where A =diag (A1, ..., Az)- Using the orthogonality of & (ie., #! = ®7T),
we obtain the eigenvalue (or spectral) decomposition of A: A = ®AST, or
STAD = A.

Putting a positive definite matrix B € IR" x IR™ on the Lh.s. of (4.1), we

arrive at the generalized eigenvalue problem, namely

Find a set of eigenvalues A; and eigenvectors ¢, such that

A =A\Bs, i=1.n; ®TB® =1,
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or, in the matrix form,
Find matrices A and ®, such that A® = B®A, ®'Bd =1. (4.2)

Multiplying both sides of (4.2) by ®7 on the left, we obtain that ®TA® = A,
as it was before, in the standard case.

For the sake of simplicity, let us define a convenient notation for a generalized
eigenproblem with a symmetric real-valued matrix A, and symmetric positive
definite r.h.s. matrix B, as GEP (A, B).

Remark. We can clearly use all the concepts of functional spaces, stud-
ied in Chapter 2 for the matrix analysis. In particular, for two general vectors
V=[v, ., va] €V=R*xR! and W =[wy, ..., ws] € W= (V) =R! x R",
we will use a duality pairing between the spaces as follows: (W,V) = WV =§:

i=1
w;v;. O

4.1.2 Vector and matrix norms. Basic inequalities.

For a real valued vector V =[vy, ..., va]7 €IR” x IR}, and a general real-valued

matrix A €IR" x IR™, we define the following norms, as given in [6]:
IVIE=C(VE V) AL = Aas, (4.3)

where Apax is the largest eigenvalue of the matrix ATA. Let us also define a

vector seminorm

VI = (VT,BV), (4.4)

where B is a symmetric, real-valued, positive semidefinite n-by-n matrix. If
Ker(B) = 0 (i.e., B is positive definite rather then semidefinite), then this
seminorm becomes a norm, equivalent to (4.3) for all V in IR® x IR!. If, however,

the null space of B is not trivial, then the equivalence of (4.4) to (4.3) holds only
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on the subspace D = [IR" X IRI] \ Ker (B). Let us explicitly show this result in
the following proposition.
Proposition 5. |V|g is equivalent to || V||, V V €D.
Proof. We need to show that there exist two positive constants ¢; and ¢y,
such that
allVl, <IVig <elVl, VVeD. (4.5)

Let us rewrite V = ®V, where A and & are the eigenvalues and eigenvectors

of the standard eigenproblem associated with B. Then
IVl2B — <VT, BV> — <VT¢T,BQV> use <I>7:__l_3<I>=A <VT,AV> use V=<I>TV=and PTPH=1

n n
_ 2 use VED 2
—-E Aiv? T = E Aiv?,
=1

i=m+1

where m is the dimension of the null space of matrix B (and the number of

corresponding zero eigenvalues, A\; = 0, ¢ = 1..m). Therefore, we have that

n n

=1 =1

where Amin and Ayax stand for the smallest nonzero and the greatest eigenvalues
of the GEP (B, I) correspondingly. Of course, this result is nothing else, but the
celebrated Rayleigh quotient [6]. Recalling that ||V||3 -—-Zn: vZ, we conclude that
(4.5) holds with ¢; = v/ Amin and ¢3 = vV Amax. O =

Remark. The result of Proposition 5 certainly holds in the ”trivial” case,
when Ker (B) =0 (or D =R" x R'). O

Another important vector inequality, which will be extensively used, is the

Cauchy-Schwarz inequality for real numbers [38]:
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If vy, va, ..., v, and wy, Wy, ..., w, are real numbers, then

(Bee) = (54) (5)

We can rewrite the above inequality in terms of vector norms as: ||V, W)||2 <

(4.6)

V]2 |W]j2. Let us note that the sufficient condition to get the equality is:

vi=w;, t=1.n.

4.2 Analysis of the inf-sup condition.

Here we present a discussion of the numerical analysis of the inf-sup condition
in the I'}-norm, given by equation (3.3). The proposed numerical procedures for
evaluating the performance of the elements are similar to the inf-sup test [20]; for
a related analysis of a number of eigenproblems of the inf-sup type that appear

in the incompressible media analysis, we refer to [34].

4.2.1 Matrix form of the inf-sup condition in the T)-

norim.

This, and the following two sections, concentrate on the numerical treatment of
the discrete inf-sup condition in the I'}-norm, given by (3.19).
We choose the following norm over the space for rotations and transverse

displacement (restricting our analysis to the case of bounded domains):
by (2.3) 2
lonlly = HQh”ftIl(n) = Iﬂhﬁ{l(n) = Iﬂh’m(n) + |§h|§{l(n) =
: 2 : 2 2
= L? E l|7hi»s “Li’(Q) + Z 1€y ||L2(n) = VTSV = IVils
1,7=1 i=1

where L is a characteristic dimension of the plate (e.g., plate’s length or width),
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V €IR" is a vector of nodal point displacements, and S € IR" x IR" is a positive
definite norm matrix.

Shear strains are calculated from nodal point displacements V using a shear
nodal basis B, : R" — T, as 7, = B, V. Let us define the L*-inner product of
B,)s as G = (B?;,B,y) € IR" x IR"; then the bilinear form in the numerator of
the inf-sup condition can be rewritten as (lh’ Xh) = (UTB,:C,BA,V) = UTGV,
where G is a positive semidefinite n-by-n matrix. To avoid corner solutions
(i.e., the inf-sup value being zero or infinity), we have to impose the following
restriction: V, U €D =IR" \ Ker (G). Summarizing, we can deduce the matrix

representation of the discrete inf-sup condition in the I'}-norm (3.19):

. uTGv
inf sup

>8>0 (4.7)
UeD VeD “B'VU”[‘;‘ ”V“S

4.2.2 Discrete inf-sup condition in the L?-norm.

As we have shown in Section 2.4.1, for the case of zero plate thickness, ¢ = 0,
L% (Q) is not the appropriate space for shears, i.e., the norm of shears in L2 () is
not bounded from above. The purpose of this section is to show that this result
can be demonstrated and confirmed by a simple numerical experiment.

Let us assume that the appropriate space for shears in case of zero thickness

is L? (), therefore the corresponding norm is given by th”I" = Illh e =
h
1B, Ullz(q) = / (UTBZ, B,U) = Ul
The inf-sup condition has the form:
uTGgv
inf sup >B (4.8)

Uep vep |Ulg [ Vils ~

with the inf sup value 8 = +/Anin, Where Anin stands for a smallest nonzero
eigenvalue of the GEP (G, S) (see Example 4.41 in [6] for the derivation).

To check the performance of the elements, we apply the inf-sup test proce-
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dure to a simple problem (see Fig. 4-1), using quadrilateral displacement-based

elements (QUAD’s) as well as the elements of the MITC family.

X3
Vd

0 ) |
/

Figure 4-1: Cantilever plate considered in the inf-sup test. Top view shows a
typical mesh of four none-node elements.

term in the
L2(Q)

denominator of (4.8), the inf-sup value 8 will go to zero. If we find that for some

We expect that, due to the unbounded growth of the th

element, the inf-sup curve escapes this trend, then our theoretical prediction that
L% () is not the correct space for shears will be contradicted.
Numerical results of the test are shown in Fig. 4-2 for the case L = B = 100.
All curves in the figure demonstrate that the discrete inf-sup value 8 converges

to zero with a linear rate, which does not contradict the analytical results.
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MITC9
QUADI6
MITCl6

Figure 4-2: Inf-sup test of plate bending elements in the L2-norm (cantilever
plate).

4.2.3 Inf-sup test in the ['}-norm.

Let us obtain the expression for the inf-sup value when we use the appropriate

space for shears with a dual discrete norm given by equation (3.20).

We take

2 _ T _ T _ 2
L2(Q) =V (G+Q)V—V DV VE’D IVlDa

H>_<h ;h = ”xh ;(Q) 4+ 12 ”rotzh

where D is a positive semidefinite matrix, and L is a characteristic dimen-

sion of the plate. Note that the condition V €D is sufficient to guarantee
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V ¢Ker (D) (VIGV >0V V €D, and since Q is a positive semidefinite ma-
trix, VIQV >0V V €IR"*; therefore VI (G + Q)V >0V V €D). Then
TRT
use (3.20) (V B, B’YU) VTGU by (45)
1B, U||, = ’‘sup =su <
"7"”1' | “F VeDp IVlp Ve% Vlp

sup VTGU usel4.6) “GU”2
Ve V min “V”2 Vémin ’

(4.9)

where Omin stands for the smallest nonzero eigenvalue of D. Moreover, by (4.5)

we have:

IVIls < vomax VIl (4.10)

where opax is the largest eigenvalue of S.

Substituting (4.9) and (4.10) into equation (4.7), we obtain
f UTG'V > 6min f sup UTGV use (4.6)
inf sup in _— =
Uervep |B, Ullp, IVlls = V omax Uep ven IGUIL VT,

_ [bmin . o ||GUll; use Uep [bmin _
= Vo Oy GO, ~ Voms B.

Now we can apply the same procedure to study convergence of the discrete

inf-sup value 8 !. Results of the test for four- and nine-node quadrilateral plate
bending elements are shown in Fig. 4-3.

The S of the four-node quadrilateral displacement-based element QUAD4 con-
verges to zero, confirming the locking properties of the element demonstrated in
Appendix A. Other elements do not show that trend, which also agrees with nu-
merical simulations; therefore we conclude that the QUAD9, MITC4 and MITC9
elements have passed the inf-sup test in the I'}-norm.

Let us emphasize that these results do not pretend to prove that we satisfy

either the inf-sup condition (3.3), or (3.19) for every problem and every mesh

! Another, though computationally less efficient way of calculating the inf-sup value g is
presented in Appendix B.
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Figure 4-3: Inf-sup test of the plate elements in the I'}-norm (cantilever plate).

sequence; they are certainly limited to the consideration of the particular demon-
strative example, and weaker then the analytical results of Proposition 4. On
the other hand, this routine allows us to test general FE meshes with distorted

elements, for which we can barely extend the analytical results.

4.2.4 FromT), toI'.

As we have demonstrated in Section 3.1.4, in order to prove that the discrete
inf-sup condition (3.3) is satisfied for a given FEM discretization, we need to

show that:
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1. The discrete inf-sup condition holds with respect to I'},-norm for shears, as

given in (3.19)-(3.20);

2. The norm equivalence stated in (3.21) holds with a constant p independent

of the mesh size and plate thickness.

The inf-sup test from the previous section enables us to check, whether the
first condition is satisfied, while this section is devoted to a development of a
similar numerical procedure, which will allow to check whether the latter holds
for a given particular case.

Let us make a refinement of the FEM space with a characteristic mesh size A,
simply subdividing every element onto four subelements, and call the resulting
discrete FEM space for shears I',j,. The next refinement will give us a space I' /4,
and so on. Clearly, we have that 'y C 'y C T'hyjs ... C Thjan CT'. Therefore,
choosing the number of refinements n, we can approach the continuous space I'
as closely as wanted by our FEM discretization?.

Moreover, for v, € I', we have that

lllh “p;‘/ = sup M

= with lim "7 " = "7 ” .
2n Kher‘h/mﬂzh#g ”X-h —hir; —h T

n—oo h/2n

Thyan

Thus, to check whether the norm equivalence (3.21) holds, we can look for a

sequence of problems

lh”p : (4.12)

bk, = e,
and trace the constant p, as we increase n. If p, does not converge to zero, we
say that the test is passed, and, combining this with results of the inf-sup test
in the I'}-norm, we state that the inf-sup condition (3.3) is satisfied for a given

discretization.

To confirm this statement, we have to recall well-known convergence properties of the FEM
discrete spaces; see, e.g., Section 4.3 of [6).
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To find the worst case which is predicted by the theory, we will look for the

greatest lower bound of p,, given by

(x4 7,)
sup
. X,€0n X, #0 Yh r
pr = _inf —h (4.13)
—  7,€Th,7,#0 (Xh’7h)
sup =
iherwmiﬁg Xh Th/an

In order to rewrite the expression (4.13) in matrix form, we define:

7h = §7U7 X

|

D e R x R 6=<§ ﬁ,,); G e IR™ x R™,
(4.14)

= |v]

”Xh Thien G

where 7 is the dimension of the discrete space I';,, and 7 stands for the dimension
of T’y /2, Substituting (4.14) into equation (4.13), and defining the corresponding
domains D = IR™ \ Ker (_G) and D = IR” \ Ker (ﬁ) to escape from the trivial

answer, we obtain

SUp ——
VeD

To calculate the greatest lower bound of p,, we have to find a lower bound
for the expression in the numerator, and an upper bound for the denominator in

(4.15).
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sup ViGU by (24.5) _1 sup ViGU use (4.6) wéhV:C_U 1 IGU” ’

W - v T vl
=T T (4.16)

sup VzGU by 2.5) 1 sup V=GU use (4:6) with v-Gdu 1 |§U” |

v [Vl Bon V5 |V, — |G,
(4.17)

where 8max is the maximal eigenvalue of matrix D, and 8min stands for the smallest
nonzero eigenvalue of D.

Substituting (4.16) and (4.17) into (4.15), we obtain the greatest lower bound

for&as:
Suin . 1S, [Faw .. ISV, Ui, ]
a2\ g i ||au1|Z‘Jm % | 0T, [au] | =
. "@U” (4.18)
_ | ain e ||U||22 et 101=1 V8minTmin _ g
\i o [Gu|, SmacOmax
UeD “U”2

with ¥, being the smallest nonzero eigenvalue of G, and ¥yax the greatest
eigenvaluc of a matrix T =GTG. Therefore, we can apply a numerical procedure,
similar to the inf-sup test to trace the value §, as we increase n3.

Results of the test for the displacement-based and MITC four- and nine-node
elements are presented in Fig. 4-4. We can clearly see that the QUAD4’s §,

monotonically converges to zero as we increase the dimension of the trial space

['n/2.- Therefore, we state that the constant p, for QUAD4 is not bounded from

3Since F,,i, and Smax do not change with n, there is no need to recalculate them; they
should be calculated only in the original space I',. Also, we note that the dimension of the
eigenproblem for ¥,ax, 7, corresponds to the dimension of the smallest space T'}. Therefore,
the only expensive calculation (i.e., an eigenproblem of size %) is required to get the eigenvalue

6min~
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Figure 4-4: Behavior of ¢, for quadrilateral plate bending elements (cantilever
plate).

below, and the test is failed. The other elements do not exhibit this trend; the
corresponding curves for é, do not go down as we make refinements of I'y; this
allows us to manifest that for a given particular problem we will be able to find
a finite nontrivial lower bound for the constant p, as n goes to infinity, and thus,
the discrete norm equivalence (4.12) holds with p, independent of n. Because
the plate’s thickness does not show up in the expression (4.18), the constant p,
also does not depend on t. Convergence properties of the discrete FEM spaces
allow us to extend this result to the ”continuous world”, and state that the norm

equivalence (3.21) holds for a given problem with a constant p independent of
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the plate thickness.

Summarizing, we are able to conclude that for the problem under consider-
ation, the QUAD4 element does not satisfy the inf-sup condition, locks for a
broad range of plate thicknesses, while the mixed interpolated elements and the
QUADY element pass the developed inf-sup test, and do not lock. These results

are confirmed by numerical simulations shown in Appendix A.

4.3 Numerical results.

This section presents an analysis of the problem, which is known to be the most
severe test for the locking behavior. We will consider a clamped square plate (see
Fig. 4-5), with L = B = 100 mm, and study the robustness of quadrilateral plate
bending elements to changes in thickness and mesh distortions.

Following the procedure developed in the previous sections, we firstly run the
two tests, given by equations (4.11) and (4.18), for a sequence of uniform meshes,
shown in Fig. 4-6.

The results are basically the same as they were for the cantilever plate case:
the QUAD4 element locks, while the QUAD9 and the mixed-interpolated ele-
ments produce good results, and do not lock for small thickness/length ratios.
Fig. 4-7 demonstrates the numerical results of the inf-sup test in the I'}-norm,
while Fig. 4-8 shows the results of the 6,-test.

Since for this case the results from the two tests seem to be perfectly correlated?,
we can conclude that the rate of change of the smallest eigenvalue of the norm
matrix D, (referred to as &y, in (4.11) and as S, in (4.18)) dominates the qual-
itative behavior of the elements for the particular problem under consideration.
Therefore, without loss of generality, we will further run only the inf-sup test in

the I'}-norm for the same problem and the same set of elements, using slightly

“Ie., the simulations show that if an element fails the inf-sup test in I'},-norm, it does not
pass the é,-test either, and visa versa.
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Figure 4-5: Clamped plate.

distorted meshes, as shown in Fig. 4-9°.

The results of the test are presented in Fig. 4-10. One can see that for this
case both displacement-based elements ”collapsed”; the corresponding lines for
the QUAD4 and QUAD9Y elements converge to zero. The mixed-interpolated
elements, MITC4 and MITC9, passed the test, displaying their robustness to
mesh distortions and changes in thickness.

Appendix A presents the numerical evidence, absolutely consistent with our

results, thus justifying the proposed testing methodology.

5The meshes were chosen to preserve the ”conforming” properties of the FE spaces, i.e., (A)
C (B) C (C) C (D), which implies V4 C Vij2 C Vhya C Vays.
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Figure 4-6: Uniform meshes used for the inf-sup test of the clamped plate case.
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Figure 4-7: Inf-sup test of the quadrilateral plate bending elements in the I'}-

norm (clamped plate case, uniform meshes).
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Figure 4-8: 6,-test of the quadrilateral plate bending elements (clamped plate

case, uniform meshes).
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Figure 4-9: Distorted meshes used for the inf-sup test of the clamped plate
probem.
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Figure 4-10: Inf-sup test of the quadrilateral plate bending elements in the I'}-

norm (clamped plate, distorted meshes).
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Chapter 5

Conclusions.

The main objective of this thesis was to develop a reliable numerical testing pro-
cedure, which would indicate whether a particular element satisfies the inf-sup
condition for a given discretization. This methodology was established, based on
analytical results manifested in Chapters 2 and 3, using eigenvalue decomposi-
tions in a way similar to the inf-sup test proposed in [20]. All our predictions
about the tested elements are in perfect agreement with analytical results, and
with existing practical evidence (some results of numerical simulations are pre-
sented in Appendix A).

Moreover, Chapter 4 presents the essential apparatus, which can be applied
to the numerical analysis of any constrained optimization problem, in which
conditions of the inf-sup kind appear. Basically, the results can be generalized to
any discrete functional, in particular, the extensions to nonlinear analysis and/or
shell elements would be of great practical importance.

Summarizing the results of the analysis of the finite element discretizations

for plate bending problems, we report that:

(a) The four-node displacement-based element fails to satisfy the inf-sup condi-

tion, and thus should be excluded for practical use.

(b) The nine-node displacement-based element passed the tests for uniform meshes,
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but failed to work for reasonably distorted meshes; therefore this element
should not be used for the analysis of complex geometries and in general
nonlinear analysis. This finding explicitly emphasizes the importance of

tests for meshes with distorted elements.

(c) Elements of the MITC family (including the four-node MITC4 element)
passed all tests including the tests using reasonably distorted meshes. Thus
we predict that the elements satisfy the inf-sup condition, and therefore are

reliable and effective elements to use in engineering analysis.

75



Appendix A

Shear locking.

Our purpose in this appendix is to present a number of numerical results which

demonstrates shear locking phenomenon in plate bending problems.

A.1 Cantilever plate under a uniform load.

The first model problem is shown in the Fig. A-1 (top view is the same as in Fig.
4-1). The simplicity of the problem allows us to use beam theory (see e.g., [49])

T3

b
ATEEETERETEE § TRRFES
0 T,

Figure A-1: Cantilever plate under a uniform load.
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t/L QUAD4 | MITC4 | TRI7 | MITC7 | QUADY9 | MITC9
1/10 71.5 0.8 17.5 0.5 0.8 0.8
1/100 99.1 0.0 32.7 0.3 2.1 0.0
1/1000 99.9 0.0 33.3 0.3 2.1 0.0

Table A.1: Comparison of elements’ performance in the norm ||wy]|| (cantilever
plate).

to obtain a good approximation for the exact solution.

., L , 1 B3
w=rphB [4E12””1 TeELT TmELY| T
01 —_'-0,
2 L , 1
b: = —pB [2E12w1 “oEn T 6E12””1] ’

M 1 Bt?
Uﬁ“:Wia M2=§PB(L—$1)2a W2=—€’7
o2 =0,

max _ 3@
=55  @s=pB(L-m).

To check the performance of elements, we introduce a norm

Wh (L) — Wmax

|wsl]| = x 100%, (A.1)
Wmax
1pBL* . v 4ls
where Wmax = w (L) = 3 Bl and consider a sequence of plate’s thicknesses,
2

determined by the ratio t/L. Results of this test for a four-element mesh of
four-, seven-, and nine-node displacement-based and MITC elements are shown
in Table A.1.

The four-node displacement-based element produces results that correspond
to the definition of locking — for small thicknesses displacements are almost zero.

This can be easily explained by the fact that for the applied boundary con-
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ditions, Ker (B,) = 0, and therefore the interpolation space does not contain

any functions satisfying the Kirchhoff constraint. Results of numerical simula-

w (A) i 0 20 40 60 80 100 (B)
* 0.000 L — 1 I 4
sl ’_
121 [
=0.005 -
: °
10 [
08F 0010 |-
06
. 04f o0ms | s
Andyiica soltion Analytical solution:
02 o QUAD4. i QUAD4
a MITC4 a MITC4
° QUADY 5 ° QUADY
0.0 L 1 L L 4 O MITCY 0.020 2 O MITCY
0 20 40 60 R0 100 )

D)

Figure A-2: Finite element solution (four-element meshes) for the cantilever plate
case. (A) - transverse displacement w, mm; (B) - rotation angle 4,; (C) - normal
stress 013, M Pa; (D) - shear stress 013, M Pa.

tions are presented in the Fig. A-2 for the case L = B = 100mm, t = 1 mm,
E=2.-10°MPa,v=0,k=5/6,and p=2-10"2 M Pa.
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A.2 Clamped square plate under a uniform load.

Let us now consider a thin square plate with all edges clamped, loaded by a

uniform pressure p (see Fig. A-3; top view is the same as in Fig. 4-5). To

Ts P

HILREII]

Z 217 7 =
Z2Z -4 L/

T
A e

\\
]

NJ——

V4

Figure A-3: Clamped plate under a uniform load.

compare the results of numerical simulations with theoretical predictions, we
assume that the plate is thin enough for the Kirchhoff theory to provide a good
approximation for the exact solution. Then, given the Poisson ratio v = 0.3, the
maximal transverse displacement can be found as (see Section 44 of [48]):

pL*

Using wmax as given above, we can compare the performance of elements in
the norm (A.1). For the first comparative test we choose uniform meshes as
shown in Fig. 4-6. The geometry and material characteristics are taken to be:
B=L=100mm, E=2-10° MPa, v = 0.3, k = 5/6. The results of the test
for different meshes and t/L-ratios are summarized in tables A.2 and A.3.

As in the first problem, the QUADA4 element locks, giving almost zero displace-
ments for small thicknesses; moreover the chosen boundary conditions made the
null space of B,-operator very small for the QUAD9 element, which resulted in
significant deviations from the exact solution. The mixed-interpolated elements
performed well, remaining robust to changes in thickness.

Fig. A-4 shows the numerical results for the transverse displacement w (z, z3)

for the case L = 100mm, t = 0.01mm, E = 2-10° MPa, v = 0.3, k = 5/6,
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t/L QUAD4 | MITC4 | QUADS | MITC9
1/10 8.6 18.1 143 20.6
1/100 97.1 0.5 20.8 2.1
1/1000 99.9 0.7 21.6 1.9
1/10,000 99.9 0.7 21.6 1.9
1/100,000 |  99.9 0.7 21.6 1.9

Table A.2: Comparison of elements’ performance in the norm ||lwy|| (clamped
plate case, uniform meshes, 8 x8 meshes for four-node elements, 4 x4 meshes for
nine-node elements).

t/L QUAD4 | MITC4 | QUADY9 | MITC9
1/10 11.1 19.1 19.0 19.5
1/100 97.2 0.2 4.4 0.7
1/1000 99.9 0.2 5.1 0.5
1/10,000 99.9 0.2 5.1 0.5
1/100,000 99.9 0.2 5.1 0.5

Table A.3: Comparison of elements’ performance in the norm |ws| (clamped
plate case, uniform meshes, 16 x16 meshes for four-node elements, 8 x8 meshes
for nine-node elements).

and p = 1.454 - 10~7 M Pa for the eight-by-eight mesh for four-node elements
and four-by-four mesh for nine-node elements (the Kirchhoff theory solution is:
Wmax = 1 mm).

Now for the same geometry and material, instead of taking uniform meshes,
we will use slightly distorted discretizations. Thus, we pick a sequence of distorted
meshes as shown in Fig. 4-9. The results of the runs for different mesh densities

and t/L-ratios are shown in tables A.4, A.5.

t/L QUAD4 | MITC4 | QUADY9 | MITC9
1/10 11.1 18.2 13.5 20.9
1/100 97.2 0.5 24.5 2.5
1/1000 99.9 0.7 32.6 2.3
1/10,000 99.9 0.7 93.5 23
1/100,000 99.9 0.7 99.9 2.3

Table A.4: Comparison of elements’ performance in the norm ||w|| (clamped
plate case, distorted meshes, 8 x8 meshes for four-node elements, 4 x4 meshes for
nine-node elements).
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Figure A-4: FE solution for the transverse displacement w, mm, (8
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Clearly, one can see that the QUAD9’s behavior changed drastically

Fig.

no longer robust to changes in thickness, and locks for small t/L ratios.

(when compared with Fig. A-4) in the

calculated transverse displacement w for the four elements. While displacement-

A-5 demonstrates qualitative changes

based elements failed to work, the MITC4 and MITC9 elements show robustness

81

to mesh distortions, and reliable anti-locking properties.



[=2)
22~ mn g
HIS o oo o
(=2]
wglooﬂ.?u
B 2 e — D
D=®Cmo
c
-
m%4222
WIOOOO
<t
D79.9.9.9.
A9.9999
) XSS
e
=
-88g
oSS c S
W= = o~ o~ -
B e T
RO o T e T T |

Table A.5: Comparison of elements’ performance in the norm |jwy|| (clamped

8 X8 meshes

’

16x 16 meshes for four-node elements

plate case, distorted meshes,
for nine-node elements).

(B)

()]

Figure A-5: FE solution for the transverse displacement w, mm, (8-by-8 distorted
meshes for 4-node elements, 4-by-4 meshes for 9-node elements) for the clamped
plate. (A) - QUAD4 element; (B) - MITC4 element; (C) - QUADY element; and

(D) - MITC9 element.
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Appendix B

Inf-sup test in the I'}-norm.

This appendix presents an alternative derivation of the numerical inf-sup test,
described in Section 4.2.3.

Following the notation of Section 4.2, we will find the inf-sup value 8 as

UTGv

Jad, sup o WIGU 2P (B-1)
WEI?D W Vlls
By (4.5) we have:
(Wip > /omn W],
and thus
T TGU use (4.
W SV T, v 2

Now we rewrite V = &V, U = ®U, where & '_‘{91’ - Qn} is the set of
S-orthonormal eigenvectors of the GEP (G, S); let A =diag (X4, ..., A,) be the
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corresponding eigenvalue matrix; then

wup UGV _ - UTSTGEV _
ver IVl @VSD N'I’v”s

UIAY we o) [AT], [V], _ (83)

= ”A@_IU"2 use PTGE=A "@TGU“2 > \/19_rm;”GU”2’

where /0y is the smallest eigenvalue of the matrix @ = ®®7.
Substituting results of (B.3) and (B.2) into (B.1), we obtain

. UTGv ) IGU|| UeD
f > 6min ﬂmin f ——2 uee =€ 5rmn ﬂmin =P
i vep TB, Ul [VIlg = VominVVmin §8 gy, — VOomin/Pmin =5

U€eD vep
(B.4)

Note that to obtain ¥ We have to calculate the full set of eigenvectors ®,
and then run the eigensolver for a full matrix ®, which is a relatively expensive
scheme. From computational point of view, the procedure of Section 4.2.3 is
much cheaper and far more stable.

Let us finally point out that the two methods produce absolutely the same
numerical results, and therefore they can be viewed as the perfect substitutes

from the analytical point of view.
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