
THE DYNAMICS OF SOFTWARE DEVELOPMENT PROJECT MANAGEMENT:

AN INTEGRATIVE SYSTEM DYNAMICS PERSPECTIVE

by

TAREK K. ABDEL-HAMID

B.Sc., CAIRO UNIVERSITY, CAIRO
(1972)

MBA, STATE UNIVERISITY OF NEW YORK, ALBANY
(1978)

Submitted to the Department of Management
in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1984

®QMassachusetts Institute of Technology 1984

Signature of Author:
Department of Management, 6 January 1984

Certified by:

Accepted by:

Stuart E. Madnick, Thesis Suoervisor

ChaIman' Depart, . nt- ommittee on
Griduate Studies

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

FEB 10 '84

LIBRARIES :;K

THE DYNAMICS OF SOFTWARE DEVELOPMENT PROJECT MANAGEMENT:
AN INTEGRATIVE SYSTEM DYNAMICS PERSPECTIVE

by

Tarek K. Abdel-Hamid

Submitted to the Department of Management
in Partial Fulfillment of the

Requirements for the Degree of
Doctor of Philosophy

Software is big business. It has been estimated that
expenditures for software development and maintenance were 40
billion dollars in 1980, or approximately 2 % of GNP. Even
more impressive are the projections that software will be the
dominant portion of an information processing industry that
is expected to grow to 8.5 % of GNP by 1985 and to 13 % of
GNP by 1990.

The growth in the software industry has not, however,
been painless. The record indicates that the development of
software systems has been plagued by cost overruns, late
deliveries, and users' dissatisfaction. A set of
difficulties that some refer to as the "software crisis."
The problems persist inspite of the significant software
engineering advances that have been made over the last decade
in tackling many of the technical hurdles of software
production. In recent years, the managerial aspect of
software development has gained recognition as being at the
cores of both the problem and the solution. Along with this
recognition there are, however, serious and legitimate
reservations and concerns. Chief among them is the belief
that, as of yet, we still lack the fundamental understanding
of the software development process, and that without such an
understanding the likelihood of any significant gains on the
managerial front is questionable.

The objective of this research effort is to enhance our
understanding of, and gain insight into, the general process
by which software development is managed. To achieve this
objective we accomplished the following three tasks:

First, we developed an integrative system dynamics model
of software development project management. The model was
developed on the basis of an extensive review of the
literature supplemented by 27 focused field interviews of
software project managers in 5 organizations. The model
complements and buildk upon current research efforts, which

tend to focus on the micro components (e.g., scheduling,
programming, productivity, ... etc.), by integrating our
knowledge of these micro components into an integrated
continuous view of the software development process.

Second, a case-study in a sixth organization was
conducted to test the model. The model was highly accurate
in replicating the actual development history of the software
project selected (by the organization) for the case-study.
Project variables tracked included: the workforce level, the
schedule, the cost, error generation and detection, and
productivity.

Third, the model was used as an experimentation vehicle
to study/predict the dynamic implications of an array of
managerial policies and procedures. Four areas were studied:
(1) scheduling; (2) control; (3) Quality Assurance; and
(4) staffing. The exercise produced three kinds of results:
(1) uncovered dysfunctional consequences of some currently
adopted policies (e.g., in the scheduling area); (2)
provided guidelines for managerial policy (e.g., on the
allocation of quality assurance effort); and (3) provided
new insights into software project phenomena (e.g., Brooks'
Law).

Thesis Supervisor : Dr. Stuart E. Madnick
Associate Professor of Management Science
Sloan School of Management
Massachusetts Institute of Technology

ACKNOWLEDGEMENTS

Many a doctoral candidate, sitting with pencil stub in
hand, must have thought, as I did, of the first few phrases
of Don Quixote: "Idle reader, you may believe me without any
oath that I would want this (work), the child of my brain, to
be the most beautiful, the happiest, the most brilliant
imaginable. But I could not contravene that law of nature
according to which like begets like." If such can be said of
Cervantes' brainchild, what can one possibly say about one's
own?

Only that one has done one's best. And yet, if the
truth be told, that "best" may prove to belong as much to
certain others as to one's self. Among the many people who
have made invaluable contributions to this thesis, I am
particulary indebted to Professor Stuart E. Madnick for his
support, encouragement, and constructive suggestions from the
time this study was conceived through the writing of the
final draft. His interest and willingness to help in every
way possible have kept me on course. I have also been
fortunate in having the counsel and assistance of Professors
Ugo Gagliardi, John Morecroft, and Edward Roberts; their
efforts in my behalf are sincerely appreciated.

Although I cannot hope to mention them all by name in
this short space, I would like to acknowledge the debt owed
to each and every individual in the organizations with whom I
worked in collecting the data for this thesis. The open and
supportive way in which I was accepted in all of these
organizations was most gratifying, and, indeed, instrumental
to my research work.

I would also like to gratefully acknowledge my main
sources of financial support. These include several Sloan
School tuition fellowships, an IBM Information Systems
Fellowship, and research funding from NASA (Grant No.
NAGW-448).

Nadia, my wife, is the one person of whom it can be said
that without her this thesis would not have been written.
Her companionship, support, and intellectual stimulation have
been at the very core of it since its inception.

5

TO NADIA

MY WIFE AND BEST FRIEND

TABLE OF CONTENTS

I. INTRODUCTION: BACKGROUND, OBJECTIVE, AND
APPROACH 8

I.1 BACKGROUND 8
1.2 Research Objective and Approach 18

1.2.1 Why an Integrative Model 20
1.2.2 Why a System Dynamics Model 24

1.3 Research Accomplishments 31
1.4 Thesis Outline 35

II. REVIEW OF RELEVANT LITERATURE 38

II.1 System Dynamics Modeling of
Project Management 38

11.2 Software Engineering Project Management
Literature Review 48
1.2.1 Review Models and Frameworks 48

11.2.2 Planning 72
11.2.3 Management of the Human Resource 78
II.2.4 Control 87

III. MODEL DEVELOPMENT 94

III.1 Introduction 94
111.2 Sources of Information 96
111.3 Model Boundary 109
III.4 Model Structure 113

III.4.1 Model Overview 114
111.4.2 System Dynamics Schematic

Conventions 117
111.4.3 Human Resource Management 121
III.4.4 Software Production 133
111.4.5 Controlling 231
111.4.6 Planning 256

111.5 Summary 268

IV. A CASE-STUDY:
THE NASA DE-A SOFTWARE PROJECT 270

IV.1 The DE-A Project 271
IV.2 Model Parameterization 272
IV.3 Actual and Simulated Project Behavior 289
IV.4 Conclusion 296

V. MODEL BEHAVIOR: AN ANALYSIS OF
THE DYNAMICS OF SOFTWARE DEVELOPMENT 301

V.1 Introduction 301
V.2 The "EXAMPLE" Software Project 303
V.3 Software Cost and Schedule Estimation 338

V.3.1 On the Accuracy of
Software Estimation 342

V.3.2 On the Portability of the
Quantitative Software Estimation
Models 358

V.3.3 On the Analogy Method of
Software Estimation 387

V.4 The "90% Syndrome" 400
V.5 The Economics of Quality Assurance 410
V.6 Staffing: Brooks' Law Revisited 428
V.7 Summary 438

VI. CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH 441

VI.1 Summary of Results 441
VI.2 Suggestions for Future Research 453

BIBLIOGRAPHY 459

APPENDIX: MODEL DOCUMENTATION 497

I. INTRODUCTION:

BACKGROUND, OBJECTIVE, AND APPROACH

I.1. Background:

In the brief history of the electronic digital computer,
the 1950s and 1960s were decades of hardware. The 1970s
were a period of transition and a time of recognition of
software. The decade of software is now upon us
(Pressman, 1982).

One convincing impact of software is directly on the

pocketbook. It has been estimated that, here in the U.S.,

expenditures for software development and maintenance were 40

billion dollars in 1980, or about 2 percent of the Gross

National Product (Boehm, 1981). Even more impressive, Boehm

projects that "computer software will be the dominant portion

of an (overall computer and information processing) industry

expected to grow to 8.5% of the Gross National Product by

1985 and to 13% of the GNP by 1990."

This growth in demand for software has not, however,

9

been painless. Indeed, as the industry was making the

transition in the 1970s, " ... we (grew) to recognize

circumstances that are collectively called the 'software

crisis,' ... (a term that) alludes to a set of problems

that are encountered in the development of software"

(Pressman, 1982).

The record shows that the software industry has been

marked by cost overruns, late deliveries, poor reliability,

and users' dissatisfaction. [For example, see (Block, B58),

(Boehm, 1981), (Frank, 1983), (Glaseman, 1882), (Jensen &

Tonies, 1979), (Mills, 1976), - (McKeen, 1983), (Thayer &

Lehman, 1980), and (Thayer el al, 1981).]

A report to Congress by the Comptroller General, General

Accounting Office (GAO), FG MSD-80-4, November 9, 1979, cites

the dimensions of the "software crisis" within the federal

government. The report's title summarizes the issue:

"Contracting for Computer Software Development --- Serious

Problems Require Management Attention to Avoid Wasting

Additional Millions."

The report reflects the views of 163 software

contracting firms and - 113 federal government project

officers, as well as experience with specific contracts for

software development. The summarized indictment is severe:

1. Dollar overruns are fairly common in more than 50

percent of cases

2. Calender overruns occur in more than 60 percent of

cases

3. Of the nine contracts examined (eight of which were

admittedly in trouble), of $6.8 million expended, the

results were:

a. Software delivered but never used: $3.2

million

b. Software paid for, but never delivered: $1.9

million

c. Software extensively reworked before used:

$1.3 million

d. Software used after changes: $198,000

e. Software used as delivered: $119,000.

As the report concludes, "The government got for its

money less than 2 percent of the total value of the

contracts."

Big as the direct costs of the "software crisis" are,

the indirect costs can be even bigger, because software, in

many cases, is on the critical path in overall system

development (e.g., weapon systems such as the B-I bomber).

That is, any slippages in the software schedule translate

directly into slippages in the overall delivery schedule of

the system. For example:1

Let's see what this meant in a recent software
development for a large defense system. It was planned
to have an operational lifetime of seven years and a
total cost of about $1.4 billion --- or about $200
million a year worth of capability. However, a
six-month delay caused a six-month delay in making the
system available to the user, who thus lost about $100
million worth of needed capability --- about 50 times
the direct cost of $2 million for the additional
software effort. Moreover, in order to keep the
software from causing further delays, several important
functions were not provided in the initial delivery to
the user (Boehm, 1973).

The "software crisis" is, by no means, confined to

software projects developed by or for the federal government.

There is every indication that it is similarly prevalent

within private sector organizations [(Brooks, 1978), (Mclure,

1955), (McFarlan, 1974), and (Zmud, 1980)]. For example, in

his most recent book, DeMarco (1982) writes about:

some disquieting facts to be considered:

* Fifteen percent of all software projects never deliver
anything; that is, they fail utterly to achieve their
established goals.

* Overruns of one hundred to two hundred percent are
common in software projects.

(And that) So many software projects fail in some major
way that we have had to redefine "Success" to keep
everyone from becoming despondent. Software projects
are sometimes considered successful when the overruns
are held to thirty percent or when the user only junks a
quarter of the result. Software people are often
willing to call such efforts successes, but members of
our user community are less forgiving. They know
failure when they see it.

In an effort to bring discipline to the development of

software systems, attempts have been made since the early

1970s to apply the more rigorous discipline of engineering to

software production. This new discipline is called "Software

Engineering." And it encompases both the technical aspects

of software development (e.g., design, testing, validation,

etc.) as well as the managerial ones (Thayer, 1979),

(Boehm, 1980)).

However, even though both technology and management were

equally recognized very early on as parts of both the problem

and the solution [(Kolence, 1968), (Perlis, 1969), and

(Mills, 1974)], there was a huge disparity in the attention

they received from the research Community.

On the technology side, a number of methodologies have

evolved, over the last decade, that address many of the

technical problems experienced in software development. A

large number of articles addressing such topics as better

coding style "Structured programming", structured design,

testing, formal verification, language design for more

reliable coding, diagnostic compilers, and so forth, have

appeared in the literature (e.g., in the IEEE Transactions on

Software Engineering, Proceedings of the International

Conferences on Software Engineering, Proceedings of the ACM

Conferences on the Principles of Programming Languages,

...). (See, for example, (Dijkstra, 1971), (Fagen, 1976),

(Jensen and Tonies, 1979), (Mills, 1971), (Parnas, 1972), and

(Stevens et al, 1974).)

... software engineers have progressed to the point
where many major issues relevant to the technology of
software production have been identified and
considerable progress in addressing these issues has
been made. Practical working tools to support improved
software production are commonly available, and their
design and generation have become a recognized topic for
university instruction (Thayer et al, 1981).

A comparable evolution in Management methodologies,

however, has not occured [(Cooper, 1978), (DoD, 1982),

(Gehring and Pooch, 1980), (Jensen and Tonies, 1979), (Hausen

and Mullerburg, 1982a), (McClure, 1981), (McFarlan, 1974),

(McKeen, 1981), (Reifer, 1979), (Thayer, 1979), (Weinberg,

1982), (Zmud, 1980), and (Beck and Perkins, 1983)].

In a special isssue of the IEEE Transactions on Software

Engineering devoted to project management, Dr. Richard E.

Merwin (1978), the Guest Editor, pointed out that an overall

software engineering management discipline is missing. He

stated:

Programming discipline such as top-down design, use of
standardized high level programming languages, and
program library support systems all contribute to
production of reliable software on time, within budget

What is still missing is the overall management
fabric which allows the senior project manager to
understand and lead major data processing development
efforts.

And, within the same issue, Cooper, (1978) commented

that:

Although the need is apparent, there appears to be
precious little innovative activity in the area of
software management. Perhaps this is so because
computer scientists believe that management per se is
not their business, and the management professionals
assume that it is the computer scientists'
responsibility.

Three years late.r, Thayer et al, (1981) writing in the

same Journal, stated that:

Software engineering project management (SEPM) has not
enjoyed the same progress (as the technology of software
development). While it might be argued that SEPM has
been defined, it is far from a recognized discipline.
Software developers who have demonstrated competence as
developers and programmers have been elevated to project
managers without training or guidelines to help them.
The major issues and problems of SEPM have not been
agreed on by the computing community as a whole, and
consequently, priorities for addressing- them have not
been widely established. Furthermore, research in this
area has been scant.

This position is further substantiated by a survey,

reported in the same paper, of a number of leading

universities, which revealed that only a handful of the

prominent universities surveyed offered courses exclusively

on b-?M.

But what have been the consequences of this "deficiency"

in our "research repertoire?"

First, our difficulties in producing software that is on

15

time, within budget, and that meets user requirements, are

obviously very much still "alive." (Refer to the many

references cited in the early part of this discussion.)-

Second, and because this continues to be the case

inspite of substantial progress in the technological

(vis-a-vis the managerial) aspects of software production,

there is a decided shift in "faith." Consider:

There are more opportunities for improving software
productivity and quality in the area of management than
anywhere else. (Boehm, 1976)

Many of our technical and managerial leaders believe
that the more effective management of a software
development project (i.e., project management) would
eliminate or reduce the severity of these software
failures (Thayer, 1979).

The basic problem is management itself (Gehring and.
Pooch, 1977).

A major barrier to the successful design and
implementation of information systems has been the
management of the software developement activity itself
(Moore, 1979).

Poor management can increase software costs more rapidly
than any other factor (Weinberg, 1982).

A comprehensive study for the U.S. Air Force found that
the problems of software productivity on medium- to
large-scale projects are mostly problems of management:
thorough organization, good contingency planning,
thoughtful establishment of measurable project
milestones, continuous monitoring as to whether the
milestones are properly passed, and prompt investigation
and corrective action in case the milestones are not
met. However, beyond these familiar concessions to
classic management theory, the study group offered no
novel approaches to finding out why they do not work for
software development. (Pooch and Gehring, 1980)

We ran into problems because we didn't know how to
manage what we had, not because we lacked the techniques

themselves (Thomsett, 1980).

Along with the growing "faith" in software engineering

project management, there are, however, serious and

legitimate reservations and concerns. Chief among them is

the belief that, as of yet, we still lack the fundamental

understanding of the software development process [(Comper,

1979), (DOD, 1982), (Fireworker, 1980), (Gehring, 1976),

(Merwin, 1978), (McKeen, 1983), (McKeen, 1981), (Oliver,

1982), and (Wesserman, 1980)], and that without such an

understanding the possibility or likelihood of any

significant gains on the management front is questionable

[(Basili, 1982), (Basili and Zelkowitz, 1978), (Brooks,

1978), (Basili, 1981), (Canning, 1978), (McKeen, 1981), and

(Mitchell, 1980)].

This is no trivial impediment ((McKeen, 1981), (Oliver,

1982)). But, if it is any solace, it is not one that is

unique to our young field:

Any worthwhile human endeavor emerges first as an
art ...

Over the centuries, management as an art has progressed
by the acquisition and recording of human experience.
But as long as there is no orderly underlying scientific
base, the experiences remain as special cases. The
lessons are poorly transferrable either in time or in
space ... (And) in time (the art) ceases to grow
because of the disorganized state of its knowledge ...

The.development of the underlying science (is then)
motivated by the need to understand better the
foundation on which the art rested ..

17

When the need and necessary foundation coincide, a
science develops to explain, organize, and distill
experience into a more compact and usable form ... Such
a base of applied science would permit experience to be
translated into a common frame of reference from which
they could be transfered from the past to the present or
from one location to another, (and). to be effectively
applied in new situations ... (Forrester, 1961).

To summarize:

* The record shows that the software industry continues

to be plagued by cost overruns, late deliveries, poor

reliability, and users' dissatisfaction. A set of

difficulties that some refer to as the "Software

Crisis."

* In an effort to bring discipline to the development of

software, attempts have been made since the early 1970's

to apply the more rigorous discipline of engineering to

software production and management. The new discipline

is called "Software Engineering."

* While significant inroads have been made in tackling

the technical hurdles of software development, the

.managerial aspects of software production attracted much

less attention.

* There is a growing "faith" that the next significant

"battle" will be won on the "managerial front."

18

* A necessary first step, however, is gaining a

fundamental understanding of the general nature of the

software development process.

1.2. Research Objective and Approach:

The objective of this research effort is to develop and

test an integrative system dynamics model of software

development project management which would enhance our

understanding of, provide insight into, and make predictions

about, the general process by which software development is

managed.

The

enhance

process.

first, and primary, purpose of the model is to

our understanding of the software development

In general;

What is gained in understanding through the use of a
scientific model to portray a portion of the real world
is achieved by comprehending the law or laws built into
the model. The locus of understanding in a scientific
model is to be found in its laws of iiteraction (i.e.,
the modes of interaction among the the variables of a
model) (Dubin, 1971).

There are hundreds of variables

development. Furthermore, these

independent; many of them are related

1976). So far;

that affect software

variables are not

to one another (Myres,

19

The many studies on the subject emphasize the difficulty
and complexity of the process, but have done little to
reveal a well-defined methodology or to delineate
precise relationships among project variables (Oliver,
1982).

Even though we do not de-emphasize the "difficulty and

complexity of the software development process," we feel that

the powerful formalization and simulation tools of the System

Dynamics methodology, have allowed us (as we shall explain in

more detail later in this section) to adequately manage it.

The second purpose of our model, is to make predictions

about the general process by which software systems are

developed. As such, the model would serve as a framework for

experimentation, e.g., to test out the implications of new

managerial policies and procedures. Providing such a

capability, is "especially useful for analyzing consequences

of changes in the (modeled) system where controlled

manipulation of the system itself is impossible, or at least

impractical or undesirable due to time, cost,

inaccessibility, political or moral considerations, or other

reasons" (Schultz and Sulliven, 1972).

In the remaining part of this section we will elaborate

further on the above ideas. We will do that as we argue for

the two characteristic features of our model and which

together distinguish it from most others in the software

engineering area. The two characteristic features being:

(1) It is integrative, and (2) it is a system dynamics model.

1.2.1. Why an Integrative Model:

Our model is integrative in the sense that it integrates

the multiple functions of the software development process,

including the management-type functions, e.g., planning,

controlling, and staffing, as well as the production-type

functions that constitute the software development life

cycle, e.g., designing, coding, reviewing, and testing.

A major defect in much of the research to date has been

its inability to integrate our knowledge of the micro

components, such as project management, programming, testing,

... etc., for deriving implications about the behavior of

the organization in which the micro components are embedded

((Boehm, 1976), (Thayer, 1979)). Paraphrasing Jensen and

-Tonies (1979):

There is much attention on individual phases and
functions of the software development sequence, but
little on the whole life cycle as an integral,
continuous process --- a process that can and should be
optimized.

Clearly, this "micro-oriented" type of work is a useful

beginning in helping us obtain a better understanding of the

software development activity, However, before we can say

that we have a complete understanding of any such activity,

" o.. it is necessary to show that our knowledge of the

individual components can be put togehter in a total system,

i.e., an organization can be synthesized, which allows for

the interactions of all the relevant variables and of all the

structural components" (Cohen, 1965).

The basic argument for this, is that interactions and

interdependencies are common in all social systems, e.g.,

management-type systems (Kotter, 1978), (Schein, 1980),

(Weick, 1979). Paraphrasing Cleland and King (1972):

The management system is a conglomerate of interrelated
and interdependent functions. No one management
subsystem can perform effectively without the others.
Action taken by one subsystem can be traced throughout
the entire management system and throughout the complex
environment in which the management system exists.

And, that as a result:

The behavior of an individual subsystem in isolation may
be very different from its behavior when it interacts
with other subsystems (Cohen, 1965).

It is no wonder, then, that integrative-type models are

viewed as useful and powerful aids in understanding

management-type social systems generally, and in trying to

improve their functioning (Schein, 1980). And the management

of software development is, certainly, no exception:

the solution to the (software management)
problem involves more than just finding better tools and
local optimization methods; it calls for an integrated

approach ... (Jensen and oTonies, 1979).

In addition to the benefit of helping us achieve overall

understanding, an integrative perspective can be useful in

two more "tactical" ways: problem diagnosis and solution

evaluation.

A "corollary" of the above statements by Cleland and

King (1972), is that the interactions and interdependencies

which tend to characterize our management systems generally,

will similarly characterize the problems that beset such

systems (Cleland and King, 1975). Which does indeed seem to

be the case in software development (Glassman, 1982), where "

... no one thing seems to cause the difficulty ... But the

accumulation of simultaneous and interacting factors ...

(Brooks, 1978).

An integrative perspective would, therefore, be useful

since, at worst, it would not "inhibit" our search for the

multiple, and potentially "diffused," set of factors that are

interacting to cause our software problem(s), while, at best,

actually "prompting" and "facilitating" such a search. Such

prompting should be useful since experience suggests that

more often than not people opt for a "parochial mode" of

problem solving (Ackoff, 1978), (Cleland and King, 1975). By

doing so, the problem solve, in effect, brings to the

problematic situation under study a set of ready-made

criteria of relevance. Quite a "risky" strategy when we

admittedly lack a fundamental understanding of the problem

area.

To see the second potential benefit of our integrative

perspective, we need a second "corollary," namely: the chain

of effects in going from a particular managerial intervention

(e.g., to solve a perceived problem) to immediate

consequences, and then to second- and third-order

consequences and newly created problems is another pervasive

characteristic of management-type social systems ((Cleland

and King, 1975), (Weick, 1979)).

By providing us with a comprehensive world view, the

model would help us to more fully assess such second- and

third-order consequencies of, for example, a set of

management policies and procedures we need to test. And it

would do that, again, by, at worst, not "inhibiting" our

search for such multiple, and potentially diffused, set of

consequences, while, at best, actually "prompting" and

"facilitating" such a search. Such prompting should be

useful, since often,

consequences are not given much attention, and
apparently logical solutions may prove faulty as their
consequences ramify. Furthermore, since the
consequences of a decision often occur much later than
the decision itself, it is difficult for the members to
trace backward from the disruptive consequences to
determine precisely what caused them. The members
cannot make such an analysis, simply because there are

too many competing explanations. Thus, the only thing
members can do when a new problem arises is to engage in
more localized problem-solving (Weick,1979).

Notice that Weick's statements highlight two "new"

complicating factors, namely, that the consequences are

dynamic and that they are complex. And that's quite timely,

since these are issues we address next.

1.2.2. Why a System Dynamics Model:

"System Dynamics is the application of feedback control

systems principles ,and techniques to managerial,

organizational, and socioeconomic problems" (Roberts, 1981).

The System Dynamics philosophy is based on several

premises ((Forrester, 1961), and (Roberts, 1981)):

1. The behavior (or time history) of an organizational

entity is principally caused by its structure. The

structure includes, not only the physical aspects, but

more importantly the policies and procedures, both

tangible and intangible, that dominate decision-making

in the organizational entity.

2. Managerial decision-making takes place in a

framework that belongs to the general class known as

information-feedback systems.

25

3. Our intuitive judgement is unreliable about how

these systems will change with time, even when we have

good knowledge of the individual parts of the system.

4. Model experimentation is now possible to fill the

gap where our judgement and knowledge are weakest --- by

showing the way in which the known separate system parts

can interact to produce unexpected and troublesome

over-all system results.

Based on these philosophical beliefs, two principal

foundations for operationalizing the system Dynamics

technique were established. These are:

1. The use of information-feedback systems to model and

understand system structure (Premises 1 and 2).

2. The use of computer simulation to understand system

behavior (Premises 3 and 4).

In the remaining part of this section we would like to

discuss these two important concepts in more detail, e.g.,

find out what they mean and why they are useful?

(a) The use of information feedback systems:

"Feedback," is the process in which an action taken by a

26

person or thing will eventually affect that person or thing.

A feedback loop is a closed sequence of causes and effects, a

closed path of action and information. Feedback loops divide

naturally into two categories which are labelled

deviation-amplifying feedback (DAF) or positive loops, and

deviation-counteracting feedback (DCF) or negative loops. An

interconnected set of feedback loops is a feedback system

(Richardson and Pugh, 1981).

The first year of exploration (in System Dynamics)
pointed toward the concepts of feedback systems as being
much more general, more significant, and more applicable
to social systems than had been commonly realized ...
Feedback processes emerged as universal in social
systems and seemed to hold the key to structuring and
clarifying relationships that had remained baffling and
contradictory (Forrester, 1968).

The significance and applicability of the feedback

systems concept to managerial systems has, since then, been

further substantiated by a large number of studies in the

System Dynamics field. (See for example Roberts, 1981). But

what, perhaps, is more interesting is to see "endorsements"

of the concept from outside the System Dynamics community.

For example:

The cause-effect relationships that exist in
organizations are dense and often circular. Sometimes
these causal circuits cancel the influences of one
variable on another, and sometimes they amplify the
effects of one variable on another. It is the network
of causal relationships that impose many of the controls
in organizations and that stabilize or disrupt the
organization. It is the patterns of these causal links
that account for much of what happens in organizations.

27

Though not directly visible, these causal patterns
account for more of what happens in organizations than
do some of the more visible elements such as machinery,
timeclocks, ... (Weick, 1979).

Embracement of the feedback concept can even by

"spotted" in the software engineering literature. For

example:

Discussion and research into the framework of software
development and support, by dividing such efforts into
phases of work, has overemphasized.the discrete nature
of that work. Indeed such project life cycles can be
viewed, at least after the fact, as having been composed
of such segments. However, the dynamics essence, the
behavior over time, of the process is distorted. The
emphasis is upon discrete sets of activities separated
in time and lacking any base of underlying common
elements to bind them. From this it is clear, that the
fundamental systems nature of the process is ignored.
The ever-present and controlling feedback between
action, results, information, and new action is
overlooked by such an approach (Mercer, 1982).

Feedback processes in software development were also

discussed by Belady and Lehman (-in Wegner, 1980), (lehman,

1978), (Putnam, 1980), and (Zelkowitz et al., 1979).

A point which is important in particular to the

application of deviation-amplifying feedback (DAF) to

management, concerns the distinction between (1) the initial

event (from outside a loop) which starts the deviation

amplifying process in motion, and (2) the dynamics of the

feedback process which perpetuates it. While the initial

event is important in determining the direction of the

subsequent deviation amplification, the feedback process is

more important to an understanding of the system (Ashton,

1976). The initial event sets in motion a cumulative process

which can have final effects quite out of proportion to the

magnitude of the original push. The push might even be

withdrawn after a time, and still a permanent change will

remain or even the process of change will continue without a

new balance in sight. A further problem is that, after some

period of time has elasped, it may be difficult, if not

impossible, to discover the initial event. An interesting

example of this has been provided by Wender (1968):

... a fat and pimply adolescent may withdraw in
embarrassement and fail to acquire social skills; in
adulthood, acne and obesity may have disappeared but low
self-esteem, withdrawal, and social ineptitude may
remain. Social withdrawal and low self esteem are apt
to stay fixed because the DAF chain now operates:
social ineptitude leads to rejection, which leads to
lowered self-esteem, greater withdrawal, less social
experience, and greater ineptitude. What has initiated
the problem is no longer sustaining it. A knowledge of
the problem's origin would not be expected to alter the
currently operative loop unless such insight served to
motivate behavioral change ...
Finding the initial event (acne and obesity) may have
less. usefulness than understanding the current
sustaining feedback mechanism. Furthermore, in some
instances the initial event may have left no traces of
its existance and may be undiscovered.

It is no wonder, then, that "most managers get into

trouble because they forget to think in circles. I mean this

literally. Managerial problems persist because managers

continue to believe that there are such things as unilateral

29

causation, independent and dependent variables, origins, and

terminations" (Weick, 1979).

(b) The use of computer simulation:

So far, we have argued for an integrative model of

software development, which in addition captures its

information feedback systems. To stop here is not enough.

We need a tool for handling the high complexity of such a

model. There are two sources of high complexity; and

computer simulation can be an effective tool to handle both:

First,

Managerial systems contain as many as 100 or more
variables that are known to be relevant and believed to
be related to one another in various nonlinear fashions.
The behavior of such a system is complex far beyond the
capacity of intuition. Computer simulation is one of
the most effective means available for supplementing and
correcting human intuition (Roberts, 1981).

And second,

The behavior of systems of interconnected feedback loops
often confounds common intuition and analysis, even
though the dynamic implications of isolated loops may be
reasonably obvious. The feedback structures of real
problems are often so complex that the behavior they
generate over time can usually be traced only by
simulation (Richardson and Pugh, 1981).

Simulation's particular advantage is its greater

fidelity in modeling processes, making possible both more

complex models and models of more complex systems. It also

allows for vicarious experimentation.

Using the simulation model as an experimentation

vehicle, should be particularly welcomed by the software

engineering community. Several authors have "complained"

about the lack of tested "ideas" in the software engineering

field (Thayer, 1979), (Weinwurm, 1970). For example Weiss

(1979) commented:

... in software engineering it is remarkably easy
to propose hypotheses and remarkably difficult to test
them. Accordingly, it is useful to seek methods for
testing software engineering hypotheses.

Unfortunately, controlled experiments in the area of

software development tend to be costly and time consuming

(Myers, 1978). Furthermore, those who try it often find that

" ... the isolation of the effect and the evaluation of

impact of any given practice within a large, complex and

dynamic project environment can be exceeding2y difficult"

(Glass, 1982).

In addition to permitting less-costly and less-time

consuming experimentation, simulation models make "perfectly"

controlled experiments possible. Which, as the following

quotation shows, addresses the difficulty expressed by Glass

above:

The effects of different assumptions and environmental
factors can be tested. In the model system, unlike real
systems, the effect of changing one factor can be
observed while all other factors are held unchanged.

Such experimentation will yield new insights into the
characteristics of the system that the model represents.
By using a model of a complex system, more can be
learned about internal interactions than would ever be
possible through manipulation of the real system.
Internally, the model provides complete control of the
system organizational structure, its policies, and its
sensitivities to various events. Externally, a wider
range of circumstances can be generated than are apt to
be observable in real life (Forrester, 1961).

Finally, the very process of constructing the simulation

can be useful in several ways (Schultz and Sullivan, 1972):

1. Confrontation --- vague generalizations crumble when

put to the test of modeling.

2. Explication --- assumptions must be made explicit,

logical, and precise in order to build a simulation

model.

3. Expansion --- the tendency to a holistic approach in

simulation forces a broadening of one's horizon, a

looking into other relevant fields for ideas.

4. Communication --- problem-oriented simulation lead

to jumping of disciplinary boundaries, less

parochialism. And,

5. Involvement --- it can be fun, the construction

process motivates the modeler to attempt to fill in the

knowledge gaps.

1.3. Research Accomplishments:

As mentioned in Section 1.2., the objective of this

research effort is to enhance our understanding of, and gain

insight into, the general process by which software

development is managed. To achieve this objective we

accomplished the following three tasks:

1. Developed an integrative system dynamics model of

software development project management.

2. Conducted a case-study to test the model.

3. Used the model as an experimental vehicle to

study/predict the dynamic implications of an array of

managerial policies and procedures.

In the remaining part of this section, we will elaborate

further on the above three research accomplishments.

Model Development:

The development of the integrative system dynamics model

of software development project management constitutes the

following set of accomplishments:

1. The mathematical formulation of a system dynamics

model forces explication, i.e., structural relationships

between variables must be explicitly and precisely

defined. As such, the model sets the foundation for the

development of a theory of software project management.

Paraphrasing Dubin (1971):

A theory is the attempt of a man to model some
aspects of the empirical worLd ... A theory tries
to make sense out of the observable world by
ordering the relationships among 'things' that
constitute the theorist's focus of attention in the
world 'out there' ... The process of putting
things or units together in lawful relation to each
other establishes the fundamental building blocks
out of which a theory is constructed.

2. The model complements and builds upon current

research efforts, which tend to focus on the micro

components (e.g., project management, programming,

testing, productivity, ... etc.), by integrating our

knowledge of these micro components into an integrated

continuous view of the software development process,

allowing us to identify and capture a richer set of

interactions and interdepencies between the variables of

software project management.

3. The model identifies feedback mechanisms, and uses

them to structure and clarify relationships in software

project management. While the significance and

applicability of the feedback systems concept to the

study of managerial systems has been substantiated in a

large number of studies outside software engineering, it

still remains largely foreign to the software

engineering project management community. We,

therefore, view our work as having an "educational"

value to the software engineering.community.

4. The high degree of explication required in the model

helped us ferret out "knowledge gaps" in the literature.

And a set of 27 interviews with software development

managers in 5 organizations helped us fill these

knowledge gaps. The model, therefore, incorporates new

findings about the management of software project

management (e.g., on manpower acquisition policies under

different scheduling considerations).

Case Study:

The model was developed on the basis of both an

extensive review of the literature and information

gathered through a set of 27 interviews in 5

organizations involved in the production of software.

After the model was developed, we then conducted a

case-study in a sixth organization to test the model.

The model was highly accurate in replicating the actual

development history of the software project selected (by

the organization) for the case study. Project variables

tested included: the workforce level, the schedule, and

the cost.

Experimentation

If "understanding" is the intellectual outcome of a

theoretical model, then "prediction" is its practical

outcome (Dubin, 1971). The model was used as an

experimental vehicle to study/predict the dynamic

35

implications of an array of managerial policies and

procedures. Four areas were studied: (1) scheduling;

(2) Quality Assurance; (3) control; and (4) staffing.

The exercise produced three kinds of results: (1)

uncovered dysfunctional consequences of some currently

adopted policies (e.g., in the scheduling area); (2)

provided guidelines for managerial policy (e.g., on the

allocation of quality assurance effort); and (3)

provided new insights into software project phenomena

(e.g., "90 % syndrome").

1.4. Thesis Outline:

Each chapter of this thesis may be considered in

terms of its relationship to the model, which is the

focus of the study.

Chapters (I) and (II) serve as a background and an

introduction. In Chapter (I), we discussed the problems

and challenges of software development project

management. We also argued for the integrated System

Dynamics modeling approach, as a vehicle to address

those problems and challenges.

In Chapter (II), we conduct a survey of the

literature. The presentation is conveniently broken

into two sections. First, we survey the System Dynamics

36

literature that addresses the general area of project

management. This is a particularly appropriate starting

point, since it is this research track that provided the

first stimulant to our work. The second part of the

chapter, is a survey of the software engineering

literature to see what has been proposed /done to

understand and solve the problems of software project

management.

Chapter (III) is on model development. In it we

discuss in detail the development, structure, and

equation formulation of the model. The model has four

sectors. At the heart of the model is the software

production sector, where software production activities

such as coding and testing are modeled. The project

management activities comprise the remaining three

sectors: planninag, human resource management, and

control.

In Chapter (IV) we discuss the results of a case

study conducted to test the model's ability to replicate

the development history of a completed software

development project. Project variables tracked

included: the workforce level, the schedule, and the

cost.

In Chapter (V), the model is used as an

37

experimentation vehicle to study/predict the dynamic

implications of an array of managerial policies and

procedures. Four areas are studied: (1) scheduling;

(2) control; (3) Quality Assurance; and (4) staffing.

Finally, Chapter (VI) concludes the thesis with a

summary of findings and suggestions for further

research.

II. REVIEW OF RELEVANT LITERATURE

In this chapter two bodies of literature relevant to our

research are reviewed. The first is the System Dynamics

literature that addresses the general area of project

management. This is a particularly approriate starting

point, since it is this research track that provided the

first stimulant to our work. In the second part of the

chapter, we review the software engineering literature in the

area of software development project management. Thus, while

in the first section we look at research works that share

with us our basic research approach, in the second section we

turn our attention to those'that share with us our research

objective (i.e., the understanding of the software

development process).

II.1. System Dynamics Modeling of Project Management:

Professor Edwards B. Roberts,.of MIT's Sloan School Of

Management, has been the pioneer of this research effort, as

39

well as continuing to be its major driving force. His

doctoral dissertation on "The Dynamics of Research and

Development," in 1962 (which was also published as a book)

was the first scholarly effort to apply the then young System

Dynamics methodology to the project management area (within

an R&D environment). It still continues to be the most

comprehensive treatment of the subject. Since then, and

primarily in his capacity as a thesis advisor, he continues

to play an active "guiding" role in the field's advancement.

And which, as a result, continued to focus on the study of

R&D type projects. Roberts' thesis work together with that

of his MIT students, constitute the bulk of this body of

research.

It might be interesting to make a brief digression here

and explain how and why this body of research, lying at the

overlap between the System Dynamics and the Management of R&D

literatures, first attracted our attention and interest. It

was (surprisingly) while we were surveying the latter and not

the former. At the time, feeling frustrated by the lack of

innovative activity in the area of software management, we

decided to look into other more established fields for new

ideas. The management of R&D was the obvious first choice.

And for good reason. It is the area we found to be most

often likened, in the software engineering literature, to

software production. For example, paraphrasing Gehring and

Pooch (1977):

40

The stages of research and development are similar in
many respects to the stages of software analysis and
design. First, the determination of what the system is
to do (specification of outputs and inputs) is very
ill-defined, making the estimation of the time and cost
of its development uncertain (like the research stage).
Second, the specification of how inputs (file
specification, programmning) is easier to estimate (like
the development state). These similarities suggest that
a good many managerial practices and procedures from the
latter may be applied to the former.

The similarity in project cost estimation, between the

two fields, was also suggested by Wolverton, in his highly

referenced 1974 paper, when he wrote: "The general

principles involved in pricing large R&D efforts of any kind

apply to large software development as well."

Also, it is interesting to note, that Putnam's

celebrated SLIM model for software cost estimation (Putnam,

1980) is based on the R&D work of Peter Norden. Norden had

showed that R&D projects have a well defined manpower pattern

of the Rayleigh form (Norden, 1963) . When Putnam "adapted"

Norden's findings (on R&D projects) to the software

environment, he found that, here too, manpower application

follows the same Rayleigh pattern.

So, with great enthusiasm and anticipation we embarked

on a survey of the R&D literature. And read Roberts'

doctoral thesis. End of digression.

While perhaps interesting as a historical perspective on

our research effort, the above digression serves an

additional purpose. For, it suggests that our stated

argument for the relevance of the System Dynamics modeling

work of R&D project management to our own, namely, their

sharing of the same research methodology and approach, is

really a conservative one. The two areas have, in fact, much

more in common. And with this in mind, we now resume our

review of the literature.

As stated above, Roberts' System Dynamics model of R&D

project management, -continues to be the most comprehensive

work published in the area. The model traces the full life

cycle of a single R&D project. And it incorporates the

interactions between the R&D product, the firm, the customer,

and the processes relating to the nature of the work itself.

Figure II.1. (from Robert's thesis) is an overview of the

model's sectors, and the interrelationships among them.

Rather than delve into a detailed discussion of Roberts'

R&D model, we will limit out discussion of his work to those

aspects of the model which we found particularly relevant to

the study of software project management. Specifically, we

will present some of his models' conceptual building-blocks

(i.e., his assumptions/ findings about R&D projects). And to

underscore the correspondance to the software production

environment, we will append the presentation with "excerpts"

42

Perception
of Need fo
the Produc

I
I
.

I

I

Firm's
Investment of

Funds
Customer's

Commitment
of Funds

Request for
Customer Support

Over-all organization of system equations.

Figure II. 1

43

from the software engineering literature.

On project Planning

Roberts:

No unerring formula can be used to estimate the total
number of man-years required to carry out a given (R&D)
project. This kind of general statement reflects the
inherent nature of research and development: The exact
character of a specific task is indefinite, (and) the
specific technical requirements are uncertain ...

The Software Engineering Literature:

* ... quantitative software engineering has not
progressed to the point that we can even begin to
provide (software sizing) formulas. And it is not clear
that we will ever get very close to such an ideal
(Boehm, 1981).

* We lack the means " ... to provide clear, concise,
and unambiguous statements of user requirements ... The
problem here again has to do with the "absence" of a
clear understanding on the part of both software users
and developers as to what can be accomplished with
software" (DeRose and Nyman, 1979).

* The production of software is not a deterministic
activity. Product specifications are liable to be
shifted (Trichritzis, 1977).

Roberts:

Two factors significantly influence the initial estimate
of the job size: (1) the firm's previous experience;
and (2) the general over-all tendency to underestimate
the job size.

The Software Engineering Literature:

* ... when methods of estimating are ranked, the list

44

is headed by the Experience Method ... This approach
takes advantage of experience on a similar job ... The
major problem in the method is that it does not work on
systems larger than the base used for comparison.
System complexity grows as the square of the number of
system elements; therefore, experience with a small
system cannot account for all the things that will have
to be done in a large system. Neither will the
Experience Method apply to systems of totally different
content" (Aron, 1976).

* The software undersizing problem is our most critical
road block to accurate software cost estimation ..
there are no magic formulas that we can use to overcome
the software undersizing problem. In the absence of any
such formula, it is important to understand the major
sources of the software undersizing problem ... A major
(reason) is a strong tendency to underestimate the size
of support software (e.g, compilers, tools, utilities),
which for large operational systems is generally three
to five times as large as the operational software
(Boehm, 1981).

On the Management of the Human Resource:

Roberts:

* Whatever the know-how developed in solving the R&D
project problems, some time is required for it to be
adequately, absorbed. Then, as the experiences
accumulate, the firms' engineers supplement their
nonproject skills with these new, more specific insights
and approaches to the task.

The Software Engineering Literature:

* Programmers become more effective during larger
programming operations because of "learning." The
programmer gains familiarity with program logic, coding
notation, testing restrictions, and other requirements
as he progresses through each major activity in the
programming methods (Shell, 1972).

Roberts:

* Above a certain level, the assignment of additional

45

personnel to a large project may not only reduce total
time proportionality, but in fact may increase total
time to accomplishment.

The Software Engineering Literature:

* Increasing the size of a software team increases the
amount of software produced per unit time, up to a
point. Then the problems of communication among the
programmers begin to dominate the project and reduce the
amount of software being produced (Boebert, 1979)

And finally, on the Control of Progress:

Roberts:
(Control) problems ... result from lack of tangible,
precise measurement in R&D ..."

The Software Engineering Literature:
* Abstraction, or intangibility, is a management
challenge for such rudiments as recognizing process,
exhibiting results, and communicating between packets of
work. And compounding this is lack of hardware-like
measures ... " (Sampson).

* It is difficult to measure performance in programming
... (And) it is difficult to evaluate the status of
intermediate work such as undebugged programs or design
specifications and their potential value to the
completed project (Mills, 1983).

Roberts:
* One particular difficulty is that, during the very
early phases of a project, milestones have a tendency to
be less precisely definable, and hence less accuratily
measurable, than during later phases of the project ...
The shortcomings of the concept, "percent complete,"
were sufficiently great to negate its value. While
projects tended to make rapid progress towards
completion when work first began, it took an
inordinately long time to get from 90 percent to 100
percent.

46

The Software Engineering Literature:
* In the early stages of a project, it is difficult to
distinguish between 5% completion and 10% completion,
yet the resultant projection can vary 100% based on
which number is chosen (Donelson, 1976).

* One frequent difficulty stems from an over-reliance on
individual percent-complete estimates as indicators of
project progress (Boehm, 1981).

* (This) method of estimating progress typically leads
to estimates of the fraction of work completed which
increase as originally planned until a level of about
80-90% is reached. The programmers' individual
estimates then increase only very slowly until the task
is actually completed (Baber, 1982).

It is clear from the above presentation that some of the

problems that Roberts' model was built to address do resemble

some of those we are struggling with today in the software

engineering area. It is no wonder then, that we felt (and

did find) that the approach he effectively used i.e., Systems

Dynamics Modeling, to be an effective tool for addressing the

problems of software development project management.

As we mentioned in the beginning of this discussion,

Roberts' thesis was to become the foundation for further

System Dynamics studies of the R&D project management area.

One obvious extension was to study multi-project

environments. In such an environment project competition for

company resources becomes a significant dimension. Two such

multi-project models are those of Nay (1965) (a four-project

model) and Kelly (1970) (a two-project model). In both

models the focus remained, as was in Roberts, on project life

cycle behavior. Edelman's (1975) work, however, is a

47

departure from that. While building on Nay's model, he chose

to focus, instead, on the allocation and utilization of

manpower resources and the effects of the management systei

design on effectiveness.

Richardson (1982) took still a different tack. Rather

than focusing on a project, he focussed, instead, on the

development group. His model, therefore, does not trace the

life cycle(s) of one or more projects; rather, it reproduces

the dynamics of a development group over an eight year period

as a continuous stream of products are developed and placed

into production. The model focuses on the number of products

under development, the use of resources required, and the

aggregate average product development time.

Finally, several more recent models are emphasizing the

role of rework in project management. Rework can be caused

by errors committed in the earlier phases of a project (e.g.,

design errors of a VLSI circuitry) that escape detection

until later in the projects' life cycle. Of course, the

longer an error goes undetected, the more extensive the

necessary rework and the greater the cost. Changing design

specifications after development begins, also generates the

need for rework. Cooper (1980), describes a large system

dynamics study of cost overruns in a shipbuilding contract.

The study showed that the rework required by frequent design

changes imposed by the Navy were the major contributing

factor to a $500 million dollars overrun. Undiscovered

rework is also the focus of the simple R&D project models in

Roberts (1981b) and (Richardson and Pugh, 1981).

11.2. Software Engineering Project Management Literature

Review:

As we stated in chapter (I), the focus of this research

is on software development project management, and our

objective is to improve our understanding of it. In this

section we review the software engineering literature on

project management, to assess the current

"state-of-understanding," and the means/tools used to achieve

it.

We will begin by reviewing overview-type models and

frameworks. This will then be followed by separate

discussions on software project planning, human resource

management, and 'control i.e., the three project management

subsystems that together constitute the project management

activities in our model (as will be explained in chapter

III).

11.2.1. Overview Models and Frameworks:

Richard Thayer's 1979 Ph.D dissertation at the

University of California at Santa Barbara on "Modeling a

49

Software Engineering Project Management System," is a fitting

starting point for this discussion. For one, it probably was

indeed ... "the first attempt to completely model a

software engineering project management system" (Thayer,

1979). But, perhaps more important, if we judge from the

number of publications it generated (one in IEEE Transaction

on Software Engineering (Thayer et al, 1981), two in Computer

(Thayer et al, 1980) and (Thayer et al, 1982), plus several

conference papers), the thesis' results did have a

significant impact on the software engineering community.

Thayer's research goal was twofold: (1) to develop and

verify "a generalized descriptive management model of a

software engineering project management system," and (2) to

"identify and verify the major issues of software engineering

project management."

To develop his model, he first identified the various

functions, actions, procedures, and tools used, or proposed

for use, in managing a software engineering project. This

was done on the basis of a literature survey as well as his

own personal experience. He then superimposed these

functions, actions, procedures, and tools on the "classic

management model," i.e., that breaks the management activity

into the five functions of planning, organizing, staffing,

directing, and controlling.

The "skeleton" of his model is shown in Figure (II.2).

Each of the shown eight model sections, i.e., "Project

Identification," "Requirements and Constraints," "Planning,"

... etc., was then expanded further. For example, his

"detailed planning Section" is shown in Figure (II.3.a),

together with the set of assumptions he used to formulate it

(in Figure (II.3.b).

As we mentioned above, in addition to developing the

model, Thayer had a second objective, namely, to "identify

and verify the major issues of software engineering project

management." And, it is interesting to note, that even

though Thayer considered the development of the model to be

the most important contribution of his work, it was his

findings here that has, in fact, generated all his above

mentioned publications.

To identify the major issues of software engineering

project management, his first step was to review the

literature for software engineering problems. Then, by using

the software engineering delivery and success model shown in

Figure (II.4) he hypothesized which of these problems can

most affect the success of software delivery. These, he

believed were the major issues.

The issues were then reworded as problems as seen by the

project manager, and classified on the basis of the "classic"

Ovcrvirt. WtNv1 of a Sortwarr iginecriat;lb
Plrcjcct Jt1-i.ageit-nL Syr.Lvam

CENI.'dAL :1*%NilM\:1ýA(';:TAINSOFTWARE I:NCGINU;ERIll NG
No IN .)i)KL lb) PIROJEC1T I.nAC ~T A.,:

IRODUCTION J2C)J)L

Projj-rt livat iica Li o-tiPrograma, lt lentification
Hiardware Identifica±tiarn
Custonmcr Jd.-tiLific.Iticn
ContraCt J dcktiticatic'n
Cost & Schf-dult, ckritificationr
Softv:art:]d.'zatific~tion
Conalu1XiLy Idclenti i icat ion
Data I-ar3e Idt-zitific.-ttivi

StOrf j!'V

Ri rac.iz'/Tiitt:.

Coant roll i i

Deliverics J& Successes

Dorim.,rut Requirtm oo-nts~
Cm.oiLeomer Cona!Lra ia.ts

P'lanning and Scht-ddia izg
Quality A!;surance Pro7r?.aj

Preccr:eartizait ao Iula.LimLOn
P'rojectL ?IJ:a:ac;.!enL Orga.nizat: i on
Soft Lvwre ngineariat- Proj harn

Project Ifarzdgrr Staffing
Sof. ware I)evd1 ocp:acnt St.z:ff
Stafr Support
Training

Rcsponsi1i1ity ;azd AIutI:ority
Ilatmne. -itnL chTiecjique
Assignmziecnt of Work

Project Control
Ikeporting.
1Foram. i Reviews
Configuration :anafoenerit
Infonnal Reviews and Walk-

tiarougihs

Schcdule
Co-:t
MIeets Requirements
tirc-Ls lclialility StanJdrds
Nctas Mlaintainabi li Sty an.Oarth
NIects Us-ability SLandasrd.,

Figure 11.2

Cvus no, s

52

Planninjg flod.l

FLOCTIO:NS 161,17i
PROJCCT INAN!;AME'N'.T ACTIVITILS

Aria vz 1*tlt IP 1 ui redLer' t

Le Obj'i'.LvC'I

ForecasL

Set Procedures

Dev_-l " •trL P. i -s

ELrip D ol. I ~ic

Budgect and Al locate
PResour'es

Analyze inpujts arkd oitl oit ,icrjruirc-
icnts, functions o ! 0a;systcm, and,

dvl iverabclvs.

Dcternizsr hardr!we and syslivn s !ft-
ware rvi..rictic,:,:,
Dctercriiw; uscr id-intieiCatiori and
type ecintract.

DCeLr·ziir. (, i'.i, Ca.n.xI ty, and uncr
or t:.paw.v constraitiL.

Drierr-iric andn e_%.tllish, sticces- cri-
teria.

Deicrmi.:e aLtri~'::ts ci dor]ivL'rcel
sofLwzre: rclia ble-, airstajn.,lsle,
USeabliv, etc.
Doettrvria -A n eo t .n'i .n sccdu* to dr-
liver sceftware.

Select ;'3r in' and projOCe coistrol
tools and tceliniques.

Develop quality asn.uranc plan.

Select desi~rn, programning, and
testing tio , tchclnique, and isit-Li-
ods.

Same

Detcrmine priority and milestones
for events.

Budoct, locate ard scecure rcsotirces:
funds, rrograminer/arialyst, conmputecr
tirie, cir.

Figure I.3 a

_·__ __

_ C ____L

:I i`

'''

A separate organization from the development organization
would perform the planning and scheduling (this is also
an element of the organizing model)

Planning would be accomplished through the use of formal
planning guides, methods, and tools

The plan, no matter how well. accomplished by the planning
group, would be modified by either the senior manager or
the customer

Planning documentation would be prepared

The planning function would be a formal function with
time allocated for planning

Modular planning design and delivery techniques would be
used on the software development project

The planning function would include a software quality
assurance program

Each project would use some of the tools, techniques and
procedures known as "modern progranming techniques"

Software development tools, techniques and aids would be
used on the software development project

Software test tools, techniques, and methods would be used
in the software development project,

Figure II.3b

Software Development Delivery and Success Model

o Deliveries:

- Software

- Documentation

o Success Attributes:

- On time

- Within resources

- Meets requirements

- Useable

- Reliable

- Maintainable

Figure 11.4

55

management model of planning, organizing, staffing,

directing, and controlling. He found that "By far, the two

dominant (problematic) activities are planning and

controlling, which together (accounted) for 80 % of the

issues, with planning alone involving ten isues." The 20

issues he identified are shown in Figure (11.5).

To verify his hypothesized issues he did two things.

First he conducted "an opinion survey with a selected sub-set

of the computer community." This included: "technical

leaders in computer science," "software engineering authors,"

"project managers," "R&D personnel," and "software

engineering educators." (Two hundred and ninety four replies

were received.) The surveyees were asked to comment on

whether or not they felt each of the hypothesized problems

was a critical problem, an important problem, not important,

not a problem at all, or lastly, disagree with the hypothesis

completely and by the way it was stated. The surveyees were,

in addition, asked to state how they would (or did) solve the

problem.

The 13 starred (*) issues in Figure (11.5) were the ones

verified on the basis of this survey, (Verification meant

that at least 70% of the respondents felt that the issue was

either "critical" or "important".)

(Note: Most of his surveyees either came from large

56

Twenty hypothesized problems in SEPM

Planning
f4t + 1. Requirements: Requirement specifications are

frequently incomplete, ambiguous, inconsistent,
andlor unmeasurable.

* 2. Success: Success criteria for a software
development are frequently inappropriate, which
result in "poor-quality" delivered software; i.e., not
maintainable, unreliable, difficult to use, relatively un-
documented, etc.

*+i 3. Project: Planning for software engineering proj-
ects is generally poor.

+*C 4. Cost: The ability to estimate accurately the
resources required to accomplish a software develop-
ment is poor.

*+4 5. Schedule: The ability to estimate accurately the
delivery time on a software development is poor.

*+6. Design: Decision rules for use in selecting the
correct software design techniques, equipment, and
aids to be used in designing software in a software
engineering project are not available.

* 7. Test: Decision rules for use in selecting the cor-
rect procedures, strategies, and tools to be used in
testing software developed in a software engineering
project are not available.

8. Maintainability: Procedures, techniques. and
strategies for designing maintainable software are not
available.

A. 9. Warranty: Methods to guarantee or warranty
that the delivered software will "work" for the user are
not available.

4. 10. Control: Procedures, methods, and techniques
for designing a project control system that will enable
project managers to successfully control their project
are not readily available.

Organizing

11. Type: Decision rules for selecting the proper
organizational structure; e.g., project, matrix, func-
tion, are not available.

* 12. Accountability: The accountability structure in
many software engineering projects is poor, leaving
some question as to who is responsible for various
project functions.

Staffing

4 13. Project manager: Procedures and techniques
for the selection of project managers are poor.

Directing

14. Techniques: Decision rules for use in selecting
the correct management techniques for software
engineering project management are not available.

Controlling

I,15. Visibility: Procedures, techniques, strategies,
and aids that will provide visibility of progress (not just
resources used) to the project manager are not
available.

*. 16. Reliability: Measurements or indexes of
reliability that can be used as an element of software
design are not available and there is no way to predict
software failure; i.e., there is no practical way to show
the delivered software meets a given reliability criteria.

* 17. Maintainability: Measurements or -indexes of
maintainability that can be used as an element of soft-
ware design are not available; i.e., there is no practical
way to show that a given program is more maintainable
than another.

18. Goodness: Measurements or indexes of
"goodness" of code that can be used as an element of
software design are not available; i.e., there is no prac-
tical way to show that one program is better than
another.

1• 19. Programmers: Standards and techniques for
measuring the quality of performance and the quantity
of production expected from programmers and data
processing analysts are not available.

20. Tracing: Techniques and aids that provide an ac-
ceptable means of tracing a software development
from requirements to completed code are not general-
ly available.

Figure 11.5

__

I

companies or obtained their knowledge from data processing in

large companies. Therefore, it can be assumed that the

viewpoint as to whether or not a given problem was critical,

important, or not important at all, was the viewpoint of the

large DP shop.)

The second verification step was through a second

separate survey of 60 software development projects in the

aerospace industry. And he checked for whether "the

condition described in the major issue existed, and (that)

the existence of the condition was a problem to the project

manager ... If the data substantiates (this) the

hypothesized issue is labelled a problem."

Nine of the 20 major issues (marked with + in Figure

(11.5)) were verified as problems, two were inconclusive, and

nine were not problems. As a result, six major issues

concerning planning and one concerning controlling were

judged conclusively as problems by both surveys.

Thayer noted with interest, though, that "there is some

disagreement between the general data processing community

and the project managers and developers." Which prompted him

to comment: "The fact that these two groups do not, in

general, agree on the major issues is in itself a fundamental

problem of project management."

In addition:

Similar to the-problem in identifying the major issues,
the computing community is divided on the solutions to
the major problems. there are no well defined software
management techniques to guarantee a successful software
delivery.

Finally, we conclude our discussion of Thayer's work

with some of his own concluding remarks:

Future research should continue to "refine" this model
... This model, as a first attempt, has many ommissions
and frequent generalizations. Similar research
projects, using a different approach, could fine-tune
this model and find more elements with a full range of
values for each element.

This research identified a number of major issues of
software engineering project management and proposed a
number of solutions. What is needed is a good
definitized experimentation method that can be used as a
test bed for validating new project management tools,
techniques, and procedures, ... etc.

There is still a long way to go, this is only the
beginning.

In another doctoral thesis, Riehl (1977) developed a

"planning and control framework to assist in the management

of computer-based information systems development in large

organizations." The general scope of the research

encompassed two basic avenues of endeavor: (1) an extensive

literature survey to compile "those concepts and practices

that are advanced by authorities in the field of

computer-based information systems and electronic data

processing management," and (2) a determination of those

policies and procedures actually employed in practice by

59

companies "judged to be effective managers of computer-based

information systems."

His model, termed the "Composite-Working Model,"

consisted of some 25 "principles " and 50 "issues."

Principles are those "specific concepts, policies, and

procedures upon which general agreement was found to exist in

the literature and in the observed practices of the (5)

companies investigated." Issues, on the other hand,

"identify those proposed practicies about which

disagreement or uncertainty exists within the literature or

which are the subject of clear divergences between the

concepts advanced. in the literature and the majority

practices of the firms in the research." The principles and

issues were classified into 4 categories: strategic

planning, project planning, project control, and

organizational behavior considerations.

For purposes of reference, a summary of the major

categories of the Composite-Working Model is presented in

Figure (II.6). As an illustration, consider the "Consensus

Principle V (PP): Project Plan," within the "project

planning " category. It was included because "the importance

of a project plan is widely recognized in the source

literature ... (and) the research findings supported the

principle." Furthermore, "A single issue was generated

60

concerning the degree of detail that should be included in

the project plan. Brandon, for example, proposes a very

comprehensive scheme based on an automated system. Other

writers generally provide considerably fewer details on the

subject." A similar disagreement was observed between the

companies studied.

In his conclusion, Reihl asserts that he has met his

research goal, namely, to develop "a planning and control

framework to assist in the management of computer-based

information systems development in large organization, by

identifying those practices and procedures which are both

advocated in the literature as well as used by (selected)

large business organizations with a reputation for effective

computer-based information systems management."

Instead of focusing, as the above two pieces of research

did, on the set of issues that are common among software

development projects generally, McFarlan's (1974) research

focus was on the differences between projects. "One

conclusion from my research stands out," he wrote, and that

was:

A monolithic approach to systems and programming project
managment is unlikely to produce the most satisfactory
results. There are critical differences in project
composition ... which influence the mix of tools that
should be brought on its management.

61

SUC.IARY OF THE CO;.'POSIT.E-IORKI:.G :.ODEL

Stratecic Planninr

Consensus Principle I(SP): Master Systems Planning

Issue A: Structure for Planning
Issue B: Type of Planning

Consensus Principle II(SP): .Management Involvement

Issue A: Top Mianagement Involvement
Issue B: User-:Manacement Involvement
Issue C: Chief Executive Officer involvement

Consensus Principle III(SP): Master Systems Plan

Issue A: Planning Details

Consensus Principle IV(SP): Planning Coordination

Issue A: Planning Integration

Consensus Principle V(SP): Provision for Change

Issue A: :eans for Achieving Change

Project Pianning

Consensus Principle I(PP': System Development Life Cycle

Issue A: Description of the System Development
Life Cycle

Consensus Principle II(PP): Feasibility Study and
Project Proposal

Issue A: Analysis of Alternative Designs
Issue B: Feasibility Study

Consensus Principle III(PP): Economic Analysis

Issue A: Treatment of Reliability
Issue B: Present Value Discounting
Issue C: Estimating Intangible Benefits
Issue D: Approval Criteria

Figure 11.6

(Project Planning--Continued)

Cornensus Principle IV(PP): Project ;anagement

Issue A: Assignment of Project Manager
Issue B: Project-Status Audit
Issue C: Project Thresholds
Issue D: Project Establishment

Consensus Principle V(PP): Project Plan

Issue A: Project Plan Detail

Consensus Principle VI(PP): Project Control Reporting

Issue A: Reorted Information
Issue B: Manage.ent Review

Consensus Principle VI'I(P?): Estimation Process

Issue A: Estimating M.ethods
Issue B: Reliability of Estimates

Consensus Principle VIII(PP): Change Control

Issue A: Review of Changes
Issue B: Limiting Impact of Changes

Consensus Principle IX(PP): System Development Standards

Issue A: Form of Standards

Consensus Principle X(PP): Cost Allocat-ion

Issue A: Method of Cost Allocation
Issue B: Influence on User Behavior

Proiect Control

Consensus Principle I(PC): User-anagement Control

Issue A: Level of Manage.ent Control
Issue B: Key Check-Points
Issue C: Form of Check-Point Reviews

Consensus Principle II(PC): Information Requirements
Definition

Issue A: Methods of Requirements Identification
Issue B: Requirements Validation

Figure 11.6
(CONT,)

(Project Control-Continued)

Consensus Principle III(PC): Functional Specifications

Issue A: User Participation
Issue B: Conversion Plan

Consensus Principle IV(PC): Perfo..rmance Criteria

Issue A: Performance Criteria Specifications

Consensus Principle V(PC): Detailed Design Specifications

Issue A: User Participation

Consensus Principle VI(PC): System Implementation

Issue A: User Participation

Consensus Principle VII(PC): System Testing

Issue A: User-Management Involvement
Issue B: User Representative Participation

Consensus Principle VIII(?C): Conversion and Cut-Over

Issue A: Conversion Organization
Issue B: ,•nagement Control

Consensus Principle IX(PC): Post-Implementation Audit

Issue A: Conduct of Audit
Issue B: Documentation Audit

Orranizational Behavior Considerations

Consensus Principle I(BC): User Acceptance

Issue A: Intergroup Communications
Issue B: Personnel ,.anagement
Issue C: User-Management Involvement
Issue D: User Participation and Control of Change
Issue E: Awareness of User Attitudes

Figure 11.6

(CONT ,)

He identified three "important" dimensions for

characterizing software development projects. These are:

(1) The degree of predetermined structure inherent in the

project (he defined a highly structured project to be "one

where the processing routines and outputs of the system are

so determined by the project's environment in advance that

there are little or no design options open to the system

architect or user"); (2) The degree of company-relative

computer technology implicit in the project (a high

"company-relative technology" project is defined as "one

which involves complex hardware-software features which have

not been dealt with previously in the organization"); And

(3) Project size in terms of man-years of effort or manpower

dollars of expenditures ("In this context a $50,000 project

will be considered small while a $1 million project will be

considered large").

Figure (11.7) shows how, using these dimensions, a

project may be classified as falling into one of eight

different categories.

As stated above, McFarlan felt that a project's

classification should "influence the mix of tools that should

be brought on its management." To show how, he first

provided a scheme to divide project management tools into

four main groups. The four groups are: (1) Formal

integration procedures with users of the project's output,

65

Classification of Systems and Programming Project Types

Degree of

Company-Rela.

tive

Technology

Degree of Structuredness

High

Low

High

I.
LARGE PROJECT

II.
SMALL PROJECT

II.
LARGE PROJECT

IV.
SMXALL PROJECT

Low

V.
LARGE PROJECT

VI.
SMALL PROJECT

VII.
LARGE PROJECT

VIII.
SMALL PROJECT

Figure !1.7

I

I

i

I

:·-

c,

66

who are located outside the EDP department (e.g., a formal

User-EDP project advisory committee); (2) Formal integration

procedures within the EDP design team and between the various

units of the EDP department (e.g., formal flow charts and

other documentation to highlight interfaces between key

systems components); (3) Formal planning tools (e.g., PERT

or CPM); and (4) Formal control tools (e.g., regular use of

formal post-audit procedures).

The final step was to put the two pieces together into

what he called a "contingency theory" of EDP systems and

programming project-management. The outcome is exhibited in

Figure (II.8).

At still a higher level of specifity are the research

efforts to delineate phase differences within the life of a.

single project. According to McKeen (1981):

The dominant organizing framework for application system
development is the life cycle concept. This methodology
apportions the total developmental effort into
identifiable stages --- each stage representing a
distinct activity characterized by a starting point, an
ending point, and deliverables in concert with an
express purpose.

The life cycle model was formally acknowledged as an

important element in systems development by its inclusion in

the information system curricular proposed by the ACM

Curriculum Committee on Computer Education for Management

67

Project

TV~e

Iv
V
VI
VII
VIII

Project Description

High Structure, Low Tech., Large
High Structure, Low Tech., Small
High Structure, High Tech., Large
Hig;h Structure, High Tech., Small
Low Structure, Low Tech., Large
Low Structure, Low Tech., Small
Low Structure, High Tech., Large
Low Structure, High Tech., Small

External
Integ.

Low
Low
Low
Low
High
H:gh
High
High

Intemal
Integ. **

Medium
Low
High
High
Medium
Low
High
Medium

Formal
Planning

High
Medium
Medium

Low

Lowsh

Low

Formal
Control

High
High
Medium
Low
High
High
Low+
Low

* No attempt is made here to suggest how external integration may ;hift over time as the user becomes
more sophisticated through experience. My research suggests this ray te important.

This table h;hlights the importance of external integration in gettang user ,ommitmert to a project struc-
tLre. It does not explicitly address his important role in erJbling the EDP te:irrcea.s to adequately
understand the process to be automated. This appears to be important even in high:y structured situa-
lions. Thus even these projects which are ranked low in the above table in external ajrteration, may in-
volve considerable user liaison of the fact findirg sort.
Th:s does not ;centify the sharp split in the mix of the tools in internal in:terati;z, identified in the

text. Later work may split this ti.;o two categories.

Figure 11.8

(Ashenhurst, 1972). In recent years, many books and papers

on the life cycle concept have been published (e.g., (Boehm,

1981) (Gaffney, 1980) (Metzger, 1981) (Thomsett, 1980)

(Yourdon, 1982)).

According to Davis (1974), the foundation for the life

cycle concept is that application systems need to undergo a

similar process when they are conceived, developed and

implemented. Further, neglecting any portion of the life

cycle activities may have serious consequences for the end

result. The contribution of the life cycle concept to

systems development is described by Davis as follows:

Information system development involves considerable
creativity, the use of the life cycle is the means for
obtaining more disciplined creativity by giving
structure to a creative process. The life cycle is
important in planning, management, and control of
information system application development.

The steps or phases in the software development life

cycle are described differently by different authors, but the

differences are primarily in amount of detail and number of

categorizations. A common breakdown is given by Glass

(1979):

Requirements/Specifications

Design

Implementaion

Checkout

Maintenance

The mere enumeration of the phases is not, however, an

adequate model of the software life cycle because it

"conceals" the iterative nature of the software development

process (Artzer and Neidrauer, 1982) (A16). The life cycle

is not followed in 1,2,3 fashion, rather "the process is

iterative so that, for example, the review after the system

design phase may result in going back to the beginning to

prepare a new design" (Davis, 1974). Boehm's (1981)

"waterful" model, shown in Figure (II.9), emphasizes this

highly iterative nature of software development, indicated by

the feedback arrows from each phase to its predecessor(s).

In addition to the identification of the component

phases and activities in the software development process, it

is important to evaluate the relative consumption of

resources by each of these activities in order to obtain a

proper perspective of the nature of the overall process.

Numerous authors have presented figures indicating life cycle

resource consumption by phase. In Figure (II.10) a

comparison of three author's results done by McKeen (1981) is

exhibitted. Commenting on the figure, McKeen stated that:

Substantial differences do exist particularly in the
coding and testing phases of development. These
differences may be due to the inherent attributes of the
systems being developed, or to terminological
variations, or to a combination of both of these. In
the absence of a careful description of the systems and

70

The waterfall model of the software life-cycle

Figure 11.9

71

Comparison of Effort Breakdown by
Activity for Different Authors

Percentage Resource Allocation
Life Cycle
Phase/Activity Davis Zelkovitz Shav

Analysis • 25 202 25
Design 20 15 103
Coding 25 454 30
System Test n/a5 20 5
Implementation 15 n/a6 19

Notes: 1. Analysis encompasses all development activity prior to
detailed design.

2. The analysis effort is probably understated. If, as
speculated, this data is derived from system developments
in a =ilitary environment, then initial activity such as
feasibility analysis and prelim•nary systems study has
been excluded.

3. Using the authors definitions, the activities of system
specifications and technical requirements constitute
4etailed design activities as used here.

4. Coding effort and module test effort were combined.
Programmers are typically responsible for unit, or
module, testing each portion of the system they have
coded.

5. This activity has been subsumed within the conversion
stage by Davis.

6. This activity is not reported.

Figure Il. 10

the environment in which they were developed o.l the
generalization of results beyond the immediate
environment in not possible.

The above views are shared by others in the literature.

For example, Kustanowitz (1977) supports the notion that

system size effects the life cycle resource distribution as

shown in Figure (II.11). While Myers (1978) reported on a

study in Boeing which showed that "the costs were shifted

into earlier stages (of the life cycle) by the use of modern

programming practices."

The life cycle resources distribution issue plays an

important role in the estimation of resource allocation for

software development. This role will be discussed in some

detail, within our review of the literature on project

planning next.

11.2.2. Planning:

In his IEEE Tutorial on Software Management, Reifer

(1979) defined planning as follows:

It is deciding in advance what to do, how to do it, when
to do it, and who is to do it. It is setting
objectives, breaking the work into tasks, establishing
schedules and budgets, allocating resources, setting
standards, and selecting future courses of action. It
bridges the gap from where we are to where we want to
be.

SMALL INTERMEDIATE LARGE

PROJECT SIZE

SYSTEM LIFE CYCLE VARIES WITH
PROJECT SIZE

Figure I1.11

100

L

0
E-

DESIGN DESIGN DESIGN
10-20% 20-30% 30-45%

TEST TEST TEST
10-20t 20-30t 30-45t

CODE · I CODE CODE
60-80t ' 40-60t 10-40%

Li)

=50
r-

L-

There is abundant support in the software engineering

literature for the import of planning in the management of

software projects (McGowan, 1978) (Thayer, --1979).

Unfortunately, however, there is as ample an evidence for its

poor standing (Boehm, 1980), (Jones and McLean, 1970),

(Keider, 1974), (Metzger, 1981), (Pressman, 1982), (Thayer et

al, 1981). Gehring and Pooch (1980) support both assertions

in a single "breath:"

One universal management principle, for example, has
been called the "principle of the primacy of planning."
In other words, planning has primacy over the other
managerial functions of organizing, staffing, directing,
and controlling. Thus, the degree of control over a
programming project can be no greater than the extent to
which adequate plans have been made for the project .
Inadequate planning is the primary reason for loss of
control on many computer programming projects. It is
not the comparative newness of the computer programming
process, difficulties with programmers, or technical
factors --- It is simply that programming projects are
not adequately planned in the first place.

When Thayer (1979) surveyed the software engineering

literature to identify the "major problems of software

engineering project management," he ended up with 20

"hypothesized" problem areas. Of these, a full fifty percent

(or 10 problems) were identified as being planning-type

problems (see Figure 11.5). And when he proceeded to verify

his list, the dominance of planning-type problems was even

more "impressive:" of the seven problem-areas that were

verified, six were planning-type problems (the seventh was in

the control area).

75

In addition, Thayer's work, which incorporated a survey

of 60 software projects (in the aerospace industry), shed

some light on the planning activity. For example, he

reported that:

* The primary tools or techniques used in planning a
software development project were workload charts, work
break-down structure (WBS), and the subdivision of the
software development into phases or tasks.

* About one-fourth of the (planning) time was spent in
developing an overall project plan. An equal amount of
time was devoted to planning for the (project)
organization, planning on how to staff the organization,
and developing control procedures.

* (Contrary to his initial. assumption) a separate
planning group does not normally perform the planning
and scheduling funct-ons. The data showed that in 92%
of the cases, planning was done by the future manager of
the project.

* The predominant estimation method was "estimation
based on a similar project" (used in 67% of the
projects), followed by "use of a formula" (40%), "expert
opinion" (17%), and "crystal ball" (12%). [Note: Some
projects combined methods.]

A further analysis of the data suggested that " ... it

makes little differnce what type of technique is used in

estimating delivery schedule and project cost. None of the

used techniques significantly improved the project manager's

ability to deliver the project on time and within cost"

(Thayer, 1979).

Software estimation historically has been, and continues

to be, .a major difficulty associated with the management of

software development (Devenny, 1976), (Distaso, 1980),

(Mills, 1976), (Pooch and Gehring, 1980), (Yourdon, 1982),

(Zelkowitz et al., 1979), (Zmud, 1980). Farquhar (1970),

articulated the significance of the issue:

Unable to estimate accurately, the manager can know with
certainty neither what resources to commit to an effort
nor, in retrospect, how well these resources were used.
*The lack of a firm foundation for these two judgements
can reduce programming management to a random process in
that positive control is next to impossible. This
situation often results in the budget overruns and
schedule slippages that are all too common today.

A number of reasons for the difficulty have been

suggested in the literature:

1. Software development is a process, that is not yet

fully understood by "estimators." (Myers, 1972),

(Oliver, 1982), (Gehring and. Pooch, 1980), (Synnott,

1981), (Pietrasanta, 1968). This often leads to the

overlooking of significant cost factors (Myers, 1972),

Canning, 1977), (Boehm, 1981).

2. The phases and functions which comprise the software

development.process are influenced by a large number of

ill defined variables (Gehring and Pooch, 1980),

(Devenny, 1976), (Aron, 1976), (Distaso, 1980),

(Pressman, 1982), (Oliver, 1982).

3. Most of the activities within the process are still

primarily human rather than mechanical, and therefore

77

prone to all the subjective factors which affect human

performance (Gehring and Pooch, 1980), (Pressman, 1982),

(Oliver, 1982).

4. The lack of a historical data base of cost

measurements (Clapp, 1976), (DeMarco, 1982), (Fox,

1976), (Myers, 1972), (Oliver,' 1982), (Zelkowitz, 1979).

5. Little penality is often associated with a poor

estimate (Zmud, 1980).

Over the years, estimation of project size and

development time and cost has been an intuitive process.

Experience and the prevailing industry norms have been used

as a basis to develop estimates for any given project

(Oliver, 1982),.(McKeen, 1981), (Auerbach Inc.), (Gehring,

1976). Myers (1972) has identified several "traps" in the

experience mehtod (i.e., basing estimates on actual costs of

similar past projects), namely:

1. The relationship between cost and system size is not

linear. In fact, cost increases approximately

exponentially as size increases. Therefore, the

experience method should only be applied when the sizes

of the current project and past projects are equivalent.

2. Products with similar names are normally very

78

dissimilar. For instance, chances are slim that two

products titled "Payroll System" have the same

development costs.

3. Frequent budget manipulations by management in order

to avoid overruns makes historical cost data

questionable. For example, the movement of cost from an

over-budget account to an under-budget account disguises

the real costs and makes future use of this data very

dangerous.

In the last two decades, several quantitative software

estimation models have been developed. They range from

highly theoretical ones, such as Putman's model (1978), to

empirical ones, such as the Walston and Felix model (1977),

and Boehm's COCOMO model (Boehm, 1981). An empirical model

uses data from previous projects to evaluate the current

project and derives the basic formulae from analysis of the

particular data base available. A theoretical model, on the

other hand, uses formulae based upon global assumptions, such

as the rate at which people solve problems, the number of

problems available for solutions at a given point in time,

etc.

However,

Even today, almost no model can estimate the true cost
of software with any degree of accuracy. (Furthermore,)
it is highly unlikely, that any two will produce the
same cost estimate for a given project ... The

79

variations in cost estimations are influenced by both
the many factors involved and the quantization of these
factors by the users of the models. Therefore, in order
to estimate a software project and develop appropriate
manpower guidelines, it is essential to know the factors
that influence the software development process at a
given facility (Auerbach Inc.).

Finally, we conclude this discussion by Pietrasanta's

(1968), frequently quoted, insights into the estimation

problem and its solution:

Many of the problems of resource estimating
are symptoms of an underlying ignorance of the program
system development for which the estimates are being
made. The serious student of estimating must first be
willing to probe deeply into the fascinating and complex
system development process, to uncover the phases and
functions of the process, to highlight the subtle
interrelationships of the program system being developed
and the project organization doing the developing ...
examining the influence variables and their causal
relationships is precisely what is required if estimates
are ever to be improved. Only then can we do meaningful
quantitative research and scientific analysis of
resource requirements.

11.2.3. Management of the Human Resource:

People and organizational issues have gained

recognition, in recent years, as being at the core of

effective software development project management

(Semprevivo, 1980). For several reasons:

Personnel costs are skyrocketing relative to hardware
costs. Chronic problems in software development and
implementation are more frequently traced to personnel
shortcomings. Information systems staff sizes have

mushroomed with little time for adequate selection and
training. It is little wonder that Information Systems
(IS) managers find themselves focusing increasing
amounts of attention on human resource issues (Bartol
and Martin, 1982).

In this section we will review the human resource issues

of software project management at two levels: (A)

Individuals (e.g., selection, motivation, ... etc.); and

(B) Groups (e.g., organization, communication, ... etc.).

(A) Individual Dimensions:

On Motivation: One of the major challenges to managers

is to motivate employees to high levels of performance. The

few studies that have focused on motivational issues among

data processing personnel have mainly concerned themselves

with rankings of various job factors (Bartol and Martin,

1982).. And the findings have been generally supportive of

the notion that the work, achievement, and growth are

important job factors for data processing personnel (Couger

and Zawcki, 1980).

For example, Fitz-enz's (1978) study provides rankings

of the job factors considered most important by the 1500 data

processing professionals who participated in the study. The

items' rankings were as follows: (1) Achievement, (2)

Possibility for growth, (3) Work itself, (4) Recognition, (5)

Advancement, (6) Supervision, technical, (7) Responsibility,

81

(8) Interpersonal relations, peers, (9) Interpersonal

relations, subordinates, (10) Salary, (11) Personal life,

(12) Interpersonal relations, superior, (13) Job security,

(14) Status, (15) Company policy and administration, and (16)

Working conditions.

A motivation mechanism which is attracting interest in

the software engineering field is "goal setting" (Boehm,

1981). An experiment by Weinberg and Schulman (1974)

investigated the motivational value of setting clear goals in

a programming environment. In the experiment, five teams

were given the same programming assignment, but each team was

given different directions about what to optimize while doing

the job. One team was asked to complete the job with the

least possible effort, another team was to minimize the

number of statements in the program, another was to minimize

the amount of memory required by the program, another was to

produce the clearest possible program, and the last team was

to produce the clearest possible output. When the programs

were completed and evaluated, the researchers found that each

team finished first (or, in one case, second) with respect to

the objective they were asked to optimize. They also found

that none of the teams performed consistently well on all of

the objectives.

On Selection: Programmer aptitude tests are available,

but their effectiveness is widely questioned (Schneiderman,

82

1980). Instruments such as the IBM Programmer Aptitude Test

(PAT) or the Test on Sequential Instructions (TSI) for

measuring programming ability and the Strong Vocational

Interest Blank (SVIB) for measuring interest or motivational

level have at best produced very weak correlations with

analyst capability or programmer capability (Weinberg, 1971)

(Boehm, 1951).

On Performance Appraisal: The general literature on

performance appraisal suggests that overall, global

judgements regarding individual performance constitute

inferior means of measuring and appraising performance

(Bartol and Martin, 1982). Instead, performance in most jobs

consists of a number of different dimensions (e.g., quality

versus quantity or efficiency of program execution versus

ease of alteration by another programmer).

Gilb (1977) has suggested a number of possible metrics

of performance. Jones (1978) has pointed to the difficulties

in using certain standard measures, such as lines of code per

programmer-month, and has suggested other approaches, such as

separating quality measurements into measures of defect

removal efficiency and defect prevention.

On Turnover: Turnover continues to be a chronic problem

for software project managers. Willoughby (1977) estimates

that annual turnover in the DP field ranged between 15 and

83

20% during the 1960s, declined to about 5% in the early

1970s, and began to rise again by the end of the decade.

More recent studies place the annual turnover rate at 25.1 %

(Tanniru et al, 1981), 30 % (Richmond, 1982), and even as

high as 34 % (Bott, 1982). As McLaughlin (1979) points out,

at such rates the equivalent of a work unit turns over every

three to four years --- no minor matter in a profession where

it frequently takes 12 to 18 months before a new employee

makes significant work contributions.

There are few predictive studies of DP turnover. In one

such study, Bartol (1979) investigated the relative

importance of two individual factors, personality and

professional attitude, versus two organizational factors,

professional reward system and tenure, in predicting turnover

among computer professionals. Only the professional reward

system and tenure variable were found to be significantly

predictive for the turnover variable, both in the expected

negative direction.

(B) Group Dimensions:

There are two basic issues involving the use of groups

in software development. One relates to structural factors

(i.e., how the groups are formulated), and the second

.involves process factors relevant to the ongoing operations

and interrelationships of group members.

84

On Structure Factors: Software development projects are

structured in one of three basic organizational forms: (1)

Functional form; (2) Matrix form; or (3) Project form

(Daly, 1982) (Thayer, 1979). Youker (Y2) suggests that these

three organizational forms may be represented as a continuum

ranging from functional on one end to project on the other

end, with matrix falling in between and including a wide

variety of structures from weak matrix near functional to a

strong matrix near project. Several authors have presented

proposed guidelines or checklists for choosing the

"appropriate" organizational form. (e.g., see Green (1982),

Youker (Y2), and Daly (1982)).

In a survey of 60 software development projects in the

aerospace industry, Thayer (1979) found that "the matrix

organization is predominant, with 58% of the projects using

this type of organization, 38% of the projects using a

project organization, and 4% using a functional

organization." He also found that very small projects were

split between project and matrix organizations, medium priced

projects (between 1 and 5 million dollar) were slightly

biased in favor of project organization, while expensive

projects (5 million to 50 million) are almost always matrix

organization. A comparison of organizational form to "on

time" and "within budget" delivery of the software showed

that "it made little difference as to what kind of project

(organization) type is used."

85

Thayer's data also showed that the team concept is much

in use. About 95% of the projects were handled by teams

under the direction of technical leaders of some sort.

Two philosophies for organizing programming teams have

achieved a moderate amount of popularity in the data

processing field. These are the egoless programming team

proposed by Weinberg (1971), and the chief programmer team

proposed by Mills (1971) and implemented by Baker (1972).

Little experimental work on programming team and task

interaction has been carried out (Mantei, 1981). Weinberg's

suggestions are anecdotal and Baker's conclusions are

confounded by the team personnel and the programming methods

selected.

On Process Factors: The attention here has focused on

the communication processes between members of a programming

team. In what is probably the most cited reference on the

"topic, Brooks (1978) suggests that human communication in a

software development project is a significant overhead. And

that the overhead is made up of two parts, training and

intercommunication. Each worker must be trained in the

technology, the goals of the effort, the overall strategy,

and the plan of work. This training cannot be partitioned,

so this part of the added effort varies lineary with the

number of workers. Intercommunication, Brooks further

86

suggests, is worse. It increases as n(n-1)/2 (where n is the

number of team members).

The implications of this, is that increasing the size of

a software team increases the amount of software produced per

unit time, only to a point. Then the problems of

communication among the programmiiers begin to dominate the

project and reduce the amount of software being produced

.(Boebert, 1979). Or in Brooks' words (1978),

"Oversimplifying outrageously, we state Brooks' Law: Adding

manpower to a late software project makes it later."

The relationship between human communication and

programmer productivity was investigated by Scott and

Simmons. First, while using the Delphi survey technique to

identify project variables that influence programmer

productivity, they found that "effect of project

communication" to be one of the "eight consensus variables

which have an important influence on productivity" (Scott and

Simmons, 1974). And in a later study (1975), they used

computer simulation to evaluate the communication overhead as

a function of a team's communication structure.

Finally, taking a different tack, Parnas (1971)

considered the impact of human communication on the product

of software development. He suggests that too much

communication between the members of a programming team could

87

negatively affect modularity, because team members would tend

to use informal information to bypass structured interfaces.

II.2.4. Control:

Once a plan becomes operational, control is necessary to

measure progress, to uncover deviations from plan, and to

indicate corrective action (Koontz and O'Donnel, 1972).

While in most production environments, control is a standard

business practice (Mills, 1983), in the production of

software control is a "perilous activity" -(Arseven, 1975),

(Boehm, 1976), (Fox, 1976), (Gehring, 1977), (Gansler, 1976),

(Gehring, 1976), (Lehman, 1979), (Metzer, 1981), (Miller,

1955), (Pooch and Gehring, 1980), (Thayer, 1979).

Paraphrasing Mills (1983):

It is difficult to measure performance in programming.
It is difficult to diagnose trouble in time to prevent
it. It is difficult to evaluate the status of
intermediate work such as undebugged programs or design
specification and their potential value to the complete
project.

Such a state of affairs has stirred, not only

self-criticism within the profession [(Lehman, 1979), (DeRose

and Nyman, 1979), (Metzger, 1981), and (Jensen and Tonies,

1979)] but open criticism from the user community as well:

You software guys are too much like the weavers in the
story about the Emperor and his new clothes. When I go
out to check on a software development the answers I get

sound like, 'we're fantastically busy weaving this magic
cloth. Just wait a while and it'll look terrific.' But
there's nothing I can relate to, no way to pick up
signals that things aren't really all that great. And
there are too many people I know who have come out at
the end wearing a bunch of expensive rags or nothing at
all.
(A U.S. Government Spokesman quoted in (Gehring and
Pooch, 1980).)

The manifestation of poor software project control

has more than one form. For example:

1. The "90% Syndrome," (Baker, 1982), (Boehm,

1981), (DeMarce, 1982), (Donelson, 1976).

2. The production of inadequate software e.g.,

that doesn't meet user requirements (Tansworthe,

1977), (Glass, 1982).

3. Building systems

expensive (McKeen, 1981)

due to unconstrainted

1974), (Boehm, 1981),

1982).

that are inordinately

(Wolverton, 1974) e.g.,

goldplating (Wolverton,

(Kirby, 1982), (Radice,

4. Lack of historical software cost data bases

(Boehm, 1981) (Thayer, 1979).

Why is it difficult to control software development

projects? Two classes of factors have been proposed in

89

the literature: (1) product-type; and (2) people-type

factors.

Product-Type Factors

1. Software is basically an intangible product

during most of the development process, and for

which there are no visible milestones to measure

progress and quality like a physical product would

(Wegner, 1980), (Corbato, 1979), (Miller, 1955),

(Jones and Mclean, 1970), (Boebert, 1979),

(Wolverton, 1974), (Reynolds, 1970), (Gehring,

1976), (Boebert, 1979), (Hales, 1982a). "This

invisibility is compounded for large software, for

which logical complexity cannot be maintained in

one person's mind, and for which development must

be partitioned into a number of tasks assigned to

different people" (Zmud, 1980).

2. High complexity (McKeen, 1981), . (Corbato and

Clingen, 1979). "In an overly ambitious project,

managers who do not understand the details of what

they are managing are easily blustered and misled

by subordinates. Conversely, low-level staff may

be unable to appreciate the significance of details

and fail to report serious problems" (Corbato and

Clingen, 1979).

3. Volatility of requirements (Distaso, 1980),

(Metzger, 1981), (Tsichritzis, 1977), (Toellner,

1977), (Zmud, 1980). "Since software system

modules are not visibly connected, in contrast to

hardware systems, the impact of a change is often

not readily apparent even to the designers of the

system" (Gehring, 1976).

People-Type Factors:

1. The "software wizard syndrome" (Boebert, 1979).

This occurs when management abdicates its

responsibility to some highly trusted software

specialist, whose pronouncements are viewed as

correct by definition. The trouble with the

syndrome is that software wizards, unlike the

mythical kind,.are both fallible and mortal.

2. Inaccurate reporting (Boebert, 1979), (Jones,

1979), (Gehring, 1977). In software development,

"The employee has control of the resource, his

time, and he accounts for the resource on his time

sheet. The employee knows that his time sheet is a

performance evaluation factor and is a written

record. He knows the estimated time for the

project serves as a recorded budget. This

combination of written records makes a pressure

device and 'adjusted amounts' often result" (Reed,

1979), e.g., to hide problems or embarassing

situations (Jones, 1979). Another explanation was

given by Boebert (1979): "Programmers are paid to

program, not to pay attention to progress ...

Management should not expect to get progress or

status information by asking programmers, the

typical programmer doesn't know or care, and will

usually give whatever answer is needed to end the

meeting and get back to programming."

3. Optimism, (Corbato, 1979), (Oliver, 1982),

(Jones and McLean, 1970), (Snyder, 1976), (McKeen,

1981), (Gunther, 1978). "All programmers are

optimists," Brooks (1978) remarked, always

unjustifiably assuming that "'This time it will

surely run' or 'I just found the last bug'"

(Brooks, 1978).

The persistence of the industry's difficulties in

controlling software development does not seem to be the

result of either a scarcity of "advice" from the

research community, or a reluctance, on the industry's

part to "heed" that advice.

Numerous techniques, often adapted from other

industries, have been proposed in the literature. These

include: Work Break Structure (WBS) (Tausworth, 1980),

92

PERT (Boehm, 1981), Gantt Charts (Knutson, 1980), Formal

Reviews (Freedman and Weinberg, 1982), Unit Development

Folder (UDF) (Ingrassia,1979), and Automated project

Management Systems (Canning, 1976).

Furthermore, evidence indicates that most of these

"proposed solutions" have been disseminated into the

industry (Glass, 1982), albeit at varying degrees. For

example, Thayer's survey of software projects in the

aerospace industry showed the following:

Technique % of Projects Using it

Formal Reviews 97 %
WBS 60 %
Automated Project

Management System 57 %
PERT 38 %
Gantt 32 %

Thayer further investigated whether the utilization

of the above "state-of-the-art" techniques was effective

in resolving the control-type difficulties in those

aerospace firms surveyed. (Note: Thayer (1979), as

well as others (e.g., Lehman (1979), believe that the

aerospace industry is the most advanced and experienced

in employing software project management techniques.)

His results indicated that they, in fact, did not.

Results reported by Lehman (1979), on a survey of

93

software development projects also in the aerospace

industry, were more surprising:

17% of the projects had no project control
mechanism. And more surprisingly yet, that group
fared better than average relative to on-time
delivery ...

A similar finding was reported by (Powers and

Dickson, 1973). In a study of 20 MIS-type projects they

found that:

With respect to the project control techniques used
for the projects in the study, they tended to be
dysfunctional to project success. The use of
project control methods was not significantly
related to any criterion of success, and, indeed,
had a negative relationship to the reported quality
of project documentation ...
In general, project leaders appeared to feel an
implicit pressure from tight project reporting
requirements, to which they responded by cutting
corners on documentation and preparations for
implementation.

So, what is the prognosis on the status of software

project control? Bauer (1980) put it this way:

We are able to identify the sources of our
troubles, but in many cases we have nothing to
offer but good advice. We are in the situation of
a physician who keeps trying out different pills on
his patient in the hope that some will finally cure
him (Bauer, 1980).

III. MODEL DEVELOPMENT

III.1. Introduction:

As stated in Chapter I, the objective of this research

effort is to develop and test an integrative system dynamics

model of software development project management which would

provide us with understanding and insight about the general

process by which software development is managed.

A system dynamics model of software development can

increase our understanding of the process through both the

formulation of the model's structure and the analysis of its

behavior. Experimentation and analysis of model behavior

will be the focus of the next two chapters. In this chapter,

on the other hand, our objective is to enhance our

understanding of the software development process through

model formulation.

Model formulation can enhance understanding in several

ways (Schultz and Sullivan, 1972):

95

1. Confrontation --- vague generalizations crumble when

put to the test of modeling.

2. Expansion --- the tendency to a holistic integrative

approach in modeling forces a broadening of one's

horizon, a looking into other relevant fields for ideas.

3. Communication --- problem-oriented models lead to

jumping of disciplinary boundaries, less parochialism.

4. Organization --- organizing data and structuring

experience.

In addition, the formulation of the model forces

explication i.e., structural relations between variables must

be explicitly and precisely defined. This, in Dubins (1971)

view, is the "locus of understanding" of a theoretical model:

A (theoretical model) tries to make sense out of the
observable world by ordering the relationships among
"things" that constitute the (modeler's) focus of
attention in the world 'out there' ... What is gained
in understanding ... is achieved by comprehending the
law or laws built into the model. The locus of
understanding in a scientific model is to be found in
its laws of interaction. (That is, the modes of
interaction among the variables of the model).

Before relationships are defined, however, one has first

to choose the "things" or variables whose relationships are

of interest. That is, one has to define the model's

boundary. Models have a boundary within which they are

expected to "mirror" the empirical world. Beyond that

96

boundary it may be problematic as to whether the model holds.

Our model's boundary is discussed in Section 111.3. below.

This is then followed by a detailed description of the

model's structure and equation formulation in Section III.4.

In the section immediately following this, we discuss

the sources of information, on software development project

management, we used to construct the model.

111.2. Sources of Information:

To build the model, we went through three information

gathering steps:

First, we conducted a series of ten interviews with

software development project managers in three organizations.

The purpose of this set of interviews was to provide us with

a first hand account of how software projects are currently

managed in software development organizations.

The system dynamics approach starts with the concepts
and information on which people are already acting
(Forrester, 1979).

In general sufficient information exists in the
descriptive knowledge possessed by the active
practitioners --- to serve the model builder in all his
initial efforts (Forrester, 1961).

The information collected in this phase, complimented

with our own software development experience, were the basis

for formulating a "skeleton" system dynamics model of

software project management.

The second step was to conduct an extensive review of

the literature. The "skeleton" model served as a useful

"road-map" in carrying out this literature review.

A model should come first. And one of the first uses of
the model should be to determine what formal data need
to be collected (Forrester, 1961).

When this exercise was completed, many knowledge gaps

were filled, giving rise to a second much more detailed

version of the model.

In the third, and final step:

The model is exposed to criticism, revised, exposed
again and so on in an iterative process that continues
as it proves to be useful. Just as the model is
improved as a result of successive exposures to critics
a successively better understanding of the problem is
achieved by the people who participated in the process
(Roberts, 1981C).

The setting for this was a series of 17 interviews

conducted between October 7,1982 and July 7,1983 with

software project managers at Digital Equipment Corporation,

MIT, and General Motors.

In the remaining part of this section, we explain the

above three information gathering steps in more detail.

Step (1):

As stated above, this step constituted a "formulative

study." The objective was to increase our familiarity with

the software development process, in particular, "the

concepts and information on which software project managers

are already acting," in order to formulate an initial

skeleton system dynamics model of the process.

The technique we used was the "focused interview." In

the focused interview, as described by Selltiz, Wrightsman,

and Cook (1976),

.the main function of the interviewer is to focus
attention upon a given (list of topics). Interviewers
know in advance what topics, or what aspects of a
question, they wish to cover. This list of topics or
aspects is derived from a formulation of the research
problem ... This list constitutes a framework of topics
to be covered, but the manner in which questions are
asked and their timing are left largely to the
interviewer's discretion.

This type of interview, according to Green and Tull

(1978), " ... is useful in obtaining a clear understanding

of the problem and determining what areas should be

investigated (further)."

Before each interview, two things were done. First the

interviewee was briefed, in a telephone conversation, about

the objectives of the research. The interviewee was also

told that the primary objective of the interview is to find

out how - software projects are managed in his/her

organization. The list of topics shown in Exhibit III.1.

was read to each interviewee. The second thing we did, was

to mail each interviewee a copy of our internal report titled

"The System Dynamics Approach to Designing Software Project

Planning & Control Systems: A Research Proposal." The

report, written in January 1982, constitued the first "rough"

version of our research proposal, and it provided, in

addition, a non-technical introduction to the system dynamics

methodology.

Ten interviews were conducted in the period between

February 5,1982 and April 30,1982. Each interview was, on

the average, two hours long. The names of the interviewees,

their organizations, their titles, and the dates of the

interviews are shown in Exhibit 111.2.

All ten interviewees were reached through contacts,

primarily those of Sloan faculty members. Each one of the

interviewees was currently managing one or more software

development projects, had been a software project

manager/leader for at least two years, and had managed at

least two completed software projects. This, we felt, would

100

Environment:

Software Production:

Planning:

Control:

Human Resources:

Project types, sizes

Hardware environment

Organizational structure

Software tools

Standards

Error rates

QA policy

Estimating

Effort Distribution

Control tools

Milestones

Reporting frequency

Hiring/firing policies

Training

Turnover

Overtime policy

EXHIBIT iII, I

101

Interview # Date Interviewee Title Organization

'2/5/82 John James

2/10/82 William Stein

3/5/82 Clement McGowar

3/15/82 Glen Gage

3/15/82 Joanne Riccardi

3/22/82 Dave Griffin

3/22/82 Jim Doyle

3/29/82 Bonnie Donahue

4/7/82 Wayne Babich

10 4/30/82 Francis O'Conne

Group Leader

Member of Technical Staff

1 Principal Consultant

Project Manager

Project Leader

Project Leader

Project Manager

Project leader

Lead Designer & Technical Mgr.
Softech Federal System Div.

!r Group Leader

EXHIBIT III.2

MITRE

MITRE

MITRE

DEC

DEC

DEC

DEC

DEC

Softech

MITRE

102

provide a level of managerial experience and maturity that

would be adequate for gaining insights into -the management of

software projects.

As is shown in Exhibit 111.2., three organizations were

represented, namely, Digital Equipment Corporation (5

interviewees), MITRE (3 interviewees), and SofTech (2

interviewees). This provided us with an exposure to three

quite different software development environments. In DEC,

all five interviewees were involved in developing software

for in-house use (e.g., order administration systems). In

MITRE, the projects involved the development of

embedded-s.ftware for the Air Force. And in SofTech, the

projects involved a wide range of systems developed on

contract for client organizations, both private and public.

The outcome of the above exercise was, as mentioned

above, the formulation of an initial simple system dynamics

model of software project management. The model is discussed

in detail elsewhere (Abdel-Hamid and Madnick, 1982b). This

initial model, in addition to serving as a road-map for the

succeeding literature reviewing step, was also the "skeleton"

for developing our final more detailed version. Which,

therefore, means that the information gathered here is also

incorporated in the formulation of our final model. This

will become more evident when we discuss that model's

structure and equation formulation in Section III.4. In

103

those discussions we will, in many occasions, make reference

to the interviews of Exhibit III.2. Such references will

always be in the form: (interviewee-name, interview number).

Step (2):

Starting the extensive review of the literature with the

initial model serving as the road-map had several important

advantages. It was helpful, for example, in organizing the

findings, as well as in integrating them. In addition, the

integrative nature of our model "prompted" us to broaden our

horizon, and look into other relevant fields for ideas.

Examples of these "ventures" include: Management Control

(e.g., Anthony (1979), and Lawler (1976)), Cybernetics (e.g.,

Ashton (1976)), Organizations (e.g., Kotter (1978), Schein

(1980), and Weick, (1979)), Project Management (e.g,

Maciariello (1978)), and Psychology (e.g., (Ingham el al,

1974), Leavitt (1978), and Steiner (1966)).

In discussing the final model's structure and its

equation formulation in Section III.4., we will make

extensive use of the massive amount of information gathered

in this literature review. And, it will then become evident,

how effective such a model truly is in organizing and

integrating the various bodies of knowledge mentioned above.

104

Step (3):

The written record has (a major shortcoming) compared to
the mental data from which the written data were taken

the written record usually cannot be queried.
Unlike the mental data base, the written record is not
responsive to probing by the analyst as he searches for
a fit between structure, policy, and behavior
(Forrester, 1979b).

That was one reason to conduct the second set of

interviews, which constitued our third information gathering

step. That is, there were still unanswered questions that

had to be addressed.

The second reason, was to expose the more detailed model

that emanated at the end of Step (2) above, to, in Roberts'

(1981c) words, "criticism, revise it, expose it again and so

on in an iterative process that would continue as long as it

proves to be useful."

As a result of these two objectives, the model's

structural components became a core around which the

interviews were built. The interviews were, thus, more

structured in terms of content than those in Step (1).

However, the interviews were unstructured in the sense that

no standardized set of questions was used. Such a format,

according to Isaac and Michael (1971), allows the interviewer

to adjust the interview so as to take advantage of an

interviewee's personal areas of expertise.

105

As in Step (1), before each interview, interviewees were

contacted by telephone and briefed on the objectives of the

research. The topics covered were basically the same as

those in the Step (1) telephone briefings, except for an

additional brief discussion of the Systems Dynamics

methodology. Interviewees were then mailed copies of: (1)

"A Model of Software Project Management Dynamics"

(Abdel-Hamid and Madnick, 1982b); and (2) "System Dynamics

--- An Introduction" (Roberts, 1981c).

It was necessary that this group of interviewees have

some understanding of the Systems Dynamics methodology, since

one of our objectives was to expose the model to their

critique. This was not a major hurdle, however. What was

needed was basically an understanding of the feedback

concept, and its representation in terms of causal loop

diagrams. Both of which are adequately covered in the

Roberts' introductory paper. In the interviews, references

were made only to "pieces" of the model, and these were

always in the form of causal loop diagrams. An example

"conversation piece," on the effects of "schedule pressure"

on "productivity" and "error generation," is shown in Figure

III.1.

Seventeen interviews were conducted in the period

between October 7,1982 and July 7,1983. The names of the

interviewees, their organizations, their titles, and the

106

SCHEDULE
PRESSURE

+ +
ERROR PRODUCTIVITY

WORK-
RATE

Figure III. 1

107

dates of the interviews are shown in Exhibit 111.3. below.

A comparison of Exhibits 111.2. and 111.3. would show

that none of the interviewees of Step (1) were .mong those

interviewed later in Step (3). This, we feel, had two

positive results. Firstly, it provided us with a larger and

more varied pool of experiences and ideas to draw upon, and

secondly, it decreased the possibilities for bias in the

interviewees' critique of the model.

Except for Mr. Sheldon of MIT who was reached through

the personal contacts of an MIT faculty member, this group of

interviewees was reached through MIT's Center for Information

Systems Research (CISR). Both GM and Digital are CISR

sponsors, and occasionally serve as field sites for research

in the MIS area. Again, each of the interviewees was

"currently managing one or more software development

projects," "had been a software project manager/leader for at

least two years," and "had managed at least two completed

software projects."

Because the discussions at this stage were at a more

detailed level than those of Step (1), we needed more time

per interviewee. On average, we conducted three

two-and-half-hour-long interviews per interviewee.

This battery of seventeen interviews constituted the

108

Interview # Date Interviewee Title Organization

11 10/7/82 Mike Landolfi

12 11/3/82 Garrett Sheldon

11/4/82

11/11/82

11/11/82

11/16/82

11/23/82

11/23/82

11/24/82

12/15/82

12/15/82

1/17/83

1/17/83

2/16/83

2/18/83

6/29/83

7/7/83

Mike Landolfi

Al Chan

Sam Hisamune

Frank Lombardi

Frank Lombardi

Barbara Nichols

Garrett Sheldon

Al Chan

Sam Hisamune

Mike Landolfi

Frank Lombardi

Garrett Sheldon

Barbara Nichols

Sam Hisamune

Barbara Nichols

Mrg. of Planning, Analysis
& Control ,Finacial&Admin

Infosystem

Mrg. of Business Systems
Development

(see above)

Proj. Laeder,NAVO Fin.Syst.

Sr. Supervr. Syst. Devt.,CANISCA

Mrg. Revenue Disbursement Syst.

(see above)

Syst. Mrg. Export Services Group

(see above)

(see above)

(see above)

(see above)

(see above)

(see above)

(see above)

(see above)

(see above)

EXHIBIT III.3

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

DEC

MIT

DEC

GM

Gm

DEC

DEC

DEC

MIT

GM

GM

DEC

DEC

MIT

DEC

GM

DEC

109

third and final information gathering step. And it lead to

the formulation of the final model ... which we discuss in

the next two sections.

111.3. Model Boundary:

(Models are) analogues of existing or conceivable
systems, resembling their referent systems in form but
not necessarily in content. In some way they exhibit,
display, or demonstrate structural relationships among
elements found in the referent system. At the same
time, they are abstractions and idealizations, omitting
some aspects of the referent systems and duplicating
only those that are of interest for the purposes at hand
(Schultz and Sullivan, 1972).

A clear understanding of the purpose of a modeling

effort helps to answer questions relating to the system

boundary --- i.e., what should be included and what should be

excluded.

As was stated in Chapter I, the primary purpose of our

model is to "provide us with understanding and insight about

the process by which software systems are developed and

managed."

Notice that our focus is confined to the development

phases of software production. Our model's boundary will

thus extend only until the last phase of software

development, namely, the testing phase. Not included in our

110

model are, therefore, the subsequent maintenance activities.

It was also indicated that the model would integrate the

managerial functions of planning, controlling, and

human-resource management as well as the software production

activities of design, coding, and testing. Notice that the

model's boundary extends from the beginning of the design

phase of the software life cycle, excluding the requirements

definition phase. There were two reasons for this. First,

Analysis to determine requirements is ... distinguished
as an activity apart from software development.
Technically, the product of analysis is non-procedural
(i.e., the focus is functional) while the prime
development is the basis for mutual agreement between
the customer and the developer as to what the system
must accomplish (McGowan and McHenry, 1979).

Secondly, our focus in this study is on the software

development organization, i.e., project managers and software

development professionals, and how their policies, decisions,

actions, ... etc., affect the success/failure of software

development. -- The definition of user requirements is

therefore excluded from the model's boundary for the

additional reason that it lies beyond the control of the

software development group.

Such arguments have also been the bases for excluding

the. software requirements phase from the "boundaries" of

quantitative-type software cost estimation models such as

111

COCOMO (Boehm, 1981).

Together with excluding the requirements definition

phase, we will make the simplifying assumption that once

requirements are fully specified (outside the boundary of the

model), and the architectural design phase is initiated

(within the model's boundary), there will be no significant

subsequent changes in the users' requirements. We do realize

that changes in users' requirements are frequently blamed for

cost/budget overruns in software projects (Aron, 1976)

(Boehm, 1980) (Zolnowski and Ting, 1982), and for which the

users are often "charged" and found "guilty" (Distaso, 1980),

(Thayer, 1979), (Toellner, 1977). However, let us reiterate

that our focus in this study is on "the software development

group members and their policies, decisions, actions, ...

etc." And we suggest that investigating those policies,

decisions, and actions which can cause cost/budget overruns

inspite of stable user requirements is a more interesting and

challenging research endeavor than to answer the question "do

changes in users' requirements negatively impact the

development process."

Looking within a model's boundary (e.g., at the actions

of the software development team) for the causes/cures of

problematic behavior rather than outside it (e.g., the

actions of the users) is a characteristic of the system

dynamics approach. Richardson and Pugh (1981), called it the

112

"Endogenous Point of View," and elaborated on it as follows:

the system dynamics approach tends to look within
a system for the sources of its problem behavior.
Problems are not seen as being caused by external agents
outside the system ...
The internal view creates a dramatically different
problem focus. The external view places an individual,
a firm, a city, or whatever, at the mercy of exogenous
events ... The external view is frequently predisposed
to search for blame: "instabilities in our workforce
and inventory are caused by errotic and seasonal
customer orders" (or software projects overrun schedules
merely because of changes in user requirements) ...
The internal view searches (instead) for structures
within (the system), which can create or exacerbate the
system's problem behavior.

As we mentioned above, our model's focus is on the

decisions and actions of the software development group

including both project management as well as software

development professionals (e.g., designers and programmers).

In addition to excluding users (as indicated above), it,

therefore, also excludes computer center operators, personnel

department personnel, secretaries, higher management,

janitors, and so on.

Finally, this model is not a model of small

one-programmer-type projects, nor of super-large projects

involving hundreds of software professionals over a period of

several years. Instead, our domain is that of medium sized

projects. Jones (1977) defined "medium-sized" software

projects as follows:

113

(they) range between 16K and 64K lines in size,
(and in which) development teams or departments are the
norm ... Below the "medium" size range, programming as
a business endeavor is often successful: at least the
programs tend to work fairly well and insurmountable
problems are not often ecountered. At the "medium" size
and above, cost and schedule overruns pop up more
frequently, and are more serious when they do occur.

III.4. Model Structure:

This section describes the structure of our integrative

system dynamics model of software development project

management. An overview of the model is first presented,

highlighting the four major subsystems of the model, namely,

human resource management, planning, controlling, and

software production, together with the various flows which

connect them. Next, each of the four subsystems, will be

described in more detail, in terms of its basic components

and relationships. The various assumptions and propositions

comprising the model are supported by reference to the

literature and to the interviews of section III.2. The

outline of the presentation will be as follows:

III.4.1. Model Overview

111.4.2. System Dynamics Schematic Conventions

111.4.3. Human Resource Management

III.4.4. Software Production

III.4.5. Controlling

111.4.6. Planning

114

A documented listing of each subsystem's DYNAMO

equations is included in Appendix (A). DYNAMO is the

computer simulation language used. It is a language

specifically designed to handle non-linear feedback models of

the sort associated with the system dynamics method. (For an

introduction to DYNAMO see (Pugh, 1976).)

III.4.1. Model Overview:

Figure 111.2. is an overview of the model's four

subsystems, namely: (1) The Human Resource Management

Subsystem; (2) The Software Production Subsystem; (3) The

Controlling Subsystem; and (4) The Planning Subsystem. The

figure also illustrates the interrelatedness of the four

subsystems.

The Human Resource Management Subsystem captures the

hiring, training, assimilation, and transfer of the project's

human resource. Such actions are not carried out in vacuum,

they, as Figure 111.2. suggests, both affect and are

affected by the other subsystems. For example, the project's

"hiring rate" is a function of the "workforce needed" to

complete the project on a planned completion date.

Similarly, the "workforce available," has direct bearing

on the allocation of manpower among the different software

production activities in the Software Production Subsystem.

115

/

PROGRESS
STATUS

/

/TASKS
/ COMPLETED

WORKFORCE
AVAILABLE

\ WORKFORCE
NEEDED

SCHEDULE \

I

I
I

EFFORT
REMAINING

Figure 111.2

116

The four primary software production activities are

development, quality assurance, rework, and testing. The

development activity comprises both the design and coding of

the software. As the software is developed, it is also

reviewed e.g., using structured-walkthroughs, to detect any

design/coding errors. Errors detected through such quality

assurance activities are then reworked. Not all errors will

be detected and reworked, however, some will "escape"

detection until beyond the end of development e.g., until the

testing phase.

As progress is made, it is reported. A comparison of

where the project is versus where it should be (according to

plan) is a control-type activity captured within the

Controlling Subsystem. As was indicated in Chapter II,

determining where a software project really is e.g., in terms

of % of tasks completed, is not always possible. (E.G.,

because software is basically an intangible product during

most of the development process, and for which there are no

visible milestones to measure progress and quality like a

physical product would.) Once an assessment of the project's

status is made (using available information), it becomes an

important input to the planning function.

In the Planning Subsystem, initial project estimates are

made to start the project, and then those estimates are

revised, when necessary, throughout the project's life. For

117

example, to handle a project that is perceived to be behind

schedule, plans can be revised to (among other things) hire

more people, extend the schedule, or do a little of both.

With this overview of the model's subsystems, and their

interrelationships, we are almost ready to proceed to a more

detailed description of each of the four subsystems. Because

all the subsystem diagrams will be in terms of the schematic

conventions used in system dynamics, we feel it would be

useful to preface the discussion of the model's subsystems

with an introduction to these conventions.

III.4.2. System Dynamics Schematic Conventions:

From a System Dynamics perspective all systems can be

represented in terms of "level" and "rate" variables, with

"auxiliary" variables used for added clarity and simplicity.

A level is an accumulation, or an integration, over time

of flows or changes that come into and go out of the level.

The term "level" is intended to invoke the image of the level

of a liquid accumulating in a container. The system

dynamicist takes the simplifying view that feedback systems

involve continuous, fluid-like processes, and the terminology

reinforces that interpretation.

The flows increasing and decreasing a level are called

118

rates. Thus, a manpower pool would be a level of people that

is increased by the hiring rate and decreased by the firing

and/or quit rate.

Rates and levels are represented as stylized valves and

tubs, as shown below, further emphasizing the analogy between

accumulation processes and the flow of a liquid.

RATE RATE

The flows that are controlled by the rates are usually

diagramed differently, depending on the type of quantity

involved. We will use the two types of arrow designators

shown below:

INFORMATION
FLOWS

OTHER FLOWS
(e.g., PEOPLE, SOFTWARE)

Flows will always, of course, originate somewhere and

terminate somewhere. Sometimes, the origin of a flow is

treated as essentially limitless, or at least outside the

model-builder's concern. In such a case the flow's origin is

called a source. Similarly, when the destination of a flow

is not of interest, it is called a sink. Both sources and

sinks are shown as little "clouds."

119

SOURCE SINK

All tangible variables are either levels or rates i.e.,

they are either accumulations of previous flows or are

presently flowing. But there is one more type of information

variable, which is called an auxiliary. Auxiliary variables

are combinations of information inputs into concepts e.g.,

"desired workforce," or policies e.g., "training policy."

Auxiliaries are represented by a circular symbol.

A few other symbols will complete the designation of

items included in formal system dynamics diagrams. In

addition to the variable symbols shown above, models also

0 ý- or- I

120

TNPTT -.611A.

- - 'OUTPUT

OUTPUT

include constant terms, i.e., parameters of the model whose

values are assumed to be unchanging throughout a particular

computer simulation. Constants are pictured as is shown

below, the name of the constant being underlined, with an

information arrow going to the variable that is affected by

the constant.

CONSTANT

Finally, because complex models are often diagramed in

multiple displays, situations arise in which variables

pictured on one diagram are used in another diagram. These

variable cross-references are.shown by including the name of

the other diagram's variable in parentheses as shown below.

121

INFLUENCING VARIABLE BEING
VARIABLE THAT IS INFLUENCED ON
ON OTHER DIAGRAM OTHER DIAGRAM

III.4.3. Human Resource Management:

The Human Resource Management Subsystem is depicted in

Figure III.3. As the figure indicates, a project's total

workforce is comprised of two workforce levels, namely,

"Newly Hired Workforce" and "Experienced Workforce."

Disaggregating the workforce into these two categor.ies of

employees was done for two reasons.

First, newly hired project members pass through an

"orientation phase" during which they are less than fully

productive (Canning, 1977), (Cougar and Zawacki, 1980),

(Weil, 1981), (Wolverton, 1974), (Chrysler, 1978), (Tanniru

et al, 1981), (James, 1), (Lombardi, 16), and (Hisamune, 26).

(Remember, a reference citation in the form (name, i) where

"i" is a number between 1 and 27, refers to one of the 27

interviews of Exhibits 111.2. and 111.3.) The orientation

process has both technical as well as social dimensions. On

the technical side,

122

I.

/
/

T -0

,n

Figure 11,3

maxrO3z

zzM Z -4Inn'

mm

z/ mn-0 X- 04

rn m

m z r
-4- mm

M /

m m

m/m/ o jZ
z I"

i Xm

-C

zzm~n' /P1/Z'- -4--
-I

/
/

rno

0r'mm 1%2 r
mmm

123

(newly hired) personnel often require considerable
training to become familiar with an organization's
unique mix of hardware, software packages, programming
techniques, project methodologies and so on (Winrow,
1982).

And paraphrasing Schein (1980) on "social orientation:"

... (it) refers to the processes of teaching the new
recruit how to get along in the organization, what the
key norms and rules of conduct are, and how to behave
with respect to others in the organization. The new
recruit must learn where to be at specified times, what
to wear, what to call the boss, whom to consult if he or
she has a question, how carefully to do a job, and
endless other things which insiders have learned over
time.

Of course, not all new project members are necessarily

recruited from outside the organization, some might be

"recruited" from within e.g., transferred from other

projects. For this type of employee, there will still be a

"project orientation" period (Brooks, 1978) e.g., to learn

the project's ground rules, the goals of the effort, the plan

of work, and all the details of the system (GRC, 1977),

(Thayer and Lehman, 1977). Although obviously less costly

than the "full orientation" needed by an out-of-company

recruit, project orientation can still be a significant drag

on productivity, especially when a project lacks adequate

documentation (Canning, 1977). In a GRC (1977) report it was

noted that when workforce additions are made to "rescue" a

project e.g., that is behind schedule, it is often the case

124

that such a project also suffers from sparse and outdated

documentation.

The important point to be made here is that, because of

the "orientation phase," "Newly Hired Workforce" are, on the

average, less productive than the "Experienced Workforce."

Later, in our discussion on "Productivity" within the

Software Production Subsystem in Section III.4.4., we will

take another closer look at this issue in order to quantify

this productivity differential.

This productivity differential was the first reason to

disaggregate the workforce. The second reason was to capture

the training overhead involved in adding new members to a

software development project. This training of newcomers,

both "technically" and "socially," is usually carried out by

the "oldtimers" (T7), (Corbato and Clingen, 1979), (GRC,

1977), (Winrow, 1982), (Bott, 1982), (Lombardi, 16), (Thayer

and Lehman, 1977). This is costly, because "while (the

oldtimer) is helping the new employee learn the Job, his own

productivity on his other work is reduced" (Canning, 1977).

The determination of the amount of effort to commit to

the training of new employees is made, we found, on the basis

of managerial intuition and organizational custom. There are

no proposed formulas in the literature, nor did we find any

in the organizations we interviewed in. We did find,

125

however, rules-of-thumb, and these ranged from committing 15%

of an experienced employee's time per new employee (Hisamune,

21) to a 25% commitment (Nichols, 18). In the model, the

value of the parameter "Trainers per New Hiree" is set to

0.20 i.e., on the average each new employee consumes in

training overhead the equivalent of 20% of an experienced

employee's time for the duration of the training or

assimilation period.

Estimates for the average assimilation period vary

between 2 months (Lombardi, 16) and 6 months (Corbato and

Clingen, 1979) (Brandon, 1970). In the model, the "Average

Assimilation Delay" is set to 80 days. (Note: "Days" in the

model represent working days. One week is five working days,

and one year is 48 working weeks.) The assimilation delay is

formulated in the model as a first-order exponential delay.

Such delays are primary building-blocks of system dynamics

models, and they are extensively used in this model. In

Exhibit III.4., we show how a first-order exponential delay

looks schematically, how it is formulated mathematically, and

how it behaves over time.

Thus, if a number say L(0) of project members are

recruited at time (0), they will be assimilated into the

experienced workforce pool at a rate similar to the one shown

in the figure of Exhibit III.4. That is, some will be

assimilated quickly e.g., those recruited from within the

126

AVERAGE
TIME
DELAY

(T)
r.

(A) SCHEMATIC

(B) MATHEMATICAL
INFORMATION

At any time (t),

R(t) = L(t)/ T

Also,

d L(t)=
dt

- R(t) = - L(t)/ T

Separating variables and integrating both sides yields,

L(t) = L(O) t/T

And it can be shown that the average time spent in

in the delay = T

(C) BEHAVIOR

L(T)=.37L(O)
.j L(2T)=.1 35L(O)

T 2T 3'

E~vHIBIT Il114

5L(O)

-
I

127

company, others will take a much longer time e.g., new hirees

fresh from school, while the average new employee will be

assimilated at the "Average Assimilation Delay" i.e., in 80

days.

On deciding upon the "Total Workforce" level (i.e.,

newly hired plus experienced workforce) desired, project

management considers a number of factors. One. important

factor is the current scheduled completion date of the

project. As part of the planning function (see Section

III.4.6. for details), management determines the workforce

level that it believes is necessary to complete the project

tasks perceived to be remaining within the scheduled

completion time. In addition to that, consideration is also

given to the "stability of the workforce." Thus, before

hiring new project members, management tries to contemplate

the duration of need for these new members. Different firms

weigh this factor to various extents. In general, however,

the relative weighing between the desire for workforce

stability on the one hand and the desire to complete the

project on time, on the other, changes with the stage of

project completion. For example, toward the end of the

project there could be considerable reluctance to bring in

new people, even though the time and effort perceived

remaining imply more. people are needed. It would take too

much time to acquaint new people with the mechanics of the

project, integrate than into the project team, and train them

The Libraries
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Institute Archives and Special Collections
Room 14N-118
(617) 253-5688

There is no text material missing here.
Pages have been incorrectly numbered.

129

in the necessary technical areas.

" As will be further explained in the "Planning

Subsystem," based on the above two considerations, management

determines the "Workforce Level Needed." This level,

however, still does not automatically translate into a hiring

goal for the human resource management function. A further

consideration is given to the project's ability to absorb new

people into, to train them and make them an integral part of

a productive team (Brooks, B23). We shall here recognize a

policy, formal or more usually implicit, that the rate of

hiring of new project members be restricted to that number

which project managment feels its fully integrated staff can

handle (Landolfi, 22) (Chan, 20).

This restriction is formulated in the model using the

variable "Ceiling on New Hirees." Which simply equals the

"Full-Time-Equivalent Experienced Workforce" level multiplied

by the most number of new hirees that a single full-time

experienced staff can be expected to effectively handle. In

the model, the value of "Most New Hirees per Full-Time

Experienced Staff" is set at 3.

Because in some organizations software developers are

assigned to more than one project (i.e., the "Average Daily

Manpower per Staff" per project would be less than 1

man-day), the "Full-Time-Equivalent Experienced Workforce"

130

level can be less than the "Experienced Workforce" level.

So, for example, if there are only 2 experienced project

members, each of which assigning 50% of his/her time to the

project (i.e., "Average Daily Manpower per Staff" = .5) then

we'll have .5 X 2 = 1 "Full-Time-Equivalent Experienced

Staff." And in that case the "Ceiling on New Hirees" will be

1 X 3 = 3.

The summation of "Ceiling on New Hirees" and the value

of the current "Experienced Workforce" level establishes the

"Ceiling on Total Workforce." The value of this variable

constitutes a ceiling on the number of employees sought i.e.,

to be hired. That is, "Workforce Level Sought" would be set

to the value of "Workforce Level Needed" as long as this is

less than or equal to the "Ceiling on Total Workforce."

Otherwise, "Workforce Level Sought" is set to the value of

the latter.

Thus, the three factors: (1) schedule completion time;

(2) workforce stability; and (3) training requirements, all

affect management's determination of the "Workforce Level

Sought." Once the determination is made, management will

face one of three possible situations. First, the "Workforce

Gap" between the "Workforce Level Sought" and the current

"Total Workforce Level" could be zero i.e., the two levels

are exactly equal. In that case no further action is

necessary.

131

A second, more likely, situation would be one where the

"Workforce Level Sought" is larger than the current "Total

Workforce Level." In this case, new employees will be hired.

This, of course, takes time. The delay in hiring software

professionals, is on the average, on the order of several

months (McLaughlin, 1979). Some recruits are generally

available in a short period from elsewhere in the

organization, whereas others (especially when the project

management is seeking special skills, or new college

recruits) will not be available for a much longer time.

After averaging these variables, the "Hiring Delay" is set to

40 days (McLaughlin, 1979) (Babich,9) (Hisamune, 26).

The third, and final, possibility would be for the

"Workforce Level Sought" to be less than the current "Total

Workforce Level." In this case, project members will be

transferred out of the project. We will assume that if there

are new recruits still in training i.e., in the "Newly Hired

Workforce" level, then these will be the first to be

transferred out. If still more transfers are needed, they

would then be made from the "Experienced Workforce" pool.

Those who are being transferred out require some period

of time e.g., for paper work and transfer arrangements,

before they actually leave the project. The average transfer

delay is set in the model to 10 days (Landolfi, 22).

132

Finally, there is the effect of turnover on the

project's workforce. Turnover continues, of course, to be a

chronic problem for software project managers. Willoughby

(1977) estimates that annual turnover in the DP field ranged

between 15 and 20% during the 1960s, declined to about 5% in

the early 1970s, and began to rise again by the end of the

decade. More recent studies place the annual turnover rate

at 25.1% (Tanniru et al, 1981), 30% (Richmond, 1982) and even

as high as 34% (Bott, 1982).

Turnover is captured in the model, through the "Quit

Rate" of "Experienced Workforce." That is, we are assuming

no turnover among the "Newly Hired Workforce," since it is

quite unlikely for a new recruit to quit within 80 days of

joining the project (i.e., during the assimilation period).

The annual turnover rate. is set in the model to 30%.

This translates into an "Average Employment Time" of 673

days. To see why, first notice from Figure 111.3. that the

"Quit Rate" is (as was the "Workforce Assimilation Rate") a

first-order exponential delay. So, we can use the equation

of Exhibit III.4.,

L(t) = L(0)*e -t/T

where,

L = Experienced Workforce (men)

t = time (years)

T = Average Employement Time (years)

133

For a 30% annual turnover rate,

0.70L(O) =L(0)*e 'I/T

Thus,

T = 1/-ln(.70) = 2.8 years

Which translates into 673 days, since one year is 240 working

days.

III.4.4. Software Production:

There are four primary activities in the Software

Production Subsystem, namely, development, quality assurance,

rework, and system testing. The development activity

comprises both the design and coding of the software. As the

software is being developed, it is also reviewed e.g., using

structured-walkthroughs, to detect any design/coding errors.

Errors detected through such quality assurance (QA)

activities are then reworked. Not all errors will be

detected during the development phase, however, some will

"escape" and remain undetected until the testing phase.

This subsystem is too complex to diagram and explain as

one piece. We will, therefore, break it into four sectors,

namely:

(A) Manpower Allocation

(B) Software Development

(C) Quality Assurance & Rework

134

(D) System Te~sting

These sectors iill be connected, not only through

information-type variables, but also through flows e.g.,

software will flow f om the "Software Development" sector to

the "QA & Rework" sector and from there to the "System

Testing" sector. To diagram such inter-sector flows we will

make use of a new s mbol, a "sector-symbol.." The symbol was

proposed by Morecro t (1980), and is shown below:

I

The shape of the symbol has been selected to avoid any

ambiguity or ov rlap with the standard system dynamics

symbols. Figure II.4. shows how, for example, the symbol

.. I 9 I .- ..- -A A - ! - . A -- CI -.. -C - -CA --- ,PI -- P.. - 92 - .-L. -

will e used to

the "QA & Rework"

(A) Manpower Allo

The "Total D

aepict the flow or software into and out or

sector.

:ation:

aily Manpower" available for the project is

I

135

SOFTWARE

QUALITY ASSURANCE 8 REWORK

SOFTWARE

Figure 111.4

136

simply a function of the "Total Workforce" level and the

"Average Daily Manpower per Staff." In some organizations,

software professionals are assigned to one project at a time.

In such a case the "Average Daily Manpower per Staff" would

be 1 man-day i.e., each staff member contributes 1 man-day

every day on the project. In other organizations, however,

software professionls are assigned to more than one project.

So, for example, if on the average each staff member is

assigned to say two projects on a 50-50 basis, then the

"Average Daily Manpower per Staff," for each of the projects,

would be 1/2 man-day.

Part of the available manpower will be consumed in

training overhead, as was explained in Section 111.4.3. The

"Daily Manpower Available after Training Overhead" is what is

then allocated to quality assurance, rework, software

development and testing.

Quality assurance is defined in Pressman (1982) as a set

of activities "... performed in conjunction with (the

development of) a software product to guarantee the product

meets the specified standards. These activities reduce

doubts and risks about the performance of the product in the

target environment." Several techniques are used including

walkthroughs, reviews, inspections, code reading (a process

where code logic and code format is scrutinized by a

programmer other than the original designer), and

137

ADMPPS
AVERAGE DAILY
MANPOWER
PER STAFF

STOTWF
STOTAL

SWORKFORCE

PFMPOA
PLANNED
FRACTION
OF MP
FOR OA

SCHPR
SCHEDULE -
PRESSURE

AFMPOA

ACTUAL
FRACTION
OF MP
FOR OA

ACTUAL REWORK
MANPOWER NEEDED /,

PRWMPE
PERCEIVED
REWORK MP
NEEDED PER I -
ERROR

(4

TOTDMP
TOTAL
DAILY
MANPOWER

DMPTRND DAILY MANPOWER)

S / FOR TRAINING

)

-DMPOA
DAILY
MANPOWER
FOR OA

DMPRW
DAILY
MANPOWER
ALLOCATION
FOR Rw

DMPATR
DAILY MP
AVAILABLE
AFTER TRNG
OVERHEAD

I

DMPSWP
DAILY
MANPOWER
FOR S/W
PROD.

- I
-

DESRWD
DESIRED REWORK
DELAY

DESECR
DESIRED D V
ERROR
CORRECTION
RATE

DSCERR ,
DISCOVERED
ERRORS

D/p IPT

DAILY
MANPOWER
FOR
DEV/TEST

Figure 111.5

(PJBAWK
% OF JOB
WORKED

138

integration-testing (Jones, 1982) (Daly, 1977). Not included

in this activity is unit or module testing, which is commonly

considered to be part of the coding process (Mckeen, 1979).

There is a lack of data in the literature on actual

quality assurance effort expenditures. There are, instead

estimates, e.g., 6% of development effort (Knight, 1979), and

15-20% (Boehm, 1981).

In the organizations we interviewed in, estimates for

the QA effort included 10% (Nichols, 27), 15% (Landolfi, 22),

and in one case as high as 25% (Hisamune, 26).

In the model, the "Planned Fraction of Manpower for QA"

will be set to a uniform 15% level. Notice, though, that in

Figure III.5. the variable "Planned Fraction of Manpower for

QA" is shown to be a function of "% of job worked." This

will allow us to experiment with other QA policies i.e., ones

in which the QA effort is not uniformly distributed

through-out the life cycle.

As indicated in Figure 111.5., the "Actual Fraction of

Manpower for QA" can be different from the "Planned Fraction

of Manpower for QA" because of schedule pressures. Several

authors have observed that as schedule pressures mount,

quality assurance activities are often relaxed (Mitchell,

1980) (Shooman, 1983) (Devenny, 1976) (Ergott, 1979). For

139

example, paraphrasing Glass (1982):

Modules and changes were initially inspected in depth
but with less severity as work pressure increased and
greater risks were taken to meet delivery schedules.

Walkthroughs and inspections are usually the larger

casualities. Under schedule pressures, they are not only

relaxed, but often they are altogether suspended (Fagan,

1976). Hart (1982) provided an explanation:

As the project progressed, there were the usual
pressures to meet the project deadline. The
walkthroughs were a natural area of concern in the
schedule, since they represented a significant time
commitment before their effectiveness was obviously
demonstrated...
As the deadline neared, there were pressures to hurry
the walkthrough and, eventually, to 'temporarily
suspended' them.

In the model, "Schedule Pressure" is formulated as

follows,

Schedule Pressure = (TMDPSN - MDRM) / MDRM

where,

TMDPSN = Total Effort Perceived to be

still needed to complete the

project (Man-Days)

MDRM = Total Effort remaining

current plan (Man-Days)

Thus, when the project is perceived as being completely

140

on target i.e., effort still needed is exactly equal t'o the

effort actually remaining in the project's budget, schedule

pressure will be zero i.e., no schedule pressure. But, if

the effort perceived still needed is say 150 man-days, while

in the project's budget there is only 100 man-days left, then

schedule pressure is 0.5. Conversely, if what is perceived

to be still needed is less than what is remaining, than

schedule pressure will be less than zero i.e., there is a

slack.

The effect of schedule pressure on "Actual Fraction of

Manpower for QA" is assumed to be as shown in Figure 111.6.

Such a graph i.e., that depicts a relationship (usually

nonlinear) between two variables in a system dynamics model,

is called a "Table Function." Table functions are used

extensively in system dynamics modeling.

Table functions would be based on measurements, if such

measurements are available. In many cases (including this

one), however, measurements are not available i.e., there are

no published data on the effect of schedule pressure on the

QA effort.

There seems to be a general misunderstanding to the
effect that a mathematical model cannot be undertaken
until every constant and functional relationship is
known to high accuracy. This often leads to the
omission of admittedly highly significant factors (most
of the 'intangible' influences on decisions) because
these are unmeasured or unmeasurable. To omit such
variables is equivalent to saying they have zero effect

141

% Adjustment to
"Planned Fraction of
Manpower for QA"

.4 .5

.4 .5
.8.8 Schedule

Pressure

Figure 111.6

-98--20-

-40-

-60

-80

-100
0 .1

.2 .3

.2 .3

-- li~L

142

... probably the only value that is known to be
wrong
A mathematical model should be based on the best
information that is readily available, but the design of
a model should not be postponed until all pertinent
parameters have been accurately measured. That day will
never come. Values should be estimated where necessary
... (Forrester, 1981).

Because of the lack of published measurements, it was

necessary to estimate the relationship between schedule

pressure and the QA effort. To give the reader a flavor of

how both judgement and available information are used to

formulate a Table Function, we will go through the

formulation of Figure 111.6. in some detail.

There are three potential considerations in formulating

a table function: Slope, one or more specific points, and

shape.

The slope of the relationship between schedule pressure

and adjustments to QA effort is easy to determine. It must

be negative, since, as the above quotes indicate, as schedule

pressure increases, QA effort decreases.

We can also identify at least one point on the graph

quite straight forwardly. It is the point (0,0) i.e., in the

absence of any schedule pressure (i.e., "Schedule Pressure"

is Zero), the % adjustment to the planned fraction of

manpower effort for QA will be zero i.e., actual QA effort

will be equal to the planned effort.

143

As schedule pressure mounts, quality assurance

activities are relaxed i.e., cuts are made into the planned

QA effort. QA activities are not, however, eliminated

completely e.g., while walkthroughs might be decreased or

even temporarily suspended, integration testing might not.

In the judgement of the project managers we interviewed,

planned quality assurance activities could be cut by as much

as 50% under severe schedule pressures, which were defined as

situations in which "Schedule Pressure" is equal to or

greater than .5 (Gage, 4) (Babich, 9) (Nichols, 25)

(Hisamune, 26). On the basis of these judgements (the best

available information), the point (.5, -50) of Figure 111.6.

is identified.

The final step was to figure out the shape of the

negatively sloping curve connecting the two points (0,0) and

(.5, -50).

It is reasonable to expect the curve flattens out at the

two extreme points. As schedule pressure starts to rise,

people react, not only by cutting conners, they also start

working harder (Boehm, 1981). This absorbs some of the

effects of schedule pressure on QA effort allocations at the

vicinity of point (0,0). Also, as indicated above, as

schedule pressure increases it gradually reaches a saturation

point at which it ceases to affect further adjustments to the

QA effort i.e., the curve flattens at (.5, -50). And

144

finally, these two extreme flat parts of the curve are

connected by a negatively sloping smooth curve. "Any sharply

bent or kinked curve is probably not realistic. A bend or

kink implies something special about the exact conditions at

which the bend or kink occurs" (Graham, 1980).

Now, we resume our discussion of this section's. main

topic, namely, the allocation of the project's manpower

resource. So far we have accounted for manpower resources

consumed in training and quality assurance activities. The

remaining bulk of the manpower resource, labelled in Figure

111.5. as the "Daily Manpower for Software Production," is

to be allocated to software development (i.e., design and

coding), testing, and rework.

As software errors are detected through the quality

assurance activities, manpower effort is allocated to correct

them. The amount of daily effort allocated is a function of

both the "Desired Error Correction Rate" i.e., the daily rate

at which these discovered errors are to be corrected, and the

"Perceived Rework Manpower Needed per Error." In other

words, the effort is allocated on the basis of the rework job

to be done, and the perceived rework productivity.

The "Perceived Rework Manpower Needed per Error" is

diagramed in Figure 11.5. as a special kind of a level,

namely, one with an input that is not a rate. This is a

145

"shorthand notation" for an exponential smoothing operation.

That is, "Perceived Rework Manpower Needed per Error" is the

exponential" smooth of its input, the "Actual Rework Manpower

Needed per Error." (Because smoothing or averaging of

information accumulates that information, a smoothed variable

is represented by a level's rectangular symbol.)

Why smooth? Because, "Full and immediate action is

seldom taken on a change of incoming information (e.g., on

the sudden drop in yesterday's rework productivity) ...

(There is a) tendency to delay action until the change is

insistent ... " (Forrester, 1961).

A full schematic representaion of the smoothing

operation is shown in Figure 111.7., together with its

mathematical formulation. (Readers familiar with smoothing

formulations may want to observe that the equation for a

smoothed variable can be written in the familiar

weighted-average form for exponential smoothing.) In Figure

111.7., we also show the behavior of the "smoothed variable"

in response to a spike in the "variable to be smoothed."

Thus, a sudden change (e.g. increase) in the "Actual

Rework Manpower Needed per Error," will not initially affect

the project member's rework-manpower allocation decisions.

If, however, the increase persists over a period of time, the

change will be perceived as permanent (i.e., "Perceived

146

VAR
Variable
to be
smoothed

mSmoothed(A)
variable

I

STIME
Smoothing
time

(B) SVART = SVART-I + ~A (VART- - SVART-)
STIME

(C)

Time

Figure II1. 7

147

Rework Manpower Needed per Error" catches up with the actual)

and thus incorporated in the allocation decision making

process. The smoothing time is set in the model at 10 days.

As mentioned above, the amount of daily effort allocated

for rework activities is a function of not only the

"Perceived Rework Manpower Needed per Error," but also the

"Desired Error Correction Rate," i.e., the daily rate at

which the discovered errors are to be corrected. For

example, if it is desired to correct one error a day, and if

it is perceived than one Man-Day is needed on the average to

correct an error, then one Man-day will be allocated daily

for rework activities.

The "Desired Error Correction Rate" is the value of the

total number of discovered errors divided by a "Desired

Rework Delay." When an error is detected, it, usually, is

not immediately corrected. Some time elapses before a

software professional "deals" with it. In a TRW study

(Thayer et al, 1978) this delay was found to be in the range

of 8-19 days. The "Desired Rework Delay" is set in the model

to 15 days (James, 1) (Lombardi, 16).

As is shown in Figure 111.5., after manpower is

allocated to rework activities, the remaining (often larger)

portion of the "Daily Manpower for Software Production" is

devoted to the development (i.e., design and coding) and

testing activitiei

below in Sectors

(B) Software Deve:

Figure III.8,

i.e., the desigr

software project i

"Tasks." Thus,

terms of "tasks pe

"tasks" developed

terms of "tasks pe

"Task" will be

productivity.)

As we indicat

made for traininc

the remaining bulk

allocated to the

continues until it

development tasks

Testing phase is

utilization is a

"Fraction of Effo

"Fraction of Eff

zero, i.e., no eff

all development

148

. These activities are discussed in detail

B) and (D) respectively.

opment:

depicts the software development process

and coding of the software product. A

ill be defined in terms of a number of

the software development rate will be in

r day," software developed in terms of

, and software development productivity in

r man-day." (A precise definition of a

!rovided shortly, when we discuss nominal

ud earlier, after manpower allocations are

quality assurance, and rework activities,

of the available manpower resource is

development of the software product. This

is perceived that most of the software

are completed, at which point the System

initiated. This switch in manpower

ifected in the model through the variable

7t for System Testing." The value of

>rt for System Testing" is initially set at

>rt is allocated for System Testing. When

asks are perceived to be completed, the

149

PJBSZ
PERCEIVED

/ JOB SIZE

FREFTS
FRACTION
OF EFFORT
FOR SYSTEM
TESTING

N1

/ DMPDVT
DAILY MANPOWER FOR

' S/W DEVELOPMENT/
, / TESTING

/

DMPSDV
DAILY
MANPOWER
FOR S/W
DEVELOPMENT

TSKPRM
TASKS PERCEIVED
REMAING.

/ SDVPRD
SOFTWARE
DEVELOPMENT
PRODUCTIVITY

QUALITY
ASSURANCE
a REWORK
SECTOR Figure 111.8

150

value of the "Fraction of Effort for System Testing" becomes

a 1, i.e., 100% of the effort available for software

development/testing is utilized in system testing activities.

The switch is not abrupt, however. There is, usually, some

overlap between the development and testing phases (Thibodeau

and Dodson, 1980) (Daly, 1977) (Hartwick, 1980). For

example, the design of test cases usually commences towards

(not at) the end of the software development phase (Adrion et

al, 1982). This overlap of the phases is captured in Figure

111.9. It shows the assumed gradual increase in the value of

the "Fraction of Effort for System Testing" as a function of

the fraction of development tasks perceived remaining.

During the software development phase, the rate at which

the software will be developed will be a function of not only

how much manpower is utilized, but in addition, it will also

depend on'the productivity of the software developers (as is

shown in Figure 111.8.).

"Software Development Productivity" is a function of a

complex set of factors, and as such it comprises a

significant portion of the model. We are, therefore, using a

separate figure, to provide a detailed depiction of its

formulation.

Our formulation of the productivity of the software

development group is based. on a model of group productivity

151

Fraction of Effort
for System Testing

0 .1 .2 .3

Tasks Perceived Remaining
Perceived Job Size

Figure 11.9

1.0

.8

.6

.4

.2

0

152

in the Psychology literature proposed by Ivan Steiner (1966).

The model can be simply stated as follows:

Actual Productivity = Potential Productivity -

Losses Due to Faulty Process

Where Losses due to faulty process refer basically to

communication and motivation losses

Potential productivity is defined as the maximum level
of productivity that can occur when an individual or
group employs its funds of resources to meet the task
demands of a work situation. It is the level of
productivity that will be attained if the individual or
group makes the best possible use of its resources (that
is, if there is no loss of productivity due to faulty
process)... Potential Productivity can be inferred from
a thorough analysis of task demands and available
resources, for it depends only upon these two types of
variables.
Actual productivity, what the individual or group does
in fact accomplish, rarely equals potential
productivity. Individuals and groups usually fail to
make the best possible use of their available resources.
Problems of coordination and/or motivation are
responsible for inadequacies in process, and for
consequent losses in productivity (Steiner, 1966).

The three pieces of Steiner's model, namely, actual

productivity, potential productivity, and

communication/motivation losses are all incorporated in the

formulation of Figure III.10. Their structures fall in the

middle part, the left part, and the right and bottom parts of

the figure, respectively.

According to Steiner, potential productivity is a

function of two determinants, the nature of the task and the

152.1

NOMINAL POTENTIAL
PRODUCTIVITY- EXP
NPWPEX

NOMINAL POTENTIAL /
PRODUCTIVITY- NEW /
NPWPNE

WFEXP
EXPERIENCED
WORKFORCE /

STOTWF
TOTAL

S WORKFORCE

COMMOH
COMMUNICATION
OVERHEAD

__r

SVDPRD
SOFTWARE
DEVELOPMENT
PRODUCTJVITY

WKRADT
WORK RATE
ADJUSTMENT
TIME

PJBAWK
% OFJOe
WOrED

MPDMCL
m ULT. TO
PROD.DUE

- TO MOTIV.
L OMM.
LOSSES

EXHAUSTION
DEPLETION
DELAY TIME
EXHDDY

/

/ NFMDPJ
/ NOMINAL j,/

/ FRACTION
I / OF MAN-DAYS

I ON PROJECT
'I
\1

AFMDPJ
.4 ACTUAL FRACTION .

OFA MAN-DAY W'
ON PROJECT

Kr
MXTEX
MAxIMUM

TOLERABLE
EXHAUSTION"

OTMDPSN
TOTAL MAN-DAYS
PERCEIVED "
STILL NEEDED

(MDRM ,-
MAN-DAYSREMAINING I

(FTEQWF ,

FULLTIME
EOUIVALENT WORKFORCE

I MDHDL

H ANDLED
MAN- DAYS

PMDSHR
PERCEIVED SHORTAGE
IN MAN-DAYS

Figure III.10

TLI

I

IPPRD
AVERAGE
NOMINAL
POTENTIAL
PRODUCTIVITY

POTPRD
POTENTIAL
PRODUCTIVITY

MPPTPD
MULTIPLIER
TO POTENTIAL
PRODUCTIVITY
DUE TO
LEARNING

MAXIMUM
MAN-DAYS
SHORTAGE
HANDLED

4-
MAXPBS
MAXIMUM
BOOST IN
MAN- HRS.

NOVWDT
NOMINAL
OVERWORK
DURATION
THRESHOLD

i
'j.J-%

A

f

f

I

0

I

153

group's resources. The effects of these two sets of factors

on the productivity of software development has been

investigated in the software engineering literature.

However, because the idea of distinguishing between actual

and potential productivity didn't take root in the software

engineering literature (yet), in all such studies the

dependent variable is always the actual productivity of

software development.

For example, Scott and Simmons (1974) used the Delphi

technique "to determine what programming project variables

have the greatest impact on programmer productivity." They

identified three resource-type variables including, the

availability of programming tools, the availability of

programming practices, and programmer experience, as well as

two task-type variables, namely, the programming language and

the quality of external documentation, as all having

significant influence on productivity.

Boehm's COCOMO software cost estimation model (1981),

incorporates the following determinants of productivity:

(1) Task-type Variables: Product complexity, required

reliability, memory constraint, and database size.

(2) Resource-type Variables: Software tools available,

turnaround time, and personnel experience.

154

Finally, Chrysler (1978) mapped several research

findings into a model that categorizes the determinants of

software productivity into 6 categories. Three of the

categories were of the task-type, they were "programming

problem characteristics," "Source Language," and "Computer

Hardware Characteristics." The other three categories

included resource-type factors, and they included "Programmer

Characteristics," "Organizational Characteristics," and

"Programming Mode."

Notice that most of the above factors, while they would

vary from organization to organization (e.g., availability of

software tools, personnel capability, and computer-hardware

characteristics) and from project to project within a single

organization (e.g., programming language, database size, and

product complexity) they would, however, remain constant

within a single project. From our modeling viewpoint, this

observation is quite-significant. It means that, in modeling

the behavior of a single software development project, most

of the above variables would remain constant and can,

therefore be simply captured by a single constant parameter

in the model. Such a parameter would then need adjustments

only when modeling different projects and/or different

organizations.

This is achieved in the model through the formulation of

the "Nominal Potential Productivity" parameter. It

155

represents the maximum level of software development

productivity that can occur when an individual employs

his/her fund of resources to meet the task demands for the

specific work situation modelled i.e., a specific project

within a specific organization.

The value of the "Nominal Potential Productivity"

parameter will be defined in terms of a number of

"Tasks/man-day." Which, of course, means that its value

depends on what we define a "Task" to be. This provides us

with two options in modeling di-fferent project situations in

which the nominal potential productivity differs e.g., due to

differences in the degree of complexity of the project. We

can either fix in the model what a "Task" is defined to be,

and change the value of the "Nominal Potential Productivity"

parameter, or we can do the reverse, that is, fix the value

of the "Nominal Potential Productivity" parameter to say (X)

tasks/man-day, while changing the value of what a "Task" is.

We opted for the second alternative. We will,

therefore, define "Nominal Potential Productivity" to be a

certain number, (X) (to be specified shortly) of

tasks/man-day, and formulate "Task" as a parameter in the

model that can be set at different values to reflect

different project and resource characteristics.

A "Task" is essentially some unit for sizing up a

156

software product. In principle, a "Task" can be any

arbitrary unit by which we can measure a software project's

size e.g., it can be defined in terms of lines of code,

function-points, modules, input/output files, ... etc. From

a practical point of view, though, the "lines of code" unit

is the most attractive alternative. Defining our sizing

measure, the "Task", in terms of "lines of code" provides us

with direct access to most published results on software

productivity measurements.

A "Task" is, therefore, defined in terms of a number of

Delivered Source Instructions (DSI). The definition of

Delivered Source Instructions (DSI), as provided by Boehm

(1981), is as follows:

Delivered. This term is generally meant to exclude
nondelivered support software such as test drivers.
However, if these are developed with the same care as
delivered software, with their own review, test plans,
documentation, etc., then they should be included.

Source Instructions. This term includes all program
instructions created by project personnel and processed
into machine code by some combination of preprocessors,
compilers, and assemblers. It excludes comment cards
and unmodified utility software. It includes job
control language, format statements, and data
declarations. Instructions are defined as lines of code
or card images. Thus, a line containing two or more
source statement counts as one instruction; a five-line
data declaration counts as five instructions.

Let us provide an example to further clarify the

concepts of "Normal Potential Productivity" and "Task."

Assume two different software development organizations,

157

(ORG-i) and (ORG-2), have each just completed the development

(i.e., design and coding) of a software project. The two

projects, (PROJ-1) and (PROJ-2), are two completely different

projects (e.g., one is an embedded piece of software for a

military satellite and the other a payroll sj

that they are both exactly 8000 DSI in size.

assume that in (ORG-1) the development effi

total of 400 man-days to design and code

(PROJ-1), while in (PROJ-2) the development 4

man-days. If for purposes of simplification,

the communication and motivation losses in both

i.e., assume that actual productivity

productivity, we could then conclude that I

productivity in (ORG-1) is half that of

distiction would be realized in the model as

"Nominal Potential Productivity" parameter woi

in both runs of the model at the same

ystem), except

Now, let us

ort consumed a

the 8000 DSI

effort was 200

we disregard

organizations

= potential

the potential

(ORG-2). This

follows: The

uld be defined

value, say 1

Task/Man-day, but in the (PROJ-1) run we would define a Task

to be 20 DSI, while in the (PROJ-2) run a "Task" would be set

at 40 DSI. That is, the 8000 DSI project (PROJ-1) will be

defined in the first run as a 400 Task project, while the

8000 DSI project (PROJ-2) would be defined as a 200 Task

project.

We have thus far only addressed one set of factors that

affect the potential productivity on a -software development

project, namely, those factors which remain constant

t

158

throughout a particular project. While most of the factors

listed in the literature are of this variety, at least two

are not, namely, workforce experience level (Chrysler, 1978)

and increases in project familiarity due to learning-curve

effects (Crowley), (Shell, 1972), (Weinberg, 1982).

To capture the effect of experience, we will formulate

two nominal potential productivity parameters, one to

represent the nominal potential productivity of the average

experienced staff member, and the second represents that of

the average newly hired employee. And at any point in time

in the project the "Average Nominal Potential Productivity"

for the workforce as a whole would be the weighted average of

the two parameters, (in which each parameter is weighted by

the fraction of its corresponding employee-type in the total

workforce).. Thus, while the two nominal potential

productivity parameters for the two types of employees

remains constant throughout a project, the project's "Average

Nominal Potential Productivity" may not, since the mix of

experienced and new employees could (and probably would)

change.

We will take the nominal potential productivity of an

average experienced staff member to be our reference point,

and define it to have a value of 1 Task/Man-day. The value

of the nominal potential productivity of the average employee

within the newly-hired workforce pool is then determined

159

relative to that 1 Task/Man-day reference point. In the

literature, estimates for the productivity of a newly hired

staff member relative to that of an experienced staff member

included 0.45 (Weiss, 1973), 0.5 (Okada, 1982), 0.6

(Toellner, 1977), and 0.64 (Boehm, 1981) (Benbasat and

Vessey, 1980). Estimates provided from interviews ranged

from 0.33 (Hisamune,26) to 0.5 (Lombardi, 16). It should be

noted, however, that all these estimates are for actual

productivities and not potential productivities. But since

there is no evidence to suggest that there are significant

differences in the communication and motivation losses

between the two types of employees, we will accept the above

estimates as a "reasonable" approximation for the ratio

between the potential productivities of the two groups of

employees. The value of the nominal potential productivity

for the average newly hired employee is, accordingly, set in

the model to 0.5 Task/Man-day.

The second factor affecting potential productivity, in

the model, is the increased project- know-how due to the

learning-curve effect (Crowley) (Shell, 1972) (Weinberg,

1982). "As a project proceeds, the implementers learn their

job better. The 'learning curve' is the rate of improvement"

(Aron, 1976). Several authors have suggested that an

S-shaped type learning-curve characterizes this "rate of

improvement" in the software development environment

(Crowley) (Weinberg, 1982). Reflecting on his experience at

160

IBM, Aron (1976) estimates that the total improvement for a

medium sized project (e.g.., 12-24 months long) would be a 25%

improvement in productivity.

In the model the learning curve effect is formulated as

the variable "Multiplier to potential Productivity Due to

Learning." It is, as is shown in Figure III.11, S-shaped and

it is a function of progress in the project, starting with a

value of 1 at the beginning of the project, and peaking at a

value 25% higher (i.e., at 1.25) towards the end of the

development period.

As defined above, potential productivity is the level of

productivity that will be attained if the individual or group

makes the best possible use of his/its resources (that is, .if

there is no loss of productivity due to faulty process).

However, due to losses caused by communications and

motivation problems actual productivity, i.e., what the

individual or group does in fact accomplish, rarely equals

potential productivity (Steiner, 1966).

In the model, "Software Development Productivity" is

formulated as the product of "Potential Productivity" and the

"Multiplier to Productivity Due to Communication and

Motivation losses." In the absence of any communication and

motivation losses the. multiplier assumes a value of 1, in

which case actual productivity would be equal to potential

161

;r to
al Productivity
Learning

.6 .8 1.0

.6 .8 1.0
% of a Job Worked

Figure III.11

MultiDli
Potent!
Due to

j

4-

.3-

.2-

1-

,0"

I .

11

0i__

0 .2 .4

I

162

productivity. However, losses will occur, and these will

drive the multiplier to values that are less than 1, thus

depressing the val'ue of actual productivity to levels below

that of potential productivity.

The "Multiplier to Productivity Due to Communication and

Motivation Losses" has the following interpretation. It

represents the average productive fraction of a Man-Day. In

other words, if the nominal man-day for a full-time employee

is 8 hours, because of communication and motivation losses,

the daily contribution by the average employee to the project

will be less than 8 man-hours. For example, if the

communication and motivation losses amount to a 4 man-hour

loss per day (for the average employee) i.e., half the

nominal 8 man-hour value, then the value of the multiplier

would be a 0.5.

The effects of communication and motivation are

multiplicative. Motivation factors first determine the

fraction of a man-day devoted to project work. This fraction

will usually have a value less than 1, since time is often

lost on personal matters, coffee-breaks, and other

miscellaneous non-project related activities. Communication

losses refer to project-type communication losses, and are

thus formulated as a fraction of "project hours" i.e., the

hours devoted to project work, hence the multiplicative

formulation of the two components of productivity loss. The

163

detailed formulation of the effects of both communication and

motivation losses on productivity are shown in Figure III.10.

In considering the effects of motivation losses on

productivity we need to make the same distinction we made

while formulating the "potential productivity" structure,

that is, between those factors that would remain constant

during a single project (while possibly varying between

projects and between organizations) and those that could

change throughout the life of the single project. A

reference back to our review of the literature on motivation

(in Chapter II) would indicate that most of the motivational

factors identified and studied e.g., possibility for growth,

advancement, responsibility, salary, company policy and

administration, ... etc., are of the former variety i.e.,

factors that tend to characterize the overall organizal

setting and climate. Such invariant factors would therefore

be "implicitly" incorporated within the definition of the

potential productivity parameters.

"Another motivation approach which is particularly

appropriate to the data processing area is goal setting"

(Bartol and Martin, 1982). The authors further suggest that

project goals and schedules can play a significant

motivational role throughout the life of a software

development project.

164

Boehm (1981) went a step further and provided the means

to "operationalize" this idea. He suggests that the

motivational role of schedule pressures and project deadlines

is to expand or contract the project members' "slack time."

The slack time being the fraction of project time lost on

off-project activities, e.g., coffee-breaks, personal

business, non-project communication, ... etc.

The motivation mechanism in the model is designed to

capture this motivational impact of schedule pressures on

"slack time." That is why, motivation losses are formulated,

as indicated above, in terms of man-hour losses.

In the absence of schedule pressures, which can be

either positive (i.e., when the project.is perceived to be

behind schedule) or negative (i.e., when the project is

perceived to be ahead of schedule), the fraction of daily

hours allocated to project-related work by the average

full-time team member is defined by the parameter "Nominal

Fraction of a Man-Day on Project." In designating a value

for this parameter, we were able to draw upon the experiences

of our interviewees as well as that of a large number of

authors. And we found that most of the estimates were

clustered within the 50-70% range, e.g., 50% (Brooks, 1978)

(Nichols, 25), 50-60% (Gehring and Pooch, 1977) (Pooch and

Gehring, 1980), 60% (Basili and Zelkowitz, 1979), and 70%

(Boehm, 1981). In addition, Stalnaker (1968) reported on the

165

results of a large study that investigated how software

professionals utilize their time. The findings indicated, on

the basis of over 7000 observations of a group of production

programmers, that 35% of the time was lost on "Personal

activities," "being away or out," and other "miscellaneous"

non-project related activities. Furthermore, within the

remaining 65% of the available working time, there were

further losses e.g., time spent on mail, company business,

... etc.

On the basis of the above findings, the value of the

parameter "Nominal Fraction of a Man-Day on Project" was set

to 60% i.e., in the absence of schedule pressures, a

full-time employee would allocate, on the average,

0.6 X 8 = 4.8 hours to the project (assuming an 8-hour day).

Under these nominal conditions, therefore, the "contribution"

of motivation losses to the "Multiplier to Productivity due

to Motivation and Communication Losses" amounts, in effect,

to a 40% cut in potential productivity.

The loss in productivity due to motivational factors,

does not, of course, remain constant at the 40% level

throughout the life of the project. The motivational effects

of schedule pressures can push the "Actual Fraction of a

Man--Day on Project" to both higher (under positive schedule

pressure) as well as lower (under negative schedule pressure)

values i.e., leading to motivation losses that would be lower

166

than the 40% level in the former case, but higher in the

latter.

As shown in Figure 'III.10, the "Actual Fraction of a

Man-Day on Project" is formulated in the model as a level

variable. Its value is set, at the initiation of the

project, to the value of "Nominal Fraction of a Man-Day on

Project" i.e., at 60%. And it maintains that nominal value

at the absence of any schedule pressures. To see how

schedule pressures influence the "Actual Fraction of a

Man-Day on Project," let us first consider the effects of

positive schedule pressures. /

Schedule pressure was previously defined as,

Schedule Pressure = (TMDPSN-MDRM)/MDRM

where,

TMDPSN = Total Effort perceived to be

still needed to complete the

project (Man-Days)

MDRM = Total Effort remaining in

current plan (Man-Days)

Positive schedule pressures arise whenever the project

is perceived to be behind schedule. That is, whenever the

total effort still needed to complete the project is

perceived to be greater than the total effort actually

remaining (i.e., when the numerator in the schedule pressure

167

equation is positive). Such a difference represents a

perceived shortage in man-days on the project.

When confronted with such a situation, software

developers tend to work harder, i.e., allocate more man-hours

to the project, in an attempt to compensate for the perceived

shortage and bring the project back on schedule (Larkin)

(Ibrahim, 1978) (McGowan, 3) (Babich, 9) (Lombardi, 16)

(Nichols, 18) (Sheldon, 19) (Chan, 20) (Hisamune, 21). In

one experiment, Boehm (1981) found that the number of

man-hours increases by as much as 100%. And he asserts that

most of the gains are achieved by "reallocating (i.e.,

compressing) peoples' slack time." In other words, under

schedule pressure, people tend to spend less time on

off-project activities such as personal business and

non-project communication. This then decreases the man-hours

lost per man-day, while increasing the daily man-hours

allocated to the project.

Recall that the value of the "Nominal Fraction of a

Man-Day on Project" was set to 60%, which translate into 4.8

hours of project work per man-day. This would seem to

indicate that, at most, another 3.2 hours per man-day can be

gained under schedule pressure (assuming an 8-hour day),

i.e., a 67% increase. And since it is quite unlikely that

people would in fact allocate every minute of their 8-hour

working day to project work, the attainable increase will be

168

even less than 67%. How then could we explain the 100%

increase reported by Boehm?

A 100% increase is attainable because workers, in

addition to partially compressing their slack time, may also

work overtime hours. For example, by working 12 hours a day

at 80% efficiency, a team member would be allocating 9.6

hours to the project i.e., double the nominal 4.8 hours.

In fact, by further compressing the slack time (say to

10 or 15%) and/or increasing the overtime hours, an increase

of more than 100% could be achieved. But this would cause

actual productivity to be larger than potential productivity,

which by definition should not be possible. That is, by the

current definitions. To accomodate this situation, we,

therefore, amend the definition of potential productivity to

be "the level of productivity that will be attained if the

individual or group makes the best possible use of its

resources under regular working conditions," and define

"regular" to exclude overtime working conditions.

To recapitulate, when a project is perceived to be

behind schedule, people tend to work harder to bring it back

on schedule. They do that by compressing their slack time

and/or working over-time, and thus allocating more man-hours

to the project. But what if such a situation persists ...

would workers be willing to work harder indefinitely? The

169

answer, according to our interviewees, was overwhelmingly no

[(McGowan, 3), (Babich, 9), (Lombardi, 16), (Nichols, 18),

(Sheldon, 19), (Chan, 20), and (Hisamune, 21)]. There is, it

was indicated, a threshold on how long employees would be

willing to work at an "above-normal" rate.

We refer now to Figure III.10. to explain how the above

set of findings is implemented in the model.

When the project is perceived to be behind schedule

i.e., when the total effort still needed to complete the

project is perceived to be greater than the total effort

actually remaining in the project's plan, two factors

determine the level to which the "Actual Fraction of Man-day

on Project" is boosted. The first is the value of the

"Perceived Shortage in Man-days" i.e., the value of the

difference between what is needed and what is remaining. If

this difference is below some "threshold," then it will all

be handled, i.e., the employees will boost the hours they

allocate to the project (e.g., by compressing their slack

time) to what they perceive is necessary to handle all the

"Perceived Shortage in Man-days." (How they determine this

will be explained shortly.) The 'second factor is the

"Maximum Shortage in Man-Days to be Handled," and it

constitutes the "threshold" mentioned above. Thus, if the

"Perceived Shortage in Man-Days" is greater than the maximum

which the employees are willing to handle, we will assume

170

that they would be motivated to work harder to handle that

maximum value, while arranging with management to extend the

schedule so as to handle what exceeds the "Maximum Shortage

in Man-Days to be handled." (Such extension to the schedule

will be explained in the Planning Section.)

As employees work harder to handle shortages in

man-days, their tolerence for working harder decreases i.e.,

the value of the "Maximum Shortage in Man-Days to be handled"

decreases. For if this were not true, e.g., if this maximum

value was a constant parameter, then a persistent man-days

shortage at moderate levels (i.e., at levels below the

maximum value) would lead to an above normal work rate

throughout the life of the project. And this, would

contradict our finding that "there is a threshold on how long

employees would be willing to work at above normal rate."

At any point in the project, the value of the "Maximum

Shortage in Man-Days to be handled" is determined by the

product of three variables, the "Overwork Duration

Threshold," the "Full-Time Equivalent Workforce," and the

"Maximum Boost in Man-Hours." For example, if at a point in

time the workforce of 10 full-time people on the project is

willing to work at an above normal rate for a maximum of 10

days, and they figure that they can boost their work rate by

as much as 100% (e.g., allocate 9.6 hours per man-day to the

project instead of the normal 4.8 hours) then they would

171

conclude that during this 10 day period it is possible to

handle 10 X 10 X 1 = 100 Man-days worth of backlogged work,

over and above the regular work planned for that period.

In the model, the value of the "Maximum Boost in

Man-Hours" is set, as in the exampld above, at a value of

100% (Lombardi, 16) (Nichols, 27).

Estimates by the interviewees for a nominal value for

the "Overwork Duration Threshold" ranged from 8 weeks (Chan,

20) to 12 weeks (Nichols, 27). In the model we set the

nominal value for the "Overwork Duration Threshold" to 50

working days (i.e., 10 weeks). Once people start working

harder, their "Overwork Duration Threshold," which at any

point in time would represent the maximum remaining duration

for which they would be willing to continue working harder,

would decrease below the nominal value. Thus the "Overwork

Duration Threshold" is formulated as a nominal value (i.e.,

of 10 weeks) that is adjusted downwards by.a multiplier. One

option for the multiplier was to have it be a function of the

calendar time during which the project members, have been

working harder. This option was rejected, though, because it

would not differentiate between say a ten day period during

which the staff were working 10% harder, and another ten day

period in which they worked 100% harder. We wanted the

formulation of the multiplier to induce a cut in the

"Overwork Duration Threshold" that would be greater at the

172

end of the latter case.

This was accomplished by formulating the "Multiplier to

the Overwork Duration Threshold due to Exhaustion." Where

"Exhaustion" is simply a level whose value reflects the level

of exhaustion of the workforce due to overwork. The rate at

which this level increases needs, therefore, to be a function

of some measure of overwork. Such a function is shown in

Figure 111.12.

Before interpreting Figure III.12., let us first refresh

our memories about some assumptions we've made so far.

First, we are assuming that a full time employee allocates,

on the average, 60% of his or her time to the project (i.e.,

NFMDPJ = 0.6), which for an 8-hour day amounts to 4.8 hours.

Under schedule pressure, more time will be allocated to the

project (i.e., AFMDPJ > 0.6). This would be achieved by

first compressing the slack time, and then if needed, by

working overtime. Furthermore, we are also assuming that

there is a "Maximum (Possible) Boost in Man-Hours" of 100%

i.e., AFMDPJ can attain a maximum value of 0.6 X 2 = 1.2.

The first thing to note about Figure 111.12. is that

when AFMDPJ is less than or equal to NFMDPJ (i.e., when X is

greater than 1) the value of RIEXHL is zero. That is, when

people are working at their normal pace (or slower) there

will be no rise in their exhaustion level. This must be so

173

Y= RIEXHL

-.5 0 .11 - AFMDPJ
1 - NFMDPJ

Where,

AFMDPJ=Actual Fraction of a Man-Day on Project

NFMDPJ=Nominal Fraction of a Man-Day on Project

RIEXHL=Rate of Increase in Exhaustion Level

Figure IlL. 12.

3

2

0

174

by definition, since the "Exhaustion level" in the model is

defined to be that of exhaustion due to overwork.

Second, note that the exhaustion rate is really a

function of (1-AFMDPJ), since the denominator of (X) i.e.,

(I-NFMDPJ), is a constant term. Also note that the value of

(1-AFMDPJ) is a measure of the average "Slack Time." What we

are saying, therefore, is that the exhaustion rate of the

workforce is a function of the. compression in the average

slack time. And the reason is this: the exhaustion of

working harder is mostly "psychological," rather than

"physiological." That is, pe'ople enjoy their slack time

(e.g., coffee breaks, social communications, personal

business, ... etc.), and they would not tolerate prolonged

deprivation of such "breathers." Thus a compressed slack

time exhausts them in the sense that it cuts into their

tolerance level for continued hard work since that would mean

a continued "deprivation" of their slack time.

However, when the value of (1-AFDPRD) approaches zero

and moves into negative territory, people would, not only be

compressing their slack time, but they would in addition be

working overtime. At those values, in addition to the

psychological component to exhaustion, there will also be

"physiological" exhaustion. And that is why, the curve

increases at a faster rate for negative.values of (X).

175

The effects Of exhaustion on the "Overwork Duration

Threshold" is formulated as the "Multiplier to the Overwork

Duration Threshold due to Exhuastion." As we explained

previously, the nominal value of the threshold is 50 days.

And as people start working harder, i.e., at a rate above

their normal rate, that threshold is cut down, until possibly

it reaches a value of zero. But notice that setting the

nominal value of the "Overwork Duration Threshold" to 50 days

is not enough. It is also necessary to specify at what level

of overwork, since people might be willing to work for 50

days at a rate 50% above their normal rate, while not willing

to do so at a 100% increase. We thus amend our definition of

the nominal value or the "Overwork Duration Threshold" to be

50 working days a a rate of 8 hours per man-day (i.e., when

AFMDPJ is approxim tely 1). Notice that when AFMDPJ is

approximately 1, RIEXML in Figure 111.12. would be also 1

i.e., at such a work rate, each man-day contributes 1 to the

Exhaustion level. And after 50 such days, the Exhaustion

level reaches a level of 50, which should be enough to drive

the "Overwork Duration Threshold" to zero. That level- of

Exhaustion is terlned the "Maximum Tolerable Exhaustion"

level. That leve of exhaustion could of course be reached

in less than a 50 dly duration if people are working even

harder (i.e., if AFMDPJ is greater than 1), and conversely,

if the work rate is less than 8-hours per man-day, it would

be reached in more than 50 days.. But once reached, it drives

the "Overwork D ration Threshold" to zero. This is

176

accomplished by the formulation of

Overwork Duration Threshold due

Figure 111.13.

the "Multiplier to the

to Exhaustion," shown in

Once a period of overwork comes to an end, either

because the threshold has been reached and/or schedule

pressures cease, and the workforce returns to a normal work

rate (i.e,, when AFMDPJ = NFMDPJ), the workforce's

"Exhaustion level" depletes. The "Rate of Depletion of the

Exhaustion level" is modeled as a first order exponential

delay, with a time delay equal to 4 weeks. The 4 weeks delay

time was chosen on the basis of discussion with (Lombardi,

23) and (Nichols, 25).

During the "de-exhausting" period, the workforce remains

unwilling to "re-overwork" (Lombardi, 23) (Nichols, 25).

This is achieved in the model through the formulation of the

variable "Willingness to Overwork." This is a SWITCH

variable that can attain one of two values, namely, zero or

one, and is multiplied into the formulation of the "Maximum

Shortage in Man-Days to be Handled." Whenever the maximum

exhaustion level is reached and the "Overwork Duration

Threshold" is driven down to zero, the "Willingness to

Overwork" variable is switched to zero. The "Willingness to

Overwork" variable will remain at that zero level until the

workforce is "de-exhausted" i.e., until the "Exhaustion

Level" is depleted. And as long as the "Willingness to

177

Multiplier to the Overwork Duration
Threshold Due to Exhaustion

/I

0 .2 .4 .6 .8 1.0 Exhaustion Level
Max. Tolerable Exhaustion

Figure Il. 13

1.0

.8

.6

.4

.2

0

178

Overwork" is zero, the "Maximum Shortage in Man-Days to be

Handled" will also be zero i.e., the worforce remains

unwilling to handle any (further) man-day shortages through

overwork. When the "Exhaustion Level" is eventually

depleted, the "Willingness t. Overwork" is switched back to a

value of one i.e., the workforce would again be willing to

overwork (if and when the need arises).

Recall that determining the value of the "Overwork

Duration Threshold" was necessary in order to determine the

value of the "Maximum Shortage in Man-days to be Handled."

The latter, in turn, is necessary to determine the value to

which the "Actual Fraction of Man-days on Project" is

boosted. When the project is perceived to be behind schedule

i.e., when the total effort still needed to complete the

project is perceived to be greater than the total effort

actually remaining in the project's plan, indicating a

shortage in man-days, the staff members would then seek to

boost their work rate to what they perceive is necessary to

handle either all the "Perceived Shortage in Man-Days" or the

"Maximum Shortage in Man-Days to be Handled," which ever is

smaller. The smaller of the two values would then constitute

the "Handled Man-Days." The "% Boost in Work Rate Sought" to

handle these man-days is determined by dividing the value of

"Handled Man-Days" by the product of "Full-Time Equivalent

Workforce" and "Overwork Duration Threshold." For example,

if 100 man-days are to be handled by a 10 person team in 50

179

days, the % Boost would be 100/(10X50) = 0.2. That is the

workers would figure that by increasing their work rate by

20% they can handle the 100 man-days of backlogged work in

addition to the regular work planned for the 50 day period.

Notice our assumption that the backlogged work will always be

stretched over the full period defined by the "Overwork

Duration Threshold." This should be a good approximation in

cases when the value of "Handled Man-Days" is close to the

"Maximum Shortage in Man-Days to be handled." When the

"Handled Man-Days" is much smaller, though, the team might

decide to handle it in a shorter "spurt" of overwork e.g.,

"to get it over with." However, we will simplify and use a

single formulation for all cases (i.e., one in which the

backlog is stretched over the "Overwork Duration Threshold"

period).

Once the "% Boost in Work Rate Sought" is determined, it

defines a work rate goal in terms of the man-hours to be

allocated to the project. Such a goal is not achieved

instantaneously, since workers take time to adjust their work

habits. There is, therefore, a delay before the "Actual

Fraction of Man-Days on Project", in fact attains the level

sought. The average delay is set in the model to 2 weeks.

So far we have been discussing the effects of positive

schedule pressures on productivity. To both complete and

conclude this discussion on the effects of motivational

180

factors on productivity, we turn our attention next to

(probably rare) situations in which the project is per!

to be ahead of schedule i.e., the case of negative scl

pressures.

those

:eived

iedule

Such a situation exists whenever the total maI-aays

remaining in the project's plan exceed what the p oject

members perceive to be needed to complete the project. This

could happen, for example, if management over-estimates a

project's scope. The question we are interested in addessing

here is what effects would a perception of such "excelsses"

have on productivity, if any?

Recall, in the case of positive schedule pressures, the

shortage in man-days was handled first by adjustmen:s in

productivity and then if needed by additional adjustment; in

the schedule. Analogous behavior occurs in the neg tive

schedule pressure situation. That is, when project menbers

perceive some "excesses" in the schedule parts, if not all,

of those excesses will be "absorbed" by the workers, in the

form of "under-work," before downward adjustments are made in

the project's schedule (Ibrahim, 1978) (Boehm, 1381)

(Griffin, 6) (Babich, 9) (Lombardi, 16) (Sheldon, 19). For

example, paraphrasing Boehm (1981):

. if the software cost or schedule estimate !for
meeting a milestone is higher than the ideal,
Parkinson's Law indicates that people will use the extra
time for ... personal activities, catching up on :he

181

mail, etc.

Again, analogous to the positive schedule pressure

situation where there was a limit on how much backlog could

be handled, there are limits on how much "fat" employees

would be willing, or allowed, to absorb. And beyond those

limits, excesses would be translated into cuts in the

project's schedule.

The above ideas are captured in the table function of

Figure 111.14. The dashed 450 line represents full

disclosure of schedule excesses, and thus the complete

translation of any excesses into schedule cuts. A more

realistic project behavior is the one depicted by the Solid

Curve. At the upper right corner excesses are small i.e.,

"Man-Days Perceived Still Needed" is slightly less than

"Man-Days Remaining" in the plan. Under such conditions most

of the slack will be absorbed (not reported) i.e., reports

will show that the project is on (not ahead of) schedule

i.e., "Man-Days Reported Still Needed" will be equal to

"Man-Days Remaining." As we move towards conditions of

larger and larger.excesses those large excesses will be only

partially absorbed, and the balance translated into cuts in

the project's schedule.

Absorbed excesses will mean, as was indicated above, a

larger slack time, which in turn means a lower "Actual

181.1

Man-Days Reported Still Needed

Man-Days Remaining

1.0

.8

.6

.4

.2

0
0 .2 .4 .6 .8 1.0

Man-Days Perceived Still Needed

Man-Days Remaining

Figure III. 14

182

Fraction of a Man-Day on Project." This is brought about in

the model through the same mechanism used to increase the

"Actual Fraction of a Man-Day on Project" under positive

schedule pressure, namely, through an adjustment to the value

of the variable "% Boost in work Rate Sought." In this case,

however, the % boost will be a negative value.

There are, in addition, two more differences between the

two cases. In calculating the % boost, we will assume that

the workers will stretch their absorption of the perceived

excesses over the remaining life of the project. That is,

instead of a short lived and drastic dip in their work rate,

workers are assumed to adjust to what they perceive would be

a stable, albeit comfortably lower, work rate.

Once the "% (DIP) in work rate Sought" is determined, it

defines a work rate goal in terms of the man-hours to be

allocated to the project. As in the positive schedule

pressure situation, such a goal is not achieved

instantaneously, since workers take time to adjust their work

habits. It is reasonable to expect, though, that the delay

to adjust one's habits to a more comfortable state would be a

smaller delay than that of adjusting to a less comfortable

state. We, therefore, will assume that the average delay in

adjusting to a "% Dip" is 7.5 days i.e., 25% lower than that

of adjusting.to a "% Boost" under positive schedule pressure.

183

The value of the "Actual Fraction of a Man-Day on

Project," once determined under various schedule pressure

conditions, becomes an important determinant of the actual

software development productivity. It represents, as

indicated above, the losses in productivity due to

motivational factors. It is not the only determinant,

though. Additional losses in productivity are incurred due

to the communication overhead.

As is shown in Figure III.10., "Software Development

Productivity" is formulated as the product of "Potential

Productivity" and the "Multiplier to Productivity Due to

Communication and Motivation Losses." The multiplier

represents the average productive fraction of a Man-Day,

i.e., that fraction of the "Actual Fraction of a Man-Days on

Project" that remains after accounting for communication

overhead. For example, if the "Actual Fraction of a Man-Day

on Project" is 0.6 i.e., a full-time -employee allocates on

the average .6 X 8 = 4.8 hours to the project, and if the

project communication overhead consumes 25% of that, then the

average productive fraction of a Man-Day would be

0.75 X 0.6 = 0.45 i.e., 3.6 hours.

What is communication overhead? There are those who

might argue that human communication is an essential

component of any software development effort, and is,

therefore, actually part of the "job" ... not an overhead.

184

Even though human communication is indeed an essential (and

even useful) component of software development, it does

constitute an overhead. To see why, let us examine what

happens when a software system rather than being developed by

a team is instead developed by one person.

Two things usually happen. First, time lost in human

communication is avoided. When a team is developing the

software,

0.. it is necessary that each individual spend part of
his time communicating with each of the other team
members. For example, the designer must confer with the
coder to resolve any questions the coder may have about
the design; both of these must talk to the individual
testing the code to give him the benefit of their
experience with the program; each of these must talk to
the documentor to assure that the documentation is
proper and complete; and so on (Tausworthe, 1977).

Such human communication is, obviously, unnecessary when

the software is developed by a single person.

Second, the amount of work itself usually increases when

software is developed by a team, vis-a-vis a single person.

This increase in the work load takes two forms. The first,

and obvious one, is that the amount of - documentation

increases e.g., in a one-person environment the programmer

could get away with sketchy notes to merely augment his

"mental documentation" (Tausworthe, 1977). The second less

obvious increase is in the form of an increase in the size of

185

the software product itself (Gagliardi, 1980) (Conway, 1968).

For example, when a program is developed by two people

instead of one, it might be designed as a two-module program

instead of a single-module program necessitating an

inter-module interface that has to be agreed upon and

developed.

On the basis of the above observations, we can now

answer the question we posed above; namely, "what is

communication overhead?" The answer: It is the drop in the

productivity of the average team member below his nominal

productivity due to team communication. Where communication

includes verbal communication, documentation, and any

additional workload e.g., due to interfaces.

It is widely held that communication overhead increases

in proportion to n2 , where n is the size of the team (Brooks,

1978) (Shooman, 1983) (Mills, 1976) (Zelkowitz, 1978) (Scott

and Simmons, 1975). Such a relationship is shown in the

table function of Figure 111.15. Thus, communication

overhead, as is formulated in the model, is zero when the

software is developed by one person, but as the workforce

size (n) increases, communication overhead increases in

proportion to n2. For example, at n=30, the communication

overhead is approximately 50%. This means that if the

"Actual Fraction of a Man-Day on Project" is 0.6, i.e., 4.8

hours are allocated daily, on the average, by the full-time

185.1

Communication Overhead %

0 10 20 30
Total Workforce

Figure II. 15

100

80

60

40

20

0 0

186

team member, 50% of these, or 2.4 hours, will be effectively

lost due to communication overhead. In other words, the

"Multiplier to Productivity Due to Motivation and

Communication Losses" would be 0.6X0.5=0.3. Which means that

"Software Development Productivity" would be 30% of the value

of "Potential Productivity." For example, if the latter is 1

Task/Man-Day, then "Software Development Productivity" would

be 0.3 Tasks/Man-Day (after accounting for motivation and

communication losses).

(C) Quality Assuran

The developmen
production a,
interjection
Errors may b
process where
be erroneousl1
during the lati
these objectil
factor for sofl
the manner tha
order to ach
contain a minii
intentions as
the intentions
to perform w
accompanied by
1979).

Software qualil

and complementary

assuring that the

product. This invol

coherent, complete,

requirements. Ther

187

:e and Rework:

of software systems involves a series of
:tivities where the opportunities for
)f human fallibilities are enormous.
.gin to occur at the very inception of the
:he objectives of the software system may

or imperfectly specified, as well as
!r design and development stages where
yes are mechanized. The basic quality
:ware is that it performs its functions in
was intended by its architects. In

.eve this quality, the final product must
ium of mistakes in implementing their
well as being void of misconception about
themselves. Because of human inability
.th perfection, software development is
a quality assurance activity (Deutsch,

:y assurance is approached by two distinct

methodologies. The first is that of

quality is initially built into the

ves emphasis on the early generation of a

unambiguous, and nonconflicting set of

as the product is designed and coded,

review and testing f the product, the second quality tool,

are encountered (Deutsch, 1979).

In this secti n we will discuss the generation,

detection, and cor ection of errors during the development

phase. As we ind cated in Section 111.3. (on "Model

Boundary") the devel ment phase includes both the design and

coding activities, ut excludes the requirements phase. It

was also indicated t en, that we will be assuming that

__

188

software design commences (within the model's boundary) at

the "successful completion" of a software requirements review

(outside the model's boundary), and that there would be no

subsequent changes or modifications in the system's

requirements.

In this section, therefore, our concern is with the

generation of design and coding errors, and with the second

quality tool above, namely, the review and testing of the

product.

Errors come in many different, "flavors." Summarized

below are what Nelson (1974) delineated and described as the

most prominent software design and coding errors:

* Misinterpretation of specifications

* Errors in developing the logic to solve the problem

* Algorithm approximations that may provide insufficient

accuracy or erroneous results for certain input

variables

* Data structure defects either in the data structure

design specification or in the implementation of the

specification

* Singular or critical input values to a formula that

may yield an unexpected result not accounted for in the

program code

* Misinterpretation of language constructions by the

189

programmer

In a system dynamics model such as ours, it is quite

feasible, from a technical point of.view, to disaggregate a

variable such as errors into different error types. However,

it is not always necessary or useful.

There are two (and only two) considerations for
reformulating a level (variable) as a sequence of two or
more levels: policy analysis and model behavior.
First, is the disaggregation required in order for the
model to be able to address particular policy
issues? ...
The second reason for disaggregating a level involves
the dynamics of the system. Does the disaggregation of
a level into two or more levels have the potential to
change significantly the behavior of the model? ...
The final arbiter should be model-based policy analysis.
If the change in behavior has the potential to alter
policy conclusions, then the disaggregation is essential
(Richardson and Pugh, 1981).

Since our model's policy focus is on the managerial-type

policies of software development, as opposed to say the

technical issues of software reliability, an explicit

disaggregation of errors into more than one type is, on the

basis of the policy analysis criterion, clearly unnecessary.

On the other hand, there are significant behavioral

differences among error types that had to be accounted for.

For example, findings in the software engineering literature

indicate that errors are generated at different rates at

different points in the life cycle e.g., design errors, in

the earlier design phase, are generated at a higher rate than

are coding errors (Martin, 1982). Such a factor is obviously

190

of dynamic significance. For example, it could have a direct

bearing on the allocation of the manpower resource.

Such differences will be implicitly captured in the

model. That is, while errors will be formulated as a single

type, "Errors," the generation, detection, and correction

characteristics of errors will be allowed to vary throughout

the development life cycle. For example "Errors" will be

generated at a higher rate in the earlier portions of the

life cycle (as design errors do) and they will, on the

average, be "harder" to detect and correct (as design errors

are).

Figure 111.16. depicts how the generation, detection,

and correction of errors are formulated in the model.

What factors affect the "Error Generation Rate" in a

software project? There are two sets of factors. The first

set includes: organizational factors e.g., the use of

structured techniques (Alberts, 1976), the quality of the

staff (Belford et al, 1977), ... etc., and project-type

factors (Shooman, 1983) e.g., complexity, size of system

(small, medium, or large), language, ... etc. Notice that

even though such factors can differ from organization to

organization and from project to project, they do, however,

remain invariant during the life of a single project. The

cumulative effect of all such factors can, therefore, be

191

(NNN N

E

NRWMPE
NOMINAL
REWORK
MANPOWER
NEEDED PER
ERROR

MPDMCL
MULTIPLIER TO
PRODUCTIVITY
DUE TO COMM. 8
MOTIV. LOSSES

Figure III. 1

192

captured in the model in the form of a single nominal

variable, namely, the "Nominal Number of Errors Committed per

Task." The nominal error generation rate would then simply

be the product of the "Software Development Rate," i.e., how

much tasks are developed per unit of time, and that "Nominal

Number of Errors Committed per Task." However, since this

single nominal variable is modeling the generation of

different error types (within the single project that is

within a particular organization) it is not formulated as a

constant number, but rather as a variable that changes over

the project's life,

The formulation of the "Nominal Number of Errors

Committed per Task" is, therefore, serving two purposes:

First, its shape over the project's life reflects our own

modeling assumptions about the relative generation rates of

different error types throughout the life of a project.

These assumptions, as all others in the model, are expected

to apply to all project situations to which the model is

applied. Hence, this shape will always remain the same, even

when modeling different project situations. The second

purpose of the formulation, namely, its absolute value,

reflects the different error generation characteristics of

different project situations (i.e., the software product's

characteristics as well as those of the organization in which

it is developed). This, obviously, would generally change

when modeling different projects.

193

The formulation of the "Nominal Number of Errors

Committed per Task" used in the base model is shown in Figure

III.17. Notice that the number of errors is defined in terms

of KDSI i.e., "thousand delivered source instructions" rather

than "Tasks." Both definitions are, of course, equivalent

since a "Task" is itself defined in terms of DSI. However,

it is more convenient to represent error generation in terms

of KDSI since most published data on error rates are in terms

of KDSI.

The error rates range in value from 25 errors/KDSI to

12.5 errors/KDSI, with an average value for the project of

approximately 19 errors/KDSI. [Published error rates in the

literature include: 10-20 errors/KDSI in (Thayer et al,

1978), 15-25 errors/KDSI in (Boehm, 1981), 30-35 errors/KDSI

in (Jones, 1978).]

As we mentioned above, the shape of the curve over the

project's life reflects the relative generation rates of

design-type errors versus coding-type errors. Thus, before

we can specify the shape of the curve we need first to

delineate design versus coding activities within the

development life cycle. We will assume in the model that the

development phase will be equally divided between design

(including architectural and detailed design) and coding

activities. [This approximates data reported by (Boehm,

1981), (Gaffnery, 1982), and (Zelkowitz, 1978).] The diagram

194

at the bottom of Figure 111.16. is meant to indicate that

the transition between the two activities is not abrupt i.e.,

there will be a period over which both activities will

overlap (McKeen, 1981) (Thibodeau and Dodson, 1980).

Estimates for relative generation rates of design versus

coding errors were provided by several authors. For example,

Design : Coding Errors Reference

3.8 : 1 (Martin, 1982)
2.0 : 1 (Alberts, 1976)
1.8 : 1 (Jones, 1981)
1.7 : 1 (Boehm, 1981)
1.6 : 1 (Thayer et al, 1978)

As shown in Figure 111.17., the ratio assumed in the

model achieves a maximum value of 2:1 i.e., at the beginning

of design the nominal number of errors committed is 25

errors/KDSI, while towards the end of coding it drops to 12.5

errors/KDSI. The average rates for the design and coding

phases are approximately 23 and 14.5 errors/KDSI respectively

i.e., a 1.6:1 ratio.

The formulation of the nominal error generation rate

captures, as we mentioned above, the cumulative effect of one

set of factors effecting error generation, namely, the

organizational and project-type factors. Such factors remain

invariant during the life of a single project. There is a

second set of factors, however, which do play a dynamic role

during software development. These include the workforce-mix

and schedule pressures.

194.1

Nominal Number of Errors
Committed per KDSI

Job Worked

Figure IlL 17

40

30

20

10

0

195

As was stated in the discussion on Human Resource

Management, the workforce in the model is disaggregated into

two types of employees, newly hired and experienced. It was

also indicated that new hires pass through an "Orientation

Phase" during which they are less than fully productive. The

orientation process brings them "up to speed' through

training that covers both the social as well as the technical

environments of the project. For example, on the technical

side, newly hired project numbers "often require considerable

training to become familiar with an organization's unique mix

of hardware, software packages, programming techniques,

project methodologies, and so on" (Winrow, 1982).

While not yet fully trained (during this orientation

period) newly hired employees are, not only less productive

on the average, but also more error-prone than their

experienced counter-parts (Endres, 1975) (Myers, 1976). We

will assume in the model that a newly hired employee is twice

as error-prone as an experienced employee would be (Chan, 20)

(Nichlos, 25). To model the effect 'of this factor on error

generation we formulate the "Multiplier to Error Generation

due to Workforce Mix" as a function of the "% of Workforce

that is Experienced." When the workforce value is comprised

of only experienced staff, the value of the multiplier is set

to 1 i.e., it would have a neutral effect on the nominal

error generation rate. In other words, what we are defining

to be nominal, is defined with respect to the average error

196

generation rate of the experienced-type employee. And as the

fraction of new hires increases, the multiplier increases in

a linear fashion, as shown in Figure III.18., until it

attains a maximum value of 2 , if the workforce is comprised

of only new hires.

The second factor that can drive the error generation up

is schedule pressure (Putman and Fitzsimmons, 1979) (Mills,

1983) (Radice, 1982) (James, 1) .(Riccardi, 5) (Doyle, 7)

(Nichols, 18) (Sheldon, 19) (Chan, 20).

People under time pressure don't work better, they just
work faster...
In the struggle to deliver any software at all, the
first casualty has been consideration of the quality of
the software delivered. (DeMarco, 1982).

Two explanations have been proposed in the literature

for why schedule pressures cause more errors to be generated.

First, Shneiderman (1980) suggests that schedule pressures

increase the "anxiety levels" of programmers. A high anxiety

level, then

interferes (with performance),- probably by
reducing the size of the short-term memory available.
When programmers become more anxious as deadlines
approach, they (therefore) tend to make even more
errors...

Another explanation was provided by Thibodeau and Dodson

(1980). They suggest that schedule pressures often result in

the "Overlapping of activities that would have been

accomplished better sequentially." and this can

197

Multiplier to Error Generation

0 .2 .4 .6 .8 1.0
% of Workforce

that is Experienced

Figure Iil. 18

2.0

1.8

1.6

1.4

1.2

1.0

198

significantly increase the chance of errors. For example,

When coding has begun before the completion of design,
the designers are required to communicate their results
to the programmers in a raw, unqualified state, hence
significantly increasing the chance of design errors...
This is not to suggest that systems cannot be developed
with overlapping activities. Many systems have distinct
parts that can be coded before the entire design is
completed ... We are concerned here with the situation
where the press of the development schedule or the
slippage of preceding activities results in overlapping
activities that would have been accomplished -better
sequentially.

The effect of schedule pressure on error generation is

formulated in the model as shown in Figure III.19. Under

nominal conditions there would be no schedule pressures, and

the multiplier assumes a value of 1. As schedule pressures

increase, the multiplier increases exponentially leading to

higher error-generation rates. As shown in the Figure,

error-generation can increase by as much as 50% under severe

schedule pressures. Notice also, that we are assuming that

errors will be generated below the nominal rate under the

"relaxed" conditions of negative schedule pressures.

Thus, as software tasks are developed, errors are

committed within those tasks. Errors within a developed task

remain as "Potentially Detectable Errors" until the task is

reviewed and tested, at which point some of the errors do get

detected, and those are then reworked. Usually, however, not

all errors will be detected, some will "escape" and pass

undetected into the subsequent phases of software

development. In the next section we will see how those

199

1.8

1.6

1.4

1.2

1.0

+8

.6

Multiplier to Error Generation
Due to Schedule Pressure

-.4 -. 2 0 .2 .4 .6 .8 1.0
Schedule Pressure

Where, = TMDPSN - MDRM
MDRM

TMDPSN=Total Man-Days Perceived Still Needed

MDRM= Man-Days Remaining

Figure Ilt 19

200

errors are eventually "caught," albeit at a relatively high

cost.

The detection of errors is the objective of the Quality

Assurance (QA) activities. Quality Assurance is defined in

Pressman (1982) as:

(A set of activities) performed in conjunction with the
(the development of) a softwa're product to guarantee the
product meets the specified standards. These activities
reduce doubts and risks about the performance of the
product in the target environment.

Several techniques are used including walkthrouighs,

reviews, inspections, code reading (a process where code

logic and code format is scrutinized by a programmer other

than the original designer), and integration testing (Jones,

1982) '.(Daly, 1977). Not included in this activity is module

or unit testing, which is commonly considered to be part of

the coding process (McKeen, 1979).

The "QA Rate," of Figure III.16., has a

non-characteristic type of a formulation, namely, that of a

third order delay. The "characteristic" way to formulate a

rate of doing something, e.g., the rate of developing

software or reworking errors, is as a product of the effort

allocated and its productivity. However, what we found, and

what the third order delay formulation actualizes, is that

the QA Rate is independent of the QA effort and its

productivity! What we found happening [based on discussions

201

with (Gage, 4) (Landolfi, 13) (Chan, 14) (Lombardi, 16)

(Nichols, 18)] is this: QA effort is planned and allocated,

usually in the form of a fixed schedule of periodic

group-type functions (Mitchell, 1980). For example, a 2-hour

walkthrough for the 5 members of team (A) is scheduled for

every Friday. During these periodic "QA Windows," all tasks

developed since the previous one are supposed to be

processed. And what we were surprised to find was that, in

an almost perfect realization of Parkinson's Law,

irrespective of how much tasks need to be processed within

the specified "QA Window" they almost always do. No

backlogs, therefore, develop in the QA pipeline. Even when

QA activities are relaxed or suspended because of schedule

pressure (as we indicated they might in Sector (A)), no

backlogs develop. That is, when walkthroughs are suspended

for a while on a project, the requirement for a "walkthrough"

is also suspended, not postponed (Hart, 1982).

We can propose an explanation for how and why this

happens. Since the objective of the QA activity is to detect

invisible errors, invisible that is until they are detected,

it becomes almost impossible to tell whether the QA job was

completly done (i.e., that all those invisible errors were in

fact detected). By the same token, it is as difficult to

tell that the job has not been completely done (except much

later in the life cycle). Under such circumstances it

becomes quite easy to rationalize both to oneself and to

202

management that the QA job that was possible to do, was not

insufficient. Furthermore, the QA effort that is possible to

expend (i.e., in terms of available time and effort), is

usually what is expended and not more (e.g., even if called

for due to a larger than expected workload of developed

tasks) because there seems to be no significant incentives to

do otherwise. Firstly, at the psychological level, there are

actually dis-incentives for working harder at QA, since it

only "exposes" more of one's mistakes (Weinberg, 1971). And

secondly, at the organizational level there are seldom any

reward mechanisms in place that promote quality

quality-related activites (Cooper and Fisher, 1979).

The formulation of the "QA Rate" as a third order delay,

provides, we feel, a good approximation of the "Parkinsonian"

execution of the QA activity as described above. (In Exhibit

111.5., we show how a third-order delay looks schematically,

how it is formulated mathematically, and how it behaves over

time.) That is, software tasks that are developed will

always be QAed (or considered QAed) after a certain delay,

and which is (assumed to be) independent of the QA effort

allocated. In the model, the "Average QA Delay" period is

set to 2 weeks (i.e., 10 working days) (Nichols, 25).

However, while the rate at which tasks are QAed (or

considered QAed) can proceed under QA policies and procedures

independently of the actual. QA effort allocated, the

203

(A) SCHEMATIC

,- 1
R3 I

K7%DELAYI

T is the "Average Time Delay"

LEVEL = LEVELI + LEVEL2 + LEVEL3

(B) MATHEMATICAL
FORMULATION At any time (t),

Ri(t) = LEVELi(t)/(T/3)

tLEVELi (t))= - Ri (t)

= - LEVELi(t)/(T/3)

(C) BEHAVIOR

LEVEL(O)

LEVEL

Time

EXHIBIT

I

II

III,5

204

effectiveness of QA will, obviously, depend on that effort.

That is, the amount of errors detected will be a function of

how much QA effort is allocated for error detection.

In the model (see Figure 111.16.) we define a variable

called "Potential Error Detection Rate." It represents, the

maximum number of errors that could be detected at a point in

time, and is determined by dividing the value of the QA

effort allocated by the value of the QA effort that is

needed, on the average, to detect an error. That is, if say

5 man-days are allocated per week to QA, and the "QA Manpower

Needed to Detect an Error" is, on the average, 1 man-day,

then the "Potential Error Detection Rate" would be 5 errors

per week.

What are the determinants of the "QA Manpower Needed to

Detect an Error?" First and foremost, it is a function of

error-type i.e., whether an error is a design or a coding

error. Thus, even if a project proceeds under some invariant

set of nominal conditions, the QA manpower that would be

needed, on the average to detect an error would change simply

because the errors to be detected change from design-type

errors to coding-type errors.

The value of the QA effort needed per error as a

function of the project's phase and hence of error-type i.e.,

design errors versus coding errors, are shown in Figure

205

111.20. Design-type errors are not only generated at a

higher rate (as we saw in Figure 111.16), they are also, as

Figure 111.20. indicates, more costly to detect (Myers,

1976) (Alberts, 1976) (Boehm, 1975). Alberts (1976)

estimates that design errors are 2.5 times more costly (i.e.,

to detect and correct). In the formulation of Figure

111.20., we are assuming that, on the average, a design error

is 1.6 as costly to detect as a coding error. Furthermore,

in terms of absolute values, the average detection effort per

error is 0.3 man-days. Thus, on the average it would take

approximately 2.4 man-hours (30% of an 8-hour man-day) to

detect an error. In the case of walkthroughs and

inspections, this effort would include,, not only the effort

expended during the walkthrough/inspection itself, but also

the effort expended in preparation for it (e.g., reviewing

documentation and gaining familiarity with product).

Estimates in the literature for the error detection effort

per error include: 3 man-hours (Mitchell, 1980), 2.36

man-hours (Shooman, 1983), and 0.5-1.25 man-hours

(Shneiderman, 1980).

The actual QA manpower needed to detect an error, in

addition to being a function of error-type, must also depend

on the efficiency of how people work. In our discussion on

productivity we indicated that a full-time employee's work

.day does not translate into an 8 man-hour input to the

project. Man-hours are lost on communication and other

206

ror)

0 .2 .4 .6 .8 1.0

% of Job Worked

Figure 111.20

0.6

0.4

0.2

0

207

non-project activities (e.g., personal business). These two

types of losses are captured in the "Multiplier to

Productivity Due to Communication and Motivation Losses,"

which simply represents the average productive fraction of a

man-day. In other words, if the communication and motivation

losses amount to a 4 man-hour loss per day (for the average

employee) i.e., half of the nominal 8 man-hour value, then

the value of the multiplier would be a 0.5. Under such

circumstance, the actual QA manpower needed to detect an

error becomes twice what is nominally needed. That is, if a

design error requires, under nominal conditions (i.e., under

conditions of no losses), 0.4 man-days to be detected, it

would actually require (under the above conditions)

0.4 X 2 = 0.8 man-days.

Finally, evidence suggests that "In any sizable program,

it is impossible to remove all errors" (Shooman, 1983).

Thus, even when generous effort allocations are made to QA,

it would still be unlikely that all errors will be detected

-(Boehm, 1981). One reason, for example, is that "... some

errors manifest themselves, and can be exhibited only after

system integration" (Shooman, 1983). At any point in time,

one could, therefore, view the collection of "Potentially

Detectable Errors" as constituting a hierarchy of errors, in

which some are more subtle, and therefore more expensive to

detect than others. Empirical results reported by Basili and

Weiss (1982), suggest that the distribution is pyramid like,

208

with the majority of errors requiring approximately a few

hours to detect, a few errors requiring approximately a day

to detect, and still fewer errors requiring more than a day

to detect. Notice that the results show that those few

subtle errors are an order of magnitude more expensive to

detect.

We will assume in the model, that as QA activities are

performed, the more obvious errors will be detected first.

And as these are detected, it then becomes more and more

expensive to uncover the remaining more subtle (although less

predominant) errors. This is realized in the model through

the formulation of the "Multiplier to detection Effort due to

Error Density," shown in Figure II1.21. At moderate to large

error densities, the multiplier assumes a neutral value of 1.

But as those "obvious" errors are all detected, and a few

"subtle" errors remain, the multiplier increases in an

exponential fashion, such that at a density level of 2-4

(subtle) errors per KDSI, it becomes an order of magnitude

more expensive to detect an error.

To recapitulate, the "QA Manpower Needed to Detect an

Error" is a function of error-type, work efficiency and error

density. As the value of this needed effort increases, e.g.,

due to a decrease in error density, the number of errors that

can be detected, at some level of QA effort, decreases. At

any point in time, the "Potential Error Detection Rate"

209

Multiplier to Detection Effort
Due to Error Density

0 2 4 6 8 10 12 14 16
Error Density
(Errors/KDSI)

Figure 111.2 1

50

40

30

20

10

1 0

210

(determined by dividing the value of the QA effort allocated

by the value of the "QA Manpower Needed to Detect an Error"),

represents the maximum possible number of errors that could

be detected. Because manpower allocations to QA are often

"modest," this maximum value is seldom large enough to secure

the detection of all errors generated. And even when effort

is allocated generously to QA, a few subtle errors will be so

prohibitively expensive to detect, that whatever the effort

allocated, it will not be quite enough to detect all errors.

As a result, as shown in Figure 111.16., some errors will

"escape" and pass undetected into the 'subsequent phases of

software development. In the next section we will deal with

those errors, and show how they are eventually "caught."

On the other hand, those errors that do get detected

through QA activites, are then reworked. The rework rate is

a function of how much effort is allocated to rework

activities, and the rework manpower needed per error. For

example, if the project members commit 10 man-days per week

to rework detected errors, and the "Actual Rework Manpower

Needed per Error" is, on the average, 1 man-day, then errors

will be reworked at the rate of 10 per week.

The "Actual Rework Manpower Needed per Error" has two

components. The first is the "Nominal Rework Manpower Needed

per Error." As in the case of error detection, this nominal

component is a function of error-type i.e., design versus

211

coding errors.

The values of the nominal rework effort needed per error

as a function of the project's phase, and hence of

error-type, are shown in Figure 111.22. Design-type errors,

in addition to both being generated at a higher rate and

being more costly to detect, are also more costly to rework

(Myers, 1976) (Alberts, 1976) (Boehm, McClean, and Urfrig,

1975). As the formulation of Figure 111.22. indicates, we

are assuming that, on the average, a design error is

approximately 1.5 more costly to correct than a coding error.

Under nominal conditions, a design error would require, on

the average, 0.54 man-days to be corrected, while the average

correction effort for a coding-type error is assumed to be

0.36 man-days. For the nominal 8-hour working day, these

averages translate, into 4.3 man-hours/error and 2.9

man-hours/error, respectively. These values were chosen on

the basis of the empirical results reported in (Weiss, 1979)

and (Basili and Weiss, 1981), which suggest that the average

rework effort (for all errors) is in the range of 0.25 to 1.0

man-days per error.

The actual rework man-power that would be needed to

correct an error, in addition to being a function of

error-type, must also depend on the efficiency of how people

work. That is, we need to account for the communication and

motivation losses incurred. For example, if the "Multiplier

212

er Error

0 .2 .4 .6 .8 1.0
% of Job Worked

Figure 111.22

0.6

0.4

0.2

0

213

to Productivity due to Communication and Motivation Losses,"

which represents the average productive fraction of a

man-day, is 0.5, then the actual rework manpower needed to

correct an error becomes twice what is nominally needed. A

design error that would have required under nominal

conditions (i.e., under conditions of no losses), 0.5

man-days to be corrected, would actually require (under the

above condition) 0.5 X 2 = 1 man-day.

To recapitulate, as errors are detected through the QA

activities, they are reworked. The rate at which errors are

reworked is a function of the manpower committed to the

rework activity and the rework effort needed per error. The

"Actual Rework Manpower Needed per Error" is, in turn, a

function of two things, error-type (i.e., design versus

coding errors) and work efficiency.

The reworking of software errors is not, itself, an

errorless activity:

Human tendency is to consider the "fix," or correction,
to a problem to be error-free itself. Unfortunately,
this is all too frequently untrue in the case of fixes
to errors found by inspections and by testing (Fagan,
1976).

The problem of "bad-fixes" is widely documented in the

literature (e.g., (Jones, 1978) (Shooman, 1983), (Myers,

1976), (Endres, 1975), (Fagan, 1976), and (Thayer et al,

1978)). Shooman and Natarajan (1977), suggested some of the

214

ways in which bad-fixes may be generated:

1. The correction is based upon faulty analysis, thus

complete bug removal is not accomplished.

2. The corrections of a bug may work locally only

(i.e., the global aspects of the error still remain).

3. The correction is accomplished, however, it is

accomplished by the creation of a new error.

Thus, as detected errors are reworked, some fraction of

the corrections will be bad-fixes. Unfortunately, there are

no published data on how large that fraction is. However,

there are results that indicate that bad-fixes constitute

6.5 - 10% of all errors caught at the system testing stage

(Jones, 1981) (Fries, 1977). The balance of the errors is

comprised of those errors that escape detection, through QA,

during development. If we assume that 50-60% of errors are

detected and reworked during development, and that most of

the remaining errors together with bad-fixes are later

detected at the system testing phase, then the above findings

on bad-fixes imply that between 4.5-11% of corrections will

be bad-fixes. The "% Bad-Fixes" is, therefore, set in the

model to 7.5%.

The detection and correction of bad-fixes *as well a

those errors that escape QA detection, is the topic of the

215

next section.

(D) System Testing:

We will assume that undetected errors i.e., those that

QA activities (e.g., walkthrough, inspections, code reading,

... etc.) fail to detect while the software is being

designed and coded, as well as those bad fixes created as a

result of faulty rework, will all remain undetected until the

system testing phase. Further, we will assume that all such

errors will get detected and corrected at the system testing

phase. Thus, even though in practice some errors often

remain in a software product after system testing is

completed (i.e., as the product becomes operational), e.g ,

because system testing activities fail to detect them, or

they result from bad fixes at the system testing phase, all

such errors will be excluded from our formulation. The

primary reason for their exclusion is that the generation,

detection, and correction of these errors are all issues of

maintenance of the operational system, which are, -as we

previously stated, beyond the boundary of our model and thus

the focus of this study.

The second justification for their exclusion, is that

errors that escape detection at the system testing phase are

generally a "small" fraction of all the errors handled at

that phase (Deutsch, 1979). This assertion might sound

216

surprising to many, since it is common to assume that the

maintenance activity is as costly as it is primarily because

of the costs incurred in'handling such "lingering" errors.

What empirical results have shown, however, is that

corrections of such errors consumes only a relatively small

portion of the software maintenance activity (Lientz and

Swanson, 1978). The major portion of the software

maintenance effort is, instead, devoted to software updates

(e.g., enhancements for users, adaptation to new data or

hardware, ... etc.) (Parikh and Zvegintzov, 1983).

The System Testing Sector is shown in Figure 111.23. As

shown in the figure, this sector models two sets of

processes, namely, the growth processes of the undetected

error populations and the processes of system testing, i.e.,

the detection and correction of those errors.

The population of undetected errors is comprised, as we

said, of errors that escape the detection of the QA actions

as well as those bad fixes created as a result of faulty

rework. This group of errors does not remain dormant

awaiting detection and correction at the system testing

phase. They, instead, lead an "active existence" reproducing

more and more errors in the system. For example, a design

error that remains undetected until the system testing phase

often instigates further errors in the code, user and

maintenance manuals, training material, ... etc., (Boehm,

217

1981).

In a-study by Shooman reported in McClure (1981), it was

determined that detecting and correcting a design error

during the design phase (i.e., through the QA activities) is

one-tenth the effort that would be needed to detect and

correct it later during the system testing phase because of

this additional inventory of specifications, code, user and

maintenance manuals, ... etc., that would require correction

in the later case. This 10:1 ratio was also supported by

data in Boehm (1981), but only for larger projects. For

smaller projects, the escalation in cost-to-fix was in the

range of 4:1, because, Boehm argued, "The smaller size meant

that there was a relatively smaller inventory of items to fix

in later phases."

But, besides such static estimates on cost-to-fix

escalations at different points in the software life cycle,

no data are available in the literature to describe the

dynamics of these "error-reproduction" processes. That is,

even though we do know that an undetected design error

reproduces enough errors in code, documentation, ... etc.,

to become 4 to 10 times more expensive to fix at the system

testing phase, we still do not have the data that explain

exactly how and when these reproduction processes occur.

When the dynamic relationships are not well understood

218

(that is, when theory is not well developed), as it is in

this case, then "the best one can do is attempt to imitate

the change process itself in the hope of learning more about

such relationships. Thus the model becomes an aid to theory

development" (Schultz and Sullivan, 1972). Our "proposed

theory" of the error reproduction process is depicted in

Figure 111.23.

As shown in the figure, we are assuming that errors that

escape QA detection, together with those generated due to

faulty rework, will develop into either "Active Errors" i.e.,

active in reproducing more errors, or "Passive Errors."

Because design specs are the blue prints of the system's

code, any errors in design will get translated into coding

errors. Thus, all undetected design errors should be of the

active type. As development moves into the coding stage, a

mixture of active and passive errors would be expected. If

we assume, for example, that the system is coded in a

top-down fashion, then in the early parts of the coding stage

most of the errors committed (i.e., in the high-level

modules) would be of the active type. As development

proceeds to the lower level modules, the reverse should be

true, since the errors become more and more localized in

nature. These assumptions on how the mixture of active and

passive errors changes over the project's life are realized

in the model through the formulation of the variable "%

Active Errors" shown in Figure III.24.

219

\ ••IoivIOSSES /

Figure 111.23

RATE

219.1

% Active Errors

f Job Worked

Figure 111.24

1

226

"Undetected passive errors," as Figure I.23.

illustrates, remain in a dormant state until they become

detected and corrected in the system testing phase. The

"Undetected Active Errors," on the other hand, provide a

greater cause for concern, since they reproduce more and more

errors into the system. This error reproduction process is a

continuous one that keeps "feeding" on itself, that is, an

error reproduced will itself reproduce further errors, and so

on. For example, an undetected design error could lead to

errors in the code, which in turn could lead to errors in the

system's documentation and/or user manuals. This continuous

reproduction process is formulated in the model through the

"classic" positive feedback loop in which an increase in the

"Undetected Active Errors" level leads to an increase in the

"Active Error Regeneration Rate," leading to further

increases in the level, and so on.

We now take a closer look at this positive feedback

loop. First, notice that the "Active Error Regeneration

Rate" is a function of the "Software Development Rate," since

errors can only be generated as new tasks are developed. And

if the development activity stops, no errors can be

generated. Second, the regeneration rate is a function of

the "Active Error Density," which is simply the number of

existing active errors divided by the tasks developed so far.

More precisely, the generation rate is a function of the

SMOOTH of the "Active Error Density." This is because when

221

errors are committed in one part of the system, they would

not, in general, affect other parts that are being developed

in parallel. Errors, instead, propagate through the

succeeding tasks that build on one another e.g., coding tasks

developed on the basis of the design specs. Thus, there is a

delay before an error would reproduce further errors. This

average delay is set in the model to three months.

As was indicated by the studies cited above, a design

error could be 4 to 10 times more costly when left undetected

until the system testing phase. And, as was also indicated,

this escalation in cost-to-fix results because of an

additional inventory of various error types that would be

reproduced and that would require correction. In the model,

though, we do not disaggregate errors into different explicit

types, e.g., errors are not disaggregated into errors in data

structures, syntax, logic, ... etc. There is only one

explicit error-type, namely, "Error." (This aggregation, as

opposed to disaggregation, of error-types, has been justified

elsewhere.) As a result, the escalation in the cost-to-fix

of an undetected "Error" is realized in the model only

through the number of "Errors" that the "Error" reproduces.

For example, if an "Error" at the early phases of the

project, reproduces (over several generations) a total of 9

more "Errors," then at testing time instead of dealing with

one (the original) "Error," it would now be necessary to deal

with 10 "Errors," i.e., a 10 fold escalation in cost.

222

The escalation in the number of active errors is

achieved in the model through two mechanisms. Firstly, it is

partially achieved through the "feeding on itself"

characteristic of the reproduction positive feedback loop we

explained above. This mechanism ensures that the earlier the

undetected-error is, the more "generations" of errors it will

reproduce, and thus the more costly it will end up being.

Secondly, escalation is achieved through the "Multiplier

to Active Error Regeneration due to Error Density." The

interpretation of this multiplier is a simple one, it

represents the average number of new errors that a single

active error reproduces in one generation. (That is, it is a

measure of "Error Fertility!") The multiplier is formulated

as a table function, and is shown in Figure III.25.

First, notice that the multiplier's value will always be

greater than one. That is, an undetected error will always

generate more than one more error (in a single generation).

*Second, the value of the multiplier increases as the density

of active errors increases. Studies have shown that errors

are not homogeneously distributed throughout the modules of a

software system (Myers, 1976) (Endres, 1975), instead systems

studied were found to be "characterized by the presence of

'error-prone modules' that show a high frequency of the

system's.total error content" (Jones, 1981). For example, if

there are say 5 undetected errors in a system that is

223

Multiplier to Active Error Regeneration
Due to Error Density

0 10 20 30 40 50 60 70 80 90 100

Active Error Density
(Errors/KDSI)

Figure IL125

6

5

4

3

2

1

0 0

224

comprised of 5 modules, it is quite possible that all 5

errors will be clustered in one error-prone module, as

opposed to being evenly distributed among the 5 modules. If

there is a much larger number of undetected errors (e.g.,

100), though, it would be quite unlikely then that all the

errors would still be clustered in what would be a single

extremely-error-prone module. Such a situation is unlikely

because we are dealing here with modules that have already

."passed" some QA testing. Thus, as the error density

increases, the distribution of errors among the system's

modules would generally also increase. As this happens,

i.e., as errors become less localized, they also become more

expensive to detect and correct. For example, because of the

set-up cost *of testing any single module, it is generally

less expensive to .fix 10 errors that all reside within a

single module, than fixing an equivalent set of 10 errors

that are distributed among two or more modules. Thus, higher

densities of undetected errors mean a wider (but not

necessarily an even) distribution of errors among the system

modules, -which leads to an escalation in the cost to fix

those errors. And since, as was indicated above, the

escalation in the cost-to-fix of an undetected error is

realized in the model through an increase in the number of

errors that the error reproduces, higher error densities

should lead to a higher error reproduction rate (per error).

This is achieved through the higher values of the "Multiplier

to Active Errors Regeneration due to Error Density," at

225

higher error densities.

As was stated above, "Undetected Active Errors" can

potentially continue to reproduce new errors as long as new

tasks are being developed e.g., up until the last system

module is coded. Not all of the active errors will do so,

however. That is, for some errors the reproduction activity

will not continue up until the end of the development phase.

It, instead, might cease after the reproduction of one or two

"generations" of errors. For example, an error in a

high-level module might reproduce a number of interface

errors at some lower level, without necessarily leading to

any further errors in say the user manuals. When undetected

active errors cease to reproduce, they effectively become

"Undetected Passive Errors." The rate at which this occurs

is termed the "Active Error Retirement Rate," as shown in

Figure 111.23. This rate is regulated through the

"Retirement Fraction," which is the fraction of active errors

that retire (i.e., become passive) every unit of time. This

fraction is a function of the development phase as shown in

Figure 111.26. Notice that, because any design error must

translate into coding error(s), the "Retirement Fraction"

remains at a zero level during the design phase i.e., no

active design errors will retire and become passive since

every design error will reproduce at least one generation of

coding errors. As the project progresses towards the last

stages of development e.g., the coding of the lower level

226

functional modules, opportunities for error propagation

quickly decrease, and as a result the "Retirement Fraction"

increases sharply, and reaches a value of 1 at the end of

development.

As the project progresses towards the last stages of

development, something else happens, namely, the System

Testing activities are initiated. The objective of system

Testing is to verify "that all elements (of the system) mesh

properly and that overall system function and performance are

achieved" (Pressman, 1982). The System Testing activities

are also depicted in Figure III.23.

As was explained in Section (B) on "Software

Development," the switch in manpower allocation from

development to testing is effected in the model through the

variable "Fraction of Effort for System Testing." The value

of this variable is initially set to zero i.e., no effort is

allocated for System Testing. When development (i.e., the

coding and design) is perceived to be completed, the value of

the "Fraction of Effort for System Testing" becomes a one,

i.e., 100% of the manpower effort available for

development/testing is allocated to the testing function.

The switch is not abrupt, however. There is, usually, some

overlap between the development and testing phases (Thibodeau

and Dodson, 1980), (Daly, 1977), (Hartwick, 1980). This

overlap of the phases was captured (in Section (B) above) in

227

Retirement
Fraction

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

f Job Worked

Figure 111.26

1.0

.8

.6

.4

.2

0

228

Figure 111.9., which shows the assumed gradual increase in

the value of the "Fraction of Effort for System Testing" as a

function of the fraction of development tasks perceived

remaining.

The objective of System Testing stated above is

operationalized in the model as follows: Test all tasks that

have been developed to detect and correct any remaining

(active and/or passive) errors.

The rate at which (developed) tasks are tested is

determined by dividing the "Daily Manpower for Testing" by

the "Testing Manpower Needed per Task." For example, if 5

man-days are allocated daily to the system testing activity,

and it takes, on the average, 1 man-day to test a task, then

5 tasks will be tested a day.

The "Normal Testing Manpower Needed per Task" has two

components, a fixed component and a vardiable.one (Alberts,

1976), (Herndon and Lane, 1977). The variable component is a

function of the number of errors in a task, and it represents

the testing effort that would be consumed in the actual

detection and correction of errors. The fixed component, on

the other hand, is independent of the number of errors. It

involves overhead-type activities such as developing test

plans, installing test tools, designing test cases, ... etc.

229

The "Nominal Testing Overhead" (i.e., the fixed

component) is defined in the model in terms of nominal

man-days/KDSI. Estimates reported in Boehm (1981) suggest

that this overhead effort is in the range of 2 man-days/KDSI.

For example, for a 32 KDSI project, Boehm's estimate for the

above overhead functions (which he labelled "Test Planning")

amounted to 64.41 man-days. If we assume that motivation and

communication losses will, on the average, result in a 50%

loss in productivity, then Boehm's estimate translates into

an overhead of 1 nominal man-day/KDSI.

This constant parameter, could then be transformed in a

straightforward manner into an equivalent value of nominal

man-days/task. For example, if in a particular run of the

model, a "task" is defined to be, say 100 DSI, the nominal

testing overhead would be. 0.1 man-day/task.

In addition to the overhead incurred in testing a task,

effort is needed to detect and correct any remaining errors.

This needed effort to detect and correct the errors remaining

within a task is formulated as the product of the "Error

Density" and the "Nominal Testing Manpower Needed per Error."

The value of the former is obtained by dividing the sum of

both the active and passive errors still remaining by the

number of tasks yet to be tested. It represents the average

number of errors per task. The value of the "Nominal Testing

Manpower Needed per Error," on the other hand, is set to 0.15

230

Man-Days/Error. For the nominal 8-hour working day, this

translates into 1.2 Man-Hours/Error. This value was chosen

on the basis of empirical results reported in (Shooman, 1983)

and (Herndon and Lane, 1977).

Finally, the actual testing effort needed per task, in

addition to being a function of testing overhead and error

density, must also depend on the efficiency of how people

work. That is, we need to account for the Communication and

Motivation losses incurred. For example, if the "Multiplier

to productivity due to Communication and Motivation losses,"

which represents the average productive fraction of a

man-day, is 0.5, then the actual manpower needed to test a

task becomes twice what is nominally needed.

The testing activity continues until all the tasks that

have been developed are all tested. When this is

accomplished, the project is declared completed. (Remember,

our model's boundary extends only until the end of the

testing phase.)

With the completion of the testing activties, we also

complete our presentation of the software production

processes in the model. We have discussed the allocation of

the manpower resource in part (A), the development activties

(i.e., coding and design) in (B), Quality Assurance and

Rework in part (C), and finally, System Testing in this final

231

part (D). In the next two sections, we turn our attention to

two managerial functions of software developement, namely,

controlling and planning.

III.4.5. Controlling:

Any control function has at least three elements

(Anthony and Dearden, 1980):

1. Measurement. To detect what is happening in the

activity being controlled.

2. Evaluation. To assess the significance of what is

.happening, usually by comparing information on what is

actually happening with some standard or expectation of

what should be happening.

3. Communication. To report what has been measured and

assessed, so that behavior could be altered if the need

for doing so is indicated.

These three elements are captured in our formulation of

the control function of software project management depicted

in Figures 111.27. and 111.29. As work is accomplished in a

software project, progress is measured through the amount of

resources consumed, tasks completed, or both. Based on such

measurements, a determination is made on the "Total Man-Days

Perceived to be Still Needed" to complete the project. This

includes man-days perceived to be still needed to develop and

232

QA tasks, to rework any detected errors, and to complete

system testing. Once this is determined, the effort

perceived to be still needed is compared to the actual

"Man-Days Remaining" in the project's plan. Thus, if 100

man-days are perceived to be still needed to complete the

project but only 50 man-days are remaining, the project would

be perceived to be behind schedule. Conversely, if only 25

man-days are what is perceived to be still needed, while 50

man-days remain available in the project's plan, then the

project would be perceived to be ahead of schedule. Once an

assessment is made of any man-day shortages or excesses,

behavior on the project could be altered if the need for

doing so is indicated. For example, if the project is

perceived to be behind (ahead of) schedule, i.e., if it is

experiencing a man-day shortage (excess), then project

members could be motived to work more (less) hard, the

project's schedule could be extended (trimmed), or a

combination of both of these could happen. In the remaining

part of this section, we will explain in detail how all these

control processes are formulated in the model.

At any point in the project, the amount of project work

that will be perceived as still remaining will, in general,

be a combination of three things: (1) work needed to develop

and QA new tasks; (2) work needed to rework any detected

errors; and (3) work needed to conduct the system testing

activities. Thus, the "Total Man-Days Perceived to be Still

233

(DETEbTEDERRORS -
MAN-DAYS
PERCEIVED(PERCEIVED NEEDED TO

NEEDED PER ERROR DETECTED

REMAINING /

- TASKS I
SI ,

I I \

PROJECTED
- - DEVELOPMENT

PRODUCTIVITY

I MAN.D nAYv mR

PERCEIVED
SHORTAGE/
EXCESS IN
MAN-DAYS

HANDLED •'
MAN -DAYS

"% OF PERCEIVED
1JOB DEVELOPED i /

I

(CUMULATIVE
TASKS TESTED

(PERCEIVED •-
JOB SIZE IN
TASKS

EIVED
ING
UCTIVITYPLI

TE!
-PR,

CUMULATIVE
TASKS

- TESTED

ACTUAL
TESTING
PRODUCTIVITY

CUMULATIVE
TESTING

\MAN-DAYS

MAN- DAYSFOR TESTING

Figure 111.27

/
/

/

TAS KS~i~f

, REMAINI

CUMULDEVEL
MAN-

MAN-DAYS
REPORTED
STILLNEEDED

REPORTED
SHORTAGE/
EXCESS IN
MAN-DAYS

" CUMULATIVE
TASKS

,. \DEVELOPED
• ""•"• • -....

I
I

/

I %

i. C C - *

1I

I

I
J

1

I

I

I

I

I

ELOPMENT

I

lk f '%

234

Needed" to complete the project is formulated as a summation

of three respective components, namely, "Man-Days Perceived

Still Needed for New Tasks," "Man-Days Perceived Needed to

Rework Detected Errors," and "Man-Days Perceived Still Needed

for Testing."

Because software is basically an intangible product

during most of the development process, and for which there

are no visible milestones to measure progress like a physical

product would, "It is difficult to measure performance in

-programming ... It is difficult to evaluate the status of

intermediate work such as underdebugged programs or design

specification and their potential value to the complete

project" (Mills, 1983). How, then, is progress in a software

project measured? Our own interview findings corroborate

those reported in the literature, namely, that progress,

especially in the earlier phases of software development, is

measured by the rate of expenditure of resources rather than

by some count of accomplishments (Putnam and Fitzsimmons,

1979), (Keider, 1974), (DeMarco, 1982), (Devenny, 1976),

(Baber, 1982), (Griffin, 6), (Donahue, 8), (O'Conner, 10),

(Lombardi, 16), (Chan, 20). For example, a project for which

100 man-days has been estimated is 10% complete when 10

man-days have been expended; when 50% of the man-days have

been expended, it is 50% complete. Paraphrasing Baber

(1982):

235

It is essentially impossible for the programmers to
estimate the fraction of the program completed. What is
45% of a program? Worse yet, what is 45% of three
programs? How is he to guess whether a program is 40%
or 50% complete? The easiest way for the programmer to
estimate such a figure is to divide the amount of time
actually spent on the task to date by the time budgeted
for that task. Only when the program is almost finished
or when the allocated time budget is almost used up will
he be able to recognize that the calculated figure is
wrong.

As progress is measured, during the early phases of

development, by the rate of expenditure of resources, status

reporting ends up being nothing more than an echo of the

original plan (McKeen, 1981), (Baber, 1982), (DeMarco, 1982),

(Devenny, 1976). In other words, "Man-Days Perceived Still

Needed for New Tasks" will be equal to the "Man-Days

Perceived Remaining for New Tasks."

As the project develops, though, and the work becomes

relatively more visible, discrepancies between % of tasks

accomplished (remaining) and % of resources expended

(remaining) become increasingly apparent. For example, while

it might not be too apparent that a project that has consumed

50% of its estimated resources is only 25%, rather than 50%,

complete, any such descrepancy becomes quite obvious when the

allocated resources are almost used up. At the same time,

and as the project advances towards its final stages, project

members become increasingly able to perceive how productive

the workforce has actually been (McGowan, 3), (Nichols, 18).

As a result, the value of the "Man-Days Perceived Still

236

Needed for New Tasks" ceases to be a function of what the

"Man-Days Perceived Remaining for New Tasks" is, and,

instead, is determined on the basis of what the project

members perceive to be the amount of work that is still

remaining.

These differring modes of measuring progress, are

captured in the model through a single formulation of

"Man-Days Perceived Still Needed for Needed Tasks." As shown

in Figure 111.27., "Man-Days Perceived Still Needed for New

Tasks" (MDPNNT) is determined by dividing the value of "Tasks

Perceived Remaining" (TSKPRM) by the "Assumed Development

Productivity" (ASSPRD). That is,

MDPNNT = TSKPRM / ASSPRD (1)

Where "Assumed Development Productivity" (ASSPRD) is a

weighted average of "Perceived Development Productivity"

(PRDPRD) and a variable we are calling "Projected Development

Productivity" (PJDPRD). That is,

ASSPRD = PJDPRD*WTPJDP + PRDPRD*(1-WTPJDP) (2)

The weighting factor (WTPJDP) moves from 1 at the beginning

of the project to zero at the end of the development phase.

The conception behind this formulation is somewhat

237

subtle, and will, therefore, require some explanation.

As was indicated above, in the earlier phases of

software development, progress tends to be measured by the

rate of expenditure of resources. As a result, status

reporting ends up being nothing more than an echo of the

original plan. "Man-Days Perceived Still Needed for New

Tasks" (MDPNNT) becomes, under such conditions, simply equal

to the "Man-Days Perceived Remaining for New Tasks" (MDPRNT).

That is,

MDPRNT = MDPNNT

Substituting for MDPNNT, we get

MDPRNT = TSKPRM / ASSPRD

which leads to,

ASSPRD = TSKPRM / MDPRNT

This is an interesting result. For, it suggests that as

project members measure and report progress by the rate of

expenditure of resources, they, by so doing, would be

implicitly assuming that their productivity equals "Tasks

Perceived Remaining" (TSKPRM) divided by the "Man-Days

Perceived Remaining for New Tasks" (MDPRNT). Which is

intersting because such an assumed value for productivity is

solely a function of future projections (i.e., remaining

tasks and man-days) as opposed to being a reflection of

238

accomplishments (i.e., completed tasks and expended

resources). This implicit notion of productivity is captured

in the model by the variable "Projected Development

Productivity" (PJDPRD), defined, as the above equation

suggests, to be equal to "Tasks Perceived Remaining" (TSKPRM)

divided by "Man-Days Perceived Remaining for New Tasks"

(MDPRNT).

Thus, in the early phases of software development, we

would like equation (1) to reduce to,

MDPNNT = TSKPRM / PJDPRD^ (3)

where

PJDPRD = TSKPRM / MDPRNT

which would be achieved by setting the weighting factor

(WTPJDP) in equation (2) to 1, and substituting in equation

(1).

As "the project advances towards its final stages,

though, accomplishments become relatively more visible and

project members become increasingly more able to perceive how

productive the workforce has actually been. As a result,

what the project members assume their productivity to be,

i.e., the value of "Assumed Development Productivity," ceases

to be a function of future projections (i.e., remaining tasks

and man-days), and instead is determined on the basis of

239

perceived accomplishments. This explicit notion of

productivity is captured in the model by the variable

"Perceived Development Productivity" (PRDPRD). Discussions

with (McGowan, 3), (Nichols, 18), and (Lombardi, 23) suggest

that, towards the final stages of development, the value of

the team's overall productivity would be determined by

dividing the value of "Cumulative Tasks Developed" (CUMTKD)

by "Cumulative Development Man-Days" (CUMDMD). In other

words, if 100 man-days have been expended to develop the

project's 100 tasks, then "Perceived Development

Productivity" would be 1 task/man-day.

Thus, in the final stages of software development, we

would like equation (1) to reduce to,

MDPNNT = TSKPRM / PRDPRD (4)

where,

PRDPRD = CUMTKD / CUMDMD

which would be achieved by setting the weighting factor

(WTPJDP) in equation (2) to zero, and substituting in

equation (1).

To recapitulate, the value of "Man-Days Perceived Still

Needed fo.r New Tasks" (MDPNNT) is a function, as equation (1)

indicates, of "Tasks Perceived Remaining" (TSKPRM) and

"Assumed Development Productivity." In the early phases of

240

development, "Assumed Development Productivity" is implicitly

determined on the basis of future projections (i.e.,

remaining tasks and man-days). Towards the end of

development, on the other hand, "Assumed Development

Productivity" gets to be explicitly determined on the basis

of perceived accomplishments (i.e., completed tasks and

expended resources). This is achieved through the weighted

average formulation of "Assumed Development Productivity"

given in equation (2), i.e., by setting the weighting factor

(WTPJDP) to 1 at the beginning of the project, and to zero at

the end of the development phase.

People's assumptions about their productivity,

therefore, change as the project develops. The change,

however, is often gradual not abrupt (McGowan, 3), (Nichols,

18), (Lombardi, 23). That is, the transition from having

"Assumed Development Productivity" being determined solely on

the basis of future projections early in the project, to

having it being determined entirely on the basis of perceived

accomplishements, towards the end of development, is a

smooth, not an instantaneous, type of a transition.

This transition in people's assumption about their

productivity is captured in the model through the formulation

of the weighting factor (WTPJDP) of equation (2). For

convenience, we are re-writing equation (2) below,

241

ASSPRD = PJDPRD*WTPJDP + PRDPRD*(1-WTPJDP) (2)

In the beginning of the project, because "Assumed

Development Productivity" (ASSPRD) is equal to "Projected

Development Productivity" (PJDPRD), the weighting factor

WTPJDP is set equal to 1. As was explained above, under such

conditions status reporting ends up being nothing more than

an echo of the original project plan as "Man-Days Perceived

Still Needed for New Tasks" ends up being exactly equal to

"Man-Days Remaining for New Tasks." As the project develops,

though, descrepancies between % of tasks accomplished

(remaining) and % of resources expended (remaining) become

increasingly apparent, and in addition project members become

increasingly able to perceive how productive the workforce

has actually been. As a result, "Assumed Development

Productivity" (ASSPRD) becomes less a function of "Projected

Development Productivity" (PJDPRD) and more a function of

"Perceived Development Productivity" (PRDPRD). That is, the

weighting factor (WTPJDP) moves from a value of 1 to a value

of 0. The rate at which this learning process takes place is

the product of two factors, namely, the rate of expenditure

of resources and the rate of development of tasks. Remember

Baber's quote (1982), "Only when the program is almost

finished or when the allocated time budget is almost used up

will (the programmer) be able to recognize (the descrepancy

between % of tasks accomplished and % of resources expended."

To accomplish this in the model, we will formulate the

242

weighting factor (WTPJDP) as the product of two multipliers,

the "Multiplier to Productivity weight due to Resource

Expenditures" and the "Multiplier to Productivity Weight due

to Development." As shown in Figure III.28., both

multipliers are assumed to have the same shape, moving from a

value of 1 in the beginning of the project to a value of zero

when all estimated development resources are expended or all

tasks are developed, respectively.

Thus far we have been only discussing how "Man-Days

Perceived Needed for New Tasks" is determined. As was

indicated earlier, at any point in the project the amount of

work that will be perceived as still remaining will, in

general, be comprised of not only work needed to develop and

QA new tasks, but in addition work needed to rework any

detected errors and work needed to conduct the system testing

activities. Thus, the "Total Man-Days Perceived to be Still

Needed" to complete the project is formulated as a summation

of "Man-Days Perceived Still Needed for New Tasks," "Man-Days

Perceived Needed to Rework Detected Errors," and "Man-Days

Perceived Still Needed for Testing."

The "Man-Days Perceived Needed to Rework Detected

Errors" is formulated as the product of "Detected Errors" and

"Perceived Rework Manpower Needed per Error." (The latter,

as was explained in some detail in the section on "Manpower

Allocation," is a SMOOTH of the "Actual Rework Manpower

ue to
:e Expenditures

0 .2 .4 .6 .8 1.0 Fraction of Development
Man-Days Expended

Due to Development

% of Perceived
Job Developed

Figure 111.28

243

(a)

(b)
.1

.1

(1

0 .2 .4' .6 .8 1.0

244

Needed per Error.") For example, if at some point in the

project 50 errors that have been detected through the QA

activities are still uncorrected, and if it is perceived that

an error requires 0.2 Man-Days, on the average, to correct,

then the "Man-Days Perceived Needed to Rework (those)

Detected Errors" would be 50 X 0.2 = 10 Man-Days.

The "Man-Days Perceived Still Needed for Testing," on

the other hand, is determined by dividing the value of "Tasks

Remaining to be Tested" by the "Perceived Testing

Productivity." The "Tasks Remaining to be Tested" is simply

the "Perceived Job Size in Tasks" minus "Cumulative Tasks

Tested." For example, if the perceived job is 100 tasks in

size, and 60 of these have already been tested, then "Tasks

Remaining to be Tested" would amount to 100 - 60 = 40 tasks.

Throughout most of the development phase, and before the

commencement of the System Testing phase, the value of

"Perceived Testing Productivity" is set equal to "Planned

Testing Productivity." This is the value of testing

productivity that is implicit in the project's plan. For

example, if for the 100 task project, the plan allocates 20

Man-Days for System Testing, then the "Planned Testing

Productivity" would be 5 tasks/man-days. However, as the

System Testing activity gets underway, people's perceptions

of their testing productivity becomes a function of how

productive the testing activity actually is, as opposed to

245

how productive it was planned to be. The "Actual Testing

Productivity" is then determined by dividing the "Cumulative

Tasks Tested" by "Cumulative Testing Man-Days." And, because

"Full and immediate action is seldom taken on a change of

incoming information (e.g., on the sudden drop in yesterday's

testing productivity) ... (and because there is a) tendency

to delay action until the change is insistent ... "

(Forrester, 1961), "Perceived Testing Productivity" is

formulated as a SMOOTH. The smooth delay is set at 50

working days.

Once "Man-Days Perceived Still Needed for New Tasks,"

"Man-Days Perceived Needed to Rework Detected Errors," and

"Man-Days Perceived Still Needed for Testing" are all

determined, they would all be summed up to determine the

"Total Man-Days Perceived Still Needed" to complete the

project. And once this is determined, it is then compared to

the actual "Man-Days Remaining" in the project's plan. So,

if 100 man-days are perceived to be still needed to complete

the project, but only 50 man-days are remaining, the project

would be perceived to be behind schedule. Conversely, if

only 25 man-days are what is perceived to be still needed,

while 50 man-days remain available in the project's plan,

then the project would be perceived to be ahead of schedule.

After an assessment is made of any man-day shortages or

excesses, behavior on the project can then be altered if the

246

need for doing so is indicated. For example, if the project

is perceived to be behind (ahead of) schedule i.e., if it is

experiencing a man-day shortage (excess), then project

members could be motivated to work more (less) hard. The

mechanisms that determine how much, if any, of any perceived

man-day shortage (excess) is absorbed by the project members

in the form of increased (decreased) work rate were fully

explained in our discussions on software development

productivity. Any shortages (excesses) that are not absorbed

will be reported, and will lead to adjustments to the

project's scope. (Such adjustments are then translated, in

the Planning section, into adjustments to the schedule or

adjustments tq the workforce level, or both.)

Let us consider an example. And, again, let us consider

the case of the 100 man-day project. If, after 60 man-days

have been expended, the values of "Man-Days Remaining" and

"Total Man-Days-Perceived Still Needed" were 40 man-days and

65 man-days respectively, then the "Perceived Shortage in

Man-Days" would be 25. If the project members (based on the

many factors discussed in the productivity section) decide to

absorb only 10 of the 25 man-days, then the "Reported

Shortage in Man-Days" would be 15 man-days. If these are

added to the value of "Man-Days Remaining" in the project's

plan, i.e., to 40, we come up with a value of 55 man-days for

the "Man-Days Reported Still Needed" to complete the project.

247

Any time the "Man-Days Reported Still Needed" turns out

to be more (less) than the "Man-Days Remaining" in the

project's plan, it would, in effect, constitute a revision of

what the project'.s scope is perceived to be, i.e., that it is

larger (smaller) than what has been planned for. For

example, in the case above, reporting that 55 (rather than

40) man-days are still needed after having had 60 man-days

already expended, constitutes a revision in what the

project's size is perceived to be, namely, from the original

estimate of 100 man-days to a revised value of 60 + 55 = 115

man-days i.e., a 15% increase. When such a "revelation"

occurs in a project, project management reacts to transform

those revised perceptions about the "Total Job Size in

Man-Days" into actual adjustments. This adjustment process

is captured, as is shown in Figure III.29., through the "Rate

of Adjusting the Job's Size in Man-Days." It is the rate at

which the "Total Job Size in Man-Days" is adjusted, upwards

or downwards, to what is perceived as its newly revised

value. The "Rate of Adjusting the Job's Size in Man-Days" is

formulated as,

(GOAL - LEVEL)/ADJUSTMENT-TIME

where,

GOAL = Revised value of job size
in Man-Days

= Man-Days Reported Still Needed +
Cumulative Man-Days Expended

= Total Job Size in Man-DaysLEVEL

247.1

CUMULATIVE
MAN- DAYS

/ =y:l rl'

% OF
UNDISC.
TASKS
DISCOVERED
PER DAY

I
I

% OF
PERCEIVED
JOB
DEVELOPED

CUMULATIVE
TASKS

, DEVELOPED
I

I

S MAN- DlAY S P ERCI D f

TREMAINING OR NEW(TASKS

DELAY IN
i

DELAY IN
ADJUSTING
JOB SIZE IN
MAN-DAYS

PERCEIVED
TESTING
PRODUCTIVITY

RATE OF INCREASE IN
TESTING DUE TO
DISCOVERED TASKS

' I

\ I
\ I

\ I

ADDITIONAL
TASKS
ADDED TO
MAN-DAYS

MAXIMUM RELATIVE
SIZE OF ADDITIONS
TOLERATED WITHOUT
ADDING TO PROJECTS
MAN-DAYS

Figure 111.29

I
&

I -1 -
I

r

I

248

ADJUSTMENT-TIME = Delay in Adjusting the
Job's Size in Man-Days

Thus, the adjustment process is not an instantaneous

one, instead it takes place over a time interval defined as

the "Delay in Adjusting the Job's Size in Man-Days."

The above formulation of the "Rate of Adjusting the

Job's Size in Man-Days" produces the behavior pattern shown

in Figure 111.30. In the situation portrayed in the figure,

it is assumed that up until time tl, LEVEL = GOAL. Then, at

time (t1) there is a sudden permanent increase (h) in the

GOAL e.g., the "Revised Value of the Job's Size" jumps from

100 man-days to 115 man-days. In response to such a step

rise in the value of the GOAL, the value of LEVEL (e.g., the

value of "Total Job Size in. Man-Days") rises in an

exponential, goal seeking pattern. And, it can be shown

that, the rate at which LEVEL rises is such that it would

close 63% of the gap after one "Adjustment time," and 95% of

the gap after 3 "Adjustment-times."

The "Delay in Adjusting the Job's Size in Man-Days"

ranged in the organizations we interviewed in from 2 days

(Landolfi, 22), (Lombardi, 23) to a week (i.e., 5 working

days), (Chan, 20). In the model the "Delay in Adjusting the

Job's Size in Man-Days" is set to 3 working days. This value

together with the ones reported by our interviewees might

strike some readers as somewhat lower than what they would

248.1

GOAL.

LEVE
S0.,95H

:L

TIME
T +3*(ADJUSTMENT-TIME)

RATE = (GOAL - LEVEL)/ (ADJUSTMENT-TIME)

Figure I11.30

Hf

_j i I__ •_

i

249

have expected. But remember, this adjustment process is

really the project's final, not first, reaction to some

man-day shortage/excess. As we explained before, when the

project is perceived to be behind (ahead) of schedule people

first react by absorbing the shortage (excess). And only

when this is not enough, are adjustments to the project's

size undertaken. Thus, when, if ever, the the decision to

also adjust the project's size is made, people in the project

would have been "geared-up" for it.

Falling behind schedule is not the only reason why a

project's size in man-days might be adjusted upwards. It

could also happen, as Figure 111.29. indicates, as a result

of an upward adjustment in the project's size in tasks.

As a software project develops, project members often

realize that they have under-estimated the number of tasks

(e.g., modules) that comprises the software system being

developed (DeMarco, 1982), (Burchett, 1982), (Daly, 1977),

(Devenny, 1976). Boehm (1981) provides an explanation for

this tendency to underestimate software size:

There is a powerful tendency to focus on the highly
visible mainline components of the software, and to
underestimate or completely miss the unobtrusive
components (e.g., help message processing, error
processing, and moving data around).

In the model we define an initializing parameter called

250

"Tasks Underestimation Fraction." Through this parameter we

can simulate any software under-sizing situation we wish to

investigate. For example, if the actual size of the software

product to be developed is, say, 100 tasks, then to simulate

a 25% under-sizing "problem" we would simply set the "Tasks

Underestimation Fraction" to 0.25. What this would do, is it

would initialize the model such that the value of the

"Currently Perceived Job Size in Tasks" is only

(1 - 0.25) * 100 = 75 tasks. It would also initialize

another level, namely, the "Undiscovered Job Tasks" to

0.25 * 100 = 25 tasks.

As the project develops, the "Undiscovered Job Tasks"

are progressively discovered as "the level of knowledge we

have of what the software is intended to do (increases)"

(Boehm, 1981). The rate at which this happens, i.e., the

number of undiscovered tasks that would be discovered per

unit of time, is regulated, in the model, by the "Rate of

Discovering Tasks." It is formulated as the product of the

number of "Undiscovered Job Tasks" and the "Percent of

Undiscovered Tasks Discovered per Day." Because the rate at

which undiscovered-tasks are discovered tends to increase as

the project develops (Daly, 1977) (e.g., because, as the

above quote indicates, the team's level of knowledge of what

the software product is intended to do increases), the

"Percent of Undiscovered Tasks Discovered per Day" is

formulated, not as a constant, but instead as a variable that

251

increases in value as the project progresses. Its

formulation is depicted in the table function of Figure

III.31.

As the additional tasks are discovered, they are then

incorporated into the project e.g., incorporated into the

project's Work Breakdown Structure, the Gantt and/or PERT

charts, the Earned Value System, ... etc. This, of course,

takes time. In the model this process is modeled as a

third-order delay, with the "Average Delay in Incorporating

Discovered Tasks" set to 10 working days (i.e., two weeks)

(Landolfi, 22).

The final piece of structure we would like to discuss is

the one that model's the process by which the discovery of

additional tasks is translated into additions to the

project's allocation of man-days. This structure occupies

the lower portion of Figure 111.29.

When additional tasks are discovered in a project, they

do not necessarily always trigger an adjustment to the

project's man-days estimate (Boehm, 1981). Only if the

additional tasks are perceived as requiring a relatively

"significant" amount of effort to handle, would project

members "bother" to go through the trouble of formally

developing cost estimates and incorporating them in the

project's work plan (Chan, 20), (Lombardi, 23), (Hisamune,

252

Percent of Undiscovered Tasks

20

16

12

8

4

0
0 20 40 60 80 100

% of Perceived
Job Developed

Figure 11.3 1

253

26) and (Nichols, 27). As Figure III.29. indicates, the

number of discovered tasks are first "mentally" sized-up by

dividing them by the "Assumed Development Productivity." For

example, if 10 tasks are discovered and if, at that point in

the project, the value of the "Assumed Development

Productivity" is 1 task/man-day, then the "Perceived Size of

Discovered Tasks in Man-Days" would be 10 man-days. This

absolute number by itself is not, however, enough to decide

whether the new tasks do or do not deserve a "formal

treatment." This determination is based, not on the

perceived absolute size of the discovered tasks, but instead

on what their size is perceived to be relative to the amount

of effort that is perceived remaining. For example, while it

would be quite possible that a 100 man-day task discovered at

the beginning of 100,000 man-day project would not trigger

any adjustments in the projects's man-days estimate, it would

be quite unlikely for this to happen if the 100 man-day task

is discovered at the end of the development phase when only

50 man-days are still remaining in the project's plan. Thus,

the value of the ""Perceived Size of Discovered Tasks in

Man-Days" is divided by the "Man-Day Perceived Remaining for

New Tasks" to determine the "Relative Size of Discovered

Tasks." Once this relative size is determined, it is then

compared to some threshold value, namely, the "Maximum

Relative Size of Additions Tolerated Without Adding to the

Project'.s Man-Days." If the relative size is lower than that

threshold, the newly discovered tasks are totally absorbed

254

without triggering any adjustments to the project's man-days

estimate. If, however, the relative size exceeds that

threshold value, parts or all of the additional tasks are

translated into additional man-days in the project's plan.

This behavior is captured in the table function of Figure

111.32. Based on discussions with (Hisamune, 26), and

(Nichols, 27), we set the "Maximum Relative Size of Additions

Tolerated Without Adding to Schedule to the Project's

Man-Days" to 1%. .For example, for a 1000 man-day development

phase (e.g., 10 people working for 100 working days the

threshold is 10 man-days).

As a result of the above decision making process, a

decision could, therefore, be made to formally incorporate

either part or all of those tasks discovered, at some point

in the project, into the project's man-days estimate. Such

an adjustment involves producing two estimates, one for the

effort to develop and QA the new tasks, and the other for the

system testing work. Both of these estimates are determined

in basically the same manner. The former is determined by

dividing the number of discovered tasks that are to be

incorporated by the "Assumed Development Productivity," while

the system testing effort is estimated by dividing by the

"Perceived Testing Productivity."

Any such adjustments to the project's total man-days

estimate, will, in turn, trigger further adjustments in

255

Fraction of Additional Tasks
Adding to Man-Days

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

Relative Size of Discovered Tasks
Max. Rel. Size of Additions Tolerated
w/o Adding to Project's Man-Days

Figure Il1.32

1.0

.8

.6

.4

.2

0

256

either the projects schedule completion date, the workforce

level, or both. These reactions are explained next in the

planning section.

III.4.6. Planning:

The Planning subsystem is depicted in Figure III.33.

The "Schedule Completion Date" is formulated, not as an

actual date (e.g., August 7th, 1983), but as a number of

working days from the beginning of the project (e.g., 200 -

days). Thus, by simply subtracting the current value of

"Time" (which represents the number of working days elapsed

in a simulation run), we can determine the scheduled "Time

Remaining." By dividing the value of "Man-Days Remaining,"

at any point in the project, by "Time Remaining" we can then

determine the "Indicated Workforce Level." This would

represent the number of full-time employees believed to be

necessary and sufficient to complete the project 6n time

i.e., on the (current) "Scheduled Completion Date." For

example, if the "Scheduled Completion Date" is 100 days, and

at time = 40 days the value of "Man-Days Remaining" is 600

man-days, the "Indicated Workforce Level" would be determined

as follows: First, the value of "Time Remaining" would be

determined to be 100 - 40 = 60 days. Dividing this into 600

man-days, we arrive at a value for the "Indicated Workforce

Level" of 10 men. As we said, this value is in terms of

257

SCEILING ON \
, TOTAL WORKFORCE

WORKFORCE
LEVEL
SOUGHT('TAL E

WORKFORCE

,MAN-DAYS
REMAINING

WILLINGNESS
TO CHANGE
WORKFORCE

I
I

1
-4-i
HIRING
DELAY

I

-4-
MAXIMUM TOLERABLE
COMPLETION DATE

-4-
SCHEDULE
ADJUSTME
TIME

AVERAGE DAILY
MANPOWER -
PER STAFF

I
1

I

INDICATEDCOMPLETION
DATE

-4-
AVERAGE
ASSIMILATION
DELAY

Figure 111.33

258

full-time equivalent employees. Thus, if (actual) employees

are iot assigned full-time on the project, adjustments should

be made. This is achieved in the model by dividing the value

of the "Indicated Workforce Level" obtained above, by the

value of the "Average Daily Manpower per Employee." For

example, if employees assign, on the average, only 50% of

their time to the project, i.e., "Average Daily Manpower per

Employee" equals 0.5, then the "Indicated Workforce Level"

obtained above would be adjusted to become 10 / 0.5 = 20

(actual) employees.

As was mentioned, the "Indicated Workforce Level"

represents the number of full-time employees believed to be

necessary and sufficient to complete the project on time

i.e., on the (Current) "Scheduled Completion Date." If this

number turns out to be lower than the value of the "Total

Workforce" on the project, excessive employees would be

simply transferred out of the project. The transfer

operation was explained in detail in the "Human Resource

Management Subsystem." If, on the other hand, the opposite

is true, i.e., the "Indicated Workforce Level" is larger,

then this would indicate a need to hire more people.

However, as has also been explained in the "Human Resource

Management Subsystem," hiring decisions are not determined

only on the basis of scheduling considerations. In addition,

consideration is also given to the stability of the

workforce. That is, before hiring new project members,

259

management tries to contemplate the duration of need for

these new members. Different firms weigh this factor to

various extents. In general, however, the relative weighting

between the desire for workforce stability on the one hand,

and the desire to complete the project on time, on the other,

changes with the stage of project completion.

The "Workforce Level Needed" is formulated as a weighted

average of the (Current) "Total Workforce Level" and the

"Indicated Workforce Level." It, thus, takes into account

both the stable workforce level, and the number of employees

that would be required to complete the project on time.

Specifically, it is formulated as follows:

WF-Level Needed = Indicated WF-Level * WCWF +
Total WF-Level * (1-WCWF)

(Note: The above formulation only applies when the

value of the "Indicated Workforce Level" is larger than

"Total Workforce," indicating a need for hiring more people.

In cases where the opposite is true, i.e., "Indicated

Workforce Level" is lower, then "Workforce Level Needed"

would be simply set to that lower value, and any excessive

employees transferred out of the project.)

The weighting factor (WCWF) is termed the "Willingness

to Change Workforce Level." It is a variable that could

assume values between 0 and 1, inclusive. When WCWF = 1, the

260

weighting considers only the "Indicated Workforce Level"

i.e., management would be adjusting its workforce level to

the number perceived required to finish on schedule. As WCWF

moves towards 0, more and more weighting would be given to

the stability of the workforce. And when WCWF equals exactly

0, the weighted number of employees desired becomes wholly

dependent on the workforce stability factors.

We formulated the "Willingness to Change Workforce

Level" to be compri-.d of two components. The first

component, WCWF-1, captures the pressures that develop, as

the project proceeds towards its final stages, for workforce

stability. Although different firms will weigh this factor

to various extents, we feel that the general form of WCWF-1

depicted in Figure 111.34. (and which is based on

discussions with (Lombardi, 23), (Garett, 24), and (Nichols,

25) is representitive. To understand what Figure 111.34.

represents, assume for the moment that "Willingness to Change

Workforce Level" is only comprised of, and is therefore equal

to, WCWF-1. Thus, in the early stages of the project when

"Time Remaining" would general;ly be much larger than the sum

of the "Hiring Delay" and the "Average Assimilation Delay,"

WCWF would be equal to 1, i.e., there would be total

willingness to adjust the size of the workforce to whatever

level is necessary to suit the project's scheduled completion

date. As the number of days perceived remaining drops below

1.5 * (Hiring . Delay + Average Assimilation Delay), though,

261

the figure shows increasing reluctance to increase the

workforce level. For example, if the "Hiring Delay" is 40

working days and the "Average Assimilation Delay" is 80 days,

then as "Time Remaining" drops below 180 days, management

starts to become reluctant to hire new people, even though

the time and effort perceived remaining might imply that more

people are needed. This reluctance stems from the

realization that most of those remaining 180 days, would be

"wasted" in the hiring process and then in acquainting the

new people with the mechanics of the project, in integrating

them into the project team, and in training them in the

necessary technical areas. When the "Time Remaining" drops

below 0.3 * (Hiring Delay + Average Assimilation Delay), the

table function of Figure III.34. suggests that no more

additions would be made to the project's workforce i.e., the

hiring rate will fall to zero. Thus, at that stage, if the

project is behind schedule, project management would be

coping only by pushing back the schedule completion date.

This, of course, is not always feasible or acceptable.

For example, in our discussions at MITRE, we learned that in

projects that involve embedded software for weapon systems,

serious schedule slippages can not be tolerated. The reason

is that, in such projects, software development is often on

the critical path of overall system development, which, as a

result, translates any serious slippages in the software

schedule into very costly slippages in the overall delivery

262

WCWF-1

0 .3 .6 .9 1.2 1.5

(Time Remaining)
(Hiring Delay Av. Assimilation Delay)

Figure 111.34

1.0

.8

.6

.4

.2

0

263

schedule of the system (O'Conner, 10).

Let's see what this meant in a recent software
development for a large defense system. It was planned
to have an operational lifetime of seven years and a
total cost of about $1.4 billion --- or about $200
million a year worth of capability. However, a
six-month delay caused a six-month delay in making the
system available to the user, who thus lost about $100
million worth of needed capability --- about 50 times
the direct cost of $2 million for the additional
software effort (Boehm, 1973).

Because of the software industry's less than impressive

track record in delivering projects on schedule, such

embedded software projects are often scheduled with some

"safety factor" incorporated (O'Conner, 10). For example, if

some "Maximum Tolerable Completion Date" is, say, 100 days,

.and a 20% safety factor is used, then the project would be

initially scheduled to complete in 0.80 * 100 = 80 days. If

such a project starts to fall behind schedule, what would

happen? We will assume the following scenario (O'Conner,

10): As long as the "Scheduled Completion Date" is

comfortably below the "Maximum Tolerable Completion Date"

then decisions to adjust the schedule, add more people, or do

a combination of both will continue be based on the balancing

of scheduling and workforce stability considerations, e.g.,

as captured by WCWF-1. However, as the "Scheduled Completion

Date" starts approaching the "Maximum Tolerable Completion

Date," pressures would develop that would override the

workforce stability considerations. That is, management

becomes increasingly willing to "pay any price" necessary to

264

avoid overshooting the "Maximum Tolerable Completion Date."

And this often translates into a management that is

increasingly willing to hire more people.

The development of such overriding pressures are

captured through the following formulation of the

"Willingness to Change Workforce Level" (WCWF),

WCWF = MAXIMUM (WCWF-1, WCWF-2)

WCWF-2, the second component of WCWF, is the table

function depicted in Figure 111.35. Thus, as long as

"Scheduled Completion Date" is comfortably below the "Maximum

Tolerable Completion Date," the value of WCWF-1 would be

zero, i.e., it would have no bearing in the determination of

WCWF, and consequently no bearing on the hiring decisions.

When "Scheduled Completion Date" starts approaching the

"Maximum Tolerable Completion Date" the value of WCWF-2

starts to gradually rise. Becauise such a situation would be

developing towards the end of the project, the value of

WCWF-1 would be probably close to zero and decreasing. Thus,

as WCWF-2 exceeds the value of WCWF-1, the "Willingness to

Change Workforce Level" would be totally dominated by

scheduling considerations, i.e., by the desire not to

overshoot the "Maximum Tolerable Completion Date."

Note that the above formulation of WCWF allows us to

265

WCWF-2

.7 .8 .9 1.0

Scheduled Completion Date

Maximum Tolerable Completion Date

Figure 111.35

1.0

.8

.6

.4

.2

0

266

easily simulate those environments in which there are no

tight time commitments. In such cases we need only to set

the value of "Maximum Tolerable Completion Date" to some high

value. This would keep WCWF-2 always at the zero level.

And, thus, WCWF becomes solely a function of WCWF-1.

One final note about the formulation of the "Willingness

to Change Workforce Level." It is important to realize that

the variable WCWF is an expression of a policy for managing

projects. Thus, a range of functions are possible here

(e.g., different- forms of the table functions WCWF-1 and

WCWF-2), capturing different strategies for how to balance

workforce and schedule adjustments throughout the project to

minimize overruns and costs. In the next chapter, we will

take the opportunity to explore a range of other alternate

policies besides the (representitive) one discussed here.

Once the "Workforce Level Needed" is determined, it is

translated into a goal for hiring in (or transfering out)

employees. This goal is termed the "Workforce Level Sought."

The "Workforce Level Sought" is almost always identical to

the "Workforce Level Needed." They could, however, differ.

When this happens, it is usually in the early stages of the

project, when the project's manpower build-up rate tends to

be at its highest level. A consideration is given then, as

was explained in the "Human Resource Management Subsystem,"

to the project's ability to absorb new people into its

267

organization. This factor defines, in effect, a ceiling on

the number of employees sought i.e., to be hired. That is,

"Workforce Level Sought" would be set to the value of

"Workforce Level Needed" as long as this is less than or

equal to the "Ceiling on Total Workforce." Otherwise,

"Workforce Level Sought" is set to the value of the latter.

By dividing the "Man-Days Remaining" by the value of the

"Workforce Level Sought" (after being adjusted if necessary

to be in terms of full-time equivalent employees) we can

determine the "Time Perceived Still Required." This would

represent the remaining time, in working days, that is

perceived to be still required to complete the project, given

its current condition. Notice that by computing the "Time

Perceived Still Required" in terms of the "Workforce Level

Sought rather than the "Total Workforce" means that we are

assuming that schedule adjustments (which would be based on

this computation), are made with full awareness of the hiring

decisions being made in the project. For example, if at some

point as much as 1100 man-days are still remaining to

complete the project, 10 full-time employees are working on

it, and it has been decided to hire an additional employee

(i.e., "Workforce Level Sought" is 10 + 1 = 11), then we are

assuming that management would (often through a

back-of-the-envelope computation) determine that the time

still required is 1100 / 11 = 100 days. (Based on

discussions with (Landolfi, 11), (Chan, 14), and (Lombardi,

268

16).)

Once the "Time Perceived Still Required" is computed, it

would be added to the value of "Time" (i.e., the number of

working days elapsed on the simulated project) to determine

the "Indicated Completion Date." For example, if at Time =

40 days, the value of "Time Perceived Still Required" is 100

days, then the value of the "Indicated Completion Date" would

be 140 days. Once this, in turn, is determined, it is used

to adjust the project's formal "Scheduled Completion Date,"

if necessary. The "Rate of Adjusting the Schedule" has the

(by now) familiar formulation,

(GOAL) - LEVEL) / ADJUSTMENT-TIME

where,

GOAL = Indicated Completion Date

LEVEL = Scheduled Completion date

ADJUSTMENT-TIME = Schedule Adjustment Time

The "Schedule Adjustment Time" is set in the model to 5

working days (i.e., one calender week) (Landolfi, 22), (Chan,

20).

111.5. Summary:

In this chapter on model development, we accomplished

three tasks. First, we identified the sources of information

269

utilized in developing the model. As was explained in

Section 111.2, the model was developed on the basis of an

extensive review of the literature, supplemented by 27

focused field interviews of software project managers in 5

organizations. Second, we defined the model's boundary. As

was shown in Section 111.3, the model focuses on the

development phases of software production, extending from the

beginning of the design phase of the software lifecycle, up

untill the end of the system testing phase. Finally, in

Section III.4, a detailed description of the model's

structure was presented. The model is comprised of four

sectors. At the heart of the model is the Software

Production Sector, where software production activities such

as coding and testing are modeled. The project management

activities comprise the remaining three sectors: Planning,

Human Resource Management, and Control.

THE DYNAMICS OF SOFTWARE DEVELOPMENT PROJECT MANAGEMENT:

AN INTEGRATIVE SYSTEM DYNAMICS PERSPECTIVE

by

TAREK K. ABDEL-HAMID

B.Sc., CAIRO UNIVERSITY, CAIRO
(1972)

MBA, STATE UNIVERISITY OF NEW YORK, ALBANY
(1978)

Submitted to the Department of Management
in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1984

)Massachusetts Institute of Technology 1984

Signature of Author:

Certified by:

Accepted by:

Department of Management, 6 January 1984

S.k Supecrviso-r
Stuart E. Madngk, Thesis Supervisor

K?3

tan, Department
te Studies

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

FEB 10 Oo

LIBRARIES ve,•. 2

270

IV. A CASE-STUDY:

THE NASA DE-A SOFTWARE PROJECT

In this chapter we report the results of a case-study we

conducted to test the model. The objective of the case study

is to examine the model's ability to reproduce the dynamic

behavior patterns of a completed software project. The

dynamic behavior of a set of variables pertaining to the

management of the project is tracked, including: completion

date estimates, man-day estimates, cost (in man-days), and

workforce loading.

The case-study was conducted at the Systems Development

Section of NASA's Goddard Space Flight Center (GSFC) at

Greenbelt, Maryland. This organization is engaged in the

development of application software that supports

ground-based spacecraft attitude determination and control.

The subsystems included in a typical attitude system are

telemetry processing, sensor calibration, attitude

computation, and maneuver planning. In the section that

271

follows we will provide a detailed description of one such

project, namely, the DE-A project used in our case-study.

This will then be followed in Section IV.2., by a discussion

of model parameterization. That is, we will discuss the set

of model parameters that are set to simulate the particular

DE-A project environment (e.g., project size). Finally, in

Section IV.3., we will simulate the DE-A project, observe its

behavior, and compare it to DE-A's actual behavior patterns.

IV.1. The DE-.A Project:

The basic requirements for the DE-A project were to

design, implement, and test a software system that would

process telemetry data and would provide definitive attitude

determination as well as real-time attitude determination and

control support for NASA's DE-A satellite. The DE-A

satellite was designed to study the physical process of the

earth's upper atmosphere, ionosphere, and magnetosphere. The

overall requirements were similar to previous space mission

requirements at the GSFC System Development Section (NASA,

1983).

The DE-;A project was selected for the case-study by

NASA. Specifically, it was selected by Frank E. McGarry,

Head of the Systems Development Section of the Goddard Space

Flight center, who is participating, as we are, in the

NASA/MIT "Advanced Information Systems Project." The project

272

was selected by McGarry so as to satisfy three criteria

(furnished by us): (1) to be medium in size (i.e., 16-64

KDSI); (2) recent; (3) "typical" i.e., one that would be

considered as having been developed in a familiar in-house

software development environment.

In the remaining part of this section we will provide a

more detailed account of the nature and development history

of the project. The data presented was extracted from two

primary sources:

1. Interviews with Frank E. McGarry, who managed the

project. Two lengthy personal interviews were conducted

at the Goddard Center on August 11 and 12, 1983. These

were then followed by 4 (15-minute) telephone

interviews.

2. Project documentation. These included:

* "Software Development History for Dynamics
Explorer (DE) Attitude Ground Support System
(AGSS)," June, 1983.

* DE-A Resource Summary

The life cycle phases covered in this study include the

design, coding, and system testing phases. Excluded from the

study are the requirements definition phase and the

acceptance testingý phase. Both the requirements and

acceptance testing phases were excluded because they both lie

outside the boundary of our model. This did not pose any

273

complications, however. The requirements phase, it turns

out, was also not included in McGarry's group's project

responsibility. Requirements were, instead, the

responsibility of the user organization, which for the DE-A

project was the Attitude Determination and Control Section

(ADCS) of the Goddard Space Flight Center. The ADCS, thus,

developed the functional requirements of the system,

including system input and output, algorithms, and timimg and

accuracy requirements. The responsibility for the acceptance

testing phase, on the other hand, was shared by both the

development team, and an independent testing group.

Excluding the acceptance testing phase posed no complications

to our analysis simply because it was the last phase in the

life cycle, hence its exclusion had no impact on any of the

other life cycle phases studied.

The development and target operations machines were the

IBM S/360-95 and -75. The programming language was mostly

Fortran (85%). (Assembler language and assembler language

macros constituted the remaining 15%.) The size of the

system in Delivered Source Instructions (DSI) is 24,400 DSI.

Recall the definition of a DSI:

Delivered. This term is generally meant to exclude
nondelivered support software such as test drivers.
However, if there are developed with the same care as
delivered software, with their own review, test plans,
documentation, etc., then they should be included.

Source Instructions. This term includes all program
instructions created by project personnel and processed

274

into machine code by some combination of preprocessors,
compilers, and assemblers. It excludes comment cards
and unmodified utility software. It includes job
control language, format statements, and data
declarations. Instructions are defined as lines of code
or card images. Thus, ,~ line containing two or more
source statements counts as one instruction; a
five-line data declaration counts as five instructions
(Boehm, 1981).

The size of the project in DSI is determined by NASA as

follows (NASA, 1983):

Size in DSI = New Statements +
extensively modified statements
0.2*(Slightly Modified Statements)

a "Statement" a non-comment source

instruction.

The project's actual key development dates were:

Start End

Design
Coding
Sys. Test

Oct. 1, 1979
May 10, 1980
Nov. 15, 1980

May 9, 1980
March 27, 1981
April 24, 1981

Thus, the project was completed in 19 calendar months.

In terms of cost, the project consumed 2,222 man-days of

effort. (2,784 man-days were expended to complete the total

project, of which 562 man-days were consumed in the

acceptance testing activity.)

Where,

Phase

275

IV.2. Model Parameterization:

Three sets of parameters need to be set in the model, to

simulate a particular project situation. These are:

Initial Project Estimates

1. Initial estimate of project size in DSI
2. Initial estimate of man-day expenditures
3. Initial staffing level
4. Initial estimate of project duration Human

Resource Management

5. Average daily manpower per staff member
6. Hiring delay
7. Average employment time
8. Training overhead
9. Average assimilation delay

Software Development Environment

10. Nominal Potential Productivity
11. Error rate

We now proceed to set the DE-A project values for the

above collection of model parameters.

Project Planning

1. Initial Estimate of Project Size:

As was mentioned above the actual DE-A project size was

24.4 KDSI. At the initiation of the design phase (i.e.,

October 1, 1979), though, the project's size was

under-estimated by 45%. That is, the project was perceived

to be only 24.4 * (1-.45) = 16 KDSI (NASA, 1983). (Note:

Initial estimates were made in terms of source instructions

276

with comments. The actual size of the project in source

instructions with comments was 49,500 and the initial

estimate was 32,600 i.e., under-estimated by 45%.)

2. Initial Estimates of Man-Day Expenditures: In a NASA

document titled Recommended Approach to Software Development

(April, 1983), the following estimating guidelines are

provided:

It is important for the manager to use a model that is
tuned to the specific environment and corresponds well
with the resources expended for similar past projects.
The Meta-Model has been developed using SEL data.
However, managers must never completely rely on any
formal resource estimation model. Rather, they must use
the results of the model, together with historical
knowledge of similar systems, to update resource and
cost estimates. The new estimates are more accurate
because they are based on additional information and
model support.

The Meta-Model refered to above is a software estimation

model developed as part of a research project of the Software

Engineering Laboratory (SEL). The SEL is a research

organization established in 1977 at the NASA Goddard Space

Flight Center (Systems Development and Analysis Branch) in

cooperation with the University of Maryland (Computer Science

Department), and the Computer Sciences Corporation (Flight

Systems Operation). The Meta-Model is discussed in (Bailey

and Basili, 1981).

In the DE-A project, the above recommended procedure was

277

indeed followed ((NASA, 1983) and discussions with McGarry).

That is, the Meta-Model estimates were used as guidelines,

which were then adjusted on the basis of managerial

experience and judgement.

For Project DE-A the initial estimates were made for the

design, coding, system testing, and acceptance testing

phases. The value was 1,380 man-days. Since the actual

man-day expenditures (including the acceptance testing phase)

were 2,784 man-days the initial estimate was 50% off the

actual. Recall, though, that our model excludes the

acceptance testing phase. Thus, the above 1,380 value cannot

be used, and must be adjusted downwards. To do this we will

make the following assumption: we will apply the man-day

estimation error of 50% to the design, coding, and system

testing phases of the project. For these three phases, the

actual man-day expenditures were 2,222 man-days. Assuming

that the effort for these three phases was under-estimated by

50% (as was the total project effort) we arrive at an initial

estimate of 0.5 * 2,222 = 1,111 man-days.

This total man-day estimate is then distributed among

the project's life cycle phases. In DE-A the distribution

used was 85% for development (i.e., design and coding) and

15% for system testing (discussions with McGarry).

Finally, effort is also allocated to the QA activity.

278

The "Planned Fraction of Manpower for QA" for project DE-A is

shown in Figure IV.3. (discussions with McGarry).

3. Initial Staffing Level:

The project was initialized with a staffing level of

approximately 1.5 full-time equivalent employees (NASA,

1983).

4. Initial Estimate of Project Duration:

The DE-A project was initiated on October 1, 1979, and

it was planned to complete (i.e., design, coding, and system

testing) on January 30, 1981. (The acceptance testing phase

was planned to start on January 31, 1981 and end on April 4,

1981.) That is, the project's duration (until system

testing) was estimated to be 16 months, or 16 X 20 = 320

working days (NASA, 1983).

Because NASA's launch of the DE-A satellite was tied to

the completion of the DE-A software, serious schedule

slippage were not tolerated. Specifically, "all software was

required to be accepted and frozen 90 days before launch"

(NASA, 1983).

The DE-A satellite's launch date was August 3, 1981.

This meant that all software was required to be accepted and

frozen by May 3, 1981. And because, the acceptance testing

phase was scheduled for 2 months, this meant that the

279

Planned Fraction of Manpower
for QA

I I I I

0 .2 .4 .6 .8 1.0

Figure IV. I

1.0 -

.8-

.6-

.4-

.2-

O

% of Project Developed

- -r- - - - ---i- I w
%F

I

280

"Maximum Tolerable Completion Date" for the system testing

phase was March 3, 1981. That is, the DE-A project was

initially scheduled for 16 months, with the realization that

it should not slip by more than 2 more months. (Note, the

project ended up completing on April 24, i.e., it did

overshoot the 18 month ceiling by approximately 20 calendar

days. As a result the acceptance testing phase was

"compressed" in duration.)

Human Resource Management

5. Average Daily Manpower per Staff:

On project DE-A the "Average Daily Manpower per Staff

was set to 0.5. That, is, on the average, DE-A project

personnel were assigned half-time to the project (from DE-A's

Resource Summary).

6. Hiring Delay:

The "Hiring Delay" was set to 30 working days i.e., 6

calendar weeks (discussion with McGarry). This is somewhat

lower than the industry, average (40 days). The reason is

that prompt hirings are often made from the Computer Science

Corporation (CSC) (under a special arrangement between CSC

and the Goddard Center).

7. Average Employment Time:

281

The average employment time at the Systems development

Section of the GSFC is 1000 working days (i.e., 50 calendar

months). This translates into a turnover rate of

approximately 20% (discussions with McGarry).

8. Training Overhead:

As was explained in Chapter III, the determination of

the amount of effort to commit to the training of new

employees is made on the basis of managerial intuition and

organizational custom. At the System Development Section,

25% of an experienced employee's time is committed per new

employee (discussions with McGarry).

9. Average Assimilation Delay:

The "Average Assimilation Delay" was set for the DE-A

project to 20 working days (i.e., 4 calendar weeks). This

value is much lower than values reported in the literature.

The reason, given by McGarry, has again to do with the

special arrangement his group has with the Computer Sciences

Corporation. As was said earlier, on many occasions,

software professionals are recruited from CSC to work on

Goddard projects. This tapped pool of software professionals

is one that over the years has gained experience with the

NASA project environment. And as a result, when recruited on

a new project, a CSC professional is assimilated at a faster

rate.

282

Software Development Environment

10. Nominal Potential Productivity:

Recall that this parameter captures the set of

productivity determinants that distinguish different software

development environments. e.g., availability of software

tools, computer-hardware characteristics, and product

complexity. That is, the set of factors that affect

productivity, but which tend to remain invariant during the

life cycle of a single project.

To determine the nominal potential productivity for the

DE-A project environment, we need first to determine the

actual development productivity. As stated above, the total

effort expended to develop the 24.4 KDSI project amounted to

2,222 man-days. Of these, 228 man-days were expended on

system testing, and approximately 914 man-days on QA and

rework ((NASA, 1983) and discussions with McGarry). Thus, a

total of 1,080 man-days were expended on the development

(i.e., design and coding) of the system. From this, we can

determine the average development productivity as

24,400/1,080 = 22.59 DSI/man-day. This, however, is still

not the value we are looking for. We are looking for the

"Nominal Potential Productivity" and what we have is the

actual productivity. Recall, potential productivity is,

the maximum level of productivity that can occur
when an individual or group employs its funds of

283

resources to meet the task demands of a work situation.
It is the level of productivity that will be attained if
the individual or group makes the best possible use of
its resources (that is, if there is no loss of
productivity due to faulty process) (Steiner, 1966).

As was explained in detail in chapter III, actual

productivity rarely equals potential productivity because of

losses due to communication and motivation problems. These

losses are captured in the model by the "Multiplier to

Productivity due to Communication and Motivation Losses."

Specifically, actual productivity is formulated in the model

as the product of potential productivity and the "Multiplier

to Productivity due to Communication and Motivation Losses."

Thus, if we can estimate the.value of this multiplier, we can

then divide it into the value of actual productivity

calculated above, to come up with an estimate for DE-A's

"Nominal Potential Productivity."

The multiplier is itself a product of two variables,

namely, the "Actual Fraction of a Man-Day on Project" and

"Communication Overhead." The nominal value of the former

was set in Chapter III to 0.6 (i.e., a full-time employee

allocates, on the average, 60% of his or her time to

productive work on the project). The "Communication

Overhead," on the hand, was shown to be a function of team

size. In DE-A, the size of the team size was approximately

10 people during most of the development period. From Figure

111.15., we can then determine that the loss due to

284

"Communication Overhead" will be 60%. Thus, the value of the

"Multiplier to Productivity due to Communication and

Motivation Losses" becomes: 0.6 * (1-.06) = 0.564. - By

dividing this into the value of actual productivity (22.59

DSI/Man-Day) calculated above, we come up with the estimate

for the "Nominal Potential Productivity," namely,

22.59/0.564 = 40 DSI Man-Day.

11. Error Rate:

In Chapter III, we explained that the formulation of the

table function "Nominal Number of Errors Committed per Task"

serves two purposes. First, its shape over the project's

life reflects the relative generation rates of different

error types (e.g., design versus coding errors) throughout

the life of the project. These assumptions, as all others in

the model, are expected to apply to all project situations

modeled. Hence, this shape would remain the same, even when

modeling different project situations. The second purpose of

the formulation, namely, its absolute value, reflects the

different error generation characteristics of different

project environments i.e., the software product's

characterisitics (e.g., reliability requirements), as well as

those of the organization in which it is developed (e.g.,

quality of personnel). This, obviously, would generally

change when modeling different project environments.

285

In the DE-A project, the actual number of errors

committed was somewhere between 495 and 510 errors. (The

exact figure is not known, because of "errors" in counting

errors.) On the basis of this data, we formulated the

"Nominal Number of Errors Committed per Task" for the DE-A

project environment as shown in Figure IV.3.. The shape of

the curve is exactly similar to that of the base-case (shown

in Figure 111.17.), however, for DE-A the absolute values are

slightly lower, ranging from 24 errors/KDSI at the beginning

of design to 12 errors/KDSI towards the end of coding, with

an average value for the project of 18 errors/KDSI.

Notice that an average nominal error rate of 18

error/KDSI would generate 18 X 24.4 = 439 errors only ...

and not 495-510. This is because this error rate is the

nominal rate. As was explained in Chapter III, the nominal

error rate is defined to be that generated by the average

experienced-type employee. Such a rate is therefore a lower

bound, attained only when the workforce is solely comprised

of experienced personnel. When this is not the case, i.e.,

when the workforce contains new hirees as well, the error

rate would be adjusted upwards through the the "Multiplier to

Error Generation due to Workforce Mix." By setting the

nominal average error rate to 18, we are, therefore, assuming

that 15% more errors (i.e., above the nominal level) will be

produced) because of new hirees on the DE-A project

(18 X 24.4 X 1.15 = 505 errors).

286

Nominal Number of Errors
Committed per KDSI

0 .2 .4 .6 .8 1.0
% of Job Worked

Figure IV.2

40

30

20

10

287

Summary

The value of the above set of model parameters is

summarized in Table IV.1. The parameters are in the same

order above, and are refered to by their DYNAMO names.

It is important to notice that the parameterization

process of this section did not involve any of the model's

policy formulations. By policy we mean the criteria for

decision making. The set of parameters we have set merely

defines the particular environment within which the policies

are exercised. For example, by setting parameters such as

"Hiring Delay" and "Turnover," we do not alter in any way the

rationale that determines how hiring/firing decisions will be

modulated through-out the project's lifecycle. Thus, while

it can be determined from the set of parameter values of

Table IV.1 that, for example, the DE-A project is initialized

with a workforce level of 1.5 full-time-equivalent employees,

one can not, on the other hand, ascertain the project's

workforce loading pattern. The dynamic behavior of

management systems tends to be largely a function of the

interaction of the collection of policies that govern such

systems (Forrester, 1979). For example, we will see in the

next section how the workforce loading pattern of the DE-A

software project is a function of not only the policies

Parameter Name

(DIMENSIONLESS)

(MAN-DAYS) ,

(DIMENSIONLESS)

(%)

(DIMENSIONLESS)

(DAYS)

(DIMENSIONLESS)

(DIMENSIONLESS)

(DAYS)

(DAYS)

(DIMENSIONLESS)

(DAYS)

(DSI/TASK)

11. TNERPT (ERRORS/KDSI)

35.0

1,111.0

0.85

.325/.29/.275/.255/.25/.275/.325/.375/.4/.4/0

0.4

320.0

1.16

0.5

30.0

1,000.0

0.25

20.0

40.0

24/22. 9/20.75/15.25/13.1/12

TABLE IV,I

288

Value

1.

2.1

2.2

2.3

3.

4.1

4.2

5.

6.

7.

8.

9.

10.

UNDEST

TOTMD1

DEVPRT

TPFMQA

INUDST

TDEV1

MXSCDX

ADMPPS

HIREDY

AVEMPT

TRPNHR

ASIMDY

DSIPTK

289

governing the management of the human resource, but also of

the interaction between these policies and other policies

such as those of project scheduling.

IV.3. Actual and Simulated Project Behavior:

Once the model was parameterized, it was run to simulate

the DE-A project. In this section we discuss the model's

output and compare it to DE-A's actual behavior. We will

examine the dynamic behavior of the following four project

variables: (1) estimated completion date; (2) estimated

project man-day expenditures; (3) cumulative man-day

expenditures; and (4) workforce level.

Figure IV.3. depicts how DE-A's estimated completion

date and estimated total man-day espenditures changed

overtime. The actual project values are shown as circles

with a dot inside. The time axis is in terms of working days

(a calendar month is-20 working days).

Notice that the model accurately portrays management's

inclination not to adjust the project's scheduled completion

date during most of the development phase of the project.

Adjustments, in the earlier phases of the project, are

instead made in the project's workforce level. This behavior

pattern arises, according to DeMarco (1982), because of

political reasons:

Portions of the text
on the following page(s)
are not legible in the
original.

290

P- 1 RU,.- I.ASA#5 / 'CTC CbfLR ^8: ' : IN A P.MJ'CT

S CI1=CD'1 CU9'!ED=C JbsZMZLD=' PJ3SZ=J

0.00
0.0

0.00

100.00
1000.0
200.00

2a00.00
2000.00
400.00

300.00
3000.0
600. 00

400.00oo
4000.0 CD
300.00 J

a

4,

a

C ,

C
C a

C a

CC
C .
C .

C
C .
C.

C
C.

C
.C
. d

.

m

Z-I.

'-L)

-4

0~w

J
J

O 'ri

a

as .

a*A

* o

3
J •

Li ,
Li.Si *

J.
J.Li . .a
J.

-.
J
,J

J

'ao

C0.
a

C)C 0~
cyt

Figure IV.3

",1/16 /

C
C
-C-

C
lot

30c

I.5.

toa

a

rn',

m a

g a

Cl)
cn

t-*._ 0ma
-I

U,
.- 0

acf

~~~C



291

Once an original estimate is made, its' all too tempting
to pass up subsequent opportunities to estimate by
simple sticking with your previous numbers. This often
happens even when you know your old estimtes are
substantially off. There are a few different possible
explanations for this effect: 'It's too early to show
slip' ... 'If I re-estimate now, I risk having to do it
again later (and looking bad twice)' ... As you can
see, all such reasons are political in nature.

Notice also that adjustments in the project's man-days

budget start to be made towards the end of the design phase.

These adjustments are triggered as "undiscovered Job Tasks"

start to be discovered (discussion with McGarry). Recall

that at the project's initiation, the project was incorrectly

perceived to be (only) 16 KDSI in size. The actual

adjustments that were made in DE-A are, however, somewhat

larger than those estimated by the model. This indicates

that the visibility in the DE-A project is somewhat higher

than that assumed in the model. That is, DE-A management

detected more of the discrepancies between the project's

actual scope, and it detected them faster. Indeed, in a

post-project evaluation, the project was rated as "above

average" in the area of project visibility (NASA, 1983).

This was attributed to the utilization of a number of project

management tools, including: librarians that maintain a

central repository of the project's records, configuration

analysis tools (CATs), and Unit Development Folders (UDF).

However, while the visibility in the DE-A project is



292

somewhat better than the industry's norm (as captured by our

model), it is still, by no means, total. As a result,

significant adjustments in both the project's man-days and

the schedule continue to be made until the final stages of

development. An outcome that the model successfully

reproduces.

Notice that the model's values for the project's fiial

man-day expenditures (2,092) is slightly lower than the

actual (2,222). The primary reason for this, is that the

model, while it successfully reproducess the project's

manpower loading pattern (as we shall see later), it slightly

under-estimates the values of the manpower level. Lower

manpower levels mean lower communication and training

overheads, which means a slight over-estimation of

productivity.

Also, the model's project duration (387.5 days) is

slightly longer than DE-A's actual (380 days). The reason

for this, is again, the fact that the DE-A management behaved

slightly more aggressively (than is assumed in the model) in

acquiring manpower, especially during the final stages of the

project. In DE-A, the workforce level at the end of the

system testing phase was approximately 16 full-time

equivalent people, while the model's value was 14.8. With

more people at hand in .the actual project, a smaller schedule

overshoot was achieved.



293

We turn next to Figures IV.4. and IV.5., which depict

the simulated -and actual manpower loading patterns,

respectively. For the reader's convenience, we also plotted

a number of actual values alongside the simulation output.

The model accurately replicates the actual DE-A pattern.

What is quite encouraging about this result is the fact that

the model successfully reproduced such an "atypical"

workforce loading pattern. The ."typical" software project

workforce pattern discussed in the literature is a

concave-type curve that rises, peaks, and then drops back to

lower levels as the project proceeds towards the end of the

system testing phase (e.g., see (DeMarco, 1982), (Boehm,

1981), and (Albrecht, 1979).)

The reason why the workforce level shoots upwards

towards the end of the project has to do with NASA's tight

scheduling constraints. As explained above, because NASA's

launch of the DE-A satellite was tied to the completion of

the DE-A software, serious schedule slippages were not

tolerated. Specifically, "all software was required to be

accepted and frozen 90 days before launch" (NASA, 1983).

This, in effect, defined a "Maximum Tolerable Completion

Date" for the project. For the DE-A project that date was

March 3, 1981 ... or day 380 from the start. As this date

was approached,.pressures develop that override the workforce

stability considerations. That is, project management



294

0- 4 RUii-

F TEQ*. F=F

0.0o0
0.0000 o

100. 0C

oo0. OC

300. 0

T/ CfP.2.FR 2.: liA5 d F P.CJ-Cr

3.750 7.500

0

0

0

0 -

Ik--- - --- - -*4

_.
S

I .s50

Figure IV.4

t. /1 16/E

15.000

S

S

0

0'

-- ( m



295

STAFF EFFORT (FULL.TIME EQUIVALENTS:

& WIr a a I.

a

CC

14

C

C

a

C

1.

4-

'I

921tMU

Figure IV.5

-x

*0

jo -

. , X- - -I

1 -- -- - --

8

e

1 · , J r _ t

-1 4a j Cb

-, -- -. Ii - II I



296

becomes increasingly willing to "pay any price" necessary to

avoid overshooting the "Maximum Tolerable Completion Date."

And this "translates, as the figures indicate, into a

management that is increasingly willing to add more people.

Finally, in Figure IV.6. we plot the model's cumulative

man-day expenditures, together with actual project results,

Again, the model captures the exponentially increasing

pattern. The actual figures are slightly higher, however,

because, as we explained earlier, the model slightly

under-estimates the workforce level ... especially, towards

the second half of the project i.e., the DE-A management's

"Willingness to Change Workforce" does not decrease as the

project proceeds towards its final stages, nearly as much, as

is assumed in the model.

IV.4. Conclusion:

The objective of this case-study was to test the model's

ability to reproduce the dynamic behavior patterns of a

completed software project, namely, the NASA DE-A software

project. To do this we first parameterized the model. The

process involved setting model parameters that capture the

particular DE-A project environment. The parameter values

were obtained from two sources, namely, interviews at NASA

and project documentation. The 14 model parameters that were

set, (e.g., "Hiring Delay," "Turnover Rate," ... etc.), it



297

P- 1:. ,RU'.- 1. SA. c / yCTCiR 2c: NSL L p F C.JECT '1/ 16/E

S CHCDT=S CUX!ýD=C JbSZMlD=CD PJ3SZ:J

O 0
j. ,

0.0000

£00.00

eoo.oo

300Q00

-p

m

0

-C

000.0
7C". ..
e000.0
4.' , .;

3C'a.t
3000.0
6( s, .

. D ... . . . S ..

. D * S
*.. . . .. J . ... . S.

. D J * S

... ..D .... . . .. ... . .- * ..
.0 D J * S

.. .. . .. ... D... ....... .. .. . ...... . - * S
SD *4 * S
L. 0 .... a, .. . * S

S . D----- O--------- J
.. ...... ..D .. ... _..... • J*... S s5.....

. D * J S

• D . J * S

.D .... * J S

* D " * * S
. D ...... . J . S

• D ... -.- iJ * S

DD• 6-I D

D
DD
r%

0

-C-

m
o

0.

- - - - -

J

d
d

..
I.

.0.

0·

L .... *

D * --

SDo 0.

Figure IV.6

4000.0
6 ýý *;.1

rcru

.



298

is important to -note, do not involve any changes in the

formulation of the model's policy structures. The paramter

set merely defines the (DE-A) environment within which the

policies are exercised. This is significant, since the

dynamic behavior patterns generated are largely a result of

the interaction of the model's (unchanged) policy structures.

Four DE-A project variables were examined, namely,

completion date estimates, man-day estimates, cost in

man-days, and workforce loading. While the model was quite

accurate in reproducing the project's patterns of dynamic

behavior, it slightly under-estimated the absolute value of

DE-A's workforce level. That is, DE-A's management was

somewhat more aggressive in its manpower acquisition policy

than is assumed in the model. This underestimate caused the

model to slightly underestimate the project's cost in

man-days (by 6%), and slightly overestimate the project's

duration (by 2%).

One of the advantages of system dynamics modeling is

that it not only allows us to generate the dynamic

implications of a given set of policies, but it in addition

allows us to go a step further and explore the implications

of new and different sets of managerial policies and

procedures. In the next chapter, we will take this further

step, as we explore an array of managerial policies

pertaining to the management of software projects. To set



299

the stage for such an analysis, let us explore some of the

"what-if" questions that DE-A's management, having completed

the project, might be interested in answering:

1. What if a different estimation tool was used? In

DE-A, estimation by NASA's Meta-Model was used as a

guideline, that was then adjusted on the basis of

management's experience and judgement. Like NASA, a

number of other software development organizations have

developed other quantitative software estimation tools

e.g,, TRW's COCOMO model. How can the applicability of

such new tools to the NASA environment be evaluated? To

what extent are such models portable to the NASA

environment? If not, why not? And how can the

portability of new estimation models be improved?

2. What if more/less quality assurance (QA) effort was

expended? In DE-A, 30-40 % of the development effort

was allocated to QA activities ... a level that is

significantly higher than the industry average. Is this

an "optimal" allocation? How can we determine what an

"optimal" allocation is? And what project and

organizational factors affect such a determination?

3. What if more people were not added at the. final

stages of the project? Brooks' Law suggests that adding

more people to a late project makes it later. When



300

would the DE-A project have completed had management

resisted adding more people at DE-A's final stages?

These are some of the issues we turn to next in Chapter

V.



301

V. MODEL BEHAVIOR:

AN ANALYSIS OF THE DYNAMICS OF SOFTWARE DEVELOPMENT

V.1. Introduction:

A system dynamics model is a laboratory tool. It allows

repeated experimentation with the system, testing assumptions

or altering management policies. The purpose is to gain an

understanding of, and make predictions about, the dynamic

implications of managerial actions, policies, and procedures.

The most important advantage of a simulation model
is its ability to 'play out' the dynamic consequences of
a given set of assumptions in a way the human mind can
do neither well nor consistently; a useful model
produces scenarios which are both realistic and
explainable in the policymaker's own terminology. In
addition, a simulation model provides an experimental
arena for discovering the sources of real-life problems
and evaluating alternative policy options in relatively
little time and with little cost. (Quoted from (Homer,
1983) who references (Forrester,1979) and (Forrester,
1979b).)

Using the system dynamics model as an experimentation

vehicle should be particularly welcomed by the software

engineering community. Several authors have "complained"



302

about the lack of tested "ideas" in the software engineering

field (Thayer, 1979), (Weinwurm, 1970). For example Weiss

(1979) commented:

in software engineering it is remarkably easy
to propose hypotheses and remarkably difficult to test
them. Accordingly, it is useful to seek methods for
testing software engineering hypotheses.

Unfortunately, controlled experiments in the area of

software development tend to be costly and time consuming

(Myers, 1978). Furthermore, " ... the isolation of the

effect and the evaluation of impact of any given practice

within a large, complex and dynamic project environment can

be exceedingly difficult " (Glass, 1982).

In addition to permitting less-costly and less-time

consuming experimentation, simulation models make "perfectly"

controlled experiments possible, which, as -the following

quotation shows, addresses the difficulty expressed by Glass

above:

The 3ffects of different assumptions and environmental
factors can be tested. In the model system, unlike real
systems, the effect of changing one factor can be
observed while all other factors are held unchanged.
Such experimentation will yield new insights into the
characteristics of the system that the model represents.
By using a model of a complex system, more can be
learned about internal interactions than would ever be
possible through manipulation of the real system.
Internally, the model provides complete control of the
system organizational structure, its policies, and its
sensitivities to various events. Externally, a wider



303

range of circumstances can be generated than are apt to
be observable in real life (Forrester, 1961).

In this chapter we will use our integrative system

dynamics model of software project management to

predict/study the dynamic implications of an array of

managerial actions, policies, and procedures pertaining to

the development of software. Four areas will be studied:

(1) Scheduling; (2) Controlling; (3) Quality Assurance;

and (4) Staffing. To set the stage for this discussion, we

will first characterize, in the next section, the software

project (which we will simply call EXAMPLE) to be used in our

analysis.

V.2. The "EXAMPLE" Software Project:

The objective of this section is to set up the

environment within which to conduct our experimentation and

analysis of the dynamics of software development. To do this

we will first characterize the "EXAMPLE" software project,

which will serve as the prototype project for the

experiments. We will then run the model to simulate the

"EXAMPLE" project, and observe its dynamic behavior. The

behavior of a number of significant project variables (e.g.,

workforce level, schedule completion time, errors,

productivity, ... etc.) will be analyzed and explained.

And we will demonstrate that the model's behavior patterns do

replicate those reported in the literature. Once this is



304

done, we will then move on to Sections V.3. through V.6., to

study the dynamic implications of an array of managerial

actions, policies, and procedures pertaining to the software

development environment.

We will define the "EXAMPLE" software project to be

64,000 DSI in size. DSI stands for "Delivered Source

Instructions." These are defined as follows (Boehm, 1981).

Delivered. This term is generally meant to exclude
nondelivered support software such as test drivers.
However, if these are developed with the same care as
delivered software, with their own review, test plans,
documentation, etc., then they should be included.

Source Instructions. This term includes all program
instructions created by project personnel and processed
into machine code by some combination of preprocessors,
compilers, and assemblers. It excludes comment cards
and unmodified utility software. It includes job
control language, format statements, and data
declarations. Instructions are defined as lines of code
or card images. Thus, a line containing two or more
source statements counts as one instruction; a
five-line data declaration counts as five instructions.

Recall that in Chapter III, productivity was defined,

not. in terms of DSI/Man-Day, but in terms of Tasks/Man-Day.

And it was explained then, that the notion of a "Task" is

tied to that of "Nominal Potential Productivity."

Specifically, we indicated that "Task" is a unit for sizing

up a software project, that it is defined in terms of a

number of DSI, and that its value, for a particular

simulation, would be set to the numerical value of "Nominal

Potential Productivity," when the latter is expressed in



305

terms of DSI/Man-Days. For example, if "Nominal Potential

Productivity," for a particular project situation, is, say,

50 DSI/Man-Day, then the value of "Task" would be set, for

that particular project situation, to 50 DSI. This would

then allow us to maintain the value of "Nominal Potential

Productivity" to 1 Task/Man-Day, for all project situations.

Let us provide an example to further clarify the

concepts of "Nominal Potential Productivity" and "Task."

Assume two different software development organizations,

ORG-1 and ORG-2, have just completed the development (i.e.,

design and coding) of a software project. The two projects,

PROJ-1 and PROJ-2, are 8000 DSI in size. Now, let us assume

that in ORG-1 the development effort consumed a total of 400

man-days to design and code the 8000 DSI PROJ-1, while in

PROJ-2 the development effort was 200 man-days. If, for

purposes of simplification, we disregard the communication

and motivation losses in both organizations i.e., assume that

actual productivity = potential productivity, we could then

conclude that the potential productivity in ORG-1 is half

that of ORG-2. (This productivity differential can be due to

a number of differences between the two organizations, such

as differences in the availability of software tools,

personnel capability, computer-hardware characteristics,

etc.) This productivity differential would be realized in

the model as follows: The "Nominal Potential Productivity"

parameter would be defined in both runs of the model at the



306

same value, namely, 1 Task/Man-Day, but in the PROJ-1 run we

would define a Task to be 20 DSI, while in the PROJ-2 run a

"Task" would be set at 40 DSI. That is, the 8000 DSI project

PROJ-1 will be defined in the first run as a 400 Task

project, while the 8000 DSI project PROJ-2 would be defined

as a 200 Task project.

To determine the value of "Task" in the EXAMPLE project

we need to do the following: First, select some project

environment; second, determine the value of "Nominal

Potential Productivity" in terms of DSI/Man-Day for that

environment; and finally set the value of "Task" to the

numerical value of "Nominal Potential Productivity."

There aren't many project environments that are

adequately characterized in the literature. One exception is

Barry Boehm's excellent book titled Software Engineering

Economics, which provides a wealth of data on the software

production environment at TRW. To maintain consistency, the

EXAMPLE project will be characterized totally on the basis of

this TRW data. In particular, we will draw upon Boehm's data

on the set of projects he described as "the most common type

of software project: the small-to-medium size (project)

developed in a familiar, in-house, organic software

development environment" (Boehm, 1981).

For a 64,000 DSI project, Boehm's data indicate that



307

overall project productivity would be approximately 338.4

DSI/Man-Month. This value is arrived at by dividing the

project's size in DSI by the total effort expended e.g., to

develop, QA, rework, and test the software. Boehm's data

also indicates that system testing would consume

approximately 22% of the total effort, while the effort

expended on QA activities would be in the range of 15 - 20%

of the total effort. No explicit estimates are given,

however, for the effort to rework errors during development.

If we assume that this rework effort will be approximately

10% of total effort, then QA, rework, and testing activities

would together constitute approximately 50% of the project's

man-months. (Note: Boehm's data covers the design, coding,

and system testing stages of software production, as does our

model.) This means that the amount of effort expended on

developing the product (e.g., designing and coding it) is

half the total man-days expended on the project. Which in

turn means that the development productivity would be

2 * 338.4 = 676.8 DSI/Man-Month. To translate this into

DSI/Man-Day we divide by 20, and get 33.84 DSI/Man-Day.

This, still, is not the value we are looking for. We are

looking for the "Nominal Potential Productivity" and what we

have is an estimate for the actual productivity. Recall,

potential productivity is,

... the maximum level of productivity that can occur
when an individual or group employs its funds of
resources to meet the task demands of a work situation.
It is the level of productivity that will be attained if



308

the individual or group makes the best possible use of
its resources (that is, if there is no loss of
productivity due to faulty process) (Steiner, 1966).

As was explained in detail in Chapter III, actual

productivity rarely equals potential productivity because of

losses due to communication and motivation problems. These

losses are captured in the model by the "Multiplier to

Productivity due to Communication and Motivation Losses."

Specifically, actual productivity is formulated in the model

as the product of potential productivity and the "Multiplier

to Productivity due to Communication and Motivation Losses."

Thus, if we can estimate the value of this multiplier, we can

then divide it into the value of actual productivity

calculated above, to come up with an estimate for EXAMPLE's

"Nominal Potential Productivity."

The multiplier is itself a product of two variables,

namely, the "Actual Fraction of a Man-Day on Project" and

"Communication Overhead." The nominal value of the former

was set in Chapter III to 0.6 (i.e., a full-t'ime employee

allocates, on the average, 60% of his or her time to

productive work on the project). The "Communication

Overhead," on the other hand, was shown to be a function of

team size. Again, referring to Boehm's results, we find his

estimate for the "average staffing level" for the 64,000 DSI

project, to be approximately 10 people. From Figure III..15.

we can then determine that the loss due to "Communication



309

Overhead" will be 6%. Thus, the value of the "Multiplier to

Productivity due to Communication and Motivation Losses"

becomes: 0.6 * (1-.06) = 0.564. By dividing this into the

value of actual productivity (33.84 DSI/Man-Day) calculated

above, we come up with the estimate for the "Nominal

Potential Productivity," namely, 33.84 / 0.564 = 60 DSI

Man-Day.

We said there were three steps to determine the value of

"Task" in the EXAMPLE project. The third and final step, is

to set the value of "Task" to the numerical value of "Nominal

Potential Productivity" when the latter is expressed in terms

.of DSI/Man-Day. Thus, for the project EXAMPLE, Task is

defined to be 60 DSI. (Which, therefore, allows us to

maintain "Nominal Potential Productivity" as being 1

Task/Man-Day.)

Thus far we have first defined the real size of the

project EXAMPLE to be 64,000 DSI and second, by defining what

constitutes a Task we have also (implicitly) defined the

project's environment. When any project is initialized,

managerial decisions are made on how much manpower and time

to allocate to the project. Such decisions are obviously

important determinants of how the project will develop. For

the project EXAMPLE we must do the same, i.e., initialize its

manpower and schedule allocation variables.



310

As was stated earlier, in order to maintain consistency

in our characterization of the project EXAMPLE, we will

characterize it totally on the basis of Boehm's TRW data. In

calculating EXAMPLE's development effort, schedule, and

staffing level, we will, therefore, use Boehm's COCOMO model.

COCOMO stands for the COnstructive COst MOdel, and is a

software project estimation model that has been developed and

is being used by TRW. COCOMO exists in a hierarchy of

increasingly detailed forms. In our analysis we will use the

version called "Basic COCOMO," and which, according to Boehm

(1981) is "the version applicable to the large majority of

software projects: small-to-medium size (projects) developed

in a familiar in-house software development environment."

The development period covered by COCOMO estimates

begins at the beginning of the product design phase

(successful completion of a software requirements review) and

ends up at the end of the system testing phase, as does our

model. The primary input to COCOMO is the perceived size of

the project in KDSI (i.e., thousand delivered source

instructions). Notice that it is the perceived not the real

size of the project that is input to COCOMO to derive the

estimates, since at the beginning of development (when the

estimates are made) the real size of the project is often not

known.

As with other computer-based models, (COCOMO) is a
'garbage in-garbage out' device: if you put poor sizing



311

(data) in one side, you will receive poor cost estimates
out the other side (Boehm, 1981).

Boehm further suggests (we assume on the basis of his

TRW experience) that "The software undersizing problem is our

most critical road block to accurate software cost

estimation." This is substantiated by the experiences of

several other authors (DeMarco, 1982), (Burchett, 1982),

(Daly, 1977), (Devenny, 1976). A major cause for this

undersizing problem is,

... (the) powerful tendency to focus on the highly
visible mainline components of the software, and to
underestimate or completely miss the unobtrusive
components (e.g., help message processing, error
processing, and moving data around) (Boehm,1981).

But how much undersizing? There is, obviously, a wide

range of "reasonable possibilities." For the project

"EXAMPLE" we will assume that management (at the beginning of

design) underestimates the project's size by a factor of 1.5.

This value was, again, chosen to conform to Boehm's estimates

(Boehm, 1981). That is,.a project of size N (KDSI) would be

incorrectly perceived as being only 0.67N (KDSI) in size. In

terms of our EXAMPLE software project, this means that the

project would be perceived (at the beginning of the

simulation run) as being only 0.67 * 64 = 42.88 KDSI in size.

In other words, we will assume that as the project

EXAMPLE is initialized, project management's perception of



312

the project's size will (incorrectly) be 42.88 KDSI. This

value then becomes the input that management uses in COCOMO's

effort and schedule estimation equations.

The COCOMO equation for the number of man-days (MD) to

develop and test the project is:

MD = 2.4 * 19 * (KDSI)1.o s

Substituting for the EXAMPLE project we get,

MD = 2.4 * 19 * (42.88)1.05

= 2,359 man-days

This represents the total man-days to develop and test

the software product. For planning purposes, this effort is

then distributed among the project's life cycle phases. In

our model there are two explicit phases, namely, development

(which includes design and coding) and testing. So, how much

would management allocate to development versus testing in

our EXAMPLE project? Boehm provides a number of phase

distribution guidelines. He notes (1981):

The phase distribution varies as a function of size of
the product. Larger software projects require
relatively more time and effort to perform integration
and test activities ...

For a 42 KDSI project (which is what EXAMPLE is

perceived as being) a development to testing distribution of

80 to 20% is suggested (Boehm, 1981). That is, we will



313

initialize project EXAMPLE with the following allocation of

man-days:

MD for Development

MD for Testing

In addition to estimati

requirements, management al

development time and the staffi

= 0.8 * 2,359
= 1887 man-days

= 0.2 * 2,359
= 471 man-days

ng the project's man-day

.so estimates the project's

nq level.

The COCOMO equation for the development time (TDEV) is:

TDEV = 47.5 * (MD/19)0.38 days

Substituting for the value of man-days (MD), we get

TDEV = 47.5 * (2,359/19)0 .38
= 296 days

Finally, the average staffing level (ASL) is determined

by dividing the estimated value of the total man-days (MD),

by the estimated value of the development time (TDEV). Thus,

for project EXAMPLE we get

ASL = MD / TDEV
= 2,359 / 296
= 8 full-time-equivalent software personnel

We will assume that, on project EXAMPLE, project members

will be working full-time on the project. That is, the



314

model's parameter "Average Daily Manpower per Staff" would be

set to 1 man-day. Thus, the average staffing level

calculated above would be 8 actual software personnel. Not

all 8 personnel will be on-board, however, at the beginning

of the project. Most software projects start with a smaller

core of designers, and as the project develops, the .workforce

slowly builds up to higher levels. For project EXAMPLE, we

will assume that the project starts with a workforce level

equal to half the "Average Staffing Level," i.e., with

0.5 * 8 = 4 software personnel on board. (Again, this

initial staffing level is based on the results reported in

(Boehm, 1981).)

With the above accomplished, our model initialization

procedure is complete. Next, we run the model to simulate

project EXAMPLE, and observe its behavior. The remaining

part of this section will be devoted to a discussion of the

model's results. The following will be discussed:

* Project progress

* Manpower distribution

* Work intensity

Project Progress:

Six key measures of progress are depicted in Figure V.1,

namely, cumulative tasks developed (i.e., designed and



315

coded), cumulative tasks tested, cumulative man-days, the

perceived job size in tasks, the perceived job size in

man-days, and the scheduled completion date in days. And in

Table V.1., the project's "Vital Statistics" are shown.

As was mentioned above, at EXAMPLE's initiation, its

size is underestimated by a factor of 1.5. That is, instead

of being perceived as being a 64,000 DSI project, it would be

perceived as being only 42,880 DSI. In terms of "Tasks"

(where a "Task" is 60 DSI), the project would be perceived at

its initiation as being only 714.6 tasks in size, rather than

1,067 tasks ... its true size. As we have already

mentioned, the undersizing problem is largely due to the

tendency to underestimate the size of the unobtrusive

components of the software system e.g., help message

processing, error processing, support software, ... etc. As

the project develops, such "Undiscovered Job Tasks" are

progressively discovered as the " ... level of knowledge we

have of what the software is intended to do (increases)"

(Boehm, 1981). Notice, though, that the rate at which the

"Undiscovered Job Tasks" are discovered remains low for a

significant portion of the development phase, before it

starts to accelerate rapidly. (Such behavior was also

observed in the NASA case study.) The early phase of

development constitutes the architectural design phase of the

project. In the architectural design phase, the emphasis is

on determining the overall structure of the system,



Portions of the text
on the following page(s)
are not legible in the
original.



316

P- 8 RUN - BAS..5 / BASE MODEL: VEHSION 5 71/ ~4/84

PJUSZ=J C.IMTKDV=1 CUFMTKT=T CUMMD=C Jr.SZMD=D SCHCoT=S PTRPTC=R
P DEVRC=V

;.0 375.0 75 .0 1125.0 15to1. JIT
".*O 1250.0 2500.0 3750,0 50),0 Co

200G0 G 300.C0 4C .CO 50*.00 60'400 S
25.•0 50.00 75.00 10.'1 o ~0 V

100.*0

200.,L0

300.00

400.00

--I

i'I'

D I ICRV
TR, JDoCV

kVlC
1C
lC
1C

SR

10
1C

1C

10'C

1CS

CS

OR

JR

10
10
10
JD

J1
J1

J1
CJ1
CO, J1

0
-C

Figur~e V. I



317

1. Project Size = 64,000 DSI

2. Man-Days

Total

Development

Coding + Design =

QA

Rework =

Testing

= 3,795

= 2,681

1,782

380

519

1,114

3. Completion Time = 430 working-days

4. Errors

Total Error Generated

Total Error Caught

During Development

= 1,494 -4 23 Error/KDSI

-728 --*P 49% of Error Generated

TABLE V.I

man-days

1I



318

decomposing the system into its major components, and

specifing the interfaces between the components (Gagliardi,

1980). At that level, implementation details such as help

message processing or error processing would (still) not be

visible. And thus the rate of discovering such "Undiscovered

(Unobtrusive) Job Tasks" remains low. The rate, however,

starts to accelerate rapidly as the project work moves into

the detailed design phase, where the emphasis is on the

selection, evaluation, and design of the implementation

algorithms (Gagliardi, 1980).

As the additional tasks are discovered i.e., as project

members start realizing that the project's scope is larger

than what has been expected, adjustments are made in the

project's plan. to accomodate the additional work load. As

Figure V.1 indicates, both the "Job's Size in Man-Days" and

the "Scheduled Completion Date" are adjusted upwards. There

are, however, two interesting observations about these

adjustments. Firstly, the adjustments prove to be inadequate

to fully accomodate the additional work load, and secondly,

the first adjustment to the schedule lags considerably behind

the first adjustment to the man-days.

The additions to the project's man-days and schedule

that. are triggered explicitly by the discovery of new tasks

level off at approximately day 200 when almost all the

"Undiscovered Job Tasks" have been discovered. As shown in



319

Figure V.1., at approximately day 200 the value of perceived

job size levels off at 1,067 tasks ... the true size of the

project. At that point, the project's size in man-days

plateaus at a value of 3,200 man-days. However, notice that

while the perceived job size remains unchanged after day 200,

further significant additions are made to the project's

man-days and its schedule. These further adjustments are not

triggered by the discovery of further "additional tasks"

(since none are discovered after day 250). Their direct

cause (as will be explained in more detail later) is the

realization at approximately day 300 that the project is

behind schedule i.e., that the "Total Man-Days Reported Still

Needed" to complete the project is more than "Man-Days

Remaining" in the project's plan. (Such a shortage in

man-days can, of course, arise even if the project's size had

not been underestimated. For example, it would arise if

management overestimates its staff's productivity, and as a

result does not allocate enough man-days to the project.) In

this case, however, the man-day shortage problem is largely

the indirect result of the project's undersizing problem.

What happens is that when additional tasks are discovered in

a software project (as they do up until day 200 in EXAMPLE),

the additions that are made in the project's man-days to

accomodate those additional tasks are often not quite

sufficient. The reason being that some of the discovered

tasks are absorbed by the project members without any formal

adjustments to the project's plans. Only if the additional



320

tasks are perceived as requiring a relatively significant

amount of effort to handle, would project members "bother" to

go through the trouble of formally developing cost estimates

and incorporating them in the project's work plan.

Thus, by day 200 when almost all the "Undiscovered Job

Tasks" have been discovered i.e., when the value of the

perceived job size attains the job's true size of 1,067

tasks, the value to which the "Job's Size in Man-Days" would

be raised, namely, 3,200 man-days, would not be high enough

to accomodate all the additional tasks. An interesting

comparison to make, and one which would provide us with some

feel of how much higher the man-day level should have been

raised, is to compare the 3,200 man-day value (which is

supposedly enough to develop a 1,067 task product) to the

number of man-days that would be allocated to a project

perceived from the start as being 1,067 tasks (i.e., 64 KDSI)

in size. To do this we use COCOMO's man-days (MD) equation,

MD =2.4 * 19 * (KDSI)1.05

= 2.4 * 19 * (64)1.05
= 3,593 man-days

Thus, increasing the number of man-days allocated to the

project from 2,359 (at the beginning of EXAMPLE) to only

3,200 (by day 200, when almost all the undiscovered tasks are

discovered), falls approximately 400 man-days short of the

above 3,593 man-days benchmark, a significant deficit in the

project's man-days budget.



321

When and how is this man-days deficit handled? It is

handled when it becomes visible. This usually happens (as

was explained in Chapter III) towards the later stages of

development when the development work is almost finished

and/or when the allocated man-days budget is almost used up.

Once visible, the man-days deficit would be handled by

overworking (e.g., the staff members work overtime hours),

and/or adjusting the project's man-days budget upwards. Both

of these responses take place in project EXAMPLE, and will be

discussed in some detail later. (Notice, though, that the

latter response i.e., adjusting the man-day budget, is

evident in Figure V.1., as the "Job's Size in Man-Days" makes

a significant upward adjustment at around day 300.)

The second interesting observation about Figure V.1.

concerns the adjustments made in the schedule completion

date. Notice that the first adjustment to the schedule lags

considerably behind the first adjustment to the man-days.

(Such behavior was also observed in the NASA. case study.)

Specifically, the first adjustment to the "Job's Size in

Man-Days" is made around day 80, whereas the first adjustment

to the schedule is made 60 days later, around day 140. Why?

When the "Job's Size in Man-Days" is adjusted upwards,

it is done by adjusting the men, the days, or both. That is,

it is done by adjusting the project's workforce level, the

project's schedule completion date or both. As was explained



322

in Chapter III. the decision on which alternative to choose

is really an expression of management's policy on how to

balance workforce and schedule adjustments throughout the

project. (A number of different policies will be explored

later in this chapter.) In general, though, the decision is

a function of the project's stage of completion. In the

earlier stages of the project, project managers are generally

willing to make any necessary adjustments to the workforce

level to maintain the project on its scheduled course.

However, as the project proceeds, management becomes

increasingly reluctant to add new people to the project, as

consideration is increasingly given to the stability of the

workforce. As this happens, any additions to the project's

man-days get absorbed, not only through adjustments to the

project's workforce level, but, in addition, they get

absorbed in part by adjustments to the schedule. This shift

away from. workforce adjustments to schedule adjustments

continues as the project progresses.

With this in mind we can now refer back to Figure V.1.,

and explain why the .first adjustment to project EXAMPLE's

schedule completion date lags considerably behind the first

adjustment to the man-days level. Notice that the first

adjustment to the project's man-days is made at day 80. At

that relatively early point, the additional man-days are

absorbed totally by adding more people to the project, rather

than by changing the schedule. This can be clearly seen in



323

Figure V.2. The figure depicts EXAMPLE's manpower level for

the project's full life cycle. And it also shows curve (*),

which depicts what the manpower level of EXAMPLE would have

been like (for the first 150 days) if none of the

"Undiscovered Job Tasks" were ever discovered. Notice that

the two curves coincide up until day 100 i.e., approximately

40 days after "Undiscovered Job Tasks" are first discovered

in EXAMPLE. This 40 day delay constitutes the "Hiring Delay"

in project EXAMPLE.

As explained above, as the project proceeds management

becomes increasingly reluctant to add new people to the

project. As this happens, any additions to the project's

man-days get absorbed, not only through adjustments to the

project's workforce level, but, in addition, they get

absorbed in part by adjustments to the schedule. Thus, as

EXAMPLE's man-days level continues to escalate (as a result

of the continued discovery of new tasks), the point is

reached (at around day 140) when the project's schedule

starts absorbing part of the newly added man-days load.

Notice that the rate at which the schedule is adjusted

upwards remains low at first, as most of the emphasis is

still on adjusting the workforce level. However, as the

project proceeds, the emphasis shifts away from workforce

adjustments, and towards schedule adjustments. The result of

this shift is clearly reflected in the much faster rate at

which the project's schedule completion date is adjusted



324

upwards during the second set of adjustments in the project's

man-days i.e., that start at around day 300. Notice also

that during this second adjustment process, adjustments in

the project's scheduled completion date do not lag behind the

adjustments in man-days i.e., that both start around day 300.

Manpower Distribution:

In this section we will discuss, not one, but .two

manpower distributions. The first and foremost is, of

course, the manpower distribution of project EXAMPLE. This

is depicted in Figure V.2. The shape of EXAMPLE's manpower

distribution curve shown in the figure conforms well with

manpower distributions reported in the literature (e.g., see

(DeMarco, 1982), (Boehm, 1981), ani (Basili and Zelkowitz,

1979)). For example, Figure V.3. represents the manpower

distribution at IBM's DP Services organization reported in

(Albrecht, 1979).

The second workforce distribution we would like to

comment on is the one we encountered in the NASA case study.

For the reader's convenience, the simulated and the actual

NASA workforce distributions are included below in Figures

V.4. and V.5. What is interesting about the NASA workforce

distribution is its non-conformance to the "typical"

workforce patterns discussed in the literature. And it is

quite encouraging that the model has proved capable of



325

P- 6 RUtr- BASE*5 / BASE MODEL: VERSION 5

TOTWF=u

0.; 1 a

100.oc

2C0.UD

3c0.OO

5.00 10o00*

I S

I
1

0.

0

S

0

S

SI

-. 0

mmx

m n*- m

0

0

S

0

0

0

S
SeF

Figure V.2

01/ C4/e84

15.0 CO 20.Coo

0

0

S

0

0

0*

S

S

0

0

0

0

0

0

0

0

0

S

0

0

0

0

0

0

0

0

S

S

0

0

S

S

0

0

0

0

0

0

0

,00o00

~ ~



Code Specs.
Copde. Test
and Integrate

.
,~

I b40,b l 4%ftf

Installation
and
Maintenance

Requirements

Time

Figure V.3

326

t
People
Resources

System
Design
Phase

, o

Design

I Objec:tives

Test

I

I

0



327

reproducing both types of distributions. As was explained in

Chapter IV, the reason why the workforce level in the NASA

project shoots upwards towards the eid of the project has to

do with NASA's tight scheduling constraints. Because

software is embedded in a large and expensive space system,

serious schedule slippages (e.g., t> i would jeopardize the

launch date) can not be tolerated. Because of this, when

software projects are planned, they are not only provided

with a "Scheduled Completion Date," but, in addition, a

"Maximum Tolerable Completion Date" is specified. As long as

the "Scheduled Completion Date" is below the "Maximum

Tolerable Completion Date" then decision to adjust the

schedule, add more people, or do a combination of both will

continue to be based on the balancing of scheduling and

workforce stability considerations. However, as the

"Scheduled Completion Date" starts approaching the "Maximum

Tolerable Completion Date," as it does in the NASA project,

pressures develop that override the workforce stability

considerations. That is, project management becomes

increasingly willing to "pay any price" necessary to avoid

overshooting the "Maximum Tolerable Completion Date." And

this translates, as the results indicate, into a management

that is increasingly willing to hire more people.

Work Intensity:

In Chapter III it was explained that the "typical" 8-hr



328

P .4 RUi;-

F 7EG'fF=F

O.oo
.00000o

t1o0o*c

too. Oc

30 *OQc

LAS w / C.CTCE.' 2E: N A ADr FPCJ-CI

3.750

.0

S

*

S

S

0

0

S~

a

ma r- -

4 m:
;-- I

•

Figure V.4

1/ 16/E4

15.000 F



328.1

STAFF EFFORT IFULL.TIME EOUIVALENTSI

S & mr a) a & 0r *

C d & I UI U ) C

329ars3

Figure V.5

a

- Ur

U'

I.I

O U'

0

A

- a

a

'U

Uc

U'
'I

- C

&~ 0 c



329

day of a full-time staff member on a software project is not

entirely devoted to productive project-related work. Time is

often lost on personal matters, coffee-breaks, non-project

communication, and other miscellaneous non-project related

activities. These slack components comprise about 40% of the

software person's time on the job.

The loss in productivity due to these slack components

does not, of course, remain constant at the 40% level

throughout the life of the project. The motivational effects

of schedule pressures can push the "Actual Fraction of a

Man-Day on Project" to both higher (under positive schedule

pressure) as well as lower (under negative schedule pressure)

values.

For example, positive schedule pressures arise whenever

the project is perceived to be behind schedule. That is,

whenever the total effort still needed to complete the

project is perceived to be greater than the total effort

actually remaining. Such a difference represents a perceived

shortage in man-days on the project. When confronted with

such a situation, software developers tend to work harder,

i.e., allocate more man-hours to the project, in an attempt

to compensate for the perceived shortage and bring the

project back on schedule. This would be achieved by first

compressing the slack time, and then, if needed, by working

overtime. This then decreases the man-hour lost per-day,



330

while increasing the "Actual Fraction of a Man-Day on

Project."

The dynamic behavior of the "Actual Fraction of a

Man-Day on Project" for project EXAMPLE is depicted in Figure

V.6. Notice that the two "spikes" in overwork occur, in both

occasions, as an explicit project milestone is approached.

The first spike occurs towards the end of the development

phase (which includes both design and coding), and the second

spike occurs towards the end of the only other explicit

milestone in our model, the end of the system testing phase.

This behavior pattern was observed by Boehm, and which he

labelled as the "Deadline Effect" phenomenon. Figure V.7.

shows his measured data on two projects with three major

milestones: a plans and requirements review (PRR); a

product design review (PDR), and an acceptance test (Boehm,

1981). It is clear that the Deadline Effect held strongly

for both projects, generally producing a doubling of effort

as each milestone is approached.

With a simulation model (such as ours), one need not

guess at the cause of, say, a spike in a particular variable.

Simulation experiments isolating and combining the effects of

suspected factors can precisely pinpoint the mechanism(s)

responsible. In the remaining part of this section, we will

make use of this capability to trace out the set of actions

and reactions that lead to the behavior pattern of the



331

P- 9 RUIv- BA'SES5 / BASE MODEL: VERSION 5

AFMDPJ=F

0.00

100.1

200.0

300.0

40O.C

0.0-0:a D.6 :.'L 1.2C00

0

0

0

a

0

0

0

S

S

S

0

S

S

S

0

S

S

S

S

S

S

S

S

S

S

Figure V.6

G1/i94/84

1.800~0 2.4 00 F



332

I'
at

1 2 3 4 6 7 8 9 10 11
PR R PDR. Acceptance

tst

Figure V.7

Jae

ISO

81

P 00

SDS60

30



333

"Actual Fraction of a Man-Day on Project" shown in Figure

V.6.

As was mentioned under "Project Progress," when project

EXAMPLE is started, it is incorrectly perceived as being only

714.6 tasks in size, rather than 1,067 tasks ... its true

size. As the project develops, and those "Undiscovered Job

Tasks" are progressively discovered, adjustments are then

made in the project's man-days budget to accomodate the

additional work load. However, as has been explained in

detail, these additional man-day allocations turn out to be

less *that what is actually required. This, therefore,

creates a man-day shortage in the project. Unfortunately,

though, such a man-day shortage is not immediately visible.

In fact, it only becomes visible towards the end of the

development phase, when the development work is almost

finished and the allocated man-days budget is almost used up.

The "Perceived Shortage in Man-Days" is depicted in

Figure V.8. The shortage in man-days is first perceived

quite late in the development phase, at around day 180. As

project members perceive the shortage, they react by working

harder i.e., allocating more man-hours to the project, in an

attempt to compensate for the perceived shortage and to bring

the project back on schedule. Working harder translates in

the model into the higher values of the "Actual Fraction of a

Man-Day on Project" as shown in Figure V.8.



334

P- 11 RUN- .8ASE.5 / BASE MODEL: VERSION 5

AFMDPJ=F EXHLEV=X OVIJDTH=V MDHDL=H PI4DSHR=P SHRRPT=1 SCHPR=S
JBSZMD=D CUi'tMD=C SHRRPT=1

-250*00
-25C.00
-0.5000

1253. l
-100.uD0

c  o

C C
C

c

C
C

CC

C
CC

X

VxxV0X
° X

100o.C

200.00

400.C3
vx

1.2033
50. GO

2500.0
0. 0A

- -~

cA rn=Vm
C2mm

'P >.i

-C

C Vi
C V 1

V 1
V C 1
~C 1C• .

I

V I
V I(

v 1
1V
1

1 8'*r00

250. 'D
250 f*0
0.5000
375C.0
100.00

2.2o'-) F
100.03 XV
50.a.3* HP
500.00 1
1. •, S
5,100.0 DC
200.00 1

Vs --- --
410 rn

vs
vs - - a -

vs sVS

f L

1on

C
cc

Sc

sc--S

0-I

Fl Figure V.J

XCVHP15
VHPiS1
VHPIS1
VHPIS1
VHP1S1
VHPISI
VHFISI
VHP1S1
VHPiS1
VHP1SD1
VHP1S1
VHP1S1
VHP1S1

VHP1S1
VHP1SI
VHP1S1
VHP1S1
V1SI HP

VIS1HP

V12iHP
11VHP
11tridP
llVCNPD
11,HP
110P

H1HIS

P1S
P1S
P1S
PiS
P1S

PIS
119HPS
11lHP
119HP

IlHP
HP
DCHP11

01/04/84

.m500.C0
-50 Js
-1 * ~I0 ~~

(.0
-200;03

V

I

-

8



335

Notice that even though the project members are working

harder, the shortage in man-days keeps on rising. The reason

this happens is that as the development phase continues to

approach its final stages, the degree of visibility increases

rapidly, exposing even larger man-day shortages. Thus, by

working harder, project members are in effect only cutting

into, not eliminating the man-day shortage, whose real

magnitude is becoming progressively apparent. To appreciate

the significance of the workforce's contributions, we also

plotted curve (*) which depicts what the level of the

"Perceived Shortage in Man-Days" would have been, had the

project members maintained their normal (lower) work rate.

Project members would not, however, be willing to

maintain an above-normal work rate indefinately. Once people

start working harder, i.e., at a rate above their normal

rate, their "Overwork Duration Threshold," which (as was

explained in Chapter III) at any point in time would

represent the maximum remaining duration for which they would

be willing to continue working harder, would decrease. This

happens because people enjoy their slack time (e.g., coffee

breaks, social communications, personal business, ... etc.),

and they would not tolerate prolonged deprivation of such

"breathers." Thus a compressed slack-time exhausts them in

the sense that it cuts into their tolerance level for

continued hard work since that would mean a continued

"deprivation" of their slack time. As the "Overwork Duration



336

Threshold" decreases, the maximum amount of man-days of

backlogged work that the project members would be willing to

handle (in addition to their planned work) also decreases.

If this "Maximum Shortage in Man-Days to be Handled" happens

to drop below the value of the "Perceived Shortage in

Man-Days," only the maximum value would be handled through

overwork, while arrangements with project management would be

made to adjust the project's man-days budget so as to handle

what exceeds the "Maximum Shortage in Man-Days to be

Handled."

In project EXAMPLE, this is exactly what happens. That

is, the persistence of the man-day shortage eventually

overwhelms the workforce's intensified efforts, and around

day 300 (i.e., at the end of the development phase)

arrangements with project management are made to handle those

remaining shortages through adjustments to both the project's

man-days budget and its schedule.

The samef sequence of events recur towards the end of the

system testing phase. As testing progresses the system's

error proneness becomes relatively more visible, and the

project members become increasingly more able to perceive how

productive (in testing) the workforce has actually been. As

this happens, any shortages in man-days (for the testing

phase) become more apparent. As Figure V.8. indicates, in

project EXAMPLE such shortages are indeed perceived, and at



337

an accelerating rate, starting at day 370. It is interesting

to note, though, that no such shortages were experienced in

the NASA project, which, at first sight, seems

counter-intuitive since in the NASA project only 15% of the

project's man-days were allocated to the systems testing

phase, whereas here, in project EXAMPLE, 20% were allocated.

The answer lies in NASA's exceptionally high expenditures on

Quality Assurance activities, which, as a fraction of the

development °effort, is almost double that of EXAMPLE. As a

result, in the NASA project a larger fraction of the errors

is detected early on during the development phase (when

errors are relatively less costly to detect and correct),

which of course dramatically reduces the workload of the

system testing activity.

Returning to project EXAMPLE and Figure V.8., as the

man-day shortage is detected, the workforce reacts again by

working harder i.e., compressing their slack time and

increasing the "Actual Fraction of a Man-Day on Project." At

this stage, though, the magnitude of the shortages is not as

high as those experienced towards the end of the development

phase. Recall that at the end of development, the man-day

shortage had to be handled, not only through a surge in

productivity, but also through additions to the project's

man-days budget. Here, however, the shortage in man-days is

sufficiently low to be handled solely through this final

surge in productivity.



338

Conclusion:

The objective of this section was to define the

experimental setting within which to conduct our

experimentation and analysis of the dynamics of software

development. We first characterized the "EXAMPLE" software

project, which will serve as the prototype project for the

experiments. We then ran the model to simulate EXAMPLE and

observed its behavior. The behavior of a number of project

variables were presented and explained. And we also

demonstrated that the model's behavior pattern does replicate

those reported in the literature. With this done, we are now

ready to move on to the next three sections, where we use the

model as a laboratory tool to study the dynamic implications

of an array of managerial actions, policies, and procedures

in the four areas of (1) scheduling, (2) controlling, (3)

quality assurance, and (4) staffing.

V.3. Software Cost and Schedule Estimation:

Over the years, estimation of software project

development time and cost has been an intuitive process.

Experience and analogy have been used as a basis to develop

estimates for any given project (Oliver, 1982), (McKeen,

1981), (Gehring, 1976). More recently, a number of

quantitative software estimation models have been developed.



339

They range from highly theoretical ones, such as Putman's

model (1978), to empirical ones, such as the Walston and

Felix model (1977), and Boehm's COCOMO model (Boehm, 1981).

An empirical model uses data from previous projects to

evaluate the current project and derives the basic formulae

from analysis of the particular data base available. A

theoretical model, on the other hand, uses formulae based

upon global assumptions, such as the rate at which people

solve problems, the number of problems available for

solutions at a given point in time, ... etc.

Still, software cost schedule estimation continues to be

a major difficulty associated with the management of software

development (Devenny, 1976), (Distaso, 1980), (Mills, 1976),

(Pooch and Gehring, 1980), (Yourdon, 1982), (Zelkowitz et al,

1979), (Zmud, 1980). "Even today, almost no model can

estimate the true cost of software with any degree of

accuracy" (Mohanty, 1981). Farquhar (1970), articulates the

significance of the issue:

Unable to estimate accurately, the manager can know with
certainty neither what resources to commit to an effort
nor, in retrospect, how well these resources were used.
The lack of a firm foundation for these two judgements
can reduce programming management to a random process in
that positive control is next to impossible. This
situation often results in the budget overruns and
schedule slippages that are all too common today.

A number of reasons .for the difficulty have been

suggested in the literature, including:



340

1. Software development is a process, that is not yet

fully understood by "estimators" (Myers, 1972), (Oliver,

1982), (Gehring and Pooch, 1980), (Synnott and Gruber,

1981), (Pietrasanta, 1968).

2. The phases and functions which comprise the

software development process are influenced by a large

number of ill defined variables (Gehring and Pooch,

1980), (Devenny, 1976), (Aron, 1976), (Distaso, 1980),

(Pressman, 1982), (Oliver, 1982).

3. Most of the activities within the process are

still primarily human rather than mechanical, and

therefore.prone to all the subjective factors which

affect human performance (Gehring and Pooch, 1980),

(Pressman, 1982), (Oliver, 1982).

Identifying the causes of a difficulty or a problem is

an important first step towards resolving the difficulty or

problem. The next step is to then identify a strategy for

handling those identified hurdles. For the software

estimation problem, a strategy that has been frequently

quoted in the literature was articulated by Pietrasanta more

than a decade ago:

The serious student of estimating must first be willing
to probe deeply into the fascinating and complex system



341

development process, to uncover the phases and functions
of the process, to highlight the subtle
interrelationships of the program system being developed
and the project organization doing the developing ...
relationships is precisely what is required if estimates
are ever to be improved. Only then can we do meaningful
quantitative research and scientific analysis of
resource requirements (Pietrasanta, 1968).

Having "probed deeply into the fascinating and complex

system development process," and captured within our

integrative system dynamics model (we hope) those "influence

variables of software development and their causal

relationships," we will embark, in this section, on a

quantitative analysis of software cost and schedule

estimation. We will conduct three separate experiments. In

one, we will focus on the most widely used estimation

technique, namely, estimation by analogy. We will examine

the long-term implications of using such a method. And we

will demonstrate how the feedback concept is a useful tool to

study those long-term dynamic issues. The second feature of

our modeling approach, namely, its integrative perspective,

will prove useful in a second experiment, in which we focus

on the much heralded quantitative estimation tools. We will

identify a number of managerial and organizational variables

that the current models fail to "acknowledge," but which

significantly influence the cost of software development.

Finally, in the third experiment, we turn our attention from

the techniques of software estimation, to address a more

basic issue. It is the issue of estimation accuracy.



342

The above three experiments are discussed next, in

reverse order.

V.3.1. On the Accuracy of Software Estimation:

In this section we will show firstly, why software cost

estimators should reject the notion that a (new) software

estimation tool can be adequately judged on the basis of how

accurately it matches historical project results; and

secondly, why a more accurate estimate is not necessarily a

"better" estimate.

Consider the following situation: A 64 KDSI software

project which has been estimated at its initiation, using an

estimation method "A," to be 2,359 man-days, ends up actually

consuming, at its completion, 3,795 man-days. The project's

characteristics (e.g., its size, complexity, ... etc.) are

then fed into another estimation method "B" (e.g., that is

being considered by management for adoption) and its results

compared to the project's actual performance. And let us

assume that method "B" produces a 5,900 man-day estimate. If

we define "% of relative absolute error" in estimating

man-days (MD) as,

% Error =100 * ABS[MDACT-MDEST] / MDACT

Then, for estimation method "A,"



343

% ErrorA =100 * ABS[3,795-2,359] / 3,795
=38%

And for method "B,"

% Errors =100 * ABS[3,795-5,900] / 3,795
=55%

Question: Can one conclude from this that estimation

method "B" would have provided a less accurate estimate of

the project's man-days, had it been used instead of method

"A"?

The answer is NO. And the reason why we cannot make

such a conclusion is that we cannot, and should not, assume,

that had the project been initiated with B's 5,900 man-day

estimate, instead of A's 2,359 man-day estimate, that it

would have still ended up actually consuming exactly 3,795

man-days. In fact the project could end-up consuming much

more or much less than 3,795 man-days. And before such a

determination can be made, no "accurate" assessment of the

relative accuracy of the two methods can be made.

The point we are trying to make is this: a different

estimate creates a different project.

This phenomenon is somewhat analogous to the "General

Heisenberg" principle in experimentation. The principle is

stated as follows: "When experimenting with the system about

which we are trying to obtain knowledge, we create a new



344

system" (Koolhass, 1982). Koolhas gives a fine example of

this: "A man who inquires through the door of the bedroom

where his friend is sick, How are you? whereupon his friend

replies Fine, and the effort kills him."

In an analogous manner, by imposing different estimates

on a software project we would, in a real sense, be creating

different projects. In the remainder of this discussion we

will explain how.

Research findings clearly indicate that the decisions

that people make in project situations, and the actions they

choose to take are significantly influenced by the pressures

and perceptions produced by the project's schedule (Roberts,

1981b), (Hart, 1982), (Shooman, 1983), (Gagliardi, 1981), and

(Brooks, 1978). In our model, we capture such schedule

influences. The most significant of which are depicted in

the causal loop diagram of Figure V.9.

Schedules have a direct influence on the hiring and

firing decisions throughout the life of a software project.

As was shown earlier in this chapter, in TRW's COCOMO model,

the project's staff size is simply determined by dividing the

man-days estimate (MD) by the development time estimate

(TDEV). Thus, for example, a tight time schedule (i.e., a

low TDEV value) means a larger workforce. We also saw how

scheduling can dramatically change the manpower loading



345

Productivity

Communication &
Traininn alOvrharrd

IU I call 51UIV

Progress Man-Day
Shortages

,ost & Timi
Estimation

Workforce
Hiring & Firing

Project
P~~ , • .I

t• ereived;
Status

Figure V.9

N



346

throughout the life of a project. For example, we saw how

the workforce level shoots upwards towards the end of the

NASA project (but not in project EXAMPLE), because of NASA's

strict constraints on the extent to which the project's

schedule is allowed to slip.

Through its effects on the workforce level, a project's

schedule also affects productivity. This happens because a

higher workforce level, for example, means more communication

and training overhead, which in turn affects productivity

negatively. -

As shown in Figure V.9. (and as we explained in detail

in Chapter III), productivity is also influenced by the

presence of any man-day shortages.. For example, if the

project is perceived to be behind schedule i.e., when the

total effort still needed to complete the project is

perceived to be greater than the total effort actually

remaining in the project's plan, software developers tend to

work harder i.e., allocate more man-hours to the project, in

an attempt to compensate for the perceived shortage and to

bring the project back on schedule. Such man-day shortages

are, obviously, more prone to occur when the project is

initially underestimated. Conversely, if project management

initially over-estimates the project, man-day "excesses"

could arise. And when the project is perceived to be ahead

of schedule i.e., when the total man-days remaining in the



347

project's plan exceed what the project members perceive is

needed to complete the project, "Parkinson's Law indicates

that people will use the extra time for ... personal

activities, catching up on the mail, etc." (Boehm, 1981).

Which, of course, means that they become less productive.

Having identified how software project estimation can

influence project behavior, are we now in a position to

return back to the example we posited at the beginning of

this section, and answer the still unanswered question,

namely, whether estimation method "A" is truely more accurate

than method "B"?

Identifying the feedback relationships through which

software estimation influences project behavior is one thing,

and discerning the dynamic implications of such interactions

on the total system is another. Paraphrasing Richardson and

Pugh (1981),

The behavior of systems of interconnected feedback loops
often confounds intuition and analysis, even though the
dynamic implications of isolated loops may be reasonably
obvious.

One option that might be suggested, is to conduct a

controlled experiment, whereby the 64 KDSI software project

is conducted twice under exactly the same conditions, except

that in one case it would be initiated with a 2,359 man-day

estimate (i.e., on the basis of method "A"), and in the



348

second case with a 5,900 man-day estimate (i.e., on the basis

of method "B"). While theoretically possible, such an option

is almost infeasible from a practical point of view because

of its high cost, both in terms of money and time.

Simulation experimentation provides an, obviously, more

attractive alternative. In addition to permitting

less-costly and less-time-consuming experimentation,

simulation experimentaion makes "perfectly" controlled

experiments possible (Forrester, 1961).

However, rather than conduct a limited experiment simply

to investigate methods "A" and "B," above, we will instead

conduct a broader experiment that answers a broader set of

issues that were raised in one of the organizations we

interviewed in.

In the particular organization, project managers were

rewarded -on how close their projects met their initially

estimated man-days budget. The estimation procedure that

they informally used was as follows:

1. Use Basic COCOMO to estimate the number of man-days

(MD). That is, use

MD = 2.4 * 19 * (KDSI)1.o05 man-days

2. Multiply this. estimate by a Safety Factor. The

safety factor ranged from 25% to 50%.



349

3. Use the new value of man-days (MD') to calculate the

development time (TDEV) using COCOMO. That is, use

TDEV = 47.5 * (MD'/19)0 .38 days

It is important to note, before we proceed with our

experiment, that this "Safety Factor Philosophy" is not, in

any way, unique to this one organization. For example, in a

study of the software cost estimation process at the

Electronic System Division of the Air Force Systems Command,

Devenny (1976) found that most program managers budget

additional funds for software as a "management reserve." He

also found that these management reserves ranged in size (as

a percentage of the estimated software cost) from 5% to 50%

with a mean of 18%. And as was the case in the organization

we interviewed in, the policy was an informal one: "

frequently the reserve was created by the program office with

funds not placed on any particular contract. Most of the

respondents indicated that the reserve was not identified as

such to prevent its loss during a budget cut" (Devenny,

1976).

To test the efficacy of such an informal policy we will

run a number of simulations of our prototype project, namely,

project EXAMPLE, with different values for the Safety Factor.

We will experiment with values ranging from 0 (i.e., the base

run) to 100%. For example, for a Safety Factor of 50%, the

project would be initialized with the following estimates:



350

1. First, calculate MD,

MD = 2.4 * 19 * (42.88)1.05 = 2,359 man-days

2. Second, calculate MD'

MD' =MD * (1+Safety-Factor/100)
=MD * 1.5 = 3,538.5 man-days

3. Finally, calculate TDEV

TDEV = 47.5 * (MD'/19)0 .38 = 346 days

The results of the experiment are exhibited in Figures

V.10. through V.13.

In Figure V.10., the % of the relative error in

estimating man-days is plotted against different values of

the Safety Factor. Notice that the "Safety Factor Policy"

seems to be working. The larger the Safety Factor the

smaller the estimation error. In particular, in the 25-50%

range (which is what was used in the organization) the

estimation error drops from being approximately 40% in the

base run, to values in the upper twenties. In fact, Figure

V.10. suggests that by using a Safety Factor in the 25-50%

range, the project manager might not be going far enough,

since a 100% Safety Factor, for example, would drop the

estimation error down to a "more rewarding" 12%.

The rational, or the justification, for using a Safety

Factor (as .provided by our. interviewees) is based on the

following set of assumptions:



351

ilfn --u

X 100

0 25 50 75 100
Safety Factor

%

Figure V. 10

50

40

30

20

10

0 D



352

1. Past experiences indicate a strong bias on the part

of software developers to underestimate the scope of a

software project.

2. "(One) might think that a bias would be the easiest

kind of estimating problem to rectify, since it involves

an error that is always in the same direction ... (But

biases) are, almost by definition, invisible ... the

same psychological mechanism (e.g., optimism of software

developers), that creates the bias works to conceal it"

(DeMarco, 1982).

3. To rectify this bias on the part of software

developers (e.g., systems analysts and designers),

project management must use a Safety Factor. When the

project manager " ... adds a contingency factor (25%?

50? 100?) he is, in effect, saying that: 'much more

is going to happen that I don't know about, so I'll

estimate the rest as a percentage of that which -I do

know something about'" (Pietrasanta, 1968).

In other words, the assumption is that the Safety Factor

is simply a mechanism to bring the initial man-days estimate

closer to the project's true size in man-days ... as shown

in Figure V.11.

Notice that such an assumption cannot be contested

solely on the basis of Figure V.10. which provides only part



353

Man-Days

ed

ays

ted
ays

0 25 50 75 1l

Figure

00 Safety Factor
%

V.a11



354

of the story. A more complete picture is provided by Figure

V.12. In the figure we plot the actual man-,lays that were

cbnsumed by the project EXAMPLE, when different Safety

Factors are applied to its initial estimate. The assumption

of Figure V.11 is obviously invalidated. As higher Safety

Factors are used, leading to more and more generous initial

man-day allocations, the actual amount of man-days consumed,

does not remain at some inherently-defined value. For

example, in the base run, project EXAMPLE would be initiated

with a man-day estimate of 2,359 man-days and would end up

consuming 3,795 man-days. When a Safety Factor of 50% is

used, i.e., leading to a 3,538 man-day initial estimate,

EXAMPLE ends up consuming, not 3,795 man-days, but 5,080

man-days. To reiterate a point made earlier:

A different estimate creates a different project.

The reason why this happens (as was explained earlier)

is that the project's initial estimates create pressures and

perceptions that affect how people behave on the project. In

particular, an overestimate of the project's man-days can

lead to a larger buildup of the project's workforce, leading

to higher communication and training overheads, which in turn

affect productivity negatively. In addition, when a project

is overestimated, it often leads to an expansion of the

project members' slack time activities (e.g., non-project

communication, personal activities, ... etc.), leading to



354.1

Man-Days

5s

es
ys

SA so7n 7 100 Safety Factor

Figure V. 12

5000

4000

3000

2000

v Ac J 9FTa 6%9



355

further reductions in productivity.

Figure V.13. is a plot of "Gross Productivity," which

is defined as the project size in DSI (i.e., 64,000 DSI)

divided by the actual number of man-days expended, for the

different Safety Factor situations. Gross Productivity drops

from a value of 16.8 DSI/Man-Day in the base run, to as low

as 12 when a 100% Safety Factor is used. Notice that the

drop in productivity is initially significant, and then

levels off for higher Safety Factors. The reason for this is

that when the Safety Factor increases from 0 (i.e., in the

base run) to say a relatively small value (e.g., 25%) most of

the man-day excesses that result are absorbed by the

employees. This happens in two ways, less overworking and

more slack time. Recall that in project EXAMPLE's base run,

man-day backlogs occurred towards the end of both the

development phase and the system testing phase leading to

periods of overwork. When a small Safety Factor is used,

however, such backlogs will decrease, leading to less

overwork durations. As the Safety Factor is increased

further, man-day excesses, rather than backlogs will result.

When these excesses are "reasonable" they tend to be largely

absorbed in the form of reasonably expanded slack activities.

However, as was explained in detail in Chapter III, there is

a limit on how much "fat" employees would be willing, or

allowed, to absorb. Beyond these limits, man-day excesses

would be translated into cuts in the project's workforce,



355.1

Gross
Productivity

25-

20-

15

10-

5-

n
v

64000
MD

act.
DSI/Man-Day

100 Safety Factor25 50 75

Figure V. 13



356

schedule, or both. Thus, as the Safety Factor increases to

larger and larger values, losses in productivity due to the

expansion of the slack time activities decreases, leading to

lower and lower drops in Gross Productivity.

We are now in a position to answer the question posited

at the beginning of this discussion. The situation concerned

a 64 KDSI project which is in fact our own project EXAMPLE,

and a comparison of two estimation methods. Method "A"

produces a 2,359 man-day estimate. It is, in other words,

the estimate used in the base run. Since, project EXAMPLE

ended up actually consuming 3,795 man-days, the % of relative

absolute error in estimating man-days is 38%. We then

questioned whether a new estimation methods "B," which

produces a 5,900 man-day estimate for project example (i.e.,

an estimate that is 55% higher than EXAMPLE's actual man-day

expenditures of 3,795), would have provided a less accurate

estimate of the project's man-days, had it been used instead

of method A.

Notice that method "B's" estimate of 5,900 man-days is

150% higher than "A's" 2,359 estimate i.e., method "B" is

equivalent to a "Safety Factor Policy" in which the Safety

Factor is set to 150%. To check the behavior of project

EXAMPLE had it been estimated using Method "B," we re-ran the

model with an initialized value of the man-days estimate (MD)

equal to 5,900. The results of the run, together with those



357

of the base case are tabulated below:

Method "B"

5,900

5,412

9 %

Method "A" (Base Run)

2,359

3,795

38 %

The results are quite interesting. Method "B" turns out

to be, in fact, a more accurate estimator. However, the

improved accuracy is attained at a high cost. The project

turns out consuming 43% more man-days!

In terms of the real life organization we interviewed

in, the message is the same. The "Safety Factor Policy" does

achieve its intended objective, namely, produces relatively

more accurate estimates. However, the organization is paying

dearly for this. As Figure V.12. indicates, a Safety Factor

in the 25-50 % range results in a 15-35% increase in the

project's cost in terms of man-days.

To conclude this section, we restate the two basic

insights we gained:

1. A different estimate creates a different project.

The important implication that follows from this is that

both the proj.ect manager as well as the student of

MDEST

MDA c T

% Error



358

software estimation should reject the notion that a new

software estimation model can be adequately judged on

the basis of how accurately it can estimate historical

projects. Because of the significant influence that a

schedule has on the behavior of a software project, the

only real test of an estimation method is to try it.

2. A more accurate estimate is not necessarily a better

estimate. An estimation method7 should not be judged

only on how accurate it is, but in addition it should be

judged on how costly the projects it "creates" are.

V.3.2. On the Portability of the Quantitative Software

Estimation Models:

There has been a fair amount of work towards developing

different kinds of quantitative software estimation models.

These models vary in what they provide (e.g., total cost,

manning schedule) and what factors they use to calculate

their estimates. They also vary with regard to the type of

formula and parameters they incorporate. In almost all

cases, the model is based either directly or indirectly on

past historical data (Shooman, 1983). Sometimes the

collected data are translated into tables or graphs

indicating the productivity (instructions per man-day,

man-month, or man-year). Another approach is to formulate a

parametric model, a mathematical function of several



359

variables, suggested by previous experimentation and

engineering judgement. Statistical techniques are then

applied to the data in order to reduce the number of model

variables (analysis of variance and correlation) and to

compute the constants in the equation (parameter estimation).

However, "Even today, almost no model can estimate the

true cost of software with any degree of accuracy" (Mohanty,

1981). For example, the "Basic COCOMO" estimates come within

a factor of 1.3 of the actual development figures for the

projects in the COCOMO data base only 28% of the time, and

with a factor of 2 only 60% of the time" (Boehm, 1981). The

1965 SDC model had a standard deviation which was larger than

the mean estimate (Nelson, 1966). The analysis of the

IBM-FSD model in (Walston and Felix, 1977) reported a

standard deviation of a factor of 1.71 (mean of 274

instructions/man-month; range about the mean of 160-470

instructions/man-month).

Furthermore, the portability of such models from the

companies in which they were developed to another, has proven

to be poor (Benbasat and Vessey, 1980), (Boehm, 1981),

(Mohanty, 1981).

The thesis of this section is that both the accuracy as

well as the portability of software estimation models can.be

significantly improved by taking into consideration not only



360

the technical aspects of the software development

environment, as is the case with the current models, but, in

addition, by accounting for the managerial and organizational

characteristics of the environment. Specifically, we will

identify a number of managerial and organizational variables

that the current models fail to "acknowledge," but which

significantly influence the cost of software development.

To set the stage for our analysis, we will first report

on an interesting experiment by Mohanty (1981), which

cleverly demonstrates the above two weaknesses in the current

models.

Mohanty's objective was to examine the extent to which

the available quantitative software estimation models produce

the same cost estimate for a given project. The following

models were included in the exercise: (1) The Farr and

Zagorski -Model; (2) The Kustanowitz Model; (3) The

Wolverton Model; (4) The Walston-Felix Model; (5) The

Aerospace Model; (6) The Aaron Model; (7) The GRC Model;

(8) The Naval Air Development Center Model; (9) The Doty

Model; (10) The SDC Model; (11) The Schneider Model; and

(12) The Price-S Model.

In order to fully specify his hypothetical software

project for the experiment, it was necessary to first

identify the full set of factors that are collectively



361

incorporated in the 12 models. Once this set is identified,

the software project could then be defined in terms of this

set of parameters. Forty-nine factors were identified. They

involved system size, data base, system complexity, type of

program, documentation, environment (e.g., requirements

definition, security, and computer access), and an "other"

category that includes such items as miles traveled,

reliability, and growth requirements. However, none of the

cost models described uses all the factors. Cost models

developed before 1974, for example, emphasized productivity

without considering the quality of the finished product.

Newer cost models do consider quality; however, they do not

include it explicitly.

As we said, a hypothetical software project was then

defined in terms of the identified set of parameters. The

size of the project was chosen to be 36,000 machine-language

executable instructions. The resulting 12 cost estimates for

the project are exhibited in Figure V.14. (Note: the

estimates cover the design, coding, and testing phases only

... as does our model.) As the figure indicates, the

estimated cost varies from a low of $362,500 (the Farr and

Zagorski Model) to a high of 2,766,667 (the Kustanowitz

Model) for the same software project.

Since the size of the project and cost per instruction

were the same for the different models, the variations in



362

Cost (10 $)

1. Farr & Zagorski

2. Kustanowitz -

Wolverton

4. Walston-Felix

5. Aerospace

6. Aaron

7. GRC

8. Naval

9. Doty

10. SDC

11. Schneider

12. Trig-S

Figure V. 14

1.0
I

2.0
1_ ~



363

cost are obviously caused by other factors. Two sources of

variation were suggested by Mohanty. The first related to

the quality of the final product. For example, when the

costs of highly reliable software are collected into a cost

data base, a model that uses this data base will estimate the

cost of a reliable product. On the other hand, if the data

base reflects software products with low reliability, any

model based on it would invariably estimate the cost of a

less reliable product. Since the cost data bases used in

developing the cost models are different, embodying software

with different qualities, one source of variation in

estimated cost is the quality of the final product.

The second source of variation suggested by Mohanty is

environmental:

That is, each model was developed for a cost data
base collected in a given company environment. This
data base thus embodies the specific nature of the
organizational problems, work patterns, and management
approaches and practices. Where this data base is
regressed to derive coefficients for use in a given
model, the model reflects that company's environment
only (Mohanty, 1981).

This contention, on the significance of the managerial

and organizational environment, is supported by others in the

literature [(Tausworthe, 1977), (Bartol and Martin, 1982),

(Pietrasanta, 1968), and (Clap, 1976)]. A few researchers

have even suggested some managerial/organizational factors

which they feel need to be accounted for in software cost



364

estimation. For example, Tausworthe (1977) discusses the

importance of accounting for manpower turnover, while Clap

(1976) argues for the consideration of managerial policy on

both the acquisition of manpower and the distribution of

effort among the software development activities.

In the remaining part of this section we will discuss

the results of a simulation experiment we conducted to

quantify the impact of four managerial variables on the cost

of software development. Two of the variables address

manpower-acquisition and staffing policy issues, while the

other two concern issues of effort distribution among the

software development activities. The four variables were

selected with two criteria in mind. The two criteria were

proposed in (Boehm and Wolverton, 1980), and they are: (1)

objectivity and (2) prospectiveness. According to Boehm and

Wolverton, software cost estimation models should only

include objective variables to avoid allocating the software

cost variance to poorly calibrated subjective factors (e.g.,

complexity). That is, the inclusion of only objective

variables makes it harder to manipulate the model to obtain

any result that one wants. Secondly, a software cost

estimation model should avoid the use of variables whose

values cannot be determined until the project is complete.

First we will examine the impact of each of the four

variables individually. This will then be followed by an



365

experiment to evaluate the impact of the four variables

combined. The result is quite significant: project

EXAMPLE's cost varies by a factor of two.

Manpower-Acquisition and Staffing Variables:

As mentioned above, two model variables that address

manpower-acquisition type policy issues, will be examined.

The two model variables are: (1) "Average Daily Manpower per

Staff," and (2) the "Willingness to Change Workforce."

Our interviews at GM and Digital, revealed a difference

in the two organizations' software project staffing policies.

At GM, project members were assigned full-time to a single

project (Hisamune, 15), whereas at Digital, it was more

common to assign software people to more than one project

(usually two) (Landolfi, 11), (Lombardi, 16). The practice

of these two types of policy for staffing software projects

has been also reported in the literature, e.g., in (Knutson,

1980). In the model, this staffing issue is captured, as was

explained in Chapter III, by the variable "Average Daily

Manpower per Staff." For example, when project members are

assigned full-time to the project, the value of the "Average

Daily Manpower per Staff" would be set to 1 i.e., each

project member contributes 1 man-day every (working) day to

the project. On the other hand, if project members assign,

on the average, only 50% of their time to the project (e.g.,



366

as is the case with the Digital groups we studied), the value

of the "Average Daily Manpower per Staff" would be set to

0.5.

To examine the impact of these two different staffing

policies on project cost, we ran project EXAMPLE twice, in

the first run the value of the "Average Daily Manpower per

Staff" was set to 1, and in the second it was set to 0.5.

And we compared EXAMPLE's cost under the two policies. The

measure of project cost we will use is simply the value of

the total number of man-days expended to complete the

project. The results were as follows:

Average Daily Manpower per Staff Man-Days

1.0 3,795

0.5 4,641

In other words, the policy of allocating project members

half-time (on the average) to the project results in a cost

that is 22% higher. And the rvason for this increase in cost

is two-fold. First, there is a loss in productivity due to

the increased communication overhead. This factor accounts

for approximately 90% of the increase in the project's cost.

As was explained earlier, the average staffing level of a

project (in terms of full-time equivalent employees) is

determined by dividing the estimated value of the projects

development time, i.e.,



367

Staffing Level = MD / TDEV full-time equiv. employees

If the "Average Daily Manpower per Staff" is less than

1, adjustments would then be made to determine the actual

number of employees needed. For example, if MD = 1000

man-days and TDEV = 200 days, the average staffing level in

terms of fullrtime equivalent employees would be 5. And .if

employees will be assigned only half-time, on the average, to

the project, then the actual staffing level would be 10

employees. Having 10 people involved in developing the

system rather than 5 increases the communication overhead in

the project, and, therefore, decreases the group's overall

productivity. As was explained in detail in Chapter III, the

productivity loss takes two forms. First, more.time is lost

on human communication, e.g., to resolve questions about

design, testing, ... etc. (Tausworthe, 1977). Secondly,

the amount of work itself usually increases e.g., in the form

of more documentation, more modules and interfaces, ... etc.

(Gagliardi, 1981), (Conway, 1968).

The second reason why the cost increases is because of

an increase in the training overhead. This second factor

accounts for the remaining 10% of the increase in the

project's cost. Again, as was explained in detail in Chapter

III, when new project members are recruited (from within the

organization or from the \outside), they pass through a



368

project orientation period (Brooks, 1974) e.g., to learn the

project's ground rules, the goals of the effort, the plan of

the work," and all the details of the system (GRC, 1977),

(Thayer and Lehman, 1977). This training of newcomers, is

usually carried out by the "old timers" (Tanniru, et al.,

1981), (GRC, 1977), (Winrow, 1982), (Corbato and Clingen,

1978). This training overhead is, of course, costly, because

"while (the oldtimer) is helping the new employee learn the

job, his own productivity on his other work is reduced"

(Canning, 1977). This training overhead is a function of the

number of newcomers, not of the number of equivalent

full-time newcomers (Brooks, 1975). For example, in (Gordon

and Lamb, 1977) when project members were assigned half-time

on the project, the team size was doubled, and as a result

the training overhead also doubled. When the "Average Daily

Manpower per Staff" is, therefore, less than 1, a larger

training overhead will be incurred, because as was shown

above, it would mean a larger workforce buildup in terms of

actual employees.

The second manpower-acquisition variable we examined is

the "Willingness to Change Workforce." In Chapter III we

made the following note about the "Willingness to Change

Workforce:"

It is important to realize that the variable
'Willingness to Change Workforce' is an expression of a
policy for managing projects. Thus, a range of
functions are possible here, capturing different



369

strategies -for how to balance workforce and schedule
adjustments throughout the project to minimize overruns
and costs.

Our objective now is to examine the sensitivity of the

project's cost to this policy variable. In particular, we

will examine two different policies that lie at different

sides of the base case policy i.e., the one explained in

Chapter III.

The first manpower acquisition policy, we'll call it

polEcy (A), can be defined as follows: At the initiation of

the project estimates are made for the project's total effort

in man-days (MD), and its development time (TDEV). Based on

this, the project's desired staffing level is determined

i.e., by dividing MD by TDEV. People are hired,

complementing the core of project members on hand at the

initiation of the project, until the desired staffing level

is reached. Once reached, the workforce is maintained at

that level. That is, new people would be hired only to

replace either those who quit or are transferred out.

Such a policy was reported by Devenny (1976), in his

study of software cost estimation at the Electronic Systems

Division of the Air Force Systems Command. He observed:

The data indicate that none of the ten contractors ever
significantly altered the size of the original software
team. The contractor will normally keep the initially
formed team working until the software is eventually



370

completed.

In terms of project EXAMPLE, this policy will be

implemented as follows: Estimates for the total effort in

man-days, the development time, and the staffing level will

be calculated exactly as we did before in Section V.2. These

values turn out, respectively, to be 2,359 man-days, 296

days, and 8 people. We will also continue to assume that at

the project's initiation only half the desired number of

people (i.e., 4) will be actually on board. To achieve the

desired staffing level of 8 people, 4 more people will then

be recruited into the project. Once, that desired level is

achieved, it is maintained until the end of the project.

That is, new people would be hired only to replace those who

either quit or are transferred out.

The result of this policy, together with that of the

base run, are tabulated below:

Manpower Acquisition Policy Man-Days Duration

Base Case 3,795 430

A 3,559 488

As the figures indicate, Policy (A) leads to a 6% drop

in cost (i.e., below the base case). Notice, however, that

this is achieved at the cost of a larger schedule slip.

Under Policy (A), project EXAMPLE takes 13.5% more time to



371

complete (i.e., over the base case). Whether this tradeoff

is made explicitly and willingly by the Electronic Systems

Division contractors is not clear. However, by foregoing the

flexibility of adjusting the workforce level to account for

any initial errors in estimating the scope of the project,

the policy leaves little room to handle any initial

under-estimate but to translate them into a software schedule

slip. (Remember, project EXAMPLE's size is initially

underestimated by 33%, i.e., it is initially perceived as

being 42.88 KDSI in size, rather than being 64 KDSI, its true

size.) In the base case, on the other hand, when the

project's "Undiscovered Job Tasks" are progressively

discovered i.e., as project management comes to realize that

the project's scope is larger than what has been expected,

adjustments are made (as we explained in detail in Section

V.2.) not only to the schedule, but to the workforce .level

as well.

The point here is not to decide which policy is better,

since this can only be evaluated on the basis of what an

organization's objectives are, but merely to point out that

the different policies do impact what the project's cost will

end up being, and should, therefore, be explicitly considered

when project cost estimates are made.

Under the second manpower acquisition policy we will

examine, call it policy (B), project management is not only



372

willing to adjust the workforce level to account for any

initial underestimation error, but it is willing to continue

making such adjustments further into the project's life cycle

(that is, further than in the base case),

In the base case (and based on discussions with

(Lombardi, 23), (Garett, 24) and (Nichols, 25)), the

"Willingness to Change Workforce" was formulated in terms of

the sum of the "Hiring Delay" and the "Average Assimilation

Delay." Specifically, in the early stages of the project

when "Time Remaining" would generally be much larger than the

sum of the "Hiring Delay" and the "Average Assimilation

Delay" management would be willing to adjust the workforce

level to meet the project's scheduled completion date. As

the number of days perceived remaining drops below

1.5 * (Hiring Delay + Average Assimilation Delay), though,

management starts becoming reluctant, and increasingly so, to

increase the workforce level. For example if the "Hiring

Delay" is 40 working days and the "Average Assimilation

Delay" is 80 days, then as "Time Remaining" drops below 180

days, management, in the base case, starts becoming reluctant

to hire new people, even though the time and effort perceived

remaining might imply that more people are needed. The

reluctance stems from the realization that most of those

remaining 180 days, would be "wasted" in the hiring process

and then in acquainting the new people with the mechanics of

the project, in integrating them into the project team, and



373

in training them in the necessary technical areas. And when

the "Time Remaining" drops below 0.3 * (Hiring Delay +

Average Assimilation Delay), no more addition would be made

to the project's workforce i.e., the hiring rate will fall to

zero. Thus, at that stage, if the project is behind

schedule, project management would be coping only by pushing

back the schedule completion date.

As has been repeatedly, stressed, while the above

formulation does express (what we feel is) a representitive

policy for manpower acquisition, it is by no means the only

policy. A range of policies are possible here, capturing

different strategies for how to. balance workforce and

schedule adjustments throughout the project to minimize

overruns costs.

Policy (B) is one such policy. It is adopted by (at

least) one group in a Massachusetts-based software

development/consulting company. Policy (B) is similar in

structure to the policy above, the only difference is that

the "Willingness to Change Workforce" is formulated in terms

of just the "Hiring Delay." This, of course, means that

policy (B) is a more aggressive policy in terms of acquiring

people. For example, while in the base case policy,

management starts becoming reluctant to increase the

workforce level when the perceived number of days remaining

to complete the project drops below 1.5 * (Hiring Delay +



374

Average Assimilation Delay), i.e., below 1.5 * (40+80) = 180

days, under policy (B) this happens much further into the

project's life cycle, i.e., when only 1.5 * 40 = 60 working

days are perceived remaining. (This aggressive manpower

acquisition policy, is justified, we were told, because the

firm is experiencing an impressive growth rate, fueled by a

sizable backlog of client assignments. Hiring new people to

a project that is "winding down" is, therefore, not

inhibitted by management since securing the future

utilization of the new people is almost always guaranteed.)

The WCWF-1 table function for policy (B) is shown in Figure

V.15. It has exactly the same form as that of the base case

(shown in Figure 111.34.), the only difference is that the

denominator of the x-axis is simply the "Hiring Delay" rather

than being the sum of the "Hiring delay" and the "Average

Assimilation Delay."

The result of -adopting such a policy in project EXAMPLE

is shown below, together with the results of both the base

case and policy (A).

Manpower Acquisition Policy Man-Days Duration

Base Case 3,795 430

A 3,559 488

B 4,321.5 373

As the figures indicate, policy (B)'s cost is 14% higher



375

r_ 1

0 0.3 0.6 0.9 1.2 1.5 Time Remaining
Hiring Delay

Figure V. 15

1.0

0.8

0.6

0.4

0.2

0



376

than the base case, and 21% higher than that of policy (A).

On the other hand, under policy (B), the project takes 13%

less time to complete than the base case, and almost 25% less

time than when policy (A) is used. Both the increase in the

cost and the decrease in the duration can be attributed to a

single cause, namely, a higher workforce level. More people

on the project means more work can be done faster. It also

means that the project team's overall productivity would be

lower because of the increased communication and training

overheads.

Once again, it is important to reiterate that the

objective of this exercise is not to decide which policy is

better, since this can only be decided on the basis of what

an organization's objectives are, but merely to establish

that manpower acquisition policy does have an impact on what

the project's costs will end up being, and should, therefore,

be explicitly considered when project cost estimates are

made.

From a pragmatic point of view, establishing the

significance of a particular factor for cost estimation

purposes is not enough. The factor must also be quantified,

before it can be used in a quantitative cost estimation

model. For example, paraphrasing Clapp (1976):

Variables used in cost estimation tend to be those which
are easier to measure, quantify, and estimate, even if



377

they are not the most significant.

We feel that our "Willingness to Change Workforce" table

function formulation does provide the software engineering

community with a valid measure of manpower acquisition policy

that is also easy to measure. We must note, however, that

this measure is not an original one, for it has been

previously used in other System Dynamics models e.g., of R&D

project management (Roberts, 1964). Our role, here, is,

therefore, that of transferring a useful idea from the System

Dynamics field to the software engineering community.

A final note. Notice that our results above seem to

contradict Brooks' Law, which states that "Adding manpower to

a late software project makes it later" (Brooks, 1978). The

most aggressive of the three policies in terms of adding

manpower, namely, policy (B), actually leads to the earliest

completion date. What our results indicate is that "adding

manpower to a late software project makes it more costly."

More on this later in this chapter.

We turn next to the second category of variables, those

addressing issues of effort distribution among the software

development activity.

Effort Distribution Variables:



378

In planning a software project, management does not only

provide estimates for the project's total man-days

expenditure, it in addition plans the distribution of this

total effort among the project's phases (McKeen, 1983),

(Davis, 1974), (Gunther, 1978). Numerous authors have

presented figures indicating life cycle resource

distributions among phases. In some cases the source of

their information has been reported; in most instances, it

has gone unreported causing some difficulty with

interpretation and application. In Figure V.16. a

comparison of three authors' results, done by McKeen (1981),

indicates that substantial differences do exist particularly

in the coding and testing phases of development. Commenting

on the situation, McKeen (1981) wrote:

A major conclusion ... is that we do not possess an
adequate understanding of resource consumption behavior
over the life cycle development phases.

In McKeen's own research work, he studied 32 software

development projects. He found "no real support ... for

'typical' or 'dominant' development profiles at all" (McKeen,

1981).

In this section, it is our objective to enhance our

understanding of the "resource consumption behavior." In

particular, we will investigate the impact of planned effort

distribution among the project's phases on project cost.



Portions of the text
on the following page(s)
are not legible in the
original.



Life Cycle
Phase/Actlvity

379

C=7&arison of Effort Breakdov.- by
Lztivity for Diff.eret Authcrs

Percenrtae Reseource Alocarticn

Davis Zelkov-it: Shaw

A-a Iysis 4 25 202 2
Dariim 20 15 103
Coding 25 4C5 30
Syste= Testn/A 5  2C 65

Notec: 1. Analysis enccpasses al2l deveic';=en: activ±:y ;741r to
detai*.e design.

2. The anallysis ecffc -- b understated. :f,-as
rpecu:ated, trhs daz is derived rcr syste= developorntv
in a =ill et :oz:ni, then. :±a) ai.vy such as
feas!ib2:ty analysis and-e-i.=a syse.es study has
been excluded.

3. Usin; the auth;rs definl:ttors, the ac:±vi:±es ef systc
spezi,"cations and zechnicz! r euircents consý.itute
deu.ited desigm rt=:Fvi:es as usec here.

4. Codin; effort and zodule test ef~for were coiLned.
Ykro:rz=ers are trpict2.ly rcsponsilbc for unit, ot
zodule, res:ing each pcrticn cf the sysre= they have
coded.

t. iis activiry has beer subsised vihin :n e cnvervion
srtae by Devis

6. This acllvty is not :epc-:ed.

Figure V.16



380

Thibodeau and Dodson (1978) were the first to

hypothesize the existance of such an impact:

Past attempts to establish mathematical expressions that
can predict the life cycle cost components for software
systems have achieved only qualified success. The
mathematical models for these relationships included
only variables that describe the software
characteristics and related environmental factors. This
paper presents the hypothesis that software cost
estimating relationships must include the effects of
resources consumed in one life cycle phase on other
phases. Such a model is difficult to validate. This is
primarily due to the need for greater quantities of data
of greater precision than is usually available.

In our view, the difficulty arises because of the

phenomenon we discussed in detail in Section V.3.1., namely,

that a different project estimate creates a different

project. While, all the arguments we presented in Section

V.3.1. were in terms of a project's total effort estimate,

they do equally apply to estimates at the phase level. We

can, therefore, restate the above assertion as follows: A

different distribution of estimated effort among a project's

phases creates a different project. And because of this, the

impact of different effort distributions on the cost of a

particular software project can only be determined by

repeating the particular project under controlled conditions

in which only the distribution of estimated effort among the

project's phases would be allowed to change.

In the remainder of this section we will use the model

to conduct an experiment using our prototype project EXAMPLE



381

to examine the impact of the distribution of effort among the

project's activities on project cost. Again remember the

objective of this exercise is not to determine what the

optimal effort distribution is, but rather to establish that

effort distribution decisions do have an impact on what the

project's cost will end up being, and should, therefore, be

explicitly considered when project cost estimates are made.

(Optimal effort distributions will be examined in another

experiment later in this chapter.)

The model has two effort distribution parameters. The

first parameter allocates the project's estimated man-days

among the model's two explicit phases, namely, development

(which includes design and coding) and system testing. In

the base case 80% of the effort is allocated to development

and 20% to testing. The second effort distribution parameter

is the "Planned Fraction of Manpower for QA," which is set to

15%. That is, 15% of the development effort is planned for

QA activities during the design and coding stages. As was

explained in Section V.2., these values were selected to

conform to the TRW software development environment.

The selection of another effort distribution profile to

experiment with and compare to the base case distribution

was, in a sense, both easy and difficult. It was easy,

because there was a large number of candidate profiles. As

the remarks in the beginning of this discussion indicate,



382

there is a wide range of effort distribution profiles

reported in the literature. However, the selection of an

effort distribution profile was difficult, because, of the

many that are reported, none seemed to be "typical" or

"dominant" (e.g., as McKeen's (1981) study indicates). We

finally decided to make our selection on the basis of our own

data i.e., the data collected in our interviews. And from

this we selected the case which we felt would provide the

most interest. It involved one group at GM using the

40-20-40 effort distribution profile i.e., 40% for

preliminary and detailed design, 20% for coding, and 40% for

testing. We feel that this particular profile would interest

many in the software engineering area because of the fact

that this 40-20-40 rule is perhaps the most widely touted

rule-of-thumb on the distribution of effort among.the phases

of software development projects (McKeen, 1981), (Bruce and

Pederson, 1982), (Oliver, 1982), (Jensen and Tonies, 1979).

In terms of our model's effort distribution parameter

this translates into a 60-40 distribution. That is, 60% of

the total man-days would be allocated to development (i.e.,

design and coding) and 40% to system testing. As for the QA

effort, the GM group allocated to it 20% of their development

effort. This translates into a 0.20 value for the models

"Planned Fraction of Manpower for QA."

The result of running project EXAMPLE with this new



383

effort distribution profile, call it (C), were as follows:

Effort Distribution Profile Man-Days

Base Case 3,795

C 4,442.5

Thus, a change in project EXAMPLE's effort distribution

profile from the base case to profile (C) leads to a 17%

increase in cost. Four factors contributed to this increase

in cost. The first obvious one is the (planned) increase in

the QA effort. Secondly, and as a result of this increased

QA effort, more errors were detected during development

leading to a larger rework effort expenditure. Thirdly, the

cost of development increased. The reason for this is,

however, less obvious. Recall the sequence of steps followed

in planning a project's various activities. First, total

man-days is determined. Based on this total value, the

project's schedule is calculated. Allocations to the

development versus testing activities are then made. What

this means is that, since this run's total man-day estimate

is the same as that of the base case, the scheduled duration

would also be the same in both cases. However, since in the

current case a lower fraction of the manpower is devoted to

development work, a larger team will be required to meet the

schedule. A larger team means larger training and

communication overheads, and hence the larger development

cost. The fourth, and final factor, is an increase in the



384

testing effort. Notice that the testing effort increases

(i.e., over the base-case situation) even though it "should"

be lower. It should be lower because more effort was devoted

to QA leading to the detection of a larger fraction of the

errors. The testing effort increases inspite of a lower

testing workload (because of the lower errors) because of a

lower testing productivity. In the base-case, project

members had to over-work during the testing phase, because

there were more errors and less time. In the current case,

on the other hand, there is more time, and the work expands

to fill it.

What the above suggests, is that (for an EXAMPLE-type

software project) if 40% of development effort is allocated

to the testing phase, a 20% allocation to QA would be

excessive. Or conversely, for a 20% allocation to QA, a 40%

testing phase is excessive. What is more interesting, and

would be more useful, to determine, of course, is the

"optimal" combination. This will be investigated in Section

v.6.

A Final Experiment:

Our objective in this section was to demonstrate the

significant impact of a number of managerial variables on the

cost of software developemt. We examined four managerial

variables. Two variables related to the acquisition and



385

staffing of the project's workforce, namely, the "Average

Daily Manpower per Staff" and the "Willingness to change

Workforce." The other two variables concerned the

distribution of effort among the project's different

activities i.e., development, testing, and QA. The

individual impact of the different variables on the project's

cost was evaluated in separate experiments (except for the 2

effort distribution variables which were tested together).

The results indicate that, individually, the variables can

make as much as a 20% difference in project EXAMPLE's total

cost (in man-days). What we would like to evaluate next, in

this final experiment, is the combined effect of the four

managerial variables on cost.

This is achieved by re-running project EXAMPLE with the

following four adjustments:

1. Set the value of the "Average Daily Manpower per

Staff" to 0.5. (The base-case value is 1.)

2. The "Willingness to Change Workforce" is formulated

in terms of the "Hiring Delay," yielding a more

aggressive manpower acquis ion policy. (In the

base-case it is formulated in terms of the (Hiring Delay

+ Average Assimilation Delay).)

3. Allocation of effort among the development and



386

testing phases is set at 60% development and 40%

testing. (In the base case it is 80-20.)

4. The "Planned Fraction of Manpower for QA" is set at

20%. (In the base-case it is 15%.)

The result of running project EXAMPLE with this

different set of managerial policies is a total cost of 7,316

man-days. That is, a cost that is almost double the

base-case cost of 3,795 man-days.

The implication of this significant result is clear:

Because the above four managerial policies do vary from

software development organization to another, the portability

of software cost estimation models can be improved

significantly if such variables are accounted for. Recall

Mohanty's (1981) comments:

... each (cost estimation) model was developed for a
cost data base collected in a given company environment.
This data base thus embodies the specific nature of the
organizational problems, work patterns, and management
approaches and practices. When this data base is
regressed to derive coefficients for use in a given
model, the model reflects that company's environment
only.

Heretofore, the impact that a company's managerial

environment can have on the software development has not be

quantified. We feel that our work can be useful in three

aspects. First, we have established that the impact is a



387

significant one i.e., we have shown that the effect of four

managerial variables can modify the cost of a software

project by a factor of 2. Second, by quantifying the impact,

we are making it harder on the software engineering community

to ignore the issue. And, finally, we have identified four

aspects of a company's managerial environment that are

significant determinants of software development cost, and

which are, therefore, deserving of future research efforts.

V.3.3. On the Analogy Method of Software Estimation:

While in the previous section our focus was on the

state-of-the-art software estimation methods, namely, the

quantitative models, in this section we turn our attention to

the "state of the practice." In this section we focus on

"Estimation by Analogy," probably the most commonly used

method to estimate software projects.

Estimation by analogy is defined as follows:

Estimation by analogy involves reasoning by analogy with
one or more completed projects to relate their actual
costs to an estimate of the cost of a similar new
project (Boehm, 1981).

To employ this method at least one project with similar
features must have been completed previously. The new
project must be clearly specified at least at the
functional level, permitting comparison of similar
elements (Benbasat and Vessey, 1980).



388

According to Aron of IBM, when methods of estimating are

ranked, the list is headed by the analogy method (Aron,

1976). More recently, Oliver (1982) wrote: "The most common

technique on making operational estimates is the use of

experience gained on one or more similar projects." These

assertions are supported by at least one empirical study. In

his Ph.D. dissertation, Thayer (1979) surveyed 60 software

development projects in the aerospace industry, and found

that the analogy method was used in 60% of the cases, making

it, by far, the most common estimation method used.

In the previous sections, we argued that software

project estimation affects project behavior. That a

project's estimate creates pressures and perceptions that

directly influence the decisions that people make, and the

actions they choose to take, throughout the project's life

cycle. For example, the causal loop diagram of Figure V.17.

depicts the influence of project estimation on hiring/firing

decisions, perceived project status, and productivity. What

this implies for the use of analogy in estimation is the

existence of a feedback loop (see Figure V.18.): The

estimation by analogy method produces project estimates and

schedules, which affect the decisions and actions of the

technical performers anO their managers, which in turn affect

work performance, which would then eventually influence

future estimations.



389

Productivity

Communication &
Traininn •verh)and Progress Man-Day

ShortaQes

:ost & Timl
Estimation

Workforce
Hiring & Firing

/
Project

Perceived
Status

Figure V. 17

I I 4"l all s



389.1

Estimation
by Analogy

Performance Estimates,
Schedules

Actions,
Decisions

Figure V. 18



390

But what does the existence of such a feedback loop

mean? Is it good or bad? These are some of the questions

which we will attempt to answer in this section's simulation

experiment.

The experiment involves a hypothetical situation in

which a company undertakes a sequence of five identical

software projects, all. identical to project EXAMPLE, our

prototype project. On the first such project, and let us

call it EXAMPLE1, the company (lacking the benefit of

previous experience) underestimates the size of the project

by 33%, that is, estimates the project's size to be only

48.22 KDSI, i.e., as in project EXAMPLE's base-case. And let

us also assume that the base-case estimates for the project's

man-days an.d duration were the estimates used in EXAMPLE1.

That is, the project's man-days are estimated to be 2,359,

and its development time is estimated to be 296 working days.

In other words, EXAMPLE1- is conducted under our base case

conditions.

As our base case analysis of Section V.2. indicates,

EXAMPLE1 will end up actually consuming 3,795 man-days, and

will be completed in 430 working days. After completing

EXAMPLE1, the following is, therefore, learned:

* Project EXAMPLE1 is really 64 (and not 42.88) KDSI.

* It consumes 3,795 man-days.



391

* It takes 430 days to complete.

Some time later, when project EXAMPLE2 (which is

identical to EXAMPLE1) comes along, project management will

be in a better position to estimate its true size. In fact,

we will assume that EXAMPLE2's size will be estimated

perfectly, that is, to be 64 KDSI. Furthermore, realizing

the analogy between the two projects, EXAMPLE1 and EXAMPLE2,

management will estimate EXAMPLE2's man-days and duration to

be 3,795 man-days and 430 days respectively i.e., the actual

values for EXAMPLE1. Based on these figures, management

estimates that a staff size of 3,795/430=9 (approx) full-time

equivalent people will be required.

Conducting project EXAMPLE2 under such circumstances

produces the following results: actual man-days expended =

3,787, and actual duration = 454 days. That is, while the

project is almost perfectly on target in terms of the man-day

expenditures, it still finishes late, approximately 6% beyond

the "improved" schedule.

This result is not only surprising, it is also

disturbing, the reason being that project EXAMPLE2 over-runs

what amounts to be a "perfect" schedule estimate. And when

we repeated the above sequence of actions and reactions three

more times for projects EXAMPLE3 through EXAMPLE5, this

surprising behavior persisted. That is, the schedule was



392

overrun in each case. As a result, project management

started each project (e.g., EXAMPLEi) with a slightly longer

scheduled duration than the previous one (i.e., EXAMPLEi-1).

However, EXAMPLEi would still overrun its schedule, which

caused management to use an even longer schedule duration for

the next project. The results for the five simulation runs

are shown in Figure V.19.

It is important to pause here, and make one important

clarification. The objective of this experiment is not to

investigate the behavior of a sequence of five identical

software projects! Such a scenario is admittedly unrealistic

(recall that we carefully labelled our experiment as being

hypothetical). Choosing to conduct such an "unreasonable"

experiment, and being able to do so, is, however, one of the

strengths of simulation modeling. For it allows us to

conduct experimentation with absolute control over variables.

Remember, our objective is to study the effects of using

analogy in estimation on the management of software projects,

and the effects of that on future scheduling. And only that.

Studying such relationships in a setting where projects and

managers vary (albeit more realistic) can only and

unnecessarily confuse the issues and complicate the analysis.

For example, in our experiment when project EXAMPLE2

overruns, we can definitively rule out under-scheduling as a

cause, and instead look for a "better" explanation. If,

however, EXAMPLE2 had not been identical to EXAMPLE1, we



392.1

Days

Actual
Project Duration

,w. - Estimated
f- -" Project Duration

Ow. 0

I lip

Example (i)

Figure V.19

700-

600 -

500

400

300

200
ADv I



393

would not have been able to make such an argument. Instead

we would have had to make unnecessary diversions, e.g., to

investigate the differences in scope between the two

projects.

With this in mind, we can now proceed to interpret the

experiment's results. There are two. First, there appears

to be inherent factors in the management of a software

project that would cause it to over-run even what amounts to

a "perfect" schedule estimate. The second, more interesting

finding, is that because of this inherent tendency to

overshoot, the use of the analogy method in estimating would

inject a bias in the scheduling process, a bias that

generates in the long-run longer (than necessary) project

schedules.

Concerning the first result, we have already noted that

project EXAMPLE2 over-runs a schedule that was perfectly

adequate to complete EXAMPLE1, which. is a. project identical

to it (i.e., to EXAMPLE2). Through further experimentation

with the model, it was possible to isolate the real cause of

this persisting schedule-overrun problem. It turned out to

be a consequence of the interaction of two factors, the

manpower-acquisition policy and the turnover of project

personnel.

As was explained in detail in Chapter III, in the



394

earlier stages of the project, the staffing of the project is

maintained at that level which is perceived to be necessary

and sufficient to complete the project on time i.e., on its

(current) scheduled completion date. As the project proceeds

towards its final stages, however, project management becomes

increasingly reluctant to hire new people. This reluctance

stems from the realization that most of the time remaining on

the project would be "wasted" in the hiring proces and then

in acquainting the new people with the mechanics of the

project, in integrating them into the project team, and in

training them in the necessary technical areas. If at that

stage, the project runs into schedule problems, management

would react, not by adding more people, but rather by pushing

the schedule completion date back.

A project runs.into scheduling problems whenever the

"man-Days Perceived Still Needed" to complete the project

exceeds the "man-Days Remaining." In previous sections we

discussed how this can develop due to an increase in the

former. For example, if the project's size was

under-estimated, the value of the "Man-Days Perceived Still

Needed" could rise as the undiscovered tasks are discovered.

In our current situation (e.g., in project EXAMPLE2), though,

this will not occur. Remember, we are assuming that the

experience gained on project EXAMPLE1 will lead to a

"perfect" estimate of EXAMPLE2's size. What can happen,

however, is that the value of the "Man-Days Remaining" for



395

project EXAMPLE2 drops below the value of the "Man-Days

Perceived Still Needed," and when this happens, EXAMPLE2

would run

"Man-Days

level (in

remaining

level due

the man-da

when this

management

that will

into scheduling proble

Remaining" is simply the p

full-time equivalent e

in the schedule. Thus, an

to turnover will, in tu

ys remaining, creating a s

happens towards the e

is reluctant to add new

be made will be to push

ms. The value of the

roduct of the workforce

mployees) and the time

y drop in the workforce

rn, decrease the value of

cheduling problem. And

nd of the project, when

people, the adjustment

the scheduled completion

date back i.e., resulting into a schedule over-run.

Thus far, we have been addressing only the first result

of our experiment, namely, that a software project can still

over-run what amounts to a "perfect" schedule estimate. The

second result of the experiment can be stated as follows:

because of the inherent tendency to overshoot, the use of the

analogy method in estimating would inject a bias in an

organization's scheduling process, a bias that-generates in

the long-run longer (than necessary) project schedules.

The "surprising" phenomenon we are observing here (i.e.,

of projects consuming longer and longer schedules), is a

phenomenon that has been frequently encountered in system

dynamics studies of organizational behavior (Sterman, 1981).

It has been termed "The Policy Resistance of Social Systems,"



396

"Shifting the Burden to the Intervenor," and "Addiction"

among other things. A simple example of such a phenomenon is

that of caffeine addiction, whereby an addict has to consume

a certain amount of caffeine per day to maintain a certain

level of alertness. As time goes on the burden of

maintaining alertness will keep shifting from the normal

physiological body processes to the externally supplied

caffeine dose. The result, of course, is that higher and

higher doses will be required to maintain the same level of

alertness.

Richardson and Pugh (1981) provide an explanation for

,why social systems have this tendency to resist policies

designed to improve behavior (e.g., why a software project

would tend to resist the policy of estimation by analogy

which is designed to solve the schedule over-run problem, and

continues to over-run its schedule):

(The) compensating feedback is a property of real
systems, as well as system dynamics models, and is the
reason real systems tend to be resistent to policies
designed to improve behavior ...
(A) parameter change may weaken or strength a feedback
loop, but multi-loop nature of a system dynamics model
naturally strengthens or weakens other loops to
compensate. The result is often little or no overall
change in model behavior.

In terms of our software project situation this is

exactly what happens. To see how, let us first recall the

steps followed to estimate a project. First, the estimates



397

of the project's man-days and its duration are made. These

can be made using analogy, COCOMO, ... etc. On the basis of

these two estimates, the pr6ject's average staffing level is

calculated i.e., by dividing the man-days estimate by the

estimate for the development time. For example, in EXAMPLE2

the estimates were MD = 3,795, TDEV = 430 and the average

staffing level = 3,795/430 = 8.8 full-time equivalent

employees. And we also know that EXAMPLE2's actual man-days

and duration end up being 3,787 and 454 respectively. From

these figures, we can also calculate EXAMPLE2's actual

average staffing level, namely, 3,787/454 = 8.3 full-time

equivalent employees. When the analogy method is then used

to estimate EXAMPLE3, EXAMPLE2's actual values will be used,

yielding: MD = 3,787, TDEV = 454, and an average staffing

level of 8.3 full-time equivalent employees. Notice what is

happening: EXAMPLE2's actual average staffing level ends up

(because of the turnover problem) to be slightly less than

what was planned for i.e., 8.3 instead of 8.8, and the actual

(lower) value is the one passed over to the next project. In

terms of Richardson and Pugh's explanation: extending the

project's schedule (from 430 to 454) weakens the strength of

the schedule pressure in the system, to which the hiring loop

simply compensates by causing the project to start with a

small workforce level target. It is also important to note

that such compensating behavior is often invisible to the

participants. For example, it is quite unlikely that

EXAMPLE3's project managers will realize such compensating



398

behavior because, for one, the 8.8 figure is only a planning

(not an actual) figure for EXAMPLE2. It is quite possible,

therefore, that it would not be preserved in any project

records. And even if it is, it is unlikely that EXAMPLE3's

manager will use it, after all, by concentrating on

EXAMPLE2's actual data, the manager would be behaving in what

appears to be the rational way.

It is interesting to note, that this managerial dilemma

is not at all unique to the management of software projects.

Paraphrasing Forrester (1971):

social systems are inferently insensitive to most
policy changes that people select in an effort to alter
the behavior of the system. In fact, a social system
tends to draw our attention to the very points at which
an attempt to intervene will fail. Our experience,
which has been developed from contact with simple
systems, leads us to look close to the symptoms of
trouble for a cause. When we look, we discover that the
social system presents us with an apparent cause that is
plausible according to what we have learned from simple
systems. But this apparent cause is usually a
coincident occurrence that, like the trouble symptom
itself, is being produced by the feedback-loop dynamic
of a larger system.

In the case of software development, where a project

over-runs its schedule, the situation provides us with an

apparent cause, namely, that the project was poorly

estimated. It is a cause that is quite plausible according

to what we have learned e.g., that software estimation is not

yet an exact science. Furthermore, and this is significant,

it is often impossible in a real life situation to



399

demonstrate that under-estimation was not in fact the cause.

(Note: Remember, we are excluding changes in requirements

from our analysis.)

Conclusion:

A number of conclusions can be drawn from our

"laboratory" experiment on the analogy method for estimating

software projects:

* A software project can still over-run what amounts to

a "perfect" schedule estimate.

* The software engineering community needs, therefore,

to expand its research agenda on the causes of the

schedule over-run problem, that is, beyond its current

(limited) agenda on software estimation accuracy.

* We have identified one such cause, namely, the

interaction of the manpower-acquisition policy and

personnel turnover.

* Estimating by analogy injects a bias in an

organization's scheduling process, a bias that

generates, in the long run, longer (than necessary)

project schedules.



400

V.4. The "90% Syndrome:"

In this section, we will focus on one control-type

problem faced by many software project, managers, namely, the

"90% syndrome" problem. Specifically, our aim is to

demonstrate the model's capacity to generate this important

phenomenon of software project management, and in the process

provide some insights into its causes.

There is ample evidence in the literature to support the

pervasiveness of the "90% syndrome" problem in the management

of software development projects (e.g., see (Baber, 1982),

(DeMarco, 1982), (Synnott- and Gruber, 1981), and (Devenny,

1976).) Baber (1982) provides the following description of

the problem:

... estimates of the fraction of work completed
(increase) as originally planned until a level of about
80-90% is reached. The programmer's individual
estimates then increase only very slowly until the task
is actually completed.

To examine the model's capacity to generate the "90%

syndrome" type of behavior, we simulated project EXAMPLE with

three different initial conditions:

1. The base case, where the size is initially

under-estimated by 33%. That is,

SIZE = 42.88 (and not 64) KDSI



401

MD = 2,359 man-days

TDEV = 296 days

2. When its size is properly estimated, but its

man-days requirements are under-estimated by 33%. Such

a situation could arise due to an under-estimate of the

project's complexity or an over-estimate of the team's

productivity, or both. As was mentioned before, COCOMO

exists in a hierarchy of increasingly detailed forms.

In its more detailed versions, the estimate of a

project's man-day requirements can be adjusted by a

number of multipliers to account for factors such as

complexity, required reliability, team's capability, ...

etc. For example, for a project that is perceived to

have a "very low" complexity rating, the man-days

estimate would be 30% below the "nominal" case. Thus,

if a project is incorrectly perceived at its initiation

as being "very low" in complexity, when in fact it is

not, an under-estimate of its man-day requirements will

result.

Thus, for this second case.

SIZE = 64 KDSI

MD = 0.67 (MDNOMINAL)
= 0.67[2.4*19*(64)1.05 ]

= 2,407 man-days

TDEV = 47.5 * (2,407/19)0.38
= 299 days

3. When neither size nor man-day requirements are



402

under-estimated. In this case,

SIZE = 64 KDSI

MD = 2.4 * 19 * (64)1.05=3,593 man-days

TDEV = 47.5 * (3,593/19)0.38 = 348 days

The results of these three simulation runs are shown in

Figure V.20.

One result was expected, namely, that the "90% syndrome"

arises only when a software project is initially

under-estimated. Because of the lack of visibility in the

earlier phases of development, progress is measured .by the

rate of expenditure of resources rather than by some count of

actual accomplishments. By measuring progress by the rate of

expenditure of resources, status reporting ends up being

nothing more than an echo of the project's plan. This

creates the "illusion" that the project is right on target.

However, as the project approaches its final stages (e.g.,

when 80-90% of the resources are consumed), discrepancies

between % of tasks accomplished and % of resources expended

become increasingly more apparent. At the same time, and as

the project advances towards its final stages, the project

members become increasingly able to perceive how productive

the workforce has actually been. This results in a better

and better. appreciation of the amount of effort actually

remaining. As this appreciation develops, it would, in



403

P- 7 RU;N- BASE.5 / BASE MODEL: VERSION 5

PDEVRC=1

0.; 0 25.60 50&.0
ft* 3 a0

S

0

~ · P Y

v, o ~,0

CD C-, Irn
-o I-
r- CD

* - 0
M m
M 0

Figure V.20a

01/ C4/84

75.C0 I C'.0 1

0

JS

rrrrrS

1000I

2000.

301,0

'i0*OC

* I

* S

S

S

S

S

S

rr~rrS S



404

*- 24 RU:.-

'DE.VRC%2

0.0000oo

100.00

200 * 00

O00. 00

400.00

-4

04D
V,

SASL..b / EASE E EL: VEF.610 1

0.oO 85.00

6

*0=
0I

50.00

S

0

0

S

6

Figure V.20 b

12/22/e3

75.00 100o00

0·

mm
'P i

""'

a 0



405

P- 5 RUt - BE3S.5 / bASF r*cEL: VERSIMa 5

PDEVRC=1

I. 5 'j

0

(A 0

5Pý~

r= m

m O

mm
M m

0

S~r r r r

Figure V.20 c

(1/16/84

75. .0 1("'. · · i1

S

0

S

0~

S

*0

S

S

S

200 Lic,

3 C * 0

0

S

0

S

S

S

S

S

S

S

0

S

S

S

S

S

S

S

S

S

S

S

S

0

S

S

S

5 ,. •



406

effect, be discounting the project's progress rate. Thus, as

the project members proceed towards the final stages of the

project, perhaps at a higher work rate, their net progress

rate slows down considerably. This continues, until the

project completes.

What, however, was unexpected, was the significant

difference in the acuteness of the problem between the two

types of under-estimates. Notice that the "90% syndrome" is

much more acute when the project's man-days requirements are

underestimated than it is when the under-estimate is in the

project's size. With a little reflection we can see why.

When the project's man-days requirements are under-estimated

the problem would often remain largely undetected (as was

explained above) until the final stages when, first, most of

the project's resources (i.e., budgeted man-days) are

consumed, and second the project members become more able to

perceive how productive the workforce has actually been.

When, on the other hand, the initial under-estimate is in the

project's size, the situation is, in a sense, less severe.

And the reason for this is that the problem tends to be

detected faster. As we saw in project EXAMPLE's base case

behavior in Section V.2., the "Undiscovered Job Tasks" do not

remain undiscovered until the very last stages of the

project, but, instead, start to be discovered in a

significant way during the detailed design phase of the

project. Any new task that is discovered is by definition



407

visible. And as we saw, when such tasks are discovered,

adjustments to the project's man-days are often made. As a

result of this, the project arrives at its final stages with

its initial under-estimate largely detected, which, in turn,

reduces the severity of the "90% syndrome" experienced.

Some Concluding Remarks: The "90% syndrome" arises

because of the interaction of two factors, under-estimation

and imprecise measurement of progress. The reason why

progress tends to be imprecisely measured, is because

imprecise surrogates are used to measure it. "A surrogate is

a substitute measure of some phenomenon that is used because

it is not feasible to measure the phenomenon directly

"(Anthony and Dearden 1980). In the case of software,

consumption of resources is the (imprecise) surrogate often

used to measure progress.

To rectify this situation, attempts have been made to

develop more precise measurements that would directly measure

progress in a software project e.g., automated monitoring

systems such as SIMON (Fleischer and Spitter, 1976).

However, primarily because such tools only address one

aspect of the problem i.e., the imprecise measurement of

progress, but not the under-estimation aspect, their use

could possibly result in unintended and dysfunctional

consequences. Consider, for example, the situation of



408

introducing an effective measurement tool in a (typical)

environment where projects tend to be grossly under-estimated

at their initiation. The better the measurement tool, the

earlier it will detect the fact that progress is not keeping

up with the grossly under-estimated schedule. When such a

discrepancy is detected early in the development cycle,

management will, more often than not, react by adding more

people rather than adjusting the schedule. This happens,

according to DeMarco (1982), for political reasons:

Once an original estimate is made, it's all too tempting
to pass up subsequent opportunities to. estimate by
simply sticking with your previous numbers. This often
happens even when you know your old estimates are
substantially off. There are a few different possible
explanations for this effect: 'It's too early to show
slip' ... 'If I re-estimate now, I risk having to do it
again later (and looking bad twice)' ... As you can
see, all such reasons are political in nature.

The result of sticking with a wrong schedule that is too

tight, is often an increase in the project's cost (Boehm,

1981), e.g., due to a large workforce level. Thus, what an

application of an effective measurement tool will result in,

in such an environment, are projects that are compressed in

duration, and inflated in cost. Such an outcome might not

necessarily be expected or welcomed (e.g., in an organization

where smaller costs are more critical than shorter

durations).

Such a scenario of unintended and Iyfntoa



409

consequences of some managerial intervention, it should be

noted, is not at all unique to this particular situation:

The chain of effects in going from a problem to
immediate consequences then to second-order-consequence
(i.e., those that appear subsequent to, or as a result
of, the immediate and obvious consequences of an action)
and newly created problems is one of the pervasive
characteristics of modern social systems. Quite
literally, in such systems everything depends on
everything else and often in ways so complex and round
about that it is difficult to understand the
interrelationships (Cleland and King, 1975).

And as a result,

... apparently logical solutions may prove faulty as
their consequences ramify. Furthermore, since the
consequences of a decision often occur much later than
the decision itself, it is difficult for the members to
trace backward from the disruptive consequences to
determine precisely what caused them. The members
cannot make such an analysis, simply because there are
too many competing explanations. Thus, the only thing
members can do when a new problem arises is to engage in
more localized problem-solving (Weick, 1979).

The reader might recall that the above two quotations,

were used in Chapter I within our argument for an integrative

perspective to the study of software project management.

Indeed, even though the issues we are raising here, on the

possible dysfunctional consequences of measurement tools, are

beyond the scope of our current model, we do feel that our

general integrative approach does provide the viable basis

for future extensions to address them.



410

V.5. The Economics of Quality Assurance:

The development of software systems involves a series of
production activities where the opportunities for
interjection of human fallibilities are enormous.
Errors may begin to occur at the very inception of the
process where the objectives of the software system may
be erroneously or imperfectly specified, as well as
during the later design and development stages where
these objectives are mechanized. The basic quality
factor for software is that it performs its functions in
the manner that was intended by its architects. In
order to achieve this quality, the final product must
contain a minimum of mistakes in implementing their
intentions as well as being void of misconception about
the intentions themselves. Because of human inability
to perform with perfection, software development is
accompanied by a quality assurance activity (Deutsch,
1979).

Quality Assurance (QA) is, thus, a set of activities

performed in conjunction with (the development of) a

software product to guarantee the product meets the specified

standards. These activities. reduce doubts and risks about

the performance of the product in the target environment"

(Pressman, 1982).

Software quality assurance is approached by two distinct

and complementing methodologies. The first is that of

assuring that the quality is initially built into the

product. This involves emphasis on the early generation of a

coherent, complete, unambiguous, and nonconflicting set of

requirements. Then as the product is designed and coded,

review and testing of the product, the second quality tool,

-are encountered (Deutsch, 1979).



411

As was indicated in Section 111.3. (on "Model

Boundary") the model's development phase includes both the

design and coding activities, but excludes the development of

the requirements. It was also indicated then, that we will

be assuming that software design commences (withirn the

model's boundary) at the "successful completion" of a

software requirements review (outside the model's boundary),

and that there would be no subsequent changes or

modifications in the system's requirements. As a result, the

analysis of this section on the economics of QA only applies

to the second QA tool above, namely, the review and testing

of the product.

Several specific techniques are available for reviewing

and testing the software product as it is designed and coded.

These include, structured walkthroughs and technical reviews

(Freedman and Weinberg, 1982), inspections (Fagan, 1976),

code reading (a process where code logic and code format is

scrutinized by a programmer other than the original designer)

(Weinberg, 1971) and integration testing (Daly, 1977),

(Jones, 1982). Not included in this activity is module or

unit testing, which is commonly considered to be part of the

coding process (McKeen, 1979).

In this section we will focus, not on the technical

aspects of QA, but rather on the economics of the QA

activity. We will investigate the tradeoff between the



412

benefits and costs of the QA effort in terms of the total

project cost.

The utilization of QA tools and techniques adds cost to

the development of software. For example, man-hours are

expended in developing test cases, running test cases,

conducting structured walkthroughs,... etc. This added cost

is,

... a source of concern to everyone associated with
the program, particularly the program manager and the
customer ...
A (more) pressing concern to the software quality
manager is how cost efficient are the QA operations
during the development cycle. The QA organization, just
as. all elements of the development process, will and
should be subject to detailed and continuing scrutiny
regarding the cost of doing business (Knight, 1979).

This "pressing concern" has not, however, been addressed

in the literature. That is, as of yet, there are no

published- studies investigating "how cost efficient are the

QA operations during the development cycle." We can propose

three possible reasons for this deficiency in the field's

research repertoire: (1) It is a managerial issue. Like

many other aspects of software production, managerial

considerations tend to attract less research attention.

"Perhaps this is so because computer scientists believe that

management per se is not their business" (Cooper, 1978). (2)

"Software Quality assurance has only recently i.e., within

the last four or five years, gained a place of formal status



413

and recognition within engineering hierarchies" (Stringer,

1979). The emphasis, until now, has been on "selling" this

"young" concept to practicing managers ... hence the

emphasis on stressing (only) the benefits (e.g., see (Ergott,

1979) and (Cooper and Fisher, 1979).) (3) The high cost of

controlled experimentation in software engineering (Myers,

1978), (Glass, 1982).

In the remaining part of this section we will use our

model to investigate, not whether QA is justified, but how

much QA is justified. To do this, we simulated project

EXAMPLE under different levels of manpower commitments to the

QA function and observed the benefits and costs in each case.

The primary goal of QA is "that errors be detected and

corrected as early as possible and only a minimal amount of

problems be allowed to slip from one phase of the development

to the next" (Tsui and Priven, 1976). Several studies have

established the significant cost savings gained by the early

detection and correction of errors. For example, in a study

by Shooman reported in McClure (1981), it was determined that

detecting and correcting a design error during the design

phase (i.e., through the QA activities) is one-tenth the

effort that would be needed to detect and correct it later

during the system testing phase because of the additional

inventory of specifications, code, user and maintenance

manuals, ... etc., that would require correction in the



414

later case.

An important relationship to investigate is, therefore,

the one between the QA effort expended and the % of errors

detected during development. Such a relationship was

obtained from our experiment, and is exhibited in Figure

V.21.

The significant feature of the relationship is the

"diminishing returns" of QA exhibited as QA expenditures

extend beyond 20-30% of development effort. This type of

behavior is supported by two types of results in the

literature. First, Shooman (1983) observed that "In any

sizable program, it is impossible to remove all errors

(during development) ... some errors manifest themselves,

and can be exhibited only after system integration." The

second result, reported by Boehm (1981) and shown in Figure

V.22., is a compilation of a number of studies that provide

single points on error-removal functions.

What the results of Figure V.21. suggest is that the

savings in the cost of processing errors that result from the

application of QA, flattens out as QA expenditures extend

beyond 20-30% of development effort. This result is shown in

Figure V.23. As can be seen, the combined costs of rework

(i.e., correcting errors during development) and testing

flatten out as QA expenditures extend beyond 20%. On the



415

% of Errors Detected

0 10 20 30 40
QA Effort as a % of
Development Effort

Figure V.21

I

d



416

inspection

80 1I
Percent of programming effort

Figure V.22

Si

C,

0.



417

other hand, notice that increasing QA as a % of the

development effort results in an exponential increase in QA's

absolute cost (in man-days). The reason why this happens is

that as a larger fraction of the development effort is

allocated to QA, the development effort itself increases.

And the reason why this in turn happens is that as more

man-days are allocated to QA (without corresponding

reductions in Rework + Testing man-days), the project's total

size in man-days goes up. This in turn leads to the

acquisition of a larger workforce. A large workforce, in

turn, means a less productive workforce (e.g., due to

training and communication overheads) which, as a result,

drives the project's development man-days effort higher.

The final, and perhaps most useful, question to address

concerns the "optimal" QA effort expenditure. For project

EXAMPLE, the answer is shown in Figure V.24., which plots

EXAMPLE's total cost (in man-days) against QA effort defined

in terms of % of development man-days. As can be seen, the

"optimal" QA effort expenditure is 16% of the development

man-days.

Two important conclusions can be drawn from Figure V.24.

The first, more generalizable conclusion, is that QA policy

does have a significant impact on total project cost. As can

be seen from the figure, project EXAMPLE's cost ranges from a

low of 3,770 man-days, to values in the range of 5,000



418

Cost in Man-Days

Rework & Testing Cost

3000-

2500-

2000 -

1500-

1000-

500-

20 30 4010

QA Effort as a % of
Development Effort

Figure V.23

OA Cost

I NoI F- -r- pI



Project Cost in Man-Days

30 40

QA Effort as a % of
Development Effort

Figure

419

6000

5000-

4000 -

ao0n

0 10 20

1

I I a b

V.24



420

man-days i.e., values that are 33% higher. At low values of

QA expenditures this increase in cost results from the large

cost of the testing phase. On the other hand, at high values

of QA expenditures, the excessive QA expenditures are

themselves the culprit. The second result is, of course,

deriving the optimal QA expenditure level of .16%. What, in

our opinion, is really significant about this result is not

its value, since this cannot be generalized beyond an

EXAMPLE-type software project, but rather the process of

deriving it, namely, our integrative system dynamics

approach. Beyond controlled experimentation (which are too

costly and time consuming to be practically feasible), as far

as we know, this model provides the first capability to

quantitatively analyze the costs/benefits of QA policy for

software production. And this, it is encouraging to note, is

generalizable, in the sense that one can customize models for

different software development- environments to derive

environment-specific optimality conditions.

But why is the optimal value of 16% derived above not

generalizable? To address this question we will test its

sensitivity to two project variables, which can change from

project to project and/or from organization to organiztion.

Such an investigation will have two useful outcomes: First,

we will derive results of the form "An increase in factor (X)

warrants a. greater QA expenditure," which will be

generalizable beyond our specific project EXAMPLE



421

environment. Such results could, for example, be useful

"rules-of-thumb" for organizations to use when adapting

published results or results from other organizations to

their own environments. Secondly, such "rules-of-thumb" can,

in the same way, be applied to adapt and adjust our own

results above, thus increasing their generalizability.

The first project variable we consider concerns the

distribution of effort among the project phases. In planning

a software project, management does not only estimate the

project's total effort in man-days, it in addition allocates

that effort among the project's phases (Gunther. 1978). As

was explained in detail in Section V.3.2., substantial

differences in opinion exist on how this effort distribution

is or should be made (McKeen, 1983). In project EXAMPLE's

base-case, we assumed a distribution of 80% for development

(i.e., design and coding) and 20% for testing. As was

explained in Section V.2., these values were chosen to

conform to the TRW software development environment. In this

experiment, we will examine the effect of another

distribution, namely, the 40-20-40 effort distribution

profile i.e., 40% for preliminary and detailed design, 20%

for coding, and 40% for testing. Which, as was mentioned

before, is perhaps the most widely touted rule-of-thumb for

the distribution of effort among the phases of software

development projects (McKeen, 1981), (Bruce and Pederson,

1982), (Oliver, 1982), (Jensen and Tonies, 1979). [As was



422

explained earlier, this effort profile is translated in our

model into 60% for development (i.e., design and coding) and

40% for system testing.]

Before we present the experiment's results, there is an

important comment to make. Notice that we are examining the

affects of how much effort is allocated to the testing phase

on how much effort should be allocated to QA! It appears as

though we have confused what the independent and dependent

variables are. After all, QA is utilized not only earlier in

the development cycle, but also for the explicit purpose of

affecting the testing phase (i.e., minimizing its cost). Our

experiment's (seemingly) lopsided set-up is, however, really.

a reflection of what the state-of-the-practice is in software

project management. Both in the literature (e.g., (Boehm,

1981)) as well as in the organizations we interviewed (e.g.,

based on discussions with (McGowan, 3), (O'Conner, 10),

(Landolfi, 11), (Sheldon, 12), and (Hisamune, 15)) the

sequence of steps followed in allocating the planned man-day

expenditures are as a follows: First, the total project's

effort is estimated. Then, the effort is distributed among

the life-cycle phases (e.g., using the 40-20-40 rule). And

then effort is allocated to QA as % of the development

effort. For example, in Boehm's Software Engineering

Economics, he uses a case study titled "The Hunt National

Bank EFT System" to outline how COCOMO would be used to

estimate and allocate a project's man-day expenditures. The



423

following sequence of steps is followed:

1. COCOMO's effort and schedule equations are used to

estimate the project's man-days, and development time.

2. Next, using guidelines for the distribution of

effort among the project's life cycle phases, man-days

are allocated to development (i.e., design and coding)

and testing.

3. Finally, effort is allocated to QA activities using

some guidelines expressing QA as a % of development

man-days.

A final note. This lopsided approach to planning a

software project is probably a result of how the (young)

software engineering field has grown. First, there was no

explicit development life cycle with the emphasis almost

totally placed on the programming phase of a project. Next,

we realized the value of breaking the development process

into distinct life cycle phases, and emphasizing its earlier

requirements and design phases. And, only recently have we

also come to realize the importance of emphasizing quality

during the development of a software project. However, what

the above lopsided planning sequence suggests is that the

field has not yet grown to full maturity.

Running project EXAMPLE with the new effort distribution

profile i.e., where 40% of the man-days are allocated to



424

testing rather than the base-case's 20%, produced the result

shown in Figure V.25. (for experiment #1). That is, the

optimal QA expenditure level drops to 11% of development

effort.

The fundamental reason for this is that effort

expenditures are not only a function of the actual workload,

but they are also a function of planned expenditures. This

phenomenon was explained in detail in Section V.3. Thus, by

allocating more to the testing activity, the testing effort

will expand even though the workload itself might not. -What

our experiment's results is therefore suggesting, is that we

"accomodate" this phenomenon of organizational behavior

(rather than fight it). In other words, since the testing

effort will expand anyhow (as a result of management's

increased allocation to testing), it makes sense to also

increase the workload itself and, in a sense, reap the most

return from the increased investment in testing. And this,

of-course, would be achieved by decreasing the investment in

QA. (Note: the 11% allocation to QA is still within the

range of QA expenditures reported both in the literature and

in the organizations we studied. See Chapter III.)

The second project variable we will consider concerns

software development productivity. Recall that in our

formulation of productivity we made a clear distinction

between two sets of factors that can affect how productive



424,1

Optimal OA Effort as a
% of Development Effort

I
I
I

CL0

usto
0
emI-

XI,

Base Case

- Experiment

0

CM0I

Q.0

C.It
amLw

LO04

0
a.£
PL,

Figure

20 -

15-

10

0

C,
4)
to
co

V.25

- -

I

ý- -G) - - - -1 -



425

people will be on a software project. The first set included

those factors that affect productivity dynamically throughout

the development of a single project. These, included:

workforce experience, learning, motivation, and

communication. The second set included environmental factors

which tend to remain invariant during the life of a single

project. This set included factors such as: availability of

software tools, computer-hardware characteristics,

programming language, product complexity, ... etc. Because

this second set of factors does not play any dynamic role

during the life of a single project, we were able to capture

them through a single parameter, namely, the project's

"Nominal Potential Productivity." What we would like to

investigate here is the following: The effect on the optimal

QA expenditure of changes in potential productivity (i.e.,

due to changes in the software development environment).

In Section V.2., we set project EXAMPLE's "Nominal

Potential Productivity" to 60 DSI/man-day. (Actually, it was

set to 1 Task/man-day, where a task was then defined to be 60

DSI.) This was done to conform to the TRW software

development environment. In this, Experiment #2, we examine

the effect of increasing the value of "Nominal Potential

Productivity" by 25% i.e., to become 75 DSI/man-day. Notice

that such an increase only affects the productivity of

software development. Such an increase has no direct effect

on the productivity of processing errors (i.e., detecting



426

them and correcting them). Of course, one could argue that

there is some correlation between the two productivities

e.g., higher quality people would be both more productive in

producing code and in detecting and correcting errors. And

that we, therefore, need to make corresponding adjustments to

the error processing productivities in the model. While

perfectly feasible to do, such adjustments would, however,

defeat the purpose of this experiment, and which we can now

elaborate in more precise terms: We would like to examine

the effects of increasing the differential between

development productivity and error-processing productivity in

an organization.

The results of the experiment are shown in Figure V.25.

That is, an increase in development productivity warrants an

increase in QA expenditures relative to development

expenditures. Higher development productivities mean that

each man-day expended on the development of software will

yield more software. As a result more QA effort would be

required to handle this increased output. It is important to

note here this increased output will not, in and of itself,

trigger adjustments in the amount of QA expended. And that

the required increases in QA must, therefore, be explicitly

planned for. The reason for this has to do with the

"Parkinsonian" execution of the QA activity. As was

discussed in Chapter III, both our own findings as well as

findings reported in the literature, suggest that the QA rate



427

is often independent of the QA effort allocated. What

usually happens is that the QA effort is planned and

allocated, usually in the form of a fixed schedule of

periodic group-type functions (Mitchell, 1980). For example,

a 2-hour walkthrough for the 5 members of team (A) is

scheduled for every Friday. During these periodic "QA

Windows," all tasks developed since the previous one are

supposed to be processed. And what we were surprised to find

was that, in an almost perfect realization of Parkinson's

Law, irrespective of how many tasks need to to be processed

within the specified "QA Window" they almost always do. No

backlogs, therefore, develop in the QA pipeline. Even when

QA activities are relaxed or suspended because of schedule

pressure, no backlogs develop. That is, when walkthroughs

are suspended for a while on a project, the requirement for a

"walkthrough" is also suspended, not .postponed (Hart, 1982).

We can propose an explanation for how and why this

happens. Since the objective of the QA activity is to detect

invisible errors, invisible that is until they are detected,

it becomes almost impossible to tell whether the QA job was

completely done (i.e., all those invisible errors were in

fact detected). By the same token, it is as difficult to

tell that the job has not been completely done (except much

later in the life cycle). Under such circumstances it

becomes quite easy to rationalize both to oneself and to

management that the QA job that was possible to do, was not



428

insufficient. Furthermore, the QA effort that is possible to

expend (i.e., in terms of available time and effort), is

usually what is expended and not more (e.g., even if called

for due to a larger than expected workload of developed

tasks) because there seems to be no significant incentives to

do otherwise. Firstly, at the psychological level, there are

actually disincentives for working harder at QA, since it

only "exposes" more of one's mistakes (Weinberg, 1971). And

secondly, at the organizational level there are seldom any

award mechanisms in place that promote quality or

quality-related activities (Cooper and Fisher, 1979).

V.6. Staffing: Brook's Law Revisited

Our objective in this section is, in some sense, the

reverse of that of the previous section. In Section V.5.

Our aim was to generate new results that are generalizable.

In this section, on the other hand, we will be questioning

the generalizability of an old "result," namely, "Brooks'

Law."

Brooks' Law was first publicized in Dr. Fred Brooks'

1975 book titled The Mythical Man-Month: Essays on Software

Engineering. The book embodies a number of insights into the

management of large software projects gained through Brooks'

experience in managing the development of IBM's OS/360.

Paraphrasing Brooks (1978):



429

After leaving IBM in 1965 to come to Chapel Hill as
originally agreed when I took over OS/360, I began to
analyze the OS/360 experience to see what management and
technical lessons were to be learned ...
My own conclusions are embodied in the essays that
follow, which are intended for professional programmers,
professional managers, and especially professional
managers of programmers.

Brook's Law is stated as follows: "Adding manpower to a

late software project makes it later" (Brooks, 1978).

The lack of interchangeability between men and months

was recognized by Brooks as being caused by two factors,

training and intercommunication overheads:

Each worker must be trained in the technology, the goals
of the effort, the overall strategy, and the plan of
work. This training cannot be partitioned, so this part
of the added effort varies linearly with the number of
workers.
Intercommunication is worse. If each part of the task
must be separately coordinated with each other, the
effort increases as n(n-1)/2. Three workers require
three times as much pairwise intercommunication as two;
four require six times as much as two ...
Since software construction is inherently a systems
effort ... an exercise in complex interrelationships
... communication effort is great ... Adding more men
then lengthens, not shortens, the schedule (Brooks,
1978).

Since its "enactment," Brooks' Law has been widely

endorsed in the literature (e.g., see (Synnott and Gruber,

1981), (Paretta and Clark, 1976), (Pressman, 1982), (Jensen

and Tonies, 1979), and (Boehm, 1981).) Furthermore, it has

often been endorsed indiscriminately i.e., for not only



430

large, but also small projects, and not only systems

programming type projects, but also applications software

systems. This, even though Brooks was quite explicit in

specifying the domain of applicability of his insights,

including his Brooks' Law, i.e., to what he calls "Jumbo"

systems programming projects. For example, Pressman (1982)

extends Brooks' Law to 6-10 man-year projects, while in

(Jensen and Tonies, 1979) and (Synnott and Gruber, 1981) it

is extended to the domain of applications software systems,

Interestingly, this wide-spread endorsement of Brooks'

Law has taken place, even though the "law" has not been

formally verified. Our objective in this section is to do

just that. Specifically we will investigate whether Brooks'

Law does apply to the environment of "medium-sized

applications projects developed in a familiar, in-house

development environment," i.e., to our prototype project

EXAMPLE.

As we have seen in Section V.2., project EXAMPLE's size

is (as are many such software projects) initially

under-estimated. As a result the project experiences

scheduling problems, and does in fact overshoot its original

schedule. (The reader is advised to refer to the detailed

description furnished in Section V.2.) We also saw that when

the project's scheduling problems surface management first

reacts by adjusting the project's workforce level i.e.,



431

adding more people. However, as the project proceeds towards

its final stages, with its scheduling problems still

persisting, management becomes increasingly reluctant,

because of workforce stability considerations, to add more

people, and as a result reacts instead by adjusting the

project's schedule.

Management's policy on how to balance workforce and

schedule adjustments is captured in the model through the

formulation of the variable "Willingness to Change

Workforce."- Through adjusting this variable we can,

therefore, examine the impact of more aggressive manpower

acquisition policies on the project's cost and duration.

That is, examine whether a policy (A) in which management

continues adding more people to project EXAMPLE even as the

project proceeds towards the end of its system testing phase,

results in a larger schedule overshoot than does a policy (B)

in which management refrains from adding more people much

earlier e.g., towards the end of the development phase.

Brooks' Law suggests that policy (A) would produce a longer

project duration.

In 'the base case (and based on discussions with

(Lombardi, 23), (Garett, 24) and (Nichols, 25)), the

"Willingness to Change Workforce" is formulated in terms of a

time parameter that is the sum of the "Hiring Delay" and the

"Assimilation Delay." Specifically, in the early stages of



432

the project when "Time Remaining" would generally be much

larger than the sum of the "Hiring Delay and the

"Assimilation Delay" management would be willing to adjust

the workforce level to meet the project's scheduled

completion date. As the number of days perceived remaining

drops below 1.5 * ( Hiring Delay + Assimilation Delay),

though, management starts becoming reluctant, and

increasingly so, to increase workforce level. In the base

case the values of the "Hiring Delay" and the "Assimilation

Delay" are 40 and 80 working days, respectively. Thus, as

"Time Remaining" drops below 180 days, management, in the

base case, starts becoming reluctant to hire new people, even

though the time and effort perceived remaining might imply

that more people are needed. The reluctance stems from the

realization that most of those remaining 180 days, would be

"wasted" in the hiring process and then in acquainting the

new people with the mechanics of the project, in integrating

them into the project team, and in training them in the

necessary technical areas. And when the "Time Remaining"

drops below 0.3 * (Hiring Delay + Assimilation Delay) i.e.,

below 48 working days, no more additions would be made to the

project's workforce i.e., the hiring rate falls to zero.

It should now be clear how we can model more aggressive

manpower acquisition policies through the "Willingness to

Change Workforce" formulation. We can do that simply by

decreasing the value of the time parameter. For example, if



433

we set the time parameter to 30 working days (instead of its

base-case value of 40 + 80 = 120) we would be modeling a

situation where management's willigness to add to the

workforce continues until much later into the project. In

the base case, management starts becoming reluctant to

in6rease the workforce level when the perceived number of

days remaining to complete the project drops below 180 days,

and stops hiring completely when it drops below 48 working

days. Under the current more aggressive policy, management

starts becoming reluctant at 45 days and stops manpower

additions completely at 9 working days, or two weeks, before

the perceived completion date.

Thus, by adjusting the value of the time parameter we

are able to examine the scheduling consequences of a number

of manpower acquisition policies, ranging from the base-case

policy to the above (somewhat extreme) policy. The results

are depicted in Figure V.26.

As can be seen from the figure the results do not

support Brooks Law. What our results show is that adding

more people to a late project causes it to become more

costly, but not to complete later. The increase in the cost

of the project is caused by the increased training and

communication overheads, and which in effect decrease the

productivity of the average team member, and thus increase

the project's man-day requirements. For the project's



434

Development
Time

(Working Days)

400-

350 -

300

Project
Cost

(Man-Days)

-50(

DEVE OPMENT

PROJECT COST
- 40(

3000

TimeParameter
(Working Days)

Figure V.26

0 20 40 60 80 100 120

· _ __ ·



435

schedule to also suffer, the drop in productivity must be

large enough to render an additional person's contribution to

the project to be, in effect, a negative contribution. Our

results indicate this is not the case in project EXAMPLE.

The conclusion that we can draw from our experiment's

results is that Brooks' Law does not universally apply to all

software development environments. And that, in particular,

it does not seem to apply to the EXAMPLE-type project

environment i.e., the medium sized application project

developed in a familiar, in-house development environment.

It is, therefore, not necessarily an invalidation of Brooks'

"Brooks's Law," but rather a disqualification of the notion

(implied not by Brooks but by the writings of others in the

literature) that "Brooks' Law" is a universal law of software

development.

The question, however, still remains: under what

conditions would Brooks' Law apply? While the complete

answer to this question lies beyond the scope of this

research, we are, however, able to present some preliminary

results. One of the advantages of simulation modeling is the

flexibility it provides in experimenting on the modeled

system under perturbed conditions. The results of one such

experiment i.e., on a "perturbed EXAMPLE" project, is shown

in Figure V.27.



Development
Time

(Working Days)

Project
Cost

(Man-Days)

DEVEJJ.gpENT
500 -

450-

400

-

-

I I I I I

0 20 40 60 80 100 120
Time Parameter
(Working Days)

Figure V.27

436

PROJECT

-8000

6000

4000 COST
%W w -



437

In this experiment, we guadrupled the training overhead

for project EXAMPLE. In the base case, a new hiree consumes

in training overhead, on the average, the equivalent of 20%

of -an experienced full-time employee's time for the duration

of a training period that extends for 4 months. In this

current experiment, a new hire consumes 40% of an experienced

full-time employee's time for a training duration that

extends for 8 months. Such an increase in the training

overhead, while admittedly somewhat extreme, is

never-the-less the kind of perturbation that we would need to

make if we were to model the software development environment

of large and complex systems programming software (Corbato

and Clingen, 1980), e.g., such as the IBM OS/360.

Notice that, even with such a large training overhead,

Brooks' Law does not always hold. It only holds, in this

experiment, when the Time Parameter is less than 50 working

days. As was explained earlier, a smaller Time Parameter

means that management's willingness to add more people to the

project is maintained until later in the project's life

cycle. Specifically, when the Time Parameter is set to 50

working days, management would be willing to add more people

up until the point in time when it is perceived that the time

remaining to complete the project is less than

0.3 * 50 = 15 working days i.e., 3 weeks. That is, until the

final stages of the testing phase. It is at such extremely

aggressive manpower acquisition policies that Brooks' Law



438

holds for our "perturbed EXAMPLE" project.

There are several conclusions that we can draw from this

analysis:

* Adding more people to a late project does not

necessarily make it later.

* In particular, Brooks' Law does not seem to apply to

the EXAMPLE-type software project environment i.e., the

medium sized application project developed in a

familiar, in-house development environment.

* In such an environment, adding more people to late

project does, however, make it more costly.

* But even in a particular software development

environment, our results indicate that adding more

people to a late project may or may not make the project

later. It depends on where in the project's life cycle

the people are added.

V.7. Summary:

In this chapter we used our integrative system

dynamics model of software project management as an

experimentation vehicle to study/predict the dynamic

implications of an array of managerial actions,

policies, and procedures pertaining to the development

of software. Four areas were studied: (1) Scheduling;



439

(2) Controlling; (3) Quality Assurance; and (4)

Staffing.

Three experiments were conducted in the software

scheduling area. We examined the impact that schedules

have on project performance in the first experiment, the

portability of the quantitative software estimation

tools in the second, and in the third experiment we

investigated the long-term impact of the "estimation by

analogy method."

In the area of project control, we examined the "90

% Syndrome" phenomenon, and provided an analysis of its

causes, namely, the lack of visibility and

underestimation.

The third area of investigation concerned the

economics of software quality assurance. Two sets of

experiments were conducted in this area. The objective

of the first set was to investigate, not whether QA was

justified, but how much QA was justified. In the second

set of experiments, we examined the sensitivity of the

derived "optimal" QA expenditure level, to two project

variables, namely, the project's planned effort

distribution profile, and the software development

productivity.



440

Finally, in the area of project staffing, we tested

the applicability of Brooks' Law to our prototype

project environment (i.e., to the domain of medium-sized

applications projects developed in a familiar, in-house

development environment).



441

VI. CONCLUSIONS AND SUGGESTIONS

FOR FUTURE RESEARCH

The purpose for a concluding chapter is to provide the

opportunity for the researcher to look back in order to

assess what has been accomplished, and at the same time, to

furnish an occasion for the researcher to look ahead in order

to suggest future avenues for prospective research. These

activities, while of different orientation, are closely

interrelated; any statement of what has been done invites

inquiry as to what remains to be done. This chapter, coming

at *the culmination of the research, provides the vantage

point from which the researcher can fulfill these express

purposes. The following sections of the chapter entitled

"Summary of Results" and "Suggestions for Future Research"

provide the "look back" and "look ahead," respectively.

VI.1. Summary of Results:

The objective of this research effort is to enhance our



442

understanding of, and gain insight into, the general process

by which software development is managed. To achieve this

objective we accomplished the following three tasks:

1. Developed an integrative system dynamics model of

software development project management.

2. Conducted a case study to test the model.

3. Used the model as an experimentation vehicle to

study/predict the dynamic implications of an array of

managerial policies and procedures.

In the remaining part of this section, we will elaborate

further on the above three research accomplishments.

Model Development:

The development of the integrative system dynamics model

of software development project management constitutes the

following set of accomplishments:

1. The model integrates our knowledge of the micro

components of software development project management

(e.g., programming, prductivity, planning, controlling,

...etc.) into an integrated continuous view of the

software development process.

A major defect in much of the research to date has been

its inability to integrate our knowledge of such micro



443

components for deriving implications about the behavior

of the organization in which the micro components are

embedded (Thayer, 1979). Paraphrasing Jensen and Tonies

(1979):

There is much attention on individual phases and
functions of the software development sequence, but
little on the whole life cycle as an integral,
continuous process --- a process that can and
should be optimized.

Clearly, this "micro-oriented" type of work is a useful

beginning in helping us obtain a better understanding of

the software development activity. However, before we

can say that we have a complete understanding of any

such activity, "... it is necessary to show that our

knowledge of the individual components can be put

together in a total system, i.e., an organization can be

synthesized, which allows for the interactions of all

the relevant variables and all the structural

components" (Cohen and Cyert, 1965).

In addition to the benefit of helping us achieve overall

understanding, an integrative perspective is useful in

two more "tactical" ways: problem diagnoses and

solution evaluation. The interactions and

interdependicies which characterize our management

systems, will similarly characterize the problems that

beset such systems (Cleland and King, 1975). In Brooks'

words: "... no one thing seems to cause the difficulty

(in software projects) ... But the accumulation of



444

simultaneous and interacting factors..." (Brooks,

1978). An integrative perspective is, therefore, useful

because it both "prompts" as well as "facilitates" the

search for the multiple, and potentially diffused, set

of factors that are interacting to cause software

development problems. An example of this is the

schedule overshoot problem, which, as was shown in

Chapter V, can arise, not only because of schedule

underestimation, but also as a result of management's

hiring/firing policies.

Again, because of the interactions and interdependencies

that characterize management systems, managerial

intervention (e.g., to solve a perceived problem) often

leads to second- and third-order consequences and newly

.created problems (Weick, 1979). By providing us with a

comprehensive world view, the model is a useful tool to

fully assess such second- and third-order consequences.

An example of this has been our analysis of the "Safety

Factor Policy" in scheduling software projects. It was

shown that while such a policy "succeeds" in producing

more accurate project estimates, the intended

consequence of the policy, it also tended to "create"

more costly projects, which is both an unintended and a

dysfunctional consequence.

2. The model identifies feedback mechanisms, and uses



445

them to structure and clarify relationships in software

project management. While the significance and

applicability of the feedback systems concept to the

study of managerial systems has been substantiated in a

large number of studies outside software engineering, it

still remains largely foreign to the software

engineering project management community. We,

therefore, view our work as having an "educational"

value to the software engineering community.

3. The mathematical formulation of a system dynamics

model forces explication i.e., structural relationships

between variables must be explicitly and precisely

defined. As such, the model sets the foundation for the

development of a theory of software project management.

Paraphrasing Dubin (1971):

A theory is the attempt of a man to model some
aspects of the empirical world ... A theory tries
to make sense out of the observable world by
ordering the relationships among 'things' that
constitute the theorist's focus of attention in the
world 'out there' ... The process of putting
things or units together in lawful relation to each
other. establishes the fundamental building blocks
out of which a theory is constructed.

4. The high degree of explication required in the model

helped us ferret out "knowledge gaps" in the literature.

And a set of 27 interviews with software development

managers in 5 organizations helped us fill these

knowledge gaps. The model, therefore, incorporates new



446

findings about the management of software project

management (e.g., on manpower acquisition policies under

different scheduling considerations).

Case Study:

The model was developed on the basis of both an

extensive review of the literature and information gathered

through the set of 27 interviews. After the model was.

developed, we then conducted .a case-study in a sixth

organization, namely, the Systems Development Section of

NASA's Goddard Space Flight Center. The objective of the

case-study was to examine the model's ability to reproduce

the dynamic behavior patterns of a completed software

project.

The DE-A project was selected for the case-study by

NASA. This project was selected so as to satisfy three

criteria (furnished by us): (1) to be medium in size; (2)

recent; and (3) "typical" i.e., one that would be considered

as having been developed in a familiar in-house software

development environment.

To simulate the DE-A project, the model was first

parameterized. The process involved setting 14 model

parameters that capture the *particular DE-A project

environment. The parameter values were obtained from two

sources, namely, interviews at NASA and project



447

documentation. The 14 model parameters that were set (e.g.,

"Hiring Delay," "Turnover Rate," ... etc.), it is important

to note, do dot involve any changes in the formulation of the

model's policy structures. The parameter set merely defines

the (DE-A) environment within which the policies are

exercised. This is significant, since the dynamic behavior

patterns generated are largerly a result of the interaction

of the model's (unchanged) policy structures.

The model was highly accurate in reproducing the actual

development history of the DE-A software project.

Specifically, it accurately reproduced the dynamic behavior

patterns of the project's completion-date estimates, man-day

estimates, cost in man-days, and workforce loading.

Experimentation:

If "understanding" is the intellectual outcome of a

theoretical model, then "prediction" is its practical outcome

(Dubin, 1971). The model was used as an experimentation

vehicle to study/predict the dynamic implications of an array

of managerial policies and procedures. Three areas were

studied:

1. Software cost and schedule estimation. Three

experiments were conducted in this area. In the first,

we examined the impact that schedules have on project

performance. We showed that "a different schedule



448

creates a different project." An important implication

that follows from this is that both the project manager

as well as the student of software estimation should

reject the notion that a software estimation model can

be adequately judged on the basis of how accurately it

can estimate historical projects. Because of the

significant influence that a schedule has on the

behavior of a software project, the only real test of an

estimation method is to try it. Furthermore, an

estimation method should not be judged only on how

accurate it is, but in addition it should be judged on

how costly the projects it "creates" are.

The second experiment concerned the portability of

quantitative software estimation tools. Evidence in the

literature indicates that the portability of the

currently available quantitative software estimation

tools (i.e., from the companies in which they were

developed to another) is poor (e.g., see (Boehm, 1981)

and (Benbasat and Vessey, 1980)). A primary reason for

this is that almost all the current models fail to

explicitly account for the managerial characteristics of

the software producing organization, and which tend to

vary significantly from one organization to another

(Mohanty, 1981). A major stumbling block has,

heretofore, been the inability to quantify the impact of

managerial-type factors on the cost of software



449

development. In this experiment we take a first step

towards rectifying this situation. Specifically, we

identified four aspects of a company's managerial

environment (manpower acquisition, manpower allocation,

effort distribution, and QA. allocation) that

significantly impact the cost of software development,

and we quantified that impact. Because the four areas

identified are variables that the project manager can

objectively evaluate at the beginning of a software

project, it should be feasible to incorporate them

explicitly in future cost estimation models. This, we

feel, will improve both the accuracy as well as the

portability of such models.

The third and final experiment in this area

concerned the analogy method of software estimation.

The experiment generated two interesting insights.

First, it revealed that there are inherent factors in

the management of a software project (resulting from the

interaction of manpower acquisition policies and

personnel turnover) that would cause it to over-run even

what would amount to be a "perfect" schedule estimate.

The second, more interesting finding, is that because of

this inherent tendency to overshoot, the use of the

analogy method in estimating would inject a bias in the

scheduling process, a bias that generates, in the

long-run longer (than necessary) project schedules.



450

2. The economics of quality assurance (QA). Two sets

of experiments were conducted in this area. The

objective of the first set was to investigate, not

whether QA is justified, but how much QA is justified.

To do this we first examined the relationship between

the QA effort expended and the % of errors detected

during development. A significant feature of this

relationship is the "diminishing returns" of QA

exhibited as QA expenditures extend beyond 20-30% of

development effort. We then derived the "optimal" QA

expenditure level i.e., that level that minimizes total

project cost. The "optimal" QA effort expenditure level

(for our prototype project) was found to be 16% of the

development man-days. What, in our opinion, is really

significant about this result is not its value, since

this cannot be generalized beyond the type of project

used in our experiment, but rather the process of

deriving it, namely, our integrative system dynamics

approach. Beyond controlled experimentation (which is

too costly and time consuming to be practically

feasible) this model, as far as we know, provides the

first capability to quantitatively analyze the

costs/benefits of QA policy for software production.

And this, it is encouraging to note, is generalizable,

in the sense that one can customize models for different

software development environments to derive



451

environment-specific optimality conditions. The results

of this first set of QA experiments have also clearly

demonstrated that QA policy does have a significant

impact on total project cost. That is, QA expenditures

that are significantly lower or significantly higher

than the "optimal" can result in a significant increase

in the project's total cost. At low values of QA

expenditures this increase in cost results from the

large cost of the testing phase. On the other hand, at

high values of QA expenditures, the excessive QA

expenditures are themselves the culprit.

The objective of the second set of QA experiments

we conducted was to examine the sensitivity of the above

results to two project variables, namely, the project's

planned effort distribution profile (i.e., how

management plans the distribution of effort among the

development versus testing phases of the project), and

the software development productivity. The findings

constitute "rules-of-thumb" that organizations can use

to adapt published results, or results from other

organizations, to their own environment.

3. Staffing. Our objective in this, the third and

final area of investigation, was to test the

applicability of Brooks' Law to the domain of

"medium-sized applications projects developed in a



452

familiar, in-house development environment."

Since its "enactment," Brooks' Law has been widely

endorsed in the literature (e.g., see (Synnott and

Gruber, 1981), (Paretta and Clark, 1976), (Pressman,

1982), (Jensen and Tonies, 1979), and (Boehm, 1981)).

Furthermore, it has often been endorsed indiscriminately

i.e., for not only large, but also small projects, and

not only systems programming type projects, but also

applications software systems. For example, Pressman

(1982) extends Brooks' Law to 6-10 man-year projects,

while in (Jensen and Tonies, 1979) and (Synnott and

Gruber, 1981) it is extended to the domain of

applications software systems. Brooks was quite

explicit in specifying the domain of applicability of

his Brooks' Law to what he calls "Jumbo" systems

programming projects.

Our experimental results do not support Brooks'

Law, for the type of project studied in this research.

What our results show is that adding more people to a

late project causes it to become more costly, but not to

complete later.

The conclusion that we can draw from our

experiment's results is that Brooks' Law does not

universally apply to all software development



453

environments. And that, in particular, it does not seem

to apply to the medium sized appliction project

developed in a familiar, in-house development

environment. It is, therefore, not necessarily an

invalidation of Brooks' "Brooks' Law," but rather a

disqualification of the notion (implied not by Brooks

but by the writings of others in the literature) that

"Brooks' Law" is a universal law of software

development.

In a follow-up experiment, we re-tested Brooks' Law

after quadrupling the training overhead in the project.

Such an increase in the training overhead, while

admittedly somewhat extreme, is never-the-less the kind

of perturbation that we would need to make if we were to

approximate the software development environment of

large and complex systems programming software (Corbato

and Clingen, 1980), e.g., such as the IBM OS/360. Under

such conditions Brooks' Law applies, sometimes. The key

is where in the life cycle people are added. Adding

manpower to a late project can make it later only (our

results indicate) if this takes place towards the end of

the project's testing phase.

VI.2. Suggestions for Future Research:

According to Nobel Prize Winner Alfred Kastler "All



454

knowledge is provisional --- never final." This is certainly

the case in this field where research is in the infancy

stage. It is believed that this research has pointed up

several areas requiring more intensive research.

Model Enhancements:

Further research needs to be performed within the

framework of the existing model. We propose the following

set of model extensions:

1. Incorporating the requirements definition/analysis

phase into the model's life cycle. "The technology of

defining the requirements for a software system is an

area in most urgent need for improvement and itself

constitutes a major portion of the so-called

'software-bottleneck'" (Bacon, 1982). Many in the field

have hypothesized about the disruptive effects of

changes in system requirements on software production,

and on the direct link between such disruptions and

cost/schedule slippages (Boehm, 1981). The system

dynamics modeling approach provides a viable vehicle to

test out such hypotheses, and to furnish a quantitative

assessment of the claims made.

2. Extend the model to capture the development of

multiple projects e.g., two software projects developed

in parallel. In such an environment project competition



455

for company resources becomes a significant dimension,

presenting an opportunity to examine the effects of

various resource allocation policies e.g., of the

manpower resource.

3. Extending the model to other project environments.

Particularly interesting (and challenging) would be an

extension to the larger DOD-type software projects

(e.g., projects that are more than 1 million lines of

code in size). Such an extension would entail a number

of enhancements to the model. The development phase

would be disaggregated into "finer" phases e.g.,

preliminary design, detailed design, and coding, with a

set of formal milestones separating the phases e.g.,

preliminary design review, critical design review, ...

etc. Interesting questions to investigate here are the

cost/benefits of such milestones e.g., administrative

overhead versus visibility benefits. It would be also

of interest to investigate how and when serially planned

phases are overlapped under schedule pressures, and the

effects of such unplanned overlapping on the project.

Another needed enhancement would be to restructure the

QA activity, which in such projects tends to be

conducted by an independent organization. As a third

enhancement, it would be useful to capture the deep

vertical structures that characterize the management of

such "jumbo" projects, representing the communication



456

paths within the organization and including the various

levels of information filtering and processing and of

decision making.

4. Another interesting extension would be to capture

the quality of the produced software product. The first

issue to address here is formulating the measure(s) of

software quality (e.g., usability, maintainability, ..

etc.). A valuable resource to tap in this area is the

work done in the software metrics field e.g., see Perlis

et al, Software Metrics (1981). A number of model

enhancements would then be required. For example,

software errors could be disaggregated into different

types, some more serious than others. Another more

challenging enhancement would be to capture the effects

of motivational factors on quality. For example,

experiments have shown that explicit project goals

(e.g., "produce code as fast as you can" versus "produce

maintainable code") significantly impact project

behavior e.g., productivity, error rates, ... etc.

(Weinberg and Schulman, 1974). This motivational issue

is particularly interesting because the different

software development objectives conflict with each other

in practice. For example, pure concentration on

minimizing the software development budget and schedule

is likely to have negative effects on.software quality,

and vice versa (Boehm, 1981).



457

New Modeling Applications:

Rather than continuing to focus on software development

projects per se, the system dynamics modeling approach

outlined in this thesis could be extended to investigate a

broader set of issues pertaining to the software development

organization. That is, rather than trace the lifecycle(s) of

one or more software projects, one would focus, instead, on

the operations of a software development department as a

continous stream of software products are developed, placed

into operation, and maintained. A number of research

questions are "ripe" for investigation, including: (1) the

efficacy of different organizational structures (e.g.,

project, functional, amd matrix) in different software

development environments; (2) Personnel turnover, its costs

(e.g., recruiting and training overheads), its benefits

(e.g., access to new ideas and methodologies), and its causes

(i.g., schedule pressures, maintenance load, ... etc.); (3)

The impact of such management approaches as Management By

Objectives (MBO) in both the short-term and the long-term (a

system dynamics study in the R & D area showed that the

short-run effect of MBO on increasing motivation and

productivity may be reversed in the long-run if social

interaction and communication are allowed to erode); and (4)

the organizational/environmental determinants of productivity

e.g,, standards, software tools, use of librarians,



458

documentation requirements ... etc. Again, one needs to

investigate both short-term as well as long-term

implications. For example, because the software industry is

unique in that we develop our own production tools, an

investment in developing powerful software development tools

(e.g., compilers, automated testing tools, ... etc.), while

it might hamper productivity in the short-run, often leads to

better software, which in turn could lead to even more

powerful tools.

THE END



459

BIBLIOGRAPHY

1. Abdel-Hamid, T. K. and Madnick, S. E. "The System
Dynamics Approach to Designing Software Project
Planning and Control Systems: A Research
Proposal." Technical Report, MIT, Sloan School of
Management, January, 1982a.

2. Abdel-Hamid, T. K. and -Madnick, S. E. "A Model of
Software Project Management Dynamics." The 6TH
Int'l Computer Software and Applications Conference
(COMPSAC), (Nov., 1982b).

3. Abdel-Hamid, T. K. and Madnick, S. E. "An Integrative
Approach to Modeling the Software Management
Process: A Basis for Identifying Problems and
Evaluating Tools and Techniques." IEEE Computer
Society Workshop on Software Engineering Technology
Transfer, (April, 1983).

4. Abdel-Hamid, T. K. and Madnick, S. E. "The Dynamics of
Software Project Scheduling: A System Dynamics
Perspective." Comm. of the ACM, (May, 1983),
340-346.

5. Ackoff, R. L. The Art of Problem Solving Accompanied by
Ackoff's Fable. New York: John Wiley & Sons,
Inc., 1978.

6. ADL, Inc. EDP and Systems Development: Some Management
Issues. Report by Arthur D. Little, Inc.

7. Adrion, W. R. et al. "Validation, Verification, and
Testing of Computer Software." ACM: Computer
Surveys, Vol. 14, no. 2, (June, 1982), 159-192.

8. Aharonian, D. J. "Project Management Through the
Accomplishment value Procedure (AVP)." National
Computer Conference, 1979.

9. Alberts, D. S. "The Economics of Software Quality
Assurance." National Computer Conference, 1976.



460

10. Albrecht, A. J. "Measuring Application Development
Productivity." Proceedings of the Joint
SHARE/GUIDE/IBM Apllication Development Symposium,
(Oct., 1979).

11. Alloway, R. M. "User Managers' Systems Needs." MIS
Quarterly, (June, 1983), 27-41.

12. Alpin, J. C. and Cosier, R. A. "Managing Creative and
Maintenance Organization." The Business Quarterly,
(Spring, 1980), 56-63.

13. Anthony, R. N. and Dearden, J. Management Control
Systems. Illinois: Richard D. Irwin, Inc., 1980.

14. Anthony, R. N. Planning and Control Systems: A
Framework for Analysis. Cambridge, Mass.: Harvard
University Press, 1979.

15. Aron, J. D. "Estimating Reasons for Large Programming
Systems." Software. Engineering: Concepts and
Techniques. Edited by J. M. Buxton, P. Naur and
B. Randell. Litton Educational Publishing, Inc.,
1976.

16. Arthur, L.J. Programmer Productivity. New York: John
Wiley & Sons, Inc., 1983.

17. Artzer, S. P. and Neidrauer, R. A. "Software
Engineering Basics: A Primer for the Project
Manager." Unpublished thesis, Naval Postgraduate
School, Monterey, Calif., 1982.

18. Arseven, S. M. "A System to Monitor and Control the
Development and Documentation of a Computer
programming Project." Unpublished Ph.D.
dissertation, College of Texas A&M University,
1975.

19. Avery, R. D. and Hoyle, J. C. "A Guttman Approach to
the Development of Behaviorally Based Rating Scales
for Systems Analysts and Programmer/Analysts."
Journal of Apllied Psychology, Vol. 59, No. 1,
61-68.

20. Ashenurst, R. L., ed. "Curriculum Recommendations for
Gradute Professional Programs in Information
Systems." ACM, Vol. 15, No. 15, (May, 1972),
363-398.

21. Ashton, R. H. "Deviation-Amplifying Feedback and
Unintended Consequences of Management Accounting
Systems." Accounting, Organization and Society,



461

Vol. 1, No. 4, (1976).

22. Auerbach Publishers Inc. "A Survey of Software Cost
Models." Auerbach Publishers, Inc.

23. Baber, R. L. Software Reflected. New York: North
Holland Publishing Company, 1982.

24. Bacon, G. "Software." Science, Vol. 215, (Feb.,
1982), 775-779.

:25. Baker, F. T. "Chief Programmer Team Management of
Production Programming," IBM Systems Journal, Vol.
11, No. 1, 1972.

26. Baker, F. T. and Mills, H. D. "Chief Programmer
Teams." Datamation, (Dec., 1973), 58-61.

27. Bailey, J. W. and Basili, V. R. "A Meta-Model for
Software Development Resource Expenditures,"
Proceedings, 5th Int'l Conference on Software
Engineering, IEEE/ACM/NBS, (Mar., 1981), 107-116.

28. Barker, F. T. "System Quality Through Structured
Programming." AFIPS, (Fall, 1972), 339-343.

29. Barndt, S. E. "Upward Communication Filtering in the
Project Management Environment." Project
Management Quarterly, (March, 1981), 39-43.

30. Bartol, K. M. and Martin, D. C. "Managing Information
Systems Personnel: A Review of the Literature and
Managerial Implications." MIS Quarterly, (Dec.,
1982), 49-70.

31. Bartol, K. M. "Professionalism as a predictor of Org'l
Commitment, Role, - Stress, and Turnover: A
Multidimensional Approach." Academy of Mgmt
Journal, Vol. 22, No. 4, (Dec., 1979), 815-821.

32. Bartol, K. M. "Turnover Among DP Personnel: A Causal
Analysis." Working Paper, Univerisity of Maryland,
College Park, Maryland, 1981.

33. Basili, V. R. and Zelkowitz, M. V. "Measuring Software
Development Characteristics in the Local
Environment." Computers & Structures, Vol. 10,
1979, 39-43.

34. Basili, V. R. and Weiss, D. M. "Evaluation of a
Software Requirements Document by Means of Change
Data." Proceedings, 5th Int'l Conference on
Software Engineering, IEEE, March, 1981.



462

35. Basili, V. R. and Zelkowitz, M. V. "Analyzing Medium -
Scale Software Development." Proceedings of the
3rd Int'l Conference on Software Engineering,
IEEE/ACM/NBS, (May, 1978).

36. Basili, V. R. "Improving Methodology and Productivity
Through Practical Measurement." A Lecture at the
Wang Institute of Graduate Studies, Lowell, Mass.,
(Nov., 1982).

37. Basili, V. R. and Weiss, D. M. Evaluating Software
Development by Analysis of Changes: The Data From
the Software Engineering Laboratory. Computer
Science Technical Report Series, TR-1236. College
Park, Maryland, University of Maryland, (Dec.,
1982).

38. Basili, V. R. and Zelkowitz, M. V. "Measuring Software
Development Characteristics in the Local
Environment." Computer & Structures, Vol, 10,
1979, 39-43.

39. Basili, V. R. and Reiter, R. W., Jr. "An Investigation
of Human Factors in Software Development."
Computer, (Dec., 1979), 21-38.

40. Basili, V. R. "Resource Models." Software Metrics.
Edited by A. J. Perlis et al. Cambridge, Mass:
The M.I.T. Press, 1981.

41. Bauer, . F. L., ed. Software Engineering. Berlin:
Springer-Verlag, 1977.

42. Bauer, F. L. "Software Engineering." Software
Engineering. Edited by F. L. Bauer. Berlin:
Springer-Verlag, 1977.

43. Bauer, F. L. "A Trend for the Next 10 Years of Software
Engineering." Software Engineering. Edited by H.
Freeman and P. M. Lewis II. New York: Academic
Press, Inc., 1980.

44. Beck, L. L. and Perkins, T. E. "A Survey of Software
Engineering Practice: Tools, Methods, and
Results." IEEE Trans. on Software Engineering,
Vol. SE-9, No. 5, (Sept., 1983).

45. Beeler, J. "Exec. Identifies Seven Reasons Why DPers
Quit." ComputerWorld, (April, 1982), 25.

46. Belady, L. A. and Lehman, M. M. "Characteristics of
Large Systems." Research Directions in Software
Technology. Edited by Wegner. Cambridge, Mass:
The M.I.T. Press, 1979.



463

47. Belford, P. C., et al. "An Evaluation of the
Effectiveness of Software Engineering Techniques."
IEEE COMPCON, (Fall, 1977).

48. Benbasat, I. and Vessey, I. "Programmer and Analyst
Time/Cost Estimation." MIS Quarterly, Vol. 4, No.
2, (June, 1980), 31-43.

49. Biggs, C. L., et al. Managing the Systems Development
Process. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1980).

50. Blake, R. and Mouton, J. S. Productivity: The Human
Side. New York: American Management Assoc., 1981.

51. Blake, R. "Effects of Modern Programming Practices on
Software Development Costs." IEEE COMPCON, (Fall,
1977).

52. Block, R. The Politics of Projects. New York: Yourdon
Press, 1983.

53. Blum, B. I. "A Methodology for Information Systems
Production." Society for General Systems Research,
(Jan., 1982).

54. Boebert, W. E. "Software Quality Through Software
Management." Software Quality Management. Edited
by J. D. Cooper and M. J. Fisher. New York:
Petrocelli Book, Inc., 1979.

55. Boehm, B. W. "An Experiment in Small-Scale Application
Software Engineering." IEEE Trans. Software
Engineering. 1981.

56. Boehm, B. W. Software Engineering Economics. Englewood
Cliffs, N.J.: Prentice-Hall, Inc., 1981.

57. Boehm, B. W. "Software Engineering: R & D Trends and
Defense Needs." Research Directions in Software
Technology. Edited by P. Wegner. Cambridge,
Mass: The M.I.T. Press, 1979.

58. Boehm, B. W. "An Experiment in Small-Scale Application
Software Engineering." IEEE Trans. Software
Engineering, 1981.

59. Boehm, B. W. and Wolverton, R. W. "Software Cost
Modeling: Some Lessons Learned." Journal of
Systems and Software,. Vol. 1, No. 3, 1980.

60. Boehm, B W. "Software Engineering." IEEE Trans.
Computers, (Dec., 1976).



464

61. Boehm, B. W. "Software and its Impact: A Quantitative
Assessment." Da-tamation, 1976.

62. Boehm, B. W., et al. "Some Experience with Automated
Aids to the Design of Large-Scale Reliable
Software." Proceedings of the Int'l Conference on
Reliable Software, (April, 1975).

63. Boehm, B. W. "Software Engineering." Software
Engineering. Edited by H. Freeman and P. M.
Lewis II. New York: Academic Press, Inc., 1980.

64. Bott, H. S. "The Personnel Crunch." Perspectives on
Information Management. Edited by J. B.
Rochester. New York: John Wiley & Sons, Inc.,
1982.

65. Brandon, D. H. "The Economics of Computer Programming."
On The Management Of Computer Programming. Edited
by G. Weinwurm. Princeton, N. J.: Auerbach
Publishing, Inc., 1970.

66. Brodie, S. "Managers Can Sow the Seeds of
Productivity." Data Management, (Mar., 1983).

67. Brooks, F. P. Jr. The Mythical Man-Month. Reading,
Mass: Addison-Wesley Publishing Co., 1978.

68. Brooks, F. P. "Why is the Software Late." Data
Management, (Aug., 1971), 18-21.

69. Brooks, R. "Towards a Theory of the Cognitive Processes
in Computer Programming." Int'l Journal
Man-Machine Studies, vol. 9, (1977), 737-751.

70. Brooks, W. D. "Software Technology Payoff: Some
Statistical Evidence." IBM-FSD, Bethesda, MD,
(April, 1980), 2-7.

71. Brown, J. R. "Programming Practices for Increased
Software Quality." Software Quality Management.
Edited by J. D. Cooper and M. J. Fisher. New
York: Petrocelli Books, inc., 1979, 197-208.

72. Bruggere, T. H. "Software Engineering: Management,
Personnel and Methodology." Proceedings of the 4th
Int'l Conference Software Engineering, 1979.

73. Bruce, P.. and Pederson, S. M. The Software Development
Project: Planning and Management. New York: John
Wiley & Sons, Inc., 1982.

"Software Configuration Management."74. Bryan, W., et &l.



465

Proceedings of the 4th Int'l Computer Software &
Applications Conference, IEEE, N.Y., 1980.

75. Bryant, J. H. "Survey of Values and Sources of
Dissatisfa6tion." Data Management, (Feb., 1976),
34-37.

76. Burchett, R. "Avoiding Disaster in Project Control."
Data Processing Digest, Vol. 28, No. 6, (June,
1982), 1-3.

77. Burton, B. J.
Projects."
1975), 29-33.

"Manpower Estimating for Systems
Journal of Systems Management, (Jan.,

78. Burrows, J. "Software Engineering." Research
Directions in Software Technology. Edited by P.
Wegner. Cambridge, Mass: The M.I.T. Press, 1979.

79. Cameron, K. S. and Whetten, D. A. "Perceptions of
Organizational Effectiveness over Organizational
Life Cycle." Admins. Science Quarterly, Vol. 26,
(1981), 525-544.

80. Canning, R. G. "Managing Staff Retention and Turnover."
EDP Analyzer, (Aug., 1977), 1-13.

81. Canning, R. G. "Project Management Systems."
Analyzer, (Sept., 1976), 1-13.

EDP

82. Canning, R. G. "Progress in Project Management." EDP
Analyzer, (Dec., 1977), 1-11.

83. Canning, R. G. "Using Some New Programming Techniques."
EDP Analyzer, (Nov., 1977), 1-13.

84. Canning, R. G. "Progress in Software Engineering: Part
1." EDP Analyzer, (Feb., 1978), 1-13.

85. Canning, R. G. "Progress in Software Engineering: Part
2." EDP Analyzer, (Mar., 1978), 1-13.

86. Caudill, R. "Understanding the Development Life Cycle."
National Computer Conference, (1977), 269-275.

87. Cave, W. C. and Salisbury, A. B. "Controlling the
Software Life Cycle - The Project Management Task."
IEEE Trans. on Software Engineering, Vol. SE-4,
No. 4, (July, 1978), 326-334.

88. Chmura, L. J. and Weiss, D. M. The A-7E Software
Requirements Document: Three Years of Change Data.
NRL Memorandum Report 4938, Washington, D.C.,
(Nov., 1982).



466

89. Cho, C. An Introduction to Software Quality Control.
New York: John Wiley & Sons, Inc., 1980.

90. Chrysler, E. "Some Basic Determinants of Computer
Programming Productivity." Comm of ACM, Vol. 21,
No. 6, (June, 1978), 472-483.

91. Chrys ler, E. "Programmer Performance Standards."
Journal of Systems Management, (Feb., 1978), 18-25.

92. Chrysler, E. "The Impact of Program and Programmer
Characteristics on Program Size." National
Computer Conference, (1978), 581-587.

93. Chrysler, E. "Improved Management of Information."
Journal of Systems Management, (Mar., 1970), 6-13.

94. Chrysler, E. "Computer Programming Productivity."
Advances in Computer Programming Management.
Edited by T. A. Rullo. Philadelphia, Pa: Heyden
& Sons, Inc., 1980.

95. Clapp, J. A. "A Review of Software Cost Estimation
Methods." MITRE Technical Report, (June, 1976),
1-55.

96. Cleland, D. I. and King, W. R. Management: A Systems
Approach. New York: McGraw-Hill Book, Inc., 1972.

97. Cleland, D. I. and King, W. R. Ssytems Analysis and
Project Management. New York: McGraw-Hill, 1975.

98. Cohen , K. J. and Cyert, R. M. "Comp
Dynamic Economics." Quarterly
Economics, Vol. 75, (1961), 112-127.

)uter Models in
Journal

99. Cohen, K. J. and Cyert, R. M. "Simulation of
Organizational Behavior." Handbook of
Organizations. Edited by J. G. March. Chicago:
Rand McNally & Co., 1965.

100. Comper, F. A. "Project Management for System Quality
and Development Productivity." Share-Guide, 1979,
17-23.

101. Connor, D. A. "Application Systems
Methodologies." ComputerWorld.

Development

102. Conway, M. E. "How do Committees Invent." Datamation,
(April, 1968), 28-31.

103. Cooper, J. D.
Defense N

"Software Engineering: R & D Trends and
reeds." Research Directionis in Software

--



467

Technology. Edited by P. Wegner. Cambridge,
Mass: The M.I.T. Press, 1979.

104. Cooper, J. D. and Fisher, M. J., eds. Software Quality
Management. New York: Petrocelli Book, Inc.,
1979.

105. Cooper, K. G. "Naval Ship Production: Aclaim Settled
and a Framework Built." Interfaces, Vol 10, No.
6, (Dec., 1980).

106. Corbato, F. J. and Clingen, C. T. "A Managerial View
of the Multics System Development." Research
Directions in Software Technology. Edited by P.
Wegner. Cambridge, Mass: The M.I.T. Press, 1979.

107. Cougar, J. D. "Circular Solutions." Datamation, (Jan.,
1983), 135-142.

.108. Cougar, J. D. and Zawacki, R. A. Motivating and
Managing Computer Personnel. New York: John Wiley
& Sons, Inc., 1980.

109. Craig, C. E. and Harris, R. C. "Total Productivity
Measurement at the Firm Level." Sloan Management
Review, (Spring, 1973), 13-29.

110. Crossman, T. D. "Taking the measure of Programmer
Productivity." Datamation, (May,. 1979), 144-147.

111. Crowley J. D. "The Application Development Process:
What's Wrong With it?" JDC Associates.

112. Cruickshank, R. D. and Lesser, M. "An Approach to
Estimating and Controlling Software Development
Costs." The Economics of Information Processing.
Edited by R. Goldberg and H. Lorin. New York:
John Wiley & Sons, Inc., 1982.

113. Curtis, B. Evaluation of Software Life Cycle Data From
the Pave Paws Project. Final Technical Report,
RADC-TR-80-28, (Mar., 1980).

114. DACS. Quantitative Software Models. New York:
Griffiss Air Force Base, 1979.

115. Daly, E. B. "Management of Software Development." IEEE
Trans. on Software Engineering, (May, 1977).

116. Daly, E. B. "Organizational Philosophies Used in
Software Development." The Economics of
Information Processing. Edited by R. Goldberg and
H. Lorin. New York: John Wiley & Sons, Inc.,
1982.



468

117. Davis, G. B. Management Information System: Conceptual
Foundations, Structure and Development. New York:
McGraw-Hill, Inc., 1974.

118. DeMarco, T. Yourdon Project Survey. (Sept., 1981).

119. DeMarco, T. Controlling Software Projects. New York:
Yourdon Press, Inc., 1982.

120. DeMillo, R. A., et al. Software Project Forecasting.
NTIS, U.S. Dept. of Commerce, (Oct., 1980).

121. DeRose, B. C. and Nyman, T. H. "The Software Life
Cycle." Research Directions in Software
Technology, Edited by P. Wegner. Cambridge, Mass:
The M.I.T. Press, 1979.

122. Deutsch, M. S. "Verification and Validation." Software
Engineering. Edited by R. W. Jensen and C. C.
Tonies. New Jersey: Prentice-Hall, Inc., 1979.

123. Devenny, T. J. "An Exploration Study of Software Cost
Estimating at the Electronic Systems Division."
NTIS, U.S. Dept. of Commerce, (July, 1976).

124. Dickson, G. W. and Wetherbe, J. C. Increasing the
Productivity of MIS Personnel: The Motivation
Issue. MISRC-WP-81-80. University of Minnesota,
1981.

125. Dickson, G. W., et al. "The Management Information
Systems Area: Problems, Challenges, and
Opportunities." Data Base, Vol. 14, No. 1,
(Fall, 1982), 7-12.

126. Dijkstra, E. W. "Notes on Structured Programming."
Structured Programming. Edited by G. J. Dahl and
C. A. R. Hoare. New York: Academic Press,
1971.

127. Dimino, S. A. "Management of Systems Analysts."
Journal of Systems Management, (Mar., 1982), 38-40.

128. Distaso, J. R. "Software Management - A Survey of the
Practice in 1980." Proceedings of the IEEE, Vol.
68, No. 9, (Sept., 1980), 1103-1119.

129. DOD. Strategy for a DOD Software Initiative. Dept. of
Defense, 1982.

130. DOD. Strategy for a DOD Software Initiative: Vol. II,
Appendices. Dept. of Defense, 1982.



469

131. Donaldson, H. A Guide to the Successful Management of
Computer Projects. New York: John Wiley & Sons,
Inc., 1978.

132. Donelson, W. S. "Project Planning and Control."
Datamation, (June, 1976).

133. Driscoll, A. J. "Software Visibility and the Program
Manager." Defense Systems Management Review, Vol.
I, No. 2, 12-27.

134. Dubin, R. The Organization, Management and Tactics of
Social Research. Edited by R. O'Toole.
Cambridge, Mass: Schenkman Publishing Co., Inc.,
1971.

135. Edelman, R. M. "Engineering Manpower Resource
Management in a Multi-Project Environment."
Unpublished S.M. Thesis, M.I.T., Sloan School of
Management, Cambridge, Mass, 1975.

136. Ely, E. H. Software Management: A Dynamic Approach.
Report for the Defense Systems Management College,
(May, 1977).

137. Emery, J. C. Organizational, Planning and Control
Systems: Theory and Technology. New York:
Macmillan Publishing Co., Inc., 1969.

138. Endres, A. B. "An Analysis of Errors and their Causes
in System Programs." IEEE Trans. Software
Engineering. (June, 1975), 140-149.

139. Ergott, H. L. Jr. "Introduction: Software Quality
Management as a Discipline." Software Quality
Management. Edited by J. D. Cooper and M. J.
Fisher. New York: Pertocelli Books, Inc., 1979.

140. Esterling, B. "Software Manpower Costs: A Model."
Datamation, (Mar., 1980), 164-170.

141. Etzioni, A. "Two Approaches to organizational Analysis:
A Critique and a Suggestion." Admin. Science
Quarterly, 257-278.

142. Fagan, M. E. "Design and Code Inspections to Reduce
Errors in Program Development." IBM Systems
Journal, Vol. 15, No. 3, 1976.

143. Farbman, D. M. "Myths That Miss." Datamation, (Nov.,
1980), 109-114.

144. Farquhar, J. A. A Preliminary Inquiry into the Software
Estimation Process. Technical Report, AD F12 052,



470

Defense Documentation Center, Alexandria, Va.,
(Aug., 1970).

145. Ferrentino, A. B. "Making Software Development
Estimates 'Good'." Datamation, (Sept., 1981),
179-182.

146. Fife, D. W. Industrial Dynamics. Cambridge, Mass: The
M.I.T. Press, 1961.

147. Fireworker, R. B. and Bogner, L. J. Jr. "Improved
Software Development Through Project Management."
Data Management, (Dec., 1980), 27-39.

148. Fisher, M. J. and Light, W. R. Jr., "Definitions in
Software Quality Management." 'Software Quality
Management. Edited by J. D.. Cooper and M. J.
Fisher. New York: Petrocelli Books, Inc., 1979.

149. Fitz-enz, J. "Who is the DP Professional?" Datamation,
(Sept., 1978), 125-128.

150. Fleckenstein, W. O. "Challenges in Software
Development." Computer, Vol. 16, No. 3, (Mar.,
1983), 60-64.

151. Fleischer, R. J. and Spitler, R. W. "Simon: A Project
Management System for Software Development."
Computer Software Engineering, (April, 1976).

152. Ford, A. "A Practical Approach to Sensitivity Testing
of System Dynamics Models." The 1983 Int'l System
Dynamics Conference. Chestnut Hill, Mass, (July,
1983).

153. Ford, J. A. "The Suitability of Matrix Management for
Development -P-roject - A Review." Project
Management Quartefly . (Mar., 1982).

154. Forrester, J. W. "Industrial Dyrnmics - After the First
Decade." Management Science. Vo 14, No. 7,
(Mar., 1968), 398-415.

155. Forrester, J. W. System Dynamics - Fuu••e
Opportunities. D-3108-1, (July, 1979).

156. Forrester, J. W. "Counter Intuitive Behavior of Social
System." Technology Review, Vol 74, No. 3, (Jan.,
1971).

157..Forrester, J. W. Information Sources for Modeling the
National Economy. D-3114-1, (Aug., 1979).

158. Forrester, J. W. Industrial Dynamics. Cambridge, Mass:



471

The M.I.T. Press, 1961.

159. Fox, J., ed. Computer Software Engineering. New York:
Polytechnic Press of the Polytechnic Institute of
New York, 1976.

160. Frank, W. L. "The New Software Economics."
Perspectives on Information Management: A Critical
Selection of ComputerWorld Features Articles.
Edited by J. B. Rochester. New York: John Wiley
& Sons, Inc., 1982.

161. Frank, W. L. Critical Issues in Software: A Guide to
Software Economics, Strategy, and Profitability.
New York: John Wiley & Sons, Inc., 1983.

162. Freedman, D., et al. "Organizing and Training for a New
Software Development Project - That Big First
Step." National Computer Conference, 1977.

163. Freedman, D. P. and Weinberg, G. M. Handbook of
Walkthroughs, Inspections, and Technical Reviews.
Boston: Little, Brown and Co., Inc., 1982.

164. Freeman, H. and Lewis, P. M. II, eds. Software
Engineering. New York: Academic Press, Inc.,
1980.

165. Fries, M. J. Software Error Data Acquisition. Boeing
Aerospace Co., Seatle, WA., AD/A-039 9 16, (April,
1977).

166. Gaffeny, J. E. "Maximize Design Effort and Minimize
Program Control Complexity - To vity." IEEE
COMPSAC, (Oct., 1980).

167. Gaffeny, J. E. "A Macro-Analysis Methodology for
Assessment of Software Development Costs." The
Economics of Information Processing. Vol. 2:
Operations, Programming, and Software Models.
Edited by R. Goldberg and H. Lorin. New York:
John Wiley & Sons, Inc., 1982.

168. Gagliardi, U. Classnotes, Harvard University,
Cambridge, Mass, 1981.

169. Gansler, J. S. "Keynote: Software Management." The
Symposium on Computer Software Engineering.
Polytechnic Institute of New York, (April, 1976).

170. Gayle, J. B. "Multiple Regression Techniques for
Estimating Computer Programming Costs." Journal of
Systems Management. (Feb., 1971), 13-16.



472

171. Gehring, P. F. Jr. "A Quantitative Analysis of
Estimating Accuracy in Software Development."
Unpublished Ph.D. dissertation, Texas A&M
University, 1976.

172. Gehring, P. F. and Pooch, V. W. "Software Development
Management." Data Management, (Feb., 1977), 14-38.

173. General Research Corp. "Cost Reporting Elements and
Activity Cost Tradeoffs for Defense System
Software." Santa Clara, Calif., (May, 1977).

174. Geogopoulos, B. S. and Tannenbaum, A. S. "A Study of
Organizational Effectiveness." The Annual
Conference of the American Assoc. for Public
Opinion Research, (May, 1957).

175. Gilb, T. Software Metrics. Winthrop, Cambridge, Mass,
1977.

176. Gildersleeve, T. R. "Organizing the Data Processing
Functions." Datamation, (Nov., 1974), 46-50.

177. Glass, R. L. The Universal Elixir and Other Computing
Projects which failed. Seatle, Wa: R. L. Glass,
1977.

178. Glass, R. L. Modern Programming Practices: A Report
From Industry. New Jersey: Prentice-Hall, 1982.

179. Glass, R. L. Software Reliability Guidebook. New
Jersey: Prentice-Hall, 1979.

180. Glassman, S. Comparative Studies in Software
Acquisition. Lexington, Mass: D. C. Heath &
Co., 1982.

181. Gluckson, F. A. "Professional Development for Computer
Programmers." Advances in Computer Programming
Management. Edited by T. A. Rullo.
Philadelphia, Pa: Heyden & Sons, Inc., 1980.

182. Goldberg, R. and Lorin, H., eds. The Economics of
Information Processing. Vol. 1: Management
Perspectives. New York: John Wiley & Sons, Inc.,
1982.

183. Goldberg, R. and Lorin, H., eds. The Economics of
Information Processing. Vol. 2: Operations,
Programming and Software Models. New York: John
Wiley & Sons, Inc., 1982.

184. Golden, J. R., et al. "Software Cost Estimating: Craft
or Witchcraft." Data Base, Vol. 12, No. 3,



473

(Spring, 1981), 12-14.

185. Goodenough, J. B. and McGowan, C. L. "Software Quality
Assurance: Testing and Validation." Proceedings
of the IEEE, Vol 28, No. 9, (Sept., 1980).

186. Goodman, L. P. and Goodman, R. A. "Some Management
Issues in Temporary Systems: A Study of
Professional Development and Manpower - The Theater
Case." Admins. Science Quarterly, Vol. 21,
(Sept., 1976), 494-501.

187. Gordon, R. L. and Lamb, J. C. "A Close Look at Brooks'
Law." Datamation, (June, 1977), 81-86.

188. Gotterer, M. H. "The Computer Manager and his Job."
Proceedings of the 7th Annual Computer Personnel
Research Conference. Edited by M. Flin, June,
1969.

189. Gotterer, M. H. "Management of Computer Programmer."
Joint Computer Conference. (Spring, 1969).

190. Gould, J. D. and Drongowski, P. "An Explanatory Study
of Computer program Debugging." Human Factors,
Vol. 16, No. 3, 1974, 258-277.

191. Gould, J. D. "Some Psychological Evidence on How People
Debug Computer Programs." Int'l Journal of
Man-Machine Studies, Vol. 7, 1975, 151-182.

192. Gould, R. S. "A Self-Assessment Dealing Management."
Comm. of ACM, Vol. 25, No. 12, (Dec., 1982),
883-887.

193. Graham, A. K. "Parameter Estimation in System Dynamics
Modeling." Elements of the Systems Dynamics
Methods. Edited by J. Randers. Cambridge, Mass:
The M.I.T. Press, 1980.

194. Green, L. H. "Organizing for Project Management."
Systems Development Management. Edited by J.
Hannan. New Jersey: Auerbach Publishers, Inc.,
1982.

195. Green, P. E. and Tull, D. S. Research for Marketing-
Decisions. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1978.

196. Gremillion, L. L. "Systems Development and
Implementation Costs Using Standardized
Applications Systems." The Economics of
Information Processing. Vol. 2: Operations,
Programming and Software Models. Edited by R.



474

Goldberg and H. Lorin. New York: John Wiley &
Sons, Inc., 1982.

197. Guetzkow, H. S., et al. Simulation in Social & Admins.
Science: Overviews and Case Examples. Englewood
Cliffs, New Jersey: Prentice-Hall, 1972.

198. Gunther, R. C. Management Methodology for Software
Product Engineering. New York: John Wiley & Sons,
Inc., 1927

199. Hales, K. A. "Software Management Lessons Learned - The
Hard Way." The 6th Int'l Computer Software and
Applications Conference (COMPSAC), (Nov., 1982a).

200. Hallam, S. F. "An Empirical Investigation of the
Objectives and Proceeding Depts." Academy of
Management Journal, (Mar., 1975).

201. Hallam, S. F. "EDP Objectives and the Evaluation
Process." Data Management, (May, 1979), 40-50.

202. Hammer, C. "Life Cycle Management." Information &
Management, Vol. 4, (1981), 71-80.

203. Hancock, W. C. "Practical Application of Three Basic
Algorithms in Estimating Software Systems." The
Economics of Information Processing. Vol 2:
Operations, Programming, and Software Models.
Edited by R. Goldberg and H. Lorin. New York:
John Wiley & Sons, Inc., 1982.

204. Hannan, J., ed. Computer Programming Management.
Pennsauken, New Jersey: Auerbach Publishers, Inc.,
1982.

205. Hannan, J., ed. {Systems Development Management. New
Jersey: Auerbach Publishers, Inc., 1982.

206. Hart, J. J. "The Effectiveness of Design and Code
Walkthrough." The 6th Int'l Computer Software and
Applications Conference (COMPSAC), (Nov., 1982a).

207. Hartwick, R. D. "Software Testing." Advances in
Computer Programming Management. Edited by T. A.
Rullo. Philadelphia, Pa: Heyden & Sons, Inc.,
1980.

208. Hausen, H. L. and Mullerburg, M. "Software Engineering
Environment: State of the Art, Problems and
Perspectives." The 6th Int'l Computer Software and
Applications Conference (COMPSAC), (Nov., 1982a).

Software Cost Estimation Study.209. Herd, J. H., et al.



475

Vol I. Maryland: Doty Assoc. Rockville, NTIS,
1977.

210. Herndon, M. A. and Lane, J. A. "Analysis of Software
Errors for Cost Factors." American Institute of
Aeronautics and Astronautics, Inc., 1977.

211. Hollornan, D. J. "Systems Development Quality Control."
MIS Quarterly, Vol. 2, No. 4, (Dec., 1978), 1-14.

212. Hormer, J. B. "A Dynamic Model for Analyzing the
Emergence of New Medical Technologies."
Unpublished Ph.D. dissertation, M.I.T., Cambridge,
Mass, 1983.

213. Houghton, R. C. "Software Development Tools: A
Profile." Computer. Vol. 16, No. 5, (May,
1983), 63-70.

214. Ibrahim, R. L. "Software Development Information
System." Journal of Systems Management, (Dec.,
1978), 34-39.

215. Inbar, and Stoll, Simulation and Gaming in Social
Science.

216. Ingham, A. G. "The Ringelmann Effect: Studies of Group
Size and Group Performance." Journal of
Experimental Social Psychology. Vol. 10, (1974),
371-384.

217. Ingrassia, F. S. "The Unit Development Folder (UDF):
An Effective Management Tool for Software
Development." TRW Technical Report. TRW-SS-76-11.

218. Issac, S. and Michael, W. Handbook in Research and
Evaluation. San Diego, Ca: Edits Publishers,
1971.

219. Ives, B. and Olson, M. H. "Manager or Technician? The
Nature of the IS Manager's Job." MIS Quarterly,
Vol. 5, No. 4, (Dec., 1981), 49-83.

220. Jacques, E. Equitable Payment. New York: John Wiley &
Sons, Inc., 1961.

221. Jahnig, F. F. "Skills Matrixing." Datamation, (Sept.,
1975), 71-76.

222. Jensen, R. W. and Tonies, C. C. Software Engineering.
Englewood Cliffs, New Jersey: Prentice-Hall, 1979.

223. Johnson, B. "People, Money at Root of DP Exec's
Problems." ComputerWorld, (Sept, 1982), 16.



476

224. Johnson, J. R. "A Working Measure of Productivity."
Datamation, (Feb., 1977), 106-109.

225. Johnson, J. R. "Advanced Project Control."
Systems Management, (May, 1977).

Journal of

226. Johnson.
Proces

J. R. Managing for Productivity in Data
sing. Wellesley, Mass: QED, Information

Sciences, Inc., 1980.

227. Jones, M. M. and McLean, E. R. "Management Problems in
Large Scale Software development Projects."
Industrial Management Review, (Spring, 1970), 1-15.

228. Jones, T. C. "Defect Removal: A Look at the State of
the Art." ITT CommNet, Vol. 1, No. 3, (Dec.,
1981).

229. Jones, T. C. "Measuring Programming Quality and
Productivity." IBM Systems Journal, Vol. 17, No.
1, 1978, 39-63.

230. Jones, T. C. "The Limits of Prgramming Productivity."
Proceedings of the 14th Annual Conference of the
Society for Information Management, Chicago, Sept.,
1982.

231. Jones, T. C. "Program Quality and Programmer
Productivity." IBM, TR 02.764, 28, (Jan., 1977).

232. Jones, T. C. "A Survey of Programming Design and
Specification Techniques." Proceedings of the IEEE
Specifications of Reliable Software Conference,
(Mar., 1979).

233. Katz, R.
Commun i

"The Effects of Group Longevity on Project
cation and Performance." Admins Science

Quarterly, Vol. 27, (1982), 81-104.

234. Kay, R. H. "The Management and Organization of Large
Scale Software Development Projects." Joint
Computer Conference, (Spring, 1969), 425-433.

235. Keider, S. P.
1974).

"Why Projects Fail." Datamation, (-Dec.,

236. Kelly, T. J. "The Dynamics of R & D Project
Management." Unpublished M.S. Thesis, M.I.T.,
Sloan School of Management, Cambridge, Mass, 1970.

237. Kerzner, H. "Tradeoff Analysis in a Project."
of Systems Management, (Oct., 1982), 6-13.

Journal



477

238. Kirby, E. J. "The Systems Development Manager."
Systems Development Management. Edited by J.
Hannan. New Jersey: -Auerbach Publishers, Inc.,
1982.

239. Kleiner, B. H. "Integrating Major Motivational
Theories." Journal of Systems Management, (Feb.,
1983), 26-29.

240. Knight, B. M. "Organizational Planning for Software
Quality." Software Quality Management. Edited by
J. D. Cooper and M. J. Fisher. New York:
Petrocelli Books, Inc., 1979.

241. Knutson, J. "Developing the Project Plan." Advances in
Computer Programming Management. Philadelphia, Pa:
Heyden & Sons, Inc., 1980.

242. Kolence, K. "Software Engineering Management and
Methodology." Software Engineering: Report on a
Conference Sponsored by the NATO Science Committee.
Edited by P. Naur and B. Randell. Vol. 13,
(Oct., 1968).

243. Koolhass, Z. Organization Dissonance and Change. New
York: John Wiley & Sons, Inc., 1982.

244. Kootz, H. and O'Donnel, C. Principles of Management:
An Analysis of Management Functions. 5th ed. New
York: McGraw-Hill Books Co., 1972.

245. Kossiakoff, A., et al. DOD Weapon Systems Software
Management Study. NTIS, Ad/A-022, 160, (June,
1975).

246. Kotter, J. P. Organizational Dynamics: Diagnosis and
Intervision. Reading, Mass: Addison-Wesley
Publishing Co., Inc., 1978.

247. Kraft, P. Programmers and Managers - The Routinization
of Computer Programming in the U.S. New York:
Springer-Varlag N. Y., Inc., 1977.

248. Kustanowitz, A, L. "System Life Cycle Estimation
(Slice:) A New Approach to Estimating Resources
for Application Program Development." COMPSAC,
1977.

249. LaBelle, C. D., et al. "Solving the Turnover Problem."
Datamation, .(April, 1980), 144-152.

250. Larkin, J. E. "The Psychology of DP Professional: A
Career Planning Tool." ComputerWorld, (CW-0221).



478

251. Lasden, M. "Overcoming Obstacles to Project Success."
Computer Decisions, (Dec., 1981), 114-177.

252. Latane, B., et al. "Many Hands Make Light the Work:
The Causes and Consequences of Social Loafing."
Journal of Personality and Social Psychology, Vol.
37, No. 6, (1979), 822-832.

*253. Lave, C. A. and March, J. G. An Introduction to Models
in the Social Sciences. New York: Harper & Row,
1975.

254. Lawler, E. E. and Rhode, J. G. Information and Control
in Organizations. Pacific Palisades, Ca: Goodyear
Publishing Co., Inc., 1976.

255. Leavitt, H. J. Managerial Psychologoly. 4th ed.
Chicago: The University of Chicago Press, 1978.

256. Lehman, M. M. Laws and Conservation in Large Program
Evaluation. Second Software Life Cycle Management
Workshop, Atlanta, Ga, (Aug., 1978), 21-22.

257. Lehman, J. H. "How Software Projects are Really
Managed." Datamation, (Jan., 1979), 119-129.

258. Levene, A. A. "Reducing the Risk of Failure in Computer
System Development." Information Technology for
the Eighties. Edited by R. D. Parslow.
Philadelphia, Pa: Heyden & Sons. Ltd., 1981.

259. Lewis, R. O. "Software Verification and Validation."
Software Quality Management. Edited by J. D.
Cooper and M. J. Fisher. New York: Petrocelli
Books, Inc., 1979.

260. Lientz, B. P. and Swanson, E. B. "Problems in
Application Software Maintenance." Comm of ACM,
Vol. 24, No. 11, (Nov. 1981), 763-769.

261. Loftin and Moosbruker. "Organization Development
Methods in the Management of the Information
Systems Function." MIS Quarterly, (Sept., 1982).

262. Lorsch, J. W. "Organization Design: A Situational
Perspective." Organizational Dynamics, (Autumn,
1977).

263. Lyneis, J. M. Corporate Planning and Policy Design - A
System Dynamics Approach. Cambridge, Mass: The
M.I.T. Press, 1980.

264. Maciariello, J. A. Program - Management Control
Systems. New York: John Wiley & Sons, Inc., 1978.



479

265. Mantei, M. "The Effort of Programming Team Structures
on Programming Tasks." Comm. of A ACM, Vol 24,
No. 3, (Mar., 1981), 106-113.

266. Martin, E. W. "A Framework for MIS Software Development
Projects." MIS Quarterly, Vol. 3, No. 1, (Mar.,
1979), 29-38.

267. Martin, J. Application Development Without Programmers.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1982.

268. Matejka, J. W. and Sandler, G. H. "Software Project
Control - Yesterday's Dream, Tomorrow's Reality."
AIAA.S

269. McCall, J. A. "An Introduction to Software Quality
Matrics." Software Quality Management. Edited by
J. D. Cooper and M. J. Fisher. New York:
Petrocelli Books, Inc., 1979.

270. McCracken, D. D. and Jackson, M. A. "Life Cycle
Concept Consideration Harmful." Comm. of ACM,
Vol. 7, No. 2, (April, 1982), 29-32.

271. McCue, G. M. "IBM's Santa Teresa Lab. - Architecture
Design for Program Development." IBM Systems
Journal, Vol. 17, No. 1, 1978, 4-25.

272. McFarlan, F. W. "Effective EDP Project Management."
Managing the Data Resource Function. Edited by R.
L. Nolan. St. Paul: West Publishing Co., 1974.

273. McFarlan, F. W., et al. Information Systems
Administration. New York: Holt, Rinehart and
Winston, 1973.

274. McGill, M. M. "Assessing the Effectiveness of
Organization Development (OD) Programs."
Organization and Administrative Sciences, Vol. 17,
No. 1-2, (Spring- Summer, 1976), 123-128.

275. McGowan, C. L. "Management Planning for Large Software
Projects." IEEE, 1978.

276. McGowan, C. L. and McHenry, R. C. "Software
Management." Research Directions in Software
Technology. Cambridge, Mass: The M.I.T. Press,
1979.

277. McHenry, R. C. and Walston, C. E.. "Software Life Cycle
Management: Weapons Process Developer." IEEE
Trans. on Software Engineering, Vol. Se-4, No.



480

4, (July, 1978), 334-344.

278. McKeen, J. D. "Activity Analysis: An Approach to
Understand the Systems Development Process." ASAC
- Conference, University of Ottawa, 1982.

279. McKeen, J. D. The Nature of Inter-Activity
Relationships Within the Systems Development Cycle.
Queen's University, HKingston, Ontario, Canada,
Sept., 1981.

280. McKeen, J. D. "An Empirical Investigation of the
Process and Product of Application System
Development." Unpublished Ph.D. dissertation,
University of Minnesota, 1981.

281. McKeen, J. D. "Successful Development Strategies for
Business Application Systems." MIS Quarterly, Vol.
7, No. 3, (Sept., 1983).

282. McLaughlin, R. A. "That Old Bugaboo, Turnover."
Datamation, (Oct., 1979), 97-101.

283. Meadows, D. H. "The Unavoidable A Priori." Elements of
the Systems Dynamics Method. Edited by J.
Randers. Cambridge, Mass: The M.I.T. Press,
1980.

284. Mercer, B. D. "Weapon System Software Acquisition and
Support: A Theory of System Structure and
Behavior." Unpublished M.S. Thesis, Air Force
Institution of Technology, 1982.

285. Merwin, R. E. "Software Management: We Must Find a
Way." IEEE, 1978.

286. Metzger, P. W. Managing a Programming Project. 2nd ed.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1981.

287. Miller, J. G. "Toward a General Theory for the Behavior
Sciences." The American Psychologist, Vol. 10,
(Sept., 1955), 513-539.

288. Miller, J. G. "Potentials and Pitfalls of Path
Analysis: A Tutorial Summary." Elsevier
Scientific Publishing Co., Amsterdam, Netherlans.

289. Mills, H. D. Software Productivity. Canada: Little,
Brown & Co., 1983.

290. Mills, H. "Top Down Programming in Large Systems."
Debugging Techniques in Large Systems. Edited by
R. Rustin. Englewood Cliffs, New Jersey:



481

Prentice-Hall, 1971.

291. Mills, H. "Update." Computer, Vol. 8, No. 1i, (Jan.,
1975), 9.

292. Mills, H. D. Chief Programmer Teams: Principles and
Procedures. IBM Report, FSC 71-5108, IBM Fed Syst.
Div. Gaitherway, MD., 1971.

293. Mills, H. D. "Software Engineering Education."
Proceedings of the IEEE, Vol. 68, No. 9, (Sept.,
1980).

294. Mills, H. D. "Software Development." IEEE Trans. on
Software Engineering, Vol. Se-2, No. 4, (Dec.,
1976).

295. Mitchell, J. R. "Observations on the Use of Seven
Structured Programming Techniques." IEEE, 1980.

296. Mizuno, Y. "Software Quality Improvement." Computer,
Vol. 16, No. 3, (Mar., 1983), 66-72.

297. Mohanty, S. N. "Software Cost Estimation: Present and
Future." Software - Practice and Experience, Vol.
11, (1981), 103-121.

298. Moore, J. H. "A Framework for MIS Software Development
Projects." MIS Quarterly, Vol. 3, No. 1, (Mar.,
1979), 29-38.

299. Morecroft, J. D. W. "A Critical Review of Diagramming
Tools for Conceptualizing Feedback System Models."
The IEEE Conference on Cybernetics and Society,
1980.

300. Morecroft, J. D. W. "Rationality and Structure in
Behavioral Models of Business Systems." The Int'l
System Dynamics Conference, Chestnut Hill, Mass,
(July, 1983).

301. Morecroft, J. D. W. and Abdel-Hamid, T. K. "A Generic
System Dynamics Model of Zoftware Project
Management." The Int'l System Dynamics Conference,
(July, 1983).

302. Morley, E. and Silver, A. "A Film Director's Approach
to Managing Creativity." Harvard Business Review,
(Mar-April, 1977), 59-70.

303. Myers, G. Estimating the Costs of a Programming System
Development Project. Systems Development Div.,
Poughkeepsie Lab., IBM. (May, 1972).



482

304. Myers, G. J. Software Reliability: Principles and
Practices. New York: John Wiley & Sons, Inc.,
1976.

305. Myers, W. "Productivity as a Microeconomic principle."
ComputerWorld, June, 1982.

306. Myers, G. J. "A Controlled Experiment in Program
Testing and Code Walkthrough/Inspections." Comm of
ACM, Vol. 21, No. 9, (Sept., 1978), 760-768.

307. Myers, W. "The Need for Software Engineering."
Computer, (Feb., 1978).

308. Nay, J. N. "Choice and Allocation in Multiple Markets:
A Research and Development Systems Analysis."
Unpublished M.S. Thesis, M.I.T., Dept. of
Electric Engineering, Cambridge, Mass, 1965.

309. Nelson, B. and Lowery, J. "Experienced Programmers or
Trainees? A Productive Time/Cost Model."
ComputerWorld.

310. Nelson, E. D. "Managing the Economics of Computer
Programming." Proceedings ACM National Conference,
1968.

311. Nelson, E. C. "Software Reliability, Verification and
Validation." Proceedings of the TRW Symposium on
Reliable, Cost-Effective, Secure Software, Redondo
Beach, Ca: TRW, Inc., 1974.

312. Nelson, E. A. Management Handbook for the Estimation of
Computer Programmer Costs. Ad-A648 750, Systems
Development Corp., (Oct., 1966).

313. Nelson, E. D. "Some Recent Contributions to Computer
Programming Management." On the Management of
Computer Programi~ng. Edited by G. F. Weinwurm.
Prenceton, New Jersey: Auerbach Publishing, Inc.,
1970.

314. Newburn, R. M.. "Measuring Productivity in Organizations
with Unquantifiable End-Products." Personnel
Journal, (Sept., 1972), 655-657.

315. Nicholas, J. M. "Organization Development in Systems
Management." Journal of Systems Management, (Nov.,
1979), 24-30.

316. Norden, P. V. "Useful Tools for Project Management."
Operation Research in Research and Development.
Edited by B. V. Dean. New York: John Wiley &
Sons, Inc., 1963.



483

317. Noyes, C. J. and Parker, T. E. "Organizational
Variables in Air Force Program/Project
Environment." Project Management Quarterly, (June,
1982), 34-43.

318. Okada, M. "Software Development Effort Estimation Study
- A Model from CAD/CAM System Development
Experiences." The IEEE Computer's 6th Int'l
Computer Software & Applications Conference,
Chicago, (Nov., 1982).

319. Oliver, "Estimating the Cost of Software." Computer
Programming Management. Edited by J. Hannan.
Pennsauken, New Jersey: Auerbach Publishers, Inc.,
1982.

320. Osborn, R. W. "Theories of Productivity Analysis."
Datamation, (Sept., 1981), 212-216.

321. Oucho, W. G. and Maguire, M. A.
Control: Two Functions." A
Quarterly, Vol. 20, (Dec., 1975).

322. Paretta, R. L. and Clark, S. A.
Software Development." Journal
Management, (April, 1976).

"Organizational
ýdmins. Science

"Management of
of Systems

323. Parikh, G. and Zvegintzev, N. "The World of Software
Maintenance." IEEE Tutorial on Software
Maintenance, IEEE, 1983.

324. Parnas, D. "Information Distribution. Aspects of
Design Methodology." IFIP Congress Computer
Software, 1971, 26-30.

325. Parnas, D. L. "A Technique for Software Module.
Specifications with Examples." Comm of ACM, Vol.
15, No. 5, (1972), 330-336.

326. Parr, F. N. "An Alternative to the Rayleigh Curve Model
for Software Development Effort." IEEE Trans. on
Software Engineering, Vol. SE-6, No. 3, (May,
1980).

327. Paster, D. L. "Experience with Application of Modern
Software Management Controls." 5th Int'l
Conference Software Engineering. San Diego, Ca.,
1981.

328. Pearson,. A. W. and Gunz, H. P. "Project Groups."
Groups at Work. Edited by R. Payne and C.
Cooper. New York: John Wiley & Sons, Inc., 1981.

n_



484

329. Perlis, A. J., et al. Software Metrics. Cambridge,
Mass: The M.I.T. Press, 1981.

330. Perlis, A. J. "Software Engineering Education."
Software Engineering Techniques: Report on a
Conference Sponsored by the Nate Science Committee.
Edited by J. N. Baxton and B. Randell. (Oct.,
1969).

331. Perrow, C. "A Framework for the Comparative Analysis of
Organizations." American Sociological Review,
1967.

332. Perrow, C. Organzational Analysis: A Sociological
View. Belmont, Ca: Wadsworth Publishing Co.,
Inc., 1970.

333. Peschke, R. E. and Sherrill, M. L. "Management
Cybernetics: An Application to the Development of
a Conceptual Model of the Software Acquisition
Management Discipline." Unpublished M.S. Thesis,
Air Force Institution of Technology, Ohio, 1979.

334. Peters, L. J. "Design Practices to Effect Software
Quality." Software Quality Management. Edited by
J. D. Cooper and M. J. Fisher. New York:
Petrocelli Books, Inc., 1979.

335. Pietrasanta, A. M. "Resource Analysis of Computer
Project System Development." On the Management of
Computer Programming. Edited by G. F. Weinwurm.
Princeton, New Jersey: Auerbach Publishing, Inc.,
1970.

336. Pietrasanta, A. M. "Managing the-Economics of Computer
Programming." Proceedings ACM National Conference,
1968.

337. Plotkin, S. "The Real Cost of DP Professionals." The
Real Cost Work Book. Edited by S. Plotkin. Glen
Mills, Pa: Stephen Plotkin, 1982.

338. Pooch, U. W. and Gehring, P. F. Jr. "Toward a
Management Philosophy for Software Development."
Advances in Computer Programming Management.
Philadelphia, Pa: Heyden & Sons, Inc., 1980.

339. Powers, R. F. and Dickson, G. W. "MIS Project
Management: Myths, Opinions, and Reality."
California Management Review, Vol. XV, No. 3,
(Spring, 1973), 147-156.

340. Powers, R. F. "An Empirical Investigation of Selected
Hypothesis Related to the Success of Management



485

Information Systems Projects." Unpublished Ph.D.
dissertation, University of Minnesota, 1971.

341. Presser, L. ""Reversing the Priorities." Datamation.

342. Pressman, R. S. Software Engineering: A Practitions's
Approach. New York: McGraw-Hill, Inc., 1982.

343. Price, J. L. "The Effects of Turnover on the
Organization." Organization and Admins. Sciences,
Vol. 7, No. 1,2, (Spring-Summer, 1976).

344. Pugh, A. L. III. Dynamo Users' Manual.
Cambridge, Mass: The M.I.T. Press, 1976.

5th ed.

345. Putman, L. "A General Empirical Solution to the Macro
Software Sizing and Estimating Problem." IEEE
Trans. on Software Engineering, 1971, 26-30.

346. Putman, L. H. and Fitzsimmons, A. "Estimating Software
Costs, Part I." Datamation, (Sept, 197-9).

347. Putman, L. H. and Fitzsimmons, A. "Estimating Software
Costs, Part II." Datamation, (Oct., 1979).

348. Putman, L. H. and Fitzsimmons, A. "Estimating Software
Costs. Part III." Datamation, (Nov., 1979).

349. Putman, L. H. "The Real Metrics
Development." EASCON 80, 1980, 310.

of Software

350. Quinnan, R. E. "The Management of Software Engineering
Part V: Software Engineering Management
Practices." IBM Systems Journal, Vol. 19, No. 4,
1980.

351. Radic,e, A. "Productivity Measures in Software."
Economics of Information Processing Vol.
Operations, Programming and Software Mo

The
2:

dels.
Edited by R. Goldberg and H. Lorin. New York:
John Wiley & Sons, Inc., 1982.

352. Randers, J. "Guidelines for Modern Conceptualization."
Elements of the System Dynamics Method. Edited by
J. Randers. Cambridge, Mass: The M.I.T. Press,
1980.

353. Randers, J.
Methods.
1980.

354. Reed,

ed. Elements of the System Dynamics
Cambridge, Mass: The M.I.T. Press,

E. A. ""Time Sheet Accounting." Journal of
Systems Management, (Jan., 1979), 32-35.



486

355. Reeves, T. K. and Woodward, J. "The Study of
Managerial Control." Industrial Organization:
Behavior and Control. Edited by J. Woodward.
Oxford University Press, 1970.

356. Reifer, D. J. A Poor Man's Guide to Estimating Software
Costs. Reifer Consultants, Inc., Torrance, Ca.,
(June, 1982).

357. Reifer, D. J. "The Nature of Software Management: A
Primer." Tutorial: Software Management. Edited
by D. J. Reifer. IEEE Computer Society, 1979.

358. Reifer, D. J. ed. Tutorial:
IEEE Computer Society, 1979.

Software Management.

359. Reifer, D. J. How Do I know I'M in Trouble: A Review
Checklist. Reifer Consultants, Inc., Torrance,
Ca., (Mar., 1982).

360. Reifer, D. J. What Software People Do: A Work
Breakdown Structure. Reifer Consultant, Inc.,
Torrance, Ca., Feb., 1982.

361. Reifer, D. J. "Software Quality Assurance Tools and
Techniques." Software Quality Management. Edited
by J. D. Cooper and M. J. Fisher. New York:
Petrocelli Books, Inc., 1979.

362. Reihl, J. W. "A Examination of Management Practices in
the Development of Business Information Systems."
An Unpublished Ph.D. dissertation, George
Washington University, 1977.

363. Reynolds, "What's Wrong With Computer Programming
Management?" On the Management of Computer
Programming. Edited by G. F. Weinwurm.
Princeton, New Jersey: Auerbach Publishing, Inc.,
1970.

364. Rich, S. "The Ins and Outs of Choosing a Consultant."
ComputerWorld, (July, 1982).

365. Richardson, G. P. "The Feedback Concept in American
Social Science, with Implications for Systems
Dynamics." Int'l System Dynamics Conference.
Chestnut Hill, Mass, (July, 1983).

366. Richardson, G. P. :Sources of Rising Product
Development Times." Technical Report D-3321-1, SD
Group, Cambridge, Mass, M.I.T., 1982.

367. Richardson, G. P.
to Systems

and Pugh, G. L. III. Introduction
Dynamics Modelina and DYNAMO.-



487

Cambridge, Mass: The M.I.T. Press, 1981.

368. Richardson, G. P. Sources of Rising Product Development
Times. Systems Dynamics Group, M.I.T., Cambridge,
Mass, Jan., 1982.

369. Richmond, D. "No Nonsense Recruitment." Perspectives
on Information Management: A Critical Selection of
ComputerWorld Feature Articles. Edited by J. B.
Rochester. New York: John Wiley & Sons, Inc.,
1982.

370. Roberts, E. B., ed. Managerial Applications of System
Dynamics. Cambridge, Mass: The M.I.T. Press,
1981.

371. Roberts, E. B. "The Dynamics o
Development." Published Ph.D.
M.I.T., Cambridge, Mass, 1964.

f Research and
dissertation,

372. Roberts, E. B. "A Simple Model of R & D Project
Dynamics." Managerial Applications of System
Dynamics. Edited by E. B. Roberts. Cambridge,
Mass: The M.I.T. Press, 1981.

373. Roberts, N. et
Simulation:
Reading, Mass:
1983.

al. Introduction to Computer
The System Dynamics Approach.
Addison-Wesley Pushishinig Co.,

374. Rochester, J. B. ed. Perspectives on Information
Management: A Critical Selection of ComputerWorld
Feature Articles. New York: John Wiley & Sons,
Inc., 1982.

375. Rolefson, J. F. "Project Management - 6 Critical
Steps." Journal of Management Science., (April,
1978), 10-17.

376. Rubin, H. A. Macro-estimation of Software Development
Parameters: The Estimacs System. Dept. of
Computer Science, the City University of N.Y., New
York.

377. Rullo, T. A., ed.
Management.
Inc., 1980.

Advances in Computer Programming
Philadelphia, Pa: Heyden & Sons,

378. Sampson, W. F., et al. "Organizational Strategies for
Producing Better Software."

379. Sanders, J. "Barriers to Estimating DP Projects
Effectivity." Infosystems, (Dec., 1980), 64-70.

I



488

380. Sawyer, S. K. "If I Flunk Out of Chemistry I May
Seriously Consider the Computer Field."
Perspectives on Information Management: A
Critical' Selection of ComputerWorld Feature
Articles. Edited by J. B. Rochester. New York:
John Wiley & Sons , Inc., 1982.

381. Scacchi, W. "Managing Software Engineering Projects: A
Social Analysis." University of S. Calif., L.A.,
CA., (Dec., 1982).

382. Schainblatt, A. H. "How Companies Measure the
Productivity of Engineers and Scientists."
Research Management, (May, 1982), 10-18.

383. Schein, E. H. Organizational Psychology. 3rd ed.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1980.

384. Schindler, M. "Todays' Software
Tomorrow's Tool Systems."
(July, 1981), 73-110.

Tools Point to
Electronic Design,

385. Schneider, V. "Prediction of Software and Project
Duration - Four New Formulas." SIGPLAN Notices,
(June, 1978).

386. Schultz, B. "Five Factors Held Critical in Motivating
DPers." ComputerWorld. (Nov., 1981).

387. Scott, R. F. and Simmons. D. B. "Predicting
Programming Group Productivity - A Communications
Model." IEEE Trans. on Software Engineering, Vol.
SE-i, No. 4, (Dec., 1975).

388. Scott, R. F. and Simmons, B. D.
Productivity and the Delphi
Datamation, (May, 1974), 71-73.

"Programmer
Technique."

389. Selltiz, C., et al. Resaerch Methods in Social
Relations. 3rd ed. New York: Holt, Rivehart &
Winston, 1976.

390. Semprevivo, P. C. Teams - In Information Systems
Development. New York: Yourdon, Inc., 1980.

391. Senn, J. A. "Structured Walkthroughs." Systems
Development Management. Edited by J. Hannan.
Pennsauken, New Jersey: Auerbach Publishers, Inc.,
1982.

392. Shackleton, J. "Systems Development Methodology
Packages." Systems Development Management. Edited
by J. Hannan. Pennsauken, New Jersey: Auerbach



489

Publishers, Inc., 1982.

393. Shaw, D. E. "Managing a Software Engineering."
Datamation, (Nov., 19.76), 48-50.

394. Shell, R. L. "Work Measurement for Computer Programming
Operations." Industrial Engineering, (Oct., 1972),
32-36.

395. Sheppard, S. B., et al. "Modern Coding Prectices and
Programmer Performance." Computer, (Dec., 1977),
41-49.

396. Shneiderman, B. Software Psychology - Human Factors in
Computer and Information Systems. Cambridge, Mass:
Winthrop Publishers, Inc., 1980.

397. Shneiderman, B. "Group Processes in Programming."
Datamation, (Jan., 1980), 138-141.

398. Shooman, M. L. Software Engineering - Design
Reliability and Management. New York:
McGraw_hill, Inc., 1983.

399. Shooman, M. L., et al. "Types, Distribution, and Test
and Correction Times for Programming Errors."
Proceedings of the Int'l Conference on Reliable
Software, (April, 1975).

400. Shooman, M. L. and Natarajan, S. "Effect of Manpower
Development and Bug Generation on Software Error
Models." Rome Air Development Center
RADC-TR-76-400, (Jan., 1977).

401. Shooman, M. L. "Tutorial on Software Cost Models."
Workshop on Quality Software Models for
Reliability, Complexity and Cost, (Oct., 1979).

402. Singer, L. M. "People, the Forgotten Resource."
ComputerWorld.

403. Smith, W. and Jones, T. C. "Practical Productivity
Improvement Through Quality Assurance. Proceedings
of the 4th Annual Conference of SIM, Chicago, Ill.,
(Sept., 1982).

404. Snyder, T. R. "Rate Charting." Datamation, (Nov.,
1976), 44-47.

405. Snyders, J. and Lasden, M. "Managing Programmers to
Work Harder and Happier." Computer Decisions,
(Oct., 1980), 34-47.

"Evaluating Programmers and Analysts."406. Snyders, J.



490

Advances in Computer Programming Management, Vol.
I. Edited by T. A. Rullo. Philadelphia, Pa:
Heyden & Sons, Inc., 1980.

407. Synnott, W. R. and Gruber, W. H. Information Resource
Management. New York: John Wiley & Sons, Inc.,
1981.

408. Social Security Administration. Productivity
Measurement in Software Engineering. (June, 1983).

409. Softech, Inc. Softech's Approach to Software
Development. TP113, Waltham, Mass, (July, 1979).

410. Spiro, B. E. "The Management of Structured
Programming." Advances in Computer Programming
Management. Vol. I. Edited by T. A. Rullo.
Philadelphia, Pa: Heyden & Sons, Inc., 1980.

411. Stalnaker, A. W. and Mayer, D. B. "Selection and
Evaluation of Computer Personnel." Proceedings of
23rd National Conference ACM, Brandon/Systems
Press, Inc., 1968, 657-670.

412. Steele, A. C. "How to Get More Productivity From Your
Staff." ComputerWorld, (July, 1982).

413. Steers, R. M. "Problems in the Measurement of
Organizational Effectiveness." Admins. Science
Quarterly, Vol. 20, (Dec., 1975).

414. Steffey, R. E. An Analysis of the RCA Price-S Cost
Estimation Model as it Relates to Current Air Force
Computer Software Acquisition and Management. Air
Force Institution of Technology, Wright Pattern Air
Force Base, Ohio, (Dec., 1979).

415. Steiner, I. D. "Models for Inferring Relationships
Between Group Size and Potential , 273-283.

416. Steiner, I. D. Group Process and Productivity. New
York: Academic Press, 1972.

417. Stephenson, W. E. "An Analysi-s of the Resources Used in
the Safeguard System Software Development."
Proceedings of the 2nd Int'l Conference on Software
Engineering, 1976.

418. Sterman, J. CLass Notes, M.I.T., Cambridge, Mass, 1981.

419. Sterman, J. D. "Appropriate Summary Statistic for
Evaluating the Historical Fit of SD Models." The
Int'l System Dynamics Conference. Chestnut Hill,
Mass, (June, 1983).



491

420. Stevens, B. A. "Probing the DP Psyche." Perspectives
on Information Management: A Critical Selection of
ComputerWorld Feature Articles. Edited by J. B.
Rochester. New York: John Wiley & Sons, Inc.,
1982.

421. Stevens, W. P. et al. "Structured Design." IBM
Systems Journal, Vol. 13, No. 2, 1974, 115-139.

422. Strasser, S. and Deniston, 0. L. "A Comparative
Analysis of Goal and System Models Designed to
Evaluate Health Organization Effectiveness."

423. Stringer, J. D. "Current Software Quality Management
Activities." Software Quality Management. Edited
by J. D. Cooper and M. J. Fisher. New York:
Petrocelli Books, Inc., 1979.

424. Stroh, P. "Team Building and System Development."
Datamation.

425. Tanniru, M. R., et al. "Causes of Turnover Among DP
Professionals." Proceedings of the 8th Annual
Computer Personnel Research Conference, Miami,
Florida, (June, 1981).

426. Tausworthe, R. C. "The Work Breakdown Structure in
Software Project Management." Journal of Systems
add Software, 1980, 181-186.

427. Tausworthe, R. C. Standardized Development of Computer
Science. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1977.

428. Thamhain, H. J. and Wilemon, D. L. "The Effective
Management of Conflict in Project-Oriented Work
Environment." Defense.Management Journal, (July,
1975), 29-40.

429. Thamhain, H. J. and Wilemon, D. L. "Conflict
Management in Project Life Cycles." Sloan
Management Review, (Spring, 1975), 31-50.

430. Tharrington, J. "Growth from Within." ComputerWorld.

431. Thayer, R. H., et al. "Validating Solutions to Major
Problems in Software Engineering Project
Management." Computer, (Aug., 1982).

432. Thayer, R. H. "Organizational Structures used in
Software Development by the U.S. Aerospace
Industry." Journal of System and Software, Vol.
1, 1980, 283-297.



492

433. Thayer, R. H., at al. "The Challenge of Software
Engineering Project Management." Computer, (Aug.,
1980).

434. Thayer, R. H., et al. "Major Issues in Software
Engineering Project Management." IEEE Trans. on
Software Engineering, Vol. SE-7, No. 4, (July,
1981).

235. Thayer, R. H. and Lehman, J. H. Software Engineering
Project Management: A Survey Concerning U.S.
Aerospace Industry Management of Software
Development Projects. Sacramento Air Logistics
Center, McClellan Air Force Base, Calif., (Nov.,
1977).

436. Thayer, R. H. "Modeling A Software Engineering Project
Management System." Unpublished Ph.D.
dissertation, University of Calif., Santa Barbara,
1979.

437. Thayer, T. A., et al. Software Reliability: A Study of
Large Project Reality. New York: North Holland,
1978.

438. Thibodeau, R. and Dodson, E. N.
Interrelationships." Journal
Software, Vol. 1,.1980, 203-211.

439. Thomsett, R. People Project Management.
Yourdon Press, Inc., 1980.

Life Cycle Phase
of Systems and

New York:

440. Thorpe, A. J. L. "Family
Datamation, (Mar., 1976).

Programming

441. Tichy, N. M., et al. "Strategic Human Resource
Management." Sloan Management Review, (Winter,
1982), 47-61.

442. Toellner, J. "Project Estimating." Journal of Systems
Management, (May, 1977), 6-9.

443. Tripp, L. L. and Wali, P. N. How much Planning in
Systems Development." Journal of Systems
Management, (Oct., 1980), 6-15.

444. Tsichritzis, "Project Management."
Engineering. Edited by F. L. Bauer.
Springer-Verlag, 1977.

Software
Berlin:

445. Tsui, F. and Priven, L. "Implementation of Quality
Control in Software development." National
Computer Conference, 1976.

Teams."



493

446. Turn, R., et al. "A Management Approach to the
development of Computer-Based Systems." American
Institute of Aeronautics & Astronautics, Inc.,
1977.

447. Van de Van, A. H. and Delbecq, A. L. "A Task
Contingent Model of Work-Unit Structure." Admins.
Science Quarterly, Vol. 19, 1974.

448. Vaughan, A. H. "Plan for Project Success." Journal of
Systems Management, (Dec., 1974).

449. Walker, M. G. Managing Software Reliability - The
Paradiagmatic Approach. New York: North Holland,
Inc., 1981.

450. Walston, C. E. and Felix, C. P. "Method of Programming
Measurement and Estimation." IBM Journal Journal,
Vol. 16, No. 1, 1977.

451. Walters, G. F. "Application of Metrics to a Software
Quality Management Program." Software Quality
Management. Edited by J. D. Cooper and M. J.
Fisher. New York: Petrocelli Books, Inc., 1979.

452. Wasserman, A. I. "A Top-Down View of Software
Engineering." Proceedings of the Ist National
Conference on Software Engineering, Washington,
D.C., Sept., 1975.

453. Wegner, P., ed.
Technology.
1980.

Research Directions in Software
Cambridge, Mass: The M.I.T. Press,

454. Wegner, P. "Introduction and Overview." Research
Directions in Software Technology. Edited by P.
Wegner. Cambridge, Mass: The M.I.T. Press, 1980.

455. Weick, K. E. The Social Psychology of Organization.
2nd ed. Reading, Mass: Addison-Wesley Publishing
Co., Inc., 1979.

456. Weil, H. B. "Industrial Dynamics & MIS." Managerial
Applications of System Dynamics. Edited by E,B,
Roberts. Cambridge, Mass: The M.I.T. Press,
1981.

457. Weinberg, G. M. and Schulman, E. L. "Goals and
Performance in Computer Programming." Human
Factors, Vol. 16, No. 1, 1974, 70-77.

458. Weinberg, G. M. "The Psychology of Improved Programmer
Performance." Datamation, (Nov., 1972), 82-85.



494

459. Weinberg, G. M. Understanding the Professional
Programmer. Boston: Little, Brown & Co., Inc.,
1982.

460. Weinberg, G. M. The Psychology of Computer Programming.
New York: Litton Educational Publishing, Inc.,
1971.

461. Weinberg, G. M. "Overstructured Management of Software
Engineering." Proceedings of the 6th Int'l
Conference Software Engineering, Tokoyo, Sept.,
1982.

462. Weinwurm, G. F., ed. "On the Management of Computer
Programming. Princeton, New Jersey: Auerbach
Publishing, Inc., 1970.

463. Weinwurm, G. F. "Introduction." On Management of
Computer Programming. Princeton, New Jersey:
Auerbach Publishing, Inc., 1970.

464. Weinwurm, G. F. "The Challenge to the Management
Community." On Management of Computer Programming.
Princeton, New Jersey: Auerbach Publishing, Inc.,
1970.

465. Weiss, D. M. A Comparison of Errors in Different
Software Development Environments. Report for the
Naval Research Lab. Washington, D.C., (July,
1982).

466. Weiss, D. M. "Evaluating Software Development by Error
Analysis." Journal of Systems and Software, Vol.
1i, 1979, 57-70.

467. Weiss, H. M. "Project Control." Journal of Systems
Management, (May, 1973), 14-17.

468. Wender, P. H. "Vicious and Virtuous Circles: The Role
of Deviation Amplifying Feedback in the Origin and
Perception of Behavior." Psychiatry, Vol. 31.

469. Wesserman, A. I. "Software Development - There's Got to
be a Better Way." Software Engineering. Edited by
H. Freeman, et al. New York: Academic Press,
Inc., 1980.

470. Whitesides, B. A. "The Hidden Costs of In-House
Development." Datamation, (Sept., 1981), 172-175.

471. Whited, J. A. "Management Control Practices for
Software Quality." Software Quality Management.
Edited by J. D. Cooper and M. J. Fisher. New



495

York: Petrocelli Books, Inc., 1979.

472. Wilemon, D. L. "Managing
Management Systems."
Studies, (Oct., 1973).

Conflict in Temporary
Journal of Management

473. Willoughby, T. C. "Computing Personnel Turnover: A
Review of the Literature." Computing Personnel,
Vol. 7, No. 1-2, (Autumn, 1977), 11-13.

474. Winrow, "Acquiring Entry-level Programming Management.-
Edited by J. Hannan. Pennsauken, New Jersey:
Auerbach Publishers, Inc., 1982.

475. Wolverton, R. W. "The Cost of Developing Large-Scale
Software." IEEE Trans. on Computers, June, 1974.

476. Woodgate, H. S. "Management of Large Scale Computer
Program Production." National Computer Conference,
1977.

477. Woodruff, C. K. "Consideration of Selected Personality
- Job Satisfaction Constructs Relevant to Project
Management in DP Organizations." Proceedings of
the 6th Annaul Computer Personnel Research
Conference, Miami, Fl, (Aug., 1979).

478. Yates, A. "A Strategy for Computer Programmer
Productivity Improvement." Proceedings of the 13th
Annual Computer Personnel Research Conference,
(June, 91975).

479. Youngs, E. A. "Human Errors in Programming." Int'l
Journal of Man-Machine Studies, Vol, 6, 1977,
361-376.

480. Yourdon, E. Managing the System Life Cycle. A Software
Development Methodology Overview. New York:
Yourdon, Inc., 1982.

481. Yourdon, E. Managing the Structured Techniques.
ed. New York: Yourdon, Inc., 1979.

2nd

482. Yourdon, E. Structured
Yourdon, Inc., 1979.

Walkthroughs.

483. Yourdon, E. "The Second Structured
Software World, Vol. 12, No. 3.

New York:

Resolution."

484. Zelkowitz, M. V., et al. Principles of Software
Engineering and Design. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1979.

M. V. "Perspectives on Software485. Zelkowitz,



496

Engineering." Computing Surveys, Vol. 10, No. 2,
(June, 1978).

486. Zelkowitz, M.V. "Advances in Software Engineering:
Resource Estimation." Advances in Computer
Programming Management. Edited by T. A. Rullo.
Philadelphia, Pa: Heyden & Sons, Inc., 1980.

487. Zmud, R. W. "Management of Large Software Development
Efforts." MIS Quarterly, Vol. 4, No. 2, (June,
1980), 45-56.

488. Zmud, R. W. "The Effectiveness of External Information
Channels in Facilitating Innovation Within Software
Development Groups." MIS Quarterly, Vol. 7, No.
2, (June, 1983), 43-58.

489. Zolnowski, J. C. and Ting, P. D. "An Insider's Survey
on Software Development." Proceedings of the 6th
Int'l Conference on Software Engineering, Tokoyo,
(Sept., 1982).



497

APPENDIX:

MODEL DOCUMENTATION



498

* BASE.5 / BASE MODEL: VERSION 5
NOTE
NOTE *****~~~*******
NOTE HUMAN RESOURCE MANAGEMENT SUBSYSTEM
NOTE *********~~***
NOTE
L WFNEW.K=WFNEW.J+DT*(HIRERT.JK-ASIMRT.JK-NEWTRR.J)
NOTE NEW WORKFORCE (PEOPLE)
N WFNEW=O
R HIRERT.KL=MAX(O,WFGAP.K/HIREDY)
NOTE HIRING RATE (PEOPLE/DAY)
C HIREDY=40
NOTE HIRING DELAY (DAYS)
A WFGAP.K=WFS.K-TOTWF.K
NOTE WORKFORCE GAP (PEOPLE)
A NEWTRR.K=MIN(TRNFRT.K,WFNEW.K/DT)
NOTE NEW EMPLOYEES TRANSFER RATE OUT (PEOPLE/DAY)
A TRNFRT.K=MAX(O,-WFGAP.K/TRNSDY)
NOTE TRANSFER RATE OF PEOPLE OUT OF PROJECT (PEOPLE/DAY)
C TRNSDY=1O
NOTE TIME DELAY TO TRANSFER PEOPLE OUT (DAYS)
R ASIMRT.KL=WFNEW.K/ASIMDY
NOTE ASSIMILATION RATE OF NEW EMPLOYEES (PEOPLE/DAY)
C ASIMDY=80
NOTE AVERAGE ASSIMILATION DELAY (DAYS)
A DMPTRN.K=WFNEW.K*TRPNHR
NOTE DAILY MANPOWER FOR TRAINING (MAN-DAYS/DAY)
C. TRPNHR=O0.2
NOTE NUMBER OF TRAINERS PER NEW EMPLOYEE (DIMENSIONLESS)
L CMTRMD.K=CMTRMD.J+DT*DMPTRN.J
NOTE CUMULATIVE TRAINING MAN-DAYS
N CMTRMD=O
L WFEXP.K=WFEXP.J+DT*(ASIMRT.JK-EXPTRR.J-QUITRT.JK)
NOTE EXPERIENCED WORKFORCE (PEOPLE)
N . WFEXP=WFSTRT
NOTE INITIAL VALUE OF EXPERIENCED WORKFORCE LEVEL
A EXPTRR.K=MIN(WFEXP.K/DT,TRNFRT.K-NEWTRR.K)
NOTE EXPERIENCED EMPLOYEES TRANSFER RATE (PEOPLE/DAY)
R QUITRT.KL=WFEXP.K/AVEMPT
NOTE EXPERIENCED EMPLOYEES QUIT RATE (PEOPLE/DAY)
C AVEMPT=673
NOTE AVERAGE EMPLOYMENT TIME (DAYS)
A FTEXWF.K=WFEXP.K*ADMPPS
NOTE FULL-TIME-EQUIVALENT EXPERIENCED WF (MEN)
A CELNWH.K=FTEXWF.K*MNHPXS
NOTE CEILING ON NEW HIREES (MEN)
C MNHPXS=3
NOTE MOST NEW HIREES PER EXPERIENCED STAFF (MEN/MEN)
A CELTWF.K=CELNWH.K+WFEXP.K
NOTE CEILING ON TOTAL WORKFORCE (PEOPLE)
A WFS.K=MIN(CELTWF.K,WFNEED.K)
NOTE WF SOUGHT (PEOPLE)



499

A TOTWF.K=WFNEW.K+WFEXP.K
NOTE TOTAL WF LEVEL (PEOPLE)
A FTEQWF.K=TOTWF.K*ADMPPS
NOTE FULL TIME EQUIVALENT WF (EQUIVALENT PEOPLE)
A FRWFEX.K=WFEXP.K/TOTWF.K
NOTE FRACTION OF WF THAT IS EXPERIENCED (DIMENSIOLESS)
NOTE
NOTE *****~~~*******
NOTE SOFTWARE PRODUCTION SUSBSYSTEM
NOTE *********~~****
NOTE
NOTE (A) MANPOWER ALLOCATION SECTOR
NOTE
A TOTDMP.K=TOTWF.K*ADMPPS
NOTE TOTAL DAILY MANPOWER (MAN-DAYS/DAY)
C ADMPPS=1
NOTE AVERAGE DAILY MANPOWER PER STAFF (DAY/DAY)
L CUMMD.K=CUMMD.J+DT*TOTDMP.J
NOTE CUMULATIVE MAN-DAYS EXPENDED (MAN-DAYS)
N CUMMD=.0001
A DMPATR.K=TOTDMP.K-DMPTRN.K
NOTE DAILY MANPOWER AVAILABLE AFTER TRAINING (MAN-DAYS/DAY)
A AFMPQA.K=PFMPQA.K* (+ADJQA.K)
NOTE ACTUAL FRCATION OF MANPOWER FOR QA (DIMENSIONLESS)
N AFMPQA=PFMPQA
C QO=O
NOTE QUALITY OBJECTIVE ... NORMAL QO = 0
A PFMPQA.K=TABHL(TPFMQA,PJBAWK.K,O,1,.1)*(I+QO/100)
NOTE PLANNED FRACTION OF MANPOWER FOR QA (DIMENSIONLESS)
T TPFMQA=.15/.15/.15/.15/.15/.15/.15/.15/.15/.15/O
A ADJQA.K=TABHL(TADJQA,SCHPR.K,O,.5,.1)
NOTE % ADJUSTMENT IN PFMPQA (%)
T TADJQA=O/-.025/-.15/-.35/-.475/-.5
A DMPQA.K=MIN((AFMPQA.K*TOTDMP.K),.9*DMPATR.K)
NOTE DAILY MANPOWER ALLOCATED FOR QA (MAN-DAYS/DAY)
L CMQAMD.K=CMQAMD.J+DT*DMPQA.J
NOTE CUMULATIVE QA MAN-DAYS (MAN-DAYS)
N CMQAMD=O
A DMPSWP.K=DMPATR.K-DMPQA.K
NOTE DAILY MANPOWER FOR SOFTWARE PRODUCTION (MAN-DAYS/DAY)
A DESECR.K=DTCERR.K/DESRWD
NOTE DESIRED ERROR CORRECTION RATE (ERRORS/DAY)
N DESECR=O
C DESRWD=15
NOTE DESIRED REWORK DELAY (DAYS)
A DMPRW.K=MIN((DESECR.K*PRWMPE.K),DMPSWP.K)
NOTE DAILY MANPOWER ALLOCATED FOR REWORK (MAN-DAYS/DAY)
N DMPRW=O
L PRWMPE.K=PRWMPE.J+(DT/TARMPE) (RWMPPE.J-PRWMPE.J)
NOTE PERCEIVED REWORK MANPOWER NEEDED PER ERROR (MAN-DAYS/ERROR)
N PRWMPE=.5
C TARMPE=10
NOTE TIME TO ADJUST PRWMPE (DAYS)
L CMRWMD.K=CMRWMD.J+DT*DMPRW.J



500

NOTE CUMULATIVE REWORK MAN-DAYS (MAN-DAYS)
N CMRWMD-O
A DMPDVT.K=DMPSWP.K-DMPRW.K
NOTE DAILY MANPOWER FOR DEVELOPMENT/TESTING (MAN-DAYS/DAYS)
L CMDVMD.K=CMDVMD.J+DT*DMPDVT.J*(I-FREFTS.K)
NOTE CUMULATVE DEVELOPMENT MAN-DAYS (MAN-DAYS)
N CMDVMD-O
NOTE
NOTE (B) SOFTWARE DEVELOPMENT SECTOR
NOTE
R SDVRT.KL=MIN((DMPSDV.K*SDVPRD.K) ,TSKPRM.K/DT)
NOTE SOFTWARE DEVELOPMENT RATE (TASKS/DAY)
N SDVRT=O
A DMPSDV.K=DMPDVT.K*(1-FREFTS.K)
NOTE DAILY MANPOWER FOR SOFTWARE DEVELOPMENT (MAN-DAYS/DAY)
A FREFTS.K=TABHL(TFEFTS,TSKPRM.K/PJBSZ.K,O,.2,.04)
NOTE FRACTION OF EFFORT FOR SYSTEM TESTING (DIMENSIONLESS)
T TFEFTS-1/.5/.28/.15/.05/O
A SDVPRD.K=POTPRD.K*MPDMCL.K
NOTE SOFTWARE DEVELOPMENT PRODUCTIVITY (TASKS/MAN-DAY)
A POTPRD.K=ANPPRD.K*MPPTPD.K
NOTE POTENTIAL PRODUCTIVTY (TASKS/MAN-DAY)
A ANPPRD.K=FRWFEX.K*NPWPEX+(1-FRWFEX.K)*NPWPNE
NOTE AVERAGE NOMINAL POTENTIAL PRODUCTIVITY (TASKS/MAN-DAY)
C NPWPEX=1
NOTE NOMINAL POTENTIAL PRODUCTIVITY OF EXP EMPLOYEE (TSK/M-D)
C NPWPNE=0.5
NOTE NOMINAL POTENTIAL PROD OF.NEW EMPL. (TSK/M-D)
A MPPTPD.K=TABHL(TMPTPD,PJBAWK.K,O,1,.1)
NOTE MULTIPLIER TO POTENTIAL PRODUCTIVITY DUE TO LEARNING (DIMENSIONLESS)
T TMPTPD=1/1.0125/1.0325/1.055/1.09/1.15/1.2/1.22/1.245/1.25/1.25
A MPDMCL.K=AFMDPJ.K*(1-COMMOH.K)
NOTE MULTIPLIER TO PRODUCTIVITY DUE TO MOTIVATION & COMM LOSSES (DIMENSIONLESS

A COMMOH.K=TABHL(TCOMOH,TOTWF.K,O,30,5)
NOTE COMMUNICATION OVERHEAD (DIMENSIONLESS)
T TCOMOH=O/.015/.06/.135/.24/.375/.54
C NFMDPJ=.6
NOTE NOMINAL FRACTION OF A MAN-DAY ON PROJECT (DIMENSIONLESS)
L AFMDPJ.K=AFMDPJ.J+DT*WRADJR.JK
NOTE ACTUAL FRACTION OF A MAN-DAY ON PROJECT (DIMENSIONLESS)
N AFMDPJ=NFMDPJ
R WRADJR.KL=(WKRTS.K-AFMDPJ.K)/WKRADY.K
NOTE WORK RATE ADJUSTMENT RATE (1/DAY)
A WKRADY.K=NWRADY.K*EWKRTS.K
NOTE WORK RATE ADJUSTMENT DELAY (DAYS)
A NWRADY.K=TABHL(TNWRAD,TIMERM.K,O,30,5)
NOTE NORMAL WORK RATE ADJUSTMENT DELAY (DAYS)
T TNWRAD=2/3.5/5/6.5/8/9.5/10
A EWKRTS.K=CLIP(1,.75,WKRTS.K,AFMDPJ.K)
NOTE EFFECT OF WORK RATE SOUGHT (DIMENSIONLESS)
A WKRTS.K=(1+PBWKRS.K)*NFMDPJ
NOTE WORK RATE SOUGHT (DIMENSIONLESS)
N MAXMHR=1



501

NOTE MAXIMUM BOOST IN MAN-HOURS (DIMENSIONLESS)
A PBWKRS.K=CLIP((MDHDL.K/(FTEQWF.K*(OVWDTH.K+.0001))),
X (MDHDL.K/(TMDPSN.K-MDHDL.K+.0001)),PMDSHR.K,O)
NOTE % BOOST IN WORK RATE SOUGHT (%)
A MDHDL.K=CLIP(MIN(MAXSHR.K,PMDSHR.K),-EXSABS.K,PMDSHR.K,O)*CTRLSW
NOTE MAN-DAYS THAT WILL BE HANDLED OR ABSORBED (MAN-DAYS)
C CTRLSW=1
NOTE CONTROL SWITCH ... ALLOWS US TO TEST POLICY OF NO OVERWORK (0 OR 1)
A EXSABS.K=MAX(0,(
X TABHL(TEXABS,TMDPSN.K/MDRM.K,O,1,.1)*MDRM.K-TMDPSN.K))
NOTE MAN-DAY EXCESSES THAT WILL BE ABSOBED (MAN-DAYS)
T TEXABS=O/.2/.4/.55/.7/.8/.9/.95/1/1/1
A MAXSHR.K=(OVWDTH.K*FTEQWF.K*MAXMHR) WTOVWK.K
NOTE MAXIMUM SHORTAGE IN MAN-DAYS THAT CAN BE HANDLED (MAN-DAYS)
A WTOVWK.K=CLIP(1,0,TIME.K,BRKDTM.K+RLXTMC.K)
NOTE WILLINGNESS TO OVERWORK (0 OR 1)
L BRKDTM,K=MAX(BRKDTM.J,SWITCH((TIME.J+DT) ,O,OVWDTH.K))
NOTE TIME OF LAST EXHAUSTION BREAKDOWN
N BRKDTM=-1
L RLXTMC.K=RLXTMC.J*SWITCH(O,,0OVWDTH.K)+DT*
X CLIP(I,-RLXTMC.J/DT,EXHLEV.K/MXEXHT,.I)
NOTE VARIABLE THAT CONTROLS TIME TO DE-EXHAUST
N RLXTMC=O
A OVWDTH.K=NOVWDT.K*MODTEX.K
NOTE OVERWORK DURATION THRESHOLD (DAYS)
A NOVWDT.K=TABHL(TNOWDT,TIMERM.K,O,50,10)
NOTE NOMINAL OVERWORK DURATION THRESHOLD (DAYS)
T TNOWDT=0/10/20/30/40/50
A MODTEX.K=TABHL(TMODEX,EXHLEV,K/MXEXHT,O,1,.1)
NOTE EFFECT OF EXHAUSTION ON OVERWORK DURATION THRESHOLD (DIMENSIONLESS)
T TMODEX=1/.9/.8/.7/.6/.5/.4/.3/.2/.1/O
L EXHLEV.K=EXHLEV.J+DT*(RIEXHL.JK-RDEXHL.JK)
NOTE EXHAUSTION LEVEL (EXHAUST UNITS)
N EXHLEV=O
R RIEXHL.KL=TABHL(TRIXHL,(I-AFMDPJ.K)/(1-NFMDPJ),.
X -0.5,1,.1)
NOTE RATE OF INCREASE IN EXHAUSTION LEVEL (EXHAUST UNITS/DAY)
T TRIXHL=2.5/2.2/1.9/1.6/1.3/1.15/.9/.8/.7/.6/.5/.4/.3/.2/0/0
R RDEXHL.KL=CLIP(EXHLEV.K/EXHDDY,O,O,RIEXHL.JK)
NOTE RATE OF DEPLETION IN EXHAUSTION LEVEL (EXHAUST UNITS/DAY)
C EXHDDY=20
NOTE EXHAUSTION DEPLETION DELAY TIME (DAYS)
C MXEXHT=50
NOTE MAXIMUM TOLERABLE EXHAUST!ON (EXHAUST UNITS)
NOTE
NOTE (C) QUALITY ASSURANCE AND REWORK SECTOR
NOTE
R QART.KL=DELAY3(SDVRT.JK,AQADLY)
NOTE FOR QA.RATE (TASKS/DAY)
L TSKWK.K=TSKWK.J+DT*(SDVRT.JK-QART.JK)
NOTE TASKS WORKED (TASKS)
N TSKWK=O
C AQADLY=1O
NOTE AVERAGE DELAY FOR QA (DAYS)



502

L CUMTQA.K=CUMTQA.J+DT*(QART.JK-TSRATE.JK)
NOTE CUMULATIVE TASKS QA'ED (TASKS)
N CUMTQA=O
A ANERPT.K=MAX(PTDTER.Kt(TSKWK.K+.0001) ,0)
NOTE AVERAGE # OF ERRORS PER TASK (ERRORS/TASK)
A QAMPNE.KmNQAMPE.K*(1/MPDMCL.K)*MDEFED.K
NOTE QA MANPOWER NEEDED TO DETECT AVERAGE ERROR (MAN-DAYS/ERROR)
A NQAMPE.K=TABHL(TNQAPE,PJBAWK.K,O,1,.1)
NOTE NOMINAL QA MANPOWER NEEDED TO DETECT AVERAGE ERROR (MAN-DAYS/ERROR)
T TNQAPE=.4/.4/.39/.375/.35/.3/.25/.225/.21/.2/.2
A MDEFED.K=TABHL(TMDFED,ERRDSY.K,O,1O,1)
NOTE MULTIPLIER TO DETECTION EFFORT DUE TO ERROR DENSITY (DIMENSIONLESS)
T TMDFED-50/36/26/17.5/1i/4/1.75/1.2/1/1/1
A ERRDSY.K=ANERPT.K*IO00/DSIPTK
NOTE ERROR DENSITY (ERRORS/KDSI)
A PERDRT.K-DMPQA.K/QAMPNE.K
NOTE POTENTIAL ERROR DETECTION RATE (ERRORS/DAY)
A ERRDRT.K=MIN(PERDRT.K,PTDTER.K/DT)
NOTE ERROR DETECTION RATE (ERRORS/DAY)
L CMERD.K=CMERD.J+DT*ERRDRT.J
NOTE CUMULATIVE ERRORS DETECTED (ERRORS)
N CMERD=O
A PRCTDT.K=100*CMERD.K/(CUMERG.K+.001)
NOTE PERCENT ERRORS DETECTED (PERCENT)
A ERRSRT.K=QART.JK*ANERPT.K
NOTE ERROR ESCAPE RATE (ERRORS/DAY)
L CMERES.K=CMERES.J+DT*ERRSRT.J
NOTE CUMULATIVE ERRORS THAT ESCAPED (ERRORS)
N CMERES=O
L PTDTER.K=PTDTER.J+DT*(ERRGRT.JK-ERRDRT.J-ERRSRT.J)
NOTE POTENTIALLY DETECTABLE ERRORS (ERRORS)
N PTDTER=O
R ERRGRT.KL=SDVRT.JK*ERRPTK.K
NOTE ERROR GENERATION RATE (ERRORS/DAY)
A ERRPTK.K=NERPTK.K*MERGSP.K*MERGWM.K
NOTE ERRORS PER TASK (ERRORS/TASK)
A NERPTK.K=NERPK.K*DSIPTK/1000
NOTE NOMINAL # OF ERRORS COMMITTED PER TASK (ERRORS/TASK)
A NERPK.K=TABHL(TNERPK,PJBAWK.K,O,1,.2)
NOTE NOMINAL # OF ERRORS COMMITTED PER KDSI (ERRORS/KDSI)
T TNERPK=25/23.86/21.59/15.9/13.6/12.5
A MERGSP.K=TABHL(TMEGSP,SCHPR.K,-.4,1,.2)
NOTE MULTIPLIER TO ERROR GENERATION DUE TO SCHEDULE PRESSURE (DIMENSIONLESS)
T TMEGSP=.9/.94/1.05/1.05 /1.24/1.36/1.5
A MERGWM.K=TABHL(TMEGWM,FRWFEX.K,O,1,.2)
NOTE MULTIPLIER TO ERROR G NERATION DUE TO WORKFORCE MIX (DIMENSIONLESS)
T TMEGWM=2/1.8/1.6/1.4/1.241
L CUMERG.K=CUMERG.J+DT*ERRGRT.JK
NOTE CUMULATIVE ERRORS GENERATED DIRECTLY DURING WORKING (ERRORS)
N CUMERG=O
L DTCERR.K=DTCERR.J+DT*(ERRDRT.J-RWRATE.JK)
NOTE DETECTED ERRORS (ERRORS)
N DTCERR=O
R RWRATE.KL=DMPRW.K/RWMPPE.K



503

NOTE REWORK RATE (ERRORS/DAY)
A RWMPPE.K=NRWMPE.K/MPDMCL.K
NOTE REWORK MANPOWER NEEDED PER ERROR (MAN-DAYS/ERROR)
A NRWMPE.K=TABHL(TNRWME,PJBAWK.K,O,1,,.2)
NOTE NOMINAL REWORK MANPOWER NEEDED PER ERROR (MAN-DAYS/ERROR)
T TNRWME=.6/.575/.5/.4/.325/.3
L CMRWED.K=CMRWED.J+DT*RWRATE.JK
NOTE CUMULATIVE REWORKED ERRORS DURING DEVELOPMENT (ERRORS)
N CMRWED=O
NOTE
NOTE (D) SYSTEM TESTING SECTOR
NOTE
L UDAVER.K=UDAVER.J+DT*(AEGRT.JK+AERGRT.JK-AERRRT.JK-DCRTAE.JK)
NOTE UNDETECTED ACTIVE ERRORS (ERRORS)
N UDAVER=O
R AEGRT.KL=(ERRSRT.K+BDFXGR.K)*FRAERR.K
NOTE ACIVE ERRORS GENERATION RATE (ERRORS/DAY)
A BDFXGR.K=RWRATE.JK*PBADFX
NOTE BAD FIXES GENERATE RATE (ERRORS/DAY)
C PBADFX=.075
NOTE PERCENT BAD FIXES (FRACTION)
A FRAERR.K=TABHL(TFRAER,PJBAWK.K,O,1,.1)
NOTE FRACTION OF ESCAPING ERRORS THAT WILL BE ACTIVE (DIMENSIONLESS)
T TFRAER=1/1/1/1/.95/.85/.5/.2/.075/O/0
R AERGRT.KL=SDVRT.JK*SMOOTH(AERRDS.K,TSAEDS)*MAERED.K
NOTE ACTIVE ERRORS REGENERATION RATE (ERRORS/DAY)
A MAERED.K=TABHL (TMERED,SMOOTH(AERRDS.K*1000/DSIPTK,TSAEDS) ,, 100,10)
NOTE MULTIPLIER TO ACTIVE ERROR REGENERATION DUE TO ERROR DENSITY (DIMENSIONLE
SS)
T TMERED=1/1.1/1.2/1.325/1.45/1.6/2/2.5/3.25/4.35/6
C TSAEDS=40
NOTE TIME TO SMOOTH ACTIVE ERROR DENSITY (AERRDS) (DAYS)
A AERRDS.K=UDAVER.K/(CUMTQA.K+.1)
NOTE ACTIVE ERROR DENSITY (ERRORS/TASK)
R AERRRT.KL=UDAVER.K*AERRFR.K
NOTE ACTIVE ERRORS RETIRING RATE (ERRORS/DAY)
A AERRFR.K=TABHL(TERMFR,PJBAWK.K,O,1,.1)
NOTE ACTIVE ERRORS RETIRING FRACTION (I/DAYS)
T TERMFR=O/O/O/O/.01/.02/.03/.04/.1/.3/1
R DCRTAE.KL=MIN(TSRATE.JK*AERRDS.K,UDAVER.K/DT)
NOTE DETECTION/CORRECTION RATE OF ACTIVE ERRORS (ERRORS/DAY)
L UDPVER.K=UDPVER.J+DT*(PEGRT.JK+AERRRT.JK-DCRTPE.JK)
NOTE UNDETECTED PASSIVE ERRORS (ERRORS)
N UDPVER=O
R PEGRT.KL=(ERRSRT.K+BDFXGR.K)*(1-FRAERR.K)
NOTE PASSIVE ERRORS GENERATION RATE (ERRORS/DAY)
R DCRTPE.KL=MIN(TSRATE.JK*PERRDS.K,UDPVER.K/DT)
NOTE DETECT/CORRECT RATE OF PASSIVE ERRORS (ERRORS/DAY)
L CMRWET.K=CMRWET.J+DT*(DCRTPE.JK+DCRTAE.JK)
NOTE CUMULATIVE ERRORS REWORKED IN TESTING PHASE (ERRORS)
N CMRWET=O
A ALESER.K=UDAVER.K+UDPVER.K+CMRWET.K
NOTE ALL ERRORS THAT ESCAPED AND WERE GENERATED (ERRORS)
A DMPTST.K=DMPDVT.K*FREFTS.K



504

NOTE DAILY MANPOWER FOR TESTING (MAN-DAYS/DAY)
L CMTSMD.K=CMTSMD.J+DT*DMPTST.J
NOTE CUMULATIVE TESTING MAN-DAYS (MAN-DAYS)
N CMTSMD=O
R TSRATE.KL=MIN(CUMTQA.K/DT,DMPTST.K/TMPNPT.K)
NOTE TESTING RATE (TASKS/DAY)
A TMPNPT.K=(TSTOVH*DSIPTK/1000+TMPNPE.K*(PERRDS.K+AERRDS.K)
X )/MPDMCL.K
NOTE TESTING MANPOWER NEEDED PER TASK (MAN-DAYS/TASK)
C TSTOVH=1
NOTE TESTING EFFORT OVERHEAD (MAN-DAYS/KDSI)
C TMPNPE=.15
NOTE TESTING MANPOWER NEEDED PER ERROR (MAN-DAY/ERROR)
A PTKTST.K=CUMTKT.K/PJBSZ.K
NOTE % OF TASKS TESTED (%)
A PERRDS.K=UDPVER.K/(CUMTQA.K+.0001)
NOTE PASSIVE ERROR DENSITY (ERRORS/TASK)
L CUMTKT.K=CUMTKT.J+DT*TSRATE.JK
NOTE CUMULATIVE TASKS TESTED (TASKS)
N CUMTKT=O
A ALLERR.K=PTDTER.K+DTCERR.K+CMRWED.K+UDAVER.K+
X UDPVER.K+CMRWET.K
NOTE ALL ERRORS (ERRORS)
A ALLRWK.K=CMRWED.K+CMRWET.K
NOTE ALL ERRORS REWORKED ... IN DEVELOPMENT AND TESTING (ERRORS)
NOTE
NOTE ***********~~**
NOTE CONTROL SUBSYSTEM
NOTE ******~********
NOTE
L CMTKDV.K=CMTKDV.J+DT*SDVRT.JK
NOTE CUMULATIVE TASKS DEVELOPED (TASKS)
N CMTKDV=O
A PJBAWK.K=CMTKDV.K/RJBSZ
NOTE % OF JOB ACTUALLY WORKED (%)
A PJDPRD.K=TSKPRM.K/(MDPRNT.K+.1)
NOTE PROJECTED DEVELOPMENT PRODUCTIVITY (TASKS/MAN-DAY)
A MDPRNT.K=MAX(O,MDRM.K-MDPNRW.K-MDPNTS.K)
NOTE MAN DAYS PERCEIVED REMAINING FOR NEW TASKS (MAN-DAYS)
A MDPNRW.K=DTCERR.K*PRWMPE.K
NOTE MAN DAYS PERCEIVED NEEDED FOR REWORKING ALREADY DETECTED ERRORS (MD)
A ASSPRD.K=PJDPRD.K*WTPJDP.K+PRDPRD.K*(1-WTPJDP.K)
NOTE ASSUMED PRODUCTIVITY (TASKS/MAN-DAY)
A PRDPRD.K=CMTKDV.K/(CUMMD.K-CMTSMD.K)
NOTE PERCEIVED DEVELOPMENT PRODUCTIVITY (TASKS/MAN-DAY)
A WTPJDP.K=MPWDEV.K*MPWREX.K
NOTE WEIGHT TO PROJECTED DEVELOPMENT PRODUCTIVITY (DIMENSIONLESS)
A MPWDEV.K=TABHL(TMPDEV,PJBPWK.K/100,0,1,.1)
NOTE MULTIPLIER TO PRODUCTIVITY WEIGHT DUE TO DEVELOMENT (DIMENSIONLESS)
T TMPDEV=1/1/1/1/1/1/.975/.9/.75/.5/O
A MPWREX.K=TABHL(TMPREX,(1-MDPRNT.K/(JBSZMD.K-TSSZMD.K)),
X O,1,.1)
NOTE MULTIPLIER TO PRODUCTIVITY WEIGHT DUE TO RESOURCE EXPENDITURE (DIMENSIONL
ESS)



505

T TMPREX=1/1/1/1/1/1/.975/.9/.75/.5/O
A MDPNNT.K=TSKPRM.K/ASSPRD.K
NOTE MAN DAYS PERCEIVED STILL NEEDED FOR NEW TASKS (MAN-DAYS)
A TMDPSN.K=MDPNNT.K+MDPNTS.K+MDPNRW.K
NOTE TOTAL MAN DAYS PERCEIVED STILL NEEDED (MAN-DAYS)
A MDPNTS.K-TSTPRM.K/PRTPRD.K
NOTE MAN DAYS PERCEIVED STILL NEEDED FOR TESTING (MAN-DAYS)
A TSTPRM.K=PJBSZ.K-CUMTKT.K
NOTE TASKS REMAINING TO BE TESTED (TASKS)
A PRTPRD.K=SMOOTH((CLIP(PLTSPD.K,ACTSPD.K,O,CUMTKT.K)),TSTSPD)
NOTE PERCEIVED TESTING PRODUCTIVITY (TASKS/MAN-DAY)
C TSTSPD=50
NOTE TIME TO SMOOTH TESTING PRODUCTIVITY (DAYS)
A PLTSPD.K=PJBSZ.K/TSSZMD.K
NOTE PLANNED TESTING PRODUCTIVITY (TASKS/MAN-DAY)
A ACTSPD.K=CUMTKT.K/(CMTSMD.K+.001)
NOTE ACTUAL TESTING PRODUCTIVITY (TASKS/MAN-DAY)
A PMDSHR.K=TMDPSN.K-MDRM.K
NOTE PERCEIVED SHORTAGE IN MAN DAYS (MAN-DAYS)
A SHRRPT.K=PMDSHR.K-MDHDL.K
NOTE SHORTAGE REPORTED (MAN-DAYS)
A MDRPTN.K=MDRM.K+SHRRPT.K
NOTE MAN DAYS REPORTED STILL NEEDED (MAN-DAYS)
A SCHPR.K=(TMDPSN.K-MDRM.K)/MDRM.K
NOTE SCHEDULE PRESSURE (DIMENSIONLESS)
A PTRPTC.K=SMOOTH((100-(MDRPTN.K/JBSZMD.K)*100),RPTDLY)
NOTE % OF TASKS REPORTED COMPLETE (%)
N PTRPTC=O
C RPTDLY=1O
NOTE REPORTING DELAY (DAYS)
A PDEVRC.K=SMOOTH(MAX((100-((MDRPTN.K-MDPNTS.K)/(JBSZMD.K-TSSZMD.K)
X )*100),PDEVRC.K),RPTDLY)
N PDEVRC=O
NOTE % DEVELOPMENT PERCEIVED COMPLETE %
L UNDJTK.K=UNDJTK.J-DT*RTDSTK.JK
NOTE UNDISCOVERED JOB TASKS (TASKS)
N UNDJTK=RJBSZ-PJBSZ
N RJBSZ=RJBDSI/DSIPTK
NOTE REAL JOB SIZE IN TASKS (TASKS)
R RTDSTK.KL=UNDJTK.K*PUTDPD.K/100
NOTE RATE OF DISCOVERING TASKS (TASKS/DAY)
A PUTDPD.K=TABHL(TPUTDD,PJBPWK.K,0,100,20)
NOTE PERCENT OF UNDISCOVERED TASKS DISCOVERED PER DAY (1/DAY)
T TPUTDD=0/0.4/2.5/5/10/100
A PJBPWK.K=(CMTKDV.K/PJBSZ.K)*100
NOTE % OF JOB PERCEIVED WORKED (M)
R RTINCT.KL=DELAY3(RTDSTK.JK,DLINCT)
NOTE RATE OF INCORPORATING DISCOVERED TASKS INTO PROJECT (TASKS/DAY)
L TKDSCV.K=MAX((TKDSCV.J+DT*(RTDSTK.JK-RTINCT.JK)),0)
NOTE TASKS DISCOVERED (TASKS)
N TKDSCV=O
C DLINCT=10O
NOTE AVERAGE DELAY IN INCORPORATING DISCOVERED TASKS (DAYS)
L PJBSZ.K=PJBSZ.J+DT*RTINCT.JK



506

NOTE CURRENTLY PERCEIVED JOB SIZE (TASKS)
N PJBSZ=PJBDSI/DSIPTK
A TSKPRM.K=PJBSZ.K-CMTKDV.K
NOTE NEW TASKS PERCEIVED REMAINING (TASKS)
A PSZDCT.K-TKDSCV.K/ASSPRD.K
NOTE PERCEIVED SIZE OF DISCOVERED TASKS IN MAN DAYS (MAN-DAYS)
A RSZDCT.K=PSZDCT.K/(MDPRNT.K+.0001)
NOTE RELATIVE SIZE OF DISCOVERED TASKS (DIMENSIONLESS)
A FADHWO.K=TABHL(TFAHWO,RSZDCT.K/(MSZTWO+.001),O,2,.2)
NOTE FRACTION OF ADDITIONAL TASKS ADDING TO MAN-DAYS
T TFAHWO=O/O/OO/O/O/.7/.9/.975/1/1
C MSZTWO=.O1
NOTE MAXIMUM RELATIVE SIZE OF ADDITIONS TOLERATED W/O ADDING TO PROJECT'S MAN-
DAYS
R IRDVDT.KL=(RTINCT.JK/ASSPRD.K)*(FADHWO.K)
NOTE RATE OF INCREASE IN DEVELOPMENT MAN-DAYS DUE TO DISCOVERED TASKS (MD/D)
L TSSZMD.K=TSSZMD.J+DT*IRTSDT.JK+ARTJBM.K*CLIP(1,0,FREFTS.J,.9)
NOTE PLANNED TESTING SIZE IN MAN-DAYS ... BEFORE WE START TESTING
N TSSZMD=TSTMD
R IRTSDT.KL=(RTINCT.JK/PRTPRD.K)*(FADHWO.K)
NOTE RATE OF INCREASE IN TESTING MAN DAYS DUE TO DISCOVERED TASKS (MD/D)
L JBSZMD.K=JBSZMD.J+DT*(IRDVDT.JK+IRTSDT.JK+ARTJBM.JK)
NOTE TOTAL JOB SIZE IN MAN DAYA (MAN-DAYS)
N JBSZMD=DEVMD+TSTMD
R ARTJBM.KL=(MDRPTN.K+CUMMD.K-JBSZMD.K)/DAJBMD.K
NOTE RATE OF ADJUSTING THE JOB SIZE IN MAN-DAYS (MAN-DAYS/DAY)
A DAJBMD.K=TABHL(TDAJMD,TIMERM.K,O,20,20)
NOTE DELAY IN ADJUSTING JOB'S SIZE IN MAN DAYS (DAYS)
T TDAJMD=.5/3
A MDRM.K=MAX(.0001,JBSZMD.K-CUMMD.K)
NOTE
NOTE *****~~~*******
NOTE PLANNING SUBSYSTEM
NOTE
NOTE *****~~~*******
NOTE
NOTE MAN DAYS REMAINING
A TIMEPR.K=MDRM.K/(WFS.K*ADMPPS)
NOTE TIME PERCEIVED STILL REQUIRED (DAYS)
A INDCDT.K=TIME.K+TIMEPR.K
NOTE INDICATED COMPLETION DATE
L SCHCDT.K=SCHCDT.J+DT*(INDCDT.J-SCHCDT.J)/SCHADT.K
NOTE SCHEDULE COMPLETION DATE
N SCHCDT=TDEV
A SCHADT.K=TABHL(TSHADT,TIMERM.K,O,5,5)
NOTE SCHEDULE ADJUSTMENT TIME (DAYS)
T TSHADT=.5/5
A TIMERM.K=MAX(SCHCDT.K-TIME.K,O)
NOTE TIME REMAINING (DAYS)
A WFINDC.K=(MDRM.K/(TIMERM.K+.001))/ADMPPS
NOTE INDICATED WORKFORCE (PEOPLE)
A WFNEED.K=MIN((WCWF.K*WFINDC.K+(]-WCWF.K)*TOTWF.K),WFINDC.K)
NOTE WORKFORCE LEVEL NEEDED (PEOPLE)
A WCWF.K=MAX(WCWFI.K,WCWF2.K)



507

NOTE WILLINGNESS TO CHANGE WORKFORCE LEVEL (DIMENSIONLESS)
A WCWF1.K=TABHL(TWCWF1,TIMERM.K/(HIREDY+ASIMDY),O,3,.3)
NOTE WILLINGNESS TO CHANGE WORKFORCE (1) (DIMENSIONLESS)
T TWCWFI=0/0/.1/,4/.85/1/1/1/1/1/1
A WCWF2.K=TABHL(TWCWF2,SCHCDT.K/MXTLCD,.86,1,.02)
NOTE WILLINGNESS TO CHANGE WF (2) (DIMENSIONLESS)
T TWCWF2O0/.1/.2/.35/.6/.7/.77/.80
N MXTLCD=MXSCDX*TDEV
NOTE MAXIMUM TOLERABLE COMLETION DATE (DAYS)
C MXSCDX=1E6
NOTE MAX SCHEDULE COMPLETION DATE EXTENSION (DIMENSIONLESS
NOTE
NOTE ***************
NOTE INITIALIZATION
NOTE ***************
NOTE
NOTE THE REAL JOB SIZE = 64,000 DSI
NOTE FROM BOEHM PAGE 90:
NOTE DISTRIBUTION OF EFFORT BY PHASE IS:
NOTE DESIGN (39%), PROGRAMMING (36%), INT TESTING (25%)
NOTE FROM BOEHM PAGE 64-65:
NOTE EFFORT = 2.4*(KDSI)**1.05
NOTE = 190 MM
NOTE = 190 * 19 = 3592 MAN-DAYS
NOTE DEVELOPMENT kFFORT = 75 %
NOTE = 2695 MAN DAYS
NOTE GROSS DEV PRODUCTIVITY = 64,000/2695 = 24 DSI/MD
NOTE
NOTE SCHEDULE = 2.5 * (MM)**.38
NOTE = 18 MONTHS
NOTE = 348 DAYS
NOTE
NOTE AVERAGE STAFF SIZE = 3592/348
NOTE = 10
NOTE
NOTE GROSS PRODUCTIVITY INCORPORATES: DEV, FOR QA, & REWORI
NOTE ASSUMING 25% OF EFFORT GOES INTO QA & REWORKING
NOTE 25% OF 2695 MAN DAYS = 674 MAN DAYS
NOTE DEVELOPMENT PRODUCTIVITY = 64,000/(2695-674)
NOTE = 31 DSI/MAN-DAY
NOTE
NOTE ASSUME LOSSES IN PRODUCTIVITY = 50 %
NOTE THEREFORE POTENTIAL PRODUCTIVITY = 31 * 2 = APPROX 60
NOTE DEFINE 1 TASK = 60 DSI
C DSIPTK=60
NOTE DSI PER TASK
C RJBDSI=64000
NOTE REAL JOB SIZE IN DSI
C UNDEST=O
NOTE TASKS UNDERESTIMATION FRACTION (FRACTION)
N PJBDSI=RJBDS I*(1-UNDEST)
NOTE PERCEIVED JOB SIZE IN DSI
N TOTMD=MDSWCH*(((2.4*EXP(1.05*LOGN (PJBDSI/1000))) *19) *(
X +(1-MDSWCH)*TOTMDI

)

KING

DS I/MD

(1-UNDESM))



508

NOTE TOTAL MAN DAYS
C UNDESM=O
NOTE MAN-DAYS UNDERESTIMATION FRACTION (FRACTION)
N DEVMD=DEVPRT*TOTMD
NOTE DEVELOPMENT MAN DAYS
C MDSWCH=1
NOTE SWITCH 0 OR 1
C TOTMDI=O
NOTE TOTAL MANDAYS
C DEVPRT-O.80
NOTE % OF EFFORT ASSUMED NEEDED FOR DEVELOPMENT
N TSTMD=(1-DEVPRT)*TOTMD
NOTE TESTING MAN DAYS
N WFSTRT=TEAMSZ*INUDST
NOTE TEAM SIZE AT BEGINNING OF DESIGN (MEN)
C INUDST=.5
NOTE INITIAL UNDERSTAFFING FACTOR (DIMENSIONLESS)
N TDEV=SCSWCH*((19*2.5*EXP(O.38*LOGN(TOTMD/19)))*SCHCOM)
X +(1-SCSWCH)*TDEV1
NOTE TOTAL DEVELOPMENT TIME (DAYS)
C SCHCOM=1
NOTE SCHEDULE COMPRESSION FACTOR (DIMENSIONLESS)
C SCSWCH=1
NOTE SWITCH 0 OR 1
C TDEVI=O
NOTE TIME TO DEVELOP
N TEAMSZ=(TOTMD/TDEV)/ADMPPS
NOTE
NOTE **************
NOTE VII. CONTROL STATEMENTS
NOTE ********~******
NOTE
SPEC DT=.5,MAXLEN=1000,PLTPER=10
A LENGTH.K=CLIP(TIME.K,MAXLEN,PTKTST.K,.99)
A PRTPER.K=LENGTH.K
PRINT TOTMD,DEVMD,TSTMD,TDEV
PRINT TOTWF,CUMMD,CMQAMD,CMRWMD,CMTSMD,CUMERG,CMERES,CMRWET,PRCTDT
PLOT TOTWF=W(0,20)
PLOT PDEVRC=1(0,100)
PLOT PJBSZ=J,CMTKDV=1,CUMTKT=T(0,1500)/CUMMD=C,JBSZMD=D (0,
X 5000)/SCHCDT=S(200,600)/PTRPTC=R,PDEVRC=V(0, 100)
PLOT AFMDPJ=F(0,2.4)
PLOT CUMERG=G,CMERD=D,CMERES=S (0,4000)/PRCTDT=P (0,100)
PLOT AFMDPJ=F (0,2.4)/EXHLEV=X,OVWDTH=V (0,100)/MDHDL=H,PMDSHR=P
X (-500,500)/SHRRPT=1 (-500,500)/SCHPR=S (-1,1)/
X JBSZMD=D,CUMMD=C(0,5000)/SHRRPT=1(-200,200)


