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Abstract

An estimate of Arctic ice thickness from the acoustic emission of the ice plate is the
goal of this study. The Arctic ice is related to the global climate processes and the
global heat and water budget. The focus of the thesis is the passive estimation of ice
thickness using ambient noise caused by thermal and mechanical stress cracks in the
ice sheet. An analytical model for a propagating crack in an ice plate is developed.
According to the model, the acoustic signal received from propagating stress cracks is
the convolution of an elemental fracture source function and the spatial distribution
function (array). This analytic result predicts the spectral peak on the order of lkHz
that relates directly to the ice thickness. Experimental hydrophone data collected in
the Beaufort Sea during the spring of 1994 demonstrates the presence of these spectral
peaks, which correlate well with the measured ice thickness at the site. In addition,
hydrophone observations of the sound generated by ice cracking events provide an
opportunity for studying the sound waves which occur in the ice plate. The effects
of the dispersion of Lamb waves and the attenuation of Lamb waves as a function
of frequency for the parameters of an Arctic ice plate are obtained numerically and
demonstrated by the experimental hydrophone data.

Thesis Supervisor: J. Robert Fricke
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Background

The Arctic is a principal area for ice research because of its role in the global climate

and heat budget and its economical resources. One of the important parameters

of the Arctic is the mass of the ice plate. For determination of the total ice mass,

measurements of the ice thickness at numerous points of the ice plate should be

provided. Direct measurements are obviously expensive.

Some indirect methods are known. Crissman [2] presents the method of calculating

an ice thickness term using observed ice motion and wind data. The theory states

that as wind blows over an ice parcel, the energy of the wind is transferred to and

through the ice, and the ice moves.

Lewis gives another interesting approach in Ref. [3]. Thermal tension, and on a

large scale, the effects of wind and current, can build up internal stress within the ice

to the point at which it will rupture. In Ref. [3] thermally-induced stresses within ice

floes are simulated using a visco-elastic model that accounts for the time variation of

the atmospheric forcing parameters and the temporal and spatial variations of snow

cover. To relate the model-predicted stresses to the observed 500 Hz under-ice noise

variations, a fracturing paradigm was developed. The results indicate the connection

between under-ice noise episodes and tensile fracturing of the ice pack. However, it is

not clear from this work how to estimate ice thickness by analyzing under-ice noise.



As a complement to these efforts, the research described in this thesis is focused

on estimating ice thickness through the spectral analysis of acoustic emissions from

the ice plate. The sound field in the Arctic Ocean is the summation of many differ-

ent source mechanisms. For understanding which of these mechanisms has the best

correlation with ice thickness, physics of Arctic ice behavior is discussed below.

A primary source of sound in the Arctic Ocean arises from the response of the

ice cover to stress. Temperature changes, wind, and current produce internal stress

within the ice to the point of cracking. The visible consequences are cracks, pressure

ridges, buckling, and fragmentation. Catastrophic failure of the ice during these

events generates sound waves. In effect, the sudden displacement at the fracture

zone excites various elastic waves in the ice, and some of this energy, together with

the directly transmitted signal, enters the water, contributing to the ambient sound

levels of the ocean. The problem is that the noise, say recorded by a hydrophone,

is a superposition of many modes from numerous cracks and other sound sources.

Therefore, it is not easy to identify which event in the noise corresponds to which

mode.

Experimental results provide the information about the ambient noise as follows.

According to Ref. [7], the noise power spectral density under the Arctic ice cap

has a broad peak centered near 10Hz with approximately w- 2 slope above the peak,

and a less well-defined slope below the peak. In Ref. [8] additional peaks at higher

frequencies are also observed.

The sound generated by ice cracking events in the Amundsen Gulf is observed

by Farmer and Xie in Ref. [9]. Contributions from waves traveling in the ice are

identified and shown to be small compared to the direct acoustic wave. A feature

of Farmer's experiment was that measurements were extended up to a frequency of

20kHz, revealing previously unidentified high-frequency components of the signal.

Analytical results about sound generation and propagation in sea ice also provide

some insight. In Ref. [4] the field of a point source of compressional waves in the

ice is computed. In Ref. [5] the crack is modeled by an approximate equivalent

source, and the example shown represents a small fraction of the ice sheet under



tension. It is demonstrated that if the ice sheet were completely continuous, only a

very small fraction of the energy released by the crack could be trapped as sound in

the surface half-channel of the ocean, where it will contribute to the ambient noise.

The interesting model proposed in Ref. [6] describes a crack in the ice plate as a

combination of different types of seismic sources. Analytical solutions are developed

for tensile crack, dip-slip and strike-slip.

In summary, previous research has provided the following relevant information:

1. The primary source of sound in the Arctic Ocean arises from the response of

the ice cover to stress.

2. Only a small fraction of the total energy released in the"compact" cracking pro-

cess is radiated at grazing angles of less than 150. It is difficult to get the

information about ice from "compact" cracks.

3. The most common crack is a tensile fault, including the very fine cracks due to

thermal tension acting over a cold surface skin and larger cracks fracturing the

ice over its full depth.

4. Direct acoustic transmission dominates in the observed hydrophone signals of

ambient noise.

1.2 Objective

The goal of the present research is to estimate ice thickness by analyzing the acoustic

emission from the Arctic ice. The research effort in this thesis focuses on the modelling

of the physical process of radiation from the propagating cracks, which fracture the

ice over its full depth. Experimental hydrophone data collected in the Beaufort Sea

during the spring of 1994 are analyzed to determine the ice thickness using this

analytical model.( See Fig.1.1.) Furthermore, the effect of the Lamb waves on the

acoustic emission is considered.
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1.3 Approach

The approach taken in the estimation of ice thickness from the ambient noise is

divided into two parts:

* the development of a mathematical representation of a propagating crack,

* the creation of a numerical method for the spectral analysis of experimental

hydrophone data.

The approach taken in analyzing the part of ambient noise events which comes from

the modes of the waves propagating in the ice plate (Lamb waves) is based on the

theory of elastic waves in an infinite solid layer.

The key point of this research, as shown in Fig.1.2, is that the observations of the

noise events show similarities to seismic signals. This has motivated the approach to

the modeling in which I adapt a theory of earthquake mechanics for the case of an

ice plate. Another important point is that a propagating crack can be studied as a

linear array of sources. The theory of sound radiation from linear arrays of sources

will be used.

The signal from cracks is very short in time. The method of spectral analysis

chosen for this research is the Maximum Likelihood Method.
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Chapter 2

Analytical Model for the

Propagating Ice Cracks

In this chapter the theoretical relationship between ice thickness and the direct acous-

tic signal from the crack is considered. (The waves that propagate in the ice sheet

and their influence on the detected under-ice signal is considered in Chapter 4.)

First, the "moving" effect in the crack formation is considered by representing a

propagating crack like a linear array of sources.

Second, similar to earthquake mechanics, a sinusoidally roughened ramp function

is introduced to represent the displacement of the fault planes. This function is a key

point in the relationship between the ice thickness and the sound waves from a crack.

Then, previous results are summarized to identify some properties of the spectral

density function of the signal at the point of the receiver. Numerical examples for

some cases of the crack and receiver positions, as well as crack and ice parameters,

are also shown.

2.1 Propagating crack like a linear array of sources.

The theoretical simulation of an under-ice signal from a propagating crack like the

radiation from a linear array of sources is considered in this section.

Cracks occurring in the ice can range in length from few meters to kilometers,



but all of them roughly follow a rule: they are lines or consist of linear segments.

Therefore, the fault surface can be modeled as linear array of discretized sound sources

(see Fig. 2.1). The total pressure at the point of receiver, which is placed in the ocean

under the ice plate, can be expressed as:

p(X, t) = Ppeft + Pright, (2.1)

where pleft is the pressure field from the left side of an array (or crack) and Pright is

the pressure field from the right.

In the beginning, assume an array of discretized sources for simplicity:

A AI r r-A Al r-2A 2Al
Prisht = [W(t - )+W(t- - ) +w(t - ) + ... ], (2.2)

L c c v c v

where wi(t) = w(t) is the source function of the i-th discrete source

(assumed identical for all sources),

L is the crack length,

A is the source strength of an array,

v is the crack propagating speed,

Al is the linear distance between the discretized sources,

Ai is the apparent distance between adjacent discrete sources to the receiver,

r is the distance between the center of the crack and the point of the receiver,

c is the sound speed in water (assumed constant).

The distance between the adjacent discretized sources to the receiver may be

obtained by geometry (see Fig. 2.1):

A i = Alsinycos(8 - 0r), (2.3)

where y is the angle between axis z and r,

O is the angle between axis x and crack-direction,

0, is the angle between axis x and the projection of r onto (xy) surface



Figure 2-1: Propagating crack and coordinate system
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Equation (2.2) may be rewritten:

AAl N
Pright( t) =(

L r n=O
r nA nAl
S - -).

c c v

For the limited case of Al -+ 0, that is for the continuously distributed sources, the

expression (2.4) reduces to integral form

A 1 L/2 1 sinJ/cos(O - 0,) r
Lr v c c

A 1 L/2 w r

Sw(---2lk.)dl
(2.5)

where
1 sinycos(9 - 80,)kir

In a similar way, we reduce the left side of array:

preft(x, t) = 1- w(t - - Ik 2)dl,L r -L2 c

where
1 sinycos(9 - 9,)k2= -- -

Using the transformation k1l = r7 in (2.7)

Al1 f1 kL/2
L r ki Jo

w (t - -r)dr = A w(t - - 71 1)g(71)d71, (2.9)
c Lrkl -oo c

where

0, ' < 0

g1(71) = 1, O < 1 < kiL/2 .

0, 71 > k1L/2

(2.10)

By the definition of the convolution of the two functions, the expression (2.9) may be

rewritten:
A r 1

prigh,(X, t) = -w(t - -) • g1(t).
Lr c kxl

(2.4)

Pright(X, t) =

(2.6)

(2.7)

(2.8)

Pright(X, t)

(2.11)



In the same way, for the left side of the crack,

A r A r 1
e(, t) = w(t - - r2) 2(r2 )d 2 = -- w(t - ) * g2 (t), (2.12)

Lrk2  oo c Lr c

where

0, 72 <0

92( 2 ) = 1, 0 < 2 < -k2 L/2. (2.13)

0, 2 > -k 2L/2

Note that k2 is negative.

The total pressure field can be calculated with the help of expression (2.9) for

pright and (2.12) for Preft and (2.1) :

A r 1 1
p(,t)= w(t- -) ( g(t) - -g 2 (t)). (2.14)

Lr c kl ( 2

So the pressure field is the convolution of two functions. The sum of two rectangu-

lar boxes is the result of uniform source strength distribution along the crack surface

using a farfield approximation. In reality, the source strength function does not have

to be a box type; it can be triangle, or any kind of shape that best describes the

source strength distribution. The rectangular shape will be assumed for simplicity.

2.2 The displacement at the point of cracking

Several models for the elemental source function w(t) were suggested in previous

studies. In Ref. [5] the elemental crack is modeled by an approximate "equivalent

source," and the example chosen represents a small failure of the ice sheet under

tension. The interesting models proposed in Ref. [6], where a crack in the ice plate is

described as a combination of seismic sources, and analytical solutions are developed

for tensile crack, dip-slip and strike-slip. In Ref. [4] a detailed numerical investigation

of Ewing and Press's characteristic equation for the case of a monopole source is

carried out. In [6] the impulse source function is assumed.

As a compliment to these theoretical efforts, the model described below is based



on a more realistic assumption to obtain the information about the ice sheet. Ob-

servations of cracking events [9],[10] show some similarities to seismic signals, and

this has motivated the approach to the analysis of the ice sheet in which a theory of

earthquake mechanics is used.

By analogy with earthquake theory [11], the fault displacement-time function

should be choosen for the model of an elemental source . The most realistic represen-

tation for the displacement function at the point of cracking is a somewhat roughened

ramp function. As an approximation to such a function a ramp modulated by a sine

wave is considered:

O t<0
G(t) = I(t + sin ) 0 < t < T, (2.15)

1 t>0

where T is the rise time,

n is the integer equal to the number of rougheness elements in the fault

(assume n = 1 for the ice plate).

I follow Ref. [9] and take the roughness elements to be some fraction e of the primary

amplitude. The normalized fault displacement is modeled as

0 t < 0.

G(t) = (t + e sin T) 0 < t < T. (2.16)

1 t>0

The corresponding displacement velocity would be

0 t<0
U(t) = G'(t) -= (1+ ecos 2)i 0 < t < T. (2.17)

0 t>0

The physical concept here is of a "slip-stick" shear-fault, or of a tensile fault

where the yeild point advances in small jumps determined by the thickness of the



ice sheet. The slip or tear on the fault is controlled by the narrowest dimension of

rupture surface, which for large cracks, fracturing the ice over its full depth, is the ice

thickness.

In earthguake mechanics [12], it is generally assumed that at any given point the

crack continues to widen until the rupture front is h/2 past that point, where h is the

ice thickness. Using this assumption here, the rise time is

hT = - (2.18)
2v'

where v is the rupture velocity.

The elemental crack source function is

Q = U(t)dS = 2AU(t), (2.19)

where U(t) is the velocity at the point of cracking,

A is the area of the fault plane per unit length. ( A = h, numerically. )

After plugging (2.17) into (2.19)

O t<O
w(t) = Q(t) = 2h (1 + cos2 t) 0 < t < T. (2.20)

0 t>0

The shape of this function in the time domain is shown in Fig. 2.3a.

2.3 PSD of the water-born acoustic signal

Summarizing the analytical results for the model of the propagating crack as the

linear array of moving sources ( Section 2.1 ) and for the source function as the

volume change at the point of cracking for the source function ( Section 2.2 ), the



pressure field in the water is

A
p(x, t) = rt -rr

r 1 1
C TJ91( j9()), (2.21)

where

0,

1,

0,

0,

1,

0,

w(t) = 2h

0

(1 +
0

t<O

S< t < t < kL/2,

t > kiL/2

t<0

O < t < -k 2L/2,

t > -k 2L/2

t<0

Scos2nrt) 0 < t < T,

t>O

where kl and k2 are some constants( see eqns. (2.6) and

positions of the crack and the point of the receiver.

Since the convolution in the time domain corresponds

two Fourier transforms in the frequency domain, it is useful

domain solution.

The Fourier transform of

1 1
f (t) = -1(t) - -g2

Fi (f) = -F(f) - -•F2(f),k1 k2

(2.22)

(2.23)

(2.24)

(2.8) dependent on the

to the multiplication of

to look at the frequency

(2.25)

(2.26)

where F11(f) and F12(f) are Fourier transforms from rectangular boxes:

F1i(f) = g,(t)i2 rftdt = exp(iirfklL/2)kjL/2sinc(rf klL/2),
-o0

(2.27)

g2(t) =

91(t) = I



and

F12(f) = g2(t)i2nftdt - exp(-i'rf k2L/2)k2L/2sinc(irfk2L/2). (2.28)

Fig. 2.2a shows the functions gg(t) and -g2(t) in the time domain. Fig. 2.2b
shows the power spectral density (PSD) of fi(t) or IF 12.

The Fourier transform of f 2(t) = w(t) is the summation of the Fourier transform

of the rectangular box and the rectangular box multiplied on the cosine function.

Using the cosine modulation rule:

T(u)cos2rau --+ B(s - a) + 2B(s + a) (2.29)

(where u is a time variable, s is a frequency variable, and T(u) -- + B(s)) the Fourier

transform of f2(t) = w(t) is

F2(f) = J f 2(t)exp(i2irft)dt, (2.30)

or
F2(f) = 2h(eirfTsinc(7rfT)

+"(eirw(f-)Tsinc ( r(f - 1)T)

+eir(f+#)Tsinc(r(f + #)T)).

Fig. 2.3 shows f 2(t) in the time domain and the power spectral density IF2 2. The

total power spectral density of the signal p(x, t) (Eq.(2.21)), is

F(f) = Fi(f) - F2(f). (2.31)

The spectrum of the water-born acoustic signal at the point of the receiver for different

cases of ice thickness, crack length, and position of the receiver is discussed in the

next section.
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Source function, vr = 1330 m/s, h = 2.5 m
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2.4 Analytical results for different cases

In this section, the acoustic emission from a propagating crack in the ice plate is

studied using the developed analytical model developed in the previous section. The

sound speed in the water is assumed to be 1440 m/s. The rupture speed is 1330 m/s.

(See the next section )

The following parameters of the ice are important for the shape of the signal from

the crack ( Expression 3.1 of previous section)

* h - the ice thickness,

* v - the rupture velocity ( See Section 2.5. ).

The following parameter of the crack are important for the shape of (2.31):

* L - the crack length.

The position of the crack with respect to the point of the receiver also determines the

shape of the signal. The position is described by

* 7, the angle between axis z and direxction r,

* 0, the angle between axis x and the crack-direction,

* r0, the angle between axis x and the projection of r onto (xy) surface, and

* r, the distance between the center of the crack and the receiver point.

The goal of the analytical solutions is to understand the relationship between

these parameters and the spectral power density of the signal.

Case 1. Diferent crack lengths: The results are shown in Fig. 2.4 for the power

spectral density of the water-born acoustic signal in the point of receiver. The ice

thickness, the rupture velocity, the crack and receiver positions are the same for all

four curves.

Case 2. Different receiver locations: The power spectral dencity curves for different

values of the angle between axis z ( see Fig. 2.1 ) and direction to the receiver ' are



shown in Fig. 2.5. The ice thickness, the rupture velocity, the crack length and

position in the ice plate are the same for all four curves.

Case 3. Different crack positions on the ice plate: ( rotating around the crack

center ) The results of numerical calculations of the power spectral density of the

water-born acoustic signal are shown in Fig. 2.6. The ice thickness, the rupture

velocity, the crack length and the position of the hydrophone in the ocean are the

same for all four curves.

Case 4. ( the most important ) Different ice thicknesses: To show the relationship

between ice thickness and the position of the peak in the graph for the power spectral

density function for the acoustic signal from the propagating crack is the goal of Fig.

2.7. For all curves the position of the receiver in the ocean and the crack in the ice

plate are the same.

Summarizing the results of these four cases we can conclude that the frequency

with which the peak occurs on a power spectral density curve is defined mostly by

the value of the ice thickness.

2.5 The rupture speed of the Arctic Ice

What is important to know about Arctic ice for estimating the ice thickness by

this analytical approach? According to the analytical model, the important feature

is the peak in the power spectral density function of the water-born signal from a

propagating crack penetrating the ice over its full depth. Assume that this peak is

fo. Using (1.18) we can calculate

h = 2v- -  (2.32)0o'

where v, is the rupture speed in the ice.

In this step, the most important parameter for discussion is the rupture speed for

the Arctic ice.

According to [10], in fracture mechanics v, is variously taken to be v, < c,, with

c, as the Rayleigh wave speed; or 0.8c,, with c, as the shear speed; or 0.38cp, with

c, as the compressional speed [13],[14]. For sea ice, c,r 1700 m/s, c, z 1800 m/s,
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Figure 2-4: Analytical result: The power spectral density IF(f) 12 for the propagating
crack with c = 1440 m/s; v = 1330 m/s; r = 500 m; h = 2.5 m; y = 800; 0 = 100;
L = 12,15,18, 20 m.
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Figure 2-5: Analytical result: The power spectral density IF(f)12 for the propagating
crack with c = 1440 m/s; v = 1330 m/s; r = 500 m; L = 1 m; h = 2.5 m; 0 = 0;
-f = 10*, 50", 80*, 850.
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Figure 2-6: Analytical result: The power spectral density IF(f) 2 for the propagating
crack with c = 1440 m/s; v = 1330 m/s; r = 500 m; L = 10 m; h = 2.5 m; -y = 800;
8 = 00, 300, 600, 900.
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Figure 2-7: Analytical result: The power spectral density IF(f)j2 for the propagating
crack with c = 1440 m/s; v = 1330 m/s; r = 500 m; L = 1 m; 'y = 800; 0 = 00;
h = 1.0, 1.5, 2.0, 3.0 m.
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h (m) CP (m/s) c, (m/s)
1.18 3000 1590
2.40, 2.37, 2.15 3500 1750

Table 2.1: Best compressional/shear speeds and ice thicknesses determined by 1987
PRUDEX

and c, s 3500 m/s ( See Ref.4 ). [10] used vr=1440 m/s, a value within 15% of the

various estimates.

In Ref.15 different values for the rupture speed are presented. v, (max) ; 0.63c,

for Poisson's ratio a = 0.25. Therefore, v, (max) - 0.63. 1800 = 1134 m/s.

For the value of shear speed the data are different, too. In [4] c8 = 1800m/s, but

in [16] c, = 1900m/s.

In [17] the value of bulk compressional and shear speeds obtained for the thicker

multi-year ice at the PRUDEX ice camp, 3500m/s and 1750m/s, respectively, compare

very well with similar values obtained by earlier investigators. Note, also, that the

shear speed measured in the annual ice, 1590 m/s is considerably lower, older than

in the thicker ice (See Table 2.1).

Analyzing previous estimates, I use vr=1330m/s for rupture speed in the ice.



Chapter 3

The analysis of experimental data

The hydrophone data analyzing in this chapter were recorded in the Beaufort Sea

during the Spring 1994 MIT Arctic expedition; 86 crack signals were chosen for anal-

ysis.

The Maximum Likelihood (Capon) Spectral Estimation is used because the signals

from cracks are short in time.

In the section 3.3 a histogram for all 86 events is provided. The method of ice

thickness estimation from analysis of the real hydrophone data is shown using the

histogram.

Some properties common to all recorded signals properties other than the spectral

peak near 1 kHz are noted. The hypothesis is that some other sound waves, not only

direct-acoustic waves, contribute to the analyzed hydrophone signals.

3.1 Instrumentation and recorded data

The deployment consisted of one a broadband recording acoustic hydrophone. The

camp location of the MIT expedition camp was 149 degrees 33 minutes west and 73

degrees 0 minutes north. (See Fig. 3.1.) Fig 3.2. shows the deployment place of

the hydrophone. The recording time is 20 seconds. Data was recorded on a DAT

tape sampled at 32 kHz (20 Hz to 14.5 kHz useful bandwidth), then subsequently

redigitized on a Macintosh at 22 kHz. Since the theoretical approach requires the
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Figure 3-1: Chart of the MIT camp showing the hydrophone deployment

accuracy on high frequencies the large bandwidth ( more than 10 kHz ) hydrophone

was used for measurements. The data is discretely sampled with At = 4.4934 10- 5

S.

During the recording time some fracturing occured in the region. The data looks

like noise with many higher amplitude events, approximately 20 ms in length. ( See

Fig. 3.3 ) It is not easy to determine from the observation of the events, which ones

are from cracks and which are from another sources. For analysis 86 events were

chosen that show some similarities by shape with each other and with seismic signals.

The typical event is shown in Fig. 3.4.

3.2 The method of spectral analysis

Estimation of the power spectral density (PSD), or simply the spectrum, of discretely

sampled deterministic and stochastic processes is usually based on the fast Fourier

transform ( FFT ). This approach to spectrum analysis is computationally efficient

and produces reasonable results for a large class of signal processes. But Kay and

Marple note in [18], that in spite of these advantages, there are several inherent per-
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Figure 3-2: Chart showing the place of cracking in the ice and the hydrophone de-
ployment in the ocean
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Figure 3-3: Sound-pressure time plot for ice noise with crack-events.
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formance limitations of the FFT, such as frequency resolution and implicit windowing

of the data. These two performance limitations of the FFT method are particularly

troublesome when analyzing short data records, the situation which we have with

crack signals.

The signals of interest in this research have a temporal duration of approximately

15-20 ms. The maximum likelihood spectral estimation (MLM) is used for crack data

analysis in this research. MLM was originally developed for seismic array frequency-

wave number analysis. The approach uses the following theoretical considerations.

In MLM one estimates the PSD by effectively measuring the power out of a set of

narrow-band filters. The shape of these filters ( See Ref. [18] ) are different for each

frequency; they are finite impulse response types with p weights (taps),

A = [aoal...ap]_l]. (3.1)

The coefficients are chosen so that at the frequency under consideration, say fo, the

frequency response of the filter is unity (i.e., an input sinusoid at that frequency

would be undistorted at the filter output) and the variance of the output process is

minimized. Thus the filter should adjust itself to reject components of the spectrum

not near fo so that the output power is due mainly to frequency components close to

fo. To obtain the filter, one minimizes the output variance a2, given by

a2 = [A]H[R,,][A] (3.2)

subject to the unity frequency response constraint ( so that the sinusoid of frequency

fo is filtered without distortion),

[E] [A] = 1, (3.3)

where [R,] is the covariance matrix of x,, E is the "steering" vector

E = [exp(j27rfo A t) exp(j27r2fo A t) ... exp(j27r(p - 1)fo A t)]T, (3.4)



and H denotes the complex conjugate transpose. The solution for the filter weights

is
[R] -1 [E]

Aopt= [E][R]~ [E] (3.5)

and the minimum output variance is then

21in = [ (3.6)

It is seen that the frequency response of the optimum filter is unity at f = fo, and that

the filter characteristics change as a function of the autocorrelation function. Since

the minimum output variance is due to frequency components near fo, then a.i n A t

can be interpreted as a PSD estimate. Thus, the MLM power spectral density is

defined as
At

S(fo) = [E [R [E] (3.7)[E]H[Rxx]-1[E]'
To compute the spectral estimate, one only needs an estimate of the autocorrelation

matrix.

The disadvantage of MLM estimate are that is a smooth spectrum (it cannot

resolve the two closely spaced sinusoidal components), and the estimation is non-

linear (amplitudes are not preserved). But it is not important in terms of the ice

thickness determination from the signals from cracks.

3.3 Typical results for a signal from a crack

The MLM estimate as a function of frequency for the event # 3 is shown in Fig. 3.4.

The first 3 ms of the event is analyzed. The correlation matrix is developed for 25

time points. For the comparing with the theoretical model the curve for h = 2.22m

is on the same plot. One can see the peak near 1000 Hz. From direct measurements

of ice thickness at the site (near ridge) it is known that ice is approximately 2.5 m

thick. Thus one can predict an expected peak in the frequency domain by theoretical



approach:
2v 2. 1330

f = = 2.5 1064(Hz) (3.8)h 2.5
This value is consistent with the experimental data.

3.4 Some statistics for 86 events

In previous section it is noted that the peak in the spectral estimate of the first part

of the event # 3 is consistent with the theoretical prediction. Then, consider other

chosen signals. In Fig. 3.5 several signals and their spectral estimates are shown.

There is obviously a large correlation between signals.

Fig. 3.6.a shows the statistics for the peak in the frequency domain for all 86

events, and Fig.3.6.b shows the corresponding histogram for estimation of the ice

thickness using the theoretical approach and the 86 events from experimental hy-

drophone data. The rupture speed assume to be 1330 m/s.

3.5 The analysis of the second part of the signal.

The spectral analysis of the event # 61 is shown in Fig. 3.7. The first part of the

event is the direct acoustic transmission from the crack into water (see section 1.1),

and the later arrival is a dispersive flexural platewave. The nature of the second part

of the signal is unclear. Note some facts:

1. dispersion ( the high frequency components of the signal arrive at the receiver

earlier than low components );

2. there is a wide peak in spectrum near 500 Hz.

My hypothosis is that the signal is the result of structural waves, which are propa-

gating in the ice plate after cracking. The hydrophone is near the ice, so even subsonic

waves can be considered. Application of the theory of elastic waves in solid plate to

the Arctic Ice plate is considered in Chapter 4 for the explanation of the second part

of the signal.
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Figure 3-7: The analysis of the event # 61: (a) plot in time doniain; (b) plot in
time-frequency domain.
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Chapter 4

Elastic waves in the Arctic ice

plate

The sudden displacement at the fracture zone excites various elastic waves in the ice.

Some of this energy, together with the directly transmitted signal, enters the water,

and may contribute to the signal, analyzed in Chapter 3.

In this chapter the theory of elastic waves in an infinite solid plate is applied to

the case of the Arctic ice plate. The goal is to establish analytically how elastic waves

propagating in the ice plate contribute to the under-ice signal from a crack.

4.1 Theoretical considerations

4.1.1 Dispersion equation

Assume ice is an elastic material. For the first step of elastic waves in the ice plate

research consider general case of structural waves in the elastic plate. Lamb waves

refer to elastic perturbation propagating in a solid plate (or layer) with free bound-

aries, for which displacements occur both in the direction of wave propagation and

perpendicularly to the plane of the plate.

Consider a plane harmonic wave propagating in a plate of thickness h = 2d in the

positive x direction (see Fig. 4.1). According to Ref. [20] the expressions for scalar
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Figure 4-1: A solid plate and coordinate system

potential D and

displacements, is

vector T of the displacements, which are related to the particle

v = grad(D + rot'T, (4.1)

where & is the particle velocity. The potentials D and T, which describe longitudinal

and transverse waves, respectively, must satisfy the wave equations:

+ •' + k2 = 0,

+ + k? = 0,

(4.2)

where

k =- w -- isthe wave number for longitudinal wave,

kt = wV is the wave number for transverse wave,

w is the circular frequency,

A and s are the elastic Lame constants, and

p is the density of the material of the plate.

The components U and W of the particle displacement along the x and z axes,

2dt



respectively, may be represent in terms of D and T according to the equations:

as a'
Oz 8z8'

w= + Q. (4.3)

They also must satisfy the boundary conditions for free plate:

a,, (z=d)= 0, (4.4)

a,z (z =d)=0.

(4.5)

After solving wave equations (4.1) and satisfying boundary conditions for free

plate Victorov in Ref. [20] and Cremer and Heckl in Ref. [21] obtained the dispersion

relation for the phase speed of Lamb waves c and frequency w:

[tan, ~~1 -82d]•1 -s~2,/1 - 2/n2- s2tan d = d 48(4.6)
tan %/ny-s2j (1- 2s2)2 (4.6)

where

s2 = = with Ct = the transverse waves speed,
2wts

n = = with cz = the longitudinal waves speed,

d = ktd.

The equation (4.6) describes the dispersion curves for the two groups of waves

each of which satisfies the wave equation of motion and the boundary conditions, i.e.,

both can propagate in the plate independently of one other.

The first group of waves, which corresponds to the +1 case in the left side of (4.6)

describes waves in which the motion is symmetrical with respect to z =0 (i.e., the

displacement U has the same signs, the displacement W opposite signs in the upper

and lower halves of the plate).

The second group, which corresponds to -1 case, describes waves in which the

motion is antysymmetrical with respect to z =0 (i.e., the displacement U has opposite

_________ _ _ __ _____ ___ _



signs, the displacement W has the same sign in the upper and lower halves of the

plate).

The waves of the first group are called symmetrical Lamb waves, those of the

second group are called antisymmetrical.

4.1.2 Critical Frequencies

Consider the equation (4.6). The frequencies, which are roots of this equation for the

case when the Lamb wave speed c -- + oo (or according to (4.6) s -- + 0), are called

the critical frequencies for the plate with thickness 2d.

For c ---+ oo (s -+ 0) the right-hand side of the dispersion equation (4.6) is equal

to zero; thus, such critical frequencies correspond to zeros (for symmetric modes) and

poles (for antysymmetric modes) of tangent function in the numerator and satisfy the

following equation:

dj = 7r, (4.7)
2'

where

n is any integer number, n = 1, 2, 3...,

d, = ktd = 2fd, where f, is the critical frequency,

d = 2, where h is the plate thickness,

ct is the transverse wave speed for plate material.

After these simple calculations are evaluated the expression for critical frequencies

of the Lamb waves is
ctnfcr = , n = 1, 2, 3,... (4.8)

Note that n = 1, 3, 5... correspond to anti-symmetric modes, and n = 2,4,6...

correspond to symmetric modes.



4.1.3 Attenuation of Lamb Waves as a Function of Fre-

quency.

The presence of dispersion in the phase and group velocities of Lamb waves has an

important effect on the behavior of the attenuation factor for these waves. In regions

of strong phase velocity dispersion, the attenuation exhibits a rather steep dependence

on the frequency and thickness of the plate, i.e., on ktd.

For the calculation of the indicated dependences, Viktorov (in Ref.[20]) specifies

the attenuation of longitudinal and transverse waves in the solid medium as the

imaginary parts of the corresponding wave numbers:

k= k' +ik",
kt = k' + ik', (4.9)

k,a = k + ik"

Assume the attenuation of transverse and longitudinal waves is small: k' >> kf'

and kt >> ktl). The attenuation of all Lamb waves in this case is also small, except

in the vicinity of the critical points. The complex wave numbers for the longitudinal,

transverse, and n-th order symmetrical and antisymmetrical Lamb waves may be

rewritten in the different form:

k, ki(1 + ia),

kt = k'(l + ip), (4.10)

ksa = kn,,(1 + i-,Snta.),

where

a = 4'/lk,

f= --- ,1 /kn,L



are small real corrections, numerically equal to the attenuation factors, divided by

27r, for longitudinal, transverse, and Lamb waves per corresponding wavelength. To

evaluate the relationship between a, 0 and -y the next steps have to be done:

1. substitute the complex wave numbers into the characteristics equations (see

Ref. [20])

2. reject terms of order a 2, p2, 72 and higher,

3. separate the equations into their real and imaginary parts. (The real parts yield

equations determining the phase velocities of the Lamb waves, the imaginary

parts yield equations for the attenuation factors.)

From this routine Victorov obtains the following expressions:

7,s = As a + B,,69,

7a, = Aaa + Ba,3, (4.11)

where A,,, B,,, Aa and Ba, depend on d, s and n. I don't include here the expressions

and corresponding figures for these coefficients, they can be found in Ref. [20]. I would

like to make one important note for this research common property. As a rule, the

attenuation of Lamb waves is a maximum when the phase velocity dispersion is a

maximum. For example, in the critical regions, when the phase velocities and wave

lengths tend to infinity, the attenuation factors 7,1 ,a, also tend to infinity.

4.2 The dispersion equation solutions for the Arc-

tic Ice plate

The equation (4.6) is the dispersion equation for Lamb waves in an elastic plate.

Many authors have performed calculations of the phase and group velocities and

their dependence on the plate thickness and frequency ( dispersion curves ). One of

such solutions (Ref. [20]) for the dimensionless coordinates c/ct and ktd are shown in

Fig 4.2.
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In this section the numerical solutions of symmetric and antysymmetric modes for

ice sheet is considered. The goal of this theoretical anlysisis to explain some spectral

properties of the ice cracking data, which were noted in Chapter 3.

4.2.1 The method of solving

To compute the dispersion curves for the Arctic ice plate and view the phase velocity-

frequency plot the method of solving the dispersion equation (4.6) and the computer

program (MATLAB) were created.

The method includes the following assumptions and notes:

* Assume that the ice plate is in vacuum. The boundary conditions (1.4) holds.

* Assume that the phase velocities of longitudinal and transverse waves in the ice

are known and equal 3100 m/s and 1750 m/s respectively.

* The dispersion equation has two unknowns: the phase velocity of Lamb waves

c and frequency f.

* Right-hand side includes only one variable c

This allows us to do calculations as follows:

1. Chose the frequency band of interest

f = [fif2f3...fn]. (4.12)

2. Calculate the right-hand side

RS = - 2 (4.13)
(1 - 22)2 (4.13)

where

82 -= with Ct = the transverse waves speed,
2 2n = 1 with c, = the longitudinal waves speed,

9'



for all frequencies f:

RS = [RS(fR)RS(f 2)RS(f3 ) ...RS(f)].

3. Chose the array of phase velocity values:

c = [C1C2C3...Cm].

4. For each ci

* calculate left-hand side of the dispersion equation

LS [tan 2d 1]
tan d"tan •/n 2 - s2d

to get

LS(ci) = [LS(fl, cj)LS(f 2, c,)LS(f3 , ci)...LS(f,, ci)];

* find fj = f,,,e,t, for which

IRS(fj) - LS(fj, ci)

is small;

* (fresut, ci) is a point on one of the dispersion curve (or one of solution of

the dispersion equation);

5. Note that for the case of choosing arrays c and f such that the RS and LS are

real, it is better use another test:

(RS(fj) - LS(fj, ci))(RS(fj+l) - LS(fj+l, cs)) < 0 (4.19)

for the estimation of frequency-root of the equation for c = ci (See Fig. 4.3).

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)



6. In the most cases of cj there are more then one point for frequency f : fresulti fresult2, fresut3...,

where RS and LS have crossing. These cross points correspond to different

modes or, graphically speaking, dispersion curves.

4.2.2 The results of calculation: symmetric and antisym-

metric modes.

The calculations were provided for ct =3100 m/s and ct =1750 m/s.

There are two different cases of the dispersion equation for Lamb waves. The first

is
tan • d 42 - 2n 2

tan= (4.20)
tan V/n 2 - s24 (1 - 2s2) 2

This equation corresponds to the symmetrical Lamb waves. The numerical solution

is shown in Fig. 4.4.

The second is

tan V1T-sd 4s2 •'-s2n 2 f2_1
- = [- ] (4.21)tan /n 2 - S2d (1 - 2 2)2

This equation corresponds to the antisymmetrical Lamb waves. The numerical solu-

tion is shown in Fig. 4.5.

Note that the results of calculations consist well with the previous numerical

solutions. ( One of them, shown on Fig.4.1, is from Viktorov's book, and second may

be find on p.163 of Ref.[21] ). It allows to say that the program for equation solving

works.

4.2.3 Dispersion of phase and group speed in 100-1000 Hz

frequency segment

Consider the zeroth antysymmetric mode. It is the most important mode for the

cracking in-water detected event because the curve is in [1000 - 1600] m/s phase

velocity band for the frequency [100 - 1000] Hz. (See Fig. 4.6)
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Figure 4-3: Graphical demonstration of dispersion equation solving for antisymmetric
modes; the frequency f = 300Hz. Solid line is for the right side of the equation, and
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Solving of dispersion eq for h=2.4 m, sym modes
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Solving of dispersion eq for h=2.4 m, antisym modes
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Figure 4-5: The dispersion curves for antisymmetrical modes for ice plate with h = 2.4
m



Dispersion curve for zeroth antisymmetrical mode
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Figure 4-6: Phase and group speed like function of frequency for zeroth antysymmetric
mode with h = 2.4 m
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The group velocity curve is also calculated. These velocities may be determined

from the solutions for phase velocity in view of:

dW c c
dk = - = = (4.22)

cd& c d

Fig. 4.7 shows that the values of group velocity for zeroth antysymmetric mode

are 1300-1750 m/s. It means that these waves come to the point of the receiver in

the same time of the waterborne signal, so they contribute to the recording events.

The effect of Lamb waves dispersion in terms of phase and group velocities, as well as

arrival time at the hydrophone location is shown on Fig.4.7 and 4.8. It can explain

the effect of dispersion in the second part of the events. (See Fig. 3.8) Both the

supersonic and subsonic cases may be considered because the receiver is close to the

ice plate.

4.3 The attenuation of the Lamb waves in the ice

plate

It is noted above that the attenuation factors for the Lamb waves are dispersive.

They depend on d, s and n for each mode.

The attenuation of Lamb waves is a maximum when the phase velocity dispersion

is a maximum. Therefore, for analysis of attenuation of Lamb waves as a function of

frequency in the ice sheet, first, consider the dispersion curves for both symmetrical

and antisymmetrical modes which occurs in the [100...1000] Hz frequency band for 2.4

m ice thickness case. The numerical dispersion equation solution of this case is given in

Fig. 4.9. According to the picture there are four modes in this frequency band: zeroth

symmetrical, zeroth antysymmetrical, first symmetrical, and first antysymmetrical.

Like it is noted above in Section 4.1, theoretically, the attenuation factors y,,,,

tend to infinity in the critical regions. It means that we may expect the lower ampli-

tude of power spectral density of the signal in these critical regions.



Dispersion curve for zeroth antisymmetrical mode
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Figure 4-7: The dispersion effect for zeroth antysymmetrical mode for ice plate with

Figure 4-7: The dispersion effect for zeroth antysymmetrical mode for ice plate with
h = 2.4 m (phase and group speed)
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Dispersion curve for zeroth antisymmetrical mode
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Figure 4-8: The dispersion effect for zeroth antysymmetrical mode for ice plate with
h = 2.4 m (group speed and arriving time)
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Solving of dispersion eq for h=2.4 m,antisym and sym modes
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The critical frequencies according to (4.8) are

ctnr = , t = 1, 2,3, ... (4.23)

In the frequency band of interest there are two critical frequencies:

1750.1 1750.2
f = 2.4 364.5(Hz); f~ 2 - 2-2 = 730(Hz). (4.24)2*2.4 2.2.4

These considerations may explain the peak near approximatly 500 Hz in the ex-

perimental data for a cracking event. (See Fig.3.8)

In summary, I note that the values of the critical frequencies for the ice plate

correlate with ice thickness. (See Eq. (4.23)) If we assume that the transverse waves

speed is constant for the regions with different thickness, the peak frequency in the

second part of the signal increase with h becomes less. So both peaks (in the first and

the second part of the signal) go up along frequency axis when ice become thicker.



Chapter 5

Conclusions

The value of ice thickness can be estimated from the ambient noise under the ice

plate. For the approach described in the thesis one needs to record the pressure field

data with the following recommendations:

* The recorded data should include a time segment when significant cracking

occurs.

* One hydrophone is needed for each research area.

* The hydrophone should be placed approximately at a depth of 5 m under the

ice plate.

* The frequency range for the recording is 10 Hz to 10 kHz.

Data analyzing process includes the next steps. There are many events relatively

large compared with the average noise amplitude. For ice thickness estimation we

need the events which are from propagating cracks. ( The methods of sorting events

into two categories: "good" (from propagating cracks) and "bad" (all others) are not

established in the thesis. ) Geophone data or correlation test with previously recorded

propagating events ( see Chapter 3 ) may be used for the classification process.

* The first part of the event (Fig. 3.7) is the point of interest for the ice thickness

estimation.



* The relationship between the frequency in which the peak in the power spectrum

density occurs and ice thickness is based on the theory described in Chapter 2.

For the testing of this theory the experimental hydrophone data collected in the

Beaufort Sea during the spring of 1994 were used. The spectral analysis of the events

demonstrates the presence of the peak, fo - 1150 Hz, which correlates well with the

measured ice thickness h - 2.5 m at the site.

But one test is not enough. I recommend to develop more experiments with the

hydrophone data of under ice noise for areas of the Arctic ice with different thickness.

It would be possible after that to establish the relationship between fo and h. In

reality it may not be so simple as described by analytical model (see expression

(2.32)).

Another important result described in the thesis is that elastic waves, which prop-

agate in the ice, also contribute to the ambient noise events from propagating cracks.

For a given or estimated value of ice thickness the critical frequencies may be calcu-

lated. The attenuation of Lamb waves depends on frequency. In the critical regions

the attenuation factors T,,a, (for symmetric and antisymmetric modes) tend to infin-

ity theoretically, so they should have maximum peaks for real data. Therefore we can

expect maximum peak in the power spectral density function in the region between

the critical frequencies, which was observed in Beaufort Sea data.
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