
A MOTION VISION SYSTEM
FOR A

MARTIAN MICRO-ROVER
by

Stephen William Lynn

Submitted to the

DEPARTMENT OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

in partial fulfillment of the requirements

for the degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 1994

© Stephen William Lynn, 1994

Signature of

ENG

" et" 6
TIBRs ETITU

LIBRARIES

Author
Department of Electrical Engine -ing and Compler Science

January 14, 1994

Certified by

Certified by

Accepted by

W. Eric L. Grimson
Thesis Supervisor

Da •S. Kang
Project Supervisor

."' F Morgenthaler
Chair, Department Com ittee on G uate Students

A MOTION VISION SYSTEM
FOR A

MARTIAN MICRO-ROVER
by

Stephen William Lynn

Submitted to the Department of Electrical Engineering and Computer
Science on January 14, 1994 in partial fulfillment of the requirements for
the Degree of Master of Science in Electrical Engineering.

Abstract

This thesis describes a monocular, motion vision system that was
designed to meet the size, power, and processing constraints of a small,
robotic, planetary explorer. The computational requirements of the
brightness gradient approach, which is commonly used in motion vision
systems, were found to be too great for the Micro-Rover. Instead, a
pattern matching approach was proposed because most of the
computations can be done in real-time in hardware, leaving significantly
less computations for a microprocessor.

The results of processing a pair of images using pattern matching is an
optical flow pattern, which is also a good representation of the motion
field. As with most optical flow patterns, there are some incorrect flow
vectors in the optical flow patterns generated from pattern matching.
Various methods of weighting the flow vectors to enhance the correct
vectors and attenuate the incorrect vectors were explored, and a suitable
weight was found.

The results show that this vision system can assist the Micro-Rover in
both navigation and hazard avoidance. The motion estimates, obtained
from a Least-Squares fit of the optical flow pattern to the motion field,
were within 10% of the actual values. Additionally, obstacle maps, which
show the locations of potential hazards on the ground plane, were
generated from a sequence of images.

Thesis Advisor: W. Eric L. Grimson
Professor of Electrical Engineering

Project Advisor: David S. Kang
Member of Technical Staff at Draper Laboratory

Assignment of Copyright to Draper Laboratory

This thesis was supported by The Charles Stark Draper Laboratory, Inc.
through the Lunar/Mars Micro-Rover Project. Publication of this thesis
does not constitute approval by The Charles Stark Draper Laboratory,
Inc. of the findings or conclusions contained herein. It is published for
the exchange and stimulation of ideas.

I hereby assign my copyright of this thesis to
Laboratory, Inc., Cambridge, Massachusetts.

The Charles Stark Draper

Stephen W. Lynn

Permission is hereby granted by The Charles Stark Draper Laboratory,
Inc. to the Massachusetts Institute of Technology to reproduce part
and/or all of this thesis.

Acknowledgments

I would like to thank all the students that made this Micro-Rover project
possible and wish them success in their studies here at M.I.T. and in
their future careers. The names on the PROBE Lab Honor Roll are Sean
Adam, Shane Farritor, Stefan Feldgoise, Matt Fredette, John Gilbert, Bill
Kaliardos, Rob Kim, Brenda Kraft, Giang Lam, Kent Lietzau, Anthony
Lorusso, Eric Malafeew, and Kimball Thurston. I would also like to
thank Ashok Patel and Richard Regueiro for the anti-rover humor they
brought to our office. Dave Kang is the leader of this infamous pack of
hoodlums and deserves many thanks for opening the doors of Draper to
me and allowing me to explore the world of robot vision.

I would like to thank two professors who helped me through this project -
Berthold Horn and Eric Grimson. Professor Horn taught the Robot
Vision class and worked with me in the initial stages of this project.
Professor Grimson took over after Professor Horn left for sabbatical and
offered good, to-the-point advice to help me put the project in
perspective.

I would like to thank the Charles Stark Draper Laboratory, the National
Science Foundation, and the Department of Electrical Engineering and
Computer Science for their generous financial support of my studies.

I would like to thank all the friends that kept me from going crazy during
my time at M.I.T. and while I was working on this thesis. I don't have
enough room to mention all of them, but there are a few that I must
mention. Augustine Fou, an all-around classy guy, was always there to
assist me in my duties as THRA President and to prod me for not being
civilized. Carlos Cabrera, a good friend, put up with all the shit I gave
him and then still went out and partied with me (after I twisted his arm).
Michelle Hoo Fatt erased Friday nights from her calendar so that we
could go dancing at the Cask. My good friend back in Philly, Clyde
Torrence, kept me up to date on what was going on back home (mostly
about his cars) and was ready to party when I came back to town. Rich
Orsini sometimes partied with us (although never at Pin-Ups, Gail), so
that both of us could bust on Clyde. Ubaid Aktar was always ready to
talk about the good old days back at Central High or to beat me in
tennis.

I would like to thank my brother for calling me so many times during my
3 years at M.I.T., even when I neglected to call him. And, when I went
back home, Ken was always ready to go to Fizz or to get his ass kicked in
golf. It's too bad that he has to suffer another year in Happy Valley!

I would like to thank my parents for all the support they have given me
during my 3 years at M.I.T. Being fortunate enough to have parents as
wonderful as they are can only be a blessing from God!

Biographv

Stephen William Lynn was born on April 2, 1969, in Abington, PA, just
outside of Philadelphia. He grew up in Philadelphia and attended the
James Russell Lowell Elementary School and the Julia R. Masterman
Junior High School before attending Central High School. He earned a
Bachelor of Arts Degree in 1987 at Central, which is the 2nd oldest public
high school in the nation, and graduated as valedictorian of the 246th
graduating class. Also at Central, he played doubles on the varsity
tennis team that won the Philadelphia Public League Championship in
1987.

At the University of Pennsylvania, Stephen was enrolled in the
Management and Technology Program, which he entered at the end of his
sophomore year. In this program, he simultaneously pursued degrees in
engineering and business. His majors were Electrical Engineering and
Finance. In 1991, Stephen earned a Bachelor of Science in Engineering
from the Moore School and a Bachelor of Science in Economics from the
Wharton School. At graduation, he was awarded the A. Atwater Kent
Prize for the most promising Electrical Engineer and the Delta Sigma Pi
Scholarship Key in business. Stephen is a member of Tau Beta Pi, Eta
Kappa Nu, and Beta Gamma Sigma honor societies.

For the past 2-1/2 years, Stephen has been pursuing an elusive Master's
degree in Electrical Engineering at M.I.T. He has been working on the
Micro-Rover project at the Charles Stark Draper Laboratory for 1-1/2
years. Stephen has been involved with the Tang Hall Residents'
Association for the past 2 years as Common Rooms Officer and then
President. He has also been involved with Project Awareness, a crime
prevention group that works with Campus Police.

When he is not studying or working on his thesis, Stephen enjoys tennis,
golf, bicycling, mangling his guitar, listening to music, reading books,
and staying abreast of current events and business trends.

10

Dedication

This thesis is dedicated to the memory of my grandparents who have
given me so much.

Ida D. Lynn
Joseph M. Lynn

Emil Ziegele
Maria Ziegele

Table of Contents

Chapters Page

1 Introduction to Micro-Rovers 15
2 Introduction to Vision Systems 23
3 Testing the Pattern Matching 55
4 Motion Estimation 97

5 Obstacle Recognition 125
6 Conclusion 143

Appendices

A The Code That Performs the Matchings 151
B The Code That Calculates Motion 167

C The Code That Generates Obstacle Maps 187

D Maximum Rotation Between Images 195
E Binocular Stereo Using Pattern Matching 199

References 201

13

Introduction to Micro-Rovers

Micro-Rovers are small robotic explorers that will someday traverse the
terrain of Mars. They are semi-autonomous, meaning that they will
receive a destination from mission control here on earth and use their
own abilities to reach that location safely. The scientific data and
pictures that they send back will allow us to learn more about the
environment of Mars.

A group of Massachusetts Institute of Technology students working at
Draper Laboratory in Cambridge, Massachusetts is building several
Micro-Rover prototypes. They are part of the PROBE lab, which stands
for Planetary ROver Baseline Experiment. The team is comprised of both
graduate and undergraduate students. The aim of the PROBE lab is not
to develop a fully functional Micro-Rover for a future mission to Mars,
but to make significant developments that can be incorporated on the
actual mission rover.

The Micro-Rovers are smaller in size than previous planetary rovers. The
Micro-Rovers measure about two-thirds of a meter long, a third of a
meter wide, and a quarter of a meter high. A Micro-Rover weighs about
10 kilograms. Figure 1.1 shows one of the Micro-Rovers built at Draper
Laboratory.

The mechanical structure of the Micro-Rovers consists of 3 platforms
interconnected by spring steel. Each of the 3 platforms supports some of
the electronic circuitry that runs the rover. The platforms are connected
by two pieces of spring steel, which allow maximum flexibility while still
maintaining structural integrity. Two wheels are mounted on each of the
platforms.

The Micro-Rover is driven by small, DC motors located inside each of the
6 wheels. Placing a motor in each wheel allows maximum drive power
because all the wheels help to move the vehicle. The DC motors are
geared down to provide more hill-climbing torque and to reduce the no-
load speed to a reasonable value for a small vehicle such as a Micro-

Chapter 1

Rover. The speed of each motor is independently controlled so that when
the Micro-Rover is navigating a turn, the outer wheels can move faster
than the inner wheels.

Inclinometers
Su

CameraN,

n Se

/
nsor

Gyro

Solar Panel
,

Laser Rang

Figure 1.1 Picture of Mity2 Micro-Rover

The Micro-Rover is controlled by a main computer that executes the
control code. The main computer collects the sensor data and steers the
Micro-Rover toward its destination while avoiding obstacles reported by
the sensors. The control computer functions semi-autonomously;
mission control sends a destination to the control computer, which then
acts independently to achieve that goal.

Sensors are integrated into the Micro-Rover to provide various
information to the control computer. A laser ranging system is mounted
on the front of the vehicle to provide distances to obstacles.
Inclinometers are mounted on the center platform to provide pitch and
roll data. A sun sensor is also mounted on the center platform to provide
heading information to the control computer. In addition, a gyro is
mounted on the center platform to integrate the turning of the Micro-

16

I

Rover and also provide heading information. Various low-level bump
sensors are mounted on the Micro-Rover to provide high-priority obstacle
information.

The laser ranging system illuminates objects in front of the Micro-Rover
and detects the reflection of the laser beam to triangulate a distance to
the object. A laser diode radiates a collimated beam of light that strikes
objects in front of the Micro-Rover. The light is scattered in all directions
and is picked up by a position sensitive detector (PSD) after passing
through an optical filter and a lens. The PSD is a resistive network from
which the location of the incident laser light can be calculated via the
output currents. The position of the incident light and the focal length of
the lens are used to calculate an angle to the object. This angle and the
distance from the PSD to the laser diode are used to obtain the distance
to the object.

The sun sensor detects the position of the sun in the sky and uses this
position to indicate the heading of the Micro-Rover. A fish-eye lens is
used to capture the sky with a 1800 field of view. The sun is then
focused on a PSD, and the (x,y) currents are used to find the angle to the
sun relative to the Micro-Rover. Since the sun moves very slowly, its
position can be used as an indicator of heading as long as periodic
corrections are made for its motion.

A gyro is used as another indicator of heading which becomes useful
when the sky is cloudy. The gyro spins and detects rotation of the Micro-
Rover. The signal relating to the turning is a voltage, which is integrated
to obtain heading information. Gyros typically have some drift which
causes the error in the integrated heading information to grow over time.

A drag wheel is used to measure the distance traveled by the Micro-
Rover. An optical detector/emitter pair passes light through little holes
in a disk attached to the drag wheel and signals when light is detected.
The on/off signaling is counted and converted from rotation of the drag
wheel to distance traveled by the Micro-Rover.

A battery pack supplies power to the Micro-Rover to run the processors
and the sensors, as well as the drive motors. The battery pack would
contain enough energy to power the Micro-Rover throughout the day.
Secondary batteries are being considered as the power source to allow for
practically indefinite mission durations when combined with solar arrays
for recharging.

Solar arrays integrated into the Micro-Rover's housing will recharge the
battery pack throughout the day. Primary batteries, which contain a
finite amount of energy and cannot be recharged, were thought to be too
limiting. The utility of a Micro-Rover lies in its versatility and flexibility,
so secondary batteries recharged through solar arrays were accepted as
the preferred method of powering the Micro-Rover. The solar arrays will
replenish the energy removed from the battery pack throughout the day,
thus extending the mission duration indefinitely.

A Vision System as a Sensor

The aim of this project is to develop a motion vision system that can be
used as a sensor and implemented on the Micro-Rover. It is desired to
use the camera that we already have on-board the Micro-Rover to
estimate its motion and recognize obstacles. The motion estimates could
be used in the dead-reckoning navigation system, and the obstacles
flagged by the vision system could be fused with hazard information from
other sensors.

A dead-reckoning navigation system integrates periodic, incremental
motions to track the position of the vehicle. This is opposed to a fixed-
beacon navigation system, where the position of the vehicle is estimated
relative to a fixed, external source. A vision system can provide periodic
updates to the dead-reckoning system by estimating the translation and
rotation of the Micro-Rover between images.

The translation and rotation estimates provided by a motion vision
system will allow it to replace the sun sensor, gyro, inclinometers, and
drag wheel. The sun sensor, gyro, and inclinometers provide pitch, roll,

18

and yaw information which can be obtained from the vision system by
summing the rotation estimations. The drag wheel only provides the
absolute distance moved by the Micro-Rover, but the motion vision
system can provide not only the distance, but also the translation vector.

The hazard avoidance system can use the information contained in an
obstacle map generated by a motion vision system. An obstacle map
indicates the locations of obstacles on a 2-dimensional map of the
ground plane. This map can be used in conjunction with other sensors
to allow the Micro-Rover to plan a path around potential hazards.

The only requirement for a motion vision system is some measurement of
the environment to eliminate the scale factor ambiguity problem. Since a
camera can only measure the angle to an object and not the longitudinal
and lateral distances, it is impossible to differentiate one motion from a
motion of twice the magnitude in a world twice as large. Therefore, some
measure needs to be taken - either the absolute translation of the Micro-
Rover, obtained from the drag wheel, or the depth to a scene point,
obtained from the laser ranging system. The latter is preferred since the
laser ranging system is integral to the Micro-Rover while the drag wheel
is expendable.

The requirements of the motion vision system are that it produce motion
estimates that are reasonably accurate and obstacle maps that can be
used to avoid hazards. The proposed Micro-Rover mission, as outlined
by the Jet Propulsion Laboratory in Pasadena, CA, requires a
navigational accuracy of 10%, i.e. the error in its position should be at
most 10% of the distance traveled. Using the obstacle maps to avoid
hazards require that almost all hazards are recognized and very few false
alarms are generated.

Thesis Outline

Chapter 2 examines a common method of implementing a motion vision
system, for which the computational requirements are too high, and
proposes an alternate method, which relies upon hardware to do most of

19

the processing and, as a result, requires significantly less computations.
The first method uses the brightness constraint equation and requires
taking brightness derivatives at each pixel in the image. The
computational requirements of this method, however, prohibit its use on
a small, low-power vehicle, such as the Micro-Rover. An alternate
method which relies upon matching patterns between successive images
is proposed. The matches between successive images produce an optical
flow pattern. The optical flow is assumed to represent the motion field,
and the Least-Squares equations to estimate the motion from the motion
field are derived.

In Chapter 3, various pairs of successive images are tested to determine
if pattern matching can produce reasonable optical flows. The results
show that the optical flow patterns are pretty good, but there are some
incorrect flow vectors. Several weighting schemes to enhance correct
flow vectors and eliminate incorrect flow vectors are examined and one is
selected as the best weighting scheme.

The Least-Squares equations for the motion of the Micro-Rover are
examined in Chapter 4. They are tested on both a planar and a
contoured scene. It is found that the narrow field of view of the camera
makes it impossible to distinguish between lateral rotation and rotation.
The 6 degree of freedom model for the motion is scrapped in favor of a 4
degree of freedom model that eliminates the lateral motions. The Least-
Squares equations for the 4 degree of freedom model are tested, and the
correct motions are found. Finally, a sensitivity analysis is performed on
the motion estimates from a sequence of images.

Chapter 5 analyzes the use of the depth maps, which are a by-product of
the motion estimation, as an aid in hazard avoidance. The scene points
represented by the depth values are translated onto a ground plane to
mark the locations of obstacles. These points are represented as regions
on the ground plane because there is some uncertainty as to their actual
locations. Obstacle maps from a sequence of images are then fused
together to enhance obstacles and eliminate noise.

20

Finally, Chapter 6 concludes this thesis by presenting the benefits and
short-comings of the pattern matching approach to motion vision. The
use of such a system on a Micro-Rover to estimate motion and avoid
obstacles is analyzed. Weakness that need to be examined and
improvements that need to be made are discussed.

21

22

Chapter 2 Introduction to Vision Systems

This chapter introduces the reader to vision systems and various
components that make up a vision system. The mathematical structure
of the environment and the image plane is introduced, and a convenient
coordinate system for transformation between world and image
coordinates is presented. The motion field produced by a relative motion
between the scene and the camera is discussed. Optical flow, which is
movement of the brightness values in an image, is presented. The CCD
camera, which is common to most vision systems, is discussed. The
common method of implementing a motion vision system, using the
brightness constraint equation, is discussed, and its computational
requirements are analyzed. An alternate method, using a constant
pattern equation, is presented, and the relevant Least-Squares motion
equations are derived.

Imaging the Environment

The first task in implementing a vision system is to image the
environment. The scene, or environment, consists of various objects in a
three-dimensional space. For the Micro-Rover, the scene will consist of
the surface of Mars and various rocks and craters.

The three-dimensional environment is imaged onto a two-dimensional
image plane through a point called the center of projection. The center of
projection is like the aperture in a pinhole camera. Light rays from
various scene points pass through the center of projection and irradiate
the image plane, forming an image as shown in Figure 2.1.

There are various components that describe the image plane as shown in
Figure 2.2. The optical axis is perpendicular to the image plane and
passes through the center of projection. The intersection of the optical
axis with the image plane is the principal point. The distance from the
center of projection to the principal point is the principal distance.

23

Image of Object

Object in Scene

Figure 2.1 Object in Scene and Image of Object

Principal Distance

Center of Projection% -

incipal Point

Optical Axis Image Plane

Figure 2.2 Parameters Describing the Image Plane

The image plane and the scene being imaged are on opposite sides of the
center of projection, however the image plane can be reflected through
the center of projection to define its coordinate system. The scene point,
P, the image point, p, and the center of projection lie on a line. This

24

coordinate system allows easy transformation between world and image
coordinates since they are proportional. Figure 2.3 shows the two
coordinate systems.

.::::: · ·

X··. · "

............
.....·

....
... ... ;. .

.....................

X....::.....

Center of Projection

x

Image Plane

Figure 2.3 World and Image Coordinate Systems

Relative Motion Between the Camera and the Scene

The image will change when the position of the camera changes relative
to the scene. This occurs when either objects in the scene move or the
camera moves. A change in relative position causes the object's world
coordinates as defined in Figure 2.3 to change. The light rays from the
object pass through the center of projection at a different angle and
produce an image of the object at a different location on the image plane.

Relative motion can be described by a two-dimensional motion field in
the image plane. The scene is assumed to be static, i.e. there are no
moving objects in the scene. It does not matter whether the camera
moves or the scene moves; only relative motion is relevant.

25

P

Z

...........

.
.............

...................
.........

... ·:: I....;.;......... l"

f

I -- - '

ZI

~i~iijiii:ii:i:

::i:·.;I.is:iiiii I II~iSi.i1II~i~iii~$i:::::~:~:~:iii:iii:::iB::::::iii:i:·ii
ii'' ii:ii D::.:·.·:t::·i i i'''~i:iT j i

:i:::·

i:

The translation and rotation of the camera will change the world
coordinate system since it is defined by the center of projection and
optical axis of the camera. The center of projection is the origin of the
world coordinate system, and the Z-axis is parallel to the optical axis.
Translation of the camera causes translation of the origin, and rotation of
the camera causes rotation of the axes. The translation vector and the
directions of rotation about the axes are shown in Figure 2.4.

Y

C
A

Figure 2.4 Directions of Rotation about the Axes

Translation is described by a vector, t = [U V

component representing a motion along an axis.
coordinates of each scene point are obtained by
translation vector from the old world coordinates.

W]T, with each

The new world

subtracting the

Rotation is also described by a vector, p = [AB C]T, representing

rotation about each axis. The components of the rotation vector can be

placed into a 3 x 3 matrix which multiplies the old world coordinates.

The new world coordinates are related to the old world coordinates
through the following equation:

26

X' X U X U
SCBA Y - V = P V

Z' Z W Z W
where the 3 matrices contain the rotation angles:

1 0 0o
A= 0 cosA sinA

O -sinA cosA

cosB 0 -sinB
B= 0 1 0

[sinB 0 cosB

cosC sinC O
C =-sinC cosC 0

0 0 1

The order of rotation is very important in backing out the rotation angles
because the determinant of the P matrix is zero. Only 2 of the 3 rows in
the P matrix are independent. The first 2 rows determine the new x and
y coordinates. However, the z coordinate is not determined by the third
row, but from the distance of the point from the origin. The distance
does not change through a rotation, only the individual coordinates
change. In this case the point is rotated about the x-axis, y-axis, and z-
axis, in that order.

The P matrix obtained by multiplying the C, B, and A matrices is:

sinAsinBcosC + cosAsinC -cosAsinBcosC + sinAsinCi
-sinAsinBsinC + cosAcosC cosAsinBsinC + sinAcosC

-sinAcosB cosAcosB

We want a rotation matrix that involves the rotation angles in linear
functions so that we can solve a set of linear equations for the rotation
angles. The sine and cosine functions are non-linear and require
iterative methods to solve for the rotation angles. Linearizing the matrix
would make solving for the rotation angles trivial. Since the rotation

27

P =

angles are expected to be very small, second-order terms in the Taylor
series expansion of the matrix about the rotation angles, A=O, B=O, and
C=O, are insignificant. So, our linear approximation is a good
approximation.

The Taylor series expansion neglecting the higher-order terms is:

P=I+ A+- B+ C
aAp aB p aC p

The partial derivatives of the P matrix are:

0 cosAsinBcosC - sinAsinC sinAsinBcosC + cosAsinC
= 0 -cosAsinBsinC - sinAcosC -sinAsinBsinC + cosAcosC

0 -cosAcosB -sinAcosB

-sinBcosC sinAcosBcosC -cosAcosBcosC
S= sinBsinC -sinAcosBsinC -cosAcosBsinC

B cosB sinAsinB -cosAsinB

-cosBsinC -sinAsinBsinC + cosAcosC cosAsinBsinC + sinAcosC
- = -cosBcosC -sinAsinBcosC - cosAsinC cosAsinBcosC - sinAsinC
S 0 0 0

The partial derivatives evaluated at Po = (A=0, B=0, C=0) are:

o 0 -1 0

00 -1

BPI 0 0 0o
p : 10 0

0 10

o 0 OO

28

The Taylor series expansion becomes:

0 0 0 0 0 -B 0 C 0
P=I+0 0 A+00 0 + -C0

0 -AO B 0 0 0 0

Now that the point has been rotated and translated, we want to map it
back into the image plane. The x and y coordinates in the image plane
are obtained by simply dividing the X and Y world coordinates by the Z
coordinate. Note that the principal distance has been normalized to 1.
To obtain the actual x and y coordinates given the principal distance of
the camera, the (x, y, 1) point in the image plane is simply scaled by the
principal distance.

The x and y coordinates are:

Xx=-
Z

Y
y=zZ

The motion field is made up of the motion of points in the image plane as
the camera is translated and rotated. The components of the motion
vector for a point in the image plane are:

X xz
U = x =

Z Z2

Y Yz
v= y = Z Z2

The dotted world coordinates, X, Y, Z, can represent changes in the
world coordinates as a function of time or images. The rotation and
translation vectors can be rotational and translational velocities.
Alternatively, the rotation and translation vectors can be the translation
and rotation of the camera between images. The natural unit of
measurement for most vision systems is "images" since processing is

29

done using images. Note that the conversion between units is easy since
the time between images can be easily obtained.

The dotted world coordinates can be obtained from:L X' Xl
Y= I Y

Z Z' ZI
= (P- I)Y -

Z W

Using the Taylor series expansion, the dotted world coordinates are:

X = CY - BZ - U

Y = AZ - CX - V

S= BX - AY - W

Plugging in to find the motion vector yields:

CY - BZ - U
Z

AZ- CX- V
Z

X(BX - AY - W)
Z2

Y(BX - AY - W)
Z2

which simplifies to:

u = x + xyA- (x 2 + 1B + yC

_ -yW-V
V = VZ + y2 + 1A - xyB -xC

These equations were introduced by Longuet-Higgins and Prazdney [13],
although they did not discuss the linearization. The derivation of the
linearized equations was presented here so it was clear from where they
came. Additionally, the original equations could be used with a non-
linear iterative method if the rotation between images were not small.

30

Optical Flow

Relative motion between the camera and the scene can also be described
by an optical flow, which represents how the image is changing through
successive images. An object that moves relative to the camera causes
its image to also move in the image plane. The movement of the image
can be described by a flow in some direction. One motion field, however,
can produce many optical flows or no optical flow. See Robot Vision by
Horn [10] for more information on optical flow.

The assumption in this thesis is that the optical flow equals the motion
field. In most cases, this assumption is valid. Only in special cases does
this assumption break down. For example, when a perfectly reflecting
sphere rotates, there is no optical flow, but there is definitely a motion
field (It is rotating!). A sample optical flow is shown in Figure 2.5. For
the purposes of this thesis, one arrow in the optical flow will be called a
flow vector. This terminology is not standard.

Figure 2.5 Sample Optical Flow

* u . . * & a U N a P P

U IU • I I I 9 - -- -- U --
0 W W a

0 W I4 'W 0 a0 r

Il...· · · rr10

r·~.····r1r M

CCD Cameras for Imaging the Environment

The common imaging device used in machine vision systems is a CCD
camera. A lens focuses the incoming light rays on a silicon array of
photocells. Photons create free electrons that are captured and
measured to determine the brightness at each pixel element.

A lens is used to capture more light emanating from a scene point and
focus this light on a single point in the image plane. When parallel rays
traveling along the optical axis of a lens pass through the lens, they are
focused at a single point. The distance from the lens to this point is the
lens' focal length. When light rays emanate from a point source and
strike the lens, they are focused at a point which lies on the line formed
by the point source and the center of projection of the lens. The center of
projection is the optical center of the lens. In comparison with a pin-hole
system, a lensing system captures more light from each point source and
reduces the required sensitivity of the image plane.

Focal Point Center of
I

(a)

Figure 2.6 Function of a Lens. (a) Light rays traveling parallel to the optical axis are
focused at the focal point. (b) Light rays coming from some point in the scene are
focused at a point on the line formed by the scene point and the center of projection of
the lens.

A CCD camera must perform 4 basic steps to generate an image. In the
first step, free electrons are generated via the photoelectric effect when
incoming light strikes the silicon. After a sufficient amount of exposure
time, the electrons must be collected at the nearest gate, or pixel. The

number of electrons collected will be a linear function of the light

irradiating the area near the gate. In the third step, a row of pixels is

32

transferred to output registers from where the pixels will be output
sequentially. The last step involves detecting the amount of charge
stored for a particular pixel and generating an output voltage. Figure 2.7
shows how each row is selected and transferred to the output registers
from where each pixel is read and amplified.

Row Select

IP-

Video Output
3-

Pixels

Figure 2.7 Sequential Output of CCD Array.
transferred to output registers from where
sequentially.

Each row of pixels is selected and
the pixels are read and amplified

Video Output Formats

There are three common video output formats. The standard format that
is compatible with televisions and monitors is the RS-170, or NTSC
format, which contains lines of video information separated by sync
pulses. A slightly decoded version is the DC-restored video format, in
which the sync pulses are separated from the video data. The format
that is easiest to directly store in memory is the digital output format,
which contains the digitized brightness, or pixel, value.

The RS-170 format is commonly used because it can be directly
connected to most televisions and monitors. This format contains 30
images per second. Each image, or frame, is divided into 2 fields - one

33

111111111111111 ~

field contains the odd lines, and the other field contains the even lines.
There is a field sync pulse that signals the beginning of a field. Each
field has a distinct field sync pulse. Each line begins with a line sync
pulse, which is followed by the video data encoded as an analog signal.
The brightness values are offset with a negative DC value, so that the
maximum positive and negative excursions are the same.

Recovering the pixels is very difficult because the sampling rate and
timing must be chosen correctly. First, the DC level must be restored so
that the minimum brightness value is zero. Then, a sampling rate has to
be chosen, and the analog video signal has to be sampled. Even if the
sampling rate is the same as that used by the camera in encoding the
pixels, it is improbable that the timing is correct. Therefore, the pixel
values sampled will be some intermediate values between two pixels.

The DC restored format only requires an analog-to-digital converter to
produce digital pixels that can be stored in memory. The analog video
data is separated from the frame and line sync pulses, and the DC level
has been restored so that the minimum brightness value is zero. The
rising edge of the pixel clock signals that a pixel should be sampled from
the analog video signal.

The digital output format contains the digitized pixels and a pixel clock.
The video output can be directly connected to a memory chip. Frame
and line sync pulses define the beginning of a frame or line. The pixel
clock signals when a pixel can be loaded into memory. Figure 2.8 shows
the 3 common output formats.

34

(b)

signal. (c) Digital output.

Grabbing Images from a CCD CameraJlFLYiru-j-u--Lru,-LrFigure 2.8 Video Output Formats. (a) Standard video format. (b) DC-restored videosignal. (c) Digital output.Grabbing Images from a CCD Camera

Implementing a motion vision system involves capturing images from the
output of a COD camera. If the output of the camera is in the digital
format, all that is involved is some logic circuitry, such as counters, that
will address the pixels. The output of the camera is connected to the
data lines of the memory chip, and the pixel clock is connected to the
write enable pin of the memory chip and the count pin of the counter. If
the DC-restored format is used, an analog-to-digital converter is required
between the camera and the data lines of the memory chip. A specialized
chip, or frame grabbing board, is required for the RS-170, or NTSC,
format since the sync pulses are embedded in the video signal and must
be separated. When the images are stored in memory, they are ready to
be processed by the vision system. Following will be a discussion of a
common method of implementing a motion vision system.

35

A Popular Method - Constant Brightness Assumption

A popular way of determining camera motion between two successive
images is to relate the camera motion to brightness derivatives in the
image. The six parameters describing the translation and rotation of the
camera can be related to the motion field. Similarly, the brightness
derivatives in the image can be related to the motion field. Eliminating
the motion field gives equations involving only the motion parameters, for
which we want to solve, and the brightness derivatives, which we can
compute from the images.

The motion parameters can be related to the motion field through the
Longuet-Higgins and Prazdny equations. These equations describe the
motion field in terms of the translation and rotation vectors. The
translation vector t = [U V W]T and the rotation vector p = [A B C]T

are related to a two-dimensional motion field in the image plane by:

-U + xW + Axy - B(x 2 + 1) + Cy
Z

v + yW - Bxy + A(y 2 + 1) - Cx
Z

The variables u and v are the x and y components of the motion field.

The brightness constraint equation introduced by Horn and Schunck [8]
relates brightness derivatives in the image to optical flow. They assume
that the scene points are Lambertian reflectors that radiate light equally
in all directions. Thus, any scene point appears equally bright from any
viewing angle. As the camera moves, the image of the scene point will
move, but its brightness remains unchanged.

Another assumption that is considered very minor, but in some cases
may not be, is that objects do not become hidden by other objects as the
camera moves. This assumption cannot be completely satisfied because
some scene points will become obstructed. However, if the images are
grabbed at a sufficient rate, the number of obstructed points will be
small.

36

The brightness constraint equation is obtained by differentiating
brightness with respect to time and setting the derivative equal to zero.
The constant brightness assumption states that the brightness, E, of a
scene point does not change, therefore the time derivative is zero.
Brightness is a function of not only time, but also the x and y
coordinates in the image plane, so partial derivatives are involved. The
brightness constraint equation is:

dE _E dx aE dy aEdE E dx+ + - Exu + Eyv + E t = 0
dt dx dt oy dt at

The variables u and v are the components of optical flow. The partial
derivatives are the brightness derivatives in the image.

To relate the motion parameters to the brightness derivatives, it is
necessary to assume that the optical flow in the brightness constraint
equation represents the motion field. This assumption is valid for most
cases. Only for unusual scenes is this assumption invalid.

The motion field can be eliminated by plugging the Longuet-Higgins and
Prazdny equations into the brightness constraint equation. Horn and
Weldon [9] showed that the motion parameters are related to the
brightness derivatives by:

s't + v-p + Et = O0
Z

where s and v are given by:

s = [-E -Ey xEx+yEy]T

v = Ey+(xEx+yEy) -Ex-x(xEx+yEy) yEx-xE]T

This equation will be called the brightness derivative motion equation
(BDME) in this thesis.

37

Too Many Unknowns

The BDME contains many unknowns. The six parameters describing the
translation and rotation of the camera are what we want. However, the
scene depth value, Z, at each point in the image plane is also unknown.
For a 256 x 256 pixel image, there are 256 times 256 plus 6, or 65,542
unknowns.

There are more unknowns than equations, so there are many solutions
for the motion of the camera. The BDME is valid at each point in the
image. Choosing an arbitrary camera motion allows the solution of the
scene depth, Z, for each point in the image.

A method to arrive at the correct camera motion and scene depth was
introduced by Heel [7]. It involves initially assuming a constant depth
over the entire scene and iterating through the motion parameters and
depth values until the motion parameters converge. A constant depth
allows an average motion to be computed. Adjusting the depth values
will move them in the correct direction, either nearer to or farther from
the camera. A new calculation of the motion parameters will yield a
better estimate, from which the depth values can be adjusted.
Eventually, the motion parameters will settle and converge to a solution.
Heel has shown convergence within ten iterations.

The iterations can be performed over a pair of images or a sequence of
images. Using a pair of images will allow one to estimate the camera
motion between 2 images. Using a sequence of images, one can estimate
some average motion over the sequence.

When using a pair of images, some post-filtering will be necessary since
noise can be expected in the motion estimates. The filter would average
say the last 5 motion estimates to produce the current motion estimate
that would be used by the control computer. Using a sequence of images
incorporates the filtering operation within the motion estimation process
at the expense of larger convergence times.

38

When iterating over a sequence of images, the current depth map must
be "warped" by the current motion estimate before being used to estimate
the motion in the next stage of the iteration. This introduces more
calculations in the motion estimation process. Heel [7] proposed an
interesting way of "warping" the current depth map. However, in the
opinion of the author, the filtering could be delayed to post-processing,
where the calculations would be simpler and less intensive than warping
the depth map.

Assuming a constant scene depth removes the dependence of the motion
estimate on the scene. Although some constant value is assumed, the
scale factor ambiguity problem makes this constant irrelevant. Thus, the
first estimate of the motion is independent of the scene.

Estimating Motion Using Assumed or Known Depth Values

Assuming some estimate of the scene depth at each point in the image
allows the motion of the camera to be solved via a Least Squares
minimization. The brightness constraint equation will not be exactly
satisfied at each pixel because we are using estimates of the scene depth.
Thus, each BDME will not equal zero, but some small error:

s-tSt+ v-p + Et =E
Z

One way of determining the motion that best fits the data is by squaring
the errors, which is equivalent to squaring the BDME's, and minimizing
their sum:

SSE = t + v.p + Et 2
xy

Differentiating with respect to the translation and rotation vectors yields
a set of six linear, independent equations, three for translation and three
for rotation:

39

xy xy xy

CIVST T t + (:WTJP T -YXEtV

Estimating Depth from Known Motion Values

The depth can be estimated at each pixel by squaring the BDME and
differentiating it with respect to the depth, Z. The process minimizes the
squared error in the BDME. Noise can be removed from the depth
estimates by grouping neighboring pixels together and estimating a depth
that minimizes the sum of squared errors. The depth estimate using
only one BDME is:

Z (s t) 2

-(v-p + Et)s t

Computational Requirements of the Brightness Derivatives Method

The computational requirements of the brightness gradient method
unfortunately prohibit its implementation on the Micro-Rover because
about 3 million computations are required for one pair of images. The
number of computations required to compute the derivatives, the s and v
intermediate vectors, and the dyadic products for each pixel are shown
below in Table 2.1. These computations must be performed for each new
pair of images. Table 2.2 lists operations that must be performed at each
step of the iteration. These involve incorporating the new depth values
into the Least-Squares equations. For example, if the iteration were over
a pair of images, the computations in Table 2.1 would be executed at the
beginning, and the calculations in Table 2.2 would be performed at each
step in the iteration. Alternately, if the iteration were over a sequence of
images, the computations in Tables 2.1 and 2.2 would be performed for
every new image, which is equivalent to every step of the iteration.

40

Table 2.1 Computations per Pixel to Initialize an Iteration

Calculation ±Sign Mult Div Add Sub

derivatives

Ex, Ey 2

Et 1

vectors

s 2 2 1

v 1 4 1 2

dyadics

ssT 6

svT 9

vsT
v T 6 9

scaling

-Ets

-Etv 3 3

Total 3 30 14 5

Table 2.2 Computations per Pixel at Each Step of the Iteration

Calculation ±Sign Mult Div Add Sub

dyadics

ssT 1 6 9

svT 9 9

vsT 9

scaling

-Ets 3 1 3

Total 4 16 30

We must compute these items for every pixel in the image, so the total
number of computations increases quadratically as the resolution
increases. For example, 818,200 computations are required per step in
the iteration for a 128 x 128 image, and 3,276,800 computations are
required for a 256 x 256 image. The computations involved in solving
the set of six linear equations are insignificant and were not considered.

The time required to process one pair of images is prohibitive to
implementing the brightness derivative method on the Micro-Rover in
real-time. If a 128 x 128 image is used, 0.27 of a second is required for

processing one pair of images using a 30 MHz processor that requires 10

clock cycles per computation. If a 256 x 256 image is used, 1.09 seconds
is required for processing. We would like to process about five to ten
image pairs per second.

One must keep in mind that the size and power constraints for a small
vehicle such as the Micro-Rover limit the complexity of the processing
unit used to perform the vision analysis. Many vision systems

implement this method using parallel workstations. However, the space

required to house multiple processors and the power required to run

them is obviously not realistic.

An Alternate Method - The Constant Pattern Assumption

If a vision system is to be implemented on the Micro-Rover, the

computational complexity must be reduced without sacrificing accuracy.

It is obvious that the Micro-Rover cannot perform the required processing

of the brightness derivative method. However, the processing cannot be

reduced by using less derivatives because this method depends on the

overlap of the derivatives. Thus, a new method must be developed for the
Micro-Rover.

A different approach that offers potential is finding matching image

patches between two images to estimate the motion field and then
performing a Least-Squares minimization to find the motion causing the

motion field. When an image patch in one image is matched to an image

42

patch in another image, the offset in horizontal and vertical pixels can be
used as an estimated flow vector. Matching an entire image will yield an
estimated optical flow. We can then assume that the optical flow
represents the motion field, as before. The estimated motion field can
then be compared to the calculated motion field, obtained from the depth
to the scene patch and the motion parameters of the Micro-Rover. A
Least-Squares minimization can then be performed to solve for the
motion parameters that minimize the sum of squared errors between
estimated and calculated motion fields.

This method offers potential because the matching can be performed via
integrated circuits, leaving much less computations for the processor.
LSI Logic produces a motion estimation processor, designed for HDTV
applications. It takes a section, called the data block, from one image
and finds the best match in a larger section, called the search window, of
another image. The best match is defined by the smallest match error,
where a match error is the sum of absolute pixel differences.

A constant pattern assumption can be made about an image patch if the
motion of the vehicle is small between two successive images. A scene
patch will produce some image pattern on the imaging surface. The
pattern in the image should be the same for two camera positions that
aren't too different. For example, when the camera moves and rotates
slightly between frames, most, if not all, of the scene points making up
an image patch are still visible. Thus, the patch in the new image should
be the same as that in the old, except for a slight translation and/or
rotation.

The constant pattern assumption is similar to the constant brightness
assumption, except that the constant pattern assumption imposes more
constraints and thus can be solved locally. The constant brightness
assumption relates the time derivative of brightness at a pixel to the
spatial derivatives of brightness at that pixel and the motion of that pixel.
There are many motions that will solve for the change in brightness. For
example, two solutions are (0, -Et/Ey) and (-Et/Ex, 0). However, the
constant pattern assumption requires the ordering of pixels to be the

43

same. One can isolate some image patch in one image and find the best
match to it within some region of another image.

Determining Motion from Matching Data

The motion field obtained from the Longuet-Higgins and Prazdny
equations can be thought of as the calculated motion field. Given the
translation and rotation vectors describing the motion of the Micro-Rover
and the depth to each scene patch, the motion field can be calculated
from these equations.

The results of the matching algorithm can be thought of as the estimated
motion field. The best match of each data block in the first image is
found within a search window in the second image. The offset to the best
match position is the estimated optical flow, which is assumed to equal
the motion field.

An error between the calculated and estimated motion field can be
defined at each point in the image. Letting the carets represent the
calculated motion field, the squared error at a point in the image can be
defined as:

Error = (-u) 2 +

The errors at each point in the image can be summed, and the aggregate
error can be minimized to solve for the camera motion. The effect of
noise in the estimated motion field would be reduced, thereby producing
a better estimate of motion. The errors can also be weighted to place
more weight on and hence forcing the solution closer to the scene points
that are very distinctive.

Derivation of the Least-Squares Solution

The Longuet-Higgins and Prazdny equations for the calculated motion
field can be written in vector from as:

44

s -tU - + ru pZ

s, tS= + rv p
Z

where the vectors:

su = [-1 0 x]T

, = [0 -1 y]T

ru [xy -(x 2 +1) y]T

rv [y2+1 -x

are the coefficients of the motion parameters, and the vectors:

t = [U V W]T

p = [AB C]T

are the translation and rotation vectors.

The sum of squared errors can be written as:

SSE = 11 (i-u)2 +(-v)2
xy

The Least-Squares solution is found by taking the partial derivatives with
respect to the translation and rotation vectors and setting each of the two
vector equations equal to the zero vector. The partial derivative of the
aggregate error with respect to the translation vector is:

(susuT + svsvTa t + i surut T+srvtT i usu +vs,
xy xy xy

and the partial derivative with respect to the rotation vector is:

45

T +ru UZ r s t + yruruTx y x y
+ rvrvT = x uru + vr

x y

These vector equations give six linear equations in six unknowns.

that the 6 x 6 matrix is symmetric:

xy
x~yT
XY

,... ,.. rt/1

Note

IzD/
xyJ:y E
x y

xyX IY
"y J

where the following matrices have been substituted:

T T
S= su rs + s, s

T T
= s u r u + s, r,

R=r T T

as well as the following vectors:

D = us u + vs v

E = uru + vr v

The S, Q, and R matrices can be described in terms of their elements:

1 0 -x
S= 0 1 -y

-x -y X2 +y2

S-xy
S= _y2 - 1

[y3 + (x2 + 1)y

x 2 +1

xy
-X3 _ (y2 + 1)

-Y
x
0

46

1 -x 3y-2xy-xy3 -x
X4 + 2X 2 + X2y2 2+ -y

-y
2 + y2

The S, Q, and R matrices do not contain the estimated motion field, i.e. u
and v, and thus can be computed for each image patch and stored in
memory. The matrices are simply scaled by some function of the depth
to each scene patch and summed to obtain the 6 x 6 matrix.

The D and E vectors contain the estimated motion field, and thus cannot
be pre-calculated. The u and v components of the estimated motion field
multiply the s and r vectors. The s vectors are then divided by the depth
to the scene patch.

Another Way of Obtaining the Least-Squares Equations

The Least-Squares equations can also be obtained from a matrix-form
derivation that is similar to Strang's presentation in Introduction to
Applied Mathematics. Each of the flow vectors imposes 2 constraints on
the vehicle motion:

O Y-1 (+) -xy x u

Z where

where

m =

U
V
W
A
B
C

47

R=

However, there is one unknown for each flow vector, namely the scene
depth, Z. So, each flow vector actually imposes only one constraint.
Note that if the scene depth is known for each flow vector, only 3 flow
vectors are needed to solve for the motion because each flow vector will
impose 2 constraints on the motion.

Over an entire image, there are more constraints than variables so the
system becomes over-determined. We a get 2n x 6 matrix, where "n" is
the number of flow vectors:

-i Y1
Z1 Z1

ZI Zi

-1 Y2
Z2 Z2

-1 oZ2 2L
Z2 Z2

0 -1 yn
Zn Zn

--1 0 x
Zn Zn

(y1 2+I) -xY 1i

xlY1 -(X 2 +1

(y2 2+1)

x 2 Y2

(yn2 +1)

- x 2 y 2

(x2
2 +1)

- x 1

Yl

- X 2

Y2

- xnYn - Xn

-(Xn2 +1)

m = Am =

Since the system is over-determined,
that minimizes the squared Euclidean

we want to choose a solution, m,
distance:

IIAm - b112

Strang showed that the solution can be found by multiplying both sides

by AT. The result is a 6 x 6 matrix representing 6 linear equations:

ATAm = ATb

48

Ul

V1

u2

V2

u n

_Vn.

I

Yn

The result is the same as found previously by differentiating the sum of
squared errors and setting the result equal to zero. This method was
presented because it provides more insight. Namely, if the scene depth
for each flow vector is unknown, 6 flow vectors are required since each
imposes 1 net constraint on the motion. However, if the scene depth is

known, only 3 flow vectors are required since each imposes 2
constraints.

Implementation of the Matching Algorithm

The memory requirement to store the pre-calculated S, Q, and R
matrices for each data block is very modest. The S matrix, which like the
other two is 3 x 3, requires 5 different terms to be stored since it is
symmetric and contains one zero in the upper triangular. The Q matrix
requires 8 terms to be stored since it is not symmetric, but contains one
zero. The R matrix requires no terms to be stored for each scene patch
since it is independent of any of the data. The individual R matrices can
be pre-calculated, summed, and stored in the lower-right 3 x 3 matrix of
the 6 x 6 matrix. Therefore, 13 terms need to be stored for each data
block. There are 14 times 14, or 196 data blocks in a 256 x 256 image

using 16 x 16 data blocks. Thus, a total of 13 times 196, or 2,548 terms
need to be stored.

The number of calculations required to compute the 6x6 matrix are also
modest. As shown in Table 2.3, 55 computations are required for each
data block. For a 256 x 256 image, a total of 10,780 calculations are
required.

49

Table 2.3 Matrix Calculations for Each Data Block

Calculation Mult Div Add Sub

8 matrix 1 4 7

Q matrix 7 7 1

gT matrix 8

R matrix

D vector 4 4 4

E vector 4 4

Total 9 15 30 1

Solving the Least-Squares Minimization Equations

The 6 linear equations in 6 unknowns can be solved using Gaussian
elimination to find the motion, namely the translation and rotation, of
the Micro-Rover. Gaussian elimination involves multiplying and
subtracting equations until the 6 x 6 matrix is upper triangular. The
solutions can then be picked off quickly.

The method of Gaussian elimination can be performed very
systematically. Eliminating the first element in each row involves
multiplying the first equation by the ratio of the first element in the
desired row by the first element in the first row and subtracting the
scaled first equation from the desired equation. The first element in the
desired row is eliminated since from it is subtracted the product of the
first element in the first row and the ratio of the first element in the
desired row to the first element in the first row.

The total number of calculations to get the 6 x 6 matrix in upper-
triangular form is 170 as shown in Table 2.4. Eliminating the first
element requires 7 multiplications and 7 subtractions for each of 5
equations. The second element requires 6 multiplications and 6
subtractions to eliminate it from 4 equations. The last elimination
involves 3 multiplications and 3 subtractions for 1 equation.

50

Table 2.4 Rearranging Matrix into UVDer Trianaular Form

To solve for the 6 variables given an upper-triangular 6 x 6 matrix, 36
computations are required as shown in Table 2.5. The variables that
have been solved must be multiplied by their appropriate factors and
then subtracted from the right-hand side of the equation. The variable
which is being solved is then the right-hand side divided by its factor.
The sixth equation requires 1 division. The fifth equation requires 1
multiplication, 1 subtraction, and 1 division. The fourth equation
requires 2 multiplications, 2 subtractions, and 1 division.

Table 2.5 Calculations to Solve Upper Trianaular Matrix

Equation Mult Div Add Sub

first 5 1 5

second 4 1 4

third 3 1 3

fourth 2 1 2

fifth 1 1 1

sixth 1

Total 15 6 15

Row Mult Div Add Sub

first 7x5 5 7x5

second 6x4 4 6x4

third 5x3 3 5x3

fourth 4x2 2 4x2

fifth 3x1 1 3x1

Total 85 15 85

Updating the Depth Map Using the New Motion Parameters

After the motion parameters have been estimated from the Least-Squares
minimization, the depth map must be updated. Solving for the motion
parameters is an iterative process that requires the depth map to be
found. When the depth map converges, the motion parameters can be
faithfully accepted.

Updating the depth map requires plugging the motion parameters into
the motion field error equation and setting the error equal to zero. The
error involves two squared terms, so each term can be independently set
equal to zero. However, it is unlikely that both solutions for the depth
value will be the same since the Least Squares solution does not make all
the errors equal to zero, but minimizes the aggregate error. Therefore,
the error cannot be made zero, but only minimized.

A Least Squares minimization will find the depth value that minimizes
the error. The error for one data block is:

Error = (i- u) +(

Differentiating this with respect to the depth yields:

s-tt s Zt u. p-u z2)+2- +r'vp-v z2 =0

Simplifying the equation gives:

S +ru-P-S sut+ (! +rv. - Sv.t =

which can be manipulated into:

(Su' t)2 + Z (ru- p - u)su- t + (sv t)2 + Z (rv- p - v)sv. t = O

Finally, the solution for the depth is:

52

(Su t) 2 + (Sv- t) 2

(u - ru- P)su- t + (v - rv. p)sv. t

The Least Squares minimization adds an additional 5,096 computations
to the number of computations performed per image pair as shown in
Table 2.6.

Table 2.6 Calculations to Update a Depth Value

Calculation Mult Div Add Sub

numerator 6 3

denominator 8 1 5 2

Total 14 1 8 2

Implementing the Algorithm on a Microprocessor

Implementing the algorithm on a microprocessor requires a consideration
of the number of computations performed per second and the speed of
the processor. There are 15,886 computations to be performed per step
of the iteration. Allowing a safety margin of 50% adds an additional
7,943 computations for a total of 23,829 computations per step as shown
in Table 2.7. The vision system is expected to produce 10 motion
estimates per second, i.e. 10 iterations or image pairs. Assuming that
each iteration requires 10 steps to converge, the total number of
computations per second is 2,382,900. This is within the range of a
'486-based single board computer.

Table 2.7 Computations Required per Step of the Iteration

Type of Computation Number of Computations

Compute 6x6 Matrix 6,860

Compute 6-D Vector 3,920

Solve Linear Equations 206

Update Depth Map 4,900

Safety Margin 7,943

Total 23,829

53

The microprocessor used for the final processing will be expected to run
at 30 MHz. Assuming a 50% duty ratio, the effective rate would be 15
MHz to be used for processing. To perform 2,382,900 computations per
second, the microprocessor could allow 6.2 cycles per computation as
shown in Table 2.8. This seems especially reasonable assuming that the
microprocessor contains an internal coprocessor to handle the floating-
point arithmetic and that it will be programmed in assembly language
with a lot of thought going into the memory layout. For example, it
would make sense to store the pre-calculated matrices in memory so that
an address register need only be incremented, rather than an effective
address be calculated.

Table 2.8 Microprocessor Considerations

Clock Speed 30 MHz

Duty Ratio 50%

Effective Clock Speed 15 MHz

Number of Computations 2,382,900

Cycles per Computation 6.2

Chapter Summary

This chapter discussed two methods of implementing a motion vision
system. The first method, which uses brightness gradients, cannot be
implemented in real-time on a Micro-Rover because its computational
requirements are too high. The second method, which uses pattern
matching, relies upon an integrated circuit chip to perform a bulk of the
processing. The remaining calculations to convert the matching results
into motion estimates is significantly less than the number of
calculations to compute the brightness gradients. As a result, the
pattern matching approach to a motion vision system can be
implemented on a Micro-Rover in real-time.

54

Chapter 3 Testing the Pattern Matching

This chapter discusses the initial testing of the matching algorithm on a
Macintosh computer. A brief description of the camera set-up as well as
the program used for testing is presented. Initial tests showing the
ability of the matching algorithm to find the correct match even when the
camera has undergone significant translation and rotation are discussed.
The matching algorithm is then applied to entire images to obtain optical
flows. The optical flows seem to be accurate representations of the
motion field, except for a few incorrect flow vectors. A size of data block
test was performed to determine which size - 8 x 8 or 16 x 16 - was more
accurate and more useful. Finally, various weighting schemes to
highlight correct flow vectors and attenuate incorrect flow vectors are
discussed and tested.

Simulation of Matching Algorithm on a Macintosh

The matching algorithm was simulated in software on a Macintosh IIx
computer. A Pulnix 7-CN CCD camera with a Computar 8.5 mm auto-
iris lens was used. A DigiVideo frame grabbing board was plugged into a
NuBus slot on the Macintosh and used to digitize the NTSC video signal
from the Pulnix camera. The program to test the matching algorithm on
the images grabbed from the DigiVideo board was written in Think C
version 6.0. The matching functions are described in Appendix A.

In order to implement the matching algorithm and the subsequent Least-
Squares motion estimation equations, an entire Macintosh application
was developed. Functions to save images and match results to disk, as
well as routines to update the windows, were some of the utilities that
were programmed. The full-sized Mac application is named
TwinScreenTM.

Single Match Tests

The first tests concentrated on determining whether the matching
algorithm could find the correct match of a small part of one image

55

within a larger part of another image. The two images were slightly

different views of the same scene. The small part of the first image is

called the data block and measures 16 x 16 pixels. The larger part of the

second image is called the search window and measures 32 x 32 pixels.

The metric that is used to judge the quality of a match is the sum of

absolute differences. Suppose the data block is placed at some position

within the search window. Each pixel in the data block can be

subtracted from the underlying pixel in the search window. The absolute
value of this difference is called the absolute difference. The 256

absolute differences that can be calculated from a 16 x 16 data block are

added together and called the sum of absolute differences, or the match

error.

The data block can be placed in 289 different positions within the search

window. The data block measures 16 pixels in each direction, and the

search window measures 32 pixels in each direction. Thus, there are 17

different positions in each direction. The total number of positions is 17

squared, or 289. The position of the data block is chosen to be defined

by its top-left corner.

The best match criterion is the smallest match error among the 289

match errors. There will be some 16 x 16 section of the search window

whose match error is less than or equal to all the other match errors.

The position of the top-left corner of the 16 x 16 pixel section is called the

best match position since we have chosen to define the position of the

data block by its top-left corner.

A small match error indicates that the data block pattern closely matches

the pattern in the search window. For the match error to be small, the

search window pattern must have pixels with high brightness values in

the same positions as the bright pixels in the data block. Conversely, the

search window pattern must have pixels with low brightness values in

the same positions as the dim pixels in the data block.

56

The single match testing was performed on two pairs of images obtained

in an office at Draper Laboratory. The first image pair was two different

views of a bookcase. The second image pair was two different views of a

plastic cup with the Red Sox logo. The translation and rotation between

camera positions in a pair of images was not measured, but was more

than would be expected between two successive images. The intent was

to magnify and twist the data block, and then see if the correct position

could be found. The search windows were selected so that they

contained the corresponding data block.

The first pair of images tested was two different views of a bookcase. The

data block was taken from the label on a binder just slightly right of
center in the first image. There are 4 corners in the data block, so the
pattern was very distinct. The search window was obtained from the
same label in the second image. The two images as well as the data
block, search window, and matching results are shown in Figures 3.1-
3.5.

The matching results show the errors at each of the positions at which
the data block can be placed in the search window. The bright spot in
the center of the matching results indicates the best match, i.e. where
the sum of absolute differences is minimum. The dark areas represent
bad matches, or positions where the sum of absolute differences is
maximum. The match errors were scaled to the range 0-127 because the
screen's color table contained only 128 shades of gray. The resolution
was further reduced by the printer because it could print about 8
different gray halftones.

The matching results for the bookcase images show that the best match
for the data block is 9 pixels to the right and 10 pixels down from the top
left corner of the search window. In other words, when the top left pixel
of the data block is positioned at (9,10) in the search window, the match
error is minimum. Since the data block pattern does not exactly match
the pattern in the search window, the expected best match is somewhat
arbitrary. However, the best match position of (9,10) is one pixel from

57

any reasonably expected best match that one could estimate by placing
the data block in the search window.

Bookcase Images

Figure 3.1 First Image of Bookcase

Figure 3.2 Second Image of Bookcase

58

Data Block, Search Window, and Matching Results

Figure 3.3 Data Block from First Image

Figure 3.4 Search Block from Second Image

Figure 3.5 Matching Results

59

The second pair of images was taken of a plastic cup with the Red Sox
logo. The data block was taken from the area below the left shoulder of
the batter and just under the Red Sox logo. The search window includes
the same area. The two images, as well as the data block, search
window, and matching results are shown in Figures 3.6-3.10.

Similar to the bookcase results, the bright spot in the Red Sox Cup
matching results represents the best match. The match results from the
Red Sox Cup image pair show that the best match of the data block is
(6,8). Again, this is close to any reasonable interpretation of the data
block in the search window.

The main purpose of this first series of tests was to get an idea of what
kind of results we should expect for each of the matches. The 2 data
blocks were very distinct, so we expected (and obtained) very good
matches. If the matches were poor, we would have to reconsider whether
this is the correct approach - what would be the results for less distinct
data blocks? Also, compared to what we would expect from images on
the Micro-Rover, there was significant rotation and some magnification of
the data block pattern in the search window. Lesser-quality match
results would have required us to determine how much translation and
rotation was allowable to produce good match results.

60

Red Sox Cup Images

Figure 3.6 First Image of Red Sox Cup

Figure 3.7 Second Image of Red Sox Cup

Data Block, Search Window. and Matching Results

Figure 3.8 Data Block from First Image

Figure 3.9 Search Window from Second Image

Figure 3.10 Matching Results

62

Optical Flow Tests

The next series of tests was performed to determine whether the
matching algorithm could be applied to an entire image to create an
optical flow. It was already determined that the matching algorithm can
be used to find the best match of a data block in a search window. If the
best match can be calculated for every data block in an image, the best
match positions could be compared to the original data block positions.
The original position and the best match position define the starting and
ending points of a flow vector.

The optical flow was calculated by finding the best match of a data block
in a search window and determining how many pixels the data block
moved in the image coordinate system. The data block was chosen from
the first image and measured 16 x 16 pixels. The search window was
taken from the second image and measured 32 x 32 pixels. The search
window was chosen by extending the data block position outward by 8
pixels in each direction. Thus, if there were no motion between the
images, the best match position would be in the center of the search
window.

The flow vector was calculated from the best match position by
subtracting from it the zero position. The zero position of the data block
was the center of the search window, or (8,8) in the matching results
coordinate system, in which each axis ranges from 0 to 16. This position
was subtracted from the best match position to produce a two-
dimensional vector which represents the flow of the data block from the
first image to the second. The x axis points to the right, and the y axis
points down. For example, a best match position of (3,4) would yield a
flow vector (-5,-4), pointing up and to the left.

The first image was divided into 168 non-overlapping data blocks. The
images grabbed from the DigiVideo board measure 256 pixels
horizontally by 216 pixels vertically. The data blocks measure 16 x 16
pixels. The image was divided into 14 data blocks horizontally by 12
data blocks vertically, for a total of 168 data blocks. The coordinates of

63

the data blocks range from (16,12) for the top-left corner of the top-left
data block to (224,188) for the top-left corner of the bottom-right data
block.

The optical flows for two pairs of images as well as each image pair are
shown in Figures 3.11-3.16. The results show that the matching
algorithm can produce reasonable optical flows, except for a few incorrect
flow vectors. The optical flows were overlaid on the first image in each
pair to produce an "overlay flow." The overlay flow allows one to judge
the quality of a flow vector by the distinctness of the underlying data
block.

Checking the Optical Flow

The optical flow was not checked against the motion field because to do
so requires calibrating the camera. The Longuet-Higgins and Prazdny
equations can be used with a geometric description of the scene to
produce the motion field. However, as a minimum, the center of
projection and the principal distance must be determined. It was not
desirable to calibrate the camera because it is a separate thesis topic in
and of itself. The parameters can be estimated to solve for the motion
field, however, the results that would be obtained wouldn't warrant the
work involved in computing the motion field. Therefore, a visual check of
the optical flows is all that will be used to judge whether they are correct.

64

Images of Portable Radio

Figure 3.11 First Image of Radio

Figure 3.12 Second Image of Radio

65

:'::::~:~:~?~m~8laaaaawaaaesan~g:,
····~ ::~IFBP~B~

:·""
i:~3 ·1·ii:·.·:··

:. ·c·~~zzn.,.~s~~:::·-·: ·
: I ::::::::~:::~.~:::::~:::~::'::·:·:::::::

:' :·:·:·:·:·

Figure 3.13 Overlay Flow for Radio Images

66

Images of Fred's Chair

Figure 3.14 First Image of Fred's Chair

Figure 3.15 Second Image of Fred's Chair

67

S...

V! i i•

1-

Figure 3.16 Overlay Flow for Fred's Chair Images

68

:''':

· ·i':'~·~·~~"

::::::::::::~:~.':~~iiii~i~' ~

Size of Data Block Tests

The next tests dealt with choosing the size of the data block. The choice
of size for the data block is completely arbitrary, as is the size of the
search window. The data block and search window sizes used previously
are one of the two combinations that can be implemented on the LSI
Logic Motion Estimation Processor. Since the matching algorithm needs
to be performed in hardware if the vision system is to work in real-time,
the choice of data block and search window sizes were constrained to the
two that can be implemented on this particular integrated circuit chip.
The LSI Logic Motion Estimation Processor can perform the matching
algorithm on 16 x 16 data blocks using 32 x 32 search windows, or on 8
x 8 data blocks using 16 x 16 search windows.

The optical flow for the two different size data blocks was calculated from
a pair of images taken in a computer room at Draper Laboratory. The
motion of the camera between images was a translation along the optical
axis. The camera was not calibrated so the optical flow that was
obtained was not checked against the motion field. The two images and
the optical flow for the two different sizes of data blocks are shown in
Figures 3.17-3.20.

The results show no advantage in computing more flow vectors with
smaller data blocks because the percentage of incorrect flow vectors is
not reduced. The optical flow from the 16 x 16 data block matching is as
good if not better than the optical flow from the 8 x 8 data block
matching. Although the 8 x 8 data block matching yields more flow
vectors, it also produces more erroneous flow vectors which will have to
be eliminated.

The time constraint also influences the decision to choose the larger data
blocks. Although the LSI Logic Motion Estimation Processor can process
the smaller data blocks faster than the larger data blocks by a factor of
about ten, there are four times as many flow vectors to process. This
increases the number of computations that must be performed by the

69

final microprocessor that finds the motion parameters via the Least-
Squares minimization.

TwoTires Images

Figure 3.17 First TwoTlres Image

Figure 3.18 Second TwoTlres Image

70

*~S ~-~ ~a-M

9C,h>h V h h

Pt I I 4

>- 4E i h4~ V F e h> A ..I r h-hSA h- 1 i-ph

it ~Fr~V" i-i-~47 N 'F t -

Sc4

4r * Ac M-

~e- r c C ce Ac

rr r C KKac Ac~

4C

R RPtPt

Ct

PtI Pth-b-h-h-h-h-
h-h-h-

h- ~ ~ \ r\ * 4

A A4 AWT~A#44+vs

A A A A l -A A A A444A A A A A44

A A A A A 4

rA AA A AA 7- A A A -*-- 4q

i- A A A A. A Ii-A A A A 4-A '

< <d

C- - -I C I

CCC

CCC - C-

<< vv4CCV -A V

< _) ýI 4

dA 9 cJ

'J~~J··11

#7 7)t Pe?

4-7

+7 .yt P .-~
yv ~
P P·1

.~

Figure 3.19 Optical Flow for 8 x 8 Data Blocks

It; Pt

It; N

&·t & 1

Pt 'K, A PL3

It; It; ks Pt Pt 4 Pt 4 P

-Y T ý- h- N- A A A 'A AI

N- N- N- A A Ah . 1

A TF ~- AA 7 ? /

N- w r 1 ~ 1- A A - y

r 9- 9- 9- 9- '7P

* Ve < (C . . >

>- C >- * 'C '

k- &v v 4

Figure 3.20 Optical Flow for 16 x 16 Data Blocks

72

- 1' I'l I q I

Erroneous Flow Vectors

In the optical flows obtained from performing the matching algorithm
over an entire image, there will be some incorrect flow vectors because
some data blocks will match some other position better than the correct
position. In the TwoTires image pair, there are incorrect flow vectors on
the floor, on the wall, and in the black area on the right.

Incorrect flow vectors usually indicate that the data block being matched
has no distinct pattern and thus can be placed at several positions
within the search window with similar matching errors. The incorrect
flow vectors occur when the data block is nearly all one shade of gray
with no distinct bright spots. The incorrect flow vectors in the TwoTires
optical flow occur in the all white and all black areas of the image.

Since the number of these incorrect flow vectors is usually small
compared to the total number of flow vectors, they will have little effect
on the final motion estimation because the Least-Squares minimization
finds the best estimate over all the flow vectors. An incorrect vector is
determined by its orientation compared to the general optical flow
pattern. In the TwoTires matching, 26 of the 154 flow vectors are
incorrect. The 128 correct flow vectors will have a greater influence on
the motion estimate since they have a larger effect on the sum of squared
errors than the 26 incorrect flow vectors.

However, in some environments, the number of incorrect flow vectors
may be large compared to the total number of flow vectors. For example,
the walls in a hallway may be painted a solid color and thus have very
few distinct patterns. The flow vectors obtained from the walls will be
very error-prone. Since the walls represent a large portion of the image,
the number of correct flow vectors may not be much greater than the
number of incorrect flow vectors.

Therefore, some weighting scheme should be used to attenuate the
incorrect flow vectors. The results of the Least Squares minimization can
be improved by reducing the effect of the incorrect vectors when they

73

'-I

represent a large portion of the total flow vectors. Placing more emphasis
on the correct flow vectors relative to the incorrect flow vectors will force
the Least-Squares solution closer to the motion described by the correct
flow vectors.

The Least Squares Solution with Weights

The Least Squares solution presented in Chapter 2 is easily extended to
allow for weighting the errors between the estimated and calculated
motion fields. Each of the errors is weighted to reflect the quality of the
flow vector obtained from the matching algorithm. The weighted sum of
squared errors is:

SSE = Wx - u)2 + V)2)
xy

After differentiating the sum of squared errors with respect to the
translation and rotation vectors, the Least Squares solution becomes:

11Wxy Z t
x y

IWxyR [pXV

For a few extra calculations, the camera motion estimates can be
improved because the weights force the estimates closer to the higher-
quality flow vectors. An error in the flow vector error equation for a flow
vector with a large weight will significantly affect the sum of squared
errors. However, an error in the flow vector error equation for a flow
vector with a small weight will have little effect on the sum of squared
errors.

Error Weights

The error weights were the first weighting scheme considered because the
LSI Logic Motion Estimation Processor (MEP) outputs the match errors
after a matching calculation is completed. The offset to the best match

74

position, the best match error, and the zero offset error are output
immediately from the MEP after the matching calculation is completed.
In addition, all the errors from the other offset positions can be accessed
after a calculation is completed by addressing the MEP.

The first error weight considered was the ratio of the zero offset error to
best match error. The zero offset position is the position of the data
block in the first image. The "zero-to-best" ratio highlights flow vectors
whose best match error is much less than the zero offset error. The zero-
to-best weighting results are shown in Figure 3.21 for the TwoTires
images.

The results from the zero-to-best weights can be interpreted as follows.
The number aside the flow vector is the ratio of the zero offset error to
the best error. Larger numbers mean that the match error has been
significantly reduced by moving the data block from its original position
to the best match position. As can be seen in Figure 3.21, the weights
for the tires are around 3-6. However, the weights for the incorrect flow
vectors on the floor vary from 14 to 174. This shows that this weighting
scheme highlights the incorrect flow vectors over the correct flow vectors.
Thus, the zero-to-best weights actually do the opposite of what we want!

The next weight considered was the "average-to-best" ratio, which
highlights flow vectors whose best match error is much less than the
average match error. The average-to-best scheme was developed to
eliminate the randomness in the zero position error, which could
inadvertently enhance or reduce the zero-to-best error. The average-to-
best results are shown in Figure 3.22. Here, larger numbers mean that
the best match position is significantly better than other positions.

The results for this weighting scheme are even worse because the
incorrect flow vectors are even further enhanced. The weights for the
tires and spools of wire are around 3-6. However, the weights for the
floor are in the thousands! Additionally, the weights for the white wall in
the background are now very significant since 2 of the weights are over
100.

75

Neither the zero-to-best weighting scheme nor the average-to-best
weighting scheme was successful because each highlighted incorrect flow
vectors instead of attenuating them. For very indistinct areas of an
image such as walls or floors, a data block can have a best match error
near zero. However, if this indistinct area borders an area with some
distinction and this distinct area is included in the search window, the
zero error or average error may not be near zero. As a result, the zero-to-
best and average-to-best ratios will be large. Thus, the zero-to-best and
average-to-best ratios cannot be used to weight the flow vectors because
they highlight the indistinct areas of an image - the very regions that we
want to attenuate!

76

Figure 3.21 Zero-to-Best Weights

77

Figure 3.22 Average-to-Best Weights

78

Variance Weights

The variance weights, as well as the subsequent cosine weights, depend
upon neighboring flow vectors. The nearest neighbors to each flow vector
are 16 pixels away, either up, down, left, or right. These were determined
to be too far away to be considered a neighbor. Therefore, another series
of matchings was performed to calculate flow vectors for data blocks that
are staggered 8 pixels up or down, and 8 pixels left or right of the original
data block. The flow vectors obtained from the original matching are
called original flow vectors, and the flow vectors obtained from the new
matching are called staggered flow vectors. The four staggered data
blocks overlap the original data block and meet at its center as shown in
Figure 3.23. Figure 3.24 shows the optical flow for the data block flow
vectors, and Figure 3.25 shows the optical flow for the staggered flow
vectors.

16 pixels

16 pixels

8 pixels

8 pixels

(b)

Figure 3.23 (a) Neighbor data blocks are too far away and don't overlap. (b) Staggered
data blocks are closer and overlap the original data block.

79

I I

t

-4- .& % 4

ic h4 'S. 4' 4%7

kt 4' Pt 4' / 7

-7 T h. b h- A A A .4 A A

I7 - h- -C A A A 14

A rZ 2DtA A A

ý- T r- r- r r A A -7 7y

*1I y- <- <

-* * * V C C

)- *C)- * C C

v 0 * \4

- & .k- k & k V k

Figure 3.24 Optical Flow for Original Data Blocks

80

--* A

44? p/A

A I P P / 7

It; It; I'; C- 4 4~ p1 97 A

S A A 1 0 A ;A

y r N- N- - ~A A A

A r - N N- A A

49 N- V N 7- A A A -

41 v- -r 1 A A -7

"- v c

.E 3. C C '3

< , 4 P , 1 \s
I- .0- I,-

IF- &r" z A' 0- A'

Figure 3.25 Optical Flow for Staggered Data Blocks

81

*~~r

An average flow vector and a variance can be calculated from the original
flow vector and the 4 staggered flow vectors around it. The average flow
vector is simply the average of the five flow vectors. The sample variance
can be easily computed from the u and v components of the five flow
vectors. The sample variance is:

Sample Variance - u 2 u + v 2 -2
5 5

An "inverse variance" weight can be calculated for each data block by
taking the inverse of the sample variance. This weight will highlight
those areas where the variance is small and attenuate those areas where
the variance is large. Results from applying the inverse variance weights
are shown in Figure 3.26, where the weights have been scaled by 100.

Although they attenuate some of the incorrect flow vectors, the inverse
variance weights do not work well because they tend to highlight short
flow vectors. The incorrect flow vectors in the floor are weighted much
less than most of the surrounding correct flow vectors. However, the
short flow vectors on the white wall in the background, as well as other
short, correct flow vectors, are weighted much higher than the weights
on the tires.

The reason for this is that the short flow vectors tend to have smaller
variances than the longer flow vectors. The sample variance of short flow
vectors will usually be small, unless the data block is indistinct. Large
flow vectors are more likely to have larger sample variances because a
small angle difference between two flow vectors translates into a large
vector difference.

The "flow-to-variance" weight tries to counteract this problem by using
the length of the flow vector to normalize the weight. The flow-to-
variance weight is the ratio of the squared length of the original flow
vector to the squared length of the original flow vector plus the sample
variance. The squared length of the original flow vector can be viewed as

82

signal power, and the sample variance is similar to noise. The flow-to-
variance weights range from 0 to 100 and attempt to highlight flow
vectors whose length is large compared to the variance. The results from
the flow-to-variance weighting method are shown in Figure 3.27, where
the ratios have been scaled by 100.

These weights are the first "good" set of weights that we have seen
because they highlight correct flow vectors and attenuate incorrect flow
vectors. The weights on the tires and spools are greater than those of the
floor and background wall. The problem of short flow vectors being
artificially weighted too high, as with the inverse variance weights, has
been eliminated. However, a better weighting scheme is the "average
flow-to-variance" weighting scheme.

The average flow-to-variance weight is the ratio of the squared length of
the average flow vector to the squared length of the average flow vector
plus the sample variance. The squared length of the average offset vector
represents the average signal power in a small region. These weights
were created because incorrect original flow vectors can sometimes be
quite large, although the average flow vector is much smaller. These
weights also range from 0 to 100 and attempt to highlight flow vectors
around which the average flow vector is large compared to the variance.
The results of this weighting scheme are shown in Figure 3.28.

These weights improve upon the results of the flow-to-variance weights
because incorrect flow vectors are further attenuated without affecting
the enhancement of the correct flow vectors. The weights on the floor
and the wall have been reduced. However, the weights on the tires and
spools as well as the other correct weights in the background have not
been significantly affected. This method is the best of the variance
weights because it eliminates the artificially high weighting of the short
flow vectors found with the inverse variance weights. Additionally, the
sensitivity to the original flow vector length found with the flow-to-
variance weights has been reduced.

83

Figure 3.26 Inverse Variance Weights

84

Figure 3.27 Flow-to-Variance Weights

85

41LS)

0*

0* 0o

tg- tc-atV, 0 rr

Figure 3.28 Average Flow-to-Variance Weights

86

S-4 S

ODOD

ci:

(1)

r-1-

Cosine Weights

The cosine weights were designed to exploit the alignment between an
original flow vector and the 4 staggered flow vectors around it. Two flow
vectors that point in the same direction are well aligned. It was found by
looking at the images that the alignment between an incorrect original
flow vector and any one of the staggered flow vectors around it is very
poor. Thus, some method that brings out this characteristic seems
appropriate.

The dot product operation was used as a measure of alignment because
it ranges from one for perfect alignment to zero for orthogonal alignment.
The dot product of unit normalized vectors is simply the cosine of the
angle between them. For two unit vectors, the dot product is:

fl f2 UlU2 COS(

• Ul 2 + V1
2 ;U 2

2 + V2
2

The dot product operation can also be interpreted as the projection of one
of the vectors on the other.

The "sum of cosines" weighting scheme attempts to represent the average
projection of the four staggered unit flow vectors onto the original unit
flow vector. The projection of one of the staggered flow vectors onto the
original flow vector is simply the dot product of the two vectors. This
amounts to the cosine of the angle between the vectors. The average
projection is calculated by taking the average of the four projections of
the staggered unit flow vectors onto the original unit flow vector. This is
the sum of the dot products of the original flow vector with each of the
four staggered flow vectors around it divided by 4:

Sum of Cosines = (i. -i 1 + '• f is2 + fo -f 3 + ' o. s4)/4

The results of this weighting scheme are shown in Figure 3.29 where the
weights have been scaled by 100. This weighting scheme represents a
major improvement over previous methods because almost all incorrect
flow vectors have a zero weight. However, a few incorrect vectors still

87

remain in the white area at the bottom of the image. The correct flow
vectors which are located on the tires, the spools of wire, and in the
background have weights that are close to 100.

The "product of cosines" weighting scheme requires that all the unit flow
vectors be consistent rather than just the average. Instead of adding the
four cosines, the four cosines are multiplied:

Product of Cosines = fo - sl x O iS2 X SiOS3 X fO S4

If one of the staggered flow vectors is orthogonal to the original flow
vector, the weight is zero regardless of the other staggered flow vectors.
Therefore, there must be a higher degree of alignment between the
original flow vector and the four staggered flow vectors around it. A
weight near one means the all five flow vectors are pointing in the same
direction, while a weight near zero means that one or more of the
staggered flow vectors are orthogonal to the original flow vector. The
results of this weighting method are shown in Figure 3.30, where the
weights have been scaled by 100. The cosine in this method is bounded
between zero and one, so cosines less than zero are set equal to zero.

This method produces the best weights since the correct flow vectors are
highlighted and almost all the incorrect flow vectors are attenuated. The
only incorrect flow vector with a significant contribution is the "66" on
the right hand side of the image. The incorrect flow vectors on the floor
and on the wall have been assigned a zero weight.

The product of cosines weights have been applied to two other pairs of
images - the Radio images and Fred's Chair images. The overlay flows for
these can be found in Figures 3.31 and 3.32. Similar to the TwoTires
results, the product of cosines weights attenuate the incorrect flow
vectors.

88

0O

ji 0·::4t6:;

0Y)

ODto

cll
mU% P - % p

Figure 3.29 Sum of

89

Cosines Weights

40

0*)

Aa r-F*

~ iu~ £

Figure 3.30 Product of Cosines Weights

90

a)4

0,

*0 Qa.

). 0*

). 0* c

'q2 o

Figure 3.31 Product of Cosines Weights for Radio Images

91

~-I· (L

CF),

F0 Oli

0' 0.

0. 0.

0· 0.Q" P.

0* O* 0· O* O*· 0) ijii

0* o· o. o. o.
cg

0· 0· 0· 0· '· 4

~. ~ .
.:5

Figure 3.32 Product of Cosines Weights for Fred's Chair Images

92

Implementing the Product of Cosines Weights

Implementing the product of cosines weights in the vision system
requires additional processing to be performed by the LSI Logic Motion
Estimation Processor and the microprocessor that converts the match
results into motion estimates. The MEP must calculate approximately
twice as many best matches. The microprocessor must calculate weights
to apply to the Least Squares equations.

Calculating Neighbor Flow Vectors

The staggered flow vectors can be calculated in the same manner as the
original flow vectors. The staggered data blocks are offset from the
original data blocks by 8 pixels up or down and 8 pixels left or right. If
the original flow vectors were obtained by performing the matching
algorithm from (16h,20v) to (224h, 180v), the staggered flow vectors can
be calculated by performing the same matching algorithm from (8h, 12v)
to (232h, 188v).

The LSI Logic Motion Estimation Processor must now perform twice as
many matching calculations. The entire image will have to be processed
once to obtain the original flow vectors and a second time to obtain the
staggered flow vectors. The MEP can process about 52 images/sec.
Doubling the amount of matchings amounts to an effective rate of 20
images/sec, which is still well within range. Additionally, the processing
rate of 10 images/sec is expected to be reduced because it was found
that a slower rate is adequate.

Calculating the Weights

Calculating the weights to apply to the Least Squares equations imposes
an additional burden of 8,428 computations per image pair on the
microprocessor. Each weight requires 43 computations as shown in
Table 3.1. For a 256 x 256 image, there are 196 data blocks, and hence
196 weights that must be calculated.

93

Table 3.1 Computations to Calculate a Product of Cosines Weight

Calculations Mult Div Add Sub Sqrt

5 Vector lengths 10 5 5

4 Unit dot products 8 8 4

Product of Cosines 3

Total 21 8 9 5

Adding these calculations to those required to generate the 6 x 6 matrix,
solve the matrix, and update the depth values, one can revise the
microprocessor considerations discussed in Chapter 2. Each pair of
images now requires 24,510 computations to estimate the motion from
the matching results. Adding a safety margin of 50% brings the total
number of computations to 36,765. Assuming that we still want to
produce 10 motion estimates per second and that each iteration requires
10 steps to converge, the microprocessor will have 4.0 clock cycles per
computation.

Table 3.2 Microprocessor Reconsiderations

Clock Speed 30 MHz

Duty Ratio 50%

Effective Clock Speed 15 MHz

Number of Computations 3,676,500

Cycles per Computation 4.0

Although this seems to be pushing the microprocessor, the estimate is
very conservative. There are two margins for safety, namely the extra
50% to the number of computations and the duty ratio of the
microprocessor. Additionally, we will see later that the number of motion
estimates per second is closer to 3 or 4, and the number of steps for
convergence of the iteration is closer to 5.

94

Chapter Summary

This chapter has presented the initial testing of the Constant Pattern
Assumption via the matching algorithm. The single data block tests have
shown that the matching algorithm can find the correct match even
when the camera has undergone significant translation and rotation, i.e.
when the pattern has been magnified and twisted. The optical flows
found by applying the matching algorithm to entire images show that the
Constant Pattern Assumption is valid. Finally, no advantage was found
in using smaller data blocks to obtain more flow vectors.

Various weighting schemes to attenuate incorrect flow vectors and
highlight correct flow vectors were explored in this chapter. Error
weights were tested and found to incorrectly highlight data blocks that
had very indistinct, if any, patterns because the best match error could
be close to zero while the zero position or average error was non-zero.
Variance weights were tested and found to be better than error weights
because they did not incorrectly highlight indistinct patterns. However,
the product of cosines weight was found to be better than variance
weights because more incorrect flow vectors were eliminated. Table 3.3
summarizes the various weights tested in this chapter.

Table 3.3 Summary of Flow Vector Weights

Weight Comments
Zero-to-Best Enhances Incorrect FV's Over Correct FV's

Average-to-Best Worse than Zero-to-Best

Inverse Variance Some Incorrect FV's Attenuated, but Short FV's Highlighted

Flow-to-Variance Eliminates Short FV Problem, but Incorrect FV's Still Present

Ave Flow-to-Var Attenuates Incorrect FV's Better than Flow-to-Variance

Sum of Cosines Correct FV's Enhanced and Most Incorrect FV's Attenuated

Product of Cosines Correct FV's Highlighted and All Incorrect FV's Attenuated

95

The final tasks to complete the testing of this vision system are to test

the motion estimation equations and the use of the depth maps in

obstacle avoidance. The Least-Squares equations for motion should

produce reasonable estimates of vehicle motion that can be used for

dead-reckoning navigation. Additionally, one should be able to interpret

the depth values in a way that obstacles can be recognized and avoided.

96

Chapter 4 Motion Estimation

In this chapter, the Least-Squares motion estimation equations are
tested. These equations were implemented in TwinScreenTM, and the
results from several motion estimations are presented. Both a planar
and a contoured surface were analyzed, and it was discovered that the 6
degree of freedom model for the Micro-Rover's motion cannot be used
because it is impossible to distinguish lateral motion from rotation. A 4
degree of freedom model for the Micro-Rover's motion is suggested as a
good approximation. The new Least-Squares equations were tested on
the same 2 pairs of images, and the results indicate that this model will
adequately represent the Micro-Rover's motion.

Implementing the Least-Squares Equations in TwinScreen TM

Implementing the motion estimation equations requires some knowledge
of the camera characteristics since they are used to obtain the
normalized coordinates of the pixels. The Longuet-Higgins and Prazdny
equations contain x, y, u, and v that are normalized to the principal
distance. Thus, the principal distance is required. Additionally, the
principal point is required because the image is simply an array of pixels,
where the center is not necessarily the principal point. The total area of
the CCD array that the image represents must also be found to obtain
the absolute coordinates of each pixel. The absolute pixels are then
divided by the principal point to normalize them.

The camera characteristics were estimated rather than measured
because the camera calibration process is quite extensive. The principal
distance was estimated to be the focal length of the Computar 8.5 mm
auto-iris lens. The principal point was assumed to be the center of the
image grabbed from the camera by the DigiVideo frame grabbing board.
The image was 256 x 216, so the principal point was estimated to be
(128, 108). The area of the CCD array was about 7 mm x 5 mm. This is
close to the 4:3 aspect ratio common to most video applications. It was
assumed that the DigiVideo board "grabbed" the center 5 mm of the 7

97

mm width so that "square" pixels were obtained. Thus, the area of the
CCD array was estimated to be 5 mm x 5 mm.

If the estimated values of the camera characteristics differ significantly
from the actual values, the motion estimates and the depth map will
contain errors. One type of error occurs when either the principal
distance or the area of the CCD array is incorrect. An error in either
estimate affects the angle that a ray to a scene point makes with the
optical axis. This will either compress or expand the scene, and the
resulting motion estimate will be greater or less than the actual value.
Another type of error occurs when the principal point is incorrect. This
will affect the motion estimate because the various scene points will
appear to be farther or closer to the optical axis.

The TwinScreenTM code that was used to test the motion estimation
equations is reproduced in Appendix B. The iteration for the motion is
performed in steps. At each step, the user may choose to update the
depth map from the current motion estimate and then compute a new
motion estimate from the updated depth map. Alternatively, the user
may opt to scale the depth map to simulate the vision system's response
to a sensor, such as a laser range-finder, that makes some measure on
the environment. Additionally, the user may enter an estimate of the
vehicle's motion and then continue the iteration based upon this starting
value.

Testing the Motion Estimation Equations

Along the same lines as Heel's work [7] the motion estimation equations
were tested against both a planar and a contoured background. The
planar background consisted of 2 posters from the Micro-Rover team's
presentation at the Rover Expo in Washington, D.C. in September '92.
The posters were 5 feet away from the camera and chosen because of
their strong and numerous patterns. The contoured scene consisted of 2
stacked tires about 3 feet out and 1/2 foot to the left of the optical axis,
and 3 spools of wire about 4 feet out and 1 foot to the right of the optical

98

axis. The background was the rear of a computer/ storage room at
Draper Laboratory.

The camera was translated along the optical axis in both scenes. The
camera moved about 1.75 inches in the planar scene. In the contoured
scene, the camera was translated 2.25 inches. Before presenting the
results of the testing on the 2 scenes, we must discuss how the scale
factor ambiguity problem was solved.

The scale factor ambiguity problem, which is inherent in monocular
vision applications, can be solved in 2 ways - either by scaling the depth
map or by scaling the motion. By using a sensor that can measure the
distance to various points in the environment, one can scale the depth
map. For instance, on the Micro-Rover, the laser range-finder can be
used to obtain the depth to various points. The resulting motion
estimate will then be appropriately scaled. Alternately, one can measure
the distance traveled by the Micro-Rover and scale the motion estimate.
The drag wheel on the Micro-Rover can be used to measure the distance
traveled. The depth map will then reflect actual distances to objects in
the scene.

The results from the planar scene are pretty good, and the motion
estimates are shown in Table 4.1. The translation along the optical axis
was scaled to 4.4 cm, or 1.75 inches, which is the actual translation of
the camera. There is a significant lateral translation in the x direction of
2.1 cm, or .83 inches. Also, there is a rotation about the y axis of -0.013
radians, or about .74 degree. These two errors are interrelated as will be
shown shortly. The depth map from this motion estimate is a fairly
decent representation of the planar surface and is shown in Figure 4.1.

The results from the contoured scene are not good at all. In this case,
the depth map was scaled so that the 2 tires were about 3 feet, or 1
meter away. The translation was estimated at 3.5 cm, or about 1.38
inches. This is an error of about -39%. However, the lateral translation
in the y direction was estimated at 12 cm, or 4.72 inches, and the
rotation about the x axis was 0.118 radians, or 6.8 degrees. These

99

results, as shown in Table 4.2, clearly indicate that something is wrong
with the Least-Squares equations.

The depth map from this contoured scene, as shown in Figure 4.2, is
surprisingly flat. In fact, it is the initial depth map assumed by the
motion estimation algorithm. Coincidentally, the depth to the tires and
the initial constant depth were both 1 meter. Some of the values have
been adjusted slightly up or down from the original 1.00 value, but not
by much.

The motion estimation equations need to be examined since intuition
suggests that the motion and depth map should be obtained at least to a
scale factor. When the camera moves forward, the image will "flow"

outward. Closer objects will move faster than farther objects, so their

flow vectors will be longer. However, an average forward motion can be

estimated and then used to determine whether points in the scene are far

or close. Close objects will have longer flow vectors, and the

corresponding depth values will be less. The new "contoured" depth map

can be used to generate a "better" motion estimate. Then, the new

motion estimate will be used to produce a new depth map. This iterative

solution should converge to a reasonable estimate for the motion and the

depth.

100

Table 4.1 otion Esti~mates ofPlanar Surface Usina 6 DO1F~s

Parameter Estimated Actual Parameter Estimated Actual

U (m) 0.021 0.000 A (rad) -0.004 0.000
V (m) -0.005 0.000 B (rad) -0.013 0.000

W (m) 0.044 0.044 C (rad) -0.003 0.000

Figure 4.1 Depth Map After Solving for Motion with 6 Degrees of Freedom

101

Table 4.1

Table 4.2 Motion Estimates of Contoured Surface Using 6 DOMFs

Parameter Estimated Actual Parameter Estimated Actual

U (m) -0.021 0.000 A (rad) 0.118 0.000

V (m) 0.120 0.000 B (rad) 0.020 0.000

W (m) 0.035 0.053 C (rad) -0.006 0.000

Figure 4.2 Depth Map After Solving for Motion with 6 Degrees of Freedom

102

To examine the Least-Squares equations, we will look at the 6 x 6 matrix
generated from the data blocks of the contoured scene. The matrix is
shown in Table 4.3. There are only four independent columns in this
matrix. The first and fifth columns are nearly identical, as well as the
second and fourth columns. The first column is related to the x
component of translation, and the fifth column is related to the rotation
about the y axis. The second column represents translation in the y
direction, and the rotation about the x axis is represented in the fourth
column.

Table 4.3 Matrix from First Motion Estimation of TwoTires Images

89.090 0 -3.2478 -0.11065 91.339 -1.6283
0 89.090 -1.6756 -89.943 0.11065 3.2311

-3.2478 -1.6756 3.2224 1.6798 -3.3529 0

-0.11065 -89.943 1.6798 90.854 -0.23155 -3.2169
91.339 0.11065 -3.3529 -0.23155 93.742 -1.5809

-1.6283 3.2311 0 -3.2169 -1.5809 3.2132

Calculating the dot products between the nearly identical columns will
show how close they really are. Two vectors are identical when the
cosine of the angle between them is one. The cosine of the angle between
two vectors is their dot product divided by the length of each vector.
When the cosine was calculated for the first and fifth columns, the result
was 0.999989, which is equal to 1 when the significant digits are
considered. The cosine between the second and fourth vectors is
-0.999999, which equals -1.

The problem here is the common field of view (FOV) problem as
discussed in Horn [10]. Basically, when the FOV is small, as is the case
for most cameras, lateral translation and rotation cannot be
distinguished. Second-order terms in the Longuet-Higgins and Prazdny
equations can then be dropped. Thus, the motion field for rotation about
the y axis becomes (-B, 0). The motion field for lateral translation in the
x direction doesn't change and is (-U/Zxy, 0). If the depth is constant
over the entire scene, the -U/Zxy term can be replaced by -U'. Thus,

103

rotation can be accounted for in U', and translation can be incorporated
in B. Testing the 6 degree of freedom equations, we found that
sometimes the motion estimate would converge to the correct solution,
and sometimes the incorrect (constant depth) solution would prevail.

The field of view of our camera is small at 32.8 degrees. The edge of the
image is 2.5 mm since we have a 5 mm x 5 mm square CCD array. The
principal distance is 8.5 mm. The angle defined by arctan(2.5/8.5) is
16.4 degrees. The FOV is twice this angle, or 32.8 degrees.

As a result, second order terms can be dropped from the Longuet-Higgins
and Prazdny equations, and hence the Least-Squares motion estimation
equations. The edge of the image plane is 2.5/8.5, or 0.294, in
normalized units. This value squared is 0.087, which is small compared
to one. When we consider the fact that this is the largest second-order
term possible and that most second-order terms are much less, we can
see that the second-order terms have negligible effect and can be ignored.

Reducing the Degrees of Freedom to Four

A way around this problem is to reduce the degrees of freedom from six
to four. The motion can be modeled as some rotation about each of the
three axes plus a translation along the optical axis. This eliminates the
translations in the x and y directions from the motion estimate and
forces their values to be zero. The resulting motion should closely model
the motion of the Micro-Rover since it is not supposed to slide laterally to
the left or right, nor jump up and down. For example, the Micro-Rover
will turn in a circle of some radius. The motion can be approximated by
a rotation and a translation forward as shown in Figure 4.3.

104

Figure 4.3 Micro-Rover Turning in a Circle

This model for the vehicle motion will yield a non-singular, 4 x 4 matrix
which can be: solved uniquely. In effect, we are removing the first 2
columns of the 6 x 6 matrix, which represent the U and V components of
translation, and the first 2 rows, which are affected by these
components. This can easily be seen from the Least-Squares equations
in matrix form.

105

The new set of over-determined equations is:

Y1
Z1
X1

zi
Y2
Z2

X2
Z2

Yn
Zn
xn

Zn

(y1
2 +1)

Xlyl

(y2
2 +1)

x2 Y2

(Yn2 + 1)

XnY
n

-x1Y
1

-(x 12+1)

-x 2 Y2

-(x 2 2+1)

-XnYn

-(xn 2 + 1)

-x
1

yl

-X 2

Y2

-Xn

yn

m = Am -

Ul
V1
u2
V2

Un
Vn

where the effects of the U and V translation components on the motion
field have been removed. The motion vector, m, is now:.W

A
B
-C

Solving these equations in the same way as before, we get a 4 x 4 matrix,
which is the original 6 x 6 with the first 2 columns and first 2 rows
removed.

Testing the New Motion Eauations

The two scenes, the planar and contoured, that were originally tested
with the 6 degrees of freedom (DOF) model for the Micro-Rover's motion
were tested again using the 4 DOF model. The new model will produce 4
independent equations, from which the camera motion can be
determined uniquely.

106

The motion estimation for the planar scene produced estimates that were
very close to the true values. The forward translation was again scaled to
4.4 cm, the actual translation. The 3 rotation estimates were very close
to zero. The estimates are shown in Table 4.4.

The depth map produced by the motion estimation iteration looks pretty
good. The values average around 1.6 m, or 5 feet. There is some
variation about this value, but it is within the expected range of depth
values as will be seen shortly. Figure 4.4 shows the depth map for this
planar case.

The real test of the 4 DOF model is the motion estimation for the
contoured scene. For this case, a point on the tires was scaled to 1 m,
which was the tires' distance from the camera along the optical axis. The
forward translation was found to be 5.3 cm, or 2.09 inches, which is
close to 2.25 inches. The 3 rotation estimates are very close to zero.
Table 4.5 lists the motion estimates for the contoured scene.

The depth map, as shown in Figure 4.5, also resembles the depths to the
various points in the scene. The depth values of the 2 tires are very close
to 1 m. The spools of wire are about 1.1 m away. The background is
about 2-3 m away.

The results look pretty good for both cases when we consider that the
camera characteristics were estimated and not measured. Errors in any
of the parameters defining the camera would affect the motion estimate
and the depth map. For example, if the principal point were assumed to
be closer to the left side of the image than it actually was, then the depth
values on the left side would be closer and the depth values on the right
side would be farther than they actually were.

The next step is to look at the sensitivity of the motion estimates and
depth maps to errors in the flow vectors. This will give us insight on
what kind of results we should expect.

107

Table 4.4 Motion Estimate from Planar Surface Using 4 DOF's

Parameter Estimated Actual Parameter Estimated Actual

U (m) 0.000 0.000 A (rad) -0.002 0.000

V (m) 0.000 0.000 B (rad) 0.000 0.000

W (m) 0.044 0.044 C (rad) -0.003 0.000

Figure 4.4 Depth Map After Solving for Motion with 4 Degrees of Freedom

108

Table 4.5 Motion Estimate of Contoured Surface Using 4 DOF's

Parameter Estimated Actual Parameter Estimated Actual

U (m) 0.000 0.000 A (rad) -0.002 0.000
V (m) 0.000 0.000 B (rad) -0.002 0.000
W (m) 0.053 0.057 C (rad) -0.005 0.000

Figure 4.5 Depth Map After Solving for Motion with 4 Degrees of Freedom

109

Sensitivity of the Motion Estimate to Errors in the Flow Vectors

There are two types of errors that can affect the flow vectors, and hence
the motion estimate, namely incorrect match errors and quantization
errors. Incorrect match errors result when the new position of the data
block in the search window is not the best match. Incorrect match
errors can also result when there is too much motion between images, in
which case the new position of the data block is outside the search
window or only partially inside. Incorrect match errors should be rare,
and the weights discussed in the previous chapters should eliminate
most of them.

Quantization errors result because the image plane is sampled by the
CCD array. Given an absolute position of a point in the image plane, the
point will be assigned to the nearest pixel. Thus, for a small range of
motions, the sampled image will look the same. This can lead to
approximately a half pixel error in each component of a flow vector.

The quantization errors should not affect the motion estimate since they
are uncorrelated and will be averaged out in the Least-Squares
minimization. It is reasonable to assume that the quantization errors are
independent, identically distributed random variables with a mean of
zero. The motion estimate for a 256 x 256 image incorporates 196 flow
vectors. Any errors in the flow vectors should be averaged out in the
final motion estimate.

Sensitivity of the Depth Estimate to Errors in the Flow Vectors

The depth estimates are more sensitive to quantization errors since a
depth estimate is calculated from a single flow vector. For each data
block, a depth is calculated from its flow vector and the estimated
motion. Any quantization error is not averaged out, but reflected in the
depth estimate.

A good approximation for the error in the depth estimate can be obtained
by looking at the Least-Squares equation for the depth. When the

110

motion is assumed to be a translation along the optical axis, the Least-
Squares estimate for the depth to a scene point, as presented in Chapter
2, is:

Z (xW) 2 + (yW) 2

uxW + vyW
X2 + y2

ux + vy

The sensitivity of the depth estimate to the u-component of the flow
vector is:

x2 + y2

(ux + vy)
x

S- Z
ux + vy

The maximum sensitivity occurs when y equals zero:

aZ Iau max
Z
u

Note that for this case the motion is assumed to be a translation along
the optical axis, so the denominator is always positive except at (0,0),
which is the focus of expansion.

The maximum percentage error in the depth estimate is simply 100 times
the maximum sensitivity divided by the actual depth:

%AZImax
1

= -100-
U

Thus, the accuracy of the depth estimate is inversely proportional to the
length of the flow vector. Suppose there is a pixel error in the length of
the flow vector due to the image quantization. If the length of the flow
vector is 10 pixels, the accuracy of the depth estimate is within 10%.

Errors could be reduced by using a higher-resolution camera and
performing a Least-Squares fit to the depth estimates within a region of
the image. A higher resolution camera would allow more data blocks to

111

be matched in the image. A Least-Squares estimate could be calculated
that minimizes the sum of squared errors, where an error is defined as
the difference between the depth estimate calculated from a flow vector
and the Least-Squares estimate.

Estimating the Motion from a Sequence of Images

The last part of evaluating the motion estimation is to test the equations
over a sequence of images. Two sequences of images were tested. The
first was a sequence of images from the TwoTires scene. The second was
a sequence of images taken in the same computer/storage room using
stacked books as the obstacle.

The TwoTires image sequence contains 11 images. Images 1 and 10 were
used in the previous contoured scene test. In this test, image 1 was
compared against images 4, 6, 8, and 10. The camera was translated
forward 0.25 inches between images, so the motion between these image
pairs are 0.75", 1.25", 1.75", and 2.25", respectively.

The 4 DOF motion model was used to determine the motion between
images. The product of cosines weight was applied to the optical flow
obtained from each pair of images. The allowable values for the average
cosine weight are between 0 and 100. The threshold was set at 75 since
it seemed to eliminate most of the incorrect flow vectors.

The depth maps, as shown in Figures 4.6-4.9, were scaled uniformly so
that comparisons could be made between them. A point on the tires was
selected as the point whose depth would be scaled to the same value on
all depth maps. This point is represented by the flow vector that is
located on the left-hand side, third up from the bottom.

The motion estimates are affected by the flow vector at this point and any
errors in it. As mentioned earlier, the sensitivity of the depth estimate is
related to the inverse of the length of the flow vector. If there are any
errors in it, the depth map will be scaled either too far or too close,
resulting in motion estimates that are too large or too small. A better

112

way of scaling the depth map would have been to set the average depth of
the tires equal to 1 m via a Least-Squares fit.

The motion estimates are very close to the actual values. Table 4.6
shows the motion estimates for the 4 pairs of images. The motion was
found to be a translation along the optical axis with very little rotation.
The largest value of rotation was 0.006 radians, or about a third of a
degree.

Table 4.6 Motion Estimates for Various Pairs of TwoTires Images

Image Pair U* V* W A B C

Images 1 & 4 0.000 0.000 0.015 -0.000 -0.000 -0.001

Images 1 & 6 0.000 0.000 0.031 -0.002 -0.001 -0.001

Images 1 & 8 0.000 0.000 0.046 0.002 -0.001 -0.006

Images 1 & 10 0.000 0.000 0.053 -0.002 -0.002 -0.005

*These parameters were set identically equal to zero

Table 4.7 shows the translation estimates, the actual translations, and
the percentage errors. The first optical flow was scaled to a 3 pixel flow
vector, so the error in the motion estimate scaling should be about 33%.
In fact, the motion estimate is -21% off the actual motion. The second
and third motion estimates are surprisingly close to their actual values.
The last motion estimate if off by -7.3%. However, its optical flow was
scaled by a 10 pixel flow vector. Thus, it can be expected to have an
error of 10%.

Table 4.7 Comparison of Translation Estimate to Actual

Image Pair W (m) W (in) Actual (in) Error %

Images 1 & 4 0.015 0.59 0.75 -21.3

Images 1 & 6 0.031 1.22 1.25 -2.4

Images 1 & 8 0.046 1.81 1.75 +3.4

Images 1 & 10 0.053 2.09 2.25 -7.3

113

Figure 4.6 Depth Map from Motion Estimation of TwoTlres Images 1 & 4

114

:~·~:~~

:~riab~i~6.·:·:

··~:~~·:

Figure 4.7 Depth Map from Motion Estimation of TwoTires Images 1 & 6

115

Figure 4.8 Depth Map from Motion Estimation of TwoTires Images 1 & 8

116

Figure 4.9 Depth Map from Motion Estimation of TwoTires Images 1 & 10

117

The second sequence of images used to test the motion estimation is the
FineBooks sequence. Various books, for which the author was fined for
returning late to Barker Library, were stacked in the computer/storage
room about 4 feet in front of the camera. The sequence contains 4
images, and the camera was translated 4 inches between successive
images.

The motion estimates, as shown in Table 4.8, are very close to the actual
values. All the W components of translation are close to the correct value
of 10 cm, and the rotation components are all near zero.

The depth maps, shown in Figures 4.10-4.12, show that the books stand
out very distinctly from the background. The depth to the books is
around 1.4 m, and the depth to the background is about 2.5 m. The
depth maps could aid in hazard avoidance if they could be fused together
into some obstacle map that showed the positions of obstacles on the
ground plane.

Table 4.8 MIotion Estimates for Various Pairs of FineBooks Imaaes

Image Pair U* V* W A B C

Images 1 & 2 0.000 0.000 0.092 -0.004 -0.001 0.003

Images 2 & 3 0.000 0.000 0.099 -0.004 -0.001 0.000

Images 3 & 4 0.000 0.000 0.107 -0.004 -0.001 0.005

*These parameters were set identically equal to zero

118

Figure 4.10 Depth Map from FineBooks Images 1 & 2

119

.-...: : :: : .:: .
..... .. :: : :

Figure 4.11 Depth Map from FineBooks Images 2 & 3

120

CP

:·:·:·: :~ ·::s·:·: ~

i:i

·::i::·:

~5:
: ·::"~·'·:·

:::::: :-:· :::

S3Ii:::::::'::~·'

~iiiiiiiii:i::

::,::..:.: :i:i
':'x t:::: :: :t· :i-:·:·i:l:i:i:i8S::: ':::::
'~i :::. ::·:·:· :i·:·:::r:::::::RI·:·;.·.;~.·:·'··

~i:·:·:·X·WZ·'·~·'

:::.:

i:

iij
::`-"F·:

···:······::::: `''':':':':.':1.':2~2~Z.li:, ::::·:::::::::·:·:·:·:·:
~~~~~:::. ..... ·;..·:..

Figure 4.12 Depth Map from FineBooks Images 3 & 4

121

- -;., .• ..... . .......... .....

:·:·i~ci~bi~S~~

.5'



Microprocessor Re-Reconsiderations

Just as we reconsidered the number of computations involved in
implementing the motion vision system when we added the product of
cosines weights, we must now re-reconsider the computational
requirements of the motion vision system with the 4 DOF model for the
Micro-Rover's motion. Since we are implementing fewer degrees of
freedom, there are less coefficients to calculate and fewer equations to
solve.

The number of computations per data block have been significantly
reduced from 55 to 23. Only one element of the 3 x 3 S matrix and only
2 elements of the 3 x 3 Q matrix need to be computed. Table 4.9 shows
the computations per data block.

Table 4.9 Matrix Calculations for Each Data Block

Calculation Mult Div Add Sub

S matrix 1 1 1

Q matrix 2 2

gT matrix 2

R matiix

D vector 2 2 2

E vector 4 4

Total 7 5 11

Table 4.10 shows that the number of computations required to update a
depth value has also been reduced. The savings result because the U
and V components of the translation were eliminated. This changes the
dot product between the su and sT vectors and the translation vector to a
simple scalar multiplication.

122



Table 4.10 Calculations to Update a Depth Value

Calculation Mult Div Add Sub

numerator 4 1

denominator 8 1 5 2

Total 12 1 6 2

The number of calculations per step of the iteration has thus been
reduced. The fewer computations required to generate the 4 x 4 array
and the 4-D vector are due to the fewer number of computations per data
block. The number of calculations to update a depth value also
contributes to the lower number of computations per step of the
iteration. Additionally, the number of computations to solve the 4 linear
equations is reduced, although its influence is negligible. The number of
computations to calculate the product of cosines weights is not affected
since the weights are generated from the flow vectors (which still have 2
components - u and v!). Table 4.11 shows the number of computations
per step of the iteration.

Table 4.11 Computations Required per Step of the Iteration

The final microprocessor re-reconsiderations are shown in Table 4.12.
When comparing these results to those in Table 3.2, one notices that the
number of cycles per computation has increased by almost 50% from 4.0
to 5.9. This is significant, but not as dramatic as may have been

123

Type of Computation Number of Computations

Compute 6x6 Matrix 1,568

Compute 6-D Vector 2,744

Solve Linear Equations 74

Update Depth Map 4,116
Calculate Weights 8,428

Safety Margin 8,465

Total 25,395



anticipated. The computations required to calculate the product of

cosines weights have become the most significant computation sink.

Table 4.12 Microprocessor Re-Reconsiderations

Clock Speed 30 MHz

Duty Ratio 50%

Effective Clock Speed 15 MHz

Number of Computations 2,539,500

Cycles per Computation 5.9

Chapter Summary

In this chapter, the Least-Squares equations for the motion of the Micro-

Rover were tested. The narrow field of view of the camera makes it

impossible to distinguish rotation from lateral translation. Since the

Micro-Rover isn't expected to move laterally, a 4 degree of freedom model,

which eliminates the lateral translations, was developed in place of the 6

degree of freedom model for motion. The motion estimates using this

model are close to the actual values. Sensitivity analyses were performed

to examine the motion estimates from sequences of images. They

showed that the estimates were reliable and could be used in a dead-

reckoning navigation system.

124



Chapter 5 Obstacle Recognition

In this chapter, the use of depth maps to aid in hazard avoidance is
explored. A single depth map can generate an obstacle map, which is a
top-down view of the ground plane with potential hazards marked. The
locations of obstacles are placed on the obstacle map using uncertainty
regions which represent our best knowledge about the obstacles'
locations. Due to the uncertainty regions and some incorrect flow
vectors that manage to get through the product of cosines filter, there
will be noise in an obstacle map generated from a single depth map.
Therefore, obstacle maps from a sequence of images are combined
together to enhance the locations of obstacles and attenuate the noise.
The final test applied to an obstacle map should be a binary threshold
filter, which determines whether or not an obstacle is present in a small
region of the map.

Obstacle Recoonition from the Depth Maps

The first step in generating an obstacle map from a single depth map is
translating the scene points from the camera coordinate system to the
world coordinate system. The depth values in a depth map mark the
distances to various scene points. These scene points represent various
structures or obstacles in the environment. The coordinates of these
scene points can be translated from the camera coordinate system to the
world coordinate system by using the depth values. The depth values are
the Z coordinates of the scene points.

The next step is to take the world coordinates and drop them straight
down onto the ground plane. This requires knowledge of the Micro-
Rover's attitude. In this thesis, we will assume that both the pitch and
roll of the Micro-Rover are zero, i.e. the Y axis is perpendicular to the
ground plane. The positions of the various scene points on this ground
plane comprise an obstacle map. The Micro-Rover can then navigate
around obstacles by noting their positions relative to its own.

125



To be more explicit, the depth value is used with the x and y normalized
coordinates to find the position of the obstacle and its height. The depth
value is the distance of the obstacle along the optical axis, or the Z
coordinate of the obstacle. The x coordinate of the data block and the
depth value are be used to find the X coordinate of the obstacle by
multiplying them together. Since we are projecting the world coordinates
onto a ground plane, the Y coordinate is not needed. However, the height
can be used to differentiate a match on an obstacle from a match on the
ground plane. Thus, the y coordinate and the depth value are multiplied
to obtain the height. Figure 5.1 shows the translation of a scene point
onto the ground plane.

Depth = D

Figure 5.1 Translation of Scene Point onto the Ground Plane

126

I



An obstacle map is quantized by dividing it into many, small regions.
The dimensions of these increments are based upon the resolution
required by the navigation computer and those obtainable by the vision
system. The obstacle maps that were generated by TwinScreenTM used
square increments that were 5 cm on a side.

A scene point cannot be dropped onto the ground plane and placed in a
single increment because there is some uncertainty to the actual position
of the point. As discussed in Chapter 4, there is an uncertainty
associated with each depth value that is inversely proportional to its
length. Additionally, a depth value corresponds to a data block which
has a finite width and height in the image plane. This width and height
in the image plane corresponds to an uncertainty in the width and height
of the world coordinate.

In our testing, a depth uncertainty, or uncertainty in the Z coordinate, is
assigned to each world coordinate and based upon the length of the
associated flow vector. Our sensitivity analysis, in which the derivative of
the Least-Squares estimate for the depth with respect to a change in one
coordinate of the flow vector was found, showed that the depth estimate
has an uncertainty, or error, that is inversely proportional to the length
of the flow vector. Thus, the boundaries for the uncertainty region on the
Z axis are the Z coordinate of the scene point ± the inverse of the length
of the flow vector.

An additional uncertainty in the X component is assigned to each scene
point and is based upon the width of the data block. Each data block is
16 pixels wide. The center of the data block determines the x and y
coordinates in the image plane. An uncertainty of 4 pixels to either side
of center is assigned to the x component. This gives us a minimum and
maximum value for the x coordinate, and hence a minimum and
maximum value for the X coordinate.

The extent of the X component uncertainty is dependent upon the
particular depth value since the minimum and maximum x coordinates
actually define angles. The minimum and maximum x components are

127



divided by the principal distance to normalize them. These normalized
values are actually tangents of the minimum and maximum angles
between a ray to the scene point and the optical axis. The X components
are found by multiplying these tangents by a depth value. Thus, the X
component uncertainty gets larger as the depth increases.

The uncertainty region that we are using is a trapezoid since we have two
sides that are parallel and two sides that are not. The uncertainty in the
depth creates 2 parallel boundaries that are perpendicular to the Z axis.
The X component uncertainty creates 2 boundaries that meet at the
center of projection.

The process of generating an obstacle map begins by translating each
data block onto the ground plane as an uncertainty region. The size of
the uncertainty region reflects the uncertainty in both the depth estimate
and the X component. Since there are many depth values to translate
onto the ground plane, there is a possibility that 2 or more uncertainty
regions could overlap on the ground plane.

To represent overlaps of the uncertainty regions, the obstacle map must
display several shades of gray. At each increment in the obstacle map, a
count is kept on the number of uncertainty regions that overlap that
increment. This count is then converted into a grayscale color, with a
darker shade of gray representing many overlapping uncertainty regions.
The obstacle map can then be viewed and interpreted easily.

The 4 depth maps from the TwoTires sequence that was analyzed in

Chapter 4 were converted into obstacle maps. They are shown in Figures
5.2 - 5.5. The TwinScreenTM functions used to generate the obstacle
maps are presented in Appendix C.

128



-2:m -1

m .m ....... ..............

. ..m...

...m.. ....

m .... .. ... .. ... ..

.3rn Om

.. ..... .... ....

.. .. ... .. .. .. ... .

.. ... .Af k . ... ..

Figure 5.2 Obstacle Map from Depth Map for TwoTires Images 1 & 4

129

m

o°°·

°o

2m



2m

.. ..............o

......•o•........

. . .... °........................--

Figure 5.3 Obstacle Map from Depth Map for TwoTires Images 1 & 6

130

-2m -1

. 4 m ..... .................

.2 m ........ ..............

I m ......................

_ · _·

nnr

I

i

::::::
::::::
·::::::

... ~i.........
:i:::::·:

:~·~
x:~

::::::~~ .

iiii~

~i:::

si
· · · · ·

;,·~.·
::~::

.~:

ii~:· ·~~::~·.·.



Figure 5.4 Obstacle Map from Depth Map for TwoTires Images 1 & 8

131



-2 m

•4 m....

.2m ...........

m ........

-1 n

........... i-

........... i -

2m

Figure 5.5 Obstacle Map from Depth Map for TwoTires Images 1 & 10

132

- ·····- ---- ---- --

I



An obstacle map generated from a single depth map, as these 4 obstacle
maps are, may be noisy due to errors in the flow vectors that produce
errors in the depth estimates. Quantization errors can produce errors in
the flow vectors. As previously discussed, the accuracy of the depth
estimate is inversely proportional to the length of the underlying flow
vector. Additionally, some incorrect matches may get through the
product of cosines filter. These incorrect matches produce erroneous
flow vectors, which lead to noise in the obstacle map.

An obstacle map can be improved by combining the depth maps from a
sequence of images because the noise will be reduced. An obstacle map
generated from a single depth map contains a lot of noise as seen in the
previous obstacle maps. However, this noise should be uncorrelated
between obstacle maps generated from different depth maps. Therefore,
using a sequence of depth maps to generate an obstacle map should
reinforce the points that are obstacles and attenuate points that are
noise.

The process of fusing the depth maps is performed as follows. The first
depth map from a sequence of images is used to generate an initial depth
map. Then, the next image is used to generate an intermediate obstacle
map. For every increment in the intermediate map where one or more
uncertainty regions overlap, the count at the corresponding increment in
the first obstacle map is increased by this value. For every increment in

the intermediate map where no uncertainty regions overlap, the
corresponding increment in the first obstacle map is checked and
decremented by one if its value is not zero.

This method of combining the depth maps will tend to enhance any

obstacles and attenuate any noise. The count, or grayscale, at
increments which continually have one or more uncertainty regions
overlap it will grow, or get darker. At increments where a few uncertainty
regions from a single depth map overlapped, the count, or grayscale, will
decrease, or become lighter.

133



-2 ITJh

·:.·.·.·

:·:·

ii
'~''''''''''''''''''''''`'~''''''

There is a simple rational behind this method of filtering. If several
depth maps report this location as an obstacle, the value at the
increment will be high, and there is probably an obstacle there.
However, if this location is reported as an obstacle only a few times (most
likely because of noise) then the value will be low, and this location is
probably clear.

An obstacle map was generated for the 4 TwoTires depth maps and is
shown in Figure 5.6. The tires, spools, and chair are distinctly shown in
black. There is some noise in the obstacle map, but it is much less than
in the 4 individual obstacle maps.

2m

.... .. ...... .............

-4m.

. a • ........

. ........Im .····

Figure 5.6 Obstacle Map from the 4 TwoTires Depth Maps

The last step required to use this obstacle map to avoid hazards is to
make a decision at each increment whether or not an obstacle is present.
There is still some noise in the fused obstacle map, so not every
increment which has a non-zero count can be accepted as an obstacle.

134

,,
IU~

'

.............. °

............. o.°

.... ..........



Some count threshold must be established, above which it is very likely
that an obstacle is present and below which it is very improbable that an
obstacle is present. The exact threshold depends upon the relative
importance of Type I errors (failing to detect an obstacle) to Type II errors
(incorrectly flagging an obstacle) in a particular application. The fused
obstacle map in Figure 5.6 was thresholded and appears in Figure 5.7.

Figure 5.7 Obstacle Map from 4 TwoTires Images after Thresholding

An obstacle map was generated from each of the depth maps from
FineBooks sequence. Figures 5.8 - 5.10 show the 3 obstacle maps.
this case, the books stand out clearly as an obstacle in each of
obstacle maps. However, there is still some noise in the maps.

the
In

the

135



-2

4m ........

.2 m .........

2m ........

Im........

Im 2

..........

.. .. .. . .. . .
.... .... ....Iiiiii: i

i'"' 'K i·'''''

• .... .. o ... °.

...... °°. . . . . .

-1:

Figure 5.8 Obstacle Map from Depth Map for FineBooks Images 1 & 2

136

I

m M

..............

..............··

.............. ·

.. .... ..

.. .... ..

..............··

.............. ·



.4m ---r ---n --------2 m

.4 m -- -....... ..........

.. .... ..

Im 2

......V..............

. ° .......... ....

m

°................ ......

-- - -

Figure 5.9 Obstacle Map from Depth Map for FineBooks Images 2 & 3

137

-2 m

o



Figure 5.10 Obstacle Map from Depth Map for FineBooks Images 3 & 4

138



The 3 obstacle maps were then fused together, and the resulting obstacle
map is shown in Figure 5.11. Now, the books as well as the background
stand out clearly as obstacles. Additionally, the noise has been reduced.

Figure 5.11 Obstacle Map from 3 FineBooks Depth Maps

139

m

;!°°

4m ......

.2m......

I1m ......

2m

..... .... ... .... ....

m-2.

......... o.

............ o

.......... I~



The fused obstacle map was then thresholded to produce the obstacle
map shown in Figure 5.12.

a 2 mm -Im-2.

.4m -........

i2m ........

I m ........

Figure 5.12 Obstacle Map from 3 FineBooks Images after Thresholding

140

° .........
.. ........... ..

.. .... ..

0 m In



ChaPter Summary

This chapter discussed how the depth maps could be transformed into
obstacle maps and used in hazard avoidance. Each depth value can be
translated into a scene point by using the x and y coordinates of the
corresponding data block. The world coordinate point can then be
dropped onto the ground plane to mark an obstacle. An uncertainty
region should be drawn around this point on the ground plane because
there is an uncertainty in the actual depth of the point as well as the X
coordinate. Several obstacle maps from a series of images may be
combined to enhance obstacles and attenuate noise. The final step is to
set a threshold that determines whether or not there is an obstacle at
each increment.

141



142



Chapter 6 Conclusion

The aim of this project was to develop a motion vision system that
could be implemented on a small, low-power vehicle, such as a Micro-
Rover. It was desired to use the camera we already had on-board the
Micro-Rover to estimate both its motion and an obstacle map of the
environment. The motion estimates between images could be used in
a dead-reckoning navigation system, and the obstacle map could be
used for hazard avoidance.

Current motion vision systems require too many computations per
second to be implemented on a small vehicle. The size and power
constraints of the Micro-Rover limit the computational complexity of
the vision system. Implementing the conventional brightness gradient
method would require about 120 million computations per second,
assuming 4, 256 x 256 images were processed, and each iteration for
the motion required 10 steps. This is on the order of workstation or
multiple-workstation computing to achieve a real-time motion vision
system.

An alternate way of implementing motion vision in real-time uses
pattern matching and leaves considerably less computations to be
performed by a microprocessor. An integrated circuit chip designed
for HDTV applications will take a pattern from one image and find the
best match within a region of another image. This chip can match
256 x 256 images at a rate of 52 images per second. The processor
must then perform about 1.2 million computations per second, under
the same assumptions and using the product of cosines weights. The
number of computations is about 2 orders of magnitude less than the
brightness gradient method at the expense of a single, low-power (can
I make this claim without justifying it?) board.

The requirements of the motion vision system were that it produce
motion estimates that are reasonably accurate and obstacle maps that
could be used to avoid hazards. The proposed Micro-Rover mission, as
outlined by the Jet Propulsion Laboratory in Pasadena, CA, requires a

143



navigational accuracy of 10%, i.e. the error in its position should be at
most 10% of the distance traveled. Using the obstacle maps to avoid
hazards requires that almost all hazards are recognized and very few
false alarms are generated.

The motion was estimated for several translations along the optical
axis, and the results show that the matching algorithm can produce
reasonable estimates that are within 10%. Table 4.7 shows the
estimates for 4 image pairs from the TwoTires sequence. The only
estimate that is more than 10% from the actual value is the first, in
which the flow vector to which the depth map was scaled is only 3
pixels long. The sensitivity analysis shows that the expected error for
this case should be about 33%. The other 3 estimates are very close to
the actual values, with errors of -2.4%, +3.4%, and -7.3%.

It is worthwhile to note at this point that the motion estimates are
best when the flow vectors calculated from the matches are as long as
possible. The depth map must be scaled by some measurement of the
environment. In this case, the depth associated with a particular data
block is measured, and the depth value at that data block is scaled to
equal the measured depth. All other depth values in the depth map
are scaled by this scaling factor. The scaling factor is related to the
length of the flow vector associated with the particular data block, so if
the length if off, the scaling factor will be incorrect.

An example with illustrate this point. Assume the depth for a
particular data block is measured as 5 m, and the motion between
images is a translation of 3 cm, which should produce a flow vector
that is 3 pixels long at that data block. However, suppose that the
matching produces a flow vector of length 2 pixels. This data block
stands out as a farther point when its flow vector is 2 pixels as
opposed to 3 pixels, so scaling its depth to 5 m will scale all depths to
be closer than they actually are. Thus, the world will appear to be
smaller than it actually is, and the resulting motion estimate will be
less than the 3 cm actual translation.

144



It is important to remember that the sensitivity of a depth value to a 1
pixel error in the length of the flow vector is inversely proportional to
this length. In the previous example, the scene would be scaled to be
1/3, or 33%, smaller than it actually was. However, if the flow vector
associated with the particular data block were 8 pixels long, the error
in the scene scaling would be only -12.5%.

This fact requires the development of a system in which the lengths of
the flow vectors are fed back to the image capture hardware to adjust
the time between images. The image capture hardware will "grab" an
image, wait for a specified length of time, and then "grab" another
image. The time between images can be set by the microprocessor
after it calculates some metric on the length of the flow vectors and
decides the appropriate time between images. Note that the flow
vectors at the edge of the image should be the longest most of the
time, so the metric may not need to incorporate all flow vectors.

When the motion estimates are combined with a low-pass filter, it is
expected that very good results can be obtained. The Least-Squares
equations remove the effects of most of the errors in the flow vectors,
but there will be some variation in successive motion estimates that
can be removed by filtering out the high-frequency components. The
Micro-Rover cannot contribute to these high-frequency components
because the motion of the mechanical structure cannot change that
quickly.

Rotation remains a stumbling block for this vision system, as well as
for most vision systems, because the field of view of the camera is very
small. As discussed in Chapter 4, there is little or no distinction
between flow vectors due to rotation and flow vectors due to lateral
translation. The suggestion in this thesis is to change the model for
the Micro-Rover's motion to eliminate the lateral translations which it
cannot perform.

Additionally, this vision system places a constraint upon the rotation
between images because the data block cannot move outside the

145



search window. The allowable rotation between images permits the
data block to move to the edge of the search window. Appendix D
discusses the maximum rotations for the case of 16 x 16 data blocks
using 32 x 32 search windows.

This rotation constraint is obvious from the implementation of this
vision system, however, the author expects it to also apply to other
vision systems. Because they are not as intuitively easy, finding the
constraint may not be as straight-forward. It is probably reasonable to
assume that the brightness gradient method works when an image
point has moved 8 pixels, but how about 16 or 24 pixels? It is not
obvious whether or not it will work. Additionally, for a movement of
24 pixels, about 10% of the image is new, and one must wonder if the
results are affected.

The depth maps obtained from this vision system can be used for
obstacle avoidance when they are translated to a top-down view. The
depth values correspond to scene points, or points on a structure or
obstacle. The world coordinates of these points can be found, and
then these points can be dropped down onto a ground plane. Each
scene point should be represented not as a point on the ground plane,
but as an uncertainty region to represent the uncertainty in both
depth and width. A large number of overlapping uncertainty regions at
an increment in the ground plane indicates that there is a high
probability that there is an obstacle.

The obstacle maps must be integrated over time to filter out erroneous
obstacles or noise that result from errors in the flow vectors. Since

the image is quantized, a flow vector may be off by a small amount,
resulting in an incorrect depth value. Additionally, a totally incorrect
flow vector could get through the product of cosines filter and
produce a totally incorrect depth value. The errors in the flow
vectors, and hence depth values, generate stray uncertainty regions
that are filtered out when several obstacle maps are combined.

146



Obstacle maps, generated by translating the depth maps and then
integrating them over time to filter out erroneous obstacles, can be
used for hazard avoidance. Chapter 5 shows various obstacles maps in
which obstacles appear as large, black spots, and false alarms appear
as small, gray spots. These obstacle maps can then be used by setting
a threshold, above which an obstacle is said to be present. Alternately,
one could set several thresholds, to which the Micro-Rover attaches
varying levels of significance. Although these obstacle maps cannot
reconstruct the environment, they should more than adequately
provide the locations of obstacles or hazards.

The obstacle maps probably cannot be used for guiding a robotic arm
to pick up an object, but it is expected that other sensors will be
implemented in these situations. The errors in the depth estimates
are inversely proportional to their length. The smallest error is
therefore about 12.5% when 16 x 16 data blocks are used with 32 x
32 search windows. Additionally, the vision system is a motion vision
system, i.e. the depth map can only be generated when there is
motion between images, preferably motion that produces large flow
vectors. However, it is expected that a robotic manipulator will have
some tactile sensor that will assist it after the vision system guides it
to a position that is close to the object of interest.

To provide depth information when the Micro-Rover is not moving, a
binocular stereo system could be implemented using the same pattern
matching approach. In this case, the motion is known because it is
really the distance between the 2 camera positions. The depth values
can be calculated directly, without iteration, by using the Least-
Squares equations from Chapter 2.

One way of using this binocular stereo depth map is to select various
depth values and use them to scale the depth map from the motion
vision system. This is identical to how measured depth values from
the laser range-finder would be incorporated into the vision system.
Several measured depth values would be selected and subtracted from
the depth values at the corresponding data blocks. The differences

147



would be squared and then summed. The Least-Squares estimate for
the scaling factor minimizes the sum of squared errors when each of
the depth map values is multiplied by this number.

An alternate way of using the binocular stereo depth map is to
substitute it for the depth map from the motion vision system. In this
case, solving for the motion of the Micro-Rover is no longer an
iterative process. The Least-Squares equations for motion will yield
direct estimates. This will considerably reduce the computational
requirements of the microprocessor because all calculations are
analytic.

A quick test of the ability of a binocular stereo system using the
pattern matching approach is presented in Appendix E. It shows that
binocular stereo could be used to provide some measurement of the
environment and make the vision system an independent, complete
sensor system.

The limited resolution of the flow vectors remains a stumbling block

because it forces a level of discreteness on the vision system. There

are 17 possible values for each component of a flow vector. This

implies that there can be at most 289 different flow vectors. This can

affect the final motion estimate, although using 196 different flow

vectors should eliminate most of the effect. However, the depth

estimates can only be very rough because there are only 289 different,

discrete depth values. Additionally, if binocular stereo is used, the

discreteness is even worse, as shown in Appendix E.

To reduce the effects of discreteness, a multi-resolution approach

could be implemented to yield higher-resolution flow vectors. For

example, assume that a 512 x 512 image were used. Every other pixel

could be used to process a 256 x 256 image, as was done in this

thesis. Then, the position of the best match could be used as a

starting point in a higher-resolution matching. The first, 16 x 16 data

block is actually a region in the 512 x 512 image that contains 32 x 32

pixels. These finer pixels could be divided into 4, 16 x 16 data blocks

148



and used to find the best match around the initial best match position.
The resulting flow vector has effectively 33 possible values for each
component.

The processing costs are very minimal since we now have 4 flow
vectors for each data block and it is no longer necessary to calculate
neighbor flow vectors. The original, lower-resolution 16 x 16 data
block represents 4, higher-resolution, 16 x 16 data blocks, which can
all be matched against an appropriate search window. This yields 4
flow vectors which can be used with a new weight to measure the
quality of a match at the data block. The neighbor flow vectors, which
were calculated so that a weight could be assigned to each data block,
are no longer necessary.

In short, this thesis has shown that the pattern matching approach
offers a viable alternative to the brightness gradient method that is
commonly implemented because it produces comparable results at a
fraction of the processing cost. The bulk of the processing can be
performed in real-time on an integrated circuit chip originally
designed for HDTV applications. The remaining number of
calculations that must be performed by a microprocessor are about 2
orders of magnitude less than those required by the brightness
gradient method. Thus, the pattern matching approach offers the
ability to implement the motion estimation and obstacle map
calculations in real-time on a PC-level processor at the expense of an
additional piece of hardware.

149



150



Appendix A The Code That Performs the Matchings

The following code was extracted from TwinScreenTM, the program
that was written to test the pattern matching approach to motion
vision. There are 2 main functions that perform the matchings. The
first function is "Perform_MultipleMatching( )". It orchestrates the
matching over an entire image. The variables for each data block and
search window are set up in this function, and the second function is
called to actually perform the matching. If the user requests that
neighbor data blocks be processed, the second function is also called
for each neighbor data block.

The second function is "Perform_Matching( )". It actually calculates
the match error between the data block and the search window for
each possible position of the data block in the search window. If the
data block is 16 x 16 and the search window is 32 x 32, this function
processes 17 x 17, or 289 matches. The best match position as well
as its error and the zero offset error are returned.

/******** ********* **/

/***** #define's *****/
/********************* /

#define NIL OL

#define IMAGE_WIDTH 256 /* width of pixel map in pixels */
#define IMAGE_HEIGHT 216 /* height of a pixel map in pixels */

#define INFINITE_DEPTH 1000.0

********************************************/

/****** camera calibration parameters ******/
/***** ****************************************/

#define FOCAL_LENGTH 0.0085 /* principal distance in meters */
#define CCD_ARRAY_WIDTH 0.005 /* width of CCD array in meters */
#define PIXELS 256.0 /* horizontal resolution */
#define PRIN_POINT_Y 108.0 /* location of principal point */
#define PRIN_POINT_X 128.0 /* in terms of pixel elements */

/*********************/
/***** typedef's ******/
/********************/

151



/* For each flow vector, the following data is stored: */
typedef struct FlowVectorRecord {

Point theOffset; /* the offset to the best match position */
Point aveOffset; /* the ave best match offset with its 4 neighbors */
long bestError; /* the match error at the best match position */
long aveError; /* the average match error over all positions */
long zeroError; /* the match error at the zero offset position */
int invVar; /* the inverse variance weight */
int offVar; /* the offset to offset plus variance weight */
int aveOffVar; /* the ave offset to ave offset plus variance */
int sumCosine; /* the sum of cosines, or dot products, weight */
int prodCosine; /* the product of cosines weight */
double depth; /* the estimated depth, Z, at this data block */

} FlowVectorRecord, *FlowVectorPtr, **FlowVectorHandle;

/* For an image that contains an optical flow, this data is stored: */
typedef struct OpticalFlowRecord {

Point topLeft; /* top left corner of top left, or first, DB */
Point botRight; /* top left corner of bottom right, or last, DB */
int dataHeight; /* height of a data block */
int dataWidth; /* width of a data block */
double U, V, W, A, B, C; /* motion parameters */
Boolean neighborsUsed; /* neighbor DB's used and weights calc'd? */
Boolean depthMapUsed; /* was a depth map calc'd? */
Boolean showBoth; /* show both arrows and values? */
Boolean viewDepthMap; /* show depth map or show weights? */
Boolean showGoodVectors; /* show only vectors within range? */
Boolean useDepthFilter; /* use depth values to filter? */
double minWeight, maxWeight; /* min and max values displayed */
double minDepth, maxDepth; /* min and max values displayed */
int theWeight; /* type of weight used for solving motion */
FlowVectorHandle firstFlowVector; /* handle to FV record of ist DB */

} OpticalFlowRecord, *OpticalFlowPtr, **OpticalFlowHandle;

/* Note: The flow vector records will be allocated in one continguous
* block with firstFlowVector being a handle to the first record. In
* essence, we will have dynamically allocated an array in memory.
*/

/* For each image, the following information is stored: */
typedef struct ImageRecord (

Str255 name; /* name of window */
WindowPtr imWindow; /* pointer to image's window */
ControlHandle horizScroll; /* horizontal scroll bar */
ControlHandle vertScroll; /* vertical scroll bar */
PixMapHandle imPixMap; /* handle to pixel map */
BitMap imBitMap; /* bit map used if displaying on B&W monitor */
Point displayPt; /* pixel in top left corner of window */
Rect imRect; /* rect in pixel map displayed on screen */
int magnification; /* N by N screen pixels = 1 image pixel */
struct ImageRecord **next; /* handle to next image record */
OpticalFlowHandle flowData; /* handle to data used to draw arrows */

} ImageRecord, *ImagePtr, **ImageHandle;

152



Thefollowingfunction orchestrates the matching process over an entire image. The
data block and search window positions are set-up and thefunctionPerformMatching
is called tofmnd the best match.

void PerformMultiple_Match(saveMatchResults)
Boolean saveMatchResults; /* should match results be saved to disk? */

int dataHeight, dataWidth; /* height and width of data block */
int searchHeight, searchWidth; /* height and width of search window */
int dataRow,,dataCol; /* coords of top left corner of data block */

Point DB; /* number of data blocks vertically and horizontally */

int continueMultiple, fileRefNum, i;

FlowVectorHandle multipleArrayHnd;/* data block flow vector records */
FlowVectorPtr currentDataBlockPtr; /* current flow vector record */

FlowVectorHandle neighborArrayHnd;
FlowVectorPtr currentNeighborPtr;
FlowVectorPtr topNeighborBlockPtr;
FlowVectorPtr botNeighborBlockPtr;/*

FlowVectorHandle newArrayHnd; /* h
FlowVectorPtr newArrayPtr; /* pc

/* neighbor flow vector records */
/* current neighbor FV record */
/* top left neighbor FV record */
bottom left neighbor FV record */

Landle to overlay result records */
dinter to overlay result records */

OpticalFlowHandle flowDataHnd;/* temp handle to optical flow record */
OpticalFlowPtr flowDataPtr; /* tenp pointer to optical flow record */

Rect theRect;
Point topLeftNeighbor, botRightNeighbor;

long bestMatch;
long averageMatch;
long zeroMatch;

/* best match error */
/* average match error over all positions */

/* match error of zero offset position */

long offsetPtV,offsetPt_H;/* offset coords from Perform_Matching() */

long sumOffsets_V, sumOffsets_H, sumSqrOffsetsV, sumSqrOffsets_H;
double averageOffset.V, averageOffset_H; /* average flow vector */
double offsetVarianceV, offsetVarianceH, offsetVariance;
long offsetSqrd, lengthSqrd;
double offsetLen, averageLen;
double dotProduct, normalizingFactor, normalDotProduct;
double sumCosines,prodCosines;/* sum and product of cosines weights */

long currentTop_V, currentTop_H, currentBotV, currentBot H;

long FVRsize;
long OFRsize;

/* size of flow vector record in bytes */
/* size of optical flow record in bytes */

/* find dimensions of data block and search window */
Get_ImageSize(dataImage, &dataHeight, &dataWidth);
GetImage_Size(searchImage, &searchHeight, &searchWidth);

153



/* find number of data blocks vertically and horizontally */
DB.v = (botRight.v - topLeft.v) / dataHeight + 1;
DB.h = (botRight.h - topLeft.h) / dataWidth + 1;

Flow vector results are stored in memory referenced by multipleArrayflnd.

/* find size of flow vector record in bytes */
FVRsize = (long) sizeof(FlowVectorRecord);

/* allocate memory for DB.v times DB.h flow vector records */
multipleArrayHnd = (FlowVectorHandle)

NewHandle ( ((long)DB.v)* ( (long)DB.h)*FVRsize);
if (!multipleArrayHnd) {
AlertUser((UCP) "\pError allocating array for multiple results",

(UCP) "\p", (UCP) "\pNot enough memory! ", (UCP) "\p");
return;

}

/* Allocate space for neighboring results array. If it can't be
* allocated, don't calculate neighbor block results, but still
* calculate data block results. Note that there is one more neighbor
* block both vertically and horizontally.
*/
if (calcVariances) { /* compute neighboring data block matches? */
neighborArrayHnd = (FlowVectorHandle)

NewHandle(((long)DB.v+lL)*((long)DB.h+1L)*FVRsize);
if (!neighborArrayHnd)
AlertUser((UCP) "\pError allocating array for neighbor results",

(UCP) "\p",
(UCP)"\pData block matches will be calculated! ",
(UCP) "1\p" );

}
else
neighborArrayHnd = OL;

/* open file to save match results if requested */
if (saveMatchResults)
if (!New_Match_File(&fileRefNum))

saveMatchResults = FALSE;

/***********************************************/

/***** Perform Matching for Neighbor Blocks *****/
/*************************************************/

Find best match positionsfor the neighbor (staggered) data blocks.

if (neighborArrayHnd) {
HLock(neighborArrayHnd);

/* get pointer to first neighbor flow vector record */
currentNeighborPtr = *neighborArrayHnd;

/* offset data blocks 1/2 of a data block outward in all directions */
topLeftNeighbor.v = topLeft.v - dataHeight/2;
topLeftNeighbor.h = topLeft.h - dataWidth/2;
botRightNeighbor.v = botRight.v + dataHeight/2;
botRightNeighbor.h = botRight.h + dataWidth/2;

/* perform match algorithm for all neighbor blocks */

154



for (dataRow=topLeftNeighbor.v;
dataRow<=botRightNeighbor v; dataRow+=dataHeight)

for (dataCol=topLeftNeighbor.h;
dataCol<=botRightNeighbor h; dataCol+=dataWidth)

/* adjust data block and search block positions */
theRect.top = dataRow;
theRect.left = dataCol;
theRect.bottom = dataRow + dataHeight;
theRect.right = dataCol + dataWidth;
SetImageRect(dataImage, &theRect);
theRect.top = dataRow - offSet.v;
theRect.left = dataCol - offSet.h;
theRect.bottom = theRect.top + searchHeight;
theRect.right = theRect.left + searchWidth;
Set_ImageRect(searchImage, &theRect);

/* Perform matching for selected data and search rectangles. */
continueMultiple = Perform_Matching(&zeroMatch, &bestMatch,

&offsetPt_V, &offsetPtJH, &averageMatch);
/* If there was an error, return to main program. */
if (!continueMultiple) {
Trash_Image(multipleResult);
Trash_Image(overlayResult);
DisposHandle(multipleArrayHnd);
DisposHandle(neighborArrayHnd);
return;

}
/* save offsetPt in "neighborArray" */
currentNeighborPtr->theOffset.v = offsetPt_V;
currentNeighborPtr->theOffset.h = offsetPt_H;
currentNeighborPtr++; /* point to next flow vector record */

}

/********************************************************/

/***** Perform Matching for Requested Data Blocks *****/
/******************************************************/

Find best match positionsfor the actual data blocks.

HLock (multipleArrayHnd);

/* get pointer to first data block flow vector record */
currentDataBlockPtr = *multipleArrayHnd;

for (dataRow=topLeft.v; dataRow<=botRight.v; dataRow+=dataHeight)
for (dataCol=topLeft.h; dataCol<=botRight.h; dataCol+=dataWidth) {

/* indenting is shifted to the left starting here */

/* adjust data block and search block positions */
theRect.top = dataRow;
theRect.left = dataCol;
theRect.bottorr = dataRow + dataHeight;
theRect.right = dataCol + dataWidth;
Set_Image_Rect(dataImage, &theRect);
theRect.top = dataRow - offSet.v;

155



theRect.left = dataCol - offSet.h;
theRect.bottom = theRect.top + searchHeight;
theRect.right = theRect.left + searchWidth;
Set_Image_Rect(searchImage, &theRect);

/* Perform matching for selected data and search rectangles. */
continueMultiple = Perform_Matching(&zeroMatch, &bestMatch,

&offsetPt_V, &offsetPt H, &averageMatch);
if (!continueMultiple) { /* if there was an error */

Trash._Image(multipleResult);
TrashImage(overlayResult);
DisposHandle (multipleArrayHnd);
if (neighborArrayHnd) DisposHandle (neighborArrayHnd);

return;
}
/* force match error to be at least one */
if (bestMatch < 1)
bestMatch = 1;

if (zeroMatch < 1)
zeroMatch = 1;

/* save results in flow vector handle */
currentDataBlockPtr->theOffset.v = (int) offsetPtV;
currentDataBlockPtr->theOffset.h = (int) offsetPtH;
currentDataBlockPtr->bestError = bestMatch;
currentDataBlockPtr->aveError = averageMatch;
currentDataBlockPtr->zeroError = zeroMatch;

/* calculate other record elements if neighbor blocks were processed */
if (neighborArrayHnd) {
/* get pointer to top left neighbor flow vector record */
topNeighborBlockPtr = *neighborArrayHnd;
topNeighborBlockPtr += (long)

((dataRow-topLeft.v)/dataHeight*(DB.h+1));
topNeighborBlockPtr += (long) ((dataCol-topLeft.h)/dataWidth);
/* get pointer to bottom left neighbor flow vector record */
botNeighborBlockPtr = *neighborArrayHnd;
botNeighborBlockPtr += (long)

(((dataRow-topLeft.v)/dataHeight+l)*(DB.h+1));
botNeighborBlockPtr += (long) ((dataCol-topLeft.h)/dataWidth);

/* initialize cosine weights */
sumCosines = 0.0; /* sum of normalized dot products */
prodCosines = 1.0; /* product of normalized dot products */
/* initialize sum of flow vectors and sum of squared flow vectors */
sumOffsets_V = offsetPtV;
sumOffsets_H = offsetPtH;
sumSqrOffsetsV = SquareLong(offsetPt_V);
sumSqrOffsetsH = SquareLong(offsetPt_H);
/* find length of data block flow vector */
offsetSqrd = SquareLong(offsetPt_V) + SquareLong(offsetPtH);
offsetLen = sqrt((double) offsetSqrd);

/* incorporate 4 neighbor flow vectors */
for (i=0; i<2; i++)(/* process left neighbors, then right neighbors */
/* get top and bottom flow vectors */
currentTopV = (long) topNeighborBlockPtr->theOffset.v;
currentTop_H = (long) topNeighborBlockPtr->theOffset.h;

156



currentBot_V = (long) botNeighborBlockPtr->theOffset.v;
currentBot_H = (long) botNeighborBlockPtr->theOffset.h;
/* add vertical and horizontal corponents to sum of flow vectors */
sumOffsets_V += currentTop_V + currentBotV;
sumOffsets_H += currentTop_H + currentBotH;
/* add vert and horiz corponents to sum of squared flow vectors */
sumSqrOffsets V+=SquareLong(currentTopV)+SquareLong(currentBotV);
sumSqrOff setsH+=SquareLong (currentTop.H) +SquareLong (currentBotH);
/* compute dot product of top neighbor and data block FVs */
dotProduct = (double)

(offsetPt_V*currentTop.V+offsetPtH*currentTopH);
/* compute squared length of neighbor FV */
lengthSqrd = SquareLong(currentTop_V) + SquareLong(currentTopH);
/* compute product of neighbor FV length and data block FV length */
normalizingFactor = sqrt((double) lengthSqrd)*offsetLen;
/* normalize dot product */
if (normalizingFactor > 0.0)

normalDotProduct = dotProduct/normalizingFactor;
else

normalDotProduct = 0.0;
/* add dot product of top neighbor and BD FVs to "sumCosines" */
sumCosines += normalDotProduct;
/* multiply "prodCosines" by dot product */
prodCosines *= normalDotProduct;
/* if dot prod < 0, i.e. FVs were > 90 deg apart, prodCosines = 0 */
if (prodCosines < 0.0)

prodCosines = 0.0;
/* do the same thing for bottom neighbor FV */
dotProduct = (double)

(offsetPt_V*currentBot_V+offsetPt_H*currentBotH);
lengthSqrd = SquareLong(currentBot_V) + SquareLong(currentBot_H);
normalizingFactor = sqrt((double) lengthSqrd)*offsetLen;
if (normalizingFactor > 0.0)
normalDotProduct = dotProduct/normalizingFactor;

else
normalDotProduct = 0.0;

sumCosines += normalDotProduct;
prodCosines *= normalDotProduct;
if (prodCosines < 0.0)

prodCosines = 0.0;
/* increment pointers to neighbor blocks */
topNeighborBlockPtr++;
botNeighborBlockPtr++;

/* compute components of average flow vector */
averageOffset_V = ((double) sumOffsetsV) / 5.0;
averageOffset_H = ((double) sumOffsets.H) / 5.0;
/* compute length of average flow vector */
averageLen = sqrt((double) (averageOffset_V*averageOffsetV)

+ (double) (averageOffset_H*averageOffsetH));
/* compute components of variance of the 5 flow vectors */
offsetVariance_V = ((double)sumSqrOffsets.V)/5.0

- averageOffset_V*averageOffsetV;
offsetVarianceH = ((double)sumSqrOffsetsH)/5.0

- averageOffset_H*averageOffsetH;
/* compute combined variance */
offsetVariance = offsetVariance_H + offsetVarianceV;
/* store components of average flow vector */

157



if (averageOffset_V >= 0.0)
currentDataBlockPtr->aveOffset.v = (int) (averageOffset_V + 0.5);

else
currentDataBlockPtr->aveOffset.v = (int) (averageOffset_V - 0.5);

if (averageOffsetH >= 0.0)
currentDataBlockPtr->aveOffset.h = (int) (averageOffset_H + 0.5);

else
currentDataBlockPtr->aveOffset.h = (int) (averageOffset_H - 0.5);

/* store inverse variance weight in memory */
if (offsetVariance != 0.0) /* can't divide by zero */

currentDataBlockPtr->invVar = (int) (100.0/offsetVariance + 0.5);
else

currentDataBlockPtr->invVar = 100;.
/* store offset to offset plus variance weight */
if (offsetLen != 0.0) /* weight equals zero if DB FV is zero */

currentDataBlockPtr->offVar = (int)
(100.0*offsetLen/(offsetLen+offsetVariance) + 0.5);

else
currentDataBlockPtr->offVar = 0;

/* store average offset to average offset plus variance weight */
if (averageLen != 0.0) /* weight equals zero if average FV is zero */
currentDataBlockPtr->aveOffVar = (int)

(100.0*aaverageLen/(averageLen+offsetVariance) + 0.5);
else

currentDataBlockPtr->aveOffVar = 0;
/* store sum of cosines weight */
if (sumCosines >= 0.0) /* average, then take absolute value */
currentDataBlockPtr->sumCosine = (int)(100.0*(sumCosines/4.0)+0.5);

else
currentDataBlockPtr->sumCosine = (int)(100.0*(-sumCosines/4.0)+0.5);

/* store product of cosines weight */
if (prodCosines >= 0.0)

currentDataBlockPtr->prodCosine = (int) (100.0*prodCosines + 0.5);
else

currentDataBlockPtr->prodCosine = 0;
} /* end if (neighborArrayHnd) */

else { /* neighbor blocks were not processed, so zero out weights */
currentDataBlockPtr->aveOffset.v = (int) offsetPt_V;
currentDataBlockPtr->aveOffset.h = (int) offsetPt_H;
currentDataBlockPtr->invVar = 0;
currentDataBlockPtr->offVar = 0;
currentDataBlockPtr->aveOffVar = 0;
currentDataBlockPtr->sumCosine = 0;
currentDataBlockPtr->prodCosine = 0;

/* initialized depth to one */
currentDataBlockPtr->depth = 1.0;
/* increment pointer to data block flow vector */
currentDataBlockPtr++;

} /* end perform matching for requested data blocks */

158



/***** Save Arrows Data for Multiple Results Image *****/
/******************************************************/

Flow vector results are stored fir the opticalfiow image.

/* get size of flow data record */
OFRsize = (long) sizeof(OpticalFlowRecord);
/* allocate space for a new flow data record */
flowDataHnd = (OpticalFlowHandle) NewHandle(OFRsize);
if (flowDataHnd) { /* if a record has been allocated... */
/* assign flow data record to multiple result image */
(*multipleResult)->flowData = flowDataHnd;
HLock(flowDataHnd);
flowDataPtr = *flowDataHnd;
/* store record elements */
flowDataPtr->topLeft.v = topLeft.v;
flowDataPtr->topLeft.h = topLeft.h;
flowDataPtr->botRight.v = botRight.v;
flowDataPtr->botRight.h = botRight.h;
flowDataPtr->dataHeight = dataHeight;
flowDataPtr->dataWidth = dataWidth;
flowDataPtr->U = 0.0; /* translation components */
flowDataPtr->V = 0.0;
flowDataPtr->W = 1.0;
flowDataPtr->A = 0.0; /* rotation components */
flowDataPtr->B = 0.0;
flowDataPtr->C = 0.0;
flowDataPtr->theWeight = ZERO_ERROR_TO_BEST_ERROR;
/* mark whether neighbor blocks were used */
if (neighborArrayHnd)
flowDataPtr->neighborsUsed = TRUE;

else
flowDataPtr->neighborsUsed = FALSE;

/* depth map calc'd is FALSE since a new optical flow was created */
flowDataPtr->depthMapUsed = FALSE;
/* mark show depth map as FALSE since we want weights displayed */
flowDataPtr->showBoth = TRUE;
flowDataPtr->viewDepthMap = FALSE;
/* show good vectors is FALSE since we want to display all vectors */
flowDataPtr->showGoodVectors = FALSE;
flowDataPtr->useDepthFilter = FALSE;

/* set minimum and maximum range for weights */
flowDataPtr->minDepth = 0.0;
flowDataPtr->maxDepth = 10000.0;
flowDataPtr->minWeight = 0.0;
flowDataPtr->maxWeight = 10000.0;

/* assign "multipleArrayHnd" FV records to multiple result image */
flowDataPtr->firstFlowVector = multipleArrayHnd;

HUnlock (flowDataHnd);

) /* end if (flowDataHnd) */

159



/*****************************************************/

/***** Save Arrows Data for Overlay Results Image *****/
/*******************************************************/

Flow vector results are stored for the ouerlay results image.

/* allocate space for a new flow data record */
flowDataHnd = (OpticalFlowHandle) NewHandle(OFRsize);
if (flowDataHnd) ( /* if a record has been allocated... */
/* assign flow data record to overlay result image */
(*overlayResult)->flowData = flowDataHnd;
HLock(flowDataHnd);
flowDataPtr = *flowDataHnd;
/* store record elements */
flowDataPtr->topLeft.v = topLeft.v;
flowDataPtr->topLeft.h = topLeft.h;
flowDataPtr->botRight.v = botRight.v;
flowDataPtr->botRight.h = botRight.h;
flowDataPtr->dataHeight = dataHeight;
flowDataPtr->dataWidth = dataWidth;
flowDataPtr->U = 0.0;
flowDataPtr->V = 0.0;
flowDataPtr->W = 1.0;
flowDataPtr->A = 0.0;
flowDataPtr->B = 0.0;
flowDataPtr->C = 0.0;
flowDataPtr->theWeight = ZERO_ERROR_TO_BEST_ERROR;
/* mark whether neighbor blocks were used */
if (neighborArrayHnd)

flowDataPtr->neighborsUsed = TRUE;
else

flowDataPtr->neighborsUsed = FALSE;
/* depth map calc'd is FALSE since a new optical flow was created */
flowDataPtr->depthMapUsed = FALSE;
/* mark show depth map as FALSE since we want weights displayed */
flowDataPtr->showBoth = TRUE;
flowDataPtr->viewDepthMap = FALSE;
/* show good vectors is FALSE since we want to display all vectors *
flowDataPtr->showGoodVectors = FALSE;
flowDataPtr->useDepthFilter = FALSE;

/* set minimum and maximum range for weights */
flowDataPtr->minDepth = 0.0;
flowDataPtr->maxDepth = 10000.0;
flowDataPtr->minWeight = 0.0;
flowDataPtr->maxWeight = 10000.0;

/* allocate space for flow vector records */
newArrayHnd = (FlowVectorHandle)

NewHandle(((long)DB.v)*((long)DB.h)*FVRsize);
if (newArrayHnd) {

flowDataPtr->firstFlowVector = newArrayHnd;
HLock (newArrayHnd);
newArrayPtr = *newArrayHnd;
/* copy flow vector record data from "multipleArrayHnd" */
newArrayPtr = *newArrayHnd;
currentDataBlockPtr = *multipleArrayHnd;
for (dataRow=0; dataRow<DB.v; dataRow++)

160



for (dataCol=O; dataCol<DB.h; dataCol++) {
/* copy record elements */
newArrayPtr->theOffset.v = currentDataBlockPtr->theOffset.v;
newArrayPtr->theOffset.h = currentDataBlockPtr->theOffset.h;
newArrayPtr->aveOffset.v = currentDataBlockPtr->aveOffset.v;
newArrayPtr->aveOffset.h = currentDataBlockPtr->aveOffset.h;
newArrayPtr->bestError = currentDataBlockPtr->bestError;
newArrayPtr->aveError = currentDataBlockPtr->aveError;
newArrayPtr->zeroError = currentDataBlockPtr->zeroError;
newArrayPtr->invVar = currentDataBlockPtr->invVar;
newArrayPtr->offVar = currentDataBlockPtr->offVar;
newArrayPtr->aveOffVar = currentDataBlockPtr->aveOffVar;
newArrayPtr->sumCosine = currentDataBlockPtr->sumCosine;
newArrayPtr->prodCosine = currentDataBlockPtr->prodCosine;
newArrayPtr->depth = currentDataBlockPtr->depth;
/* get pointer to next flow vector records */
newArrayPtr++;
currentDataBlockPtr++;

else
end if (mewArrayHnd) */

(*overlayResult)->flowData = OL;

HUnlock(flowDataHnd);
/* end if (flowDataHnd) */

/****************************** ***********/

/***** Save Match Results to Disk *****/
/***f*****************************

Save flow vector results to disk.

if (saveMatchResults) {
/* the match results will be stored in a file as follows:

theOffset.v(1,1)
theOffset.h
aveOffset.v
aveOffset.h
bestMatch
aveMatch
zeroMatch
invVar
offVar
aveOffVar
sumCosine
prodCosine

the0ffset.v(2,1)
theOffset.h
aveOffset.v
aveOffset.h
bestMatch
aveMatch
zeroMatch
invVar
offVar

theOffset.v(l,2)
theOffset.h
aveOffset.v
aveOffset.h
bestMatch
aveMatch
zeroMatch
invVar
offVar
aveOffVar
sumCosine
prodCosine

theOffset.v(2,2)
theOffset.h
aveOffset.v
aveOffset.h
bestMatch
aveMatch
zeroMatch
invVar
offVar

theOffset.v(l,DB.h)
theOffset.h
aveOffset.v
aveOffset.h
bestMatch
aveMatch
zeroMatch
invVar
offVar
aveOffVar
sumCosine
prodCosine

theOffset.v(2,DB.h)
theOffset.h
aveOffset.v
aveOffset.h
bestMatch
aveMatch
zeroMatch
invVar
offVar

161

}



aveOffVar
sumCosine
prodCosine

theOffset.v(DB.v,1)
theOffset.h
aveOffset.v
aveOffset.h
bestMatch
aveMatch
zeroMatch
invVar
offVar
aveOffVar
sumCosine
prodCosine

aveOffVar
sumCosine
prodCosine

theOffset.v(DB.v,2)
theOffset.h
aveOffset.v
aveOffset.h
bestMatch
aveMatch
zeroMatch
invVar
offVar
aveOffVar
sumCosine
prodCosine

aveOffVar
sumCosine
prodCosine

theOffset.v(DB.v,DB.h)
theOffset.h
aveOffset.v
aveOffset.h
bestMatch
aveMatch
zeroMatch
invVar
offVar
aveOffVar
sumCosine
prodCosine

with tabs between entries on a line and returns between lines. */

for (dataRow=O; dataRow<DB.v; dataRow++) {
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
Write_Int (fileRefNum, currentDataBlockPtr++->theOffset.v);
Write Tab(fileRefNum);

}
WriteReturn(fileRefNum);
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
WriteInt (fileRefNum, currentDataBlockPtr++->theOffset.h);
WriteTab(fileRefNum);

}
Write_Return(fileRefNum));
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
WriteInt (fileRefNum, currentDataBlockPtr++->aveOffset.v);
WriteTab(fileRefNum);

}
Write_Return(fileRefNum);
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
Write Int (fileRefNum, currentDataBlockPtr++->aveOffset.h);
Write_Tab(fileRefNum);

}
Write_Return (fileRefNum);
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {

Write_Long(fileRefNum, currentDataBlockPtr++->bestError);
Write_Tab (fileRefNum);

}
Write_Return (fileRefNum);
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) (
Write_Long (fileRefNum, currentDataBlockPtr++->aveError);
Write_Tab (fileRefNum) ;

}
WriteReturn (fileRefNum);

162



currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
Write_Long (fileRefNum, currentDataBlockPtr++->zeroError);
Write_Tab(fileRefNum);

}
Write_Return (fileRefNum);
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
Write_Int (fileRefNum, currentDataBlockPtr++->invVar);
Write_Tab(fileRefNum);

}
Write_Return(fileRefNum);
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
Write_Int (fileRefNum, currentDataBlockPtr++->offVar);
Write_Tab(fileRefNum);

}
Write_Return(fileRefNum);
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
Write_Int (fileRefNum, currentDataBlockPtr++->aveOffVar);
Write_Tab(fileRefNum);

Write_Return(fileRefNum);
currentDataBlockPtr = *multipleArrayHnd + ((long)DB.h*(long)dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
Write_Int (fileRefNum, currentDataBlockPtr++->sumnCosine);
Write_Tab(fileRefNum);

}
Write_Return(fileRefNum);
currentDataBlockPtr = *multipleArrayHnd + ((long) DB.h* (long) dataRow);
for (dataCol=O; dataCol<DB.h; dataCol++) {
Write_Int (fileRefNum, currentDataBlockPtr++->prodCosine);
Write_Tab(fileRefNum);

WriteReturn(fileRefNum);
WriteReturn (fileRefNum);

) /* end for dataRow */
Close_File(fileRefNum);
) /* if (saveMatchResults) */

/* unlock multiple array (multiple result) so it can be relocated */
HUnlock (multipleArrayHnd);
/* unlock new array (overlay result) so it can be relocated in memory */
HUnlock (newArrayHnd);
/* unlock neighbor array and dispose of it */
HUnlock (neighborArrayHnd);
DisposHandle(neighborArrayHnd);

} /* end function PerformjMultipleMatch */

77The followingfunctionfinds the best match of a data block in a given search window.

/* This function performs the matching between the DB and the SW. */
int Perform._Matching(zeroOffset,bestMatch,offsetPtV,

163



offsetPt_H,averageMatch)
long *zeroOffset, *bestMatch, *offsetPt_V, *offsetPt_H, *averageMatch;

PixMapHandle dataPixMap, searchPixMap, matchPixMap;
Rect dataRect, searchRect;
int dataHeight, dataWidth;
int searchHeight, searchWidth;
int matchHeight, matchWidth;
long topLeftDataPixel, topLeftSearchPixel;
long vertOffset, horizOffset;
long tenp, searchAdjmnt;
char *startDataPixel, *currentDataPixel;
char *startSearchPixel, *currentSearchPixel;
char *startMatchPixel, *currentMatchPixel;
int deltaV, deltaH, dataV, dataH;
long *matchArray, *currentCell;
long highestValue, difference;
double fractionPixel, newAverage;
Point toZero;

The data and search images contain the pixel patterns to be matched. The pixel maps
store each pixel as a byte- The byte corresponds to the brightness value of the pixel

/* check if data and search windows have been opened */
if ((!dataImage) I(!searchImage)) {
AlertUser((UCP) "\pData and search windows must be", (UCP) "\p",

(UCP) "\popened to perform matchings! ", (UCP) "\p");
return(0);

/* find dimensions of match results */
Get_Image_Size(dataImage, &dataHeight, &dataWidth);
Get_ImageSize(searchImage, &searchHeight, &searchWidth);
matchHeight = searchHeight - dataHeight + 1;
matchWidth = searchWidth - dataWidth + 1;

MatchResult is a handle to an image record which has a pixel map as one of itsfields.
The pixel map stores the match errors as pixels where each pixel has been normalized
between 0 and 127- the gray scales used in this program.

/* if the matching window has not been opened... */
if (!matchResult)
if (!Open_Window(&matchResult,MATCH WINDOW,FALSE,

matchHeight,matchWidth, 8))
return(0);

/* allocate space for matching array. Each cell is a 4 byte integer. */
matchArray = (LongPtr)

NewPtr(((long)matchWidth)*((long)matchHeight)*4L+1000L);
if (!matchArray) {
AlertUser((UCP) "\pError allocating array for matchings", (UCP) "\p",

(UCP) "\pNot enough memory! ", (UCP) "\p");
return(0);

/* highest value of matching is used for normalization - init to 1 */
highestValue = 1L;

/* get data and search rectangles to later find byte offsets */

164



Get_ImageRect(dataImage, &dataRect);
GetImageRect(searchImage, &searchRect);

/* get handles to data and search pixel maps */
dataPixMap = (*dataImage)->imPixMap;
searchPixMap = (*searchImage)->imPixMap;
matchPixMap = (*matchResult)->imPixMap;

/* compute starting address in data pixel map */
horizOffset = (long) dataRect.left;
vertOffset = ((long) dataRect.top) * ((long) IMAGEWIDTH);
topLeftDataPixel = (long) (*dataPixMap)->baseAddr;
topLeftDataPixel += vertOffset + horizOffset;

/* compute starting address in search pixel map */
horizOffset = (long) searchRect.left;
vertOffset = ((long) searchRect.top) * ((long) IMAGE_WIDTH);
topLeftSearchPixel = (long) (*searchPixMap)->baseAddr;
topLeftSearchPixel += vertOffset + horizOffset;

/* cycle through all possible DB positions in the search window */
for (deltaV=O; deltaV<matchHeight; deltaV++)

for (deltaH=O; deltaH<matchWidth; deltaH++) {
startDataPixel = (CharPtr) topLeftDataPixel;
searchAdjmnt = (long) (deltaV * IMAGE_WIDTH + deltaH);
startSearchPixel = (CharPtr) (topLeftSearchPixel + searchAdjmnt);

/* compute cell address in matching array */
terrp = (long) matchArray;
temp += 4L * (long) (deltaV * matchWidth + deltaH);
currentCell = (LongPtr) temrp;

/* clear current cell */
*currentCell = OL;

/* cycle through all data pixels */
for (dataV = 0; dataV < dataHeight; dataV++)

for (dataH = 0; dataH < dataWidth; dataH++) {
/* find address of current data pixel */

temp = (long) startDataPixel;
temp += (long) (dataV * IMAGE_WIDTH + dataH);
currentDataPixel = (CharPtr) terp;

/* find address of current search pixel */
tenrg = (long) startSearchPixel;
terar += (long) (dataV * IMAGE_WIDTH + dataH);
currentSearchPixel = (CharPtr) temp;

/* compute difference between pixel values */
difference = ((long)*currentSearchPixel) -

((long)*currentDataPixel);
if (difference < 0)

difference = -difference;
*currentCell += difference;

if (*currentCell > highestValue)
highestValue = *currentCell;

/* initialize best match, zero offset, and offset point */
toZero.h = matchWidth / 2; /* zero match in center of search window */
if (matchWidth % 2 == 0) toZero.h -= 1;
toZero.v = matchHeight / 2;/* zero match in center of search window */
if (matchHeight % 2 == 0) toZero.v -= 1;
temp = (long) matchArray;
termp += 4L * (long) (toZero.v * matchWidth + toZero.h);
*zeroOffset = *((LongPtr) tenp);

165



*bestMatch = *zeroOffset;
*offsetPt_V = OL;
*offsetPt_H = OL;
newAverage = 0.0;

/* compute starting address in matching pixel map */
teap = (long) (*matchPixMap)->baseAddr;
startMatchPixel = (CharPtr) temp;
for (deltaV=0; deltaV<matchHeight; deltaV++)
for (deltaH=0; deltaH<matchWidth; deltaH++) {

/* compute current matching pixel address */
tenrp = (long) startMatchPixel;
temp += (long) (deltaV * IMAGE_WIDTH + deltaH);
currentMatchPixel = (CharPtr) temp;
/* compute cell address in matching array */
temp = (long) matchArray;
temp += 4L * (long) (deltaV * matchWidth + deltaH);
currentCell = (LongPtr) temp;
/* check if current cell is less than the best match */
if (*currentCell < *bestMatch) {

*offsetPt_V = deltaV - toZero.v;
*offsetPt_H = deltaH - toZero.h;
*bestMatch = *currentCell;

}
newAverage = newAverage * ((double)((deltaV*matchWidth)+deltaH));
newAverage += (double) *currentCell;
newAverage /= ((double) ((deltaV*matchWidth) + deltaH) + 1);
/* normalize current cell */
fractionPixel = ((double)*currentCell) / ((double)highestValue);
/* convert to byte value and store in matching pixel map */
*currentMatchPixel = (char) (127.0 * fractionPixel);

}

/* dispose of pointer to match array */
DisposPtr(matchArray);

/* unlock pixel maps and images */
HUnlock(dataPixMap);
HUnlock(searchPixMap);
HUnlock (matchPixMap) ;
HUnlock(dataImage);
HUnlock (searchImage);
HUnlock (matchResult);

/* set average */
*averageMatch = (long) (newAverage+0.5);

/* invalidate match window */
Inval_Image(matchResult);
return(l);

} /* end function Perform_Matching() */

166



Appendix B The Code That Calculates Motion

The following code was used to perform the iteration to solve for the
motion. The iteration for the motion is performed in steps. At each
step, the user may choose to update the depth map from the current
motion estimate and then compute a new motion estimate from the
updated depth map. Alternatively, the user may opt to scale the depth
map to simulate the vision system's response to a sensor, such as a
laser range-finder, that makes some measure on the environment.
Additionally, the user may enter an estimate of the vehicle's motion
and then continue the iteration based upon this starting value.

/***** typedef for data block record *****/

typedef struct {
double u,v;
double x,y;
double s33;
double qll, q12, q21, q31, q32 ;
double rll, r12,r22;
double Z;
double W;

} DataBlockRecord, *DataBlockPtr, **DataBloc

/* flow vector */
/* data block coordinates */
/* elements of S matrix */
/* elemnets of Q matrix */
/* elements of R matrix */

/* depth to scene */
/* data block weight */

kHnd;

/*********************************************/

/***** global varaibles for this file *****/
/*****************************************/

Point topLf, botRt, numDBs; /* boundaries of processing and # of DB's */
int dataHeight, dataWidth; /* height and width of data blocks */

ImageHandle theMatchResult; /*

OpticalFlowHandle theOpticalFlowHnd;

the image which contains the FV's */

/* handle to optical flow data */

FlowVectorHandle currentDataBlockHnd; /* handle to flow vector array */

long DBRsize;
DataBlockHnd theDataBlockHnd;
DataBlockPtr theDataBlockPtr;

double PELwidth, PELfactor;

double U,V,W;
double A,B,C;

/* size of data block record in bytes */
/* handle to DB data records */
/* pointer to DB data records */

/* pixel dimension factors */

/* translation vector components */
/* rotation vector components */

167



double theMin, theMax;
Boolean showGoodVectors;

int theWeight;

This function puts up the dialog box which the user can use to solve the motion
parameters, set the motion parameters, set the depth to a constant value, and scale the
depth.

void Solve_Motion_Dialog()

OpticalFlowPtr theOpticalFlowPtr;
DialogPtr theDialog;
GrafPtr currentPort;
int itemHit; /* dialog item hit */
int itemType; /* type of dialog item */
int theInteger; /* item text converted to integer */
Handle theItem; /* handle to dialog item */
Rect box;
Str255 theText;
Boolean constantDepthBox, scaleFactorBox, saveMotionBox, newMotionBox;
double constantDepth, scaleFactor, tenp;
Boolean U_OK, VOK, W-OK, A_OK, BOK, C OK, CONST_OK, SCALE_OK;

if (!InitSolve_Array()) return;

/* put up dialog box */
theDialog = GetNewDialog(SOLVE_DIALOG, NIL, (WindowPtr)(-1));
if (!theDialog) {
Alert_User((UCP)"\pSolve Motion dialog could not be opened.",

(UCP)"\p", (UCP)"\pNot enough memory! ",(UCP)"\p");
return;

}

/* get initial values for motion parameters
HLock(theOpticalFlowHnd);
theOpticalFlowPtr = *theOpticalFlowHnd;
U = theOpticalFlowPtr->U;
V = theOpticalFlowPtr->V;
W = theOpticalFlowPtr->W;
A = theOpticalFlowPtr->A;
B = theOpticalFlowPtr->B;
C = theOpticalFlowPtr->C;
HUnlock(theOpticalFlowHnd);

/* initialize other parameters */
constantDepth = 1.0;
scaleFactor = 1.0;

/* place current translation and rotation
GetDItem(theDialog, TRANSU, &itemType,
Double_To_String(U, theText, 3);
SetIText(theItem, theText);
GetDItem(theDialog, TRANS_V, &itemType,
Double_To_String(V, theText, 3);

in boxes */
&theItem, &box);

&theItem, &box);

168



SetIText (theItem, theText);
GetDItem(theDialog, TRANSJW, &itemType, &theItem, &box);
Double_To_String(W, theText, 3);
SetIText(theItem, theText);
GetDItem(theDialog, ROTA, &itemType, &theItem, &box);
Double_To_String(A, theText, 3);
SetIText(theItem, theText);
GetDItem(theDialog, ROT_B, &itemType, &theItem, &box);
Double_To_String(B, theText, 3);
SetIText (theItem, theText);
GetDItem(theDialog, ROT_C, &itemType, &theItem, &box);
Double_ToString(C, theText, 3);
SetIText(theItem, theText);

/* select U component of translation */
SelIText(theDialog, TRANSU, 0, 32767);

/* place other values in boxes */
GetDItem(theDialog, CONST_DEPTH_VALUE, &itemType, &theItem, &box);
Double_To_String(constantDepth, theText, 1);
SetIText (theItem, theText);
GetDItem(theDialog, SCALE_DEPTH_VALUE, &itemType, &theItem, &box);
Double_To_String(scaleFactor, theText, 1);
SetIText(theItem, theText);

/* initialize constant depth check box */
constantDepthBox = TRUE;
GetDItem(theDialog, CONST_DEPTH_CHECK, &itemType,
SetCtlValue (theItem, (int) constantDepthBox);

/* initialize scale factor check box */
scaleFactorBox = FALSE;
GetDItem(theDialog, SCALE_DEPTH_CHECK, &itemType,
SetCtlValue(theItem, (int) scaleFactorBox);

/* initialize save motion check box */
saveMotionBox = FALSE;
GetDItem(theDialog, SAVEMOTION_CHECK, &itemType,
SetCtlValue(theItem, (int) saveMotionBox);

/* initialize new motion check box */
newMotionBox = FALSE;

&theItem, &box);

&theItem,

&theItem,

&box);

&box);

GetDItem(theDialog, NEW MOTION_CHECK, &itemType, &theItem, &box);
SetCtlValue(theItem, (int) newMotionBox);

/* hilite SOLVE button */
GetPort(&currentPort);
SetPort(theDialog);
GetDItem(theDialog, CONTINUE_SOLVE, &itemType, &theItem, &box);
PenSize(3, 3);
InsetRect(&box, -4, -4);
FrameRoundRect(&box, 16, 16);
SetPort(currentPort);

/* The user can select one of the following commands:
*

* Stop Button -
*Solve Button -

* Solve Button -

Exits this function and closes the dialog box.
Useful when the motion and depth map have been
masterfully calculated.

Use current motion parameters and find the least-

169



squares depth value at each data block. The depth
map is then used to solve for the least-squares fit
motion.

* Use New Motion Parameters
Use Constant Depth Check Box

*

* Use Constant Depth Check Box

*

* Scale Depth Map Check Box
*

*

*

*

Look at new motion parameters entered
in editable text boxes.

An option that can be checked
before pressing "Solve". Instead
of calculating the new depth map,
all depth values are set to a
constant.

An option that can be checked before
pressing "Solve". Instead of
calculating the new depth map, all
depth values are scaled by a
constant.

ModalDialog(NIL, &itemHit); /* cycles until an enabled item is hit */
while (!(itemHit==STOP_SOLVE)) {

switch (itemHit) {
case CONTINUE_SOLVE: /* continue the iteration for the motion */

/*************************************************/

/** If constant depth map check box is selected **/
/*************************************************/

if (constantDepthBox) {
/* check constant depth value */

GetDItem(theDialog,CONST_DEPTH_VALUE,&itemType,&theItem,&box);
GetIText(theItem, theText);

/* if constant depth value is a valid number */
if (String_To_Double(theText, &tenp)) {
CONST_OK = TRUE; /* signal all is OK */
constantDepth = terrp; /* assign it to constantDepth */

else {
CONSTOK = FALSE;
Alert_User((UCP)"\pThe constant depth map value",(UCP) "\p",

(UCP)"\pshould be a number!",(UCP)"\p");
SelIText(theDialog,CONST_DEPTH VALUE,0,32767); /* highlight */

}
/* if constant value is OK, set all depth values equal to it */

if (CONSTOK) {
Constant_Depth(constantDepth);
GetDItem(theDialog,CONST_DEPTHVALUE,&itemType,&theltem,&box);
Double_To_String(constantDepth, theText, 1);
SetIText(theItem, theText);
constantDepthBox = FALSE;

}
} /* end if (constantDepthBox) */

170



/***************************************/

/** If scale depth map box is selected **/
/ *****************************************/

else if (scaleFactorBox) {
/* check scale factor value */

GetDItem(theDialog,SCALE_DEPTH_VALUE,&itemType,&theItem, &box);
GetIText (theItem, theText);

/* if depth map scaling factor is a valid number */
if (StringToDouble(theText, &temp)) {

SCALE_OK = TRUE; /* signal all is OK */
scaleFactor = temp; /* assign it to scaleFactor */

else {
SCALE_OK = FALSE;
AlertUser ((UCP) "\pThe depth map scale factor", (UCP) "\p",

(UCP) "\pshould be a number! ",(UCP)"\p");
SelIText(theDialog,SCALE_DEPTH_VALUE,0,32767); /* highlight */

/* if scale factor is OK, scale all depth values */
if (SCALE_OK) {

Scale_Depth(scaleFactor);
GetDItemr(theDialog, SCALE_DEPTHVALUE, &itemType, &theltem, &box);
Double_To_String(scaleFactor, theText, 1);
SetIText (theItem, theText);
scaleFactorBox = FALSE;

}
) /* end if (scaleFactorBox) */

/*********************************/

/** If new motion box is selected **/
/************************************/**

else if (newMotionBox) (
/* check values entered in boxes */
GetDItem(theDialog, TRANS_U, &itemType, &theItem, &box);
GetIText(theItem, theText);
if (StringToDouble(theText, &temp)) { /* if a # is present */
U_OK = TRUE; /* signal all is OK */
U = terp; /* assign it to U */

}
else {

U_OK = FALSE;
AlertUser((UCP) "\pThe U component of translation", (UCP) "\p",

(UCP) "\pshould be a number! ", (UCP)"\p");
SelIText(theDialog, TRANS_U, 0, 32767); /* highlight U box */

}
GetDItem(theDialog, TRANS_V, &itemType, &theltem, &box);
GetIText (theItem, theText);
if (StringToDouble(theText, &terp)) { /* if a # is present */

V_OK = TRUE; /* signal all is OK */
V = temp; /* assign it to V */

}
else {

V_OK = FALSE;
AlertUser((UCP) "\pThe V component of translation", (UCP)"\p",

(UCP) "\pshould be a number! ", (UCP) "\p");
SelIText(theDialog, TRANS_V, 0, 32767); /* highlight V box */

171



GetDItem(theDialog, TRANSW, &itemType, &theItem, &box);
GetIText(theItem, theText);
if (String_ToDouble(theText, &temp)) { /* if a # is present */
W_OK = TRUE; /* signal all is OK */
W = terqp; /* assign it to W */

}
else {
WOK = FALSE;
Alert_User( (UCP) "\pThe W component of translation", (UCP) "\p",

(UCP)"\pshould be a number!", (UCP)"\p");
SelIText(theDialog, TRANSW, 0, 32767); /* highlight W box */

}
GetDItem(theDialog, ROT_A, &itemType, &theItem, &box);
GetIText(theItem, theText);
if (String_ToDouble(theText, &temp)) { /* if a # is present */
A_OK = TRUE; /* signal all is OK */
A = tenp; /* assign it to A */

}
else {
A_OK = FALSE;
Alert_User((UCP) "\pThe A component of rotation", (UCP)"\p",

(UCP)"\pshould be a number! ",(UCP)"\p");
SelIText(theDialog, ROT_A, 0, 32767); /* highlight A box */

}
GetDItem(theDialog, ROT_B, &itemType, &theItem, &box);
GetIText (theItem, theText);
if (StringTo_Double(theText, &temp)) { /* if a # is present */
B_OK = TRUE; /* signal all is OK */
B = terrp; /* assign it to B */

}
else {
B_OK = FALSE;
Alert_User((UCP) "\pThe B component of rotation",(UCP) "\p",

(UCP)"\pshould be a number! ",(UCP)"\p");
SelIText(theDialog, ROT_B, 0, 32767); /* highlight B box */

}
GetDItem(theDialog, ROTC, &itemType, &theItem, &box);
GetIText(theItem, theText);
if (String_To_Double(theText, &tenp)) { /* if a # is present */
C_OK = TRUE; /* signal all is OK */
C = tenp; /* assign it to C */

}
else {
C_OK = FALSE;
Alert_User((UCP)"\pThe C cormponent of rotation",(UCP) "\p",

(UCP)"\pshould be a number!", (UCP)"\p");
SelIText(theDialog, ROTC, 0, 32767); /* highlight C box */

)

/* if all motion parameters are OK, find new depth map */
if (U_OK && V_OK && W_OK && A_OK && B_OK && COK)
Solve_DepthFrom_Motion();

/* reset check box */
newMotionBox = FALSE;

}

172



/*********therwise, ***********ind motion ******************************************/
/** Otherwise, find motion from depth, then find new depth map */
/*****************************************************************/

else {
Solve2_Motion_From_Depth ();
SolveDepth_From_Motion () ;

/* use 4 DOF model */

break;
case CONST_DEPTH CHECK:

constantDepthBox = 1 - constantDepthBox;
break;

case SCALE_DEPTH _CHECK:
scaleFactorBox = 1 - scaleFactorBox;
break;

case SAVE_MOTIONCHECK:
saveMotionBox = 1 - saveMotionBox;
break;

case NEW_MOTION_CHECK:
newMotionBox = 1 - newMotionBox;
break;

default:
break;

/* place current translation and rotation
GetDItem(theDialog, TRANS_U, &itemType,
Double_To_String(U, theText, 3);
SetIText(theItem, theText);
GetDItem(theDialog, TRANSV, &itemType,
Double_To_String(V, theText, 3);
SetIText(theItem, theText);
GetDItem(theDialog, TRANSW, &itemType,
Double_To_String(W, theText, 3);
SetIText(theItem, theText);
GetDItem(theDialog, ROT_A, &itemType,
Double_To_String(A, theText, 3);
SetIText(theItem, theText);
GetDItem(theDialog, ROT_B, &itemType,
Double_To_String(B, theText, 3);
SetIText (theItem, theText);
GetDItem(theDialog, ROT_C, &itemType,
Double_To_String(C, theText, 3);
SetIText(theItem, theText);

in boxes */
&theItem, &box);

&theItem,

&theltem,

&box);

&box);

&theItem, &box);

&theItem,

&theItem,

&box) ;

&box);

/* initialize constant depth check box */
GetDItem(theDialog, CONST_DEPTH_CHECK, &itemType, &theItem, &box)
SetCtlValue(theItem, (int) constantDepthBox);

/* initialize scale factor check box */
GetDItem(theDialog, SCALE_DEPTH_CHECK, &itemType, &theItem, &box)
SetCtlValue(theItem, (int) scaleFactorBox);

/* initialize save motion check box */
GetDItem(theDialog, SAVE_MOTION_CHECK, &itemType, &theItem, &box)
SetCtlValue(theItem, (int) saveMotionBox);

/* initialize new motion check box */
GetDItem(theDialog, NEW_MOTION_CHECK, &itemType, &theItem, &box);

173

;



SetCtlValue(theItem, (int) newMotionBox);

/* hilite SOLVE button */
GetPort(&currentPort);
SetPort(theDialog);
GetDItem(theDialog, CONTINUESOLVE, &itemType, &theItem, &box);
PenSize(3, 3);
InsetRect(&box, -4, -4);
FrameRoundRect(&box, 16, 16);
SetPort (currentPort);

ModalDialog(NIL,&itemHit); /* cycles until an enabled item is hit */
}

/* save depth values in flow vector records */
RetreiveDepth_Values ();

/* save motion estimates in optical flow record */
HLock(theOpticalFlowHnd);
theOpticalFlowPtr = *theOpticalFlowHnd;
theOpticalFlowPtr->U = U;
theOpticalFlowPtr->V = V;
theOpticalFlowPtr->W = W;
theOpticalFlowPtr->A = A;
theOpticalFlowPtr->B = B;
theOpticalFlowPtr->C = C;
HUnlock(theOpticalFlowHnd);

Inval_Image(theMatchResult);

DisposDialog(theDialog);

The follofing function takes the current motion estimate and computes the depth value
at each data block.

/* This function takes the motion and solves for the least-squares fit
* depth value at each data block position.
*/

void Solve_Depth_From_Motion()
{

int dataRow, dataCol;
double SuT, SuTsq, SvT, SvTsq, numerator;
double RuP, RvP, IfHalf, rtHalf, denominator;

HLock (theDataBlockHnd);
theDataBlockPtr = *theDataBlockHnd;

for (dataRow=topLf.v; dataRow<=botRt.v; dataRow+=dataHeight)
for (dataCol=topLf.h; dataCol<=botRt.h; dataCol+=dataWidth) {
/* calculate numerator */

SuT = theDataBlockPtr->x * W - U;
SuTsq = SuT * SuT;
SvT = theDataBlockPtr->y * W - V;
SvTsq = SvT * SvT;

174



numerator = SuTsq + SvTsq;
/* calculate denominator */
RuP=theDataBlockPtr->qll*A-theDataBlockPtr->ql2*B

+theDataBlockPtr->y*C;
RvP=theDataBlockPtr->q2 l*A-theDataBlockPtr->qll*B

-theDataBlockPtr->x*C;
ifHalf = (theDataBlockPtr->u - RuP) * SuT;
rtHalf = (theDataBlockPtr->v - RvP) * SvT;
denominator = ifHalf + rtHalf;

/* check if denominator is zero */
if (denominator != 0.0)

theDataBlockPtr->Z = numerator / denominator;
else

theDataBlockPtr->Z = INFINITE_DEPTH;
if (theDataBlockPtr->Z <= 0.0)

theDataBlockPtr->Z = INFINITE_DEPTH;
theDataBlockPtr++;

HUnlock(theDataBlockHnd);

The following function computes the motion of the camera (Micro-Rover) from the
current depth map. Thisfimction uses the 6 degrees offreedom modeL

/* This function takes the depth values and solves for the least-squares
* fit motion using the 6 DOF model.
*/

void Solvel_Motion_From_Depth()

double parameter [7] ;
double rightSide[7];
double matrix[7] [7];
double temp;
double invZ, invZsq; /* i
double weight;
double multiplier; /*
int i,j,k;
int dataRow, dataCol;

/* motion parameters, indices 1->6 */
/* right hand side, indices 1->6 */

/* matrix, indices 1->6, 1->6 */

nverse depth and inverse depth squared */
/* weight on flow vector */

scales a row for Gaussian elimination */

/************** **************** /

/* zero out matrix and rightSide */
/'*********************************/

for (i=l; i<7; i++) {
rightSide[i] = 0.0;
for (j=l; j<7; j++)

matrix[i] [j] = 0.0;

/* zero right hand side */

/* zero matrix element */

/****************r***/

/* create 6x6 array */
/********************/

175



HLock(theDataBlockHnd);
theDataBlockPtr = *theDataBlockHnd;

for (dataRow=topLf.v; dataRow<=botRt.v; dataRow+=dataHeight)
for (dataCol=topLf.h; dataCol<=botRt.h; dataCol+=dataWidth)

/* if we are not showing only good vectors, or if we are not using
* any ratios, or if we are showing only good vectors and this
* vector is within range ...
*/
if ((!showGoodVectors) II(theWeight == NO_RATIO) II

((theDataBlockPtr->W>=theMin)&&(theDataBlockPtr->W<=theMax)))

1.0/theDataBlockPtr->Z;
= invZ * invZ;
= theDataBlockPtr->W;
sub-matrix */

[1]
[31
[2]
[3]
[1]
[2]
[3]

/* add Q sub-matrix */
[4]
[5]
[6]
[4]
[5]
[61
[4]
[5]

/* add QT sub-matr
matrix[4]
matrix [4]
matrix[4]
matrix [5]
matrix[5]
matrix[5]
matrix [6]
matrix [6]

/* add R sub-matrix */
matrix [4]
matrix [4]
matrix [4]
matrix [5]
matrix[ 5 ]
matrix [5]
matrix[61
matrix [6]
matrix [6]

[4]
[5]
[6]
[4]
[5]
[6]
[4]
[5]
[6]

/* add D vector */
rightSide[l] -=
rightSide[2] -=
rightSide[3] +=

invZsq;
theDataBlockPtr->x *
invZsq;
theDataBlockPtr->y *
theDataBlockPtr->x *
theDataBlockPtr->y *
theDataBlockPtr->s33

invZsq;

invZsq;
invZsq;
invZsq;
* invZsq;

-= theDataBlockPtr->qll * invZ;
theDataBlockPtr->ql2
theDataBlockPtr->y *
theDataBlockPtr->q21
theDataBlockPtr->qll
theDataBlockPtr->x *
theDataBlockPtr->q31
theDataBlockPtr->q32
ix */
theDataBlockPtr->qll
theDataBlockPtr->q21
theDataBlockPtr->q31
theDataBlockPtr->ql2
theDataBlockPtr->qll
theDataBlockPtr->q32
theDataBlockPtr->y *
theDataBlockPtr->x *

* invZ;
invZ;
* invZ;
* invZ;
invZ;
* invZ;
* invZ;

* invZ;
* invZ;
* invZ;
* invZ;
* invZ;
* invZ;
invZ;
invZ;

theDataBlockPtr->rll;
theDataBlockPtr->rl2;
theDataBlockPtr->x;
theDataBlockPtr->rl2;
theDataBlockPtr->r22;
theDataBlockPtr->y;
theDataBlockPtr->x;
theDataBlockPtr->y;
theDataBlockPtr->s33;

theDataBlockPtr->u *
theDataBlockPtr->v *
theDataBlockPtr->u *

invZ;
invZ;
theDataBlockPtr->x * invZ;

176

invZ =
invZsq
weight

/* add S
matrix[l]
matrix[l]
matrix[2]
matrix[2]
matrix [31
matrix[3]
matrix[3]

matrix[l]
matrix [1]
matrix [1]
matrix[2]
matrix[2]
matrix[2]
matrix[3]
matrix[3]



rightSide[3] += theDataBlockPtr->v *
/* add E vector */
rightSide[4] += theDataBlockPtr->u *
rightSide[4] += theDataBlockPtr->v *
rightSide[5] -= theDataBlockPtr->u *
rightSide[5] -= theDataBlockPtr->v *
rightSide(6] += theDataBlockPtr->u *
rightSide[6] -= theDataBlockPtr->v *

}
theDataBlockPtr++;

theDataBlockPtr->y * invZ;

theDataBlockPtr->qll;
theDataBlockPtr->q21;
theDataBlockPtr->ql2;
theDataBlockPtr->qll;
theDataBlockPtr->y;
theDataBlockPtr->x;

/* set very small numbers equal to zero */
/*****************************************/

for (i=l; i<7; i++) {
ROFF(&rightSide[i] );
for (j=l; j<7; j++)

ROFF(&matrix[i] [j]);

/* zero right hand side */

/* zero matrix element */

/* ************ ******* *********/

/* perform Gaussian elimination */
/•WWW•WWW1W•WWWW•W

for (i=l; i<6; i++) /* loop through first 5 rows in matrix */
for (j=i+l; j<7; j++) { /* loop through all rows below current */
/* scaling factor */
multiplier = matrix[j] [i)/matrix[i] [i];

/* loop through the 6 elements in the row */
for (k=i; k<7; k++)
/* subtract row element */
matrix[j] [k] -=multiplier*matrix[i] [k];

/* subtract scaled right side */
rightSide[j]-=multiplier*rightSide[i];

}

/****************************************/

/* set very small numbers equal to zero */
/ *****************************************/

for (i=l; i<7; i++) {
ROFF(&rightSide[i]);
for (j=l; j<7; j++)

ROFF(&matrix[i] [j]);

/* zero right hand side */

/* zero matrix element */

/********************/

/* pick off answers */
/********************/

177



for (i=6; i>0; i--) { /* step up from last parameter */
tenrp = rightSide[i]; /* get right hand side value */

/* step through all parameters below current parameter */
for (j=6;j>i;j--)
/* subtract from right hand side */

temp -= matrix[i][j]*parameter[j];

if (matrix[i][i] != 0.0) /* check if divide by zero */
parameter[i] = temp / matrix[i] [i];

else {
Alert_User((UCP)"\pError solving for motion", (UCP)"\p",

(UCP)"\pDivide by zero!!!", (UCP)"\p");
return;

}

/*****************************************/

/* assign parameters to motion variables */
/******************************************/

ROE (parameter []);
ROE (parameter[2]) ;
ROE (parameter [3]) ;
ROE (parameter[4]) ;
ROE (parameter[5]);
ROE (parameter[6]) ;

The following function computes the motion of the camera (Micro-Rover)from the
current depth map. This function uses the 4 degrees offreedom model

/* This function takes the depth values and solves for the least-squares
* fit motion using the 4 DOF model.
*/

void Solve2 Motion_FromDepth()
{

double parameter[7];
double rightSide[7];
double matrix[7] [7];
double terrp;
double invZ, invZsq;
double weight;
double multiplier;
int i,j,k;
int dataRow, dataCol;

/* motion parameters, indices 1->6 */
/* right hand side, indices 1->6 */

/* matrix, indices 1->6, 1->6 */

/* inverse depth and inverse depth squared */
/* weight on flow vector */

/* scales a row for Gaussian elimination */

/*********************************

/* zero out matrix and rightSide */
/******************* 7********/

178



for (i=l; i<7; i++) {
rightSide[i] = 0.0; /* zero right hand side */
for (j=l; j<7; j++)

matrix[i] [j] = 0.0; /* zero matrix element */
}

/********************/

/* create 6x6 array */
/********************/

HLock (theDataBlockHnd);
theDataBlockPtr = *theDataBlockHnd;

for (dataRow=topLf.v; dataRow<=botRt.v; dataRow+=dataHeight)
for (dataCol=topLf.h; dataCol<=botRt.h; dataCol+=dataWidth) {
if ((!showGoodVectors) I(theWeight == NO_RATIO) I I

((theDataBlockPtr->W>=theMin)&& (theDataBlockPtr->W<=theMax)))
invZ = 1.0/theDataBlockPtr->Z;
invZsq = invZ * invZ;
weight = theDataBlockPtr->W;

/* add S sub-matrix */
matrix [1]
matrix[1]
matrix [2]
matrix[2]
matrix[3 3]
matrix [3]
matrix [3]

[I]
[3]
[2]
[3]
[1]
[2]
[3]

/* add Q sub-matri
matrix[1]
matrix[l]
matrix[l]
matrix[2]
matrix [2]
matrix[2]
matrix[3]
matrix [3]

[4]
[5]
[6]
[4]
[5]
[6]
[4]
[5]

/* add QT sub-matr
matrix E4 ]
matrix[4]
matrix[4]
matrix [5]
matrix[5]
matrix [5 ]
matrix[6]
matrix [6]

[1]
[2]
[3]
[1]
[2]
[3]
[1]
[2]

/* add R sub-matrix */
matrix[4]
matrix[4]
matrix [4]
matrix[5]
matrix [5]
matrix [5]
matrix [6]
matrix [ 6]

[4]
[5]
[6]
[4]
[5]
[6]
[4]
[5]

invZsq;
theDataBlockPtr->x *
invZsq;
theDataBlockPtr->y *
theDataBlockPtr->x *
theDataBlockPtr->y *
theDataBlockPtr->s33
.x */
theDataBlockPtr->qll
theDataBlockPtr->ql2
theDataBlockPtr->y *
theDataBlockPtr->q21
theDataBlockPtr->qll
theDataBlockPtr->x *
theDataBlockPtr->q31
theDataBlockPtr->q32
:ix */
theDataBlockPtr->qll
theDataBlockPtr->q21
theDataBlockPtr->q31
theDataBlockPtr->ql2
theDataBlockPtr->qll
theDataBlockPtr->q32
theDataBlockPtr->y *
theDataBlockPtr->x *

theDataBlockPtr->rll;
theDataBlockPtr->rl2;
theDataBlockPtr->x;
theDataBlockPtr->rl2;
theDataBlockPtr->r22;
theDataBlockPtr->y;
theDataBlockPtr->x;
theDataBlockPtr->y;

179

invZsq;

invZsq;
invZsq;
invZsq;
* invZsq;

* invZ;
* invZ;
invZ;
* invZ;
* invZ;
invZ;
* invZ;
* invZ;

* invZ;
* invZ;
* invZ;
* invZ;
* invZ;
* invZ;
invZ;
invZ;



matrix[6][6] += theDataBlockPtr->s33;
/* add D vector */

rightSide[l] -= theDataBlockPtr->u *
rightSide[2] -= theDataBlockPtr->v *
rightSide[3] += theDataBlockPtr->u *
rightSide[3] += theDataBlockPtr->v *

/* add E vector */
rightSide[4] += theDataBlockPtr->u *
rightSide[4] += theDataBlockPtr->v *
rightSide[5] -= theDataBlockPtr->u *
rightSide[5] -= theDataBlockPtr->v *
rightSide[6] += theDataBlockPtr->u *
rightSide[6] -= theDataBlockPtr->v *

}
theDataBlockPtr++;

invZ;
invZ;
theDataBlockPtr->x * invZ;
theDataBlockPtr->y * invZ;

theDataBlockPtr->qll;
theDataBlockPtr->q21;
theDataBlockPtr->ql2;
theDataBlockPtr->qll;
theDataBlockPtr->y;
theDataBlockPtr->x;

/****************************************/

/* set very small numbers equal to zero */
/*****************************************/

for (i=l; i<7; i++) {
ROFF(&rightSide i]);
for (j=l; j<7; j++)

ROFF (&matrix[i] [j] ) ;

/* zero right hand side */

/* zero matrix element */

/*pr**G*************e***lo*******/

/* perform Gaussian elimination */
/*********************************/

for (i=3; i<6; i++) /* loop through last 3 rows in matrix */
for (j=i+l; j<7; j++) { /* loop through all rows below current */
/* scaling factor */
multiplier = matrix[j][i]/matrix[i] [i];

/* loop through the 6 elements in the row */
for (k=i; k<7; k++)
/* subtract row element */
matrix[j][k] -= multiplier*matrix[i] [k];

/* subtract scaled right side */
rightSide[j] -= multiplier*rightSide[i];

}

/*****s*****y****************************/

/* set very small numbers equal to zero */
/ ****************************************/

for (i=l; i<7; i++) {
ROFF(&rightSide[i] );
for (j=l; j<7; j++)
ROFF(&matrix[i][j]);

I

/* zero right hand side */

/* zero matrix element */

180



/*******************/

/* pick off answers */
/********************/

for (i=6; i>2; i--) ( /* step up from last parameter */
temp = rightSide[i]; /* get right hand side value */

/* step through all parameters below current parameter */
for (j=6;j>i;j--)
/* subtract from right hand side */

termp -= matrix[i] [j]*parameter[j];

if (matrix[i] [i] != 0.0) /* check if divide by zero */
parameter[i] = temp / matrix[i] [i];

else {
AlertUser((UCP) "\pError solving for motion", (UCP) "\p",

(UCP)"\pDivide by zero!!!", (UCP) "\p");
return;

}

/* assign parameters to motion variables */
/******************** *********** */

U = 0.0;
V = 0.0;
W = ROE(parameter[3]);
A = ROE(parameter[4]);
B = ROE(parameter[5]);
C = ROE(parameter[6]);

Thefollowing function scales the depth map.

/* This function scales the depth value at each data block position by
* the constant scale factor.
*/

void Scale_Depth(scaleFactor)
double scaleFactor;

{
int dataRow, dataCol;

HLock(theDataBlockHnd);
theDataBlockPtr = *theDataBlockHnd;

for (dataRow=topLf.v; dataRow<=botRt.v; dataRow+=dataHeight)
for (dataCol=topLf.h; dataCol<=botRt.h; dataCol+=dataWidth)

theDataBlockPtr++->Z *= scaleFactor;

HUnlock (theDataBlockHnd);}

181



The followingfunction sets the depth map to a constant value.

/* This function sets the depth value at each data block position equal
* to the constant depth value.
*/
void Constant_Depth(constantDepth)

double constantDepth;
{

int dataRow, dataCol;

HLock(theDataBlockHnd);
theDataBlockPtr = *theDataBlockHnd;

for (dataRow=topLf.v; dataRow<=botRt.v; dataRow+=dataHeight)
for (dataCol=topLf.h; dataCol<=botRt.h; dataCol+=dataWidth)
theDataBlockPtr++->Z = constantDepth;

HUnlock (theDataBlockHnd);
)

The following function initializes the data block data.

/* This function allocates memory for and initializes the records of the
* data block data. The data consists of various marix elements that
* are used to solve for the motion. These matrix elements need only be
* computed once since they are dependent upon the data block position.
* The DB data also contains the appropriate weight selected by the user
* (i.e. the current weight that is displayed in the window). Finally,
* the depth value, which is the only real variable for each DB is
* stored.
*/

int Init_Solve_Array(void)

int dataRow, dataCol; /* counter variables */
double zeroError, bestError, aveError;
double invVar, offVar;
double aveOffVar, sumCosine, prodCosine;
double depth;

Point offsetPt, aveOffset; /* flow vector and average flow vector */

double x, y; /* normalized center of data block */

OpticalFlowPtr theOpticalFlowPtr;

FlowVectorPtr currentDataBlockPtr;

/* front window is either multiple result or overlay result */
theMatchResult = FindImage(FrontWindow());

/* if front window is not an image, i.e. weird error, then exit */
if (!theMatchResult) return(0);

HLock(theMatchResult);

182



/* get handle to optical flow record */
theOpticalFlowHnd = (*theMatchResult)->flowData;

/* exit if there is no handle */
if (!theOpticalFlowHnd) return (0);

HLock(theOpticalFlowHnd);
theOpticalFlowPtr = *theOpticalFlowHnd;

/* get handle to first flow vector record */
currentDataBlockHnd = theOpticalFlowPtr->firstFlowVector;
HLock(currentDataBlockHnd);
currentDataBlockPtr = *currentDataBlockHnd;

/* find match parameters */
topLf.v = theOpticalFlowPtr->topLeft.v;
topLf.h = theOpticalFlowPtr->topLeft.h;
botRt.v = theOpticalFlowPtr->botRight.v;
botRt.h = theOpticalFlowPtr->botRight.h;
dataHeight = theOpticalFlowPtr->dataHeight;
dataWidth = theOpticalFlowPtr->dataWidth;
showGoodVectors = theOpticalFlowPtr->showGoodVectors;
theMin = theOpticalFlowPtr->minWeight;
theMax = theOpticalFlowPtr->maxWeight;
theWeight = theOpticalFlowPtr->theWeight;

/* set depth map flag so that depth values can be displayed */
theOpticalFlowPtr->depthMapUsed = TRUE;

/* find number of data blocks both horizontally and vertically */
numDBs.v = (botRt.v - topLf.v) / dataHeight + 1;
numDBs.h = (botRt.h - topLf.h) / dataWidth + 1;

/* if less than 6 data blocks, there aren't enough constraints */
if (numDBs.v*numDBs.h < 6) {
Alert_User((UCP) "\pNot enough data blocks to solve for", (UCP) "\p",

(UCP)"\pcamera motion. Min 6 DB's required!", (UCP)"\p");
return(0);

)

/* dynamically allocate memory for data block records */
DBRsize = (long) sizeof(DataBlockRecord);
theDataBlockHnd = (DataBlockHnd)

NewHandle(DBRsize*((long)numDBs.v) * ((long)numDBsh));
if (!theDataBlockHnd) {
Alert_User((UCP) "\pMemory could not be allocated", (UCP) "\p",

(UCP)"\pfor data block data!", (UCP)"\p");
return(0);

/* width of pixels in meters */
PELwidth = CCD_ARRAY_WIDTH / PIXELS;

/* width normalized to focal length */
PELfactor = PELwidth / FOCAL_LENGTH;

HLock(theDataBlockHnd);
theDataBlockPtr = *theDataBlockHnd;

183



for (dataRow=topLf.v; dataRow<=botRt.v; dataRow+=dataHeight)
for (dataCol=topLf.h; dataCol<=botRt.h; dataCol+=dataWidth) {

/* get flow vector and weights from data handle */
offsetPt.v = currentDataBlockPtr->theOffset.v;
offsetPt.h = currentDataBlockPtr->theOffset.h;
aveOffset.v = currentDataBlockPtr->aveOffset.v;
aveOffset.h = currentDataBlockPtr->aveOffset.h;
bestError = (double) currentDataBlockPtr->bestError;
aveError = (double) currentDataBlockPtr->aveError;
zeroError = (double) currentDataBlockPtr->zeroError;
invVar = (double) currentDataBlockPtr->invVar;
offVar = (double) currentDataBlockPtr->offVar;
aveOffVar = (double) currentDataBlockPtr->aveOffVar;
sumCosine = (double) currentDataBlockPtr->sumCosine;
prodCosine = (double) currentDataBlockPtr->prodCosine;
depth = currentDataBlockPtr->depth;

/* normalize DB position and flow vector */
x = theDataBlockPtr->x = (((double)(dataCol+dataWidth/2))

-PRIN_POINTX)*PELfactor;
y = theDataBlockPtr->y = (((double)(dataRow+dataHeight/2))

-PRIN_POINTY)*PELfactor;
theDataBlockPtr->u = - offsetPt.h * PELfactor;
theDataBlockPtr->v = - offsetPt.v * PELfactor;

/* take appropriate weight */
switch (theWeight) {
case NO_PRATIO:
theDataBlockPtr->W = 1.0;
break;

case ZERO_ERROR_TO_BEST_ERROR:
theDataBlockPtr->W = zeroError/bestError;
break;

case AVERAGE_ERROR_TO_BEST_ERROR:
theDataBlockPtr->W = aveError/bestError;
break;

case INVERSE_VARIANCE:
theDataBlockPtr->W = invVar;
break;

case OFFSET_TO_OFFSET_PLUS_VARIANCE:
theDataBlockPtr->W = offVar;
break;

case AVEOFFSET_TO_AVEOFFSET_PLUS_VARIANCE:
theDataBlockPtr->W = aveOffVar;
break;

case AVE_COSINE:
theDataBlockPtr->W = sumCosine;
break;

case PROD_COSINE:
theDataBlockPtr->W = prodCosine;
break;

default:
theDataBlockPtr->W = 1.0;
break;

}
/* initialize matrix elements */

theDataBlockPtr->s33 = x*x + y*y;
theDataBlockPtr->qll = x*y;

184



theDataBlockPtr->ql2
theDataBlockPtr->q21
theDataBlockPtr->q31
theDataBlockPtr->q32
theDataBlockPtr->rll
theDataBlockPtr->rl2
theDataBlockPtr->r22

x*x + 1.0;
y*y + 1.0;
y*y*y + (x*x + 1.0)*y;
x*x*x + (y*y + 1.0)*x;
y*y*y*y + 2.0*y*y + x*x*y*y + 1.0;
X*X*X*y + 2.0*x*y + x*y*y*y;
X*X*X*x + 2.0*x*x + x*x*y*y + 1.0;

/* initialize depth */
theDataBlockPtr->Z = depth;

currentDataBlockPtr++;
theDataBlockPtr++;

/* increment to next flow vector record */
/* increment to next DB data record */

HUnlock(theDataBlockHnd);
HUnlock(theOpticalFlowHnd);
HUnlock(currentDataBlockHnd);
HUnlock(theMatchResult);

return(1);

The folowing function stores the depth values in theflow vector records.

/* This function retreives the depth values from the data block records
* and stores the depth values in the flow vector records so that the
* depth map can be displayed either by itself or overlaid on the
* underlying image.
*/

void Retreive_Depth_Values(void)
{
int dataRow, dataCol; /* counter variables */

FlowVectorPtr currentDataBlockPtr;

HLock(currentDataBlockHnd);
currentDataBlockPtr = *currentDataBlockHnd;

HLock(theDataBlockHnd);
theDataBlockPtr = *theDataBlockHnd;

for (dataRow=topLf.v; dataRow<=botRt.v; dataRow+=dataHeight)
for (dataCol=topLf.h; dataCol<=botRt.h; dataCol+=dataWidth)
/* store depth value */
currentDataBlockPtr->depth = theDataBlockPtr->Z;

/* increment to next flow vector record */
currentDataBlockPtr++;

/* increment to next DB data record */
theDataBlockPtr++;

}

HUnlock (theDataBlockHnd);
HUnlock (currentDataBlockHnd);

185



The following functions set the variable equal to zero if it is less than e-1 0.

double ROE (theDouble)
double theDouble;

double theAbsolute;

if (theDouble > 0.0)
theAbsolute = theDouble;

else
theAbsolute = -theDouble;

if (theAbsolute < 1.0e-10)
return ( .0) ;

else
return(theDouble);

void ROFF (theDouble)
double *theDouble;

{
*theDouble = ROE (*theDouble) ;

186



Appendix C The Code That Generates Obstacle Maps

The following code generates obstacle maps from depth maps. Each
depth value from the depth map of the front window is added to an
intermediate obstacle map. An uncertainty region represents the
location of a scene point. The intermediate obstacle map is then fused
with the obstacle map to enhance the locations of any obstacles and
attenuate the locations of noise.

/***** #define's *****/

#define MAP_WIDTH 6.0
#define MAP_DEPTH 5.0
#define MAP_RESOLUTION 0.05

/* in meters */
/* in meters */
/* in meters */

/* the uncertainty in depth is constrained to 1/2 meter */
#define MAX_UNCERTAINTY ((int) (0.5 / MAP_RESOLUTION))

#define FILTER_THRESHOLD 80

Handle obstaclePreMap;

int numIncrmtsWide, numIncrmtsDeep;

/* threshold to decide obstacle */

/* intermediate obstacle map */

/* width and height of map */

Thefollowing function opens a window for the obstacle map and allocates memory for
the intermediate obstacle map.

/* This function initializes or reinitializes the obstacle map image.
* The pixel map is sized or resized according to the desired map size
* and resolution with each pixel representing an
*/
int Init_Obstacle_Map(theObstacleImage)

ImageHandle *theObstacleImage;
{
double mapWidth, mapDepth, mapResolution;

if (*theObstaclelmage)
Trash_Image(*theObstacleImage);

mapWidth = MAPWIDTH;
mapDepth = MAP_DEPTH;
mapResolution = MAP_RESOLUTION;

numIncrmtsWide =
numIncrmtsDeep =

incremental area.

(int) (mapWidth / mapResolution);
(int) (mapDepth / mapResolution);

if (!Open_Window(theObstacleImage,OBSTACLE_WINDOW, FALSE,

187



numIncrmt sDeep, numIncrmtsWide, 3))
return(0);

obstaclePreMap = NewHandle(((long)numIncrmtsWide)
* ((long)numIncrmtsDeep)+1000L);

if (!obstaclePreMap) {
Trash_Image(*theObstacleImage);
return(0);

}

Thefollowing function uses the depth map of thefront window to update the obstacle
map with additional uncertainty regions.

void UpdateObstacle_Map (theObstacleImage, theOpticalFlow,
IU, IV, IW, IA, IB, IC)

ImageHandle theObstacleImage;
OpticalFlowHandle theopticalFlow;

/* current position and orientation of Micro-Rover */
double IU, IV, IW, IA, IB, IC;

{
ImagePtr theObstacleImagePtr; /* pointer to obstacle image record */
OpticalFlowPtr theOpticalFlowPtr; /* pointer to optical flow record */
FlowVectorHandle theDataBlockHandle;/* handle to flow vector record */
FlowVectorPtr theDataBlockPtr; /* pointer to flow vector record */
PixMapHandle thePixMap;
Point topLf, botRt; /* top left and bottom right DB's */
int dataHeight, dataWidth, dataRow, dataCol;
double x, y, xComp, yComp, len, depth;
double PELwidth, PELfactor; /* camera characteristics */
CharPtr thePixel, theIncrmtObstacle;
int i, j;
int grayScaleCount; /* gray scale incremental unit */
Boolean viewDepthMap, showGoodVectors, useDepthFilter, drawVectorFlag;
int theWeight, bestError, aveError, zeroError;
int invVar, offVar, aveOffVar;
int ratioInt, sumCosine, prodCosine;
double theMin, theMax, theValue;
int rowBytes;

HLock(theOpticalFlow);
theOpticalFlowPtr = *theOpticalFlow;

/* get top left and bottom right data block positions */
topLf.h = theOpticalFlowPtr->topLeft.h;
topLf.v = theOpticalFlowPtr->topLeft.v;
botRt.h = theOpticalFlowPtr->botRight.h;
botRt.v = theOpticalFlowPtr->botRight.v;
dataHeight = theOpticalFlowPtr->dataHeight;
dataWidth = theOpticalFlowPtr->dataWidth;

viewDepthMap = theOpticalFlowPtr->viewDepthMap;
showGoodVectors = theOpticalFlowPtr->showGoodVectors;
useDepthFilter = theOpticalFlowPtr->useDepthFilter;
if (useDepthFilter ) (

188



theMin = theOpticalFlowPtr->minDepth;
theMax = theOpticalFlowPtr->maxDepth;

}
else {

theMin = theOpticalFlowPtr->minWeight;
theMax = theOpticalFlowPtr->maxWeight;

}
theWeight = theOpticalFlowPtr->theWeight;

PELwidth = CCD_ARRAY_WIDTH/PIXELS; /* width of pixels in meters */
PELfactor = PELwidth/FOCAL_LENGTH; /* width norm'd to focal length */

/* get handle to first flow vector */
theDataBlockHandle = theOpticalFlowPtr->firstFlowVector;
HLock(theDataBlockHandle);

/* get pointer to first flow vector */
theDataBlockPtr = *theDataBlockHandle;

grayScaleCount = 128 / 16;

/***********************************************/

/***** Clear (zero-out) obstacle Pre-Map *****/
*'********************************/

HLock(obstaclePreMap);
theIncrmtObstacle = *obstaclePreMap;

for (i=O; i<numIncrmtsDeep; i++)
for (j=O; j<numIncrmtsWide; j++)

*theIncrmtObstacle++ = 0;

/**** ******* ********* *********/

/***** Create obstacle pre-map from data block depth values *****/
/************************* ****************************************/

for (dataRow=topLf.v; dataRow<=botRt.v; dataRow+=dataHeight)
for (dataCol=topLf.h; dataCol<=botRt.h; dataCol+=dataWidth) {
xComp = (double) theDataBlockPtr->theOffset.h;
yComp = (double) theDataBlockPtr->theOffset.v;
bestError = theDataBlockPtr->bestError;
aveError = theDataBlockPtr->aveError;
zeroError = theDataBlockPtr->zeroError;
invVar = theDataBlockPtr->invVar;
offVar = theDataBlockPtr->offVar;
aveOffVar = theDataBlockPtr->aveOffVar;
sumCosine = theDataBlockPtr->sumCosine;
prodCosine = theDataBlockPtr->prodCosine;
depth = theDataBlockPtr->depth;

switch (theWeight) {
case NO_RATIO:

ratioInt = 1;
break;

189



case ZERO_ERROR_TO_BEST_ERROR:
ratioInt = (int) zeroError/bestError;
break;

case AVERAGE_ERROR_TO_BEST_ERROR:
ratioInt = (int) aveError/bestError;
break;

case INVERSE_VARIANCE:
ratioInt = invVar;
break;

case OFFSET_TO_OFFSET_PLUS_VARIANCE:
ratioInt = offVar;
break;

case AVEOFFSETTO_AVEOFFSET_PLUS_VARIANCE:
ratioInt = aveOffVar;
break;

case AVE_COSINE:
ratioInt = sumCosine;
break;

case PROD_COSINE:
ratioInt = prodCosine;
break;

)
theValue = (double) ratioInt;

if (useDepthFilter)
drawVectorFlag = ((depth >= theMin)&&(depth <= theMax));

else
drawVectorFlag = ((theValue >= theMin)&&(theValue <= theMax));

/* If we want to show all flow vectors, or if the value is between
* min and max... */
if ((!showGoodVectors)I (drawVectorFlag)) {
/* "x" and "y" are the actual camera coordinates in meters

* divided by the focal length in meters, i.e. "x" and "y"
* are tangents of angles in the xz and yz planes. */
x = (((double)(dataCol+dataWidth/2))-PRIN_POINTX) *PELfactor;
y = (((double)(dataRow+dataHeight/2))-PRINPOINTY)*PELfactor;
len = sqrt (xCormp*xComp + yComp*yComp);

/* add uncertainty region to intermediate obstacle map */
Add_Obstacle(x, y, len, depth, IU, IV, IW, IA, IB, IC);

theDataBlockPtr++;

/***********************************************************/

/***** Translate obstacle pre-map to image pixel map *****/
/*********** ******************************************/

HLock(theObstacleImage);
theObstacleImagePtr = *theObstacleImage;
thePixMap = theObstaclemagePtr->imPixMap;
rowBytes = (*thePixMap)->rowBytes;
BitClr(&rowBytes, OL); /* clear high bit for pixel map */
theIncrmtObstacle = *obstaclePreMap;

/* cycle through each row of the obstacle pixel map */

190



for (i=O; i<numIncrmtsDeep; i++) {
/* find pointer to first pixel of line */

thePixel = (CharPtr) ((*thePixMap)->baseAddr
+ ((long)i)*((long)rowBytes));

/* cycle through each column of the pixel map */
for (j=0; j<numIncrmtsWide; j++) (
/* if the count of the increment is zero */
if (*theIncrmtObstacle == 0)
/* but the obstacle map shows an obstacle */

if (*thePixel > 0)
/* lighten the shade of gray displayed at that pixel */

*thePixel -= grayScaleCount;
else /* already white */

/* if additional counts would go past black */
else if (*theIncrmtObstacle * grayScaleCount > (127 - *thePixel))
/* set equal to black */

*thePixel = 127;
/* otherwise, add additional counts to present count */
else

*thePixel += *theIncrmtObstacle * grayScaleCount;
/* go to next pixel in pixel map */
thePixel++;

/* go to next increment in obstacle map */
theIncrmtObstacle++;

)

HUnlock (obstaclePreMap);
HUnlock (theObstacleImage);
HUnlock (theDataBlockHandle);
HUnlock (theOpticalFlow);

Inval_Image (theObstaclelmage);

)

The following function adds an uncertainty region to the intermediate obstacle map
based upon the x and y image coordinates, the depth, and the length of the flow ector.

void Add_Obstacle(x, y, len, depth, IU, IV, IW, IA, IB, IC)
double x, y, len, depth;
double IU, IV, IW, IA, IB, IC;

double WX, WY; /* world coordinates */
double thePoint_X, thePoint_Z;
int theIncrmt_X, theIncrmt_Z, tenpIncrmt_Z;
int minIncrmtX, maxIncrmt_X;
int rowIncrmt, colIncrmt;
double heightDiff;
Boolean skipMatch;
CharPtr theObstaclePreMapPtr, terp;
int i, j, depthUncertainty;
double tanAngle, tanMinAngle, tanMaxAngle;
double xDist, minDist, maxDist;

191



WX = x * depth;
WY = y * depth;

/*******************************************************/

/***** Place uncertainty region around match point *****/
/*******************************************************/

/* find depth uncertainty in terms of incremental areas */
depthUncertainty = (int) (depth / len / MAP_RESOLUTION);
if (depthUncertainty > MAX_UNCERTAINTY)
depthUncertainty = MAXUNCERTAINTY;

/* find angle of ray to scene point, as well as min and max angles */
tanAngle = x; /* x normalized to p.d. */
xDist = FOCAL_LENGTH * tanAngle; /* x in meters */
maxDist = xDist + 4.0 * PIXELWIDTH; /* add 4 pixel uncertainty */1
minDist = xDist - 4.0 * PIXELWIDTH;
tanMaxAngle = maxDist / FOCAL_LENGTH; /* find tangent of max angle */
tanMinAngle = minDist / FOCAL_LENGTH; /* find tangent of min angle */

/* if the match is not in the floor (ground) plane... */
if (!skipMatch) {
theObstaclePreMapPtr = *obstaclePreMap;

/* find match point on the obstacle map */
thePoint_X = WX + IU; /* add Micro-Rover's offset "IU" */
thePoint_Z = depth + IW; /* add Micro-Rover's offset "IW" */

/* find match point in terms of incremental grid points */
theIncrmt_X = (int) (thePoint_X / MAP_RESOLUTION);
theIncrmtZ = (int) (thePoint_Z / MAP_RESOLUTION);

/* from the min depth to the maximum depth... */
for (i=-depthUncertainty; i<=depthUncertainty; i++) {
/* compute current depth */

ternpIncrmt_Z = theIncrmt_Z + i;
/* find left and right edge increments */
minIncrmt X = (int) (tanMinAngle * ((double)terpIncrmt_Z));
maxIncrmt X = (int) (tanMaxAngle * ((double)tempIncrmt_Z));

/* mark all increments between the left and right edges */
for (j = minIncrmtX; j <= maxIncrmt_X; j++) {

tenmp = (CharPtr) theObstaclePreMapPtr;
rowIncrmt = numIncrmtsDeep - terpIncrmt.Z;
colIncrmt = numIncrmtsWide/2 + j;
if ((rowIncrmt >= 0)&&(rowIncrmt < numIncrmtsDeep)) {

temp +- (long) (rowIncrmt * numIncrmtsWide);
if ((colIncrmt >= 0)&&(colIncrmt < numIncrmtsWide))

temp += (long) colIncrmt;
*temp += 1; /* increment pre-map */

}
}

} /* end for through increments in a row */
} /* end for through depth uncertainty range */

192



The following function performs a binary test on the count at each increment in the
obstacle map. If the count is greater than 'M'ILTER_THRESHOLD"' the increment is
marked with black, otherwise itrs marked with white.

void Filter_Obstacle()

int height, width;
ImagePtr theObstacleImagePtr;
PixMapHandle thePixMap;
int rowBytes;
CharPtr thePixelPtr;
int i, j;

GetImageSize (obstacleImage, &height, &width);

HLock (obstacleImage);
theObstacleImagePtr = *obstacleImage;
thePixMap = theObstacleImagePtr->imPixMap;
rowBytes = (*thePixMap)->rowBytes;
BitClr(&rowBytes, OL); /* clear high bit for pixel map */

for (i=O; i<height; i++){ /* for every row in the pixel map */
/* find pointer to first pixel in row */

thePixelPtr = (CharPtr) ((*thePixMap)
->baseAddr+ ((long)i) * ((long)rowBytes));

for (j=O; j<width; j++){ /* for each pixel in the pixel map */
if (*thePixelPtr >= FILTER_THRESHOLD)

*thePixelPtr = 127;
else

*thePixelPtr = 0;
thePixelPtr++;

}

HUnlock (obstacleImage) ;
Inval_Image(obstacleImage);

I

193



194



Appendix D Maximum Rotation Between Images

This appendix discusses how the maximum length of the flow vector
places a constraint on the maximum rotation between images. When
the Micro-Rover is turning, this maximum rotation sets an upper
bound on the time between images.

When the camera rotates, the light from a scene point irradiates a
different point in the image plane. Consider the model in Figure D. 1,
where a 2-dimensional model of a camera is used to simplify the
analysis. Initially, the point in the image plane which the light from a
scene point irradiates was a distance x from the principal point. After
the camera rotates, the new, irradiated point is a distance x' from the
principal point.

f

Figure D. 1 Rotation of the Camera Causes the Irradiated Point to Move

The original angle, 0, formed by the light ray passing through the

center of projection and irradiating the image plane is related to the

point on the image plane, x, and the principal distance, f, by:

-1 (e = tan

After the camera has been rotated, the new angle, 0 + 0, is related to

the new point on the image plane, x', and the principal distance by:

195



e + t = tan-1I)f
The new point on the image plane is the sum of the original point, x,
plus some change, Ax. This change is the length of the flow vector,
which must stay within the search window that we are using. The
change, since it is not normalized but is in the true metric
coordinates, can be factored into the width of a pixel element, wpel,
and some number of pixel elements, Npel:

x' = x + Ax = x + Npelwpel

The maximum rotation allowable between successive images can be
determined when the principal distance, width of the CCD array,
width of each pixel element, and size of the search window have been
determined. The equation for the maximum rotation is:

= tan1() - tan-1 x - Npelwpelf f

The camera charateristics of the Pulnix camera that was used to test
the matching algorithm were presented in Chapter 4. The
dimensions of the CCD array were estimated to be 5 mm x 5 mm. The
focal length of the lens was assumed to be 8.5 mm. There were 256
pixels horizontally in the images we tested. The pixel width, wpel, is 5

mm divided by 256, or 19.5 gm. The maximum length of a flow vector
is 8 pixels.

Using the equation above, the maximum rotation is:

tan- 2.5mm tan-12.5mm - 8(19.5pm) 0.97'
8.5mm 8.5mm

As shown in Table D.1, the maximum allowable rotation between
images for various points in the image plane does not change very

196



much across the image. This is a result of the narrow field of view of
the camera.

Table D.1 Maximum Rotation Between Images

Image Point (mm) Max Rotation (deg)

0.0 1.05
0.5 1.05

1.0 1.04

1.5 1.02

2.0 1.00

2.5 0.97

However, if the camera had a wider field of view, there would be a
significant difference between the maximum rotation for points close
to the principal point and points close to the edges of the image plane.
Table D.2, when contrasted to Table D.1, shows this disparity.

Table D.2 Maximum Rotation Between Images for a Wide FOV

Image Point (mm) Max Rotation (deg)

3.0 0.94

3.5 0.90

4.0 0.87

4.5 0.83

5.0 0.79

5.5 0.75

The turning rate of the Micro-Rover will determine the time between
2 images. If the Micro-Rover is turning at a rate of 20 ° per second,
the time between images should be about 50 msec because the
allowable rotation between images is 10. However, 25 msec between
images is the upper limit if the Micro-Rover is turning at a rate of 400
per second.

197



The processing rate is not related to the time between images because
the time between motion estimates is not equal to the time between
images. The vision system will capture 2 images and perform some
processing to estimate the motion between the images. Some time
later, 2 more images will be grabbed and processed. The time
between images may be 50 msec when the Micro-Rover is turning at
200 per second, but the time between motion estimates may be 200
msec, a 5 Hz processing rate.

The only constraint on the processing rate is that it be much faster
than the rate at which the Micro-Rover changes direction. The
mechanical structure of the Micro-Rover will be characterized by
certain time constants. The time between motion estimates must be
much smaller than all of these time constants. A reasonable minimum
time constant for the mechanical structure is 1 second. A 5 Hz
processing rate is reasonable under this assumption and will make
certain that the motion of the Micro-Rover doesn't change much
between motion estimates.

198



Appendix E Binocular Stereo Using Pattern Matching

As a final note, the use of the matching algorithm in a binocular stereo
system was tested to determine whether a vision system could be built
that was a robust, stand-alone piece of hardware. In our discussion up
until this point, the intent was to solve the scale factor ambiguity
problem using the laser range-finder. However, if the vision system
were entirely self-contained, it would provide a much-desired level of
redundancy to our Micro-Rover.

Another scene from the computer/storage room was used to test the
binocular stereo system. The camera was positioned at 2 points that
were 1 inch apart. The 6 DOF motion model was used with the
translation equal to the 1 inch separation and the rotation equal to
zero. The depth map was estimated from the set motion.

The results, as shown in Figure E.1, look pretty good, although there
is some scaling problem. The NYNEX white pages were only 3 feet
away, however they were estimated at about 4 feet. The stacked books
were actually 4.5 feet away, although they were estimated at between 5
and 6 feet. It is suspected that the assumptions about the camera
characteristics that we made earlier are finally coming back to haunt
us. They may not have affected the previous estimates which didn't
involve any lateral translation. However, in this case, we introduced
lateral translation.

One interesting fact to note is the "discreteness" of the depth values;
there are only about five different depth values. Since our lateral
translation was limited to the x axis, only the u components of the flow
vectors affected the depth estimates. The u component varied
between 0 and 8 because we used a 16 x 16 data block in a 32 x 32
search window. Thus, only 9 possible values for the depth estimates
were possible.

199



Figure E. 1 Depth Map for a Binocular Stereo System Using Pattern Matching

200

I" ..... _'_ ..... .



References

[1] Apple Computer Co., Inside Macintosh, v. 1-5, Addison-Wesley,
Reading, MA, 1985-6.

12] David J. Braunegg, MARVEL: A System for Recognizing World
Locations with Stereo Vision, MIT PhD Thesis in Electrical
Engineering and Computer Science, June, 1990.

[3] Anna R. Bruss and Berthold K. P. Horn, "Passive Navigation",
Computer Vision, Graphics, and Image Processing, v. 21, no. 1, 1983,
pp. 3-20.

[14] Marco Campani, Marco Straforini, and Alessandro Verri, "A First
Order Differential Technique for Optical Flow", Proceedings of SPIE, v.

1388, International Society for Optical Engineering, Bellingham, WA,
1991, pp. 409-414.

[5] Olivier D. Faugeras and Steve Maybank, "Motion from Point
Matches: Multiplicity of Solutions", International Journal of Computer
Vision, v. 4, 1990, pp. 225-246.

[6] John Gilbert, Design of a Micro-Rover for a Moon/Mars Mission,

MIT SM Thesis in Mechanical Engineering, CSDL-T-1163, December,
1992.

[7] Joachim Heel, "Direct Dynamic Motion Vision", Proceedings of the

1990 IEEE International Conference on Robotics and Automation,

IEEE Computer Society Press, 1990, pp. 1142-1147.

[8] Berthold K. P. Horn and Brian G. Schunck, "Determining Optical

Flow", Artificial Intelligence, v. 17, 1981, pp. 185-203.

[9] Berthold K. P. Horn and E. J. Weldon Jr., "Direct Methods for

Recovering Motion", International Journal of Computer Vision, No. 2,
1988, pp. 51-76.

201



[10] Berthold K. P. Horn, Robot Vision, MIT Press, 1988.

[11] Berthold K. P. Horn, "Relative Orientation", International Journal
of Computer Vision, v. 4, 1990, pp. 59-78.

[12] Berthold K. P. Horn, "Relative Orientation Revisited", Unpublished
paper, 1990.

[13] Longuet-Higgins, H. C., and Prazdny, K., "The interpretation of a
moving retinal image", Image Understanding 1984, Ablex Publishing
Corp., 1984, pp. 179-193.

[14] William Kaliardos, Sensors for Autonomous Navigation and Hazard
Avoidance on a Planetary Micro-Rover, MIT SM Thesis in Aerospace
Engineering, CSDL-T-1 186, June, 1993.

[15] LSI Logic Corp., LSI Logic CCITT Video Compression Databook,
Sept. 1991.

[16] Calvin Ma, Dynamics, Control, and System Simulation of a
Planetary Rover, MIT SM Thesis in Mechanical Engineering, CSDL-T-
1174, June, 1993.

[17] Eric Malafeew, An Autonomous Control System for a Planetary
Micro-Rover, MIT SM Thesis in Mechanical Engineering, CSDL-T-
1173, May, 1993.

[18] Hans P. Moravec and Alberto Elfes, "High Resolution Maps from
Wide Angle Sonar", Proceedings of the IEEE Conference on Robotics
and Automation, St. Louis, 1985.

[19] Shahriar Negahdaripour and Berthold K. P. Horn, "Direct Passive
Navigation", IEEE Transactions on Pattern Analysis and Machine
Intelligence, v. PAMI-9, No. 1, January 1987, pp. 168-176.

202



[20] Steven Schondorf, Systems Engineering for a Mars Micro-Rover,

MIT SM Thesis in Aerospace Engineering, CSDL-T-1122, June, 1992.

[21] Gideon Stein, Internal Camera Calibration Using Rotation and
Geometric Shapes, MIT SM Thesis in Electrical Engineering and
Computer Science, February, 1993.

[22] Gilbert Strang, Introduction to Applied Mathematics, Wellesley-
Cambridge Press, Wellesley, MA, 1986.

[23] Frederick Su, "Large-Area Scientific CCD's from Memory Device to

Imager", OE Reports, No. 111, Society of Photo-Optical
Instrumentation Engineers, Bellingham, WA, Feb. 1993.

[24] Raymond Suorsa and Banavar Sridhar, 'Validation of Vision-Based

Obstacle Detection Algorithms for Low-Altitude Helicopter Flight",

Proceedings of SPIE, v. 1388, International Society for Optical

Engineering, Bellingham, WA, 1991, pp. 90-103.

[25] M. Ali Taalebinezhaad, "Direct Robot Motion Vision by Fixation",

Proceedings of the 1991 IEEE International Conference on Robotics

and Automation, v. 1, IEEE Service Center, Piscataway, NJ, 1991, pp.

626-631.

[26] William B. Thompson and Ting-Chuen Pong, "Detecting Moving

Objects," International Journal of Computer Vision, v. 4, 1990,
pp. 39-57.

[27] Paul A. Viola, Adaptive Gaze Control, MIT SM Thesis in Electrical

Engineering and Computer Science, October, 1990.

203



204


