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Abstract

This thesis develops improved solutions to the problems of audio source localization
and speech source separation in real reverberant environments. For source localiza-
tion, it develops a new time- and frequency-dependent weighting function for the
generalized cross-correlation framework for time delay estimation. This weighting
function is derived from the speech spectrogram as the result of a transformation
designed to optimally predict localization cue accuracy. By structuring the prob-
lem in this way, we take advantage of the nonstationarity of speech in a way that
is similar to the psychoacoustics of the precedence effect. For source separation, we
use the same weighting function as part of a simple probabilistic generative model
of localization cues. We combine this localization cue model with a mixture model
of speech log-spectra and use this combined model to do speech source separation.
For both source localization and source separation, we show significantly performance
improvements over existing techniques on both real and simulated data in a range of
acoustic environments.
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Chapter 1

Introduction

This dissertation makes contributions on the topics of audio source localization and si-

multaneous speech source separation in reverberant environments. Our primary claim

is that by learning to predict audio localization cue reliability from time-frequency

energy patterns, we can achieve more accurate source localization in reverberant envi-

ronments. (A “localization cue” is a feature of an audio signal that depends upon the

source location and can be used to estimate that location.) Secondarily, we will show

that knowing cue reliability allows us to combine localization cues with monaural

speech models to separate simultaneous speakers.

1.1 Motivation and goal

We rely heavily on our sense of hearing to understand the world around us. We orga-

nize our acoustic world by segmenting it into different auditory streams [15], where

each stream typically represents sounds generated by a single entity, for example a

person talking, a phone ringing, or a dog barking. Each stream at any given time will

possess a number of perceptual attributes such as loudness, timbre, pitch (for har-

monic sounds), and location. These perceptual attributes have strong relationships

to physical properties of the sound sources, such as physical size, material properties,

and position relative to the listener, and it is largely because of these relationships

that hearing is so useful. For example, we can easily tell the the difference in sound be-
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tween a small metal piccolo and a large wooden double-bass or between a Chihuahua

and a Great Dane.

While both hearing and vision allow us to sense things at a distance, when an

object of interest is visually occluded or when the object is out of our visual field

of view, only our sense of hearing informs us about that object. These properties of

hearing have helped to make spoken language the primary way that people commu-

nicate with each other, and for similar reasons, our environment has been designed

to take advantage of our sense of hearing. Emergency vehicle sirens and honking car

horns are examples of applications that make excellent use of our ability to immedi-

ately recognize and respond to a sound in spite of whatever else we may be focused

on at the time [86].

Because of these unique properties of our sense of hearing, and because so much

of the world around us is designed to take advantage of them, it is of great practical

importance to better understand the sense of hearing and to find better engineering

solutions for incorporating a sense of hearing into automated systems. The problem

of endowing automated systems with a sense of hearing is very broad, however, and

some aspects of the problem, such as timbre processing, are difficult to quantify and

evaluate even though they are an important part of our auditory experience.

We choose to focus on what is usually a well-defined problem with a well-defined

answer, the problem of audio source localization. In most situations, the physical

position of the sound source is the natural correct answer to the question of where

a sound is located. However, even the source localization problem does not always

have an obvious solution. For example, if a listener is in one room and a sound source

is in another room down the corridor, should the listener localize the sound to the

corridor or to the other room? How much worse is one answer than the other? This

thesis avoids these questions by focusing on the case where there is an unobstructed

direct path between the source and the listener. Even in this case, we will see that

there are interesting problems to solve. (We mention this subtlety primarily to point

out that when dealing with complicated natural environments, problems are seldom

as simple and well defined as we would like.)
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In addition to being reasonably well-defined, source localization is also very useful.

For example, successfully localizing a honking car horn can enable a pedestrian to

take action to avoid being run over, so in this case, the location information itself

is immediately useful. In other cases, such as audio stream segregation, source lo-

calization cues are useful not because we fundamentally care about the locations of

the sources, but simply because sources in different locations will provide different

localization cues. These different localization cues, in combination with other sound

attributes, allow people to focus on one sound source among many even in noisy

environments [19].

For all of these reasons, the goals of this thesis are to improve source localization

accuracy and to demonstrate the utility of this improved localization for audio stream

segregation.

1.2 The challenge

As we will discuss in more detail in Chapter 2, source localization of a single source

with known stationary signal statistics in anechoic conditions is a problem with a

well-understood signal processing solution.

These idealized conditions are violated in many practical scenarios, however, and

it is in these violations that many of the interesting research questions lie. The two

main violations upon which this thesis will focus are:

1. Speech is a nonstationary signal with complicated temporal dynamics. Existing

source localization techniques have known error bounds and can be shown to

be optimal for a stationary signal with a known spectrum, but these bounds

are of limited use with speech signals whose spectra can change drastically and

abruptly, for example from a vowel “a” to the stop consonant “b” in the word

“abruptly.”

2. Typical environments are not anechoic. In fact, once a receiver is more than a

few meters from a source, more of the received energy will usually come from
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reflections than will come from the direct path component. Reflections of a

sound may also continue to arrive for hundreds of milliseconds after the direct

path component, which means that energy from a few consecutive phonemes will

be mixed together in the reverberated audio, further complicating the modeling

of speech spectra.

As we will discuss further in Chapter 2, empirical results [18] do indeed show that

reverberation significantly degrades localization performance. Other work [38] sug-

gests that this performance is approximately optimal for stationary signals, and that

localization in reverberant environments is a fundamentally more difficult problem

than localization in anechoic environments.

Still, there is room for improvement, since psychoacoustic evidence [8] and every-

day experience show that people can localize sounds reasonably well in reverberant

environments.1 This suggests that there is additional structure in the source local-

ization problem that we can exploit, and I will argue that this additional structure

lies in the interaction between the nonstationary nature of speech and the acoustics

of reverberant environments.

1.3 The Basic Idea

The basic premise of this thesis is that low-level general-purpose localization cues

(which for our purposes will be phase differences in time-frequency signal represen-

tations) do a reasonable job of summarizing the localization information in small

time-frequency regions, but that because we do not know how reliable the informa-

tion in each time-frequency region is, it is difficult to combine these cues into a good

overall location estimate. Combining cues is critical because individual cues may be

noisy or fundamentally ambiguous.

1It is difficult to find directly comparable data for human and machine localization performance
in reverberant environments. The most directly comparable results of which we are aware are
that [38] shows a total root-mean-square (RMS) time delay error of over 40 microseconds for their
technique on a 50 millisecond window of broadband noise in a reverberation time of 0.4 seconds,
while human performance localizing a 50 millisecond tone burst is below 35 microseconds RMS error
at reverberation times as high as 4 seconds [40].
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What we need, then, and what this thesis develops, is a technique for predicting

the reliability of these low-level cues. In particular, we set out to find some observable

features of the signal that correlate with cue reliability. We then learn the relation-

ship between these features and cue reliability and exploit this relationship to better

combine low-level cues across time and frequency.

Since humans localize sounds well even in difficult environments, we look to the

psychoacoustics literature for hints about what sorts of features might be useful for

this task. There we find the “precedence effect,” in which humans rely more heavily on

localization cues from sound onsets and suppress cues from steady-state sounds [59] in

order to emphasize parts of the signal that are less corrupted by reverberation. This

effect is potentially useful and is lacking from the current signal processing approach,

so we will seek to formalize this effect and incorporate it into an appropriate signal

processing framework.

1.4 Contributions

This thesis contributes improved techniques for audio source localization and speech

source separation in reverberant environments.

For source localization, this thesis makes two contributions. First, we use a train-

ing corpus of reverberated speech and associated localization cues to learn a mapping

from the speech signal to a measure of localization uncertainty, and we relate this pro-

cedure to maximum likelihood time delay estimation. Second, we make a connection

between the mappings learned by our system and the precedence effect.

For source separation, we combine our model of localization cue reliability with a

simple speaker-independent speech model to separate simultaneous speech sources.

For both localization and separation, we demonstrate significant performance im-

provements over existing techniques across a wide range of acoustic environments.

Portions of this work have been published in [90–92].
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1.5 Structure of the Dissertation

Chapter 2 reviews related background on audio source localization from both signal

processing and psychoacoustic perspectives. Chapter 3 describes our source localiza-

tion technique, which is the primary intellectual contribution of this work. Chapter

4 describes the experimental evaluation of our localization technique. Chapter 5 de-

scribes how localization cues can be used to separate simultaneous speech sources

along with experimental results for this task. Chapter 6 summarizes this work and

suggests future directions.
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Chapter 2

Background

This thesis work is motivated by psychoacoustic findings and statistical signal pro-

cessing theory. This chapter reviews the basics of these subjects as they relate to our

work. Specifically, this chapter addresses the following questions:

1. In theory, how should one optimally estimate the location of a sound source?

Under what conditions can we guarantee optimality?

2. How does reverberation affect source localization?

3. How do humans localize sounds, and how do they deal with the effects of rever-

beration?

The essence of this problem, in both psychoacoustics and signal processing, is

captured by the two-sensor case. Binaural cues are the main source of localization

cues in all land mammals that have been studied [33] and in nearly all other known

animals. Also, stereo audio and stereo recording equipment are widely available,

making this an important practical case. For these reasons, we focus on the two-

microphone (or two-ear) case in the remainder of this dissertation.

2.1 Signal processing background

Two (or more) sensors in known relative positions are referred to as a sensor array.

There is an extensive literature describing all of the exciting things that can be done
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with arrays (see [51] for a good general array processing textbook and [53] for a

general review article). However, our focus is on source localization and specifically

source localization in reverberant environments, and we will focus our overview to

that topic.

The goal of the array processing approach to source localization is to determine lo-

cation based on differences in the received signals at different sensors. To explain the

theory, we begin with the simplest possible model, two sensors in free-field nondis-

persive conditions (conditions in which waves propagate without interacting with

obstacles and in which waves of all frequencies travel with the same velocity), and we

attempt to localize a point source. Under these conditions, our source signal travels

spherically out from the source location at a constant velocity and undergoes 1/r

amplitude attenuation. Figure 2-1 shows an example with two sensors on the y-axis

centered about the origin. In this case, we have

xi(t) =
1

ri

s(t −
ri

v
) (2.1)

where xi(t) is the observed signal at sensor i, i ∈ {1, 2}, ri is the distance from the

source to sensor i, s(t) is the source signal, and v is the signal propagation velocity.

The received signals differ by a shift and scaling depending on their distance from

the source.

A useful special case is that of far-field sources, where ri À a, with a denoting

the separation between the microphones. In this case, because |r1 − r2| ≤ a (by

the triangle inequality), 1/r1 ≈ 1/r2 and the amplitude differences between the two

channels becomes negligible. As depicted in Figure 2-1(b), in this case the directions

of signal propagation from the source to each microphone are nearly parallel, and the

path length difference is approximately a sin φ, where φ is the direction of arrival. Path

length difference is directly proportional to time delay with constant of proportionality

1/v, so the angle of arrival is
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φ = arcsin(
vD

a
) (2.2)

D =
r2 − r1

v
(2.3)

where D is the time delay between the two microphones. Therefore we see that

there is a simple relationship between time delay and direction of arrival. Because

the time delay depends on only the direction, and because the amplitude differences

between the channels are negligible for far-field sources, there is no way of determining

the distance to a far field source; the direction of arrival is all we can know. Because

of the close relationship between time delay and direction of arrival, and because

direction of arrival is the only information about the location that we can recover in

the 2-microphone far-field free-field case, we will speak somewhat interchangeably of

source localization, direction of arrival estimation, and time delay or time-delay-of-

arrival (TDOA) estimation throughout this dissertation.

Time delay is what we need to localize (determine the direction of) a source, so now

we must figure out how to estimate it from our received signals. From Equation 2.1

we can derive that x1(t) = r1

r2
x2(t−D). This means that Rx1x2(τ) = r1

r2
Rx1x1(τ −D),

where Rxixj
(τ) is the cross-correlation function of xi(t) and xj(t) at time-lag τ . It is

a general property of the autocorrelation (the cross-correlation of a signal with itself)

that Rxx(τ) ≤ Rxx(0) [70, p. 818], or in other words the autocorrelation reaches a

(possibly non-unique) global maximum at zero lag. Because of this, Rx1x2(τ) will

reach a maximum at D, so we can determine the time delay between two signals by

locating the peak in their cross-correlation. (Note: If s(t) is periodic with period T ,

Rx1x2(τ) will also be periodic with period T and will therefore have no unique global

maximum. One of its infinitely many peaks that reach the global maximum value

will occur at D, however, and it may be possible to uniquely identify the peak at lag

D based on constraints imposed by the array geometry, since the maximum possible

delay for a propagating signal is a/v.)
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Figure 2-1: Geometric view of the relationship between time delay estimation and
source localization in two dimensions. (a) shows a distant source as an asterisk and
two microphones as circles. (b) is a close-up view of the sensors that shows the
relationship between the path length difference and the angle of arrival.
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2.1.1 Generalized cross-correlation

In the noise-free case, estimating the time delay requires finding the maximum in the

cross-correlation function. When ambient noise is present it would seem advantageous

to emphasize parts of the signal with high signal-to-noise ratio (SNR) and suppress

parts with low SNR. Knapp and Carter [52] analyzed this problem, and formalized

this intuition. They assume an additive noise model, i.e.

x1(t) = s(t) + n1(t) (2.4)

x2(t) = s(t − D) + n2(t) (2.5)

where ni(t) is a noise term and for simplicity we omit the distance-dependent

amplitude coefficient. Knapp and Carter assume that s(t) and ni(t) are zero-mean

stationary Gaussian random processes and that the noise is uncorrelated with the

source signal and across channels. Their analysis is done in the frequency domain on

finite-length observations with

Xi(f) =
1

T

∫ T/2

−T/2

xi(t)e
−j2πftdt (2.6)

Gxixj
(f) =

1

T

∫

∞

−∞

Rxixj
(τ)e−j2πfτdτ (2.7)

where T is the observation window length, Xi(f) is the Fourier transform of xi(t),

and Gxixj
(f) is the cross spectral density (the Fourier transform of Rxixj

(τ)). They

then define the generalized cross-correlation (GCC) function as

Ry1y2(τ) =

∫

∞

−∞

Ψ(f)Gx1x2(f)ej2πfτdf (2.8)

where Ψ(f) is a frequency-dependent weighting function. Note that we have

changed cross-correlation subscripts from x to y to indicate that this is no longer the

cross correlation of the original xi(t). Knapp and Carter go on to show that for the
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case of long observation window length, the maximum likelihood (ML) time delay

estimator can be expressed as

D̂MLGCC
= arg max

t

∫

∞

−∞

ΨML(f)Gx1x2(f)ej2πftdf (2.9)

ΨML(f) ,
1

|Gx1x2|
·

|γx1x2(f)|2

[1 − |γx1x2(f)|2]
(2.10)

γx1x2 ,
Gx1x2(f)

√

Gx1x1(f)Gx2x2(f)
(2.11)

where D̂MLGCC
will denote the ML estimate of the delay. ΨML(f) is the weighting

function used to compute this estimate expressed in terms of γx1x2(f), the interchan-

nel coherence function, which is a complex-valued generalization of the correlation

coefficient. Equation 2.10 is the most common way of expressing ΨML(f) in the lit-

erature, but based on our additive signal-plus-noise model (Equation 2.5), it can be

re-expressed as

ΨML(f) = A(f) · B(f) (2.12)

A(f) ,
1

|Gx1x2(f)|
(2.13)

B(f) ,
|γx1x2(f)|2

[1 − |γx1x2(f)|2]
(2.14)

=
G2

ss(f)

[Gss(f) + Gn1n1(f)][Gss(f) + Gn2n2(f)] − G2
ss(f)

(2.15)

=
G2

ss(f)

Gss(f)Gn1n1(f) + Gss(f)Gn2n2(f) + Gn1n1(f)Gn2n2(f)
(2.16)

First note that the A(f) term is whitening the cross power spectrum of Xi(f)

since Gx1x2(f)/|Gx1x2(f)| = 1 for all f .

Next, if we assume Gn1n1(f) = Gn2n2(f) = Gnn(f) and Gnn(f) À Gss(f), we have

B(f) ≈
G2

ss(f)

G2
nn(f)

(2.17)
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Gss(f)/Gnn(f) is the SNR, so we see that for low SNR (when Gss(f) ¿ Gnn(f)),

the ML weighting is approximately proportional to the squared SNR. This brings us

back to our stated intuition that we should emphasize frequencies with high SNR.

Next, let us consider how ΨML(f) relates to the variance of the complex phase of

our cross spectrum, var[∠Ĝx1x2(f)]. When we estimate delay, we only have a finite-

length observation from which to estimate the cross spectrum, and we define this

estimate to be

Ĝx1x2(f) , X1(f)X∗

2 (f) (2.18)

= [S(f) + N1(f)][S(f)e−jθ(f) + N2(f)]∗ (2.19)

= Ĝss(f)ejθ(f) + Ĝsn2(f)ejθ(f) + Ĝn1s(f) + Ĝn1n2(f) (2.20)

= Ĝss(f)ejθ(f) + V (f) (2.21)

V (f) , Ĝsn2e
jθ(f) + Ĝn1s + Ĝn1n2 (2.22)

θ(f) , 2πfD (2.23)

Equation 2.20 expresses the estimated interchannel cross spectrum as a sum of

terms dependent on the target signal and noise. What we care about is the relative

phase of the target signal components, which is only encoded in the first additive

term of Equation 2.21. We group the remaining noise-contaminated terms into V (f).

(The phase difference, θ(f), appears in the first term of V (f), but Ĝsn2(f) is itself a

complex vector with random phase, so Ĝsn2e
jθ(f) as a whole will have random phase.)

Assuming the noise is small, we can visualize this as in Figure 2-2. Here we show

the first term in Equation 2.21 as a complex vector with length |Gss(f)| and angle

θ(f). The three terms in V (f) are all uncorrelated and have uniformly distributed

random phase, so we can combine them into a single Gaussian noise term represented

by the shorter arrow and small, dotted circle. The signal and noise terms will have

expected magnitude
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E[Ĝss(f)] = Gss(f) (2.24)

E[|V (f)|] =
√

Gss(f)Gn2n2 + Gn1n1(f)Gss(f) + Gn1n1(f)Gn2n2(f) (2.25)

For small error (E[Ĝss(f)] À E[|V (f)|]), the expected phase error magnitude will

be

E[|θ(f) − θ̂(f)|] ≈

√

Gss(f)Gn2n2 + Gn1n1(f)Gss(f) + Gn1n1(f)Gn2n2(f)

Gss(f)
(2.26)

which means the phase error variance will be

E[|θ(f) − θ̂(f)|2] ≈
Gss(f)Gn2n2 + Gn1n1(f)Gss(f) + Gn1n1(f)Gn2n2(f)

LG2
ss(f)

(2.27)

where L is a constant of proportionality. The left hand side of Equation 2.27 is

just B−1(f) from Equation 2.15. Thus we see that ML weighting is approximately

equivalent to whitening the cross spectrum (the A(f) term) and then weighting by

the inverse phase variance (the B(f) term). We will use this fact later. (The outline

of a more rigorous but consequently more opaque derivation of this fact can be found

in [50, p. 379].)

2.1.2 Delay estimation by regression on phase differences

We have never found Knapp and Carter’s derivation particularly easy to visualize,

so we will now briefly outline Piersol’s work on a different time delay estimator that

has the same asymptotic performance as the ML GCC weighting but a much more

intuitive derivation [74]. Piersol’s basic idea is that for two signals with relative delay

D, their phase differences θ(f) as a function of frequency should be a line through

the origin with a slope that depends on D:
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0 Gss(f)

θ

}E[|V (f)|]

Figure 2-2: Graphical depiction of target signal phase difference and noise. The
arrow from the origin represents the target-signal dependent component of the cross
spectrum estimate. The small dotted circle shows the expected magnitude of the
error.
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θ(f) = 2πfD (2.28)

To find a delay, we compute the cross-spectrum at a discrete set of frequencies and

find the slope of the weighted-least-squares best fit line through the cross spectrum

phases as a function of frequency. (We also constrain the line to pass through the

origin since real signals will always have zero phase at f = 0.) If we assume additive

noise on the phases, then this is just a simple linear regression problem, whose general

form and solution are

Θ , [θ̂(f1) θ̂(f2) · · · θ̂(fN)]
T (2.29)

f , [f1 f2 · · · fN ]T (2.30)

w ∼ N (0, Λθ) (2.31)

Θ = 2πDf + w (2.32)

D̂MLPiersol
=

1

2π
(fTΛθ

−1f)−1fTΛθ
−1Θ (2.33)

where w is a phase observation noise process. (Because phase is periodic, this is

only a simple linear regression problem if the phase measurements can be accurately

unwrapped.) For appropriately chosen fk, its covariance matrix, Λθ, will be diagonal,

so we can rewrite this as

D̂MLPiersol
=

1

2π
·

∑N
k=1

fk θ̂(fk)
var[θ(fk)]

∑N
k=1

f2
k

var[θ(fk)]

(2.34)

The summation in the denominator of Equation 2.34 is just a normalizing con-

stant. In the numerator, we are combining phase estimates from different frequencies

while weighting by their phase variances, just as we did in the GCC time delay esti-

mator.

We have described Piersol’s technique primarily to provide an alternative view of

why phase error variance is important for time-delay estimation. As shown in [74],
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both GCC and Piersol’s time delay estimator have the same asymptotic performance.

GCC is more commonly used in practice, and it avoids the need to explicitly deal

with phase wrapping, so for our experiments we will focus on GCC-based methods.

2.2 Practicalities

In the previous section, we showed how to optimally estimate time delay of a station-

ary signal in uncorrelated noise with long observation windows where we also assumed

that we knew the statistics of the signal and the noise. However, in many situations

of practical interest, all of these assumptions are incorrect. This section explains how

these assumptions are violated and how previous work has dealt with these violations

in practice.

Observation window length is often limited by practical considerations. When the

source is in motion, we need a window short enough that it allows little noticeable

source movement; otherwise cross-correlation peaks corresponding to different source

locations will be superposed, broadening the observed peak and reducing localization

resolution. The nonstationary nature of many signals of interest, such as speech,

is another reason to favor shorter windows. Speech is typically treated as quasista-

tionary for time scales of a few tens of milliseconds, although even at those window

lengths, some nonstationarity is apparent [85].

A bigger problem in practice, however, is that we do not know the source and

noise signals’ statistics. This difficulty is compounded by the fact that speech is

nonstationary, so even making reasonable estimates of its statistics is difficult. In

some cases, such as when the interfering noise also consists of speech, the noise process

is also nonstationary, further complicating any attempt to estimate signal or noise

statistics.

That leaves our “uncorrelated noise” assumption, which is violated in any rever-

berant environment. In such environments, delayed and possibly filtered copies of the

original source signal arrive at the sensors from different apparent directions. For the

purpose of localizing sounds, anything but the sound arriving via the direct path from
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the source to the receivers should be considered “noise,” so these reflections are noise,

and because they are filtered versions of the target signal, they are clearly correlated

with the source.

The good news is that even after violating all of these assumptions, GCC tech-

niques can still work reasonably well in practice. In particular, a GCC weighting

known as the phase transform (PHAT), has been found to work reasonably well in

reverberant environments [38]. We will describe the phase transform shortly, but first

let us discuss some of the properties of reverberation.

2.2.1 Reverberation

People’s natural environment is not anechoic. Instead, sounds bounce off of or diffract

around objects in the environment, so sound from a given source typically follows

many distinct paths through the environment before reaching the listener.

A simplified but still very useful model is to imagine the source and listener in a

rectangular room and to think of each of the walls as a “sound mirror” as depicted

in Figure 2-3. This is the “image method” [3] of simulating reverberation, and it

captures most of its important features. In this situation, the receiver receives a copy

of the target signal from the physical target and from each of the virtual “image

sources” that result from reflecting the true source location about one or more walls

or virtual walls. The virtual sources are equivalent to the source reflecting off the

wall. First order reflections are modeled by the boxes immediately adjacent to the

physical room in Figure 2-3. These walls and virtual walls (depicted as dashed lines

in Figure 2-3) absorb some fraction of the sound’s energy each time it is reflected, so

the virtual sources will be attenuated based on how far they have to travel along their

virtual path and how many sound-absorbing virtual walls they have been reflected

about.

Figure 2-4(a) shows an example impulse response generated by the image method.

One feature of this impulse response is that in the first hundreth of a second, we

see a number of well-separated discrete impulses, which represent discrete first-order

reflections off of walls. When estimating time delays, these early reflections will
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appear to come from the direction of the corresponding image source and will generate

additional peaks in the cross-correlation function. This is one way that reverberation

can cause time delay estimation errors.

Later in the tail of the impulse response, the image sources are more attenu-

ated and more numerous. These late reflections may be well-approximated by an

exponentially-decaying noise process. (The exponentially decaying “tail” is most ob-

vious in the log-magnitude domain, as shown in Figure 2-4(b).) When estimating

time delays, this tail is unlikely to cause distinct peaks in the cross-correlation func-

tion, but it will serve to increase the overall effective noise level. This exponential

behavior exists because for longer delays, the image sources will have on average been

reflected off of more virtual walls, and each virtual wall absorbs a constant fraction

of the signal’s energy. The dashed line in Figure 2-4(b) shows the best-fit slope, and

this slope gives us a convenient way to characterize reverberation. We will use the

common definition of the “reverberation time” of a room as the amount of time it

takes for the reverberant energy to decay by 60 dB, and will often refer to this as the

RT60.

2.2.2 The phase transform

It has been experimentally observed that a particular GCC weighting function, the

phase transform (PHAT), works reasonably well in reverberant environments [23].

The PHAT weighting is defined as

ΨPHAT (f) =
1

|Ĝx1x2|
(2.35)

First note that the PHAT weighting depends only on the observed signal statistics.

Unlike the ML weighting, it does not depend on the (typically unknown) noise and

target signal statistics. This makes it implementable in practice, unlike the ideal

ML weighting. Next note that ΨPHAT (f) is equal to A(f) from Equation 2.13; it is

just whitening the cross power spectrum. It would be the ML weighting if we had

B(f) = 1. B(f) is a constant, and since it is the term that depends on the SNR, the
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Figure 2-3: Two-dimensional example of the image method of simulating reverbera-
tion. The physical room is in the center and contains the physical source and receiver,
denoted by the large asterisk and the large circle, respectively. Reverberation can be
modeled as virtual “image sources” in virtual rooms, denoted by the smaller aster-
isks outside the boundaries of the physical room. Each image source is the result of
reflecting the physical source about one or more physical or virtual walls.
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Figure 2-4: An example reverberant response (a) and its log magnitude (b). The tail
of the response decays exponentially, as can be seen by the linear decrease in average
log magnitude.
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PHAT weighting is the ML weighting for the case of constant SNR across frequency.

Now let us look back at reverberation and see why it might make sense to assume

constant SNR across frequency. We model reverberation as the result of applying a

filter, such as the one shown in Figure 2-4(a) to the source signal

xi(t) = hi(t) ∗ s(t) + ni(t) (2.36)

where hi(t) is the linear time-invariant (LTI) system representing the effects of

the acoustic environment. We can decompose this into a direct path component and

a reverberant component and rewrite it as

xi(t) = hidirect
(t) ∗ s(t) + hireverb

(t) ∗ s(t) + ni(t) (2.37)

hidirect
(t) =

1

ri

δ(t −
ri

v
) (2.38)

hireverb
(t) = hi(t) − hidirect

(t) (2.39)

where hidirect
(t) is the direct path component, corresponding to the earliest peak

in Figure 2-4(a), and hireverb
(t) is everything else, consisting of reflections coming from

many different directions. Since this reverberant component appears to be coming

from directions other than the source direction, it is effectively noise, and we can

define a frequency-specific equivalent SNR (similar to [18]):

SNReq(f) =
Hidirect

(f)S(f)

Hireverb
(f)S(f) + Ni(f)

(2.40)

When Ni(f) ¿ Hireverb
(f)S(f), this is approximately Hidirect

(f)/Hireverb
(f), which

does not depend on the magnitude of the signal, S(f). So if the reverberation is

equally strong at all frequencies, then the effective SNR is the same at all frequencies,

and this provides an intuitive justification for GCC-PHAT’s constant weighting.

Of course, this all depends on whether we are justified in treating the reverberant

component as “noise” that meets the assumptions of the GCC derivation, namely that
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the noise is uncorrelated with the target signal and across microphones. This seems

problematic since our “noise” is just a filtered version of our signal and is therefore

correlated with it.

Gustafsson et al. [38] show us a way out of this predicament. Instead of defining

uncorrelatedness as a statistical expectation across time for a fixed source-microphone

configuration, we can define it as an expectation across room configurations in which

we randomize the source and microphone positions. They show, using results on the

statistics of room acoustics from [83], that these uncorrelatednesses are approximately

true for high enough frequencies (in relation to the size of the room) as long as the

microphones are far enough apart and as long as the microphones are not too close

to any large objects.

So, in summary, the GCC-PHAT weighting is approximately the GCC ML weight-

ing for stationary signals in environments with negligible additive noise and rever-

beration that is equally strong across frequency. (However, reverberation strength

varies with frequency in many environments because the sound absorption of many

common building materials varies with frequency [58].)

2.3 Psychoacoustic background

In this section, we briefly review human sound localization, with emphasis on the

precedence effect. Because of the interaction of the rich natural environment, the

complexity of the human brain, and the physiological limitations of the auditory

system, human sound localization is much harder to analyze than the idealized sys-

tems we looked at in the previous sections. For more information on human sound

localization, Blauert [10] seems to be the most complete single source. Yost and

Gourevitch [94] have edited together a number of useful contributions, and [59] is a

good recent review of the precedence effect.
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2.3.1 Localization cues

Humans are subject to the same fundamental physical and signal processing limita-

tions as any other system, so it is not surprising that, as predicted by in the analysis

of Section 2.1, time-delay-of-arrival between the two ears is one of the primary cues

that people use to localize sounds.

Humans extract two types of time-delay information from the signal. The first

is time delay derived from the fine structure of the signal. This comes from phase

differences in narrow signal bands and is much like the phase differences that were

our focus in the mathematical analysis. Humans use this cue only up to roughly 1.5

kHz. At higher frequencies, narrowband phase difference cues become increasingly

ambiguous. The other type of time delay information in the human auditory system is

time delay between signal envelopes. (Roughly speaking, signal envelopes are rectified

and low-pass filtered versions of the signals. They capture overall energy variation and

ignore the detailed structure of the signal.) Because they are low-pass filtered, even

the envelopes of sounds that contain only frequencies above 1.5 kHz are not subject

to the ambiguities present in the interaural phase differences. In addition, the human

auditory system does not transmit phase information to the brain for frequencies

above 4-5 kHz [35], so at these very high frequencies, envelope time delays are the

only possible source of binaural time delay information.

Humans also use differences in sound amplitude at the two ears to determine source

location. People have heads between their two ears for a variety of reasons, but the

relevant reason for the present discussion is that the head serves to “shadow” each

ear from sounds originating on the other side of the head. This “shadowing” is most

significant for wavelengths small in comparison to the size of the head. Conveniently,

this is the opposite of the case with phase differences, where short wavelengths are

less useful because there are multiple feasible delays corresponding to the same phase

difference. In normal listening situations, level (amplitude) difference cues are useful

for sounds with energy above 1.5 kHz.

Level differences and both types of time delay cues are binaural cues, in that they
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use the differences between the signals at the two ears to localize the sound source.

These binaural cues are subject to certain ambiguities, however. For example, any

sounds originating from the mid-sagittal plane (the plane perpendicular to the line

joining the ears and half way between them) will travel an exactly symmetric path

to each ear and will result in exactly the same signal being received. (This assumes

anechoic conditions. In reverberant conditions, the signals at the two ears may be

different, but the differences will not be useful for localization.) Since the signals are

the same, there are no binaural differences to use as localization cues.

For cases such as this where binaural cues are ambiguous, the human auditory

system uses monaural spectral cues. Depending on the source location of a sound,

interactions of the travelling wave with the body, head, and outer ears will filter the

signal in specific ways. Thus if the original spectrum emitted by the source is known,

its direction can be estimated based on differences between this original spectrum

and the spectrum of the signal received at the ears. Because of the asymmetries of

the outer ears, head, and body, these cues can disambiguate different source locations

in the mid-sagittal plane, so they work to complement the binaural cues.

Humans appear to make good use of the localization cues available to them, for

example by using interaural time delays and interaural level differences in comple-

mentary frequency ranges to ensure that sounds at all frequencies can be localized.

This suggests that we should look to psychoacoustics for ways to improve the perfor-

mance of our automated source localization techniques, particularly as they apply to

the complex signals and reverberant environments in which people normally operate.

The precedence effect suggests a way to do exactly that.

2.3.2 The precedence effect

The precedence effect, also known as the “law of the first wavefront,” is the psychoa-

coustic effect in which the apparent location of a sound is influenced most strongly by

the localization cues from the initial onset of the sound [59, 96]. For example, when

human listeners report the location of a rapid sequence of clicks, they tend to report

the location of the initial click even if later clicks in the sequence came from other
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directions [59]. It has been argued that the precedence effect improves people’s ability

to localize sounds in reverberant environments [95] because direct path sound arrives

before any correlated reflections, so initial onsets will tend to be less corrupted by

reverberation than subsequent sounds. The generality of this argument suggests that

other animals should also exhibit the precedence effect, and evidence for the effect

has been found in cats, dogs, rats, owls, and crickets [59].

Although the basic utility of the precedence effect seems straightforward, the

details are not clear. The notion of an “onset” is imprecise, although progress has

been made in [87] in determining the time scales over which the precedence effect

operates for click trains, and [76] shows the effect of onset duration on the ability

to localize narrowband sounds. In addition, most studies have focused on stimuli

such as click trains or noise bursts, and it is not obvious how to apply their findings

to more natural sounds. For example, the effect is strongest in click pairs for inter-

click intervals of roughly 2-10ms [59]. Shorter inter-click delays result in “summing

localization,” where a single click at some intermediate location is perceived. Longer

inter-click intervals result in the the perception of two clicks at two separate locations.

Studies on human infants (reviewed in [59]) found no evidence of the precedence

effect, and studies on young children have found the effect to be much smaller. Stud-

ies on puppies [4] have shown that the precedence effect develops significantly after

the basic ability to localize sounds. This suggests that the precedence effect may be

learned during childhood, although maturation of neural pathways, even in the ab-

sence of direct experience in reverberant environments, could also cause this gradual

development of the effect.

As with most psychoacoustic phenomena, there are some subtleties. For example,

in the “Clifton effect” [20], the precedence effect can be temporarily suppressed by

suddenly swapping the locations of the leading and lagging clicks in a click-pair ex-

periment. Another subtlety is that if several click pairs are played sequentially, the

dominance of the initial click in each pair will increase for the later pairs. The reasons

for these behaviors are not well understood, but they may be a result of the brain

doing some sort of online learning of its acoustic environment.
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A number of computational models of the precedence effect have been proposed.

In [96], Zurek proposed a high-level conceptual model of the precedence effect without

precisely specifying the details of the model. He modeled the precedence effect as a

time-dependent weighting of raw localization cues. Specifically, his weighting took

the raw audio as input and consisted of an “onset detector” with output generated

by an inhibition function. Zurek’s high-level model was subsequently implemented

and evaluated by Martin [62].

Lindemann [56, 57] presents a cross-correlation-based model of auditory localiza-

tion, subsequently extended by Gaik [30], that includes an inhibition component that

can model many aspects of the precedence effect. Lindemann’s model has many

parameters whose values were chosen to accurately model human localization perfor-

mance. Huang et al. [45] and Bechler [6] present more engineering-oriented models

of the precedence effect and apply them to source localization. However, their ap-

proaches make all-or-none decisions about each localization cue. Also, Huang et al.

base their time delay estimates on differences between zero-crossing times instead

of finding the maximum of a cross-correlation function. Recently, Faller and Meri-

maa [29] presented a model that uses estimated interaural coherence values to predict

which time instants in a reverberated signal contain the best localization cues. They

model many of the aspects of the precedence effect using these interaural coherence

values, but their model does not explain why some steady-state sounds with high co-

herence are suppressed or why sounds originating in the median sagittal plane, which

are perfectly coherent, can still elicit the precedence effect as shown in [60].

The model that we will describe in the next chapter can be viewed as a specific

implementation of a model similar to Zurek’s. However, our goal is not to faith-

fully model the human auditory system but rather to find a weighting function for

the GCC framework that will accurately localize speech in reverberant environments.

Because of this difference in approach, we do not incorporate elements such as psy-

choacoustically inspired filter banks or neural transduction models, and we do not

try to model details such as the Clifton effect. Instead we focus on predicting the

reliability of localization cues derived from a simple spectrogram representation. In
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contrast to other precedenced-based approaches, our approach relates directly to the

GCC framework, which is the optimal TDOA estimator (under a set of assumptions

enumerated in [52]) and provides a principled way to integrate localization cues across

time and frequency. In contrast to Faller and Merimaa, who make use of interaural

coherence, we predict localization precision based on monaural cues, which we know

are psychoacoustically relevant from [60]. In contrast to [6,29,45], our technique will

not make all-or-nothing decisions about whether to use a localization cue. Instead,

we will use a continuous measure of cue reliability, which makes more sense from

a signal processing perspective and is also more consistent with the psychoacoustic

data [96, p. 95].
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Chapter 3

Localization Algorithm

This chapter describes our localization algorithm, which takes the form of a new GCC

weighting function.

Based on the theoretical justifications in Chapter 2, we know that even in rever-

berant environments, if we knew the phase estimate error variance across frequency,

we could use generalized cross-correlation to do approximately optimal time delay

estimation. Our goal, then, will be to estimate this error variance.

Since phase error variance is related to SNR, one way to estimate error variance is

to estimate the noise power during silence and the signal power during speech activ-

ity, and to use these estimates to calculate the phase error variance [12]. Because the

estimate of the “signal” power will also typically include reverberant energy (which is

effectively noise for the purpose of delay estimation), however, this estimate performs

inadequately [13, 22]. Another problem with this approach is that getting accurate

signal and noise power estimates requires the use of a long observation window. How-

ever, speech is nonstationary, so long observation windows will average out potentially

important changes in signal power.

We take a different approach. In the end, we do not care about the particular

signal power or noise power. We only care about accurately predicting the phase error

variance, and any observable variables that have some dependence on the phase error

variance can be used to (imperfectly) predict it. The precedence effect suggests that

people use onsets in the input audio signal to decide which localization cues to em-
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phasize, so we will design a system that can capture this relationship and potentially

other relationships that may exist. Our new goal, then, is to learn features observable

in the received audio that predict the reliability of associated intermicrophone phases.

(We choose not to explicitly model the precedence effect because our more general

model is easy to optimize and can potentially model other relationships.)

This goal is intuitively appealing but still imprecise. We need to say what we

mean by “learning,” and we need to pick a set of features and a functional form for

our predictor. “Learning” in this thesis will be solving a regression problem using

labelled training data. In our implementation we choose to use linear regression to

find a mapping from the audio log-spectrogram to the localization log-precision, which

we define to be the logarithm of the reciprocal of the empirical TDOA mean-squared

error. We have no fundamental theoretical justification for these choices, but we have

several practical justifications:

1. Log-spectra and Log-precisions range from −∞ to ∞. Without the logarithm,

they would range from 0 to ∞. Unconstrained linear functions are capable

of generating negative values, which are incompatible with a non-log domain.

(It is possible to constrain the output to be positive using nonnegative matrix

factorization [55], but this is more computationally intensive and implies a parts-

based representation [54] that does not necessarily apply to our problem.)

2. In a fixed, purely reverberant environment with no additive noise, changing the

overall loudness of the source signal should not change the phase error since in

this case all of the “noise” is reverberant, and as the source signal gets louder,

the reverberant noise will also get proportionally louder (as described in Section

2.2.2). Scaling a signal’s amplitude corresponds to an additive shift (a change

in the DC component) in the log domain. Linear mappings whose coefficients

sum to zero will not pass this DC shift and will therefore be invariant to overall

signal scaling, so they are capable of capturing this invariance.

3. Linear functions are computationally efficient to train and to apply. In the

absence of an argument against them, they should be one of the first things
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tried. (We have done some small-scale experiments using quadratic terms or

using quadratic or Gaussian kernels, but so far have found only negligible im-

provement with these techniques.)

4. Log-spectrum-based representations (particularly the mel-frequency cepstral

representation) are among the most successful representations used in auto-

mated speech recognition [46]. They have also been used successfully for speech

denoising [26]. Linear functions applied to log-spectral representations have also

proven useful. For example, delta cepstral features often improve automated

speech recognition performance, and linear operations have also been used to

successfully denoise cepstral coefficients [27].

Now that we have chosen our input representation, our output representation, and

our regression technique, we just need some labelled training data. An example of

such training data, consisting of a reverberated speech log-spectrogram as input and

a corresponding time-frequency map of log-precision as output, is shown in Figure

3-1. The next section describes how this pair was generated.

3.1 Corpus generation

Our training corpus consists of reverberant speech spectrograms and time-aligned

time-frequency maps of phase log-precision for a large set of spoken utterances, as

shown in Figure 3-1. The spectrograms are computed using standard methods, for

example as in [46, p. 281]. The time-frequency localization precisions, which we

will refer to as precision-grams, are specific to our technique, however. To generate

a precision-gram, we collect Nr realizations of each utterance, each with the speech

source and microphones in different locations. We then calculate the empirical local-

ization precision over all realizations.

More formally, we start with a single speech signal, x(t), and randomly generate

Nr simulated room configurations. For our experiments, microphone and source lo-

cation and room size and shape vary across configurations. We represent these room

49



(a) Speech spectrogram

(b) Localization precision map

Figure 3-1: Example data from our training corpus. Figure 3-1(a) is a spectrogram
of the reverberant speech (a male voice saying “A large size in stockings...”) received
at one of the microphones in the array. Figure 3-1(b) is the corresponding map of
the empirical localization precision (in dB) for each time-frequency bin. Note that
sudden onsets in the spectrogram (a), such as those at 0.07, 0.7, and 1.4 seconds,
correspond to time-frequency regions with high localization precision in (b).
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configurations as filters Hj(i, t), where j ∈ {1 . . . Nr} represents the room realization

and i ∈ {1, 2} represents the ith microphone signal. Passing x(t) through Hj(i, t) and

adding a noise signal nj(i, t) yields yj(i, t), a set of reverberated speech signals. We

then compute spectrograms of yj(i, t) with window size Nw, overlap No, and FFT

length Nf , yielding complex spectrograms sj(i, u, f), where frame index u replaces

the time index t, and frequency index f is added. We then calculate the cross-power

spectrum phase,

θj(u, f) = ∠
sj(1, u, f)

sj(2, u, f)
(3.1)

for each frame and frequency bin. (The cross-power spectrum phase will range

from −π to π.) Finally, we calculate σ̃2(u, f) = 1
Nr

∑Nr

j=1(θj(u, f) − θjtrue
(u, f))2,

the localization (wrapped phase) error variance, and q̃(u, f) = −10 ∗ log10(σ̃
2(u, f)),

the localization precision (in dB). We determine θjtrue
(u, f) from the assumed known

source to array geometry in our training set. Figure 3-2(a) shows a block diagram

describing these calculations.

By calculating only these variances without any cross-covariances we implicitly

assume that localization errors in different time-frequency regions are uncorrelated.

Gustafsson et al. [38] showed that this is approximately true in reverberant environ-

ments, and we have found this assumption to work well in practice.

3.2 Filter learning

Once we have collected a training corpus, we use ridge regression [32] to learn FIR

filters that estimate the localization precision (in dB) from the reverberated spectro-

gram (in dB). In this thesis, we examine two different forms for these filters.

In the first case, which we call a narrowband mapping, we learn a separate FIR

filter from each frequency band in the spectrogram to the corresponding frequency

band in the localization precision output as shown schematically in Figure 3-3(a). In

the second case, which we call a broadband mapping, we learn a separate FIR filter

for each band of the localization precision output, but in each case the input comes
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(a) Phase calculation during training

(b) TDOA calculation during testing

Figure 3-2: (a) shows the procedure for calculating the cross-power spectrum phase
used during training. (b) shows the procedure for using our estimated precision map
to calculate TDOA during testing.
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(a) Narrowband precision calculation

(b) Broadband precision calculation

Figure 3-3: An illustration of the narrowband and broadband mappings for frequency
band 60. In (a) an FIR filter estimates the localization precision as a function of
spectrogram bin 60. In (b) an FIR filter estimates the localization precision as a
function of all spectrogram bins.
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from all frequencies of the input spectrogram. This case is shown schematically

in Figure 3-3(b). Our motivation for examining the narrowband case is that, for

the case of stationary signals (and under the assumption of spectrogram windows

that are much larger than the coherence time of the signal), each frequency band

is uncorrelated with all other frequency bands, and thus the narrowband mapping

should be sufficient in this case. Although speech is nonstationary, this narrowband

mapping provides a useful baseline against which to compare. Additionally, in [76],

the precedence effect was demonstrated with narrowband sounds, where the onset

rate of a sinusoidal tone affected the ability to localize that tone, which is exactly

the relationship that our narrowband mapping can express. The broadband mapping

subsumes the narrowband mapping and should be able to capture cross-frequency

dependencies that may arise from the nonstationarity of speech. Such cross-frequency

dependencies have been observed in psychoacoustic studies of the precedence effect

[84].

For the narrowband mapping with causal length lc and anticausal length lac,

we solve Nf regularized linear least-squares problems of the form zf = Afbf , f ∈

{1 . . . Nf} where

zf = ( ... q̃(u,f) q̃(u+1,f) ... )T

Af =











...
...

...
...

...
s(1,u−lc,f) s(1,u+1−lc,f) ... s(1,u+lac,f) 1

s(1,u+1−lc,f) s(1,u+2−lc,f) ... s(1,u+1+lac,f) 1
s(1,u+2−lc,f) s(1,u+3−lc,f) ... s(1,u+2+lac,f) 1

...
...

...
...

...











(3.2)

and bf is an FIR filter with (lc + lac + 1) taps stacked with a DC component.

s(1, u − lc, f) is the spectrogram from the first channel of a randomly chosen room

configuration.

For the broadband mapping, we solve Nf regularized linear least-squares problems

of the form zf = Afbf , where
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zf = ( ... q̃(u,f) q̃(u+1,f) ... )T

Af =









...
...

...
...

...
...

...
...

...
s(1,u−lc,1) ... s(1,u+lac,1) s(1,u−lc,2) ... s(1,u+lac,2) ... s(1,u+lac,Nf ) 1

s(1,u+1−lc,1) ... s(1,u+1+lac,1) s(1,u+1−lc,2) ... s(1,u+1+lac,2) ... s(1,u+1+lac,Nf ) 1

...
...

...
...

...
...

...
...

...









(3.3)

and bf is an FIR filter with (lc+lac+1)∗Nf taps stacked with a DC component. For

both types of mapping, we solve these systems using ridge regression by minimizing

||zf − Afbf ||
2 + λ||bf ||

2 (3.4)

with respect to bf . The regularizing parameter λ is set using a validation data

set, and results were found to be relatively insensitive to the particular choice of λ.

3.3 Applying the filters

We apply filters bf to spectrogram sn(1, u, f) yielding q̂(u, f). (In most cases in this

thesis we will use the tilde accent mark to indicate a sample-based estimate, the

caret accent mark to indicate the result of applying one of our mappings, and no

accent mark to indicate the “true” underlying value, as in σ̃−2(u, f), σ̂−2(u, f), and

σ−2(u, f), respectively.) We then use this estimated log-precision to create a GCC

weighting for each frame, which we define to be

Ψ(u, f) ,
σ̂−2(u, f)

|Gx1x2(u, f)|
(3.5)

σ̂−2(u, f) = 10
q̂(u,f)

10 (3.6)

Here, we are using σ̂−2(u, f) as an approximation to the B(f) term in Equation

2.12. This is justified because we showed in Equation 2.27 that B(f) is approximately

the phase error variance. Note also that the phase transform is equivalent to setting
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σ̂−2(u, f) = 1. (In our discussion of the theory in Chapter 2, we focused on a delay

estimate based on a single windowed observation, so Ψ(f) depended only on frequency.

We are now computing a generalized cross-correlation function for each spectrogram

frame, so we have a corresponding weighting function for each frame, and Ψ(u, f)

now depends on both frame index and frequency.)

When applying this technique to localization, the only computational costs (be-

yond the basic TDOA calculations) are of applying a set of short FIR filters to that

spectrogram. Because our training set encompasses many different acoustic environ-

ments, the mappings that we learn do not depend strongly on the detailed structure of

the reverberation, and our technique is robust to changes in the acoustic environment.

3.4 Related work

In addition to the computational models of the precedence effect mentioned in Chap-

ter 2, there has been other work on creating statistical models or finding confidence

metrics for localization cues.

Bechler and Kroschel [5] propose the use of two confidence metrics for evaluating

cross-correlation-based time-delay estimates. In both cases, their intuition is that

cross-correlation waveforms with more well-defined peaks should lead to better time

delay estimates. Their first criterion is “maximum peak height,” and their second is

“peak ratio,” or the ratio between the tallest and second-tallest peaks in the cross-

correlation waveform. They show that the number of outlier time delay estimates

decreases monotonically with each of these criteria. However, they do not show that

by applying these reliability estimates they can subsequently improve localization

over standard techniques such as GCC-PHAT. In addition, each of their reliability

criteria applies to a single frame of data across all frequencies, whereas our technique

gives both time- and frequency-dependent reliability.

Roman [79, 80] and Nix [66, 68] have both recently done interesting work model-

ing the statistics of localization cues from empirical observations, but with a more

psychoacoustically-faithful focus. Both learn statistical models for both interaural
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level differences and interaural time differences for microphones located in the ears

of a real (for Nix) or KEMAR mannequin (for Roman) head. When a head and

ears are present, the relationship between the source location and these localization

cues becomes much more complicated, necessitating models based on empirical data

to achieve even reasonable baseline performance. Both Roman and Nix effectively

marginalize out any time-dependence in the distributions of the localization cues, so

they are incapable of capturing the precedence effect.

In contrast to our work, they provide no direct link between their confidence

metrics and the optimal signal processing approaches to time delay estimation, and

they make no quantitative comparison to standard techniques such as GCC-PHAT.

We have also avoided the use of a “head,” and therefore the use of interaural level

differences, because the presence of a head may not be desirable in many practical

application scenarios and because in practice as long as timed delay cues are available,

they tend to be more reliable than level-difference cues.
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Chapter 4

Localization Experiments

This chapter addresses the following questions:

1. How well does time delay estimation based on our learned localization precision

mappings work in comparison to existing time delay estimation techniques?

2. Are the learned localization precision mappings consistent with the precedence

effect?

To simplify data collection and allow for comparison under repeatable and pre-

cisely characterizable acoustics, the bulk of the experiments were done on synthetic

data. Additional experiments were done on real data to demonstrate that our tech-

nique does not depend on any peculiarities or artifacts in the synthetic data.

4.1 Experimental scenario

These experiments test the ability of a two-element microphone array to localize a

single speaker in a reverberant environment. No competing speaker is present, but

stationary background noise (or slowly varying, approximately stationary for the data

from real rooms) is present.
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Room ID Dimensions (meters) RT60 (seconds)
A 4 × 7 × 2.8 0.1
B 4 × 7 × 2.8 0.2
C 4 × 7 × 2.8 0.4
D 8 × 14 × 5.6 0.8
E 16 × 28 × 11.2 1.6

Table 4.1: Room dimensions and reverberation times for synthetic rooms.

Room ID Dimensions (meters) RT60 (seconds)
F 4.9 × 7.3 × 2.7 0.6
G 3.2 × 6.2 × 3.0 0.4
H 12.8 × 6.7 × 10.7 0.8

Table 4.2: Room dimensions and reverberation times for real rooms. Rooms F, G,
and H are MIT campus rooms 32-D507, 32-D514, and 32-D463, respectively.

4.1.1 Synthetic data set

The primary goal of the experiments on synthetic data is to explore time delay perfor-

mance as a function of background noise level and reverberation time. To do this, we

simulated 5 rooms with reverberation times ranging from 100 ms to 1600 ms. Room

dimensions and reverberation times are listed in Table 4.1. Rooms A through C all

have the dimensions of a typical office or small conference room and differ only in

the absorption coefficients of their simulated walls. Rooms D and E have walls that

are as absorptive as room C’s and achieve their longer reverberation times because

of larger dimensions, which are representative of larger conference rooms or lecture

halls.

Within each room, 60 distinct source-microphone configurations were simulated

for training, and a separate set of 60 distinct source-microphone configurations were

simulated for testing. The image method [3] with sub-sample interpolation to ensure

accurate inter-microphone phase [73] was used to simulate reverberation for both

testing and training. The simulated inter-microphone distance was 20 centimeters.

The speech material was taken from the TIMIT corpus [31], a multi-speaker corpus

recorded with a close-talking microphone. For testing, we use the TIMIT core test set,

which consists of sixteen males and eight females, each providing roughly 30 seconds

of speech. For training, we use a randomly selected eight males and eight females

60



from the TIMIT training set, which does not overlap with the TIMIT test set. The

TIMIT data was originally recorded at 16 kHz sampling rate, and we downsample to

8 kHz before training and before applying any of the localization techniques. To test

robustness to noise, varying levels of stationary Gaussian white noise were added to

the reverberant speech signals. The noise signals are uncorrelated across microphones.

We train a single set of filters across all noise levels, reverberation times, and

speakers, and apply this single set of filters to all testing conditions.

4.1.2 Real data set

Real data was collected in three rooms in MIT’s Stata Center (details in Table 4.2).

Room F is a medium-size meeting room. Room G is a typical office, and room H is

a large conference room. In each room, each of two speakers stood in one of twelve

distinct locations. The speaker locations did not repeat, so between the two speakers

in each room, 24 total source-microphone configurations were tested in each room.

In each configuration, approximately one minute of speech was recorded. Data was

collected at 44.1 kHz and subsequently downsampled to 8 kHz. The intermicrophone

spacing was 37.5 cm. Figure 4-1 shows the data acquisition setup used for these

experiments. The upper pair of microphones was used for all experiments.

Background noise in each case was the ambient noise that was present at the

time. In all cases this consisted of at least the fan noise from the laptop to which the

microphone array was connected and some slowly varying room ventilation noise.

For the real data experiments, results for each room were obtained by training on

data from the other two rooms.

4.2 Description of Compared Techniques

We compare the performance of eight time-delay estimators on our synthetic data.

All but one technique fit in the GCC framework, and each technique’s corresponding

weighting function is listed in Table 4.3. The first two are oracle-based methods

that provide upper bounds on performance but cannot be applied in practice because
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Figure 4-1: The microphone array setup used for all experiments on real data. Mi-
crophones (highlighted by grey circles) are held in a plastic frame surrounding the
laptop screen. The top two microphones were used in all experiments.
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Technique GCC weighting function Ψ(f)

GCC-ML
|γ̃x1x2

(f)|2

|Gx1x2
(f)|[1−|γ̃x1x2

(f)|2]

Emp. Prec.
σ̃−2(f)

|Gx1x2
(f)|

Broadband
σ̂−2

broadband(f)
|Gx1x2

(f)|

Narrowband
σ̂−2

narrowband(f)
|Gx1x2

(f)|

Proportional
σ̂−2

proportional(f)

|Gx1x2
(f)|

GCC-PHAT 1
|Gx1x2

(f)|

Cross Correlation 1

Benesty N/A

Table 4.3: Generalized cross-correlation weighting functions for each technique.

they depend on information that is available in simulation only. The next three

are variants of our localization precision estimation technique. The following two

are standard generalized cross-correlation (GCC) variants, and the final one is an

adaptive eigenanalysis technique developed by Benesty [7, 47]. We compare the six

non-oracle techniques in the experiments in real rooms.

We do not compare to any of the computational models of the precedence effect

mentioned in Chapter 2 because we are not aware of any of those models demonstrat-

ing performance superior to standard techniques such as GCC-PHAT under typical

operating conditions. Those models serve primarily as tools to better understand

human psychoacoustics, not as practical localization techniques.

“GCC-ML” is the weighting for the maximum-likelihood time-delay estimator

described in [52]. This method requires knowledge of |γx1x2(f)|2, the inter-microphone

magnitude-squared coherence function. Based on Equation 2.11, |γx1x2(f)|2 is

|γx1x2(f)|2 =
|Gx1x2(f)|2

Gx1x1(f)Gx2x2(f)
(4.1)
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where Gxixj
(f) is the cross-spectrum of microphone channels i and j (the auto-

spectrum for the case i = j). The speech signals to which we apply this technique

are nonstationary, so we must use a short-term (time-windowed) version of the cross-

spectrum. For this evaluation, we assume that the signal and noise are known and

sum to the observed microphone signal

xi(t) = sidirect
(t) + ni(t) (4.2)

where sidirect
(t) is the direct-path signal from the speaker to microphone i and

ni(t) is the noise, including any uncorrelated additive noise in addition to reverber-

ation. Using our perfect knowledge of the direct path signal component within our

simulation, we can calculate a short-term magnitude-squared coherence as

|γ̃x1x2(f)|2 =
[S1(f)S∗

2(f)]2

[S1(f)S∗

1(f) + N1(f)N ∗

1 (f)][S2(f)S∗

2(f) + N2(f)N ∗

2 (f)]
(4.3)

where Xi(f) and Ni(f) are Fourier-transforms of time-windowed segments of xi(t)

and ni(t). This definition of |γ̃x1x2(f)|2 amounts to assuming that signal and noise

are uncorrelated and estimating cross-spectral densities in Equation 4.1 based on only

the current time window.

For stationary signals, it is possible to calculate a non-oracle estimate of the

intermicrophone coherence by segmenting the signal into a number of finite-length

observations and computing phase variation across these segments [17], and this co-

herence estimate can then be used to estimate the GCC-ML weighting. Brandstein et

al. [12] evaluated the use of such a technique for speech source localization. Because

speech is nonstationary, coherence estimates must be based on very short segments,

and they found that coherence estimates from such a small amount of data led to

poor performance. For these reasons, we did not include such a non-oracle estimated

GCC-ML weighting in our evaluation.

“Empirical precision,” the second oracle-based technique, should be an upper

bound on the performance of all of our localization precision mapping techniques.
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It directly uses the empirically determined (ground truth) precision of each time-

frequency region in the test set. To the extent that our weightings underperform

the true precision it is presumably due to their inability to perfectly reconstruct this

ground truth precision.

The next three techniques are variations on the localization precision estimation

technique. “Broadband” and “Narrowband” are the mappings described in Section

3.2. “Proportional” is a simple special case of the narrowband filter using only one

tap. This “proportional” mapping could express the simple relationship in which

localization cues are weighted proportionally to the local signal power, but it cannot

capture more complicated relationships.

“GCC-PHAT” is the phase transform, and it corresponds to uniformly weighting

the localization cues in each time-frequency region (setting σ̂−2(f) = 1). “Cross

correlation” is a simple cross correlation with no weighting applied.

“Benesty” is the adaptive eigenanalysis technique described in [7, 47]. Here we

briefly outline the technique and contrast it with GCC-based techniques.

4.2.1 Adaptive eigenanalysis time delay estimation technique

Although they are often applied in reverberant environments, GCC-based techniques

are typically motivated with the assumption that noise in one channel is uncorrelated

with noise in the other channel and with the target signal. Under these assumptions,

the goal of the weighting function is to emphasize frequencies with high SNR, which

will bring the peak of the cross-correlation waveform out of the noise.

Benesty’s technique is explicitly formulated to take reverberation into account.

He starts from the model

xi(t) = hi(t) ∗ s(t) + bi(t) (4.4)

where s(t) is the target signal at its source, hi(t) is the transfer function from

the source to microphone i, and bi(t) is an uncorrelated noise signal. To simplify the

presentation of Benesty’s technique, we will assume that bi(t) = 0. In the noiseless
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case, based on Equation 4.4, the following relationship holds:

h1(t) ∗ x2(t) = h1(t) ∗ h2(t) ∗ s(t) = h2(t) ∗ x1(t) (4.5)

The hi(t) are unknown, but Benesty uses the relationship in Equation 4.5 to find

them using a discrete-time adaptive filtering problem by first defining

xi(n) = [xi(n), xi(n − 1), · · · , xi(n − M + 1)]T (4.6)

hi = [hi(0), hi(1), · · · , hi(M − 1)]T (4.7)

x(n) = [xT
1 (n), xT

2 (n)]T (4.8)

u = [hT
2 ,−hT

1 ]T (4.9)

where M is the length of the adaptive filter.

He then uses standard adaptive filtering techniques [61] to find u based on

xT(n)u = xT

1
(n)h2 − xT

2
(n)h1 = 0 (4.10)

When found subject to appropriate constraints, u consists of estimates of the

two source-microphone transfer functions. Benesty then finds the locations of the

largest peaks in the two estimated transfer functions and defines his delay estimate

to be the difference in lags between the peak locations. Benesty demonstrated that

his technique had lower time delay errors than GCC-PHAT on 5 second-long audio

segments in a wide range of reverberation times.

4.3 Performance results

We evaluate all techniques on 500 ms segments of audio during which the source re-

mains motionless. 500 ms is enough time for a speaker to utter two to three syllables,

so the ability to localize these segments implies the ability to localize all but the

shortest conversational utterances. In addition, studies of human localization perfor-
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mance have shown that performance improves as segment length increases, but that

performance on bandlimited noise begins to asymptote around 500 ms duration [10, p.

156]. For our results, these 500 ms segments come from contiguous nonoverlapping

segments of continuous speech. Because of pauses between words or phrases, some of

these segments will consist wholly or partially of silence.

For all of the GCC techniques, we use a 150-sample (18.75 ms) window and

30-sample (3.75 ms) step size (at the 8kHz sampling rate) when computing cross-

correlation waveforms. For the “Benesty” technique, we choose the adaptive filter

length, M , to be 150 samples to match our GCC window size. Benesty’s technique

also requires an adaptive update rate parameter µ. We use µ = 0.003, which is the

value used in [47] and which we also found to give good performance.

When estimating a time delay by finding a cross-correlation peak location, there

are two types of errors, local errors and gross errors [48, 49, 89]. Local errors occur

when the noise perturbs the location of the peak. Gross errors occur when noise

causes the wrong peak to be picked. Since local errors are perturbations about the

true time delay, they can be usefully characterized by a root-mean-square (RMS)

error value. When a gross error occurs and an incorrect peak is chosen, however, that

peak can occur at a location unrelated to the true peak and potentially very far from

it. Because of this, we care primarily about whether or not a gross error has occurred,

and not its magnitude, so a natural way to characterize gross error performance is by

their frequency of occurrence.

Ianniello [48] suggested that the cutoff between local errors and gross errors should

be on the order of the inverse signal bandwidth, so we choose a cutoff of 250 µs (1 /

4000 Hz), and call all errors with smaller magnitudes local errors and all errors with

larger magnitudes gross errors. We report the RMS error for local errors and the

observed frequency of occurrence for gross errors.

4.3.1 Synthetic data

Table 4.4 provides a concise summary of the relative performance of all of the time

delay estimators on synthetic data. To generate this table, we normalized the error
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Technique Norm. Local RMS Error Norm. Gross Error Frequency
GCC-ML (oracle) 0.47 0.27

Emp. Prec. (oracle) 0.72 0.64
Broadband 0.86 0.81
Narrowband 0.86 0.79
Proportional 0.94 0.93
GCC-PHAT 1.00 1.00

Cross Correlation 1.47 1.49
Benesty 2.03 1.79

Table 4.4: Average normalized localization error in synthetic rooms. Error in in each
room/noise level condition was divided by the GCC-PHAT error for that condition,
and these normalized errors were then averaged across all conditions.

of each technique by the GCC-PHAT error for each specific room and noise level. We

then average these normalized errors across all rooms and noise levels. By doing this

normalization, we emphasize average relative performance. Without such normaliza-

tion, small relative performance differences at low SNR would dominate large relative

performance differences at high SNR.

Figures 4-2 through 4-6 show the performance of the time delay estimators across

a range of reveberation times and background noise levels. Each figure shows the

results for a single room, with room reverberation times increasing from Figure 4-2

to Figure 4-6. “SNR” on the horizontal axis refers to the level of the uncorrelated

additive background noise.

The most pronounced trend is that error tends to decrease with increasing SNR

for all techniques, although the decrease is not as pronounced for “Cross correlation”

and “Benesty,” the two worst-performing techniques. Unweighted cross correlation

is known to perform poorly in reverberant environments [7], and since the amount

of reverberation is only a function of the room, not the additive noise SNR, it is

not surprising that unweighted cross correlation does not yield as much improvement

as other techniques under high SNR conditions, where errors due to reverberation

dominate. The only case in which unweighted cross correlation performs well is un-

der low-reverberation, low-SNR conditions. Unweighted cross correlation emphasizes

frequencies with more energy, and in the low-reverberation, white background noise

case, frequencies with higher energy will have higher SNR and should therefore be
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Figure 4-2: Localization performance in simulated room A, with an RT60 of 100 ms.
“SNR” is the level of the additive white noise.

69



0 6 12 18 24
0

10

20

30

40

50

60

70

80

SNR (dB)

Lo
ca

l R
M

S
 d

el
ay

 e
rr

or
 (

m
ic

ro
se

co
nd

s)

 

 
GCC−ML (oracle)
Emp. prec. (oracle)
Broadband
Narrowband
Proportional
GCC−PHAT
Cross Corr.
Benesty

(a) Local RMS error

0 6 12 18 24
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

SNR (dB)

G
ro

ss
 e

rr
or

 fr
eq

ue
nc

y

 

 
GCC−ML (oracle)
Emp. prec. (oracle)
Broadband
Narrowband
Proportional
GCC−PHAT
Cross Corr.
Benesty

(b) Gross error frequency of occurrence

Figure 4-3: Localization performance in simulated room B, with an RT60 of 200 ms.
“SNR” is the level of the additive white noise.
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Figure 4-4: Localization performance in simulated room C, with an RT60 of 400 ms.
“SNR” is the level of the additive white noise.
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Figure 4-5: Localization performance in simulated room D, with an RT60 of 800 ms.
“SNR” is the level of the additive white noise.
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Figure 4-6: Localization performance in simulated room E, with an RT60 of 1600 ms.
“SNR” is the level of the additive white noise.
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emphasized.

In [7], Benesty demonstrated his technique’s improved performance compared to

GCC-PHAT in reverberant environments. In our experiments, however, we find that

Benesty’s technique performs worst overall. This is most likely because Benesty’s ex-

periments evaluated each algorithm’s performance on 5-second-long audio segments,

while our experiments evaluate performance on half-second-long audio segments. Be-

cause his technique is in some sense explicitly estimating the reverberant transfer

functions of the two channels, it makes sense that it would require more data to

converge compared to GCC techniques. Another potential drawback of Benesty’s

technique is that it requires that the signal covariance matrix be full rank. For the

case of a harmonic signal, the signal covariance matrix will not be full rank, and

approximately harmonic signals can have ill-conditioned covariance matrices. Longer

audio segments are likely to have voiced and unvoiced speech as well as some vari-

ation in fundamental frequency, but short segments may be dominated by a single

approximately harmonic vowel, causing problems for Benesty’s technique.

Among the classic non-oracle-based GCC techniques, “GCC-PHAT” exhibits the

best performance. This is consistent with previous findings on the performance of

time delay estimators in reverberant environments [23]. Also consistent with previ-

ous findings is GCC-PHAT’s poor performance in the low-reverberation, low-SNR

case. This is exactly the opposite of the performance of the unweighted cross corre-

lation since, in contrast to unweighted cross correlation, GCC-PHAT weights phase

information at all frequencies equally regardless of signal energy. This is clearly the

wrong thing to do in additive noise at low SNR, but it turns out to be the right thing

to do for stationary signals in purely reverberant noise (as we showed in Section 2.2.2).

Human speech and many other auditory signals of interest are not stationary,

however. This suggests that there may be room for improvement over GCC-PHAT in

reverberant environments, and in fact we find that this is the case with our learned

localization precision estimates. All three variants, “proportional,” “narrowband,”

and “broadband,” show marked improvement over GCC-PHAT.

With its single-tap filter, the proportional mapping can approximate both GCC-
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PHAT and unweighted cross correlation as special cases. By setting all of its map-

ping coefficients to zero, its localization precision estimate σ̂−2(f), and therefore its

phase weighting, becomes a constant independent of the signal, which is exactly

GCC-PHAT. Alternatively, by setting the filters at all frequencies to an appropri-

ate constant, we can weight the phase information at each frequency proportional

to the signal power. Unweighted cross correlation (unweighted in the sense that

Ψ(f) = 1) effectively emphasizes phase information proportional to the intermicro-

phone cross-power, but for microphone pairs whose separation is small relative to the

source distance, the cross-power and the single channel power will be similar. Since

GCC-PHAT is a special case of the proportional weighting and since unweighted

cross-correlation can be approximated as a special case, we should expect the pro-

portional weighting to perform at least as well as those two standard techniques as

long as the optimization criterion that we use is reasonable. Table 4.4 shows this

improvement in average performance. As Figures 4-2 through 4-6 show, the propor-

tional weighting’s performance is generally similar to GCC-PHAT’s, with most of its

performance improvements coming at low SNR, where GCC-PHAT’s performance is

poorest.

Now we examine the “narrowband” and “broadband” mappings. These mappings

have larger extent in time than the proportional mapping and can therefore capture

relationships between localization precision and patterns of time-varying short-time

signal spectra caused by speech nonstationarity.

For these experiments, the narrowband mapping had a temporal extent of 380 ms

(a 101-tap filter on a spectrogram with a 3.75 ms frame step size). Larger temporal

extent was not found to improve localization results in preliminary experiments. This

is plausible since beyond the time scale of a few hundred milliseconds, lower level artic-

ulatory relationships diminish in importance and higher level linguistic relationships

begin to dominate [88].

For a given temporal extent, a broadband filter will have Nf times as many taps as

the narrowband filter, where Nf is the number of frequency bins in the spectrogram

representation. Thus, for computational reasons, we were forced to limit the broad-
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band filter extent in these experiments to 80 milliseconds. (Even if longer broadband

filters were computationally feasible, because of their larger number of parameters,

they would require more training data.)

As Table 4.4 shows, the overall performance of the narrowband and broadband

mappings is essentially identical, and both show a significant improvement over the

other non-oracle-based techniques. Figures 4-2 through 4-6 show that their perfor-

mance is also very similar as a function of room reverberation and noise level. Since

their performance is comparable, in practice this argues for the use of the narrow-

band mapping, which, even with a larger temporal extent, requires less computation

because of its smaller extent in frequency.

Thus far we have demonstrated the superiority of our technique compared to other

techniques. Now we empirically address the question of whether there is additional

room for improvement if we had perfect knowledge of the statistics of the target signal

and the noise. (We will see that it does.)

“GCC-ML” is the result of localizing with perfect knowledge of the short-time

signal and noise magnitudes, but without knowledge of their phases. This informa-

tion is unlikely to be available in practice, but the performance of GCC-ML shows us

two things. First, it reminds us that even with perfect knowledge of the magnitude

statistics, we cannot achieve perfect time delay estimation. (If we knew the exact

magnitude and phase of the noise, we could subtract it out and achieve perfect lo-

calization performance.) Second, it shows that the GCC-ML weighting, which was

derived for the case of Gaussian random signals in uncorrelated Gaussian noise and

infinite window length, still works in practice for short-time windowed speech signals

in a combination of reverberant and additive noise.

Finally, “Empirical precision” is the result of localizing based on empirical sample-

based estimates of the localization precision. If these utterances had been in the

training set, this would have been the target values that we regress to during training.

Because the learned mappings do not perfectly predict the localization precision, we

do not achieve the “empirical precision” performance in practice. The GCC-ML

technique always has by far the best performance since it is signal-specific. The
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empirical precision technique underperforms it because it uses a precision estimate

based on a sampled ensemble average.

To summarize, in all cases except for the combination of very low reverberation

and very high noise, the narrowband and broadband mappings outperform all non-

oracle-based techniques. In addition, the fact that our narrowband and broadband

mappings outperform the proportional mapping shows that there is a practical benefit

to using these richer mappings which are sensitive to energy distribution across time

and/or frequency.

4.3.2 Real data

The results on synthetic data allowed us to explore the effects of varying noise and

reverberation levels on time delay estimator performance. We now look at results on

real data to convince synthetic data skeptics, of which we are one, that our technique

really works. Table 4.5 summarizes results on real data in the same way that Table

4.4 summarized the synthetic results. Figure 4-7 shows separate results for the three

rooms that we tested.

The real results, particularly the “Normalized Gross Error” in Table 4.5, are con-

sistent with the synthetic results. It is again true that all variants of our technique

outperform the standard techniques on average and that the broadband and narrow-

band mappings outperform the proportional mapping. The main discrepancy between

real and synthetic is that for all of our mappings, the improvement in local RMS error

is much smaller. This is likely due to the fact that in these experiments were done

on real people who may have been slightly off from their assigned position during the

data collection or who may have shifted during the recording process. The RMS time

delay errors of a few tens of microseconds correspond to an angular error of a few

degrees, so small source positioning errors could obscure some of the local RMS error

performance differences. In spite of this, our proposed techniques still demonstrate

some improvement.

77



F G H
0

50

100

150

Room ID

Lo
ca

l R
M

S
 d

el
ay

 e
rr

or
 (

m
ic

ro
se

co
nd

s)

 

 

Broadband
Narrowband
Proportional
GCC−PHAT
Cross Corr.
Benesty

(a) Local RMS error

F G H
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Room ID

G
ro

ss
 e

rr
or

 fr
eq

ue
nc

y

 

 

Broadband
Narrowband
Proportional
GCC−PHAT
Cross Corr.
Benesty

(b) Gross error frequency of occurrence

Figure 4-7: Localization performance on data collected from the real rooms listed in
Table 4.2.
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Technique Norm. Local RMS Error Norm. Gross Error Frequency
Broadband 0.98 0.81
Narrowband 0.96 0.79
Proportional 0.98 0.91
GCC-PHAT 1.00 1.00

Cross Correlation 1.93 1.56
Benesty 2.16 1.74

Table 4.5: Average normalized localization error in real rooms.

4.4 Relationship to the precedence effect

Now that we have shown that our technique improves time delay estimation perfor-

mance, we turn to the question of whether the resulting system bears any relation

to the psychoacoustics of the precedence effect. We start by looking at the rela-

tionship between the reverberant speech spectrogram and the localization precision-

gram. Figures 4-8 through 4-10 show example speech spectrograms and corresponding

precision-grams for three of our five simulated rooms for the lowest-noise condition. In

Figure 4-8, the 100 ms reverberation case, we see that the precision-gram is roughly

proportional to the spectrogram. Wherever there is strong speech energy, there is

precise localization information. In Figures 4-9 and 4-10, corresponding to 400 ms

and 1600 ms reverberation times, respectively, note first that the overall precision

values are lower because of the error introduced by reverberation. Next we see that,

particularly in Figure 4-9, the precision-gram values are highest at the times of energy

onsets in the spectrogram. This trend is less obvious in Figure 4-10 because room E,

which is meant to model a large conference room, actually has a comparable amount

of reverberant energy to room C, but room E’s energy is spread out over a longer

time.

To see whether our learned filters can capture this relationship, we next look at

mappings learned in each of these reverberant conditions, as shown in Figure 4-11.

Each subfigure shows narrowband mappings for a particular reverberant condition,

and for each condition, mappings from a representative subset of the frequency bins

are shown. The magnitudes of the filter coefficients for the 100 ms reverberation

time case are much larger because, as can be seen in Figures 4-8(b) through 4-10(b),
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the variance of the precision estimates in 100 ms reverberation case is much larger.

(There are many high-precision time-frequency regions and many low-precision time-

frequency regions in the 100 millisecond condition. There are mostly low-precision

time-frequency regions with only a few high-precision regions in the 400 and 1600

millisecond cases since the reverberation makes the steady state sounds less useful for

localization.)

In all cases the filter is approximately a superposition of a low-passed delta func-

tion and a band-passed edge-detector, as depicted schematically in Figure 4-12(b).

The low-passed delta function component indicates that louder sounds provide better

localization cues since for a mapping consisting solely of a delta function, a larger

input (louder sound) will produce a proportionally larger output (higher-precision

localization cue). This is to be expected in the presence of additive noise, where the

ML weighting is proportional to the SNR and the SNR in our scenario is roughly

proportional to the signal energy. The band-limited edge-detector can be interpreted

as an onset detector, which is consistent with the precedence effect.

The relative amplitudes of the delta function and the edge detector reflect the

relative importance of these two effects at each frequency and for each training condi-

tion’s reverberation time. For the 100 millisecond training condition, the two higher

frequency bins have almost no edge detector characteristic since this level of reverber-

ation is relatively benign. The 400 millisecond condition shows some edge-detector

characteristic at all frequencies because of the higher level of reverberation. Because

of the longer time scale of the 1600 ms reverberation, the edge-detector characteristic

is not as obvious around time 0, but instead takes the form of small negative values

for almost all of the positive-time taps.

A representative subset of the actual filters used in our experiments is shown in

Figure 4-12(a). These filters, which were trained on data from all reverberant condi-

tions and noise levels, must take some shape that represents a compromise among all

of the data collection conditions. As such, the edge-detector characteristic is subtler

but still present.

Our results are consistent with the precedence effect, and by looking at some
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examples of the learned broadband mappings in Figure 4-13, we can see that they

also can learn some (very simple) structure that is specific to the speech signal itself.

First note that we again have some edge detector behavior in that we have mostly

positive filter taps for t ≤ 0 and mostly negative filter taps for t > 0. Next we see

that since most of the filter energy is in taps corresponding to the target frequency

bin, the predicted localization precision at a given frequency depends mostly on the

spectrogram values at that frequency. This makes sense because the localization cues

themselves are derived from the signal information at that frequency. An interest-

ing but subtler effect is that there is some spread of filter energy across frequency.

(Note the positive filter taps across frequency in all filters at t = 0.) Thus, even

though there is no fundamental physical relationship between localization precisions

at different frequencies, the correlation of signal energy across frequency in speech

has been exploited in these broadband mappings. If energy fluctuations across fre-

quency were not correlated, for example in the case of stationary signals, we would

not see this structure in the broadband mappings. Cross-frequency dependencies in

the precedence effect have been observed, for example in [84].

Finally, psychoacoustic research has found that (depending on the test criterion

and stimuli used) the precedence effect acts to suppress post-onset localization cues

for between 5 and 50 milliseconds [59]. In the narrowband filters shown in Figure 4-

12(a), almost all of the filter energy (in both negative and positive taps) is within 50

milliseconds of time 0. Our system has implicitly learned the characterization of an

“onset” that can provide precise localization over the range of acoustic environments

on which we have trained, and its time scale is consistent with psychoacoustic findings.
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Figure 4-8: Sample speech spectrogram and corresponding localization precision-gram
from simulated room A, with an RT60 of 100 ms. The male speaker is saying “So he
was very much like his associates.”
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Figure 4-9: Sample speech spectrogram and corresponding localization precision-gram
from simulated room C, with an RT60 of 400 ms. The male speaker is saying “So he
was very much like his associates.”

83



 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

500

1000

1500

2000

2500

3000

3500

4000

−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

(a) Speech spectrogram

Time (seconds)

F
re

qu
en

cy
 (

H
z)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

500

1000

1500

2000

2500

3000

3500

4000

−5

0

5

10

15

20

25

(b) Localization precision-gram

Figure 4-10: Sample speech spectrogram and corresponding localization precision-
gram from simulated room E, with an RT60 of 1600 ms. The male speaker is saying
“So he was very much like his associates.”
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Figure 4-11: A representative subset of narrowband filters for different reverberant
conditions. Each subplot shows filters trained only on data from a single room.
Within each subplot, three representative frequency bands are shown.

85



−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.05

0

0.05

0.1

0.15

0.2

Time (seconds)

 

 
594 Hz
1969 Hz
3344 Hz

(a) Learned narrowband filters

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

1) Low−passed
    delta function

2) Band−passed
    edge detector

3) Sum of
    (1) and (2)

(b) Schematic decomposition

Figure 4-12: (a) shows the narrowband filters that result from training on all noise
and reverberation conditions. (b) shows a schematic decomposition of the learned
filters. Each of the learned narrowband filters can be viewed as a linear combination
of a low-pass filtered impulse (top) with a band-pass filtered edge detector (middle).
The bottom curve shows the linear combination of the top two curves, which is similar
in shape to the learned narrowband filters.
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Figure 4-13: Learned broadband filters for three representative filter bands. These
filters have most of their energy in the frequency bin whose precision they are es-
timating, but there is some energy across all frequency bins, indicating that useful
information is being integrated across frequency when calculating the optimal map-
ping.
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Chapter 5

Source Separation

To this point, this dissertation has focused on improving the localization of a single

source in a noisy, reverberant environment. This chapter demonstrates another use

for our localization precision estimates by applying them to the simultaneous source

separation problem.

5.1 The source separation problem

The isolation of a single auditory source from a mixture is one of the holy grails

of audio processing. In what is known as the “cocktail-party effect,” a term intro-

duced by Cherry [19] and reviewed in [41], human listeners are able to focus on and

comprehend one speaker in an environment filled with many simultaneous speakers.

The human attentional mechanism allows a listener to focus on only one stream at a

time [15], but a listener can shift attention from one speaker to another.

Computer audio processing systems have no inherent attention mechanism and

are not limited to focusing on one speaker at a time. Thus, a related problem in

computer audition is simultaneous source separation, in which a mixture of several

simultaneous speakers is separated into its constituent speech streams.

Source separation is difficult because interesting sources signals like human speech

are complicated and very nonstationary, and because even when the source location

is known, the full source-microphone transfer function is typically unknown because
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it depends on the details of the acoustic environment.

5.2 Components of the solution

Source separation is a difficult and often ill-posed problem. Cherry [19] lists sev-

eral factors that could contribute to successful cocktail party performance, including

differing localization cues among the speakers, knowledge of the temporal dynam-

ics of speech, differences among speakers’ voices, and speech-related visual cues. A

successful source separation solution will likely need to exploit several of these factors.

This chapter examines a solution to the source separation problem that uses the

localization precision estimates developed in Chapter 3 in combination with a statis-

tical model of the spectral shapes of speech sounds and a simple implicit model of

the temporal dynamics of speech.

5.3 Previous work

Source separation is typically formulated as an optimization problem consisting of an

objective function that measures how well the speech is separated, a set of separating

functions among which we hope to find one that can successfully separate the sources,

and an optimization technique for searching the set of separating functions for one

that optimizes the objective function.

5.3.1 Separating Functions

There are two common ways to separate simultaneous audio sources. The first

method, which can completely separate sources only if there are at least as many

microphones as sources, is to create a linear time-invariant multichannel unmixing

filter which will imply a specific spatial filtering pattern. This method is used by

beamformers [51] and most convolutive blind source separation (BSS) techniques

(such as [71]).
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The second method is to apply a time- and frequency-varying multiplicative mask

to the spectrogram of the mixed input signal. Roweis [82] and Yilmaz and Rickard [93]

use binary masks, in which each time-frequency region is either completely assigned

to a given source or not assigned at all. Because of this, binary spectrogram masks

depend on the sparsity of speech energy in the time-frequency domain and can only

perfectly separate signals that are disjoint in this time-frequency representation. Em-

pirical tests by both Roweis and Yilmaz and Rickard have demonstrated that oracle-

chosen binary spectrogram masks can achieve excellent separation of two simultaneous

speakers [82] and can achieve more than 9 dB improvements in SNR even for mix-

tures of ten speakers in an anechoic environment [93]. (Figure 5-1 shows an example

of such an oracle-chosen binary mask.) Hershey and Casey [42] use a soft mask, in

which each mask entry can take any value on the interval [0, 1]. This can be inter-

preted as a time-varying Wiener filter, and can in theory achieve better separation

than the binary mask. In practice, however, binary masks work well because of the

time-frequency sparsity of each individual speech signal.

5.3.2 Objective Functions and Optimization Techniques

Objective functions for source separation may be defined independently for each sep-

arated source or as a joint function of all of the sources. Typically, a separating func-

tion and an objective function are paired because they permit the use of an effective

optimization technique. We will describe the objective functions and optimization

techniques together in this section.

In the adaptive beamforming literature, the objective function is typically defined

independently for each source and involves minimizing the output signal energy sub-

ject to array steering constraints [51]. If one knows the true direction to the target

and can constrain the beamformer to always pass signals from that direction, one

can minimize the noise level in the output signal by minimizing the total output sig-

nal energy subject to the steering constraint. In uncorrelated noise and with perfect

knowledge of the source-to-array transfer function, this will act to minimize the noise

present in the output signal. In many practical situations, however, the target direc-
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(b) Speaker 2 spectrogram
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(c) Simultaneous speech spectro-
gram
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(d) Ideal binary spectrogram mask

Figure 5-1: Example of a binary spectrogram mask. (a) and (b) show spectrograms
for two isolated male speakers. Speaker (a) is saying “...have walked through pain
and sorrow...” and speaker (b) is saying “...overprotection is far more...” (c) shows
the spectrogram when speakers 1 and 2 speak simultaneously. Darker colors indicate
higher energy. (d) shows the ideal binary mask for separating the two speakers. Black
regions indicate where speaker (a) is louder and white regions show where speaker
(b) is louder. The spectrogram in (c) can be multiplied by the mask in (d) and its
binary complement to reconstruct the two individual speakers.
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tion is not precisely known and the noise is not completely uncorrelated, so adaptive

beamformer performance degrades significantly [14]. Additional constraints can be

imposed to limit the sensitivity of adaptive beamformers to modeling errors [44], but

these techniques achieve this robustness at the cost of reduced performance in the

best case. There is a simple closed-form solution to this basic adaptive beamforming

objective function [51] and many of its variants, although they are usually formulated

as online adaptive filtering problems to allow for source motion and environmental

changes.

In the blind source separation literature, the objective function is typically related

to some measure of statistical independence among the reconstructed sources [24].

This simple assumption is both the blessing and the curse of these techniques. When

we have only very limited knowledge of the signal statistics and mixing parameters,

for example when analyzing poorly understood medical signals as in [9,72], this can be

a practical objective function. However, when the mixing system has many parame-

ters, as is the case with the many taps of the long filters associated with a reverberant

environment, these objective functions and their weak assumptions about the sources

may require a large amount of data to provide a useful measure of separation. In

practice, the most successful current algorithms for blind speech source separation in

reverberant environments employ gradient-based optimizations that converge reason-

ably quickly to local optima [16,71].

To separate simultaneous sources, Yilmaz and Rickard propose the DUET source

separation technique [93] which uses a per-spectrogram-bin objective function that

assigns each bin to the source with which its localization cues are most consistent.

This objective function is equivalent to a binary hypothesis test that can be easily

solved given their use of histogram-based density estimates.

A number of systems have used objective functions related to the “speech-ness” of

the separated signals. Ephraim [28] used hidden Markov model (HMM) speech models

for speech enhancement. Roweis [81, 82], Hershey and Casey [42], and Reyes-Gomez

et al. [77] train HMMs on isolated speech and then simultaneously decode multi-

ple HMMs to separate multiple speech streams. [28], [82], and [42] use the forward-

93



backward algorithm to find marginal state distributions and then use these state

distributions to separate or enhance the signals using a time-frequency mask. [77]

uses the forward-backward algorithm as a subroutine in a procedure that optimizes a

beamformer to separate multiple sources. Brandstein and Griebel [14, 37] use a mul-

tichannel extension of the Dual Excitation speech model [39] and a linear predictive

model to exploit the harmonicity and formant structure of speech within a speech

enhancement system.

5.4 Our Technique: Combining Localization Cues

with Speech Models

Our goal in this chapter is to combine localization cues with a model of speech spectra

and a simple model of speech temporal dynamics to facilitate source separation using a

spectrogram mask. We will use a binary spectrogram mask to separate speakers, and

our objective function will combine localization cue likelihoods with spectral shape

likelihoods. This can be viewed as adding localization cues to the single-channel

separation techniques of Roweis [82] and Hershey and Casey [42] or as adding a

speech model to the DUET technique [93]. The key ingredient that allows for this

combination is an estimate of localization cue errors across time and frequency, which

was precisely what was developed earlier in Chapter 3.

Our technique is conceptually similar to the technique described in [67], which also

combines localization cues with a state-space model of speech spectra. We differ from

them in that they choose a particle filter implementation that takes 32 CPU days

to process one second of audio (2.7 million × real-time). Our implementation uses

simple temporal smoothing of localization cues and runs at less than 100 × real-time.

We also evaluate our technique in more reverberant environments.

We will first describe each of the components of our solution. Then we will con-

clude this section with an overall summary of our algorithm.
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5.4.1 Localization cues

The localization precision, σ−2
loc (u, f) (where u is a time index and f is a frequency

index) discussed in Chapter 3 implies a simple generative model for microphone pair

cross-power spectrum phase measurements once the source position is known. Specif-

ically, assuming that the phase associated with the true source position is θtrue(u, f)

and the phase noise is Gaussian, then the observed phase, θ(u, f), is distributed as

p(θ(u, f); θtrue(u, f)) = N (θ(u, f); θtrue(u, f), σ2
loc(u, f)) (5.1)

One problem with this model is that phase noise cannot be Gaussian since phase is

periodic with period 2π. Another problem is that we do not actually know σ2
loc(u, f);

in practice we will use σ̂−2
loc (u, f), the estimated precision resulting from applying the

mappings developed in Chapter 3. We will see from our results that even after making

these assumptions, we are able to separate speech reasonably well.

In a situation with two simultaneous speakers with true (direct path) phases

θtrue1 and θtrue2 , one can define a binary mask, M(u, f), to separate out source 1

by setting the mask to one everywhere that source 1 maximizes the likelihood of the

observed phase and zero elsewhere. Source 2 can be separated out by applying the

complementary mask, (1 − M(u, f)).

MDUET (u, f) =











1 for (u, f) such that p(θ(u, f); θtrue1(u, f)) > p(θ(u, f); θtrue2(u, f))

0 otherwise

(5.2)

In our system, the estimated σ̂2
loc(u, f) is derived directly from the signal without

knowledge of who is speaking. As a result, we have only a single estimate and must

share σ̂2
loc(u, f) across all sources. This may not always be realistic, for example when

one speaker is much closer to the array and generates much more reliable localiza-

tion cues. However, without knowledge of source distances or other specific acoustic

conditions of the sources, using the same shared σ̂2
loc(u, f), which comes from map-
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pings trained on a variety of acoustic conditions and therefore represents an “average”

value, seems reasonable. Because we are using a shared variance across all sources,

picking the maximum likelihood source corresponds to picking the source whose true

(direct path) phase is closest to the observed phase. Picking the maximum likelihood

source is the DUET separating technique, although our Gaussian phase distribution

implies a different likelihood function than specified in [93].

Depending on localization cues to independently specify the mask value at each

time and frequency, as is done in DUET, works well in near anechoic environments,

but Yilmaz and Rickard report that it does not perform well in strong reverberation.

To achieve good performance in reverberant environments we must integrate cues

across time and frequency.

5.4.2 Speech spectral model

To integrate information across frequency, we use a Gaussian mixture model of

the speech log spectrum in each frame. We train a speaker-independent diagonal-

covariance mixture model using expectation-maximization (EM) [21]. Under each

mixture component, the log-spectrum is assumed to be distributed as

Lmshape
(u) =

∏

f

N (s(u, f); µmshape
(f), σ2

mshape
(f)) (5.3)

where s(u, f) is the log spectrum at time frame u, µmshape
(f) and σ2

mshape
(f) are

the mean and variance associated with mixture component m. We use the shape

subscript to indicate that these are the distribution parameters for the spectral shape,

in contrast to the loc parameters for the localization cue distributions. The dotted

and dashed lines in Figure 5-2 show examples of mixture component means from our

model.

Once we have this isolated speaker mixture model, we use it to create a two-

speaker Cartesian product mixture model that we can subsequently use for source

separation. Given two isolated-speaker mixture models, we create a new two-speaker

mixture model with one state for each possible pair of states from the isolated-speaker
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models (Figure 5-2). A problem that arises in this combination is that our observation

distributions are specified in the log-spectral domain, but uncorrelated sources add

in the power domain. To derive an observation for the summed factorial state from

the single-speaker distributions, Roweis [82] uses the “log-max” approximation, in

which he assumes that log(s1 + s2) ≈ max(log s1, log s2). Hershey and Casey [42]

exponentiate the log spectra and use moment matching to find a Gaussian distribution

for the sum’s spectral distribution. We follow the approach of [42], but in addition

to deriving a two-speaker spectrum distribution, we also keep track of which speaker

has the maximum energy at each frequency, as shown in Figure 5-2(b).

We decompose the likelihood for a given two-speaker mixture state into two terms,

one for spectral shape and another for localization cues. For state m, the spectral

shape term, Lmshape
(u), is just the evaluation of the observed log spectrum under the

distribution specified by the mixture state mean and covariance. The localization

cue likelihood, Lmloc
, assumes that at each frequency, the speaker with a higher mean

energy at that frequency will be responsible for generating the localization cue, so the

observed phase is evaluated according to that speaker’s model. The two likelihood

terms are assumed independent given the state:

Lmloc
(u) =

∏

f

p(θ(u, f); θtruemask(f)
(u, f)) (5.4)

Lmtot
(u) = Lα

mshape
(u)Lβ

mloc
(u) (5.5)

where θ is the observed phase difference, mask(f) is the dominant speaker mask

shown in Figure 5-2(b), θtruemask(f)
is the true phase associated with the dominant

speaker in that frequency, and Lmtot
is the overall likelihood of the data under that

state distribution. α and β are likelihood weighting parameters whose values were

chosen based on experiments with a validation data set. We evaluate the likelihood

for all mixture components to find a posterior marginal distribution over the states.

Now we must use these likelihoods to create a separating mask. Hershey and Casey

use the marginal state distributions to determine a marginal spectral distribution, and

from that they compute a Wiener filter. Roweis finds the MAP state assignments and

97



uses these to generate a binary mask. Binary masks appear to work well; however, we

have found binary masks based on the posterior marginals to achieve better separation

than those based on the single MAP state. We define our binary mask to be

MGMM+loc.(u, f) =











1 for (u, f) such that
∑

m(L̃mtot
(u) ∗ maskm(f)) > 1

2

0 otherwise

(5.6)

L̃mtot
(u) =

Lmtot
(u)

∑

m′ Lm′

tot
(u)

(5.7)

where Equation 5.7 normalizes L̃mtot
(u) to sum to 1.

5.4.3 Temporal smoothing

In [82], Roweis trained HMMs on clean speech and used them to create a factorial

HMM to separate simultaneous speakers. However, in [81] he subsequently stated

that a Gaussian mixture model of speech spectra (equivalent to an HMM without

dynamics) worked just as well as the HMM.

This suggests that the relatively short-term Markov state dynamics are not very

useful for the source separation problem. Clearly, however, within a given frequency

bin, the ground truth mask in Figure 5-1(d) often maintains the same value for many

frames in a row, and this slow change implies longer time-scale dynamics. One way

to capture these dynamics is to augment the speech model to use Nth order Markov

dynamics, but for any reasonable N this would lead to an impractically large amount

of computation.

A simple way to effectively capture some of these longer time-scale dynamics is

to use an exponential forgetting factor to low-pass filter the location log-likelihood

terms over time.

We define a smoothed location likelihood term as
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Figure 5-2: Creation of a two-speaker mixture model component. (a) The two-speaker
log spectrum (solid line) is formed from the power sum of the isolated speaker spectra
(dashed and dotted). (b) The mask indicates which speaker is dominant at each
frequency and is used both for separation and to evaluate localization cue likelihood.
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psmooth(θ(u, f); θtrue(u, f)) = psmooth(θ(u−1, f); θtrue(u−1, f))(1−γ)p(θ(u, f); θtrue(u, f))γ

(5.8)

where γ is the forgetting factor. (In practice, we implement this as an autoregres-

sive filter on log-likelihoods.) We use this to redefine our original location likelihood

from Equation 5.4 as

Lmloc
(u) =

∏

f

psmooth(θ(u, f); θtrue(u, f)) (5.9)

This is a form of likelihood weighting, which we also used in Equation 5.5. With

our Gaussian distributions, this is equivalent to a multiplicative scaling of the vari-

ance. Therefore, older, more out-of-date observations will be incorporated with larger

variances (tending toward a uniform distribution), and will have less effect on the

overall likelihood.

5.4.4 Independence assumptions

We have made a number of independence assumptions that are clearly not true:

• We have assumed that spectrogram frames are independent even though they

come from overlapping windows of the original signal and even though speech

has significant temporal structure.

• We have assumed that frequency bins are independent even though the window-

ing used to generate them introduces cross-frequency dependencies and even

though speech has broadband structure.

• We have assumed that the likelihood terms associated with spectral shape are

independent of the likelihood terms associated with localization cues after con-

ditioning on the state.

These independence assumptions lead to overcounting of evidence. A simple and

often effective way to deal with this is to raise each likelihood term to some power
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(or equivalently to multiply log likelihoods by a constant) to compensate for this

overcounting. For example, this must often be done to effectively combine acoustic

models and language models in automatic speech recognition [46, p. 610] [69]. We

have incorporated likelihood weighting through the α and β parameters in Equation

5.5 and the forgetting factor, γ, in Equation 5.8. We have found log likelihood scaling

to work well for our technique.

5.4.5 Algorithm summary

Here we summarize our algorithm. Prior to running the algorithm, it is assumed that

we have generated σ̂−2
loc (u, f) as described in Chapter 3 and have learned a Gaussian

mixture model of speech spectra as described in Section 5.4.2.

Algorithm summary:

1. Compute localization cue likelihoods (Equation 5.1) and smooth them (Equa-

tion 5.8). For illustrative purposes, these quantities have been used to compute

log-likelihood ratios in Figure 5-3 for the example speech segment from Figure

5-1.

2. For each spectrogram frame, u, and for each GMM component, m, compute

Lmshape
(u) (Equation 5.3) and Lmloc

(u) (Equation 5.9). Combine these to find

Lmtot
(u) (Equation 5.5).

3. Use these overall component likelihoods to compute a spectrogram mask MGMM+loc.(u, f)

(Equation 5.6).

4. Pointwise multiply the spectrogram, s(u, f), by the mask, MGMM+loc.(u, f) to

separate out speaker 1. Pointwise multiply by the complementary mask, (1 −

MGMM+loc.(u, f)), to separate out speaker 2.
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(a) Localization cue log-likelihood ratios
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(b) Smoothed log-likelihood ratios

Figure 5-3: Localization cue log likelihood ratios for the example speech in Figure 5-1.
(a) shows raw (unsmoothed) phase log-likelihood ratios that result from evaluating
Equation 5.1 for each of the two sources and taking the logarithm of their ratio. (b)
shows the smoothed phase log-likelihood ratios that result from evaluating Equation
5.8 for each of the two sources and taking the logarithm of their ratio. Lighter regions
are where speaker 1 is more likely, and darker regions are where speaker 2 is more
likely. Note that there is some rough correspondence between light regions in these
figures and white regions in Figure 5-1(d).
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5.5 Experiments

Source separation experiments were performed on both real and synthetic data. The

goal of the experiments on synthetic data is to test the technique systematically over

a range of acoustic environments and speakers. The experiments on real data show

that the technique does not depend on any unrealistic assumptions of the simula-

tion. The real data experiments cover a range of acoustic environments, but not as

systematically as the results on synthetic data.

5.5.1 Experimental setup

The experiments were carried out in the same rooms used for the localization results

in Chapter 4, and again all results are for audio sampled at 8 kilohertz. The speaker

time-delay separations tested on synthetic data were 0.15 ms, 0.3 ms, 0.65 ms, and

1.1 ms, corresponding to broadside angular separations of 8◦, 16◦, 35◦, and 61◦,

respectively. The 24 speakers in the TIMIT core test set were randomly combined

into 12 pairs, and these 12 pairs were tested at all four angular separations in all five

synthetic rooms. Roughly 30 seconds of audio was used in each configuration. For the

real data, one pair of speakers was tested in each room, and each of these pairs was

tested in 12 different configurations with separations ranging from 0.3 ms to 1.1 ms,

or from 16◦ to 61◦. Again roughly 30 seconds of audio was used in each configuration.

All speakers in the real data experiments were male.

We compare seven techniques on this source separation task. The first technique,

“Wiener filter,” is an oracle-based technique in which, using knowledge of the pre-

combined signals, we compute a time-varying Wiener filter and apply it to the mixed

signal. The Wiener filter minimizes reconstruction error for stationary signals, so if

our signals are approximately stationary for the time-scales of interest, the Wiener

filter should yield the best SNR. In our Wiener filter implementation, we assume that

the two speech signals are uncorrelated and compute a continuous mask (as opposed

to other techniques’ binary masks) as
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MWiener(u, f) =
|s2

1(u, f)|

|s2
1(u, f)| + |s2

2(u, f)|
(5.10)

where s1 and s2 are the spectra for the two individual speakers.

The second technique, “ideal mask,” is an oracle-based technique in which, us-

ing knowledge of the pre-combined signals, a binary mask is created for which each

time-frequency region is assigned to the source that has the most energy at that fre-

quency. This maximizes the SNR within each time-frequency region, and as Yilmaz

and Rickard [93] and Roweis [82] report, its subjective performance is also quite good.

This technique is equivalent to a binary thresholded Wiener filter.

“GMM + loc.” is our technique as described earlier in this chapter. For these

experiment, we used a 40-component Gaussian mixture model, which was computa-

tionally reasonable and yielded good results.

“DUET” is Yilmaz and Rickard’s technique [93], also described earlier. Here

we evaluate their separation criterion, but use our own localization cue likelihood

model. (We have found our likelihood to work as well as or better than that of [93].

Their likelihood model assumed no knowledge of the source location and included an

unsupervised clustering step.)

“Delay-and-sum” is a delay-and-sum beamformer [51] that compensates for the

difference in direct path delays between channels and then sums the two aligned

channels.

“Convolutive BSS” is Parra and Spence’s technique [71] for convolutive BSS based

on multiple decorrelation. They use the fact that for nonstationary sources, indepen-

dent components can be separated by finding an unmixing system that simultane-

ously decorrelates the system’s outputs at multiple time points. A critical parameter

in their method is the filter length, which must be long enough to account for the

reverberant mixing of the acoustic environment but short enough to estimate effec-

tively with limited data. We use 512-tap filters (at our 8 kHz sampling rate), which

resulted in the best performance in small-scale parameter-tuning experiments.

Finally, “original mixture” is the microphone signal itself without any process-
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ing. The performance of this “technique” is poor, but it serves as a useful minimal

performance baseline.

Design trade-offs

The above techniques approach the source separation problem from a number of

different directions, each with its own strengths. Delay-and-sum beamforming and

convolutive BSS each rely on beamforming for separation. Beamformers only need

to be updated when the source-microphone configuration changes, so they can work

very well when the acoustic environment only changes slowly. Because they only

need to update when the environment changes, they are less likely to cause tempo-

ral clipping and other time-domain artifacts associated with more rapidly updating

techniques. One drawback of these techniques is that they may introduce spectral col-

oration (due to mis-steering in delay-and-sum beamformers and due to fundamental

ambiguities in the BSS problem). Another drawback of convolutive BSS, which has

many more parameters than delay-and-sum, is that it may not be able to adapt well

enough to separate fast-moving sources. Finally, beamformers with N microphones

are fundamentally limited to separating at most N sources.

Binary mask-based techniques must necessarily update their masking parameters

at the rate at speech sounds change. Because of this rapid updating, they tend to

introduce artifacts in the form of abrupt onsets and offsets in the reconstructed audio,

but they do not tend to introduce spectral coloration. They are not fundamentally

limited by the number of microphones used, and because the binary mask does not

depend strongly on the specific location of the source, fast source motion is not

fundamentally a problem for these techniques. (In practice, fast source motion and a

large number of sources relative to the number of microphones will make the problem

more difficult, but there are no fundamental limits imposed by the binary mask.)

The other major dimension along which the techniques differ is their use of a

speech model. Our technique is the only one tested that uses such a model, and the

obvious advantage of a speech model is that when the received signals fit the model,

we can exploit additional structure, in our case local relationships in the mask across
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time and frequency. The disadvantage is that the model may not fit non-speech

sounds well, and in that case, the more signal-agnostic methods may work better.

Binary masks and beamformers could both be used in the same system to poten-

tially achieve better combined separation, but because we are focusing on the two-

microphone case and because beamformers are fundamentally in there performance

by the number of microphones, we choose to focus solely on binary mask-based tech-

niques. The question we seek to answer is whether the addition of a speech model to

a binary mask-based system will improve performance in practical environments.

Among the non-oracle techniques, convolutive BSS is the only one that does not

require source locations as input. Instead it in some sense “figures out” the source-

microphone transfer function based on its independence criterion. Not needing local-

ization information is clearly advantageous, although as we showed in Chapter 4, it

is possible to achieve reasonable source localization performance even in moderately

noisy and reverberant environments. (The independence criterion used by this convo-

lutive BSS algorithm is only applicable to non-stationary signals. This is a reasonable

choice for a system that will be used on non-stationary speech signals, although it

will not work on quasi-stationary sources like ventilation noise.)

Although source separation techniques vary in a number of ways, the end goal of

source separation is the same, so we believe that by testing techniques on a range of

typical and practical acoustic environments, we can reasonably compare them despite

these differences.

5.5.2 Evaluation Criteria

Automated objective evaluation of the speech quality and intelligibility achieved by

source separation methods is an open problem. The gold standard criterion for speech

source separation or enhancement is human listener evaluation, but large-scale human

listener evaluations are time consuming and potentially expensive. Out of necessity,

but not preference, we therefore will base most of our evaluation on automated ob-

jective evaluation criteria. We choose segmental SNR and segmental log-spectral

distance (LSD), two simple and popular evaluation metrics that have been shown
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to correlate reasonably well with human listener ratings of speech quality [34, 75].

We also conduct a small-scale human listener study to put our automated evaluation

results into perspective.

There are more sophisticated evaluation metrics available, but these tend to be

targeted at specific applications, and each has drawbacks when applied to our source

separation problem. The speech intelligibility index (SII) [1], an ANSI standard,

is designed for the evaluation of devices like telephone handsets or public address

systems where intelligibility depends significantly on the absolute sound level since,

for example, very soft signals will be inaudible and very loud signals will be painful

or may cause undesirable perceptual masking. Additionally, the SII was originally

developed to evaluate the intelligibility based on an average speech spectrum and

an average noise spectrum, although a recent extension [78] is under consideration

for inclusion in the standard. Because of its focus on absolute levels and average

spectra, SII is not appropriate for our source separation evaluation, where we care

about relative signal levels in fluctuating noise.

The perceptual evaluation of speech quality (PESQ) algorithm [2] was developed

to evaluate the effectiveness of telephone speech codecs and is perhaps the most state-

of-the art objective speech quality standard. However, it is known not to correlate well

with human listener ratings in the case of temporal clipping, and the time-frequency

binary masks that we use clearly lead to this sort of clipping. For this reason, PESQ

is unsuitable for our evaluation. Another option is to use automated speech recogni-

tion (ASR) performance to evaluate speech separation, but it has been shown that

separation techniques that improve performance according to human listener evalu-

ations often decrease ASR performance compared to applying ASR directly to the

noisy signal [25]. The best way to improve ASR performance seems to be to integrate

audio processing as closely as possible into the recognizer itself. Our goal, however,

is to separate speech without tying ourselves to any particular speech recognition

technology.

All of these classes of more sophisticated speech evaluation metrics may become

relevant as the metrics themselves and the source separation technologies mature, but
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for now all of the separation techniques evaluated in this chapter struggle to get even

moderate separation in our difficult reverberant environments, so we stick with the

simple, general-purpose segmental SNR and segmental LSD performance metrics.

Segmental SNR is a frame-wise average of log-domain short-term SNRs. It is

calculated as

SNRdB(u) = 10 log10

∑Nf

f=1 |sref (u, f)|2

∑Nf

f=1 |snoise(u, f)|2
(5.11)

SegSNRdB =
1

U

U
∑

u=1

SNRdB(u) (5.12)

where SegSNRdB is the average segmental SNR over the entire utterance from

frame 1 to frame U , sref (u, f) is the reference (cleanly separated) speech spectrogram,

and snoise(u, f) is the residual noise spectrogram. This averaging of SNRs in the log

domain prevents small differences in SNR in the loud frames from dominating large

differences in SNR in the quieter frames, which is what happens when calculating raw

(non-segmental) SNR over an utterance. Segmental SNR has been found to be more

perceptually relevant than overall (non-segmental) SNR.

Segmental LSD is a frame-wise average of root-mean-square distances measured

between the reference spectrogram and each algorithm’s output spectrogram. It is

traditionally defined as

LSD(u) =

√

√

√

√

1

Nf

Nf
∑

f=1

[20 log10 |sref (u, f)| − 20 log10 |srecon(u, f)|]2 (5.13)

SegLSD =
1

U

U
∑

u=1

LSD(u) (5.14)

where LSD(u) is the within-frame spectral distance, srecon(u, f) is the output of

the separation algorithm being evaluated, and SegLSD is the utterance-average log

spectral distortion. Since it is a distance from the reconstruction to the reference, an
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LSD of zero implies a perfect reconstruction.

Segmental LSD as traditionally defined yields perceptually unreasonable results

when applied to techniques based on binary spectrogram masks. For such binary

masks, the time frequency regions corresponding to zeros in the mask will have exactly

zero energy, which means 20 log10 |srecon(u, f)| will be −∞ when mask(u, f) = 0.

These infinite values will dominate any other differences. To avoid this problem,

we impose a “noise floor” on the reference and reconstructed signals and use these

modified spectra to compute segmental LSD as

|s̃ref (u, f)| = max(|sref (u, f)|, noisefloor(f)) (5.15)

|s̃recon(u, f)| = max(|srecon(u, f)|, noisefloor(f)) (5.16)

LSD(u) =

√

√

√

√

1

Nf

Nf
∑

f=1

[20 log10 |s̃ref (u, f)| − 20 log10 |s̃recon(u, f)|]2 (5.17)

SegLSD =
1

U

U
∑

u=1

LSD(u) (5.18)

where we choose noisefloor(f) to be equal to the background noise level, which

we know explicitly in the case of synthetic data and which we estimate from a short

segment of noise-only data for the real data case.

The ideal binary mask optimizes local SNR in each time-frequency region, and for

the two-speaker case that we are testing, the local maximization of SNR leads to a

global maximization of segmental SNR. Thus this mask is ideal in the sense that it

obtains the best possible segmental SNR of any binary mask.

The final issue is our choice of reference signal. We choose to use the isolated

but reverberated signal (in contrast to the isolated signal without reverberation) as

our reference. The primary reason for this choice is that our goal is separation, not

dereverberation. We feel that dereverberation is a distinct, and potentially even more

difficult, problem in highly reverberant environments. In any case, none of the sepa-

ration techniques we compare explicitly sets out to dereverberate the signal, so they
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Segmental Segmental Human listener
Technique SNR (dB) LSD (dB) preference (%)

Wiener filter (oracle) 11.1 6.2 97
Ideal mask (oracle) 9.7 4.0 83

GMM + loc. 5.2 6.4 34
DUET -0.6 6.6 19

Delay-and-sum 1.8 8.2 44
Convolutive BSS 3.8 9.2 39
Original mixture 0.3 8.4 33

Table 5.1: Average separation performance in synthetic rooms. “Human listener
preference” is the percentage of the times that the technique was preferred in paired
comparisons with other techniques.

Technique Segmental SNR (dB) Segmental LSD (dB)
Wiener filter (oracle) 7.6 4.0
Ideal mask (oracle) 5.3 4.8

GMM + loc. 2.7 7.0
DUET 0.6 7.9

Delay-and-sum 1.5 8.0
Convolutive BSS 1.1 8.6
Original mixture 0.6 8.4

Table 5.2: Average separation performance in real rooms.

are all on equal footing in this respect. (The delay-and-sum beamformer should re-

sult in some dereverberation since most reflections will come from directions other

than the target direction, but dereverberation is not its explicit goal.) Reverberation

tends to decrease speech intelligibility [11,64,65] compared to a clean, anechoic signal.

However, when competing noise is present, some reverberation can improve intelligi-

bility by increasing the total amount of speech energy that reaches the listener [43].

Although the eventual goal is a completely separated and dereverberated signal, our

goal is the intermediate step of separation without dereverberation.

5.5.3 Performance results

We summarize results with averages across all conditions for synthetic data in Table

5.1 and for real data in Table 5.2. Figures 5-4 through 5-8 break down the synthetic

data experiments by reverberation time and by time delay separation. Figure 5-9
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breaks down the real data results by room.

First we examine the results on synthetic data as a function of acoustic environ-

ment and time delay separation (which is related to angular separation). For all

conditions, the oracle-based techniques (“Wiener filter” and “ideal mask”) outper-

form all other techniques at segmental SNR and, because the oracle-based techniques

do not depend on the localization cues, they are independent of time delay separation.

The performance of the oracle-based techniques does worsen with increasing reverber-

ation time, however, since more reverberation makes the spectrogram representations

of the two speakers less disjoint in the spectrogram representation. The time-varying

Wiener filter is optimizing the SNR under the assumption of uncorrelated stationary

sources, so it achieves better SNR than the ideal binary mask. Still, for synthetic data

the ideal binary mask is consistently within 1.5 dB of the Wiener filter, showing that

a binary mask is a reasonable separating technique for two speakers in an otherwise

quiet environment.

Our technique, “GMM + loc,” performs the best on average of all the non-oracle

techniques. It has the best segmental SNR in every room except the least reverberant,

where it has the second-best. It has the best segmental LSD in three of the rooms,

and is within half a decibel of the best segmental LSD in the other two.

For the 100 ms reverberation time, the convolutive BSS technique achieves the

best segmental SNR. For this short reverberation time, the statistical independence

assumption is enough to allow it to invert the mixing filters. In the process of unmix-

ing, however, convolutive BSS can apply an arbitrary filter to each source signal, so

even in the 100 ms condition, its segmental LSD is worse than the original mixture’s.

At longer reverberation times, convolutive BSS cannot invert the mixing filters as

effectively, and its segmental SNR performance degrades. (The 512-tap unmixing

filters are not long enough to completely capture the effects of strong reverberation.

We tried longer unmixing filters in preliminary experiments, however, and they per-

formed worse, presumably because not enough data was available in our 30-second

audio segments to fit the additional parameters.)

DUET has the opposite of convolutive BSS’s behavior. It has poor segmental
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SNR performance and good segmental LSD performance. Its segmental LSD scores

tend to be good because it is not applying any additional filter to the signal that

might change the signal’s average spectral shape. When DUET correctly assigns a

time-frequency bin to a speaker, the contribution of that time-frequency bin to the

overall segmental LSD is usually quite small. Our technique shares this advantage,

and its Gaussian mixture model and localization cue smoothing across time cause it

to make fewer errors in its time frequency masks in most reverberant conditions.

Delay-and-sum beamforming produces small but consistent improvement in seg-

mental SNR across all reverberant conditions, but its segmental LSD scores are in

most cases only slightly better than the original mixture’s.

Performance improves somewhat with increasing time delay separation, but this

relationship is most noticeable only at the very smallest time delay separation, cor-

responding to 8◦ angular separation for our microphone separation. This means that

separation performance is reasonably good for separations of 16◦ or more. To put

this into perspective, a 16◦ angular separation corresponds to an 80 cm spatial sep-

aration for speakers 3 m from the array. Of course, this also means that for large

angular separations, there is still plenty of room for improvement before we achieve

the performance of the ideal mask. Note also that the deleterious effects of small time

delay separation are strongest for “DUET” and “convolutive BSS,” (for example the

0.15 ms TDOA difference in Figure 5-4). We speculate that this is because these

two techniques have weak or non-existent cross-frequency constraints. (DUET treats

different frequencies completely independently. Parra’s convolutive BSS algorithm

has a constraint on filter length that enforces some smoothness across frequency, but

this constraint is relatively weak and is intended primarily to resolve the permu-

tation problem inherent in frequency-domain convolutive BSS algorithms [71].) At

small TDOA differences, low-frequency localization cues become less discriminative,

but techniques with cross-frequency constraints can still achieve some separation be-

cause the less-ambiguous cues at high frequencies will influence the separation at low

frequencies.

Another consequence of the cross-frequency dependencies introduced by the Gaus-
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sian mixture model is that it allows only “speech-like” partitionings of the spectrum

between the two speakers. Because of this, ambiguous narrowband localization cues

at isolated frequencies are not a serious problem. As an example, Figure 5-12 shows

sample separation masks from the real data experiments. Note that the DUET mask

has artifacts at multiples of 910 Hz (visible as horizontal lines across which the mask

changes more abruptly than usual). These artifacts arise because for a TDOA sepa-

ration of 1.1 ms, phase differences at these frequencies are identical for the two source

locations, so if we look only at that frequency, we cannot discriminate between them.

We can see this also in Figure 5-3 where log likelihood ratios at these frequencies are

grey, indicating equal likelihood for source 1 and source 2. By using the GMM to

enforce speech-like structure across frequency, “GMM + loc.” avoids these artifacts.

(Note also that at a coarse level, the “GMM + loc.” mask, while not perfect, is

much more faithful to the ideal mask. This is another indication that the time- and

frequency-spanning constraints of “GMM + loc.” are useful, but it is somewhat mis-

leading because many of the misclassified bins in the DUET mask have either very

low energy or comparable amounts of energy from both speakers. Misclassification of

such bins does not have serious perceptual effects.)

The relative performances of the algorithms in real rooms is consistent with their

performance in synthetic rooms, as shown in Table 5.2 and Figure 5-9. Again the

oracle-based techniques achieve by far the best performance. Our technique is next

best for both segmental SNR and segmental LSD in all rooms. Again DUET achieves

good segmental LSD and poor segmental SNR while convolutive BSS achieves good

segmental SNR and poor segmental LSD. The Wiener filter’s performance advantage

is larger for the real data than for synthetic data because of the effects of ambient

noise, which was almost completely absent in the synthetic data. For the synthetic

experiments, the all-or-nothing choice implied by the binary mask is a reasonable

approximation. When the ambient noise level is higher, accurate reconstruction al-

ways requires some amount of noise attenuation, and the Wiener filter’s continuous

weighting can achieve that.

Sample audio results are at http://people.csail.mit.edu/kwilson/thesis/
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Figure 5-4: Source separation performance in simulated room A, with an RT60 of 100
ms.
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Figure 5-5: Source separation performance in simulated room B, with an RT60 of 200
ms.
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Figure 5-6: Source separation performance in simulated room C, with an RT60 of 400
ms.
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Figure 5-7: Source separation performance in simulated room D, with an RT60 of 800
ms.
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Figure 5-8: Source separation performance in simulated room E, with an RT60 of
1600 ms.
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Figure 5-9: Source separation performance in real rooms.
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Figure 5-10: Source separation performance as a function of TDOA estimation er-
ror. The horizontal axis shows the RMS level of the synthetically generated time
delay noise on a log scale. These results are average performance across all tested
reverberation times and source separations.
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5.5.4 Human listener test

This section describes a human listener study conducted to provide additional per-

spective on the performance of the source separation algorithms. The automated

evaluations showed that the relative performance of the separation techniques did

not vary widely across most of the range of acoustic conditions tested, so for the

human listener tests we will analyze which techniques human listeners prefer when

averaged across the whole range of listening conditions.

The listener study consisted of a web page (versions at http://people.csail.

mit.edu/kwilson/user_study/ and http://people.csail.mit.edu/kwilson/user_

study/index_noflash.html) on which subjects listened to a series of pair compar-

ison tests of separation techniques. For each trial, a random acoustic condition was

chosen, and five-second clips of the results of the two techniques are presented for that

acoustic condition. The listener is asked to choose which of the techniques results

in better separation. There is one trial in the study for each possible combination

of two techniques. We publicized this study to coworkers and friends, and a total of

fifteen subjects participated in the study. Because the study was executed over the

web, it was not possible to carefully document the backgrounds of the subjects or

control their listening environments. Most known subjects were engineering graduate

students, and the listener study instructions recommended the use of headphones.

The rightmost column of Table 5.1 gives the results of the study. The numbers

for each technique represent the percentage of trials in which a technique appeared

in which it was the preferred technique. The results of the user study are in many

ways consistent with the automated evaluation. The oracle-based techniques again

performed the best. The Wiener filter was most preferred (in 97% of the trials in

which it appeared), losing out only occasionally to the other oracle-based technique,

the ideal binary mask. The non-oracle techniques were never preferred over any

of the oracle-based techniques, so their preference percentages are much lower. The

results show that people prefer the beamformer-based techniques (delay-and-sum and

convolutive BSS) to the binary mask-based techniques (DUET and GMM + loc.).
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Informal discussions with study participants indicated that most people did not like

the artifacts introduced by the binary mask techniques, and in fact delay-and-sum

beamforming, which introduces the fewest artifacts, was the most preferred of the non-

oracle techniques. On a positive note, our method substantially outperforms DUET,

the other binary mask-based method (34% vs 19%). This demonstrates that adding

a speech model to the localization-cue-only DUET method does improve perceived

quality.

5.5.5 Sensitivity to localization error

The source separation experiments described so far have all been done assuming

perfect localization information. This a reasonable baseline for comparison, but in

practice it unlikely that we will have perfect localization. In this section, we analyze

the robustness of the different techniques to localization errors.

To do this, we took a randomly chosen subset of our synthetic data and artificially

added varying amounts of Gaussian noise to the time delay estimates provided to the

source separation techniques. We plot segmental SNR and log-spectral distortion as

a function of RMS time delay error in Figure 5-11. Results are shown only for the

three techniques that make use of the localization estimates. All other techniques (the

oracle-based techniques, the original mixture, and convolutive BSS) will necessarily

have performance that is independent of the time delay estimate.

The performance of all techniques degrade reasonably gracefully with increasing

time delay error. Performance for all techniques is not seriously degraded below an

RMS error of 40 microseconds, and our technique has the best segmental SNR for

RMS error below 140 microseconds and the best log-spectral distortion for RMS error

below 40 microseconds.

The localization results in Figures 4-2 through 4-7 show that the local RMS time

delay error from our broadband and narrowband mappings is at or below 40 microsec-

onds in all but the most difficult acoustic environments. This demonstrates that our

technique is not seriously degraded by realistic levels of time delay error.
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Figure 5-11: Source separation performance as a function of TDOA estimation er-
ror. The horizontal axis shows the RMS level of the synthetically generated time
delay noise on a log scale. These results are average performance across all tested
reverberation times and source separations.
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5.5.6 Results summary

We have demonstrated improved segmental SNR and segmental LSD over a wide

range of acoustic conditions for both real and synthetic data compared to a num-

ber of competing techniques, including DUET, a time-frequency masking technique

which treats each spectrogram bin independently, and a convolutive BSS algorithm

developed by Parra and Spence. We have also demonstrated that our technique is

robust to the levels of localization error associated with the localization techniques

evaluate in Chapter 4, and we have shown that human listeners prefer our technique

to DUET, the technique to which ours is most closely related.
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Figure 5-12: T-F separation masks for different techniques. “Ideal” is based on
individual source energy. “GMM + loc.” and “DUET” are as described in the text.
The sources in the example had a TDOA separation of 1.1 ms.
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Chapter 6

Conclusion

This chapter summarizes the contributions of this dissertation and the insights gained

in the course of this work.

6.1 Contributions

The insight that motivated this work is that in reverberant environments, time delay

estimation accuracy is related to signal-dependent time-frequency energy patterns.

This “insight” is just a slightly more general statement of the fact that onsets are

easier to localize than steady-state portions of sounds, and this fact is common knowl-

edge in the psychoacoustics community, where the precedence effect has been studied

for decades. Our main contribution, then, is to have formulated the general problem

of finding a relationship between the reverberant spectrogram energy and localiza-

tion cue accuracy as a regression problem and subsequently to have implemented a

practical solution to this regression problem.

We chose cross-spectrum phase squared error as our metric for localization cue

accuracy. This choice fits naturally into the generalized cross-correlation framework,

and it guarantees that if our learned mappings perfectly predicted this phase error, our

delay estimate would be optimal (under a number of assumptions described earlier).

Even though many of these assumptions are not true in practice, we have shown

improved performance on real data, empirically demonstrating that our technique is
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not overly dependent on these assumptions.

Our empirical results show that techniques that are capable of capturing speech

nonstationarity (our narrowband and broadband mappings) outperformed other tech-

niques. In particular, these techniques become sensitive to energy onsets in the spec-

trogram. This connects back to the precedence effect and shows that precedence

effect-like behavior is a direct consequence of optimizing delay estimation perfor-

mance in reverberant environments.

On a more practical level, we showed that linear regression is sufficient to achieve

these performance improvements consistently across a range of reverberation times,

background noise levels, and individual speakers. The use of linear regression makes

both training and testing computationally efficient.

Source separation was not the primary focus of our work, but it turned out that the

localization cue error models that allow us to better localize sounds can also be used

in a very straightforward way to combine localization information with generative

speech models similar to those used for automatic speech recognition. In challeng-

ing environments, even human listeners benefit from multiple sources of information

about their acoustic environment, so it makes sense that appropriately combining

multiple sources of acoustic information should benefit automated systems as well.

We empirically demonstrated this benefit in experiments on real data.

6.2 Future directions

This dissertation contributed advances in source localization and source separation,

but there is still plenty of room for improvement.

At the signal processing level, generalized cross correlation’s optimality is contin-

gent on uncorrelated noise, long observation times, and an absence of gross errors.

Our work did not focus on this level of the system, but there are certainly still open

problems here in bringing theory closer to practice.

At a higher level, there are open questions on how best to model speech and its

relationship to localization cues. For both source localization and separation, there is
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the question of whether the log-magnitude spectrum is a sufficient representation. It

is a popular and successful intermediate representation (typically before converting

to mel-frequency cepstral coefficients) in speech recognition, although even in that

field there have been suggestions that a better representation is needed [36, 63]. A

spectrogram representation with a fixed window size clearly cannot be the best rep-

resentation for everything since long window sizes are necessary to get the frequency

resolution necessary for resolving harmonics and determining pitch, while short win-

dow sizes are necessary to get the time resolution to detect rapid onsets that are

intrinsic to many natural speech sounds and also tend to be most reliable for source

localization.

Even assuming the log-magnitude spectrogram is a reasonable intermediate rep-

resentation, there is still the question of what to do with it. In our source localization

work, this manifests itself as the question of whether a linear mapping from log-

spectrogram to log phase error is the best we can do. There is no reason to believe

that it is, especially since speech has such rich structure across time and frequency.

The linear mappings are basically averaging over all different speech sounds, and

this potentially eliminates useful structure. We have done some small-scale exper-

iments using quadratic terms or using quadratic or Gaussian kernels with our log-

spectrogram representation, but so far have found only negligible improvement from

these techniques. We believe that an interesting direction for future work is to use

more sophisticated regression techniques with more speech-specific representations.

In our source separation work, we used a Gaussian mixture model of spectral

shape and a simple forgetting factor to smooth localization likelihoods across time.

These were pragmatic design decisions, and they are certainly not the “right” answer.

Some improvement here might come from the use of additional audio features such

as pitch estimates, but the ultimate “right” answer will likely require a much better

understanding of the statistics of speech (and of natural sounds in general) than we

seem to have now.
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6.3 Final thoughts

I personally find it satisfying that I was able to start with an observation from the

psychoacoustics literature, find an appropriate signal processing framework in which

to express it, and in the end demonstrate practical performance benefits. It has long

been my goal to do research that combines these three aspects, and I am happy that

my thesis work has turned out to be such research, however modest the end result

may be.
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