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Abstract
In this thesis, we develop methods for efficient simulation of biomolecular electrostatics
based on Poisson-Boltzmann equation. Current techniques using finite-difference solution
of differential formulation have many drawbacks. We present an integral formulation that
resolves these difficulties and enables an efficient implementation using a recently devel-
oped fast solver. The new approach can solve practical engineering problems with good
accuracy, but only with an aid of a high quality mesh generator, and sometimes require a a
large number of panels to discretize a surface. To this end, a novel approach to discretize
singular integral equations is proposed. Unlike the traditional boundary element method
using panel discretization, the new method is meshless and capable of achieving spectral
convergence: numerical errors decrease exponentially fast with increasing size of basis set.
We will describe a number of techniques in our approach, including the use of global, high
order basis, quadrature-based panel integration, and innovative surface representation. The
biomolecular problem is particularly suited for this method because molecular surfaces
are typically smooth and can be represented globally using spherical harmonics. The use
of flat panels in the traditional approach would incur significant geometrical distortion, in
addition to much slower convergence rate. Computational results demonstrate that for a
practical problem at engineering accuracy (a tolerance of 10−3) this new approach requires
one to two orders of magnitude fewer unknowns than a flat panel method. For a more strin-
gent tolerance of 10−6, a comparison to an analytically solvable problem reveals that an
improvement more than three orders of magnitude has been achieved.
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Chapter 1

Introduction

1.1 Motivation

Biomolecular structure and interactions in an aqueous environment are determined by a

complicated interplay between physical and chemical forces including solvation, electro-

statics, van der Waals forces, the hydrophobic effect, and covalent bonding. Electrostatic

forces have received a great deal of study due to their long-range nature and the tradeoff

between desolvation and interaction effects [15, 20, 22, 77]. In addition, electrostatic inter-

actions play a significant role within a biomolecule as well as between biomolecules, mak-

ing the balance between the two vital to the understanding of macromolecular systems. As

a result, much effort has been devoted to accurate modeling and simulation of biomolecule

electrostatics. One important application of this work is to compute the strength of electro-

static interactions for a biomolecule in an electrolyte solution, as well as the potential that

the molecule generates in space. There are two valuable uses for these simulations. First,

it provides a full picture of the electrostatic energetics of a biomolecular system, improv-

ing our understanding of how electrostatics contribute to stability, function, and molecular

interactions [47]. Second, these simulations serve as a tool for molecular design, since elec-

trostatic complementarity is an important feature of interacting molecules [48]. Through

examination of the electrostatics and potential field generated by a protein molecule, for

example, it may be possible to suggest improvements to other proteins or drug molecules

that interact with it, or perhaps even design new interacting molecules de novo [29, 36, 37].
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There are two approaches to simulating a protein macromolecule in an aqueous solu-

tion with nonzero ionic strength. Discrete, atomistic approaches based on Monto-Carlo

or molecular dynamics simulations treat the macromolecule and solvent explicitly at the

atomic level [11, 33, 51, 56, 66, 77]. An enormous number of solvent molecules are often

required to provide reasonable accuracy, particularly when the electric fields of interest are

far away from the macroscopic surface. In addition, free ions within the solvent are difficult

to model with this approach. In this work, we adopt instead a mixed discrete-continuum

approach based on combining a continuum description of the macromolecule and solvent

with a discrete description of the atomic charges [32, 52, 77, 81, 87].

Solutions to the mixed discrete-continuum model are mostly computed numerically,

using schemes based on finite-difference discretization of the model’s underlying partial

differential equations [20, 21, 42, 61, 67, 68]. One of the contributions of this thesis is

an efficient procedure based on combining a carefully chosen integral formulation of the

mixed discrete-continuum model with the pre-corrected FFT [63] fast solver algorithm. As

opposed to volume discretization in the finite-difference approach, the integral formulation

requires only a surface discretization and therefore enables reduction in the number of

unknowns needed for an accurate solution.

The second and main contribution of this thesis is address the problem that the commonly-

used discretization, a piecewise constant basis, is low order, which means memory require-

ment for a practical engineering problem can still be excessive. Instead, we develop a novel,

high-order discretization technique that exhibits spectral convergence and does not require

surface triangulation. The meshless method allows a significant reduction in problem size

while preserving many advantages associated with an integral formulation.

1.2 Dissertation Outline

In the following chapter we will introduce the background information including the mixed

discrete-continuum model of biomolecule electrostatics, the molecular surface definition

and two standard numerical techniques that will be useful in this application: the finite-

difference and boundary element methods. The finite-difference method is currently the
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more popular approach of the two, but the boundary element method will be the focus of

this thesis. The advantages of the latter approach are rooted in the integral formulation

which will be described in Chapter 3, together with the fast solver implementation using

pre-corrected FFT algorithm. The standard boundary element method uses piecewise con-

stant basis and flat panels, so numerical errors are introduced in the form of unknown and

geometrical representation respectively. In addition, the use of low order basis results in

a method for which accuracy improves slowly with increasing number of unknowns. In

Chapter 4, we demonstrate that accuracy can be improved with curved panel discretiza-

tion, either through an analytical mapping function or a quadratic interpolating polyno-

mial. Similarly, higher order polynomials can be used as basis functions. An isoparametric

formulation using higher order polynomials of the same degree in both unknown and geo-

metrical representation results in better accuracy as well as convergence. However, when

coupled with a fast solver approach, the higher order method has a much higher cost for

the same degree of freedom than the standard low order discretization. In order to develop

a higher order method that is competitive in cost and superior in accuracy than the fast

solver approach, we propose a spectral method in Chapter 5. The novel scheme uses nu-

merically orthogonal polynomials defined on carefully chosen quadrature points. Unlike

the approach using a more standard higher order basis, errors for our method decay expo-

nentially with number of unknowns. In other words, improvement in accuracy accelerates

with increasing degrees of freedom. In order to employ our spectral method on a practical

problem, however, one needs to define local patches where good quadrature points, and

associated mapping functions to the actual surface, are available. In Chapter 6, we show

that recently developed spherical harmonic approaches for biomolecule surface represen-

tations result in simple and efficient implementations of the higher-order algorithm. We

will describe the procedures for constructing a spherical harmonic expansion using a set

of surface points and discuss some limitations of this approach. In Chapter 7, some anal-

ysis of an efficient implementation using matrix-implicit scheme is described, and finally,

we conclude in Chapter 8. Computational results are given throughout the thesis in the

appropriate chapters, and a discussion, if needed, is included at the end of a chapter.
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Chapter 2

Problem Formulation

The application of the methods developed in this thesis focus on the simulation of biomolec-

ular electrostatics. Although electrostatics is the only significant long-range interaction of

a protein macromolecule with its aqueous environment, it is by no means the only force

field present. In this chapter, we introduce the model commonly used to capture the phe-

nomenon and address its limitations, as well as briefly describe standard numerical methods

that can be used to obtain a solution. As illustrated in Figure 2-1, the system consists of a

macromolecule made up of individual atoms that are covalently bonded, and a salt solution

containing water molecules and charged ions. The force fields present in such a system

include covalent interaction and non-bonded interaction. For the problem addressed in this

thesis, however, we will not model explicitly the vibrational energies associated with cova-

lent bonding. That is, in calculating solvation energy, we will assume the macromolecule’s

vibrational energies do not change between a solvated and non-solvated state. The non-

bonded interaction consists of the typical columbic forces for electrostatics which we do

model, and the extremely short-range van der Waals forces, which is only significant at the

atomic length scale and cannot be modeled effectively with a continuum description.

In the continuum description, the biomolecule is modeled as a rigid body with fixed

molecular shape. The electron cloud is modeled as a uniform dielectric medium, and pos-

itive charges are assumed fixed at atomic centers. The interior region therefore satisfies

the Poisson equation with the right hand side being the potential due to point charges. The

exterior region is also modeled as a uniform dielectric medium, but with a much larger
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Figure 2-1: A sketch of a biomolecule in a salt solution.

dielectric constant to account for the polarization effect of water. The potential in the pres-

ence of mobile ions satisfies the Poisson-Boltzmann equation, but the salt concentration is

assumed dilute enough that we can ignore the nonlinearities and use linearized Poisson-

Boltzmann equation. Lastly, two boundary conditions have to be satisfied at the interface:

the potentials are continuous across boundary, and the normal derivatives have a jump that

is related to the relative dielectric constant.

In the following section, we describe the procedures used to generate a molecular sur-

face which defines the interface between two dielectric mediums. The mathematical equa-

tions for the continuum formulation will be described in Section 2.2. Finally in Section 2.3,

we introduce two standard numerical approaches that can be used to obtain a solution: one

for the differential formulation in Section 2.2, and the other for the integral formulation

that will be developed in the next chapter.
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2.1 Molecular Surface

There are several surfaces biologists consider in modeling a macromolecule: the van der

Waals surface, the solvent-accessible surfaces [46] and the molecular surface [14, 65]. In

all of these, solid spheres are used to model individual atoms that make up a molecule

and another probe sphere is used to model solvent particles so that the geometry can be

represented analytically. The van der Waals surface is the surface of the union of spherical

atoms of a macromolecule and is independent of the probe sphere. The solvent-accessible

surface can be defined similarly as a van der Waals surface, but with radii of spherical atoms

expanded by radius of a probe sphere. Alternatively, the solvent-accessible surface, as well

as the molecular surface, can be defined by the trace of a rolling probe sphere as it moves

around a collection of spherical atoms. The boundary defined by the motion of the probe

sphere center is defined as the solvent-accessible surface, while the contiguous surface

with which the probe sphere is always in contact with one or more atoms is defined as

the molecular surface. The molecular surface, also known as the solvent-excluded surface,

defines an interior such that solvent particles are excluded from. As illustrated in Figure 2-

2, the molecular surface can be described by three analytical shapes: a spherical triangle

defined by the reentrant surface of the probe sphere when it is in simultaneous contact with

three atoms, part of a torus defined by the reentrant surface of the probe sphere when it is in

simultaneous contact with two atoms, and part of spherical atoms where the probe sphere

can come into direct contact with. The reentrant surface is defined by the inward-facing

surface of the probe sphere as it is in simultaneous contact with more than one atom, and the

Figure 2-2: Molecular Surface.
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contact surface is part of the van der Waals surface. Software program such as MSMS [76]

takes inputs of atomic centers and radii, as well as probe radius to generate a triangulation

of molecular surface, together with other surface properties such as area and normals.

2.2 Mixed Discrete-Continuum Model

One commonly used simplified model for biomolecule electrostatics was introduced by

Tanford and Kirkwood in 1957 [81]. In this model the interior of a protein molecule is

approximated as a collection of point charges in a uniform dielectric material, where the

dielectric constant is typically two to four times larger than the permittivity of free space.

Any surrounding solvent is modeled as a much higher permittivity electrolyte whose be-

havior is described by the Debye-Hückel theory. The interface between the protein and

the solvent is defined by determining how close the solvent molecules can approach the

biomolecule [14, 65].

The Tanford and Kirkwood model for a single protein in a solvent is depicted in Fig-

ure 2-3, which is the continuum description of the physical system in Figure 2-1, with

Region I corresponding to the interior of the protein and Region II corresponding to the

surrounding solvent. The electrostatic behavior in Region I is governed by a Poisson equa-

tion:

∇2ϕ1(~r) =−
nc

∑
i=1

qi

ε1
δ(~r−~ri) (Region I) (2.1)

where ϕ1 is the electrostatic potential,~r is an evaluation position,~ri is the location of the

ith protein point charge, qi is the point charge strength, nc is the number of point charges,

and ε1 is the dielectric constant in the protein interior. Note also that δ is the standard

Dirac-Delta function.

To determine the electrostatic potential in the solvent, Debye-Hückel theory suggests

that the electrostatic potential should satisfy a nonlinear Poisson-Boltzmann equation. How-

ever, the nonlinearity generates an unnecessarily complicated model when the solution is

dilute and charge density within the macromolecule is not extremely high. Instead, the sim-

pler linearized Poisson-Boltzmann equation, which is also a Helmholtz equation, is more
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Figure 2-3: The continuum model of a solvated protein.

commonly used, and has been shown to accurately predict biomolecular properties under a

variety of conditions [20, 42]. Therefore, the electrostatic potential in the solvent, Region

II of Figure 2-3, is presumed to satisfy the Helmholtz equation:

∇2ϕ2(~r)−κ2ϕ2(~r) = 0 (Region II) (2.2)

where

κ =

√
8πe2I
ε2kBT

(2.3)

is the inverse Debye screening length, relating to the ionic strength of solvent I, exterior

dielectric constant ε2, Boltzmann constant kB and the absolute temperature T . For an ionic

strength of 0.145 M, and an inner and outer dielectric constants of 4 and 80 respectively,

κ = 0.124 Å−1 at room temperature. A typical protein macromolecule consists of hundreds

of atoms and measure about 50 Å in size, and a probe radius of 1.4 Å is typically used to

model water molecules in solvent. In comparison, the Debye length is about the thickness

of a few layers of water molecules.

In addition to regions I and II, sometimes a third region known as the Stern layer is
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also used to account for the difference in size between salt ions and water molecules in

solvent. It is a layer exterior to the interface in Figure 2-3 within which exterior dielectric

constant ε2 and interior equation (2.1) are used to model the presence of water molecules

but absence of salt ions. A thickness of 2 Å is typically used for the Stern layer.

2.3 Numerical Solution

2.3.1 Finite-Difference Approach

A wide variety of numerical techniques can be used to compute solutions to the combina-

tion of (2.1) and (2.2). For the biomolecule application, the most commonly used approach

is based on the finite-difference method for discretizing partial differential equations, with

researchers frequently making use of the DelPhi software package [20, 21, 42, 61, 67, 68].

In this approach, a three-dimensional grid that contains a molecule is used as a computa-

tional domain. The differential equations in (2.1) and (2.2) are approximated with algebraic

equations using finite differences. A dielectric constant is associated with each grid point

depending on its relative location to a molecular interface. Point charges, which usually

do not fall exactly on a grid, have to be represented using nearby grid points. The bound-

ary condition at infinity is approximated by the border of a truncated grid. The potential

at every grid point can then be computed using a variety of iterative technique [74]. To

compensate for the approximated boundary condition at infinity and regularity of a grid,

techniques such as focussing and rotational averaging [21] have been used.

Although finite-difference methods have proven to be effective, there are several charac-

teristics of the biomolecule application which are problematic for such methods. As shown

in Figure 2-4, inaccuracies can be generated when projecting the discrete charges, which

appear in (2.1), on to finite-difference grids. The problem is particularly troublesome when

attempting to compute reaction forces at those point charge locations [31]. In addition, the

large jump in dielectric constant across the irregularly-shaped protein-solvent boundary

must be treated carefully. Finally, the solvent region is unbounded, at least formally, and

must be somehow truncated before applying a finite-difference method. Modifications of
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Figure 2-4: Inaccuracies associated with finite-difference solution.

the basic finite-difference method have been developed to resolve many of these difficulties

[21, 42, 68, 69, 92], though often at considerable computational cost.

2.3.2 Boundary Element Method

The boundary element method [27, 30] has become a standard method in solving three-

dimensional engineering problems. In this section, a brief review is presented so that we

can emphasize some aspects of the standard approach our method can improve upon. The

following integral equation will be used as our model problem:

φ(~r) =
Z

Ω
G(~r,~r′)σ(~r′)dS′ (2.4)

where Ω is the surface boundary of a three-dimensional region of interest on which we

would like to solve for the unknown quantity σ given an arbitrary φ, assumed given any-

where on the same surface. The kernel G(~r,~r′), also known as the Green’s function, is spec-

ified for a particular physical problem that one is modelling. For the problems [44, 64, 94]
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we are interested in, G can take the following forms:

G(~r,~r′) =
1
r
,
eikr

r
,
ekr

r
k ∈ R (2.5)

where r = |~r−~r′| is the Euclidean distance between a source and target point.

Discretization

In order to numerically solve for σ, two representations are typically used: one for the

surface geometry, and the other for the solution itself. A triangular mesh is commonly used

to discretize the geometry, and a basis set, {Bi : i = 1,2, . . . ,n}, is usually defined on the

same mesh, with Bi’s being non-zero only on a few triangles. The basis is used to discretize

the unknown as in

σ(~r) =
n

∑
i=1

aiBi(~r) ~r ∈Ωmesh (2.6)

where Ωmesh may be an exact or approximate geometry of the original domain Ω. The use

of panels is so common that boundary element methods are sometimes referred to as panel

methods. With the representation in (2.6), equation (2.4) can be written as:

φ(~r) =
n

∑
i=1

ai

Z

support
G(~r,~r′)Bi(~r′)dS′ (2.7)

=
n

∑
i=1

ai ∑
all panels

in B′is support

Z

panel
G(~r,~r′)Bi(~r′)dS′, (2.8)

where in (2.7), integration is over support of ith basis and in (2.8), integration is over

individual panels within Bi’s support. Once the weighting coefficients ai’s are determined,

the solution on Ωmesh can be written as a weighted sum of individual basis functions.

Galerkin and Collocation Formulation

In order to solve for the set of coefficients ai’s from equation (2.7), a Galerkin or colloca-

tion scheme is commonly used, both of which belong to a general class of methods known

as weighted residual minimization methods. The residual measures numerical error intro-
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duced by basis function discretization. In the Galerkin methods, orthogonality is enforced

between the residual and the basis function as in

Z

support
B j(~r)

(
φ(~r)−

n

∑
i=1

ai

Z

support
G(~r,~r′)Bi(~r′)dS′

)

︸ ︷︷ ︸
residual

dS = 0 (2.9)

for j = 1,2, . . . ,n. This is the projection approach since the residual is projected to a space

orthogonal to the one spanned by the basis. In other words, the resultant solution is the best

one representable by the set of basis. From (2.9), the unknown coefficients can be solved

from a n×n matrix equation:

n

∑
i=1

ai

Z

support
B j(~r)

Z

support
G(~r,~r′)Bi(~r′)dS′dS

︸ ︷︷ ︸
AGalerkin

ji

=
Z

support
B j(~r)φ(~r)dS (2.10)

where each entry in the Galerkin matrix involves two integrations over the support of a

basis function: one for the source basis function, and the other for the test basis function.

Alternatively, one may choose to minimize the residual at n collocation points:

n

∑
i=1

ai

Z

support
G(~r j,~r′)Bi(~r′)dS′

︸ ︷︷ ︸
ACollocation

ji

= φ(~r j) (2.11)

where~r j’s are their position vectors. This is known as the collocation formulation, or the

interpolation approach, since residual is exactly zero at those points. In contrast to the

Galerkin approach, each entry in the collocation matrix involves only one integration over

the support of a source basis function. The outer integral of the Galerkin formulation is

typically done with quadrature, therefore it is computationally more expensive. Although

convergence theory is better developed for the Galerkin approach [2], in practice colloca-

tion is often used for its simplicity and efficiency.
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Chapter 3

Fast Solver Approach

When boundary element methods [27, 30] are used to solve Laplace or Helmholtz problems

associated with complicated three-dimensional geometries, the associated integral equation

is typically discretized using a piecewise constant basis, and a system of equations is gen-

erated using either a Galerkin or a collocation scheme. The resulting matrix is then solved

iteratively using acceleration [7, 23, 25, 39, 59, 63, 70]. This approach has become the

method of choice for exterior problems and is used in diverse applications such as inter-

connect extraction [94], MEMS and fluidic simulation [64, 84].

In calculating bimolecular solvation energy, however, methods based on finite-difference

approach have been more popular. As this chapter will make clear, numerical methods

based on solving an integral formulation of (2.1) and (2.2) can treat point charges, irregu-

larly shaped regions with large jumps in parameters, unbounded domains, and the reaction

force computation much more naturally than finite-difference methods. For this reason,

a number of researchers have developed integral formulations [8, 9, 35, 44, 88, 89, 91].

However, even though integral formulations have many advantages for this application,

they are not often used. The available numerical techniques for solving integral equations

were too computationally expensive to use on complicated problems, but recently devel-

oped fast algorithms have changed that situation considerably. Earlier works [8, 9, 91] have

been based on fast multipole methods [23, 70] for acceleration. In this chapter, we present

an alternative approach using pre-corrected FFT algorithm [63] which is particularly well

suited for problems with multiple domains governed by various Green’s functions.
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In the following section we will describe an integral formulation for the biomolecular

electrostatic problem, and in Section 3.2 we will describe the standard discretization using

piecewise-constant basis on flat panels. In Section 3.3, we introduce the fast numerical

technique based on pre-corrected FFT algorithm for computing the integral equation solu-

tions. An appropriate preconditioner that can be used in an iterative solver is discussed in

Section 3.4. Computational results are presented in Section 3.5 and finally, we conclude

with a discussion in Section 3.6.

3.1 Integral Equation Formulation

To begin the formulation derivation, first consider that the well-known fundamental solu-

tions to (2.1) and (2.2) are, respectively,

G1(~r;~r′) =
1

4π|~r−~r′| (3.1)

G2(~r;~r′) =
e−κ|~r−~r′|

4π|~r−~r′| . (3.2)

The two fundamental solutions can be combined with Green’s second theorem to generate

an integral equations for the potential and its normal derivative. In particular in Figure 2-3,

the integral equation for Region I is

ϕ1(~r) =
Z

Ω

[
G1(~r;~r′)

∂ϕ1

∂n
(~r′)−ϕ1(~r′)

∂G1

∂n
(~r;~r′)

]
d~r′+

nc

∑
i=1

qi

ε1
G1(~r;~ri), (3.3)

and the equation for Region II is

ϕ2(~r) =
Z

Ω

[
−G2(~r;~r′)

∂ϕ2

∂n
(~r′)+ϕ2(~r′)

∂G2

∂n
(~r;~r′)

]
d~r′, (3.4)

where ~n is the outward pointing normal at the interface, and the domain of integration for

the integrals, Ω, is the boundary surface separating the low permittivity protein interior

from the high permittivity solvent.

The potentials ϕ1 and ϕ2 must satisfy a pair of matching conditions on the boundary
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surface Ω. In particular, the electric potential is continuous and the normal derivative of the

potential jumps by an amount related to the ratio of the dielectric constants,

ϕ1(~ro) = ϕ2(~ro) (3.5)
∂ϕ1

∂n
(~ro) = ε

∂ϕ2

∂n
(~ro), (3.6)

where~ro ∈Ω, and ε = ε2/ε1 is the relative dielectric constant of the two regions. To enforce

these matching boundary conditions, take the limit of equation (3.3) as ~r → Ω from the

inside, and use the limit of equation (3.4) as~r →Ω from the outside. In this limit, G1, G2,
∂G1
∂n , and ∂G2

∂n are kernels with integrable singularities, so care must be taken in carrying out

the integrations. Note that that the potential due to a monopole layer is continuous across

the layer, while the potential due to a dipole layer is discontinuous across the layer [79].

The results generated by applying the limiting processes to (3.3) and (3.4) yields

ϕ1(~ro) = lim
~r→~ro

ϕ1(~r)

=
Z

Ω

[
G1(~ro;~r′)

∂ϕ1

∂n
(~r′)−ϕ1(~r′)

∂G1

∂n
(~ro;~r′)

]
d~r′+

1
2

ϕ1(~ro)

+
nc

∑
i=1

qi

ε1
G1(~ro;~ri) (3.7)

and

ϕ2(~ro) = lim
~r→~ro

ϕ2(~r)

=
Z

Ω

[
−G2(~ro;~r′)

∂ϕ2

∂n
(~r′)+ϕ2(~r′)

∂G2

∂n
(~ro;~r′)

]
d~r′+

1
2

ϕ2(~ro) (3.8)

where~ro is the position vector of some point on the boundary Ω and the integrals are taken

to be principal value integrals.

Substituting equations (3.5) and (3.6) into (3.7) and (3.8) yields a coupled pair of inte-

gral equations for ϕ1 and ∂ϕ1
∂n on the dielectric interface,

1
2

ϕ1(~ro)+
Z

Ω

[
ϕ1(~r′)

∂G1

∂n
(~ro;~r′)−G1(~ro;~r′)

∂ϕ1

∂n
(~r′)

]
d~r′ =

nc

∑
i=1

qi

ε1
G1(~ro;~ri), (3.9)
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and

1
2

ϕ1(~ro)+
Z

Ω

[
−ϕ1(~r′)

∂G2

∂n
(~ro;~r′)+G2(~ro;~r′)

1
ε

∂ϕ1

∂n
(~r′)

]
d~r′ = 0. (3.10)

Equations (3.9) and (3.10) can be used to compute ϕ1 and ∂ϕ1
∂n on Ω. Then those surface

potentials and their normal derivatives can be used in (3.3), (3.4), (3.7), and (3.8) to com-

pute the potentials anywhere. Therefore, to compute the reaction potentials at the charge

locations, which are needed to determine energy changes, one need only evaluate

ϕREAC(~ri) =
Z

Ω

[
G1(~ri;~r′)

∂ϕ1

∂n
(~r′)−ϕ1(~r′)

∂G1

∂n
(~ri;~r′)

]
d~r′. (3.11)

3.2 Discretization

A standard piecewise-constant centroid-collocation scheme is used to discretize (3.9) and

(3.10). In the piecewise constant collocation method, the surface is first discretized into

a set of panels, and a piecewise constant basis function, Bk, is associated with each panel.

Then, the potentials are represented as a weighted combination of the panel basis functions.

That is,

ϕ1(~ro) ≈ ∑
k

akBk(~ro) (3.12)

∂ϕ1

∂n
(~ro) ≈ ∑

k
bkBk(~ro) (3.13)

where k is the panel index, and ak and bk are weights of individual basis functions.

The basis function weights are determined by insisting that when (3.12) and (3.13)

are substituted for the potential and its normal derivative in (3.9) and (3.10), the resulting

equations are exactly satisfied for those values of~ro which correspond to panel centroids.

The resulting system of equations can be denoted as a matrix of the form




1
2 I +

R
panelk

∂G1
∂n d~r −Rpanelk G1d~r

1
2 I− Rpanelk

∂G2
∂n d~r 1

ε
R

panelk G2d~r





ak

bk


 =


∑nc

i=1
qi
ε1

G1

0


 (3.14)
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where nc is the total number of charges inside the protein and
R

panelk corresponds to an

integration over the kth panel surface. Note that the matrix is only a function of protein

geometry and is independent of charge magnitudes, making it possible to construct the

matrix operator once and use it repeatedly to solve for optimal charge configurations [3].

3.3 Precorrected-FFT Acceleration

Although the matrix equation in (3.14) can be readily solved with Gaussian elimination,

and is used for the smaller test cases to demonstrate the validity of this formulation and

to examine convergence properties, Gaussian elimination is too computationally expensive

to solve practical examples of interest. An alternative approach to Gaussian elimination

is to use an iterative solver such as GMRES [75], and recent advances in fast algorithms

have made this approach very appealing. Most of these fast methods take advantage of

the fact that an iterative solver is a matrix-implicit algorithm. No explicit matrix has to be

formed or stored; only the calculation of matrix-vector products is required. An existing

precorrected-FFT algorithm [63] is particularly well suited for this problem and will be

described here.

As demonstrated in the above formulation, the boundary element method often involves

the solution of an integral equation of the following form:

ϕ(~r) =
Z

K(~r;~r′)σ(~r′)d~r′, (3.15)

where K(~r;~r′) is a known kernel. Given a potential distribution ϕ(~r), one desires to find the

corresponding charge distribution σ(~r). In the context of matrix-implicit iterative methods,

what is important is the ability to efficiently compute the potential distribution for some

charge distribution σ(~r). Although charge-potential terminology has been used here, this is

for illustration purposes only; they can be any general variables, such as those in the matrix

equation (3.14), and the kernel K(~r;~r′) does not have to be the usual 1
|~r−~r′| implied by the

charge-potential relationship.

The biomolecule electrostatic model has two integral equations with different kernels,
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Figure 3-1: A pictorial representation of the precorrected FFT algorithm (image courtesy
of J. Phillips)

and therefore the fast method for computing matrix-vector products must be kernel inde-

pendent. Kernel independence is a key feature of the precorrected-FFT algorithm, and it is

a property not shared with the more commonly used versions of the fast multipole method

[23, 24, 59].

The algorithm can be summarized in four steps, as shown in Figure 3-1, where a given

set of panels from a discretized surface are superimposed on a uniform grid. First, panel

charges are projected onto their associated grid points, in what is called the projection step.

Second, given the distribution of grid charges, the grid potential can be calculated using a

convolution of the Green’s function (the kernel) and the grid charges; this convolution is

efficiently computed using the fast Fourier transform (FFT). Third, grid potentials are inter-

polated back onto the panels, a step known as interpolation. In the fourth step, called pre-

correction, nearby interactions are computed directly, with a correction factor that removes

the contributions from the grid. All four steps—projection, interpolation, FFT convolu-

tion, and precorrection—possess sparse representations, so the algorithm is very efficient

in both speed (roughly O(n logn)) and memory (roughly O(n)), where n is the number of

panels. This is a tremendous improvement over traditional methods for discretizing the

integral equations, which generate dense matrices and therefore require n2 memory and n2

28



operations for matrix-vector multiplication.

3.4 Preconditioner

As discussed in the previous section, an iterative solver combined with fast matrix-vector

multiplication techniques is more efficient than a direct solver using Gaussian elimination

or an iterative solver without matrix sparsification. To take full advantage of an iterative

solver, however, it is important to keep the number of iteration small compared to the size

of a problem so that the overall complexity is still O(n logn). A good preconditioner which

is cheap to factor (thus incurring minimal overhead cost) and resembles the original matrix

(thus improving matrix condition) is therefore essential for an iterative solver. Fortunately

for the matrix equation in (3.14), it is not very difficult to devise an effective preconditioner.

Since all elements in the 2× 2 block diagonals correspond to self-term single or double

layer potentials, they are the largest in magnitude in the corresponding columns. So a

preconditioner based on the four block diagonal entries in (3.14):

P =




. . . . . .

. . . . . .


 (3.16)

is used in an iterative solver which is sparse and cheap to factor.

3.5 Computational Results

3.5.1 Analytical Reaction Potential of a Spherical Molecule

A spherical molecule of radius 1 Å, in aqueous salt solution, with a single charge located

at various radial distances, was simulated. A dielectric constant of 1 was used inside the

molecule, and a dielectric constant of 20 was used externally; κ = 3Å−1 in this example.

The reaction potential calculated at the charge location was compared with the analytic

result [41] for three cases, at radial distances rc of 0 Å, 0.5 Å, and 0.9 Å, as shown in

Figure 3-2. As the charge moved closer to the molecular surface, the relative error also
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increased. All three cases exhibited reasonable convergence properties as the discretization

was refined.
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Figure 3-2: Convergence of the reaction potential of a spherical molecule to the analytical
result as the discretization is refined.

The number of iterations required to reach convergence with pre-corrected FFT acceler-

ation is shown in Table 3.1, for two charge locations, at rc = 0 Å and rc = 0.9 Å. Although

no preconditioner was used in these test cases, GMRES converged reasonably quickly and

the iteration count remained fairly constant as the number of panels increased. The condi-

tioning of this formulation is evident and adoption of a preconditioner will further improve

performance.

30



Number of Surface Panels GMRES iteration count
rc = 0.0Å rc = 0.9Å

192 8 25
972 19 43
4800 16 44
6912 16 46

10800 18 48

Table 3.1: GMRES convergence of pFFT-accelerated implementation

3.5.2 Comparison to a Finite-Difference Solver

Three realistic examples including a water molecule (H2O), an organic molecule (QSI) and

an E. coli chorismate mutase (ECM) protein macromolecule are used to verify the numer-

ical results of the integral formulation obtained with a fast solver. The geometry of water

used is based on the TIP3P model [34]. The geometry of the ECM molecule was taken di-

rectly from an X-ray crystal structure [45], and can be obtained from the Protein Data Bank

(PDB) [5] as accession number 1ECM. The molecular surface triangulation were obtained

with the program MSMS [76] using a probe radius of 1.4 Å. An ionic strength of 0.145 M

was used, equivalent to κ = 0.124 Å−1 at 25◦ C. A dielectric constant of 4 was used for the

interior of a molecule, and a dielectric constant of 80 was used externally. A Stern layer of

2 Å was also used in all three cases. Figure 3-3(a) shows a sample solution of the potential

distribution on the ECM molecular surface using a relatively coarse mesh of 21221 panels.

As indicated in Figure 3-3(b), the use of a preconditioner like (3.16) greatly reduces the

number of iteration required to reach convergence at some prescribed tolerance.

The solvation free energy, which is simply one half of the inner product of the charge

values with the vector of the potentials at the charge points, is compared with those obtained

from the finite-difference solver DelPhi [20, 21, 42, 61, 67, 68]. DelPhi is a popular finite-

difference scheme based simulation tool for solving the linearized Poisson-Boltzmann

equation, and is used both in academic and industry settings. Table 3.2 compares the results

for the three molecules in solvent described previously. The number of discretization pan-

els for the dielectric interface, and the salt interface (i.e., the Stern layer) are listed for the

pre-corrected FFT solver. The discretization used in DelPhi was 257 grids per Angstrom.

The two solvers agree to within 1%.
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Figure 3-3: Numerical solution of an ECM macromolecule obtained with pre-corrected
FFT implementation.

Protein Esolvation (kcal/mol)
# of dielectric panels # of salt panels pFFT DelPhi

H2O 17204 9330 -3.14 -3.17
QSI 34114 5842 -34.62 -34.75

ECM 82868 18596 -646.42 -653.88

Table 3.2: Solvation free energies calculated by pFFT-accelerated solver and DelPhi.

3.5.3 Electrostatic Binding Energy of Protein Macromolecules

One practical use of the integral equation solver (as well as the finite-difference solver

DelPhi) is in the calculation of binding energy between two protein macromolecules, which

may enable one to design a drug molecule with specific charge configuration for a target

receptor. The well-known barnase-barstar complex is used as an illustrative example. To

compute the binding energy, one needs to compute the solvation free energies of three

configurations: two for each of the binding molecules and one for the compound. The

binding energy can then be taken as a sum of the three energies, taking appropriate sign for

each term. Table 3.3 shows the binding energy as well as the constituent solvation energies

for the barnase-barstar complex.
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Protein Energy Calculated
# atoms # of dielectric panels # of salt panels (kcal/mol)

Barnase 1107 43298 21284 Edesolvation 51.06
Barstar 839 35978 17434 Edesolvation 40.11

Barnase-Barstar 1946 68592 31728 Einteraction -82.65
Complex Ebinding 8.53

Table 3.3: Solvation free energies calculated by pFFT solver.

3.6 Discussion

In this chapter we presented an integral-equation based approach for computing numer-

ical solutions to the mixed discrete-continuum model of biomolecule electrostatics. The

new approach combines a carefully chosen integral formulation of the mixed discrete-

continuum model with a kernel-independent precorrected-FFT accelerated integral equa-

tion solver. Computational results from our new approach, on both simple and more

complicated geometries, were compared to analytic results and to the widely used finite-

difference based DelPhi program. The results are encouraging and indicate a potential

application of this formulation. On the other hand, accuracy and convergence of an inte-

gral equation solver relies on the availability of a good quality mesh. Unfortunately, soft-

ware tools for molecular surface triangulation are limited. The MSMS program we used is

mainly for visualization purpose and some post-processing may be needed to prune badly-

formed triangles. In addition, the number of triangles required to faithfully represent the

geometry of a complicated macromolecule may be very high, therefore an integral equa-

tion solver can be more computationally expensive than a finite-difference based solver like

DelPhi.

Nevertheless, there are fundamental advantages associated with an integral formulation

compared to a differential formulation as shown in Table 3.4. The need to only discretize

a two-dimensional surface in the integral formulation compared to a three-dimensional

volume in the differential formulation has ramifications in both accuracy and efficiency. In

addition, the use of fundamental solutions as Green’s functions ensure boundary conditions

at infinity are satisfied in the integral formulation. The forcing term in the right hand side

of integral formulation uses exact representation of points charges, while in the differential
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Boundary Element Finite Difference
Boundary Condition Approximation with Approximation with
at Interface surface Mesh volume grid
Boundary Condition Exact Approximation with
at Infinity truncated grid
Point Charge Exact Approximation with
Representation nearby grid points

Table 3.4: Comparison between integral and differential formulation of biomolecular elec-
trostatic problem.

formulation they are approximated with projected grid charges. In order to take advantage

of these attractive features with better computational cost than current implementation,

there is a need to develop novel geometry representation as well as higher order methods

so that the size of problem can be kept small for a given accuracy. In Chapters 5 and 6, we

will propose a highly accurate approach to discretize the integral formulation developed in

this chapter. But let’s first look at the standard approach to improve convergence in the next

chapter.
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Chapter 4

Higher Order Method

In the fast solver implementation in Chapter 3, discretization with a piecewise constant

basis on flat panels are used. The discretization with a triangular mesh has many advan-

tages: first, accuracy can be controlled by tuning the number of panels, perhaps adaptively,

without modifying the general representation. Second, the basis functions are kept fairly

linearly independent by restricting support to one or a few panels (if piecewise linear basis

are used). Finally, the formidable task of integrating over an arbitrary boundary Ω is broken

down into integrating over a flat triangle. Panel integration is still difficult however, because

simple quadrature schemes do not work well for self or nearby terms. The existence of an-

alytical formulae [30, 60] for integrating products of 1
r with polynomials over flat triangles

allows a relatively straightforward implementation of the boundary element method. On

the other hand, no such formula is available for eikr

r or ekr

r kernels. And if curved panels

are to be used for surface representation, the task of panel integration becomes even more

difficult.

For problems with planar boundaries, the process of meshing does not introduce signif-

icant geometrical discretization error, and most numerical errors are associated with how

well a solution can be represented by a chosen set of basis. In the case of piecewise con-

stant basis, any smooth function other than constant cannot be represented exactly. Al-

though accuracy improves with number of panels, its convergence is limited to the lowest

order. Many engineering problems, however, have curvilinear boundaries, and discretiza-

tion with flat panels introduces significant approximation in the geometry. While the mesh
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converges to the actual surface in the same manner as piecewise constant basis, in prac-

tice a large number of panels are needed to achieve good accuracy. And the use of higher

order basis alone will not improve convergence without adopting simultaneously a better

representation of the curved surface.

In this chapter, we address this inefficiency and demonstrate better accuracy and faster

convergence when curved panels are used together with higher order basis. Higher order

panels using B-splines [53] or Taylor series expansion of local surface curvature [72] have

been used. While analytical expressions of singular integrals are used in both cases, such

formulae are not always possible for curved surfaces that cannot be described by polyno-

mials. In addition, such formulate are cumbersome to derive and may not generalize to

polynomials of all orders: that is, derivation has to be carried out repeatedly for all possible

degrees of polynomials involved in the geometry and basis function representation. We

take an alternative approach to represent the geometry with mapping functions and numer-

ically evaluate the integrals. This procedure can be generalized to any curvilinear surface

if a mapping function from a local reference panel can be found. In the case when exact

geometrical representation is not possible, an isoparametric approximation of a mapping

function in terms of polynomial basis functions can also be used, as will be described in

Section 4.3. While this can be a general approach to achieve better accuracy and faster

convergence in the standard boundary element method implementation, more importantly

the techniques we introduce here can also be applied to the spectral method that will be

discussed in later Chapters 5 and 6.

In the following section, we give a brief survey on the common techniques of panel

integration and describe our approach. The particular technique we have chosen enables

the implementation of higher order representation on curved panels and basis functions in

Section 4.2. In cases where exact geometrical representation is not feasible, we describe in

Section 4.3 a general approach based on isoparametric formulation. In Section 4.4, com-

putational results on a sphere are shown and we conclude in Section 4.5 with a discussion.

36



4.1 Panel Integration

In the standard boundary element method implementation, one has to integrate a singu-

lar Green’s function over some surface in forming a matrix or computing a matrix-vector

product. This is one main reason for the common use of flat panels in representing a

curved surface as it simplifies the task in a consistent manner to integrating over a flat

triangle. The procedure, commonly known as panel integration, is a crucial step in the for-

mulation and much research [17, 26, 30, 40, 60, 82, 93] has been devoted to the accurate

and efficient evaluation of the integral. If non-constant basis are used, the integrand will

also include a basis function, usually of polynomial form, according to (2.8). The main

difficulty arises from the singularity of the Green’s function integrand because straightfor-

ward quadrature techniques are either too computationally costly or insufficiently accurate.

Therefore, various techniques have been devised to carry out the integration analytically

[30, 60] or semi-analytically [93]. Other approaches include specialized quadrature rules

for singular integrals [71, 80] or removal of singularity by variable transformation before

applying standard quadratures [17, 26, 40, 82].

While various approaches are available for integration over flat triangles, such tech-

niques are much more limited for curved panels, partly because a curved surface can have

arbitrarily complicated geometry and is very hard to generalize. Table 4.1 gives a few ex-

amples of panel integration techniques appropriate for the Green’s functions of interest.

The analytical and semi-analytical formulae [30, 60, 93] used in the fast solver implemen-

tation in Chapter 3 are not available to curved panels. While an approach [86] has been

proposed to generalize these formulae to approximate integration over a curved panel, it is

most effective for constant basis functions and does not extend to double layer potential.

Unless one uses polynomial approximation of curve panels as in [53], panel integration

for an arbitrary curved panel would most likely have to be based on numerical quadrature

[28, 43].

Our method is inspired by [12] and in accent similar to [86] in that both introduce

a new variable that will de-singularize the integrand and both make use of a flat reference

panel. The variable chosen has to goes to 0 as Green’s function becomes singular so that the
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Flat Panel Curved Panel
1
r

analytical
formulae [30, 60] semi-analytical with

eikr

r , ekr

r
semi-analytical with 2D polynomial fit [86]
1D quadrature [93]

Table 4.1: Common approaches for panel integration.

de-singularized integral can be approximated with numerical quadrature. For the 1/r-typed

Green’s functions, ideally one can choose a new coordinate system such that the radial vari-

able in the polar coordinates exactly cancels out the denominator of the Green’s function.

This can be easily done for flat panels, as shown in Figure 4-1, where integrand becomes a

(a)
RR 1√

(x2+y2)
dxdy (b)

RR 1
r r dr dθ

Figure 4-1: De-singularization of Green’s function in polar coordinates.

constant. The resultant integral can be computed using two-dimensional quadrature in (r,θ)

coordinates. While this is not necessary for flat panels since better techniques using analyt-

ical or semi-analytical formulae are possible, the same approach can be applied to curved

panels. But before we proceed, it may be useful to compare this purely numerical approach

to the analytical formulae [30, 60] for 1/r kernel on flat panels. It can give some insight

to the accuracy and efficiency with this approach when applied to a curved surface. Fig-

ure 4-2(a) shows relative errors introduced by the quadrature scheme for various locations

of evaluation points in the configuration in Figure 4-2(c). In the test panel in Figure 4-2(c),

a vertex is chosen as the origin of polar coordinates for evaluation points in region defined

by three axes originating from the vertex: a normal to the panel and perpendicular lines to
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Figure 4-2: Accuracy of numerical panel integration using quadrature in polar coordinates.

the two edges. To sample the region, we take evaluation points along the three axes since

they are closest to the panel and presumably the corresponding panel integrations are most

difficult to compute accurately. For various distances of an evaluation point to the vertex

(relative to the distance from vertex to panel centroid), a set of three lines in Figure 4-2(a)

corresponds to locations of evaluation points along the three axes. As shown in the figure,

while the cost of numerical quadrature (for the same accuracy) increases as an evaluation

point approaches a panel, the de-singularization technique is very effective when an eval-

uation point is on the panel itself and the cost is similar to the case where an evaluation

point is about one panel size away. Figure 4-2(b) plots an estimate of the total number of

quadrature points required to obtain an accuracy of 10−4 versus distance of an evaluation

point to panel. The three distinct lines correspond to sample points along three axes.
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For curved panels, it may be very difficult to define a coordinate system that cancels the

denominator of the Green’s function exactly. In addition, such coordinate system would not

generalize to arbitrary curved surfaces anyway. On the other hand, if one defines a polar

coordinate system on the flat triangle that shares the same vertices as a curved triangle, as

shown in Figure 4-3, one may still generalize the above approach to a smooth but otherwise

arbitrary surface, as long as a mapping function from the flat surface to the curved surface

can be found. The key observation is that the origin of polar coordinates has to be chosen

to correspond to the singular point of the Green’s function, so that the resultant integrand,

although not constant, is sufficiently smooth to be integrated with quadrature.

Figure 4-3: Mapping from flat to curved panel.

4.2 Higher Order Basis on Curved Panels

The strategy for panel integration outlined in the previous section relies on the availability

of a one-to-one mapping function from a flat panel of local coordinates (u,v) to a curved

panel of global coordinates (x,y,z):

P :~r f lat(u,v)→~rcurve(x,y,z). (4.1)

The mapping function on a reference panel serves three purposes: first is to define the ori-

gin and corresponding polar coordinates on the flat panel when an evaluation point is on

the curved panel so that the integral is de-singularized. When an evaluation point is out-
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side the curved panel itself, the Green’s function is not singular so there is more freedom

in choosing an origin. One strategy is to choose an origin on the flat panel whose corre-

sponding point on the curved panel is among the closest points on the source panel to the

evaluation point. The hope is that for nearby terms (evaluation points close to a curved

panel), this can alleviate the steep slope associated with 1/r decay when r is small and

thus minimize number of quadrature points required for a good approximation. However,

as Figure 4-2(b) indicates, for arbitrarily close nearby terms, this approach may still be too

costly. On the other hand, in settings typically encountered in boundary element method,

evaluation points are at least about one panel size away for non-self terms, so this can still

be a plausible approach for many practical problems.

The second purpose is to define two-dimensional quadrature points on the flat reference

panel using product of one-dimensional Gauss points in polar coordinates. The trade-off

for not having to define a separate curvilinear coordinate system for each curved panel is

the need for a mapping function. However once it is defined, the de-singularization of

Green’s function integral and quadrature points can be set up in a consistent manner. In

fact, an integral over the curved panel can be written as an integral over the flat panel with

an appropriate Jacobian:

Z

curve panel

G(~reval,~r′)dS′ =
Z

f lat panel

G(~reval,P(~r′))|J(~r′)|dS′ (4.2)

where G(~r,~r′) is Green’s function of evaluation and source coordinates, and |J|=
∣∣∣∂P(~r f lat)

∂~r f lat

∣∣∣
is the Jacobian of the mapping function in 4.1. The integral in the right-hand-side of equa-

tion (4.2) is carried out by numerical quadrature in polar coordinates. In general, the origin

of polar coordinates is in the interior of a panel, but it can be translated to the case in

Figure 4-2(c) by breaking it up into a few triangles and summing up individual contribu-

tion. This step is necessary because integral across a vertex is not smooth and cannot be

accurately computed using quadrature.

Last but not least, in order to improve convergence, one has to use higher order basis

than piecewise constant functions. Representing actual surface with mapping function and

carrying out panel integration as such will improve accuracy over flat panel discretization,
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but only by a constant factor independent of discretization level. And if the higher cost

of numerical panel integration over analytical formulate available only for flat panels ex-

ceeds this factor of improvement in accuracy, it may be hard to justify this approach. In

other words, if one can get away with using more flat panels to achieve the same accu-

racy with same or less computation time than using fewer curved panels, the curved panel

discretization is not necessarily superior. And one hopes to improve the trade-off by cou-

pling curved panel representation with higher order basis, thus having a greater margin of

improvement in accuracy as one refines discretization. The standard piecewise constant,

linear and quadratic bases are shown in Figure 4-4 whose supports are defined on a few

panels of a triangle mesh. The figure shows, however, not the entire support of a basis

function, rather a few basis functions that share their supports on a panel. As opposed to

piecewise constant basis whose supports do not overlap, three piecewise linear functions

and six piecewise quadratic functions, both of them nodal basis functions, can be defined

on a panel. As a result, orthogonality is not maintained for piecewise linear and piecewise

quadratic bases defined on nearby panels. While all bases are defined on flat panels, the

mapping function in (4.1) allows one to utilize these standard bases also on curved pan-

els. They may not have the linear or quadratic form in curvilinear coordinates of a curved

panel, but it is nevertheless a consistent and convenient way to define higher order bases

on an arbitrary curved surface. The panel integration procedure can be easily modified to

accommodate an additional term in the integrand:

Z

curve panel

G(~reval,~r′)B(~r′)dS′ =
Z

f lat panel

G(~reval,P(~r′)|J(~r′)|B(~r′)dS′ (4.3)

where B(~r′)’s are basis functions defined on a reference panel.

4.3 Isoparametric Formulation

Ideally if a mapping function in (4.1) can be found to represent an exact surface, there will

be no discretization error in geometry representation. However, in practice when this is not

possible, a mapping function can still be found to represent an approximate surface. As
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(a) piecewise constant (b) piecewise linear

(c) piecewise quadratic

Figure 4-4: Standard piecewise polynomial basis defined on flat panels.

long as error introduced in the geometry discretization is no greater than the basis function

discretization error, convergence rate consistent with order of basis can still be achieved.

In this section we describe a general method to do this so that the approach in the previous

section can again be adopted.

The quadratic basis in Figure 4-4(c) can be written as quadratic functions of local co-

ordinates (u,v) on a flat panel:

B(~r f lat(u,v)) = β0 +β1u+β2v+β3uv+β4u2 +β5v2. (4.4)

An isoparametric representation can be obtained whereby the same quadratic polynomials
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are used to approximate the geometry. The set of coefficients that uniquely determine a

quadratic panel can be obtained by solving a set of 6x6 matrix equations:




...
...

...
...

...
...

...
...

...
...

...
...
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(4.5)

where the matrix entries are local coordinates (u,v) evaluated at six points on a flat panel

and the right hand sides are global coordinates (x,y,z) of the corresponding points on an

actual surface. Typically, those six points are chosen to be on vertices and edge midpoints

as shown in Figure 4-4(c). The global coordinates of the three vertices are easy to obtain

as they presumably coincide with the three vertices of a flat panel, but those of three edge

midpoints may require additional knowledge of the actual curved geometry. On the other

hand, in cases where analytical mapping function is not possible, an interpolated surface

using discrete points can be a useful approach without sacrificing order of convergence.

Once an approximated mapping function in terms of quadratic polynomials is obtained, an

analytical Jacobian:

|J|=
√(

∂x
∂u

∂y
∂v
− ∂y

∂u
∂x
∂v

)2

+
(

∂y
∂u

∂z
∂v
− ∂z

∂u
∂y
∂v

)2

+
(

∂x
∂u

∂z
∂v
− ∂z

∂u
∂x
∂v

)2

(4.6)

can be easily obtained from partial derivatives of quadratic functions.

4.4 Computational Results on Sphere

A unit sphere in an infinite fluid potential flow problem, which has an analytical solution

[58, 63] is used to demonstrate the convergence properties of higher order bases. The

integral equation is

φ(~r) =
Z

Ω

σ(~r′)
|~r−~r′| dS′ (4.7)
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where φ(~r) is given. The potential and corresponding solution for the sphere example are

φ(~r) = − z
2‖~r‖3 ‖~r‖ ≥ 1 (4.8)

σ(~r) = − 3z
8π

‖~r‖= 1. (4.9)

A plot of the analytical solution σ is shown in Figure 4-5 and Figure 4-6 shows convergence

properties of various discretization using bases of increasing order. Accuracy is assessed
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Figure 4-5: Solution distribution of potential flow problem on sphere.

in terms of integrated error which is approximated by a weighted sum of absolute errors at

discrete points. For piecewise constant basis, the obvious choice of these points is the set

of centroidal collocation points:

Σpanel =
N

∑
i=1

ai |σnum(~rcentroid)−σexact(~rcentroid)| (4.10)

where ai’s are areas associated with each panel and N is total number of panels. For higher

order bases, however, the integrated error can alternatively be approximated from a set of

collocation points which do not fall on panel centroids:

Σnode =
4πR2

n

n

∑
i=1
|σnum(~rcolloc)−σexact(~rcolloc)| (4.11)

where R is radius of sphere and n is total number of collocation points. Note that the sum

is weighted by an average area in this node-based approximation instead of panel area in
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Figure 4-6: Convergence results for a potential flow problem on sphere

(4.10). In Figure 4-6, solid lines correspond to panel-based integrated errors calculated for

all bases. For piecewise linear and piecewise quadratic bases, post-processing is needed to

evaluate nodal basis functions at panel centroids, thereby making a consistent comparison

to the piecewise constant basis. Alternatively, the last two broken lines show integrated

errors computed at collocation points for the piecewise quadratic basis according to (4.11):

the dashed line corresponds to an isoparametric representation of the curved geometry and

the dotted line, like all other solid lines except flat panel discretization, uses mapping func-

tions to represent the exact geometry. As can be seen from the flat panel versus curved

panel discretization in the piecewise constant basis, a better representation of geometry

improves accuracy but not convergence. In fact, based on the integrated error comparison,

convergence seems to deteriorate when curved panels are used. This is perhaps due to su-

perconvergence [78] such that convergence rate of linear basis is achievable with constant
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basis when centroidal collocation points are used, as is in the case of flat panel discretiza-

tion. For curved panel discretization, the centroids do not fall on panels and the collocation

points on panels (radially project from centroids of flat panels that share the same vertices)

have been used in the calculation. In order to improve convergence, a better representation

in terms geometry as well as basis function discretization have to be used. As can be seen

from the plot, both accuracy and convergence improve with the use of higher order basis.

The isoparametric representation in Section 4.3 is an effective approach to approximate

geometry and is capable of achieving convergence consistent with order of basis functions

used. Also, the calculations of integrated error according to (4.10) and (4.11) both give

similar results.

4.5 Discussion

In this chapter, an approach to improve convergence through accurate representation of

geometry and use of higher order bases is presented. The notion of mapping function is

introduced to parameterize a curved surface by local coordinates of a flat reference panel

on which the standard higher order bases can be defined. Furthermore, the integration of

the product of Green’s function, basis functions and Jacobian of a mapping function on

a flat panel is carried out using quadrature points in polar coordinates whose origin has

been carefully chosen to desingularize the integrand. The approach is in contrast to earlier

methods [53, 72] where polynomial approximation of a curved surface is assumed and

analytical formulae for panel integration are derived. In cases when mapping functions

from flat to curve panels are exact, no geometrical error is introduced. On the other hand,

when an exact mapping function is not available, an isoparametric approximation can be

used. So long as geometrical and quadrature errors are no greater than error introduced

by the basis function discretization, convergence consistent to the order of basis functions

can be achieved. However, based on the author’s experience, integration by quadrature

for singular functions, even with desingularization technique described above, demands

higher cost compared with analytical formulae available for flat panels [30, 60]. It is not

clear if the improvements in accuracy and convergence can sufficiently offset the higher
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computational cost.

In addition, the availability of matrix sparsification techniques [59, 63] utilized in Chap-

ter 3 further complicates the issue. It is clear that the same matrix-implicit iterative solver

approach can be used for the higher order basis. However, such multi-resolution techniques

rely on approximation of faraway interactions. Since higher order basis have larger sup-

ports and therefore less faraway interaction, the amount of speedup with acceleration is

less than compared with piecewise constant basis. Furthermore, the amount of overhead

in either multipole- [59] or FFT-based [63] approach is likely to be higher for higher order

bases as well for the same size as a piecewise constant basis. This is because in calculating

moments of a basis function used in approximating faraway interaction, contribution from

all panels within its supports has to be summed up whereas for piecewise constant basis, it

only needs to be done once per panel. It is this trade off between accuracy and speed that

motivates the development of a method with even faster convergence in the next chapter.
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Chapter 5

Spectral Method

Traditional boundary element methods using piecewise-constant basis are low order, there-

fore large numbers of unknowns are needed to achieve high accuracy. While acceleration

techniques [7, 23, 25, 39, 59, 63, 70] make it possible to solve such problems, memory is

often a bottleneck. As a result, there is much interest in developing higher order methods

[12, 13, 38, 53] that can achieve faster convergence and reduce problem size. In [13, 53],

the use of a higher order basis based on B-splines resulted in faster algebraic convergence,

while in [12, 38], the aim was to attain spectral convergence. In this chapter, we propose

a new approach to discretize a singular integral equation using global, numerically orthog-

onal basis and demonstrate spectral convergence (error decays exponentially with number

of unknowns). Our method differs from [12, 38] in that we use an explicit high order basis

in our approach.

Higher order basis such as piecewise linear or piecewise quadratic polynomials in the

previous chapter can improve convergence, but they are still a local approximation to the

solution. As will be made clear in this chapter, our method takes a more global approach

in an attempt to create a high order approximation over a large region. The improvement

in accuracy is significant: the method exhibits a spectral convergence rates. It is well know

that the Nyström method can attain spectral convergence for second kind integral equations

with non-singular kernels by using collocation points as quadrature points [1]. However,

the method breaks down for Laplace and Helmholtz problems, since the kernels are singu-

lar. Our approach can be applied to singular integrals and can be considered as an extension
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of the Nyström method. On the other hand, our method can have a different interpretation

as an interpolation approach, similar to [12]. This interpretation allows an efficient im-

plementation of matrix-vector multiplication that can be used in an iterative solution of

the resultant matrix equation. With this implementation, the speed of our approach with-

out acceleration may still be competitive with low-order accelerated methods for the same

accuracy, with orders of magnitude lower memory use.

In the following section, we will describe the basis we use in the proposed method.

In Section 5.2, we use the panel integration techniques in the previous chapter in the cur-

rent context for integration over curved surfaces. In Section 5.3, the equivalence between

Galerkin and collocation formulation for the particular choice of basis is described. Nu-

merical results are presented in Section 5.4 and finally in Section 5.5, we conclude with

some discussion.

5.1 Numerically Orthogonal Basis

An alternative basis for discretization is a set of numerically orthogonal polynomials de-

fined by carefully chosen quadrature points. In contrast to a panel-based representation

whereby orthogonality is only partially maintained by spatial separation of basis function’

supports, a quadrature based approach ensures good orthogonality for arbitrarily high order

basis, though their supports have significant overlap. To demonstrate how such basis func-

tions can be defined, consider a global surface that can be partitioned into a few regions

and each of which can be associated with a one-to-one mapping function as in (4.1) defined

on a local patch. In a complicated geometry where exact mapping is not possible, a high

order approximation, consistent with the basis order, has to be used since convergence is

limited by the lower accuracy of the two. A second requirement is the availability of good

quadrature points associated with each patch. For example, in a rectangular patch a tensor

product of one-dimensional Gauss-Lobatto quadrature points is used, and basis set can be

similarly defined as polynomials that take on unit value at one of the grid points but zero at

all other grid points. In one dimension, these are the Lagrangian interpolating polynomials
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[6]:

`i(u) =

m

∏
k=1,k 6=i

(u−uk)

m

∏
k=1,k 6=i

(ui−uk)
(5.1)

such that

`i(uk) = δik i,k = 1, . . . ,m (5.2)

where uk is coordinate of kth quadrature point. The basis functions on a patch can therefore

be written as a product of two one-dimensional polynomials as in

B(i∗ j)(u,v) = `i(u)` j(v). (5.3)

Therefore, if m quadrature points are used along each dimension, there will be m2 basis

functions. A good set of quadrature points ensures orthogonality as the inner product over

a patch approximated by the same quadrature points is always zero by design:

ZZ

patch

BIJ(u,v)BI′J′(u,v)dudv≈∑
i, j

BIJ(ui,v j)BI′J′(ui,v j) = δII′δJJ′. (5.4)

For the basis function associated with a boundary node, its support will span across nearby

patches so that computed solutions will be continuous along patch boundaries. This is an

improvement over panel-based representation since all derivatives are continuous within

a patch which does not shrink in size as number of basis increases. The use of such a

numerically orthogonal basis was proposed in the spectral element method [62] and is well

known in the finite element community. However, to authors’ knowledge, it has not yet

been applied to the boundary element method, perhaps hindered by the difficulty of panel

integration, the subject of the next section.

5.2 Integration over Curved Surfaces

Once the mapping function (4.1) and basis functions (5.3) have been defined on a patch,

integration of products of Green’s and basis functions over the actual surface can be per-
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formed using parametric coordinates (u,v). For an evaluation point at~r(x,y,z):

Z

(x,y,z)

G(~r,~r′)Bi(~r′)dS′ =
Z

(u,v)

G(~r,P(~r f
′))Bi(~r f

′)|J(~r f
′)|dS′ (5.5)

where ~r f
′ is such that P(~r f

′) =~r′ (see (4.1)), |J| is the Jacobian of the mapping function

P. Note that the basis function, originally defined on the local patch, is also being used to

represent the solution in the global surface through the mapping function:

Bi(~r′(x,y,z)) = Bi(P(~r f
′(u,v))). (5.6)

An analytical expression for (5.5) is not generally available as the Jacobian can be very

complicated, and straightforward quadrature in (u,v) coordinates is not sufficiently accu-

rate for evaluation points on or close to the surface associated with a source patch. It is

shown in Section 4.1 that, however, the integral can be de-singularized in appropriately

chosen polar coordinates in place of u and v. The key is to locate the polar coordinates

origin such that the radial coordinate ρ goes to zero at the singular point. The resulting

integrand is smooth and can be evaluated using Gauss quadrature points in (ρ,ϑ). In par-

ticular, if the evaluation point~r j is such that P−1(~r j) is on the patch, then

(uo,vo) = P−1(~r j(x,y,z)) (5.7)

and
u−uo = ρcosϑ

v− vo = ρsinϑ
. (5.8)

is the appropriate change of variables to apply to (5.5).
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5.3 Equivalence between Galerkin and Collocation For-

mulation

For the Galerkin formulation in (2.10), the outer integral with the target basis function is

smooth and is typically approximated by quadrature. Since the support of a basis function

in (5.3) have been defined on patches associated with quadrature points, one can use the

same points to approximate the outer integral:

AGalerkin
ji ≈

# points

∑
k=1

w j,kB j(~r j,k)|J(~r j,k)|
Z

support
G(P(~r j,k),~r′)Bi(~r′)dS′ (5.9)

where i and j are again global indices of all nodes, and k is the index of quadrature points

associated with target basis function’s support, which may be on one or a few patches.

So ~r j,k is the position vector of kth quadrature point on B j’s support with corresponding

quadrature weights w j,k. Since each basis function is chosen to be non-zero at only one

quadrature point:

B j(~r j,k(u,v)) = δ(|~r j(x,y,z)−P(~r j,k(u,v))|), (5.10)

each row of the Galerkin matrix in (5.9) reduces to the corresponding row of the collo-

cation matrix scaled by some constant. Each entry of the right hand side in the Galerkin

formulation in (2.10) is also equal to the corresponding entry of the right hand side in the

collocation formulation in (2.11) scaled by the same constant, namely w j,k|J(~r j,k)|. As a

result, the Galerkin formulation for the particular choice of basis in (5.3) is equivalent to

the collocation formulation. One can simultaneously take advantage of Galerkin scheme’s

convergence property and collocation scheme’s computational efficiency.

5.4 Computational Results using Exact Geometry

5.4.1 Potential Flow on Sphere

The sphere example in Section 4.4 is used here to demonstrate the convergence property of

the proposed approach, and to make a comparison with the standard panel-based higher or-
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der basis in the previous chapter. In order to describe the spherical geometry, local patches

on six faces of a cube centered at the origin as shown in Figure 5-1 is used, and a mapping

function is defined by radially projecting any point on the cube to sphere. The Jacobian of

the mapping is given by:

|J|= hR2

d3 (5.11)

where d is the distance from center of sphere to a local point on a patch, h is perpendicular

distance from center of sphere to the patch and R is radius of sphere. An m×m Gauss-

Lobatto grid is used on on each face of a cube, a basis set is defined on the grid and

2m×2m quadrature points in polar coordinates are found to be sufficiently accurate in this

case to evaluate the integral in (5.5). Both direct and iterative solvers are used to obtain a

numerical solution and accuracy is assessed in terms of integrated error defined in 4.11.

(a) partition on sphere (b) Gauss-Lobatto points on six local patches

(c) two-dimensional Lagrangian basis

Figure 5-1: Mapping from cube to sphere.
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Figures 5-2 show the results in two different scales, one plotted against order m and

the other plotted against number of unknowns. It can be seen that both direct and iterative

2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

order

in
te

gr
at

ed
 e

rr
or

direct solver
iterative solver

(a)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of unknowns

in
te

gr
at

ed
 e

rr
or

flat panel + constant basis
direct solve on spectral method
iterative solve on spectral method

(b)

Figure 5-2: Potential flow problem on sphere.

solution have similar accuracies, except when errors approach the 10−6 tolerance used

for the iterative solver. Both approaches, however, show similar convergence behavior: a

straight line in a log-linear plot and a curve in a log-log plot indicates spectral convergence,

and the error decays exponentially with number of unknowns. This is compared to the

standard panel method in Figure 5-2(b). The improvement over the traditional approach

is clear: not only is the accuracy better for the same number of degrees of freedom, or

fewer unknowns are needed for the same accuracy, but the method’s advantage grows with

increasing problem size or more stringent error tolerance. For the sphere problem, the

spectral method is able to achieve six digits of accuracy with about 500 unknowns, which

in our MATLAB® implementation, takes less than ten minutes in a 3GHz Intel® Xeon

machine. By extrapolating the straight line in Figure 5-2(b), one can estimate that at least a

million panels are needed for the standard method to achieve the same accuracy. Table 5.1

shows matrix condition number and the number of iterations required to converge to 10−6

tolerance using GMRES [75], without any pre-conditioner. Note that the condition number

and number of iterations are growing slowly with problem size. Figure 5-3 summarizes the

key results to shows a comparison to the standard panel method and the standard panel-

based higher order method. It can be seen that even with quadratic basis discretization, the

spectral method does better beyond 200 unknowns.
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order 2 3 4 5 6 7 8 9 10
number of unknowns 8 26 56 98 152 218 296 386 488
condition number 11 32 57 92 136 189 254 327 408
number of iterations 2 5 6 8 8 7 7 5 4

Table 5.1: Matrix condition of direct and iterative solver.

5.4.2 Capacitance of a Cube

The sphere example in the previous section demonstrates that the spectral method is very

effective for problems with smooth geometry and smooth underlying solution. In the case

where solution is not smooth or contains singularities, polynomial approximation cannot

achieve spectral convergence and the spectral method as presented in this chapter is not

necessarily better than the traditional low order approach. The capacitance calculation of

a cube is used to demonstrate this idea. The integral equation is the same as (4.7) but the

potential is set to constant. The capacitance, by definition, is sum of charge distribution in

the corresponding solution. It is well-known that the charge distribution (at constant poten-

tial) is singular in the presence of geometrical discontinuity: in this case along 12 edges of

a cube. That is why in the traditional panel method, a thin strip of panels known as edge

cells [73] are typically used along surface boundary while more uniform-sized panels are

used in the interior. While piecewise constant basis cannot faithfully capture a singularity,

the sum of charges as in the capacitance calculation can still be well-approximated.

In the spectral method, while the geometrical discontinuity in itself does not present

a problem since local patches have been defined to align with the boundary, the fact that

the underlying solution is singular prohibits spectral convergence when polynomial basis

functions are used. Figure 5-4 shows capacitance calculation of a cube using both the

spectral method and standard panel method implemented in FastCap [59]. Although ana-

lytical formulae for a cube capacitance is not available, a numerical result of 0.660678 nF

as given in [54] is used as a reference to compute the relative errors. As shown in the plot,

the convergence rate for the spectral method is not significantly better and accuracy using

both methods is comparable. In the implementation of the spectral method, Lagrangian ba-

sis defined on Gauss-Lobatto grid as in 5-1 are used so that solution has continuity across

patch boundary. However, in this case where solution become singular along edges, enforc-
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Figure 5-3: Comparison of convergence properties between standard and spectral methods.

ing continuity is not very meaningful. Alternatively, the basis defined on regular Gauss-

Legendre grid can be used instead. As shown in the figure, accuracy is somewhat improved

although the same convergence behavior remains. Further improvement in accuracy can

be obtained in the spectral method if edge cells are also used along boundary, but in or-

der to increase the convergence rate, specialized basis (possibly singular) tailored to the

underlying charge distribution has to be used.

5.4.3 Capacitance of an Ellipsoid

The capacitance calculation is repeated for an ellipsoid. It has a smooth geometry as in

the sphere case, but the solution is not constant which allows a meaningful comparison
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Figure 5-4: Capacitance calculation of a unit cube.

between the spectral and standard methods. The equation of an ellipsoid is given by:

x2

a2 +
y2

b2 +
z2

c2 = 1 (5.12)

where a, b and c are lengths along its three axes. For simplicity, we will consider the

case when two of the lengths are the same (b = c), which is a special case of an ellipsoid

known as a spheroid. It corresponds to surface of revolution of an ellipse about one of its

principal axes. Depending on the axis of rotation, an spheroid can be of cigar-shaped (a

prolate spheroid) or disk-shaped (an oblate spheroid). Figure 5-5 shows the test example

of a prolate spheroid in the capacitance problem. In the spectral method, local patches is

again defined on the six faces of a cube and the mapping Jacobian from a cube to ellipsoid

is similar to (5.11) but the radial distance R is no longer a constant. The capacitance of a
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spheroid has an analytical formula [16]:

Cprolate = 4πε0

√
a2−b2

ln a+
√

a2−b2

b

(5.13)

and Figure 5-6 shows relative errors in the capacitance calculation of an ellipsoid (a = 3,

b = c = 1) using both spectral method and the standard panel method. As demonstrate

in the sphere case, spectral convergence is again validated here from the linear decay in

the log-linear plot. The curve in the log-log plot indicates exponential decay in the error

versus number of unknowns. One can compare the improvement in accuracy between

both methods in Figures 5-6 and 5-2, and note that in the sphere example, the spectral

method seems to have a greater improvement over the standard panel method. However,

one should also note that the error metrics used in both examples are not equivalent. While

the integrated error in the potential flow problem is a sum of absolute errors, the relative

error in the capacitance calculation is an error of sums. So depending on the physical

quantity of interest, one may achieve a slightly different factor of improvement, but the

superior accuracy and convergence in the spectral method is demonstrate in both cases.

5.5 Discussion

In this chapter a novel approach is proposed to discretize an integral equation. As opposed

to the standard panel method, local patches are used to define geometry through mapping
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Figure 5-5: Charge distribution on an ellipsoidal surface of equal potential.
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Figure 5-6: Capacitance calculation of a spheroid.

functions and the number of patches is kept constant as discretization increases. The use

of progressively higher order bases with discretization results in spectral convergence. The

superior accuracy and convergence behavior would make this approach more attractive

than the standard higher order method in the previous chapter. In addition, the use of

common patches where an increasing number of basis functions share their supports on

as discretization increases has ramification on the efficiency as well. While a discussion

of an efficient implementation is deferred to Chapter 7, the cost of panel integration can

be minimized by taking advantage of the fact that quadrature points defined on a patch

can be shared among many basis functions. This would not be possible in the traditional

panel-based discretization. On the other hand, the use of large patches can mean that the

use of multi-resolution techniques [7, 23, 25, 39, 59, 63, 70], commonly used with the

panel method, may not be very effective when coupled with the proposed approach. This

particular issue, together with two interpretations of the spectral method, are discussed in

the following subsections. The extension to a more general molecular surface than sphere

will be described in the next chapter.

5.5.1 Multi-resolution Techniques

Traditional approach with piecewise-constant basis requires a lot of panels for accuracy

and one typically uses multi-resolution techniques to accelerate the solution procedure by
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approximating faraway interaction. Such techniques can also be used for the proposed

approach. In fact, for a distant evaluation point, the influence of a basis function on a patch

is well represented by a point charge since the basis are chosen to be non-zero at only one

quadrature point. So fast multipole method [23] can be readily applied to approximate the

effect of all basis functions on a patch. On the other hand, large patches should be used

whenever possible to define the geometrical mapping in order to take full advantage of the

proposed method. The reasons are twofold: better accuracy because solution has only first

order continuity across patch boundary but smooth anywhere else, and improved efficiency

because quadrature points in polar coordinates can be shared among all basis functions on

the same patch. So it is not clear if total number of patches will be large enough to make

multi-resolution techniques useful. At the same time, multi-resolution approximation may

interfere with the spectral convergence behavior the method seeks to achieve.

5.5.2 Two Interpretations

As mentioned in the beginning of this chapter, our approach is similar to the Nyström

method in that it is also capable of achieving spectral convergence. For an integral equa-

tion with non-singular kernels, the Nyström approach uses quadrature points as collocation

points and reduces to a set of algebraic equations. For singular kernels, however, our ap-

proach shows that the same spectral convergence can be obtained if explicit Lagrangian

basis functions defined on quadrature points can be integrated sufficiently accurate. And

the basis functions we use are the same as those in the spectral element method [62].

Alternatively, our approach can be seen as a more global interpolation of the underlying

function, and carrying out the integration on patches. This is in contrast to the standard

approach where accuracy and convergence is limited by panel-wise or local approximation.

We also demonstrated that good accuracy and a well-conditioned matrix equation can be

achieved by using a set of good interpolation points defined on patches. In this view, our

method is similar to [12] although in that approach, uniform grids are used and a set of

partition-of-unity weighting functions are introduced to make the underlying representation

periodic.
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Chapter 6

Spherical Harmonic Surface

Representation

The previous chapter demonstrates how local patches defined on six faces of a cube and

the associated Lagrangian polynomials defined on a Gauss-Lobatto grid can be useful in

the discretization of integral equations. While this is a radically different approach in rep-

resenting geometry from the panel method and the examples shown involve only simple

geometries where analytical mapping functions can be found, this chapter seeks to explain

how the spectral method can be extended to general molecular surfaces using the same

cube-based discretization. In fact, it will be extraordinarily difficult to define mapping

functions from a given triangulation of flat panels to the actual surface. Fortunately, there

has been work done in global representation of molecular surfaces [10, 18, 49, 50, 55, 57]

using spherical harmonics, which are defined on a unit sphere. Coupled with the approaches

used in the sphere example in Section 5.4.1, a closed 3-D surface can be defined via map-

ping from cube to sphere, and from sphere to a spherical harmonic surface. In this chapter,

it will be made clear how a biomolecule problem is no more difficult than a sphere problem

with a substituted Jacobian. The computational cost, therefore, would be similar to that of

a sphere example, with additional overhead in evaluating spherical harmonic functions.

In the next section, we establish the notation and formulae used for the spherical har-

monics. In Section 6.2, we describe how a spherical harmonic representation can be gener-

ated using least squares fitting to points distributed on a molecular surface. In Section 6.3,
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the Jacobian for the mapping from a cube to the approximated global molecular surface

is computed. The effectiveness of spherical harmonic representation is verified using area

calculation in a few examples in Section 6.4. Finally, computational results of the spectral

method using spherical harmonic surfaces are shown in Section 6.5 and we conclude with

a discussion in Section 6.6.

6.1 Spherical Harmonics

Spherical harmonics Y m
n (θ,φ) can represent solution of Laplace’s, Helmholtz’s and Schrödinger

equations in angular coordinates: 0 ≤ θ ≤ π is polar angle from positive z-axis and 0 ≤
φ < 2π is azimuthal angle from positive x-axis. Physically, they correspond to the shape of

electron orbitals and therefore seem like a natural choice for describing molecular surfaces.

Mathematically, they are orthogonal functions defined on the surface of a unit sphere. The

set of basis is complete such that any sufficiently smooth function can be represented as a

sum of spherical harmonics:

f (θ,φ) =
∞

∑
n=0

n

∑
m=−n

cm
n Y m

n (θ,φ) (6.1)

whose coefficients, due to orthogonality, can be calculated by integrating f (θ,φ) with an

individual basis function over surface of a unit sphere:

cm
n =

Z 2π

0

Z π

0
f (θ,φ)Y m

n (θ,φ)sinθdθdφ. (6.2)

The spherical harmonics are commonly written as complex functions, but an equivalent set

of real functions can be used by taking linear combinations of the complex version. For

our purpose, it is more convenient to work with real spherical harmonics:

Y m
n (θ,φ) =





αm
n Pm

n (cosθ)cosmφ if m≥ 0

α|m|n P|m|n (cosθ)sin |m|φ if m < 0
(6.3)
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where Pm
n (θ,φ) are associated Legendre functions, and

αm
n = (−1)m

√
(2−δ0m)(2n+1)

4π
(n−m)!
(n+m)!

(6.4)

are normalization constants chosen such that the basis are orthonormal:

Z 2π

0

Z π

0
Y m

n (θ,φ)Y m′
n′ (θ,φ)sinθdθdφ = δnn′δmm′. (6.5)

For each order n, there are 2n + 1 distinct basis functions corresponding to −n ≤ m ≤ n.

The first three orders of the spherical harmonic functions are shown in Figure 6-1.

Figure 6-1: Spherical harmonics functions |Y m
n (θ,φ)|2 of the first three orders.

6.2 Surface Approximation by Least Squares

Molecular surface representation by spherical harmonics has been proposed by various

authors [10, 18, 49, 50, 55, 57]. In such approach, a set of coefficients is generated from a

point distribution or triangulation of a molecular surface, typically obtained from another

program such as MSMS [76]. The coefficients, together with spherical harmonic basis,

represent an analytical approximation to the surface geometry, and can be differentiated.

The simplest strategy for generating the spherical harmonic representation is to first pick

a ”molecular center” to be the origin of a spherical coordinate system, and then represent
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each surface point using a spherical harmonic expansion as

r(θ,φ)≈
N

∑
n=0

n

∑
m=−n

c̃m
n Y m

n (θ,φ) (6.6)

where N is the expansion order, r, θ and φ are the spherical coordinates of points on the

surface. The approximation is a truncation of the series in (6.1) if and only if the coefficients

are calculated exactly as in (6.2). Depending on the numerical error and algorithm used to

generate the coefficients, c̃m
n and cm

n might not be equal for n ≤ N. On the other hand,

the approximation should improve with N as the basis set is enriched. It does have the

limitation that the surface has to be starlike [18], which means that there exists an origin

within the molecule such that an outgoing ray intersects the molecular surface exactly once.

Other techniques that avoid this restriction are available [10, 18, 49] for surfaces that are

topologically equivalent to a sphere.

The coefficients c̃m
n can be calculated by forming the inner product integral in (6.2).

Instead, we adopt a more easily implemented least squares approach [10]. Given a set of k

points (r,θ,φ) on a molecular surface, we look for a set of coefficients {a j} = {c̃m
n } such

that ||r−Aa‖2 is minimized, where each element of A are spherical harmonics evaluated at

(θ,φ) coordinates:

Ai, j = Ai,n2+m+n+1 = Y m
n (θi,φi) (6.7)

for 1≤ i≤ k and 1≤ j≤ (N +1)2. To solve the least-squares problem, we used the singular

value decomposition, A = UΣV T [83]. The set of coefficients in (6.6) can then be obtained

from

a = V Σ−1UT r (6.8)

where a j = an2+m+n+1 = c̃m
n .

6.3 Jacobian of Spherical Harmonic Surface

In order to incorporate the spherical harmonic representation into the spectral method, one

must be able to integrate over the molecular surface given by (6.6). In addition, in order to
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de-singularize the integral involving the Green’s function, our approach is to carry out the

integration patch-wise on six faces of a cube by setting up appropriate polar coordinates

on each face. As shown in Figure 6-2(a), the origin of the polar coordinates is chosen to

coincide with Green’s function’s singularity through an appropriate mapping function. The

two sets of quadrature points in the spectral method are depicted in Figure 6-2(b): the red

dots correspond to integration points in polar coordinates in which integrands are evalu-

ated, and the blue nodes correspond to Gauss-Lobatto points on each patch used to define

Lagrangian basis. Once the Jacobian of the mapping functions from cube to a spherical

harmonic surface is obtained, the spectral method described in the previous chapter can be

readily applied to solve a general biomolecular problem.

(a) Desingularization in polar coordinates (b) Basis function nodes and quadrature points

Figure 6-2: Integration domain defined on six faces of a cube.

Consider the area integral in order to figure out the appropriate Jacobian. Given a

molecular surface parameterized by θ and φ, the normal vector is given by:

N̂ =
−→
R θ×−→R φ

|−→R θ×−→R φ|
(6.9)

and the area integral is given by:

Z
dS =

Z 2π

0

Z π

0
|−→R θ×−→R φ|dθdφ (6.10)

66



where
−→
R = r(θ,φ)sinθcosφx̂+ r(θ,φ)sinθsinφŷ+ r(θ,φ)cosθẑ (6.11)

is position vector of any point on the molecular surface,
−→
R θ and

−→
R φ are the partial deriva-

tive of
−→
R with respect to θ and φ respectively. Alternatively, the cross product in (6.10) can

be expressed in spherical coordinates [4, 19]:

−→
R θ×−→R φ = r2 sinθr̂− rrθ sinθθ̂− rrφφ̂ (6.12)

so that Z
dS =

Z 2π

0

Z π

0
r
√

r2 sin2 θ+ r2
θ sin2 θ+ r2

φ dθdφ (6.13)

where r = r(θ,φ) in (6.6), rθ and rφ are derivatives of radius coordinate with respect to θ

and φ respectively.

In order to carry out the surface integral on a reference patch on each face of a cube,

one needs the Jacobian for the change of variables:

dθdφ = |Jmap|dudv (6.14)

which corresponds to a mapping from a flat surface parameterized by (u,v) to angular

coordinates (θ,φ). Consider the sphere example where r = ro is constant so that

Z

sphere

dS =
Z 2π

0

Z π

0
r2

o sinθdθdφ =
ZZ

cube

hr2
o

(u2 + v2 +h2)3/2 dudv (6.15)

where h is perpendicular distance from center of sphere to a cube face, one can deduce that

|Jmap|= h
sinθ(u2 + v2 +h2)3/2 (6.16)

when mapping is along radial direction from center of cube which coincides with center

of sphere. We are now in a position to carry out surface integral on reference patches of

a cube by combining equations (6.13), (6.14) and (6.16) where radius function in (6.6) is

represented by spherical harmonics. The evaluation of r and rφ is according to the definition

67



of real spherical harmonics in (6.3) and rθ can be calculated using the following relation:

dPm
n (cosθ)

dθ
=

(n−|m|+1)P|m|n+1− (n+1)cosθP|m|n

sinθ
. (6.17)

Therefore, when spherical harmonics are used to represent a smooth surface, the Jacobian

in (5.5) is given by

|J|= |−→R θ×−→R φ||Jmap|. (6.18)

6.4 Computational Results on Geometry Representation

6.4.1 A Biomolecule

In order to verify the above method for a general molecular surface, we use the example

of a small organic molecule with 26 atoms, the transition state analog (TSA) of the protein

enzyme chorismate mutase. The geometry of this small molecule was taken directly from

an X-ray crystal structure [45], and can be obtained from the Protein Data Bank (PDB) [5]

as accession number 1ECM. The radii used were 1.0 Å for hydrogens, 1.4 Å for oxygens,

2.0 Å for aliphatic carbons, and 1.7 Å for carbonyl or vinyl carbons. The surface of the

TSA molecule was triangulated with the program MSMS [76], using a probe radius of

1.4 Å for water. A spherical harmonic representation is obtained by least squares fit to

vertices of the triangulation. Fig. 6-3(c) and 6-3(d) shows an order 5 approximation with

36 coefficients and an order 10 approximation with 121 coefficients respectively for the

surface using 3359 points, and a triangulation of 6714 panels. The color in the spherical

harmonic surface correspond to the radial distance from the center of expansion, while the

color in the triangulated surface correspond to the tori-reentrant, spherical-reentrant and

contact surface in the definition of molecular surface. The area of a spherical harmonic

surface can be calculated using (6.13), and is compared to analytical area given by MSMS

for increasing order of approximation. In Fig. 6-4, the area convergence versus number of

coefficients is shown for three sets of point distributions. The data demonstrated that 5 to

10 times as many points as coefficients can generate a reasonable approximation. For the
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(a) molecular surface (b) triangulation

(c) order 5 expansion (d) order 10 expansion

Figure 6-3: Geometrical discretization of the TSA molecular surface.

order 10 expansion, the area incurs less than 0.3% relative error. The convergence seems to

stagnate beyond 10−3 because MSMS data have precision of three decimal places, which

is also the precision given in the experimental data of atomic coordinates.

6.4.2 An Ellipsoid

While one can represent an ellipsoidal surface analytically as in Section 5.4.3, we would

like to investigate the effectiveness of spherical harmonic approximation, especially of an

elongated shape. Figure 6-5 shows area convergence of spherical harmonic approximation

of an ellipsoid with various aspect ratios. As shown in the plot, the larger the aspect ratio,

the poorer the spherical harmonic representation for a given order and more basis functions

have to be used in generating a reasonable approximation. In addition, more surface points

will have to be used in generating an expansion of higher order, thus incurring higher
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Figure 6-4: Area convergence of a TSA molecule using spherical harmonic approximation.

computational cost. On the other hand, different strategies [18] from approximating the

radial distance as in (6.6), or alternative basis such as ellipsoidal harmonics may be useful

in representing an elongated surface. But detail studies of those are left for future work.

6.4.3 Cusps

In the definition of molecular surface in 2.1, cusps can sometimes be generated when a

probe sphere’s reentrant surface intersects with itself. Such an example is shown in Fig-

ure 6-6: a singular edge results when two spherical triangular surfaces intersect each other

and two singular vertices result when a tori-reentrant surface intersects with itself. In the

case where geometrical singularity exists at a point where normal is not well-defined, the

global representation using spherical harmonics will not be very effective. This is demon-
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Figure 6-5: Area convergence of a spheroid using spherical harmonic approximation.

strated in Figure 6-7 where in the presence of a singular point in an otherwise smooth

surface, the use of triangular panels gives better geometrical approximation than global

spherical harmonic representation. As the order of expansion increases, spherical harmonic

approximation becomes somewhat better in the smooth region, although ripples, similar to

the Gibbs phenomenon, may place a limit on an achievable error tolerance. Furthermore,

the expansion fails to capture the singular peak. It is important to note that such features are

non-physical as they do not correspond to actual shapes of electron orbital (which are repre-

sentable by spherical harmonics), but rather artifacts from algorithms of molecular surface

generation. Nevertheless, if one wants to model such surface, additional pre-processing

[85, 90] steps have to be carried out before using spherical harmonic expansion.
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Figure 6-6: Geometrical singularities in a molecular surface.

6.5 Computational Results using Approximate Geometry

6.5.1 Capacitance of an Ellipsoid

The same capacitance calculation as in Section 5.4.3 is carried out, but instead of represent-

ing geometry exactly with a mapping Jacobian, an approximate spherical harmonic surface

is used instead. Figure 6-8 shows relative errors using the spectral method with exact and

approximate geometry, as well as the standard panel method. The plots in Figure 5-6(b)

have been reproduced here for a comparison. An order 15 expansion with 256 coefficients

has been used to generate a surface representation which, according to Figure 6-5, has a

relative error in area less than 10−4. However, as shown in Figure 6-8, the amount of

discretization error in geometry still incurs significant error in the capacitance calculation.

Depending on the desired accuracy, a higher order surface representation may be obtained

but the associated computational cost of adopting it in the spectral method will be higher.

6.5.2 Capacitance of a Biomolecule

Once a spherical harmonic surface is obtained, we can apply the spectral method to solve

the integral equation in (4.7), where for the capacitance problem, the potential is set to

unity. We can therefore compare our method to the standard panel method implemented

in FastCap [59]. The spherical harmonic surface in Fig. 6-3(d) is used for geometrical

representation in the spectral method, and triangulation from MSMS is used to generate
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(a) triangulation (b) order 5 expansion

(c) order 10 expansion (d) order 15 expansion

Figure 6-7: Spherical harmonic expansion of a smooth surface with one singular vertex.

input files for the FastCap program. The capacitance calculation for the two solvers with

increasing discretization is shown in Fig. 6-9. For the spectral method, the number of

unknowns correspond to number of global lagrangian basis used while for the standard

panel method, the number of unknowns correspond to number of panels in the triangulation.

For the spectral method, the result converge to three significant figures with 386 unknowns

while in the standard method, the same convergence can only be achieved with 27742

unknowns. The spectral method requires almost two orders of magnitude fewer unknowns

for a tolerance of 10−3, which is consistent with the sphere example in Figure 5-3.

6.5.3 Solvation Energy of a Biomolecule

For the same TSA molecule, we would like to calculate the solvation energy when the

molecule is in an ionic solution. We use the formulation in Section 3.1 to obtain solution of
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Figure 6-8: Capacitance calculation of a spheroid.

a linearized Poisson-Boltzmann equation. The coupled integral equations of interest are:

1
2

ϕ1(~ro) +
Z

Ω

[
ϕ1(~r′)

∂G1

∂n
(~ro;~r′)−G1(~ro;~r′)

∂ϕ1

∂n
(~r′)

]
d~r′

=
nc

∑
i=1

qi

ε1
G1(~ro;~ri) (6.19)

and

1
2

ϕ1(~ro) +
Z

Ω

[
−ϕ1(~r′)

∂G2

∂n
(~ro;~r′)+G2(~ro;~r′)

1
ε

∂ϕ1

∂n
(~r′)

]
d~r′

= 0 (6.20)

where the unknown quantities are potential ϕ1 at the dielectric interface and its normal

derivative ∂ϕ1
∂n on the inner surface. The normal derivative at the interface has a jump that is
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related to the relative dielectric constant ε. The free charges, qi, are derived from quantum

mechanical calculations. The Green’s functions are:

G1(~r;~r′) =
1

4π|~r−~r′| (6.21)

G2(~r;~r′) =
e−κ|~r−~r′|

4π|~r−~r′| (6.22)

where κ = 0.124 Å−1, equivalent to an ionic strength of 0.145 M at 25◦ C was used. A

dielectric constant of 4 ε0 was used inside the TSA molecule and a dielectric of 80 ε0 was

used externally. Once the potential and its normal derivative are computed on the molecular

surface, potentials everywhere can be calculated. In particular, the potential at each charge

location, known as the reaction potential, is given by

ϕREAC(~ri) =
Z

Ω

[
G1(~ri;~r′)

∂ϕ1

∂n
(~r′)−ϕ1(~r′)

∂G1

∂n
(~ri;~r′)

]
d~r′. (6.23)

The solvation energy can be calculated by multiplying these potentials with corresponding

charge magnitudes.

The spectral method is again compared with the standard panel method implemented

with precorredted-FFT acceleration [44, 63, 94]. The results are shown in Fig. 6-10. Note

that the size of matrix equation is twice the size of the basis set shown on the x-axis, since

there are two sets of unknowns in the coupled integral equations. This problem is also more

challenging due to the presence of double layer potentials. To converge to three significant

figures, the spectral method requires 488 basis functions while 8502 panels are needed, a

factor of 20 improvement.

6.6 Discussion

This chapter extends the novel approach in discretizing integral equations with singular

kernels, such as those associated with electrostatic analysis of molecular surfaces. While

in the panel method both geometrical discretization and basis functions supports are defined

on a mesh, they are decoupled in the proposed spectral method. On the other hand, mapping
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functions are required to describe the geometry. In simulation of molecular electrostatics,

spherical harmonics can be a good candidate for generating an analytic representation of

molecular surfaces. Once a mapping from a cube becomes available, the solution on a

general surface is no more difficult to obtain than that on a sphere. On the other hand,

since these basis are smooth functions, molecular surfaces that contain cusps cannot be

well approximated if one insists on representing these non-physical structures. Also, the

expansion based on radial distances as described in this chapter is not possible for non-star

geometries. Instead, more sophisticated approach based on past [18] or future work will

have to be carried out.
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Figure 6-9: Capacitance calculation of the TSA molecule.
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Figure 6-10: Solvation energy calculation of the TSA molecule.
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Chapter 7

Implementation Details

7.1 Iterative Solver

The cost of constructing the collocation matrix depends on the number of quadrature points

used in the polar coordinates. And the use of higher order basis requires a similarly higher

order quadrature scheme in order to accurately approximate the integral. The use of quadra-

ture points in computing panel integration tends to dominate the computation time. Since

many basis functions share their supports on a patch, an efficient implementation should

recycle quadrature points defined on (ρ,θ) among them. This is most easily illustrated by

an iterative solver approach:

φ(~r j) =
n

∑
i=1

ACollocation
ji σi (7.1)

=
n

∑
i=1

σi

(ZZ
G(~r j,~r′(ρ,θ))Bi(ρ,θ)|J(ρ,θ)|ρdρdθ

)
(7.2)

=
ZZ

G(~r j,~r′(ρ,θ))

(
n

∑
i=1

σiBi(ρ,θ)

)
|J(ρ,θ)|ρdρdθ (7.3)

where σi = σ(~ri) is test solution at collocation points. The summation over all patches

within a basis function’ support in implicity assumed here. As opposed to an direct solver

whereby integration over patches is done for individual basis functions in (7.2), at each

iteration step, a weighted sum of all basis functions in (7.3) is integrated instead. This
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is equivalent to first interpolating on each patch via a set of Gauss-Lobatto points, then

integrating the interpolated function over the corresponding global surface. In addition to

the computing efficiency, an iterative solver uses less memory than a direct solver so larger

problems may be solved.

The same efficiency may be achieved with a direct solver, but would require storage

of all quadrature points used for panel integration shared among all basis functions on a

patch. Since distribution of quadrature points changes depending on location of an evalua-

tion point, this would require storing six sets of quadrature points (for six faces of a cube)

for each evaluation point. On the other hand, pre-computing and storing the quadrature

points could further improve the speed of an iterative solver since no redundant computa-

tion needs to be done at each iteration step. Further computational studies on the trade-off

between memory and speed have to be carried out in a low-level language such as C or

C++, but below we give preliminary performance results based on a code implemented in

MATLAB® and optimized for memory: that is, no pre-computing and storing quadrature

points for both direct and iterative solvers. Figure 7-1 shows computation time required

for direct and iterative solvers of the sphere example in Section 5.4.1. The number of it-

eration required for GMRES [75] to converge is shown in Table 5.1. Iteration counts stay

fairly constant as problem size increases even though no preconditioners are used for the

iterative solver. As shown in the figure, computational time for a direct solver grows like

O(n2) where n is number of basis or unknowns. This is because in the implementation

in MATLAB®, the cost of panel integration dominates that of Gaussian elimination which

has been pre-compiled. On the other hand, if quadrature points are used to integrate a sum

of basis functions once per patch per collocation instead of an individual basis function

repeatedly, the plot for the iterative solver shows that the cost of panel integration is less

than O(n2). And even though such integration has to be done redundantly at each iteration

step, an iterative solver is still faster than a direct solver for all but the smallest problems,

when optimized for memory.
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Figure 7-1: Efficiency comparison between direct and iterative solver.

7.2 Algorithm Steps

Below we give a summary of all the steps involved in the matrix-vector multiplication used

in an iterative solver. We will assume that a spherical harmonic representation of geometry

has been obtained, and the basis are defined using Gauss-Lobatto grids on each face of a

cube. Given σi at collocation points, potentials at evaluation points can be computed as

follows:

for each collocation point

for each patch

1. Choose origin of polar coordinates on a patch according to (5.7), if evaluation point

is on patch. Otherwise, choose the nearest point on patch as the origin.

2. Partition patch into triangles by connecting the origin to all vertices. Set up quadra-
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ture points in polar coordinates for each triangle.

3. Evaluate basis at quadrature points by (5.1) and (5.3). The interpolated function at

quadrature points are given by (2.6).

4. Evaluate Jacobian at quadrature points by (6.18), (6.16), (6.12) and (6.6).

5. Evaluate Green’s function at quadrature points via projection of quadrature points

according to (6.11) and (6.6).

6. Integrate on a reference triangle using the above functional evaluations at quadrature

points and appropriate quadrature weights.

7. Calculate the integral on a patch in (7.3) by summing up contribution from each

triangle.

end

end

7.3 Complexity Analysis

To facilitate the complexity discussion, let the number of nodes per side of a square patch

be m, so the basis are a set of two-dimensional polynomials of degrees m−1 in each of

local (u,v) coordinates. And let the number of quadrature points in polar coordinates used

for flat panel integration be k per triangle. Depending on the location of an evaluation point

relative to a local patch, the integration may be carried out as a sum over 2, 3 or 4 triangles.

The number of quadrature points required for a good approximation to the integral could

depend on the order m of the basis functions, as well as the order of an spherical harmonic

expansion in surface representation. To simplify the discussion, however, we will distin-

guish it with a separate variable and implicitly assume here that k has been chosen large

enough to compute the integral to sufficient accuracy.

The dominant cost in the algorithm steps in Section 7.2 are those associated with poly-

nomial interpolation in Step 3 and O(k) function evaluations at integration points in Steps 4
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and 5. As shown in [6], a one-dimensional Lagrangian interpolation costs O(m) per evalu-

ation point. Since the interpolation points are defined on a two-dimensional grid and there

are k evaluation points, total cost associated with Step 3 is O(km2), which is the dominant

cost per evaluation point per patch. The number of patches is kept constant at six for map-

ping from a cube and is small compared to the total number of collocation points, n, so the

complexity of the algorithm is O(knm2) = O(kn2), same as a straightforward matrix-vector

multiplication procedure.

In comparison to a fast solver approach, the asymptotic complexity of the proposed

method is less attractive. On the other hand, the number of unknowns needed to achieve

good accuracy is a lot fewer with spectral convergence rates than the standard panel method.

In such cases, the constant factor associated with the complexity is often more important. A

distinct feature of the proposed spectral method is that quadrature points used for panel inte-

gration can be shared among many basis functions on a patch, and the number of patches is

kept small and constant as number of unknowns increases. This allows the number of calls

to a panel integration routine, a costly operation in any boundary element method imple-

mentation, to grow only with O(n) as size of basis set increases. In addition, the method’s

efficiency can be further improved by pre-computing and storing almost all values associ-

ated with integration quadrature points (except those interpolated from grid nodes) at the

expense of higher memory cost.
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Chapter 8

Conclusion

In simulation of biomolecular electrostatics, the traditional and popular method is based

on finite difference solution of differential formulation. This approach is relatively easy to

implement and does not require a triangulation of molecular surface. However, these ad-

vantages come at the expense of inaccurate treatment of boundary conditions, namely those

at infinity and at the interface between two dielectric mediums, as well as poor represen-

tation of point charges via nearby grid points. While much effort has been developed over

the years to remedy these effects, a boundary element method approach based on integral

formulation can resolve these difficulties much more elegantly.

Therefore, the first part of this thesis has focused on developing an integral formulation

appropriate for the biomolecule application, namely those that can model the multiple-

domain problem where each medium is governed by a distinct Green’s function. While

such a development is not entirely new and similar ideas can be borrowed from other ar-

eas, for example in interconnect simulation, most of earlier formulations in this application

deal with non-ionic solutions. That is, the governing Green’s function is the same in ei-

ther side of a dielectric interface. The subsequent implementation with pre-corrected FFT

implementation demonstrates that an numerical solution based on integral formulation is a

viable alternative to finite difference solution.

However, discretization errors exist in both geometry and basis function representation

in boundary element method. While the use of a surface mesh is an improvement over a

volume grid, the number of flat panels required to accurately represent an inherently smooth
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surface may still be excessive. The lack of high quality mesh generator in triangulating a

molecular surface and the complexity involved in describing such a surface based on a

seemingly straightforward definition also present another hurdle. Therefore, an attempt

is made to discretize the integral formulation with curved panels and higher order basis

functions. The standard approach using higher order polynomials in representing surface

and unknowns can improve accuracy and convergence, but at higher computational cost.

Panel integration is more expensive for curved panels. Furthermore, fast solver algorithms

become less effective when higher order basis with larger supports are used. The trade-off is

not necessarily in favor of using higher order discretization in the panel method, and most

existing software tools based on boundary element method use low order discretization

coupled with a fast solver implementation.

The main contribution of this thesis is in the development of the spectral method. It

presents a novel approach to discretizing integral equations with singular kernels in the

boundary element framework, yet the notion of panels has been replaced by patches. The

basis functions are no longer defined on panels, but on a Gauss-Lobatto grid on a patch. Al-

though there is substantial overlap in basis functions’ supports, numerical orthogonality is

ensured and solution maintains continuity across patch boundaries. The method is capable

of achieving spectral convergence and requires many fewer unknowns for a given accuracy

than the standard panel method. In order to apply the method to electrostatic analysis of

molecular surfaces, a spherical harmonic analytic representation of the surface is generated

and used to construct a mapping from local patches on a cube. The differentiable surface is

the least-squares fitting to a given set of surface points, which is more readily available than

a triangulation. Integration on a patch is done by quadrature in carefully chosen polar coor-

dinates. And the cost associated with panel integration is kept small by using only a small

number of patches (6 on a cube) and sharing quadrature points among all basis functions

defined on a patch. While a more careful comparison of the computational costs between

the spectral method and fast solver approach is yet to be carried out, initial results indicate

that the proposed method is very efficient while having superior accuracy. A summary of

the comparison between the spectral method and the standard panel method is shown in

Table 8.1.
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Panel method Spectral method

Basis
Piecewise constant Lagrangian polynomial
Local Global
Orthogonal Numerically orthogonal

Geometry Mesh Mapping functions
Representation Meshless
Accuracy Algebraic convergence Spectral convergence
Efficiency O(n) with acceleration see Section 7.3

Table 8.1: Comparison between panel and spectral methods.

While motivated by the biomolecular electrostatics problem, the spectral method de-

veloped can also be applied to other application areas as well. Unlike the panel method,

however, the surface description will be in terms of spherical harmonic expansions or other

mapping functions. And the method is most effective when underlying solution is smooth.
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