
On the Generation of Quadrilateral Element

Meshes for General CAD Surfaces

by

Antonio da Silva Castro Spbrinho
Engenheiro Mechnico, Pontificia Universidade Cat6lica do Rio de Janeiro, Brasil (1993)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1996

© Massachusetts Institute of Technology 1996. All rights reserved.

A uthor ...
Department of Mechanical Engineering

September, 1996

Certified by................
Klaus-Jiirgen Bathe

Professor of Mechanical Engineering
Thesis Supervisor

Accepted by
Ain Ants Sonin

Chairman, Departmental Graduate Committee

OF TECHOOLOi,
'

DEC 0 3 1996

LIBRARIES

On the Generation of Quadrilateral Element Meshes for

General CAD Surfaces

by

Antonio da Silva Castro Sobrinho

Engenheiro Mecinico, Pontificia Universidade Cat6lica do Rio de Janeiro, Brasil (1993)

Submitted to the Department of Mechanical Engineering
on September, 1996, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

This thesis deals with the automatic generation of meshes of quadrilateral elements
over surfaces of a general solid using an advancing front approach. The algorithm is
based on paving, a method proposed by Blacker et al. to mesh planar surfaces. We
adopt a CAD integration approach and use AutoCAD-12 to generate the solid and the
AutoCAD Development System (ADS) as the interpreter and environment to code
the algorithms. The ADS environment, namely the Application Programming Inter-
face library (API), provides the geometric functions to work with the surface during
the quadrilateral mesh generation. Finally, we investigate a three-dimensional version
named plastering for automatic hexahedral mesh generation. The investigation por-
trays some limitations of the method which leads us to propose a scheme to discretize
a general geometry with hexahedral. elements employing grid superposition.

Thesis Supervisor: Klaus-Jiirgen Bathe
Title: Professor of Mechanical Engineering

to God

Acknowledgments

I thank my wife, Jacqueline, and my daughter, Silvana, for the faithful support I

received since the very beginning of this journey. Without their constant dedication

I would never have been able to accomplish this research.

A very special extension of gratitude goes to Professor Klaus-Jiirgen Bathe for his

work as my advisor.

Last, but not least, I thank my parents for the sacrifices they have borne to ensure

the fulfillment of my dreams.

Contents

Title Page

Abstract

Dedication

Acknowledgments

Contents

List of Figures

1 Introduction

2 Automatic Quadrilateral Mesh Generation:

2.1 Mapping transformation

2.1.1 Transfinite interpolation

2.1.2 Elliptic generators

2.2 Grid superposition

2.3 Geometric decomposition

2.4 Transformation from triangular meshes .

2.5 Advancing front

3 Implementation of an Automatic Quadrilateral

General Surfaces

3.1 Geometry extraction: integration with CAD

A Review

Mesh Generator for

25

3.1.1

3.1.2

3.1.3

Generation of nodes on the boundaries

Local density control

Implementation of the density distribution in the mesh

3.1.4 Initial fronts

3.1.5 Orientation of the fronts

3.1.6 Evaluation of angles and distances in the front

3.2 General structure of the algorithm

3.3 Circular advance of the front

3.3.1 First element of the front

3.3.2 Generation of an element at a corner

3.3.3 Generation of an element in a straight sector . .

3.3.4 Generation of elements around a wedge

3.3.5 Generation of elements around a sharp wedge

3.3.6 Last element of the front

3.4 Correction of the element sizes in the front

3.5 Closing corner.................

3.6 Local seaming of nodes..................

3.7 Smoothing of the front

3.8 Prediction of intersections and connection of fronts . .

3.8.1 Connection of nodes of the same front

3.8.2 Connection of nodes of two different fronts . . .

3.9 Closure of the front

3.9.1 Closure with the seaming of the front

3.9.2 Closure with generation of new elements

3.10 Smoothing of the final mesh

3.11 Cleaning up of the final mesh

4 AutoQM: a Program for Automatic Quadrilateral Mesh Generation

on the Surfaces of a General AutoCAD Solid

4.1 AutoCAD graphic interface

Contents

. 32

. 33

. 34

. 35

. 38

. 39

40

. 41

. 42

. 43

. 45

. 45

..... . 47

..... . 49

..... . 50

. 51

. 52

. 53

..... . 54

. 55

. 56

. 57

. 58

Contents

4.2

4.3

4.4

4.1.1 Generation of the mesh on curved surfaces 63

Database structure 64

Examples 65

Discussion of the method 66

5 Automatic Hexahedral Mesh Generation: An Advancing Front Ap-

proach

5.1 Initial 3D-front

5.1.1 Orientation of the 3D-front

5.1.2 Angle between two adjacent faces of the 3D-front

5.2 General structure of the algorithm

5.3 Advance of the 3D-front by offsetting

5.3.1 Projection of the faces of the 3D-front

5.3.2 Smoothing of the hexahedral element

5.4 Exact closure of the 3D-front

5.5 Smoothing of the 3D-mesh

5.6 The check of valid mesh

5.7 Closure uncertainty: comparison with quadrilateral meshes

5.8 Discussion of methods for hexahedral mesh generation

6 Comments and Conclusions

References 1

A Code for quadrilateral and hexahedral mesh generation

A.1 Main body of the code for the 2D and 3D-mesh generation

A.2 Declaration of global variables

A.3 General auxiliary functions

A.4 Function nodesand_elementsonedgesofsolid()

A.5 Function initial_2D_front

A.6 Function orientation(int nf)

A.7 Function front_angledistance(int nf)

71

72

73

74

75

77

78

83

84

87

87

91

92

99

[01

107

. 108

. 113

. 115

. 123

. 125

. 128

. 128

Contents

A.8 Function closecorner(int nf)

A.9 Function seam(int nf)

A.10 Auxiliary functions to advance the 2D-front . .

A.11 Function advance_front(int nf)

A.12 Auxiliary functions to correct the element sizes

A.13 Function correct_frontsize(int nf)

A.14 Auxiliary functions to predict intersection . . .

A.15 Function intersection(int nf, int nff)

A.16 Function closefront(int nf)

A.17 Function smoothfront(int nf)

A.18 Function smooth()

A.19 Function cleanupO

A.20 Function initial_3D_front

A.21 Function face_angles(int f, int kf)

A.22 Auxiliary functions to advance the 3D-front . .

A.23 Function advance_face_front(int nf)

A.24 Function smoothD()

A.25 Auxiliary functions to check the 3D-mesh . . .

A.26 ADS template

. 130

. 131

. 133

. 139

. 143

. 146

. 149

. 159

. 162

. 165

..... 166

..... 167

. 168

. 169

. 170

. 182

. 182

. 183

. 189

List of Figures

2-1 (a) Mesh generated with the transfinite interpolation scheme of equa-

tion 2.1; (b) the same problem after the mesh has been smoothed using

the Laplace scheme of equation 2.8 and eighty iterations. 21

3-1 Solid created in AutoCAD and notation adopted. 27

3-2 Local density input 29

3-3 Example of smooth density variation along the edges of the solid. . . 30

3-4 Generation of nodes in the edges of the solid with local density imple-

mented. 31

3-5 Initial fronts of a surface of the solid. 32

3-6 The use of the status label to control the fronts of a surface. 33

3-7 Orientation of the initial front. 33

3-8 Scheme to determine the front orientation. 34

3-9 Angle, 2a, and distance, di, of a front node. 35

3-10 Two examples of sequences executed to enhance the quality of distorted

elements. Note that in (a) we do not represent the smoothing of the

final mesh, which is executed before the cleaning up routine. 38

3-11 Generation of the first element of the front 39

3-12 Division of a front in which the first element cannot be created. . . . 40

3-13 (a) Generation of an element at a corner; (b) correction of the element

shape. 40

3-14 Generation of an element in a straight sector of the front (node i). . . 41

3-15 Result obtained with the reduction of the length hi near a sharp corner

of the front. 42

3-16 Generation of two elements around a wedge. 43

3-17 Generation of three elements around a sharp wedge. 44

3-18 Correction of the element sizes in a concave and convex sector of the

front 46

3-19 Irregularity that would be created in the mesh of a rectangular surface

if the intersection between nodes i and i + 3 were allowed. 48

3-20 Scheme of the closing corner routine. 48

3-21 Distorted elements that would be generated by the sequential execution

of the closing corner routine if the distance between the nodes i - 1

and i + 2 were not bounded 49

3-22 Seaming of nodes in the front. 50

3-23 Smoothing of the front 50

3-24 Intersection between two nodes of the same front. 52

3-25 Intersection between two different fronts. 54

3-26 Closures by seaming the front: (a) front with four nodes; (b) front with

six nodes. 55

3-27 Closure with creation of two new elements (front with six nodes). . . 56

3-28 Nodes considered for the Laplacian smoothing. 57

3-29 Elimination of a triangle-like quadrilateral element of the mesh. Scheme

of the cleaning up routine. 59

4-1 Geometry extraction. Scheme of the function geo 0 62

4-2 Mesh generation. Scheme of the function autoqm(. 63

4-3 Example of a mesh generated over two cylinders intersecting..... . 66

4-4 Example of local refinement of the mesh in a fillet............. 67

4-5 Example of a mesh generated with multiple fronts in the same surface

of the solid. 68

5-1 Adjacent faces of a given face f of the 3D-front

List of Figures10

List of Figures

5-2 Evaluation of the normal vector of a face following the orientation of

the 3D-front (face of the initial 3D-front). 73

5-3 Representative directions of adjacent faces for the angle calculation

(vectors vo and vi). 74

5-4 Evaluation of the angle between two adjacent faces, 2a. 75

5-5 Advance of the 3D-front by successive projections of faces (sequence

from (a) to (f)) 78

5-6 Nodes in the vicinity of the face to be projected (face f) 79

5-7 First configuration searched for the projection of the face f. 80

5-8 Seaming of a face with a new element created by projection. 80

5-9 Second configuration searched for the projection of the face f. 81

5-10 Projection of a node. 82

5-11 Third configuration searched for the projection of the face f. 82

5-12 Projection of the face not covered in any of the three basic configura-

tions initially searched for the projection of the face f. 83

5-13 Smoothing of an element created with the projection of two nodes... 84

5-14 Smoothing of an element created with the projection of one node. . 85

5-15 Examples of non-hexahedral elements present in inexact closures. . 86

5-16 Intersection with generation of a pentahedron. 87

5-17 Volume formed by the projection of a quadrilateral face onto the coor-

dinate plane xy 88

5-18 Vectors used to calculate the exact volume of a tetrahedron. 89

5-19 Subdivision of a hexahedron into five tetrahedrons: 0134, 1236, 1456,

3467, 1346. 90

5-20 Typical node of a tetrahedral mesh generated with the advancing front

method. Node with 20 adjacent tetrahedral elements. 94

5-21 Core mesh of hexahedral elements generated with grid superposition. 95

5-22 Grid superposition associated with the first layer of hexahedral ele-

mients generated with plastering. 96

Chapter 1

Introduction

The complexity of the problems solved with the finite element method has demanded

automatic mesh generation in the pre-processing stage of the analysis. The mesh has

to describe the geometry of the domain and be fine enough to capture the numerical

solution in regions where it is not smooth. This latter requirement demands the

employment of mesh grading, since coarse discretizations are also necessary in regions

of smooth distributions of the solution. Moreover, the elements generated must not

be too distorted in order to preserve the accuracy of the solution, especially in sectors

of transitions between two different densities [1],[2],[3],[4].

The mesh generation methods can be classified into two main groups: structured

and unstructured. Structured methods are algebraic generators based on mapping

transformations between a natural and a physical domain. In these schemes, the nodal

points are created following algebraic equations associated with the coordinate system

adopted. Unstructured methods, such as advancing front and grid superposition, use

the geometry as reference to generate the mesh. They are quite independent from the

coordinate system in which the geometry is represented, and tend to construct meshes

with nodal points randomly generated. Despite the complexity of the algorithms

demanded to implement these methods, the level of automation achieved is quite

high.

Triangular and tetrahedral mesh generation methods are suitable to automatically

discretize complex geometries when implemented with unstructured schemes. These

elements, however, perform poorly in their linear displacement version and only their

quadratic form can achieve the performance of their counterpart isoparametric quadri-

lateral and hexahedral elements in problems of elasticity [5],[6]. Quadrilateral and

hexahedral elements have been used in transfinite interpolation or isoparametric ap-

proaches. These structured methods create smooth meshes and provide good control

of the aspect ratio of the elements throughout the domain in both two-dimensional

[7],[8],[9] and three-dimensional problems [10], [11], [12], [13],[14]; however, they de-

pend on geometric decomposition techniques to mesh complex configurations with

fully automated schemes [15], [16], [17], [18], [19], [20].

In the light of this background, some unstructured mesh generation methods have

been published in order to take advantage of the automation of their algorithms and

the good performance of the quadrilateral elements. Actually, these methods create

quadrilateral elements by combining triangles generated with well-known unstruc-

tured schemes, such as advancing front and grid superposition [21], [22], [23], [24],

[25], [26]. These approaches, however, tend to provide poor mesh orthogonality along

the boundaries where good elements are strongly desired. The combination of tetra-

hedrons has also been mentioned as a possible extension of these methods to tackle

three-dimensional problems [17].

Recently, a new advancing front method using quadrilateral elements was devel-

oped by Blacker and Stephenson et al. [27], [28], [29], [30] to mesh planar surfaces.

Named paving, the method starts by creating elements along the boundaries and pro-

jecting the fronts inward. This kind of boundary offsetting generates quadrilateral

elements with good aspect ratio along the geometric contour. Its three-dimensional

version, plastering, is based on a similar scheme and has been used to mesh simple

geometries [31],[32].

This thesis extends paving to automatically generate meshes over the surfaces of

general solids created in AutoCAD. We modify the basic structure of the algorithm

proposed by Blacker and Stephenson in [30] and introduce the circular advance of

the front which increases the speed of generation of elements in the front and, conse-

quently, reduces the time to discretize the entire domain. This modification plays an

14 Chapter 1

Introduction

important role in the overall performance of the method. It counterbalances the poor

performance of the routine necessary to project any nodal point created or modified

onto the curved surfaces of the solid, and the one used to evaluate the normal vec-

tor at the same points. Note these routines are not used if only planar surfaces are

considered as in the method proposed by Blacker and Stephenson.

In the second part of this text, we implement an algorithm to mesh simple ge-

ometries with plastering in order to evaluate the possibilities and limitations of the

method. Finally, taking into consideration the results of this evaluation, we inves-

tigate different approaches to mesh general solid geometries with hexahedral and

non-hexahedral elements, and point out the one that maximizes the number of good

hexahedrons generated in the discretization and that best fulfills the characteristics

desired for finite element analysis.

17

Chapter 2

Automatic Quadrilateral Mesh

Generation: A Review

As part of the pre-processing stage, indispensable for any finite element analysis, the

mesh generation algorithms have demanded an increasing level of automation in or-

der to avoid the errors made during the discretization of the physical domain, and

reduce the time consumed in this process. One of the first automatic methods used

for quadrilateral mesh generation generated structured meshes and required domains

with simple geometric shapes that could be mapped to Cartesian natural coordinate

systems. The predominance of this method can be clearly noted in the work of Buell

and Bush published in 1972, in which this technique is described under the title of I-J

Transformation [33]. This technique is still widely used in commercial finite element

packages that take advantage of the relatively easy computational implementation

to shorten the pre-processing time. Commonly referred to as algebraic mesh gener-

ation or transfinite interpolation, the method performs the mapping transformation

between the natural and physical domain by interpolating, with blending functions,

the curves that define the physical boundaries [34],[17]. This transformation can use

more complex schemes whenever smoother meshes with good control of the aspect ra-

tio of their elements are desired. For this purpose, elliptic generators are used [7],[9].

In general, these approaches achieve the final mesh by applying an iterative routine

to an existing algebraic mesh.

Chapter 2

Unstructured mesh generators have also been used to automatically construct

quadrilateral meshes. These methods require more complex algorithms to be imple-

mented; however, they lend themselves to mesh general geometries. Grid superposi-

tion, also known as quadtree, has been used to generate all-quadrilateral meshes. It

consists of overlaying a uniform grid of points over the entire domain and properly

connecting them to generate the mesh [26],[35]. Transformation from triangles is it-

self another method. Roughly speaking, the method combines two or more triangles

and/or subdivides them to obtain quadrilateral elements.

Another technique used in conjunction with other schemes to generate quadrilat-

eral meshes over complex geometries has been published under the title of geometric

decomposition. This method subdivides the domain into simply connected polygons

to which another method is applied to create the final mesh [36],[18],[19],[37].

Presented in this review as one of the most widely used unstructured methods,

advancing front has been published as automatic triangular mesh generator capable

of meshing complex geometries. If the advance of the front is associated with a

transformation-from-triangles scheme, a fully quadrilateral mesh generation method

is obtained [21]. Recently, a method called paving was developed by Blacker et al.

to generate quadrilateral elements directly in the front [27],[28],[29],[30]. Published

as an automatic mesh generator for plane surfaces, the method is discussed in this

chapter and extended to mesh the surfaces of any general AutoCAD solid.

2.1 Mapping transformation

The mapping transformation was one of the first methods used in automatic quadrilat-

eral mesh generation. The research and development that have been invested in this

method produced a great number of versions widely used in the currently available

finite element commercial packages. In this section, we present two versions of the

method, namely transfinite interpolation and elliptic generators. Mapping techniques

are relatively easy to implement; however, complex configurations depend on geomet-

ric decomposition and/or topological representation techniques in order to generate

Automatic Quadrilateral Mesh Generation: A Review

good meshes.

2.1.1 Transfinite interpolation

The basic scheme of this method uses linear blending functions to map a natural

domain into the physical domain. The natural domain is represented as a square

region with the natural coordinates ((, TI) varying from zero to one. Each side of

the natural domain is mapped into four parametric curves that enclose the physical

domain [38],[39],[40]. Hence, any point x = (x, y,z) inside the physical domain can

be obtained as

x = (1 -)f(r) + rlf(J) f3(r) + (1 - r)f4()

-(1 - 12 - ý23 - 1-)34 - 1 - 1 - 7)x 4 1 (2.1)

where xij are the four nodes defined by the intersection of the four parametric curves

f1(r7), f2(),f3(), f4((), defined as

fi(t) = (x(t),y(t),z(t)) t= -, T (2.2)

By inspection of equation 2.1 one can easily conclude that blending functions,

different from linear, can be used to control the aspect ratio of the elements in the

mesh.

A similar approach is adopted in isoparametric interpolation where only a few

points of the boundaries are used [15]. This approach can also be used as a smoothing

scheme to improve the mesh iteratively, in which the new position of a node is obtained

as the average of its adjacent nodes [30].

2.1.2 Elliptic generators

This method generates the mesh by solving an elliptic differential equation that de-

scribes the transformation between the natural and physical domain [9],[38],[40]. Typ-

ically, the Laplace equation written in the physical domain governs this transforma-

20 Chapter 2

tion:

2 + 02 + -= 0 (2.3)aX2 192 aZ2

subject to = = , r]. This method is also known as Winslow or homogeneous

Thompson- Thames-Mastin (TTM) generator [40].

Equation 2.3 is solved in the natural domain. The transformation yields

22 0- 2 2 2911 = 0 (2.4)g2 2 2g12 0 d 2 +gll

subject to V = x, y, z, and

a xx (d) 2 22
g1 + +) (2.5)

Ox Ox Ox O ay Oy az Oz
912 =+ + (2.6)

g19 -- O?] r] a] O?7r]

SOx x (x) 2 /2 y 2 + 2
22 = + + (2.7)

which are the components of the covariant metric tensor of the transformation. The

computational stencil, using a second-order centered finite difference scheme for the

numerical approximation of the first and second derivatives, is

C ij22 ([i+l,j +•-i--lj) -12- i+1,j-1 i-,j-i)

+ g ,24,i+ + _ 1)] (2.8)

where
1

C= (2.9)
2 + 9112\ Aý2 A72

Frequently, the final mesh is achieved by iteratively applying this stencil to an

initial algebraic mesh, in which case the method is used as a smoothing scheme. The

final mesh displays a high level of orthogonality throughout the entire domain, but

tends to concentrate nodes around convex sectors of the boundaries and move them

away from concave sectors [38]. These properties can be noticed in Figure 2-lb.

Automatic Quadrilateral Mesh Generation: A Review

Figure 2-1: (a) Mesh generated with the transfinite interpolation scheme of equation
2.1; (b) the same problem after the mesh has been smoothed using the
Laplace scheme of equation 2.8 and eighty iterations.

The Poisson equation scheme provides an equal level of orthogonality with better

control of the mesh along convex and concave sectors of the boundaries [9],[38]. The

governing equation is obtained by writing a Laplace nonhomogeneous equation:

0240 02 02,
X+ +- = Q

8'C2 d2 d2

(2.10)

also subject to 0 = ý, rI. Q0 are the weight functions that provide mesh control. This

equation is also solved using

8a2vg22 2
202

- 2912
OýO J

(2.11)
a2v

+ 9112
&772

where
ax OX 2

9 & 17 (2.12)

S71)Y9 (

Chapter 2

2.2 Grid superposition

The first step in the grid superposition method is to overlay an orthogonal grid of

points over the entire domain and connect them to form an initial mesh. Then,

the points lying outside the boundaries are eliminated, and the remaining nodal

points operate as the core of the whole mesh. Note that the mesh constructed so

far has some triangular elements necessary to maximize the area meshed. In general,

grid superposition requires some transformation of triangles in order to achieve a

fully quadrilateral mesh. In the third stage, the initial mesh is connected to the

boundary nodes using quadrilateral and triangular elements. Finally, this mixed

mesh is transformed into an all-quadrilateral mesh.

Grid superposition has also been published under the title of quadtree. This name

refers to the technique used to store the nodes of the overlaid mesh according to

their spatial position. Tezuka in [41] combined the method with an advancing front

scheme to complete the mesh along the boundaries and used an a posteriori approach

of subdividing the triangular elements to obtain quadrilateral elements.

Baehmann et al. in [42] proposed a modified quadtree technique that divides the

three-, four- and five-sided polygons created in the initial mesh into quadrilateral

elements. The possibility of creating three types of polygons results in good control

of the mesh density.

2.3 Geometric decomposition

Published as an automatic mesh generator, this method is, in reality, an auxiliary

scheme that divides the domain into simple polygons which are then meshed using

one of the methods discussed in this chapter. In planar configurations, the medial

axis technique has been used to divide complex geometries. It consists of a set of

interconnected curves containing the center of all circles that can be inscribed in the

geometry. It provides the basis for the final division of the domain. Tam and Arm-

strong [18] and Krishnamoorthy et al. [37] used the medial axis technique along with

Automatic Quadrilateral Mesh Generation: A Review

other techniques to generate the final decomposition. Blacker et al. use the medial

axis technique as an aid to form an abstract representation of the geometry [19]. The

medial axis technique forms a sketch graphic representation of the domain indicating

which pieces seem to project out from the geometry and must be decomposed first.

Cheng et al. extended the decomposition up to the level of the final discretization,

creating meshes with high-density gradients [43].

Souza and Gattas proposed a scheme that represents the surface to be meshed

with meshed patches [20]. The first step consists of overlaying an initial set of regular

meshed patches. Then, the intersections between the boundaries and the patches

are determined. In a third stage, the parts of the initial regular meshed patches

that lay outside the surface are deleted. Finally, the patches are connected to the

boundaries in order to form the mesh. Note that each one of the regular meshed

patches represents a division of the entire domain.

2.4 Transformation from triangular meshes

Any triangle can be divided into three quadrilaterals. This fact opens the possibility

of using any existing triangular mesh generation method to create a quadrilateral

mesh [25]. Triangles can also be merged to produce quadrilateral elements [26]. The

former scheme generates a mesh with finer density if compared to the initial triangular

mesh, whereas the latter one ends up with a coarser density. However, the combi-

nation of both is often necessary to guarantee a quadrilateral mesh with reasonable

element aspect ratios. Johnston et al. have developed an algorithm that attempts

to generate good quadrilateral elements whose quality is associated with the quality

of the initial triangular mesh [23]. Rank et al. proposed a scheme to preserve the

original density distribution during the transformation [24]. Basically, the scheme

combines two triangles to form a quadrilateral that is then divided into four quadri-

laterals. The mesh density obtained is closer to the original density than it would be

if the two triangles had been directly divided into six quadrilaterals.

The above approaches require a relatively simple code, taking advantage of the

speed and robustness of the existing triangular mesh generators capable of discretizing

very complex geometries.

2.5 Advancing front

The advancing front method has been successfully used to automatically generate

triangular meshes over general geometries. The robustness of the technique is based

on the fact that any polygon can be decomposed into triangles, so that the closure

of the mesh can always be achieved. Recently, some research has been conducted

to generate quadrilateral elements with similar approaches. Zhu et al. proposed a

method that advances the front by creating and combining triangles, still in the front,

to generate quadrilateral elements [21]. This algorithm requires a simply connected

domain; i.e., all internal boundaries of the domain must be connected to its external

boundary using cut lines.

Another method developed to directly generate quadrilateral elements in the front

was introduced by Blacker et al. under the title of paving [27],[28],[29],[30]. This

method advances the front by projecting rows of quadrilaterals inward, so that the

elements near the contour tend to have a good aspect ratio, contributing to the

orthogonality of the mesh along the boundaries (i.e., the perpendicularity of the

lines of the mesh). In this method, as in the work published by Zhu et al., the

closure is guaranteed if the front has an even number of nodes, which is achieved by

maintaining this condition throughout the generation. Note that a front with five

nodes, for instance, can be closed only with at least one triangle.

Paving has been used to automatically generate quadrilateral meshes over general

planar geometries. The complexity of the algorithm, however, leads to a relatively

low speed of generation if compared to the advancing front method used to produce

triangular meshes.

As already pointed out, the present research extends paving to mesh general curved

surfaces. We also attempt to improve the speed of generation by introducing a circular

advance of the front.

24 Chapter 2

Chapter 3

Implementation of an Automatic

Quadrilateral Mesh Generator for

General Surfaces

The combination of triangles has been proposed as a method to generate quadrilateral

meshes, in which the initial triangular mesh is created using well-published techniques,

such as advancing front and grid superposition [21],[22],[23],[24],[25],[26],[35]. This

method, however, fails to preserve the mesh orthogonality (i.e., the perpendicularity

of the lines of the mesh) and low element distortion (i.e., nearly square elements)

along the boundaries which are strongly desired properties.

Structured mesh generators have been extensively used to create quadrilateral

elements in finite element packages. These methods are, basically, transfinite map-

pings and require that the geometry has a rectangular-like shape [34],[7],[8],[17]. The

mesh generated is geometrically pleasing, which means that boundary orthogonal-

ity and low element distortion are normally preserved, especially when the algebraic

generation is followed by an elliptic smoothing scheme.

The advancing front method has also played an important role in the generation

of meshes in applications involving complex geometric contours. However, only re-

cently a scheme that creates quadrilaterals directly, without combining triangles, was

published. Known as paving, this technique produces meshes with low element dis-

Chapter 3

tortion along the boundaries and lends itself to meshing any general planar geometry

[27],[28],[29],[30]. In this thesis, we modify the original algorithm of paving to mesh

any kind of surface. This implementation requires that the algorithm keep track of

the surface with frequent evaluation of its normal vector and projection of any new

node created or modified. It also demands the analytical description of the surface

that must be extracted from the solid to be meshed. To solve these difficulties we use

the AutoCAD Development System (ADS) with the Application Programming Inter-

face library (API) that allows the use of the C-programming language along with the

drawing capabilities of AutoCAD, version 12. This approach of integrating a CAD

package and the pre-processing of the finite element analysis has been proposed by

Rolph III [10], Watson et al. [44], and Jiazhen [45].

The method presented in this text starts the generation in the boundaries and

projects rows of elements inward as proposed in paving; however, some modifications

are introduced due to the necessity of generating the mesh on curved surfaces. For

instance, the check of intersections performed during the advance of the fronts has

to be done a priori, i.e., before generating a new row of elements (see Section 3.8).

Note that the check of intersection of lines in a curved surface is computationally

expensive.

3.1 Geometry extraction: integration with CAD

This part of the algorithm provides a powerful tool for automating the mesh genera-

tion which reduces the time consumed and the possibility of error in the pre-processing

stage of any finite element analysis.

First, we must establish some notation that is referred to hereafter. Following

Figure 3-1, we have

* surface: it delimits the solid volume. It is bounded by the edges of the solid and

has the same shape of the primitive entity that has created it (plane, cylinder,

cone, etc...).

Implementation of an Automatic Quadrilateral Mesh Generator

* edge: it is created by the intersection of two surfaces of the solid.

* loop of edges: a closed path of edges. A surface is bounded by one or more loops

of edges. Note that a loop of edges may contain only one edge as in the case of

the border of a hole (see Figure 3-1).

Figure 3-1: Solid created in AutoCAD and notation adopted.

The geometry extraction consists of constructing, for each surface of the solid, a

database of nodal points equally spaced along the edges of the solid in accordance with

the mesh density requested by the user. This database is then directly transformed

into initial fronts, which are the starting point for the mesh generation.

AutoCAD organizes the geometric parameters of the solid in an object-oriented

structure so that each surface has its own identification number stored in a linked list.

This list is accessed via ADS-API functions. In the C-code, this data is stored in two

arrays of structure which are constructed to process the geometry extraction: the first

array contains the identification numbers of the edges of the solid, their lengths and

their parametric descriptions that include the starting and ending points of the edge

and the corresponding values of the parameters for these points; the second array

contains the identification numbers of the surfaces, their types (plane, cylinder, cone,

etc...) and the identification numbers of all the edges that bound each surface of the

Chapter 3

solid. These two arrays contain the basic information needed from AutoCAD in order

to form the fronts of each surface following the steps below.

1. Generation of the nodes in the edges of the solid.

2. Setting up of the initial front: the nodes created in the edges are arranged in a

closed loop to form the starting point of the mesh generation.

3. Establishment of the front orientation: the direction in which the nodes of the

front are oriented in the loop (clockwise or counterclockwise).

4. Evaluation of angles and distances in the front: the algorithm calculates the

angles between adjacent segments of the front and the distances between nodes.

Note that a segment of the front is defined as the line joining two adjacent

nodes.

Note that the explicit indication of the type of the array (array of structure) was

included in the text to stress the object-oriented nature of the code developed to test

the algorithm described in this chapter. Note also that a variable type structure is a

general feature of the C-language used for the code (see Chapter 4).

3.1.1 Generation of nodes on the boundaries

The general mesh density is one of the inputs required for the algorithm. Given as

the size of a regular quadrilateral, the density is initially used to equally divide each

edge into a sequence of interconnected nodes. During this division, the condition

of an even number of nodes is imposed, so that each initial front of a surface will

also have an even number of nodes. The approach of dividing each edge individually

is necessary to match the compatibility between two adjacent surfaces of the solid.

Different densities are also possible. It requires user interaction to select the edges of

the solid and the local density values attributed to them.

Implementation of an Automatic Quadrilateral Mesh Generator

3.1.2 Local density control

The mesh density initially selected is applied in all edges of the solid, creating se-

quences of nodes equally spaced. It generates a uniform mesh over the surface of

the whole solid. However, different mesh densities are required in almost every finite

element analysis, either to capture the numerical solution more accurately or to re-

duce the computational effort by using a coarse mesh in regions where the solution is

smooth.

The input necessary for the method is a set of closed loops of nodes distributed

along the boundaries, which reflects the density desired for the final mesh. Therefore,

the local mesh density is implemented by selecting edges with different element sizes

as depicted in Figure 3-2.

density = 5

tin;· 2 r
local de

II..U UinsLy -

Figure 3-2: Local density input.

The method supports density variation along the front; however, abrupt variations

of the element size along the front can create a highly distorted mesh and even crash

the algorithm. Hence, an arithmetic ratio is imposed on the distances between the

nodes of the edges adjacent to those where different densities have been selected.

In Figure 3-2, the edges A, B, C, and D are submitted to this process in order to

smoothly migrate from the local density of '1' to the overall density of '5'. As an

example, let us take the length of the edge B equal to '18'. The number of divisions

Chapter 3

is given by the formula used for summing up the terms of an arithmetic series:

L = - (ao + an) 18
2

(3.1)

where ao = 1 and an = 5 are the first and last element of the series and k is the

number of divisions we want to calculate. In this example, we took a length that

provides an exact number of divisions (k = 6), which does not occur in most cases.

Therefore, the algorithm takes the even integer closer to the value of k calculated as

above.

L = 18 k = 6 ratio = 0.8

1.8 2.6 3.4 4.2 5
=1 a, =5

0.

(b) L = 17 k = 6 (5.67) ratio = 0.8

83 1.63 2.43 3.23 4.03 4.83
a o = 0.83 an = 4.83

Figure 3-3: Example of smooth density variation along the edges of the solid.

The ratio is obtained also as in an arithmetic series:

a - ao
ratio = = 0.8

k-1
(3.2)

This ratio represents the increment of the interval between nodes as depicted in Figure

3-3a. In Figure 3-3b, we illustrate a case where k = 5.67 and the algorithm takes

k = 6 to calculate the ratio = 0.8 which, in this case, sums up a total length of

18 units of drawing. To adjust it to the correct length (17), we subtract 1/k of the

difference in length (1/6) from the first element of the sequence. Note that it is similar

to subtract 1/6 from each element of the arithmetic sequence.

T

Implementation of an Automatic Quadrilateral Mesh Generator

Figure 3-4: Generation of nodes in the edges of the solid with local density imple-
mented.

The result of the node generation along the boundaries, with local mesh density

selected as in Figure 3-2, is illustrated in Figure 3-4. Note that the edges E and F

end up with a uniform density equal to '1'.

3.1.3 Implementation of the density distribution in the mesh

After establishing the density on each edge, the method advances the front and uses

the correction of the element sizes in the front (see Section 3.4) to migrate from the

different densities to the average density calculated for each surface of the solid. This

is done to allow a smooth transient between two fronts as, for instance, when a surface

with a hole is meshed.

The use of a density distribution function is possible since the routine that corrects

the element sizes of the front can compare the local size of the mesh with any given

value. It does not introduce any substantial alteration in the method itself, but

requires constant checks of the spatial position along the front in order to obtain the

values to which the element sizes have to be adjusted.

Chapter 3

3.1.4 Initial fronts

The initial fronts of a surface are constructed by connecting the sequence of nodes

created in each edge of the solid as described in Subsections 3.1.1 and 3.1.2. The

first step is the generation of the loops of edges as illustrated in Figure 3-1. The

connectivities of the edges that bound each surface are established by comparing the

ending points of the edges of the solid. This chain of edges is associated with the

nodes generated in Subsections 3.1.1 and 3.1.2, and a unified sequence of nodes is

obtained and stored in an array of structure (see Figure 3-5).

Figure 3-5: Initial fronts of a surface of the solid.

The status label, f, is an integer variable created to delimit the various fronts of a

surface and controls the shrinking and expansion of each front size during its advance.

It also regulates the creation of new fronts and their closures.

Figure 3-6 illustrates the delimitation of the fronts of a surface with the status

label. The label '0' indicates the beginning and the end of the first front, whereas

the label '-1' indicates the sequence of nodes within the two extreme nodes of the

front labeled '0'. The same occurs for the label '1'. In this case, we have a front with

the nodes n = 20, 17, 12, 13, 24, 19, 21, 14. The last example shown in Figure 3-6

displays a front already closed (label '2'), in which there are no '-1' labels.

Implementation of an Automatic Quadrilateral Mesh Generator

n- 2 14 5 0 101 1 8 3 6 9 1137 11518 16_

f 0 -1-1-1-1-1-1-1 1-1-1-1-1-1-1-1 I

11 20 17 12 13 24 19 2114 22 30 2734 25 26

0 1 -11-1 -11-11-1 -1 1 2 2 2 2 2 2

Figure 3-6: The use of the status label to control the fronts of a surface.

3.1.5 Orientation of the fronts

The front orientation is necessary to calculate the angle at each node of the front.

Since we are not only considering the particular case of meshing a plane, it is manda-

tory to use the vector normal to the surface along with the front orientation for the

evaluation of angles (see Subsection 3.1.6).

external front
turn = 1
(clockwise)

internal front
turn = -1
(clockwise)

Figure 3-7: Orientation of the initial front.

We use the global variable turn (see Appendix A.2) to control the orientation of

-1 .

the front. The value '1' is assigned to turn if the front is oriented clockwise and the

value '-1' is assigned to turn otherwise. Note we consider an observer located outside

the solid (see Figure 3-7). This convention is valid only for external initial fronts; i.e.,

fronts that are not the border of holes. For internal initial fronts, turn = 1 means

counterclockwise and turn = -1 means clockwise.

Following the scheme depicted in Figure 3-8, the orientation of the front is evalu-

ated using the vector normal to the surface, n, at the first node of the front (node i).

Initially, the vector t = n x v is calculated. Then, the point p is projected onto the

surface in order to check whether it lies inside the boundaries of the surface. If it lies

outside, as shown in the figure, the value '-1' is assigned to the variable turn.

turn

Figure 3-8: Scheme to determine the front orientation.

Note the way of turning associated with the front orientation (clockwise and coun-

terclockwise) is an abstraction to help understand the concept. It is possible to have

a front composed of external and internal sectors. In such a case, the front turns in

two opposite directions but the variable turn has only one value.

3.1.6 Evaluation of angles and distances in the front

The algorithm evaluates the angle at each node of the front and the distance between

two adjacent nodes following the scheme illustrated in Figure 3-9. First, the vector

34 Chapter 3

Implementation of an Automatic Quadrilateral Mesh Generator

t = v x n is calculated. Then, the vector t is multiplied by the value of the variable

turn (-1 in this case), so that the result always points inward; i.e., in the direction

that the front advances. Note that n is the vector normal to the surface at the node

i. The semi-angle, a, is calculated using the inner product between one of the two

vectors vo or vi and the vector t. The use of the semi-angles is necessary since the

value returned by the C-function acos(x) varies from 0.0 to 7r while the angles can

assume any value up to 27r. The angle at the node i is defined as 2a.

turn

Figure 3-9: Angle, 2a, and distance, di, of a front node.

The distance between nodes, di, is calculated and stored in the front database as

part of the first node following the orientation of the front. Note the subscript i of

the distance di in Figure 3-9 represents this dependence.

The angle and distance are calculated for every node in the initial front as well as

every time a local alteration in the front is executed to advance the front.

3.2 General structure of the algorithm

Once the geometry has been extracted and the initial fronts of each surface of the

solid created, the mesh generation can be executed. Roughly speaking, the main

structure of the algorithm consists of a loop that in each sequence checks all the

fronts of a surface to assure that one of the fronts can advance without intersections.

After advancing the front, another check to correct the element sizes along the new

front is carried out before starting the next sequence of the loop.

The checks executed before advancing the front search for the conditions required

to close the front, seam nodes, close corners, or intersect fronts. If one of these checks

is positive, the corresponding modification is performed in the front. In the case of

a positive closure or intersection check, the sequence of the loop is broken after the

execution of the correspondent modification; i.e., a new sequence is started without

advancing the front. The complete structure of the algorithm is represented below.

Advance all initial fronts

REPEAT for all fronts

IF check of Closure is positive THEN break the loop

REPEAT while Seaming of nodes is positive

IF check of Closure is positive THEN break the loop

END of loop

REPEAT while Closing Corner is positive

IF check of Closure is positive THEN break the loop

END of loop

IF Check for intersection is positive THEN break the loop

IF Smoothing of the front is positive THEN

IF Check for intersection is positive THEN break the loop

Check for intersection

Advance the front

IF Correct the element sizes in the front is positive THEN

Smooth the front

END of loop

Smooth the mesh

Clean up the mesh

Chapter 336

Implementation of an Automatic Quadrilateral Mesh Generator

The seaming-of-nodes check is performed as part of another loop that is not ended

until a negative check is detected. Inside this loop, a check of closure is executed,

since every time two nodes are seamed the number of nodes in the front decreases.

If no closure is detected, the sequence of the loop continues and a similar loop is

executed to check the closing of corners. Again, if no closure is observed a check

for intersections is carried out to verify all fronts against all fronts including each

front against itself. The last routine executed, before the advance of the front is

allowed, is the smoothing of the front. If the front needs to be smoothed, another

check of intersections is performed. After completing the mesh, a smoothing routine

is executed to improve the aspect of the elements. Finally, a cleaning up routine is

called to correct the occurrence of nodes connected to only two elements.

As displayed above, the algorithm checks intersections before advancing the front

and not after having performed this function as proposed in paving for planar surfaces

[28],[30]. This approach was adopted to allow the generation over any surface, planar

or not. In the case of a plane, it is relatively easy and fast to check the intersection

of lines; however, it becomes a time-consuming process when a curved surface is

considered.

The order in which each one of the checks and routines is executed is quite im-

portant to advance the front and continue the mesh generation. Some modifications,

however, seem to introduce distortions in the mesh rather than solve them. Actu-

ally, a few distorted elements are created following rules that allow the next checks

and/or routines to correct them. Ultimately, these distorted elements are solved in

the smoothing of the final mesh and in the cleaning up routine. We illustrate this

interrelationship among the different checks and routines executed in the algorithm

with two examples depicted in Figure 3-10. In Figure 3-10a, the sharp angle is ini-

tially solved by seaming two nodes, which creates a new node connected to only two

elements. These two distorted elements are finally corrected with the cleaning up

routine. The other example, depicted in Figure 3-10b, adopts a similar sequence to

eliminate distortion. The last step of the correction, however, is achieved with the

smoothing of the final mesh.

Chapter 3

(a) (b)

E
n

Figure 3-10: Two examples of sequences executed to enhance the quality of distorted
elements. Note that in (a) we do not represent the smoothing of the
final mesh, which is executed before the cleaning up routine.

Here, we stress the central part that the smoothing routine plays in the correction

of distortions. Literally, any element distortion, not solved by the checks and routines

executed during the advance of the front, is corrected in the final smoothing of the

mesh. It excludes, of course, the one treated in the cleaning up routine, which is

carried out after the smoothing.

3.3 Circular advance of the front

The front is advanced by creating a closed loop of elements along the front. The

sequence is constructed by placing a new element after the last one created. Before

placing a new element, the function checks the angle at the next node of the front in

order to select the routine that shall create the element. This process is performed

0
01
EM

IMr

-= ,

Implementation of an Automatic Quadrilateral Mesh Generator

every time a new element is generated attempting to reduce element distortion and

obtain mesh orthogonality especially along the boundaries of each surface.

3.3.1 First element of the front

The initial step to advance the front is the creation of the first element connected

to two adjacent nodes with angles between 135 and 240 degrees. The points pi and

P2 shown in Figure 3-11 are created using the same vector -t displayed in Figure

3-9 with magnitude hi = (di-1 + di)/2 and hiA+ = (di + di+1)/2, respectively. These

points, after being projected onto the surface, complete the four nodes needed for the

first element.

P1

Figure 3-11: Generation of the first element of the front.

As the front approaches the closure, it is possible that the method did not find any

pair of adjacent nodes with angles in the range required to create the first element.

For this case, the algorithm divides the front as illustrated in Figure 3-12. These two

fronts are treated as new fronts in the algorithm, so that the seaming of nodes, closing

corner, closure, and check of intersections are carried out before advancing the front

again. In general, these fronts are ended in the closure check.

With the first element constructed, a sequence of elements is created along the

front line. The elements are generated in accordance with the angle of the front as

discussed in the following subsections.

40 Chapter 3

division with

Figure 3-12: Division of a front in which the first element cannot be created.

3.3.2 Generation of an element at a corner

Nodes with angles equal to or less than 135 degrees are considered corners in the

algorithm, so that no new point is necessary to complete the four nodes needed for

the element. As illustrated in Figure 3-13a, the node subsequent to node i is the

fourth node necessary to form the new element.

An additional condition is imposed on the generation of the element in order to

reduce the distortion of the next element to be created in the front and correct the

shape of the one already generated. If the angle at the node i is greater than 90

degrees, the shape of the new element is corrected by moving the node p as depicted

after moving 'p'

P

new
element

(b)

Figure 3-13: (a) Generation of an element at a corner; (b) correction of the element
shape.

front

advance

new
element

40 Chapter 3

Implementation of an Automatic Quadrilateral Mesh Generator

in Figure 3-13b. This action transforms the new element in a parallelogram. It is

important to note that any distortion produced in this stage of the generation is

eliminated in the final smoothing of the mesh as described in Section 3.10; however,

the procedure of reducing distortion, right after the construction of each element, is

necessary to avoid the cumulative effect it might have over the next elements created

and, ultimately, over the entire mesh.

3.3.3 Generation of an element in a straight sector

Another possible case faced by the front during its advance is the generation of a

new element in a straight sector of the front which is defined as a node with an angle

greater than 135 degrees, and equal to or less than 240 degrees. In this case, the

fourth node necessary to generate the new element must be created. The scheme is

illustrated in Figure 3-14.

advance

new
element hi

e- h front
i-i i i+1

Figure 3-14: Generation of an element in a straight sector of the front (node i).

The algorithm creates the point p using the same vector -t displayed in Figure

3-9. This point is set at the distance hi = (di- 1 + di)/2 from the node i and projected

onto the surface to create the element.

Still in the case of a straight sector, the method checks the angles from node i - 3

to node i + 3, searching for values equal to or less than 60 degrees. In the event that

this condition occurs, the length hi is multiplied by a factor with magnitude less than

42 Chapter 3

hil

Figure 3-15: Result obtained with the reduction of the length hi near a sharp corner
of the front.

one, as illustrated in Figure 3-15:

5
hi = hi = - hi (3.3)

8
7

h2 = = - hi (3.4)
8
sin a

h3 = hII = hi (3.5)
2

The reducing factor of the two nodes close to the corner is set proportional to the

sine of the angle a in order to avoid the intersection of the new front with itself. Note

that the small angle formed in the new front is solved with the seaming of nodes.

3.3.4 Generation of elements around a wedge

This case is solved by generating two elements in the front. As displayed in Figure

3-16, three new nodes are created around the wedge. The method considers as a

wedge any node with an angle greater than 240 degrees, and equal to or less than 300

degrees.

The vector vo is collinear to the segment delimited by the nodes i and i+ 1 and has

norm IvoI = (di- 1 +di)/2. Similarly, the vector v, is collinear to the segment delimited

600

N1 _ ^

Implementation of an Automatic Quadrilateral Mesh Generator

new
elements

P2

Ps

Figure 3-16: Generation of two elements around a wedge.

by the nodes i - 1 and i, with vi = vo0 . The vector v is the resultant of the sum of

the vectors vo and vi, with norm Ivr = vo| . This normalization is necessary to avoid

overlaps not detected in the check of intersections. The distortion of the elements

introduced with this normalization is partially solved in the smoothing of the front

described in the Subsection 3.7. Note that the two new elements are created only

after the projection of the nodes pl, P2, and P3 onto the surface.

3.3.5 Generation of elements around a sharp wedge

This routine is similar to the one discussed in Subsection 3.3.4. The algorithm creates

three elements to advance the front around the sharp wedge, which is defined as a

node with an angle greater than 300 degrees.

As illustrated in Figure 3-17, the vector v' is created as

d
VI = v (3.6)

where
di-1 + did = (3.7)

2

44 Chapter 3

existing elements
new elements

advance p,

V2

front

Ps

Figure 3-17: Generation of three elements around a sharp wedge.

Then, the two other vectors v2 and v3 are evaluated to set the points pi, p3, and p5 :

V2 (g +) (3.8)
- IVO + V'I

d
v 3 = (vl + v') (3.9)

-IV + V11

By adding the vectors v2 and v3 to vector v' and normalizing them accordingly, we

obtain the other two points P2 and P4 which completes the number of nodes required

to construct the three new elements. We also have to project these five points onto

the surface before creating the elements.

As mentioned before, the normalization of these vectors is necessary to avoid

intersections not covered in the check of intersections performed in the algorithm.

The distortions introduced in the elements due to this normalization are partially

solved in the smoothing of the front described in Section 3.7. The final correction is

carried out with the smoothing of the mesh described in Section 3.10.

Chapter 344

Implementation of an Automatic Quadrilateral Mesh Generator

3.3.6 Last element of the front

The last element created in the front closes the sequence of elements generated to

advance the front. The method considers the node pl of the first element (see Figure

3-11) as one of the nodes needed for the construction of the last element in the front.

Note that the use of the node pi connects the last element of the sequence to its

origin. Some configurations might require the construction of more than one element

to complete the front. For instance, if the first element is located after a wedge,

two new elements have to be created to complete the advance of the front. In this

case, the generation of the last elements of the front is carried out using the same

procedures described in the previous subsections.

After completing the advance of the front, the angles and distances of the new

front are evaluated as described in Subsection 3.1.6.

3.4 Correction of the element sizes in the front

Executed immediately after advancing the front, the correction of the element sizes

in the front attempts to maintain the average mesh density of the surface. Typically,

the distance between nodes increases or decreases whenever the advance is carried

out in a convex or concave sector of the front, respectively; however, other operations

on the front can also create these situations.

As illustrated in Figure 3-18, the method checks the front distances and selects the

nodes that shall be joined in order to increase the distances between nodes (Figure

3-18a) or be submitted to the insertion of a new element to reduce these distances

(Figure 3-18b).

The criterion used to determine whether a sector of the front is eligible to be

corrected or not is quite simple. If the values of the two distances between three

adjacent nodes in the front (nodes i- , i, and i+1) are less than drin, the procedure

for joining these nodes is executed. If the values of these two distances are greater

(a)
front front

Figure 3-18: Correction of the element sizes in a concave and convex sector of the
front.

than dmax, a new element is inserted:

dmin = 0.7 daverage (3.10)

dmax = 1.3 daverage (3.11)
1 n

daverage = - E dk (3.12)
n k=1

where n is the number of nodes in the fronts of the surface.

The correction of the element sizes modifies the distances locally in the front. To

complete the correction, a smoothing routine is executed along the front to reduce

the difference in distance between adjacent nodes (see Subsection 3.7).

The correction of the element sizes in the front is also the key function used to

manage the transition among different mesh densities. The use of local mesh densities,

as discussed in Subsection 3.1.2, requires that the distance between nodes be adjusted

as the front advances in order to manage the integration of the different densities. It

is especially useful in cases where a different local density is requested for an edge

of the solid not connected to any other boundary. Figure 3-4 illustrates this case.

46 Chapter 3

Implementation of an Automatic Quadrilateral Mesh Generator

It demands the migration of the various densities ('1', '2', and '5') to the average

density of the surface, daverage. Note that, as in any modification of the mesh, the

nodes created or moved with the correction of the element sizes have to be projected

onto the curved surface.

3.5 Closing corner

The closing corner routine was introduced in the algorithm in order to solve one case

that neither the intersection check nor the advance-of-the-front routine itself deals

with. Attempting to generate uniform meshes over surfaces with rectangular-like

shapes, the check of intersection does not consider nodes within the range i - 3 to

i + 3 as candidates to intersect a given node i. This approach can be understood if

we imagine that the bold line displayed in Figure 3-19a is the front of a mesh under

construction over a rectangular surface. For a given uniform mesh density, in gen-

eral, the element size in the two vertical edges of the surface differs slightly from the

element size in the two horizontal edges of the same surface, due to the imposition

of the condition of an even number of nodes in the initial front. It introduces a little

distortion in the front as it advances far from the initial front. If we allow intersection

between nodes i and i + 3, the final mesh will not be uniform. That is, it will be

different from the mesh that would be created if a transfinite interpolation method

were used. Figure 3-19b shows the solution desired for the mesh, which will display

a uniform pattern after being smoothed. Note the mesh illustrated in Figure 3-19a

ends up in a nonuniform mesh. It is also important to point out that the defini-

tion of a rectangular surface embodies more than a simple planar parallelogram. A

cylinder with a longitudinal cut has a rectangular curved surface along its lengthwise

dimension.

The scheme performed in the closing corner routine is depicted in Figure 3-20.

The first condition necessary to close the corner is the existence of two adjacent

nodes with angles equal to or less than 135 degrees (nodes i and i + 1). Once this

condition is satisfied, the distance between the nodes i - 1 and i +2 is compared with

47

48 Chapter 3

(a) (b)
intersection

Figure 3-19: Irregularity that would be created in the mesh of a rectangular surface
if the intersection between nodes i and i + 3 were allowed.

the magnitude of the vectors used to advance the front in these nodes:

dist(i - 1, i + 2) < 1.05 (hi- 1 + hi+2) (3.13)

This condition is necessary to avoid the generation of distorted elements with the se-

quential execution of the closing corner routine, as illustrated in Figure 3-21, whereas

the condition of small angles is necessary to prevent the undesirable case represented

new
element

Figure 3-20: Scheme of the closing corner routine.

48 Chapter 3

^ . ^_ . . 1"IR n.

Implementation of an Automatic Quadrilateral Mesh Generator

in Figure 3-19a.

i+2

fr

Figure 3-21: Distorted elements that would be generated by the sequential execution
of the closing corner routine if the distance between the nodes i - 1 and
i + 2 were not bounded.

After the completion of the closing corner routine, the angles and distances of the

nodes i - 1 and i + 2 are reevaluated.

3.6 Local seaming of nodes

The seaming of nodes is a corrective routine that eliminates small angles in the front

as illustrated in Figure 3-22. This function collapses any angle equal to or less than

45 degrees, deletes the node i + 1, and evaluates the angles and distances of the nodes

in the vicinity of the new position of the node i - 1. The function also performs the

projection of this node onto the curved surface.

The circular advance of the front deals with corners by creating a new element

with the existing nodes. However, for very small nodal angles, the front can intersect

itself while approaching the corner, since the check of intersections does not consider

the neighbors of a node as mentioned in Section 3.5. Thus, it is necessary to eliminate

nodes with small angles by seaming its two adjacent nodes. This procedure creates a

new corner with a larger angle as depicted in Figure 3-22.

49

fr

Chapter 3

i+

,545O~

front 4i-
f r:ont

i- I(=- + 1)

Figure 3-22: Seaming of nodes in the front.

3.7 Smoothing of the front

The front is smoothed if there is any significant variation of the distances between

nodes along the front. This variation can be introduced by a modification executed

in the front or by a local density refinement. Basically, the algorithm moves nodes in

the front attempting to minimize this variation.

d5 d

front

di-

i+front

front

Figure 3-23: Smoothing of the front.

The algorithm performed in this function is executed twice for each node of the

front. As depicted in Figure 3-23, it calculates the distance d and compares its value

with di-1 and di to execute the movement of the node i towards the farther adjacent

node (i - 1 or i + 1) using the displacement 6:

d di- 1 + di (3.14)
2

50

Implementation of an Automatic Quadrilateral Mesh Generator

6 = max(di_1, di) - d (3.15)

Note this scheme tends also to smooth the angles in the front. Note also that the

projection onto the surface is necessary after the movement of any node.

Once the smoothing of the front has been completed, the angles and distances of

the modified front are reevaluated.

3.8 Prediction of intersections and connection of

fronts

The intersection of fronts is a necessary feature that enables the generation of meshes

over complex geometries. It manages the combination of different fronts until only

simple and small fronts exist. As we discuss in Section 3.9, the closure is executed on

fronts with fewer than eight nodes, namely, six and four nodes.

The method performs checks of intersections within the front and with other fronts

in the same surface of the solid. The check is done before advancing the front, i.e.,

before the intersections take place. Actually, that is the meaning we want to infer

from the term "prediction of intersection". The algorithm foresees the intersections

by measuring distances between nodes that, most likely, will intersect if the front

advances. It differs from the way paving for plane surfaces performs the check of

intersections [27],[29],[30]. The latter approach checks the intersections of lines after

they have happened which is feasible on the plane, because the computational work

necessary to carry it out is relatively small. The same check on a curved surface

becomes more expensive.

The prediction of intersection proposed is quite simple. It measures the distance

among the nodes of the front and verifies whether there is enough space to advance

the front without intersecting. If this check concludes that the distance between two

nodes of the front is smaller than the distance necessary to advance the front, the

intersection is performed according to one of the procedures described in the next two

subsections, otherwise the front is allowed to advance. The same approach is used if

the check is performed between two different fronts.

3.8.1 Connection of nodes of the same front

In the event that the check performed by the method predicts intersection between

two nodes of the same front, two new fronts are created with the nodes of the original

front as depicted in Figure 3-24.

(a)

Figure 3-24: Intersection between two nodes of the same front.

The function divides the fronts into two new fronts with even numbers of nodes in

order to guarantee the closure using only quadrilateral elements. One of the following

routines is executed in order to intersect the front correctly:

* Intersection with creation of a new node - depicted in Figure 3-24a.

* Intersection with movement of the two nodes - depicted in Figure 3-24b.

Chapter 352

Implementation of an Automatic Quadrilateral Mesh Generator

* Intersection by seaming the two nodes - depicted in Figure 3-24c.

The scheme of Figure 3-24b is applied when the number of nodes of the two new

fronts is already even, whereas the other two schemes are used when this number is

odd. Note the schemes of Figure 3-24a and c are selected in accordance with the

distance between the two points of intersection, nodes i and j. The latter scheme is

adopted for shorter distances. However, if the surface has a rectangular-like shape, the

scheme of Figure 3-24a is adopted in order to avoid the surface being discretized with

a nonuniform mesh; i.e., with a node surrounded by a number of elements different

from four (see Figure 3-19). The limit in distance that controls the selection between

these two schemes is established locally in the mesh, taking into consideration the

average element size in the vicinity of the nodes i and j.

3.8.2 Connection of nodes of two different fronts

The second type of intersection takes place when the nodes of two different fronts are

predicted to intersect. Typically, this is the case of a surface with one or more holes.

To solve this intersection, one of the schemes illustrated in Figure 3-25 is executed to

join the two fronts and create a third one with an even number of nodes:

* Intersection with creation of two new elements - depicted in Figure 3-25a.

* Intersection with creation of a new element - depicted in Figure 3-25b.

* Intersection by seaming the nodes - depicted in Figure 3-25c.

In Figure 3-25, the distance between the nodes i and j indicates which scheme

shall be selected to join the two fronts. The scheme shown in (c) is selected for small

distances, whereas the ones in (b) and (a) are chosen for longer distances. As in

the case of intersection within the same front, the limits in distance that govern the

selection of these schemes are established locally by considering the average element

size in the vicinity of the nodes i and j. This procedure attempts to minimize the

element distortion, especially of those elements created to connect the two fronts.

53

Chapter 3

Figure 3-25: Intersection between two different fronts.

Note that, in the intersection of two different fronts, the condition of an even number

of nodes in the new front does not drive the selection of the scheme used to intersect

the fronts. This condition is always fulfilled for this case, provided that one of the

three schemes in Figure 3-25 is used.

3.9 Closure of the front

The check of closure is repeatedly executed in the main body of the mesh generation

algorithm. If one of the fronts of a surface has six or fewer nodes, the closure is

performed.

The closure concludes the advance of the front either by creating new elements or

by seaming the front nodes. The selection of the best approach to close the front is

54

Implementation of an Automatic Quadrilateral Mesh Generator

oriented to minimize the element distortion in the mesh.

3.9.1 Closure with the seaming of the front

The seaming of the nodes is a routine that closes the front without creating any new

elements. Basically, it can be divided into two cases: front with four nodes and front

with six nodes. In the first case, one of the two pairs of opposite nodes must have

angles equal to or less than 45 degrees to be considered eligible for the closure by

seaming. If this condition is satisfied, the nodes of the other pair of nodes are joined

as depicted in Figure 3-26a. For the case where the front has six nodes, a similar

scheme is used on the three pairs of opposite nodes. If the angles of one of the pairs

are less than 90 degrees, and the angles of the other four nodes are greater than 120

degrees, the other two pairs of opposite nodes are seamed as illustrated in Figure

3-26b. Note that the nodes seamed are not from the same pair of opposite nodes. In

both cases, the points are joined in the middle point between them.

The projection of the nodes onto the surface completes the execution of the closure.

Again, note that the projection is executed only in curved surfaces.

front (a)

front (b)

Figure 3-26: Closures by seaming the front: (a) front with four nodes; (b) front with
six nodes.

Chapter 3

3.9.2 Closure with generation of new elements

If the condition for seaming the front is not present, the method closes the front

with the generation of new elements. In this situation, we also identify the same two

cases: front with four nodes and front with six nodes. The solution of the first case

is straightforward, being the new element created with the four nodes of the front.

For the second case, the method searches the front in order to select the first node

of the pair used to divide the front into two new elements. The four possible cases

considered in this routine are listed below, starting with the highest priority.

1. Select the node connected to at least one element and with

than 135 degrees.

2. Select, among the nodes connected to at least two elements,

largest angle.

3. Select, among the nodes connected to at least three elements,

largest angle.

an angle greater

the one with the

the one with the

4. Select the node with the largest angle.

Figure 3-27: Closure with creation of two new elements (front with six nodes).

The goal of this selection is to reduce the distortion of the two new elements to be

created and avoid the generation of nodes connected to two and three elements after

the closure. The former goal is achieved with the selection of the node with the largest

Implementation of an Automatic Quadrilateral Mesh Generator

angle in the front (node i of Figure 3-27), whereas the latter one is accomplished with

the selection of the node with the minimum number of elements connected to it. In

Figure 3-27, the node i satisfies the second of the four possible cases listed above and

is selected to close the front along with the opposite node (node j).

3.10 Smoothing of the final mesh

After closing all fronts of the surface, a smoothing routine is applied over the mesh.

A standard Laplacian scheme was selected in which the nodal points connected to a

given node are considered to calculate the new position of the node (see Figure 3-28).

Figure 3-28: Nodes considered for the Laplacian smoothing.

Following Figure 3-28, the new position of the node Pi is calculated with the

following stencil:
In

Pi =- Pk (3.16)
n k=l

where n = 4 in the case of Figure 3-28.

After the evaluation of the new position of Pi, the node must be projected onto the

curved surface. The projection is a computationally expensive routine that accesses

AutoCAD via the interpreter, and must be executed for each node in each iteration

performed during the smoothing. Therefore, in order to optimize performance, the

method takes into account the total number of nodes and the type of the surface in

order to set the number of iterations necessary to smooth the mesh. Note that the

projection is not necessary if the surface is a plane.

As we indicated in the beginning of this chapter, the smoothing of the final mesh

plays a very important role in eliminating the element distortions not corrected with

the checks and routines executed to advance the fronts. Excepting the one treated in

the cleaning up of the mesh, any remaining distortion is corrected in the smoothing

routine.

Despite its simple scheme, the standard Laplacian smoothing has demonstrated its

ability to correct the aspect of the mesh satisfactorily. The comparison of the meshes

displayed in Chapter 4 with other meshes encountered in the literature, indicates

that the additional enhancement gained from more complex smoothing formulations

does not pay the price of the computationally expensive schemes associated with

them. Note we are comparing unstructured meshes used in finite element analysis.

Structured meshes, normally used in finite difference computations, might require

elaborated smoothing schemes, such as those described in Subsection 2.1.2.

3.11 Cleaning up of the final mesh

The routine that executes the closure of the front attempts to end the front with

elements not very distorted. A node connected to only two elements creates two ad-

jacent quadrilaterals with a triangle-like shape even after smoothing. Unfortunately,

this situation can occur far from the closure, while the front is still advancing. For

example, successive intersections can, in complex configurations, generate such bad

elements. It can also happen with the execution of the seaming-of-nodes routine, as

depicted in Figure 3-10a.

The cleaning up routine searches the mesh for nodes connected to only two ele-

ments as illustrated with the node i in Figure 3-29. Note that nodes in the boundaries

are not considered. Once this node is found, the routine deletes it. The routine also

deletes one of the two elements connected to this node. Then, the connectivity of the

58 Chapter 3

Implementation of an Automatic Quadrilateral Mesh Generator

element deleted

.
j(- i)

Figure 3-29: Elimination of a triangle-like quadrilateral element of the mesh. Scheme
of the cleaning up routine.

remaining element is modified to incorporate the node j. It is represented in Figure

3-29 by the arrow that indicates the movement of the node i to the node j.

Chapter 4

AutoQM: a Program for

Automatic Quadrilateral Mesh

Generation on the Surfaces of a

General AutoCAD Solid

AutoQM is an automatic quadrilateral mesh generation code that implements the

algorithm described in Chapter 3 to mesh the surfaces of a general solid created in

AutoCAD. The program was written in ANSI-C and uses the AutoCAD Development

System (ADS) as an interpreter to access the geometric functions of AutoCAD, espe-

cially those related to the Application Programming Interface library (API). These

libraries provide essential tools to perform geometric functions, such as the projection

of points onto the surfaces of the solid and the evaluation of normal vectors at points

of these surfaces.

4.1 AutoCAD graphic interface

We organized the structure of the main functions of the code as part of only one

ADS application. It provides the flexibility of transferring the data obtained from

the geometry extraction directly to the mesh generation functions, without creating

62 Chapter 4

temporary files that slow down the execution of the program.

I - - - - - - - - - - - 1
DI

Extract the geometry
L - -_

fronts and
geometric data stored
in computer memory

Figure 4-1: Geometry extraction. Scheme of the function geoO.

As discussed in Chapter 3, the method is executed in two distinct parts. The

first extracts the geometry and creates the initial fronts for each surface of the solid.

AutoQM executes this part with the function geo 0 (see Appendix A.1) which asks the

user to select the solid to be meshed and to enter the overall mesh density desired, as

illustrated in Figure 4-1. This function also provides the feature of imposing different

local densities over some of the edges of the solid. It is implemented by asking the

user to select each edge with the graphic cursor and enter the local density associated

with it. Once the execution of this function is completed, the initial fronts are stored

in computer memory and, as already mentioned, no temporary files are created. Part

of the information regarding the geometry of the solid is also stored in computer

62 Chapter 4

AutoQM: a Program for Automatic Quadrilateral Mesh Generation

memory in two arrays of structure independent from the AutoCAD database. It is

clone to speed up the program, since the access of the AutoCAD database is slower

than the direct access of an array within the environment of the code.

Initial fronts and
geometric data stored
in computer memory

AutoCAD

call function autoqm()

Display
Quadrilateral

Mesh

KNodal points and element
connectivities stored
in computer memory

Figure 4-2: Mesh generation. Scheme of the function autoqmO .

The second part is carried out in the function autoqm(which automatically gen-

erates the mesh over all the surfaces of the solid as shown in Figure 4-2. The user

interaction in this part is limited to the choice of displaying the mesh while it is being

generated. It provides a fair understanding of how the algorithm is implemented in

the code; however, it slows down the whole generation since, every time a modifica-

tion is introduced in the front, the mesh is partially redrawn. The main body of this

function is listed in Appendix A.1. This function calls other C-functions during its

execution to construct the mesh as described in Chapter 3. These C-functions are

listed in the sections of Appendix A.

4.1.1 Generation of the mesh on curved surfaces

As discussed in Chapter 3, we use the AutoCAD functions to keep track of the sur-

face during the advance of the front. Essentially, the method has to perform two

operations to maintain the mesh attached to the surface: the evaluation of the vector

normal to the surface and the projection of any new node created or modified in

the mesh. The first operation is necessary to establish a local plane in the vicinity

of the node in order to evaluate the orientation and the angles of the front, as de-

scribed in Subsections 3.1.5 and 3.1.6. Executed with the AutoCAD-API function

apptnorm2face(soLid, solface[m].id, pt, TRUE, n), the first operation returns the

vector n normal to the surface sol_face[m].id of the solid solid at the node pt. This

function is called in almost every function listed in Appendix A. The second operation

maintains the mesh conformed to the surface as the front advances. It is performed

with the AutoCAD-API function ap_pt2face(soLid, sol_face[m].id, ptl, pt2) that re-

turns pt2, the projection of the node ptl onto the surface sol_face[m].id of the solid

soLid (see function point_projection(...) in Appendix A.3).

These operations are key functions in the method. They also provide the possi-

bility of adapting the algorithm to any other CAD package that has these functions

incorporated and a development environment similar to ADS.

4.2 Database structure

As the mesh is being generated, the nodes of the fronts are incorporated into the

database that contains the element connectivities. The nodes are stored in an array

of structure that, basically, contains the sequential numbers of the nodes, their coor-

dinates (x, y, z) and an array with the sequential numbers of the elements to which

each node is connected. The quadrilateral elements are also stored in an array of

structure containing their sequential numbers in the mesh and the numbers of the

four nodes of their vertices. This organization of data allows the algorithm to retrieve

the nodal points adjacent to a certain node via the connectivities stored in the two

arrays of structure. It is especially useful to execute the smoothing of the final mesh.

The control of nodes in the front is done in another array of structure that stores

the node numbers, their angles, the distances between adjacent nodes of the front,

and the status labels as defined in Subsection 3.1.4. This array of structure, as well

64 Chapter 4

AutoQM: a Program for Automatic Quadrilateral Mesh Generation

as the ones used to store the nodes and the elements, is listed in Appendix A.2.

These three arrays of structure provide good control of data in the front during

the execution of the seaming routine. In this case, the mesh is modified by changing

the connectivity of only one of the two quadrilateral elements involved. Similarly,

the prediction of intersections takes advantage of these data structures when the

intersections are carried out with the seaming of two nodes.

At the end of the mesh generation, the node coordinates and element connectivities

can be directly printed out in a file to be used as the input of any finite element

analysis.

4.3 Examples

This section illustrates the capabilities of the method and robustness of the program

AutoQM with practical examples. The geometries proposed demonstrate the effi-

ciency of the algorithm to advance the front on complex configurations with uniform

as well as different mesh densities.

The first example is the intersection of two cylinders with different diameters

meshed with uniform density (see Figure 4-3a). The cylinder with smaller diameter

(30) intersects the other one (dia.=60) with an angle of 60 degrees. The overall

density used is 10. Note that the densities and the dimensions are given in units of

drawing.

Figure 4-3b shows the same configuration of two intersecting cylinders with local

density of 2 units of drawing in the edge where the intersection occurs. Note the

elevated density gradient between the right-hand edge of the horizontal cylinder and

the edge of intersection.

The second example illustrates the capacity of the method to handle different

mesh densities in the same front. As depicted in Figure 4-4, the local refinement

in the fillet (density 1) migrates to two different densities in the piece, 10 on the

right-hand edge and 5 on the opposite edge of the solid.

The third example shows a spherical sector with holes of different shapes and sizes

Chapter 4

(a) (b)

Figure 4-3: Example of a mesh generated over two cylinders intersecting.

(see Figure 4-5). It illustrates the capacity of the method when multiple fronts are

present on a surface with curvature in two directions. The overall density in this

example is 2 with local density equal to 8 along the border of the spherical sector.

4.4 Discussion of the method

The examples displayed in the previous section demonstrate the capacity of the

method to mesh complex geometries with quadrilateral elements. As in paving for

planar surfaces published by Blacker et al., the quality of the elements of the mesh

generated with uniform density is quite good. A minimum of distorted elements are

noticed mainly near the closures and intersections [27],[28],[29],[30]. The introduc-

tion of local densities increases the number of distorted elements, because frequent

corrections of the element sizes in the fronts have to be executed in order to handle

the migration among the different densities. Moreover, the occurrence of intersec-

tions between two fronts with different densities tends to create even more distorted

AutoQM: a Program for Automatic Quadrilateral Mesh Generation

Figure 4-4: Example of local refinement of the mesh in a fillet.

elements.

The extension of the method proposed by Blacker et al. to generate meshes on

curved surfaces demands the frequent evaluations of the vector normal to the surface

and the projection of each new node created or modified in the front. It also requires

that the advance of the front be checked a priori, i.e., before advancing the front.

This latter procedure is important to reduce the time expended in the generation,

which is already elevated in paving for planar surfaces. In the work of Blacker et al.,

the average rate of generation is 15 elements per second on a VAX 11/780 machine.

This work also mentions that the rate of generation is strongly dependent on the

geometry being meshed. Configurations, in which a great number of intersections

and seaming of nodes occur, consume more time to generate the mesh than those

with simply connected surfaces. In our case, we used two machines to evaluate the

rate of generation: a Sun Sparc-5 and a Silicon Graphic Indy workstation. In the

example shown in Figure 4-3a, 306 elements were generated in 209 seconds on the

Sparc-5 and in 129 seconds on the Indy. We have to stress the difficulty to compare

CPU time of different machines when not only a C-code is used but also a graphic

interface with AutoCAD is accessed. The large amount of CPU time expended in the

Chapter 4

Figure 4-5: Example of a mesh generated with multiple fronts in the same surface of
the solid.

execution of the graphic functions of AutoCAD commands the overall performance

of the mesh generation. On the other hand, the execution of any graphic function

is clearly faster on the Silicon Graphic machine. The same difficulty arises when we

compare this result with the one published by Blacker et al., since they also used a

different machine. Nevertheless, these results play an important role in the evaluation

of results presented in this research.

In the other example presented in Figure 4-3b, 1,249 elements were generated in

1,228 seconds on the Sparc-5 and in 744 seconds on the Indy. It displays a rate of

generation smaller than the one shown in Figure 4-3a. This difference can be explained

AutoQM: a Program for Automatic Quadrilateral Mesh Generation

by the presence of the local refinement, which increases the number of modifications

necessary to advance the fronts and, consequently, the whole time of generation as

discussed above.

Figure 4-4 displays another example in which AutoQM generates 800 elements in

325 seconds on the Sparc-5 and in 201 seconds on the Indy. Here, we note that the

rate increases due to the predominant number of planar surfaces that do not require

the projection of points nor the evaluation of the vector normal to surface every time

a node is created or modified. It is evident in another simple example tested, in which

a, cube with a square hole was meshed with 2,200 elements in 17 seconds on a Spark-5

and in 7 seconds on a Indy.

In Figure 4-5, we obtained 2,511 elements in 3,187 seconds on the Sparc-5 and

in 1,952 seconds on the Indy. Again, the great number of intersections and other

modifications that occur in the front during the generation slows down the execution

of the algorithm. Note that part of these modifications takes place on the spherical

surface which greatly amplifies the negative effect they have on the performance of

AutoQM.

The time consumed in the generation of the mesh seems to be the main limitation

of the method. However, this limitation is not due to the algorithm itself but to

the graphic interface used, namely the functions used to project points and obtain

vectors normal to the surfaces of the solid. As pointed out in the description of the

algorithm in Chapter 3, the frequent evaluation of the vector normal to the surface is

necessary only on curved surfaces. The same happens with the projection of any new

node created or modified during the mesh generation. These functions are executed

in AutoCAD and are accessed via the ADS interpreter (graphic interface), which

performs poorly if compared with the rest of the C-code of AutoQM. It was verified

with the meshes generated on solids bounded with only planar surfaces as mentioned

above in the example of a cube with a square hole. In this example the graphic

interface is accessed only once for each surface of the solid in order to evaluate its

normal vector. In this context, the circular advance of the front has to be mentioned

as an important feature introduced to improve the rate of generation. Blacker et al.

70 Chapter 4

advance the paving front by constructing a sequence of linear rows where the starting

and ending points have to be identified. It demands additional analyses before the

entire front advances, which is expected to grow as the complexity of the geometry

increases. As already discussed in this text, the circular advance of the front requires

only the identification of one starting point before advancing the entire front.

Chapter 5

Automatic Hexahedral Mesh

Generation: An Advancing Front

Approach

In three-dimensional problems, the advancing front method has been successfully used

to generate tetrahedral element meshes; however, a lack of schemes using hexahedral

elements has been noted. Blacker et al. [31] and Stephenson et al. [32] have proposed

plastering, a method that attempts to generate only hexahedral elements by projecting

the quadrilateral faces of the three-dimensional front. The generation starts along the

boundary where the initial 3D-front is obtained directly from the quadrilateral mesh

created to discretize the surfaces of the solid. After advancing the initial 3D-front, the

geometric contour is offset inward, which generates the first layer of hexahedrons. This

process is repeated until the whole domain has been filled with hexahedral elements.

In this chapter we present an algorithm to automatically generate hexahedral

meshes based on plastering. This method can only discretize domains in which the

exact closure of the mesh is possible. It limits the range of configurations that can

be meshed with this method. Actually, we demonstrate that plastering is limited to

mesh simple geometries. If more complex domains are considered, some intersections

and closures can be solved only with non-hexahedral elements.

As already pointed out, the initial front is directly obtained from the 2D-mesh

Chapter 5

generated on the boundary of the solid using the method presented in Chapter 3.

The code developed follows the same structure of AutoQM, being the main function

that generates the hexahedral mesh incorporated in the same ADS application that

loads AutoQM into AutoCAD. It allows the direct transfer of the quadrilateral mesh

generated with AutoQM to the 3D-mesh code by accessing the database stored in

memory, without having to write out any temporary files.

5.1 Initial 3D-front

The data necessary to construct the initial 3D-front is extracted from the quadri-

lateral mesh generated on the surface of the solid. It uses the same database created

to store the 2D-mesh in order to control the advance of the front. In addition to the

information that defines each quadrilateral element of the 3D-front, the connectivi-

ties among the quadrilateral faces are also stored, i.e., for each face f, we store the

numbers of its four adjacent faces (see Figure 5-1). Note that quadrilateral elements

are called quadrilateral faces in the text, since the word element is widely used for

hexahedrons hereafter. This database also stores the angle between adjacent faces

following the orientation established for the front. Basically, the orientation of the

front indicates that the vectors, normal to the faces, point inward into the domain

Figure 5-1: Adjacent faces of a given face f of the 3D-front.

Automatic Hezxhedral Mesh Generation: An Advancing Front Approach

bounded by the front (see Subsection 5.1.1).

5.1.1 Orientation of the 3D-front

In the three-dimensional mesh, the orientation of the front represents the direction of

the normal vector of each one of its faces. The normal vectors are constructed pointing

inward into the domain bounded by the 3D-front. This convention was selected to

provide a three-dimensional reference used to advance the front in the right direction.

vector
normal

to the face

a 0 vector
normal -o

to the surface

Figure 5-2: Evaluation of the normal vector of a face following the orientation of the
3D-.front (face of the initial 3D-front).

As depicted in Figure 5-2, the normal vector is obtained with the product of the

vectors defined by the two pairs of opposite nodes of the face, vectors vo and v1 . In

t he initial front, the result of this product is compared with the vector normal to the

surface, which points outward from the solid. If the inner product of these two vectors

is positive (angle less than 90 degrees), the normal vector of the face is multiplied by

'- 1'. It guarantees that the normal vector always points inward, which is the desired

orientation. In the subsequent fronts, the normal vectors are automatically set with

the correct orientation by following the direction in which the faces are projected

(see Subsection 5.3.1). Note that, for curved faces, the normal vector represents the

Chapter 5

average plane of the face, which we approximate here by the plane defined with the

vectors vo and v1. The evaluation of the normal vector using integration over the face

is computationally expensive and requires the parametric representation of the face,

which is not necessary to generate the mesh.

5.1.2 Angle between two adjacent faces of the 3D-front

The evaluation of the angle between two adjacent faces in the 3D-front employs

the same concept of semi-angles used to calculate the angles of the 2D-front (see

Subsection 3.1.6). Since the faces are not planar quadrilaterals, we have to select one

direction to represent the average plane of the face as illustrated with the vectors vo

and v, in Figure 5-3.

Figure 5-3: Representative
tors vo and vi)

directions of adjacent faces for the angle calculation (vec-

We cannot simply take the angle between the vector vo and v, as the angle between

the two faces, because these vectors are not perpendicular to the vector v. To make

them perpendicular, we execute two vector products that together are equivalent

to rotate them in the planes formed by each one of the vectors vo and v1 , and the

vector v. Taking the vector v, as an example, we calculate w = vi x v which is

a vector perpendicular to the plane defined by v and v1. In the second step, we

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

recalculate v1 == v x w. After processing both vectors, we normalize them to obtain

the configuration depicted in Figure 5-4. The vector 2 = v2 - v 0 is used to calculate

t = v2 x v, which lies in the plane defined by the vector vo and v,. Then, the vector t

is compared with the resultant of the sum of the two normal vectors of the faces, n. If

the angle between n and t is greater than 90 degrees, we take t = -t as the reference

for the semi-angle a. Note, this case can happen if the vectors v0 and v, are swapped.

Finally, we evaluate the semi-angle, a, using the inner product of the vectors t and _o,

and obtain the angle between faces defined as 2a. As in the 2D-mesh, the use of the

vector t is necessary since the angles between faces can assume any value in the range

0 to 360 degrees. Angles greater than 180 degrees would be evaluated incorrectly if

the inner product of the vectors vo and v, is used directly. If this wrong procedure

were used, all angles would lie between 0 and 180 degrees.

VI

Ivol = Iv- I

Figure 5-4: Evaluation of the angle between two adjacent faces, 2a.

5.2 General structure of the algorithm

After setting the orientation and evaluating the angles of the faces, the initial 3D-front

is read to advance. The advance of the 3D-front is performed by a process denomi-

nated offsetting, which consists of projecting all its faces inward. The projection of a

Chapter 5

face is a procedure that creates a hexahedral element in such a way that the face of

the front seem to be extruded inward. This technique takes into account the adjacent

faces and the geometry of the 3D-front in the vicinity of the face being projected. It

avoids duplicating faces defined with the same nodes, and prevents the occurrence of

notches and overlaps inside the mesh (see Section 5.3).

Since the closure is assumed to be exact, the main body of the algorithm is

relatively simple; however, the routine that advances the 3D-front by projecting the

faces is quite complex. The general structure of the algorithm is executed in the

function mesh3DO (see Appendix A.1) following the sequence below.

REPEAT until the end of the mesh

REPEAT for all faces of the 3D-front

IF the face is enabled for projection THEN

Project face

Disable faces connected to two elements

Evaluate normal vector of the enabled faces

Set adjacent faces in the vicinity

Evaluate the angles between faces in the vicinity

END of loop

END of loop

Smooth the mesh

Check the validity of the mesh

A face is considered enabled if it is connected to less than two elements, which

means that the face is part of the 3D-front. If the face is connected to two elements,

the method disables it, since no projection can be executed in the face.

The main loop increments the label that controls whether the faces of the 3D-front

belong to the present front or to the new front being constructed. For instance, the

faces of the initial 3D-front receive the label '0' and all the faces created in the first

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

offsetting are labeled '1'. The check of the end of the mesh is positive if all the faces

with the new value of the label are disabled, just after the last advance of the front

performed.

5.3 Advance of the 3D-front by offsetting

With the initial 3D-front set, the algorithm starts the generation of elements by off-

setting the front. This offsetting is accomplished after projecting all the faces of a

given front and creating a new layer of hexahedral elements. The name projection

indicates that each one of the four nodes of the face generates another node to com-

plete the eight nodes necessary to construct the element. This process takes into

account the vicinity of each node to be projected in order to avoid the occurrence

of two nodes with the same coordinates, notches, and overlaps inside the 3D-mesh.

For example, a face in a vertex of a cube has to project only the node opposite to

the vertex to complete the eight nodes required for the new element. In addition,

some situations do not demand the projection of any node of the face, because the

local configuration already provides the opposite face containing the other four nodes

necessary to generate the element.

Figure 5-5 shows that the first face selected to be projected in the front is located

in one of the edges of the solid. The next faces to be projected follow the order in

which the quadrilateral elements were generated in the 2D-mesh, so that the offsetting

is progressively accomplished from the edges to the interior of the solid. This order

of generation tends to copy the pattern of the initial front into the next fronts. Note

that the faces connected to the edges of the solid, after creating the elements, offset

the edges inward and no distortion is introduced in the faces of the next front due to

the shrinking of the volume delimited by the 3D-front.

The advance of the front is executed with the function advance_face_front(...)

listed in Appendix A.23, which is called in the main loop of the function mesh3DO .

78 Chapter 5

(f)

Figure 5-5: Advance of the 3D-front by successive projections of faces (sequence from
(a) to (f))

5.3.1 Projection of the faces of the 3D-front

The projection of the faces is the mechanism used in the method to advance the

3D-front. Executed individually for each face of the front, the process starts with the

identification of the nodes in the vicinity of the face as depicted in Figure 5-6. Then,

the coordinates of the nodes Pi and Vi are compared in order to figure out the shape

of the front around the face f and decide how to project the face.

The method searches for three configurations before creating any new node by

projection. The first configuration deals with a vertex-like geometry in which one of

three faces is to be projected (face f in Figure 5-7). A fourth face, opposite to the

face f, is also present as depicted in Figure 5-7.

The identification of the first configuration starts with the check for coincident

nodes in the vicinity of the face f. In Figure 5-7, the check is considered positive

if the expression < P5 E P6 and P7 -- V5 > is true. This check indicates that the

eight nodes necessary to form the new element are already available. In this case, two

78 Chapter 5

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

Figure 5-6: Nodes in the vicinity of the face to be projected (face f).

new faces are created to accomplish the projection of the face f. Note, however, that

these other two faces may already exist, which reduces the mechanism of projection

to a simple updating of connectivities in these faces.

The faces needed to complete the new element may already exist but may not be

totally connected to the nodes of the new element as illustrated in Figure 5-8. In this

situation, the face is seamed with the new element; i.e., node P2 is deleted and its

connectivity transferred to node V4.

The second configuration is similar to the first one in which the face opposite to

the face f does not exist, as depicted in Figure 5-9. This configuration is searched

only if the first configuration is not present.

The check executed to detect the second configuration involves the coincidence of

the nodes P5 and P6 displayed in Figure 5-9. It also requires that the angles between

the face f and the two adjacent faces (faces 2 and 3) be equal to or less than 135

79

80 Chapter 5

P6 P5
P7

P,

2

Figure 5-7: First configuration searched for the projection of the face f.

degrees. If the faces 0 or 1 are not connected to the faces 2 and 3, the node 1 is

projected to create the eighth node of the element. The node is projected toward the

direction of the resultant of the sum of the normal vectors of the faces connected to

the node (see vector s in Figure 5-10). The vector actually used for projection, v, is

obtained by normalizing the vector s with the average distance between the node Pi

7 7

4
8

2

Figure 5-8: Seaming of a face with a new element created by projection.

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

Pa= R P

Figure 5-9: Second configuration searched for the projection of the face f.

and the nodes connected to it (P1 to P5):

s_ 1n-= E dist(Pk, Pi) (5.1)
Isl n k=l

where n = 5 for the case depicted in Figure 5-10.

The algorithm also measures the angle between the vector v and the vectors formed

with the segments delimited by the node Pi and the adjacent nodes, P1 to P5 . If one

of these angles is equal to or less than 135 degrees, the adjacent node associated with

this angle is taken as the projected node Pj.

The third configuration is searched if none of the two previous configurations is

present. It consists of three adjacent faces with angles equal to or less than 135

degrees as depicted in Figure 5-11. This configuration is solved with the creation of

three new faces, if they do not yet exist.

If none of the three configurations is present in the vicinity of the face f, the

two nodes not connected to the adjacent face with angles equal to or less than 135

degrees (face 2) are projected as illustrated in Figure 5-12. Note that the face f has

always, at least, one adjacent face that satisfies this condition, because the first face

to be projected matches it, and all the subsequent projections are executed in faces

adjacent to one or more elements just created.

82 Chapter 5

Figure 5-10: Projection of a node.

The configurations proposed in this text to project the faces cover all the possible

cases in the front, except those in which intersections and inexact closures occur.

However, as we discuss later in this chapter, the method proposed in [31],[32] can-

not solve all inexact closures, or even some intersection cases, with all hexahedral

elements.

The code developed to carry out the projection is listed in the function projec-

V5

Figure 5-11: Third configuration searched for the projection of the face f.

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

4

Figure 5-12: Projection of the face not covered in any of the three basic configurations
initially searched for the projection of the face f.

tion(...) (see Appendix A.22). It is an auxiliary routine executed in the function

createelement(...) (see also Appendix A.22), which is called inside the function ad-

vance_facefront(...).

5.3.2 Smoothing of the hexahedral element

The shape of the element created with the projection of a face must follow the geom-

etry of the 3D-front in the vicinity of the face. In a vertex of a cube-like geometry, for

instance, the method shall create three other faces, in such a way that the element

generated is, as much as possible, similar to a parallelogram. To comply with this

requirement, the method applies a correction to each node projected, attempting to

reproduce the shape of the existing faces in the new faces created to form the element.

The correction of the projection of the node is a routine that deals with two

separate cases. The first is applied when only one of the faces adjacent to face f is

used during the construction of the new element, as depicted in Figure 5-13. This case

is solved with the rotation and normalization of the vectors created for the projection

(vectors 04 and 15). The rotation is performed within the planes 014 and 015 in

order to copy the shape of the face 2 and preserve, partially, the direction of the

83

84 Chapter 5

(a) (b)

Figure 5-13: Smoothing of an element created with the projection of two nodes.

projection. The magnitudes of these vectors are normalized with the lengths of the

vertical edges of the face 2 (segments 37 and 26). This routine is executed with the

function smoothone_face(...) listed as an auxiliary function in Appendix A.22.

The second case is used for the node created to solve the projection of the face f il-

lustrated in Figure 5-14. Note this is the second configuration described in Subsection

5.3.1. In this case, the projection is corrected by rotating the vector 15, so that the

angles c and d are set equal to a and b respectively, as depicted in Figure 5-14b. The

correction is completed after normalizing this vector with the average length of the

segments 04 and 26. This routine is executed in the function smoothtwo_faces(...),

which is also listed as an auxiliary function in Appendix A.22. Both functions are

called inside the function createelement(...).

5.4 Exact closure of the 3D-front

The exact closure is the conclusion of the mesh generation with all hexahedral ele-

ments. It happens, for instance, in a cube-like geometry with equal mesh patterns in

the opposite surfaces of the solid as in the example illustrated in Figure 5-5.

84 Chapter 5

IV

Automatic Hezahedral Mesh Generation: An Advancing Front Approach

(a) (b)

7 6

Figure 5-14: Smoothing of an element created with the projection of one node.

To better understand the mechanism that leads to the exact closure, we have to

visualize that the contribution of the adjacent faces in the generation of an element

by projection increases until no new face is necessary to construct the element, which

happens in the last element of the exact closure. On the other hand, we have to

notice that the intersection of the 3D-front demands simple patterns in order to

provide the correct configuration for the generation of only hexahedrons. If none of

these conditions exists, the 3D-mesh can be completed only with an inexact closure.

The inexact closure requires the use of wedge-like polyhedrons, namely pyramids

and pentahedrons. This situation happens, for instance, when two sectors of the

3D-front with different patterns and/or densities are present in the closure. Figure

5-15 illustrates three examples of inexact closure with the types of polyhedrons we

have mentioned: a wedge (a), a pyramid (b), and a pentahedron (c). In more complex

closures, the use of tetrahedrons might be necessary since they are the only polyhedron

that guarantees the closure in any configuration.

If only wedges as the one shown in Figure 5-15a occur in the inexact closure, the

mesh can be transformed to an all hexahedral mesh by collapsing the nodes 0 and 2

of the wedge and, consequently, the row of elements connected to the face 0123, in a

__ __
85

I

Chapter 5

(a) (b)

4=5M6=7

Figure 5-15: Examples of non-hexahedral elements present in inexact closures.

sequence that will end up with an element in the surface of the solid. However, the

pyramid in Figure 5-15b cannot be solved, even with the additional collapsing of the

nodes 1 and 3, which generates triangles in the upper sector of the front. Similarly,

the pentahedron depicted in Figure 5-15c cannot be solved. If we attempt to collapse

the nodes 0 and 3 along with the nodes 1 and 2, the two adjacent rows of elements

also have to be collapsed and, unless there is some symmetry, the entire mesh can be

destroyed.

The same case can occur in the intersection of the 3D-front. Let us take as an

example, the generation of the mesh in a solid that after advancing the 3D-front

a certain number of times meets a local configuration of five faces connected in a

circular shape as depicted in Figure 5-16a. The method generates an element using

three of the five faces and a pentahedron remains as the only possible solution to

complete the intersection.

In the light of this discussion, we are led to conclude that the inexact closures and

the intersections of the 3D-front are the main limitations of the method proposed

in [31],[32]. The absence of geometric properties that guarantee the exact closure

4mSm6m?

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

Figure 5-16: Intersection with generation of a pentahedron.

makes any algorithm that proposes to manage the advance of the 3D-front in order to

create the configuration necessary to complete the mesh with all hexahedral elements

extremely unreliable.

5.5 Smoothing of the 3D-mesh

The smoothing of the hexahedral mesh is similar to the scheme presented in Section

3.10 for the two-dimensional mesh, in which a standard Laplacian scheme was used.

It consists of moving each node of the mesh, Pi, to the geometric center of its adjacent

nodes, Pk:
In

Pi Pk (5.2)
n k=1

where n is the number of adjacent nodes.

The smoothing routine is essential to the check of valid mesh presented in Section

5.6. It must be executed before this check in order to guarantee that all the elements

are convex hexahedrons.

5.6 The check of valid mesh

The check of valid mesh consists of comparing the exact volume of the quadrilateral

mesh, generated along the boundary of the solid, with the sum of the exact volume

of each hexahedral element. A valid mesh displays the same value for these two

volumes. To calculate the exact volumes of the solid bounded by the 2D-mesh, we

use the volume created with the projection of each quadrilateral onto the coordinate

plane xy as depicted in Figure 5-17a.

(a) (b)
3

2

2'

2
A

Figure 5-17: Volume formed by the projection of a quadrilateral face onto the coor-
dinate plane xy.

The volume of the projection of a quadrilateral face is calculated as the sum of

the two pentahedrons formed by the division of this volume with the dashed lines

displayed in Figure 5-17. This procedure is necessary to handle the case where the

projection is a folded quadrilateral as illustrated in Figure 5-17b. In this case, the

volume created with the projection of the triangle 012 shall be added to the total

volume whereas the volume related to the triangle 023 shall be subtracted from it.

Note we represent the points 1 and 3 with the coordinates zl < z3 . We use the

value of the z coordinate of the normal vector of each triangle to determine whether

the volume of its projection must be added or subtracted from the total volume. If

the z coordinate of the normal vector is negative (vector no12) the volume is added,

otherwise it is subtracted (vector n023). If z = 0, the volume is not considered for

the sum. The normal vector of each triangular plane (vectors n012 and n02 3) points

inward into the solid, following the same convention used for the normal vectors of the

faces of the 3D-front described in Subsection 5.1.1. Note this approach is similar to

88 Chapter 5

|

--

T

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

a numerical integration over the volume, using the quadrilateral mesh as a partition.

The volume of each pentahedron is calculated as the sum of the volumes of the

three tetrahedrons into which it can be subdivided. In Figure 5-17a, the pentahedron

formed with the projection of the triangle 012 can be subdivided into the tetrahedrons

0121', 20'1'2', and 020'1'. To obtain the volume of a tetrahedron, we use the vectors

created with its four vertices as depicted in Figure 5-18.

Figure 5-18: Vectors used to calculate the exact volume of a tetrahedron.

The volume of the tetrahedron is then obtained with the inner product of the

vectors (vo x v1) and v2 , where (vo x vi) indicates the vector product of vo and v1:

Vterahedron = ((vo x v) -v2) (5.3)

The volume of the solid represented as the sum of its hexahedral elements is

calculated with the subdivision of each hexahedron into five tetrahedrons as illustrated

in Figure 5-19. The volume of each tetrahedron is evaluated with equation 5.3.

In order to allow the comparison between the volume of the quadrilateral mesh and

the volume resulting from the sum of the hexahedral elements, the nodes used to fold

each quadrilateral face of the 2D-mesh must be the same used along the contour of the

hexahedral mesh. Similarly, each face inside the hexahedral mesh must have only one

folding line. The folding nodes are those connected with a dashed line as illustrated

in Figures 5-17 and 5-19. They are established by a simple check of connectivity

90 Chapter 5

0

Figure 5-19: Subdivision of a hexahedron into five tetrahedrons: 0134, 1236, 1456,
3467, 1346.

among the nodes of the 3D-mesh. Starting with a randomly selected node, we set its

type to folding node and all its neighbors to non-folding type. Note that a folding

node is always connected to non-folding nodes and vice-versa (see Figure 5-19). Note

also that this procedure substitutes a parametric representation of the faces which

requires a more complex implementation.

As mentioned in Section 5.5, the smoothing of the 3D-mesh must be executed

before the check of valid mesh in order to provide only convex hexahedrons for the

volume calculation. If the hexahedron is not convex, the subdivision required to

represent its volume differs from the one adopted.

The 3D-mesh shown in Figure 5-5 was checked and the following values were

obtained:

V2D-mesh = 8732.019104643110040 (5.4)

V3D-mesh = 8732.019104643104583 (5.5)

The difference of 5.457x 10-12 demonstrates the efficiency of the scheme. Some larger

numerical differences are expected with the increasing of the number of elements in

the mesh.

The check of valid mesh is complemented with the verification of the connectivity

of each face of the 3D-mesh. A face has to be connected to two and only two elements

90 Chapter 5

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

inside the 3D-mesh, which means that the faces on the surface of the solid are not

considered. It guarantees that there are no notches and overlaps inside the 3D-

mesh. This complementary procedure provides the information necessary to analyze

the values V2D-mesh and V3D-mesh. If no error is detected in the connectivities of

the faces, the difference is due to numerical imprecision, and the mesh is considered

valid. This conclusion is drawn by noticing that, if the connectivities of the faces

are correct, the check of valid mesh detects only notches and overlaps that add or

subtract volumes with the magnitude of a hexahedral element.

The auxiliary functions used to check the 3D-mesh are listed in Appendix A.25.

The volume bounded by the quadrilateral mesh and the volume resulting from the sum

of the hexahedral elements are calculated with the functions volume_of_2D_mesh(...)

and volume_of_.3D_mesh(...), respectively. The verification of connectivities among

the faces is carried out in the function check_twoelementsperface().

5.7 Closure uncertainty: comparison with quadri-

lateral meshes

The robustness of any quadrilateral mesh generation method can be achieved only

with the existence of a geometric condition that guarantees, unconditionally, the

mesh execution. In transfinite interpolation, the domain discretization relies on the

mapping transformation. The advancing front method uses the condition of an even

number of nodes in the front to guarantee the closure with all-quadrilateral elements.

The transformation from triangles is based on the fact that any triangle can be

subdivided or combined to form quadrilateral elements. Geometric decomposition

relies on the condition of the secondary method used to mesh each one of its subregions

as discussed in Chapter 2.

Once the condition that guarantees the execution of the mesh on any geometry has

been identified, the development of the method is concentrated in programming issues,

such as database construction and smoothing techniques to generate a mesh with

good elements. Note, however, that if the method attempts to create the condition to

complete the mesh while it is being generated, its robustness is compromised. When

the third dimension is introduced, the existence of such a geometric condition is even

more necessary.

The advancing front method has been used to generate tetrahedral meshes in

general solids. The geometric property that guarantees the division of any polyhedron

into tetrahedrons is the cornerstone of the technique. In this method, no matter where

the front starts - on the boundary or in an interior point - the closure is always

possible. However, if hexahedral meshes are considered, the number of examples in

which the closure with all hexahedral elements is not possible, and the unstructured

nature of the generation indicate that the condition to guarantee the closure is limited

to very simple geometries as the one illustrated in Figure 5-5.

In the papers that proposed plastering as an automatic hexahedral mesh genera-

tion, no condition that guarantees the closure was indicated [31],[32]. Actually, the

solution of the mesh termination was postponed to further developments. With the

study performed in the present text, we conclude that the method cannot solve all

closures and intersections in the front with only hexahedral elements, being limited to

mesh simple geometries where the transfinite interpolation schemes are more efficient.

5.8 Discussion of methods for hexahedral mesh

generation

Mapping techniques have been the mainstream of the 3D-mesh generation methods

using hexahedral elements due to their relatively simple computational implementa-

tion and good performance. However, to mesh complex geometries, additional tech-

niques are necessary to subdivide the domain into simple polyhedrons [15],[16]. These

techniques perform poorly in fully automated schemes, especially when a complex con-

figuration is considered. A similar approach used to tackle complex geometries is the

topological representation of the solid in the natural domain, in which the correlation

92 Chapter 5

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

between the boundary of the topological geometry and the geometric contour of the

physical domain has to be carried out manually [11],[12]. Another important issue

in these approaches is the local refinement of the mesh. Hoyte proposed a scheme

called cut &6 glue to generate transitional meshes and allow different densities in adja-

cent subregions [146]. Although many improvements have been incorporated into the

method, the fully automated discretization of general solids with hexahedral elements

is still a goal to be reached.

As discussed in the previous section, the robustness of a mesh generation method

must rely on a condition that guarantees the construction of the mesh in any general

configuration.]In the light of this background, we investigate two methods to obtain

hexahedral meshes. The first method is based on the transformation from tetrahedral

meshes, which ;are generated with well-published methods that use the fact that any

polyhedron can be subdivided into tetrahedrons to guarantee the generation the mesh.

Grid superposition and advancing front methods have dominated the tetrahedral

mesh generation. Lo in [47],[48] used the advancing front method in an approach that

starts by meshing the boundary with triangles attempting to generate tetrahedrons

as equilateral as possible. Johnston also discretizes the surface of the solid before

advancing the front in an approach that offsets the 2D-mesh inward [49]. The standard

grid superposition, also known as octree, has been published by Kela and his colleagues

[50],[51],[52]. Similar approaches were proposed by Shephard and Georges in [53] and

Buratynski in [54].

The use of the transformation from tetrahedrons requires that the algorithm

adopted to generate the initial mesh be able to use coarse densities, because the

transformation reduces the density to half of the initial value set. It shall not be seen

as a limitation since finer meshes are often desired for improving the accuracy of the

solution. Besides, the tetrahedral mesh generation method can achieve fairly coarse

densities.

The advancing front method using tetrahedral elements tends to generate uni-

form meshes with good elements (i.e., nearly equilateral tetrahedrons) throughout

the domain. It is an important feature of the method as far as tetrahedral meshes are

93

94 Chapter 5

node

Figure 5-20: Typical node of a tetrahedral mesh generated with the advancing front
method. Node with 20 adjacent tetrahedral elements.

concerned; however, it is undesirable in transformation schemes dedicated to generate

hexahedral elements. In the advancing front method, a typical node is surrounded by

an average of 20 quasi equilateral tetrahedrons as depicted in Figure 5-20. This node

will also have 20 adjacent hexahedral elements after the transformation, which is 2.5

times as much as the number of elements connected to a node in an ideal hexahedral

mesh, i.e., eight adjacent elements per node. On the other hand, the new nodes cre-

ated inside each tetrahedron are surrounded by 4 hexahedrons which is not a good

pattern either.

The second method investigated uses grid superposition to overlay a uniform patch

of hexahedrons over the geometry and uses hexahedrons and some pentahedrons,

pyramids, and tetrahedrons to connect the mesh to the boundary. If we consider only

the initial hexahedral elements generated, we have a core mesh that covers a great

part of the volume of the solid as depicted in Figure 5-21.

As already mentioned, the problem of connecting the contour of the core mesh

and the boundary of the solid can be solved with hexahedrons and some pentahe-

drons, pyramids, and tetrahedrons. This method can also be structured to maximize

the number of hexahedrons generated. As a result, the use of grid superposition,

combined with the generation of non-hexahedral elements in some points along the

94 Chapter 5

Automatic Hexahedral Mesh Generation: An Advancing Front Approach

Figure 5-21: Core mesh of hexahedral elements generated with grid superposition.

boundary is, in certain aspects, better than plastering with closures and intersections

solved also with non-hexahedral elements. The argument commonly used that plas-

tering creates good elements along the boundary cannot be taken absolutely. The

existence of bad elements in the closure and in other points of the quadrilateral mesh

ends up with bad hexahedral elements on the surfaces. Here we raise some points

that deserve investigation, namely the comparison between bad hexahedral elements

and mixed meshes with some non-hexahedral elements along the boundary, simi-

larly to what has been done to compare the performance of isoparametric elements

[2]. [3],[4],[5],[6]. Another aspect that must be taken into consideration is that plas-

tering generates regions with a great number of non-hexahedral elements randomly

distributed throughout the mesh, whereas grid superposition provides some control

of their distribution in the mesh. Grid superposition is a boundary sensitive method,

which means that the rotation of the domain in respect to the uniform grid changes

the final mesh obtained. This feature can be used to create very good elements in

sectors of interest along the boundary by setting the uniform grid parallel to the

planes of these sectors.

Another approach consists of associating grid superposition with the introduction

96 Chapter 5

of the first layer of hexahedral elements generated with plastering. It offsets the

boundary inward, creating only hexahedral elements on the surfaces of the solid (see

Figure 5-22). The connection of the plastering mesh with the contour of the core mesh

still demands the use of some non-hexahedral elements; however, it takes place one

layer underneath the boundary. Note this approach requires that the mesh density

distribution in the 2D-mesh allows the construction of the first layer of hexahedrons

without intersections.

Figure 5-22: Grid superposition associated with the first layer of hexahedral elements
generated with plastering.

It is important to note that the use of grid superposition, associated with trans-

formation from tetrahedrons to achieve a fully hexahedral mesh, generates elements

worse than those obtained if the initial mesh were constructed with the advancing

front method, discussed previously in this section. Due to the continuity requirement

between the most external elements of the core mesh, and to the non-hexahedrons

necessary to connect the core mesh to the boundary, the hexahedrons of the core mesh

cannot be simply subdivided into eight regular hexahedral elements. Actually, each

one of these hexahedrons must be subdivided into five tetrahedrons which, after be-

ing transformed, end up with 20 hexahedrons. As a result, approximately half of the

·I ;i

Ml ii

Automatic Hexahedral Mesh Generation: An Advancing Front Approach 97

nodes that define the initial core mesh will be connected to 32 hexahedrons, which is

worse than the 20 hexahedrons obtained with the advancing front method. Note that

a different result is obtained if grid superposition is associated with transformation

from triangles to generate quadrilateral meshes. In two-dimensional problems, the

connectivities among the elements permit that each quadrilateral of the core mesh be

subdivided into 4 regular quadrilateral elements.

99

Chapter 6

Comments and Conclusions

In this thesis we considered the generation of 2D and 3D-meshes. Regarding the

2D-mesh generation, the method presented is able to automatically discretize general

surfaces using only quadrilateral elements. The meshes generated in the examples

discussed illustrate the capability of the algorithm to handle different mesh densities

in simply connected surfaces as well as in configurations with multiple non-connected

boundaries. The examples also revealed the efficiency of the algorithm to generate

meshes in the presence of high density gradients. The good quality of the elements is

another characteristic of the mesh generated. The few unavoidable distorted elements

generated occur in regions far from the boundaries of the surfaces. These distortions,

however, are minimized in regions of low density gradients of the mesh.

The performance of AutoQM varies with the complexity of the geometry be-

ing meshed. The rate of generation is drastically reduced when curved surfaces are

meshed, since the evaluation of the vector normal to the surfaces and the projection

of any new node created or modified in the mesh are frequently executed. The im-

provement of the code shall necessarily demand more efficiency for these geometric

operations and, consequently, better performance of the graphic interface, namely the

AutoCAD-ADS interpreter.

Any mesh generation method has to rely on a key condition that assures the

generation of the mesh in any general geometry. Methods that attempt to create

this condition simultaneously with the generation of the mesh cannot assure that

any geometry will be discretized with the type of element desired. In this context,

regarding the 3D-meshes, the automatic generation of all hexahedral meshes is still

a goal to be reached. The method proposed in plastering is capable of meshing only

simple geometries, in which intersections and closures can be solved with hexahedral

elements. If more complex geometric configurations are to be discretized, the mesh

cannot be generated without using some pentahedrons and pyramids, or even some

tetrahedrons. This procedure can generate meshes with elements very much distorted,

especially if different densities are being used. In the light of these conclusions, we

propose the use of grid superposition to tackle this problem. Despite the use of

some non-hexahedral elements, necessary to complete the mesh, the method seems to

provide good control of their occurrence in the mesh. We also propose the association

of grid superposition with the first layer of elements generated with plastering in order

to create only hexahedral elements along the boundaries, which is strongly desired in

any finite element analysis.

100 Chapter 6

101

References

[1] K. J. Bathe. Finite Element Procedures. Prentice Hall, New Jersey, 1996.

[2] N. S. Lee and K. J. Bathe. Effects of Element Distortions on the Performance of
Isoparametric Elements. International Journal for Numerical Methods in Engi-
neering, 36:3553-3576, 1993.

[3] L. N. Gifford. More on Distorted Isoparametric Elements. International Journal
for Numerical Methods in Engineering, 14:290-291, 1979.

[4] L. Bicklund. On Isoparametric Elements. International Journal for Numerical
Methods in Engineering, 12:731-732, 1978.

[5] J. A. Stricklin, W. S. Ho, E. Q. Richardson and W. E. Haisler. On Isoparamet-
ric vs Linear Strain Triangular Elements. International Journal for Numerical
Methods in Engineering, 11:1041-1055, 1977.

[6] A. O. Cifuentes and A. Kalbag. A Performance Study of Tetrahedral and Hexa-
hedral Elements in 3-D Finite Element Structural Analysis. Finite Elements in
Analysis and Design, 12:313-318, 1992.

[7] K. L. Lin and H. J. Shaw. Two-Dimensional Orthogonal Grid Generation tech-
niques. Computers & Structures, 41(4):569-583, 1991.

[8] K. H. Baldwin and H. L. Schreyer. Automatic Generation of Quadrilateral Ele-
ments by Conformed Mapping. Engineering Computations, 2:187-194, 1985.

[9] M. Montgomery and S. Fleeter. A Locally Analytic Technique Applied to Grid
Generation by Elliptic Equations. International Journal for Numerical Methods
in Engineering, 38:421-432, 1995.

[10] W. D. Rolph III. Requirements for Finite Element Model Generation from CAD
Data - An Approach Using Numerical Conformal Mapping. Computers & Struc-
tures, 56(2/3):515-522, 1995.

[11] F. Landertshamer and H. Steffan. Method to Generate Complex Computa-
tional Meshes Efficiently. Communications in Numerical Methods in Engineering,
10:373-384, 1994.

[12] R. E, Smith and L. E. Eriksson. Algebraic Grid Generation. Computer Methods
in Applied Mechanics and Engineering, 64:285-300, 1987.

[13] J. F. Thompson. A General Three-Dimensional Elliptic Grid Generation System
on a Composite Block Structure. Computer Methods in Applied Mechanics and
Engineering, 64:377-411, 1987.

[14] J. Zhu. A Hybrid Differential-Algebraic Method for Three-Dimensional Grid
Generation. International Journal for Numerical Methods in Engineering,
29:1271-1279, 1990.

[15] P. A. F. Martins and M. J. M. B. Marques. MODEL3 - A Three-Dimensional
Mesh Generator. Computers & Structures, 42(2):511-529, 1992.

[16] T. K. H. Tam. Finite Element Mesh Control by Integer Programming. Interna-
tional Journal for Numerical Methods in Engineering, 36:2581-2605, 1993.

[17] R. Haber, M. S. Shephard, J. F. Abel, R. H. Gallagher and D. P. Greenberg.
A General Two-Dimensional, Graphical Finite Element Preprocessor Utilizing
Discrete Transfinite Mappings. International Journal for Numerical Methods in
Engineering, 17:1015-1044, 1981.

[18] T. K. H. Tam and C. G. Armstrong. 2D Finite Element Mesh Generation by
Medial Axis Subdivision. Advances in Engineering Software, 13(5/6):313-324,
1991.

[19] T. D. Blacker, M. D. Stephenson, J. L. Mitchiner, L. R. Phillips and Y. T. Lin.
Automated Quadrilateral Mesh Generation: An Knowledge System Approach.
ASME, 88-WA/CIE-4, 1988.

[20] L. T. Souza and M. Gattass. A New Scheme for Mesh Generation and Mesh Re-
finement Using Graph Theory. Computers & Structures, 46(6):1073-1084, 1993.

[21] J. Z. Zhu, O. C. Zienkiewicz, E. Hinton and J. Wu. A New Approach to the De-
velopment of Automatic Quadrilateral Mesh Generation. International Journal
for Numerical Methods in Engineering, 32:849-866, 1991.

[22] J. L. M. Fernandes. On Finite Element Mesh Reconstruction from Nodal Coor-
dinates. Advances in Engineering Software, 17:21-27, 1993.

[23] B. P. Johnston, J. M. Sullivan Jr., A. Kwasnik. Automatic Conversion of Trian-
gular Finite Element Meshes to Quadrilateral Elements. International Journal
for Numerical Methods in Engineering, 31:67-84, 1991.

[24] E. Rank, M. Schweingruber and M. Sommer. Adaptive Mesh Generation and
Transformation of Triangular to Quadrilateral Elements. Communications in Nu-
merical Methods in Engineering, 9:121-129, 1993.

References102

[25] G. Xie and J. A. H. Ramaekers. Graded Mesh Generation and Transformation.
Finite Element in Analysis and Design, 17:41-55, 1993.

[26] J. M. Tembulkar and B. W. Hanks. On Generating Quadrilateral Elements from
a Triangular Mesh. Computer & Structures, 42(4):665-667, 1992.

[27] T. D. Blacker and M. B. Stephenson. Paving: A New Approach to Automated
Quadrilateral Mesh Generation. International Journal for Numerical Methods in
Engineering, 32:811-847, 1991.

[28] T. D. Blacker, J. Jung and W. R. Witkowski. An Adaptive Finite Element Tech-
nique Using Element Equilibrium and Paving. ASME, 90-WA/CIE-2, 1990.

[29] T. D. Blacker, M. B. Stephenson and S. Canann. Analysis Automation with
Paving: A New Quadrilateral Meshing Technique. Advances in Engineering Soft-
ware, 13(5/6):332-337, 1991.

[30] T. D. Blacker and M. B. Stephenson. Paving: A New Approach to Automatic
Quadrilateral Mesh Generation. Sandia National Laboratories, SAND-90-0249,
1990.

[31] T. D. Blacker and R. J. Meyers. Seams and Wedges in Plastering: A 3-D Hexa-
hedral Mesh Generation Algorithm. Engineering with Computers, 9:83-93, 1993.

[32] M. B. Stephenson, S. A. Canann and T. D. Blacker. Plastering: A New Approach
to Automated, 3D Hexahedral Mesh Generation. Sandia National Laboratories,
SAND-89-2192, 1992.

[33] W. R. Buell and B. A. Bush. Mesh Generation - A Survey. ASME, 72-WA/DE-2,
1972.

[34] V. N. Kaliakin. A Simple Coordinate Determination Scheme for Two-
Dimensional Mesh Generation. Computers 8 Structures, 43(3):505-515, 1992.

[35] S. H. Lo. Generating Quadrilateral Elements on Plane and over Curved Surfaces.
Computers 6 Structures, 31(3):421-426, 1989.

[36] J. A. Talbert and A. R. Parkinson. Development of an Automatic, Two-
Dimensional Finite Element Mesh Generator Using Quadrilateral Elements and
Bezier Curve Boundary Definition. International Journal for Numerical Methods
in Engineering, 29:1551-1567, 1990.

[37] C. S. Krishnamoorthy, B. Raphael and S. Mukherjee. Meshing by Successive
Superelement Decomposition (MSD) - A New Approach to Quadrilateral Mesh
Generation. Finite Element in Analysis and Design, 20:1-37, 1995.

[38] J. F. Thompson, Z. U. A. Warsi and C. W. Mastin. Numerical Grid Generation
- Foundations and Applications. North-Holland, New York, 1985.

References 103

[39] P. L. George. Automatic Mesh Generation - Application to Finite Element Meth-
ods. John Wiley & Sons, Masson, 1991.

[40] P. Knupp and S. Steinberg. Fundamentals of Grid Generation. CRC Press, Boca
Raton, 1994.

[41] A. Tezuka. Adaptive Process with Quadrilateral Finite Elements. Advances in
Engineering Software, 15:185-201, 1992.

[42] P. L. Baehmann, S. L. Wittchen, M. S. Shephard, K. R. Grice and M. A. Yerry.
Robust, Geometrically Based, Automatic Two-Dimensional Mesh Generation.
International Journal for Numerical Methods in Engineering, 24:1043-1078, 1987.

[43] F. Cheng, J. W. Jaromczyk, J. R. Lin, S. S. Chang and J. Y. Lu. A Parallel Mesh
Generation Algorithm Based on Vertex Label Assignment Scheme. International
Journal for Numerical Methods in Engineering, 28:1429-1448, 1989.

[44] A. S. Watson and C. J. Anumba. The Need for an Integrated 2D/3D CAD System
in Structural Engineering. Computers & Structures, 41(6):1175-1182, 1991.

[45] H. Jiazhen. Intoad - An Interface Between IRM and ADINA. Computers & Struc-
tures, 47(4/5):751-756, 1993.

[46] J. Hoyte. The Cut & Glue Mesh Generation Algorithm. Engineering with Com-
puters, 8:51-58, 1992.

[47] S. H. Lo. Volume Discretization into Tetrahedra - I. Verification and Orientation
of Boundary Surfaces. Computers & Structures, 39(5):493-500, 1991.

[48] S. H. Lo. Volume Discretization into Tetrahedra - II. 3D Triangulation by Ad-
vancing Front Approach. Computers & Structures, 39(5):501-511, 1991.

[49] B. P. Johnston. A Normal Offsetting Technique for Automatic Mesh Generation
in Three Dimensions. International Journal for Numerical Methods in Engineer-
ing, 36:1717-1735, 1993.

[50] A. Kela, M. Saxena and R. Perucchio. A Hierarchical Structure for Automatic
Meshing and Adaptive FEM Analysis. Engineering Computations, 4:104-112,
1987.

[51] M. Saxena and R. Perucchio. Element Extraction for Automatic Meshing Based
on Recursive Spatial Decompositions. Computers 6 Structures, 36(3):513-529,
1990.

[52] R. Perucchio, M. Saxena and A. Kela. Automatic Mesh Generation from Solid
Models Based on Recursive Spatial Decompositions. International Journal for
Numerical Methods in Engineering, 28:2469-2501, 1989.

104 References

[53] M. S. Shephard and M. K. Georges. Automatic Three-Dimensional Mesh Gen-
eration by the Finite Octree Technique. International Journal for Numerical
Methods in Engineering, 32:709-749, 1991.

[54] E. K. Buratynski. A Fully Automatic Three-Dimensional Mesh Generator for
Complex Geometries. International Journal for Numerical Methods in Engineer-
ing, 30:931-952, 1990.

[55] J. E. Castillo and S. Steinberg. On the Folding of Numerical Generated Grids:
Use of a Reference Grid. Communications in Applied Numerical Methods, 4:471-
481, 1988.

[56] L. Sezer and I. Zeid. Automatic Quadrilateral/Triangular Free-Form Mesh Gen-
eration for Planar Regions. International Journal for Numerical Methods in En-
gineering, 32:1441-1483, 1991.

[57] K. J. Berry. Parametric 3D Finite-Element Mesh Generation. Computers a
Structures, 33(4):969-976, 1989.

[58] R. Perucchio, A. R. Ingraffea and J. F. Abel. Interactive Computer Graphic Pre-
processing for Three-Dimensional Finite Element Analysis. International Journal
for Numerical Methods in Engineering, 18:909-926, 1982.

[59] A. Oddy, J. Goldak, M. McDill and M. Bibby. A Distortion Metric for Isopara-
metric Finite Elements. Transactions of the CSME, 12(4):213-217, 1988.

[60] S. A. Canann, M. B. Stephenson and T. Blacker. Optsmoothing: An
Optimization-Driven Approach to Mesh Smoothing. Finite Elements in Anal-
ysis and Design, 13:185-190, 1993.

[61] M. Sabin. Criteria for Comparison of Automatic Mesh Generation Methods.
Advances in Engineering Software, 13(5/6):220-225, 1991.

[62] E. Amezua, M. V. Hormaza, A. Hernandez and M. B. G. Ajuria. A Method for
the Improvement of 3D Solid Finite-Element Meshes. Advances in Engineering
Software, 22(1):45-53, 1995.

[63] J. Robinson. Some New Distortion Measures for Quadrilaterals. Finite Elements
in Analysis and Design, 3:183-197, 1987.

[64] S. E. Benzley, K. Merkley, T. D. Blacker and L. Schoof. Pre- and Post-Processing
for the Finite Element Method. Finite Elements in Analysis and Design, 19:243-
260, 1995.

[65] W. C. Thacker. A Brief Review of Techniques for Generating Irregular Com-
putational Grids. International Journal for Numerical Methods in Engineering,
15:1335-1341, 1980.

References 105

106 Chapter 6

[66] K. H. Le. Finite Element Mesh Generation Methods: A Review and Classifica-
tion. Computer-Aided design, 20(1):27-38, 1889.

107

Appendix A

Code for quadrilateral and

hexahedral mesh generation

108 Appendix A

A.1 Main body of the code for the 2D and 3D-
mesh generation

#include <stdio.h>
#include <math. h>
#include <adslib.h>
#include <aplib.h>
#include <time.h>
include "global_variables .h"

#include "auxiliary.functions.c"
#include "nodes_andelementson-edgesof solid.c"

#include "initial_2Dfront.c"
#include "orientation. c" 10
include "frontangledistance.c"
#include "close_corner.c"
#include "seam. c"
include "auxiliaryfunctionsforadvancefront .c"
#include "advance-front .c"
include "auxiliary-functionsfor_correct_front_size .c"
#include "correctfront_size.c"
#include "auxiliary.functionsfor.intersection. c"
include "intersection. c"
#include "closefront .c" 20
include "smoothfront .c"
#include "cleanp.c"
include "smooth.c"
#include "initial 3D front. c"

#include "faceangles. c"

#include "auxiliaryfunctions_for-checkingmesh. c"
include "auxiliaryfunctionsforadvancejfacefront .c"
#include "advance-facefront. c"
include "smooth_3D. c"
#include "template. c" 30

/*#####################*/
/* GEOMETRY EXTRACTION */

/*#####################*/
geo()

/* DECLARATION OF LOCAL VARIABLES */
int i, j;
ads_name sol_set, sol_name; 40
REAL aux;
time_t ti, tf;
apEdgelist *sol_elist, *face_elist;
apFacelist *sol_flist;

/* INITIAL SETTINGS */

ti=time(&ti);
a45 = acos(-1.0) / 4.0 ;
a60 = 4.0 * a45 / 3.0;

Code for quadrilateral and hexahedral mesh generation 109

a90 = 2.0 * a45;
a120 = 2.0 * a60;
a135 = 3.0 * a45;
a180 = 4.0 * a45;
a200 = 5.0 * a120 / 3.0;
a220 = 11.0 * a120 / 6.0;
a240 = 2.0 * a120;
a300 = 5.0 * a60;
for(i=0 ; i < MAX_NODE ; i++) node[i].nfi = 0;
for(i=0 ; i < 6*MAX_FRONTPER FACE ; i++) no intersectnode[i] = 0;
ads_command(RTSTR, "setvar", RTSTR, "CMDECHO" ,RTSTR, "0", 0);
ads_command(RTSTR, "handles", RTSTR, "on", 0);

/* SOLID SELECTION AND ID */
ads_ssget(NULL, NULL, NULL, NULL, sol_set);
ads_ssname(sol_set, OL, sol_name);
ap_name2obj(sol_name, &sol_id);

/* INPUT ELEMENT SIZE */
ads-getreal("Enter element size (units of drawing): ", &size);

/* MESH'S CONTRUCTION VIZUALIZATION */
adsgetint("Do you want to see the mesh construction

/* SOLID's LIST OF EDGES */
printf("Stracting edges geometry...\n");

ap_obj2edges(sol_id, TRUE, &sol_elist);

while (sol_elist) {
soledge[n_edge] .id = sol_elist->edgeid;
sol_edge[n_edge]
sol_edge[n_edge]
sol_edge[n_edge]
sol_edge[n_edge]
sol_edge[n_edge]
sol_edge[n_edge]
sol_edge[n_edge]
sol_edge[n_edge]
sol_edge[n_edge]

? (1, 0) ", &repr);

.len = (REAL) (sol_elist->edge->edgelen);

.spar = (REAL) (sol_elist->edge->sparm);

.e par = (REAL) (sol_elist->edge->eparm);

.sp[X] = (REAL) (sol_elist->edge->spt[X])

.sp[Y] = (REAL) (sol_elist->edge->spt[Y])

.s_p[Z] = (REAL) (sol_elist->edge->spt[Z])

.e_p[X] = (REAL) (sol_elist->edge->ept[XI])

.ep[Y] = (REAL) (sol_elist->edge->ept[Y])

.ep[Z] = (REAL) (sol_elist->edge->ept[Z])
sol_elist = sol_elist->edgenext;
n_edge++;

apfreeedgelist (solelist);
set_edge_size();

/* SOLID's LIST OF FACES */
printf("Stracting faces geometry...\n");
ap_obj2faces(sol_id, TRUE, &solflist);
while (sol_f list) {

sol_face[n_face].id = sol_flist->faceid;
sol_face [nface] .type = sol_flist->face->stype;
apface2edges(solid, solface [n_face] .id, FALSE, &faceelist);
sol_face[n_face] .ne = 0;
while (faceelist) {

for(i=0 ; i < n_edge ; i++){

Code for quladrilateral and hexahedral mesh generation 109

110 Appendix A

if(sol_edge[i] .id == face_elist->edgeid){
sol_face[nface] .edge[solface[nface] .ne] = &sol_edge[i] ;
break;

}
}
face_elist = face_elist->edgenext;
solface [nf ace] .ne++; 110

}
solflist = solflist->facenext;
n face++;

apfree_edgelist (faceelist);
apfreefacelist(solflist);

/* CREATE NODES AND ELEMENTS IN EACH SOLID'S EDGE */
printf("Creating nodes and elements on the edges...\n");
nodes_and_elements_on_edgesofsolid(); 120

/* SETUP OF 2D FRONT */
printf ("Setting up 2D-fronts...\n");
for(m=0 ; m < nface ; m++){

initial 2Dfront();
for(j=O ; j <= n_f[m] ; j++){

orientation(j);
printf("turn[%d] [%d]=X2. llf\n", m, j, turn[m] [j]);
frontangle_distance(j);

} 130
set_edge_size_of_face();

/* TIME MEASUREMENT */
tf=time(&tf);
aux = difftime(tf, ti);
printf("CPU time to get the geometry = %f sec.\n", aux);
ti = tf;
return RSRSLT;

140

/*#########*/
/* 2D-MESH */

int autoqm()
{

int i, j, k, e, s, c=O;
REAL aux;
time_t ti, tf;

150

/* MESH EACH FACE*/
ti=time(&ti);
for(m=O ; m < n_face; m++){

if(solface[m] .type == 0)
appt_norm2face(sol_id, sol_face [m] .id,node [f [m] [03 .n] .coord,TRUE, n[m]);

printf("\nface = %d\n", m);
printf(" rect_face=%d\n", (rectface = rectangularface(m)));

Code for quadrilateral and hexahedral mesh generation

pf = fi;
pn = ni;

for(j=O ; j < MAX_FRONT_PERFACE ; j++){ 160
origin[j].front[O] = j;
origin[j].nfri = 1;

}
for(j=O ; j <= n_f[m] ; j++){pff[j] = fi; printf("%d\n",advancefront(j));}

for(j=0 ; j <= n_f[m] ; j++){
printf(" front = %d\n", j);
if(setki_kpi(j) == 0) continue;
for(; ;){

if((kpi-ki+l) <= 6){closefront(j); break;} 170
e = 0;
s = 0;
while(seam(j) == 1){

s = 1;

printf ("i\n");
if((kpi-ki+l) <= 6){

close_front(j);
e = 1;
break;

}180

if(s == 1) if(repr == 1) reprintface(pff[j]);
if(e == 1) break;
printf("0\n");
e = 0;

while(close_corner(j) == 1){
printf("1\n");
if((kpi-ki+l) <= 6){

close_front(j);
e = 1; 190
break;

I
}
if(e == 1) break;
printf("O\n");
e = 0;
for(i=0 ; i <= n_f[m] ; i++){

if((j == i) II (check_origin(i, j) == 0)){
if(intersection(j, i) == 1){

printf(" \n"); 200
if(j <= i) j--; else j = i - i;
e = 1;
break;

I
printf("0\n");

}

if(e == 1) break;
if(smooth_front(j) == i){

printf("1\n"); 210
e = 0;

111

112 Appendix A

for(i=O ; i <= n_f[m] ; i++){

if((j == i) 1 (check_origin(i, j) == 0))
if(intersection(j, i) == 1){
printf("1\n");

if(j <= i) j--; else j = i- 1;

e = 1;

break;

}
printf("0\n"); 220

if(e == 1) break;

else printf("O\n");

pfc = pff[j] ;

pff[j] = fi;

printf(" %d\n", advance_front(j));
if(correct_front_size(j) ==) {
printf("1\n") ; 230
printf("%d\n", smooth_front(j));

I
else printf("O\n");

}

smooth();
clean_up();

/* TIME MEASUREMENT */ 240

tf=time(&tf);
aux = difftime(tf, ti);
printf("CPU time for meshing 2D = %f sec.\n", aux);

if(repr == 0) print_all_faces();
for(i=0 ; i < MAX_SOL FACE ; i++) free(f [i]);
free(f);

free(af);

free(edge);

free(sol_edge); 250
return RSRSLT;

/*#########*/
/* 3D--MESH */

int mesh3D()
{

/* DECLARATION OF LOCAL VARIABLES */ 260

int i, k;
REAL vol, aux;

time_t ti, tf;

/* MESHING EACH FACE */

ti=time(&ti);
pn = ni;
initial_3Dfront();
for(i=0 ; i < fi ; i++){

if(face[i] .no != -){ 270
face[i].ord = 0;
for(k=0 ; k < 4 ; k++){

face[i].a[k] = face_angles(i, k);
I

}
for(i=0 ; i < MAX_NODE ; i++) node[i] .type = -1;
node[0].type = 1;
set_node_typeface();
vol = volume_of_2D_mesh(0); 280
i = 0;
while(advance_face_front(i) > 0) i++;
check_two_elements_per_face();
smooth_3D();
setnode_type_element();
printf("Volume of 2D-mesh = %lf\n", vol);
printf("Volume of 3D-mesh = %lf\n",(aux=volume_of_3Dmesh(O,ci)));
printf("Difference: volume 2D-mesh - volume 3D-mesh = ,lf\n",(aux-vol));

/* TIME MEASUREMENT */ 290
tf=time(&tf);

aux = difftime(tf, ti);
printf("CPU time for meshing 3D = %f sec.\n", aux);

return RSRSLT;

I

A.2 Declaration of global variables

#define CUBE 30
#define MAX_SOL_FACE CUBE
#define MAX_ELEMENT CUBE*CUBE*CUBE
#define MAX_FACE 2*(CUBE+1)*(CUBE+1)*(CUBE+1)
#define MAX_NODE (CUBE+1)*(CUBE+1)*(CUBE+1)
#define MAX_FRONT CUBE*CUBE*CUBE
#define MAX_FRONT_PER_FACE 2*CUBE
#define MAX_EDGE CUBE*CUBE*CUBE
typedef double REAL;
typedef REAL POINT[3]; 10

/* GEOMETRY DATA */
struct solid_edge
{

long int id;
int nel;

Code for quadrilateral and hezahedral mesh generation 113

A 1' A

114 Appenafz A

REAL len;

REAL s par, e_par;

POINT s_p, e_p;

int ref; 20

REAL size;

}sol_edge [3*MAXSOLFACE];

struct solid face

{
int id;
int type;

int ne;

struct solid_edge *edge[CUBE];

}sol face [MAX_SOL_FACE]; 30

/* 2D AND 3D DATABASES */
struct element

{
int no;

int enode [8];
}element [MAXELEMENT];

struct face
{ 40

int no;
int fm;
int fnode[4] ;

int ord;
int fface[4];
REAL a[4] ;
POINT norm;

}face [MAX FACE];

struct edge 50

{
int no;
int node[2] ;
int edge_id;

}edge[MAX_EDGE];

struct node

{
int no;
POINT coord; 60

int nface[15];
int nfi;

int type;

}node [MAXNODE];

/* 2D FRONT STRUCTURE */

struct front

I
int n;
: 4- -C.
111~1,

Code for quadrilateral and hexahedral mesh generation 115

REAL a;
REAL d;

}f [MAX_SOL_FACE] [MAX_FRONT] ;

/* DECLARATION OF GLOBAL VARIABLES */

int ni = 0; /* NODES COUNTER */

int ei = 0; /* EDGES COUNTER */

int vi = 0; /* VERTEX COUNTER */
int fi = 0; /* FACES COUNTER */
int ci = 0; /* ELEMENTS COUNTER */ 80
int pi [MAX FRONTPER_FACE]; /* 2D-FRONT COUNTER */
int n_f [MAX_FRONTPERFACE]; /* No. OF FRONT IN THE FACE BEING MESHED */

int ff [MAX_FRONT] ; /* AUXILIARY ARRAY OF 2D-FRONT IN advancefront */

int tfi; /* TEMPORARY COUNTER FOR fi */

int af i; /* *ff COUNTER AND FACE COUNTER */

int lafi; /* AUXILIARY FACE COUNTER */

int aci; /* AUXILIARY ELEMENT COUNTER */

int ki, kpi, kj, kpj; /* LOCAL BEGIN AND END OF 2D-FRONT */

int n_edge=0, n_face=0; /* No. OF EDGES AND FACES IN THE SOLID */
int m; /* ACTUAL FACE BEING MESHED */ 90

int pf=0; /* COUNTER OF FACES IN FACE OF THE SOLID FOR FUNCTION smooth */

int pfc; /* COUNTER OF FACES GENERATED FOR correct front_size */

int pn; /* COUNTER OF NODES IN FACE OF THE SOLID FOR FUNCTION smooth */

int pff [MAXFRONTPER_FACE] ; /* COUNTER OF FACES GENERATED SINCE adance_front */

int rect_face; /* COUNTER FOR RECTANGULAR FACE */
int no_intersectnode [6*MAX_FRONTPERFACE]; /* AUXILIARY FOR intersection */
int nin=0; /* COUNTER FOR NO INTERSECTION NODES */
int repr; /* CONTROL OF PRINTING WHILE CONSTRUCTING THE MESH */
REAL turn[MAX_SOLFACE] [MAX FRONT_PER_FACE]; /* 2D-FRONT LOOP DIRECTION */
REAL a45, a60, a90, a120, a135, a180, a200, a220, a240, a300; /* ANGLES */ 100
REAL size; /* ELEMENT SIZE */

REAL msize [MAX_FACE] ; /* AVERAGE OF ELEMENT SIZES */
POINT n[MAXSOL_FACE]; /* NORMAL */
ap_Objid sol_id; /* SOLID ID VARIABLE */

struct origin

{
int nfri;
int front [MAX_FRONT_PER FACE];

}origin[MAXFRONTPER_FACE]; /* CHECK OF ORIGIN OF FRONT intersection */ 110

struct front af [MAX_FRONT] ; /* AUXILIARY ARRAY OF 2D-FRONT */

A.3 General auxiliary functions

/* PROJECT A POINT ON THE SURFACE */
void pointprojection(REAL *ptl)
{
POINT pt2;
appt2face(solid, solface[m] .id, ptl, pt2);

116 Appendix A

ptl[X] = pt2[X];
ptl[Y] = pt2[Y];
ptl[Z] = pt2[Z];

10
/* CREATE VECTOR FROM TWO POINTS IN PAVING FRONT */
void vector(int iO, int il, REAL *vt)

vt[X] = node [f [m] [il] .n] .coord [XI - node[f m][iO].n].coord[X];
vt [Y] = node [f [m] [ill .n] .coord[Y] - node [f [m] [i0] .n] .coord[Y] ;
vt[Z] = node [f [m] [il] .n] .coord[Z] - node[f[m] [i0] .n].coord[Z];

I

/* CREATE VECTOR FROM TWO NODAL POINTS */

void vector_no(int nO, int nl, REAL *vt)
vt [X] = node lnll .coord[X] - node [nO] .coord[X]; 20
vt[Y] = node[nll].coord[Y] - node [nO].coord[Y];
vt[Z] = node [nl].coord[Z] - node [nOl].coord[Z];

I

/* SUBTRACT TWO VECTOR */
void sub_vector(REAL *vtO, REAL *vtl, REAL *vt)

{
vt[Xl = vtl[X] - vto[X];
vt[Y] = vtl[Y] - vtO[Y];
vt[Z] = vtl[Z] - vtO[Z]; 30

/* ADD TWO VECTOR */
void add_vector(REAL *vtO, REAL *vtl, REAL *vt)

{
vt[X] = vtl[X] + vtO[X];
vt[Y] = vtl[Yl + vtO[Y];
vt[Z] = vtl[Z] + vtO[Z];

40

/* VECTOR PRODUCT */
void vector product(REAL *vtO, REAL *vtl, REAL *vt)

{
vt[Xl = (vtO[Y] * vti[Z] - vtO[Z] * vtl[Y]);
vt[Y] = (vtO[Z] * vtl[X] - vtO[X] * vtl[Z]);
vt[Z] = (vt0[X] * vtl[Yl - vtO[Y] * vtl[X]);

I

/* INNER PRODUCT */
REAL inner_product(REAL *vtO, REAL *vtl) 50

{
return (vtO[X] * vtl[X] + vtO[Y] * vtl[Y] + vtO[ZI * vtl[Z]);

/* POINT OF PAVING FRONT + VECTOR */

void point_vector(int i, REAL *vt, REAL *pt)

{
pt[XI = vt[Xl + node[f [ml] [i] .n .coord[X ;
pt[Y] = vt[Y] + nodeEf [ml [i] n] coord[Y ;

Code for quadrilateral and hexahedral mesh generation. 117

pt [Z] = vt [Z] + node [f m] [i] .n] .coord [Z]; 60

}

/* NODE + VECTOR */
void point_vectorno(int i, REAL *vt, REAL *pt)

{
pt[X] = vt[X] + node[i].coord[X];

pt[Y] = vt[Y] + node[i].coord[Y];
pt [Z = vt [Z + node [i .coord[Z];

}
70

/* SCALAR* VECTOR */
void scalar_vector(REAL sc, REAL *vt)

{
vt[X] = sc * vt[X];
vt[Y] = sc * vt[Y];
vt[Z] = sc * vt[Z];

}

/* VECTOR NORM */
REAL vectornorm(REAL *vt) 80

{
return (sqrt(pow(vt[X],2.0) + pow(vt[Y],2.0) + pow(vt[Z],2.0)));

}

/* INCREMENT AND DECREMENT (ki, kpi) */
int incr(int i){

return ((i+l) + (ki - i - 1) * (i == kpi));

}
int decr(int i){

return ((i-1) + (kpi - i + 1) * (i == ki)); 90

}

/* INCREMENT AND DECREMENT (kj, kpj) */

int inc(int i){
return ((i+1) + (kj - i - 1) * (i == kpj));

}
int dec(int i){

return ((i-1) + (kpj - i + 1) * (i == kj));

100

/* INCREMENT AND DECREMENT (0, 3) */
int inc4(int i){

return ((i+1) * (1 - (i == 3)));

}
int dec4(int i){

return ((i-1) + (3 - i + 1) * (i == 0));

}

/* INCREMENT (0, tfi-1) */
int inct(int i){ 110

return ((i+1) * (1 - (i == (tfi-1))));

}

118 Appendix A

/* INCREMENT (0, ni-1) */

int incn(int i){
return ((i+l) * (1 - (i == (ni-1))));

}

/* SET ELEMENT SIZE OF SOLID'S EDGES */

void set_edge_size() 120

{
int i, j, w=0;
long int ident, id[CUBE];
REAL aux, auxl, si[CUBE];

ads_getint("Different local size ? (1, 0) ", &i);
if(i == 1){

for(;){

ap_sel_edge("Pick the edge\n", &sol_id, &ident);

id[w] = ident;

ads_getreal("Enter edge's density (units of drawing): ", &aux); 130
si[w] = aux;

w++;

adsgetint("Another edge ? (1, 0) ",i);

if(i == 0) break;

}
}
for(i=0 ; i < n_edge ; i++){

sol_edge[il.size = size;
sol_edge[i].ref = 0;

for(j=0 ; j < w ; j++){ 140

if(sol_edge[i].id == id[jl){

sol_edge[i].size = si[j];

sol_edge[i].ref = 1;

}
}
aux = sol_edge[i] .len / sol_edge[i] .size;

if(aux < 1.5){
soledge[i] .nel = 2;

sol_edge[i].ref = 1;

} 150

else{
auxl = aux - floor(aux);

if(auxl < 0.5) sol_edge[i].nel = (int) floor(aux);
else sol_edge i] .nel = (int) ceil(aux);

if(sol_edge[i].nel & 1) sol_edge[i].nel++;

}
}

/* SET MINIMUM SIZE OF EDGE IN EACH FACE SIZE */ 160

void setedge_size_of_face()

{
int i, w=0;

msize[m] = 0.0;

for(i=0 ; i <= pi[m] ; i++){

msize[m] = msize[m] + f[m] [i].d;
w++;

Code for quadrilateral and hexahedral mesh generation 119

)
msize[m] = msize[m] / (REAL) w;

170

/* CREATE A FACE FROM ONE KNOWN EDGES */
void create_face(int nl, int n2, int n3, int n4)

{
face[fi] .no = fi;
face[fi].fnode[O] = nl;
face[fi].fnode[1] = n2;
face[fi].fnode[2] = n3;
face[fi].fnode[3] = n4;
nodenl] .nface[node[nl].nfi] = fi; 180

node[nl] .nfi++;
node[n2] .nface[node[n2].nfi] = fi;
node[n2] .nfi++;
node[n3] .nface[node[n3].nfi] = fi;
node[n3] .nfi++;
node[n4] .nface[node[n4] .nfi] = fi;
node[n4] .nfi++;
face[fi] .fm = m;
fi++;

if(repr == 1) ads_command(RTSTR, "3dface", RT3DPOINT, 190
node [face [fi- 1] .fnode [0]] . coord,
RT3DPOINT, node[face[fi- l .fnode [1]] . coord,
RT3DPOINT, node [face [f i-i] .fnode [211 . coord,
RT3DPOINT, node[face [fi- 1 .fnode [3]] .coord,
RTSTR, "", 0);

/* DISTANCE BETWEEN TWO POINTS */
REAL dist(REAL *p, REAL *r)

{ 200
return (sqrt(pow(p[X]-r[X] ,2.0) + pow(p [Y] -r [Y] ,2.0) + pow(p[ZI-r[Z] ,2.0)));

}

/* SET ki AND kpi */
int set_ki_kpi(int nf)

{
int i, j;
ki = 0;
kpi = 0;
for(i=0 ; i <= pi[m] ; i++){ 210

if(f[m][i].f == nf){
ki = i;

i++;

for(j=i ; j <= pi[m] ; j++) if(f[ml[j].f == nf) { kpi = j; break;}
break;

}

return (ki+kpi);

220

/* REPRINT FACES */

120 Appendix A

void reprint_face(int f)

{
int i;
printf("reprintface f=%d fi=%d\n", f, fi);
for(i=f ; i < fi ; i++){

if(face[i].no != -1)
ads_command(RTSTR, "erase", RTSTR, "1", RTSTR, "", 0);

}
for(i=f ; i < fi ; i++){ 230

if(face[i .no != -1)
ads_command(RTSTR, "3dface", RT3DPOINT, node[face[i] .fnode[0]] . coord,

RT3DPOINT, node[face[i].fnode[I]].coord,
RT3DPOINT, node[face[i] .fnode [2]] .coord,
RT3DPOINT, node[face[i] .fnode[3]] .coord,
RTSTR, "", 0);

/* PRINT ALL FACES */ 240
void print_all_faces()

{
int i;
for(i=0 ; i < fi ; i++){

if(face[il .no != -1)
ads_command(RTSTR, "3dface", RT3DPOINT, node[face[i] .fnode[0]] . coord,

RT3DPOINT, node[face[i].fnode[]] . coord,
RT3DPOINT, node[face[i].fnode[2]] . coord,
RT3DPOINT, node[face[i] .fnode[3] .coord,
RTSTR, "", 0); 250

/* RECTANGULAR FACE */

int rectangularface(int f)

{
int i, j;
REAL dl, d2, tol=0.1;

POINT Pl, P2, P3, P4;
if(sol_face[f] .ne == 4){ 260

Pl[X] = solface [f .edge [0]->sp[X];
Pl[Y] = solface[f] .edge[0]->sp[Y];
Pl[Z] = solface[f] .edge[0]->sp[Z];
P2[X] = solface[f] .edge[01->ep[X ;
P2[Y] = sol_face[f] .edge[0]->ep[Y];
P2[Z] = sol_face[f] .edge[0] - >ep[Z] ;
for(i=l ; i < 4 ; i++){

if(dist(P2, sol_face [f] .edge[il->sp) < tol){
P3 [X] = solface [f] .edge [i] ->e_p [XI ;
P3 [Y] = sol_face [f] .edge [i] ->ep[Y] ; 270

P3 [Z] = sol_face [f] .edge [i] ->ep [Z] ;
j =i;
break;

i
if(dist(P2, sol_face[f] .edge[i] ->e p) < tol){

Code for quadrilateral and hexahedral mesh generation 121

P3 [X] = sol_face [f] .edge [i] ->sp [X] ;
P3 [YI = sol_face [f] .edge [i] ->sp [Y] ;
P3 [ZI = sol_face [f] .edge [i]->sp [Z] ;
j = i;
break; 280

}

for(i=1 ; i < 4 ; i++){
if(i != j){

if(dist(P3, solface[f] .edge[i]->s p) < tol){
P4[X] = sol face[f] .edge[i]->ep[X] ;
P4[Y] = solface[f] .edge[i]->ep[Y] ;
P4[Z] = sol face[f] .edge[i]->ep[Z] ;
break;

} 290
if(dist(P3, solface[f] .edge[i]->e_p) < tol){

P4[X] = sol_face[f] .edge[i]->sp[X] ;
P4[Y] = sol_face f] .edge[i]->sp[Y] ;
P4[Z] = sol_face[f] .edge[i]->sp[Z] ;
break;

}}
dl = dist(Pl, P3);
d2 = dist(P2, P4); 300

if((fabs(dist(Pl,P2) - dist(P3, P4)) < tol) &&
(fabs(dist(P1,P4) - dist(P2, P3)) < tol) &&
(fabs(dl-d2) < tol)) return 1;

}
return 0;

/* COMMUTE FACE NODES */
void commuteface_nodes(int i)

310
int w;
if(node[i].nfi == 2){

w = face[node[i].nface[I] .fnode[0];
if(node [face [node [i] .nface [1]].fnode [1]].nfi == 2){

face[node[i].nface[1]].fnode[O] = face[node[i].nface[1]].fnode[1];
face[node[i].nface[l]] .fnode[] = w;
w = face[node[i].nface[l] .fnode[2];
face[node[i].nface[l]].fnode[2] = faceEnode[i] .nface[ll]].fnode[3];
face[node[i].nface[l] .fnode[3] = w;

1} 320
else{

face[node[i].nface[l]].fnode[0] = face[node[i].nface[l]].fnode[2];
face[node[i] .nface[] .fnode[2] = w;

)
w = node[i].nface[l];
node[il] .nface[ll] = node[i] .nface[O];
node[i].nface[01 = w;

122 Appendix A

330

/* SET ORIGIN */
void set_origin(int nff, int nf)

{
int i;
for(i=0 ; i < origin[nf] .nfri ; i++){

origin[nff] .front[origin[nff].nfri] = origin[nf].front [i ;
origin[nff] .nfri++;

}
340

/* CHECK ORIGIN */
int check_origin(int nff, int nf)
{

int i, j;
for(i=0 ; i < origin[nf].nfri ; i++){

for(j=0 ; j < origin[nff].nfri ; j++){
if(origin[nf] .front[i] == origin[nff] .front[j]) return 1;

}350
return 0;

I

/* CREATE NORMAL VECTOR OF FACE */
void facenorm(int nO, int ni, int n2, int n3, REAL *vn)
{
REAL d;
POINT vO, v1;
vector no(n0, n2, vO);
vector_no(ni, n3, vi); 360
vectorproduct(v0, vi, vn);
d = vector_norm(vn);
scalar_vector(1.0/d, vn);

/* REPRINT ELEMENTS */
void reprintelement(int s)
{

int i, k;
printf("reprintelement from=%d to ci=/d\n", s, ci); 370
for(i=s ; i < ci ; i++)

for(k=0 ; k < 6 ; k++)
ads_command(RTSTR, "erase", RTSTR, "1", RTSTR, "", 0);

for(i=s ; i < ci ; i++){
ads_command(RTSTR, "3dface", RT3DPOINT, node[element [i].enode [0]].coord,

RT3DPOINT, node[element[i] .enode [1]] .coord,
RT3DPOINT, node[element[il.enode [2].coord,
RT3DPOINT, node[element [i.enode[3]] .coord,
RTSTR, "", 0);

ads_command(RTSTR, "3dface", RT3DPOINT, node[element[i] .enode [0]. coord, 380
RT3DPOINT, node[element[i] .enode [] .coord,
RT3DPOINT, node[element[i] .enode[5]] .coord,
RT3DPOINT, node[element[i].enode[4] .coord,

Code for quadrilateral and hexahedral mesh generation 123

RTSTR, "", 0);
ads_command(RTSTR, "3dface", RT3DPOINT, node[element[i] .enode[1]] .coord,

RT3DPOINT, node[element[i].enode[2]].coord,
RT3DPOINT, node[element[il.enode[6]].coord,
RT3DPOINT, node[element[i].enode[5]].coord,
RTSTR, "", 0);

adscommand(RTSTR, "3dface", RT3DPOINT, node[element[i] .enode[2]].coord, 390
RT3DPOINT, node[element[i]. enode[3]].coord,
RT3DPOINT, node [element [i] .enode [7]] . coord,

RT3DPOINT, node[element [i] .enode[6] . coord,
RTSTR, "", 0);

ads_command(RTSTR, "3dface", RT3DPOINT, node[element [i] .enode[3]].coord,
RT3DPOINT, node[element[i] .enode [0]] .coord,
RT3DPOINT, node[element[i] .enode[4]] .coord,

RT3DPOINT, node[element[i].enode[7]].coord,
RTSTR, "", 0);

ads_command(RTSTR, "3dface", RT3DPOINT, node[element[i].enode[4]] .coord, 400
RT3DPOINT, node[element[i].enode[5]].coord,
RT3DPOINT, node[element[i]. enode[6]].coord,
RT3DPOINT, node[element[i].enode[7]].coord,
RTSTR, "", 0);

A.4 Function nodes_andelements_onedges_ofsolid 0

void nodes_and_elementsonedges of_solid()

{
int i, j, k, ii, s, e, sd, ed;
REAL t, dt, tol = 0.01, ratio, aux, tx, rt, es, ss;
for(ii=0 ; ii < n_edge ; ii++){

s = 0;
e = 0;
for(i=0 ; i < ni ; i++){

if(dist (node [i] .coord, sol_edge[ii].s_p) < tol){
S = 1; 10

break;

}
}
for(i=0 ; i < ni ; i++){

if(dist(node[i] .coord, sol_edge[ii] .ep) < tol){
e = 1;

break;

}

if(dist(sol_edge[ii] .ep, sol_edge[ii] .sp) < tol) e = 1; 20

if(s == 0){
node[ni] .coord[X] = sol_edge[ii] .s_p[X];
node[ni] .coord[Y] = sol_edge[ii] .s_pY] ;
node[ni] .coord[Z] = sol_edge[ii] .spZ] ;

124 Appendix A

node[nil] .no = ni;

ni++;

vi++;

}
if(e == 0){

node[nil .coord[X] = sol_edge[iil .ep[X]; 30

node[nil .coord[Y] = sol_edge[ii] .e_p[Y];
node[ni] .coord[Z] = sol_edge[ii].ep[Z];

node[ni] .no = ni;

ni++;
vi++;

}
}
for(ii=0 ; ii < nedge ; ii++){

for(i=0 ; i < vi ; i++){
if(dist(node[i] .coord, sol_edge[iil.sp) < tol){ 40

edge[eil] .node[O] = i;
edge[ei].no = ei;

edge[ei] .edgeid = sol_edge[iil .id;
break;

}
}
k = sol_edge[iil.nel;
ratio = 0.0;

rt = 0.0;

dt = (sol_edge[iil.epar - sol_edge[iil.s par) / (REAL) sol_edge[ii].nel; 50

t = sol_edge[ii].s_par + dt;

if(sol_edge[ii].ref == 0){
ss = size;

es = size;

sd = -1;

ed = -1;

for(j=0 ; j < n_edge ; j++){

if(sol_edge[jl .ref ==) {
if((dist(soledge[ii] .s_p, sol_edge[j] .sp) < tol)I

(dist(sol_edge[ii] .sp, sol_edge[j].e-p) < tol)) sd = j; 60
if((dist(soledge[ii] .ep, soledge[j].sp) < tol) I1

(dist(sol_edge[ii].ep, sol_edge[j].e-p) < tol)) ed = j;

}

if(ed != sd)(
if(sd !=-1) ss = sol_edge[sd].size;
if(ed != -1) es = sol_edge[ed].size;

aux = 2 * soledge[ii].len / (es + ss);
ratio = aux - floor(aux);

if(ratio < 0.5) k = (int) floor(aux); 70

else k = (int) ceil(aux);
if(k & 1) k--;
ratio = (es - ss) / (k - 1);

aux = ss;

t = ss;

for(j=1 ; j < k ; j++){
t = t + ratio;

Code for quadrilateral and hexahedral mesh generation

aux = aux + t;

aux = (sol_edge[ii].len - aux) / (REAL) k;
tx = (soledge[iil.epar -sol_edge[ii].spar) / sol_edge[ii].len;
rt = ratio * tx;
dt = (ss + aux) * tx;
t = sol_edge[ii].s_par + dt;

sol_edge[ii].nel = k;
for(i=l ; i < k ; i++){
apedgeparm2pt(sol_id, sol_edge[ii] .id, t, node[ni] .coord);
node[ni].no = ni;
edge[ei].node[l] = ni;
edge[ei].no = ei;
ei++;
edge[ei].node[O] = ni;
edge[eil.no = ei;
edge[ei].edgeid = sol_edge[ii].id;
ni++;
dt = dt + rt;
t = t + dt;

}
for(i=O ; i < vi ; i++){

if(dist(node[i] .coord, sol_edge[ii].ep) < tol){
edge[ei .node[1] = i;
edge[ei].no = ei;
ei++;
break;

A.5 Function initiaL_2Dfront()

void initial_2D front()

int i, ii, j, k, s, e, cs, ce;
int **auxf; /* AUXILIARY ARRAY OF NODES IN THE FACE'S EDGES */

int *auxe; /* AUXILIARY ARRAY OF EDGES ALREADY ADDED TO THE PAVING FRONT */

int ***con; /* CONNECTIVITY ARRAY OF THE FACE'S EDGES */
REAL t, dt;
auxe = (int *) calloc (sol_face[m] .ne, sizeof (int));
auxf = (int **) calloc (solface[m] .ne, sizeof (int));
for(i=O ; i < sol_face[m].ne ; i++){

auxf [i] = (int *) calloc ((solface[m] .edge[i]->nel + 1), sizeof (int));

for(i=O ; i < sol_face[m].ne ; i++){
for(k=0 ; k < ei ; k++)

125

if (edge[k].edge_id == solface[m].edge[il->id) break;

for(j=0 ; j < solface[m].edge[i]->nel ; j++)
auxf[i][j] = edge[j+k] .node[0];

auxf [i] [solf ace [m] .edge [i] - >nel] = edge [j +k-1] .node [1] ;

con = (int ***) calloc (sol_face[m] .ne, sizeof (int));
for(j=0 ; j < sol_face[m].ne ; j++){

con[j] = (int **) calloc (2, sizeof (int));
conEj] [0] = (int *) calloc (2, sizeof (int));
con[j] [1] = (int *) calloc (2, sizeof (int));

}
for(j=O ; j < sol_face[m].ne ; j++){

s = 0;

e = 0;

i = 0;

if(i == j) i++;
while(((s == 0) |l

if(auxf [j] [0 ==

con[j] [0] 0] =
con[j] [0] [1] =
con[j] [1] [0] =
con [j [1] [1] =
break;

}
if(auxf [j] [0] ==

con j] [01 [0] =
con[j] [0] [1] =

s= ;

if(auxf [j] [0] ==
con[j] [0] [0] =
con[j] [0] [1] =

s = 1;

(e == 0)) && (i < sol_face[m] .ne)){
auxf [j] [solface [m] .edge [j] ->nel]) {/*CHECK CLOSED EDGE*/

j;

0;

auxf[i] [0]){
i;
0;

auxf [i] [solface [m] .edge [i] ->nel]) {
i;

1;

if(auxf [j] [solface [m] .edge [j] ->nel] == auxf [i] [0) {
con[j] [1] [0] = i;
con[j] [1] [1] = 0;
e= 1;

}
if(auxf [j] [solface [m] .edge [j] ->nel]

auxf [i] [sol face [m] .edge [i] ->nel]) {
con[j] [1] [0] = i;
con[j] [1] [1] = 1;

e = 1;

if(i == j) i++;

I
for(j=0 ; j <
pi[m] = 0;

n_f[m] = 0;
i = 0;

while(i < sol

MAX_FRONT ; j++) f[m] [j]f = -1;

_face [m] .ne){

126 Appendix A

for(ii=0 ; ii < solface[m].ne ; ii++) {if(auxe[ii] == 0) break;}
f[m][pi[m]].f = n_f [m]; 70

for(j=0 ; j<solface[m].edge[ii]->nel ; j++) f[m][j+pi[ml].n = auxf[ii][j];
cs = f [m] [pi m]] .n;
pi[m] = pi[m] + solface[m].edge[ii]->nel - 1;
auxe[i] = 1;
i++;
if(auxf [ii] [0] == auxf [ii] [solface [m] .edge [ii] ->nel]){

fEm][pi[m]].f = n_f[m];
nf [m]++;
pi[m]++;

} 80so
else{

e = 1;
for(; ;){

pi[m]++;
if(con[ii][e] [1] == 0){

for(j=0 ; j < sol_face[m].edge[con[ii] [e][O]]->nel ; j++)
f[m][j+pi[m]].n = auxf[con[ii][e][O]][j];

pi[m] = pi[m] + solface[m].edge[con[ii] [e][O]]->nel - 1;
ce = auxf [con [ii] [e] [0] [solface m] .edge [con [ii] [el [0] ->nel] ;
ii = con[ii] [e] [0]; 90
auxe[ii] = 1;
e= 1;

}
else{
k = sol_face[m] .edge[con[ii] [e] [0]]->nel;
for(j=0 ; j < sol_face[m].edge[con[ii][e] [l0]]->nel ; j++){

f [m] [j+pi[m]] .n = auxf[con[ii] Ee [0]] [k] ;
k--;

}
pi[m] = pi[m] + solface[m].edge[con[ii] [e][0]]->nel - 1; 1oo
ce = auxf[con[ii] [e] [0]] [0];
ii = con[iil [e] [01;
auxe[ii] = 1;
e = 0;

}
i++;
if(ce == cs){

f[ml][pi[m]].f = nf[ml];
n_f[ml++;
pi[m]++; 110
break;

}
}

}
}
for(i=0 ; i < sol_face[m] .ne ; i++){

free(auxf [i]) ;
free (con [il [) ;
free(con[i] [1]);
free(con[il); 120

free(auxf);

Code for quadrilateral and hezahedral mesh generation 127

128 Appendix A

free(con);

free(auxe);

pi [m] -- ;
n_f Em] --

}

A.6 Function orientation(int nf)

void orientation(int nf)

{
int i;
REAL dv, dt, dO, dl;

ap_Param parm;
POINT v, vO, v1, t, ptl;

for(i=0 ; i <= pi[m] ; i++)
if(f[m] [i] .f == nf) break;

vector(i+1, i, vO);
vector(i+1, i+2, v1); 10
dO = vectornorm(vO);
dl = vector_norm(vl);
scalar_vector((dl / dO), vO);

sub_vector(vO, v1, v);

ap_pt_norm2face (sol_id, sol_face [m] . id, node [f [m] [i+1] .n] .coord, TRUE, n[m]);
vector product(v, n[m], t);
dt = vector_norm(t);
scalarvector((dl / (40.0 * dt)), t);

point_vector(i+1, t, ptl);
pointprojection(pti); 20

if(ap_facept2parm(sol_id, solface[m].id, ptl, &parm) == AP_NORMAL)
turn[m] [nf] = 1.0;

else
turn[m] [nf] = -1.0;

A.7 Function frontangledistance(int nf)

/* CALCULATE ANGLES AND DISTANCES OF PAVING FRONT */

void front_angle_distance(int nf)

{
int i, j;
REAL aO, al, dO, dl, dt;

POINT v, t, vO, vl;

set_ki_kpi(nf);
vector(ki, kpi, vO);
vector(ki, ki+1, vl);
tiO = u'prr nnrm(vfl~dO=vctrnrmv)

Code for quadrilateral and hexahedral mesh generation 129

dl = vector_norm(vl);
scalar_vector((dl / dO), vO);
sub_vector(vO, vi, v);
if(solface[m] .type != 0)
appt_norm2face(solid, solface m] .id, node [f [m] [ki] .n] .coord,TRUE, n[m]);

vector_product(v, n[m], t);
dt = vector_norm(t);
scalar_vector(turn[m] [nf] , t);
aO = innerproduct(t,v0) / (dt * dl);
al = innerproduct(t,vl) / (dt * dl); 20
f[m][ki].a = acos(a0) + acos(al);
f[m][kil.d = di;
for(j=ki+l ; j < kpi ; j++){

vector(j, j-1, vO);
vector(j, j+l, vl);
dO = dl;
di = vectornorm(vl);
scalar_vector((dl / dO), vO);
sub_vector(v0, vl, v);
if(solface m] .type != 0) 30
appt_norm2face(sol_id, solface [m] .id,node [f [m] [j] .n] .coord,TRUE, n[m]);

vector_product(v, n[m], t);
dt = vector_norm(t);
scalar_vector(turn[m] [nf], t);
aO = innerproduct(t,vO) / (dt * dl);
al = innerproduct(t,vl) / (dt * dl);
f[m][j].a = acos(aO) + acos(al);
f[m] [j.d = di;

vector(kpi, kpi-1, vO); 40
vector(kpi, ki, vl);
dO = di;
dl = vector_norm(vl);
scalar_vector((dl / dO), vO);
sub_vector(vO, vi, v);
if(solface [m] .type != 0)

appt_norm2face(sol_id, solface m] .id,node [f [m][kpi] .n] .coord,TRUE, n[m]);
vectorproduct(v, n[m], t);
dt = vector_norm(t);
scalar_vector(turn[m] [nf], t); 50
aO = innerproduct(t,v0) / (dt * dl);
ai = innerproduct(t,vl) / (dt * dl);
f[m][kpi].a = acos(a0) + acos(al);
f[m][kpi].d = dl;

/* ANGLES AND DISTANCES OF A PAVING FRONT NODE */
void front_node_ang_dist(int nf, int i)
{

int iO, il; 60

REAL aO, al, dO, dl, dt;
POINT t, v, vO, vl;
iO = decr(i);
il = incr(i);

130 Appendix A

vector(i, iO, vO);
vector(i, il, vi);

dO = vector_norm(vO);

dl = vector_norm(vl);
scalar_vector((dl / dO), vO);
sub_vector(vO, vi, v); 70

if(sol face[m] .type != 0)
ap_pt_norm2face(sol_id, sol_face[m] .id, node[f [m] [i] .n] .coord, TRUE, n[ml);

vectorproduct(v, n[m], t);

dt = vector_norm(t);

scalar_vector (turn [m] [nf] , t);
aO = inner product(t,vO) / (dt * dl);
al = inner_product(t,vl) / (dt * dl);
f[m] [i].a = acos(aO) + acos(al);
f[m] [i].d = dl;

} 8so

A.8 Function closecorner(int nf)

int close corner(int nf)

{
int in = 0, i, j, kO, k1, k2, k3, k4, w, k, kk;

REAL dl, d2, d, dm;

POINT v, vO, vl, P1;

printf(" close_corner = ");
set_ki_kpi(nf);
for(i=ki ; i <= kpi ; i++){

kO = decr(i);
k1 = incr(i); 10
k2 = incr(kl);
vector(i, kO, vO);
vector(i, k1, vl);
add_vector(vO, v1, v);
scalar_vector(0.6, v);
point vector(i, v, Pl);
if(sol_face[ml .type != 0) point projection(P1);
dl = dist(node[f [m] [kOl .n .coord, Pl);
d2 = (f[m][kl].d + f[m][k2].d) / 2.0;
d = dist(node[f [m] [kOl .n] .coord, node[f [m] [k21 .n] .coord); 20

if((f[m] [il .a <= a135) && (f[ml [kl].a <= a135) && (d < 1.05*(dl+d2))){
in = 1;
create_face(f[m] [k21.n, f[m] [kO] .n, f[m] [il.n, f[m] [kl].n);
w = 0;
if(i == kpi){

kpi = kpi - 2;
for(j=ki ; j <= kpi ; j++){

f[ml] [j] .n = f[ml [j+ .n;
f[m] [j].a = f[m] [j+].a;
f[m] [j].d = f[m] [j+1 .d; 30

Code for quadrilateral and hexahedral mesh generation 131

f[m][kpi].f = nf;

f[m][kpi+1].f = nf;
frontnodeang_dist(nf, ki);
front_node_angdist(nf, kpi);

w= 1;

}
if(i == kpi-l){

kpi = kpi - 2;

f[m][kpi].f = nf; 40
f[m][kpi+1].f = nf;
frontnodeang dist(nf, ki);
front_node angdist(nf, kpi);
w= 1;

}
if(w == 0){

kpi = kpi - 2;

for(j=i ; j <= kpi ; j++){

f[m] [j].n = f[m] [j+2].n;
f[m][j].a = f[m][j+2].a; 50

f[m][j l.d = f[m][j+2].d;

f[m][kpi].f = nf;
f[m][kpi+1].f = nf;
frontnode_ang_dist(nf, i);
front_node_ang_dist(nf, decr(i));

}
break;

} 60
return in;

A.9 Function seam(int nf)

int seam(int nf)

int i, j, jj, in = 0, kO, kl, eO, el, w, anf;
printf(" seam = ");
set_ki_kpi(nf);
for(i=ki ; i <= kpi ; i++){

kO = decr(i);
kl = incr(i);
if(f [m] [i].a <= a45){

in = 1; 10
node[f [m] [kO] .n] .coord[X] = (node[f [m] [kl] .n] .coord[X]

+ node[fem][kO].n].coord[X]) / 2.0;
node [f [ml [kO] .n] .coord [Y] = (node [f [m] [kl] .n] . coord [Y]

+ node[f [m] [kO].n].coord[Y]) / 2.0;

node[f [m] [kO] .n] .coord[Z] = (node[f [m] [kl] .n] .coord[Z]
+ node[f [m] EkO].n].coordEZ]) / 2.0;

Appendix A

if(solface [m] .type != 0) point-projection(node[f [m] [kO] .n] .coord);
for(j=0 ; j < node[f[m][kl].n].nfi ; j++){
node[f [m] [kO] .n] .nface[node[f [m] [kO] .n] .nf i]=node[f [m] [kl] .n] .nface[j];
node[f[m] [kO] .n] .nfi++; 20

for(jj=0 ; jj < 4 ; jj++){
if(face [node [f[m] [kl] .n] .nface[j]] .fnode[j j] == f m] [k] .n){

face [node [f [m [kl] .n] .nf ace[j]] .fnode [jj] = f [m] [kO] .n;
break;

}
}

}
for(j=0 ; j <= pi[m] ; j++){

if((f [m] [j] .n == f[m] [kl] .n) && (j != kl) &&

((f[m][incr(j)].f == -1) II (f[m][decr(j)].f == -1))){ 30

jj = j;
while(f[m] [jj].f == -1) jj = decr(jj);
anf = f[m][jj].f;
f[m][j].n = f[m][kO].n;
set_ki_kpi(anf);

front_nodeang_dist(anf, decr(j));

front_nodeang_dist(anf, j);

front_nodeang_dist(anf, incr(j));

set_ki_kpi(nf);
continue; 40

}
}
node[f[m] [kl] .n].no = -1;
node[f [m] [kl].n].coord[X] = 1E+10;
node f [m] [kl] .n] .coord[Y] = 1E+10;

node[f [ml [kl].n].coord[Z] = 1E+1O;
w = 0;
if(i == kpi){
kpi = kpi - 2;

for(j=ki ; j <= kpi ; j++){ 50

f[m][j].n = f[m][j+1].n;
f[m][j]l.a = f[m][j+1].a;

f[m] [j] .d = f[m][j+1] .d;

f[m][kpi].f = nf;
f[m][kpi+] .f = nf;
front_node_ang_dist(nf, ki);

front_node_ang_dist(nf, kpi);

front_node_ang_dist(nf, kpi-1);

w=1; 60

if(i == kpi-1){
kpi = kpi - 2;

f[m][kpi].f = nf;

f[m][kpi+1].f = nf;
front_node_ang_dist(nf, ki);

front_node_angdist(nf, kpi);

front_node_ang_dist(nf, kpi-1);
w = 1;

132

Code for quadrilateral and hexahedral mesh generation 133

if(w == 0)
kpi = kpi - 2;
for(j=i ; j <= kpi ; j++){

f [m] [j] .n = f [m] [j+2] .n;
f [m] [j] .a = f Em] [j+2] .a;
f[m] [j].d = f[m][j+2].d;

}
f[m][kpi].f = nf;
f[m][kpi+l].f = nf;
frontnodeangdist(nf, i); so
front_node_ang_dist(nf, decr(i));
front_node_angdist(nf, decr(decr(i)));

}
break;

}
}
return in;

A.10 Auxiliary functions to advance the 2D-front

/* CREATE FIRST FACE OF THE FRONT */
void createfirst_face_of_front(int nf, int *ee, int *ss)

{
int e, s;
REAL d, di, dO, dv;
POINT v, vO, vi, Pl;
e = *ee;
s = *SS;

node[ni] .no = ni;
ff[afi] = ni; 10
afi++;
vector(e, decr(e), vO);
vector(e, s, vi);
subvector(v0, vi, v);
if(solface m] .type != 0)

appt_norm2face(sol id, solface [m] .id, node [f[m] e] .n] .coord, TRUE, n[m]);
vector_product(v, n[m], Pi);
dO = vector_norm(v0);
dl = vector_norm(vl);
d = vector norm(P1); 20
if(f[m][decr(decr(decr (e)))].a <= a60) d = 8.0 * d / 7.0;
if(f[m][decr(decr(e))].a <= a60) d = 8.0 * d / 5.0;
if(f m] [decr(e)].a <= a60) d = d / sin(f[m][decr(e)].a/2.0);
if(f[m] [incr(s)].a <= a60) d = 8.0 * d / 5.0;
if(fm] [incr(incr(s))].a <= a60) d = 8.0 * d / 7.0;
scalar_vector((turn[m] [nf]*(d0+di)/(2.0*d)), Pi);
point_vector(e, Pi, node[ni] .coord);
if(solface[m] .type != 0) pointprojection(node ni] .coord);
ni++;

134

node[nil.no = ni;
ff[afil = ni;

afi++;

vector(s, e, vO);
vector(s, incr(s), vi);
sub_vector(v0, v1, v);

if(solface[ml .type != 0)
ap_pt_norm2face(sol_id, sol_face[ml . id, node[f [m] [s] .n] .coord, TRUE, n[m]);

vector product(v, n[m], Pi);
dO = vector_norm(v0);

di = vector_norm(vl);
d = vector_norm(P1);
if(f[m] [decr(decr(e))].a <= a60) d = 8.0 * d / 7.0;
if(f[m][decr(e)].a <= a60) d = 8.0 * d / 5.0;

if(f [ml [incr(s)].a <= a60) d = d / sin(f[m][incr(s)].a/2.0);
if(f[m][incr(incr(s))].a <= a60) d = 8.0 * d / 5.0;
if(f[m][incr(incr(incr(s)))].a <= a60) d = 8.0 * d / 7.0;
scalar_vector((turn[m] [nf * (dO+dl)/(2. O*d)), Pi);
point_vector(s, Pi, node[nil.coord);

if(solface [ml .type != 0) point_projection(node[nil .coord);
create_face(ni, ni-1, f[m] [e .n, f[m] [s] .n);
ni++;

ee = &e;

ss = &s;

/* DIVIDE FRONT INTO TWO */
void divide front into two(int nf)

int i, im, jm, k, w, kO, nk;
REAL a;
a = 0.0;
for(i=ki ; i <=kpi ; i++) if(f[m][il].a >
kO = kpi - ki + 1;
jm = incr(im);
for(i=1 ; i < kO/2 ; i++) jm = incr(jm);
nk = kO / 2 - 3;
for(i=0 ; i < nk ; i++){

node[nil.no = ni;
node[nil].coord[Xl = ((nk - i) * node[f

node[nil .coord[Y] =

node[nil .coord[Z] =

if(sol_face[ml .type
ni++;

a) {a = f[m][il].a; im = i;}

[m] [iml .n] . coord[XI
(i + 1) * node[f [m] [jml .n] .coord[X]) /
((nk - i) * node[f[ml[iml.nl.coord[Y]

(i + 1) * node[f[m] [jml] .n] .coord[Y]) /
((nk - i) * nodef [m] [iml .n].coord[ZI
(i + 1) * node[f [m] [jml .n].coord[Z]) /
!= 0) point_projection(node[ni] .coord);

+

(nk + 1);
+

(nk + 1);
+

(nk + 1);

}
k = 0;

i = im;

while(i != jm){

k++;

f[ml [pi[m]+kl].n = f[m] [il].n;

f [ml [pi[ml+kl .a = f [m [il .a;

Appendix A

Code for quadrilateral and hexahedral mesh generation

f[m] [pi[m]+k].f = -1;
f[ml [pi[m]+k].d = f[m][i].d;
i = incr(i);

}
k++;
f [m] [pi [m]+k] .n = f [m] [jml .n;
f [m] [pi[m]+k] .a = f [m] [jm] .a; 90
fi[m] [pi[m]+k].f = -1;
f[m] [pi [m]+k].d = fr[m] Ejm].d;
n_f [m] ++;
pff[n_f[m]] = pff [nf[m]-1 ;
set_origin(nf [m] , nf);
f[m][pi[m]+1].f = n_f[m];
pi[m] = pi[m] + k + nk;
for(i=O ; i < nk ; i++){

f[m] [pi[m]-i] .n = ni-(nk-i);
f[m]l[pi[m]-i] .f = -1; 100

}
f[m][pi[m]]l.f = n_f[m];
turn[m] [nf [m]] = turn[ml [nf];
for(i=O ; i < nk ; i++) af[il.n = ni-(nk-i);
w = nk;
i = jm;
while(i != im){

af[w] .n = f[m] [i] .n;
af[wl .a = f[m] [i.a;
af[w] .d = f[m] [i] .d; 110
w++;
i = incr(i);

}
af[wl.n = f[m][im].n;
af[w].a = f[ml[iml.a;
af[w] .d = f[m] [im].d;
w++;

for(i=O ; i < w ; i++){
f[m] [ki+il] .n = af[il .n;
f [m] Eki+il .a = af [il .a; 120
f[m][ki+i].d = af[il.d;

}
kpi = ki + w - 1;

f[m][kpi].f = nf;
k = kO - w;

for(i=kpi+l ; i <= kpi+k ; i++) f[m][il].f = nf;
frontnode_ang_dist(nf, kpi);
for(i=O ; i <= nk ; i++) front_node_ang_dist(nf, ki+i);
set_ki_kpi (n_f [m);
for(i=O ; i <= nk ; i++) front_node_ang_dist(nf, kpi-i); 130
frontnode_ang_dist(nf[m] ,ki);

/* CREATE FACE IN THE CORNER */

void face_in_corner(int nff, int iO, int il, int i2)
{

int i, ii, in=O;

135

Appendix A

REAL dO, dl, d, dv;

POINT vO, vi, v, p;

node[nil.no == ni; 140

ff[afi] = ni;

afi++;

vector(il, iO, vO);

vector(il, i2, vl);

sub_vector(vO, vl, v);

if(soljface [m] .type != 0)
ap_pt_norm2face(solid, sol_face[m] .id, node[f[m] [il] .n] .coord,TRUE, n[m]);

vector_product(v, n[m], p);

dO = vectornorm(vO);
dl = vector_norm(vl); 150

d = vector_norm(p);

if(f[m][decr(decr(iO))].a <= a60) d = 8.0 * d / 7.0;
if(f[m] [decr(iO)] .a <= a60) d = 8.0 * d / 5.0;
if(f[m][i2].a <= a60) {d = d / sin(f[m] [i2].a/2.0); in = 1;}
if(f[m] [incr(i2)].a <= a60) d = 8.0 * d / 5.0;
if(f Em] [incr(incr(i2))] .a <= a60) d = 8.0 * d / 7.0;
if(in == 0){

scalar_vector((turn[m][nff] * (d0+dl)/(2.0*d)), p);
point_vector(il, p, node[ni].coord);

if(sol_face[m] .type != 0) point_projection(node[ni] .coord); 160

}
if(in == 1){

d = (f[m][il].d + f[m][i2].d) / (2.0 * cos(f[m][i2].a/2.0));
ii = incr(i2);

vector(i2, il, vO);

vector(i2, ii, vl);
add_vector(v0, v1, v);
dv = vector_norm(v);

scalar_vector(d/dv, v);
point_vector(i2, v, node[ni].coord); 170
if(solface[m] .type != 0) point projection(node[ni] .coord);

}
d = dist(node[ni-l] .coord, node[ni] .coord);
i = decr(i0);

if((f[m] [i].a <= a135) && (d < f[m] [i0] d/2.0)){
ii = decr(i);

vector(i, ii, vO);

vector(i, iO, vi);

add_vector(v0, v1, v);

scalar_vector(0.6, v); 180

point_vector(i, v, node[ni-1] .coord);
if(solface Em] .type != 0) pointprojection(node[ni-1].coord);
if(repr == 1){

ads_command(RTSTR, "erase", RTSTR, "1", RTSTR, "", 0);

adscommand(RTSTR, "erase", RTSTR, "1", RTSTR, "", 0);

ads_command(RTSTR, "3dface", RT3DPOINT, node[face[fi-2] . fnode [0]] .coord,
RT3DPOINT, node[face[fi-2] .fnode[i]]. coord,
RT3DPOINT, node[face[fi-2] .fnode [21] . coord,
RT3DPOINT, node [face [fi-2] .fnode [3]] . coord,
RTSTR, "", 0); 190

adscommand(RTSTR, "3dface", RT3DPOINT, node[face[fi-l] .fnode [0]] .coord,

136

Code for quadrilateral and hexahedral mesh generation 137

RT3DPOINT, node [face[fi-1] .fnode[1]] .coord,
RT3DPOINT, node [face[f i--1 .fnode [2]].coord,
RT3DPOINT, node[face[fi-1] .fnode[3]] coord,
RTSTR, "", 0);

}
}
create_face(ni, ni-1, f[m] [iO] .n, f[m] [il] .n);
ni++;

200

/* CREATE TWO FACES IN THE WEDGE */

void two_facesinwedge(int iO, int il, int i2)

REAL d, dv;
POINT v0, vl, v;
node[nil] .no == ni;
ff[afi] = ni;
afi++;
dv = (f[m] [i0] .d + f[m] [il] .d) / 2.0; 210
vector(i2, il, vO);
d = vector_norm(v0);
scalar_vector(dv/d, vO);
point_vector(il, vO, node[ni] .coord);
if(solface[ml .type != 0) point-projection(node[ni] .coord);
create_face(ni, ni-1, f[m] [i0] .n, f[m] [il].n);
ni++;
node[nil.no = ni;
ff[afi] = ni;
afi++; 220
vector(i0, ii, vl);
d = vector_norm(vl);
scalar_vector(dv/d, vl);
add_vector(v0, vl, v);
d = vector_norm(v);
scalar_vector(dv/d, v);
point_vector(il, v, node[ni] .coord);
if(sol face[m] .type != 0) point-projection(node[ni].coord);
ni++;
node[ni].no = ni; 230
ff[afi] = ni;
afi++;
point_vector(il, vl, node[nil] .coord);
if(sol_face[m] .type != 0) pointprojection(node[ni] .coord);
create_face(ni, ni-1, ni-2, f[m] [ill].n);
ni++;

/* CREATE THREE FACES IN THE WEDGE */

void three_faces_in_wedge(int io, int il, int i2) 240
{
REAL dO, dl, d, dv;
POINT vO, vl, v, Pi, P2, P3, P4, P5, vPl, vP5;

vector(il, iO, vO);

vector(il, i2, vl);

138 Appendix A

add_vector(v0, vl, v);

dO = f[m] [iO] .d;
dl = f[m] [ill.d;
d = (dO + dl) / 2.0;
dv = vector_norm(v); 250

scalar_vector((-1.0*(d/dv)), v);

point_vector(il, v, P3);
if(solface[m] .type != 0) pointprojection(P3);
add_vector(vO, v, vP1);
dv = vector_norm(vP1);

scalar_vector(d/dv, vP1);

point_vector(il, vP1, Pl);

if(solface[ml] .type != 0) pointprojection(P1);
add_vector(vP1, v, vP5);

dv = vectornorm(vP5); 260
scalar_vector(d/dv, vP5);

point_vector(il, vP5, P2);

if(sol_face[m].type != 0) point-projection(P2);
add_vector(vl, v, vP5);

dv = vector_norm(vP5);

scalar_vector(d/dv, vP5);

point_vector(il, vP5, P5);
if(solface[m] .type != 0) pointprojection(P5);
add_vector(vP5, v, vPl);

dv = vector_norm(vPl); 270

scalar_vector(d/dv, vP1);

point_vector(il, vP1, P4);

if(solface[m] .type != 0) pointprojection(P4);
node[nil.no = ni;
ff[afil = ni;
afi++;
node[nil.coord[X] = P[X] ;
node[ni] .coord[Y] = P1[Y];
node[ni] .coord[Z] = P[ZI ;
create face(ni, ni-1, f[ml [iOl .n, f[m] [ii] .n); 280
ni++;

node[nil .no = ni;
ff[afil = ni;
afi++;
node[ni] .coord[X = P2[X] ;
node[nil .coord[Y] = P2[Y];
node[nil .coord[Z] = P2[Z];
ni++;

node[nil .no = ni;
ff[afil = ni; 290
afi++;
node[nil.coord[X] = P3[X] ;
node[nil .coord[Y] = P3[Y ;
node[nil .coord[Z] = P3[Z] ;
create_face(ni, ni-l, ni-2, f[m][il] .n);
ni++;
node[ni] .no = ni;
ff[afil = ni;
afi++;

Code for quadrilateral and hexahedral mesh generation

node [ni].coord[X] = P4[X]; 300
node[ni].coord[Y] = P4[Y];
node[nil].coord[Z] = P4[Z];
ni++;
node[ni] .no = ni;
ff[afi] = ni;
afi++;
node[ni] .coord [X = P5[XI;
node[nil].coord[Y] = P5 [Y];
node[ni] .coord[Z] = P5[Z];
create_face(ni, ni-1, ni-2, f[ml [il].n); 310
ni++;

/* CORRECT CORNER FRONT */
void correct_corner_face(int iO, int ii, int i2)

{
POINT vO, vl, v;
vector(il, iO, vO);
vector(il, i2, vl);
add_vector(vO, vl, v); 320
point_vector(il, v, node[ni-1] .coord);
if(solface [m] .type ! = 0) pointproj ection(node [ni- 1] .coord);
if(repr == 1){

ads_command(RTSTR, "erase", RTSTR, "1", RTSTR, "", 0);
ads_command(RTSTR, "3dface", RT3DPOINT, node [face [f i- 1].fnode [l0]]. coord,

RT3DPOINT, node[face [fi-] .fnode [i] .coord,
RT3DPOINT, node [face [fi-1l .fnode [21] . coord,
RT3DPOINT, node [face[f i-1l .fnode[31]. coord,
RTSTR, "", 0);

330

A.11 Function advancefront(int nf)

int advance_front(int nf)
{

int i, k, eO, iO, w, s, e, in=O;
printf(" advance_front = ");
afi=0;
setki kpi(nf);
for(i=ki ; i <= kpi ; i++){

if((al35 < f[m] [i] .a) && (f[m] [i .a <= a240) &&
(a135 < f[m] [incr(i)] .a) && (f[m] [incr(i)].a <= a240)){

s = incr(i); 10
e = i;
in = 1;
break;

}

139

140 Appendix A

if(in == 1) create_first_face_of_front(nf, &e, &s);
else {dividefront_into_two(nf); return 0;}
i = incr(s);

eO = decr(e);

w = 0; 20

for(; ;){
if((i == eO) I1 (i == e)) break;
if(f [ml [i .a <= a135){

if(w == 2) break;

if(a90 < f[m] [i] .a) correct_corner_face(decr(i), i, incr(i));
create_face(f[m] [incr(i)] .n, ni-1, f[m] [decr(i)] .n, f[m] [i] .n);
i = incr(incr(i));
w++;

continue;
} 30
if((al35 < f[m][i].a) && (f[m] [i].a <= a240)){
face_incorner(nf, decr(i), i, incr(i));

i = incr(i);
w = 0;

continue;

}
if((a240 < f[m][i].a) && (f[m] [i].a <= a300)){

two_faces_inwedge(decr(i), i, incr(i));

i = incr(i);

w = 0; 40

continue;

}
if(f[m][i].a > a300){
three_faces in wedge(decr(i), i, incr(i));

i = incr(i);

w = 0;

continue;

}
}
if(i == e){ 50

create_face(ff [0] , ni- , f [m] [eO] .n, f [m] [i] .n);
node[ff[0]].nface[l] = node[ff[0]] .nface[0];
node[ff[0]] .nface[0] = fi-1;

node f [ml [e] .n] ..nface [node [f m] [e] .n] . nf i-i] = node Eff [0]] .nface [] ;
node [f [m] [e] .n] .nf ace [node [f [m] Ee] .n] .nfi-2] = fi-1;

}
if((i == eO) && (w == 0)){

if(f [m] [i] .a <= a135){

iO = decr(i);
face [fi-i] .fnode[O] = ff[0]; 60

if(a90 < fE[m][i .a){
correct_corner_face(iO, i, e);

node [ff [0]] .coord [X] = node [ni-i1 .coord [X ;
node[ff [O]].coord[Y] = node [ni-1].coord[Y];
node [ff [0]] .coord [ZI = node [ni-] .coord [Z ;
if(repr == 1) reprint_face(pff [nf]);

}
else(

if(repr == 1){

Code for quadrilateral and hexahedral mesh generation

ads_command(RTSTR, "erase", RTSTR, "1", RTSTR, "", 0);
ads_command(RTSTR,"3dface",RT3DPOINT,

node[facefi-1] .fnode[0]] .coord,
RT3DPOINT, node[face[fi-l] .fnode[l]].coord,
RT3DPOINT, node [face f i-i] . fnode [2]] . coord,
RT3DPOINT, node [face [fi- l .fnode [3]] . coord,
RTSTR, "", 0);

ni--;

node[ni].nfi = 0;
afi-- -;

create_face(ff[0] , f[m] [iO] .n, f[m] [eO] .n, f[m] [e] .n);
node[ff [0]].nfi++;
node[ff [0]] .nface[2] = node[ff [0]] .nface[0];
node[ff[O]].nface[O] = fi-2;
node[ff[0]].nface[11] = fi-1;

}
if((a135 < fr[m] [i].a) && (f[m][i].a <= a240)){
faceincorner(nf, decr(i), i, e);
createface(ff [O] , ni-l, f[m] [eO] .n, f[m] [e] .n);
node[ff [O]] .nface[l] = node Eff 0]] .nface [0];
node[ff[O]] .nface[O] = fi-1;
node [f Em] [e .n] .nface[node[f m] [e] .n] .nfi-1] = nodelff [0]] .nface[1] ;
node [f m] [e] .n] .nface[node[f Em] [e].n].nfi-2] = fi-1;

if((a240 < f[m] [i] .a) && (f[m] [i] .a <= a300)){
two_faces in_wedge(decr(i), i, e);
create_face(ff [0], ni- 1, f Em] [eO] .n, fE[m] Ee] .n);
node[ff[O]].nface[l] = nodeff [0]].nface[0];
node[ff[O]] .nface[O] = fi-1;
node [f [m] e] .n] .nface [node [f m] [e] .n] .nf i- 1i] = node Eff [0]] .nface [];
nodeEf m] [e] .n] .nface node f m] [eel .n].nfi-21 = fi-1;

}
if(f[m][i].a > a300){
threefacesin wedge(decr(i), i, e);
create_face(ff [0] , ni-l, f[m] [eO] .n, f[m] Eel .n);
node[ff [0]] .nface[1] = node[ff [0]] .nface[E];
node[ff[O]].nface[E] = fi-1;
nodef [m] [e]el .n] .nface[node[f [m] [e] .n] .nfi-i] = node[ff01]] .nface[E];
node f Em] [e] .n] .nface Enode f Em] Ee] .n] .nfi-2] = fi- 1;

}
if((i == eO) && (w > 0)){

iO = decr(i);

if(dist (node [ni-1] .coord, node ff [0]] .coord) <
(f [m] EiOl .d + f [m] [decr(iO)l .d) / 3.0){

ni--;

node[nil] .nfi = 0;
afi----;

face[fi--1] .fnode[1] = ff [0] ;
face[fi-2] .fnode[0] = ff[0] ;
if(repr == 1){
ads_command(RTSTR, "erase", RTSTR, "1", RTSTR, "", 0);

141

142 Appendix A

ads_command(RTSTR, "erase", RTSTR, "1", RTSTR, "", 0);

ads_command(RTSTR, "3dface", RT3DPOINT,

node [face [f i-21 .fnode [0]] .coord,
RT3DPOINT, node[face[fi-2] .fnode[1]].coord,
RT3DPOINT, node [face fi-2] .fnode [2]] .coord,
RT3DPOINT, node [face[fi-2] .fnode [31]] .coord,
RTSTR, "", 0); 130

ads_command(RTSTR, "3dface", RT3DPOINT,
node [f ace If i- 1] .fnode [0]] . coord,
RT3DPOINT, node [face [fi-1] .fnode El[]] .coord,
RT3DPOINT, node[face[f i-1] .fnode[2]] .coord,
RT3DPOINT, node[face[f i-1] .fnode [31] coord,
RTSTR, "", 0);

}
create_face(ff[0], f[m] [iO] .n, f[m] [eO] .n, f[m] [e].n);
node[ff[O]].nfi = node[ff[0]].nfi + 2;
node[ff [O]].nface[3] = node[ff [0]] .nface[01 ; 140
node[ff[0]] .nface[0] = fi-3;
node[ff[O]] .nface[1] = fi-2;
node[ff[0]].nface[2] = fi-1;

}
else{

if(f [ml [i] .a < a180){
create_face(ff[0], f[m] [iO].n, f[m] [eO].n, f[m] [e].n);
ff[afi] = f[m] [i0].n;
afi++;

node[ff[0]] .nface[l] = node[ff[0]] .nface[0]; 150

node[ff[0]] .nface[0] = fi-1;
node[f[m] [e] .n] .nface [node [f [m] [e] .n] .nfi-i] = nodeff [01]] .nface[11];
node If Em] [e] . n] .nface [node If Em] [e] .n] .nfi-2] = fi- 1;

}
if((al80 <= f[m] Ei] .a) && (f m] [i .a <= a240)){
face_in_corner(nf, decr(i), i, e);

create_face(ff [01 , ni-l, f [m] [eO] .n, f[ml [e] .n);
node[ff[O]].nface[l] = node[ff[O]].nfaceEO];
node[ff[0]] .nface[O] = fi-l;
node[f [m] [e] .n] .nface[node[f [m] [eel .n].nfi-11 = node[ff [O]].nface[l]; 160

node[f [m] Eel .n] .nface[node[f [ml Eel .n] .nfi-21 = fi-1;

}
if((a240 < f[m] i].a) && (f[m]l i].a <= a300)){
two_facesinwedge(decr(i), i, e);

create_face(ff [0 , ni-l, fEm] EeO] .n, f[m] [eel .n);
nodeEff[O]].nface[l] = node[ff[O]] .nface[O];
nodeIff[O]] .nface[0 = fi-1;
node[f Em] Eel .n] . nface [node [f Em] [e] .n] .nfi- 11 = node[ff[0]] .nfaceE] ;
node[f [m] e] .n] .nface[node[f [m] [e] .nl .nfi-21 = fi-1;

}170
if(f[m][i].a > a300){
three_facesin_wedge(decr(i), i, e);
create_face(ff[01, ni-1, f[m][eO].n, fEm][e].n);
node[ff[0]].nfaceE[] = nodeEff011]].nface[O];
node[ff[O]].nfaceE[O = fi-1;

node If [m] Eel .n] .nface[node[f [m] [e] .n] .nf i-11 = node[ff [011 .nface [];
nodeEf m] [eel .n] .nface[node[f [ml [el .n] .nfi-21 = fi-1;

Code for quadrilateral and hexahedral mesh generation 143

}
}

180
if((w == 2) && (i != e) && (i != eO)){

i = decr(i);
while(i != s){

ff[afi] = f[m][i].n;
afi++;

i = incr(i);

}
}
afi--;
if(afi == (kpi - ki)) for(i=O ; i <= afi ; i++) f[m][i+ki].n = ff[i]; 190
if(afi > (kpi - ki)){

k = afi - (kpi - ki);
for(i = pi[m] ; i > kpi ; i--){

f[m] [i+k].n = f[m] [i].n;
f[m][i+k].f = f[m][i].f;
f[m][i+k].a = f[m][i].a;
f[m][i+k].d = f[m][i].d;

}
for(i=kpi ; i < kpi+k ; i++) f[m][i].f = -1;
f[m] [kpi+k].f = nf; 200
for(i=O ; i <= afi ; i++) f[m][i+ki].n = ff[i];
kpi = ki + afi;
pi[m] = pi[m] + k;

}
if(afi < (kpi - ki)){

for(i=O ; i <= afi ; i++) f[m] [i+ki].n = ff[i];
for(i=ki+afi ; i <= kpi ; i++) f[m][i].f = nf;
kpi = ki + afi;

}
front_angle_distance(nf); 210
return 1;

A.12 Auxiliary functions to correct the element
sizes

/* JOINT TWO FACES */
void jointtwofaces(int iO, int il, int i2)

{
int i, j, fO, fl, f2, f3, n3, i3;
REAL d, dv;

POINT v;

fO = node[f [m] [iO] .n] .nface[0] ;
fl = node[f [m] [il] .n].nface[0] ;
f2 = node[f [m] [i2] .n] .nface [0] ;
f3 = node[f [m] [i2] .n] .nface[1] ;

144 Appendix A

n3 = face[fl].fnode[3];
node[fm] [iO] .n] .coord[X] = (node[f m] [i2] .n] .coord[X] +

node[fim] [i0].n].coord[X]) / 2.0;
nodeEf m] [i0] .n] .coord[Y] = (node[f m] [i2] .n] .coord[Y] +

node[f[m] [iO] .n].coord[Y]) / 2.0;
nodeEf [m] Ei0].n].coord[Z] = (node[f m] [i2].n].coordEZ] +

node[f[m] [iO] .n] .coord[Z]) / 2.0;
if(sol_face[m] .type != 0) pointprojection(node[f [m] [iO] .n] .coord);
if(node[f Em] [i3=incr(i2)].n].nfi == 1) face[f3] .fnode[2] = f [m] EiO].n;
else face[f3] .fnode [1] = f[m] [iO] .n; 20

face[f2].no = -1;
face f2].fnode[0] = -face f2].fnode[0];
face[f2] .fnode[1] = -face[f2].fnode[l];
face[f2] .fnode[2] = -face[f2] .fnode[2];
face[f2] .fnode[3] = -face[f2].fnode[3];
if(repr == 1) ads_command(RTSTR, "erase", RTSTR, "1", RTSTR, "", 0);
node[f[m] [il] .n] .no = -1;
node[f m] [il] .n] .coord[X] = 1E+10;
nodef [m] [ill] .n] .coord[Y] = 1E+10;
nodeEf m] [il] .n] coord[Z] = 1E+10; 30

nodef [m] [i2] .n] .no = -1;
nodeEf m] [i2] .n] .coord[X] = 1E+10;
node[f [m] [i2] .n] .coord[Y] = 1E+10;
node[f Em] [i2] .n] .coord[Z] = 1E+10;
face[fl] .fnode[0] = f[m] [i0] .n;
face[fl] .fnode[l] = facef0] .fnode[3];
face fl] .fnode[2] = n3;
facefl] .fnode[3] = faceEf3] .fnode[2];
if(node[f [m] [i3] .n] .nfi == 1) face[fl] .fnode[3] = face[f3] .fnode[3] ;
node Ef Em] [iO] .n] .nface [node f [m] [i0] .n] .nfi] = f3; 40
node[f [m][i0] .n] .nfi++;
node En3] .nfi--;
if(node[f [m] [i3] .n] .nfi == 1)

node [face Ef] .fnode [3]] .nface [node [face Efl 1.fnode [3]] .nfi-3] = fl;
else

node [face Ef 1].fnode [3]] .nface [node [face f 1] .fnode [3]] .nfi-2] = fl;

/* INSERT A FACE */
void insert_face(int iO, int it, int i2) 50

int fO, fl;
POINT v;

fO = nodef [m] [il] .n] .nface[0] ;
fl = node[f [m] [i2] .n] .nface[0] ;
node[nil.no = ni;
node Eni] .coord[X] = (node f [m] [il] .n] .coord[X] +

node[f[m][i2].n].coord[X]) / 2.0;

node[ni].coord[Y] = (node[f m] [il].n].coordEY] +
node[f[m] [i2] .n] .coord[Y]) / 2.0; 60

node[ni] .coord[Z] = (nodef [m] [il] .n] .coordEZ] +
node[f[m] [i2] .n] .coord[Z]) / 2.0;

if(solface[m] .type != 0) pointprojection(nodeEnil .coord);

ni++;

vector_no(face[fO] .fnode[3], f[m] [ii] .n, v);
scalar_vector(0.4, v);
node[ni].no = ni;
node [ni] .coord X] = node [f [m] [il] .n]. coord[X] + v[X] ;
node [ni].coord [Y] = node [f [m] [ii].n]. coord [Y] + v [Y];
node [ni].coord [Z] = node [f [m] [i1] .n] .coord [Z] + v [Z]; 70
if(sol face[m] .type != 0) pointprojection(node[ni]. coord);
ni++;
node[f[m] [ill .n] .coord[X] = (node[f [m] [il] .n] .coord[X] +

nodef [m][i0].n].coord[X]) / 2.0;
node[f [m] [il] .n] .coord[Y] = (nodef [m] [ii] .n] .coord[Y] +

node[f[m][i0] .n] .coord[Y]) / 2.0;
node[f [m] [il] .n] .coord[Z] = (node[f [m] [il] .n] .coord[Z] +

node [f [m] [i0] .n] .coord [Z]) / 2.0;
if(solface [m] .type != 0) pointprojection(node f [m] [il] .n] .coord);
face[fi] .no = fi; 80
face [fi] .fnodeO0] = ni-2;
face [fi] .fnode [l] = ni-i;
face[fi] .fnode[2] = f[m] [il] .n;
face[fi].fnode[3] = face[f0].fnode[3];
face[fi] .fm = m;
fi++;
node[ni-i] .nface[node ni-i] .nfi] = fi-1;
node [ni -].nfi++;
node[ni-2] .nface[node[ni-2] .nfi] = fi-i;
node [ni-2] .nfi++; 90
node[ni-2] .nface[node[ni-2] .nfi] = f 1;
node [ni-2] .nfi++;
node[f [m] [ill .n] .nface[node f [m] [ii] .n] .nfi-11 = fi-1;
node [face [f0] .fnode [3]] .nface [node [face [f0] .fnode [3]] .nf i-1i] = fi-1 ;
node[face[f0] . fnode3]] .nfacenode[face[f0].fnode3]] . nfi] = f;
node[facef0] .fnode[3]] .nfi++;
face fi] .fnode[1] = ni-2;
if(repr == 1){

ads_command(RTSTR, "3dface", RT3DPOINT, node[face[fi-i] .fnode[0]] . coord,
RT3DPOINT, node[face[fi- i] .fnode [l]] . coord, 100
RT3DPOINT, node[face fi-i] .fnode[2]] . coord,
RT3DPOINT, node [face [f i-13] .fnode [3]] . coord,
RTSTR, "", 0);

I
}

/* INTERSECT TEST FOR correct_front_size */
int intersectfor_correct (int i)

{
int j, iO, il; 110

REAL d;
iO = decr(i);
il = incr(incr(i));
if(f [m] [i0] .d < f[m] [i] .d) d = f[m] [i] .d;
else d = f[m] [i0].d;
j = il;
while(j != iO){

if(dist (node f [m] [i] .n] . coord, node [f [m] [j] .n] .coord) <= d) return i;

Code for quadrilateral and hexahedral mesh generation 145

146 Appendix A

j = incr(j);
S120
return 0;

}

A.13 Function correct_frontsize(int nf)

int correct front size(int nf)

{
int i=ki, j, in=0, e, b, il, i2, w;

REAL tmin, tmax;

printf(" correct_front_size = ");
set_kikpi(nf);
tmin = 0.7 * msize[m];

tmax = 1.3 * msize[m];

while(i <= kpi){
e = 0; 10

ii = incr(i);

i2 = incr(il);

b = 0;
for(j=0 ; j < n in ; j++)

if((f[m] [i] .n == no_intersectnode[j]) If

(f[m] [il] .n == no_intersectnode[j]) II

(f[m] [i2].n == no_intersect_node[j])) b = 1;

b = b + intersectfor correct(i);

b = b + intersect forcorrect(il);

b = b + intersect for correct(i2); 20

if((f [m] [i] .d < tmin) && (fr[m] [il] d < tmin) &&

(node[f[m] [i].n].nfi == 2) && (node[f [m] [il] .n] .nfi == 2) &&

(node[f[m] [i2].n].nfi == 2) && (b == 0)){

in = 1;

joint_two_faces(i, il, i2);

w = 0;

if(i < kpi-l){
kpi = kpi - 2;
for(j=i+l ; j <= kpi ; j++){

f[m] [jl.n = f[m] [j+21.n; 30

f[m][j].a = f[m] [j+2].a;

fEm] [j] .d = f[m] [j+2] .d;

}
f[m][kpi].f = nf;

f[m] [kpi+1].f = nf;
front_node_ang_dist(nf, decr(i));

front_node_ang_dist(nf, i);

front_node_ang_dist(nf, incr(i));

w = 1;
40

if((i == kpi-1) && (w == 0)){
kpi = kpi - 2;
for(j=ki ; j <= kpi ; j++){

Code for quadrilateral and hexahedral mesh generation 147

f [m] [j] .n = f[m] [j+1] .n;
f[m] [j] .a = f[mrn] [j+l] .a;
f[m] [j].d = fE[mn][j+1].d;

}
f[m][kpi].f = nf;

f[m][kpi+l].f = nf;
frontnode_angdist(nf, kpi-1); 50

front nodeang dist(nf, kpi);

front_node_ang_dist(nf, ki);

w = 1;

if((i == kpi) && (w == 0)){
kpi = kpi - 2;

for(j=ki ; j <= kpi ; j++){
f[m] [j] .n = f[m] [j+2] .n;

f [m] [j].a = f [m] [j+2].a;
f [m] [j].d = f [m] [j+2].d; 60

}
f[rm][kpi].f = nf;
f[m] [kpi+ll.f = nf;
front node_ang dist(nf, kpi-1);

front_node_ang_dist(nf, kpi);
front_node ang dist(nf, ki);

}
i = i + 3;

if(i > kpi) break;
e= ; 70

il = incr(i);

i2 = incr(il);

b = 0;

for(j=0 ; j < n-in ; j++)
if((f[m] [i] .n == no_intersect_node[j])

(f[m] [il] .n == no_intersect_node[j]) I
(f[m] [i2] .n == no_intersect_node[j])) b = 1;

b = b + intersect_for_correct(il);

if((f[m] [i].d > tmax) && (f[m][il].d > tmax) && 80

(node[f[m] [il] .n].nfi == 2) && (b == 0)){

in = 1;

insert_face(i, il, i2);
for(j=pi[m] ; j > kpi ; j--){

f [m] [j+2] .n = f [m] [j] .n;
f [m] [j+2].a = f [m] [j].a;
f [m] [j+2].d = f [m] [j].d;
f [m] [j+2].f = f [m] [j].f;

pi[m] = pi[m] + 2; 90
w = 0;

if(i < kpi-1){
kpi = kpi + 2;

for(j=kpi ; j >= i+4 ; j--){
f [m] [j] .n = f [m] [j-2] .n;
f[m][j].a = f[m] E[j-2].a;
f[m] [j].d = f[m] E[j-2].d;

A 1' A

148 Appenazdx

f[m][j].f = f[m][j-2].f;
}
f[m][kpi-1].f = -1; 100

f[ml [kpi-2].f = -1;
f[m][kpi].f

= nf;

f[m] [i+2].n = ni-1;

f [m][i+3].n = ni-2;

front_node_angdist(nf, i);

front_node_ang_dist(nf, i+l);

front_node_ang_dist(nf, i+2);

front_nodeang_dist(nf, i+3);

w = 1; 110

}
if((i == kpi-1) && (w == 0)){
kpi = kpi + 2;
f[m] [kpi-2].f = -1;
f[m] [kpi-1].f = -1;
f[m][kpi].f = nf;
f[m] [kpi-] .n = ni-1;

f[m][kpi].n = ni-2;
front_nodeang_dist(nf, kpi-3);

front_node_ang_dist(nf, kpi-2); 120

front_node_ang_dist(nf, kpi-1);

front_node_ang_dist(nf, kpi);

w = 1;

}
if((i == kpi) && (w == 0)){
kpi = kpi + 2;
for(j=kpi ; j >= ki+3 ; j--){

f[m] [j].n = f[m] [j--2] .n;
f[m][j].a = fr[m] [j-2 .a;

f[m] [j .d = f[m] [j-2] .d; 130

f[m][j].f = fr[m] [j-2].f;

}
f[m] [kpi-1].f = -1;

f[m] [kpi-2].f = -1;

f[mr][kpi].f
= nf;

f[m] [ki+l].n = ni-l;

f[m][ki+2].n
= ni-2;

front_node ang_dist(nf, kpi);

front_node_angdist(nf, ki);

front_node_ang_dist(nf, ki+l); 140

front_nodeang_dist(nf, ki+2);

i = i + 5;

e = 1;

if(e == 0) i++;

if(in == 1) if(repr == 1) reprintjface(pfc);

return in;
150

A.14 Auxiliary functions to predict intersection

/* INTERSECT WITH NEW NODE */
void intersectwith_new_node(int nf, int im, int jm)

int j, k, k2;
node[ni] .no = ni;
node[ni] .coord EX]

node[nil .coord[Y]

node[ni . coord[Z]

if(solf ace [m] .type

= (node [f [m] [im] .n] .coord [X] +
node[f [m] [jm] .n] .coord[X]) / 2.0;

= (node [f[m] [im] .n] . coord [Y] +
node[f[m] [jm] .n] .coord[Y]) / 2.0;

= (node [f [m] [im] .n] .coord [Z] +
node [f [m] [jm] .n] .coord[Z]) / 2.0;

e != 0) pointprojection(node[ni] .coord);
ni++;
k = 0;
for(j=im ; j <= jm ; j++){

k++;
f [m] [pi[m]+k] .n
f [m] [pi [m] +k] .a
f [m] Epi [m]+k] .f
f [m] [pi [m]+k] .d

Sf[m] [j] .n;
= fm] [j].a;

= --1;
= f[m][j] .d;

n_f [m] ++;
pff nf [m]] = pff[nf [m]-1];
setorigin(nf m] , nf);
f[m][pi[m]+1].f = n_f[m];
pi m] = pi m] + k + 1;
f[m] [pi[m]] .n = ni-1;
f[m][pi[m]].f = nf[m];
turn[m] [n_f [m]] = turn[m] [nf];
f [m] [im+1] .n = ni--1;
k2 = 0;
for(j=jm ; j <= kpi ; j++){
k2++;
f[m] [im+1+k2].n = f[m] [j].n;
f [m] [im+l+k2].a = f[m] [j] .a;
f [m] [im+l+k2].d = f[m] [j].d;

kpi = im + 1 + k2;
f[m][kpi].f = nf;
k = k - 3;
for(j=kpi+l ; j <= pi[m]-k ; j++){

f[m] [j].n = f[m] [j+k].n;
f m] [j] .a = f[m] [j+k].a;
f[m] [j].f = f[m] [j+k].f;
f[m][j].d = f[m][j+k].d;

pi[m] = pi[m] - k;
front_node_ang_dist(nf, im);
front_node_angdist(nf, im+1);
front_node_ang_dist(nf, im+2);

Code for quadrilateral and hexahedral mesh generation 149

set_kikpi (n_f [m]) ;
frontnode_ang_dist(n_f [m] ,kpi-1);
front_node_ang_dist (n_f m] ,kpi);
front_node_angdist(nf [m],ki);

}

/* INTERSECT MOVE NODES */
void intersect_move_nodes(REAL d, int nf, int im, int jm)
{

int j, k, k2; 60
REAL dn, dv;
POINT v;
dn = (d - msize[m]) / 2.0;
vector(im, jm, v);
dv = vector_norm(v);
scalarvector(dn/dv, v);
node Cf Cm] [im] .n] .coord CX] = node Cf Cm] [im] .n] coord CX] + v C[X] ;
node [f [m] [im] . n] . coord [Y] = node C[f [m] [im] .n] . coord [Y] + v [Y] ;
node C[f [m] [im] .n] .coord [Z] = node Cf [m] [im] .n] .coord C[Z] + v [Z];
if(solface Cm] .type != 0) pointprojection(node f [m] [im] .n] .coord); 70
node f [m] [jm] .n] . coord CX] = node Cf [m] [jm] .n] . coord [X] - v [X] ;
node [f [m] [jm] . n] . coord C[Y] = node C[f [m] [jm] .n] . coord [Y] - v [Y] ;
node Cf [m] [jm] .n] .coord[Z] = node Cf [m] [jm] .n] .coord Z] - v [Z];
if(sol_face Cm] .type ! = 0) pointprojection(node C[f [m] [jm] .n] .coord);
k = 0;
for(j=im ; j <= jm ; j++){
k++;
f[m] [pi[m]+k] .n = f[m] [j] .n;
f[m][pi[m]+k].a = f[m][j].a;
f[m][pi[m]+k].f = -1; 80
f[m][pi[ml+kl.d = f[m] [j].d;

n_f m]++;
pff [nf [m]] = pff [nf [m] -] ;
set_origin(nf [m], nf);
f[m] [pi[m]+1] .f = nf[m;m
f [m] [pi [m] +k].f = n_f [m];
pi[m] = pi[m] + k;
turn[m] [nf [mll] = turn[m] [nfl;
k2 = 0; 90
for(j=jm ; j <= kpi ; j++){
k2++;
f[m][im+k2].n = f[m][j].n;
fC[m][im+k2].a = f[m] [j].a;
f[m][im+k2].d = f[m][jl.d;

}
kpi = im + k2;
f[m][kpi].f = nf;
k = k - 2;
for(j=kpi+l ; j <= pi[ml-k ; j++){ 100

f[m] [j].n = f[m] [j+k].n;
f[m][jl.a = f[ml[j+kl.a;
f[m][j].f = f[m][j+kl.f;
f[m] [j].d = fm][j+kl.d;

150 Appendix A

Code for quadrilateral and hexahedral mesh generation

}
pi[m] = pi[m] - k;

front_node_ang_dist(nf, decr(im));
front_node_ang_dist(nf, im);
front_node_ang_dist(nf, im+l);
front_node_ang_dist(nf, im+2); 110
setki kpi (nf[m]);
front_node_ang_dist(n_f [ml ,kpi-1);
frontnode_ang dist(n f[m],kpi);
front node_ang_dist(njf[m],ki);
frontnode_ang_dist(n_f[m] ,ki+1);

}

/* INTERSECT SEAM NODES */

void intersect_.seam_nodes(int nf, int im, int jm)
{120

int i, j, k, k2, anf;
node [f [m] [im] .n] . coord [X] = (node [f Em] [im] .n] .coord [X] +

node[f[m] [jm].n].coord[XI) / 2.0;
node f [m] [im] .n] .coord[Y] = (node [f m] [im] .n] .coord[Y] +

nodef [m] [jm] .n] .coord[Y]) / 2.0;
node[f [m] [im] .n] . coord [Z] = (node f [m] [im] .n] . coord [Z] +

node[f[m][jm].n .coord[Z]) / 2.0;
if(solface[m] .type != 0) pointprojection(node[f [m] [im] .n] .coord);
for(j=0 ; j < node[f[m][jm].n].nfi ; j++){

node[f [m] [im] .n] .nface[node[f [m] [iml .n] .nfi] = 130
node[f[m] [jml .n] .nface[j] ;

node[f[m] [im] .n] .nfi++;
for(k=0 ; k < 4 ; k++){

if(face [node [f [m] [jm] .n] .nface [j]] .fnode [k] == f [m] [jm] .n){
face [node[f [m] [jm] .n] .nface[j]] .fnode[k] = f m] [im] .n;
break;

}
}

fbr(i=0 ; i <= pi[m] ; i++){ 140
if((f[m] [i].n == f [m] [jm] .n) && (i != jm) &&

((f[m][i+1].f == -1) I (f[m][i-1].f == -1))){
j =i;
while(f [m] [j] .f == -1) j = decr(j);
anf = f[m] [jl.f;
f[m] [i].n = f[m][im].n;

set_ki._kpi(anf);
front_node_ang dist (anf, decr(i));

front_node ang_dist(anf, i);
front_node._ang_dist(anf, incr(i)); 150
set_ki_kpi(nf);

continue;
}

node[f Em] [jm] .n] .no = -1;
node[f m] [jm] .n] .coord[X] = 1E+10;
node[f m] [jm] .n] .coord[Y] = 1E+10;
node[f [m] [jm] .n] .coord[Z] = 1E+10;

151

k = 0;
for(j=im ; j < jm ; j++)

k++;
f[m][pi[m]+kl.n = f[m] [j].n;
f [m] [pi[m]+kl .a = f[m] [j].a;
f[m][pi[ml+k .f = -1;
fr[m] [pi[ml+kl .d = f[m] [j] .d;

nf [m] ++;
pff [nf [m] = pff [n_f [m -1] ;
set_origin(nf[m] , nf);

f[ml [pi[m]+1].f = n_f[m];
f[m][pi[m]+kl.f = n_f[m ;
pilm] = pi[m] + k;
turn[m] [nf [m]] = turn[ml [nf];
k2 = 0;
for(j=jm+l ; j <= kpi ; j++){
k2++;

f[m][im+k2].n = f[m] [j].n;
f[m][im+k2 .a = f[m] [j] .a;
f[m] [im+k2].d = f[m] [j].d;

kpi = im + k2;
f [m] [kpil.f =
for(j=kpi+l

f[m] [j].n =

f [ml[j] .a =

f[m] [j].f =
f[m] [j].d =

nf;
j <= pi[m]-k ;
f[m] [j+kl .n;
f [ml [j+kl .a;
f[m] [j+kl.f;
f [ml [j+kl .d;

pi[m] = pi[m] - k;
frontnode_ang_dist(nf, decr(im));

frontnode_ang_dist(nf, im);
front_node_ang_dist(nf, im+l);
set_kikpi(nf[ml);
frontnode_ang_dist(n_f[m , kpi);
front_nodeang_dist(nf [m ,ki);
front_node_ang_dist(n [m , ki+l);

/* SET no_intersect_node */
void setnointersectnode(int i)

{
no_intersect_node[n_i_n] = i;
n_i n++;

/* CHECK no_intersect_node */
int check_no_intersect_node(int nf, int i, int j)

int k;
REAL d, dO, dl, a;
POINT v, vO, vl, t;
for(k=O ; k < n_in ; k++)

152 Appendix A

Code for quadrilateral and hexahedral mesh generation 153

if((f [m] [i] .n == no_intersect node Ek]) II
(f[m] [j] .n == no_intersectnode[k])) return 1;

if(nf != -1){
vector(i, decr(i), vO);
vector(i, incr(i), vl);
dO = vectornorm(v0);
dl = vector norm(vl);
scalar_vector((dl / dO), vO); 220
sub_vector(v0, v1, v);
if(sol_face Em] .type != 0)

ap_pt_norm2face(sol_id, sol_face[m] .id,node[f [m] [j .n] .coord,TRUE, n[m]);
vector_product(v, n[m], t);
scalar_vector(turn[m] [nf] , t);
vector(i, j, v);
a = innerproduct(t,v);
if(a < 0) return 1;
vector(j, decr(j), vO);
vector(j, incr(j), vl); 230
dO = vector norm(v0);
dl = vector.-norm(vl);
scalar_vector((dl / dO), vO);
sub_vector(v0, v1, v);
if(sol_face[m].type != 0)

appt_norm2face(sol_id, sol_face [m] .id,node[f [m] [j] .n] .coord,TRUE, nm]);
vector_product(v, n m], t) ;
scalar_vector(turn[m] [nf] , t);
vector(j, i, v);

a = inner product(t,v); 240
if(a < 0) return 1;

}
return 0;

/* INTERSECT TWO FRONTS WITH TWO NEW NODES */
void intersect_two_fronts_with_two_newnodes(int ao, int nf,

int im, int is, int jm, int js)

int i, k, w; 250
set no intersect_node(f[m] [im] .n);
set no_intersect_node(f [m] [is] .n);
set_no intersect_node (f [m] [jm] .n) ;
set_no intersect_node(f[m] [js].n);
node[nil.no = ni;

node[ni] .coord[X] = (node[f m] [im] .n] .coord[X] +
node[f[m] [jm] .n] .coord[X]) / 2.0;

node[ni] .coord[Y] = (node[f m] [im] .n] .coord[Y] +
node[f[m] [jm] .n] .coord[Y]) / 2.0;

node [ni] .coord[Z] = (node[f [m] [im] .n] .coord[Z] + 260
node[f[m] [jm].n].coord[Z]) / 2.0;

if(sol_face[m] .type != 0) pointprojection(node[ni] .coord);
set no intersect_node(ni);
ni++;

node [ni] .no = ni;

node[ni] .coord[X] = (node[f [m] [is] .n] .coord[X] +

Appendix A

node If [m] [j s] .n] .coord [X]) / 2.0;

node [ni] .coord [Y] = (node [f Em] [is] .1n . coord [Y] +

node[f [m] [js] .n] .coord[Y]) / 2.0;

node[nil .coord [Z = (node[f Em] [is] .n] .coord[Z] + 270

node If [m] [j s] .n] .coord [Z]) / 2.0;

if(sol_face[m].type != 0) point-projection(node[ni] .coord);

set no intersect_node(ni);
ni++;
af[0].n = ni-2;
af[O].a = a180;
af[Ol].f = nf;
af[O] .d = dist(node[ni-2] .coord, node[f Em] [im] .n] .coord);

w = 1;
i = im; 280

while(i != is){
af[w].n = f[m] [i].n;

af[w].a = f[m] [i].a;
af[w].f = -1;
af[w].d = f[m][i].d;
w++;

i = incr(i);

}
af[w].n = f[m] [is].n;
af[w].f = -1; 290

w++;

af[w].n = ni-1;
af[w].a = a180;
af[w].f = -1;
af[w] .d = dist(node[ni-1] .coord, nodef [m] [j s] .n] .coord);

w++;
i = js;
while(i != jm){

af[w].n = f[m] [i].n;
af[w] .a = f[m][i].a; 300

af[w].f = -1;
af[w].d = f[m][i].d;

w++;

if(ao == 1) {i = dec(i); commute_face_nodes(f [m] [i].n);}

else i = inc(i);

}
afEw] .n = f[m] [jm] .n;

af[w].f = nf;
w++;

commuteface_nodes(f m] [jm] .n); 310

for(i=kpi+1 ; i < kj ; i++){

af[w].n = f[m][i].n;
af[w] .a = f[m] [i] .a;
af[w].f = f[m] [i.f;
af[w].d = f[m] [i].d;
w++;

for(i=kpj+l ; i <= pi[m] ; i++){
af[w].n = f[m] [i].n;

i LW] .d - i L i Li] a,

154

af[w].a = f[m] .a;

Code for quadrilateral and hexahedral mesh generation 155

af[w].f = f[m][i].f;
af[w].d = f[m][i].d;
w++;

}
for(i=0 ; i < w ; i++){

f[mr] [ki+i] .n = af[il .n;

f[m] [ki+i] .a = af[i] .a;

f[mr] [ki+i] .f = af[i] .f;

f[m] [ki+i].d = af[i] .d;

} 330

k = kpi - ki + 1;

kpi = kpi + (kpj - kj + 1) + 2;

pi[m] = pi[m] + 2;

frontnode_angdist(nf, ki+1);
front_nodeang._dist(nf, ki+k);
front_node_ang_dist(nf, ki+k+2);

front_node_ang_dist(nf, kpi);

create_face(ni-2, ni-1, f[m] [ki+k+2].n, fr[m] [kpi] .n);
create_face(f [ml [ki+1] .n, fE[m] [ki+k] .n, ni-l, ni-2); 340

/*INTERSECT TWO FRONTS WITH ONE FACE */
void intersect_two_fronts_withone face(int ao, int nf,

int im, int is, int jm, int js)

int i, k, w;
setnointersect_node(f[m] [im] .n);
set no intersectnode(f [m] [is] .n);
set nointersect_node(f [m] [jm] .n); 350
setnointersect_node(f[m][js] .n);
w = 0;

i = im;

while(i != is'){
af[w].n = f[m] [i] .n;
af[w].a = f[m][i].a;
af[w] .f = -- 1.;

af[w].d = f[m] [i] .d;
w++;

i = incr(i); 360

}
af[0].f = nf;

af[w] .n = f[m] [is] .n;
a f[w].f = -1;
w++;

i = js;
while(i != jm){

af[w] .n = f[m] [i] .n;
af[w].a = f[m][i].a;
af[w].f = -- 1; 370

af[w].d = f[m] [i].d;
w++;

if(ao == 1) {i = dec(i); commute_face_nodes(f [m] [i] .n);}

else i = inc(i);

156 Appendix A

}
af [w] .n = f [m] [jm] .n;

af[w].f = nf;

w++;

commute_face_nodes(f [m] [jm] .n);

for(i=kpi+l ; i < kj ; i++){ 380

af[w] .n = f[m] [i] .n;

af[w].a = f[m] [i].a;

af[w].f = f[m][i].f;

af[w].d = f[m] [i] .d;

w++;

}
for(i=kpj+l ; i <= pi[m] ; i++){

af[w] .n = f[m] [i].n;

af[w].a = f[m] [i].a;

af[w].f = f[m] [i] .f; 390

af[w].d = f[m] [i].d;
w++;

}
for(i=0 ; i < w i++){

f[m] [ki+i].n = af[i].n;

f[m] [ki+i].a = af[i] .a;

f[m] [ki+i] .f = af[il.f;

f[m] [ki+i].d = af[i].d;

}
k = kpi - ki + 1; 400

kpi = kpi + (kpj - kj + 1);

front_nodeangdist(nf, ki);

frontnode_angdist(nf, ki+k-1);

front_node_ang_dist(nf, ki+k);

frontnode_ang_dist(nf, kpi);

create face(f [m] [ki] .n, f [m] [ki+k-1] .n, f [m] [ki+k] .n, f [m] [kpil .n);

/* INTERSECT TWO FRONTS WITH SEAM */

void intersecttwofrontswith_seam(int ao, int nf, 410

int im, int is, int jm, int js)

{
int i, j, jj, k, w, anf;

set no intersectnode(f[m] [im] .n);

set no intersectnode(f[m] [is] .n);
setnointersect_node(f[m] [jm] .n);

set nointersectnode(f[m] [js] .n);
node Ef [m] [im] .n] . coord [X] = (node f [m] [jm] .n] .coord IX]

+ node[f Em][im].n].coordEX]) / 2.0;

node [f [m] [im] .n] .coord [Y] = (node [f [m] [jm] .n] . coord [Y] 420

+ node[f m][im].n].coordEY]) / 2.0;

node [f [m] im] .n] .coord[Z] = (node [f Em] [jm] .n] . coord[Z]
+ node[f [m] [im].n].coord[Z]) / 2.0;

if(sol_face[m] .type != 0) point_projection(node[f m] [im] .n] .coord);

for(j=0 ; j < node[f[m] [jm] .n].nfi ; j++){

node [f Em] [im] . n] .nface [node [f ml] [im] .n] .nf i] =node [f [m] [jm] .n] .nface [j] ;

node[f [m] [im] .n] .nfi++;
for(jj=0 ; jj < 4 ; jj++){

if(face [node [f [ml [jm] .n] .nface[j]] .fnode[jj] == f[m] [jml .n){
face[node[f [m] [jm] .n] .nface[j]] .fnode[j j] = f[m] [im] .n; 430
break;

}
}

for(i=0 ; i <= pi[m] ; i++){
if((f[m] [i] .n == f[ml Cjm] .n) && (i != jm) &&

((f[m][i+l].f == -1) II (f[m][i-1].f == -))){
j =i;
while(f [m] [j].f == -1) j = decr(j);
anf = f[m][j].f; 440
f[m] [i].n = f[m][im].n;

setki_kpi(anf);
front_node_ang_dist(anf, decr(i));
front_node_ang_dist(anf, i);
front_node_ang_dist(anf, incr(i));
setki kpi(nf);
continue;

}
node [f [m [jm] .n] .no = -1; 450
node[f[m] [jm] .n] .coord[X] = 1E+10;
node[f [m] [jm] .n] .coord[Y] = 1E+10;
node [f [m] [jm] .n] .coord[Z] = 1E+10;
node [f [m] [is .n] . coord [X] = (node [f [m] [js] .n] .coord [X]

+ nodef [m][is].n] .coord[X]) / 2.0;
node [f [m] [is] .n] .coord [Y] = (node [f [m] [j s] .n] .coord [Y]

+ node [f [ml [is] .n] .coord[Y]) / 2.0;
node [f [m] [is] .n] .coord [Z] = (node [f [m] [j s] .n] . coord [Z]

+ node [f [ml [is] .n] .coord[Z]) / 2.0;
if(solface [m] .type != 0) pointprojection(node[f [m] [is] .n] .coord); 460
for(j=0 ; j < node[f[m] [js] .n] .nfi ; j++){
node [f [ml [is] .n] .nface[node[f[m] [is] .n] .nfi]=node[f[m] [js] .n] .nface[j];
node[f [m] [is] .n] .nfi++;
for(jj=0 ; jj < 4 ; jj++){

if(face [node [f [m] [js] .n] .nface [j]].fnode [j j] == f[m] [js] .n){
face[node[f[m] [js] .n] .nface [j] .fnode[j j] = f[m] [is] .n;
break;

}

} 470
for(i=0 ; i <= pi[m] ; i++){

if((f[m] [i] ,n == f[ml [js] .n) && (i != js) &&
((f[ml [i+1] .f == -1) II (f[m][i--1].f == -1))){

j = i;
while(f [m [j] .f == -1) j = decr(j);
anf = f[m][j].f;
f[m] [i].n = f [ml [is] .n;
set_ki_kpi(anf);
front_node_ang_dist(anf, decr(i));
front_node_ang_dist(anf, i); 480
front_node_angdist(anf, incr(i));
set_ki_kpi(nf);

Code for quadrilateral and hezahedral mesh generation 157

Appendix A

continue;
}

}
node[f [m] [js .n] .no = -1;
node[f [m] [js] .nl .coord[XI = 1E+10;
node[f [m] [j s] .n] .coord [Y] = 1E+10;
node[f [m] [js] .n] .coord[Z] = 1E+10;
w = 0; 490
i = im;
while(i != is){

af[w].n = f[m] [i].n;
af[wl.a = f[m] [i].a;
af[w].f = -1;
af[wl .d = f[m][i] .d;
W++;

i = incr(i);

}
af[0].f = nf; 500

af[w].n = f[m] [is].n;
af[w].f = -1;
w++;

if(ao == 1) i = dec(js);
else i = inc(js);
while(i != jm){

af[w].n = f[m] [i].n;
af[w].a = f[m] [i].a;
af[w] .f = -1; 510

af[w].d = f[m][i].d;
w++;

if(ao == 1) {i = dec(i); commuteface_nodes(f [m] [i].n);}
else i = inc(i);

}
af[w-] .f = nf;

commute_facenodes(f[m][jm] .n);
for(i=kpi+l ; i < kj ; i++){

af[w] .n = f[m] [i] .n;
af[w] .a = f[m][i .a; 520
af[w .f = f[m] [i] .f;
af[w].d = f[m] [i].d;
w++;

}
for(i=kpj+l ; i <= pi[m] ; i++){

af[w] .n = f[m] [i] .n;
afEw] .a = frm] [i] .a;
af[w].f = f[m][i].f;
af[w].d = f[m] [i.d;
w++; 530

for(i=0 ; i < w ; i++){

f[m] [ki+i] .n = af[i] .n;
f[m] [ki+i].a = af [i .a;
f[m][ki+i].f = af[i].f;

f[nm] [ki+i] .d = af[i] .d;

158

Coefrqarltrlai exhda ehgnrto 5

k = kpi - ki + 1;

kpi = kpi + (kpj - kj + 1) - 2;

pi[m] = pi[m] - 2;

front_node_ang_dist(nf, ki);

front_node_ang_dist(nf, ki+l);

front_node_ang_dist (nf, ki+k-2);
front_node_ang_dist(nf, ki+k-1);
front_node_ang_dist(nf, ki+k);
front_node_ang_dist(nf, kpi);

A.15 Function intersection(int nf, int nif)

int intersection(int nf, int nff)

int i, j, k, q=O, w, ie, ao, im,
int odd, odds;
REAL d, dm, di, dj, ds, aux;

POINT P;
ap_Param parm;
printf(" intersection = ");
if(nf == nff){

d = 20.0 * msize[m];

ds = 20.0 * msize[m];

for(i=ki ; i < kpi-3 ; i++){
j = i + 4;

if(q == 0){
ie = decr(decr(decr(i)));
if(ie == ki) q = 1;

jm, is, js, ia, ja, in=O, ins=0, a;

ao = 0;
while(j != ie){
a = 0;

ao = ((ao+l) & 1);

aux = dist(node[f [m] [i] .n] .coord, node[f [m] [j] .n] .coord);
if(aux < d) {d = aux; im = i; jm = j; odd = ao;}

if((ins == 0) II (aux < ds)){
di = (fr[m] [decr(i)] .d + fr[m] [i] .d) / 2.0;
dj = (fr[m] [decr(j)] .d + f[m] [j] .d) / 2.0;

k = incr(incr(j));

if((incr(incr(k)) == i) && (f[m] [k].a <= a60)) a = 1;

k = i + 2;

if((k+2 == j) && (f[m][k].a <= a60)) a = 1;

if(((a == 0) && (aux < 1.05*(di+dj))) I
((a == 1) && (aux < 1.05*5.0*(di+dj)/8.0))){

C(7ode for quadrilateral and hexahedral mesh generation 159

160 Appendix A

if(check_no_intersect_node(-1, i, j) == 0)
{ds = aux; is = i; js = j; odds = ao; ins = 1;}

}
40

j = incr(j);

}
}
if(checknointersect_node(nf, im, jm) == 0){

di = (f[m] [decr(im)].d + fE[m][im] .d) / 2.0;

dj = (f[Em] [decr(jm)] .d + f[Em] [jm].d) / 2.0;

k = incr(incr(jm));
j = incr(incr(k));
if((j == im) && (f[m][k] .a <= a60)) in = -1;
i = im + 4; 50

k = im + 2;

if((i == jm) && (f[rm][k].a <= a60)) in = -1;

dm = di + dj;

if((in == 0) && (d < 1.05*dm)){

if(odd == 0) in = 2;

if(odd == 1)
if(d < dm/2.0){

if(rectface == 1) in = 1;

if(rect_face == 0) in = 3;

} 60

else in = 1;

}
}
if(in == -1){

if(d < 1.05*5.0*dm/8.0) in = 1;

else in = 0;

}
}
if((in == 0) && (ins == 1) && (check_no_intersect_node(nf, is, js) ==0))

im = is; 70

jm = js;

if(odds == 0) in = 2;

if(odds == 1){

di = (f[m] [decr(im)] .d + fr[m] [im] .d) / 2.0;

dj = (f [m] [decr(jm)] .d + fE[m] [jm] d) / 2.0;

dm = di + dj;

if(ds < dm/2.0){
if(rectface == 1) in = 1;

if(rectface == 0) in = 3;

} 80

else in = 1;

}
}
if(in != 0){

if(in == 1){
printf("intersect_with_new_node ");

intersect with_new node(nf, im, jm);

return 1;

}
i -f == 2)LL

Code for quadrilateral and hexahedral mesh generation

printf("intersect_move_nodes ");
intersectmovenodes(d, nf, im, jm);
if(repr == 1) reprintface(pff[nf]);

return 1;

}
if(in == 3){

printf("intersect_seam_nodes ");
intersect_seam_nodes(nf, im, jm);
if(repr == 1) reprintface(pff[nf]);
return 1;

}

return 0;

if(nf != nff){
set_ki_kpi(nf);
kj = 0;
kpj = 0;
for(i=0 ; i <= pi[m] ; i++){

if(f [m] [i] .f == nff){
kj = i;

i++;

for(j=i ; j <= pi[m] ; j++) if(f[m] [j] .f == nff) {kpj = j; break;}
break;

}
if((kpj-kj) < 2) return 0;
d = 20.0 * msize[m] ;
for(i=ki ; i <= kpi ; i++){

for(j=kj ; j <= kpj ; j++){
aux = dist (node [f [m] [i] .n] .coord, node [f [m] [j] .n] .coord);
if(aux <: d) {d = aux; im = i; jm = j;}

}
P[X] = (node[f[me] [im] .n] .coord[X] + node[f Em] [jm] .n] .coord[X]) / 2.0;
P Y] = (node[f [ml [im] .n] .coord[Y] + node[f [m] Ejm] .n] .coord[Y]) / 2.0;
PEZ] = (node[f [m] [im] .n].coord[Z] + node[f Em] Ejm] .n].coord[Z]) / 2.0;
if(sol_face[m] .type != 0) pointprojection(P);
if(ap_facept2parm(sol_id, sol_face[m] .id, P, &parm) != AP_NORMAL) return 0;
if(kj < ki){
k = jm; jm = im; im = k;
k = kj; kj = ki; ki = k;
k = kpj; kpj = kpi; kpi = k;
k = nff; nff = nf; nf = k;

is = decr(im);
ia = incr(im);
js = dec(jm);
ja = inc(jm);
ao = 1;
if(turn[m] Enf] == turn[m] nff]) {js = inc(jm); ja = dec(jm); ao = -1;}
if(dist (node [f [m] Eia] . n] . coord, node Ef [m] [j a] .n] . coord) <

dist(node[f[m] [is] .n] .coord, node[f m] [js] .n] .coord))
{is = im; im = ia; js = jm; jm = ja;}

161
__~~__

162 Appendix A

di = (f [ml [is] .d + f[ml][im].d) / 2.0;
dj = (f [ml [js] .d + f[m][jm] .d) / 2.0;
dm = di + dj;
if((0.75*dm < d) && (d < 1.05*dm)){

printf("intersecttwo_fronts_with_two_new_nodes ");
intersect_twofronts with_twonew_nodes(ao, nf, im, is, jm, js); 150
if(pff[nf] > pff[nff]) pff[nfl = pff[nff];
set_origin(nf, nff);
return 1;

}
if((dm/3.0 <= d) && (d <= 0.75*dm)){

printf("intersecttwo_fronts_with_one_face ");
intersecttwo_fronts with_oneface(ao, nf, im, is, jm, js);
if(pff[nfl > pff[nff]) pff[nfl = pff[nff] ;
set_origin(nf, nff);
return 1; 160

if(d < dm/3.0){
printf("intersect_two_fronts_with-seam ");
intersect_two fronts_with_seam(ao, nf, im, is, jm, js);
if(pff [nfl > pff [nff]) pff [nfl = pff [nff];
set_origin(nf, nff);
if(repr == 1) reprintface(pff[nf]);
return 1;

}
return 0; 170

A.16 Function close_front(int nf)

void close_front (int nf)
{

int i, j, jj, k, iO, il, jO, ji, km=kpi, km3, s=O, anf;
printf(" close-front\n");
if((kpi-ki+l) == 4){

for(i=ki ; i <= ki+l ; i++){
j = i + 2;
ii =i + 1;
iO = decr(i);
if((f [ml [i]. a <= a45) && (f[ml [j] .a <= a45)){s = 1; break;} 10

if(s == 0){
create_face(f [ml [kpi] .n, f [m] [kpi-1] .n, f [m] [ki+l] .n, f [m] [kil .n);
f[m][ki+ll.f = nf;
f[m] [kpi-1].f = nf;

else{
node[f [ml [iO] .n] . coord[Xl = (node[f [m] [ill .n] . coord[XI

+ node[f[m] [iO] .n] .coord[X]) / 2.0;

Code for quadrilateral and hexahedral mesh generation 163

node[f [m] [i0O] .n] .coord[Y] = (node[f [m] [il] .n] .coord[Y] 20

+ node[f [m] [iO] .n] .coord[Y]) / 2.0;
node[f[m] [i0O] .n] .coord[Z] = (node[f[m] [il] .n] .coord[Z]

+ node [f [m] [i0] .n] .coord[Z]) / 2.0;
if(solface [m] .type != 0) pointprojection(node[f [m] [i0] .n] .coord);
for(j=0 ; j < node [f [m] [il] .n] .nfi ; j++){

node [f [m] [iO] .n] .nface[node[f[m] [iO] n] .nf i]=node [f [m] [il] .n] .nface[j] ;
node f Em] [iO] .n] .nfi++;
for(jj=0 ; jj < 4 ; jj++){

if(face [node[f [m] [i] .n] .nface[j]] .fnode[j j] == f [m] [il] .n){
face [node[f [m] [il] .n] .nfacej]] .fnode[jj] = f[m] [i0] .n; 30
break;

}
}

}
node[f [m] [il] .n] .no = -1;
node[f [m] [il] .n] .coord[X] = 1E+10;
node[f [m] [il] o.n] .coord Y] = 1E+10;
node[f [m] [il] .n] .coord[Z] = 1E+10;

for(i=ki+1L ; i < kpi ; i++) f[m] i] .f = nf; 40
if(repr == 1) reprintface(pff[nf]);

}
}
if((kpi-ki+1) > 4){

for(i=ki ; iL <= ki+2 ; i++){
j = i + 3;

ii = i + 1;

iO = decr(:i);
ji = j - 1;

jO = incr(j); 50

if((f [m] [i] .a <= a90) && (f[m][j].a <= a90) &&
(f [m] [iO] .a >= a120) && (f [m] [jO] .a >= a120) &&
(f[m][il].a >= a120) && (f [m] [jl] .a >= a120)) {s = 1; break;}

}
if(s == 0){

km3 = -1;
for(i=ki ; i <= kpi ; i++)

if((node[f [m] [i] .n] .nfi < 2) && (f[m] [i] .a > a135))
{km = i; km3 = incr(incr(incr(i)));}

if(km3 == -1) 60
for(i=ki ; i <= kpi ; i++){

j = incr(incr(incr(i)));
if((f[m] Ekm] .a <= f[m] [i] .a) && (node[f [m] [i] .n] .nfi < 3) &&

(node[f[m] [j].n].nfi < 3)) {km = i; km3 = j;}

if(km3 == -1)
for(i=ki ; i <= kpi ; i++){

j = incr(incr(incr(i)));
if((f[m] [km].a <= f[m] [i].a) && (node[f[m] [i].n].nfi < 4) &&

(node[f[m][j].n].nfi < 4)) {km = i; km3 = j;} 70

}
if(km3 == -1)

for(i=ki ; i <= kpi ; i++)

Appendix A

if(f [m] [km] .a <= f[m] [i] .a) {km = i; km3 = incr(incr(incr(km)));}
create_face(f[m] [km3] .n, f[m] Edecr(km3)] .n, f[m] [incr(km)] .n,f[m] [km] .n);
create_face(f [m] [km3] .n, f [m] [km] .n, f [m] [decr(km)] .n,f [m] [incr(km3)] .n);
for(i=ki+l ; i < kpi ; i++) f[m] [i] .f = nf;

}
else{

node [f [m] i0O] . coord[Xl = (node [f [m] [il] .n] . coord[X] + 80
node[lfm] [iO].n .coord[X]) / 2.0;

node[f [m] [iO] .n] .coord[Y] = (node[f [m] [il] .n] .coord[Y] +
node[f m] [iO] .n].coord Y]) / 2.0;

node [f [m] [iO] .n] .coord[Z] = (node f [m] [il] .n] .coord[Z] +
nodef [m][i0].n].coord[Z]) / 2.0;

if(solface [m] .type != 0) pointprojection(node f [m] [iO] .n] . coord);
for(j=0 ; j < node[f[m] [il] .n] .nfi ; j++){

node[f [m] [iO] .n] .nface[node[f [m] [iO] .n] .nf i]=node[f [m] [ii] .n] .nface[j];
node[f m] [iO] .n] .nfi++;
for(jj=0 ; jj < 4 ; jj++){ 90

if(face [node [f [m] [il].n] .nface[j]] .fnode[j j] == f [m] [ii] .n){
face [node [f [m] [il] nl .nf ace j]] .fnode[j j] = f[m] [iO] .n;
break;

}
}

}
node[f [m] [jO] .n] .coord[X] = (node[f [m] [j 1] .n] .coord[X] +

node[f [m]3 jO] .n] .coord[X]) / 2.0;
node [f [m] [j O] .n] . coord [Y] = (node Cf [m] [j i] .n] . coord [Y] +

node[f m] [jO].n].coord[Y]) / 2.0; 100
node [f [m] [j 0] .n] .coord [Z] = (node [f [m] [j i] . n] .coord [Z] +

node[f [m] [jO] .n] .coord[Z]) / 2.0;
if(solface[m] .type != 0) pointprojection(node[f [m] [jO] .n] .coord);
for(j=0 ; j < node[f[m] [jll] .n] .nfi ; j++){

node[f [m] [jO] .n] .nface[node[f [m] [jO] .n] .nf i=nodef [m] [j i] .n] .nface[j];
node f [m] [jO] .n] .nfi++;
for(jj=0 ; jj < 4 ; jj++){

if(face [node f [m]3 [ji] .n] .nface[j]] .fnode[j j] == f [m] [j] .n){
face node[f[m] [jil.n].nface[j]] .fnode[jj] = fim] [jO].n;
break; 110

}
}

}
for(i=ki+l ; i < kpi ; i++) f[m] [i] .f = nf;
for(i=0 ; i <= pi[m] ; i++){

if((f[m] [i] .n == f[m] [il].n) && (i != il) &&
((f[m] [incr(i)].f == -1) I (f [m] decr(i)].f == -1)))

j =i;
while(f[m] [j].f == -1) j = decr(j);
anf = f[m][j].f; 120
f[m] [i].n = f[m] [iO].n;
set_ki_kpi(anf);
front_node_ang_dist(anf, decr(i));
front_node_ang_dist(anf, i);
front_node_ang_dist(anf, incr(i));
set_kikpi(nf);
continue;

164

Code for quadrilateral and hexahedral mesh generation

}
if((f[m] [i] .n == f[m] [jl].n) && (i != ji) &&

((fE[m] [incr(i)] .f == -1) l (f [m] [decr(i)] .f == -1))){ 130
j =i;
while(f[m] [j].f == -1) j = decr(j);
anf = f[m] [j] .f;
f[m] [i .n = f[m] [jO] .n;
set_ki_kpi(anf);
front_node_ang_dist(anf, decr(i));
front_node_ang_dist(anf, i);
front_node_ang_dist(anf, incr(i));
set ki kpi(nf);

140

}
node[f [m] [il] .n] .no = -1;
node [f [m] [ill .n] .coord[X] = 1E+10;
node [f[m] [il] .n] .coord[Y] = 1E+10;
node [f [m] [il] .n] .coord Z] = 1E+10;
node [f [m] [j il .n] .no = -1;
node [f [m] [ji] .n] .coord[X] = 1E+10;
node [f [m] [ji] .n] .coord[Y] = 1E+10;
node [f [m] [ji] .n] .coord[Z] = 1E+10;
if(repr == 1) reprintface(pff[nf]); 150

}
}

A.17 Function smoothfront(int nf)

int smooth_front(int nf)
{

int i, k, iO, i2, in=0;
REAL d, tol;
POINT v;
printf(" smoothfront = ");
tol = size / 20.0;
for(k=0 ; k < 2 ; k++){

for(i=ki ; i <= kpi ; i++){
iO = decr(i); 10
i2 = incr(i);
d = (f[m][iO].d + f[m][i].d) / 2.0;
if((f[m] [ii .d-d) > tol){

in = 1;
vector(i2, i, v);
scalar_vector(d/f [m] [i] .d, v);
point_vector(i2, v, node[f [m] [i] .n] .coord);
if(solface [m] .type != 0) pointprojection(node [f [m] [i] .n] .coord);
front_node_angdist(nf, iO);
front_node_ang_dist(nf, i); 20
front_node_angdist(nf, i2);

165

166 Appendix A

}
if((f[m] [i0].d-d) > tol){
in = 1;
vector(iO, i, v);
scalar_vector(d/f [m] [iO] .d, v);
point vector(iO, v, node[f m] [i] .n] .coord);
if(sol face [m] .type != 0) pointprojection(node [f [m] [i] .n] .coord);
frontnode_ang_dist(nf, iO);
frontnode_ang_dist(nf, i); 30
front_node_ang_dist(nf, i2);

}
}

}
if((in == 1) && (repr ==1)) reprintface(pff[nf]);
return in;

A.18 Function smooth(

void smooth()

{
int i, j, k, ii, iO, il, an, as;
POINT P;
printf(" smooth\n");
if(solface[m] .type == 0){as = (fi - pf) / 5; if(as < 3) as = 3;}
else as = 2;
for(ii=0 ; ii < as ; ii++){

for(j=pn ; j < ni ; j++){
if(node[j].no != -1){ 10

an = 0;

P[X] = 0.0;
PEY] = 0.0;
P[Z] = 0.0;
for(k=0 ; k < node[j].nfi ; k++){

for(i=0 ; i < 4 ; i++) if(face[node[j] .nface[k]] .fnode[i]== j) break;
iO = dec4(i);
ii = inc4(i);
P[X] = PEX] + node[face[node[j] .nface[k]] .fnode[iO]] .coord[X];
P[Y] = P[Y] + node[face[node[j] .nface[k]] .fnode[iO]] .coord[Y]; 20
P[Z] = P[Z] + node[face[node[j] .nface[kl] .fnode[iO]] .coord[Z];
PEX] = P[X] + node[face[node[j].nface[k]].fnode[il]] .coord[X];
P[Y] = P[Y] + node[face[node[j] .nface[kl] .fnode[il]] .coord[Y];
P[Z] = P[Z] + node[face[node[j] .nface[k]] .fnode[il]] .coord[Z];
an = an + 2;

node[j].coord[X] = P[X] / an;
node[j].coord[Y] = P[Y] / an;
node[j] .coord[Z] = PEZ] / an;
if(solface [m] .type ! = 0) pointprojection(node j] .coord); 30

Code for quadrilateral and hexahedral mesh generation

}
}
if(repr == 1) reprintjface(pf);

I

A.19 Function cleanupO

void clean_up()

int i, j, k, ki, kO, fO, fl;

printf(" clean_up\n");

for(i=pn ; i .< ni ; i++){
if((node[i] .no != -1) && (node[i].nfi == 2)){

fO = node[i].nface [O];
fl = node[i].nface[1]; 10

for(k=0 ; k < 4 ; k++) if(face[fO] .fnode[k]
kO = decr(k);
kl = incr(k);
for(j=0 ; i < 4 ; j++) if(face[fl] .fnode[j]

== i) break;

== i) break;

face[fO].fnode[k] = face[fl].fnode[inc4(inc4(j))];
face fl] .no = -1;

node[i] .no = -1;
node[i].coord[X] = 1E+10;
node[i].coord[Y] = 1E+10;
node[i].coord[Z] = 1E+10;

for(j=0 ; j < node[face[fO] .fnode[k]] .nfi ; j++)
if(node[face[fO] .fnode[k]] .nface[j] == fl){

node[face[f0] .fnode[k]] .nface[j] = fO;
break;

for(j=0 ; j < node[face[f0] .fnode[kO]] .nfi ; j++){
if(node [face[f0].fnode[kO]].nface[j] == fl){

k= j;
break;

for(j=0 ; j < (node[face[fO] .fnode[kO]].nfi-1) ; j++){
node [face[fO] .fnode[kOl]] .nface[j] = node [face[fO] .fnode[kO]] .nf ace[j+1];

}
node [face Ef0] .fnode[kO]] .nfi--;

for(j=0 ; -i < node[face[f0] .fnode[kl]] .nfi ; j++)

167

168 Appendix A

if(node[face[f0] .fnode[kl]] .nface[j] == fl){
k= j;
break;

}
}
for(j=0 ; j < (node[face[f0] .fnode[kl]] .nfi-1) ; j++)

node[face[f0] .fnode[kl]] .nface[j = node[face[f0] .fnode[kl]] .nface[j+1]; 50

}
node [face [f0] .fnode [kl]] .nfi--;

}
}
if(repr == 1) reprintface(pf);

A.20 Function initiaL3Dfront(

/* SET ADJACENT FACES */
void set_adjacentfaces(int i)
{

int j, k;
for(j=0 ; j < node[face[i] .fnode[O]].nfi ; j++){

if(face [node [face [i] .fnode[0]] .nface [j]] .no != -) {
if(node[face i] .fnode[O]] .nface[j] != i){

for(k=0 ; k < 4 ; k++){
if(face [node [face [i] .fnode [0]] .nface [j]] .fnode [k] ==

face[i] .fnode[ll]){ 10
face[i] .fface[0] = node[face[i].fnode[0]] .nface[j];
break;

}
if(face [node [face [i] .fnode [0]] .nface [j]] .fnode [k] ==

face [i] .fnode[3]){
face[i] .fface[3] = node[face[i].fnode[0]] .nface[j];
break;

} 20

}
}
for(j=0 ; j < node[face[i] .fnode[2]] .nfi ; j++){

if(f ace[node [face [i] fnode[2]1 .nface[j]] .no != -1) {
if(node[face[i] .fnode[2]] .nface[j] != i){

for(k=0 ; k < 4 ; k++){
if(face [node [face [i] .fnode [2]] .nface [j]] . fnode[k] ==

face [i] .fnode [11]){
face[i] .fface[l] = node[face[i] .fnode[2] .nface[j];
break; 30

if(face [node [face [i] . fnode [2]] . nface [j]] .fnode [k] ==
face [i] .fnode[3]){

face[i] .fface[2] = node[face[i] .fnode[2]].nface[j];

Code for quadrilateral and hexahedral mesh generation 169

break;

}
}

}
}

} 40
}

/* INITIAL 3D-FRONT */

void initial 3D :front()

{
int i, w;
REAL a, d;

fbr(i=0 ; i < fi ; i++){
if(face[il.no != -1){

if(solface [face [i] .fm] .type != 0) 50

ap_pt_norm2face(sol_id, sol_face[face[i] .fm] .id,
node[face[i] .fnode[1]].coord, TRUE, n[face[i] .fm]);

facenorm(face[i] .fnode[O], face[i] .fnode[1], face[i] .fnode[2] ,
face [i] .fnode [3], face[i] .norm);

a = innerproduct(face[i] .norm, n[face[i] .fm]);
if(a > 0){

scalarvector(-1.0, face[i] .norm);
w = face[i].fnode[1]; 60

face[i] .fnode[l] = face[i] .fnode[3] ;
face[i] .fnode[3] = w;

}
set_adjacentfaces(i);

}
else face [i].ord = -1;

A.21 Function face_angles(int f, int kf)

REAL face_angles(int f, int kf)

{
int k, k1, k2, k3;
REAL d, dO, dl, dp, a;

POINT v, vO, vi, P, pO, pl;
kl = inc4(kf);
vector no(face[f] .fnode[kf], face [f] .fnode[kl], v);
k2 = inc4(kl);
k3 = inc4(k2);

pO[X] = (node[face[f] .fnode[kf]] .coord[X] + 10

node[face[f].fnode[kl]].coord[X]) / 2.0;

pO[Y] = (node[face[f] .fnode[kf]] .coord[Y] +
node [face f] .fnode[kl]] .coord[Y]) / 2.0;

170 Appendix A

p0[Z] = (node[face[f].fnode[kf]].coord[Z] +
node[face[f].fnode[kl]] .coord[Z]) / 2.0;

pl[X] = (node[face[f].fnode[k2]].coord[X] +
node[face[f].fnode[k3] .coord[X]) / 2.0;

pl[Y] = (node [face [f] .f node [k2]] . coord [Y] +
node[face[f].fnode[k3] .coord[Y]) / 2.0;

p1l[Z = (node[face[f].fnode[k2] . coord[Z] + 20
node[face[f] .fnode[k3] .coord[Z]) / 2.0;

v0[X] = pi[X] - p0[X] ;
vO[Y] = pi[Y] - pOY] ;
v0[Z] = pi[Z] - pO[Z] ;
vectorproduct(v0, v, P);
vector_product(v, P, vO);
dO = vector_norm(v0);
for(k=0 ; k < 4 ; k++)

if(face[face[f] . fface[kf] .fnode[k == face[f] . fnode[kf]) break;
k2 =inc4(inc4(k)); 30
if(faceface[f].fface[kf]] .fnode[inc4(k)] == face[f] .fnode[kl]) k3 = dec4(k);
else k3 = inc4(k);
pl[X] = (node[faceface[f] .fface[kf] .fnode[k2] .coord[X] +

node[face[face[f] .fface[kf]] .fnode[k3]] .coord[X]) / 2.0;
pl[Y] = (node[face[face[f] .fface[kfl] .fnode[k2]] .coord[Y] +

node[faface[face[f .fface[kf] .fnode[k3] .coord[Y]) / 2.0;
pl[Z] = (node[face[face[f] .fface[kf] .fnode[k2] .coord[Z] +

node[face[face [f] .fface[kf]] .fnode k3]] .coord[Z]) / 2.0;
vi[X] = pi[X] - pOX] ;
vilY] = pi[Y] - p0[Y]; 40
vi[Z] = pi[Z] - pO[Z] ;
vectorproduct(vl, v, P);
vectorproduct(v, P, v1);
di = vector_norm(vl);
scalar_vector(d0/dl, vi);
sub_vector(v0, vi, pO);
vectorproduct(p0, v, pl);
dp = vector_norm(pl);
add_vector(face[f] .norm, face[face[f] .fface[kf]] .norm, v);
d = vector_norm(v); 50

a = innerproduct(pl, v) / (dp * d);
if(a < 0) scalar_vector(-1.0, pl);
a = innerproduct(pl, vO) / (dp * dO);
a = 2 * acos(a);
return a;

A.22 Auxiliary functions to advance the 3D-front

/* PROJECTION */
int projection(int f, int nO)
{

int i, j, k, k0, ki, w=0, no[15], iO, il;

Code for quadrilateral and hexahedral mesh generation 171

REAL d, dv, a;

POINT v;

for(i=0 ; i < 15 ; i++) no[i] = -1;
for(i=0 ; i < node[n0].nfi ; i++){

if(face[node[n0] .nface[i]] .no != -1){
for(k=0 ; k < 4 ; k++) if(face[node [n0].nface[i]].fnode[k] == nO) break; io
kO = dec4(k);

ki = inc4(k);

i0 = 0;
il = 0;

for(j=0 ; - < w; j++){
if(no[j] == face[node[nO] .nface[i]] .fnode[kO]) iO = 1;
if(no[j] == face[node[nO] .nface[i]] .fnode[kl]) ii = 1;

}
if(iO == 0){

no[w] = face[node[nO] .nface[i] .fnode[kO]; 20

w++; if(w > 15)printf(" ERROR-1\n");

}
if(il == 0){

noEw] = face[node[nO].nface[i] .fnode[kl];
w++; if(w > 15)printf(" ERROR-2\n");

}
}

for(i=0 ; i < w ; i++){
vector_no(nO, no[i], v); 30

dv = vector norm(v);
a = innerproduct(face[f].norm, v) / dv;
if(0.7 < a) return no[i];

I
d = 0.0;

for(i=0 ; i < w ; i++) d = d + dist(node[nO].coord, node[no[i]].coord);
d = d / w;

v[X] = 0.0;
v[Y] = 0.0;
v[Z] = 0.0; 40
for(i=0 ; i < node[nO].nfi ; i++){

if(face[node[nO] .nface[i]] .no != -1){
v[X] = v[X] + face[node[nO].nface[i]].norm[X];
v[Y] = v[Y] + face[node[nO].nface[i]].norm[Y];
v[Z] = v[Z] + face[node[nO].nface[i]].norm[Z];

}
}
dv = vector norm(v);
scalar_vector(d/dv, v);

node [nil .no = ni; 50

point_vector no(nO, v, node[ni] . coord);
n.i++;

return (ni--1);

/* NEW FACE */
void new_face(int nf, int nl, int n2, int n3, int n4)
{

172 Appendix A

face[fi].ord = nf;
face[fi].no = fi; 60
face[fi].fnode[O] = nl;
face[fi].fnode[1] = n2;
face[fi].fnode[2] = n3;
face[fi].fnode[3] = n4;
node[ni].nface[node[nl] .nfi] = fi;
node[nl] .nfi++;
node[n2] .nface[node[n2] .nfi] = fi;
node[n2] .nfi++;
node[n3] .nface[node[n3] .nfi] = fi;
node[n3] .nfi++; 70
node[n4] .nface[node[n4] .nfi] = fi;
node [n4] .nfi++;
face_norm(nl, n2, n3, n4, face[fil.norm);
fi++;
afi++;
lafi++;

/* SMOOTH ONE FACE OF THE ELEMENT */
void smooth_one_face(int c, int j) 80

{
int i, k;
REAL a, b, dv, dt, d, h;
POINT v, t, p;
vector_no(element [ci] .enode [j], element [ci] .enode [j+4], v);
vectorno(element[ci] .enode[j] , element [ci] .enode[inc4(j)], t);
dv = vector_norm(v);
dt = vector_norm(t);
a = innerproduct(v, t) / (dv * dt);
a = acos(a); 90
vectorno(element[ci] .enode[i=inc4(c)], element[ci] .enode[i+4], v);
vectorno(element[ci] .enode[i] , element [ci] .enode[c], t);
h = vector_norm(v);
dt = vector_norm(t);
b = innerproduct(v, t) / (h * dt);
b = acos(b);
vector no(element[ci] .enode [i+4] , element[ci] .enode[c+4], t);
dt = vector_norm(t);
if(a >= b){

a = b - a; 100
b = innerproduct(v, t) / (h * dt);
b = acos(b);
b = a180 + a - b;

}
else{

a = b - a;

b = innerproduct(v, t) / (h * dt);
b = a180 - acos(b);
b = a180 - (a + b);

} 110
d = h * sin(a) / sin(b);

scalar vector(d/dt, t);

Code for quadrilateral and hexahedral mesh generation 173

add_vector(v, t, p);
hi = vector_norm(p);
scalar_vector(dv/h, p);
point_vector no(element[ci] .enode[i], p, node[element[ci] .enode[i+4]] .coord);
vector no(element[ci] .enode[k=inc4(j)], element[ci] .enode[k+4], v);
vector_no(element [ci] .enode[k], element [ci] .enode[j] , t);
dv = vectornorm(v);
(it = vectornorm(t); 120
a = innerproduct(v, t) / (dv * dt);
a = acos(a);
vector no(element [ci] .enode[c] , element [ci] .enode[c+4], v);
vector no(element [ci] .enode[c] , element[ci] .enode[i] , t);
h = vector_norm(v);
dit = vectornorm(t);
b = innerproduct(v, t) / (h * dt);
b = acos(b);
vector_no(element[ci] .enode[c+4] , element[ci] .enode[i+4] , t);
(it = vectornorm(t); 130
if(a >= b){

a = b - a;
b = innerjroduct(v, t) / (h * dt);
b = acos(b);

else{
a = b - a;
b = innerproduct(v, t) / (h * dt);
b = a180 - acos(b);

140
b = a180 - (a + b);

d = h * sin(a) / sin(b);

scalar_vector(d/dt, t);

add_vector(v, t, p);

h = vector_norm(p);
scalar_vector(dv/h, p);

pointvector no(element [ci] .enode[c], p, node [element [ci] .enode[c+4]] .coord);

/* SMOOTH TWO FACES OF THE ELEMENT */ 150
void smooth_two_faces(int c, int j)

{
int i, k;
REAL a, b, dv, dt, d, h, hm;

POINT v, t, p;
ihm = (dist(node[element[ci] .enode[j]] .coord,

node[element[ci] .enode[j+4] .coord) +
dist(node[element[ci] . enode[c] . coord,

node[element[ci] .enode[c+4] .coord)) / 2.0;
vector_no(element [ci] .enode[j] , element[cil .enode[j+4], v); 160
vector no(element[ci] .enode[j], element[ci] .enode[inc4(j)], t);
cdv = vectornorm(v);
cit = vector_norm(t);
a = innerproduct(v, t) / (dv * dt);
a = acos(a);
vector_no(element [ci] .enode[i=inc4(c)], element[ci] .enode[i+4], v);

174 Appendix A

vector_no(element [ci] .enode[i], element [ci] .enode[c] , t);
h = vector_norm(v);
dt = vectornorm(t);
b = innerproduct(v, t) / (h * dt); 170
b = acos(b);
vector_no(element[ci .enode [i+4], element[ci] .enode[c+4], t);
dt = vector_norm(t);
if(a >= b){
a = b - a;
b = innerproduct(v, t) / (h * dt);
b = acos(b);
b = a180 + a - b;

}
else{ 180

a =b - a;
b = innerproduct(v, t) / (h * dt);
b = a180 - acos(b);
b = a180 - (a + b);

}
d = h * sin(a) / sin(b);
scalar_vector(d/dt, t);
add_vector(v, t, p);
h = vector_norm(p);
scalar_vector(hm/h, p); 190
point_vector_no(element[ci] .enode [i], p, node[element[ci] .enode [i+4] .coord);
vector_no (element [cil .enode [c] , element [ci] .enode [c+4], v);
vector_no (element [ci] .enode [c] , element [ci] .enode[inc4(j)] , t);
dv = vector_norm(v);
dt = vector_norm(t);

a = innerproduct(v, t) / (dv * dt);

a = acos(a);

vectorno(element [ci] .enode[i=inc4(c)], element [cil .enode[i+4] , v);
vector_no(element [ci] .enode[i], element [ci] .enode j], t);
h = vector_norm(v); 200
dt = vector_norm(t);
b = innerproduct(v, t) / (h * dt);
b = acos(b);
vector_no(element[ci] .enode[i+4], element[ci] .enode[j+4], t);

dt = vector_norm(t);
if(a >= b){
a = b - a;
b = innerproduct(v, t) / (h * dt);
b = acos(b);
b = a180 + a - b; 210

}
else{
a = b - a;
b = innerproduct(v, t) / (h * dt);
b = a180 - acos(b);
b = a180 - (a + b);

}
d = h * sin(a) / sin(b);
scalar_vector(d/dt, t);
add uector(v. t. n):add ectr rv n)

Code for quadrilateral and hexahedral mesh generation 175

h = vector_norm(p);
scalar_vector(hm/h, p);

point_vector_no(element [ci] .enode [i], p, node[element [ci] .enode[i+4]] .coord);

}

/*JOINT TWO NODIES */
void jointtwonodes(int nO, int pO)
{

int i, k;
for(i=0 ; i < node[n0] .nfi ; i++){ 230
node[p0] .nface[node[p0] .nfi] = node[nO] .nface[i];
nodep0] .nfi++;
for(k=0 ; k < 4 ; k++){

if(face [node [nO] .nface [i]] .fnode [k] == nO){
face [node [n0] .nface[i]] .fnode[k] = pO;
break;

}
}

for(i=0 ; i < ci ; i++){ 240
for(k=0 ; k < 8 ; k++){

if(element [i] .enode[k] == nO) element[i] .enode[k] = pO;

}

node[nO] .no = -1;
node[nO] .coord[X] = 1E+10;
node[nO] .coord[Y] = 1E+10;
node[nO] .coord[Z] = 1E+10;

250
/* CREATE ELEMENT */
void create_element(int nf, int f)

{
int i, j, k, yp[8], v[8], nk[4], c, top=O, no=-l, cf[4]={O, 0, 0, 0};
REAL aux;

lafi = 0;
for(k=0 ; k < 4 ; k++) element[ci] .enode[k] = face[f] .fnode[k];
for(k=0 ; k < 4 ; k++){

for(j=0 ; j < 4 ; j++){
if(face [face [f] .fface [k]] .fnode [j] == face [f .fnode [k]) break; 260

if(f ace [face [f] .fface[k]] .fnode[inc4(j)] == face[f] .fnode[inc4(k)]) {
p[2*k] = face[face[f] .fface[k]] .fnode[j=dec4(j)];
p[2*k+1] = face[face[f].fface[k]].fnode[j=dec4(j)];
nk[k] = j;
for(i=0 ; i < 4 ; i++){

if(face [face [face [f] .fface [k]] fface [j]] .fnode [i] == p [2*k+l]) break;

if(face[face[face[f] fface[ace]].fface[j]].fnode[inc4(i)] == p[2*k]){
v[2*k+l] = face[face[face[f].fface[k]].fface[j]].fnode[i=dec4(i)]; 270
v[2*k] = face[face[face[f].fface[k]].fface[j]] .fnode[dec4(i)];

else{
v[2*k+l] = face[face[face[f] .fface[k]] .fface[j]].fnode[i=inc4(i)];

Appendix A

v[2*k] = face[face[face[f] .fface[k]] .fface[j]] .fnode[inc4(i)];

}
}
else{

p[2*k] = face[face[f .fface[k] .fnode[j=inc4(j)];
nk[k] = j; 280
p[2*k+ll1] = face[face[f].fface[k]] .fnode[inc4(j)];
for(i=O ; i < 4 ; i++){

if(face [face [face [f] .fface [k]] .fface [j]] .fnode [i] == p [2*k]) break;

}
if(face[face[face[f] .fface[k]] .fface[j] .fnode[inc4(i)] == p[2*k+l]){

v[2*k] = face[face[face[f] .fface[k]] .fface[j]] .fnode[i=dec4(i)];
v[2*k+1] = face[face[face[f] .fface[k]] .ffaceCj]] .fnode[dec4(i)];

}
else{

v[2*k] = face[face[face[f] .fface[k]] .fface[j]] .fnode[i=inc4(i)]; 290
v[2*k+1] = face[face[face[f].fface[k]].fface[j]].fnode[inc4(i)];

}

c = 0;
for(k=0 ; k < 4 ; k++){

if((p[2*k+1] == p[2*(j=inc4(k))]) && (v[2*k+1] == p[2*j+1])){c = 1; break;}
}
if(c == 1){ 300

element[ci].enode[k+4] = p[2*k];
element[ci].enode[j+4] = p[2*k+l];
element[ci].enode[inc4(j)+4] = v[2*k+l];
element[ci] .enode[dec4(k)+4] = v[2*k];
face[face[f].fface[k]].no = -1;
cf [k] = -1;
face[face[face[f] .fface[k]] .fface[nk[k]] .no = -1;
top = 1;
face[face[f].fface[j]].no = -1;
cf[j] = -1; 310
if((p[2*(j=inc4(j))] == v[2*k+l]) && (p[2*j+1] == v[2*k])){

face[face[f].fface[j] .no = -1;
cf[j] = -1;

}
if((p[2*j] != v[2*k+1]) && (p[2*j+1] == v[2*k])){

joint two_nodes(p[2*j], v[2*k+l]);
p[2*j] = v[2*k+l];
no = v[2*k+1];
face[face[f].fface[j]].no = -1;
cf[j] = -1; 320

}
if((p[2*j] == v[2*k+1]) && (p[2*j+1] != v[2*k])){

joint two_nodes(p[2*j+1], v[2*k]);
p[2*j+1] = v[2*k];
no = v[2*k];
face[face[f].fface[j]].no = -1;
cf[j] = -1;

176

Code for quadrilateral and hexahedral mesh generation 177

if(cf[j] == 0){
new face(nf+1, face[f] .fnode[j] , face[f] .fnode[inc4(j)] ,v[2*k] ,v[2*k+1]); 330
cf[j] = 1;

}
if((p[2*(j=inc4(j))] == v[2*k]) && (p[2*j+1] == p[2*k])){

face[face[f .fface[j]].no = -1;
cf[j] = --1;

}
if((p[2*j] != v[2*k]) && (p[2*j+1] == p[2*k]))

joint_two_nodes(p[2*j] , v[2*k]);
p[2*j] = v[2*k];
no = v[2*k] ; 340
face[face[f] .fface[j]] .no = - ;
cf[j] = --1.;

}
if((p[2*j] == v[2*k]) && (p[2*j+1] != p[2*k])){

joint_two._nodes(p[2*j+1], p[2*k]);

p[2*j+1] = p[2*kl];
no = p[2*k];
face lface[f] .fface[j]] .no = - ;
cf[j] = --1;

} 350
if(cf[j] == 0){

new_face(nf+l, face[f].fnode[j], face[f].fnode[k], p[2*k], v[2*k]);
cf[j] = 1;

if((cf[0] == 0) && (cf[1] == 0) && (cf[2] == 0) && (cf[3] == 0)){
if((p[1] == p[2]) && ((face[f].a[O] <= a135) 1I (face[f].a[1] <= a135))){

element [ci] .enode [4] = p [0] ;
element[ci] .enode[51 = p 11]; 360
element[ci .enode[6] = p[3] ;
cf[0] = -- 1;
face[face[f] .fface [0]] .no = -1;
cf[1] = --1;
face[face[f] .fface[l]].no = -1;

}
if((p[3] == p[4]) && ((face[f].a[1] <= a135) (face[f].a[2] <= al35))){

if(cf[1] != 0){
element [ci] .enode [7] = p [5] ;
cf[2] = -- 1; 370
face[face[f] .fface[2]].no = -1;

}
else{

element[ci] .enode[5] = p[2 ;
element[ci].enode[6] = p[31;
element[ci] .enode[7] = p[5] ;

cf[1] = -- 1;
face[face Ef] .fface [1]] .no = -1;
cf[2] = -- 1;
face[face [f] .fface[2]] .no = -1; 380

}

Appendix A

if((p[5] == p[6]) && ((face[f] .a[2]

if(cf[2] != 0){
element[ci].enode[4] = p[71;
cf[3] = -1;
face[face[f] .fface[3]] .no = -1;

<= a135)I1 (face[f].a[3] <= a135))){

else{
element[ci].enode[6] = p[4];

element [ci] .enode[7] = p[5 ;
element[ci] .enode[4] = p[7 ;

cf[2] = -1;
face[face[f].fface[2]].no = -1;
cf[3] = -1;
face [face [f] .fface [3]] .no = -1;

}
if((p[7] == pO[]) && ((face[f] .a[3]

if((cf[3] != 0) && (cf[1] == 0)){
element [ci] .enode[5] = p[1];
cf [0] = -1;
face[face[f].fface[0]].no = -1;

}
if((cf [3] == 0) && (cf [1] == 0)){

element[ci].enode[7] = p[6];
element[ci] .enode[4] = p[7];
element ci] .enode[5] = p11 ;
cf[3] = -1;
face[face[f] .fface[3]] .no = -1;
cf[0] = -1;
face[face[f] .fface[O]] .no = -1;

if((cf [3] == 0) && (cf[1] != 0)){
element[ci].enode[7] = p[61;

cf[3] = -1;
face[face[f] .fface[3]] .no = -1;

I

<= a135) II (face[f].a[0] <= a135))){

if((cf[0] == 0) && (cf[1] == 0) && (cf[2] == 0) && (cf[3] == 0)){

c = -1;
aux = 10.0;
for(k=O ; k < 4 ; k++){

if((face[f] .a[k] <= a135) && (face[face[f] .fface[k]] .a[nk[k]]

((face[f].a[k] + face[face[f].fface[k]].a[nk[k]]) < aux)){

aux = face[f].a[k] + face[face[f] .fface[k] .a[nk[k]];

c = k;

if(c !=-1){
face[face[f] .fface[c]] .no = -1;
face[face[face[f] .fface[c]]. fface[nk[c]]] .no = -1;

top = 1;
cf[c] = -1;

178

<= a135) &&

Code for quadrilateral and hexahedral mesh generation 179

element[ci] .enode[c+4] = p[2*c];
element[ci] .enode[(j=inc4(c))+4] = p[2*c+1];
element[ci] .enode[(j=inc4(j))+4] = v[2*c+1];
new_face(nf+1,face[f] .fnode[inc4(c)] ,face[f] .fnode[j] ,v[2*c+l] ,p[2*c+l]); 440
cf[inc4(c)] = 1;
element [ci] .enode[inc4(j)+4] = v[2*c] ;
if((p[2*j] == v[2*c+1]) && (p[2*j+1] == v[2*c])) {

face[face[f] .fface[j]] .no= -1;
cf[j] = -- 1;

}
else{

cfEj] = 1;
new_face(nf+1, face[f].fnode[j], face[f] .fnode[j=inc4(j)], v[2*c] ,

v[2*c+1])); 450
}
cf[j] = 1;
new_face(nf+1,face[f].fnode[j] ,face[f] .fnode[c] ,p[2*c],v[2*c]);

for(k=O ; k < 4 ; k++){
if((cf [k] ==0) && (cf [dec4 (k)] ==0) && (cf [j =inc4 (k)] ==0) && (face [f .a [k] <=al35)) {

cf[k] = -- 1;
face[face[f] .fface[k]] .no = -1; 460
element[ci] .enode[k+4] = p[2*k];
element [ci] .enode[j+4] = p[2*k+1] ;

}

if(cflO] == 0){
if((cf[3] != 0) && (cf[1] != 0)){

cf[0] = 1;
new_face(nf+1, face[f].fnode[O], face[f].fnode[1], element[ci].enode[5],

element[ci] .enode[4]); 470

}
if((cf[3] == 0) && (cf[1] != 0)){
element [ci] .enode[4] = projection(f, face[f] .fnode[0]);
cf[0] = 1;
new_face(nf+1, face[f].fnode[0], face[f] .fnode[1], element[cil] .enode[5],

element [ci] .enode [4]);

}
if((cf[3] !=: 0) && (cf[1] == 0)){

element[ci] .enode[5] = projection(f, face[f] .fnode[1]);
cf[0] = 1; 480

new_face(nf+l, face[f].fnode[0], face[f].fnode[1], element[ci].enode[5],
element[ci] .enode[4]);

}
if((cf[3] == 0) && (cf[1] == 0)){

element [ci] .enode[4] = projection(f, face[f] .fnode[0]);
element[ci.] .enode[5] = projection(f, face[f] .fnode[1]);
cf[0] = 1;
new_face(nf+l, face[f] .fnode[O], face[f] .fnode[1], element[ci] .enode[5] ,

element [ci] .enode[4]);

180 Appendix A

}
if(cf[1] == 0){

if(cf[2] != 0){
cf[1] = 1;
newface(nf+1, face [f] .fnode [1], face [f] .fnode [2], element [ci] .enode [6],

element[ci] .enode[5]);

}
else{

element[ci] .enode[6] = projection(f, face[f].fnode[2]);
cf[ll= 1; 500
new face(nf+1, face[f] .fnode[1], face[f] .fnode[2], element[ci] .enode[6],

element[ci] .enode[5]);

}
}
if(cf[2] == 0){

if(cf[3] != 0){
cf[2] = 1;
new face(nf+1, face[f] .fnode[2], face[f] .fnode[3], element [ci] .enode[7],

element [cil. enode [6]);
1510
else{
element[ci] .enode[7] = projection(f, face[f] .fnode[3]);
cf[2] = 1;
new face(nf+1, face [f] .fnode [2], face [f] .fnode [3], element [ci] .enode [7],

element[cil .enode[6]);

}
}
if(cf [3] == 0){

cf[3] = 1;
new_face(nf+1, face[f] .fnode[3], face[f] .fnode[O], element[cil .enode[4], 520

element[ci] .enode[7]);
}

if(top == 0) newface(nf+1, element[ci] .enode[4], element[ci] .enode[5],
element [ci] .enode [6], element [ci] .enode [7]);

face[f].no = -1;
c = -1;
i = 0;
for(k=0 ; k < 4 ; k++){

if((cf[k] == 1) && (cf[dec4(k)] == 1) && (cf[j=inc4(k)] == 1) && 530

(cf[j=inc4(j)] == -1)) {c = k; i = 1; break;}
if((cf[k] == 1) && (cf[dec4(k)] == -1) && (cf[j=inc4(k)] == 1) &&

(cf[j=inc4(j)] == -1)) {c = k; i = 2; break;}

I
if(i == 1) smooth_one_face(c, j);
if(i == 2) smooth_two_faces(c, j);
ads_command(RTSTR, "3dface", RT3DPOINT, node[element[ci].enode [0]].coord,

RT3DPOINT, node[element[ci] .enode[1]] .coord,

RT3DPOINT, node[element[ci] .enode [2] . coord,
RT3DPOINT, node [element [ci] .enode [3]] .coord, 540

RTSTR, "", 0);

ads_command(RTSTR, "3dface", RT3DPOINT, node[element[ci] .enode [0]] .coord,

RT3DPOINT, node[element[ci] .enode [] .coord,
RT3DPOINT, node[element[ci] .enode[5] .coord,

Code for quadrilateral and hexahedral mesh generation

RT3DPOINT, node[element[ci].enode [4]].coord,
RTSTR, "", 0);

ads_command(RTSTR, "3dface", RT3DPOINT, node[element[cil.enode[1]].coord,
RT3DPOINT, node[element[ci].enode[2]].coord,
RT3DPOINT, node[element[ci].enode [6]].coord,
RT3DPOINT, node[element[ci].enode[5]].coord, 550
RTSTR, "", 0);

ads_command(RTSTR, "3dface", RT3DPOINT, node[element[ci].enode[2]] .coord,
RT3DPOINT, node[element[ci].enode[3]].coord,
RT3DPOINT, node[element[ci].enode[7]].coord,
RT3DPOINT, node[element[cil.enode[6]].coord,
RTSTR, "", 0);

ads_command(RTSTR, "3dface", RT3DPOINT, node[element[ci] .enode [3] .coord,
RT3DPOINT, node[element[ci.enode[0]] .coord,
RT3DPOINT, node[element[ci].enode [4]].coord,
RT3DPOINT, node [element [ci].enode [7]].coord, 560

RTSTR, "", 0);
ads_command(RTSTR, "3dface", RT3DPOINT, node[element[ci].enode[4]].coord,

RT3DPOINT, node[element[cil.enode[5]].coord,
RT3DPOINT, node[element[cil.enode[6]] .coord,
RT3DPOINT, node[element[ci].enode[7]].coord,
RTSTR, "", 0);

for(c=0 ; c <: lafi; c++){
setadjacent_faces (fi-c-1);
for(i=0 ; i < 4 ; i++) set_adjacent faces(face[fi-c-1].fface[i]);
for(i=0 ; i < 4 ; i++){ 570
face[fi-c-l] .a[i] = face_angles(face[fi-c-1i.no, i);
for(j=0 ; j < 4 ; j++)
face [f ace [f i-c-1] .fface i]] .a[j] =

face_angles(face[face[f i-c-1i] .fface[i]] .no, j);

}
if(no !=-1){

for(i=0 ; i < node[no] .nfi ; i++){
if(face[node[no] .nface[i]] .no != -i){
set_adjacentjfaces(node[no] .nface[i]); 580
for(k=0 ; k < 4 ; k++){

face[node[no] .nface[i]] .a[k] = face_angles(node[no] .nface[i], k);

}
}

}
}
if((cf[O] == --1) && (cf[1] == -1) && (cf[2] == -1) && (cf[3] == -1))

for(k=0 ; k < 8 ; k++){
for(i=0 ; i < node[element[ci] .enode[k]].nfi ; i++){
if(face [node [element [cil .enode[k]] .nface [i]] .no ! = -) { 590

set_adjacentfaces(node[element[ci] .enode[k] .nface[i]);
for(j=0 ; j < 4 ; j++){
face[node[element[ci] .enode[k] .nface[i]] .a[j] =

face_angles (node [element [ci] .enode[k]] .nface [i] , j);

}

181

182 Appendix A

ci++; 600

A.23 Function advance_face_front(imt nf)

int advance face front (int nf)

int i, k, s=O, w=-1;
aci = 0;

afi = 0;
tfi = fi;

for(i=0 ; i < tfi ; i++){
if((face[i] .ord == nf) && (face[i] .no != -)){

w = 0;

for(k=O ; k < 4 ; k++){ 10

if(face[i].a[k] <= a135) {s = i; w = 1; break;}

}
}
if(w == 1) break;

}
if(w == -1) return O;

create_element (nf, s);

aci++;
i = inct(s);

while (i != s){ 20

if(face[i] .no != -1) {
create_element(nf, i);

aci++;

}
i = inct(i);

}
return afi;

I

A.24 Function smooth_3D()

void smooth_3D()

{
int i, ii, j, k, kk, an, as;
POINT P;
printf(" smooth_3D\n");

as = ci / 5;
for(ii=0 ; ii < as ; ii++){

for(j=pn ; j < ni ; j++){
if(node[j].no != -1){

Code for quadrilateral and hexahedral mesh generation 183

an = 0; 10

P[X] = 0.0;
P[YI = 0.0;
P[Z] = 0.0;
for(i=0 ; i < ci ; i++){

for(k=0O ; k < 8 ; k++){
if(element [i] .enode [k] == j){

for(kk=0 ; kk < 8 ; kk++){
if(kk != k){

P[XI = P[X] + node[element[i] .enode[kk]] .coord[X];
P[Y] = P[Y] + node[element[i].enode[kk]].coord[Y]; 20
P[Z] = P[Z] + node[element[i].enode[kk]].coord[Z];
an++;

}
}

}
}

}
node[j] .coord[X] = PEX] / an;
node[j].coord[Y] = P[Y] / an;
node[j].coord[Z] = P[Z] / an; 30

}
I

reprint_element(0);

A.25 Auxiliary functions to check the 3D-mesh

/* VOLUME OF TETRAHEDRON */
REAL volume_of_tetrahedron(REAL *PO, REAL *Pi, REAL *P2, REAL *P3)

POINT v, vO, v1, v3;

v0[X] = PilX] - PO[X];
vO[Y] = PilY] - PO[Y];
vO[Z] = P1[Z] - PO[ZI;
v1[X] = P2[X] - PO[X];
vl[Y] = P2[Y] - PO[Y];
v1[Z] = P2[Z] - PO[ZI; o10
v3[X] = P3[X] - POEX];
v3[Y] = P3[Y] - PO[Y];
v3[Z] = P3[Z] - PO[Z];
vectorproduct(v0, v1, v);
return fabs(inner_product(v, v3) / 6.0);

/* SET NODE TYPE IN 2D-MESH */

void set_node_typeface()

{ 20
int i=0, j, ii, w, noE15], k, kO, ki, s=1, iO, il;

184 Appendix A

for(; ;)
if((i == 0) && (s == 0)) break;
if(i == 0) s = 0;
if((node[i .type == -1) && (node[i] .no != -1)){

w = 0;
for(j=0 ; j < node[i].nfi ; j++){

for(k=0 ; k < 4 ; k++) if(face[node[i] .nface[j]].fnode[k] == i) break;
kO = dec4(k);
ki = inc4(k); 30
iO = 0;
il = 0;
for(ii=0 ; ii < w ; ii++){

if(no[ii] == face[node[i] .nface[j]] .fnode[kO]) iO = 1;
if(no[ii] == face[node[i] .nface[j]] .fnode[kl]) il = 1;

}
if(iO == 0){

no[w] = face[node[i].nface[j]] .fnode[kO];
w++; if(w > 15)printf(" ERROR-3\n");

} 40
if(il == 0){

no[w] = face[node[i] .nface[j]] .fnode[kl];
w++; if(w > 15)printf(" ERROR-4\n");

}
}
for(j=0 ; j < w ; j++){

if(node[no[j]] .type != -1){
if(node[no[j]].type == 0) node[i].type = 1;
if(node[no[j]] .type == 1) node[i] .type = 0;
s = 1; 50

break;

}
}

}
i = incn(i);

/* SET NODE TYPE IN 3D-MESH */
void setnodetypeelement() 60

{
int i=O, j, ii, w, no[15], q, e[15], k, kO, kl, k2, s=l1, iO, ii, i2;
for(; ;){

if((i == 0) && (s == 0)) break;
if(i == 0) s = 0;
q = 0;
if((node[i]. type == -1) && (node[i].no != -1)){

for(j=0 ; j < ci ; j++){
for(k=0 ; k < 8 ; k++){

if(element[j] .enode[k] == i){ 70

e[q] = j;
q++; if(q > 15)printf(" ERROR-88\n");
break;

}

C(ode for quadrilateral and hexahedral mesh generation 185

}
w = 0;
for(j=0 ; j < q ; j++){

for(k=0 ; k < 8 ; k++) if(element[e[j]].enode[k] == i) break;

kO = k -; 80so

if(k == 0) kO = 3;
if(k == 4) kO = 7;
k1 = k + 1;
if(k == 3) kO = 0;
if(k == 7) kO = 4;
k2 = k + 4;
if(k > 3) k2 = k - 4;
iO = 0;
il = 0;
12 = 0; 90

for(ii=0 ; ii < w ; ii++){

if(no[ii] == element[e[j]].enode[kO]) i0 = 1;
if(no[ii] == element[e[j]].enode[kl]) il = 1;
if(no[ii] == element[e[j]].enode[k2]) i2 = 1;

}
if(iO == 0){

no[w] = element[e[j]].enode[k0];
w++; if(w > 15)printf(" ERROR-5\n");

}
if(ii == 0){ 100

no[w] = element[e[j]].enode[ki];

w++; if(w > 15)printf(" ERROR-6\n");

}
if(i2 == 0){

no[w] = element[e[j]].enode[k2];
w++; if(w > 15)printf(" ERROR-7\n");

}
}
for(j=0 ; j < w ; j++){

if(node[no[j]].type != -1){ 110
if(node[no[j]].type == 0) node[i].type = 1;
if(node[no[j]].type == 1) node[i] .type = 0;
S = 1;
break;

}
}

}
i = incn(i);

120

/* CHECK OF ELEMENT TYPE */
int element_type(int e)

{
int tO=O, t1=0;
if((node[element [e .enode[0]] .type == 1) &&

(node[element el.enode[2]] .type == 1) &&
(node[element[e] .enode[5] .type == 1) &&
(node[element[e].enode[7]].type == 1)) tO = 1;

186 Appendix A

if((node [element [e] .enode[1]] .type == 1) && 130
(node[element[el.enode[3] .type == 1) &&
(node[element[el.enode[4]] .type == 1) &&
(node[element[e].enode[6]].type == 1)) tl = 1;

if(tO == ti) return -1;
if((tO == 1) && (ti == 0)) return 0;
if((tO == 0) && (ti == 1)) return 1;

/* VOLUME OF ELEMENT */
REAL volume_of_element(int e) 140
{

int type;
REAL vol;
type = element_type(e);
if(type == -1) return (-1E+10);
if(type == 0)

vol = volume_oftetrahedron(node[element[e] .enode [0]] .coord,
node[element[e].enode [ll] .coord,
node[element[e].enode[2] .coord,
node[element[e] .enode[5]] .coord) + 150

volume_oftetrahedron(node[element[el.enode[0]].coord,
node[element[e].enode [2]] .coord,
node[element[e].enode[3] .coord,
node[element[el.enode [7]] .coord) +

volume_oftetrahedron(node[element[e] .enode[0]] .coord,
node[element[el.enode [4]] .coord,
node[element[el.enode[5]] .coord,
node[element[e].enode[7] .coord) +

volumeof tetrahedron(node[element[e] .enode [2]] .coord,
node[element[e].enode[5] .coord, 160

node[element[el.enode [6]] .coord,
node[element[e].enode[7]] .coord) +

volumeof tetrahedron(node[element[el.enode [0]] .coord,
node[element[e] .enode[2] .coord,
node[element[e].enode [5]] .coord,
node[element[e].enode[7] .coord);

if(type == 1){
vol = volumeof tetrahedron(node[element[el .enode[0]] .coord,

node[element[e].enode [] .coord, 170
node[element[e].enode[3]] .coord,
node[element[el.enode[4] .coord) +

volume of tetrahedron(node[element[e] .enode [1]] .coord,
node[element[e] .enode [2]] .coord,
node[element[e] .enode[3] .coord,
node[element[el.enode[6]] .coord) +

volumeof tetrahedron(node[element[e] .enode [1]] .coord,
node[element[e] .enode [4]] .coord,
node[element[e].enode [5]] .coord,
node[element[el.enode[6] .coord) + 180

volumeof tetrahedron(node[element[e] .enode [3]] .coord,
node[element[e] .enode [4]] .coord,
node[element[e].enode [6]] .coord,

Code for quadrilateral and hexahedral mesh generation

node[element[e] .enode[7] .coord) +
volume_oftetrahedron(node[element[el .enode [1]] .coord,

node[element[e . enode [3]] . coord,
node [element [e] .enode [4]] . coord,
node[element[e] . enode [6]] .coord);

return vol;

/* VOLUME OF FACE */
REAL volumeof face(int f)

int k, kO, ki, k2;
REAL vol=0, d;

POINT P[8], vO, v1, v;

P[4] X] = node[face[f]
P[4] [Y] = node[face[f]

P[4] [Z] = 0.0;
P[5] [X] = node[face[f]
P[5] [Y] = node[face[f]
P[5] [Z] = 0.0;
P[6] [X] = node[face[f]
P[6] [Y] = node[face[f]
P[6] [Z] = 0.0;
P[7] [X] = node[face[f]
P [7] [Y] = node[face f]
P[7][Z] = 0.0;

.fnode[0] .coord[X];

.fnode[0]] . coord [Y];

.fnode[1]] .coord[X];

.fnode[1] .coord[Y];

.fnode[2]] . coordX];

.fnode [2]] .coord[Y] ;

.fnode [3]] .coord[X] ;

.fnode[3] .coord[Y];

if(node[face[f] .fnode[0]] .type == 1) k = 0;
else k = 1;
kO = dec4(k);
kl = inc4(k);
k2 = inc4(kl);
vector_no(face[f] .fnode[k], face[f] .fnode[kl] , vO);
vector_no(face[f] .fnode[k], face[f] .fnode[k2], v1);
vectorproduct(vO, v1, v);
d = vector_norm(v);
scalar_vector(l.0/d, v);

d = innerproduct(face[f] .norm, v);
if(d < 0) scalar_vector(-1.0, v);
if(v[Z] != 0){

vol = volume_of_tetrahedron(node[face[f] .fnode[k]] .coord, P[k+4] ,
P[kl+4], P[k2+4]) +

volume._of_tetrahedron(node[face[f] .fnode[kl]] .coord,
node[face[f] .fnode[k]] .coord,
node[face[f] .fnode[k2] .coord, P[k2+4]) +

volume._of_tetrahedron(node[face[f] .fnode[k]] .coord,
node[face[f].fnode[kl]].coord, P[kl+4],

P[k2+4]);
if(v[Z] > 01) vol = -vol;

}
kl = dec4(k);
vector_no(face[f] .fnode[k], face[f] .fnode[kl], vO);
vector_no(face[f] .fnode[k], face[f] .fnode[k2], vl);
vectorproduct(vO, v1, v);

187

188 Appendix A

d = vector_norm(v);
scalar vector(1.0/d, v);
d = inner_product(face[f] .norm, v); 240
if(d < 0) scalar_vector(-1.0, v);
if(v[Z] != 0){

d = volume_of_tetrahedron(node[face[f.fnode [k] .coord, P[k+4], P[kl+4],
P[k2+4]) +

volume_oftetrahedron(node[face[f] .fnode[kll] .coord,
node[face[f].fnode[k] .coord,
node[face[f].fnode[k2] .coord, P[k2+4]) +

volume_oftetrahedron(node[face[f] .fnode[k]] .coord,
node[face f] .fnode[kll].coord, P[kl+4], P[k2+4]);

if(v[Z] > 0) d = -d; 250
vol = vol + d;

}
return vol;

/* VOLUME OF 2D-MESH */
REAL volume_of_2D mesh(int j)
{

int i;
REAL vol=0; 260
for(i=0 ; i < fi ; i++){

if((face[i].ord == j) && (face[i].no != -1)) vol = vol + volumeof_face(i);

}
return vol;

}

/* VOLUME OF 3D-MESH */
REAL volume_of_3Dmesh(int s, int e)

{
int i; 270

REAL vol=0;
for(i=s ; i < e ; i++) vol = vol + volume_of_element(i);
return vol;

}

/* CHECK IF THERE ARE TWO AND ONLY TWO ELEMENTS PER FACE */
void check_two_elementsper face()
{

int i, j, k, ii, q, w;
for(i=0 ; i < fi ; i++){ 280

if(face[i]. ord != 0){
q = 0;
for(j=0 ; j < ci ; j++){

w = 0;
for(k=0 ; k < 8 ; k++){

for(ii=0 ; ii < 4 ; ii++){
if(element [j] . enode [k] == face[i] .fnode[ii]) w++;

}
}
if(w == 4) q++; 290

if(q != 2) printf(" 3D-MESH ERROR in face=.d\n", i);

}

A.26 ADS template

static int loadfuncs();
int geo();
int autoqm();
int mesh3D() ;
void main(int argc, char *argv[])

int stat;
short scode = RSRSLT;

ads_init(argc, argv);
ap_init();
for (;;) {

if ((stat = ads_link(scode)) < 0) {
printf("TEMPLATE: bad status from ads_link() = %d\n", stat);
exit(1);

}
scode = RSRSLT;

switch (stat) {
case RQXLOAD:

scode = .oadfuncs() ? RSRSLT : RSERR;

break;

default: break;

}

s
static int loadfuncso

int a=O, b=O, c=O;
if(ads_defun("C:geo", 0)

ads_regfunc(geo, 0);

b = 1;

if(adsdefun("C: autoqm", 1
ads_regfunc(autoqm, 1);
a = 1;

= RTNORM){

) == RTNORM){

if(ads_defun("C:mesh3D", 2) == RTNORM){
ads_regfunc(mesh3D, 2);

c = 1;

return (a * b * c);

-- ~--~-

Appendix A 189

