THE DYNAMICS OF SOFTWARE DEVELOPMENT PROJECT MANAGEMENT:
AN INTEGRATIVE SYSTEM DYNAMICS PERSPECTIVE

by

,

TAREK K. ABDEL-HAMID
B.Sc., CAIRO UNIVERSITY, CAIRO
(1972)

MBA, STATE UNIVERISITY OF NEW YORK, ALBANY
(1978)

Submitted to the Department of Management
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January 1984

@Massachusetts Institute of Technology 1984

Signature of Author:

Department of Management, 6 Januéry 1984

Certified by:

Stuart E. Madnick, Thesis Supervisor

Accepted by:

Chalrman, Department. Committee on
Grdduate Studies

MASSACHUSETTS INSTITUT
Oe R NoLoGy TUTE
FEB 10 ‘84

LIBRARIES of %

THE DYNAMICS OF SOFTWARE DEVELOPMENT PROJECT MANAGEMENT:
AN INTEGRATIVE SYSTEM DYNAMICS PERSPECTIVE

by

Tarek K. Abdel-Hamid

Submitted to the Department of Management
in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

Software is big business. It has been estimated that
expenditures for software development and maintenance were 40
billion dollars in 1980, or approximately 2 % of GNP. Even
more impressive are the projections that software will be the
dominant portion of an information processing industry that
is expected to grow to 8.5 % of GNP by 1985 and to 13 % of
GNP by 1990.

The growth in the software industry has not, however,
been painless. The record indicates that the development of
software systems has been plagued by cost overruns, late
deliveries, and users' dissatisfaction. A set of
difficulties that some refer to as the "software crisis."”
The problems persist inspite of the significant software
engineering advances that have been made over the last decade
in tackling many of the technical hurdles of software
production. In recent years, the managerial aspect of
software development has gained recognition as being at the
cores of both the problem and the solution. Along with this
recognition there are, however, serious and legitimate
. reservations and concerns. Chief among them is the belief

that, as of yet, we still lack the fundamental understanding
of the software development process, and that without such an
understanding the likelihood of any significant gains on the
managerial front is gquestionable.

The objective of this research effort is to enhance our
understanding of, and gain insight into, the general process
by which software development is managed. To achieve this
objective we accomplished the following three tasks:

First, we developed an integrative system dynamics model
of software development project management. The model was
developed on the basis of an extensive review of the
literature supplemented by 27 focused field interviews of
software project managers in 5 organizations. The model
complements and buildg@upon current research efforts, which

tend to focus on the micro components (e.g., scheduling,
programming, productivity, ... etc.), by integrating our
knowledge of +these micro components into an integrated
continuous view of the software development process.

Second, a «case-study in a sixth organization was
conducted to test the model. The model was highly accurate
in replicating the actual development history of the software
project selected (by the organization) for the case-study.
Project variables tracked included: the workforce level, the
schedule, the cost, error generation and detection, and
productivity.

Third, the model was used as an experimentation vehicle
to study/predict the dynamic implications of an array of
managerial policies and procedures. Four areas were studied:
(1) scheduling; (2) control; (3) Quality Assurance; and
(4) staffing. The exercise produced three kinds of results:
(1) uncovered dysfunctional consequences of some currently
adopted policies (e.g., in the scheduling area); (2)
provided guidelines for managerial policy (e.g., on the
allocation of Qquality assurance effort); and (3) provided
new insights into software project phenomena (e.g., Brooks'
Law).

Thesis Supervisor : Dr, Stuart E. Madnick
Associate Professor of Management Science
Sloan School of Management
Massachusetts Institute of Technology

ACKNOWLEDGEMENTS

Many a doctoral candidate, sitting with pencil stub in
hand, must have thought, as I did, of the first few phrases
of Don Quixote: "Idle reader, you may believe me without any
oath that I would want this (work), the child of my brain, to
be the most beautiful, the happiest, the most brilliant
imaginable. But I could not contravene that law of nature
according to which like begets like." If such can be said of
Cervantes' brainchild, what can one possibly say about one's
own?

Only that one has done one's best. And yet, 1if the
truth be told, that "best" may prove to belong as much to
certain others as to one's self. Among the many people who
have made invaluable contributions to this thesis, I am
particulary indebted to Professor Stuart E. Madnick for his
support, encouragement, and constructive suggestions from the
time this study was conceived through the writing of the
final draft. His interest and willingness to help in every
way possible have kept me on course. I have also been
fortunate in having the counsel and assistance of Professors
Ugo Gagliardi, John Morecroft, and Edward Roberts; their
efforts in my behalf are sincerely appreciated.

Although I cannot hope to mention them all by name in
this short space, I would like to acknowledge the debt owed
to each and every individual in the organizations with whom I
worked in collecting the data for this thesis. The open and
supportive way in which I was accepted in all of these
organizations was most gratifying, and, indeed, instrumental
to my research work.

I would also like to gratefully acknowledge my main
sources of financial support. These include several Sloan
School tuition fellowships, an 1IBM Information Systems
Fellowship, and research funding from NASA (Grant No.
NAGW-448).

Nadia, my wife, is the one person of whom it can be said
that without her this thesis would not have been written.
Her companionship, support, and intellectual stimulation have
been at the very core of it since its inception.

TO NADIA

MY WIFE AND BEST FRIEND

I.

II.

III.

TABLE OF CONTENTS

INTRODUCTION: BACKGROUND, OBJECTIVE, AND

APPROACH
I.1 BACKGROUND
1.2 Research Objective and Approach

I.3
I.4

REVIEW
II'1
I11.2

MODEL

III.1
III.2
II11.3
III.4

I1II.5

I.2.1 Why an Integrative Model
I1.2.2 Why a System Dynamics Model
Research Accomplishments

Thesis Outline

OF RELEVANT LITERATURE

System Dynamics Modeling of

Project Management

Software Engineering Project Management
Literature Review

II1.2.1 Review Models and Frameworks
1I.2.2 Planning

I1.2.3 Management of the Human Resource
I1.2.4 Control

DEVELOPMENT

Introduction

Sources of Information

Model Boundary

Model Structure

I111.4.1 Model Overview

I11.4.2 System Dynamics Schematic
- Conventions

II11.4.3 Human Resource Management

111.4.4 Software Production

II1.4.5 Controlling

II1.4.6 Planning

Summary

IV. A CASE-STUDY:
THE NASA DE-A SOFTWARE PROJECT

Iv.1
Iv.2
Iv.3
Iv.4

The DE-A Project

Model Parameterization

Actual and Simulated Project Behavior
Conclusion

18
20
24
31
35

38

113
114

117
121
133
231
256
268

270

271
272
289
296

V. MODEL BEHAVIOR: AN ANALYSIS OF
THE DYNAMICS OF SOFTWARE DEVELOPMENT

V'l
V‘2
V.3

<< <
o vl

V.7

Introduction

The "EXAMPLE" Software Project

Software Cost and Schedule Estimation

v.3.1 On the Accuracy of
Software Estimation

V.3.2 On the Portability of the
Quantitative Software Estimation
Models

v.3.3 On the Analogy Method of
Software Estimation

The "90% Syndrome"

The Economics of Quality Assurance

Staffing: Brooks' Law Revisited

Summary

VI. CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH

VI.1 Summary of Results
VI.2 Suggestions for Future Research
BIBLIOGRAPHY

APPENDIX:

MODEL DOCUMENTATION

301
301
303
338

342

358
387
400
410
428
438
441

441
453

459
497

I. INTRODUCTION:

BACKGROUND, OBJECTIVE, AND APPROACH

I.1. Background:

In the brief history of the electronic digital computer,
the 1950s and 1960s were decades of hardware. The 1970s
were a period of transition and a time of recognition of
software. The decade of software is now upon us
(Pressman, 1982).

One convincing impact of software is directly on the
pocketbook. It has been estimated that, here in the U.S.,
expenditures for software development and ﬁaintenance were 40
billion dollars in 1980, or about 2 percent of the Gross
National Product (Boehm, 1981). Even more iﬁpressive, Boehm
projects that "computer software will be the dominant portion
of an (overall computer and information processing) indﬁstry
expected to grow to 8.5% of the Gross National Product by
1985 and to 13% of the GNP by 1990."

This growth in demand for software has not, however,

been painless. Indeed, as the industry was making the
transition in the 1970s, " ... we (grew) to recognize
circumstances that are collectively called the 'software
crisis,' ... (a term that) alludes to a set of problems
that are encountered in the development of software"

(Pressman, 1982).

The record shows that the software industry has been
marked by cost overruns, late deliveries, poor reliability,
and users' dissatisfaction. [For example, see (Block, B58),
(Boehm, 1981), (Frank, 1983), (Glaseman, 1882), (Jensen &
Tonies, 1979), (Mills, 1976), - (McKeer. 1983), (Thayer &

Lehman, 1980), and (Thayer el al, 1981).]

A report to Congress by the Comptroller General, General
Accounting Office (GAO), FG MSD-80-4, November 9, 1979, cites
the dimensions of the "software crisis" within the federal
government, The report's title summarizes the issue:
"Contracting for Computer Software Development --- Serious
Problems Require Management Attention to Avoid Was£ing

Additional Millions."

The report reflects the views of 163 software
contracting firms and - 113 federal government project
officers, as well as experience with specific contracts for

software development. The summarized indictment is severe:

10

1. Dollar overruns are fairly common in more than 50
percént of cases
2. Calender overruns cccur in more than 60 percent of
cases
3. Of the nine contracts examined (eight of which were
admittedly in trouble), of $6.8 million expended, the
results were:
a. Software delivered but never wused: $3.2
million
b. Software paid for, but never delivered: $1.9
‘'million
c. Software extensively reworked before used:
$1.3 million
d. Software used after changes: $198,000

e. Software used as delivered: §119,000.

As the report concludes, "The government got for its
money less than 2 percent of the total value of the

contracts."

Big as the direct costs of the "software crisis" are,
the indirect costs can be even bigger, because software, in
many cases, is on the critical path in overall system
deveiopment (e.g., weapon systems such as the B-1 bomber).
That is, any slippages in the software schedule translate
dirgﬁily into slippages in the overall delivery schedule of

thelfystem. For example:

—

11

Let's see what this meant 1in a recent software
development for a large defense system. It was planned
to have an operational lifetime of seven years and a
total cost of about $1.4 billion =--- or about $200

" million a year worth of capability. However, a
six-month delay caused a six-month delay in making the
system available to the user, who thus lost about §100
million worth of needed capability --- about 50 times
the direct cost of $2 million for the additional
software effort. Moreover, in order to keep the
software from causing further delays, several important
functions were not provided in the initial delivery to
the user (Boehm, 1973).

The "software crisis" 1is, by no means, confined to
software projects developed by or for the federal government.
There 1is every indication that it is similarly prevalent
within private sector organizations [(Brooks, 1978), (Mclure,
1955), (McFarlan, 1974), and (Zmud, 1980)]. For example, in

his most recent book, DeMarco (1982) writes about:

... some disquieting facts to be considered:

* Fifteen percent of all software projects never deliver
anything; that is, they fail utterly to achieve their
established goals.

* Overruns of one hundred to two hundred percent are
common in software projects.

(And that) So many software projects fail in some major
way that we have had to redefine "Success" to keep
everyone from becoming despondent. Software projects
are sometimes considered successful when the overruns
are held to thirty percent or when the user only junks a
quarter of the result. Software people are often
willing to call such efforts successes, but members of
our user community are 1less forgiving. They know
failure when they see it.

In an effort to bring discipline to the development of

12

software systems, attempts have been made since the early
1970s to apply the more rigorous discipline of engineering to
software production. This new discipline is called "Software
Engineering."” And it encompases both the technical aspects
qf software development (e.g., design, testing, validation,
... etc.) as well as the managerial ones (Thayer, 1979),

(Boehm, 1980)).

However, even though both technology and management were
equally recognized very early on as parts of both the problem
and the solution [(Kolence, 1968), (Perlis, 1969), and
(Mills, 1974)], there was a huge disparity in the attention

they received from the research Community.

On the technology side, a number of methodologies have
evolved, over the 1last decade, that address many of the
technical problems experienced in software development. A
large number of articles addressing such topics as better
coding style "Structured programming", structured design,
testing, formal verification, 1language design for more
reliable coding, diagnostic compilers, and so forth, have
appeared in the literature (e.g., in the IEEE Transactions on
Software Engineering, Proceedings of the 1International
Conferences on Software Engineering, Proceedings of the ACM
Conferences on the Principles of Programming Languages,
ees). (See, for example, (Dijkstra, 1971), (Fagen, .1976),
(Jensen and Tonies, 1979), (Mills, 1971), (Parnas, 1972), and

13

(Stevens et al, 1974).)

oo software engineers have progressed to the point
wvhere many major issues relevant to the technology of
software production have been identified and
considerable progress in addressing these issues has
been made. Practical working tools to support improved
software production are commonly available, and their
design and generation have become a recognized topic for
university instruction (Thayer et al, 1981).

A comparable evolution 1in Management methodologies,

however, has not occured [(Cooper, 1978), (DoD, 1982),
(Gehring and Pooch, 1980), (Jensen and Tonies, 1979), (Hausen
and Mullerburg, 1982a), (Mcglure, 1981), (McFarlan, 1974),
(McKeen, 1981), (Reifer, 1979),'(Thayer, 1979), (Weinberg,
1982), (zmud, 1980), and (Beck and Perkins, 1983)].

In a special isssue of the IEEE Transactions on Software
Engineering devoted to project management, Dr. Richard E.
Merwin (1978), the Guest Editor, pointed out that an overall
software engineering management discipline is missing, He

stated:

Programming discipline such as top-down design, use of
standardized high 1level programming languages, and
program library support systems all contribute to
production of reliable software on time, within budget
P What 1is still missing is the overall management
fabric which allows the senior project manager to
understand and lead major data processing development
efforts.

And, wifhin the same issue, Cooper, (1978) commented

14

that:

Although the need 1is apparent, there appears to be
precious little innovative activity in the area of
software management. Perhaps this 1is so because
computer scientists believe that management per se is
not their business, and the management professionals
assume that it is the computer scientists'
responsibility.

Three years later, Thayer et al, (1981) writing 1in the

same Journal, stated that:

Software engineering project management (SEPM) has not
enjoyed the same progress (as the technology of software
development). While it might be argued that SEPM has
been defined, it 1is far from a recognized discipline.
Software developers who have demonstrated competence as
developers and programmers have been elevated to project
managers without training or guidelines to help them.
The major issues and problems of SEPM have not been

_agreed on by the computing community as a whole, and
consequently, priorities for addressing = them have not
been widely established. Furthermore, research in this
area has been scant.

This position is furiher substantiated by aA survey,
reported in the same paper, of a number of 1leading
universities, which revealed that only a handful of the
prominent universities surveyed offered courses exclusively

on >u.’M,

But what have been the consequences of this "deficiency"

in our "research repertoire?"

First, our difficulties in producing software that is on

15

time, within budget, and that meets user requirements, are
obviously very much still "alive." (Refer to the many

references cited in the early part of this discussion.) -

Second, and because this continues to be the case
inspite of substantial progress in the technological
(vis-a-vis the managerial) aspects of scftware production,

there is a decided shift in "faith."™ Consider:

There are more opportunities for improving software
productivity and quality in the area of management than
anywhere else. (Boehm, 1976) -

Many of our technical and managerial leaders believe
that the more effective management of a software
development project (i.e., project management) would
eliminate or reduce the severity of these software
failures (Thayer, 1979).

The basic problem 1is management itself (Gehring and.
Pooch, 1977).

A major Dbarrier to the successful design and
implementation of information systems has been the
management of the software developement activity itself
(Moore, 1979).

Poor management can increase software costs more rapidly
than any other factor (Weinberg, 1982).

A comprehensive study for the U.S. Air Force found that
the problems of software productivity on medium- to
large~-scale projects are mostly problems of management:
thorough organization, good contingency planning,
thoughtful establishment of measurable project
milestones, continuous monitoring as to whether the
milestones are properly passed, and prompt investigation
and corrective action in case the milestones are not
met. However, beyond these familiar concessions to
classic management theory, the study group offered no
novel approaches to finding out why they do not work for
software development. (Pooch and Gehring, 1980)

We ran into problems because we didn't know how to
manage what we had, not because we lacked the techniques

16
themselves (Thomsett, 1980).

Along'with the growing "faitﬁ" in software engineering
project management, there are, however, serious and
legitimate reservations and concerns. Chief among them is
the belief that, as of yet, we still lack the fundamental
understanding of the software development process [(Comper,
1979), (poDp, 1982), (Fireworker, 1980), (Gehring, 1976),
(Merwin, 1978), (McKeen, 1983), (McKeen, 1981), (Oliver,
1982), and (Wesserman, 1980)), and that without such an
understanding the possibility or likelihood‘ of any
significant gains on the managemeht front is questionable
[(Basili, 1982), (Basili and Zelkowitz, 1978), (Brooks,
1978), (Basili, 1981), (Canning, 1978), (McKeen, 1981), and
(Mitchell, 1980)].

This is no trivial impediment ((McKeen, 1981), (Oliver,
1982)). But, if it 1is -any solace, it is not one that is

unique to our young field:

Any worthwhile human endeavor emerges first as an
art ...

Over the centuries, management as an art has progressed
by the acquisition and recording of human experience.
But as long as there is no orderly underlying scientific
base, the experiences remain as special cases. The
lessons are poorly transferrable either in time or in
space ... (And) in time (the art) ceases to grow
because of the disorganized state of its knowledge ...

The .development of the underlying science (is then)
motivated by the need to understand better the
foundation on which the art rested ...

17

When the need and necessary foundation coincide, a
science develops to explain, organize, and distill
experience into a more compact and usable form ... Such
a base of applied science would permit experience to be
translated into a common frame of reference from which
they could be transfered from the past to the present or
from one location to another, (and). to be effectively
applied in new situations ... (Forrester, 1961).

To summarize:

* The record shows that the software industry continues
to be plagued by cost overruns, late deliveries, poor
reliability, and wusers' dissatisfaction. A set of
difficulties that some refer to as the "Software

Crisis,"

* In an effort to bring discipline to the development of
software, attempts have been made since the early 1970's
to apply the more rigorous discibline of engineering to
software production and management. The new discipline

is called "Software Engineering."

* While significant inroads have been made in tackling
the technical hurdles of software development, the
managerial aspects of software production attracted much

less attention,

* There 1is a growing "faith" that the next significant

"battle” will be won on the "managerial front."

18
* A necessary first step, however, 1is gaining a

fundamental understanding of the general nature of the

software development process.

I1.2. Research Objective and Approach:

The objective of this research effort is to develop and
test an integrative system dynamics model of software
development project management which would enhance our
understanding of, provide insight into, and make predictions
about, the general process by which software development is

managed.

The first, and primary, purpose of the model is to
enhance our understanding of the software development

process. In general;

What is gained in understanding through the use of a
scientific model to portray a portion of the real world
is achieved by comprehending the law or laws built into
the model. The locus of understanding in a scientific
model is to be found in its laws of iateraction (i.e.,
the modes of interaction among the the variables of a
model) (Dubin, 1971).

There are hundreds of variables that affect software
development. Furtherinore, these variables are not
independent; many of them are related to one another (Myres,

1976). So far;

19

The many studies on the subject emphasize the difficulty
and complexity of the process, but have done 1little to
reveal a well-defined methodology or to delineate
precise relationships among project variables (Oliver,
1982).

Even though we do not de-emphasize the "difficulty and
complexity of the software development process," we feel that
the powerful formalization and simulation tools of the System
Dynamics methodology, have allowed us (as we shall explain in

more detail later in this section) to adequately manage it.

The second purpose of our model, is to make predictions
about the general process by which software systems are
developed. As such, the model would serve as a framework for
experimentation, e.g., to test out the implications of new
managerial policies and procedures. Providing such a
capabilitj, is "especially useful for analyzing consequences
of changes in the (modeled) system where controlled
manipulation of the system itself is impossible, or at least
impractical or undesirable due to time, cost,
inaccessibility, political;or moral considerations, or other

reasons" (Schultz and Sulliven, 1972).

In the remaining part of this section we will elaborate
further on the above ideas. We will do that as we argue for
the two characteristic features of our model and which
together' distinguish it from most others in the software

engineering area. The two characteristic features being:

20

(1) It is integrative, and (2) it is a system dynamics model.

I1.2.1. Why an Integrative Model:

Our model is integrative in the sense that it integrates
the multiple functions of the software development process,
including the management-type functions, e.g., planning,
controlling, and staffing, as well as the production-type
functions that constitute the software development 1life

cycle, e.g., designing, coding, reviewing, and testing.

A major defect in much of the research to date has been
its inability to integrate our knowledge of the micro
components, such as project management, programming, testing,
... etc., for deriving implications about the behavior of
the organization in which the micro components are embedded
((Boehm, 1976), (Thayer, 1979)). Paraphrasing Jensen and

- Tonies (1979):

There is much attention on individual phases and
functions of the software development segquence, but
little on the whole 1life cycle as an integral,
continuous process --- a process that can and should bLe
optimized.

Clearly, this "micro-oriented"” type of work is a useful
beginning in helping us obtain a better understanding of the
software developmeht activity, However, before we can say

that we have a complete understanding of any such activity,

21

" ... it is necessary to show that our knowledge of the
individual components can be put togehter in a total system,
i.e., an organization can be synthesized, which allows for
the interactions of all the relevant variables and of all the

structural components" (Cohen, 1965).

The basic argument for this, is that interactions and
interdependencies are common in all social systems, e.qg.,
management—-type systems (Kotter, 1978), (Schein, 1980),
(Weick, 1979). Paraphrasing Cleland and King (1972):

The management system is a conglomerate of interrelated
and interdependent functions. No one management
subsystem can perform effectively without the others.
Action taken by one subsystem can be traced throughout
the entire management system and throughout the complex
environment in which the management system exists.

And, that as a result:
The behavior of an individual subsystem in isolation may

be very different from its behavior when it interacts
"with other subsystems (Cohen, 1965).

It is no wonder; then, that integrative-type models are
viewed as useful and powerful aids in undersfénding
management-type social systems generally, and in trying to
improve their functioning (Schein, 1980). And the management

of software development is, certainly, no exception:

... the solution to the (software management)
problem involves more than just finding better tools and
local optimization methods; it calls for an integrated

22
approach ... (Jensen and ‘Tonies, 1979).

In addition to the benefit of helping us achieve overall
understanding, an integrative perspective can be useful in
two more "tactical" ‘~ways: problem diagnosis and solution

evaluation.

A "corollary" of the above statements by Cleland and
King (1972), 1is that the interactions and interdependencies
which tend to characterize our management systems generally,
will similarly characterize the problems that beset such
systems (Cleland and King, 1975). Which does indeed seem to
be the case in software development (Glassman, 1982), where "
coe .no one thing seems to cause the difficulty ... But the

accumulation of simultaneous and interacting factors ...

(Brooks, 1978).

An integrative perspective would, therefore, be useful
since, at worst, it would not "inhibit"™ our search for the
multiple, and potentially "diffused," set of factors that are
interacting to cause éur software problem(s), while, at best,
actually "prompting" and "facilitating" such a search. Sucha
prompting should be wuseful since experience suggests that
more often than not people opt for a "parochial mode" of
problem solving (Ackoff, 1978), (Cleland and King, 1975). By
doing so, the problem solve, in effect, brings to the

problematic situation wunder study a set of ready-made

23

criteria of relevance. Quite a "risky" strategy when we
admittedly lack a fundamental understanding of the problem

area.

To see the second potential benefit of our integrative
perspective, we need a second "corollary," namely: the chain
of effects in going from a particular managerial intervention
(e.g., to solve a perceived problem) to immediate

consequences, and then to second- and third-order

consequences and newly created problems is another pervasive
characteristic of management-type social systems ((Cleland

and King, 1975), (Weick, 1979)).

By providing us with a comprehensive world view, the
model would help us to more fully assess such second- and
third-order consequencies of, £for example, a set of
management policies and procedures we need to test. And it
would do that, again, by, at worst, not "inhibiting" our
search for such multiple, and potentially diffused, set of
consequences, while, at best, actually "prompting” and
"facilitating” such a search. Such prompting should be

useful, since often,

... consequences are not given much attention, and
apparently logical solutions may prove faulty as their
consequences ramify. Furthermore, since the
consequences of a decision often occur much later than
the decision itself, it is difficult for the members to
trace backward from the disruptive consequences to
determine precisely what caused them. The members
cannot make such an analysis, simply because there are

24

too many competing explanations. Thus, the only thing
members can do when a new problem arises is to engage in
more localized problem-solving (Weick,1979).

Notice that Weick's statements highlight two "new"
"complicating factors, namely, that the consequences are
dynamic and that they are complex. And that's quite timely,

since these are issues we address next.

1.2.2. Why a System Dynamics Model:

"System Dynamics is the application of feedback control
systems principles .and techniques tc managerial,

organizational, and socioeconomic problems" (Roberts, 1981).

The System Dynamics philosophy is based on several

premises ((Forrester, 1961), and (Roberts, 1981)):

1. The behavior (or time history) of an organizational
entity is principaliy caused by its structure. The
structure includes, not only the physical aspects, but
more importantly the policieg and procedures, both
tangible and intangible, that dominate decision-making

in the organizational entity.

2. Managerial decision-making takes place in a
framework that belongs to the general class known as

information-feedback systems.

25

3. Our intuitive judgement 1is unreliable about how
these systems will change with time, even when we have

good knowledge of the individual parts of the system.

4. Model experimentation is now possible to £fill the
gap where our judgement and knowledge are weakest --- by
showing the way in which the known separate system parts
can interact to produce unexpected and troublesome

over—-all system results.

Based on these philosophical beliefs, two principal
foundations for operationalizing the system Dynamics

technique were established. These are:

1. The use of information-feedback systems to model and

understand system structure (Premises 1 and 2).

2. The use of computer simulation to understand system

behavior (Premises 3 and 4¢).
In the remaining part of this section we would 1like to
discuss these two important concepts in more detail, e.g.,

find out what they mean and why they are useful?

(a) The use of information feedback systems:

"Feedback," is the process in which an action taken by a

26

person or thing will eventually affect that person or thing.
A feedback loop is a closed sequence of causes and effects, a
closed path of action and information. Feedback loops divide
naturally into two categories which are labelled
deviation-amplifying feedback (DAF) or positive loops, and
deviation-counteracting feedback (DCF) or negative loops. An
interconnected set of feedback 1loops is a feedback system

(Richardson and Pugh, 1981).

The first year of exploration (in System Dynamics)
pointed toward the concepts of feedback systems as being
much more general, more significant, and more applicable
to social systems than had been commonly realized ...
Feedback processes emerged as universal in social
systems and seemed to hold the key to structuring and
clarifying relationships that had remained baffling and
contradictory (Forrester, 1968).

The significance and applicability of the feedback
systems concept to managerial systems has, since then, been
further substantiated by a large number of studies 1in the
System Dynamics field. (See for example Roberts, 1981). But
what, perhaps, is more interesting is to see "endorsements"
of the concept from outside the System Dynamics community.

For example:

The cause-effect relationships that exist in
organizations are dense and often circular. Sometimes
these causal circuits cancel the influences of one
variable on another, and sometimes they amplify the
effects of one variable on another. It is the network
of causal relationships that impose many of the controls
in organizations and that stabilize or disrupt the
organization. It is the patterns of these causal links
that account for much of what happens in organizations.

27

Though not directly visible, these causal patterns
account for more of what happens in organizations than
do some of the more visible elements such as machinery,
timeclocks, ... (Weick, 1979).

Embracement of the feedback concept can even by
"spotted" in - the software engineering 1literature. For

example:

Discussion and research into the framework of software
development and support, by dividing such efforts into
phases of work, has overemphasized the discrete nature
of that work. Indeed such project life cycles can be
viewed, at least after the fact, as having been composed
of such segments. However, the dynamics essence, the
behavior over time, of the process is distorted. The
emphasis is upon discrete sets of activities separated
in time and lacking any base of wunderlying common
elements to bind them. From this it is clear, that the
fundamental systems nature of the process is ignored.
The ever-present and controlling feedback between
action, results, information, and new action is
overlooked by such an approach (Mercer, 1982).

Feedback processes in software development were also
discussed by Belady and Lehman (in Wegner, 1980), (lehman,

1978), (Putnam, 1980), and (Zelkowitz et al., 1979).

A point which is important in particular to the
application of deviation-amplifying feedback (DAF) to
management, concerns the distinction between (1) the initial
event (from outside a 1loop) which starts the deviation
amplifying process in motion, and (2) the dynamics of the
feedback process which perpetuates it. While the initial

event is important in determining the direction of the

28

subsequent deviation amplification, the feedback process is

more important to an understanding of the system (Ashton,

1976). The initial event sets in motion a cumulative process
which can have final effects quite out of prorortion to the
magnitude of the original push. The push might even be
withdrawn after a time, and still a permanent change will
remain or even the process of change will continue without a
new balance in sight. A further problem is that, after some
period of time has elasped, it may be difficult, 1if not
impossible, to discover the initial event. An interesting

example of this has been provided by Wender (1968):

... a fat and pimply adolescent may withdraw in

embarrassement and fail to acquire social skills; in
adulthood, acne and obesity may have disappeared but low
self-esteem, withdrawal, and social ineptitude may
remain., Social withdrawal and low self esteem are apt
to stay fixed because the DAF chain now operates:
social ineptitude leads to rejection, which leads to
lowered self-esteem, greater withdrawal, less social
experience, and greater ineptitude. What has initiated
the problem is no longer sustaining it. A knowledge of
the problem's origin would not be expected to alter the
currently operative loop unless such insight served to
motivate behavioral change ...
Finding the initial event (acne and obesity) may have
less. wusefulness than understanding the current
sustaining feedback mechanism. Furthermore, in some
instances the initial event may have left no traces of
its existance and may be undiscovered.

It is no wonder, then, that "most managers get into
trouble because they forget to think in circles. I mean this
literally. Managerial problems persist because managers

continue to believe that there are such things as unilateral

29

causation, independent and dependent variables, origins, and

terminations" (Weick, 1979).

(b) The use of computer simulation:

So far, we have argued for an integrative model of

software development, which in addition captures its
information feedback systems. To stop here 1is not enough.

We need a tool for handling the high complexity of such a

model. There are two sources of high complexity; and

computer simulation can be an effective tool to handle both:

First,

Managerial systems contain as many as 100 or more
variables that are known to be relevant and believed to
be related to one another in various nonlinear fashions.
The behavior of such a system is complex far beyond the
capacity of intuition. Computer simulation 1is one of
the most effective means available for supplementing and
correcting human intuition (Roberts, 1981).

And second,

The behavior of systems of interconnected feedback loops
often confounds common intuition and analysis, even
though the dynamic implications of isolated loops may be
reasonably obvious. The feedback structures of real
problems are often so complex that the behavior they

generate over time can wusually be traced only by
simulation (Richardson and Pugh, 1981).

Simulation's particular advantage is its greater
fidelity 1in modeling processes, making possible both more
complex models and models of more complex systems. It also

allows for vicarious experimentation.

30
Using the simulation model as an experimentation
vehicle, should be particularly welcomed by the software
engineering community. Several authors have "complained”
about the lack of tested "ideas" in the software engineering
field (Thayer, 1979), (Weinwurm, 1970). For eiample Weiss

(1979) commented:

... 1in software engineering it is remarkably easy
to propose hypotheses and remarkably difficult to test
them. Accordingly, it is useful to seek methods for
testing software engineering hypotheses.

Unfortunately, controlled experiments in the area of
software development tend to be costly and time consuming
(Myers, 1978). Furthermore, those who try it often find that
" ... the isolation of the effect and the evaluation of
impact of any given practice within a largé, complex and
dynamic project environment can be exceedingly difficult"

(Glass, 1982).

In addition to permitting less-costly and 1less-time
consuming experimentation, simulation models make "perfectly"
controlled experiments possible. Which, as the following
quotation shows, addresses the difficulty expressed by Glass

above:

The effects of different assumptions and environmental
factors can be tested. In the model system, unlike real
systems, the effect of changing one factor can be
observed while all other factors are held unchanged.

31

Such experimentation will yield new insights into the
characteristics of the system that the model represents.
By using a model of a complex system, more can be
learned about internal interactions than would ever be
possible through manipulation of the real system.
Internally, the model provides complete control of the
system organizational structure, its policies, and its
sensitivities to various events. Externally, a wider
range of circumstances can be generated than are apt to
be observable in real life (Forrester, 1961).

Finally, the very process of constructing the simulation

can be useful in several ways (Schultz and Sullivan, 1972):

I.3Q

1. Confrontation --- vague generalizations crumble when
put to the test of modeling.

2. Explication --- assumptions must be made explicit,
logical, and precise in order to build a simulation
model.

3. Expansion --- the tendency to a holistic approach in
simulation forces a .broadening of one's horizon, a
loéking into other relevant fields for ideas.

4, Communication --- problem-oriented simulation lead
to jumping of disciplinary boundaries, less
parochialism. And,

5. Involvement =--- it can be fun, the construction
process motivates the modeler to attempt to fill in the

knowledge gaps.

Research Accomplishments:

As mentioned in Section 1I.2,, the objective of this

32

research effort is to enhance our understanding of, and gain

insight into, the general process Dby which software

development is managed. To achieve this objective

accomplished the following three tasks:

.1. Developed an integrative system dynamics model
software development project management.
2. Conducted a case-study to test the model.
3. Used the model as' an experimental vehicle
study/predict the dynamic implications of an array

managerial policies and procedures.

wve

of

to

of

In the remaining part of this section, we will elaborate

further on the above three research accomplishments.

Model Development:

The development of the integrative system dynamics model

of software development project management constitutes

following set of accomplishments:

the

1. The mathematical formulation of a system dynamics

model forces explication, i.e., structural relationships

between variables must be explicitly and precisely

defined. As such, the model sets the foundation for the

development of a theory of software project management.

Paraphrasing‘Dubin (1971):

33

A theory is the attempt of a man to model some
aspects of the empirical world ... A theory tries
to make sense out of the observable world by
ordering the relationships among 'things' that
constitute the theorist's focus of attention in the
world 'out there' ... The process of putting
things or units together in lawful relation to each
other establishes the fundamental building blocks
out of which a theory is constructed.

2, The model complements and builds upon cvurrent
research efforts, which tend to focus on the micro
components (e.g., project management, programming,

testing, productivity, ... etc.), by integrating our

knowledge of these micro components into an integrated
continuous view of the software development process,
allowing us to identify and capture a richer set of
interactions and interdepencies between the variables of

software project management.

3. The model identifies feedback mechanisms, and uses
them to structure and clarify relationships in software
project management. While the significance and
applicability of the feedback systems concept to the
study of managerial systems has been substantiated in a
large number of studies outside software engineering, it
still remains largely foreign to the software
engineering project management community. We,
therefore, view our work as having an "educational"

value to the software engineering community.

34

4. The high degree of explication required in the model
helped us ferret out "knowledge gaps" in the literature.
And a set of 27 interviews with software development
managers in 5 organizations helped us fill these
knowledge gaps. The model, therefore, incorporates new
findings about the management of software project
management (e.g., on manpower acquisition policies under

different scheduling considerations).

Case Study:

The model was developed on the basis of both an
extensive review of the 1literature and information
gathered through a set of 27 interviews - in 5
organizations involved in the production of software.
Aftgr the model was developed, we then conducted a
case-study in a sixth organization to test the model.
The model was highly accurate in replicating the actual
development history of the software project selected (by
the organization) for the case study. Project variables
tested included: the workforce level, the schedule, and

the cost.

Experimentation

If "understanding” is the intellectual cutcome of a
theoretical model, then "prediction" 1is 1its practical
outcome (Dubin, 1971). The model was used as an

experimental vehicle to study/predict the dynamic

35

implications of an array of managerial policies and
procedures. Four areas were studied: (1) scheduling;
(2) Quality Assurance; (3) control; and (4) staffing.
The exercise produced three kinds of results: (1)
uncovered dysfunctional consequences of some currently
adopted policies (e.g., in the scheduling area); (2)
provided guidelines for managerial policy (e.g., on the
allocation of quality assurance effort); and (3)
provided new insights into software project phenomena

(e.g., "90 % syndrome").

I.4. Thesis Outline:

Each chapter of this thesis may be considered in
terms of its relationship to the model, which is the

focus of the study.

Chapters (I) and (II) serve as a background and an
introduction. 1In Chapter (I), we discussed the problems
and challenges of software development project
management. We also arguéd for the integrated System
Dynamics modeling approach, as a vehicle to address

those problems and challenges.

In Chapter (II), we <conduct a survey of the
literature. The presentation is conveniently broken

into two sections. First, we survey the System Dynamics

36

literature that addresses the general area of project
management. This is a particularly appropriate starting
point, since it is this research track that provided the
first stimulant to our work. The second part of the
chapter, is a survey of the software engineering
literature to see what has been proposed /done to
understand and solve the problems of software project

management.

Chapter (III) is on mcdel development. In it we
discuss in detail the development, structure, and
equation formulation of the model. The model has four
sectors. At the heart of the model is the software
production sector, where software production activities
such as coding and testing are modeled. The project
‘management activities comprise the remaining three
sectors: planning, human resource management, and

control.

In Chapter (IV) we discuss the results of a case
study conducted to test the model's ability to replicate
the development history of a completed software
development project. Project wvariables tracked
included: the %orkforce level, the schedule, and the

cost.

In Chapter (V), the model is used as an

37

experimentation vehicle to study/predict the dynamic
implications of an array of managerial policies and
procedures. Four areas are studied: (1) scheduling;

(2) control; (3) Quality Assurance; and (4) staffing.

Finally, Chapter (VI) concludes the thesis with a
summary of findings and suggestions £for further

research.

38

II1. REVIEW OF RELEVANT LITERATURE

In this chapter two bodies of literature relevant to our
research are reviewed. The first 1is the Sysgem Dynamics
literature that addresses the general area of project
management. This is a particularly approriate starting
point, since it is this research track that provided the
first stimulant to our work. In the seéond part of the
chapter, we review the software engineering literature in the
area of software development project management. Thus, while
in the first section we look at research works that share
with us our basic research approach, in the second section we
turn our attention to those that share with us our research
objectivé (i.e., the understanding of the software

development process).

II.1., System Dynamics Modeling of Project Management:

Professor Edwards B. Roberts, .of MIT's Sloan School Of

‘Management, has been the pioneer of this research effort, as

well as continuing to be 1its major driving force. His
doctoral dissertation on "The Dynamics of Research and
Development,” in 1962 (which was also published as a book)
was the first scholarly effort to apply the then young System
Dynamics methodology to the project management area (within
an R&D environment). It still continues to be the most
comprehensive treatment of the subject. Since then, and
primarily in his capacity as a thesis advisor, he continues
to play an active "guiding" role in the field's advancement.
And which, as a result, continued to focus on the study of
R&D type projects. Roberts' thesis work together with that
of his MIT students, constitute the bulk of this body of

research.

It might be interesting to make a brief digression here
and explain how and why this body of research, lying at the
overlap between the System Dynamics and the Management of R&D
literatures, first attracted our attention and interest. It
was (surprisingly) while we were surveying the latter and not
the former. At the time, feeling frustrated by the lack of
innovative activity in the area of software management, we
decided to 1look into other more established fields for new
ideas. The management of R&D was the obvious first choice.
And for good reason. It 1is the area we found to be most
often likened, in the software engineering 1literature, to
.software production. For example, paraphrasing Gehring and

Pooch (1977):

40

The stages of research and development are similar in
many respects to the stages of ‘software analysis and
design., First, the determination of what the system is
to do (specification of outputs and inputs) is very
ill-defined, making the estimation of the time and cost
of 1its development uncertain (like the research stage).
Second, the specification of how inputs {(file
specification, programmning) is easier to estimate (like
the development state). These similarities suggest that
a good many managerial practices and procedures from the
latter may be applied to the former.

The similarity in project cost estimation, between the
two fields, was also suggested by Wolverton, in his highly
referenced 1974 paper, when he wrote: "The general
principles involved in pricing large R&D efforts of any kind

... apply to large software development as well.”

Also, it 1is interesting to note, that Putnam's
celebrated SLIM model for software cost estimation (Putnam,
1980) is based on the R&D work of Peter Norden. Norden had
showed that R&D projects have a well defined manpower pattern
of the Rayleigh form (Norden, i963) . When Putnam "adapted”
Norden's findings (on R&D projects) to the software
environment, he found that, here-too, manpower application

follows the same Rayleigh pattern.

So, with great enthusiasm and anticipation we embarked
on a survey of the R&D 1literature. And read Roberts'

doctoral thesis. End of digression.

41

While perhaps interesting as a historical perspective on
our research effort, the above 'digression - serves an
additional purpose. For, it suggests that our stated
argument for the relevance of the System Dynamics modeling
work of R&D project management to our own, namely, their
sharing of the same research methodology and approach, is
really a conservative one. The two areas have, in fact, much
more in common. And with this in mind, we now resume our

review of the literature.

As stated above, Roberts' System Dynamics model of R&D
project management, - continues to be the most comprehensive
work published in the area. The model traces the full 1life
cycle of a single R&D project. And it incorporates the
interactions between the R&D product, the firm, the customer,
and the processes relating to the nature of the work itself.
Figure 1II.1. (from Robert's thesis) is an overview of the

model's sectors, and the interrelationships among them.

Rather than delve into a detailed discussﬁon of Roberts'
ﬁéD model, we will limit out discussion of his work to those
aspects of the model which we found particularly relevant to
the study of software project management. Specifically} we
will present some of his models' conceptual building-blocks
(i.e., his assumptions/ findings about R&D projects). And to
underscore the correspondance to the software production

environment, we will append the presentatfon with "excerpts”

42

=™ 4 Accomplishment
of Work
Progress

Perception
of Need for

the Product

Acquisition
of People and
Other Project
Resources

Eveluotion of
Progress

Firm's
Investment of
Funds

Customer's
Commitment
of Funds

Estimation
of Effort

‘Estimotion :
of Cost Request for
. Customer Support

Over.oll organization of system equations.

Figure IL.1

'

from the software engineering literature.

!

On project Planning

. Roberts:

No unerring formula can be used to estimate the total
number of man-years required to carry out a given (R&D)
project. This kind of general statement reflects the
inherent nature of research and development: The exact
character of a specific task is 1indefinite, (and) the
specific technical requirements are uncertain ...

The Software Engineering Literature:

* ... quantitative software engineering has not
progressed to the point that we can even begin to
provide (software sizing) formulas. And it is not clear
that we will ever get very close to such an ideal
(Boehm, 1981).

* We lack the means " ... to provide clear, concise,
' and unambiquous statements of user requirements ... The
problem here again has to do with the "absence" of a
clear understanding on the part of both software users
and developers as to what can be accomplished with
software" (DeRose and Nyman, 1979).

* The production of software 1is not a deterministic
activity. Product specifications are 1liable to be
shifted (Trichritzis, 1977).

Roberts:

Two factors significantly influence the initial estimate
of the job size: (1) the firm's previous experience;
and (2) the general over-all tendency to underestimate
the job size.

The Software Engineering Literature:

* ... when methods of estimating are ranked, the list

44

is headed by the Experience Method ... This approach
takes advantage of experience on a similar job ... The
major problem in the method is that it does not work on
systems larger than the base used for comparison.
System complexity grows as the square of the number of
system elements; therefore, experience with a small
system cannot account for all the things that will have
to be done in a large system. Neither will the
Experience Method apply to systems of totally different
content” (Aron, 1976).

* The software undersizing problem is our most critical
road block to accurate software cost estimation ...
there are no magic formulas that we can use to overcome
the software undersizing problem. 1In the absence of any
such formula, it 1is important to understand the major
sources of the software undersizing problem ... A major
(reason) is a strong tendency to underestimate the size
of support software (e.g, compilers, tools, utilities),
which for large operational systems is generally three
to five times as 1large as the operational software
(Boehm, 1981).

On the Management of the Human Resource:

Roberts:

* Whatever the know-how developed in solving the R&D
project problems, some time 1is required for it to be
adequately, absorbed. Then, as the experiences
accumulate, the firms' engineers supplement their
nonproject skills with these new, more specific insights
and approaches to the task.

The Software Engineering Literature:

* Programmers become more effective during larger
programming operations because of "learning." The
programmer gains familiarity with program logic, coding
notation, testing restrictions, and other requirements
as he progresses through each major activity in the
programming methods (Shell, 1972).

Roberts:

* Above a certain level, the assignment of additional

45

personnel to a large project may not only reduce total
time proportionality, but in fact may increase total
time to accomplishment. :

The Software Engineering Literature:

* Increasing the size of a software team increases the
amount of software produced per unit time, up to a
point. Then the problems of communication among the
programmers begin to dominate the project and reduce the
amount of software being produced (Boebert, 1979)

And finally, on the Control of Progress:

Roberts:
(Control) problems ... result from lack of tangible,
precise measurement in R&D ..."

The Software Engineering Literature:

* Abstraction, or 1intangibility, is a management
challenge for such rudiments as recognizing process,
exhibiting results, and communicating between packets of
work. And compounding this 1is lack of hardware-like
measures ... " (Sampson).

* It is difficult to nmeasure performance in programming
eeo (And) it is difficult to evaluate the status of
intermediate work such as undebugged programs or design
specifications and their potential value to the
completed project (Mills, 1983).

Roberts:

* One particular difficulty 1is that, during the very
early phases of a project, milestones have a tendency to
be less precisely definable, and hence 1less accuratily
measurable, than during later phases of the project ...
The shortcomings of the concept, "percent complete,"
were sufficiently great to negate its value. While
projects tended to make rapid progress towards
completion when work first began, it took an
inordinately long time to get from 90 percent to 100
percent.

46

The Software Engineering Literature:

* In the early stages of a project, it is difficult to
distinguish between 5% completion and 10% completion,
yet the resultant projection can vary 100% based on
which number is chosen (Donelson, 1976).

* One frequent difficulty stems from an over-reliance on
individual percent-complete estimates as indicators of
project progress (Boehm, 1981).

* (This) method of estimating progress typically leads
to estimates of the fraction of work completed which
increase as originally planned until a level of about
80-90% is reached. The programmers’ individual

estimates then increase only very slowly until the task
is actually completed (Baber, 1982).

It is clear from the above presentation that some of the
problems that Roberts' model was built to address do resemble
some of those we are st;uggling with today in the software
engineering area. It is no wonder then, that we felt (and
did find) that the approach he effectively used i.e., Systems
Dynamics Modeling, to be an effective tool for addressing the

problems of software development project management.

As we mentioned in the begiﬁning of this discussion,
Roberts' thesis was to become the foundation for further
System Dynamics studies of the R&D project management area.
One obvious extension was to study multi-project
environments. In such an environment project competition for
company resources becomes a significant dimension. Two such
multi-project models are those of Nay (1965) (a four-project
model) and Kelly (1970) (a two-project model). In both
models the focus remained, as was in Roberts, on project life

cycle behavior. Edelman's (1975) work, however, is a

47

departure from that. While building on Nay's model, he chose
to focus, instead, on the allocation and wutilization of
manpower resources and the effects of the management system

design on effectiveness.

Richardson (1982) took still a different tack. Rather
than focusing on a project, he focussed, instead, on the
development group. His model, therefore, does not trace the
life cycle(s) of one or more projects; rather, it reproduces
the dynamics of a dévelopment group over an eight year period
as a continuous stream of products are developed and placed
into production. The model focuses on the number of products
under development, the use of resources required, and the
aggregate average product development time.

Finally, several more recent models are emphasizing the
role of rework in project management. Rework can be caused
by errors committed in the earlier phéses~of a project (e.g.,
design errors of a VLSI «circuitry) that escape detection
until later in the projects' 1life cycle. Of courée, the
longer an error goes undetected, the more extensive the
necessary rework and the greater the cost. Changing des}gn
specifications after development begins, also generates the
need for rework. Cooper (1980), describes a large system
dynamics study of cost overruns in a shipbuilding contract.
The study showed that the rework required by frequent design

changes imposed by the Navy were the major contributing

48
factor to a §500 million dollars overrun. Undiscovered

rework is also the focus of the simple R&D project models in

Roberts (1981b) and (Richardson and Pugh, 1981).

I11.2. Software Engineering Project Management Literature

Review:

As we stated in chapter (I), the focus of this research
is on software development project management, and our
objective is to improve our understanding of it. In this
section we review the software engineering literature on
project management, to assess the current

"state-of-understanding,” and the means/tools used to achieve

it.

We will begin by reviewing overview-type models and
frameworks. This will then be followed by separate
discussions on software project planning, human resource
management, and control 1i.e., the three project management
subsystems that together constitute the project management
activities in our model (as will be explained in ch;pter

I111).

IT.2.1, Overview Models and Frameworks:

ﬁichard Thayer's 1879 Ph.D dissertation at the

University of California at Santa Barbara on "Modeling a

49

Software Engineering Project Management System," is a fitting
starting point for this discussion. For one, it probably was
indeed cen "the first attempt to completely model a
software engineering project management system" (Thayer,
1979). But, perhaps more impo;tant, if we judge from the

number of publications it generated (one in IEEE Transaction

on Software Engineering (Thayer et al, 1981), two in Computer

(Thayer et al, 1980) and (Thayer et al, 1982), plus several
conference papers), the thesis' results did have a

significant impact on the software engineering community.

Thayer's research goai was twofold: (1) to develop and
verify "a generalized descriptive management model of a
software engineering project management system," and (2) to
"identify and verify the major issues of software engineering

project management."

To develop his model, he first identified the various
functions, actions, procedures, and tools used, or proposed
for use, in managing a software engineering project. This
was done on the basis of a literature survey as well as his
own personal experience. He then super imposed these
functions, actions, procedures, and tools on the "classic
management model," i.e., that breaks the management activity
into the five functions of planning, organizing, staffing,

directing, and controlling.

50
The "skeleton" of his model is shown in Figure (II.2).
Each of the shown eight model sections, i.e., "Project
Identification," "Requirements and Constraints,"” "Planning,"
.o etc., was then expanded further. For example, his
"detailed planning Section" is shown in Figure (II.3.a),
together with the set of assumptions he used to formulate it

(in Figure (II.3.b).

As we mentioned above, in addition to developing the
model, Thayer had a second objective, namely, to "identify
and verify the major issues of software engineering project
management." And, it 1is ‘interesting to note, that even
though Thayer considered the development of the model to be
the most important contribution of his work, it was his
findings here that has, ip fact, generated all his above

mentioned publications.

To identify the major 1issues of software engineering
project management, his first step was to review the
literature for software engineering problems. Then, by using
the software engineering delivery and success model shown in
Figure (II.4) he hypothesized which of these problems can
most affect the success of software delivery. These, he

believed were the major issues.

The issues were then reworded as problems as seen by the

project manager, and classified on the basis of the "classic"

51

Overview Hodel of a Sofitware Lnginecring
Project Hanagement Systca

CENERAL SINNAGEISNT AN
FRUDLCTION HonsL [5)

SOFTWARE ENGINFEERING
PROJECT MARAGEMENT AND
PRODUCTION BODEL

Project Tdeatification

legnitew-nts & Constreints

Blamning

Qrganizica

Staflfing

..... O

Directing/Monitoring

Contrelling

Program Identification
Nardware Tdeatificetion
Customer Jdentification
Contract JTdentification

Cost & Schedule ldentification
Softvare ldentification
Complezity Jdentification

Data Base 1dentification

Requireient Specifications
Document Requiremants
Customer Constraints

Planning and Scheduling
Quality Assurance l'rogranm

Preorganization Funclion
Project Managorent Orpanization
Software Engineering Proj Teaam

Project Managsr Staffing
Software levelopment Stalf
Stafl Support

Training

Responsilijlity and Authority
Hanageaent Techniques
Assigment of VWork

Projcect Control

Reporting

Formal Reviews

Configuration Management

Infonnal Reviews and Walk-
throughs

Schedule

Cout

Heets Requirements

Meets Keliability Standards
Meets Haintainability Standards
Meets Uscability Stundard.

Figure .2

52

Planning lodel

GENERAL HANAGRNENT
FONCTIONS [6),17)

PROJLCT NANAGE'ENT ACTIVITILS

Forecant

Set Procedurcs

Develep Stratrgies
Develep lolicies
Program

Budget and _Allocate
Resources

Analyze inputs and oniput require-
ments, functions of the system, and

‘deliverables.

Determins hardware 2nd system soft-
ware restrictions,

Determine user identification and
type cantract.

Detesmine size, cosplexity, and uscer
or (ouwpuny coastraint.

Determine and estzbiish success cri-
teria.

Determine 2ttriliites of delivered
softwarce: relizble, maintasinalble,
uscable, etc.

Determine cost end schedule to de-
liver softwere.

Select plamning end project control
tools and techniques.
Develop guelity assurance plan.

Select désign, programning, and
testing tood, tecknigue, and methe-
ods.

Same
Sanme

Determine priority 2nd milestones
for cvents.

Budget, locate and secure resonrces:
funds, programmer/analyst, computcr
time, ctc.

Figure 1.3 a

53

A separate organization from the development organization
would perform the planning and scheduling (this is also
an element of the organizing ‘model)

Planning would be accomplished through the use of formal
planning guides, methods, and tools

The plan, no matter how well accamplished by the planning
group, would be modified by either the senior manager or
the custamer

Planning documentation would be prepared

The planning function would be a formal function with
time allocated for planning ' .

Modular planning design and delivery techniques would be
used on the software development project

The planning function would include a software quality
assurance program

Each project would use some of the tools, techniques and
procedures known as "modern programming techniques"

Software development tools, techniques and aids would be
used on the software development project

Software test tools, techniques, and methods would be used
in the software development project,

Figure I.3b

54

Software Development Delivery and Success Model

6 Deliveries:
- Software

- Documentation

0 Success Attributes:

- On time

- Within resources

- Meets requirements

- Useable
- Reliable
- Maintainable

Figure 1.4

55

management model of ’ planning, organizing, staffing,
directing, and controlling. He found that "By far, the two
dominant (problematic) activities are planning and
controlling, which together (accounted) for 80 % of the
issues, with planning alone involving ten isues." The 20

issues he identified are shown in Figure (II.5).

To verify his hypothesized issues he did two things.
First he conducted "an opinion survey with a selected sub-set
of the computer community." This included: "technical
leaders in computer science," "software engineering authors,"
"project managers, " "R&D personnel,” and "software
engineering educators." (Two hundred and ninety four replies
were received.) The surveyees were asked to comment on
whether or not they felt each of the hypothesized problems
was a critical problem, an important problem, not important,
not a problem at all, or lastly, disagree with the hypothesisA
completely and by the way it was stated. The surveyees wvere,
in addition, asked to state how they would (or did) solve the

problem.

The 13 starred (*) issues in Figure (II.5) were the ones
verified on the basis of this survey, (Verification meant
that at least 70% of the respondents felt that the issue was

either "critical" or "important".)

(Note: Most of his surveyees either came from 1large

56

Twenty hypothesized problems in SEPM 4 12. Accountability: The accountability structure in

Planning

*® e Reguirements: Requirement specifications are
frequently incomplete, ambiguous, inconsistent,
and/or unmeasurable.

4 2 Success: Success criteria for a software
development are frequently inappropriate, which
result in “poor-quality” delivered software; i.e., not
maintainable, unreliable, difficult to use, relatively un-
documented, etc.

4% ¢ 3. Project. Planning for software engineering proj-
ects is generally poor.

%4 Cost: The ability to estimate accurately the
resources required to accomplish a software develop-
ment is poor.

¢ 5. Schedule: The ability to estimate accurately the
delivery time on a software development is poor.

%4 6. Design: Decision rules for use in selecting the
correct software design techniques, equipment, and
aids 10 be used in designing software in a software
engineering project are not available.

¥ 4 7. Test:Decision rules for use in selecting the cor-
rect procedures, strategies, and tools to be used in
testing software developed in a software engineering
project are not available.

B. Maintainability: Procedures, techniques. and
strategies for designing maintainable software are not
available.

% 9. Warranty: Methods to guarantee or warranty
that the delivered software will “work” for the user are
not available.

<= 10. Control: Procedures, methods, and techniques
for designing a project contro! system that will enable
project managers to successfully control their project
are not readily available.

Organizing

11. Type: Decision rules for selecling the proper
organizational structure; e.g., project, matrix, func-
tion, are not available.

many software engineering projects is poor, leaving
some question as to who is responsible for various
project functions.

Staffing

4 13. Project manager: Procedures and techniques
for the selection of project managers are poor.

Directing

14. Technigues: Decision rules for use in seiecting
the correct management techniques for software
engineering project management are not available.

Controlling

15. Visibility: Procedures, techniques, strategies,
and aids that will provide visibility of progress (not just
resources used) to the project manager are not
available.

& 16. Reliability: Measurements or indexes of
reliability that can be used as an element of software
design are not available and there is no way to predict
software failure; i.e., there is no practical way to show
the delivered software meets a given reliability criteria.

% 17. Maintainability: Measurements or indexes of
maintainability that can be used as an element of soft-
ware design are not available; i.e., there is no practical
way to show that a given program is more maintainable
than another.

18. Goodness: Measurements or indexes of
“goodness” of code that can be used as an element of
software design are not available; i.e., there is no prac-
tical way to show that one program is better than
another.

19. Programmers: Standards and technigues for
measuring the quality of performance and the quantity
of production expected from programmers and data
processing analysts are not available.

. 20. Tracing: Techniques and aids that providean ac-
ceptabie means of tracing a software deveiopment
from requirements to completed code are not general-
ly available.

Figure I.5 -

57

companies or obtained their knowledge from data processing in
large companies. Therefore, it can be assumed that the
viewpoin£ as to whether or not a given problem was critical,
important, or not important at all, was the viewpoint of the

" large DP shop.)

The second verification step was through a second
separate survey of 60 software development projects in the
aerospace -industry. And he checked for whether "the
condition described in the major issue existed, and (that)
the existence of the condition was a problem to the project
manager coe If the data substantiates (this) the

hypothesized issue is labelled a problem."

Nine of the 20 major issues (marked with + in Figure
(I1.5)) were verified as problems, two were inconclusive, and
nine were not problems. As a result, six major issues
concerning planning and one concerning controlling were

judged conclusively as problems by both surveys.

Thayer noted with interest, though, that "there is some
disagreement between the general data processing community
and the project managers and developers." Which prompted him
to comment: "The fact that these two groups do not, in
general, agree on the major issues is in itself a fundamental

problem of project management."

58

In addition:

Similar to the-problem in identifying the major issues,
the computing community is divided on the solutions to
the major problems. there are no well defined software

management techniques to guarantee a successful software
delivery.

Finally, we conclude our discussion of Thayer's work

with some of his own concluding remarks:

Future research should continue to "refine" this model
..+« This model, as a first attempt, has many ommissions
and frequent generalizations. Similar research
projects, wusing a different approach, could fine-tune
this model and find more elements with a full range of
values for each element.

This research identified a number of major issues of
software engineering project management and proposed a
number of solutions. What 1is needed is a good
definitized experimentation method that can be used as a
test bed for validating new project management tools,
techniques, and procedures, ... etc. .

There 1is still a 1long way to go, this is only the
beginning.

In another doctoral thesis, Riehl (1977) developed a
"planning and control framework to assist in the management
of computer-based information systems development in 1large
organizations."™ = The general scope of the research
encompassed two basic avenues of endeavor: (1) an extensive
literature survey to compile "those concepts and practices
that are advanced by authorities in the field of
computer-based information systems and electronic data
processing managemént," and (2) a determination of those

policies and procedures actually employed in practice by

59

companies "judged to be effective managers of computer-based

information systems."

His model, termed the "Composite-Working Model,"
consisted of some 25 ‘"principles " and 50 "issues."
Principles are those "specific concepts, policies, and
procedures upon which general agreement was found to exist in
the literature and in the observed practices of the (5)

companies investigated." Issues, on the other hand,

"identify those proposed practicies about which
disagreement or uncertainty exists within the literature or
which are the subject of clear divergences between the
concepts advanced. in the 1literature and the majority
practices of the firms in the research." The principles and
issues were classified into 4 categories: strategic
planning, project planning, project control, and

organizational behavior considerations.

For burposes of reference, a summary of the major
categories of the Composite-Working Model is presented in
Figure (II.6). As an illustration, consider the "Consensus
Principle V (PP): Project Plan," within the "project
planning " category. It was included because "the importance
of a project plan is widely recognized in the source
literature cee (and) the research findings supported the

principle."” Furthermore, "A single issue was generated

60

concerning the degree of detail that should be included in
the project plan. Brandon, for example, proposes a very
comprehensive scheme based on an automated system. Other
writers generally provide considerably fewer details on the
subject." A similar disagreement was observed between the

companies studied.

In his conclusion, Reihl asserts that he has met his
research goal, namely, to develop "a planning and control
framework to assist in the management of computer-based
information systems development 1in 1large organization, by
identifying those practices and procedures which are both
advocated in the literature as well as used by (selected)
large business organizations with a reputation for effective

computer-based information systems management."

Instead of focusing, as the above two pieces of research

did, on the set of issues that are common .among software

development projects generally, McFarlan's (1974) research

focus was on the differences between projects. "One

conclusion from my research stands out,"” he wrote, and that

was:

A monolithic approach to systems and programming project
managment is unlikely to produce the most satisfactory
results. There are critical differences in project
composition ... which influence the mix of tools that
should be brought on its management.

61

SUMDMARY OF TEE COMPOSITZ-YWOAKING IOCZL

Stratecic Planning
Consensus Principle I(SP): Master Systems Planning

Issue A: tructure for Planning
Issue B: Type of Flanning

Consensus Principle II(SP): Management Involvesment
Issue A: Top Management Involvement
Issue 2: User-lanagement Involvexent
Issue C: Chiefl Executive Oificer Involvement

Consensus Principle ITI(SP): Master Systems Plan
Issue A: Planning Details

Consensus Principle IV(SP): Planning Ccordination
Issue A: Planning Integration

Consensus Principle V(SP): Provision for Change

Issue A: Means for Achieving Change
£l &

Project Planning

Consensus Principle I(PP‘: System Developzent Life Cycle

Issue A: Description of the 3ystem Development
Life Cycle

Consensus Principle II(PP): Feasibility Study and
Project Proposzl

Issue A: Analysis of Alternative Designs
Issue B: Feasibility Study

Consensus Principle III(PP): ZEconomic Analysis
Issue A: Treatment of Reliability
Issue B: Present Value Discounting

Issue C: Estimating Intangible ZBenefits
Issue D: Approval Criteria

Figure 1.6

62

(Project Planning--Continued)

Corsensus Principle IV(PP): Project anzgement

Issue A: Assignment of Prcgec. ianager
Issue B: Progecu—S atus Audit

Issue C: Project Thresholds

Issue D: Project Zstablishment

Consensus Principle V(PP): Project Plan
Issue A: Project Plan Detail
- Consensus Principle VI(PP): Project Control Reporting

rted Information

Issue A: Repc
Management Review

p
Issue 2: ifan
Consensus Principle VIZI(PP): Estimation Process

Issue A: a
Issue B: Heliabi

Conseasus Principle VIII(PP): Change Control

I
Issue A: Review of Cha
f Issue B: Limiting Impac

Consensus Principle IX(PP): Systex Development Standards
Issue A: Fora of Standards

Consensus Principle X(PP): Cost Allocation
Issue A: Method of Cost Allocation

Issue B: Influence on User Bengv1cr

Prciect Ccntrol

Cconsensus Principle I(PC): User-ianzgement Control
Issuve A: Level of Management Control
Issue B: Key Check-Points -
Issue C: Form of Check~Point Reviews

Consensus Principle II(PC): Information Requirements
Definition

. Issue A: Methods of Reguirements Identification
Issue B: Requirements Validation

LN

Figure 1.6
(CONT.)

63

(Project Control—Continued)
Consensus Principle III(PC): Functional Specifications

Issue A: User Participation
Issue B: Conversion Plan

Consensus Principle IV(PC): Performancé Criteria
Issuve A: ‘Performance Criteria Specifications
Consensus Principle V(PC): Detailed Design Specifications
Issue A: User Participation ‘
Consensus Prineiple VI(PC): Systea Implexzentation
Issue A: User Participation
Censernsus Principl; VII(PC): System Testing

Issue A: User-Manzgement Involvement
Issue B: User Representative Participztion

Consensus Principle VIII(PC): Conversion and Cut-Over

Issue A: Conversion Organization
Issue 3: Manzgerment Control

Consensus Principle IX(PC): Post~Implementation Audit

Issue Concduct of Audi
.
"n

A -
"o v
Issuve B: Docunentation Audit

Orrcznizationa) Behavior Considerations

Consensus Principle I(BC): User Acceptance

Issue A: Intergroup Communications

Issue B: Personnel Management

Issue C: User-Management Invelvement

Issue D: User Participation and Control of Change
Issue E: Awareness cf ‘User Attituces

Figure I.6
(CONT.)

64

He identified three "important" dimensions for
characterizing software development projects. These are:
(1) The degree of predetermined structure inherent 1in the
project (he defined a highly structured project to be "one
where the processing routines and outputs of the system are
so determined by the project's environment in advance that
there are little or no design options open to the system
architect or user"); (2) The degree of company-relative
computer technology implicit in the project (a high
"company-relative technology" project is defined as "one
which involves complex hardware-software features which have
not been dealt with previously in the organization"); And
(3) Project size in terms of man-years of effort or manpower
dollars of expenditures ("In this context a §$50,000 project
will be considered small while a $1 million project will be

considered large").

Figure (II.7) shows how, using these dimensiocns, a
project may be classified as falling into one of eight

different categories.

As stated above, McFarlan felt that a project's
classification should "influence the mix of tools that should
be. brought on 1its management."” To show how, he first
provided a scheme to divide project managemeﬁt tools into
four main groups. The four groups are: (1) Formal

integration procedures with users of the project's output,

65

Classification of Systems and Programming Project Types

Degree of Structuredness

Degree of
Company-Rela.
tive

Technology

High Low

1 8 V.

LARGE PROJECT | LARGE PRQJECT
Low

II. V1.

SMALL PROJECT | SMALL PROJECT

II1. VIL

LARGE PROJECT| LARGCGE PROJECT
High

. VIL

SMALL PROJECT | SMALL PROJECT

Figuré .7

66

who are located outside the EDP department (e.g., a formal
User-EDP project advisory committee); (2) Formal integration
procedures within the EDP design team and between the various
units of the EDP department (e.g., formal €£flow charts and
other documentation to highlight interfaces between key
systems components); (3) Formal planning tools (e.g., PERT
or CPM); and (4) Formal control tools (e.g., regular use of

formal post-audit procedures).

The final step was to put the two pieces together into
what he called a "contingency theory" of EDP systems and
programming project-management. The outcome is exhibited in

Figure (II.8).

At still a higher level of specifity are the research
efforts to delineate phase differences within the life of a.

single project. According to McKeen (1981):

The dominant organizing framework for application system
development is the life cycle concept. This methodology
apportions the total developmental effort into
identifiable stages --- each stage representing a
distinct activity characterized by a starting point, an
ending point, and deliverables 1in concert with an
express purpose.

The life cycle model was formally acknowledged as an
important element in systems development by its inclusion in
the information system curricular proposed by the ACM

Curriculum Committee on Computer Education for Management

67

Project Externat® intermal Forrmal Formal
Tyves Preject Description . nteg. Integ.*® Planning Control
1 High Steucture, Low Tech., Large Low Meadium Kigh High

n High Structure, Low Tech., Small Lew Low Medium High
1 High Structure, High Tech., Large Low High " Medizm Medium
v Hizh Structure, High Tech., Small Low High Lew Low

v Low Stmucture, Low Tech., Large . High Mecium =igh High
vI Low Structure, Low Tech., Small H:gh Low Medium High
vl Low Structure, High Tech., Large High High Lowe Low
Vil Low Structure, High Tech,, Small High Medium Low Low

® No 22tempt is mace bere to suggest how extermal’ integralion may :huft over time as tne user becomes
more sophisticated through experience, My research suggests this may te» important.

This tabie hichlights the importance of external integration in getling user -ommitmert to 2 projest struc-
ture. It does not explicitly acdress his important role in erabling the EDP tezrricians to adequately
understand the precess to be 2utomated. This appears tc be impertant even in Righly structured situae
tions, Thus even these projecis which are ranked iow in the above table ir extermal iniegration, may in-
velve consizerable ustr hiaison of the fact findirg so-t.

®* Th:s does rot icentify the sharp split in the mix of the tools in internal integratic~ identified in the
text. Later work may split this 1=:0 two categories.

Figure II.8 |

68

(Ashenhurst, 1972). 1In recent years, many books and papers
on the life cycle concept have been published (e.g., (Boehm,
1981) (Gaffney, 1980) (Metzger, 1981) (Thomsett, 1980)

(Yourdon, 1982)).

According to Davis (1974), the foundation for the 1life
cycle concept 1is that application systems need to undergo a
similar process when they are conceived, developed and
implemented. Further, neglecting any portion of the life
cycle activities may have serious consequences for the end
result. The contribution of the 1life cycle concept to

systems development is described by Davis as follows:

Information system development involves considerable
creativity, the wuse of the life cycle is the means for
obtaining more disciplined <creativity by giving
structure to a creative process. The life cycle is
important in planning, management, and control of
information system application development.

The steps or phases in the software development 1life
cycle are described differently by different authors, but the
differences are primarily in amount of detail and number of
categorizations. A common breakdown 1is given by Glass

(1979):

Requirements/Specifications
Design
Implementaion

Checkout

69

Maintenance

The mere enumeration of the phases is not, however, an
adequate model of the software 1life cycle because it
"conceals" the iterative nature of the software development
process (Artzer and Neidrauer, 1982) (A16). The life cycle
is not followed in 1,2,3 fashion, rather "the process is
iterative so that, for example, the review after the system
'~ design phase may result in going back to the beginning to
prepare a new design" (Davis, 1974). Boehm's (1981)
"waterful”™ model, shown in Figure (II.9), emphasizes this
highly iterative nature of software development, indicated by

the feedback arrows from each phase to its predecessor(s).

fn addition to the identification of the component
phases and activities in the software development process, it
is important to evaluate the relative consumption of
resources by each of these activities in order to obtain a
proper perspective of the nature of the overall process.
Numerous authors have presented figures indicating life cycle
resource consumption by phase. In Figure (I1.10) a
comparison of three author's results done by McKeen (1981) is

exhibitted. Commenting on the figure, McKeen stated that:

Substantial differences do exist particularly in the
coding and testing phases of development. These
differences may be due to the inherent attributes of the
systems being developed, or to terminological
variations, or to a combination of both of these. In
the absence of a careful description of the systems and

System
feasibility
Validation

70

Sofiware plans and
requirements

Validation

Product design

Verification

Detailed design

Verification \
Code
Unit test
Integration
Product
verification

Impiementation

System test

t

Operations and
maintenance

Revalidation

The waterfall model of the software life-cycle

Figure II.9

71

Comparison of Effort Breakdown by
Activity for Different Authors

Percentage Resource Allocation

Life Cycle

Phase/Activity Davis © Zelkowitz Shaw
Analysis . 25 202 25
Design 20 15 103
Coding 25 454 30
Systenm Test n/ad 20]
lmplementation 15 n/ab 19

Notes: 1.

2.

3.

Sl

6.

Analysis encozpasses all development activity prior to
detailed design.

The analysis effort is probadly understated. 1If, as
speculated, this data is derived from systen developments
in a cilitary environment, then initial activity such as
feasibility analysis and preliminary systems study hasg
been excluded.

Using the guthors definitions, the activities of system
specifications and technical requirements constitute
Adetailed design activities as used here.

Coding effort and podule test effort were combined.
Prograzmers are typically responsible for unit, or
module, testing each portion of the system they have
coded.

This activity has been subsumed within the conversion
stage by Davis.

This accivity is not reported.

Figure 1I.10

72

the environment in which they were developed oo the
generalization of results beyond the immediate
environment in not possible.

The above views are shared by others in the literature.
For example, Kustanowitz (1977) supports the notion that
system size effects the life cycle resource distribution as
shown in Figure (II.11). While Myers (1978) reported on a
study in Boeing which showed that "the costs were shifted
into earlier stages (of the life cycle) by the use of modern

programming practices."

The life cycle resources distribution issue plays an
important role in the estimation of resource allocation for
software development. This role will be discussed in some
detail within our review of the litegature on project

planning next.

I1.2.2. Planning:

In his IEEE Tutcrial on Software Management, Reifer

(1979) defined planning as follows:

It is deciding in advance what to do, how to do it, when
to do it, and who is to do it. It is setting
objectives, breaking the work into tasks, establishing
schedules and budgets, allocating resources, setting
standards, and selecting future courses of action. It
‘bridges the gap from where we are to where we want to
be.

73

100 TEST TEST TEST
% 20-30% 30-45%
ow .
ES2s0] copz - CODE CODE
e & 60-80% : 40-60% 10-40%
u /
~ g
DESIGN DESIGN DESIGN
o] 10-20% . 20-30% 30-45¢%
SMALL INTERMEDIATE LARGE

PROJECT SIZE

SYSTEM LIFE CYCLE VARIES WITH .
PROJECT SIZE

Figure II.11

74

I
There is abundant support in the software engineering

litgrature for the import of planning in the management of
software projects (McGowan, 1978) (Thayer, ~ "1879).
Unfortunately, however, there is as ample an evidence for its
poor standing (Boehm, 1980), (Jones and McLean, 1970),
(Keider, 1974), (Metzger, 1981), (Pressman, 1982), (Thayer et
al, 1981). Gehring and Pooch (1980) support both assertions

in a single "breath:"

One wuniversal management principle, for example, has
been called the "principle of the primacy of planning."
In other words, planning has primacy over the other
managerial functions of organizing, staffing, directing,
and controlling. Thus, the degree o¢f control over a
programming project can be no greater than the extent to
which adequate plans have been made for the project ...
Inadequate planning is the primary reason for loss of
control on many computer programming projects. It is
not the comparative newness of the computer programming
process, difficulties with programmers, or technical
factors =--- It is simply that programming projects are
not adequately planned in the first place.

When Thayer (1979) surveyed the software engineering
literature to "identify the "major problems of software
engineering project management," he ended up with 20
' "hypothesized" probl?m areas. Of these, a full fifty percent
(or 10 problems) were identified as being planning-type
problems (see Figure II.5). And when he proceeded to verify
his 1list, the dominance of planning-type problems was even
more "impressive:"™ of the seven problem-areas that were
verified, six Qere planning-type problems (the seventh was in

the control area).

75

In addition, Thayer's work, which incorporated a survey
pf 60 software projects (in the aerospace industry), shed
some light on the planning activity. For example, he

reported that:

* The primary tools or techniques used in planning a
software development project were workload charts, work
break-down structure (WBS), and the subdivision of the
software development into phases or tasks.

* About one-fourth of the (planning) time was spent in
developing an overall project plan. An equal amount of
time was devoted to planning for the (project)
organization, planning on how to staff the organlzatlon,
and developing control procedures,

* (Contrary to his initial. assumption) a separate
planning group does not normally perform the plannlng
-and scheduling functions. The data showed that in 92%

of the cases, planning was done by the future manager of
the project.

* The predominant estimation method was "estimation
based on a similar project"™ (used in 67% of the
projects), followed by "use of a formula" (40%), "expert

opinion" (17%), and "crystal ball" (12%). [Note: Some
projects combined methods.]

A further analysis of the data suggested that " ... it
makes 1little differnce what type of technique is used in
estimating delivery schedule and project cost. None of the
used techniques significantly improved the project manager's
ability to deliver the project on time and within cost"

(Thayer, 1979).

Software estimation historically has been, and continues
to be, .a major difficulty associated with the management of

software development (Devenny, 1976), (Distaso! 1980),

76
(Mills, 1976), (Pooch and Gehring, 1980), (Yourdon, 1982),
(Zelkowitz et al., 1979), (2Zmud, 1980). Farquhar (1970),

articulated the significance of the issue:

Unable to estimate accurately, the manager can know with
certainty neither what resources to commit to an effort
nor, in retrospect, how well these resources were used.
‘The lack of a firm foundation for these two judgements
can reduce programming management to a random process in
that positive control 1is next to impossible. This
situation often results in the budget overruns and
schedule slippages that are all too common today.

A number of reasons for the difficulty have been

suggested in the literature:

1. Software development is a process, that is not yet
fully wunderstood by "estimators." (Myers, 1972),
(Oliver, 1982), (Gehring and Pooch, 1980), (Synnott,
1981), (Pietrasanta, 1968). This often 1leads to the
overlooking of significant cost factors (Myers, 1972),

Canning, 1977), (Boehm, 1981).

2. The phases and functions which comprise the software
development .process are influenced by a large number of
ill defined variables (Gehring and Pooch, 1980),
(Devenny, 1976), (Aron, 1976), (Distaso, 1980),
(Pressman, 1982), (Oliver, 1982).

3. Most of the activities within the process are still

primarily human rather than mechanical, and therefore

77

prone to all the subjectivé factors which affect human
performance (Gehring and Pooch, 1980), (Pressman, 1982),

(Oliver, 1982).

4, The lack of a historical data base of cost
measurements (Clapp, 1976), (DeMarco, 1982), (Fox,
1976), (Myers, 1972), (Oliver, 1982), (Zelkowitz, 1979).

5. Little penality is often associated with a poor

estimate (Zmud, 1980).

Over the years, estimation of project size and
development time and cost has been an intuitive process.
Experience and the prevailing industry norms have been used
as a basis to develop estimates for any given project
(Oliver, 1982), .(McKeen, 1981), (Auerbach 1Inc.), (Gehring,
1976). Myers (1972) has identified several "traps" in the
experience mehtod (i.e., basing estimates on actual costs of

similar past projects), namely:

1. The relationship between cost and system size is not
linear. In fact, cost increases approximately
exponentially as size increases. Therefore, the
experience method should only be applied when the sizes

of the current project and past projects are eguivalent,

2, Products with similar names are normally very

78

dissimilar. For instance, chances are slim that two
products titled ‘"Payroll System" have the same

development costs.

3. Frequent budget manipulations by management in order
to avoid overruns makes historical cost data
guestionable. For example, the movement of cost from an
over-budget account to an under-budget account disguises
the real costs‘and makes future use of this data very

dangerous.

In the last two decades, several 'quantitative software
estimation models have been developed. They range from
highly theoretical ones, such as Putman's model (1978), to
empirical ones, such as the Walston and Felix model (1977);
and Boehm's COCOMO model (Boehm, 1981). An empirical model
uses data from previous projects to evaluate the current
project and derives the basic formulae from analysis of the
particular data base available. A theoretical model, on the
other hand, uses formulae based upon global assumptions, such
as the rate at which peoplé solve problems, the number of
problems available for solutions at a given point in time,

ceo etc.

However,

Even today, almost no model can estimate the true cost
of software with any degree of accuracy. (Furthermore,)
it 1is highly wunlikely, that any two will produce the
same cost estimate for a given project oo The

79

variations in cost estimations are influenced by both
the many factors involved and the quantization of these
factors by the users of the models. Therefore, in order
to estimate a software project and develop appropriate
manpower guidelines, it is essential to know the factors
that influence the software development process at a
given facility (Auerbach Inc.).

Finally, we conclude this discussion by Pietrasanta's
(1968), frequently quoted, insights into the estimation

problem and its solution:

... Many of the problems of resource estimating
are symptoms of an underlying ignorance of the program
system development for which the estimates are being
made. The serious student of estimating must first be
willing to probe deeply into the fascinating and complex
system development process, to uncover the phases and
functions of the process, to highlight the subtle
interrelationships cf the program system being developed
and the project organization doing the developing ...
examining the influence variables and their causal
relationships is precisely what is required if estimates
are ever to be improved. Only then can we do meaningful
quantitative research and scientific analysis of
resource requirements.

I1.2.3. Management of the Human Resource:

People and organizational issues hLave gained
recognition, in recent years, as being at the core of
effective software development project management

(Semprevivo, 1980). For several reasons:

Personnel costs are . skyrocketing relative to hardware
costs. Chronic problems in software development and
implementation are more frequently traced to personnel
shortcomings. Information systems staff sizes have

80

mushroomed with 1little time for adequate selection and
training. It is little wonder that Information Systems
(IS) managers find themselves focusing increasing
amounts of attention on human resource issues (Bartol
and Martin, 1982). °

In this section we will review the human resource issues
of software project management at two levels: (A)
Individuals (e.g., selection, motivation, ... etc.); and

(B) Groups (e.g., organization, communication, ... etc.).

(A) Individual Dimensions:

On Motivation: One of the major challenges to managers

is to motivate employees to high levels of performance. The
few studies that have focused on motivational issues among
~data processing personnel have mainly concerned themselves
with rankings of various job factors (Bartol and Martin,
1982). And the findings have been generally supportive of
fhe notion that the work, achievement, and growth are
important job factors for data processing personnel (Couger

and Zawcki, 1980);

For example, Fitz-enz's (1978) study provides rankings
of the job factors considered most important by the 1500 data
processing professionals who participated in the study. The
items' rankings were as follows: (1) Achievement, (2)
Possibility for grbwth, (3) Work itself, (4) Recognition, (5)

Advancement, (6) Supervision, technical, (7) Responsibility,

81

(8) Interpersonal relations, ' peers, (9) Interpersonal
relations, subordinates, (10) Salary, (11) Personal life,
(12) Interpersonal relations, superior, (13) Job security,
(14) Status, (15) Company policy and administration, and (16)

Working conditions.

A motivation mechanism which is attracting interest in
the software engineering field is "goal setting" (Boehm,
1981). An experiment by Weinberg and Schulman (1974)
investigated the motivational value of setting clear goals in
a programming environment, In the experiment, five teams
were given the same programming assignment, but each team was
given different directions about what to optimize while doing
the fgb. One team was asked to complete the job with the
least possible effort, another team was to minimize the
number of statements in the program, another was to minimize
the amount of memory required by the program, another was to
produce the clearest possible program, and the last team was
to produce the clearest possible output. When the programs
were completed and evaluated, the researchers found that each
team finished first.(or, in one case, second) with respect to
the objective they were asked to optimize. They also found
that none of the teams performed consistently well on all of

the objectives.

On_Selection: Programmer aptitude tests are available,

but their effectiveness is widely questioned (Schneiderman/

82

1980). Instruments such as the IBM Programmer Aptitude Test
(PAT) or the Test on Sequential Instructions (TSI) for
measuring programming ability and the Strong Vocational
Interest Blank (SVIB) for measuring interest or motivational
level have at best produced very weak correlations with
analyst capability or programmer capability (Weinberg, 1971)

(Boehm, 1%%1).

On Performance Appraisal: The general literature on

performance appraisal suggests that overall, global
judéements regarding individual performance constitute
inferior means of measuring and appraising performance
(Bartol and Martin, 1982). 1Instead, performance in most jobs
consists of a number of different dimensions (e.g., Qquality
versus quantity or efficiency of program execution versus

ease of alteration by another programmer).

Giyb (1977) has suggested a number of possible metrics
of performance. Jones (1978) has pointed to the difficulties
in using certain standard measures, such as lines of code per
programmer-month, and has suggested other approaches, such as
separating quality measurements into measures of defect

removal efficiency and defect prevention.

On Turnover: Turnover continues to be a chronic problem

for software project managers. Willoughby (1977) estimates

that annual turnover in the DP field ranged between 15 and

83

20% during the 1960s, declined to about 5% in the early
1970s, and began to rise again by the end of the decade.
More recent studies place the annual turnover rate at 25.1 %
(Tanniru et al, 1981), 30 % (Richmond, 1982), and even as
high as 34 % (Bott, 1982). As McLaughlin (1979) points out,
at such rates the equivalent of a work unit turns over every
three to four years --- no minor matter in a profession where
it frequently takes 12 to 18 mcnths before a new employee

makes significant work contributions.

There are few predictive studies of DP turnover. In one
such study, Bartol (1979) investigated the relative
importance of two individual factors, personality and
professional attitude, versus two organizational factors,
professional reward system and tenure, in predicting turnover
among computer profeséionals. Only the professional reward
system and tenure variable were found to be significantly
predictive for the turnover variable, both in the expected

negative direction.

(B) Group Dimensions:

There are two basic issues involving the use of groups
in software development. One relates to structural factors
(i.e., how the groups are formulated), and the second
involves process factors relevant to the ongoing operations

and interrelationships of group members. .

84

On_Structure Factors: Software development projects are

structured 1in one of three basic organizational forms: (1)
Functional form; (2) Matrix form; or (3) Project form
(Daly, 1982) (Thayer, 1979). Youker (Y2) suggests that these
three organizational forms may be represented as a continuum
ranging from functional on one end to project on the other
end, with matrix falling in between and including a wide
variety of structures from weak matrix near functional to a
strong matrix near project. Several authors have presented
proposed guidelines or checklists for choosing the
"appropriate" organizational form. (e.g., see Green (1882),

Youker (¥2), and Daly (1982)).

In a survey of 60 software development projects in the
aerospace industry, Thayer (1979) found that "the matrix
organization is predominant, with 58% of the projects using
this type of organization, 38% of the projects using a
project organization, and 4% using a functional
organization." He also found that very small projects were
split between project and matrix organizations, medium priced
projects (between 1 and 5 million dollar) were slightly
biased in favor of project organization, while expensive
projects (5 million to 50 million) are almost always matrix
organization. A comparison of organizational form to "on
time" and "within budget" delivery of the software showed
that "it made 1little difference as to what kind of projecf

(organization) type is used."

85

Thayer's data also showed that the team concept is much
in use. About 95% of the projects were handled by teams

under the direction of technical leaders of some sort.

Two philosophies for orgahizing programming teams have
achieved a moderate amount of popularity in the data
processing field. These are the egoless programming team
proposed by Weinberg (1971), and the chief programmer team

proposed by Mills (1971) and implemented by Baker (1972).

Little experimental work on programming team and task
interaction has been carried out (Mantei, 1981). Weinberg's
suggestions are anecdotal and Baker's <conclusions are
confounded by the team personnel and the programming methods

selected.

On Process Factors: The attention here has focused on

the communication processes between members of a programming
team. In what is probably the most cited reference on the
“"topic, Brooks (1978) suggests that human communication in a
software development project is a significant overhead. And
that the overhead is made up of two parts, training and
intercommunication. Each worker must be trained in the
technology, the goals of the effort, the overall strategy,
and the plan of work. This training cannot be partitioned,
so this part of the added effort varies lineary with the

number of workers. Intercommunication, Brooks further

86

suggests, is worse, It increases as n(n-1)/2 (where n is the

number of team members).

The implications of this, is that increasing the size of
a software team increases the amount of software -produced per
unit time, only to a point. Then the problems of
communication among the programiiers begin to dominate the
project and reduce the amount of software being produced
. (Boebert, 1979). Or in Brooks' words (1978),
"Oversimplifying outrageously, we state Brooks' Law: Adding

manpower to a late software project makes it later."

The relationship between human communication and
programmer productivity was investigated by Scott and
Simmons. First, vhile using the Delphi survey tecpnique to
identify project wvariables that influence programmer
productivity, they found that "effect of project
communication” to be one of the "eight consensus variables
which have an important influence on productivity"™ (Scott and
Simmons, 1974). And in a 1later study (i975), they wused
computer simulation to evaluate the communication overhead as

a function of a team's communication structure.

Finally, taking a different tack, Parnas (1971)
.considered the impact of human communication on the product
of software development. He suggests that too much

-

communication between the members of a programming team could

87

negatively affect modularity, because team members would tend

to use informal information to bypass structured interfaces.

I1.2.4. Control:

Once a plan becomes operational, control is necessary to
measure progress, to uncover deviations from plan, and to
indicate corrective action (Koontz and O'Donnel, 1972).
While in most production environments, control is a standard
business practice (Mills, 1983), in the production of
software control is a "perilous activity" -(Arseven, 1975),
(Boehm, 1976), (Fox, 1976), (Gehring, 1977), (Gansler, 1976),
(Gehring, 1976), (Lehman, 1979), (Metzer, 1981), (Miller,
1955), (Pooch and Gehring, 1980), (Thayer, 1979).
Paraphrasing Mills (1983):

It is difficult to measure performance in programming.
It is difficult to diagnose trouble in time to prevent
it. It is difficult to evaluate the status of

- intermediate work such as undebugged programs or design
specification and their potential value to the complete
project.

Such a state of affairs has stirred, not only
self-criticism within the profession [(Lehman, 1979), (DeRose
and Nyman, 1979), (Metzger, 1981), and (Jensen and Tonies,

1979)] but open criticism from the user community as well:

You software guys are too much like the weavers in the
story about the Emperor and his new clothes. When I go
out to check on a software development the answers I get

88

sound like, 'we're fantastically busy weaving this magic
cloth. Just wait a while and it'll look terrific.' But
there's nothing I can relate to, no way to pick up
signals that things aren't really all that great. And
there are too many people 1 know who have come out at
the end wearing a bunch of expensive rags or nothing at

all.
(A U.S. Government Spokesman gquoted in (Gehring and

Pooch, 1980).)

The manifestation of poor software project control

has more than one form. For example:

1. The "90% Syndrome," (Baker, 1982), (Boehm,
1981), (DeMarce, 1982), (Donelson, 1976).

2. The production of inadequate software e.g.,
that doesn't meet user requirements (Tansworthe,

1977), (Glass, 1982).

3. Building systems that are inordinately
expensive (McKeen, 1981) (Wolverton, 1974) e.g.,
due to unconstrainted goldplating (Wolverton,
1974), .(Boehm, 1981), (Rirby, 1982), (Radice,
1982).

4. Lack of historical software cost data bases

(Boebm, 1981) (Thayer, 1979).

Why is it difficult to control software development

projects? ‘Two classes of factors have been proposed in

89

the literature: (1) product-typé; and (2) people-type

factors.

Product-Type Factors

1. Software is basically an intanéible product
during most of the development process, and for
which there are no visible milestones to measure
progress and quality like a physical product would
(Wegner,‘1980), (Corbato, 1979), (Miller, 1955),
(Jones and Mclean, 1970), (Boebert, 1979),
(Wolverton, 1974), (Reynblds, 1970), (Gehring,
1976), (Boebert, 1979), (Hales, 1982a). "This
invisibility is compounded for large software, for
which 1logical complexity cannot be maintained in
one person's mind, and for which development must
be partitioned into a number of tésks assigned to

different people" (Zmud, 1980).

2. High complexity (McKeen, 1981), . (Corbato and
Clingen, 18979). "In an overly ambitious project,
managers who do not understand the details of what
they are managing are easily blustered and misled
by subordinates. Conversely, low-level staff may
be unable to appreciate the significance of details
and fail to report serious problems" (Corbato and

Clingen, 1979).

90

3. Volatility of requirements‘ (Distaso, 1980),
(Metzger, 1981), (Tsichritzis, 1977), (Toellner,
1977), (Zmud, 1980). "Since software system
modules are not visibly connected, in contrast to
hardware systems, the impact of a change 1is often
not readily apparent even to the designers of the

system" (Gehring, 1976).

People-Type Factors:

1. The "software wizard syndrome" (Boebert, 1979).
This occurs when management abdicates its
responsibility to some highly trusted software
specialist, whose pronouncements are viewed as
correct by definition. The trouble with the
syndrome 1is that software wizards, unlike the

mythical kind, .are both fallible and mortal.

2. Inaccurate reporting (Boebert, 1979), (Jones,
1979), (Gehring, 1977). In software development,
"The employee has control of the resource, his
time, and he accounts for the resource on his time
sheet. The employee knows that his time sheet is a
performance evaluation factor and 1is a written
record. He knows the estimated time for the
project serves as a recorded budget. This
combination of written records makes a pressure

device and 'adjusted amounts' often result" (Reed,

91

1979), e.g., to hide problems or embarassing
situations (Jones, 1979). Another explanation was
given by Boeberf (1979): "Programmers are paid to
program, not to pay attention to progress ...
Management should not expect to get progress or
status information by asking programmers, the
typical programmer doesn't know or care, and will
usually give whatever answer is needed to end the

meeting and get back to programming.”

3. Optimism, (Corbato, 1979), (Oliver, 1982),
(Jones and McLean, 1970), (Snyder, 1976), (McKeen,
1981), (Gunther, 1978). "All programmers are
optimists," Brooks (1978) remarked, always
unjustifiably assuming that "'This time it will
surely run' or 'I just found the 1last bug'"

(Brooks, 1978).

The persistence of tﬁe industry's difficulties in
controlling software development does not seem to be the
result of either a scarcity of "advice" from the
reseafch community, or a reluctance, on the industry's

part to "heed" that advice.

Numerous techniques, often adapted from other
industries; have been proposed in the literature. These .

include: Work Break Structure (WBS) (Tausworth, 1980),

92

PERT (Boehm, 1981), Gantt Charts (Knutson, 1980), Formal
Reviews (Freedman and Weinberg, 1982), Unit Development
Folder (UDF) (Ingrassia,1979), and Automated project

Management Systems (Canning, 1976).

Furthermore, evidence indicates that most of these
"proposed solutions"™ have been disseminated into the
industry (Glass, 1982), albeit at varying degrees. For
example, Thayer's survey of software projects in the

aerospace industry showed the following:

Technique $ of Projects Using it
Formal Reviews 97 %
WBS 60 %
Automated Project
Management System 57 %
PERT 38 %
Gantt 32 %

Thayer further investigated whether the utilization
of the above "state-of-the-art" techniques was effective
in resolving the control-type difficulties in those
aerospace firms surveyed. (Note: Thayer (1979), as
well as others (e.g., Lehman (1979), believe that the
aerospace industry is the most advanced and experienced
in employing software project management techniquee.)

His results indicated that they, in fact, did not.

Results reported by Lehman (1979), on a survey of

93

software development projects also in the aerospace

industry, were more surprising:

17% of the projects had no project control
mechanism, and more surprisingly yet, that group
fared better than average relative to on-time
delivery ...

A similar finding was reported by (Powers and
Dickson, 1973). 1In a study of 20 MIS-type projects they

found that:

With respect to the project control techniques used
for the projects in the study, they tended to be
dysfunctional to project success. The use of
project control methods was not significantly
related to any criterion of success, and, indeed,
had a negative relationship to the reported quality
of project documentation ...

In general, project leaders appeared to feel an
implicit pressure from tight project reporting
requirements, to which they responded by cutting
corners on documentation and preparations for
implementation.

So, what is the prognosis on the status of software

project control? Bauer (1980) put it this way:

We are able to identify the sources of our
troubles, but in many cases we have nothing to
offer but good advice. We are in the situation of
a physician who keeps trying out different pills on
his patient in the hope that some will finally cure
him (Bauer, 1980).

94

III. MODEL DEVELOPMENT

I11.1. Introduction:

As stated in Chapter I, the objective of this research
effort is to develop and test an integrative system dynamics
model of software development project management which would
provide us with understanding and insight about the general

process by which software development is managed.

A system dynamics model of software development can
increasg our understanding of the process through both the
formulation of the model's structure and the analysis of its
behavior. Experimentation and analysis of model behavior
will be the focus of the next two chapters. 1In this chapter,
on the other hand, our objective is to enhance our
understanding of the software development process through

model formulation.

Model formulation can enhance understanding in several

ways (Schultz and Sullivan, 1972):

95

1. Confrontgtion ~-- vagque generalizations crumble when
put to the test of modeling.
2. Expansion --- the tendency to a holistic integrative
approach in modeling forces a broadening of one's
horizon, a looking into other relevant fields for ideas.
3. Communication --- problem-oriented models 1lead to
jumping of disciplinary boundaries, less parochialism,
4, Organization =--- organizing data and structuring
experience.
In addition, the formulation of the model forces
explication i.e., structural relations between variables must
be explicitly and precisely defined. This, in Dubins (1971)

view, is the "locus of understanding” of a theoretical model:

A (theoretical model) tries to make sense out of the
observable world by ordering the relationships among
"things" that constitute the (modeler's) focus of
attention in the world 'out there' ... What is gained
in understanding ... 1is achieved by comprehending the
law or laws built into the model. The 1locus of
understanding in a scientific model is to be found in
its laws of interaction. (That 1is, the modes of
interaction among the variables of the model).

Before relationships are defined, however, one has first
to choose the "things" or variables whose relationships are
of interest. That 1is, one has to define the model's
béundary. Models have a boﬁndary within which they are

expected to "mirror" the empirical world. Beyond that

%6

boundary it may be problematic as to whether the model holds.
Our model's boqndary is discussed in Section 1III.3. below.
This is then followed by a detailed description of the

model's structure and equation formulation in Section III.4.
In the section immediately following this, we discuss

the sources of information, on software development project

management, we used to construct the model.

111.2. Sources of Information:

To build the model, we went through three information

gathering steps:

First, we conducted a series of ten intérviews with
software development project managers in three organizations.
The purpose of this set of interviews was to provide us with
a first hand account of how software projects are currently

managed in software development organizations.

The system dynamics approach starts with the concepts
and information on which people are already acting
(Forrester, 1979).

In general sufficient information exists in the
descriptive knowledge possessed Dby the active

practitioners --- to serve the model builder in all his
initial efforts {(Forrester, 1961).

The information collected in this phase, complimented

with our own software development experience, were the basis

97
for formulating a "skeleton" system dynamics model of

software project management.

The second step was to conduct an extensive review of
the 1literature. The "skeleton" model served as a useful

"road-map" in carrying out this literature review.

A model should come first. And one of the first uses of
the model should be to determine what formal data need
to be collected (Forrester, 1961).

When this exercise was completed, many knowledge gaps
were filled, giving rise to a second much more detailed

version of the model.
In the third, and final step:

The model is exposed to criticism, revised, exposed
again and so on in an iterative process that continues
as it proves to be useful. Just as the model is
improved as a result of successive exposures to critics
a successively better understanding of the problem is
achieved by the people who participated in the process
(Roberts, 1981C).

The setting for this was a series of 17 interviews
conducted between October 7,1982 and July 7,1983 with
software project managers at Digital Equipment Corporation,

MIT, and General Motors.

In the remaining part of this section, we explain the

98

above three information gathering steps in more detail.

Step (1):

As stated above, this step constituted a "formulative
study." The objective was to increase our familiarity with
the software development process, in particular, "the
concepts and information on which software project managers
are already acting," in order to formulate an initial

skeleton system dynamics model of the process.

The technique we used was the "focused interview."” In
the focused interview, as described by Selltiz, Wrightsman,

and Cook (1976),

... .the main function of the interviewer is to focus
attention upon a given (list of topics). Interviewers
know in advance what topics, or what aspects of a
question, they wish to cover. This list of topics or
aspects is derived from a formulation of the research
problem ... This list constitutes a framework of topics
to be covered, but the manner in which questions are
asked and their timing are 1left largely to the
interviewer's discretion.

This type of interview, according to Green and Tull
(1978), " ... 1is useful in obtaining a clear understanding
of the problem and determining what areas should be

investigated (further)."

99

Before each interview, two things were done. First the
interviewee was briefed, in a telephone conversation, about
the objectives of the research.' The interviewee was also
told that the primary objective of the interview is to find
out how - software projects are managed in his/her
organization. The 1list of topics shown in Exhibit III.1.
was read to each interviewee. The second thing we did, was
to mail each interviewee a copy of our internal report titled
"The System Dynamics Approach té Designing Software Project
Planning & Control Systems: A Research Proposal." The
report, written in January 1982, constitued the first "rough"
version of our research proposal, and it provided, in
addition, a non-technical introduction to the system dynamics

methodology.

Ten interviews were conducted in the period between
February 5,1982 and April 30,1982, Each interview was, on
the average, two hours long. The names of the interviewees,
their organizations, their titles, and the dates of the

interviews are shown in Exhibit III.2.

All ten interviewees were reached through contacts,
primarily those of Sloan faculty members. Each one of the
interviewees was currently managing one or more software
development projects, had been a software project
manager/leader for at least two years, and had . managed at

least two completed software projects. This, we felt, would

100

Environment: o Project types, sizes
0 Hardware environment

o Organizational structure

Software Production: o Software tools

o Standards
o Error rates

o QA policy

Planning:] Estimatihg
o Effort Distribution

Control: o Control tools
o Milestones

o Reporting frequency

Human Resources: 0 Hiring/firing policies

o Training
o Turnover

o Overtime policy

EXHIBIT iI1.1

Interview # Date

w

~1

10

2/5/82

2/10/82
3/5/82

3/15/82
3/15/82
3/22/82
3/22/82
3/29/82
4/7/82

4/30/82

101

Interviewee Title

John James Group Leader

William Stein Member of Technical Staff

Clement McGowan Principal Consultant
Glen Gage Project Manager
Joanne Riccardi Project Leader
Dave Griffin Project Leader
Jim Doyle Project Manager
Bonnie Donahue Project leader

Wayne Babich Lead Designer & Technical Mgr.
Softech Federal System Div.

Francis 0'Conner Group Leader

EXHIBIT III.2

Organization

MITRE

MITRE

MITRE
DEC
DEC
DEC
DEC
DEC

Softech

MITRE

102

provide a level of managerial experience and maturity that
would be adequate for gaining insights into the management of

software projects.

As is shown in Exhibit III.2., three organizations were
represented, namely, Digital Equipment Corporation (5
interviewees), MITRE (3 interviewees), and SofTech (2
interviewees). This provided us with an exposure to three
quite different software development environments. In DEC,
all five interviewees were involved in developing software
for in-house use (e.g., order administration systems). In
MITRE, the projects involved the development of
embedded-software for the Air Force. And in SofTech, the
projects involved a wide range of systems developed on

contract for client organizations, both private and public.

The outcome of the above exercise was, as mentioned
above, the formulation of an initial simple system dynamics
model of software project management. The model is discussed
in detail elsewhere (Abdel-Hamid and Madnick, 1982b). This
initial mo<2l, in addition to serving as a road-map for the
succeeding literature reviewing step, was also the "skeleton"
for developing our final more detailed version, Which,
therefore, means that the information gathered here is also
incorporated in the formulation of our £final model. This
will become more evident when we discuss that model's

structure and equation formulation in Section 1III.4. In

103 /

those discussions we will, in many occasions, make reference
to the interviews of Exhibit 1III.2. Such references will

always be in the form: (interviewee-name, interview number).

Step (2):

Starting the extensive review of the literature with the
initial model serving as the roag—map had several important
advantages. It was helpful, for example, in organizing the
findings, as well as in integrating them. 1In addition, the
integrative nature of our model "prompted" us to broaden our
horizon, and look into other relevant fields for ideas.
Examples of these "ventures" include: Management Control
(e.qg., Anthqpy (1979), and Lawler (1976)), Cybernetics (e.g.,
Ashton (1976)), Organizations (e.g., Kotter (1978), Schein
(1980), and Weick, (1979)), Project Management (e.g,
Maciariello (1978)), and Psychology (e.g., (Ingham el al,
1974), Leavitt (1978), and Steiner (1966)).

In discussing the final model's structure and its
equation formulation in Section 1II1I.4., we will make
extensive use of the massive amount of information gathered
in this literature review. And, it will then become evident,
how effective such a model truly is 1in organizing and

integrating the various bodies of knowledge mentioned above.

104

Step (3):

The written record has (a major shortcoming) compared to
the mental data from which the written data were taken
cee the written record usually cannot be queried.
Unlike the mental data base, the written record 1is not
responsive to probing by the analyst as he searches for
a fit between structure, policy, and behavior
(Forrester, 1979b).

That was one reason to conduct the second set of
interviews, which constitued our third information gathering
step. That is, there were still wunanswered questions that

had to be addressed.

The second reason, was to expose the more detailed model
that emanated at the end of Step (2) above, to, in Roberts'
(1981c) words, "criticism, revise it, expose it again and so
on in an iterative process that would continue as long as it

proves to be useful."

As a2 result of these two objectives, the model's
structural components became a core around which the
interviews were built. The intérviews were, thus, more
structured in terms of content than those in Step (1).
However, the interviews were unstructured in the sense that
no standardized set of questions was used. Such a format,
according to Isaac and Michael (1971), allows the interviewer
to adjust the interview so as to take advantage of an

interviewee's personal areas of expertise.

105

As in Step (1), before each interview, interviewees were
contacted by telephone and briefed on the objectives of the
fesearch. The topics covered were basically the same as
those in the Step (1) telephone briefings, except for an
additiona; brief discussion of the Systems Dynamics
methodology. Interviewees were then mailed copies of: (1)
"A Model of Software Project Management Dynamics"
(Abdel-Hamid and Madnick, 1982b); and (2) "System Dynamics

--- An Introduction" (Roberts, 198ic).

It was necessary that this group of interviewees have
some.understanding of the Systems Dynamics methodology, since
one of our objectives was to expose the model to their
critique. This was not a major hurdle, however, What was
needed was basically an understanding of the feedback.
concept, and its representation in terms of causal 1loop
diagrams. Both of which are adequately covered in the
Roberts' introductory paper. In the interviews, references
were made only to "pieces" of the model, and these were
always in the form of causal 1loop diagrams. An example
"conversation piece," on the effects of "schedule pressure"
on "productivity" and "error generation," is shown in Figure

I11.1.

Seventeen interviews were conducted in the period
between October 7,1982 and July 7,1983. The names of the

interviewees, their organizations, their titles, and the

106

SCHEDULE
PRESSURE
+ - +

ERROR ’9 . PRODUCTIVITY

GENERATION
WORK -
RATE

Figure Ili. 1

107

. dates of the interviews are shown in Exhibit III.3. below.

A comparison of Exhibits III.2. and III.3. would show
that none of the interviewees of Step (1) were umong those
interviewed later in Step (3). This, we feel, had two
positive results. Firstly, it provided us with a larger and
more varied pool of experiences and ideas to draw upon, and
secondly, it decreased the possibilities for bias in the

interviewees' critique of the model.

Except for Mr. Sheldon of MIT who was reached through
the personal contacts of an MIT faculty member, this group of
interviewees was reached through MIT's Center for Information
Systems Research (CISR). Both GM and Digital are CISR
sponsors, and occasionally serve as field sites for research
in tﬁe MIS area. Again, each of the interviewees was
"currently managing one or more software development
projects,"” "had been a software project manager/leader for at
least two years," and "had managed at least two completed

software projects.”

Because the discussions at this stage were at a more
detailed 1level than those of Step (i), we needed more time
per interviewee. On average, we conducted three

two-and-half-hour-long interviews per interviewee.

This battery of seventeen interviews constituted the

Interview # Date

11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

10/7/82

108

Interviewee

Mike Landolfi

11/3/82 Garrett Sheldon

11/4/82
11/11/82
11/11/82
11/16/82
11/23/82
11/23/82
11/24/82
12/15/82
12/15/82
1/17/83
1/17/83
2/16/83
2)18/83
6/29/83
7/7/83

Mike Landolfi
A1 Chan
Sam Hisamune
Frank Lombardi

Frank Lombardi

itle

Title

Mrg. of Planning, Analysis
& Control,Finacial&Admin

Mrg. of Business Systems
Development

(see

Proj. Laeder,NAVO Fin.Syst.

Infosystem

above)

Organization

DEC

MIT
DEC
GM

Sr. Supervr. Syst. Devt.,CANISCA Gm

Mrg. Revenue Disbursement Syst. DEC

(see

above)

DEC

Barbara Nichols Syst. Mrg. Export Services Group DEC

Garrett Sheldon
A1 Chan
Sam Hisamune
Mike Landolfi
Frank Lombardi
Garrett Sheldon
Barbara Nichols
Sam Hisamune

Barbara Nichols

EXHIBIT

(see
(see
(see
(see
(see
(see
(see
(see

(see

I1T.3

above)
above)
above)
above)
above)
above)
above)
above)

above)

MIT
GM
GM

DEC

DEC

MIT

DEC
GM

DEC

109
third and final information gathering step. And it lead to

the formulation of the final model ... which we discuss 1in

the next two sections.

IIT.3. Model Boundary:

(Models are) analogues of existing or conceivable
systems, resembling their referent systems in form but
not necessarily in content. In some way they exhibit,
display, or demonstrate structural relationships among
elements found 1in the referent system. At the same
time, they are abstractions and idealizations, omitting
some aspects of the referent systems and duplicating
only those that are of interest for the purposes at hand
(Schultz and Sullivan, 1972).

A clear understanding of the purpose of a modeling
effort helps to answer guestions relating to the system
boundary --- i.e., what should be included and what should be

excluded.

As was stated in Chepter I, the primary purpose of our
model 1is to "provide us with understanding and insight about
the process by which software systems are developed and

managed."

Notice that our focus is confined to the development

phases of software production. Our model's boundary will
thus extend only until the last phase of software

development, namely, the testing phase. Not included in our

110
model are, therefore, the subsequent maintenance activities.

It was also indicated that the model would integrate the
managerial functions of planning, controlling, and
human-resource management as well as the software production
activities of design, coding, and testing. Notice that the
model's boundary extends from the beginning of the design
phase of the software life cycle, excluding the requirements

definition phase. There were two reasons for this. First,

Analysis to determine requirements is ... distinguished
as an activity apart from software development.
Technically, the product of analysis 1s noén-procedural
(i.e., the focus is functional) while the prime
development is the basis for mutual agreement between
the customer and the developer as to what the system
must accomplish (McGowan and McHenry, 1979).

Secondly, our focus in this study is on the software
development organization, i.e., project managers and software
development professionals, and how their policies, decisions,
actions, ... etc., affect the success/failure of software
development. "~ The definition of user requirements is
therefore excluded from the model's boundary for the
additional reason that it lies beyond the control of the

software development group.

Such arguments have also been the bases for excluding
the . software requirements phase from the "boundaries" of

guantitative-type software cost estimation models such as

111

COCOMO (Boehm, 1981).

Together with excluding the requirements definition
phase, we will make the simplifying assumption that once
requirements are fully specified (outside the boundary of the
model), and the architectural design phase is initiated
(within the model's boundary), there will be no significant
subsequent changes in the users' requirements. We do realize
that changes in users' requirements are frequently blamed for
cost/budget overruns in software projects (Aron; 1976)
(Boehm, 1980) (zolnowski and Ting, 1982), and for which the
users are often "charged" and found "guilty" (Distaso, 1980),
(Thayer, 1979), (Toellner, 1977). However, let us reiterate
that our focus in this study is on "the software development
group members and their policies, decisions, actions, ...
etc.” And we suggest that investigating those policies,
decisions, and actions which can cause cost/budget overruns
inspite of stable user requirements is a more interesting and
challenging research endeavor than tc answer the question "do
changes in users' - requirements negatively impact the

development process."

Looking within a model's boundary (e.g., at the actions
of the software development team) for the causes/cures of
problematic behavior rather than outside it (e.g., the
actions of the wusers) 1is a characteristic of the system

dynamics approach. Richardson and Pugh (1981), called it the

112
"Endogenous Point of View," and elaborated on it as follows:

... the system dynamics approach tends to look within
a system for the sources of its problem behavior.
Problems are not seen as being caused by external agents
outside the system ...

The internal view creates a dramatically different
problem focus. The external view places an individual,
a firm, a city, or whatever, at the mercy of exogenous
events ... The external view is frequently predisposed
to search for blame: "instabilities in our workforce
and inventory are caused by errotic and seasonal
customer orders" (or software projects overrun schedules
merely because of changes in user requirements) ...

The internal view searches (instead) for structures
within (the system), which can create or exacerbate the
system's problem behavior.

As we mentioned above, our model's focus 1is on the
decisions and actions of the software development group
including both project management as well as software
development professionals (e.g., designers and programmers).
In addition to excluding wusers (as indicated above), it,
therefore, also excludes computer center operators, personnel
department personnel, secretaries, higher management,

janitors, and so on.

Finally, this mbdel is not a model of small
one-programmer-type projects, nor of super-large projects
involving hundreds of software pfofessionals over a period of
several years. Instead, our domain is that of medium sized
projects. Jones (1977) defined "medium-sized" software

projects aé follows:

113

..+ (they) range between 16K and 64K lines 1in size,
(and in which) development teams or departments are the
norm ... Below the "medium" size range, programming as
a business endeavor is often successful: at least the
programs tend to work fairly well and insurmountable
problems are not often ecountered. At the "medium" size
and above, cost and schedule overruns pop up more
frequently, and are more serious when they do occur.

I11.4. Model Structure:

This section describes the structure of our integrative
system dynamics model of software development project
management. An overview of the model 1is first presented,
highlighting the four major subsystems of the model, namely,
human résource management, planning, controlling, and
software production, together with the various flows which
connect them. Next, each of the four subsystems, will be
described in more detail, in terms of its basic components
and relationships. The various assumptions and propositions
comprising the model are supported by reference to the
literature and to the interviews of section 1III.2. The

outline of the presentation will be as follows:

I111.4.1., Model Overview

I11.4.2. System Dynamics Schematic Conventions
I1I1.4.3. Human Resource Management

I1IT1.4.4. Software Production

111.4.5. Controlling

II1.4.6. Planning

114
A documented 1listing of each subsystem's' DYNAMO
equations is included in Appendix (A). DYNAMO 1is the
computer simulation language used. It is a language
specifically designed to handle non-linear feedback models of
the sort associated with the system dynamics method. (For an

introduction to DYNAMO see (Pugh, 1976).)

111.4.1. Model Overview:

Figure III.2. is an overview of the model's four
subsystems, namely: (1) The Human Resource Management
Subsystem; (2) The Software Production Subsystem; (3) The
Controlling Subsystem; and (4) The Planning Subsystem. The
figure also illustrates the interrelatedness of the- four

subsystems.

The Human Resource Management Subsystem captures the
hiring, training, assimilation, and transfer of the project's
human resource. Such actions are not carried out in vacuum,.
they, as Figure 1III.2. suggests, both affect and are
affected by the other subsystems. For example, the project's
"hiring rate" is a function of the "workforce needed" to

complete the project on a planned completion date.

Similarly, the "workforce available," has direct bearing
on the allocation of manpower among the different software

production activities 1in the Software Production Subsystem.

115

HUMAN
RESOURCE

MANAGEMENT

WORKFORCE

|
I
|
/ | AVAILABLE \
/ | \
/ I \
/ ! \
! | \
// ¥ \
PROGRESS \ WORKFORCE
STATUS // \ NEEDED
/ SOFTWARE \
/ PRODUCTION \
/ \
/ (S) \
7
/ , N \
/ / \ \
/ 7/ TASKS SCHEDULE \ \
/ 7/ COMPLETED \ \
/ \ \
\ \
\
Moo
\
CONTROLLING —_—— e — — TFoRT ~ " T T~ PLANNING
REMAINING '
(C) , (P)

Figure Illl.2

116

The four primary software production activities . are
development, quality assurance, rework, and testing. The
development activity comprises both the design and coding of
the software. As the software 1is developed, it is also
reviewed e.g., using structured-walkthroughs, to detect any
design/coding errors. Errors detected through such quality
assurance activities are then reworked. Not all errors will
be detected and reworked, however, some will "escape"
detection until beyond the end of development e.g., until the

testing phase.

As progress is made, it is reported. A comparison of
where the project is versus where it should be (according to
plan) 1is a control-type activity captured within the
Controlling Subsystem. As was indicated in Chapter 1II,
determining where a software project really is e.g., in terms
of % of tasks completed, 1is not always possible. (E.G.,
because software is basically an intangible product during
most of the development process, and for which there are no
visible milestones to measure progress and quality like a
physical product would.) Once an assessment of the project's
status is made (using available information), it becomes an

important input to the planning function.

In the Planning Subsystem, initial project estimates are
made to start the project, and then those estimates are

revised, when necessary, throughout the project's life. For

117

example, to handle a project that is perceived to be behind
schedule, plans can be revised to (among other things) hire

more people, extend the schedule, or do a little of both.

With this overview of the model's subsystems, and their
interrelationships, we are almost ready to proceed to a more
detailed description of each of the four subsystems. Because
all the subsystem diagrams will be in terms of the schematic
conventions used in system dynamics, Qe feel it would be
useful to preface the discussion of the model's subsystems

with an introduction to these conventions.

I1I1T1.4.2. System Dynamics Schematic Conventions:

From a System Dynamics perspective all systems can be
represented in terms of "level" and "rate" variables, with

"auxiliary" variables used for added clarity and simplicity.

A level is an accumulation, or an integration, over time
of flows or changes that come into and go out of the level.
The term "level" is intended to invoke the image of the level
of a liquid accumulating in a container. The system
dynamicist takes the simplifying view that feedback systems
involve continuous, fluid-like processes, and the terminology

reinforces that interpretation.

The flows increasing and decreasing a level are called

118

rates, Thus, a manpower pool would be a level of people that
is increased by the hiring rate and decreased by the firing

and/or quit rate,

Rates and levels are represented as stylized valves and
tubs, as shown below, further emphasizing the analogy between

accumulation processes and the flow of a liguid.

n—%——’ LEVEL X i

RATE RATE

The flows that are contfolled by the rates are usually

diagramed differently, depending on the type of quantity

involved. We will use the two types of arrow designators

shown below:

INFORMATION
FLOWS

|

OTHER FLOWS
(e.g., PEOPLE, SOFTWARE)

v

Flows will always, of course, originate somewhere and
terminate somewhere. Sometimes, the origin of a flow is
treated as essentiall& limitless, or at least outside the
model-builder's concern. In such a case the flow's origin is
called a source. Similarly,‘§hén the destination of a flow
is not of interest, it is called a sink. Both sources and

sinks are shown as little "clouds."

119

SOURCE : SINK

All tangible variables are either levels or rates i.e.,
they are either accumulations of previous £flows or are
presently flowing. But there is one more type of information
variable, which is called an auxiliary. Auxiliary variables
are combinations of information inputs into coﬂcepts e.g.,
"desired workforce," or policies e.g., "training policy."

Auxiliaries are répresented by a circular symbol.

A few other symbols will complete the designation of
.items included in formal system dynamics diagrams. In

addition to the variable symbols shown above, models also

120

INPUT -

= = =—POUTPUT

OuUTPUT

include constant terms, i.e., parameters of the model whose
values are assumed to be unchanging throughout a particular
computer simulation. Constants are pictured as is shown
below, the name of the constant being wunderlined, with an
information arrow going to the variable that is affected by

the constant.

CONSTANT

Finally, because complex models are often diagramed in
multiple displays, situations arise in which wvariables
pictured on one diagram are used in another diagram. ' These
variable cross-references are shown by including the name of

the other diagram's variable in parentheses as shown below.

121

INFLUENCING VARIABLE BEING
e — — VARIABLE THAT IS —_—— INFLUENCED ON
ON OTHER DIAGRAM OTHER DIAGRAM

III.4.3. Human Resource Management:

The Human Resource Management Subsystem is depicted in
Figure 1III.3. As the figure indicates, a project's total
workforce is comprised of two workforce levels, namely,
"Newly Hired ﬁorkforce" and "Experienced Workforce."
Disaggregating the workforce into these two categories of

employees was done for two reasons.

First, newly hired project members pass through an
"orientation phaée" during which they are less than fully
productive (Canning, 1977), (Cougar and 2Zawacki, 1980),
(Weil, 1981), (Wolverton, 1974), (Chrysler, 1978), (Tanniru
et al, 1981), (James, 1), (Lombardi, 16), and (Hisamune, 26).
(Remember, a reference citation in the form (name, i) where
"i" is a number between 1 and 27, refers to one of the 27
interviews of Exhibits III.2. and III.3.) The orientation
process has both technical as well as social dimensions. On

the technical side,

122

TRPNHR

TRAINEES PER +. <
~

NEW HIREES

HIRING
DELAY

HIREDY
-~

\
\

\

Vi

~

DMPTRN

ADMPPS
AVERAGE DAILY
MP PER STAFF

O

HIRERT m

HIRING !
RATE

1
!
i
t
1
|
\
\

1

-

ﬁl/
~

AN

MNHPXS

+ MOST NEW

- HIRES PER
FJ EXP. STAFF

DAILY ~
MANPOWER . N
FOR | o AN
TRAININ AVERAGE AVERAGE \
ASSIMILATION EMPLOYMENT
! DELAY ' TIME \
! ASIMDY { AVEMPT \
| —o— t -6 \
1 / ! . \
' -—=. ‘ \
S & N $ & S~ s \
WENEW L WFEXP L .
> NEwWLY |
> EXPERIENCED i@
_&umnmomom AN WORKFORCE AN 1
= ASIMRT N R QUITRT |
nmw_ﬂ"_onmm e <. QUIT RATE 1
I} \ L N / !
NEWTRR) RATE \ AN / 00.
2m<><_-<1:_mmm~°> \ \ N / I’
TRANSFER RATE EXPTRR . \ -—
EXPERIENCED \ ,
P TRANSFER RATE . - QD
’ TOTWF ’ .
4 N 4 A Y
N TOTAL Vs N -~
—4— WORKFORCE —5—
TRNSDY . TANEDY ()]
Sy
TRANSFER
“DELAY TRANSFER F
DELAY

~

¢

WFNEED
WORKFORCE V
LEVEL NEEDED

123

..+ (newly hired) personnel often require considerable
training to become familiar with an organization's
unique mix of hardware, software packages, programming
techniques, project methodologies and so on (Winrow,
1982).

And paraphrasing Schein (1980) on "social orientation:"

+.eo (it) refers to the processes of teaching the new
recruit how to get along in the organization, what the
key norms and rules of conduct are, and how to behave
with respect to others in the organization. The new
recruit must learn where to be at specified times, what
to wear, what to call the boss, whom to consult if he or
she has a question, how carefully to do a job, and
endless other things which insiders have learned over
time. ‘

Of course, not all new project members are necessarily
recruited from outside the organization, some might be
"recruited” ffom within e.qg., transferred from other
projects. For this type of employee, there will still be a
"project orientation” period (Brooks, 1978) e.g., to learn
the project's ground rules, the goals of the effort, the plan
of work, and all the details of the system (GRC, 1977),
(Thayer and Lehman, 1977). Although obviously 1less costly
than the "full orientation" needed by an out-of-company
recruit, project orientation can still be a significant drag
on productivity, especially when a project lacks adequate
documentation (Canning, 1977). 1In a GRC (1977) report it was
noted that when workforce additions are made to "rescue" a

project e.g., that is behind schedule, it is often the case

124

that such a.project also suffers from sparse and outdated

documentation.

The important point to be made here is that, because of
the "orientation phase," "Newliy Hired Workforce" are, on the
average, less producfive than the "Experienced Workforce."
Later, in our discussion on "Productivity" within the
Software Production Subsystem in Section 1I1I1.4.4., we will
take another closer look at this issue in order to quantify

this productivity differential.

This productivity differential was the first reason to
disaggregate the workforce. The second reason was to capture
the training overhead involved in adding new members to a
software development project. This training of newcomers,
both "technically" and "socially," is usually carried out by
the "oldtimers" (T7), (Corbato and Clingen, 1979), (GRC,
©1977), (Winrow, 1982), (Bott, 1982), (Lombardi, 16), (Thayer
and Lehman, 1977). This 1is costly, because "while (the
oldtimer) 1is helping the new employee learn the Job, his own

productivity on his other work is reduced"” (Canning, 1977).

The determination of the amount of effort to commit to
the training of new employees is made, we found, on the basis
of managerial intuition and organizational custom. There are
no proposed formulas in the literature, nor did we find any

in the organizations we interviewed in. We did find,

125

however, rules-of-thumb, and these ranged from committing 15%
of an experienced employee's time per new employee (Hisamune,
21) to a 25% commitment (Nichols, 18). In the model, the
value of the parameter "Trainers per New Hiree" 1is set to
0.20 i.e., on the average each new employee consumes in
training overhead the equivalent of 20% of an experienced
employee's time for the duration of the training or

assimilation period.

Estimates for the average assimilation period vary
between 2 months (Lombardi, 16) and 6 months (Corbato and
Clingen, 1979) (Brandon, 1970). In the model, the "Average
Assimilation Delay" is set to 80 days. (Note: "Days" in the
model represent working days. One week is five working days,
and one year is 48 working weeks.) Thé assimilation delay is
formulated in the model as a first-order exponential delay.
Such delays are primary building-blocks of system dynamics
models, and they are extensively wused in this model. 1In
Exhibit I1II.4., we show how a first-order exponential delay
looks schematically, how it is formulated mathematically, and

how it behaves over time.

Thus, if a number say L(0) of project members are
recruited at time (0), they will be assimilated into the
experienced workforce pool at a rate similar to the one shown
in the figure of Exhibit TII.4. That is, some will be

assimilated quickly e.g., those recruited from within the

(A) SCHEMATIC)

126

AVERAGE
TIME
DELAY

(T)
—5—

LEVEL ' 2&:;;

L]

(B) MATHEMATICAL At any time (t),

(C) BEHAVIOR

INFORMATION 3
R(t) = L(t)/ T

Also,
d L{t) =-R(t) =-L(t)/ T
dt

Separating variables and integrating both sides yields,

L(t) = i(0) &7

And it can be shown that the average time spent in

in the delay = T
L 4

L(T)=.37L(0)
/ L(2T)=.135L(0)

L(3T)=.05L(G)

T 27 3T

EXHIBIT 111, &

127

company, others will take a much longer time e.g., new hirees
fresh from school, while the average new employee will be
assimilated at the "Average Assimilation Delay" i.e., in 80

days.

On deciding upon the "Total Workforce" level (i.e.,
newly hired plus experienced workforce) desired, project
management considers a number of factors. One . important
factor is the current scheduled completion date of the
project. As part of the planning function (see Section
111.4.6. for details), management determines the workforce
level that it believes is necessary to complete the project
tasks perceived to be remaining within the scheduled
completion time. In addition to that, consideration is also
given to the “"stability of the workforce." Thus, before
hiring new project members, management tries to contemplate
the duration of need for these new members. Different firms
weigh this factor to various extents. In general, however,
the relative weighing between the desire for workforce
stability on the one hand and the desire to complete the
project on time, on the other, changes with the stage of
project completion. For example, toward the end of the
project there could be considerable reluctance to bring in
new people, even though the time and effort perceived
remaining imply more people are needed. It would take too
much time to acquaint new people with the mechanics of the

project, integrate than into the project team, and train them

ol

)
{
e e

The Libraries
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Institute Archives and Special Collections
Room 14N-118
(617) 253-5688

" There is no text material missing here.
Pages have been incorrectly numbered.

129

in the necessary technical areas.

As will be further explained in the "Planning
Subsystem," based on the above two considerations, management
determines the "Workforce Level Needed." This level,
however, still does not automatically translate into a hiring
goal for the human resource management function. A further

consideration is given to the project's ability to absorb new

people into, to train them and make them an integral part of
a productive team (Brooks, B23). We shall here recognize a
policy, formal or more wusually implicit, that the rate of
hiring of new project members be restricted to that number
which project managment feels its fully integrated staff can

handle (Landolfi, 22) (Chan, 20).

This restriction is formulated in the model wusing the
variable —"Ceiling on New Hirees." Which simply equals the
"Full-Time-Equivalent Experienced Workforce" level multiplied
by the most number of new hirees that a single full-time
experienced staff can be expected to effectively handle. 1In
the model, the value of "Moét New Hirees per Full-Time

Experienced Staff" is set at 3.

Because in some organizations software developers are
assigned to more than one project (i.e., the "Average Daily
Manpower per Staff" per project would be 1less than 1

man-day), the "Full-Time-Equivalent Experienced Workforce"

130

level can be less than the "Experienced Workforce" level.
So, for example, if thére are only 2 experienced project
members, each of which assigning 50% of his/her time to the
project (i.e., "Average Daily Manpower per Staff" = .5) then
we'll have .5 X 2 = 1 "Full-Time-Equivalent Experienced
Staff."” And in that case the "Ceiling on New Hirees" will be

1X3-=3.

The summation of "Ceiling on New Hirees" and the value
of the current "Experienced Workforce" level establishes the
"Ceiling on Total Workforce." The value of this wvariable
constitutes a ceiling on the number of employees sought i.e.,
to be hired. That is, "Workforce Level Sought" would be set
to the value of "Workforce Level Needed" as long as this is
less than or equal to the "Ceiling on Total Workforce."
Otherwise, "Workforce Level Sought" is set to the value of

the latter.

Thus, the three factors: (1) schedule completion time;
(2) workforce stability; and (3) traininé requirements, all
affect management's determination of the "Workforce Level
Sought.” Once the determination is made, management will
face one of three possible situations. First, the "Workforce
Gap" between the "Workforce Level Sought" and the current
"Potal Workforce Level" could be zero i.e., the two levels
are exactly -equal. In that case no further action is

necessary.

131

A second, more likely, situation would be one where the
"Workforce Level Sought" 1is larger than the current "Total
Workforce Level." 1In this case, new employees will be hired.
This, of course, takes time. The delay in hiring software
professionals, is on the average, on the order of several
months (McLaughlin, 1979), Some recruits are generally
available in a short period from elsewhere in the
organization, whereas others (especially when the project
management is seeking special skills, or new college
recruits) will not be available for a much 1longer time.
After averaging these variables, the "Hiring Delay" is set to

40 days (McLaughlin, 1979) (Babich,9) (Hisamune, 26).

The third, and final, possibility would be for the
"Workforce Level Sought" to be less than the current "Total
Workforce Level." 1In this case, project members will be
transferred out of the project. We will assume that if there
are new recruits still in training i.e., in the "Newly Hired
Workforce" 1level, then these will be the first to be
transferred out. If still more transfers are needed, they

would then be made from the "Experienced Workforce" pool.

Those who are being transferred out require some period
of time e.g., for paper work and transfer arrangements,
before they actually leave the project. The average transfer

delay is set in the model to 10 days (Landolfi, 22).

132

Finally, there 1is the effect of turnover on the
project's workforce. Turnover continues, of course, to be a
chronic problem for software project managers. Willoughby
(1977) estimates that annual turnover in the DP field ranged
between 15 and 20% during the 1960s, declined to about 5% in
the early 1970s, and began to rise again by the end of the
decade. More recent studies place the annual turnover rate
at 25.1% (Tanniru et al, 1981), 30% (Richmond, 1982) and even
as high as 34% (Bott, 1982).

Turnover is captured in the model, through the "Quit

Rate" of T"Experienced Workforce." That is, we are assuming

no turnover among the "Newly Hired Workforce," since it is
quite wunlikely for a new recruit to quit within 80 days of

joining the project (i.e., during the assimilation period).

The annual turnover rate is set in the model to 30%.
This translates into an "Average Employment Time" of 673
days. To see why, first notice from Figure III.3. that the
"Quit Rate" 1is (as was the "Workforce Assimilation Rate") a
first-order exponential delay. So, we can use the equation

of Exhibit III.4.,

L(t) = L(0)*e-t/T
where,
L = Experienced Workforce (men)
t = time (years)
T = Average Employement Time (years)

133

For a 30% annual turnover rate,
0.70L(0) =L(0)*e-'/T
Thus,
T

1/-1n(.70) = 2.8 years
Which translates into 673 days, since one year is 240 working

days.

111.4.4, Software Production:

There are four primary activities in the Software
Production Subsystem, namely, development, quality assurance,
rework, and system testing. The development activity
comprises both the design and coding of the software. As the
software is being developed, it is also reviewed e.g., using
structured-walkthroughs, to detect any design/coding errors.
Errors detected through such quality assurance (QA)
activities are then reworked. Not all errors will be
detected during the development phase, however, some will

"escape" and remain undetected until the testing phase.

This subsystem is too complex to diagram and explain as

one piece. We will, therefore, break it into four sectors,

namely:

(A) Manpower Allocation
(B) Software Development

(C) Quality Assurance & Rework

134

(D) System Tgsting

These sectors ill be connected, not only thfough
information-type varfiables, but also through flows e.g.,
software will flow fgom the "Software Development"™ sector to
the "QA & Rework"‘ sector and from there to the "System
Testing" sector. Toj diagram such inter-sector flows we will
make use of a new symbol, a "sector-symbol.." The symbol was

proposed by Morecroft (1980), and is shown below:

SECTOR

The shape of [the symbol has been selected to avoid any
ambiguity or oveérlap with the stan?ard system 'dynahics
symbols. Figure [II.4. shows how, for example, the symbol
will be wused to|depict the flow of software into and out of

the "QA & Rewvork"| sector.

(A) Manpower Allogation:

The "Total Dpily Manpower" available for the project is

135

SOFTWARE
DEVELOPMENT
SECTOR

SOFTWARE

QUALITY ASSURANCE & REWORK

SOFTWARE

SYSTEM

TESTING
SECTOR

Figure lil.4

136

simply a function of the "Total Workforce" level and the
"Average Daily Manpower per Staff." In some organizations,
software professionals are assigned to one project at a time.
In such a case the "Average Daily Manpower per Staff" would
be 1 man-day i.e., each staff member contributes 1 man-day
every day on the project. In other organizations, however,
software professionls are assigned to more than one project.
So, for example, if on the average each staff member is
assigned to say two projects on a 50-50 basis, then the
"Average Daily Manpower per Staff," for each of the projects,

would be 1/2 man-day.

Part of the available manpower will be consumed in
training overhead, as was explained in Section I1I1I1.4.3. The
"Daily Manpower Available after Training Overhead" is what is
then allocated to quality assurance, rework, software

development and testing.

Quality assurance is defined in Pressman (1982) as a set
of activities "... performed in conjunction "with (the
development o0f) a software product to guarantee the product
meets the specified standards. These activities reduce
doubts and risks about the performance of the product in the
target environment." Several techniques are used including
walkthroughs, reviews, inspections, code reading (a process
where code 1logic and code format 1is scrutinized by a

programmer other than the original designer), and

PJBAWK
(% OF JoB
WORKED ~

(SCHPR }.
SCHEDULE ¢~ ~ ~ _
PRESSURE =~

(

(

ARWMPE
ACTUAL REWORK

MANPOWER NEEDED

DESRWD

PFMPOA

PLANNED
FRACTION
OF MP

FOR OA

M

\

\
\

A |

PRWMPE
PERCEIVED
REWORK MP
NEEDED PER
ERROR

q

DESIRED REWORK +\ <

DELAY

DSCERR \ _~
DISCOVERED
ERRORS

DESECR
DESIRED
ERROR

AFMPQA
ACTUAL
FRACTION
OF MP
FOR 0A

137

ADMPPS
AVERAGE_DAILY
MANPOWER
PER STAFF

DMPRW
DALY
MANPOWER
ALLOCATION
FOR RW

P

Figure llI.5

/

TOTDMP
TOTAL

AVAILABLE
AFTER TRNG
OVERHEAD

d

A

A

TOTWF)
TOTAL
WORKFORCE

DAILY MANPOWER

DMPTRN)
FOR TRAINING

138

integration-testing (Jones, 1982) (Daly, 1977). Not included
in this activity is unit or module testing, which is commonly

considered to be part of the coding process (Mckeen, 1979).

There is a lack of data in the 1literature on actual
quality assurance effort expenditures. There are, instead
estimates, e.g., 6% of development effort (Knight, 1979), and

15-20% (Boehm, 1981).

In the organizations we interviewed in, estimates for
the QA effort included 10% (Nichols, 27), 15% (Landolfi, 22),

and in one case as high as 25% (Hisamune, 26).

In the model, the "Planned Fraction of Manpower for QA"
will be set to a uniform 15% level. Notice, though, that in
Figure III.5. the variable "Planned Fraction of Manpower for
QA" is shown to be a function of "% of job worked." This
will allow us to experiment with other QA policies i.e., ones
in which the QA effort is not wuniformly distributed

through-out the life cycle.

As indicated in Figqure III.5., the "Actual Fraction of
Manpower for QA" can be different from the "Planned Fraction
of Manpower for QA" because of schedule pressures. Several
authors have observed that as schedule pressures mount,
qﬁality assurance activities are often relaxed (Mitchell,

1980) (Shooman, 1983) (Devenny, 1976) (Ergott, 197%). For

139
example, paraphrasing Glass (1982):

Modules and changes were initially inspected in depth
but with less severity as work pressure increased and
greater risks were taken to meet delivery schedules.

Walkthroughs and inspections are wusuvally the larger
casualities. Under schedule pressures, they are not only
relaxed, but often they are altogether suspended (Fagan,

1976). Hart (1982) provided an explanation:

As the project progressed, there were the usual
pressures to meet the project deadline. The
walkthroughs were a natural area of concern in the
schedule, since they represented a significant time
commitment before their effectiveness was obviously
demonstrated...

As the deadline neared, there were pressures to hurry
the walkthrough and, eventually, to 'temporarily
suspended' them.

In the model, "Schedule Pressure" 1is formulated as

follows,
Schedule Pressure = (TMDPSN - MDRM) / MDRM
where,

TMDPSN = Total Effort Perceived to be
still needed to complete the
project (Man-Days)

MDRM = Total Effor£ remaining in

current plan (Man-Days)

Thus, when the project is perceived as being completely

140
on target i.e.} effort still needed is exactly equal to the
effort actually remaining in the project's budget, schedule
pressure will be =zero i.e., no schedule pressure. But, if
the effort perceived still needed is say 150 man-days, while
in the project's budget there is only 100 man-days left, then
schedule pressure 1is 0.5. Conversely, if what is perceived
to be still needed is less than what 1is remaining, than
schedule pressure will be less than zero i.e., there is a

slack.

The effect of schedule pressure on "Actual Fraction of
Manpower for QA" is assumed to be as shown in Figure III.6.
Such a graph i.e., that depicts a relationship (usually
nonlinear) between two variables in a system dynamics model,
is called a "Table Function." Table functions are used

extensively in system dynamics modeling.

Table functions would be based on measurements, if such
measurements are available. In many cases (including this
one), however, measurements are not available i.e., there are
no published data on the effect of schedule pressure on the

QA effort.

There seems to be a general misunderstanding to the
effect that a mathematical model cannot be undertaken
until every constant and functional relationship is
known to high accuracy. This often 1leads to the
omission of admittedly highly significant factors (most
of the 'intangible' influences on decisions) because
these are unmeasured or unmeasurable. To omit such
variables is equivalent to saying they have zero effect

141

A % Adjustment to
“Planned Fraction of
Manpower for QA" -
0 ¢
-20 -
=40 -
-60
-80 -
-100 u T . . e >

o .1 2 3 4 5 6 .7 .8 Schedule
: Pressure

Figure Ill.6

142

cee probably the only value that 1is known to be
wrong ...

A mathematical model should be based on the best
information that is readily available, but the design of
a model should not be postponed until all pertinent
parameters have been accurately measured. That day will
never come. Values should be estimated where necessary
.e. (Forrester, 1981).

Because of the lack of published measurements, it was
necessary to estimate the relationship between schedule
pressure and the QA effort. To give the reader a flavor of
how both judggment and available information are used to
formulate a Table Function, we will go through the -

formulation of Figure III.6. in some detail.

There are three potential considerations in formulating
a table function: Slope, one or more specific points, and

shape.

The slope of the relationship between schedule pressure
and adjustments to QA effort is easy to determine. It must
be negative, since, as the above quotes indicate, as schedule

pressure increases, QA effort decreases.

We can also identify at least one point "on the graph
quite straight forwardly. It is the point (0,0) i.e., in the
absence of any schedule pressure (i.e., "Schedule Pressure"
is Zero), the % adjustment to the planned fraction of
manpower effort for QA will be zero i.e., actual QA effort

will be equal to the planned effort.

143

As schedule pressure mounts, quality assurance
activities are relaxed i.e., cuts are made into the planned
QA 'effort. QA activities are not, however, eliminated
completely e.g., while walkthroughs might be decreased or
even temporarily suspended, integration testing might not.
In the judgement of the project managers we interviewed,
planned quality assurance activities could be cut by as much
as 50% under severe schedule pressures, which were defined as
situations in which "Schedule Pressure" is equal to or
greater than .5 (Gage, 4) (Babich, 9) (Nichols, 25)
(Hisamune, 26). On the basis of these judgements (the best
available information), the point (.5, -50) of Figure 1III.6.

is identified.

The final step was to figure out the shape of the
negatively sloping curve connecting the two points (0,0) and

(.5, -50).

It is reasonable to expect the curve flattens out at the
two extreme points. As schedul® pressure starts to rise,
people react} not only by cutting conners, they also start
working harder (Boehm, 1981). This absorbs some of the
effects of schedule pressure on QA effort allocations at the
vicinity of point (0,0). Also, as indicated above, as
schedule pressure increases it gradually reaches a saturation
point at which it ceases to affect further adjustments to the

QA effort i.e., the curve flattens at (.5, ;50). And

144

finally, these two extreme flat parts of the curve are
connected by a negatively sloping smooth curve. "Any sharply
bent or kinked curve is probably not realistic. A bend or
kink implies something special about the exact conditions at

which the bend or kink occurs" (Graham, 1980).

Now, we resume our discussion of this section's main
topic, namely, the allocation of the project's manpower
resource. So far we have accounted for manpower resources
consumed in training and quality assurance activities. The
remaining bulk of the manpower resource, labelled in Figure
I11.5. as the "Daily Manpower for Software Production," is
to be allocated to software development (i.e., design and

coding), testing, and rework.

As software errors are detected through the quality
assurance activities, manpower effort is allocated to correct
them. The amount of daily effort allocated is a function of
both the "Desired Error Correction Rate" i.e., the daily rate
at which these discovered errors are to be corrected, and the
"Perceived Rework Manpower Needed per Error." In other
words, the effort is allocated on the basis of the rework job

to be done, and the perceived rework productivity.

The "Perceived Rework Manpower Needed per Error" |is
diagramed in Figure 1III.5. as a special kind of a level,

namely, one with an input that is not a rate. This 1is a

145

"shorthand notation" for an exponential smoothing operation.
That is, "Perceived Rework Manpower Needed per Error" is the
exponential smooth of its input, the "Actual Rework Manpower
Needed per Error.," (Because smoothing or averaging of
information accumulates that information, a smoothed variable

is represented by a level's rectangular symbol.)

Why smooth? Because, "Full and immediate action is
seldom taken on a change of incoming information (e.g., on
the sudden drop in yesterday's rework productivity) ...
(There 1is a) tendency to delay action until the change is

insistent ..." (Forrester, 1961).

A full schematic representaion of the smoothing
operation is shown in Figure 1III.7., together with its
mathematical formulation. (Readers familiar with smoothing
formulations may want to observe that the equation for a
smoothed variable can be written in the familiar
weighted-average form for exponentiél smoothing.) 1In Figure
III.7., we also show the behavior of the "smoothed variable"

in response to a spike in the "variable to be smoothed."

Thus, a sudden change (e.g. increase) in the "Actual
Rework Manpower Needed per Error," will not initially affect
the project member's rework-manpower allocation decisions.
1f, however, the increase pefsists over a period of timé, the

change will be perceived as permanent (i.e., "Perceived

146

VAR
Variable
10 be
smoothedZ
\
\
, P il
- (=)| SVAR
(A) . Smoothed
SN : variable
‘)
/
/
’
—f—
STIME
Smoothing
time

(B) SVARy = SVART_1 + AT (VARpq - SVART-I)
: STIME

) ' /Variable

- Smoothed

’ (C) ,/’ \\'\ /variable

Time

Figure .7

147

Rework Manpower Needed per Error" catches up with the actual)
and thus incorporated in the allocation decision making

process. The smoothing time is set in the model at 10 days.

As mentioned above, the amount of daily effort allocated
for rework activities 1is a function of not only the
"Perceived Rework Manpower Needed per Error," but also the
"Desired Error Correction Rate," 1i.e., the daily rate at
which the discovered errors are to be corrected. For
example, if it is desired to correct one error a day, and if
it 1is perceived than one Man-Day is needed on the average to
correct an error, then one Man-day will be allocated daily

for rework activities.

The "Desired Error Correction Rate" is the value of the
total number of discovered errors divided by a "Desired
Rework Delay." When an error is detected, it, usually, is
not immediately corrected. Some time elapses before a
software professional "deals" with it. In a TRW study
(Thayer et al, 1978) this delay was found to be iﬂ the range
of 8—1é days. The "Desired Rework Delay” is set in the model

to 15 days (James, 1) (Lombardi, 16).

As is shown in Figure 1III.5., after manpower is
allocated to rework activities, the remaining (often larger)
poertion of the "Daily Manpower for Software Production" is

devoted to the development (i.e., design and coding) and

testing activities$

below in Sectors (

(B) Software Déve]

148

These activities are discussed in detail

B) and (D) respectively.

opment :

Figure III.8|

i.e., the design

software project ﬁ

"Tasks." Thus,

terms of "tasks per day,"

"tasks" developed

’

terms of "tasks pefr man-day."

"Task"™ will Dbe

productivity.)

As we indicate¢d earlier, after manpower allocations

made for training
the remaining bulk
allccated to the

continues until it

development tasks
Testing phase is
utilization is af

"Fraction of Effort

"Fraction

zero, i.e., no effort is allocated for System Testing.

all development

ill be defined in

the

provided

rasks

depicts the software development process

and coding of the software product. A

terms of a number of

software development rate will be in

software developed in terms of

and software development productivity in
definition of

(A precise a

shortly, when we discuss nominal

are

quality assurance, and rework activities,

of the available manpower resource 1is
development of the software product. This
is perceived that most of the software

are completed, at which point the System

initiated. This switch in manpower

fected in the model through the variable

for System Testing." The value of

of Effort for System Testing" is initially set at

When

are perceived to be completed, the

149

K PJBSZ

«{ PERCEIVED)
,’ JOB SIZE

FREFTS
FRACTION
OF EFFORT

FOR SYSTEM
TESTING

DMPSDV
DAILY
MANPOWER
FOR S/W

DEVELOPMENT,

TASKS PERCEIVED
REMAING .

\ NS
\
\{ TSKPRM) D

S/wW DEVELOPMENT/
TESTING

‘{ DMPDVT

DAILY MANPOWER FOR>
e

s

SDVRT
SOFTWARE

DEVELOPMENT
RATE

TASKS
DEVELOPED

AN SDVPRD
> SOFTWARE
DEVELOPMENT

PRODUCTIVITY

QUALITY

ASSURANCE
& REWORK
SECTOR

Figure IIl.8

150

value of the "Fraction of Effort for System Testing" becomes
a 1, 1i.e., 100% of the effort available for software
developmenf/testing is utilized in system testing activities.
The switch is not abrupt, however. There is, wusually, some
overlap between the development and testing phases (Thibodeau
and Dodson, 1980) (Daly, 1977) (Hartwick, 1980). For
example, the design of test cases usually ’commences towards
(not at) the end of the software development phase (Adrion et
al, 1982). This overlap of the phases is captured in Figure
II1.9. It shows the assumed gradual increase in the value of
the "Fracfion of Effort for System Testing" as a function of
the fraction of development tasks perceived remaining.

During the software development phase, the rate at which
the software will be developed will be a function of not only
how much ménpower is utiliz;d, but in addition, it will also
depend on’the productivity of the software developers (as is

shown in Figure III.8.).

"Software Development Productivity" is a function of a
complex set of factors, and as such it comprises a
significant portion of the model. We are, therefore, using a
separate figure, to provide a detailed depiction of its

formulation.

Our formulation of the productivity of the software

development group is based on a model of group productivity

151

f Fraction of Effort
for System Testing
1.0 1 |
.8
.6
4 -
2
)] T >
0 1 2 3

Tasks Perceived Remaining

Perceived Job Size

Figure .9

152

in the Psychology literature proposed by Ivan Steiner (1966).

The model can be simply stated as follows:

Actual Productivity = Potential Productivity -
Losses Due to Faulty Process
Where Losses due to faulty process refer basically to

communication and motivation losses

Potential productivity is defined as the maximum level
of productivity that can occur when an individual or
group employs its funds of resources to meet the task
demands of a work situation. It is the 1level of
productivity that will be attained if the individual or
group makes the best possible use of its resources (that
is, if there is no loss of productivity due to faulty
process)... Potential Productivity can be inferred from
a thorough analysis of task demands and available
resources, for it depends only upon these two types of

variables.
Actual productivity, what the individual or group does
in fact accomplish, rarely equals potential

productivity. Individuals and groups usually fail to
make the best possible use of their available resources.
Problems of coordination and/or motivation are
responsible for inadequacies 1in process, and for
consequent losses in productivity (Steiner, 1966).

The three pieces of Steiner's model, namely, actual
productivity, potential productivity, and
communication/motivation losses are all incorporated in the
formulation of Figure II11.10. Their structures fall in the
middle part, the left part, and the right and bottom parts of

the figure, respectively.

According to Steiner, potentiél productivity is a

function of two determinants, the nature of the task and the

NOMINAL POTENTIAL
PRODUCTIVITY~EXP

NPWPEX
—-

AVERAGE
NOMINAL
POTENTIAL

POTENTIAL
PRODUCTIVITY -

MPPTPD
MULTIPLIER
TO POTENTIAL

TOTAL MAN-DAYS
PERCEIVED ~

(TMDPSN
STILL NEEDED

PERCEIVED

EXCESSES IN
MAN - DAYS

'
MDRM }Y i
MAN - DAYS
REMAINING

(

FTEQWF

FULLTIME &
EQUIVALENT WORKFORCE

(

152.1

WFEXP

EXPERIENCED
NOMINAL POTENTIAL 7/ \ WORKFORCE
PRODUCTIVITY- NEW

NPWPNE
——

COMMOH

WFNEW COMMUNICATION
@ NEWLY HIRED OVERHEAD
- WORKFORCE

FRWFEX .
FRACTION OF
WORKFORCE

TOTAL

TOTWF)
_ 2"\ WORKFORCE

/ OF MAN-DAYS I*
ON PROJECT '\

EXPERIENCED EXHAUSTION
DEPLETION
DELAY TIME (
EXHDDY
—a
SVDPRD -
SOF TWARE -~
DEVELOPMENT Prd y
. PRODUCTIVITY, R
-, / !
1 Vi
i /7 - /7
! 7 NFMDPJ /
' / NOMINAL 4 EXHLEV
|‘ ! FRACTION EXHAUSTION

AFMDPY
ACTUAL FRACTION
OF A MAN-DAY

ON PROJECT

PJBAWK MXTEX

% OF 408 MAXIMUM

WORKED TOLERABLE 1 ~
EXHAUSTION

HANDLED

/ MAN -~ DAY3 R MAXSHR
/ MAXIMUM
/ \ MAN - DAYS
/ SHORTAGE
, \ HANDLED
' :
/ PMDSHR - \
e PERCEIVED SHORTAGE P \
IN MAN - DAYS g)
RS g MAXPBS
~< - MAXIMUM
R B8OOST IN

MAN - HRS.

Figure Ill. 10

OVWDTH
OVERWORK
" DURATION

THRESHOLD

MODTEX
MULTIPLIER

TO OVWDTH

NOVWDT
NOMINAL
OVERWORK
DURATION
THRESHOLD

153

group's resources. The effects of these two sets of factors
on the productivity of software development has been
investigated in the software engineering literature.
However, because the idea of distinguishing between actual
and potential proauctivity didn't take root in the software
engineering literature (yet), in all such studies the
dependent variable 1is always the actual productivity of

software development.

For example, Scott and Simmons (1974) used the Delphi
technique "to determine what programming project variables
have the greatest impact on programmer productivity." They
identified three resource-type variables including, the
availability of programming tools, the availability ©of
pfogramming practices, and programmer experience, as well as
two task-type variables, namely, the programming language and
the quality of external documentation, as all having

significant influence on productivity.-

Boehm's COCOMO software cost estimation model (1981),
incorporates the following determinants of productivity:

(1) Task-type Variables: Product complexity, required

reliability, memory constraint, and database size.

(2) Resource-type Variables: Software tools available,

turnaround time, and personnel experience.

154

Finally, Chrysler (1978) mapped several research
findings into a model that categorizes the determinants of
software productivity into 6 categories. Three of the
categories were of the task-type, they were "programming
problem characteristics," "Source Language," and "Computer
Hardware Characteristics." The other three categories
included resource-typz factors, and they included "Programmer
Characteristics,” "Organizational Characteristics," and

"Programming Mode."

Notice that most of the above factors, while they would
vary from organization to organization (e.g., availability of
software tools, personnel capability, and computer-hardware
characteristics) and from project to project within a single
organization (e.g., programming 1angu§ge, database size, and
product complexity) they would, however, remain constant
within a single project. From our modeling viewpoint, this
observation is quite significant. It meané that, in modeling
the behavior of a single software development project, most
of the above variables would remain constant and cah,
therefore be simply captured by a single constant parameter
in the model. Such a parameter would then need adjustments
only when modeling different projects and/or different

organizations.

This is achieved in the model through the formulation of

the "Nominal Potential Productivity" parameter. It

155

represents the maximum level‘ of software development
. productivity that can occur when an individual employs
his/her fund of resources to meet the task demands for the
specific work situation modelled 1i.e., a specific project

within a specific organization.

The value of the "Nominal Potential Productivity"
parameter will be defined in terms of a number of
"Tasks/man-day." Which, of course, means that its value
depends on what we define a "Task" to be. This provides us
with two options in modeling different project situations in
which the nominal potential productivity differs e.g., due to
differences 1in the degree of complexity of the project. We
can either fix in the model what a "Task" is defined to be,
and change the value of the "Nominal Potential Productivity"
parameter, or we can do the reverse, that is, fix the value
of the "Nominal Potential Productivity" parameter to say (X)

tasks/man-day, while changing the value of what a "Task" is.

We opted for the second alternative. We will,
therefore, define "Nominal Potential Productivity" to be é
certain number, (X) (to be specified shortly) of
taské/man-day, and formulate "Task" as a parameter in the
model that can be set at different values to reflect

different project and resource characteristics.

A "Task" is essentially some unit for sizing up a

156

software product. In principle, a "Task" can be any
arbitrary unit by which we can measure a software project's
size e.g., it can Dbe defined in terms of lines of code,
function-points, modules, input/output files, ... etc. From
a practical point of view, though, the "lines of code" unit
is the most attractive alternative. Defining our sizing
measure, the "Task", in terms of "lines of code" provides us
with direct access to most published results on software

productivity measurements.

A "Task" is, therefore, defined in terms of a number of
Delivered Source Instructions (DSI). The definition of
Delivered Source Instructions (DSI), as provided by Boehm

(1981), is as follows:

Delivered. This term is generally meant to exclude
nondelivered support software such as test drivers.
However, if these are developed with the same care as
delivered software, with their own review, test plans,
documentation, etc., then they should be included.

Source Instructions. This term includes all program
instructions created by project personnel and processed
into machine code by some combination of preprocessors,
compilers, and assemblers. It excludes comment cards
and unmodified utility software. It includes job
control language, format statements, and data
declarations. Instructions are defined as lines of code
or card images. Thus, a line containing two or more
source statement counts as one instruction; a five-line
data declaration counts as five instructions.

Let us provide an example to further clarify the
concepts of "Normal Potential Productivity" and "Task."

Assume two different software development organizations,

157
(ORG-1) and (ORG-2), have each just completed the development
(i.e., design and coding) of a software project. The two
projects, (PROJ-1) and (PROJ-2), are two completely different
projects (e.g., one is an embedded piece of software for a
military satellite and the other a payroll system), except
that they are both exactly 8000 DSI in size. Now, 1let us
assume that in (ORG~1) the development effort consumed a
total of 400 man-days to design and code the 8000 DSI
(PROJ-1), while 1in (PROJ-2) the development effort was 200
man-days. If for purposes of simplification, we disregard
the communication and motivation losses in both organizations
i.e., assume that actual productivity = potential
productivity, we could then conclude that the potential
productivity in (ORG-1) 1is half that of (ORG-2). This
distiction would be realized in the model as follows: The
"Nominal Potential Productivitf" parameter would be defined
in both runs of the model at the same value, say 1
Task/Man-day, but in the (PROJ-1) run we would define a Task
to be 20 DSI, while in the (PROJ-2) run a "Task" would be set
at 40 DSI. That is, the 8000 DSI project (PROJ-1) will be
defined in the first run as a 400 Task project, while the
8000 DSI project (PROJ-2) would be defined as a 200 Task

project.

We have thus far only addressed one set of factors that
affect the potential productivity on a software development

project, namely, those factors which remain constant

158

throughout =2 particular project. While most of the factors
listed in the literature are of this variety, at 1least two
are not, namely, workforce experience level (Chrysler, 1978)
and increases in project familiarity due to learning-curve

effects (Crowley), (Shell, 1972), (Weinberg, 1982).

~ To capture the effect of experience, we will formulate
two nominal potential productivity parameters, one to
represent the nominal potential productivity of the average
experienced staff member, and the second represents that of
the average newly hired employee. And at any point in time
in the project the "Average Nominal Potential Productivity"
for the workforce as a whole would be the weighted average of
the two parameters, (in which each parameter is weighted by
the fraction of its corresponding employee-type in the total
workforce). . Thus, while the two nominal potential
productivity parameters for the two types of employees
remains constant throughout a project, the project's "Average
Nominal Potential Productivity" may not, since the mix of
experienced and new employees could (and probably would)

change.

We will take the nominal potential productivity of an

average experienced staff member to be ocur reference point,

and define it to have a value of 1 Task/Man-day. The value
of the nominal potential productivity of the average employee

within the newly-hired workforce pool is then determined

159

relative to that 1 Task/Man-day reference point. In the
literature, estimates for the productivity of a newly hired
staff member:relative to that of an experienced staff member
included 0.45 (Weiss, 1973), 0.5 (Okada, 1982), 0.6
(Toellner, 1977), and 0.64 (Boehm, 1981) (Benbasat and
Vessey, 1980). Estimates provided from interviews ranged
from 0.33 (Hisamune,26) to 0.5 (Lombardi, 16). It should be
noted, however, that all these estimates are for actual
productivities and not potential productivities. But since
there is no evidence to suggest that there are significant
differences in the communication and motivation losses
between the two types of employees, we will accept the above
estimates as a "reasonable" approximation for the ratio
between the potential productivities of the two groups of
employees. The value of the nominal potential product&vity
for the average newly hired employee is, accordingly, set in

the model to 0.5 Task/Man-day.

The second factor affecting potential productivity, in
the model, 1is the increased project " know-how due to the
learning-curve effect (Crowley) (Shell, 1972) (Weinberg,
1982). "As a project proceeds, the implementers learn their
job better. The 'learning curve' is the rate of improvement"
(Aron, 1976). Several authors have suggested that an
S-shaped type learning-curve characterizes this "rate of
imbrovement" in the software development .environment

(Crowley) (Weinberg, 1982). Reflecting on his experience af

160

IBM, Aron (1976) estimates that the total improvement for a
medium sized project (e.g., 12-24 months long) would be a 25%

improvement in productivity.

In the model the learning curve effect is formulated as
the variable "Multiplier to potential Productivity Due to
Learning." It is, as is shown in Figure III.11, S-shaped and
it is a function of progress in the project, starting with a
value of 1 at the beginning of the project, and peaking at a
value 25% higher (i.e., at 1.25) towards the end of the

development period.

As defined above, potential productivity is the level of
productivity that will be attained if the individual or group
makes the best possible use of his/its resources (that is, .if
there is no loss of productivity due to faulty process).
However, due to losses caused by communications and
motivation problems actual productivity, i.e., what the
individual or group does in fact accomplish, rarely equals

potential productivity (Steiner, 1966).

In the model, "Software Development Productivity" is
formulated as the product of "Potential Productivity" and the
"Multiplier to Productivity Due to Communication and
Motivation losses." 1In the absence of any communication and
motivation 1losses the multiplier assumes a value of 1, in

which case actual productivity would be equal to potential

16l

Multiplier to

Potential Productivity
Due to|Leaming

1.4 - Y

1.3+

1.2 1 /
1.4 / o
1.0

<

0 1 T T T T —>

'0o .2 .4 6 .8 10

% of a Job Worked

Figure Ill.11

162

productivity. However, losses will occur, and these will
drive the multiplier to values that are 1less than 1, thus
depressing the value of actual productivity to levels below

that of potential productivity.

The "Multiplier to Productivity Due to Communication and
Motivation Losses" has the following interpretation. It
represents the average productive fraction of a Man-Day. 1In
other words, if the nominal man-day for a full-time employee
is 8 hours, because of communication and motivation losses,
the daily contribution by the average employee to the project
will be 1less than 8 man-hours. For example, if the
communication and motivation 1losses amount to a 4 man-hour
loss per day (for the average employee) 1i.e., half the
nominal 8 man-hour value, then the value of the multiplier

would be a 0.5,

The effects of communication and motivation are
multiplicative. Motivation factors first determine the
fraction of a‘man-day devoted to project work. This fraction
will usually have a value less than 1, since time is often
lost on personal matters, coffee-breaks, and other
miscellaneous non-project related activities. Communication
losses refer tn project-type communication losses, and are
thus formulated as a fraction of "project hours" 1i.e., the
hours devoted to project work, hénce the multiplicative

formulation of the two components of productivity loss. The

163

detailed formulation of the effects of both communication and

motivation losses on productivity are shown in Figure III.10.

In considering the effects of motivation 1losses on
productivity we need to make the same distinction we made
while formulating the "potential productivity" structure,
that is, between those factors that would remain constant
during a single project (while possibly varying between
projects and between organizations) and those that could
change throughout the 1life of the single project. A
reference back to our review of the literature on motivation
(in Chapter II) would indicate that most of the motivational
factors 1identified and studied e.g., possibility for growth,
advancement, responsibility, salary, company policy and
administration, ... etc., are of the former variety i.e.,
factors that tend to characterize the overall organizal
setting and climate. Such invariant factors would therefore
be "implicitly" incorporated within the definition of the

potential productivity parameters.

"Another ﬁotivation approach which 1is particularly
appropriate to the data processing area is goal setting"”
(Bartol and Martin, 1982)., The authors further suggest that
project goals and schedules can play a significant
motivational role throughout the 1life of a software

development project.

164

Boehm (1981) went a step further and provided the means
to "operationalize" this idea. He suggests that the
motivational fole of schedule pressures and project deadlines
is to expand or contract the project members' "slack time."
The slack time being the fraction of project time lost on
off-project activities, e.g., coffee-breaks, personal

business, non-project communication, ... etc.

The motivation mechanism in the model 1is designed to
capture this motivational impact of schedule pressures on
"slack time." That is why, motivation losses are formulated,

as indicated above, in terms of man-hour losses.

In the absence of schedule pressures, which can be
either positive (i.e., when the project is perceived to be
behind schedule) or negative (i.e., when the project |is
perceived to be ahead of schedule), the fraction of daily
hours allocated to project-related work by the average
full-time team member is defined by the parameter "Nominal
. Fraction of a Man-Day on Project." 1In designating a value
for this parameter, we were able to draw upon the experiences
of our interviewees as well as that of é large number of
authors. And we found that most of the estimates were
clusteeed within the 50-70% range, e.g., 50% (Brooks, 1978)
(Nichols, 25), 50-60% (Gehring and Pooch, 1977) (Pooch and
‘Gehring, 1980), 60% (Basili and Zelkowitz, 1979), and 70%
(Boehm, 1981). 1In addition, Stalnaker (1968) reported on the

165

results of a large study that investigated how software
professionals utilize their time. The findings indicated, on
the basis of over 7000 observations of a group of production
programmers, that 35% of the time was 1lost on "Personal
activities," "being away or out," and other "miscellaneous"
non-project related activities. Furthermore, within the
remaining 65% of the available working time, there were
further losses e.g., time spent on mail, company business,

* o 0 etc.

On the basis of the above findings, the value of the
parameter "Nominal Fraction of a Man-Day on Project" was set
to 60% i.e., in the absence of schedule pressures, a
full-time employee would allocate, on the average,
0.6 X 8 = 4.8 hours to the project (assuming an 8-hour day).
Under these nominal.conditions, therefore, the "contribution”
of motivation 1losses to the "Multiplier to Productivity due
to Motivation and Communication Losses™ amounts, in effect,

to a 40% cut in potential productivity.

The loss in productivity due to motivational factors,
does not, of course, remain constant at the 40% level
throughout the life of the project. The motivational effects
of schedule pressures can push the "Actual Fraction of a
Man-Day on Project" to both higher (under positive schedule
pressure) as well as lower (under negative schedule pressure)

values i.e., leading to motivation losses that would be lower

le6

than the 40% level in the former case, but higher in the

latter.

As shown in Figure 111,10, the "Actual Fraction of a
Man-Day on Project" 1is formulated in the model as a level
variable. Its value 1is set, at the initiation of the
" project, to the value of "Nominal Fraction of a Man-Day on
Project" i.e., at 60%. And it maintains that nominal value
at the absence of any schedule pressures. To see how
schedule pressures influence the "Actual Fraction of a
Man-Day on Project," 1let us first consider the effects of

positive schedule pressures.]

Schedule pressure was previously defined as,

Schedule Pressure (TMDPSN-MDRM) /MDRM

where,

TMDPSN = Total Effort perceived to be
still needed to complete the
project (Man-Days)

MDRM = Total Effort remaining in

current plan (Man-Days)

Positive schedule pressures arise whenever the project
is perceived to be behind schedule. That is, whenever the
total effort still needed to complete the project is
perceived to be greater than the total effort actuélly

remaining (i.e., when the numerator in the schedule pressure

167

equation 1is positive). Such a difference represents a

perceived shortage in man-days on the project.

When confronted with such a situation, software
developers tend to work hérder, i.e., allocate more man-hours
to the project, in an attempt to compensate for the perceived
shortage and bring the project back on schedule (Larkin)
(Ibrahim, 1978) (McGowan, 3) (Babich, 9) (Lombardi, 16)
(Nichols, 18) (Sheldon, 19) (Chan, 20) (Hisamune, 21). In
one experiment, Boehm (1981) found that the number of
man-hours increases by as much as 100%. And he asserts that
most of the gains are achieved by "reallocating (i.e.,
compressing) peoples' slack time." In other words, under
schedule pressure, people tend to spend 1less time on
off-projecé activities such as personal business and
non-project communicetion. This then decreases the man-hours
lost per man-day, while increasing the daily man-hours

allocated to the project.

Recall that the value of the "Nominal Fraction of a
Man-Day on Project" was set to 60%, which translate into 4.8
hours of project work per man-day. This would seem to
indicate that, at most, another 3.2 hours per man-day can be
gained under schedule pressure (assuming an 8-hour day),
i.e., a 67% increase. And since it is quite unlikely that
‘people would in fact allocate every minute of their 8-hour

working day té project work, the attainable increase will be

168

even less than 67%. How then could we explain the 100%

increase reported by Boehm?

A 100% increase 1is attainable because workers, in
addition to partially compressing their slack time, may also
work overtime hours. For example, by working 12 hours a day
at B80% efficiency, a team member would be allocating 9.6

hours to the project i.e., double the nominal 4.8 hours.

In fact, by further compressing the slack time (say to
10 or 15%) and/or increasing the overtime hours, an increase
of more than 100% could be achieved. But this would cause
actual productivity to be larger than potential productivity,

which by definition should not be possible. That is, by the

current definitions. To accomodate this sétuation, ve,
therefore, amend the definition of potential productivity to
be "the level of productivity that will be attained if the
individual or group makes - the best possible 'use of its

resources under reqular working conditions," and define

"regular" to exclude overtime working conditions.

To recapitulate, when a project is perceived to be
behind schedule, people tend to work harder to bkring it back
on schedule. They do that by compressing their slack time
and/or working over-time, and thus allocating more man-hours
to the project. But what if such a situation persists ...

would workers be willing to work harder indefinitely? The

169

answer, according to our interviewees, was oyerwhelmingly no
[(McGowgn, 3), (Babich, 9), (Lombardi, 16), (Nichols, 18),
(Sheldon, 19), (Chan, 20), and (Hisamune, 21)]. There is, it
was indicated, a threshold on how 1long employees would be

willing to work at an "above-normal" rate.

We refer now to Figure III.10., to explain how the above

set of findings is implemented in the model.

When the project is perceived to be behind schedule
i.e., when the total effort still needed to complete the
project is perceived to be greater than the total effort
actually remaining in the project's plan, two £factors
determine the level to which the "Actual Fraction of Man-day
on Project" 1is boosted. The first 1is the value of the
"Perceived Shortage in Man-days" 1i.e., the value of the
difference between what is needed and what is remaining. 1If
this difference is below some "threshold," then it will all
be handled, 1i.e., the employees will boost the hours they
allocate to the project (e.g., by compressing their slack
timé) to what they perceive is necessary to handle all the
"Perceived Shortage in Man-days." (How they determine this
will be explained shortly.) The °‘second factor is the
"Maximum Shortage in Man-Days to be Handled," and it
constitutes the "threshold" mentioned above. Thus, if the
"Perceived Shortage.in Man-Days" is greater than the maximum

which the employees are willing to handle, we will assume

170

that they would be motivated to work harder to handle that
maximum value, while arranging with management to extend the
schedule so as to handle what exceeas the "Maximum Shortage
in Man-Days to be handled.” (Such extension to the schedule

will be explained in the Planning Section.)

As employees work harder to handle shortages in
man-days, their tolerence for working harder decreases i.e.,
the value of the "Maximum Shortage in Man-Days to be handled"
decreases. For if this were not true, e.g., if this maximum
value was a constant parameter, then a persistent ﬁan-days
shortage at moderate 1levels (i.e., &t levels below the
maximum value} would lead to an above normal work rate

throughout the 1life of the project. And this, would

contradict our finding that "there is a threshold on how long

employees would be willing to work at above normal rate."

At any point in the project, the value of the "Maximum
Shortage in Man-Days to be handled" is determined by the
product of £hree variables, the "Overwork Duration
Threshold," the "Full-Time Equivalent Workforce," and the
"Maximum Boost in Man-Hours." For example, if at a point in
time the workforce of 10 full-time people on the project is
willing to work at an above normal rate for a maximum of 1d
days, and they figure that they can boost their work rate by
as much as 100% (e.g., allocate 9.6 hourg per man-day to the

project instead of the normal 4.8 hours) then they would

i71
conclude that during this 10 day period it 1is possible to
handle 10 X 10 X 1 = 100 Man-days worth of backlogged work,

over and above the regular work planned for that period.

In the model, the value of the "Maximum Boost in
Man-Hours" 1is set, as 1in the examplé above, at a value of

100% (Lombardi, 16) (Nichols, 27).

Estimates by the interviewees for a nominal value for
the "Overwork Duration Threshold" ranged from 8 weeks (Chan,
20) to 12 weeks (Nichols, 27). | In the model we set the
nominal value for the "Overwork Duration Threshold" to 50
working days (i.e., 10 weeks). Once people start working
hardér, their "Overwork Duration -Threshold," which at any
point in time would represent the maximum remaining duration
for which they would be willing to confinue working harder,
would decrease below the nominal value. Thus the "Overwork
Dur#tion Threshold" is formulated as a nominal value (i.e.,
of 10 weeks) that is adjusted downwards by a multiplier. One
option for the multiplier was to have it be a function of the
calendar time during which the project members, have been
working harder. This option was rejected, though, because it
would not differentiate between say a ten day period during
which the staff were working 10% harder, and another ten day
period in which they worked 100% harder. We wanted the
formulation of the multiplier to induce a cut in the

"Overwork Duration Threshold" that would be greater at the

172

end of the latter case.

This was accomplished by formulating the "Multiplier to
the Overwork Duration Threshold due to Exhaustion." Where
"Exhaustion" is simply a level whose value reflects the level
of exhaustion of the workforce due to overwork. The rate at
which this level increases needs, therefore, to be a function
of some measure of overwork. Such a function is shown in

Figure III.12.

Before interpreting Figure III.12., let us first refresh
our memories about some assumptions we've made so far.
First, we are assuming that a full time employee allocates,
on the average, 60% of his or her time to the project (i.e.,
NFMDPJ = 0.6), which for an 8-hour day amounts to 4.8 hours.
Under schedule pressure, more time will be allocated to the
project (i.e., AFMDPJ > 0.6). This would be achieved by
first compressing the slack time, and then 1if needed, by
working overtime. Furthermore, we are also assuming that
there is a "Maximum (Possible) Boost in Man-Hours"™ of 100%

i.e., AFMDPJ can attain a maximum value of 0.6 X 2 = 1.2.

The first thing to note about Figure III.12. is that
when AFMDPJ is less than or equal to NFMDPJ (i.e., when X is
greater than 1) the value of RIEXHL is zero. That 1is, when
people are working at their normal pace (or slower) there

will be no rise in their exhaustion level. This must be so

173

A Y=RIEXHL

21 Overwork Increasing

-.5 o .5 1 x = 1 = AFMDPJ
1 - NFMDPJ

Where,

AFMBPJ=Actual Fraction of a Man-Day on Project
NFMDPJ=Nominal Fraction of a Man-Day on Project

RIEXHL=Rate of Increase in Exhaustion Level

Figure llL.12.

174

by definition, since the "Exhaustion level" in the model is

defined to be that of exhaustion due to overwork.

Second, note that the exhaustion rate is really a
-function of (1-AFMDPJ), since the denominator of (X) i.e.,
(1-NFMDPJ), is a constant term. Also note that the value of
(1-AFMDPJ) is a measure of the average "Slack Time." What we
are sayinag, therefore, 1is that the exhaustion rate of the
workforce is a function 6f the compression in the average
slack time. And the reason 1is this: the exhaustion of
working harder 1is mostly "psychological," rather than
"physiological." That is, people enjoy their slack time
(e.g., coffee breaks, social communications, personal
business, ... etc.), and they would not tolerate prolonged
deprivation of such "breathers." Thus a compressed slack
time exhausts them in the sense that it cuts into their
tolerance level for continued hard work since that would mean

a continued "deprivation" of their slack time.

However, when the value of (1~AFDPRD) approaches =zero
and moves into negative territbry, people would, not only be
compressing their slack time, but they would in addition be

working overtime. At those values, in addition to the

psychological component to exhaustion, there will also be
"physiological™ exhaustion. And that 1is why, the curve

increases at a faster rate for negative values of (X).

The effects of

Threshold" 1is for
Duration Threshold

previously, the |n

And as people starnt
their normal rate,
it reaches a val
nominal value of th
is not enough. It
of overwork, since
days at a rate 50%
to do so at a 100%
the nominal value £
50 working days af
AFMDPJ is approximg
approximately 1,
i.e., at such a wor
Exhaustion level.

level reaches a lev

175

exhaustion on the "Overwork Duration

mulated as the "Multiplier to the Overwork

due to Exhuastion." As we explained

ominal value of the threshold is 50 days.

working harder, i.e., at a rate above

that threshold is cut down, until possibly

ue of zero. But notice that setting the

e "Overwork Duration Threshold" to 50 days

is also necessary to specify at what level

people might be willing to work for 50

above their normal rate, while not willing

increase. We thus amend our definition of

or the "Overwork Duration Threshold" to be

a rate of 8 hours per man-day (i.e., when

tely 1). Notice that when AFMDPJ is

RIEXML in Figure III.12, would be also 1

k rate, each man-day contributes 1 to the

And after 50 such days, the Exhaustion

1 of 50, which should be enough to drive

the "Overwork Duration Threshold" to zero. That level of
Exhaustion is termed the "Maximum Tolerable Exhaustion”
level. That level of exhaustion could of course be reached

in less than a 50 4

hafder (i.e., 1if

if the work rate is
be reached in more
D

the "Overwork

y:

y duration if people are working even

\FMDPJ is greater than 1), and conversely,

less than 8-hours per man-day, it would
than 50 days.. But once reached, it drives
iration Threshold"” to =zero. This 1is

Y

176

accomplished by the formulation of the "Multiplier to the
Overwork Duration Threshold due to Exhaustion," shown in

Figure III.13.

Once a period of overwork comes to an end, either
because the threshold has been reached and/or schedule
pressures ccase, and the workforce returns to a normal work
rate (i.e., when AFMDPJ = NFMDPJ), the workforce's
"Exhaustion level" depletes. The "Rate of Depletion of the
Exhaustion 1level"™ is modeled as a first order exponential
delay, with a time delay equal to 4 weeks. The 4 weeks delay
time was chosen on the basis of discussion with (Lombardi,

23) and (Nichols, 25).

) During the "de-exhausting" period, the workforce remains
unwilling to "re-overwork" (Lombardi, 23) (Nichols, 25).
This is achieved in the model through the formulation of the
variable -"Willingness to Overwork." This is a SWITCH
variable that can attain one of two values, namely, zero or
one, and is multiplied‘into the formulation of the "Maximum
Shortage in Man-Days to be Handled." Whenever the maximum
exhaustion level 1is reached and the "Overwork Duration
Threshold" is driven down to zero, the "Willingness to
Overwork" variable is switched to zero. The "Willingness to
Overwork" variable will remain at that zero level until the

workforce is "de-exhausted" i.e., until the "Exhaustion

Level™ 1is depleted. And as long as the "Willingness to

177

Multiplier to the Overwork Duration
Threshold Due to Exhaustion -

v : /

—

Exhaustion Level
Max. Tolerable Exhaustion

Figure Hl. 13

178

Overwork" is zero, the "Maximum Shortage in Man-Days to be
Handled" will also be zero i.e., the worforce remains
unwilling to handle any (further) man-day shortages through
overwork. When the "Exhaustion Level" 1is eventually
depleted, the "Willingness L« Overwork" is switched back to a
value of one i.e., the workforce would again be willing to

overwork (if and when the need arises).

Recall that determining the value of the "Overwork
Duration Threshold"” was necessary in order to determine the
value of the "Maximum Shortage in Man-days to be Handled."
The latter, in turn, 1is necessary to determine the value to
which the "Actual Fraction of Man-days on Project" is
boosted. When the project is perceived to be behind schedule
i.e., when the total effort still needed to complete the
project is perceived to be greater than the total effort
actually remaining in the project's plan, indicating a
shortage in man-days, the staff members would then seek to
boost their work rate to what they perceive is necessary to
handle either all the "Perceived Shortage in Man-Days" or the
"Maximum Shortage in Man;Days to be Handled,” which ever is
smaller. The smaller of the two values would then constitute
the "Handled Man-Days." The "% Boost in Work Rate Sought" to
handle these man-days is determined by dividing the value of
"Handled Man-Days" by the product of "Full-Time Equivalent
Workforce" and "Overwork Duration Threshold." For example,

if 100 man-days are to be handled by a 10 person team in 50

179

days, the % Boost would be 100/(10X50) = 0.2, That is the
workers would figure that by increasing their work rate by
20% they can handle the 100 man-days of backlogged work in
addition to the regular work planned for the 50 day period.
_Notice our assumption that the backlogged work will always be
stretched over the full period defined by the "Overwork
Duration Threshold." This should be a good approximation in
cases when the value of "Handled Man-Days" is close to the
"Maximum Shortage in Man-Days to be handled." When the
"Handled Man-Days" is much smaller, though, the team might
decide té handle it in a shorter "spurt" of overwork e.g.,
"to get it over with." However, we will simplify and use a
single formulation for all cases (i.e., one in which the
backlog is stretched over the "Overwork Duration Threshold"

period).

Once the "% Boost in Work Rate Sought" is determined, it
defines a work rate goal in terms of the man-hours to be
allocated to the project. Such a goal is not achieved
instantaneously, since workers take time to adjust their work
habits. There is, therefore, a delay before the "Actual
Fraction of Man-Days on Project", in fact attains the level

sought. The average delay is set in the model to 2 weeks.

So far we have been discussing the effects of positive
schedule pressures on productivity. To both complete and

conclude this discussion on the effects of motivational

180

factors on productivity, we turn our attention next to|those
(probably rare) situations in which the project is perceived
to be ahead of schedule i.e., the case of negative schedule

pressures.

Such a situation exists whenever the total man-days

remaining in the project's plan exceed what the project
members perceive to be needed to complete the project.] This
could happen, for example, if management over—estimétes a
project's scope. The question we are interested in add%ssing

here is what effects would a perception of such "excebses"

|
|
Recall, in the case of positive schedule pressures, the

|
shortage in man-days was handled first by adjustments in

have on productivity, if any?

productivity and then if needed by additional adjustments in
the schedule. Analogous behavior occurs in the negdtive
schedule pressure situation. That is, when project members
perceive some "excesses" in the schedule parts, if not jall,
of those excesses will be "absorbed" by the workers, in \the
form of "under-work," before downward adjustments are made in
the project's schedule (Ibrahim, 1978) (Boehm, 1£81)

For

(Griffin, 6) (Babich, 9) (Lombardi, 16) (Sheldon, 19).

example, paraphrasing Boehm (1981): \
. |

|

|

- e if the software cost or schedule estimate for
meeting a milestone 1is higher than the ideal,
Parkinson’s Law indicates that people will use the extra
time for ... personal activities, catching up on the

181

mail, etc.

Again, analogous to the positive schedule pressure
situation where there was a limit on how much backlog could
be handled, there are limits on how much "fat" employees
wéuld be willing, or allowed, to absorb. And beyond those
limits, excesses would be translated into cuts in the

project's schedule,

The above ideas are captured in the table function of
Figure I11.14. The dashed 45° 1line represents full
disclosure of schedule excesses, and thus the complete
translation of any excesses into schedule cuts. A more
realistic project behavior is the one depicted by the Solid
Curve. At the upper right corner excesses are small i.e.,
"Man-Days Perceived Still Needed" 1is slightly less than
"Man-Days Remaining" in the plan. Under such conditions most
of the slack will be absorbed (not reported) i.e., reports
will show that the project is on (not ahead of) schedule
i.e., "Man-Days Reported Still Needed" will be egqual to
"Man-Days Remaining." As we move towards conditions of
larger and larger excesses those large excesses will be only
partially absorbed, and the balance translated into cuts in

the preoject's schedule.

Absorbed excesses will mean, as was indicated above, a

larger slack time, which in turn means a lower "Actual

181.1

Man-Days Reported Still Needed

Man-Days Remaining

0 T T T T T —

O 2 4 .6 .8 1.0
Man-Days Perceived Still Needed

Man-Days Remaining

Figure Ili. 14

182

Fraction of a Man-Day on Project." This is brought about in
the model through the same mechanism used to increase the
"Actual Fraction of a Man-Day on Project" wunder positive
schedule pressure, namely, through an adjustment to the value
éf the variable "% Boost in work Rate Sought.” 1In this case,

however, the % boost will be a negative value.

There are, in addition, two more differences between the
two cases. In calculating the % boost, we will assume that
the workers will stretch their absorption of the perceived
excesses over the remaining life of the project. That is,
instead of a short lived and drastic dip in their work rate,
workers are assumed to adjust to what they perceive would be

a stable, albeit comfortably lower, work rate.

Once the "% (DIP) in work rate Sought" is determined, it
defines a work rate goal in terms of the man-hours to be
allocated to the project. As in the positive schedule
pressure situation, such a goal is not achieved
instantaneously, since workers take time to adjust their work
habits. It 1is reasonable to expect, though, that the delay
to adjust one's habits to a more comfortable state would be a
smaller delay than that of adjusting to a 1less comfortable
state. We, therefore, will assume that the average delay in
adjusting to a "% Dip" is 7.5 days i.e., 25% lower than that

of adjusting.to a "% Boost" under positive schedule pressure.

183

The value of the "Actual Fraction of a Man-Day on
Project," once determined under various schedule pressure
conditions, becomes ar important determinant of the actual
software development productivity. It represents, as
indicated above, the 1losses in productivity due to
motivational factors. It is not the only determinant,
though. Additional losses in productivity are incurred due

to the communication overhead.

As is shown in Fiqure III.10., "Software Development
Productivity" 1is formulated as the product of "Potential
Productivity" and the "Multiplier to Productivity Due to
Communication and Motivation Losses." The multiplier

represents the average productive fraction of a Man-Day,

i.e., that fraction of the "Actual Fraction of a Man-Days on
Project" that remains after accounting for communication
overhead. For example, if the "Actual Fraction of a Man-Day
on Project" is 0.6 i.e., a full-time -employee allocates on
the average .6 X 8 = 4.8 hours to the project, and if the
project communication overhead consumes 25% of that, then the

average productive fraction of a Man-Day would be

0.75 X 0.6 = 0.45 i.e.,v3.6 hours.

What is communication overhead? There are those who
might argue that human communication is an essential
component of any software development effort, and is,

therefore, actually part of the "job" ... not an overhead.

184

Even though human communication is indeed an essential (and
even useful) component of software development, it does
. constitute an overhead. To see why, let us examine what
happens when a software system rather than being developed by

a team is instead developed by one person.

Two things usually happen. First, time 1lost in human
communication is avoided. When a team is developing the

software,

..+ it is necessary that each individual spend part of
his time communicating with each of the other team
members. For example, the designer must confer with the
coder to resolve any Qquestions the coder may have about
the design; both of these must talk to the individual
testing the code to give him the benefit of their
experience with the program; each of these must talk to
the documentor to assure that the documentation is
proper and complete; and so on (Tausworthe, 13977).

Such human communication is, obviously, unnecessary whnen

the software is developed by a single person.

Second, the amount of work itself usually increases when
software is aeveloped by a team, vis-a-vis a single person.
This increase 1in the work load takes two forms. The first,
and obvious one, 1is that the amount of ° documentation
increases e.g., 1in a one-person environment the programmer
could get away with sketchy notes to merely augment his
ﬁmental documentation" (Taﬁsworthe, 1977). The second less

obvious increase is in the form of an increase in the size of

185

the software product itself (Gagliardi, 1980) (Conway, 1968).
For example, when a program is developed by two people
instead of one, it might be designed as a tﬁo—module program
instead of a single-module program necessitating an
inter-module interface that has to be agreed upon and

developed.

On the basis of the above observations, we can now
answer the question we posed above; namely, "what is
communication overhead?" The answer: It is the drop in the
productivity of the average team member below his nominal
productivity due to team communication. Where éommunication
includes verbkal communication, documentation, and any

additional workload e.g., due to interfaces.

It is widely held that communication overhead increases
in proportion to n2?, where n is the size of the team (Brooks,
1978) (Shooman, 1983) (Mills, 1976) (Zelkowitz, 1978) (Scott
and Simmons, 1975). Such a relationship is shown in the
table function of figure II1.15. Thus, communication
overhead, as is formulated in the model, is zero when the
software is developed by one person, but as the workforce
size (n) increases, communication overhead increases in
proportion to n?Z2, For example, at n=30, the communication
overhead is approximately 50%. This means that if the
"Actual Fraction of a Man-Day on Project" is 0.6, i.e., 4.8

hours are allocated aaily, on the average, by the full-time

A

100 -
80 -
60-
40-

20+

185.1

Communication Overhead %

v

10 20 30
Total Workforce

Figure Ill. 15

186
team member, 50% of these, or 2.4 hours, will be effectively
lost due to communication overhead. In other words, the
"Multiplier to Productivity Due to Motivation and
Communication Losses" would be 0.6X0.5=0.3. Which means that
"Software Development Productivity" would be 30% of the value
of "Potential Productivity." For example, if the latter is 1
Task/Man-Day, then "Software Development Productivity" would
be 0.3 Tasks/Man-Day (after accounting for motivation and

communication losses).

187

(C) Quality Assuranc¢e and Rework:

The development of software systems involves a series of
production a¢tivities where the opportunities for
interjection ¢f human fallibilities are enormous.
Errors may begin to occur at the very inception of the
process where the objectives of the software system may
be erroneousl or imperfectly specified, as well as
during the later design and development stages where
these objectiyes are mechanized. The basic quality
factor for soffware is that it performs its functions in
the manner that was intended by its architects. In
order to achjeve this quality, the final product must
contain a minimum of mistakes in implementing their
intentions as|well as being void of misconception about
the intentions|themselves. Because of human inability
to perform wjith perfection, software development is
accompanied by|a quality assurance activity (Deutsch,
1979).

Software quality assurance is approached by two distinct
and complementary |methodologies. The first 1is that of
assuring that the| quality 1is 1initially built into the
product. This involves emphasis on the early generation of a
coherent, complete, |unambiguous, and nonconflicting set of
requirements. Then as the product is designed and coded,
review and testing df the product, the second quality tool,

are encountered (Deutsch, 1979).

In this sectipn we will discuss the generation,

detection, and correction of errors during the development

phase. As we indjcated in Section 1III.3. (on "Model
Boundary") the development phase includes both the design and
coding activities, ut excludes the requirements phase. It

was also indicated then, that we will be assuming that

188

software design commences (within the model's boundary) at
the "successful completion" of a software requirements review
(outside the model's boundary), and that theré would be no
subsequent changes or modificatioqs in the system's

requirements.

In this section, therefore, our concern 1is with the
generation of design and coding errors, and with the second
quality tool above, namely, the review and testing of the

product.

Errors come in many different, "flavors." Summarized
below are what Nelson (1974) delineated and described as the

most prominent software design and coding errors:

* Misinterpretation of specifications

* Errors in developing the logic to solve the problem

* Algorithm approximations that may provide insufficient
accuracy oOr erroneous results for certain input
variables

* Data structure defects either in the data structure
design specification or in the implementation of the
specification

* Singular or critical input values to a formula that
may yield an un=sxpected result not accounted for in the
program code '

* Misinterpretation of language constructions by the

189
programmer

In a system dynamics model such as ours, it 1is quite
feasible, from a technical point of view, to disaggregate a
variable such as errors into different error types. However,

it is not always necessary or useful,

There are two (and only two) considerations for
reformulating a level (variable) as a sequence of two or
more levels: policy analysis and model behavior.
First, is the disaggregation required in order for the
model to be able to address particular policy
issues? ...

The second reason for disaggregating a level involves
the dynamics of the system. Does the disaggregation of
a level into two or more levels have the potential to
change significantly the behavior of the model? ...
The final arbiter should be model-based policy analysis.
I1f the change in behavior has the potential to alter
policy conclusions, then the disaggregation is essential
(Richardson and Pugh, 1981).

Since our model's policy focus is on the managerial-type
policies of software development, as opposed to say the
technical issues of - software reliability, an explicit
disaggregation of erroés into more than one type is, on the
basis of the policy analysis criterion, clearly unnecessary.
On the other hand, there are significant behavioral
differences among error types that had to be accounted for.
For example, findings in the software engineering literature
indicate that errors are generated at different rates at
different points in the life cycle e.g., design errors, in
the earlier design phase, are generated at a higher rate than

are coding errors (Martin, 1982). Such a factor is obviously

190

of dynamic significance. For example, it could have a direct

bearing on the allocation of the manpower resource.

Such differences will be implicitly captured in the

model. That is, while errors will be formulated as a single
type, "Errors," the generation, detection, and correction
characteristics of errors will be allowed to vary throughout
the development life cycle. For example "Errors" will be
generated at a higher rate in the earlier portions of the
life cycle (as design errors do) and they will, on the
average, be "harder" to detect and correct (as design errors

are).

Figure III.16. depicts how the generation, detection,

and correction of errors are formulated in the model.

What factors affect the "Error Generation Rate" 1in a
software project? There are two sets of factors. The first
set includes: organizational factors e.g., the wuse of
structured techniques (Alberts, 1976), the‘quality of the
staff (Belford et al, 1977), ces etc., and project-type
factors (Shooman, 1983) e.g., complexity, size of system
(small, medium, or large), language, ... etc. Notice that
even though such factors can differ from organization to
organization and from project to project, they do, however,
remain invariant during the life of a single project. The

cumulative effect of all such factors can, therefore, be

SOFTWARE ,
DEVELOPMENT

191

SYSTEM
TESTING

~—
~
SECTOR S o SECTOR
™\ SOFTWARE
~ DEVELOPMENT
N\ RATE
N
N
f""— L S i “\\
- ——— AN T~a ~ ~ ~
- - Phe - \ = ~ N h AN
P i < \ ~ N\
L7 (scnsouue }\ \ Q AN
v , PRESSURE P ‘. RN
é / \\ \ \ \
5 / N % OF WORKFORCE +
oA g\ (% OFJoB), AR ;'\ EXPERIENCED v
1| WORKED Ny
RATE §Q \\ ' =~ A / [
(7] \]
a2 ‘\ \ NOMINAL ERRGRT ,' h
W\ ERRORS - ERROR GENERATION , !
1 v\ RATE /
! \\\ ’ !y
] W !y
N\
- MPDMCL v S
AVERAGE MULTIPLIER TO
OA DELAY PRODUCTIVITY ERRDSY - ~~¢ PIDTER 6
DUE TO COMM. 8 /s ERROR POTENTIALLY
MOTIV. LOSSES | DETECTABLE
ERRORS AN
< ER%SRJSCAPE
RROR
QAMPNE / RATE
OA MANPOWER /
NEEDED TO .
DETECT AN ERRDRT
ENROR .- ERROR DETECTION
RATE
s/ PERDRT Yy~
POTENTIAL
ERROR Y
NOAMPE ggECTION
NOMINAL
CA MANPOWER DTCERR
NEEDED PER DETECTED BAD. FIXES
ERROR DMPQA / ERRORS GENERATION RATE
DAILY ’ _ _ _BDFXGR
MANPOWER - ~
/ FOR 0A /- v
t . DMPRW /.
\ (Pren 3~ N ZAN
w -
\ / PUBAWK O RWRATE
% OF JOB A REWORK 5
/" \ WORKED i RATE PBADFX
] 4 Y % OF
! s BAD. FIXES
' CMRWED
- e | weova
MULTIPLIER TO
. © PRODUCTVITY
Sea e DUE 70 COMM. 8
- MOTIV. LOSSES

SYSTEM

TESTING
SECTOR

Figure lil. 16

192

captured in the model in the form of a single nominal
variable, namely, the "Nominal Number of Errors Committed per
Task." The nominal error generation rate would then simply
be the product of the "Software Development Rate," i.e., how
much tasks are developed per unit of time, and that "Nominal
Number of Errors Committed per Task." However, since this
single nominal variable 1is modeling the generation of
different error types (within the single project that is
within a particular organization) it is not formulated as a
constant number, but rather as a variable that changes over

the project's life.

The formulation of the "Nominal Number of Errors
Committed per Task" 1is, therefore, serving two purposes:
First, its shape over the project's 1life .reflects our own
modeling assumptions about the relative generation rates of
different error types throughout the 1life of a project.
These assumptions, as all others in the model, are expected
to apply to all project situations to which the model is
applied. Hence, this shape will always remain the same, even
when modeling different project situations.’ The second
purpose of the formulation, namely, its absolute value,
reflects the different error generation characteristics of
different project situations (i.e., the software product's
characteristics as well as those of the organization in which
it is developed). This, obviously, would generally change

when modeling different projects.

193

The formulation of the "Nominal Number of Errors
Committed per Task" used in the base model is shown in Figure
II1.17. Notiée that the number of errors is defined in terms
of KDSI i.e., "thousand delivered source instructions" rather
than "Tasks." Both definitions are, of course, equivalent
since a "Task" is itself defined in terms of DSI. However,
it 1is more convenient to represent error generation in terms
of KDSI since most published data on error rates are in terms

of KDSI.

The error rates range in value from 25 errors/KDSI to
12.5 errors/KDSI; with an average value for the project of
approximately 19 errors/KDSI. [Published error rates in the
literature include: 10-20 errors/KDSI in (Thayer et al,
1978), 15-25 errors/KDSI in (Boehm, 1981), 30-35 errors/KDSI

in (Jones, 1978).]

As we mentioned above, the shape of the curve over the
project’s life reflects the relative generation rates of
design-type errors versus coding-type errors. Thus, before
we can specify the shape of the curve we need first to
delineate design versus coding activities within the
development life cycle. We will assume in the model that the
development phase will be equally divided between design
(including architectural and detailed design) and coding
activities. [This approximates data reported by (Boehm,

1981), (Gaffnery, 1982), and (Zelkowitz, 1978).] The diagram

194
at the bottom of Figure III.16. is meant to indicate that
the transition between the two activities is not abrupt i.e.,
there will be a period over which both activities will

overlap (McKeen, 1981) (Thibodeau and Dodson, 1980).

Estimates for relative generation rates of design versus

coding errors were provided by several authors. For example,

Design : Coding Errors Reference
3.8 :1 (Martin, 1982)
2.0 : 1 (Alberts, 1976)
1.8 : 1 (Jones, 1981)
1.7 = 1 (Boehm, 1981)
1.6 : 1 (Thayer et al, 1978)

As shown in Figure III.17., the ratio assumed 1in the
model achieves a maximum value of 2:1 i.e., at the beginning
of design the ~nominal number of errors committed is 25
errors/KDSI, while towards the end of coding it drops to 12.5
errors/KDSI. The average rates for the design and coding
phases are approximately 23 and 14.5 errors/KDSI respectively

i.e., 2 1.6:1 ratio.

The formulation of the nominal error generation rate
captures, as we mentioned above, the cumulative effect of one
set of factors effecting error generation, namely, the
organizational and project-type factors. Such factors remain
invariant during the life of a single project. There 1is a
second set of factors, however, which do play a dynamic role
during software development; These include the workforce-mix

and schedule pressures.

40 -

30 A

20

10 -

194.1

Nominal Number of Errors
Committed per KDSI

% of Job Worked

|
Desig\:Coding
|

Figure lli.17

195

As was stated in the discussion on Human Resource
Management, the workforce in the model is disaggregated into
two typeé of employees, newly hired and experienced. It was
also indicated that new hires pass through an "Orientation
Phase" during which they are less than fully productive. The
orientation process brings them "up to speed" through
training that covers both the social as well as the technical
environments of the project. For example, on the techrical
side, newly.hired project numbers "often reguire considerable
training to become familiar with an organization's unique mix
of hardware, software packages, programming techniques,

project methodologies, and so on" (Winrow, 1982).

While not yet fully trained (during this orientation
period) newly hired employees are, not only less broductive
on the average, but also more error-prone than their
experienced counter-parts (Endres, 1975) (Myers, 1976). We
will assume in the model that a newly hired employee is twice
as error-prone as an experienced employee would be (Chan, 20)
(Nichlos, 25). To model the effect "0f this factor on errcr
generation we formulate the "Multiplier to Error Generation
due to Workforce Mix" as a function of the "% of Workforce
that is Experienced." When the workforce value is comprised
of only experienced staff, the value of the multiplier is set
to 1 i.e., it would have a neutral effect on the nominal
error generation rate. In other words, what we are defining

to be nominal, is defined with respect to the average error

196

generation rate of the experienced-type employee. And as the

fraction of new hires increases, the multiplier increases in
a linear fashicn, as shown in Figqure 1III.18., wuntil it
attains a maximum value of 2 , if the workforce is comprised

of only new hires.

The second factor that can drive the error generation up
is schedule pressure (Putman and Fitzsimmons, 1©79; (Mills,
1983) (Radice, 1982) (James, 1) .(Riccardi, 5) (Doyle, 7)
(Nichols, 18) (Sheldon, 19) (Chan, 20).

People under time pressure don't work better, they just

work faster...

In the struggle to deliver any software at all, the

first casualty has been consideration of the quality of
the software delivered. (DeMarco, 1982).

Two explanations have been proposed in the literature
for why schedule pressures cause more errors to be generated.
First, Shneiderman (1980) suggests that schedule pressures
increase the "anxiety levels" of programmers. A high anxiety
level, then

oo interferes (with performance),- probably by
reducing the size of the short-term memory available.

When programmers become more anxiosus as deadlines

approach, they (therefore) tené to make even more
errors...

Another explanation was provided by Thibodeau and Dodson
(1980). They suggest that schedule pressures often result in
the "Overlapping of activities that would have been

accomplished better sequentially." and this can

197

Multiplier to Error Generation
A Due to Workforce Mix

2.0 -
1.8 1
1.6 -
1.4 -

1.2 -

—

1.0

. .8 .
° 2 4 © 1.0 % of Workforce

that is Experienced

Figure . 18

198

significantly increase the chance of errors. For example,

When coding has begun before the completion of design,
the designers are required to communicate their results
to the programmers in a raw, unqualified state, hence
significantly increasing the chance of design errors...
This 1is not to suggest that systems cannot be developed
with overlapping activities. Many systems have distinct
parts that can be coded before the entire design is
completed ... We are concerned here with the situation
where the press of the development schedule or the
slippage of preceding activities results in overlapping
activities that would have been accomplished better
sequentially.

The effect of 'schedule pressure on error generation is
formulated in the model as shown in Figure I1II1.19. Under
nominal corditions there would be no schedule pressures, and
the multiplier assumes a value of 1. As schedule pressures
increase, the multiplier increases exponentially leading to
higher error-generation rates. As shown in the Figure,
error—-generation can increase by as much as 50% under severe
schedule pressures. Notice also, that we are assuming that
errors will be generated below the nominal rate wunder the

"relaxed" conditions of negative schedule pressures.

Thus, as software tasks are developed, errors are
committed within those tasks. Errors within a developed task
remain as "Potentially Detectable Errors" until the task is
reviewed and tested, at which point some of the errors do get
detected, and those are then reworked. Usually, however, not
all efrors will be detected, some will "escape" and pass
undetected into the subsequent phases of software

development. In the next section we will see how those

199

Multiplier to Error Generation
Due to Scheduie Pressure

1.8 -
1.6 -

1.4- «
1.2 -
1.0-//

8 1 .

6 -

<

Schedule Pressure

Where, = TMDPSN - MDRM
' MDRM

TMDPSN=Total Man-Days Perceived Still Needed

MDRM=Man-Days Remaining

Figure .19

200

errors are eventually "caught," albeit at a relatively high

cost.

The detection of errors is the objective of the Quality
Assurance (QA) activities. Quality Assurance is defined in

Pressman (1982) as:

(A set of activities) performed in conjunction with the
(the development of) a software product to guarantee the
product meets the specified standards. These activities
reduce doubts and risks about the performance of the
product in the target environment.

Several techniques are wused including walkthronghs,
reviews, inspections, code reading (a process where code
logic and code formép is scrutinized by a programmer other
than the original designer), and integretion testing (Jones,
1982) (Daly, 1977). Mot included in this activity is module
or unit testing, which is commonly considered to be part of

the coding process (McKeen, 1979).

The "QA Rate," of Figure 111.16., has a
non-characteristic type of a formulation, namely, tha£ of a
third order'delay. The "characteristic" way to formulate a
rate of doing something, e.g., the rate of developing
software or reworking errors, is as a product of the effort
allocated and its productivity. However, what we found, and
what the third order delay formulation actualizes, is that
the QA Rate 1is independent of the QA effort and its

productivity! What we found happening [based on discussions

201

with (Gage, 4) (Landolfi, 13) (Chan, 14) (Lombardi, 16)
(Nichols, 18)] is this: QA effort is planned and allocated,
usually in the form of a fixed schedule of periodic
group-type functions (Mitchell, 1980). For example, a 2-hour
walkthrough for the 5 members of team (A) is scheduled for
every Friday. During these periodic "QA Windows," all tasks
developed since the previous one are supposed to be
processed. And what we were surprised to find was that, in
an almost perfect realization of Parkinson's Law,
irrespective of how much tasks need to be processed within
the specified "QA Window" they almost always do. No
backlogs, therefore, develop in the QA pipeline. Even when
QA activities are relaxed or suspended because of schedule
. pressure (as we indicated they might 1in Sector (A)), no
backlogs develop. That is, when walkthroughs are suspended
for a while on a project, the requirement for a "walkthrough"

is also suspended, not postponed (Hart, 1982).

We can propose an explanation for how and why this
happens. Since the objective of the QA activity is to detect
invisible errors, invisible that is until they are detected,
it becomes almost impossible to tell whether the QA job was
completly done (i.e., that all those invisible errors were in
fac£ detected). By the same token, it is as difficult to
tell that the job has not been completely done (except much
later in the 1life cycle). Under such circumstances it

becomes quite easy to rationalize both to oneself and to

202

management that the QA job that was possible to do, was not
insufficient. Furthermore, the QA effort that is possible to
expend (i.e., in terms of available time and effort), is

usually what 1is expended and not more (e.g., even if called

for due to a larger than expected workload of developed
tasks) because there seems to be no significant incentives to
do otherwise. Firstly, at the psychological level, there are
actually dis-incentives for working harder at QA, since it
only "exposes" more of one's mistakes (Weinberg, 1971). And
secondly, at the organizational level there are seldom any
reward mechanisms 1in place that promote quality or

gquality-related activites (Cooper and Fisher, 1979).

The formulation of the "QA Rate" as a third order delay,
provides, we feel, a good approximation of the "Parkinsonian”
execution of the QA activity as described above. (In Exhibit
I11.5., we show how a third-order delay looks schematically,
how it is formulated mathematically, and how it behaves over
time.) That is, software tasks that are developed will
always be QAed (or considered QAed) after a certain delay,
and which is (assumed to be) independent of the QA effort
allocated. In the model, the "Average QA Delay" period is

set to 2 weeks (i.e., 10 working days) (Nichols, 25).

However, while the rate at which tasks are Qaed (or
considered QAed) can proceed under QA policies and procedures

independently of the actual. QA effort allocated, the

203

(A) SCHEMATIC

- - - - /= - 7
| RY R2 RS |
LEVELT] LevEL? S LEVEL3
T VAN

|—=—."\ T o« ||

T = A R

l —4— —4— —4-

L /3 V3 T2

T is the "Average Time Delay"
LEVEL = LEVEL1 + LEVEL2 + LEVEL3

(B) MATHEMATICAL
FORMULATION At any time (t),

Ri(t) = LEVELi(t)/(T/3)

& (LEVELi (1) = - Ri(t)
= - LEVELi(t)/(T/3)

(C) BEHAVIOR LEVEL
A

LEVEL(0)

Time

EXHIBIT II1.5

204

effectiveness of QA will, obviously, depend on that effort.

That 1is, the amount of arrors detected will be a function of

how much QA effort is allocated for error detection.

In the model (see Figure III.16.) we define a variable
called "Potential Error Detection Rate." It represents, the
maximum number of errors that could be detected at a point in
time, and is determined by dividing the value of the OQA
effort allocated by the value of the QA effort that is
needed, on the average, to detect an error. That is, if say
5 man-days are allocated per week to QA, and the "QA Manpower
Needed to Detect an Error" is, on the average, 1 man-day,
then the "Potential Error Detection Rate" would be 5 errors

per week.

What are the determinants of the "QA Manpower Needed to
Detect an Error?" First and foremost, it is a function of
error-type i.e., whether an error is a design or a coding
error. Thus, even if a project proceeds under some invariant
set of nominal conditions, the QA manpower that would be
needed, on the average to detect an error would change simply
because the errors to be detected change from design-type

errors to coding-type errors.

The value of the QA effort needed per error as a
function of the project's phase and hence of error—tfpe i.e.,

design errors versus coding errors, are shown in Figure

205

I11.20. Design-type errors are not only generated at a
higher rate (as we saw in Figure III.16), they are also, as
Figure I111.20. indicates, more costly to detect (Myers,
1976) (Alberts, 1976) (Boehm, 1975). Alberts (1976)
estimates that design'errors are 2.5 times more costly (i.e.,
to detect and correct). In the formulation of Figure
111.20., we are assuming that, on the average, a design error
is 1.6 as costly to detect as a coding error. Furthermore,
" in terms of absolute values, the average detection effort per
error is 0.3 man-days. Thus, on the average it would take
approximately 2.4 man-hours (30% of an 8-hour man-day) to
detect an error. In the case of walkthroughs and
inspections, this effort would include,, not only the effort
expended during the walkthrough/inspection itself, but also
the effort expended in preparation for it (e.g., reviewing
documentation and gaining familiarity with product).
Estimates in the 1literature for the error detection effort
per error include: 3 man-hours (Mitchell, 1980), 2.36
man-hours (Shooman, 1983), and 0.5-1.25 man-hours

(Shneiderman, 1980).

The actual QA manpower needed to detect an error, in
addition to being a function of error-type, must also depend
on the efficiency of how people work. 1In our discussion on
productivity we indicated that a full-time employee's work
.day does not translate into an 8 man-hour input to the

project. Man-hours are lost on communication and other

206

A Nominal QA Effort Needed

to Detect an Error {(Man-Days/Error)
0.6 - /
0.2 j
(0] | ; ; . T ; >

% of Job Worked

Figure .20

207

non-project activities (e.g., personal business). These two
types of losses are captured 1in the "Multiplier to
Productivity Due to Communication and Motivation Losses,"
which simply represents the average productive fraction of a
man-day. In other words, if the communication and motivation
losses amount to a 4 man-hour loss per day (for the average
employee) 1i.e., half of the nominal 8 man-hour value, then
the value of the multiplier would be a 0.5. Under such
circumstance, the actual QA manpower needed to detect an
error becomes twice what is nominally needed. That is, if a
design error requires, under nominal conditions (i.e., under
conditions of no losses), 0.4 man-days to be detected, it
would actually require (under the above conditions)
0.4 X 2 = 0.3 man-days.

Finally, evidence suggests that "In any sizable program,
it is impossible to remove all errors" (Shooman, 1983).
Thus, even when generous effort allocations are made to QA,
it would still be unlikely that all errors will be detected
-(Boehm, 1981). One reason, for example, is that "... some
errors manifest themselves, and can be exhibited only after
system integration" (Shooman, 1983). At any point in time,
one could, therefore, view the «collection of "Potentially
Detectable Errors" as constituting a hierarchy of errors, in
which some are more subtle, and therefore more expensive to
detect than others. Empirical results reported by Basili and

Weiss (1982), suggest that the distribution is pyramid like,

208

with the majority of errors requiring approximately a few
hours to detect, a few errors requiring approximately a day
to detect, and still fewer errors requiring moré than a day
to detect. Notice that the results show that those few
subtle errors are an order of magnitude more expensive to

detect.

We will assume in the model, that as QA activities are
performed, the more obvious errors will be detected first.
And as these are detected, it then becomes more and more
expensive to uncover the remaining more subtle (although less
predominant) errors. This is realized in the model through
the formulation of the "Multiplier to detection Effort due to
Error Density," shown in Figure III.21. At moderate to large
error densities, the multiplier assumes a neutral value of 1.
But as those "obvious" errors are all detected, and a few
"subtle" errors remain, the multiplier increases 1in an
exponential fashion, such that at a density level of 2-4
(subtle) errors per KDSI, it becomes an order of magnitude

more expensive to detect an error.

To recapitulate, the "QA Manpower Needed to Detect an
Error" is a function of error-typé, work efficiency and error
density. As the value of this needed effort increases, e.qg.,
due to a decrease in error density, the number of errors that
can be detectéd, at some level of QA effort, decreases. At

any point in time, the "Potential Error Detection Rate”

209

Multiplier to Detection Effort
Due to Error Density

v

T 1 1 I 1 3

0 2 4 6 8 10 12 14 16
Error Density
(Errors/KDSI)

Figure .21

210

(determined by dividing the value of the QA effort allocated
by the value of the "QA Manpower Needed to Detect an Error"),
represents the maximum possible'number of errors that could
be detected. Because manpower allocations to QA are often
"modest," this maximum value is seldom large enough to secure
the detection of all errors generated. And even when effort
is allocated generously to QA, a few subtle errors will be so
prohibitively expensive to detect, that whatever the effort
allocated, it will not be quite enough to detect all errors.
As a result, as shown in Figure I1II.16., some errors will
"escape" and pass undetected into the '~ subsequent phases of
software development. 1In the next.section we will deal with

those errors, and show how they are eventually "caught."

On the other hand, those errors that do get detected
through QA activites, are then reworked. The rework rate is
a function of how much effort 1is allocated to rework
activities, and the rework manpower needed per error. For
example, if the project members commit 10 man-days per week
to rework~ detected errors, and the "Actual Rework Manpower
Needed per Error" is, on the average, 1 man-day, then errors

will be reworked at the rate of 10 per week.

The "Actual Rework Manpower Needed per Error" has two
components. The first is the "Nominal Rework Manpower Needed
per Error." As in the case of error detection, this nominal

component is a function of error-type i.e., design versus

211

coding errors.

The values of the nominal rework effort needed per error
as a function of the project's phase, and hence of
error-type, are shown in Figure I1I.22. Design-type errors,
in addition to both being generated at a higher rate and
being more costly to detect, are also more costly to rework
{(Myers, 1976) (Alberts, 1976) (Boehm, McClean, and Urfrig,
1975). As the formulation of Figure III.22. indicates, we
are assuming that, on the average, a design error |is
approximately 1.5 more costly to correct than a coding error.
Under nominal conditions, a design error would require, on
the average, 0.54 man-days to be corrected, while the average
correction effort for a coding-type error is assumed to be
0.36 man-days. For the nominal 8-hour working day, these
averages translate, into 4.3 maﬁ-hours/error and 2.9
man-hours/error, respectively. These values were chosen on
the basis of the empirical results reported in (Weiss, 1979)
and (Basili and Weiss, 1981), which suggest that the average
rework effort (for all errors) is in the range of 0.25 to 1.0

man-days per error.

The actual rework man-power that would be needed to
correct an error, in addition to being a function of
error-type, must also depend on the efficiency of how people
work. That is, we need to account for the communication and

motivation losses incurred. For example, if the "Multiplier

212

A Nominal' Rework Effort Needed per Error
' {(Man-Days/Error)

% of Job Worked

Figure 1lllL.22

213

to Productivity due to Communicaﬁion and Motivation Losses,"
which represents the average productive fraction of a
man-day, 1is 0.5, then the actual rework manpower needed to
correct an error becomes twice what is nominally needed. A
design error that would have requiied under nominal
conditions (i.e., wunder cornditions of no 1losses), 0.5
man-days to be corrected, would actually require (under the

above condition) 0.5 X 2 = 1 man-day.

To recapitulate, as errors are detected through the QA
activities, they are reworked. The rate at which errors are
reworked is a function of the manpower committed to the
rework activity and the rework effort needed per error. The
"Actual Rework Manpower Needed per Error" 1is, in turn, a
function of two things, error-type (i.e., design versus

coding errors) and work efficiency.

The reworking of software errors 1is not, itself, an
errorless activity:

Human tendency is to consider the "fix," or correction,

to a problem to be error-free itself. Unfortunately,

this 1is all too frequently untrue in the case of fixes

to errors found by inspections and by testing (Fagan,
1976).

The problem of "bad-fixes" is widely documented 1in the
literature (e.g., (Jones, 1978) (Shooman, 1983), (Myers,
1976), (Endres, 1975), (Fagan, 1976), and (Thayer et al,

1978)). Shooman and Natarajan (1977), suggested some cf the

214
ways in which bad-fixes may be generated:

1. The corréction is based upon faulty analysis, thus
complete bug removal is not accomplished.

2. The corrections of a bug may work locally only
(i.é., the global aspects of the error still remain).

3. The correction 1is accomplished, however, it is

accomplished by the creation of a new error.

Thus, as detected errors are reworked, some fraction of
the corrections will be bad-fixes. Unfortunately, there are
no published data on how large that fraction is. However,
there are results that indicate that bad-fixes constitute
6.5 - 10% of all errors caught at the system testing stagé
(Jones, 1981) (Fries, 1977). The balance of the errors is
comprised of those errors that escape detection, through 0Qa,
during development. If we assume that 50-60% of errors are
detected and reworked during development, and that most of
the remaining errors together with bad-fixes are later
detected at the system tesfing phase, then the above findings
on bad-fixes imply that between 4.5-11% of corrections will
be bad-fixes. The "% Bad-Fixes" is, therefore, set in the

model to 7.5%.

Thé detection and correction of bad-fixes 'as .well a

those errors that escape QA detection, is the topic of the

215

next section.

(D) System Testing:

We will assume that undetected errors i.e., those that
QA activities (e.g., walkthrough, inspections, code reading,
... etc.) fail to detect while the software 1is being
designed and coded, as well as those bad fixes created as a
result of faulty rework, will all remain undetected until the
system testing phase. Further, we will assume that all such
errors will get detected and corrected at the system testing
phase. Thus, even though 1in practice some errors often
remain in a software product after system testing is
completed (i.e., as the product becomes operational), e.g.,
because system testing activities fail to detect them, or
they result from bad fixes at the system testing phase, all
such errors will be excluded from our formulation. The
primary reason for their exclusion is that the generation,
detection, and correction of these errors are all issues of
maintenance of the operational system, which are, as we
previously stated, beyond the boundary of our model and thus

the focus of this study.

The second justification for their exclusion, is that
errors that escape detection at the system testing phase are
generally a "smali" fraction of all the errors handled at

that phase (Deutsch, 1979). 'This assertion might sound

216

surprising to many, since it is common to assume that the
maintenance activity is as costly as it is primarily because
of the costs incurred in handling such "lingering" errors.
. What empirical results have shown, however, 1is that
corrections of such errors consumes only a relatively small
portion of the software maintenance activity (Lientz and
Swanson, 1978). The major portion | of the software
maintenance effort 1is, instead, devoted to software updates
(e.g., enhancements for users, adaptation to new data or

hardware, ... etc.) (Parikh and Zvegintzov, 1983).

The System Testing Sector is shown in Figure III.23. As
shown in the figure, this sector models two sets of
processes, namely, the growth processes of the undetected
error populations and the processes of system testing, i.e.,

the detection and correction of those errors.

The population of undetected errors is comprised, as we
said, of errors that escape the detection of the QA actions
as well as those bad fixes created as a result of faulty
rework. This group of errors does not remain -dormant
awaiting detection and correction at the system testing
phase. They, instead, lead an "active existence” reproducing
more and more errors in the system. For example, a design
error that remains undetected until the system testing phase
often instigates further errors in tﬁe code, user and

maintenance manuals, training material, ... etc., (Boehm,

217

1981).

In a study by Shooman reported in McClure (1981), it was
determined that detecting and correcting a design error
during the design phase (i.e., through the QA acéivities) is
one-tenth the effort that would be needed to detect and
correct it later during the system testing phase because of
this additional inventory of specifications, code, wuser and
maintenance manuals, ... etc., that would require correction
in the 1later case. This 10:1 ratio was also supported by
data in Boehm (1981), but only for larger projects. For
smaller projects, the escalation in cost-to-fix was in the
range of 4:1, because, Boehm argued, "The smaller size meant
that there was a relatively smaller inventory of items to fix

in later phases."

But, besides such static estimates on cost-to-fix
escalations at different points in the software life cycle,
no data are available in the 1literature to describe the
dynamics of these "error-reproduction" processes. That is,
even though we do know that an wundetected design error
reproduces enough errors in code, documentation, ... etc.,
to become 4 to 10 times more expensive to fix at the system
testing phase, we still do not have the data that explain

exactly how and when these reproduction processes occur.

When the dynamic relationships are not well understood

218

(that 1is, when theory is not well developed), as it is in
this case, then "the best one can do is attempt to imitate
the change process itself in the hope of learning more about
such relationships. Thus the model becomes an aid to theory
development” (Schultz and Sullivan, 1972). Our "proposed
theory" of the error reproduction process is depicted in

Figure III.23,

As shown in the figure, we are assuming that errors that
escape QA detection, together with those generated due to
fauity rework, will develop into either "Active Errors" i.e.,
active in reproducing more errors, or "Passive Errors."
Because design specs are the blue prints of the system's
code, any errors 1in design will get translated into coding
errors. Thus, all undetected design errors should be of the
active type. As development moves into the coding stage, a
mixture of active and passive errors would be expected. 1f
we assume, for example, that the system 1is coded in a
top-down fashion, then in the early parts of the coding stage
most of the errors committed (i.e., in the high-level
modules) would be of the active type. As development
proceeds to the lower level modules, the reverse should be
true, since the errors become more and more localized in
nature. These assumptions on how the mixture of active and
passive errors changes over the project's life are realized
in the model through the formulation of the variable "%

Active Errors" shown in Figure III.24.

- 219

QUALITY ASSURANCE

g£sCA e --- 8 REWORK SECTOR
RROR B2 =~
- T\O! - -
- NERETC
- XES BT~
- G“D A -
P - _ - -
'd -
- _ -
- P
’ -~
’, -
, rd
7’ s SMOOTHED
s 7 ERAOR
4 4 DENSITY \\
’
\
7
/" ! SOFTWARE b \
p DEVELOPMENT P
/ RATE e Il
~ 4
N ’ ACTIVE

ESCAPING v ACTIVE ERROR

ERRORS 8
BAD. FIXES
GENERATION

ERROR
REGENERATION P
RATE .

NOMINAL ’
TESTING /
MANPOWER /
PER ERROR

——

TESTING
OVERHEAD

DENSITY

7 7’ \
Pd / | \
ACTIVE ERROR 7 / \
ssnenmon RATE & i
UNDETECTED 6 ; \
» ACTIVE .
7/_1 5 ERRORS 1
\
—ed_ - DETECTION
/ & CORRECTION / ~o !
L RATE / ~1
RETIREMENT , RN
% ACTIVE FRACTION AN
ERRORS N
- ACTIVE ERROR ERROR N
RETIREMENT DENSITY I \
o) RATE | \
~ %% OF JOB 1 \
WORKED © | \
\ / I 1 \
AN ’ | é \
‘% UNDETECTED ! '
» PASSIVE - I_ -0 TASKS QAED |
PaN ERRORS PASSIVE 41 1
ERROR | /
PASSIVE ERROR -
GENERATION : DENSITY / &
RATE } ; I
4 /
. / -, / /o,
< !
DETECTION P S - y
8 CORRECTION -7 / - TESTING RATE
RATE -
/ - N
/ P - A
7 N\
4 \
TESTING & Y \
MANPOWER \
NEEDED \
-~ \ PERTASK CUMMULATIVE \

TASKS TESTED \

(

[
I
|

\

\ MULTIPLIER TO
PRODUCTIVITY
DUE TO COMM.
8 MOTIV. LOSSES

DAILY MANPOWER
FOR TESTING

Figure Ill.

23

A

100 -

80 -

60 -

40

20+

% Active Errors

219.1

ol

2 4| .6 .8

Y
[
!
i

Desig.n\:oding
]

Figure Ill.24

% of Job Worked

220

"Undetected passive errors," as Figure III.23,
illustrates, remain in a dormant state until they become
detected and corrected in the system testing phase. The
"Undetected Active Errors," on the other hand, provide a
greater cause for concern, since they reproduce more and more
errors into the system. This error reproduction process is a
continuous one that keeps "feeding" on itself, that 1is, an
error reproduced will itself reproduce further errors, and so
on, For example, an undetected design error could lead to
errors in the code, which in turn could lead to errors in the
system's documentation and/or user manuals. This continuous
reproduction process 1is formulated in the model through the
"classic" positive feedback loop in which an increase in the
"Undetected Active Errors" level leads to an increase in the
"Active Error Regeneration Rate," leading to further

increases in the level, and so on.

We now take a closer 1look at this positive feedback
loop. First, notice that the "Active Error Regeneration
Rate" is a function of the "Software Development Rate," since
errors can only be generated as new tasks are developed. And
if the development activity stops, no errors can be
generated. Second, the regeneration rate is a function of
the "Active Error Density," which is simply the number of
existing active errors divided by the tasks developed so far.
More precisely, the generation rate 1is a function of the

SMOOTH of the "Active Error Density." This is because when

221

errors are committed in one part of the system, they would
not, in general, affect other parts that are being developed
in parallel. Errors, instead, propagate through the
succeeding tasks that build on one another e.g., coding tasks
developed on the basis of the design specs. Thus, tnere is a
delay before an error would reproduce further errors. This

average delay is set in the model to three months,

As was indicated by the studies cited above, a design
error could be 4 to 10 times more costly when left undetected
until the system testing phase. And, as was also indicated,
this escalation in cost-to-fix results because of an
additional inventory of various error types that would be
reproduced and that would require correction. In the model,
though, we do not disaggregate errors into different explicit
types, e.g., errors are not disaggregated into errors in data
structures, syntax, logic, ... etc. There is only one
explicit error-type, namely, "Error." (This aggregation, as
opposed to disaggregation, of error-types, has been justified
elsewhere.) As a result, the escalation in the cost-to-fix
of an undetected "Error" 1is realized in the ﬁodel only
through the number of "Errors" that the "Error" reproduces.
For example, if an "Error" at the early phases of the
project, reproduces (over several generations) a total of 9
more "Errors," then at testing time instead of dealing with
one (the original) "Error," it would now be necessary to deal'

with 10 "Errors," i.e., a 10 fold escalation in cost.

222

The escalation in the number of active errors is
achieved in the model through two mechanisms. Firstly, it is
partially achieved through the "feeding on itself"
characteristic of the reproduction positive feedback loop we
explained above. This mechanism ensures that the earlier the
undetected-error is, the more "generations" of errors it will

reproduce, and thus the more costly it will end up being.

Secondly, escalation is achieved through the "Multiplier
to Active Error Regeneration due to Error Density." The
interpretation of this multiplier is a simple one, it
represents the average number of new errors that a single
active error reproduces in one generation. (That is, it is a
measure of "Error Fertility!") The multiplier is formulated

as a table function, and is shown in Figure III.25.

First, notice that the multiplier's value will always be
greater than one. That is, an undetected error will always
generate more than one more error (in a single generation).
‘Second, the value of the multiplier increases as the density
of active errors increases. Studies have shown that errors
are not homogeneously distributed throughout the modules of a
software system (Myers, 1976) (Endres, 1975), instead systems
studied were found to be "characterized by the presence of
'error-prone modules' that show a high frequency of the
system's total error content" (Jones, 1981). For example, if

there are say 5 wundetected errors in a system that is

223

ﬁ Multiplier to Active Error Regeneration

Due to Error Density

| ! L Al T T T T >

30 40 50 60 70 80 90 100

Active Error Density
(Errors/KDSI)

Figure lil.25

224

comprised of 5 modules, it 1is quite possible that all 5
errors will be clustered in one error-prone module, as
opposed to being evenly distributed among the 5 modules. 1If
there is a much larger number of undetected errors (e.q.,
100), though, it would be quite unlikely then that all the
errors would still be clustered in what would be a single
extremely-error-prone module. Such a situation is unlikely
because we are dealing here with modules that have already
."passed"” some QA testing. Thus, as the error density
increases, the distribution of errors among the system's
modules would generally also increase. As this happens,
i.e., as errors become less localized, they also become more
expensive to detect and correct. For example, because of the
set-up cost ‘of testing any single module, it is generally
less expensive to fix 10 errors that all reside yithin a
single module, than fixing an equivalent set of 10 errors
that are distributed among two or more modules. Thus, higher
densities of wundetected errors- mean a wider (but not
necessarily an even) distribution of errors among the system
modules, which leads to an escalation in the cost to fix
those errors. And since, as was indicated above, the
escalation in the <cost-to-fix of an undetected error is
realized in the model through an increase in the number of
errors that the error reproduces, higher error densities
.should 1lead to a higher error reproduction rate (per error).
This is achieved through the higher values of the "Multiplier

to Active Errors Regeneration due to Error Density," at

225

higher error densities.

As was stated above, "Undetected Active Errors" can
potentially continue to reproduce new errors as long as new
tasks are being developed e.g., up until the last system
module 1is coded. Not all of the active errors will do so,
however. That is, for some errors the reproduction activity
will not continue up until the end of the development phase.
I1t, instead, might cease after the reproduction of one or two
"generations" of errors. For example, an error in a
high-level module might reproduce a number of interface
errors at some lower level, without necessarily 1leading to
any further errors in say the user manuals. When undetected
active errors cease to reproduce, they effectively become
"Undetected Passive Errors." The rate at which this occurs
is termed the "Active Error Retirement Rate,” as shown in
Figure I11.23. This rate is regqulated through the
"Retirement Fraction," which is the fraction of active errors
that retire (i.e., become passive) every unit of time. This
fraction 1is a function of the development phase as shown in
Figure IEI.26. Notice that, because any design error must
translate into coding error(s), the "Retirement Fraction"
remains at a zero level during the design phase i.e., no
active design errors will retire and become passive since
every design error will reproduce at least one generation of
coding errors. As thé project progresses towards the last

stages of development e.g., the coding of the 1lower level

226

functional modules, opportunities for error propagation
quickly decrease, and as a result the "Retirement Fraction"
increases sharply, and reaches a value of 1 at the end of

development.

As the project progresses towards the last stages of
development, something else happens, namely, the System
Testing activities are initiated. The objective of system
Testing 1is to verify "that all elements (of the system) mesh
properly and that overall system function and performance are
achieved" (Pressman, 1982). The System Testing activities

are also depicted in Figure III.23.

As was explained in Section (B) on "Software
Development," the switch in manpower allocation from
development to testing is effected in the model through the
variable "Fraction of Effort for System Testing." The value
of this variable is initially set to zero i.e., no effort is
allocated for System Testing. When development (i.e., the
coding and design) is perceived to be completed, the value of
the "Fraction of Effort for System Testing" becomes a one,
i.e., 100% of the manpower effort available for
development/testing is allocated to the testing function.
The switch is not abrupt, however. There is, usually, some
overlap between the development and testing phases (Thibodeau
and Dodson, 1980), (Daly, 1977), (Hartwick, 1980). This

overlap of the bhases was captured (in Section (B) above) in

ﬁ Retirement

227

1.0
% of Job Worked

Fraction

1.0-

‘08-

.6

4 -

.2 -

(0] T T)

(o) 1 .2 4 5 6 .7 .8
Design Coding

Figure .26

228
Figure III1.9., which shows the assumed gradual increase in
the value of the "Fraction of Effort for System Testing" as a
function of the fraction of development tasks perceived

remaining.

The objective of System Testing stated above is
operationalized in the model as follows: Test all tasks that
have been developed to detect and correct any remaining

(active and/or passive) errors.

The rate at which (developed) tasks are tested is
determined by dividing the "Daily Manpower for Testing" by
the "Testing Manpower Needed per Task." For example, if 5
man-days are allocated daily to the system testing activity,
and it takes, on the average, 1 man-day to test a task, then

5 tasks will be tested a day.

The "Normal Testing Manpower Needed per Task" has two
components, a fixed component and a variable.one (Alberts,
1976), (Herndon and Lane, 1977). The variable component is a
function of the number of errors in a task, and it represents
the testing effort that would be consumed in the actual
detection and correction of errors. The fixed component, on
the other hand, is independent of the number of errors. It
involves overhead-type activities such as developing test

plans, installing test tools, designing test cases, ... etc.

229

The "Nominal Testing Overhead" (i.e., the fixed
component) is defined in the model in terms of nominal
man-days/KDSI. Estimates reported in Boehm (1981) suggest
that this overhead effort is in the range of 2 man-days/KDSI.
For example, for a 32 KDSI project, Boehm's estimate for the
above overhead functions (which he labelled "Test Planning")
amounted to 64.41 man-days. If we assume that motivation and
communication 1losses will, on the average, result in a 50%
loss in productivity, then Boehm's estimate translates into

an overhead of 1 nominal man-day/KDSI.

This constant parameter, could then be transformed in a
straightforward manner into an equivalent value of nominal
man-days/task. For example, if in a particular run of the
model, a "task" 1is defined to be, say 100 DSI, the nominal

testing overhead would be. 0.1 man-day/task.

In addition to the overhead incurred in testing a task,
effort 1is needed to detect and correct any remaining errors.
This needed effort to detect and correct the errors remaining
within a task is formulated as the product of the "Error
Density" and the "Nominal Testing Manpower Needed per Error."
The value of the former is obtained by dividing the sum of
both the active and passive errors still remaining by the
number of tasks yet to be tested. It represents the average
number of errors per task. The value of the "Nominal Testing

Manpower Needed per Error," on the other hand, is set to 0.15

230

Man-Days/Error. For the nominal 8-hour working day, this
translates into 1.2 Man-Hours/Error. This value was chosen
on the basis of empirical results reported in (Shooman, 1983)

and (Herndon and Lane, 1977).

Finally, the actual testing effort needed per task, in
addition to being a function of testing overhead and error
density, must also depend on the efficiency of how people
work. That is, we need to éccount for the Communication and
Motivation losses incurred. For example, if the "Multiplier
to productivity due to Communication and Motivation losses,"
which represents the average productive fraction of a
man-day, is 0.5, then the actual manpower needed to test a

task becomes twice what is nominally needed.

The testing activity continues until all the tasks that
have been developed are all tested. When this is
accomplished, the project is declared completed. (Remember,
our model's boundary extends only until the end of the

testing phase.)

With the completion of the testing activties, we also
complete our presentation of the software production
processes in the model. We have discussed the allocation of
the manpower resource in part (A), the development activties
(i.e., coding and design) in (B), OQuality Assurance and

Rework in part (C), and finally, System Testing in this final

231
part (D). 1In the next two sections, we turn our attention to

two managerial functions of software developement, namely,

controlling and planning.

I11.4.5. Controlling:

Any control function has at 1least three elements
(Anthony and Dearden, 1980):

1. Measurement. To detect what is happening in the

activity being controlled.

2. Evaluation. To assess the significance of what 1is

happening, wusually by comparing information on what is

actually happening with some standard or expectation of

what should be happening.

3. Communication. To report what has been measured and
assessed, so that behavior could be altered if the need

for doing so is indicated.

These three elements are captured in our formulation of
the control function of software project management depicted
in Figures III.27., and III.29., As work is accomplished in a
software project, progress is measured through the amount of
resocurces consumed, tasks completed, or both. Based on such
measurements, a determination is made on the "Total Man-Days
Perceived to be Still Needed" to complete the project. This

includes man-days perceived to be still needed to develop and

232

QA tasks, to rework any detected errors, and to complete
system testing. Once this 1is determined, the effort
perceived to be still needed i$ compared to the actual
"Man-Days Remaining" in the project's plan. Thus, if 100
man-days are perceived to be still needed to complete the
project but only 50 man-days are remaining, the project would
be perceived to be behind schedule. Conversely, if only 25
man-days are what is perceived to be still needed, while 50
-man-days remain available in the project's plan, then the
project would be perceived to be ahead of schedule. Once an
assessment is made of any man-day shortages or excesses,
behavior on the project could be altered if the need for
doing so 1is indicated. For example, if the project is
perceived to be behind (ahead of) schedule, i.e., if it |is
experigpcing a man-day shortage (excess), then project
members could be motived to work more (less) hard, the
project's schedule could be extended (trimmed), or a
combination of both of these could happen. In the remaining
part of this section, we will explain in detail how all thése

control processes are formulated in the model.

At any point in the project, the amount of project work
that will be perceived as still remaining will, in general,
be a combination of three things: (1) work needed to develop
and QA new tasks; (2) work needed to rework any detected
errors; and (3) work needed to conduct the sysﬁem testing

activities. Thus, the "Total Man-Days Perceived to be Still

(

I -
’
/ P 4 g
/
/
l, i
/ ' [TAskS
' PERCEIVED
) + 7\ REMAINING
7
,' CUMULATIVE
DEVELOPMENT
MAN - DAYS \

——————
Pras

-
-- - o

(DETECTED },‘
ERRORS -~

PERCEIVED _
REWORK MANPOWER
NEEDED PER ERROR

PERCEIVED
DEVELOPMENT
PRODUCTIVITY

MAN - DAYS
PERCEIVED

)

\
\ \
\ \
\
\
\ N
. N \
\ ~ \
N ~ A CUMULATIVE
\\ o TASKS
\ SS DEVELOPED
N S e -
~ -~
N -
~
~
~
~
-~
~
e
S
S e

CUMULATIVE

TASKS TESTED P~ ~

MAN - DAYS .-
FOR TESTING

~

- - - -

MAN -DAYS
PERCEIVED
REMAINING
FOR NEwW
TASKS

" TOTAL

233

-
- ~a

= = 4 WAN-DAYS

- >R REMAINING
i,
|
!y

\
MAN-DAYS FOR)
DEVELOPMENT \\

\
\(z OF PERCEIVEDY !
JOB DEVELOPED l’

MAN -DAYS
PERCEIVED

PERCEIVED
TESTING
PRODUCTVITY

Figure HL.27

)

PERCEIVED
SHORTAGE/
EXCESS IN
MAN - DAYS

!

HANDLED

/
4 !
MAN - DAYS)’ J

X

-

REPORTED
SHORTAGE /
EXCESS IN
MAN-DAYS

-
S . - e -

CUMULATIVE
TASKS
/ TESTED

TESTING

CUMULATIVE)
MAN ~ DAYS

234

Nee@ed" to complete the project is formulated as a summation
of three respective components, namely, "Man-Days Perceived
Still Needed for New Tasks," "Man-Days Perceived Needed to
Rework Detected Errors," and "Man-Days Perceived Still Needed
for Testing.” o
Because software is basfgéily an intangible product
during most of the developmeﬁt process, and for which there
are no visible milestones to measure progress like a physical
product would, "It is difficult to measure performance in
-programming ... It is difficult to evaluate the status of
intermediate work such as underdebugged programs or design
specification and their potential value to the complete
project" (Mills, 1983). How, then, is progress in a software
project measured? Our .own interview findings corroborate
those reported in the 1literature, namely, that progress,
especially in the earlier phases of software development, is
measured by the rate of expenditure of resources rather than
by some count of accomplishments (Putnam and Fitzsimmons,
1979), (Keider, 1974), (DeMarco, 1982), (Devenny, 1976),
(Baber, 1982), (Griffin, 6), kDonahue, 8), (O'Conner, 10),
(Lombardi, 16), (Chan, 20). For example, a project for which
100 man-days has been estimated is 10% complete when 10
man-days have been expended; when 50% of the man-days have
been expended, it 1is 50% complete. Paraphrasing Baber

(1982):

235

It is essentially impossible for the programmers to
estimate the fraction of the program completed. What is
45% of a program? Worse yet, what is 45% of three
programs? How is he to guess whether a program is 40%
or 50% complete? The easiest way for the programmer to
estimate such a figure is to divide the amount of time
actually spent on the task to date by the time budgeted
for that task. Only when the program is almost finished
or when the allocated time budget is almost used up will -
he be able to recognize that the calculated figure is
wrong.

As progress is measured, during the early phases of
development, by the rate of expenditure of resources, status
reporting ends up being nothing more than an echo of the
original plan.(McKeen, 1981), (Baber, 1982), (DeMarco, 1982),
.(Devenny, 1976). In other words, "Man-Days Perceived Still
Needed for New Tasks" will be equal to the "Man-Days

Perceived Remaining for New Tasks."

As the project develops, though, and the 'work becomes
relatively more visible, discrepancies between % of tasks
accomplished (remaining) and $% of resources expended
(remaining) become increasingly apparent. For example, while
it might not be too apparent that a project that has consumed
50% of its estimated resources is only 25%, rather than 50%,
complete, any such descrepancy becomes quite obvious when the
allocated resources are almost used up. At the same time,
and as the project advances towards its final stages, project
members become increasingly able to perceive how productive
_the workforce has actually been (McGowan, 3), (Nichols, 18).

As a result, the value of the "Man-Days Perceived Still

236
Needed for New Tasks" ceases to be a function of what the
"Man-Days Perceived Remaining for New Tasks" 1is, and,
instead, is determined on the basis of what the project
members perceive to be the amount of work that is still

remaining.

These differring modes of measuring progress, are

captured in the model through a single formulation of
"Man-Days Perceived Still Needed for Needed Tasks." As shown
in Figure III.27., "Man-Days Perceived Still Needed for New
Tasks" (MDPNNT) is determined by dividing the value of "Tasks
Perceived Remaining" (TSKPRM) by the "Assumed Development

Productivity" (ASSPRD). That is,

MDPNNT = TSKPRM / ASSPRD (1)
Where "Assumed Development Productivity" (ASSPRD) is a
weighted average of "Perceived Development Productivity"
(PRDPRD) and a variable we are calling "Projected Development
Productivity"” (PJDPRD). That is,

ASSPRD = PJDPRD*WTPJDP + PRDPRD*(1-WTPJDP) (2)

The weighting factor (WTPJDP) moves from 1 at the beginning

of the project to zero at the end of the development phase.

The conception behind this formulation is somewhat

237
subtle, and will, therefore, require some explanation.

As was indicated above, in the earlier phases of
software development, progress tends to be measured by the
rate of expenditure of resources. As a result, status
reporting ends up being nothing more than an echo of the
original plan. "Man-Days Perceived Still Needed for New
Tasks" (MDPNNT) becomes, under such conditions, simply equal
to the "Man-Days Perceived Remaining for New Tasks" (MDPRNT).

That is,

MDPRNT = MDPNNT

Substituting for MDPNNT, w2 get

MDPRNT

TSKPRM / ASSPRD
which leads to,

ASSPRD = TSKPRM / MDPRNT

This is an interesting result. For, it suggests that as
project members measure and report progress by the rate of
expenditure of resources, they, by so doing, would be

implicitly assuming that their productivity equals "Tasks

Perceived Remaining"™ (TSKPRM) divided by the "Man-Days
Perceived Remaining for New Tasks" (MDPRNT). Which is
intersting because such an assumed value for productivity is
solely a function of future projections (i.e., remaining

tasks and man-days) as opposed to being a reflection of

238

accomplishments (i.e., completed tasks and expended
resources). This implicit notion of productivity is captured
in the model by the variable "Projected Development
Productivity" (PJDPRD), defined, as the above equation
suggests, to be equal to "Tasks Perceived Remaining" (TSKPRM)
divided by "Man-Days Perceived Remaining for New Tasks"

(MDPRNT) ,

Thus, in the early phases of software development, we

would like equation (1) to reduce to,

MDPNNT

TSKPRM / PJDPRD (3)

where

PJDPRD TSKPRM / MDPRNT
which would be achieved by setting the weighting factor
(WTPJDP) in equation (2) to 1, and substituting in equation

(1).

As "the project advances towards its final stages,
though, accomplishments become relatively more visible and
project members become increasingly more able to perceive how
productive the workforce has actually been. As a result,
what the project members assume their productivity to be,
i.e., the value of "Assumed Development Productivity," ceases
. to be a function of future projections (i.e., remaining tasks

and man-days), and instead is determined on the basis of

239

perceived accomplishments. This explicit notion of
productivity is captured in the model by the variable
"Perceived Development Productivity" (PRDPRD). Discussions
with (McGowan, 3), (Nichols, 18), and (Lombardi, 23) suggest
that, towards the final stages of development, the value: of
the team's overall productivity would be determined by
dividing the value of "Cumulative Tasks Developed" (CUMTKD)
by "Cumulative Development Man-Days" (CUMDMD). In other
words, if 100 man-days have been expended to develop the
project's 100 tasks, then "Perceived Development

Productivity" would be 1 task/man-day.

Thus, in the final stages of software development, we

would like equation (1) to reduce to,

MDPNNT

TSKPRM / PRDPRD (4)

where,

PRDPRD = CUMTKD / CUMDMD
which would be -achieved by setting the weighting factor
(WTPJDP) in equation (2) to zero, and substituting in

eqguation (1).

To recapitulate, the value of "Man-Days Perceived Still
Needed for New Tasks" (MDPNNT) is a function, as equation (1)
indicates, of "Tasks Perceived Remaining" (TSKPRM) and

"Assumed Development Productivity." 1In the early phases of

240

development, "Assumed Development Productivity" is implicitly
determined on the. basis of future projections (i.e.,
remaining tasks and man-days). Towards the end of
development, on the other hand, "Assumed Development
Productivity" gets to be explicitly determined on the basis
of perceived accomplishments (i.e., completed tasks and
expended resources). This is achieved through the weighted
average formulation of "Assumed Development Productivity"
given in equation (2), i.e., by setting the weighting factor
(WTPJDP) to 1 at the beginning of the project, and to zero at

the end of the development phase. -

People’s assumptions about their productivity,
therefore, change as the project develops. The change,
however, is often gradual not abrupt (McGowan, 3), (Nichols,
18), (Lombardi, 23). That 1is, the transition from having
"Assumed Development Productivity" being determined solely on
the basis of future projections early in the project, to
having it beiﬁg determined entirely on the basis of perceived
accomplishements, towards the end of development, is a

smooth, not an instantaneous, type of a transition.

This transition in people's assumption about their
productivity is captured in the model through the formulation
of the weighting factor (WTPJDP) of equation (2). For

convenience, we are re-writing equation (2) below,

241
ASSPRD = PJDPRD*WTPJDP + PRDPRD*(1-WTPJDP) (2)

In the beginning of the project, becauée "Assumed
Development Productivity" (ASSPRD) is equal to "Projected
Development Productivity" (PJDPRD), the weighting factor
WTPJDP is set equal to 1. As was explained above, under such
conditions status reporting ends up being nothing more than
an echo of the original project plan as "Man-Days Perceived

Still Needed for New Tasks" ends up being exactly equal to

"Man-Days Remaining for New Tasks." As the project develops,
though, descrepancies between $% of tasks accomplished
(remaining) and % of resources expended (remaining} become
increasingly apparent, and in addition project members become
increasingly able to perceive how productive the workforce
has actually been. As a result, "Assumed Develoﬁment
Productivity" (ASSPRD) becomes less a function of "Projected
Development Productivity" (PJDPRD) and more a function of
"Perceived Development Productivity" (PRDPRD). That is, the
weighting factor (WTPJDP) moves from a value of 1 to a value
of 0. The rate at which this learning process takes place is
the product of two factors, namely, the rate of expenditure
of resources and the rate of development of tasks. Remember
Baber's quote (1982), "Only when the program is almost
finished or when the allocated time budget is almost used up
will (the programmer) be able to recognize (the descrepancy
between % of tasks accomplished and % of resources expended."

To accomplish this in the model, we will formulate the

242
weighting factor (WTPJDP) as the product of two multipliers,
the "Multiplier to Productivity weight due to Resource
Expenditures" and the "Multiplier to Productivity Weight due
to Development." As shown in Figure 1I1II1.28., both
multipliers are assumed to have the same shape, moving from a
value of 1 in the beginning of the project to a value of zero
when all estimated development resources are expended or all

tasks are developed, respectively.

Thus far we have been only discussing how "Man-Days

Perceived Needed for New Tasks" 1is determined. As was

indicated earlier, at any point in the project the amount of
work that will be perceived as still remaining will, in
general, be comprised of not only work needed to develop and
QA new tasks, but in addition work needed to rework any
detected errors and work needed to conduct the system festing
activities. Thus, the "Total Man-Days Perceived to be Still
Needed" to complete the project is formulated as a summation
of "Man-Days Perceived Still Needed for New Tasks,"- "Man-Days
Perceived Needed to Rework Detected Errors," and "Man-Days

Perceived Still Needed for Testing."

The "Man-Days Perceived Needed to Rework Detected
Errors™ is formulated as the product of "Detected Errors" and
"perceived Rework Manpower Needed per Error." (The latter,
as was explained in some detail in the section on "Manpower

Allocation," is a SMOOTH of the "Actual Rework Manpower

243

* Muitiplier to Productivity Weight Due to

1.0 ’ Resource Expenditures
.8 -
l6 -
(a)
'4 I
.2-‘ v
0 T T T T ! =
o .2 4 6 .8 10 Fraction of Development
: Man-Days Expended
A .
Multiplier to Productivity Weight Due to Development
1.0
.8 -
.6
(b)
4
2
O T T T 1 1 -
o 2 4 6 .8 10 % of Perceived

Job Developed

Figure Il.28

244

Needed per Error.") For example, if at some poinf in the
project 50 errors that have been detected through the QA
activities are still uncorrected, and if it is perceived that
an error requires 0.2 Man-Days, on the average, to correct,
then the "Man-Days Perceived Needed to Rework (those)

Detected Errors" would be 50 X 0.2 = 10 Man-Days.

The "Man-Days Perceived Still Needed for Testing," on
the other hand, is determined by dividing the value of "Tasks
Remaining to be Tested" by the "Perceived Testing
Productivity." The "Tasks Remaining to be Tested" is simply
the "Perceivéd Job Size in Tasks” minus "Cumulative Tasks
Tested." For example, if the perceived job is 100 tasks in
size, and 60 of these have already been tested, then "Tasks

Remaining to be Tested" would amount to 100 - 60 = 40 tasks.

Throughout most of the development phase, and before the
commencement of the System Testing phase, the value of
"Perceived Testing Productivity" is set equal to "Planned
Testing Productivity." This is the value of testing
productivity that 1is implicit in the project's‘plan. For
example, if for the 100 task project, the plan allocates 20
Man-Days for System Testing, then the "Planned Testing
Productivityg would be 5 tasks/man-days. However, as the
System Testing activity gets underway, people's perceptions
of their testing productivity becomes a function of how

productive the testing activity actually is, as opposed to

245

how productive it was planned to be. The "Actual Testing
Productivity" 1is then determined by dividing the "Cumulative
Tasks Tested" by "Cumulative Testiné Man-Days." And, because
"Full and immediate action is seldom taken on a change of
incoming information (e.g., on the sudden drop in yesterday's
testing productivity) ... (and because there is a) tendency
to delay action wuntil the change is insistent e
(Forrester, 1961), "Perceived Testing Productivity" is

formulated as a SMOOTH. The smooth delay is set at 50

working days.

Once "Man-Days Perceived Still Needed for New Tasks,"
"Man-Days Perceived Needed to Rework Detected Errors," and
"Man-Days Perceived Still Needed for Testing" are all
determined, they would all be summed up to determine the
"Total Man-Days Perceived Still Needed" to complete the
project. And once this is determined, it is then compared to
the actual "Man-Days Remaining" in the project's plan. So,
if 100 man-days are perceived to be still needed to complete
the project, but only 50 man-days are remaining, the project
would be perceived to be behind schedule. ‘ Conversely, if
only 25 man-days are what is perceived to be still needed,
while 50 man-days remain available in the project's plan,

then the project would be perceived to be ahead of schedule.

After an assessment is made of any man-day shortages or

excesses, behavior on the project can then be altered if the

246

need for doing so is indicated. For example, if the project
is peféeived to be behind (ahead of) schedule i.e., if it is
experiencing a man-day shortage (excess), then project
members could be motivated to work more (less) hard. The
mechanisms that determine how much, if any, of any perceived
man~day shortage (excess) is absorbed by the project members
in the form of increased (decreased) work rate were fully
explained in our discussions on software development
productivity. Any shortages (excesses) that are not absorbed
will be reported, and will 1lead to adjustments to the
project's scope. (Such adjustments are then translated, in
the Planning section, into adjustments to the schedule or

adjustments tQ the workforce level, or both.)

Let us consider an example. And, again, let us consider
the case of the 100 man-day project. 1If, after 60 man-days
have been expended, the values of "Man-Days Remaining" and
"Total Man-Days Perceived Still Needed" were 40 man-days and
65 man-days respectively, then the "Perceived Shortage in
Man-Days" would be 25. If the project members (based on the
many factors discussed in the productivity section) decide to
absorb only 10 of the 25 man-days, then the "Reported
Shortage in Man-Days" would be 15 man-days. If these are
added to the value of "Man-Days Remaining"” in the project's
plan, i.e., to 40, we come up with a value of 55 man-days for

the "Man-Days Reported Still Needed" to complete the project.

247

Any time the "Man-Days Reported Still Needed" turns out
to be more (less) than the "Man-Days Remaining” in the
project's plan, it would, in effect, constitute a revision of
what the project's scope is perceived to be, i.e., that it is
larger (smaller) than what has been planned for. For
example, in the case above, reporting that 55 (rather than
40) man-days are still needed after having had 60 man-days
already expended, constitutes a revision 1in what the
project's size is perceived to be, namely, from the original
estimate of 100 man-days to a revised value of 60 + 55 = 115
man-days i.e., a 15% increase. When such a "revelation"
occurs 1in a project, project management reacts to transform

those revised perceptions about the "Total Job Size in

Man-Days" into actual adjustments. This adjustment process
is captured, as\js shown in Figure 111.29., through the "Rate
of Adjusting the Job's Size in Man-Days." It is the rate at
which the "Total Job Size in Man-Days" is adjusted, upwards
or downwards, to what 1is perceived as 1its newly revised
value. The "Rate of Adjusting the Job's Size in Man-Days" is

formulated as,

(GOAL - LEVEL)/ADJUSTMENT-TIME

where,

GOAL = Revised value of job size

- in Man-Days
Man-Days Reported Still Needed +
Cumulative Man-Days Expended

LEVEL Total Job Size in Man-Days

247.1

MAN- DAYS
REMAINING

s ’ N S N
/ \
/ \
/ \
! \
! \ / CUMULATIVE
| k(MAN - DAYS)
UNDISCOVERED) J \ EXPENDED
JOB TASKS | MAN - DAYS /
(REPORTED /
|\ STILL NEEDED /'~ (;
/ \ N /
! \ “\ / .
/ \ : 4 DELAY IN
\ RATE OF _ — - < ADJUSTING
RATE OF \ ADJUSTING - JOB SIZE IN
DISCOVERING \ JOB SIZE IN MAN - DAYS
TASKS N MAN -DAYS
\ /
AVERAGE /
i DELAY IN
.-~ :)NCORPORATING ~
ISCOVERED
! - TASKS S TOTAL JOB SIZE
h RATE OF g IN MAN - DAYS
| INCORPORATING | Wi ASSUMED
DISCOVERED |32 DEVELOPMENT >\ \ PERCEIVED
! TASKS INTO |39 PRODUCTIVITY / 4 [4 TESTING)
! PROJECT =1 \ _~ \ PRODUCTIVITY
1 \ P4
! NS RATE OF INCREASE
AT - INADE\II’ELOPMEN];
MAN - DAY
\‘§ I~ D|5hé0vEngg qrisgs RATE OF INCREASE IN
% OF NENNEN _ TESTING DUE TO
PERCEIVED R T PPy \ . DISCOVERED TASKS
JOB \ S e - rd \
DEVELOPED AN Seee o ___--7 \
N \\ \
‘ SRR
/ \ / PERCEIVED \ \
I} AR SIZE OF \ \
! . CURRENTLY DISCOVERED \ !
| < PERCEIVED TASKS IN - ASSUMED \
| JOB SIZE IN MAN-DAYS ~<} DEVELOPMENT \
1 TASKS PRODUCTIVITY \ \
\ S \ I
\ %\ \ |
\ AN \ 1
\
\ \ v
\ / CUMULATIVE \ RELATIVE v
R itsores) | X ¥
I, DEVELOPED 1 TASKS \/
! ! X
1 4 FRAC OF
\\ / ADDITIONAL
\ ;| { MAN-DAYS PERCEIVED Tasks

(

TASKS
PERCEIVED
REMAINING

REMAINING FOR NEW
TASKS

ADDED TO
MAN-DAYS

v

MAXIMUM RELATIVE
SIZE OF ADDITIONS
TOLERATED WITHOUT
ADDING TO PROJECTS
MAN - DAYS

F'igure .29

248

ADJUSTMENT-TIME = Delay in Adjusting the
' Job's Size in Man-Days
Thus, the adjustment process 1is not an instantaneous
one, instead it takes place over a time interval defined as

the "Delay in Adjusting the Job's Size in Man-Days."

The above formulation of the "Rate of Adjusting the
Job's Size in Man-Days" produces the behavior pattern shown
in Figure I11.30. 1In the situation portrayed in the figure,
it 1is assumed that up until time t,;, LEVEL = GOAL. Then, at
time (t,) there is a sudden permanent increase (h) in the
GOAL e.g., the "Revised Value of the Job's Size" jumps from
100 man-days to 115 man-days. In response to such a step
rise in the value of the GOAL, the value of LEVEL (e.g., the
value of "Total Job Size 1in. Man-Days") rises in an
exponential, goal seeking pattern. And, it can be shown
that, the rate at which LEVEL rises is such that it would
close 63% of the gap after one "Adjustment time,"” and 95% of

"the gap after 3 "Adjustment-times."

The "Delay in Adjusting the Joﬂ's Size in Man-Days"
ranged in the organizations we interviewed in from 2 days
(Landolfi, 22), (Lombardi, 23) to a week (i.e., 5 working
days), (Chan, 20). 1In the model the "Delay in Adjusting the
Job's Size in Man-Days" is set to 3 working days. This value
together with the ones reported by our interviewees might

strike some readers as somewhat lower than what they would

248.1

“ GOAL.
Yy
_-—~—F
//'~. 50.95H
LEVEL KA
— - > TIME
T T-+3*(ADJUSTMENT=-TIME)

RATE = (GCAL - LEVEL) / (ADJUSTMENT-TIME)

Figure 111.30

249

have expected. But remember, this adjustment process is
really the project's final, not first, reaction to some
man-aay shortage/excess. As we explained before, when the
project 1is perceived to be behind (ahead) of schedule people
first react by absorbing the shortage (excess). And only
when this is not enough, are adjustments to the project's
size undertaken. Thus, when, if ever, the the decision to
also adjust the project's size is made, people in the project

would have been "geared-up" for it.

Falling behind séhedule is not the only reason why a
project'é size in man-days might be adjusted upwards. It
could also happen, as Figure III.29. indicates, as a result

of an upward adjustment in the project's size in tasks.

As a software project develops, project members often
realize that they have under-estimated the number of tasks
{(e.g., modules) that comprises the software system being
developed (DeMarco, 1982), (Burchett, 1982), (Daly, 1977),
(Devenny, 1976). Boehm (1981) provides an explanation for

this tendency to underestimate software size:

There is a powerful tendency to focus on the highly
visible mainline components of the software, and to
underestimate or completely miss the unobtrusive
components (e.g., help message processing, error
processing, and moving data around).

In the model we define an initializing parameter called

250
"Tasks Underestimation Fraction." Through this parameter we
can simulate any software under-sizing situation we wish to
investigate. For example, if the actual size of the software
product to be developed is, say, 100 tasks, then to simulate
a 25% under;sizing "problem"” we would simply set the "Tasks
Underestimation Fraction" to 0.25. What this would do, is it
would initialize the model such that the value of the
"Currently Perceived Job Size in Tasks" is only
(1 - 0.25) * 100 = 75 tasks. It would also initialize
another 1level, namely, the "Undiscovered Job Tasks" to

0.25 * 100 = 25 tasks.

As the project develops, the "Undiscovered Job Tasks"
are progressively discovered as "the level of knowledge we
have of what the software 1is 1intended to do (increases)"
(Boehm, i981). The rate at which this happens, i.e., the
number of undiscovered tasks that would be discovered per
unit of time, 1is regulated, in the model, by the "Rate of
Discovering Tasks." It is formulated as the product of the
number of "Undiscovered Job Tasks" and the "Percent of
Undiscovered Tasks Discovered per Day." Because the rate at
which undiscovered-tasks are discovered tends to increase as
the project develops (Daly, 1977) (e.g., because, as the
above quote indicates, the team's level of knowledge of what
the software product 1is intended to do increases), the
"Percent of Undiscovered Tasks Discovered per Day" is

formulated, not as a constant, but instead as a variable that

251

increases in value as the project progresses. Its
formulation is depicted in the table function of Figure

III.31.

As the additional tasks are discovered, they are then
incorporated iﬁto the project e.g., incorporated into the
project's Work Breakdown Structure, the Gantt and/or PERT
charts, the Earned Value System, ... etc. This, of course,
takes time. In the model this process is modeled as a
third-order delay, with the "Average Delay in Incorporating
Discovered Tasks" set to 10 working days (i.e., two weeks)

(Landolfi, 22).

The final piece of structure we would like to discuss is
the one that model's the process by which the discovery of
additional tasks is translated into additions to the
project's allocation of man-days. This structure occupies

the lower portion of Figure III.29.

When additional tasks are discovered in a project, they
do not necessarily always trigger an adjustment to the
project's man-days estimate (Boehm, 1981). Only if the

additional tasks are perceived as requiring a relatively

"significant" amount of effort to handle, would project
members "bother" to go through the trouble of formally
developing cost estimates and incorporating them in the

project's work plan (Chan, 20), (Lombardi, 23), (Hisamune,

252

Percent of Uhdiscovered Tasks
A Discovered per Day

20 4
16 -

12 -

m—

0O 20 40 60 80 100 % of Perceived

Job Developed

Figure .31

253

26) and (Nichols, 27). As Figure 1III.29. indicates, the
number of discovered tasks are first "mentally" sized-up by
dividing them by the "Assumed Development Productivity." For
example, if 10 tasks are discovered and if, at that point in
the project, the value of the "Assumed Development
Productivity" is 1 task/man-day, then the "Perceived Size of
Discovered Tasks in Man-Days" would be 10 man-days. This
absolute number by itself is not, however, enough to decide
whether the new tasks do or do not deserve a "fo;mal
treatment." This determination is based, not on the
perceived absolute size of the discovered tasks, but instead
on what their size is perceived to be relative to thée amount
of effort that is perceived remaining. For example, while it
would be quite possible that a 100 man-day task discovered at
the beginning of 100,000 man—déy project would not trigger
any adjustments in the projects's man-days estimate, it would
be quite unlikely for this to happen if the 100 man-day task
is discovered at the end of the development phase when only
50 man-days are still remaining in the project's plan. Thus,
the value of the ""Perceived Size of Discovered Tasks in
bMan-Days" is divided by the "Man-Day Perceived Remaining for
New Tasks" to determine the "Relative Size of Discovered
Tasks." Once this relative size is determined, it is then
compared to some threshold value, namely, the "Maximum
Relative Size of Additions Tolerated Without Adding to the
Project's Man-Days." 1If the relative size is lower than that

threshold, the newly discovered tasks. are totally absorbed

254

without triggering any adjustments to the project's man-days
estimate. 1f, however, the relative size exceeds that
threshold value, parts or all of the additional tasks are
translated into additional man-days in the project's plan.
This behavior is captured in the table function of Figure
I11.32. Based on discussions with (Hisamune, 26), and
(Nichols, 27), we set the "Maximum Relative Size of Additions
Tolerated Without Adding to Schedule to . the Project's
Man-Days" to 1%. .For example, for a 1000 man-day development
phase (e.g., 10 people working for 100 working dayé the

threshold is 10 man-days).

As a result of the above decision making process, a
decision could, therefore, beée made to formally incorporate
either part or all of those tasks discovered, at some point
in the project, into the project's man-days estimate. Such
~an adjustment involves producing two estimates, one for the
effort to develop and QA the new tasks, and the other for the
system testing work. Both of these estimates are determined
in basically the same manner. The former is determined by
. dividing the number of discovered tasks that are to be
incorporated by the "Assumed Development Productivity," while
the system testing effort is estimated by dividing by the

"Perceived Testing Productivity."

Any such adjustments to the project's total man-days

estimate, will, in turn, trigger further adjustments in

1.0

-8-

255

Fraction of Additional Tasks
Adding to Man-Days

[
T T T T] T T T T T

2 4 6 .8 10 1.2 14 16 1.8 2.0

Relative Size of Discovered Tasks

Max. Rel. Size of Additions Tolerated
w/0 Adding to Project’s Man-Days

Figure .32

256
either the projects schedule completion date, the workforce

level, or both. These reactions are explained next in the

planning section.

I11.4.6. Planning:

The Planning subsystem is depicted in Figure III.33.

The "Schedule Completion Date" is formulated, not as an
actual date (e.g., August 7th, 1983), but as a number of
working days from the beginning of the project (e.g., 200 -
days). Thus, by simply subtracting the current value of
"Time" (which represents the number of working days elapsed
in a simulation run), we can determine the scheduled "Time
Remaining." By dividing the value of "Man-Days Remaining,"
at any point in the project, by "Time Remaining" we can then
determine the "Indicated Workforce Level," This would
represent the number of full-time employees believed to be
necessary and sufficient to complete the project on time
i.e., on the (current) "Scheduled Completion Date." For
example, if the "Scheduled Completion Date" is 100 days, and
at time = 40 days the value of "Man-Days Remaining" is 600
man-days, the "Indicated Workforce Level" would be determined
as follows: First, the value of "Time Remaining"” would be
determined to be 100 - 40 = 60 days. Dividing this into 600
man-days, we afrive at a value for the "fndicated Workforce

Level™ of 10 men. As we said, this value is in terms of

257

CEILING ON
_ ~ "R TOTAL WORKFORCE
-
WORKFORCE
(70TAL LEVEL
WORKFORCE 77 -\ SOUGHT -
\ _ - \\ -
\ . <
e < s ~
A Y
Y
WORKFORCE N
LEVEL .
NEEDED .
N 4 MAN-DAYS% \ -
-7 S . - R RemanG P~ N
s ~ : s ~
4 N ’ s N \
’ 7 N N Vg
V4
4 v
’ \\ /
WILLINGNESS INDICATED
70 CHANGE WORKFORCE
WORKFORCE f& . _ .~
~
~
N '
\ rd
rd
' Mo
' —&—
! AVERAGE DAILY
\ MANPOWER - -
\ PER STAFF

\ HIRING TME
\ DELAY —5- REMAINING
\ AVERAGE .
. ASSIMILATION -
c DELAY ~o
-~ -& TIME)). -
’ -~
I
]
I
- ! INDICATED
» ! COMPLETION
h DATE
I N
! ~.
~-
5 S~ SCHEDULED)
. ~~— o~~~ COMPLETION p

MAXIMUM TOLERABLE DATE
COMPLETION DATE

RATE OF

ADJUSTING
PR \. SCHEDULE

SCHEDULE

ADJUSTMENT
TIME O

Figure Mli.33

258

full-time equivalent employees. Thus, if (actual) employees
are not assigned full-time on the project, adjustments should
be made. This is achieved in the model by dividing the vaiue
of the "Indicated Workforce Level" obtained above, by the
value of the "Average Daily Manpower per Employee." For
example, if employees assign, on the average, only 50% of
their time to the project, i.e., "Average Daily Manpower per
Employee" equals 0.5, then the "Indicated Workforce Level"
obtained above would be adjusted to become 10 / 0.5 = 20

(actual) employees.

As was mentioned, the "Indicated Workforce Level"
represents the number of full-time employees believed to be
necessary and sufficient to complete the project on time
i.e., on the (Current) "Scheduled Completion Date." 1If this
number turns out to be lower than the value of the "Total
Workforce"™ on the project, excessive employees would be
simply transferred out of the project. The ‘transfer
operation was explained in detail in the "Human Resource
Management Subsystem." If, on the otﬁer hand, the opposite
is true, 1i.e., the "Indicated Workforce Level" is larger,
then this would indicate a need to hire more people.
However, as has also been explained in the "Human Resource
Management Subsystem,” hiring decisions are not determined
only on the basis of scheduling considerations. 1In addition,
consideration is also given to the stability of the

workforce. That 1is, before hifing new project members,

259

management tries to contemplate the duration of need for
these new members. Different firms weigh this factor to
various extents. In general, however, the relative weighting
between the desire for workforce stability on the one hand,
and the desire to complete the project on time, on the other,

changes with the stage of project completion.

The "Workforce Level Needed" is formulated as a weighted
average of the (Current) "Total Workforce Level" and the
"Indicated Workforce Level." It, thus, takes into account
both the stable workforce level, and the number of employees
that would be required to complete the project on time.

Specifically, it is formulated as follows:

WF-Level Needed = Indicated WF-Level * WCWF +
Total WF-Level * (1-WCWF)

(Note: The above formulation only applies when the
value of the "Indicated Workforce Level" 1is larger than
"Total Workforce," indicating a need for hiring more people.
In cases where the opposite is true, 1i.e., "Indicated
Workforce Level"™ is lower, then "Workforce Level Needed"
would be simply set to that lower value, and any excessive

employees transferred out of the project.)

The weighting factor (WCWF) is termed the "Willingness
to Change Workforce Level," It is a variable that could

assume values between 0 and 1, inclusive. When WCWF = 1, the

260
weighting considers only the "Indicated Workforce Level“
i.e., management would be adjusting its workforce level to
the number perceived required to finish on schedule. As WCWF
moves towards 0, more and more weighting would be given to
the stability of the workforce. And when WCWF equals exactly
0, the weighted number of employees desired becomes wholly

dependent on the workforce stability factors.

We formulated the "Willingness to Change Workforce
Level" to be compri.d of two components. The first
component, WCWF-1, captures the pressures that develop, as
the project proceeds towards its final stages, for workforce
stability. Although different firms will weigh this factor
to various extents, we feel that the general form of WCWF-1
depicted in Figure 1III.34. (and which is based on
discussions with (Lombardi, 23), (Garett, 24), and (Nichols,
25) is representitive. To understand what Figure 1III.34.
represents, assume for the moment that "Willingness to Change
Workforce Level" is only comprised of, and is therefore equal
to, WCWF-1, Thus, 1in the early stages of the project when
"Time Remaining™ would generally be much larger than the sum
of the "Hiring Delay" and the "Average Assimilation Delay,"
WCWF would be equal to 1, i.e., there would be total
willingness to adjust the size of the workforce to whatever
level is necessary to suit the project's scheduled completion
date. As the number of days perceived remaining drops below

1.5 * (Hiring . Delay + Average Assimilation Delay), though,

261

the figure shows increasing reluctance to increase the
workforce level. For example, if the "Hiring Delay" is 40
working days and the "Average Assimilation Délay“ is 80 days,
then as "Time Remaining" drops below 180 days, management
starts to become reluctant to hire new people, even though
the time and effort perceived remaining might imply that more
people are needed. This reluctance stems from the
realization that most of those remaining 180 days, would be
"wasted" in the hiring process and then in aéquainting the
new people with the mechanics of the project, in integrating
them into the project team, and in training them in the
necessary technical areas. When the "Time Remaining" drops
below 0.3 * (Hiring Delay + Average Assimilation Delay), the
table function of Figure 1III.34. suggests that no more
additions would be made to the project's workforce i.e., the
hiring rate will fall to zero. Thus, at that stage, if the
project is behind schedule, project management would be

coping only by pushing back the schedule completion date.

This, of course, is not always feasible or acceptable.
For example, in our discussions at MITRE, we learned'that in
projects that involve embedded software for weapon systems,
serious schedule slippages can not be tolerated. The reason
is that, in such projects, software development is often on
the <critical path of overall system development, which, as a
result, translates any serious siippages in the software .

schedule 1into very costly slippages in the overall delivery

% WCWF-1

1.0 -

8 -

262

(Time Remaining)
(Hiring Delay Av. Assimilation Delay)

Figure Ill.34

263

schedule of the system (O'Conner, 10).

Let's see what this meant in a recent software
development for a large defense system. It was planned
to have an operational lifetime of seven years and a
total cost of about $1.4 billion =--- or about $200
million a year worth of capability. However, a
six-month delay caused a six-month delay in making the
system available to the user, who thus lost about $100
million worth of needed capability --- about 50 times
the direct cost of $2 million for the additional
software effort (Boehm, 1973),

Because of the software industry's less than impressive
track record in delivering projects on schedule, such
embedded software projects are often scheduled with some
"safety factop“ incorporated (O'Conner, 10). For example, if
some "Maximum Tolerable Completion Date" is, say, 100 days,
.and a 20% safety factor is used, then the project would be
initially scheduled to complete in 0.80 * 100 = 80 days. 1If
such a project starts to fall behind schedule, what would
happen? We will assume the following scenario (O'Conner,
10): As long as the "Scheduled Completion Date" is
comfortably below the "Maximum Tolerable Completion Date"
then decisions to adjust the schedule, add more people, or do
a combination of both will continue be based on the balancing
of scheduling and workforce stability considerations, e.g.,
as captured by WCWF-1. However, as the "Scheduled Completion
Date"™ starts approaching the "Maximum Tolerable Completion
Date," pressures would develop that would override the
workforce stability considerations. That is, management

becomes increasingly willing to "pay any price" necessary to
g

264

avoid overshooting the "Maximum Tolerable Completion Date."
And this often translates into a management that is

increasingly willing to hire more people.

The development - of such overriding pressures are
captured through the following formulation of the

"Willingness to Change Workforce Level" (WCWF),
WCWF = MAXIMUM (WCWF-1, WCWF-2)

WCWF-2, the second component of WCWF, is the table
function depicted in Figure 1II11I.35, Thus, as 1long as
"Scheduled Completion Date" is comfortably below the "Maximum
Tolerable Completion Date," the value of WCWF-1 would be
zero, 1i.e., it would haye no bearing in the determination of
WCWF, and consequently no bearing on the hiring decisions.
When "Scheduled Completion Date" starts approaching the
"Maximum Tolerable Completion Date" the value of WCWF-2
starts to gradually rise. Becanse such a situation would be
developing towards the end of the project,- the value of
WCWF-1 would be probably close to zero and decreasing. Thus,
as WCWF-2 exceeds the value of WCWF-1, the "Willingness to
Change Workforce Level" would be totally dominated by
scheduling considerations, 1i.e., by the desire not to

overshoot the "Maximum Tolerable Completion Date."

Note that the above formulation of WCWF allows us to

WCWF-2

265

Scheduled Completion Date

Maximum Tolerable Completion Date

Figure lll.35

266

easily simulate those environments in which there are no
tight time commitments. In such cases we need only to set
the value of "Maximum Tolerable Completion Date" to some high
value. This would keep WCWF-2 always at the zero level.

And, thus, WCWF becomes solely a function of WCWF-1.

One final note about the formulation of the "Willingness
to Change Workforce Level." It is important to realize that
the variable WCWF is an expression of a policy for managing
projects. Thus, a range of functions are possible here
(e.g., different- forms of the table functions WCWF-1 and
WCWF-2), capturing different strategies for how to balance
workforce and schedule adjustments throughout the project to
minimize overruns and costs. In the next chapter, we will
take the opportunity to explore a range of other alternate

policies besides the (representitive) one discussed here.

Once the "Workforce Level Needed" is determined, it is
translated into a goal for hiring in (or transfering out)
employees. This goal is termed the "Workforce Level Sought."
The "Workforce Level Sought" is almost always' identical to
the "Workforce Level Needed." They could, however, differ.
When this happens, it is usually in the early stages of the
project, when the project's manpower build-up rate tends to
be at its highest level. A consideration is given then, as
was explained in the "Human Resource Management Subsystem,”

to the project's ability to absorb new people into its

267

organization. This factor defines, in effect, a ceiling on
the number of employees sought i.e., to be hired. That |is,
"Workforce Lével Sought" would be set to the value of
"Workforce Level Needed" as long as this is 1less than or
equal to the "Ceiling on Total Workforce." Otherwise,

"Workforce Level Sought" is set to the value of the latter.

By dividing the "Man-Days Remaining" by the value of the
"Workforce Level Sought" (after being adjusted if necessary
to be in terms of full-time equivalent employees) we can
determine the "Time Perceived étill Required." This would
represent the rémaining time, in working days, that is
perceived to be still required to complete the project, given
its current condition. Notice that by computing the "Time
Perceived Still Required" in terms of the "Workforce Level
Sought rather than the "Total Workforce" means that we are
assuming that schedule adjustments (which would be based on
this computation), are made with full awareness of the hiring
decisions being made in the project. For example, if at some
point as much as 1100 man-days are still remaining to
complete the project, 10 full-time employees are working on
it, and it has been decided to hire an additional employee
(i.e., "Workforce Level Sought" is 10 + 1 = 11), then we are
assuming that management would '(often through a
back-of-the-envelope computation) determine that the time
still required is 1100 / 11 = 100 days. (Based on

discussions with (Landolfi, 11), (Chan, 14), and (Lombardi,

268

16).)

Once the "Time Perceived Still Required" is computed, it
would be added to the value of "Time" (i.e., the number of
working days elapséd on the simulated project) to determine
the "Indicated Completion Date." For example, if at Time =
40 days, the value of "Time Perceived Still Required" is 100
days, then the value of the "Indicated Completion Date" would
be 140 days. Once this, in turn, is determined, it is used
to adjust the project's formal "Scheduled Completion Date,"
if necessary. The "Rate of Adjusting the Schedule"” has the

(by now) familiar formulation,

(GOAL) - LEVEL) / ADJUSTMENT-TIME

where,

GOAL Indicated Completion'Date

LEVEL Scheduled Completion date

ADJUSTMENT-TIME = Schedule Adjustment Time
The "Schedule Adjustment Time" is set in the model to 5

working days (i.e., one calender week) (Landolfi, 22), (Chan,

20).

I111.5. Summary:

In this chapter on model development, we accomplished

three tasks. First, we identified the sources of information

269

utilized 1in déveloping the model. As was explained in
Section III.2, the model was developed on the basis of an
extensive review of the literature, supplemented by 27
focused field interviews of software project managers in 5
organizations. Second, we defined the model's boundary. As
was shown in Section 1I1.3, the model focuses on the
development phases of software production, extending from the
beginning of the design phase of the software lifecycle, up
untill the end of the system testing phase. Finally, 1in
Section I111.4, a detailed description of the model's
structure was presented. The model 1is comprised of four
sectors. At the heart of the model 1is the Software
Production Sector, where software production activities such
as coding and testing are modeled. The project management
activities comprise the remaining three sectors: Planning,

Human Resource Management, and Control.

THE DYNAMICS OF SOFTWARE DEVELOPMENT PROJECT MANAGEMENT:
AN INTEGRATIVE SYSTEM DYNAMICS PERSPECTIVE

by
TAREK K. ABDEL-HAMID
B.Sc., CAIRO UNIVERSITY, CAIRO

(1972)

MBA, STATE UNIVERISITY OF NEW YORK, ALBANY
(1978)

Submitted to the Department of Management
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January 1984
@Massachusetts Institute of Technology 1934

Signature of Author: “lare K, Aw M/

Department of Management, 6 January 1984

. Certified by: #,/;%££%252f_'£?‘>¢QaZXVLfCJl~

Stuart E. Madnigk, Thesis Supervisor

Accepted by:
an, Department Commi
Grdduate Studies

MASSACHUSETTS!NSN
ChNOLOGY U1

FEB 10 64
LIBRARIES vel. 2

270

IV. A CASE-STUDY:

THE NASA DE-A SOFTWARE PROJECT

In this chapter we report the results of a case-study we
conducted to test the model. The objective of the case study
is to examine the model's ability to reproduce the dynamic
behavior patterns of a completed software project. The
dynamic behavior of a set of variables pertaining to the
management of the project is tracked, including: completion
date estimates, man-day estimates, cost (in man-days), and

workforce loading.

The case-study was conducted at the Systems Development
Section of NASA's Goddard Space Flight Center (GSFC) at
Greenbelt, Maryland. This organization is engaged in the
development of application software that supports
ground-based spacecraft attitude determination and control.
The subsystems included in a typical attitude system are
telemetry processing, sensor calibration, attitude

- computation, and maneuver planning. In the section that

271

follows we will provide a detailed description of one such
project, namely, the DE-A project used in our case-study.
This will then be followed in Section IV.2., by a discussion
of model parameterization. That is, we will discuss the set
of model parameters that are set to simulate the particular
DE-A project environment (e.g., project size). Finally, in
Section IV.3., we will simulate the DE-A project, observe its

behavior, and compare it to DE-A's actual behavior patterns.

IV.1, The DE-A Project:

The basic requirements for the DE-A project were to
design, implement, and test a software system that would
process telemetry data and would provide definitive attitude
determination as well as real-time attitude determination and
control support for NASA's DE-A satellite. The DE-A
satellite was designed to study the physical process of the
earth's upper atmosphere, ionosphere, and magnetosphere. The
overall requirements were similar to previous space mission
requirements at the GSFC System Development Section (NASA,

1983).

The DE-A project was selected for the case-study by
NASA. Specifically, it was selected by Frank E. McGarry,
Head of the Systems Development Section of the Goddard Space
Flight center, who 1is participating, as we are, in the

NASA/MIT "Advanced Information Systems Project." The project

272

was selected by McGarry so as to satisfy three criteria
(furnished by us): (1) to be medium in size (i.e., 16-64
KDSI); (25 recent; (3) "typical"™ i.e., one that would be
considered as having been developed in a familiar in-house

software development environment.

In the remaining part of this section we will provide a
more detailed account of the nature and development history
of the project. The data presented was extracted from two

primary sources:

1. Intefviews with Frank E. McGarry, who managed the
project. Two lengthy personal interviews were conducted
at the Goddard Center on August 11 and 12, 1983. These
were then followed by 4 (15-minute) telephone
interviews.
2. Project documentation. These included:
* "Software Development History for Dynamics
Explorer (DE) Attitude Ground Support System
(AGSS)," June, 1983.

* DE-A Resource Summary

The life cycle phases covered in this study include the
design, coding, and system testing phases. Excluded from the
study are the . requirements définition phase and the
acceptance testing\ phase. Both the requirements and
acceptance testing phases were excluded because they both lie

outside the boundary of our model. This did not pose any

273
complicaiions, however. The requirements phase, it turns
out, was also not included in McGarry's group's project
responsibility. Requirements were, instead, the
responsibility of the user orgénization, which for the DE-A
project was the Attitude Determination and Control Section
(ADCS) of the Goddard Space Flight Center. The ADCS, thus,
developed the functional requirements of the system,
including system input and output, algorithms, and timimg and
accuracy requirements. The responsibility for the acceptance
testing phase, on the other hand, was shared by both the
development team, and an independent testing group.
Excluding the acceptance testing phase posed no complications
to our analysis simply because it was the last phase in the
life cycle, hence its exclusion had no impact on any of the

other life cycle phases studied.

The development and target operations machines were the
IBM S/360-95 and -75. The programming language was mostly
Fortran (85%). (Assembler language and assembler language
macros constituted the remaining 15%.) The size of the
system in Delivered Source Instructions (DSI) is 24,400 DSI.

Recall the definition of a DSI:

Delivered. This term 1is generally meant to exclude
nondelivered support software such as test drivers.
However, if there are developed with the same care as
delivered software, with their own review, test plans,
documentation, etc., then they should be included.

Source Instructions. This term includes all program
instructions created by project personnel and processed

274

into machine code by some combination of preprocessors,
compilers, and assemblers. It excludes comment cards
and unmodified wutility software. It includes job
control language, format statements, and data
declarations. Instructions are defined as lines of code
or card images. Thus, a2 line containing two or more
source statements counts as one instruction; a
five-line data declaration counts as five instructions
(Boehm, 1981).

The size of the project in DSI is determined by NASA as
follows (NASA, 1983):

Size in DSI = New Statements +
extensively modified statements +
0.2*(Slightly Modified Statements)

Where, a "Statement" is a non-comment source

instruction.

The project's actual key development dates were:

Phase Start End

Design Oct. 1, 1979 May 9, 1980
Coding May 10, 1980 March 27, 1981
Sys. Test Nov. 15, 1980 April 24, 1981

Thus, the project was completed in 19 calendar months.
In terms of cost, the project consumed 2,222 man-days of
effort. (2,784 man-days were expended to complete the total
project, of which 562 man-days were consu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>