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ABSTRACT

Radar scattering from random rough surface can be calculated using method of
moment in combination with the Monte Carlo simulation technique. One of the practical
limitation to this approach is that a tapered plane wave must be synthesized in order to
limit the illuminated surface area so that computational domain would be confined.
However, at grazing angle incidence, the tapered plane wave alone will not do enough to
limit the illuminated area. In this thesis, we propose to use a pulse compression technique
in the longitudinal direction. This approach will be more effective in limiting the
illuminated area at low grazing incidence angles. Numerical simulation results will be
obtained and compared with those from the analytical expression at small perturbation
condition.
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Chapter 1 Introduction

Numerical analysis of electromagnetic wave scattering by random rough surfaces

has been investigated using integral equations such as Kirchhoff Approximation, Small

Perturbation Method [1], Pad6 Approximants [2], and partial differential equations [3].

Among the integral equation simulations, Method of Moments (MOM) [4] is a popular

tool due to its inclusion of multiple scattering. It is noted, however, that the simulation

technique becomes very time consuming at low grazing angle incidence. This is because

computational domain expands significantly compared to near-normal incidence. In

practice, it is also difficult to obtain controlled measurement results to validate theoretical

predictions, which requires the radar beam to illuminate only one type of surface over a

long range.

Several algorithms have been proposed to counter this grazing angle incidence

problem in numerical simulation as well as in experimental measurement. In Beam

Simulation Method (BSM) [5] and [6], the incident beam is first decomposed into

subbeams and the scattered field due to the large beam illumination is synthesized by

coherent superposition of the subbeam results. This algorithm makes it easier to

decompose the computing job for parallel or distributed systems, thus to increase the

processing speed. However, the grazing incidence angle can only go as far as 80 degrees

and the multiple scattering between individual beams is not in the consideration. Another

area limiting technique, 2D wave tapering is used to limit the illumination area. At small

angle of incidence, this technique works well. Unfortunately, at grazing angle, the

tapered area will increase along the direction of incidence and give rise to the same

difficulty mentioned above.



Introduction

Recent advances in signal processing hardware have made high-resolution

imaging radar a reality. An important feature of these imaging radar systems is that since

range resolution is determined by the signal processing algorithm such as the pulse

compression technique [7] - [8] and range gating, the effective illuminated area

corresponding to an image pixel can be limited even at very low grazing angle incidence.

Our work is motivated by this type of radar applications. The rough surface is assumed to

have fixed size, as determined by the limitation of the computational technique. For each

randomly generated surface, we obtain the range-gated scattering return using plane wave

pulse illumination. The effective pulse width is chosen to fit within the range direction of

the surface so that the edge effect can be minimized. In order to do so, backscattering

cross sections at multiple frequency steps from different surfaces are averaged to obtain

the mean normalized radar cross section, using MOM. The computed results in frequency

domain is then resynthesized into time domain and time gating (or the range gating) is

finally performed to discriminate the scattering surface segment of interest. To verify the

correctness of the scheme, the RCS of the scattering plate is obtained at small

perturbation condition and is compared to the analytical results.

The problem of plane wave pulse scattering from rough surface is outlined in

Chapter 2, together with the introduction to related methodologies such as MOM, the

Monte Carlo simulation, the pulse compression technique, range gating and RCS

calculation. In Chapter 3, we investigate and propose our scheme to deal with the special

case of 1D surface. Here, the tapering is no longer necessary due to the pulse area limiting

effect itself. The pulse scattering return in time is obtained by running the simulation

model at multiple frequencies and then performing the Fourier synthesis. The simulation

steps and results are presented in Chapter 4, where we carefully set up testing cases,

verify the range gating idea. Finally, we discuss the Monte Carlo simulation procedures
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and compare the RCS with that obtained from SPM. In Chapter 5, we summarize the

research work and propose 2D area limitation scheme as our future work.



Chapter 2 Problem Definition and Related Methodologies

In this chapter, we will define the grazing angle scattering problem to be solved,

briefly propose a solution scheme and discuss the related methodologies such as the

MOM, Monte Carlo simulations, pulse compression techniques, range gating and RCS

calculation.

2.1 Problem Definition and Solution Technique

Fig. 1 shows a plane wave pulse incident on a 1D rough surface plate at grazing

incident angle 0. The profile of the rough surface and the pulse duration are known.

The problem is to find the scattering return from segment xl-x2 due to this pulse incidence.

We will solve this problem using the MOM technique over the pulse bandwidth.

The first step is to decompose the incident pulse into individual frequency components.

Then the scattering at these individual components are calculated using MOM. The

correspondent time signal can be resythesized using the inverse Fourier transform. Finally,

the scattering due to segment Xl-X2 can be obtained by gating the time return. The detail is

presented in later sections.



2.1 Problem Definition and Solution Technique

N z
Dulse

P1

x1 x2

Fig.1 Plane wave pulse rough surface scattering using range gating.

2.2 The Method of Moment

The numerical simulation of the electromagnetic scattering usually falls into one

of the two categories, the integral equation method and the differential equation method.

The differential equation method include Finite Difference (FD) method in either time or

frequency domain which has been used in many applications such as rough surface

scattering [3]. The FD method in time or frequency domain [9-10] has been widely used

to solve open region scattering problem. This method together with the Finite Element

Method (FEM) [11-13] is called the finite method due to their application in the finite

region. The advantage of the so called finite method is the handling of Inhomogeneous

medium. On the boundary, the MOM in integral equation modeling can be used. From

simulation experience, the MOM needs only about 7 points per wavelength in order to

perform a sound simulation while the FD method requires around 20 points per

wavelength. Also, MOM algorithm automatically includes multiple scattering among the

surface segments.
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There are three major steps in the MOM simulation. The first step is to establish

the integral equations on the surface boundary. Two kinds of integral equations can be

formulated, i.e., the Electric Field Integral Equation (EFIE) and the Magnetic Field

Integral Equation (MFIE). As an example, we present the EFIE simulation for a perfectly

conducting surface to illustrate the simulation process.

Suppose we have a perfectly conducting surface illuminated by the incident field

E' . Let the scattered field be denoted by E . Since for the perfect conductor, the electric

field on the surface is zero, we have

E s + E'= O (1)

Let us rewrite (1) as

Es =- E' (2)

The scattered field can be expressed in terms of the dyadic Green's function (,1r') and

the surface current J(r').

Es ic At di gf )J ) (3)

The surface current can be expanded in terms of base functions as

J(r) = x," BnP) (4)
n



2.2 The Method ofMoment

where x denotes the unknown coefficient to be solved and B is the base function. Once

the coefficients are determined, the surface current can be obtained and the scattered field

will also be known. Substituting (4) into (3), we have

Es= x iOpf fdn g(7n ) Bn() (5)

We can multiply the two sides of (2) by test functions, take the surface integration and

obtain

f f'm Tm(r')EI=- f f mTm()EE (6)

Substitution of (5) into (6) gives

xn i f ng·,;B ) .f fSm TfM 4 fdS'm I () &E
n

(7)

Equation (7) can be written in the matrix form as

AX=B (8)

While the element in X is the surface current coefficient we are going to find, the element

in A and B can be written as,

amn = if fdf )nr' • f f & M TM (r')

bm - M T( E

(9)

(10)
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One of the major advantage of MOM lies in this process of expansion and testing

to set up the matrix equation, since when calculating the surface field on each segment

(testing), the scattering effect due to other segments is automatically taken into

consideration (expansion). Therefore, the multiple scattering is included in the

formulation. The number of unknowns is equal to the number of segments along the

surface because on each segment, we have only one coefficient to solve. The formulation

above is called the Electric Field Integral Equation (EFIE). Another kind of formulation,

Magnetic Field Integral Equation (MFIE) can be found in literature. Once the surface

current is determined, the scattered field can be calculated as given in- (5). For two

dimensional scattering problem, it is usually necessary to have six to seven segments per

wavelength.

In our simulation for one dimensional perfect conductor rough surface scattering,

we use EFIE as our modeling formulation for the perfect conducting random rough

surface scattering.

2.3 Monte Carlo Simulation

Since the rough surface we use to perform the scattering simulation satisfies a

certain statistical distribution, the scattered field consists of coherent part and noncoherent

part, which can be expressed as

E = <E> + e (11



2.3 Monte Carlo Simulation

where <E> and e are, respectively, the coherent and noncoherent components. By

definition, the noncoherent (or fluctuation) component of the scattered field will have

zero mean

E= <E> + e > <E>= <E> + <e> > <e> = 0 (12)

What we are really interested in is the second moment of the noncoherent

component, <e2>.

For random rough surface with known correlation length and rms height, we can

calculate the scattering from different realizations and average the final results to obtain

the estimation of the second moment, <e2>. This technique is known as the Monte Carlo

method [14-15].

Now, the question is how many surface realizations we should use. To investigate

this, we perform some numerical experiments using the simulation scheme that will be

discussed in detail in later sections. The projection of the rough surface is 300k , with X

as the carrier wavelength. Due to the processing capacity of the computer running MOM

program, we choose 4 points per wavelength, which is about the marginal number for

accurate simulation using MOM. The incident angle is 75 degrees. The rough surface is

characterized by 0.04 X rms height and 0.4 X as the correlation length. We plot out, in

Fig. 2, the averaged RCS with respect to the number of rough surface realizations. As can

be seen, the averaged RCS converges as the number of the surface realizations increases.

From this experiment, we can determine the number of realizations for our simulation.
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7 tv
-3J

0 40

Q)(D -50

5 10 15 20 25 30 35 40 45 50 55 6

# of sfs

Fig. 2 The Monte Carlo simulation methods of RCS for 60 surface

realizations.

2.4 Pulse Compression

The average transmitted power of a given radar may be raised by increasing the

pulse length within the given transmitter constraints. However, increasing pulse length has

an undesirable effect of decreasing the bandwidth of the received signal, which reduces the

range resolution capability of the radar. To achieve this compromise of increasing SNR

while keeping bandwidth, a long pulse containing some sort of phase or frequency

lITr771777nIrrlI IT~Tmlllir~rnl7rrrTrnr7'~'mn7rnrrrrrryr Ir i I ,iirrlr r rir rnrl rnrrlr rrl

-
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2.4 Pulse Compression

modulation is transmitted. Upon reception, the pulse must be compressed to permit

separation of adjacent range resolution cells. The frequency modulation technique is

described as follows:

Let transmitted pulse be expressed by

P(t)=cos(2 rf t) [u(t)-u(t-r)] (13)

where

(fax-fimi) t
f=fmin+ -

Here u(t) is the step function and fmax, fmin are the maximum and minimum modulation

frequencies, respectively. Without considering the phase change, the returned pulse from

the object at the receiver has similar form

Pr (t,) = A cos(2 tr) [u (tr) - u(tr,- ) ] (14)

in which Pr denotes the returned pulse, tr is the time scale for the returned signal and A is

the attenuated amplitude,.

At the receiver, the returned signal is further processed so that the delayed time is

linear with respect to frequency. The delayed time amount Do() satisfies the following

equation
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D(f)=T (1- in ) [u(f-fmi ) -u(f-fmax)] (15)fmrax - min

So the pulse at the output of the delayed network is given by

Po (t') = A cos(27 t')[u(t) - (t'-t)], t'=tr-D(f) (16)

Since the initial returned signal starts with minimum frequency component of maximum

delay of T and terminates with maximum frequency component of minimum delay of 0,

the effective pulse width is t-T. Illustrated in Fig. 3 [7] is the transmitted signal using

linearly frequency modulation and in Fig. 4 [7] is the received and processed signal.

TIMEAMP-LITUE . TIME
a. RECEIVED WAVEFORM

FREQUENCY 12 TIME

b. RECEIVED FREQUENCY

T
TIME

DELAY o rFREQUENCY
f( c. DELAY IN NETWORK

TIME
d. COMPRESSED PULSE

Fig. 3 Transmitted waveform of a linear FM pulse.



2.4 Pulse Compression

a. TRANSMITTED PULSE

~~2--------------------------
w 'o TIME

Sb. LINEAR FREOQUENCY MOOULATION

y ./" - rTIME

~ c. TRANSMITTEO WAVEFORM

Fig. 4 Received waveform of the FM pulse and subsequent pulse

.compression.

In radar signal processing, the pulse compression technique is often implemented

with time gating or range gating to distinguish the scattering segment of interest. In our

simulation, however, we will use continuous time plane wave at multiple frequencies to

achieve the finite pulse effect.

A typical continuous plane wave can be expressed in time domain as

w(t) = A(wco) cos c. ( t -k -r / c) (17)

where co is the radian frequency, c is the speed of light, t is the time, k is the unit vector

in the propagation direction and F denotes the space location. Our pulse compression

scheme is to find, at different frequencies, the continuous time plane waves as shown in
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(17) such that their combination is equivalent to a finite-duration plane wave pulse. This

process can be achieved through the Fourier analysis and synthesis. Suppose we want to

obtain the plane wave pulse of carrier frequency CO given in (18)

ps(, t)= cos coo(t-k• F / c) [u(t- k. ' / c+ r/2)-u(t-k- FI c- -r/2)] (18)

The first step is to find its Fourier transform. Noticing that the term k -r/c in (18) is just

the time shift due to different space locations in the direction of incidence, we first find the

Fourier transform of the sinusoidal term and the rectangular pulse term.

fl (t)= cos co t < F 1(o)= r [ S (cW+coO) + S6(c-Co) ] (19)

and

2 sin co I
f2(t) = [u( t + r/2)-u( t- z/2)] < F2(co)= CO 2 (20)

Let

(21)pso(t)= cos( wcoo t)[u(t+'d2)-u(t- d2)]

Its Fourier transform can be obtained by convoluting (19) and (20) as

1 sin (o+co) , sin (co-co) ,2PSo () - (o) F2 ()= ) (2 7r ( m + oo) (C4 -cOo) (22)



2.4 Pulse Compression

Since ps(r, t) is just the time shifted signal ofpso(t), we can write the Fourier transform

of ps( , t) as

sin (co+oo) 1- sin (o-(o) Z
pS (, o) = eiOk -7/c [ 2 + 2 ] (23)

With the knowledge of the frequency spectrum of the desired pulse signal, we can

simulate the pulse by using continuous wave at different frequencies and construct the

scattered time signal by performing the Fourier synthesis. That is, for an incident wave

PS (7, o), we calculate the correspondent scattered wave SC (r ,co) at that particular

frequency and obtain the scattered pulse signal in time. This process is shown as

following,

since

s1 )doPS(r io)eitpst) PS (r , ) e tP s r 0 (24)

and since

PS (, o) => SC (', o)

we can obtain the scattered pulse signal as

sc(r, t) - T SC (r, co) e'
7r

(25)
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In summary, the scattered pulse signal is obtained through the use of continuous

waves at different frequencies and performing time synthesis. This process is similar to the

signal processing scheme discussed at the beginning of the section in that we operate in

the frequency domain in order to achieve the desired effect in time.

2.5 Plane Wave Pulse

The understanding of the plane wave pulse is important in our application since we

depend on its area limiting effect to truncate the large rough surface.

Here, we want to establish the relation between pulse width and illuminated area.

Let's rewrite (18) as

ps(r, t)= cos coo ( t-k r / c) [u(t- k r/ c + v'2)-u( t- k r/ c- -d2)]

This is in fact the expression for the rectangular plane wave pulse, with carrier frequency.

Fig. 5 gives the indication for this plane wave pulse.

W2
4 k

W1

t-0

Fig. 5 Plane wave pulse at different time instant.
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2.5 Plane Wave Pulse

The plane wave pulse can be understood as plane wave fields limited by two

wavefronts W1 and W2 as shown in Fig. 5. k indicates the incident direction. By our

definition, the location of pulse when t=O is bounded between the following limits

rc z-C
- - k r < - (26)2 2

That is, at t=O, the center of the pulse is right at the origin. Inside the two fronts, we have

field illumination. Outside the fronts the field vanishes. Specifically, we have the following

inequality,

.z,
-- <t-k-rlc <- (27)2 2

where t denotes the changing variable in time and r denotes the space vector variable. At

particular time instant t=t1 we can change (27) as

zC - - rc
t c- -- k-r tc+- (28)2 2

The physical interpretation for (28) is that at a certain time instant ti, a particular space

location r is illuminated by the plane wave pulse if and only if it has component in the k

direction falling within region [ tl c - vc/ , ti c + rc/a ] . With the knowledge of pulse

location at t=O, we can find the one to one correspondence of time instant and the space

location of the pulse and perform range gating in the section.
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2.6 Range Gating Technique

The range gating technique is the most important aspect in the plane wave pulse

scattering. It also has advantage over tapering at the grazing angle incidence, because it is

feasible to restrict the length of rough surface for our studying.

Multiple scattering will create response outside the observation "window" in time

domain. But they tend to be small and negligible. With the range gating technique, only a

segment of the rough surface will be illuminated within a certain time interval. This

segment, just like others, satisfies the same statistical distribution (Gaussian distribution,

for example), which makes itself an appropriate studying object as the representation of

the whole large rough surface. Besides, by carefully timing, we can let the pulse fit wholly

within the segment of the interest and thus avoid the tough edge diffraction issue. Fig. 6

shows this idea.

W2

W1

\ t-a

z

r-A•l sin 0i

6V

X1 A X2 x

Fig. 6 Plane wave pulse incidence to a finite flat plate.

I



2.6 Range Gating Technique

As indicated in Fig. 6, the plane wave pulse is constrained by the leading edge W1

and the trailing edge W2. The incident angle is o i. Let segment XI -- X2 be our area of

interest. Also let the distance between receiver and point X1 be r , then the distance

between the receiver and point X2 would be (r + Alsin Oi)/c. At first look, the time

interval of returned scattered field from this segment starts when wavefront W1 hits X1

and returns to receiver and ends when wavefront W2 hits X2 and returns to receiver.

Therefore, the time interval is from 2r/c to 2(r+Alsini)/c + r where r is the pulse

duration and c is the speed of the light. However, this scheme will include the scattering

of the rough surface outside our segment. Thus, to obtain the scattering completely due to

the specified segment, our starting time instant t1 is when wavefront W2 hits XI and

returns to the receiver. The stopping time instant t2 is when wavefront W1 hits X2 and

returns to the receiver. Therefore, we have

t 1 = 2 r/c + r, t2 = 2 (r+Al sin 0i ) /c  (29)

Notice that this plane wave pulse travels along the plate continuously and the receiver will

get returns from different location of the plate. To discriminate the scattered field from the

selected surface segment, we can time gate at the receiver, using this interval indicated

before, to make sure only the scattered field from the segment of interest is received.

The resolution of the time gating technique is the basis for our decision of the

minimum plate size, which will be discussed later. To find this resolution, let's define the

following parameters in Fig. 6.

when W1 hits the receivert = 0
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the time needed for WI to hit XI and to return to receiver

t 1 2 = 2(r + Alsin 0) /c

t2 f = 2r / c + z

the time needed for W1 to hit X2 and to return to receiver

the time needed for W2 to hit X1 and to return to receiver

t22 = 2(r + Alsin 0) /c + c the time needed for W2 to hitX2 and to return to receiver

The receiver cannot tell the scattered field due to WI hitting X2 or W2 hitting X1 if

r=2 Al sin O/c =- Al =z c/2sin 0

where Al is the resolution along the x direction. From the above equation, we find that as

the angle approaches grazing, i.e. 0 increases, the resolution also increases. Also, we

notice that resolution increases as T decreases. Since maintaining a significant signal to

noise ratio requires keeping the pulse length at certain level, we are facing a contradiction.

In the same time, we know that the bandwidth of the signal is inversely proportional to the

pulse length. To obtain a good RCS approximation, we need a small bandwidth, i.e. large

pulse length. This constructs another contradiction. Therefore, we need to find a

compromise, as will be discussed in Chapter 4.

A question is raised when our algorithm is going to be implemented. How long the

segment along the direction of incidence should we choose to do the time (or range)

gating? We first express the minimum plate size in terms of pulse length r.

t1i = 2r/c



2.6 Range Gating Technique

Fig. 7 shows the configuration. The incident wave is incoming at angle 0. 0

denotes the origin and let's suppose when t=O, the leading edge of the pulse just hits the

origin. DI, D2, D3 and D4 denotes different locations of tlie plate, respectively

When the leading edge hits D1 and D2 and gets back, the time instants are given

t, = 2 D1 sin Oi/c, t2 = 2 D2 sin i/c

Since when the leading edge hits D2, the pulse should be completely inside the region

defined by Dl and D2, we have

t d2 td1 + r (31)

Similarly, the time instants for the first wavefront to hit D3 and D4 and get back are

t, = 2 D3 sin O /c , t4 = 2 D4 sin 0 /c

pulse
t-O

0 01

Fig. 7 Minimum plate size configuration.

(30)

(32)
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When pulse completely fits inside region defined by D3 and D4, we have again

td4 _ td3+ r

When D2 and D3 overlaps, i.e., when t• = td3 , we have

ta4 tDa + V> t + 2 (r

Substituting (30) and (32) into (34) and rearranging the inequality, we obtain

2 (D4 -D1)sin i/c 2 r (35)

So the constraint on the plate size D4-D1 is given as

D4-D1 > r c / sin Oi (36)

Therefore the minimum plate size is r c / sin Oi.

2.7 Calculation of RCS

A general rough surface has its random roughness distribution along both x and y

directions. Here we only consider the 1D rough surface, i.e., a surface that has height

variation in only one dimension, say along the x axis. The RCS is defined to be

(33)

(34)
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where A is the projected area of the rough surface plate and r is the distance between the

observation point and the origin, which is much larger than the plate size.

Our numerical simulation of RCS is based upon the time domain response.

Following the definition, the RCS should be calculated by

S dt 1Es 2

t = 2 . - (37)
dtIE1

where E, is the calculated scattered field in time and Ei is the incident field in time. t1

and t2 are the starting and ending time instants as discussed in the previous section. r is

the distance between the receiver and the origin and Aa is the effective length of

illuminated region and is equal to the projection length of the rough surface on the x axis

subtracted by the effective pulse length.

As discussed in section 2.5, at t=O, the center of the pulse is located at the origin.

To determine the integration period, we refer to Fig. 8.
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/

W2 { r
W1 -

/\
asin 6i

t-a

x-O

Fig. 8 RCS integration interval determination.

The beginning time instant t1 for integral in the numerator is defined as when the

trailing edge W2 hits the origin at time 1/2 instant and travels back to the receiver with a

distance measuring from the leading edge location, so we have

t1 = r/c +3d2

The ending time instant t2 is defined as when leading edge hits the end of the plate

at time instant a sin Oi/c - r/ and gets back to the receiver at time instant

(r+a sin Oi)/c + a sin Odc - r/ .Again we have

t2 = r/c + 2a sin O/c -V2

Notice that the duration of observation or the time gate is

t2 - t, = 2(a sin , - -c)

x-a

61-
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which is proportional to the effective length of illumination Aa.

In summary, our methodology is to obtain the scattering results from different

rough surface realizations using MOM. At each realization, we calculate the frequency

domain return and synthesize the time signal. Then the RCS is computed using (37),

averaged over different realizations and compared with the results obtained from analytic

approximation techniques.



Chapter 3 Pulse Compression for 1D Rough

Surface Scattering

The pulse compression technique makes use of the Fourier synthesis procedure to

assemble the pulse from frequency components. We shall now review possible pulse

waveforms. Each of them has different bandwidth and sidelobe pattern.

3.1 Characteristics of Different Types of Pulses

As discussed before, our approach to get the time scattering due to the incident

pulse is to synthesize the scattering at different frequency components. We need to select

a proper pulse form that has modest requirement on both the mainlobe bandwidth and

sidelobe level. This provides the motivation for us to study the pulses commonly used in

signal processing, with the comparison of the mainlobe bandwidth and the peak sidelobe

value.

3.1.1 Rectangular Pulse

Rectangular pulse is the most commonly used pulse form in signal processing,

given as

Pr (t)= u(t+-d2) - u(t-d2) (38)

where u( is the step function and r is the pulse length. Its Fourier transform is

Pr (0) = Pr(t) e" dt = e d 2sin ) (39)f. 0V7



3.1.1 Rectangular Pulse

where 0) is the radian frequency. The time and spectrum is plotted in Fig. 9.

To find the mainlobe bandwidth, we set

2 sin (co -d2)
Pr () = =

Therefore, we have

co r/2 = n7r

When n=O , we have CO =0, where spectrum reaches its maximum 2. The first zeros of

(.40) happen when n = ± 1, so the mainlobe bandwidth is given by

BWr= [r -(- x)] 2/v = 4d('r

(40)

(41)

(42)
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Fig. 9 Rectangular pulse in time and frequency domains.
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3. 1. 1 Rectangular Pulse

To obtain the peak sidelobe value, let's take the derivative of (39) with respect to

0a and have

dPr
dr

co u cos (o r/2) - 2 sin (co r/2)
(43)

By setting (43) to be zero, we can find the local extrema satisfies equation (44)

2
0 = - tan(o t/2)

t
(44)

Solving (44) by graphics, we find that the first peak sidelobe value approximately

happens at co = 4.918n/ -r. So, the peak sidelobe value scaled according to the mainlobe

peak value is given as

I Prsbmax sin (4.918 nt/t- r/2)/ 4.918 7/rt 0.0642 x (45)

3.1.2 Bartlett (triangular) Pulse

The triangular pulse is expressed as

(46a)p tr (t) =1 - 2t/t for 0 t 5 r/2

ptr (t) =1 + 2t/T for - T/2 5 t O 0 (46b)

otherwise (46c)
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The triangular pulse can be expressed as the convolution of two rectangular pulses

2
Ptr (t) = - [P rc(V2) ®prc(d2)]

where

prc (r/2) = u(t+zr/4) - u(t--r/4)

From the convolution theorem, the Fourier transform of (47) can be easily

obtained as

8 sin2 (o d/4)
Pir (c) = rCO2 (48)

The time and frequency plot for the Bartlett pulse is shown in Fig. 10.

The peak mainlobe value is increased to 4 and the mainlobe bandwidth is given as

(49)
Taking the derivative of (48) with respect to c , we have

d co
2o r sin(co d4) cos(co -d4) - 8 sin2 (co r/4)

(50)

By setting (50) to be zero and using similar way as in (44), we can find that the

first peak sidelobe value happens at co = 4.918 ;r/r/2 = 9.836 r/r. The peak sidelobe value

normalize to the peak mainlobe value is

IPtrsbmaxl 0.00103 T2

(47)

B Wtr = [r - (- r )] 4/ r= 87c/r

(51)
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Fig. 10 Bartlett pulse in time and frequency domains.
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Since r<<l, for the same pulse length T, the peak sidelobe value of the Bartlett pulse is

much smaller than that of the rectangular pulse at the expense of doubling its mainlobe

bandwidth.

3.1.3 Hanning, Hamming and Blackman Pulses

The general expression for Hanning, Hamming and Blackman pulses can be

expressed as

27tt 47tt
p(t) = [ a1 + a2 cos (-) + a 3 cos (-) ] [u(t+t/2) - u(t-t/2)] (52)

where a , a and a have the corresponding values for three pulses as shown in Table 1.

Table 1 Coefficients for Hanning, Hamming and Blackman Pulses

The Fourier transform of (52) can be obtained in two steps.

First, let



3.1.3 Hanning, Hamming and Blackman Pulses

Its Four

So, by u

and

2rt 4nt
pl(t) = [a 1 + a2 cos ( )+ a 3 cos ( )]

ier transform is given by

Pl(c)=:2a, cwco)+a 2 z[•(ct2 dz)+(co-2 /z)] + a37+•o[(c+4 7/r-)+,(co-47d z-)]

sing (38) and (39), we have

p(t) =p (t) p r(t)

P(o) = P1 (co) 0 Pr(c)2 t

-(-{2al 36 ( )+a2 [3( oa+27 /z )+±3(o -27r/ r)] +
2

2 sin (co r/2)
a3 [3(co+47zl/)+( co-4 n/ ) ] }

CO 2(+ co+2]rlc -i [2 r/2]

+a3 sin[(co+4r1/) r/2] +sin[(co-4l-r)z-/2]

For Blackman pulse a 3 is not zero, so the mainlobe bandwidth is

(53)

(54)

(55)

56)
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BWbl = [37r - (-3'r)]2/r= 127r/r (57)

For Hamming and Hanning, a3 is zero, so the mainlobe bandwidth is

BWhan =BWham = [27c - (- 27r)] 2/r= 87dz (58)

It can be computed that the peak sidelobe value of the five pulses discussed above

has the following relation

Sbcmax >Sbma>Sbh >Sbhaa>Sbblmaxb xbtrmax bhanmax bhammax bblkmax (59)

Their mainlobe bandwidth has the following relation

BWrc < B Wtr = BWhan = BWham < B Wb (60)

We plot out the time and frequency distributions of the three pulses in Fig. 11-13.

Blackman pulse has the smallest sidelobe value but its mainlobe bandwidth is the

largest. Rectangular pulse has the smallest mainlobe bandwidth but its sidelobe level is the

highest. To choose an appropriate pulse form, we need the sidelobe peak value to be as

small as possible with a moderate mainlobe bandwidth. Noticing that the

mainlobe
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bandwidth of Bartlett, Hanning and Hamming are the same and that Hamming pulse has

the lowest sidelobe level among the three, we decide to use Hamming pulse as our choice

which will be discussed in later sections.

3.2 Hamming Pulse and Its Plane Wave Expression

3.2.1 Hamming Pulse

Based on the above considerations, we choose Hamming pulse as our pulse

representation whose time expression is given as,

hm(t) = cos(cot) [0.54+0.46cos (27cthr) ] [u(t+zd2) - u( t-zd2)] (61)

By using (56) with the coefficients substituted for Hamming pulse, we have the Fourier

transform as

Hm (co) = 1r [6(coW+) + (co-C00)] 0 P(co) (62)

Therefore, we have



3.2.1 Hamming Pulse

sin [(w-coo) -] sin [(co+0o) ] sin [(v-oo . 27) t]
H, (co) = 0.54 + 0.54 + 0.23 +

co-co cocoo o~co.2_•

27c r
sin [(coco+-) -2 ]

0.23 +
27r

co+coo+-

sin [(co-co+- ) 2
0.23

2gO-Coo+---

sin [(rco+-oo--27) ]
+ 0.23

27c
r'o

In our simulation scheme, the sidelobe contibution will be ignored. The frequency

scattering component will be constrained in the mainlobe. Thus we approximate Hamming

pulse as a band-limited signal.

3.2.2 Modulated Hamming Pulse Plane Wave

Eq. (61) can be modified to give the plane wave Hamming pulse expression.

am(t) = cos (co0 (t-kZr/c)) (0.54+0.46 cos [(2;r/r) (t-kr/c)]} (64)

( 2) ( t-Ac-2)
[u( t-kbr7c+-d2) - u( t-kl/c--d2)]

Its Fourier transform can be easily obtained by finding time shift expression of Eq. (63)

(63)



Pulse Compression for ID Rough Surface Scattering

sin [(co-coo) 1] sin [(co+c0o) I] sin [(m-]o-27) 1Am (co) =e iki-F/c {0.54 2 +0.54 2 +0.23 -r 2 +-CO-o co+co co-) 2f

2 r 2 2; r
sin [(fcoo+ f--) 2]  sin [(c-Oo+-) 2]  sin [( o----)

0.23 + 0.23 + 0.23 } (65)
S2r 27r 27r

A
where k is the unit vector for wave incident direction, F is the space vector started

from the origin and c is the speed of the light.

3.3 Frequency Decomposition and Time Return Synthesis

In order to run the MOM scattering cimputation program in frequency domain, we

first decompose the incident pulse into different frequency components. After that,

scattering return is synthesized into time expression for future application.

3.3.1 Frequency Decomposition

The frequency decomposition is equivalent to the frequency sampling. For the

incident signal, we know the frequency spectrum exactly. Thus, the sampling can be

performed easily. For the scattering signal, however, we know nothing about its whole

frequency spectrum except the individual scattering return for the sampled input signal

using the MOM program. Neither do we know the scattering signal in time. Therefore, the

question is how many frequency components we should choose so that the scattering

signal in time can be constructed accurately without aliasing.



3.3.1 Frequency Decomposition

We know nothing about the scattering time signal except for its time duration,

which can be obtained from the plate size. What we also know is that the scattering

frequency signal has a bandwidth equal to the mainlobe width of the input signal.-This

knowledge bout the scattered signal together with our sampled scattering return can help

us construct time signal eventually.

Suppose we have a signal whose time and frequency duration are known. As

indicated in Fig.14 (a) and (b). The sampling in frequency domain corresponds to the

repetition of the time signal as shown in Fig. 14 (c). This can be expressed in the

following equations.

Suppose we have a signal S(w) and sample it in the frequency domain as shown

in Eq. (66).

S(co) =S(co) 6(co-n A) (66)
n=-oo00

where 8 is the impulse function and Aco is the sampling interval. This sampling

procedure is equivalent to the time signal convolution as given in Eq. (67).
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3.3.1 Frequency Decomposition

v 1 2 t 1 2 r
s(t> = S(t) 0 63(t- - k) s(t -- k) (67)

k= -co k-- oo

As one can note in Fig. 14, the recovered time signal is actually the repetitive version of
1

s(t), with a magnitude scale factor of Ao. To avoid aliasing, the following condition

must be met.

T <- -- > Ao W <- (68)

2Zr
Therefore the maximum sampling interval Aco is T. The actual frequency interval is

much smaller than the maximum in order to get an accurate time resynthesis.

To reduce the amount of frequency component computation, it is necessary to

utilize the symmetric property of the scattered signal. From Eq. (65), it can be easily

proved that

Am (-o)= Am (C) (69)

That is, for the incident wave A , the negative frequency component is the complex

conjugate of the its positive correspondent. We next prove that the scattered field has the

same symmetric property. The surface current can be expressed as

J(r, co)= V(F) Am (co) (70)

Where V is a real function depending on the space vector r . We can have
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J(r,-Co) =J (r,co) (71)

Thus the vector potential given by

(,)= -cdrj:',o)e- I /I r- I (72)

should satisfy the symmetric property

1 -r 1 - z- r,-= dr ,-)ec = drJ (r ,•)e c r-r= (73)

Furthermore, a physical electric and magnetic field should also have the property

H(r,-o) =H* (r,o) and E(r,-o) =E (ro) (74)

From previous discussion we know that the frequency components are

concentrated in two bands with one around o and the other around -Co . Therefore, by

computing the positive frequency components we can deduce the scattering at the

correspondent negative frequency component. This approach will reduce the

computational effort by half.

Another consideration is the carrier frequency co . Fortunately, due to the

characteristics of Hamming pulse, our scattered signal is assumed to be bandlimited. For

the ease of further processing the time signal, we would like to get rid of the carrier

frequency and get the envelope of the scattered signal. This algorithm is shown in Fig. 15

. Eq. (75), (76) give the algebra expression.
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cos o0) t

signal 4

Fig. 15 Processing block to obtain the envelope of the scattered

signal.

Suppose the scattered signal is given by

(75)

where so(t) is the scattered time signal with carrier frequency coo . The Fourier transform

of multiplication of so(t) and cos cot is given by

SXw(co) = 0.5 [So(co-wo) + So(tWcoo )] (76)

The multiplication of st(t)and coscoot  will give the Fourier transform of

0.25[So(co -20o0) + So(co) +So(co + 2o)]. We can recover So(co) using low pass filter.

-n

so (t) = o So(o?.)e-iotdoo2x ---
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3.3.2 Fourier Synthesis of Time Domain Data

The time resynthesis is simply the inverse Fourier transform given by

St 1 47
-2t _lS(o)e = - S°(co1i)eZigtAo• (77)

Eq.(77) is obtained due to the fact that the input has limited bandwidth and thus So(co)

is approximately a banded signal from -4r/ r to 4r /r. This approximation will lead to

the recovered time signal to be periodic. Therefore, we need to extract the segment that

corresponds to our calculation.

With the signal obtained, we can perform the range gating, i.e., time gating to

obtain the scattering signal due to the truncated region and use it to calculate the RCS for

further verification. We make use of the assumption that multiple scattering between

illuminated and unilluminated segments is negligible in order to implement the range gating

algorithm.



Chapter 4 Simulation

For simplicity, we focus our simulation on TE polarization. We first verify the

correctness of the returned signal processing by extracting the envelope from the carrier

frequency modulated signal, which is the start of the whole simulation scheme. The next

step is to check the validity of the range gating scheme. To achieve this, we first proceed

the simulation for the large rough surface plate, then we truncate the large plate into small

plate and repeat the simulation. The synthesized time signals for the two plates are then

compared. Finally, the Monte Carlo technique is used for rough surface scattering under

small perturbation condition to be compared with the analytical SPM backscattering

coefficient.

4.1 Basic Parameters

Our procedure is to perform the MOM calculations at different frequencies,

resynthesize them into time domain and then calculate the RCS for verification.

First of all, we consider the input plane wave pulse.

Stripped of the space term and the carrier frequency, the incident pulse can be

written as

E(t) = [0.54+0.46 cos (2r t/r) ] [u( t+vd2) - u( t-d2)] (78)



Using the definition of RCS for 1D rough surface

f dt E s 2

c= 2 r7 dt
a dt IEil2

The integration in the denominator of (79) can be computed as

Sdt E, 2=  dt[0.54+0.46 cos (27r t/z) ]2

= C dt[0.542 + 0.462 cos 2 (2rct/rtfr)

= 0.3974 z

The integral of the numerator is performed numerically as

(80)

+ 0.4968 cos (2;rt/r) ]

2dt 2 = Z Es(t ) 2At
ti = tl

(81)

So we can rewrite (79) as

[Es(ti) I2
r t=-tl

cr = 2 - 0 74
t a 0.3974 z

(82)

Simulation

(79)



4.1 Basic Parameters

Our test cases consist of rough surfaces of small scale variations, generally known

as small-perturbation condition. The surfaces have the following properties

ka <<1, < < 1 (83)

Under this condition, the Small Perturbation Method [16] gives an analytic

expression for backscattering RCS as

Chh =- 4 k3 2 CO4 0 i w(2 k sin Oi) (84)

where a is the rms surface height, wO is the Fourier transform of the normalized surface

autocorrelation function for the one-dimensional rough surface, expressed as

w(k) = dx e e (85)

= VW e-k 2 1 2/

Substituting (85) into (84), we have the final form for the RCS for 1D SPM rough surface

scattering

Chh = 4  k 2 l COS i e -k sin2 (86)

As we have discussed, the sidelobes of the Hamming pulse is negligible.

Therefore we can constrain our computation within the mainlobe. However, the mainlobe

bandwidth is inversely proportional to the pulse width. To define the Radar Cross

Section in our simulation, we need to make the mainlobe bandwidth as small as possible,
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simulation, we need to make the mainlobe bandwidth as small as possible, which means

larger pulse width. But, we have to be careful that when pulse width becomes larger, it

will require larger surface size, thus introducing difficulty for the MOM-calculation.

Based on the considerations above, we define the mainlobe bandwidth to be 1/207n

of the carrier frequency and obtain the pulse as following

8 r/ r= 27Cf0 / 207t> ' = 80 fo /lf0 .84 As, forf 0 = 300 MHz

As discussed before, the minimum plate size is given by

ai = -c /sin 0,

For example, if the lowest incident angle we are going to simulate is 50 deg., we choose

our minimum rough surface plate size to be

a = 8.4x10 7 x 3 x 108/sin 500 z329 =3301A0

Notice that by setting the carrier frequency to be 300 MHz, the carrier wavelength X o is

just 1 m. The number of nodes per wavelength in the MOM is chosen to be the marginal 4.

So totally, we have a minimum of 1320 points for out simulation.

To meet the small perturbation condition, we choose the rms height of the

Gaussian random rough surface and the correlation length to be, respectively,

o = 0.04 A2o cl= 0.4 Ao



4.1 Basic Parameters

Except otherwise noted, we are going to use the above set of basic parameters for

all subsequent simulations.

4.2 Scattering Signal Processing Verification

To verify the effectiveness of the time processing scheme discussed in section 3.3,

we first generate, at equally distributed 21 frequency components within the mainlobe, the

frequency domain return of the scattering due to a rough surface realization of 400X0.

The rms height and the correlation length are respectively 0.4X0 and 4X0. Then we

resynthesize the time signal with and without removing the carrier frequency. As can be

seen in Fig.16, the dashed line denotes the original signal without removing the carrier

frequency while the solid line represents the time signal after removing the carrier

frequency. We can see that the enveloped signal can fairly represent the original signal

with the carrier frequency. Therefore, we can use the enveloped signal for our further

comparisons.

-20

-40

o~ -60

-80
-a
E -100

-120

-140

3x

t(s)
Fig. 16 Scattering Signal Processing Verification for

0i = 750, a = 400 Xo, 0 = 0.4 Xo, cl= 4.0 Xo
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4.3 Range Gating Verification

The validation process can be shown in Fig. 18. The principle behind this

comparison is that if at a certain time interval, only a specific segment of a large surface is

illuminated, then the scattering due to this segment should be the same as that due to a

similar segment in exactly the same space location without being a part of a larger surface.

Here, we assume that the multiple scattering between the illuminated and unilluminated

regions are negligible. So, our strategy is to extract the time scattering signal from a larger

rough surface and gate it in time to find the scattering due to a specific region and then we

truncate this bigger surface so that only that specific region exists in the same space

location and obtain the time scattering signal and compare it with the former result.

n FI
t1 t2

larger surface

(a)
x=O

truncated surface

(b)

Fig. 17 Validation Scheme for Range Gating.

Based on the discussion above, we apply the simulation procedure on the bigger

surface as shown in Fig. 17(a) and obtain the time return, then we truncate the bigger
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surface to a smaller one in Fig. 17(b) and perform the simulation again. Finally, at different

incident angles, we compare the time signal between the interval tl and t2, as shown in

Fig:. 18-20. Here, we denote the bigger surface size as al and the truncated surface size as

a2.

33

riir T li Ii ii-

300
35Q -

I -

34

t (us)

35

Oi = 65 0 , al = 350 -o, a2 = 300, 1o, C = 0. 4 X 0 , cl= 1.0 X 0

Fig. 18 Range Gating Validation.
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Fig. 19 Range Gating Validation.
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We list the values of tl and t2 in Table 2, where

tl = r/c - V/2, t2 = r/c +2 a2 sin O i/c - V/2

in which r denotes the receiver distance from the origin.

l s

Table 2. Calculated Time Instants of tl and t2.

65 deg 75 deg_ :80 deg
ti (pts) 32.91 32.91 .32.91
t2 (i.s) 34.73 34.85 :34.88

From Fig. 18-20, we can see that between tl and t2, the scattering returns in time

for both plates completely overlap each other, which verifies the validity of range gating

idea.

4.4 Monte Carlo Simulation against SPM

We next proceed with the Monte Carlo simulation method for rough surface

scattering under small perturbation condition. The basic procedure is shown in Fig. 21.

The number of realizations is determined from results like those in Fig. 21 where the

averaged scattering return converges after some number of realizations.
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Fig. 21 Monte Carlo simulation procedure of scattering at each incident

angle.
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First, we have to determine the number of realizations of the rough surface for the

return averaging process. In Fig. 22, we plot the averaged RCS of small perturbation

rough surface with respect to number of realizations. We choose the parameters as in

Table 3. It is observed that the averaging result starts to converge as the number of

surfaces is bigger than or equal to 20. So we will use 20 realizations of rough surface.

Again, we run at 20 evenly distributed frequencies within the Hamming pulse mainlobe

and extract the time domain result.

The RCS of 1D rough surface can be calculated using (82) where the beginning

and ending time instants are given by

3
tl = -/2 + (r + r c)/c = r/c + 3 r

t2 = r/c +2 a sin Oi/c - /2

with a as the plate size and

Aa =a--c /sinO,

So, with r=0.84 fs and the number of points between tl and t2, n = 2000, we have

At = (t2 -t)/n = 0.42ns
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Table 3 Parameters for simulation in Fig. 23.

Incident Angl Plate Size # of Points/Wavelength
75 deg 300 .a 4

Rms Height Corr. Length # of Realizations
0.04 wl 0.4 1X 60

5 10 15 20 25 30 35 40 45 50 55 6

# of sfs

Fig. 22 Determination of # of surfaces for Monte Carlo simulation.
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Incidence

\

NAa

Fig. 23 Parameter calculation for the RCS parameters.

In Table 4, we compare the averaged RCS with the analytical results of the same

rms height and correlation length presented in Table 3. We also plot out in Fig. 24 the

comparison of the two methods. As can be seen, the results from the two methods match

very well, which validates the correctness of our simulation algorithm under the small

perturbation condition. In fact, in small perturbation condition, the multiple scattering

between the illuminated and unilluminated regions is negligible, which is exactly the

assumption we make in our simulation scheme. In Table 5, we list the RCS at incidence

angles of 79, 82 and 85 degrees due to rougher surface of rms height 0.1No and

correlation length 0.5ko as compared to the SPM approximation under the same

condition, there are observable big difference between the two. This, however, is not at all

surprising, because at such rough surface conditions, the approximations made in the SPM

analytical approximation is no longer valid.
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Table 4 Comparison of the simulation result and SPLM.

Inc. Angle (Deg) Simulation (dB) iSPM (dB)
50 _-23.04 -23.28
60 1-33.86 1-32.12
70 -41.65 -42.37
73 -47.22 -45.96
76 _-50.72 -49.99
79 -55.67 -54.72
82 -58.96 i-60.67
85 -70.32 -69.12



0

20

40

-60

-80

10 20 30 40 50 60 70 80

thetai (deg)
Fig. 24 Comparison of the simulation result and SPM.

Table 5 Simulation results for rougher surface

Inc. Angle (Deg) Simulation (dB) SPM (dB).
79 -46.94 -60.69
82 -52.15 -66.9
85 -62.6 1-75.5

Simulation
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Chapter 5 Conclusion and Future Work

5.1 Conclusion

The tapering technique is used to limit illumination area in Monte Carlo simulation

of rough surface scattering for near normal incidence. This technique, however, fails to

work well at grazing angle illumination. In contrast, using a pulse-compression technique,

we can generate plane wave pulse that illuminates only a finite segment in time.

Thus, we first decompose the time plane wave pulse into frequency components.

With the consideration of the mainlobe bandwidth and the peak sidelobe value, we choose

Hamming window as our plane wave pulse form. The scattering return is calculated at

each frequency component using MOM. Then some basic signal processing technique is

used to extract the envelop of time signal without the carrier frequency. The processed

time signal is then used to obtain the RCS. The Monte Carlo methods are used next,

where we apply the simulation procedure for each rough surface realization and average

the results.

The verification of simulation scheme consists of three steps. We first validate the

correctness of our time processing scheme by comparing the original synthesized time

signal with the carrier frequency and processed signal without the carrier frequency. Then

range gating idea is verified in which we compare the processed time return signal of a

large plate and a small plate. The latter is just the truncated segment of the former. The

results are just as what we expected theoretically. Finally, the Monte Carlo methods are

used with our simulation scheme to compare against the SPM analytical results. As can be
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seen in Table 4 and Fig. 24, the simulation result matches the analytical result well. This

verifies the correctness of our simulation scheme.

As a suggestion for future applications, we propose a combined area limiting

scheme for 2D rough surface based on the observation that the tapered illumination area

only increases in the direction of incidence as the incident angle goes to grazing. Basically,

we use the tapering technique normal to the incidence plane and pulse compression along

the direction of incidence, i.e. transversally tapered plane wave pulse.

5.2 Future Work

The 1D scattering area limiting scheme discussed above can be extended to 2D by

combining spatial taper and pulse compression techniques. In this section, we will discuss

the area limiting scheme for 2D rough surface scattering.

We observed before that the tapering technique is quite useful for area limiting in

rough surface scattering. For example, the formula for 2D tapering of Gaussian beam was

used in [17].

Einc(x,, •dk dk e,, k xl x +i y -ikzi z E(kxl, ky) a (- kz) (87)

where a (- k•z) is the unit vector depending on the incident direction of the plane wave

and the polarization. E(kx1, k y) is the spatial spectrum which can be obtained as

4E(kxk 2 l dx dye -ikxl -iky y [(ikxxikY)x x + i k y ) (l+w)] - p 2 (88)
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with

w=1 -- (2tx- 1)+J1(2ty - 1)]
k2 g2 COS 2 i 2

and

p2 tx +t, t, 2 2,
g g2

The basic idea behind the tapering technique is to use the linear combination of

plane waves incident in different directions to achieve area limiting effect so that the

component fields outside the limited region cancel each other and have negligible

magnitude. The tapering technique works well when the incident angle is near normal.

However, the area limiting is less and less effective as the incident angle goes to grazing,

which can be illustrated in Fig. 25. But it is observed that the limited area only increases

in the direction of incidence, while almost remains the same in the direction normal to the

incidence plane. This suggests another possible area limiting scheme when the plane wave

pulse is combined, which can limit the illumination area along the direction of incidence.

Noticing that the other tapering forms besides the Gaussian form are also available, we can

introduce the area limiting scheme at grazing angle incidence for 2D rough surface, i.e. the

plane wave pulse time compression and the Hamming space windowing is combined to

achieve the area limiting effect.
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Incidence

Fig. 25 Area limiting configuration for 2D rough surface.

As discussed in Chapter 3, the Hamming plane wave pulse can be expressed as

am(t) = cos [coo(t-kr/c)] {0.54+0.46 cos [(2/'r) (t-k-r/c)]}

[u( t-k.r/c+d2) - u( t-k.r/c-d2)]

If we add the Hamming space limiting term we can have

A.- A-
am(t) = cos[aco(t-k.r/c)] (0.54+0.46 cos [(2-r/-) (t-k.r/c)]}

(89)

(90)

A.- A-
[u( t-klr/c+z12) - u( t-k-rlc-'r2)] [0.54 + 0.46 cos (y / ay)][u(a +ay) -u(a -ay)]
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where ay is the tapering parameter. We can obtain the Fourier transform of (90) as

(91)

A A
where k = co/c k x , Hm (co) is given by (63) and sm (y) is presented as

sm (y) = [0.54 + 0.46 cos (y/ay)] [u(y + a/2) - u(y - ay/2)

Now we can find the spectrum to be

Sf dx fdypm(x, y, cO) e ik tx - ikyy= Hm(o) kxlI - kx) Sm(kyl) (92)

where

m (k) = 0.54 sin ( ay2)Srn 7 (k) - + 0.23 sin
7r

[(k -2 K /ay) ay/2]
ky -2 r /ay

+ 0.23 sin [(ky + 2 riay) ay/2]
7r ky + 2 lay

So we use the plane waves with the identical kxl=k, and different kyl to achieve the 1D

tapering in the y direction. The incident field in space can be written as

dkxlY dky P.(kxl, kyl, w) eik (x + a(-kzl) (93)

=pe'* ,(o) dky, l S(ky)eiky-ikizz a(-kl)

A
where coefficient p and a(-kzl) are polarization dependent.

Pm(kxl, ky1, w) =

Pm (x, y, o) = ei k x H, (0) sm (y)

Ain,,c (x, y, z, c0) =p
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With the transversally tapered plane wave in (93) at different frequencies, we can

follow the same pulse compression techniques in Chapter 3 and obtain the scattering



References

[1] Kong, J. A., Electromagnetic Wave Theory. New York: Wiley, 1990.

[2] Eftimiu, C. and Welland, G. V., "The use ofPad' Approximants in rough Surface

Scattering," IEEE Trans. Ant. andProp., vol. AP-35, no. 6, pp. 721-727, 1987.

[:3] Benali, A., Chandezon, J. and Fontaine, J., "A new theory for scattering of

electromagnetic waves from conducting or dielectric rough surfaces," IEEE Trans.

Ant. and Prop., vol. 40, no. 2, pp. 141-148, 1992.

[4] Butler, C. M., Wilton, D. R. and Glisson, A. W., NumericalMethods in

Electromagnetics, Lecture Notes, University of Mississippi, 1982.

[5] Saillard, M. and Maystre, D., "Scattering from random rough surfaces: a beam

simulation method," J. Opt., vol. 19, no. 4, pp. 173-176, 1988.

[6] Ngo, H. D. and Rino, C. L., "Application of beam simulation to scattering at low

grazing angles 1. method and validation," Radio Science, vol. 29, no. 6, pp.

1365- 1379, Nov.-Dec., 1994.

[7] Hovanessian, S. A., Radar System Design andAnalysis. Massachusetts: Artech

House, 1985.

[8] Chelton, D. B., Walsh, E. J. and Macarthur, J. L., "Pulse compression and sea

level tracking in satellite altimetry," J Atmosp. and Oc. Tech., vol. 6, Iss. 3, pp.

407-438, 1989.

[9] Mittra, R. and Ramahi, O.," Absorbing Boundary Conditions for Direct Solution

Partial Differential Equation Arising in Electromagnetic Scattering Problems,",
PIER 2: Finite Element and Finite Difference Methods in Electromagnetic

Scattering, M. A. Morgan, ed., Elsevier, New York, 1990.



References

[10] Yan, J., Gordon, R. K. and Kishk, A. A., "Electromagnetic Scattering from

Impedance Elliptic Cylinders Using Finite Difference Method (Oblique
Incidence)," Electromagnetics, Vol. 15, pp. 157-173, No. 2, March-April 1995.

[11] Collins, J. D., Volakis, J. L. and Jin, J. M., "A Combined Finite Element-

Boundary Integral Formulation for Solution of Two-Dimensional Scattering
Problems via CGFFT," IEEE Trans. Antennas Propagat., vol. 38, pp. 1852-

1858, No. 11, Nov. 1990.

[12] Cangellaris, A. C. and Lee, R., "Finite Element Analysis of Electromagnetic

Scattering from Inhomogeneous Cylinders at Oblique Incidence," IEEE Trans.

Antennas Propagat., vol. 39, pp. 645-650, No. 5, May 1991.

[13] Gordon, R. K. and Lee, J. F., "A Finite Element Method That Employs an

Absorbing Boundary Condition for Determining the Electromagnetic Scattering by

Inhomogeneous Cylindrical Structures That Are Illuminated by an Obliquely

Incident Field," IEEE Trans. Magnetics, vol. 29, pp. 1820-25, Iss. 2, March

1993.

[14] Johnson, J. T., Kong, J. A. and Shin, R. T., "Polarimetric thermal emission from

rough ocean surfaces," J. Electromag. Waves Applic., vol. 5, no. 9, pp. 43-59,
1994.

[15] Tsang, L., Mandt, C. E. and Ding, K. H., "Monte Carlo simulations of the

extinction rate of dense media with randomly distributed dielectric spheres based

on solution of Maxwell's equations," Opt. Letters, vol. 17, no. 5, pp. 314-316, 1992.

[16] Chen, M. F. and Fung, A. K., "A numerical study of the regions of validity of the

Kirhoff and small-perturbation rough surface scattering models," Radio Science,

vol. 23, no. 2, pp. 163-170, March-April 1988.

[17] Pak, K., Tsang, L. and Hsu, C. C., "Backscattering Enhancement of Vector

Electromagnetic Waves from Two-Dimensional Perfectly Conducting Random

Rough Surface Based on Monte Carlo Simulations" Accepted by J Opt. Soc. Am.

A.


