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Abstract

The phenomenal resolution and versatility of the atomic force microscope (AFM), has made
it a widely-used instrument in nanotechnology. In this thesis, a detailed model of AFM dy-
namics has been developed. It includes a new model for the piezoelectric scanner coupled
longitudinal and lateral dynamics, creep, and hysteresis. Models for probe-sample interac-
tions and cantilever dynamics were also included. The models were used to improve the
dynamic response and hence image quality of contact-mode AFM. An extensive paramet-
ric study has been performed to experimentally analyze in-contact dynamics. Nonlinear
variations in the frequency response were observed, in addition to changes in the pole-zero
structure. The choice of scan parameters was found to have a major impact on image qual-
ity and feedback performance. Further, compensation for scanner creep was experimentally
tested yielding a reduction in creep by a factor of 3 to 4 from the uncompensated system.

Moreover, fundamental performance limitations in the AFM feedback system were iden-
tified. These limitations resulted in a severe bound on the maximum achievable feedback
bandwidth, as well as a fundamental trade-off between step response overshoot and response
time. A careful analysis has revealed that a PID controller has no real advantage over an
integral controller. Therefore, a procedure for automatically selecting key scan parameters
and controller gain was developed and experimentally tested for I-control. This approach,
in contrast to the commonly used trial and error method, can substantially improve image
quality and fidelity. In addition, a robust adaptive output controller (RAOC), was designed
to guarantee global boundedness and asymptotic regulation in the presence and absence of
disturbances, respectively. Simulations have shown that a substantial reduction in contact
force can be achieved with the RAOC, in comparison with a well-tuned I-controller, yet
with no increase in the maximum scan speed. Furthermore, a new method was developed
to allow calibrating the scanner's vertical displacement up to its full range, in addition to
characterizing scanner hysteresis. This work has identified and addressed crucial problems
and proposed practical solutions to factors limiting the dynamic performance of the AFM.

Thesis Supervisor: Kamal Youcef-Toumi
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

The field of nanotechnology has rapidly evolved over the years, as a result of a great in-

terest in sub-micron research studies and applications. This interest has been supported

by both academia and industry. For example, in fields like physics, biology, and chemistry,

there is a need to perform experimental studies to understand phenomena at molecular and

atomic levels. As for practical applications, there has been vast interest in miniaturization

of macro-machines and devices. The goal is to allow for integration of sensors, actuators,

and electronics to create the so-called micro and nano-machines. Accordingly, new chal-

lenges and technical problems are created both at the basic research and practical levels.

The challenges span a wide range of fields of science and engineering. One of such chal-

lenges is the ability to characterize surfaces and material properties at the sub-micron level.

Several tools are now available for this task, including scanning electron microscope (SEM)

, transmission electron microscope (TEM), and scanning probe microscopes (SPM), includ-

ing scanning tunneling microscope (STM), and atomic force microscope (AFM). Each of

these tools has its strengths and weaknesses, and in cases they may complement each other.

However, AFM offers very high resolution (10 nm lateral, 0.05 nm vertical are typical),

compatibility with different types of samples and operating media, and generally requires

no sample preparation. This has made the AFM a widely used instrument in many disci-

plines.



1.1. Background

An AFM consists of a cantilever-mounted probe, a sensor measuring the deflection of

the cantilever, and a scanner providing three dimensional relative motion between the probe

and a sample. In contact-mode, the probe is brought into contact with the sample, at a

user-specified contact force or cantilever deflection. The scanner is then moved in a raster

fashion. During scanning, changes in the sample topography change the cantilever deflec-

tion. A controller is used to maintain the deflection constant by moving the scanner up and

down. The sample image is composed of the correcting voltage sent to the scanner.

Since its invention [12], as a tool for measuring surface topography, AFM has been

used in a wide range of fields and applications. In materials research, it has been used

for studying indentation, friction, fracture, adhesion, and wear at the nano-scale [1]. Such

studies have great practical importance. For example, there is a great interest in designing

materials for bearings for micro-machines that have good tribological properties and can be

fabricated using MEMS fabrication techniques. AFM is also used in studying mechanical

and chemical properties of polymers to aid in their design for various applications. In

medicine and biology, researchers have used AFM to investigate atenzymatic degradation of

DNA, mechanics of single molecule domains [2], observation of infection of a cell by viruses,

imaging living human platelets during their activation, and in cardiovascular research [87].

In the field of semiconductors, AFM is being used for surface roughness measurements of

fabricated surfaces, in IC failure analysis, and for investigating nano-lithography (30 nm

patterning resolution [88]). For data storage media, AFM is used for analyzing surface

defects in compact disk drives, and investigating future technologies. Also, it has been used

in applications such as manipulation of micro and nano-particles, fabrication of a single

electron tunneling transistor, and quantum effect electronic devices.



1.2. Techiiical Challenges and Rescarch Objectives

1.2 Technical Challenges and Research Objectives

The wide use of AFM in various fields has imposed ever-increasing stringent requirements on

its performance. At the Mechatronics Research Laboratory (MRL), at MIT, AFM has been

used in a high-precision metrology application for samples with ultra-sharp features. In our

experience and from experiences of other researchers from different disciplines, some limi-

tations of current AFM technology were encountered. In applications like metrology, ma-

nipulation of nano-particles, nano-lithography, and read/write for high-density data storage

media, it is required to achieve high image accuracy, repeatability, and precise positioning.

Among the factors limiting AFM performance and repeatability are undesirable dynamics

of the instrument. This can be attributed partly to user choice of operating environment,

cantilever (its stiffness, resonant frequency, probe size, etc.), scan parameters (scan speed,

force set-point, etc.), and feedback parameters [3]. Usually, AFM users start with some

default values of the parameters. In a trial and error manner, parameters are adjusted until

a reasonable image is collected. Alternatively, the image may be collected, for the same scan

line, in both scan directions instead of only one. The resulting images are called trace and

retrace images. If both look similar, then the scan parameters used are considered good. It

is therefore of great practical value to be able to select key scan parameters in a systematic

and automated fashion. This can improve repeatability, accuracy, and consistency. In ad-

dition, it aids in fully automating AFM technology for applications such as quality control

in semiconductor industry.

Atomic force microscopes may generate erroneous data. To demonstrate this, a com-

mercial AFM was used to scan a set of Silicon calibration steps. The AFM was run under

a proportional-plus integral (PI), control. A Silicon Nitride cantilever was used with a res-

onant frequency of 13 kHz, and stiffness of 0.2 N/m. Scan results demonstrate the high

sensitivity of collected images to scan and controller parameters (Kp and Ki). Comparing

Figure 1-1 (a) (72 um/s, Kp = K= = 2) to Figure 1-1 (b) (96 Ilm/s, Kp = Ki = 20), some

of the effects of scanning speed and controller gains on the image can be seen. Higher gains

result in oscillations as the cantilever falls along the right edge of the step, with peaks in-

dicating momentary loss of contact between the probe and the sample. The sharp peak on
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(a) (b)

Figure 1-1: AFM images: (a) 72 pm/s, Kp = Ki = 2, (b) 96 pm/s, Kp = Ki = 20.

the left edge of the step, Figure 1-1 (b), can be attributed to a high scan speed compared to

closed loop bandwidth. The higher gains improve tracking, as the sharp left edge of the step

is resolved more accurately. Figures 1-2 (a) and (b) were generated with a scan speed of

180 pm/s using the same controller gains. The contact force set-point for Figure 1-2 (a) is

set to the manufacturer's recommended value, while Figure 1-2 (b) a smaller force was used.

Choosing a small contact force set-point reduces contact deformation and friction, however,

it reduces stability of the contact. As seen from Figure 1-2 (b), the image generated with

a small contact force has erroneous height information, due to loss of contact between the

probe and the sample.

Furthermore, there are several factors that limit the AFM performance. The inher-

ent piezoelectric scanner nonlinear sensitivity, hysteresis, creep, and cross-coupling between

motion in different axes greatly affect imaging and positioning performance. Artifacts due

to scanner creep are depicted in Figure 1-3 (a), where the scan direction is now along the

steps. As the scanner creeps at the top of the step, the deflection of the cantilever changes.

The controller compensates for it by applying a correcting voltage. This correcting voltage

appears as part of the sample image. The change in step height in Figure 1-3, occurs over

a time scale of 6 s. This is much slower than the response time of the feedback loop (about

50 ms for the gains used), hence, this decay is not due to transient response of the piezo-
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(a) (b)

Figure 1-2: AFM images: 180 pm/s, (a) nominal contact force, (b) smaller contact force.

electric scanner. Presence of creep can, therefore, introduce artificial shadows and ridges

in the image near steep slopes. Moreover, scanner hysteresis can be as much as 25%, and

could cause shifts in the image both vertically and laterally. Further, commercial AFMs

are usually controlled by a PID controller. A fixed PID controller offers reasonable perfor-

mance with only few parameters to tune. AFM is used with a wide range of samples having

different effective stiffnesses, and with cantilevers that vary greatly in stiffness and resonant

frequency. Typical stiffness and resonant frequency values for contact-mode cantilevers are

0.01 to 1.2 N/m, and 10 to 90 kHz, respectively. The operating environment can be air,

vacuum, or fluid. Consequently, there is a large range of uncertanties in the system due to

the changing nature of AFM operation. The wide range of uncertanties, in addition to non-

linearities in the piezoelectric scanner, impose additional limitations on the performance of

the feedback system and hence, the AFM. Cantilever thermal noise, laser back-action, and

mechanical vibrations also affect performance by increasing the noise floor of the machine.

Other sources limiting performance that have a less dynamic nature include convolution

errors due to the finite probe size.

One possible approach for improving fidelity and repeatability of AFM images may be

through improving its dynamic response by integrating and automating scan parameter se-

lection and control to guarantee consistent performance. Therefore, factors affecting image
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Figure 1-3: AFM image of Silicon Steps: image artifacts due to scanner creep.

formation and their impact on performance of the AFM, need to be identified and under-

stood. This may be achieved through modeling of the main components of the AFM and

the dynamic interactions between them.

1.3 Literature Survey

1.3.1 Modeling

In the last few years, researchers' efforts have focused on modeling AFM components in-

dependently. Three main components are of interest, namely the piezoelectric scanner, the

cantilever, and probe-sample interactions. Linear dynamic models of an ideal uncoupled

piezoelectric tube are available [5, 4, 80]. They are based on theory of thin-walled mem-

bers and describe the longitudinal (extension), and the lateral dynamics independently,

neglecting coupling between motion in different axes. Moreover, these models do not de-

scribe creep and hysteresis which have great impact on performance. Several models of

hysteresis in ferroelectric and piezoelectric materials have been proposed in the literature

[81, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 10]. Some have received attention from researchers,

such as Maxwell and Priesach's models. These models are generally less suitable for feed-

back control analysis and design. They are composed of many operators or elements con-

nected in parallel . Hence, a large number of operators is needed to reproduce experimental

hysteretic behavior. The resulting model will have too many parameters which makes pa-

I

i:
I

-

-

-I

5J 5.
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rameter identification from experimental data complicated. Hence these models are rarely

used in practice. Another class of hysteresis models is in the form of a first order nonlinear

ordinary differential equation. These models have a small number of parameters and can

provide more insight for control analysis and design. Little work has been done to study

these models in the context of control. Similarly, modeling of creep for control applications

has not had attention in the literature. In applications where feedback control is utilized,

integral action in the controller will suffice in reducing the effect of creep on positioning

accuracy. However, for open loop applications where calibration of the actuator is relied on

(e.g. AFM), there is a great interest to model and control the creep phenomenon. In [90],

a common model consisting of a logarithmic equation was used to predict creep in the step

response of a piezoelectric actuator. The same model was used in [91], to compensate for

creep in step response. As will be seen in Section 4.9, this model is not physically accurate

and can not be used to predict creep for general excitation signals.

Tip-sample interaction forces could be due to different mechanisms. Dominant interac-

tions depend on operating conditions and operating mode. Continuum mechanics has been

used to model single asperity nano-contact. Experimental results support the adequacy of

these models [89]. In general, surface forces of different origins may be present [50]. This

may include van der Waals, capacitance, magnetic, or capillary forces. Simplified models

have been proposed in the literature.

For modeling of the cantilever, elementary beam theory has been used to develop models

for the flexural deflection. Most of the simulation studies available in the literature have

used a single-mode model. Moreover, the majority of the models available describe the

cantilever dynamics during intermittent or non-contact mode operation at a single point on

the sample [17, 47, 48, 49]. This can be schematically represented as in Figure 1-4. Little

work has been done to investigate dynamic response during scanning or in contact-mode.

This is a more involved task that requires analyzing the closed loop dynamic response,

and interactions between the cantilever and the piezoelectric scanner. It can be seen from

this survey that models that were available in the literature are incapable of capturing the

overall dynamics of the AFM. Therefore, there is a need for a competent model of the AFM.
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Figure 1-4: Schematic of an AFM model that has been commonly used in the literature.

1.3.2 Control

There has not been, to the best of the author's knowledge, published work directly aiming at

automating the selection of scan parameters. A work that is of some relevance is [7], where

authors examined the limits of scan speed in different operating media by considering only

the cantilever and not including the piezoelectric scanner or the overall feedback system.

Published work on feedback control of AFM as a whole system was not available in the

literature, to the best of the author's knowledge. However, there has been published work on

control of a piezoelectric tube scanner as a stand-alone actuator [8, 9]. Both references relied

on experimentally identified transfer functions to model the scanner lateral and longitudinal

dynamics, respectively. In addition, a displacement sensor was used for feedback which is

not commonly available in most AFMs. The models were 2 nd and 4 th order, respectively.

In [8], both lead-lag and an Ho controller were designed and their performance tracking

a triangular wave was tested. On the other hand, in [9], a PI controller was designed and

small-amplitude step response was used to test the controller's performance. On control of

piezoelectric actuators in general, there have been many contributions by different authors.

Researchers have taken three main approaches. One approach involved driving the actua-

tor with a charge amplifier instead of a voltage amplifier [83]. This results in reduction of

the hysteretic behavior at the expense of reduced displacement sensitivity, increased charge

leakage and hence actuator drift, and a more expensive implementation. As a result, charge

drivers are rarely used in practice. Other researchers have used fixed feedforward control
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as in [82, 43], and adaptive feedforward control as in [84]. In both cases the models used

were composed of a number of hysteretic operators in parallel. Using a small number of

operators can result in discontinuities in the hysteresis curve. A large number of operators

was needed [84], making the number of adaptation parameters 30. This may reduce the

maximum bandwidth of the closed loop system due to computational delays (20 Hz was

reported). The results also did not include mechanical dynamics of the actuator. Alterna-

tively, feedback control was used on linearized models of hysteresis to design an Ho, linear

fixed controller. Others developed adaptive inverse feedback control [86]. However, the

model used assumes that the hysteresis loop is quadrilateral which is a very crude model of

hysteresis. The aforementioned work on feedback control of piezoelectric actuators assumes

that the actuator's displacement is measured, and that there are no other dynamics besides

those of the actuator. Finally, the body of literature available on adaptive control is too

large to list. References used in this work will be cited where relevant.

1.4 Thesis Overview

Despite the aforementioned results, a competent model describing the overall AFM dy-

namics is still lacking. In addition, there is a need for understanding dynamic interactions

between different AFM components and mechanisms by which image artifacts are generated.

Further, identification of possible performance limitations and their sources is essential for

improving the dynamic response of the AFM. Ultimately, key scan parameters are to be

automatically selected to ensure good dynamic response and a high level of data fidelity

and repeatability.

In Chapter 2, a detailed dynamic model of the AFM will be presented. It includes

models for probe-sample interaction forces, the cantilever, and the scanner. Models for the

scanner will include linear coupled dynamics, creep, and hysteresis. Sources of noise and

disturbances will also be discussed. A new method for calibrating the vertical displacement

of the scanner will be presented in Chapter 3. Experimental validation of the models is

provided in Chapter 4, and the results are discussed. In addition, simulation results will also
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be presented and compared to experimental data. Compensation for creep and hysteresis

will be presented and discussed in Chapter 5. In Chapter 6, fundamental performance

limitations of the AFM feedback system will identified and supported by experiments and

simulations. Based on the modeling results and the identified fundamental performance

limitations, a procedure for parameter and controller gain selection is presented for integral

control. The performance of PID and higher order LTI controllers is also discussed. Further,

a robust adaptive output controller (RAOC), is designed and stability analysis is provided.

Scan and controller parameter selection for the RAOC is also discussed. Finally, conclusions

and recommendations are presented in Chapter 7.



Chapter 2

Modeling

2.1 Atomic Force Microscope

As seen in Figure 2-1, an AFM has three main components, namely, a scanner, a cantilever

beam-mounted probe, and a cantilever deflection sensor. The scanner, typically a piezoelec-

tric tube, provides three-dimensional relative motion between the probe and the sample.

Information on sample topography or local material properties is obtained based on probe-

sample interactions. Probe displacement is commonly determined by measuring the slope at

the cantilever's free-end using an optical-lever sensor. The optical sensor consists of a laser

source and a position sensative diode (PSD). There are two common AFM designs. In the

sample-on-scanner design shown in Figure 2-2, the sample is placed on the scanner, while

the cantilever is fixed in space. The size and weight of the sample is limited to avoid loading

the piezoelectric actuator. The second design, cantilever-on-scanner, involves attaching the

cantilever to the scanner while the sample is placed on a coarse motion stage that does not

move during scanning. Two variants of this design are popular, namely, a single-scanner and

a two-scanner design. In the two-scanner design of Figure 2-3 (a), two separate piezoelectric

tubes are attached to each other. The top tube is typically dedicated to lateral motion,

whereas the bottom tube provides vertical motion. In this design, the effect of vertical

motion on the lateral motion is reduced. In the single-scanner design depicted in Figure 2-3

(b), a piezoelectric tube is used to provide both lateral and vertical motions. In addition,

an extension tube attached to the scanner is used to provide means for attaching lenses for

23
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Figure 2-1: Schematic of the main components of an AFM.

the optical-lever sensor. Moreover, it provides additional mechanical amplification of the

lateral motion; extending the lateral range of the scanner. Models presented later in this

chapter will be for the more popular design; model of Figure 2-3 (b).

Atomic force microscopes have three main imaging modes, namely, contact [12], non-

contact [13], and intermittent [14]. In contact-mode, the probe presses against a sample

exerting a vertical force proportional to the cantilever's deflection. The probe is then

dragged against the sample along each scan line in a raster fashion. The slope at the

cantilever's free-end is measured and fed back. During scanning, a controller maintains a

constant cantilever slope by adjusting the vertical extension of the piezoelectric scanner.

Changes in the extension of the scanner are therefore, related to changes in the sample

topography. This is known as the constant-force contact mode which will be the focus of

this thesis. The cantilever and its holder are mounted on a piezoelectric crystal. This crystal

is used in non-contact mode to vibrate the cantilever near its resonance frequency, while

hovering above the sample surface. Surface forces between the sample and the probe change

the amplitude of oscillation. The change is detected and fed back to maintain a constant

vibration amplitude during scanning. Alternatively, a phase-lock circuit may be used as a

feedback signal. Intermittent mode is very similar to the non-contact mode, except that

the probe is brought closer to the sample until intermittent contact occurs, i.e. tapping.
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2.2 Probe-sample Interactions

Depending on the operating environment of the AFM, different probe-sample forces may

be present. These forces can be classified as long-range and short-range forces. Long-

range forces can be due to different origins; electrostatic, electrodynamic, and liquid forces.

Short-range forces could be due to chemical or metallic bonding. Atomic force microscopes

are generally operated in Air, vacuum, dry Nitrogen, or in a suitable liquid. Operation

in vacuum or dry Nitrogen reduces capillary effects. Liquids are typically used to reduce

surface forces such as van der Waals forces. The choice of operation medium strongly

depends on the sample under consideration. In this section, in-contact, out-of-contact, and

lateral forces will be discussed.

2.2.1 In-contact Interactions: Vertical Forces

The starting point for modeling probe-sample contact is deciding on the dominant surface

forces. In this thesis, the focus will be on AFM operation in Air, which is the most common

and versatile medium. Capillary and adhesion forces are commonly present due to contam-

inants in Air. As a result, a meniscus forms around the probe and sample when in close

proximity holding them together even in the absence of an externally applied load.

The model presented here was first introduced by Maugis [15]. It describes the adhesion

contact of two elastic spheres each with a radius Ri and elastic modulus of elasticity Ei, and

Poisson's ratio v. The Dupre work of adhesion is w. Maugis was able to obtain a closed-from

solution by modeling surface forces using a Dugdale approximation. As shown in Figure 2-4,

the Dugdale attractive force ao, is assumed constant for atomic planes separation h, such

that zo 5 zo + h < zo + ho, where, zo is the equilibrium separation of the atoms. For h > ho,

ao = 0. Maugis selected the value of ao to match the Lennard-Jones potential, Figure 2-4

(a), obtaining a value of ho = 0.97zo. Figure 2-5 gives a schematic representation of the

contact. For ease of visualization, one surface is represented as flat while the other surface

has a radius of curvature equal to the reduced radius of the spheres R = (•- + ) -. Both

surfaces mate over the central region r < a, with a separation h existing over a < r < c,
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Figure 2-4: Force law for Lennard-Jones potential and Dugdale approximation in arbitrary
units.

and increasing from zero to ho. Over the central region, the total pressure distribution p(r),

as shown in Figure 2-5, is composed of Hertzian pressure ph(r), plus adhesion stress pa(r),

and is given by

2E*a r2P(r) = ph(r) + pa(r), ph(r) = [1 _ ()2]2 (2.1)
-7rR a'

whreth cmbne easi mouls2o th sphee sE =~l1__•+1v2_Ej Fra_ <cPa~r H Col(-i2a2_- C2 r 2(2.2)

where the combined elastic modulus for the spheres is E* = + . For a < r < c,

the stress distribution is only due to adhesion and is constant p(r) = -o. The total contact

force Fcon = Fh + Fa is positive when compressive and is expressed as

4E* a3  2Cla

Fcon= 3R4E*a - 2aoc -( ) + a - a ]  (2.3)
3R c

The model predicts the relative displacement 6, of two points on the spheres located far

away from the contact area as

a 2 2ao oV 26= 6h + 6a = R 2 E 2 a2  (2.4)

Moreover, the total separation between both surfaces at r = c, is ho, henceE*

Moreover, the total separation between both surfaces at r = c, is ho, hence

____ _ _
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Figure 2-5: Schematic of the contact showing stress distribution.

hh(c)

ha(c)

ho

c2  a2  [(2a 2 - c2)sin-1(a) + av•2 -- ]
- +R

2R R rR
= [/c2 2s ( ac) + - c]a

- rE* C

= hh(c) + ha(c) = -
Oro

(2.5)

Maugis introduced a non-dimensional transition parameter A; defined as A = o( 27rwE*)

This transition parameter can be viewed as the ratio of elastic deformation to the effective

range over which surface forces act. From its definition, it follows that large values of A

correspond to compliant (small E*), large spheres (R), and small adhesion (w) contacts,

whereas small values are for stiff small spheres with high adhesion. Equations (2.3,2.4,2.5)

form the Maugis model which can be solved numerically. The model equations were non-

dimensionalized by introducing the following non-dimensional variables

4E*
7! = a( 3 rwR2)

FC on= Fn
7rwR'

4E* 1
, c 3wR

2= 6(16E 1
97r2w2R

) '§

c
a-
a

(2.6)

Using (2.6) and the definition of A, the model can be expressed in non-dimensional form as
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S-2_ _4A /

3
con = a- A-2[v/m 1 + m 2sec-1(m)] (2.7)

1 = --- [(m2 - 2)sec-(m) + v/m 2 - 1] +2
4A2-3a [/O _ lsec--(m) - m +1]
3

The use of continuum models to describe nano-contacts has been supported by exper-

iments as in [89], and in Section 4.4 of this thesis. The level at which continuum models

break-down is not all clear.

2.2.2 In-contact Interactions: Lateral Forces

As the probe is dragged against the sample while in contact, a frictional shear force develops.

Based on contact load and possibly scan speed, this frictional interaction may involve sliding

and atomic stick-slip behavior. The nature of this atomic friction is not well understood

and is currently an active area of research. In [74], experiments on mica have shown that

in the absence of wear, the average friction force is directly proportional to contact area

ac, Ff = rac, where T is the shear strength. For this work, the interest is in simulating

the effect of sliding friction force on the cantilever dynamics during scanning. As a first

order approximation, it will be assumed that the instantaneous friction force is directly

proportional to the instantaneous contact area (,,- a 2 ), as shown below

Ff (t) = G a 2 (t) (2.8)

where G is a proportionality constant (,, shear strength of the contact junction). This

model does not consider any explicit dependence of friction on scanning speed. Although

contact models were originally developed for static loading, it has been shown in [74], that

it holds under sliding conditions with not very high sliding speeds. When the probe and

sample are out of contact the friction force is set to zero.
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2.2.3 Out-of-contact Interactions: Vertical Forces

When the probe and sample are not in contact, surface forces acting on the probe may be

due to different sources. This may include magnetic, capacitance, patch-charge, and van

der Waals forces, to name a few. The presence of multiple forces could modify the shape of

the force-separation curve. In general, these surface forces may depend on the geometry of

probe and sample, their permittivity and that of the operating medium and probe-sample

separation. The main characteristics of the attractive interactions could be captured by

a simple van der Waals forces model. It is therefore, assumed that van der Waals forces

between two spheres are the dominant interaction. The attractive surface force is then given

as
HR

Foc(6) = - 2 (2.9)
6(6 - Fo)

where H is Hamaker constant, and eo is an offset constant.

2.2.4 Point of Contact

In [15], it was shown that in the limit when U --+ 0, Fcon and 6 reduce to,

-86 - 4A(r - 2)2 + 9rA - 2A2(r - 2)] (2.10)
97r W7

Fcon -2 + 8A(r - 2) V4A4(r _ 2)2 + 9rA - 2A2(r - 2)] (2.11)
9r

Equations (2.9,2.11,2.10) can be used to impose continuity on the force-separation curve at

the point of atomic contact by adjusting the value of F.

2.3 Scanner Model

The piezoelectric scanner is a thin-walled tube. The tube has four electrodes of equal

segments on its outer surface, and either a single or four electrodes on its inner surface.

Applying a voltage to its inner electrode(s) results in extension motion along the Z axis.

Motion in the X or Y direction is generated by subjecting two opposite electrodes to two

voltage signals that have the same magnitude but opposite phase. The scanner design of

Figure 2-3 (b) is considered in this section. The design is shown schematically in Figure 2-6,
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zoelectric Tube

o

Extension Tube

Figure 2-6: Cantilever-on-scanner design: single piezoelectric scanner with extension tube.

Figure 2-7: Cross-section of the piezoelectric tube.

where mo represents the mass of an optical lense part of the laser sensor and a fixture joining

the piezoelectric and extension tubes together. On the other hand, mrh represents the mass

of the sample holder, the piezoelectric crystal, and an additional lense typically placed at

the end of the extension tube. The forces that the scanner experiences due to probe-sample

interactions are on the order 10-12 to 10-6 N and are several orders of magnitude smaller

than its force capacity which is typically about , 1 N. Consequently, the effect of these

minute forces on the scanner will be neglected.
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Figure 2-8: Free body diagram of the piezoelectric tube for lateral dynamics.

2.3.1 Piezoelectric Tube Lateral Dynamics

In [5, 4], a model for an ideal uncoupled tube scanner was presented. Due to inevitable

machining tolerances, some eccentricity is always present in the tube, typically a maximum

of 50 pm for a 12.7mm diameter tube [18]. This seemingly small eccentricity is in fact

significant since the probe-deflection sensor has typically a sub-Angstrom RMS resolution.

The newly developed model presented within is based on two eccentric cylinders, as shown

in Figure 2-7, with eccentricity 6, and 6y from the geometric center of the outer cylinder

Oo. The outer and inner radii are Ro and Ri, respectively. The angle 0 is measured from

the X-axis. The tube is fixed at one end, while a mass mo is rigidly attached to the other

end. In addition, a concentrated moment and a shear force act on mo as reactions from the

extension tube, as shown in Figure 2-8.

The model is based on elementary bending theory for thin-walled members. The main

assumptions are small deformations and angles, that plane sections of the tube remain plane

after deformation, material is linear elastic, and negligible effects of rotatory inertia and

shear deformation. The rotatory inertia of the end mass mo and extension tube are also

neglected. The first step in deriving the model is finding the centroid C of the cross section.

The coordinates of the centroid ± and 9 relative to Oo are giving by

f xdA f f6f(O) r2cos(O)drdO

fdA 7r(R2- R 2 )  (2.12)f~~ ~ dAiR f
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j ydA o I 1 i ) r2sin(O)drd)
0- r) (2.13)J dA 7r(R 2 - R? )

where

R i (9) = Rbcos(9 - 06) + RV - R) si6 2  
- 96)

For a positive 62 and by, the centroid will be located below and to the left of Oo. Because

of the eccentricity, the X and Y axes are no longer the principal axes of inertia, i.e. axes

along which lateral deflection occurs. The new principal axes of inertia 1 and 2 can be

found from symmetry. Axis 1 is along the point of minimum thickness at 09, while the

2-axis is perpendicular to it. The Z-axis (or 3-axis) passes through the centroid C. For

thin-walled members, the only stress is assumed to be in the Z-direction. Therefore, the

linear constitutive relation for piezoelectric material [34] reduces to

(;;)1(Z :31D;)(2.14)
Dr d31 Fg Er

where az is the stress, ez is the strain, Dr is the electric displacement, Er is the applied

electric field, and subscript r denotes the radial direction. The electric field Er will be

assumed constant over the tube thickness.

Assuming constant inertia ppAp per unit length, where pp is the density and Ap is the

cross sectional area, the equation of motion in the 1-direction is

02111p1p + i = F
ppA • Ot2 + bO, OZ (2.15)

where bpi is the viscous damping coefficient, and Flsp is the shear force in the 1-direction.

The shear force is related to the bending moment by Flsp = -OM 2p/Oz, where the bending

moment is given by

M2p = - rcos(O + 06) uz dO dr (2.16)

In Equation (2.16), the limits of integration with respect to r are from Rc0 to Rco; the
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distances from C to the inner and outer cylinders, respectively. The variation of the radii

with respect to 0, is given by

Rc,(0) = Rcocos(0 - 06) + R - R2o sin2(0 - 06) (2.17)
Rco (0) = Rcoo cos (0 - 06) + R2- Roosin2( - 06) (2.18)

and

Rco, = /( - x)2 + )2

RCoo = /(., 2 + 2)

where Rco, and Rcoo are the distances from C to Oi and Oo, respectively, and Ri and Ro

are the radii of the inner and outer cylinders measured from their own geometric center as

seen in Figure 2-7. Substituting the first equation of (2.14) into (2.16) and integrating with

respect to r, leads to

o27r (Ro(O)- R i(O)) cos2 (0 + 06)
M2p 4 ReCry , sE

= (R0 0 4RcurVip SE1

d31 (Ro(0) - Rci(0))cos(0 + 06)EE )dO
3si

S up +M 2v(V) (2.19)El Rcurvip

M2 = /2 d31(Ro() - Ri(0))cos(O + O6)V(0)
-. 3s E (Rco(0) - Rci(0))

V V < 0 <7rV+ -Vz -j<0<.
X +Z 4<0 4V E< 37r

V(0) = +  4 4 (2.20)
V•,_ -V <0<0< 5r

V _ - Vz < 0 <-7r
d31M2v = sE [y+++f V,_+y+V++ V_+'z] (2.21)

and

d31M2v = E 7j Vj
S1 1 j

r/4 (R3o(0) - C (0))COS(0 + 0,6)dO
7r = .- /4 3(RCo - Rci)
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/27 (R 0(o) - R3i(O))oS(O + 06)
/z = dO

.• 3(Rco - Rci)

where M 2p is the bending moment about the 2-axis, M2v is the bending moment about the

2-axis due to the applied voltages, and Rcurvip is the radius of curvature of the deformed

tube in the 1 - Z plane, which is related to ulp, for small deformations, by

1 _ 021,1p (2.22)
Rcurvip Oz2

The integrals for the constants ai and -yi, do not lead to simple expressions, but can be

easily evaluated numerically. Substituting Equations (2.19) and (2.22) into Equation (2.15),

results in
ppA j7 p 02?Llp 07Llp OlTLlp (9471,1p

ppA"- -+ b + O =- 0 (2.23)

The boundary conditions are zero deflection and slope at the fixed end z = 0, and a balance

of forces in the 1-direction and zero moment about the 2-axis at the free end. Mathemati-

cally, the conditions are

At z = 0

Ul, p= 0

Oulp(0, t) = 0
0=ZOz

At z = Lp (2.24)

0271p(Lp, t) OL lp(z, t) aUlp 03~ 1,1p b 3uLlb(0, t)
m t O 2  + b dz + s z - Eb b z3

a 2Ulp 2
2'1P EbIb 2Ub(O, t) -0 M2

sfy Oz2 = bb Oz2 y

The concentrated loads depicted in Figure 2-8 appear in the boundary conditions making

the boundary conditions time-dependant. As a result the technique of separation of variables

could not be used to solve for the deflection. Alternatively, it is possible to use techniques

as outlined in [11]. However, the resulting transfer function model of the system would be

proper (number of zero equals the number of the poles). Consequently, that model would
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not capture the high-frequency magnitude roll-off observed in an experimental frequency

response. A low-order model is seeked in this work and therefore, an approximate solution

will be used. An n t h mode model based on Rayligh-Ritz method will be formulated. The

deflection ulp is approximated by a finite sum

n

u7p(Z, t) • )1piz) Tip(t) (2.25)
i=1

where lipi are trial functions that satisfy the geometric (displacement and rotation) bound-

ary conditions but not necessarly the natural (force and moment) boundary conditions. The

reuslting model is

Eblb 0 ab O't)

M Tip +C Tip +KTip = Qip EbIb 2O0) (2.26)

811

where Tip = [Tlp...Tlpi]T , M is the mass matrix, K is the stiffness matrix, C is the

damping coefficent matrix, and Qip is the generalized loads input matrix. The elements of

these matrices are given by

mij= ppAp LJ pi((z)!ipj(z)dz + mo~ )1pi(Lp)V/,pj(Lp)
.0
Lp

cij= bpi 1/ lpi(z)V/pj(z)dz
.10J

.aup L 0 2
2)lpi(Z) 0 2 )lpj(Z) dz

8 ./o Oz 2  z2

q~i [Vli L) OV51pi (Lp) O001pi (Lp)] (2.27)
qFpi = [l 1pi(Lp) O= "z 2 a(L)] (2.27)

For a two-mode model with lp4i(z) = z2 and 1p2(Z) = z3 , the resulting model is given

by

L5L 6  12L
ppAp• P + moL-  ppAp + moL L 2Lp 2L

M 5= 6 7 = (2.28)PApA-6 + moL ppAp + moL 6 L 2 1
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Figure 2-9: Free body diagram of the extension tube for lateral dynamics.

a~l 4L, 6L2LLIC = bpi 5 K= 2, K UP (2.29)s6 sL 6L2 12L 3
L6 7 _ P 12P

It is worth noting that as a result of machining, actual tubes are not perfectly round.

In addition, the wall thickness may vary along the tube's length. This can be handled in

the model by using the desired thickness distribution as a function of 0, and depth z, in

Equation (2.16). However, this will only change the coefficients yi, and ai slightly, but the

structure of the model will remain unchanged. As will be seen later in the thesis, the model

indeed retains the correct structure and reproduces experimental results well. Therefore,

accounting for the aforementioned thickness variations proved to be unnecessary. Finally,

the equation of motion for u2p can be derived similarly.

2.3.2 Extension Tube Lateral Dynamics

As shown in Figure 2-9, the extension tube's lateral deflection in the 1-direction Ulm, is mea-

sured with respect to the displacement of the piezoelectric tube ulp. Assuming a concentric

tube, the equation of motion is given by

2 [Ulm + Ulp(p, t) + z 2p (Lp,t)] OUlm Um
pmAm t2 + bmi + EmIm OzL =0 (2.30)

0t 2 Ot-S 5 4zm

r
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where bml is the viscous damping coefficient, Pm is the mass density, and Am is the cross

sectional area. The boundary conditions relative to the piezoelectric tube displacement are

At Zm = 0

Oulm(0, t)
Ozm

At Zm = Lm

m 2?L1m(Lm, t) Oulm(Lm, t)
ash at 2  + bin t

EmIm

The mode shape functions 1mi is given by

= 0

=0

3?Llm
= EmIm

= 0

'/lmi = Bl(cos(Almiz) + cosh(Almiz)) + B2(COS(AlmiZ) - COSh(Almiz))

+ B 3 (sin(jAmiZ) + sinh(Almiz)) + B 4 (sin(A1miZ) - sinh(A1miz))

Using Equation (2.31), lrlmi reduces to

mi = Bimi(COS(Alizm) - cosh(AjlmiZm)) +

cos(AlmiLm) + cosh(AlmiLm) (sinh(AmZm) - sin(AmjZm)) (2.34)
sim(AimiLm) + sinh(AlmiLm)

1
10 = (cos(AlmiLm)cosh(AlmiLm) + 1) +

AimiLm

?nmsh (cos(Al.miLm)sinh(AjlmiLm) - cosh(A•lmiLm)sin(A•lmiLm))(2.35)
pmAmLm

i pmAmw2mi (2.36)
EmIm

Equation (2.35), can be solved to obtain the natural frequencies Wlmi. Bimi is an arbitrary

constant which can be used to scale the modal mass mimi. The model mass, modal damping

(2.31)

(2.32)

(2.33)

V)i

A\
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blmi, and modal stiffness kimi, are given by

= pmAm Lm 2mi(zm)dzm + mshmi(Lm)
1m10( mmlmi

2mi (zm)dzm , kimi = 2mimlmi

The effect of concentrated displacements are directly included in the temporal modal re-

sponse which is given by

Qimi = -[pmAm f )lmi(zm)dzm + mtsh)lmi(Lm)] 1ip (Lp, t)
.0/L

-[pmAm .
f

zmVilmi(zm)dzm + mshLm/)lmi(Lm)] 02p

mimi Timi +blmi Timi +kimi Irni = Qlmi

(2.38)

(2.39)

2.3.3 Piezoelectric Tube Longitudinal Dynamics

Under similar assumptions of those in Section 2.3.1, the equation of motion for the tube's

extension 'u,3p, Figure 2-10, is given by

2 71,3p
ppAp -2

where

and

+ bp3 = Oz

F3p = .- azdAp

1 - [(z - d3•Er]dAp
S1

d3S- fzdA, - L3yVj
11. (11

j = x+,x-,y+,y-,z

73i = [Ro(0) + Ri(0)]Vj(0)d0O

(2.40)

(2.41)

(2.42)

(2.43)

Substituting Equation (2.42) into (2.40), results in

Ap A 2 71,3p 0
sfj Oz2a t3p

I"
= bmil./ (2.37)

. 2, 3pppA' t2 (2.44)
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Figure 2-10: Free body diagram of the piezoelectric tube for longitudinal dynamics.

where bp3 is the coefficient of viscous damping. The boundary conditions are zero displace-

ment at the fixed end z = 0, and a balance of forces at the other end z = Lp, which can be

expressed as

Atz=O0

U3p = 0 (2.45)

At z = Lp

82u3p(Lj, t) + b 3 intLp Ou3p(z, t)dz
mo 2  + batinto dzt

The solution to Equation (2.44) can be obtained

which is given by

AP 0 2 U3p
s 10Oz2

d+ 31 E j EbAbSE OU3b(0, t)
+ Z'y 3jj + A,, z .46)

by means of a finite sine Fourier transform

U3p (p, t) = L u3 (z, t)sin(pz)dz

Taking the Fourier transform of Equation (2.44) results in

(2.47)
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where it is assumed that

.f t2 sin(pz)dz = 2

2  
iL3The Fourier transform of is given by

2U3p(p, t)
Oz

2

Lp u3p(z,t)sin(pz)dz = 0 2U3p(p, t)
3 at2

fL/ O83(o2 3p )S2 / a 3 (Z, 8. sin(pz)dz

= 0U3p(Z, t) sin(pz) - -pu 3p (z, t)cos(pz)]L p - p2U3p(p, t)19z0

(2.49)

(2.50)

By using the boundary conditions of Equations (2.45) and (2.46), Equation (2.50) re-

duces to

= sin(pLp)[Fa(t) -

dS1
= 3z

s87mo a273p(Lp, t)
Ap at2

EbAbs1 aU3b(0, t)
Ap Oz

s Ap
A,,

.Lp au3p(z, t)]dz]o at
(2.51)

(2.52)

Since oa2  p, t , and U3p(Lp, t) are not known, they can be eliminated from

Equation (2.51) by setting the sum of their terms to zero which gives

pLptan(pnLp) = ppApLp,
m'o (2.53)

which can be solved for p. The natural frequencies W3pn are given by W3pn = . As a

result, Equation (2.51) reduces to

a2U3pppAp•t2 aU3pat
Ap 0 2U3p11 =o (2.48)

a2U3p(p, t)
Oz2

Fa(t)

-pu 3p(Lp, t)cos(pLp) - p2U3p(p, t)



2.3. Scanner Model

o2 u3.(p• , t) ) P,2 3(p P) (.54Oz2  = Fa(t)sin(pnLp) - p2 Up(pn, t) (2,54)

Hence, Equation (2.48) becomes

d2U3P (Pn, t) dVsp (Pn, t) + ALp pA d2U(pt) b d U3  Up(p(P,, t) =- ý8i?(pnLp)Fa(t) (2.55)
dt2  dt +•E"'PnU3pn, =

with initial conditions

u~pp•,0) /LpU3p(Pn, 0) L= f P3 (z, 0)sin(pnz)dz
,00

U3p (Pn, 0) = P O3p sin(pnz)dz (2.56).0 at
(2.57)

The displacement u3p(z, t) can be found by inverse Fourier transform given by

2"
73p(Z, t) = -p U3p(p~, t) sin(pnz) (2.58)

P n=1

2.3.4 Extension Tube Longitudinal Dynamics

The extension tube is assumed to be rigidly attached to the mass mo, and its extension 713m,

is measured relative to the piezoelectric tube's extension U3p(Lp). Under similar assumptions

of those in Section 2.3.1, the equation of motion for 71,3m, is given by

2 (3, +u3p(Lp, t)) 13m a2 1,3m
pmAmn (  t2 + bm 3 - EmAm = 0 (2.59)

where bm3 is the coefficient of viscous damping. As before, the concentrated load will be

accounted for in the modal equations of motion. The boundary conditions then become

zero displacement at zm = 0, and a balance of forces at the other end Zm = Lm, which can
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Figure 2-11: Free body diagram of the extension tube for longitudinal dynamics.

be expressed as

At zm = 0

U3m = 0

At zm = Lm

a 2U3m(Lm, t)
ma at 2

OU3m(Lm, t)
+ bm3 at

-
2 U3m= -AmEm 2

The solution can be expressed with respect to the mode shape functions n3mni, as

00

U3m(Zm, t) = Z s3mi(zm)T3mi(t)
i=1

P3mi(Zm) = B3mi sin( - WamiZm)
Em

(2.61)

(2.62)

where B3mi is an arbitrary constant, and the natural frequencies W3mi can be computed

from the solution of

Pm Pm
m-w3miLmtan( -W3miLm)

Em Em

pmAmLm

mash
(2.63)

The modal response T3mi(t), is governed by

m3mi T3mi +b3mi T3mi +k3miT3mi = -[pmAm t V3mi(zm)dzm+msh) 3mi(Lm)] u3p (Lp, t)

(2.64)

(2.60)

m



2.3. Scainer Model

where

m3pi = pmAm f mi(zm) dzm + meh 'mi(Lm)

b3mi = bm3 Lm v)3mi(z) dzm , k3mi = Wmi m3mi

2.3.5 Hysteresis and Nonlinear Displacement Sensitivity

Piezoelectric materials are ferroelectric, hence, they exhibit hysteretic relationship between

some of the electric variables (electric field and electric displacement) and the mechanical

variables (mechanical strain and force). Hysteresis in piezoelectric materials [31, 32, 33],

is generally attributed to molecular friction at sites of material imperfections as a result

of domain walls motion. In the absence of an applied electric field, domain walls form at

pinning sites to minimize associated potential energy. When a small electric field is applied,

domain walls motion is limited and reversible, hence hysteresis in not observed. At higher

magnitudes of electric field, the local energy barriers associated with the pinning sites are

overcome and domain walls move an extended distance. The motion of domain walls across

pinning sites provide an irreversible mechanism that contributes to the observed hystere-

sis. The experimental observations of absence and existance of hysteresis at low and high

electric fields, respectively, is demonstrated in Figure 2-12. The figure shows experimental

voltage to mechanical displacement response of a PZT-5H piezoelectric tube actuator for

a sinusoidal input at 300Hz and two voltage amplitudes. It is worth mentioning that the

first mechanical resonance of this particular actuator is at 9.7 kHz. Hence, the experiment

is considered quasistatic.

In practice, the electric field applied to a piezoelectric actuator is limited to avoid sat-

uration and degradation in the actuator performance. Therefore, typical hysteresis loops

can be characterized by their average slope, loop center point, and the loop width. These

characteristics strongly depend on the piezoelectric compound. In a quasistatic hysteresis

experiment, the frequency of the periodic input voltage signal should be much lower than

the first mechanical resonance. In addition, it should be chosen to be fast enough such
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Figure 2-13: Relay hysteresis of Preisach model.

that creep response is not observed. Under these conditions, the width of the measured

hysteresis loop will be independent of the input frequency, i.e. rate-independent. The rate

independance nature of piezoelectric hysteresis has been expeiemntally verified by several

authors [10, 29, 30].

Hysteresis has been extensively studied in the literature. As a result, there are various

models of varying complexity that may be used to model hysteresis. In what follows,

several rate-independent models suitable for piezoelectric material hysteresis will be briefly

discussed. These models can be generally classified as of two types; superposition of a

basic hysteresis operator, or integral hysteresis operator. The latter can be written as

11

-- w

-----------L----------I
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an ordinary differential equation (ODE). The former type of models are based on a basic

hysteresis element (e.g. relay). A hysteresis loop can be reproduced by using as many

elements as needed to achieve a good fit to experimental data. Examples include Preisach

[19, 20], Krasnosel'skii and Pokrovskii [21], and the Generalized Maxwell Slip model [22].

Preisach model is the most common model in this category and will be discussed further.

The model consists of a weighted combination of elementary relay elements, Figure 2-13,

describing the hysteretic relation between an input x and an output F. Mathematically the

model is given by

F = f(t) = (a)s (a ) a, (x(t)) d3 da (2.65)

where t(a, ,3) > 0 is a weighing function comprised of two parts capturing both non-

hysteretic and hysteretic behavior, and S = {(a,,3) : Xmin • 0 a•,Xmin < < Xmax}.

In order to use the model for reproducing hysteresis data, I(a, fi) needs to be identified.

There are several identification procedures available in the literature, such as that in [29].

However, real-time implementation of the Preisach model is complicated by the need to fit a

two-dimensional surface to the experimental data in order to evaluate /(a, f). As a result,

a large number of model parameters is needed to achieve a good fit. In addition, the model

output depends on the extrema of the input. Accordingly, the extrema for each relay need

to be updated in real-time during each sampling period. This requires that for each relay

a search for both extrema values (minimum and maximum) be performed based on the

input history. Hence, real-time implementation of Preisach model is cumbersome and slow,

and is rarely used in practice. Other models in this category share similar implementation

difficulties.

On the other hand, ODE-based models typically consist of a single nonlinear ODE.

Examples include Bouc-Wen [23, 24], Dahl [25], Chua-Stromsmoe [26, 27], and Coleman-

Hodgdon [28]. These equations describe the hysteretic relation between an input x and an

output F. Most ODE models have the following form,
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dF dx
F = f(x, F, sgn(.)) r (2.66)

dx dt

Note that f(x, F, sgn(d)) does not depend explicitly on time or + but rather on the sign of

.i. This captures the rate-independence nature of energy loss in the hysteresis loop. The

dependence on x allows for capturing energy storage in the model. As an example, consider

Dahl's model which has the following from

dF F F
d = all sgn(&)|? sgn(1 - Fsgl(+)) (2.67)dx Fe Fe

where sgn is the sign function, and F, and a are constants. For <K 1, F ; ax. In a

mechanical system this expression represents a constitutive law of a spring, with F being

a force and x a displacement. More generally, an element that stores potential energy. As

Ixl --+ 00, --+ 0 and |Fl -- Ft. Hence, at large values of x, the model behave like a

Coulomb friction, providing a mechanism for energy dissipation that is rate-independent.

An advantage for ODE-based models is that they could be more tractable for control

design compared to operator-based models. In addition, the functions used in the ODE

can be chosen to shape the hysteresis loop as desired provided that some conditions are

satisfied. However, there could be a trade-off between complexity of the functions and

implementation. Complex nonlinear functions may give a good match with experimental

data. However, model parameter identification may become more difficult. Moreover, sim-

ple functions with few parameters may not be capable of reproducing experimental data

particularly well. In addition, sensitivity due to parameter variation is expected to be larger

than operator-based models with a large number of parameters.

In piezoelectric materials energy transduction occurs between the electrical and me-

chanical domains. As discussed earlier, impediment of domain wall motion contributes to

hysteresis. However, it is not clear whether there are other mechanisms in the mechanical

domain that contribute to the observed hysteresis. Answering this question allows including
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Figure 2-14: Piezoelectric scanner response to a sinusoidal input voltage at 20 Hz (a) elec-

trical displacement (arbitrary units AU) vs. input voltage, (b) mechanical displacement vs.

input voltage.

a physically consistent hysteresis model in the overall model of a piezoelectric actuator. As

before, it has been suggested that hysteresis occurs in the electrical domain between the

applied electric field and electric displacement or charge. This is supported by experimental

observations as in Figure 2-14 (a). Hysteresis is also observed, Figure 2-14 (b), between

electric field and mechanical strain or displacement. In addition, hysteresis is noticed be-

tween force and mechanical strain [30], when actuator electrodes are shorted and charge is

allowed to flow. However, no hysteresis is observed when electrodes are open and no charge

flows within the material. More so, charge vs. mechanical strain as in Figure 2-15, shows

no hysteresis. Accordingly, hysteresis is believed to lie mainly in the electrical domain.

To include hysteresis in the piezoelectric tube model, its effect will be lumped into a

single element as seen in Figure 2-16. Due to hysteresis, the applied electric field E, is

balanced by a potential drop Eh, due to the combined capacitance and resistance of the

hysteretic element, in addition to a drop Ep, across the hysteresis-free capacitance of the

piezoelectric material. Hence, E = Eh + Ep. The models of sections 2.3.1 and 2.3.3, were

derived assuming that Ep = E in the piezoelectric constitutive relation Equation (2.14).
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Figure 2-15: Piezoelectric scanner response to a sinusoidal input voltage at 20 Hz: electrical

displacement (arbitrary units AU) vs. mechanical displacement.

The new constitutive relation is given as

(1( s da ) z) (2.68)Dr d31 Epr3

In addition, the electric charge in the scanner qp, is given by

q = Dr dAp (2.69)

Er = Ehr + Epr (2.70)

As a result, Equations 2.26 and 2.52, know become

E T U~býo,t)
EbIb Ozb

M Tip +C Tip +KTip = QiP EbIb O- UbOt)

d-* Ej yj(Vj - kljhVh)- 11

F day EbAbSE aU3b(O, t) (2.71)
F~t)-y3j (Vj -k3jh Vh)+ EAb 1

8-- 111 F( k V Ap Oz (2.71)

where kljh and k3j h are constants introduced to account for the fact that not the whole

piezoelectric material necessarily contributes to hysteretic behavior. A hysteresis model is

then expressed between the charge and the potential across the hysteresis capacitance Vh.

Both types of hysteresis models could be used by replacing x with charge qp, and F with

3 1
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Figure 2-16: Schematic representation of piezoelectric scanner with hysteresis.

Vh. For the ODE models, this results in

Vh = f(qp, Vh,, sgn((p)) p (2.72)

The anhysteretic voltage to displacement curve may be used to model the nonlinear

voltage to displacement sensitivity of the piezoelectric scanner.

2.3.6 Creep

The response of a piezoelectric actuator to a rapid change in input voltage, Figure 2-17,

consists of two main parts. The initial part of the response occurs over a time scale dictated

by the mechanical resonance of the actuator, typically few millisecond. This is followed by

a slow creeping response occuring over tens to hundreds of seconds and could amount to

more than 20 % of the total response. The rate and amount of creep, strongly depend on

the piezoelectric compound. As discussed in Section 2.3.5, pinning sites impede on the

motion of domain walls. When an electric field is applied to the material, the domain walls

will eventually align in a way to conform with the applied electric field. The initial fast re-

sponse would be due to domain walls experiencing little resistance and their response would

be limited by the maximum mechanical strain rate of the material. Other domain walls,

on the other hand, would experience much more resistance to their motion. The effective

capacitance and path resistance of these domain walls, will dictate the amount of motion
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Figure 2-17: Two creep experiments: (a) initial fast response, (b) slow creep response.

and time scale over which this motion occurs. This could amount to the creep response.

Two models for creep will be presented, namely, a logarithmic model and a finite-dimension

linear time-invariant (LTI), model.

When creep response is plotted verses time on a logarithmic scale as in Figure 2-18, the

response appears to be linear. Therefore, a common equation [90, 94], to model creep is

z(t) = zo[1 + 7 loglo(-)] (2.73)
to

where z(t) is the actuator displacement, zo is the nominal fast displacement to the applied

voltage, -y is a constant controlling the rate of creep, and to is the time after which creep

response is considered to start, i.e. after the fast dynamics response has occured.

The aforementioned discussion on the origin of creep, may suggest that a model com-

posed of capacitive and resistive elements may be appropriate. Furthermore, experimental

frequency response of piezoelectric actuators shown in Figure 2-19 (a), displays very little

variation in phase at low frequency between input voltage and displacement, Figure 2-19

(b). Moreover, as seen in Figure 2-19 (b), a slight decrease in gain is observed with increased

frequency; 4.5% from 10 Hz to 300 Hz. Therefore, a transfer function model between the

input voltage and actuator displacement would have a relative degree zero at frequencies

0 0 20 40 60 80 100 120 140 160 180
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Figure 2-18: Experimental creep response plotted on logarithmic scale.

much lower than the actuator's first resonance frequency. The relative degree is defined

as the number of poles minus the number of zeros. It is possible therefore, to simulate

creep behavior using a suitable LTI model composed of capacitive and resistive elements.

A schematic representation of one choice of such model is shown in Figure 2-20, and its

mathematical representation is given as

bm+n-2Sm+n- 2 + bm+n-3Sm+ n - 3 + ... + bo
8 m+n + am+n-1sm+n-

1 +... + ao

= G(s) Gcreep(S)

(2.74)

(2.75)

where Gf is the transfer function containing the fast dynamics and retains n poles and n -2

zeros as suggested by the models presented in Sections 2.3.1 to 2.3.4. Gcreep is the transfer

function modeling the creep which has a zero relative degree and contains m poles.

Both creep models, however, assume that the ratio between the amount of creep and

the fast scanner displacement is independent of input amplitude and rate. Both assumption

were experimentally tested and results are given in Chapter 4.
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Figure 2-20: Schematic representation of a model for both fast and creep dynamics.
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2.4 Cantilever Dynamics

2.4.1 Flexural Dynamics

This dynamic model for cantilever deflection is based on elementary bending theory, hence

neglects effects of shear deformation and rotatory inertia. The cantilever is assumed to

have a constant rectangular cross sectional area Ac, moment of inertia Ic, mass density Pc,

Young's modulus of elasticity Ec, Poisson's ratio vc, and a probe of length it. The cantilever

deflection u3c(x, t), is measured relative to its base motion U3sh(t) = u 3p(Lp, t) +U3m(Lm, t).

Forces acting on the cantilever include a distributed force p(x, t), and concentrated force and

moment F(t) and M(t), respectively. The concentrated loads act on the probe at a distance

x measured from the cantilever's base. F(t) is due to the vertical probe-sample interactions,

while M(t) is a moment resulting potentially from probe-sample lateral friction force. Linear

damping originating from three possible sources is considered, namely, damping from air

Fa(x, t), from contact of probe with the sample surface F,(t), or internal material damping

Fm(x, t). Material damping is assumed to be proportional to strain rate. Both Fa and

Fc depend on the absolute velocity of the cantilever, while Fm depends on the relative

deflection of the cantilever with respect to its base. Hence, the form for damping forces is

as follows

• uac(x , t) O•uac(xs, t)
Fa (x, t) = ba , Fc(t) = bc t

82  9 3 • L3 c z , 1)

Fm(x,t) = bm 2 (Ic• 3U3 c(X7t ) (2.76)
2 OX20t

While in contact, Air damping is negligible. However, it has been included to account for

Air damping during loss of contact and for non-contact and intermittent contact modes.

The ratio between the probe to the cantilever mass is typically about 0.1%, and therefore,

the probe mass will be neglected. The boundary conditions are therefore, taken as zero

deflection and slope relative to the base at the fixed end, and zero moment and shear force

at the free-end. The boundary conditions are represented as
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Atx = 0

7U3c = 0

0u3 ,(0, t) = 0
Ox

Atx = L,

Ecl 0-•r = 0
E __2. 3c

Eclc.,2  = 0 (2.77)

The mode shape functions are given by

03ci(x) = (cosA3cix + coshA3cix) +

(cosA3 iLc + coshA3ciLc) (sinhA3cix - sinA3cix) (2.78)
(sinA3ciLc + sinhA3 iLc)

0 = cosA3ciLccoshA3ciLc + 1 (2.79)

The natural frequencies are given by

W36 = (A3ciLc) 2 ( )c 4 (2.80)
(1 _ vc)pcAcL4(

where A3ciLc are roots of Equation (2.79). The equation of motion in modal coordinates

q3ci, is given as

7r3ci q3ci +b 3ci q3ci +k3ciq3ci = L 3ci(X)p(x, t)dx + k3ci(xs)F(t)

+¢Oc(xs)M(t) - pcAc 3•c(x)dx •3h (t)/ .0
Lc

-[ba / 3ci(x)dx + bc4 3ci (Xs)] U3sh (t)

//L
.0i-/pAL ./ Lt q 3ci(x)xdx h

-[ba ./ • 3ci(x)xdx + bc 3ci (Xs)Xs Oysh (2.81)
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Figure 2-21: Coupling between cantilever twist and PSD signal due to cantilever bending.

Moreover, the modal mass m3ci, modal damping b3dci, and modal stiffness k3ci, are given by

m3ci = pcAc 02ci(x)dx, k3 = W3ci m3ci

b3ci = ba L¢ ci(x)dx + bc 2ci(xS) + bsIc j1 ')q 3ci(x)dx10 33 Ifo 0€.3ci

2.4.2 Cantilever Twist

When the laser spot is aligned onto the back of the cantilever, inevitably there will be an

offset form the axis of the cantilever (X-axis in Figure 2-21). In addition, the laser spot

size is finite. As a result, twist in the cantilever 90c, results in a vertical change in the

position of the reflected laser beam falling on the detector. Cantilever twist can be due to

probe-sample friction force, changes in the sample topography, or an impact between the

probe wall and a high aspect ratio feature on the sample. The dynamics of twist will not be

considered as it is typically much faster than the flexural dynamics. However, a quasi-static

relation coupling twist angle 0xc with sensor output YPSD will be assumed as

(2.82)YPSD = kxcOxc
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2.5 Noise and Disturbances

Thermal noise or Brownian motion contributes to a fundamental source of noise in AFM. At

thermal equilibrium, the mean value of the cantilever potential energy has to equal lkBT,

where kB = 1.38 x 10-23 J/K is Boltzmann's constant, and T is the absolute temperature in

Kelvin. By considering the first mode of the cantilever, the slope at the cantilever's free-end

will oscillate with a RMS value, zc m7 = 3  ms = k , where kc is the stiffness of

the cantilever's first mode. This expression is valid for a free standing cantilever. If the

cantilever is in contact with a sample, the expression has to be modified by including the

sample effective stiffness in kc. Another source of disturbance is the laser back-action. It is

due to incidence of photon flux from the optical sensor on the cantilever. Both thermal and

back-action noises will be effectively modeled as zero-mean white noise force disturbances

with a combined constant intensity X 6(t - T), where 6(t - -r) is the Dirac delta function.

Further, mechanical vibrations transmitted through the mechanical structure of the AFM

may result in cantilever oscillations, and relative motion between the probe and the sample.

Consequently, the noise floor of the AFM would increase.

Feedback measurement noise arising from the optical sensor can be due to shot noise, a

fundamental noise for these sensors, in addition to noise from sensor electronics. Shot noise

can also be modeled as white noise.

2.6 Overall AFM Model

The models developed in Sections 2.2 to 2.4.2, constitute a detailed overall model for AFM

dynamics. In addition, the complexity and order of the model can chosen based on the

objectives of using the model. The model can be used to analyze and simulate the dynamic

response between the five input voltages and any combination of desired outputs. Partic-

ularly important outputs include the displacements of the sample holder 1,sh, 712sh, U3sh in

the X, Y, and Z directions and the rotations (i.e. slopes), of the sample holder about X

and Y axes, namely O)xsh and Oysh. And most importantly, the PDS signal. The equations
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for the aforementioned outputs are

= cos(O6)[up(Lp, t) + ulm(Lm, t)] - sin(0)[U(2p(Lp, t)

= sin(06)[Uip(Lp, t) + Ulm(Lm, t)] + cos(06)[u 2p(Lp, t)

- u3p(Lp, t) + U3m(Lm, t)

= cos(06)[u'jp(Lp, t) + u'lm(Lm, t)] - sin(06 )[u'2p(Lp, t)

- sin(06 )[U',p(Lp, t) + u'm(Lm, t)] + cos(06 ) ['2p(Lp, t)

= .sh + kxsh Oxsh + k Oxc~ - zac(xL, t)

+ 7 2m(Lm, t)]

+ U2m(Lm, t)]

+ '12m(Lm, t)]

+ U'2m(Lm, t)]

where ksh is a coupling parameter between the PSD signal and the bending of the scanner

about the X-axis, and xs is the distance from the cantilever's base to the laser spot on the

back of the cantilever.

2.7 Summary

In this chapter, a detailed dynamic model for the AFM was presented. It includes a new

model for the piezoelectric scanner coupled longitudinal and lateral dynamics, creep, and

hysteresis. Models for probe-sample interactions and cantilever dynamics were also pre-

sented.

Xsh

Ysh

Zsh

Oysh

Oxsh

YPSD

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)



Chapter 3

Scanner Calibration

3.1 Introduction

The accuracy of AFM data ultimately depends on the calibration of the scanner. Piezo-

electric materials exhibit nonlinear quasistatic voltage to displacement response. Typically,

a trade-off between nonlinearity and displacement range exist based on the piezoelectric

compound. A scanner made of PZT-5H will have a displacement sensitivity twice of that of

a similar scanner made from PZT-4. However, nonlinearity of 3 to 5 % is expected for the

PZT-4 scanner compared to 20 to 25 % if PZT-5H is utilized. Scanners used in AFM have

typical displacement ranges of 10 to 100 im laterally, and 4 to 10 am vertically. Calibration

of the scanner is usually performed by imaging a standard sample with a known character-

istic dimension. The voltage to displacement sensitivity is then computed from the applied

voltage and the known dimension(s) of the standard. A linear sensitivity is assumed for

vertical calibration, while a quadratic or a cubic polynomial is used for lateral calibration.

Structures with pitch of 200 nm to 10 /im are commercially available for lateral calibration.

For a large scan size, an adequate number of data points can be collected from the image

and used for lateral calibration. On the other hand, standards for vertical calibration are

available with height between 9 nm and 1.6 pm. However, utilizing images for calibration

could be problematic, especially for vertical calibration. As have been shown, image quality

depends strongly on scan and controller parameters. Due to scanner nonlinear displace-

ment, calibration may be affected by the bias voltage applied to the scanner to maintain



3.2. New Method for Scalnner Height Calibration

probe-sample contact at the desired set-point during scanning. In addition, computed sen-

sitivity will depend on scan speed due to creep. Images obtained at a slow scan speed would

yield larger sensitivity compared to images performed at faster speeds. Moreover, standards

with a small height compared to the scanner range, are commonly used for calibration to

reduce the effect of hysteresis. Consequently, calibration would only be accurate for a small

fraction of the total scanner range (typically - 3%). Imaging samples with features taller

than the standard used for calibration will be corrupted with both hysteresis and nonlin-

earity due to the scanner's displacement. Consequently, there is a strong need to develop a

method to allow calibration of the scanner's full range vertical displacement, in addition to

hysteresis identification.

3.2 New Method for Scanner Height Calibration

Typically, accelerometers, consist of a flexible structure of some effective mass and stiffness.

When the structure is subjected to an acceleration, its measured response is related to the

acceleration signal. A schematic representation of an accelerometer is shown in Figure 3-1.

In this simple representation and under sinusoidal acceleration zp, the measured response

zc of the proof mass m, is governed by

2 ,k c
Zc + c zC = - z , c = (3.1)

,,c

For zp = Asin(wt), and w <wc

Izc =A - (3.2)

Therefore, by measuring the response of zc, the displacement amplitude of zp can be de-

termined. Figure 3-2, shows a schematic of the AFM scan unit, including the scanner, the

cantilever, and the optical sensor. The similarity between the scan unit and an accelerom-

eter can be seen from the figure. The source of acceleration is zp, and the cantilever is the

flexible structure. Accordingly, it may be possible to apply a sinusoidal input voltage Vz

and relate the measured cantilever response to zp. By doing so, a calibration map could be

obtained for the entire displacement range. However, the PSD signal YPSD, measures the
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Figure 3-1:
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Figure 3-2: Schematic of the AFM scanner, cantilever, and optical sensor.

absolute angle of the cantilever in space, which is given by

YPSD = Oysh - z XL, (3.3)

Due to the coupling between Vz and 9ysh, as shown in Chapter 2, zp can not be practically

inferred from YPSD*

As a remedy for this problem, the cantilever deflection relative to its base could be

measured and used for calibration. In the past, cantilevers with piezoresistive elements [36],

were utilized in AFM for imaging as an alternative to using the optical sensor. However,

their noise performance in Air was found far inferior to that of the optical sensor. In addi-
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PiezoresistorsI
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Figure 3-3: Schematic of the piezoelectric scanner with a piezoresistive cantilever.

tion, piezoresistive cantilevers suffered from drift and poor long-term stability. Therefore,

their use did not gain wide spread and is mainly limited to AFM operation in ultra-high

vacuum.

The new proposed calibration method is based on using a piezoresistive cantilever as an

accelerometer, Figure 3-3. While in Air and far away from any sample surface, a sinusoidal

voltage Vz is applied to the scanner, and the response of the piezoresistive cantilever is

detected. The measured response can easily be related to the displacement of the scan-

ner. These cantilevers can be fabricated to fit standard AFM cantilever holders. Therefore,

eliminating the need for specialized fixtures and allowing them to be used for almost all

commercial AFMs with a cantilever-on-scanner design. In addition, biasing the piezoresis-

tors can be accomplished easily. Cantilever holders are attached to a piezoelectric crystal

that is used to oscillate the cantilever for non-contact and intermittent modes. The wiring

used for driving the crystal may be used for biasing the piezoresistors. A simple Whetstone

bridge circuit can be used for detecting the resistance change in the piezoresistors. Further,

for each data point to be used for calibration, only few oscillation cycles at 10s to 100s Hz

need to be collected. Hence, drift and long term stability will not be a concern. What

remains to be shown, though, is that the cantilever's noise performance in Air is adequate

for the calibration experiment.

rv_ý
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Design equations for piezoresistive cantilevers are available in [38]. A new fabrication

technique in [37], permitted fabrication of ultra-thin piezoresistive AFM cantilever with

thickness of 87 to 90 nm. The objective of this work was to improve force detection limit

of piezoresistive AFMs; detailed analysis and design equations were therefore given. Noise

performance predictions based on these design equations were found to be in good agree-

ment with the measured performance of the fabricated cantilevers. Therefore, these design

equations will be used below to demonstrate the feasibility of the proposed calibration tech-

nique. Sources of noise in piezoresistive cantilevers are mainly Johnson noise, 1/f noise,

and thermomechanical noise. Johnson noise is due to thermal energy of carriers in a resistor

R. It is a white noise with a spectral density function Sj given by

Sj = 4kBTR (3.4)

where kB is Boltzmann's constant, and T is temperature in Kelvin of the resistor. In a

bandwidth of fmax to fmin, the mean-square noise is

v2 16kB T Lle
V = W t eg fmax - fmin) (3.5)

where Lleg is the length of piezoresistive cantilever leg, w is the total cantilever width, td is

doped thickness, it mobility, q electron charge, and p doping density. On the other hand,

1/f noise has a spectral density Sf, given by

S - _B (3.6)
Nf

where VB is the voltage bias across the resistor, N number of carriers, and a a nondimen-

sional parameter that depends on annealing for an implanted resistor. In a bandwidth of

fmax to fmin, the mean-square noise is
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SaV 1n(fmax) (3.7)
fmi)

N is proportional to the cantilever volume for a constant doping concentration. It is assumed

that N = pLiegtdw. Thermomechanical noise is the mechanical equivalent of Johnson noise.

Its spectral density Stm, for a single mode approximation is given by

4ksT
Stm = 4kBT (3.8)kcwcQc

where kc is the cantilever stiffness, and Qc is the quality factor. The corresponding RMS

displacement noise Zctm, is

_ 4kBT
Zctm = kc wcQ ' W < wc (3.9)

_ 4kBTQ
Zctm = Vkw,-Q I  = wc (3.10)k c Lc

If the piezoresistor makes up one corner of a Wheatstone bridge, the output voltage Vo can

be found from

VBLAR
Vo = aR (3.11)

4R
AR 37rL Et(Lc - Lieg/2) (3.12)
R 2L 3

where 7rL is the piezoresistive coefficient, E is modulus of elasticity, t is total thickness, w is

cantilever width, and Lc is cantilever length. In practice, thermomechanical noise is seldom

the dominant noise source. Exception to this are cantilevers with high Qc that are operated

at their resonance. Under this condition, the total root-mean-squared (RMS), displacement

noise Zcmin is found as

aWI -ln )+ 16kBTLlef

--- a 1,T) + m, Umax - fmin)Lz3egtdwp W V t( (3.13)Zcm = 3VB7rLEt (Lc-Lieg)

16LJc
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Commercial piezoresistive cantilevers are generally optimized either for imaging or force

detection. As a result, they are generally not suitable for use in this calibration procedure.

In order to demonstrate the feasibility of using a piezoresistive cantilever for the proposed

calibration method, a cantilever has been designed to have adequate signal-to-noise ratio

(SNR), at 200 Hz. It is assumed that the first mechanical resonance of the AFM scan

unit will be a at least a factor of 2 to 3 higher than the driving frequency to ensure a

quasistatic response of the scanner. The resulting cantilever has a length Lc = 600 um,

width w, = 50 um, thickness tc = 0.2 /m, and resonance frequency wc = 785 Hz. Using the

model of Section 2.4, the sensitivity of the cantilever displacement to scanner displacement

is found to be - = 0.1 at 200Hz. For a 100 to 400Hz bandwidth, Equation (3.13), givesZp

zc, , = 2.9nrim RMS. The SNR is then SNR = O.lz 2(nm) For example, if zp = 150nm2.9

(3 % of typical scanner range), the expected SNR is 5.2. Consequently, the proposed cal-

ibration method could be used to calibrate the scanner's vertical displacement from a few

percent of its range up to its full range. In addition, the maximum strain in this cantilever

would remain small; less than 2 x 10- 3 for scanner range of zp = 10/pm corresponding

to a maximum acceleration of 1.6g, where g is the acceleration of gravity. Linearity bet-

ter than 0.1% for piezoresistive-based accelerometers has been commercially demonstrated.

Moreover, the SNR can be further improved. As seen from Equation (3.2), zc and hence

SNR. depend quadratically on the ratio of the frequency w, of the acceleration source Zp,

to the cantilever's resonance frequency w. Hence, increasing this ratio would increase the

SNR. Increasing w is limited by the first resonance frequency of the scanner to ensure a

quasistatic measurement. Lowering w, can be easily done by adding a so-called proof mass

at the end of the cantilever as evident from Equation (3.1). In addition, by setting w = c,

hence operating the cantilever at resonance, the SNR can be further improved by a factor

of Qc; experimental data show that typically Qc > 5. Consequently, operating at resonance

can permit using the proposed method to calibrate the scanner's displacement from few

nanometers up to the full range of the scanner.

In order to use the cantilever for calibration, its output sensitivity to acceleration kvoa,

needs to be determined. Once, mounted on the scanner, the piezoresistive cantilever will
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experience the acceleration of gravity g. Hence, by merely measuring the cantilever's output

with no scanner displacement, its acceleration sensitivity can be obtained. If designed to

permit so, the cantilever can be flipped and its output recorded. This allows using two

data points for determining the acceleration sensitivity. Since the cantilever displacement

or voltage output Vo is linear in zp, Equation (3.2), the scanner calibration can be obtained

from

zp(VZ) = kVoa (3.14)

The resulting curve between the input voltage Vz and the scanner vertical displacement zp

can be used to compensate for scanner displacement nonlinearity. The method may also

be used to characterize scanner hysteresis over the full scanner range. Another advantage

of this method, is that the calibration will not be affected by scanner creep or drift since

the dynamic measurements are done at frequencies in the 10s to 100s of Hz. Furthermore,

commercially available piezoresistive cantilevers cost less than $100 to purchase. In con-

trast, calibration standards cost about $200 for a set of three and their height is only a

fraction of the total scanner's displacement.

3.3 Error Analysis

As seen in Section 2.3.1, when the scanner is commanded to move vertically by applying

a voltage V, a slight bending motion also occurs. A first order analysis of errors due to

this coupling was performed. As seen in Figure 3-4 (a), offsets of 6X and 6., are assumed

between the cantilever base and the centroid of the scanner's cross-section. The actual

displacement at the cantilever base is not only due to zp. As a result of scanner bending,

displacements of the order of 6x.y and 6v0x , are introduced. Geometric coupling between

bending and extension, as seen in Figure 3-4 (b), is also considered. The resulting change

in vertical displacement Azb, is given by
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AZb = L- 4R isi2() - y(3.15)
2y

where Rcurv Oy = Lp , 9 = (3.16)

AZb = Lp - sii2(L - (i 2 (3.17)
P 92 2 2 (.7

A typical scanner with vertical and lateral ranges of 5 and 40 /m, respectively, will be

used in this analysis. The maximum angle due to bending 0. ; 2 x 10- 5 rad was estimated

using two methods. First, the angle was estimated from experimental data using an AFM.

The displacement sensitivity of the cantilever was estimated by bringing the probe into

contact with a hard sample and moving the scanner up and down. Then, the probe was

moved far away from the sample and a triangular voltage signal V, was applied to the

scanner. The output of the detector YPSD was then recorded. The output was converted

to an angle based on the cantilever length. In the second method, the scanner model was

used to predict scanner bending due to Vz. The result using the model was off by a factor

of 30% from the experimental result. The maximum value of both estimates was used. The

errors are summarized below assuming a 1 mm offsets in X and Y

6x9 ysh 1mm x 2 x lO 5 rad (0.4% of 5 /im range)

6yOxsh 1mm x 2 x lO-5rad (0.4 % of 5 /m range)

LcO, 500ptm x 2 x 0l-5rad (0.2 %of 5 tm range).

Azb 1.5 x 10- 5  (0.3% of 5 im range).

Therefore, errors ; 1% is expected at full range. This is a substantial improvement over

possible errors of 20 to 25% due to scanner nonlinearity.

The calibration method can also be used for an AFM with the sample-on-scanner design,

Figure 2-2. However, it would require that a cantilever holder be mounted and centered
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Figure 3-4: (a) Cross section of scanner with sample holder, (b) Geometric coupling between
scanner bending and extension.

on the scanner. The piezoresistive cantilever can then be mounted on the holder and the

scanner calibration can be obtained. Finally, some means for biasing the piezoresistors is

needed. This may or may not be a challenge, depending on the AFM design.

3.4 Summary

In this chapter, a new method was developed and presented to allow calibrating the scan-

ner's vertical displacement up to its full range, in addition to characterizing scanner hys-

teresis. Analysis demonstrating the practical feasibility of the method using piezoresistive

cantilevers was performed in addition to a first order error analysis.
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Model Validation

4.1 Experimental Setup

The setup used is based on a Quesant AFM [39]. The scanner used has a scan range of

40 lm and vertical range of about 4.25 [rm. To reduce the effect of noise, and environmental

effects due to temperature changes the AFM is placed inside an acoustic isolation chamber

[41]. Further, the AFM and the chamber are placed on top of a bench-top pneumatic

vibration isolation table [40], to reduce the effect of mechanical vibrations.

4.2 Modifications to Experimental Setup

The setup will be used for model validation, implementing custom controllers and scan

algorithm. Therefore, several modifications were required to enable performing the desired

experiments. A dSPACE controller board (42], was used to implement custom algorithms.

The board has 16-bit analog-to-digital converters (ADC), and 14-bit digital-to-analog con-

verters (DAC), and a 400 MHz IBM PowerPC 604e processor. Interface software accompa-

nying the board allows using MATLAB and SIMULINK codes. The software can automat-

ically generate executable code ready for real-time implementation. Code was developed

in MATLAB environment to allow probe-sample engagement, probe retraction, feedback

control, and scanning and image collection. The codes were implemented using a sampling

frequency of 60 kHz, while the expected feedback bandwidth is less than 1 kHz. Therefore,
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delay effects due to sampling will have practically no effect of feedback performance. In

addition, the drive electronics of the AFM had to be bypassed. Accordingly, a high-voltage

piezoelectric amplifier was built based on commercial cards [39]. To further reduce noise

from the amplifier, filters were built and added to the amplifier. The amplifier has 3 input

channel with a range of ±10 V and 5 output channels at +200 V. One out channel is dedi-

cated to the scanner electrode for Z motion, while X and Y-motions use two channels each.

The X/Y channels have a -3dB bandwidth of 300 Hz, and a peak-to-peak output noise

of 50 rnV while connected to the scanner. The capacitance of the scanner is 8 pF. On the

other hand, the Z-channel has -3 dB bandwidth of 2.4 kHz with a phase of -45' at that

frequency, and a peak-to-peak output noise of 50 rnV. In addition, a K-type thermocouple

was mounted inside the acoustic chamber to monitor Air temperature.

4.3 Cantilever Specifications

Experimental results will be shown for two different Silicon cantilevers with rectangular

cross-sections. Cantilevers are labeled A [44], and B [45]. Cantilever-A has a length of

350 Am ± 5 mrn, a width of 35 um ± 3 um, a thickness of 1 Am + 0.3 um, a resonance fre-

quency between 7 to 14 kHz, and a stiffness between 0.01 to 0.08 N/mrn. Cantilever-B, on

the other hand, has a length of 450 Am + 5 Am, a width of 50 am. ± 5 Am, a thickness of

2 m. ± 0.5 A.m, a resonance frequency between 10 to 17 kHz, and a stiffness between 0.07

to 0.4 N/rn. Both cantilevers have a probe length between 15 to 20 Am, and radius of

curvature of less than 15 nm. In the figures presented, * will be used as a superscript to de-

note the use of a nominal value of a parameter for converting the units of a measured signal.

4.4 Force-separation Curve

Equations (2.7,2.9,2.10,2.11), were used to generate the nondimensional composite force-

separation curve of Figure 4-1. Parameters used to generate the curve are, w = 0.1 J/m 2,

R1 = 20nmn, R 2 = c0, V1 = 0.3, v 2 = 0.27, El = 169 GPa, E 2 = 6 GPa, H = 1 x 10- 19 J,

and ao, = 5 x 108 N/m, where subscripts 1 and 2 correspond to the probe and sample,
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Figure 4-1: Simulation: Quasi-static normalized force-separation curve.

respectively. It is worth noting that the model of Equation (2.7) can predict an instability

that has been observed in quasi-static experiments. This quasi-static instability, as seen

in Figure 4-2, occurs when an approaching/receding probe jumps in/out of contact (pull-

in/pull-out points), with the sample surface corresponding to a sudden jump in the contact

area. The actual point of instability on the force-separation curve will depend on the stiff-

ness of the cantilever ke, as shown in Figure 4-1. The cantilever stiffness is estimated from

Figure 4-2 as the slope of the line just after the pull-off point. The stiffness is estimated

to be 0.06 N/m, which is in good agreement with the values given in Section 4.3. It can

be seen from both figures that the model captures the main characteristics of the experi-

mental curve. However, the difference in the approach and retract lines (i.e. hysteresis),

is not captured. This behavior may be attributed to viscoelastic behavior of the sample in

addition to scanner hysteresis.

4.5 Scanner Modes Identification

In order to identify the main resonance frequencies of the scanner, several experiments

were performed. In one experiment, the piezoelectric tube, Figure 4-3 (b), was excited by

applying a voltage to the two outer electrodes x+ and x- and the charge qp, on both the

y+ and y- electrodes was measured. The measured charge is proportional to the strain or

mechanical displacement, at least for small input amplitudes, since the applied voltage on
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Figure 4-2: Experimental force-separation curve

the y+ and y- electrodes is zero. This can be seen from Equation (2.14). The induced

stain is mainly due to the Z-axis displacement, in addition to a small contribution from the

bending modes as a result of coupling. However, the coupling induced strain will have an

opposite effect on the y+ and y- electrodes; one being negative while the other positive.

By adding qp(y+) and qp(y-), the effect of bending almost cancels out. Since each of the

electrodes will experience bending about both the X and Y-axis, a small contribution from

bending modes will be seen in the measured charge. Figure 4-3 (a), shows the frequency

response for this case labeled V+, -- qp(y+) + qp(y-). The scanner's main longitudinal

modes are at 4.6, 8, and 21 kHz. To identify the main bending modes in the X-direction,

a voltage signal was applied to the x+ electrode, and the charge on the x- electrode was

measured. The result is labeled Vx+ -+ qp(x-), in Figure 4-3 (a). A similar experiment

was performed for the Y-axis, and the result was found fairly identical to that for the

X-axis. The main bending modes are at 380 Hz, 3.4 and 11.8 kHz. However, there is a

small resonance at 540 Hz which the tests failed to identify its source. Because of its small

peak compared to other system resonances, further investigations for its source was not

performed. Further, the data labeled Vz --+ YPSD in Figure 4-3 (a), are from Vz to the

detector's output YPSD, while the cantilever is not in contact with a sample. As seen from

the plot, the bending modes are observable from the feedback signal, as predicted by the

model, Equation (2.88).
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Figure 4-3: (a) Experimental frequency response, (b) Cross-section of the piezoelectric tube.

4.6 In-contact Dynamics

As described earlier, during scanning, YPSD is used as a feedback signal, while Vz is used

as a control input. Due to feedback bandwidth limitations, scan speed is typically more

than an order of magnitude lower than the frequency of the first bending mode. As a

result, the effect of this low scan speed lateral motion on the feedback loop is not dramatic.

Consequently, it is essential to identify and understand the dynamics between the feedback

input-output pair (Vz, YPSD). In this section, the focus will be on hysteresis and creep-free

dynamics. Hysteresis and creep will be addressed in Sections 4.8 and 4.9, respectively.

Simulations will first be introduced followed by experimental results.

4.6.1 Frequency Responsc: Simulations

The models presented in Sections 2.3.1 to 2.4, and 2.6, are presented below in transfer

function form

(a2ziS2 + alzis) (a20i 2 +-1 aOiS)
Z'(8) = s2 + 2(Cwis + W (2 + 2¢ + + a ,wcs o()

+ afi 2 f(zec, zp, OPY, z) (4.1)
s2 + 2(iwcs + wZ
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Okj(s)o Vz 2 (4.2)
O=1 82  + 2(o wo j s + L
j=1 

0

zM() kzPm Vz (43)
Zsh() m=1 s 2 + 2zPmWzPmS + Wzm

YPSD = ysh - Zc (4.4)

where i*, j*, and m* are the number of modes retained for the cantilever, scanner bending

and longitudinal dynamics, respectively. The probe-sample interaction force f(zc, zP, Opy, z),

is a nonlinear function of probe-sample separation, and depends on geometry, environment,

and probe and sample material properties. To obtain a linear model to be used for analysis,

the force was expanded as a Taylor series and linear terms were retained, giving

f (zc, zp, Os, z) = gcz' + g• Zp + gopOpy

+kz, + H.O.T. (4.5)

where k. can be considered as a linear effective probe-sample contact stiffness. The probe-

sample contact can be represented schematically as in Figure 4-4, where again zc, is mea-

sured relative to zp. The contact and cantilever stiffnesses, are represented as two springs in

series. The contact stiffness does not change the order of the model, but has a great impact

on the system's zeros. Substituting Equations (4.2), (4.3), and (4.5) into Equation (4.1),

and the resulting equation into Equation (4.4) gives the overall transfer function between

Vz and YPSD, which describes the AFM Z-dynamics. The effect of probe-sample contact

properties on system zeros can be explained by considering a reduced order model where

bending dynamics OYp consists of the first bending mode and first zero-pair. In addition, the

scanner extention dynamics and cantilever flexural modes are ignored as they are typically

much faster than the bending dynamics of the scanner. The resulting model is given as

YPSD Oyp - g90,pOyp - gzZp (4.6)
b2 s2 + bis + bo b2s 2 + bls + bo

YPSD 82 + als + aoV -go 2 + als + ao
-k+zgVz (4.7)
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Figure 4-4: Schematic of probe-sample contact.

where kz and g9 are proportionality constants. As seen from Equation 4.7, the first two

terms are due to the scanner bending mode. The coefficient go0, multiplying the second

term depends on the probe-sample contact properties and surface forces between the sample

and probe. It is clear that changes in the contact properties (e.g. nominal contact force

set-point) would affect the zeros of the transfer function. However, the frequency of the

bending mode would not be affected as seen in Fig. 4-18. Physically, this is true since the

probe sample forces are orders of magnitude smaller than the force the scanner can provide,

( 10's n N vs. - 1N).

The model used in this study included four bending modes and two extension modes

for the scanner, in addition to a single bending mode for the cantilever. The parameter

values used are given in Appendix A. The ratio of sample to cantilever stiffness , proved

to be an important parameter. Changes in this ratio have two main effects on the model

transfer function, namely, changes in the DC gain and changes in the frequency of the zeros

associated with the bending modes at 380Hz and 3.4 kHz. Figure 4-5, shows the simu-

lated frequency response of the model for different ratios of stiffnesses. For large ratios (e.g.

S= 7), the zeros are at a higher frequency than those of the modes. For smaller ratios

(e.g. 1 < k < 2), their frequency decreases to be below that of the modes. This change

in pole-zero pattern is referred to as pole-zero flipping. Moreover, for some value (k ; 4),

there is pole-zero cancelation and thus, the bending modes become unobservable. Figure
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Figure 4-5: Simulation: In-contact frequency response
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4-6, presents a pole-zero map of the first two modes for different values of k. As a result,

as the zeros move away from the mode, the resonance peak appears more prominent in the

response. Furthermore, when is either too large or too small, the DC gain reaches a limit

controlled by kc and ks, respectively. For intermediate values, the DC gain will depend on

both stiffnesses and changes in k, due to different set-pints or input amplitudes will change

the DC gain, and zeros location.

The model can be further improved on to include nonlinearities in the contact affecting

the DC gain and dissipation. These nonlinearities depend in great part on properties of the

sample. Hence, the form of this dependence is not known. It is possible to account for it
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Figure 4-7: System identification block diagram.

in the model by generalizing the probe-sample force to include dissipative terms and retain

higher order terms. Therefore, Equation (4.5), changes to f(z,, zc, zP, zp, Op, p zs).

4.6.2 Frequency Responsc: Experiments

The samples chosen for these experiments were Glass and Polydimethylsiloxane (PDMS),

having Young's moduli of elasticity of 60 MPa and 2.5 MPa, respectively. The experimental

procedure is as follows, the probe was brought into contact with the sample until the desired

set-point is attained. The system was run in feedback with a PI controller. A disturbance

signal generated by a Dynamic Signal Analyzer HP35670A, was injected at the input to

the piezoelectric amplifier, as seen in Figure 4-7. The signal going to the amplifier input

is comprised of the disturbance signal plus the controller output. The amplifier input in

addition to the laser output signal were sent to the analyzer to obtain the frequency response

of the system. The results will be shown for different cantilevers. In addition, the effect

of the force set-point and input voltage amplitude on the dynamics will be investigated.

This will aid in choosing scan parameters to achieve a good dynamic response and improve

image quality.

Cantilever-A: Glass Sample

Figure 4-8, shows the force displacement curve for the Glass sample. The points labeled on

the plot are the force set-points used for the frequency response experiments. The effects
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Figure 4-8: Force displacement curve for cantilever-A with a Glass sample.

of the force set-point on the dynamics can be seen from Figure 4-9. For the larger set-point

of 17.6 nN, the DC gain is smaller and the 380 Hz bending mode has a smaller resonance

peak. The decrease in DC gain suggests that the effective contact stiffness has decreased,

hence, the scanner displacement is transmitted more to the smaller stiffness; the contact's.

The smaller resonance peak could be due to two reasons; the frequency of the zero-pair

associated with the bending mode has slightly decreased for the larger set-point. Hence,

the contribution of the bending mode appears less prominent in the response. In addition,

it could be a result of changes in the dissipative properties of the contact with changes in

the set-point. It is important to realize that the bending mode resonance frequency does

not change. The contact forces are orders of magnitude smaller than the force the scanner

can provide, - 10's nN vs. 1N.

The effect of excitation amplitude on the frequency response is shown in Figures 4-10

and 4-11 for set-points of 14nN and 17.6nN, respectively. It is seen that the larger the

amplitude of excitation, the smaller the DC gain. The amount by which the DC gain

changes depends on the value of the set-point. Here, the larger the set-point, the less the

change is. At a large contact force, more plastic deformation might occur in the contact,

which in turn reduces the effective contact stiffness. Contacts with higher level of plastic

deformation, would experience smaller change in the contact stiffness and hence the DC

gain. The resonance peak also changes due to variation in the frequency of the bending
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Figure 4-9: In-contact frequency response of cantilever-A with a Glass samplc: same am-

plitude for different set-points.
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Figure 4-10: In-contact frequency response of cantilever-A with a Glass samplc: 14nN,

different amplitudes.

mode zeros. It is worth noting that the changes in the dynamic behavior greatly differs

around the first and second bending modes, possibly due to variation in the viscoelastic

response of the contact at different frequencies.

Cantilever-A: PDMS Sample

Figure 4-12, shows the force displacement curve for the PDMS sample. The penetration

region seems quite linear. This implies that what is being measured by the PSD is mainly

the deflection of the cantilever and not the deformation of the sample. This suggests that

cantilever stiffness is much smaller than the effective stiffness of the sample at that location.

Compared to results in Figure 4-8, the suggestion is surprising since the modulus of elasticity
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Figure 4-11: In-contact frequency response of cantilever-A with a Glass samplc: 17.6 nN,

different amplitudes.

of PDMS is a factor of 24 smaller than that of Glass. However, the values of the moduli

are bulk values and they may not represent the local properties of the nano-contact. In

addition, the experiments with the Glass sample were performed before those of the PDMS

sample. It may be possible that the probe has become blunt. As a result, the contact stress

would be smaller for the same applied force. The results in Figures 4-13 to 4-15, are similar

to those for the Glass sample, except for the changes in resonance peak. As seen in Figures

4-14 and 4-15, the frequency of the bending mode zeros does not change with excitation

amplitude. This again implies that the contact stiffness is much greater than the cantilever

stiffness. As predicted by the model, most of the response will be absorbed by the cantilever

with little sample deformation. Therefore, the changes in resonance peak may be due to

changes in the dissipative properties of the contact.

Cantilever-B: PDMS Sample

The results with the Glass sample are similar to those with cantilever A and therefore, will

not be presented. However, the results with the PDMS sample are different and will be

presented and discussed.

Figure 4-16, shows the force-displacement curve for the PDMS sample. The penetration

region seems quite nonlinear. This implies that what is being measured by the PSD signal,

at least in part, is the deformation of the sample. The observations in Figure 4-17 for

a 36 nN set-point, are that increasing the input amplitude reduces the DC gain, and the



4.6. In-contact Dynamics

Scamer Displacement, [pm ]

Figure 4-12: Force-displacement curve for cantilever-A with a PDMS sample.
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Figure 4-15: In-contact frequency response of cantilever-A with a PDMS samplc: 35 nN for

different amplitudes.

Figure 4-16: Force displacement curve for cantilever-B with a PDMS sample.

frequency of bending-mode zeros, thus, increasing the resonance peak. This suggests that

the contact stiffness decreases with increased amplitude. In addition, increasing set-point,

Figure 4-18, results in pole-zero flipping for the first two bending modes. In addition, there

is no change in the location of the zeros with input amplitude for the 113 nN step-point, as

seen in Figure 4-19. This implies that increasing the higher set-point increased the effective

contact stiffness, which agrees with Figure 4-16. These results are in agreement with model

predications in section 4.6.1, (Figure 4-5); implying that the contact and cantilever stiffness

values are relatively close at the 36 nN contact point.
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Figure 4-17: In-contact frequency response of cantilever-B with a PDMS samplec: 36 nN

for different amplitudes.
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Figure 4-18: In-contact frequency response of cantilever-B with a PDMS samplec: 17nm
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Figure 4-20: Images of calibration steps using a PI controller: (a) scanning simulation, (b)

experiment.

4.7 Scanning Simulation vs. Experiments

Scanning simulations were performed using the developed models. The sample shape used

in simulation is an experimental AFM image of calibration steps. Figure 4-20 (a), shows

the simulated image vs. the actual sample. It can be seen that the sampled and averaged

image generated from the voltage Vz, does not correspond well to the actual image. The

cantilever oscillations causes it to loose contact with the sample and the hammering action

could in fact be damaging to the sample. The AFM image shown in Figure 4-20 (b) is of

the steps used in the simulation. The simulations predict the actual response well. Also

note that the oscillations observed in Figure 4-20 (b), which are due to the bending mode,

introduce an artifact that could be interpreted incorrectly as surface roughness.

4.8 Scanner Hysteresis

The nonlinear voltage to displacement sensitivity of the scanner was measured by applying

a 10 Hz sinusoidal input and measuring the bending response of the scanner. The input

amplitude was varied from 20 V up to the maximum allowable voltage of 400 V. The re-

sults are shown in Figure 4-21 with the input voltage scaled down by a factor of 10. The

data are typical of a PZT scanner where sensitivity initially increases with increased input
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amplitude. Although not seen from the data, however, when the input amplitude exceeds a

certain limit, the sensitivity starts decreasing with increased input amplitude approaching

a saturation limit. This limit is avoided in practice as it brings the input electric field close

to the depolarization field where piezoelectric effect would be lost. A 2nd order polynomial

was fitted to the data. The maximum relative error of the fit is 7 % for the range 40 to

400 V. A linear fit was applied to the low-voltage data points and is also shown in Figure

4-21. The linear fit gives a 24% error at full range. Accordingly, for a 5 im scanner there

would be an error of 1.2 Am at full scale using this linear fit as is commonly done. The new

calibration method presented in Chapter 3, can be used to generate data similar to Figure

4-21, which would allow for accurate calibration of the scanner. Therefore, eliminating the

shortcomings of using an AFM for measuring tall structures as in optical and semiconductor

devices.

Figure 4-22, presents experimental hysteresis loops for the piezoelectric scanner. The

input signal is a 10 Hz sine wave with amplitudes of 20, 50, and 100 V. In the figure, the

input values are scaled down by a factor of 10. The hysteresis loops can be characterized

by their average slope, loop center point, and the loop width. These characteristics change

with the input amplitude. As discussed in Section 2.3.5, hysteresis in piezoelectric actuators

occur mainly in the electrical domain between the applied electric field and the electric

displacement (or charge qp). Therefore, in order to use the hysteresis model of Equation

(2.72), the current jp, needs to be measured. Measuring the current given the high input

voltage is practically difficult and therefore, not used in practice. Some authors have used

the derivative of the input signal instead [95], and fitted the Bouc-Wen model to a single

hysteresis loop. However, using the input derivative will fail to capture the changes in the

characteristics of the hysteresis loop at various input amplitudes. The Bouc-Wen model

was fitted to the 100 V hysteresis loop of Figure 4-22, and the model was later used to

predict hysteresis loop for the 50 V input. The results are given in Figure 4-23, where it

is seen that the model fails to accurately simulate the smaller loop. This is mainly due

to the nonlinearity in the voltage to charge response which will is not captured when the

derivative of the input is used instead of the current. A similar tested was done using the
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Figure 4-21: Nonlinear voltage to displacement quasi-static curve of piezoelectric tube.
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hysteresis curves for scanner for a sinusoidal input at 10 Hz:

Coleman model, and the results are shown in Figure 4-24. A solution for this problem is not

presented in this thesis. However, the main thesis contributions in dealing with hysteresis in

AFM are developing the method of Chapter 3, that allows characterizing hysteresis for the

full range of scanner displacement. In addition, developing a realistic scanner model that

can accommodate a hysteresis model in a physically-consistent manner. Finally, identifying

limitations of some of the methods that has been proposed in the literature [95].

4.9 Scanner Creep

A commercial AFM was used to measure the creep response of its piezoelectric scanner. The

AFM probe was brought into contact with a hard sample (Glass sample), while in open loop.
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Commanding the scanner to move up/down in the Z-direction, changes the PSD signal ac-

cordingly. This signal shows the scanner response including creep. However, the measured

PSD signal could also change due to the response of the AFM structure or scanner to vari-

ations in the environment temperature, and/or mechanical vibrations. More so, variations

in the laser source output, heating of the cantilever by the laser source, cantilever bending

due to thermal gradient between the probe and sample, relaxation in probe-sample contact,

and/or drift in the drive or sensing electronics can affect the PSD output. All these factors

are considered sources of noise in the creep data. To minimize their effect on measurement

and obtain a good signal-to-noise ratio, the AFM was placed inside an environmental and

vibration isolation chamber. The system was given enough time to reach an equilibrium

state, before data collection. A thermocouple measuring the Air temperature inside the

chamber was used to record the extremum temperatures during the experiments. Typical

temperature fluctuation was 0.4'C over the duration of an experiment, 30 - 40 minutes.

The choice of cantilever was dictated by a trade-off between sensitivity and noise. A low

stiffness gives a high displacement sensitivity and a small probe-sample force. This reduces

the effect of possibly nonlinear material behavior of the sample on the measurements. On

the other hand, the cantilever stiffness should not be too low causing reduced resolution by

increasing the cantilever displacement response to thermal noise. Another concern is the

choice of nominal cantilever deflection (PSD signal). The cantilever deflection vs. scan-

ner displacement curve can exhibit nonlinear behavior hence degrading the linearity of the

measurements. The selected nominal deflections and operating range during experiments

were chosen to be within the mostly linear part of the curve. In addition, the input voltage

V, was chosen to be small enough to ensure good linearity in scanner displacement. The

excitation signals consisted of steps and ramp signals that are saturated in amplitude. The

rate of ramp signal was varied to study the effect of input rate on creep response. The PSD

signal was recorded before the scanner is excited to measure total instrument drift (noise).

During the experiments, the scanner was commanded to move down a certain displacement.

After several minutes it was commanded to move the same displacement up. Both data

were combined and averaged to cancel the effect of drift in the PSD signal.
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Figure 4-25: Pre-data collection drift in PSD signal.

Two Silicon cantilevers were used for these experiments. A cantilever with nominal

stiffness of 0.03 N/m that had an equivalent displacement noise of 14 A rms and 7 nm peak-

to-peak at 100 Hz. The second cantilever had a nominal stiffness of 0.2 N/mrn and an equiv-

alent displacement noise of 5.1 Arms and 3.5 nm peak-to-peak at 100 Hz. A typical scan

requires 2 to 5 minutes to complete, depending on scan rate and image resolution. Ideally,

this is the necessary duration for characterizing scanner creep. Instrument drift of 1.4 Al/s

was typical, Figure 4-25. Data collection was limited to a maximum of 3 minutes to ensure

small contributions of instrument drift to the collected data.

To test the linearity of creep response, different voltage ramp signals with different

saturated amplitudes were used. All signals had the same ramping rate of 1 V/s, hence,

ramping time was different for each input. The amplitudes were chosen to be small enough

such that the nonlinearity in the scanner fast response would not be a concern. The results

are shown in Figure 4-26, where the cantilever response to a 260 nm scanner displacement

is compared with the response to a 104 nm displacement which has been scaled by a factor

of = 2.5. The Figure shows the good linearity of the response. This tends to suggest

that the creep part of the response tends to scale linearly with the fast response. Therefore,

a linear model of creep may be justified. The nonlinearity in the fast scanner displacement

could be accounted for separately. Figure 4-27, displays the creep response for two ramp

inputs of the same saturated amplitude but ramped over 200 its and 10 ms. The response
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Figure 4-27: Creep response to inputs with different rates.

does not show any dependence of creep rate on input rate.

Figures 4-28 and 4-29 show the response of the LTI and logarithmic models, respectively.

The parameter values for the logarithmic model are, -y = 0.12, and to = 0.18s. A 3rd

order LTI model was used with poles at 3.98 mHz, 79.57mHz, and 1.59 Hz and zeros at

4.48 mHz, 84.79 mHz, and 1.71 Hz. Both models reproduced the creep response reasonably

well. The fit for both models degraded at larger times. The fit can be improved by increasing

the order for the LTI model or adding more terms of different rates in the logarithmic model.

A model used to predict and compensate for creep in AFM has to be able to reproduce

creep behavior under excitations during typical operation. The input signals for lateral

motion (scanning), are a triangular wave, not necessarily with a linear slope, and a ramp

5 10 15
Time, [s]

260 nm Scanner Displacement

104 nm Scanner Displacement
Scaled by factor of 2.5
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for the fast and slow scan directions, respectively. The model fitting can be optimized

specifically for these signals, yielding good agreement with actual response. The Z input

voltage depends on sample topography and is not known a priori. Hence, a creep model for

the Z-direction scanner displacement has to be capable of reproducing scanner creep not

only for a prescribed input signal.

Both models presented displayed the ability to closely predict creep response for a step-

like input. However, the structure of the models is quite different. In the logarithmic model,

the strain rate of the scanner (or velocity) is assumed to be an explicit function of time

= f(t, V,), suggesting that the scanner is a non-autonomous system. In contrast to the

LTI model, L -= f(e, Vz), which is time-invariant (autonomous). Physically the scanner

response depends on the input voltage V, history and the state of strain e of the scanner.

To portray this graphically, two experiments were performed. In the first experiment, the

scanner was stepped by 340 nm, and the PSD signal was recorded. In the second experiment,

the scanner was stepped by half the displacement of the first experiment 170 nm at time

zero. After 19 s, it was stepped by an additional 170nm. The creep part of the response

is shown in Figure 4-30, for both experiments. The logarithmic model would predict, for

the second 170 nm step, the curve labeled f(t, V4) which is the portion of the 340 nm curve

after t = 19 s. This prediction does not match the actual response. Conversely, the LTI

model prediction labeled as f (, V1) matches the actual response well. It was obtained using

the portion of the 340 nm curve starting at 24 nm. Hence, demonstrating that the creep

response depends on the input and state of strain of the scanner and not explicitly on time.

Note that creep is also a function of temperature as the sensitivity of the scanner is. It

is assumed however, that AFM would be operated in an environment where temperature

fluctuations are not large. Otherwise, obtaining reliable measurements will be difficult.



Chapter 5

Creep Compensation

5.1 Introduction

It has been shown that the LTI model is more suitable for predicting creep response. To

compensate for creep, the model was inverted and a pole at 10 kHz was augmented to the

inverse filter to limit exciting high-frequency system modes. The filter, as seen in Figure

5-1, was placed in series with the controller. To test the performance of the filter, Silicon

steps of two different heights were imaged using different cantilevers than the ones used for

collecting the creep data.

Figure 5-1: Feedback block diagram with creep compensation filter.
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Figure 5-2: Feedback block diagram with creep compensation filter.

5.2 Creep Compensation

5.2.1 530nm Steps

A Silicon Nitride cantilever with nominal stiffness of 0.37 N/m, a triangular cross section,

and resonance frequency of 20kHz was used for results in Figures 5-3 and 5-5. This shows

the images of 530 nm + 1.5 nm Silicon steps scanned at 2.8 [m/s with and without creep

compensation. The side walls of the steps appear to have different angles due to convolution

errors. As shown in Figure 5-2, the probe was tilted with respect to the sample, hence, one

side of the step is imaged by the probe's side wall instead of its tip. As a result, one side of the

sample appears to the feedback system as a ramp disturbance, while the other could closely

approximate a step disturbance. This allows examining the effect of the rate of disturbance

on the image and compensation effectiveness. The image is created from the closed loop

scanner input voltage responding to changes in sample topography (disturbance). The

linear model of the system as given in Equation (2.75) has zeros which makes the response

dependant on the disturbance rate in addition to amplitude. This explains why the amount

of creep at the top of the steps is different from that at the bottom.

Without compensation, there is creep of 30 nm (5.7% of step height), at the bottom of

the step over 0.26 s. With compensation this reduces to 4.5 nm (0.85 % of step height). At

the top, creep is 2.2nm(0.4 %) and 9.5nm(1.8%) over 0.22s with and without compensa-

tion, respectively. Figures 5-4 and 5-5, show the image at a very slow scan speed of 17.5 nm/s
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Figure 5-3: AFM image of 530 nm Silicon steps, with and without creep compensation,
2.8 lm/s.
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Figure 5-4: AFM image of 530nm Silicon steps, with creep compensation, 17.5 nm/s.

with and without creep compensation. Without compensation, creep of 14.1 nm (3.1%) over

35 s and 48.5 nm (10.1%) over 35 s at top and bottom, respectively. With compensation,

this reduces to 2.9 nm (0.57%) over 50 s and 13.7 nm (2.6 %) over 35 s. The compensation,

has dramatically reduced the effect of creep. However, as seen in Figure 4-28, there is as

much as 5 nm error between the model and experiment during the first second of the creep

response. As a result, Figure 5-4, peaks just after the right-side walls of the sample were

not well compensated for.
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Figure 5-5: AFM image of 530 nm Silicon steps, without creep compensation, 17.5 nm/s.
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Figure 5-6: AFM image of 1590 nm Silicon steps, with creep compensation, 10 ptm/s.

5.2.2 1590nm Steps

In Figure 5-6, an image of 1590 nm ± 1.5 nm steps is shown for a scan speed of 10 lm/s.

The measured height is 1495 nm due to nonline-rity of scanner displacement (6 % nonlin-

earity). Creep at the top and bottom of the steps, with compensation, is 6 (0.4%) and

8.3nm(0.56%) over 0.5s. At a much slower scan speed of 41.67nm/s, Figures 5-7 and

5-8, the images are shown with and without compensation. Un-compensated images show

creep of 135 nm (9 %) and 143 nm (9.6 %) at the top and bottom of the steps. Compensated

images show creep of 35nm (2.4%) and 41.6nm (2.8%). Note that the compensation did

not degrade because of the larger sample height. This again suggests that the assumption

of linearity in creep response is reasonable.
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Figure 5-7: AFM image of 1590 nm Silicon steps, with creep compensation, 41.67 nm/s.
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Figure 5-8: AFM image of 1590 nm Silicon steps, without creep compensation, 41.67 nm/s.
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5.2.3 Notes on Parameter Identification for the Creep Model

The creep model need to be validated before it can be used for compensation. Validation

data can be collected as described in Section 4.9. Alternatively, data could be collected

while the system is in contact and in feedback. However, the initial part of creep will

depend on the controller gains, and accurate data may not be easily obtained. In either

scenario, the duration for data collection should be limited based on instrument drift. It is

possible to automate the process of creep identification and compensation. The procedure

for Z-axis creep identification can be performed as follows, using a hard sample and a low-

stiffness cantilever. While the cantilever is far away from the sample, a frequency sweeping

voltage signal is sent to the x+ or x- electrodes, and YPSD is collected. The frequency of

the first resonance peak Wr,, may be identified from the data. Alternatively, the collected

data may be displayed to the user to interactively select the point of the first resonance

peak. Thereafter, the probe is brought into contact with the sample and then retracted

until the contact is broke. Using this data, estimate of the sensitivity between YPSD and

V, (DC gain), can be computed as the ratio of YPSD to V, data around the contact point.

In addition, the pull-off point Ypo, and the noise in YPSD while in-contact yn, can be found.

A ramp input with a saturated amplitude can be used to excite the scanner. The duration

of the ramp tr, should be chosen to be lower by a factor of 3 to 4 than the response time of
4

the scanner, e.g. tr > wr(Hz). The nominal contact point is chosen to aloow a good SNR,

while not loosing contact with the sample during the experiment. This can be accomplished

by selecting the set-point Ys as

SNR yn
Ys = Ypo + SNRy(5.1)expected % of creep (5.1)

where typical values for creep percentage is 10 to 30 %. The SNR can be chosen as desired,

typically > 5. The amplitude of the amplitude-saturated ramp is then given by

AVz = lys -ypol (5.2)
DCgain
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The probe is brought back into contact with the sample at the desired set-point and

maintained by feedback. After several minutes, the instrument drift should be estimated

from the control voltage signal. Based on that the time duration over which creep data is col-

lected can be decided on such that instrument drift is only a small fraction of scanner creep.

Based on the presented compensation results, a 4 th to 6th order model would be suffi-

cient. For the selected order, standard input-output identification techniques [96], could be

used to fit the data to the model. The resulting fit may require further fine tuning of the

parameters. An interactive window showing th experimental and simulated responses can

be displayed to the user, as in Figure 4-28. Poles and zeros can be displayed for the users as

tuning knobs. The regions of the response where each pole and zero contribute most to the

response could be labeled on the response window. The user can then fine tune the model

fit to make both the simulated and experimental data in agreement. This procedure needs

to be performed infrequently. Typically once or twice a year depending on how often the

AFM is used.

For X and Y, a different experiment is needed for collecting creep data. For the X-axis,

while the cantilever is in Air and the laser is aligned as in Figure 5-9, an amplitude-saturated

ramp signal is applied to both electrodes x+ and x-, and the PSD signal is collected. To

avoid possible nonlinearities in the PSD response, the input amplitude should be kept small.

The SNR would still be good, since the PSD would be able to detect scanner bending - 1A

RMS. Data for the Y-axis creep could be obtained similarly, however, the laser spot would

be aligned at the base of a rectangular cantilever as shown in Figure 5-9.

5.2.4 Open Loop vs. Closed Loop

We have shown one method to compensate for scanner creep when operated, as it is com-

monly, without measuring scanner displacement. An inverse filter can provide an inex-

pensive method of compensation. However, its performance will strongly depend on the

quality of creep data, the order of the filter, and fitting algorithm. Obtaining reliable creep

data for long time proved to be a difficult task especially for the common AFM user. In
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Figure 5-9: Locations for laser spot alignment for X and Y creep identification.

addition, the order of the model would grow if good short and long time compensation

is desired. Another compensation alternative is to sense the scanner displacement in the

Z-direction and use that signal to create the sample image. This would virtually remove

the effect of creep on the image. Many displacement sensing technologies, e.g. capacitive,

inductive, optical, can provide short term stability of 100 ppm/°C. For a 5 im scanner like

the one used in this study and a temperature change of 1C during experiments, a sensor

drift of 5 A is expected. These results are superior and more reliable than the results of the

filter. However, this option is far more expensive. In addition, most sensors do not have

large dynamic range at high bandwidth. As a result noise performance is worse than open

loop operation especially for small scans or when scanning samples with small features (few

nanometers).

5.3 Summary

In this chapter the LTI creep model of Equation (2.75) was inverted and used to compensate

for scanner creep in the Z direction. Experimental results showing AFM images of 530 and

1590 nm Silicon steps were presented to demonstrate the effectiveness of the compensation.

Moreover, methods for generating creep data for scanner displacement in the X Y and Z

directions were presented. Furthermore, identification procedure for model parameters was

discussed. Finally, open versus closed loop operation was discussed.
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Chapter 6

Automatic Selection of Scan and

Controller Parameters

6.1 Introduction

In this chapter, the models and results presented in the earlier chapters will be used to aid

in selecting scan and controller parameters. First, factors affecting scan parameter selection

will be discussed. Then, performance trade-offs and limitations of the AFM feedback system

will be identified and analyzed. Parameter selection will then follow for different control

strategies.

6.2 On Factors Affecting Scan Parameter Selection

Several scan parameters are available to be freely specified by the user. These parameters

include scan size, scan rate, image resolution (number of data points per scan line), force

set-point, and controller gains. Scan size and resolution depend on the sample being im-

aged, hence, their values should be completely decided on by the user. The objective is to

be able to automatically select scan rate (or speed), force set-point, and controller param-

eters in order to consistently achieve a good image. Characteristics of achieving a good

image include, that probe and sample remain in- contact during scanning, that the set-

point error is maintained small at all times, and the signal used to create the image is free
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from mode oscillations. In addition, high-frequency noise level in the image signal should

not be amplified by feedback. The latter requirement is less stringent in this application,

because feedback stability will dictate a considerable limit on the bandwidth. In order to

synthesize simple yet realistic rules for automatically selecting parameters, few simplifying

assumptions are required. First, the requirements on scan speed will be addressed followed

by a discussion on selection of the contact force set-point.

During scanning, the probe is dragged along the sample surface while in contact. As-

suming negligible probe-sample deformations, the vertical speed of the probe vz, is related

to its constant lateral scan speed Vacan, by the local slope given by tan(a) at the probe-

sample contact point (6 or " depending on scan direction). This can be seen from Figure

6-1, where vz is given by

= Vscan (6.1)
tan(a)

A lower bound on the slope is given using the included angle of the probe ap, as seen in

Figure 6-1. The assumption of neglecting contact deformations may be reasonable if the

controller manages to keep the set-point error small at all times. Alternatively, if the ratio

between contact to cantilever stiffnesses is high, the assumption might be reasonable. Can-

tilevers used for imaging have resonance frequencies much higher than those of the scanner

bending modes; 10 to 90 kHz compared to 300 Hz to 5 kHz for scanner resonances. Hence

the feedback bandwidth is typically much lower than the cantilever resonance frequency,

therefore neglecting the cantilever (probe) response is very reasonable, as implicitly implied

by Equation (6.1). In the case of multiple contact points between the sample and the probe,

vz will depend on the smaller of the slopes at the contact points. Also in reality the probe,

especially long sharp ones, could flex and cause the cantilever to twist, which has also been

neglected.

The choice of contact force is motivated by four main factors, namely, contact stresses,

sample deformation, lateral friction force between the probe and the sample, in addition to

maintaining probe-sample contact during scanning. Using the model of section 2.2.1, the

force required to theoretically achieve zero deformation between the probe and sample was
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Figure 6-1: Dependance of probe vertical speed on local slope at contact point.

computed. The ratio between the zero-deformation force and the pull-off force is plotted

versus A in Figure 6-2. It is seen that except for very hard contacts (A < 0.1), the force

ratio is about 0.89. This implies that in order to achieve zero sample deformation, the force

set-point would be such that the cantilever is pulling the probe away from the sample. This

condition demands that during scanning, the set-point error be maintained very small at all

times. Consequently, requiring a high-bandwidth typically beyond the system's mechanical

resonances, and hence is impractical. On the other hand, the set-point should be chosen to

minimize the friction force between the probe and the sample. In [741, experiments on mica

have shown that in the absence of wear, the average friction force is directly proportional

to contact area. The contact area is non-zero as long as the probe and sample remain in

contact. Hence, there is no set-point which will make the friction force zero. However, the

larger the contact force the greater the contact area, Figure 6-3, and the higher the friction

force will be. Accordingly, a small contact force is desired. The minimum contact area for

a stable contact will also depend on the cantilever stiffness.

Based on the above arguments, it is seen that the contact force should be selected as

small as possible. The maximum achievable feedback bandwidth should then be identified

for that particular set-point. The scan speed should be chosen to be smaller or equal to

the maximum value for which contact is maintained at all times during scanning. The

maximum feedback bandwidth will depend on the structure of the controller. Therefore,
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Figure 6-2: Ratio of zero-deformation force to pull-off force vs. A.
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Figure 6-3: Contact radius vs. contact force for different values of A.

the following sections will discuss different control strategies.

6.3 Trade-offs and Performance Limitations in AFM Feed-

back System

When the probe is brought into contact with the sample, the controller should achieve

closed loop stability at the desired contact force set-point for the given cantilever and

sample. Moreover, the controller should maintain the set-point error within a prescribed

tolerance for all times (i.e. transient and steady state), such that probe-sample contact is

not lost nor excessive force is applied to the sample. In addition, system uncertanties due

to cantilever and sample properties, variations in contact stiffness an dissipation, and pole-

_ . , •
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zero flipping, should all be compensated for. In addition, good dynamic response should be

achieved in despite of these uncertainties. From a practical point of view, it would desired

that controller have integral action to avoid needing excessively high-gain to maintain the

desired set-point in addition to be able to reject constant disturbances. Furthermore, the

controller should be based only on output measurement (PSD output). In addition, the

controller should compensate for resonances within the desired closed loop bandwidth.

Before addressing the question of how to automatically select key parameters, it is

essential first to identify expected performance trade-offs and limitations. We will begin by

analyzing the linear model of the fast dynamics ignoring creep and hysteresis. In this section,

the controller is assumed to be LTI. A block diagram of the feedback system is shown in

Figure 6-4, where do is output disturbance, n is sensor noise, Ge(s) is the controller transfer

function, and Gp(s) is the plant transfer function including driving amplifier, scanner, and

sensor filter dynamics. A typical frequency response of Gp is shown in Figure 6-5. As

discussed previously, the dynamics of the typical cantilevers are much faster than scanner

lateral dynamics and therefore are neglected. Accordingly, sample topography maybe be

modeled as an output disturbance do. The image is typically created from the input voltages

(uO, 'l", Uz). Therefore, the transfer functions between do and e (sensitivity function S(s)),

and between do and u (control sensitivity function S,,(s)), are the main interest and are

given by

e -1S () (6.2)do 1 + L (s)
71, -Gc

S,,(s) = - = - c (6.3)
do 1 + L(s)

L(s) = Gp(s)Gc(s)

Nominal feedback performance may therefore be specified in terms of Equations (6.2) and

(6.3).
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Figure 6-4: Block diagram of the AFM feedback system.
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Figure 6-5: Representative frequency response of Gp.
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6.3.1 Scanner Bending Modes

The results of Section 4.6 have demonstrated the coupling between the longitudinal and

bending dynamics. In addition, the bending modes were found to be observable from the

output signal. The frequency of the first bending mode is usually significantly lower than

the first longitudinal mode; 380 Hz and 4.6 KHz for the AFM in use. As a result, a sub-

stantial reduction in feedback bandwidth is expected as a result of this coupling. Moreover,

the poles and zeros of the bending modes will impose additional performance limitations,

as will be shown in Section 6.3.3.

Further, when the scanner is commanded to move up/down, there will be a slight bend-

ing motion that gets detected by the PSD. The scanner is typically calibrated by imaging a

standard of known height usually in the 100 nm range. During imaging, the PSD signal will

change due to the sample topography as well as actuator bending. Imagining a sample of a

different height will result in a slightly different calibration factor, even if the nonlinearity

of the scanner is not a concern. The change in calibration due to scanner bending would

typically be less than 1%.

6.3.2 Uncertainty

In Chapter 4, experiments and simulations have revealed several sources of uncertainties

including, changes in the resonance peak, contact stiffness and dissipation, transfer function

DC gain, and the pole-zero structure. These changes were found to be a strong function

of force set-point and disturbance amplitude. In addition, they may depend nonlinearly on

probe-sample contact properties. The large level variations and uncertainties would have a

strong impact on robust stability and performance. In order to demonstrate these points,

consider a reduced-order model consisting of the first bending mode and its zero pair as the

plant. As mentioned previously, the frequencies of the scanner resonances are not affected

by the probe sample interactions. Based on this simple model, uncertainty in DC gain,

modal damping, and pole-zero flipping can be modeled as an unstructured uncertainty as
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follows

b2 s2 + bis + bo b2 s2 + bis + bo b2s 2 + bis + bo
+

s 2 + als +ao S2 + s+ao s2 + ,1s + ao

Gp(s)= Gd(s) + W(s)A(s) (6.4)

1AI < 1 (6.5)

where ^ represents estimate values and- represents deviation from the true value. Robust

stability requires that

I WSL < 1 (6.6)

It is worth noting that this stability test is not conservative in the case of pole-zero flipping

since the phase may change by a total of 3600. Equation (6.6), implies that at frequencies

where uncertainties are large WI is large, ISul should be made small for robust stability.

Large variations and uncertainties would generally result in trading-off bandwidth (perfor-

mance) to guarantee robust stability. This point will be demonstrated using the experi-

mental frequency responses of Figures 4-17 and 4-19. The two responses were obtained for

the same disturbance input amplitude but for two different force set-points, namely, 36 and

113 nN. An integral controller Ge(s) - i is used and the resulting loop transfer function

is shown in Figure 6-6. The controller gain was chosen to achieve a crossover frequency of

93 Hz and 112 Hz for the 36 nN and 113 nN data, respectively.

Figure 6-7, shows the control sensitivity function S, for both force set-points. For the

smaller force, pole-zero flipping occurs resulting in a very large peak close to the frequency

of the bending mode. As a result, poor robustness properties and performance is expected;

despite a relatively low bandwidth compared to the open loop bending resonance at 380 Hz.

In addition, the sensitivity function, depicted in Figure 6-8, similarly shows a large peak.

It is worth mentioning that the effect of an output disturbance at the frequency of the peak

will be amplified more by S compared to S,, as seen by the magnitude of the peaks in their

response. Therefore, the expected oscillations will be large in the output signal,which may

be damaging to the probe and the sample. An image taken under these conditions would

show oscillation if the probe would be perturbed during scanning. This is demonstrated in

108



6.3. Trade-offs and Performance Limitations in AFM Feedback System

113 nN 36 nN
10

101
10 10
Frequency, [Hz]

IOUU

100
-2100

-300- 2 3"10 iFrequency, [Hz] 10

Figure 6-6: Loop transfer function frequency response of experimental data with integral

control.
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Figure 6-7: Control sensitivity function frequency response of experimental data with inte-

gral control.

10 100 10
Frequency, [Hz]

Figure 6-8: Sensitivity function frequency response of experimental data with integral con-
trol.
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Displacement, [pm]
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Figure 6-9: Oscillations due
1046 nm Silicon step.

to scanner bending mode in experimental AFM image of a

Figure 6-9, where an experimental AFM image of a 1046 nm step is shown. A small force

helps reduce probe-sample friction, sample deformation hence, image distortion. However,

it may dictate a small bandwidth in order to eliminate oscillations in the image, therefore,

trading off bandwidth (performance) for robustness.

6.3.3 Poles and Zeros of a Transfer Function

Fundamental limitations in feedback control systems have been studied since the early work

of Bode [98] and Horowitz [99]. A recent review on this topic is available in [97, 101]. It

is fairly known that adding zeros to a transfer function can increase overshoot in the step

response. The presence of zeros, more formally, may impose a fundamental limitation on

the achievable performance. The results of [101] will be used and later expanded on to show

that zeros impose a trade-off between response time and overshoot.

Consider a stable proper single-input single-output (SISO), transfer function G(s) with

at least one zero at s = -sz, sz > 0. Furthermore, assume that all the poles of G(s) have

real parts less than -sz. Then the unit step response of G(s) satisfies the following integral

constraint

e0 zte(t) dt -() (6.7)
0 Sz
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where e(t) is the output error defined as the difference between the output and its steady

state value due to a unit step response. Equation (6.7), results from the application of the

Laplace transform to the error signal E(s) = G(0) - G(s), and noting that G(sz) = 0. For

a complex zero-pair at sz = -az ± jwz, , wz, > 0, Equation (6.7), leads to

/" -uzG(0)Se auzt cos(wzt) e(t) dt = 2z+ z  (6.8)
J0, or + L)/c wzG(0)(69

S eazt sin(wzt) e(t) dt = z G() (6.9)

To demonstrate how these integrals constitute a constraint on performance, consider a plant

with a single real zero at s = -sz and assume that fort > t, e(t) P 0 and that szts < 1.

Furthermore, all the poles of G(s) have real parts that < -sz, then Equation (6.7) reduces

to / -G(0)
eszt e(t) dt + eszt e(t) dt = (6.10)

0 ft.s 8Z

J'ts e(t) dt f (6.11)

where it has been assumed that the contribution of the second integrand in Equation (6.10),

is negligible compared to that of the first integrand under the aforementioned assumptions.

If G(0) > 0, then the initial error is positive, and decays exponentially to zero. From Equa-

tion (6.11), it is seen that the integral of the error amounts to a negative value. Hence, the

error signal changes sign and the output signal will overshoot. A similar argument holds

for G(0) < 0. In addition, Equation (6.11) suggests that II e 1.> -G(O) hence a largeszts

overshoot would occur as the response time ts is made small compared to the frequency

of the zero sz. No rigorous reasoning was given for neglecting the contribution from the

second integrand in Equation (6.10). However, the argument was presented to demonstrate

the trade-off due to system zeros. It also demonstrates that if the system response was

allowed to be slow compared to the zeros, the trade-off is relaxed.

Furthermore, consider the step response of a system with a complex zero pair at 0.7+j0.7

and three real poles all at s = -A. Three cases are considered for A equal to 1, 2 and 3. The
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Figure 6-10: Step response of three transfer functions with a complex zero-pair
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Figure 6-11: Step response of three transfer functions with a single real pole demonstrating

trade-off.

response is shown in Figure 6-10, where it is seen that as the response time is made faster

compared to the frequency of the zeros, large overshoot is observed in the step response.

Another system was also consider which has a single real zero at s = -1 and again three

real poles all at s = -A. The case of A = 3 was simulated and compared to the previous

system with the two complex zeros. The result is depicted in Figure 6-11. It is seen that

trade-off exist, however, the amount of overshoot is smaller for the case with a single pole.

The number of zeros is found to have more effect on the amount of overshoot rather than

the complex or real nature of the zeros. Thus, a fundamental trade-off between response

time and overshoot exists due to transfer function zeros.

.. ... ....
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The structure of the feedback system imposes additional constraints. The values of S(s)

and the complementary sensitivity function T(s), are constrained at the frequencies of the

plant poles spi and zeros sz,. At these frequencies, S(s) and S,(s) are given by

S(syP) = 0

S(szi) = 1

(6.12)

(6.13)

(6.14)

(6.15)

SL(sp,) = 0

Su(szi) = Gc(sz,)

The response of the output error E(s), and the control signal U(s), to the reference signal

R(s) and the output disturbance Do(s) are governed by S(s) and S2 (s), respectively. By

applying the constraint of Equation (6.7), to S(s) and Su(s), the response of the output

error and the control signal to a unit step in reference or a negative unit step in output

disturbance are found to satisfy the following Equations

For an open loop pole at s = -sp

./ espt e(t) dt

/ espt [no - u(t)] dt

-S(0)
Sp

-SI, (0)
Sp

(6.16)

(6.17)

For an open loop zero at s = -sz

es t e(t) dt

./ eszt [uo - u(t)] dt

-[S(0) - 1]
Sz

-[S&(o) - Gc(sz)]
8z

where sp and sz could be real or complex, and uo is the steady state value of the control

signal to the unit step input. Following similar arguments to the ones presented earlier,

the open loop poles and zeros impose a trade-off between overshoot and response time at

(6.18)

(6.19)
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Figure 6-12: Simulated frequency response between input voltage Vz, and the scanner's

vertical displacement zp.

different degrees of severity.

For the AFM feedback system it is seen that the poles of the 1st bending mode will

appear as zeros for the sensitivity function S(s), and S,(s) provided that they are not can-

celed by zeros in the controller. Hence, for any LTI controller, extending the bandwidth

beyond the first mode will result in overshoot in tracking step-like samples in both output

and voltage (image signal), responses. Attempts to cancel the bending mode by controller

zeros might lead to poor robustness due to the high-level of uncertainty in the system and

may lead to closed loop instability. Moreover, even if exact cancellation was possible, the

bending mode poles will remain zeros of Su(s) but not S(s). Hence, the limitation would

remain for the input signal (image signal). Another option is to create the image from a

measurement of the scanner vertical displacement zp by fitting the AFM with a displace-

ment sensor. The transfer function between input voltage Vz and zP is shown in Figure

6-12. Hence, overshoot and oscillations in the control voltage with frequencies close to that

of the bending mode, will pass unfiltered, and zp response will have same characteristics as

the input voltage.

The open loop zeros of the AFM, as seen from Equation (6.18), will also impose a sim-

ilar trade-off on the output error response. If the frequencies of the slowest open loop pole

and zero are relatively close, then Equation (6.18) would yield a more stringent constraint
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compared to Equation (6.16). Moreover, open loop zeros impose an additional limitation

on the achievable performance in terms of the control signal response (image signal). Many

model-based control methodologies including fixed linear control, and adaptive control, will

attempt to cancel the plant dynamics and introduce favorable dynamics as higher perfor-

mance is demanded from the closed loop system. If the controller introduces poles to cancel

the open loop zeros, these controller poles will appear as poles of the control sensitivity

function S,(s). Consequently, these lightly damped poles will make the response oscillatory

having poor transients with response time not faster than that of the zeros. The material

presented in this section applies to single-degree of freedom feedback configuration. It is

possible to alleviate these trade-offs using a two-degree of freedom design. This approach

may permit shaping the response of a measured input (e.g. reference signal or a measured

disturbance), however, it would not be possible with unmeasured disturbances. Therefore,

the performance of the AFM feedback system will be constrained with the aforementioned

trade-offs.

6.4 Performance of PID and Higher Order LTI Controllers

As discussed in Section 6.3.3, substantial increase in the feedback bandwidth beyond the

first resonance will result in overshoot and poor time response. As had been shown from

experiments and simulations, the frequency response of the AFM is that of a relative degree

zero transfer function. This is a reasonable approximation over frequencies below to the

second resonance. In order to reduce the effect of high-frequency modes on feedback stability

and performance, the relative degree of the loop transfer function should be made one or

higher by the controller. Commercial AFM use a PID controller. Due to the aforementioned

high-frequency roll-off constraint, in addition to the constraints of Section 6.3.3, a PID

controller does not provide any advantage over a simple integral controller. To show this

consider the open loop experimental frequency response of Figure 4-18 of the 113 nrN set-

point. A PID controller with zeros at 400 Hz only 5% from the actual resonance was used.

In addition, a single pole was added to make the transfer function of the controller proper
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Figure 6-13: Loop transfer function frequency response with integral control and proper

PID controller.

for real-time implementation. The PID controller transfer function is given by

Ge(s) = b12s2 + b, 1s + bdo (6.20)
s(s + ao)

Figure 6-13, compares the frequency response of the loop transfer function for both integral

and the above proper PID controller. For the PID controller two cases are shown, one

with a pole at a lower frequency than the resonance frequency ( at 200 Hz), while in the

other case the pole frequency is higher (at 500 Hz). It is seen that in order to meet the

high-frequency roll-off constraint, the crossover frequency for both PID controllers is about

30 Hz, while for integral control it is 200 Hz. Hence, a PID would trade-off bandwidth in

order to meet the high-frequency modes constraint. In addition, a standard improper PID

controller would achieve an even smaller bandwidth.

The aforementioned limitations are true for any LTI controller. With higher-order

fixed controllers, only marginal increase in bandwidth may be obtained compared to an

I-controller, if the overshoot constraint is to be avoided. In addition, with the higher order

controller, the feedback loop may become more sensitive to the large system uncertainties.
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Figure 6-14: Loop transfer function frequency response with integral control.

6.5 Integral Controller

A simple integral controller can be used to stabilize the AFM feedback loop, provided that

the crossover frequency is chosen either lower than the first resonance frequency, or between

the first and second resonance frequencies where the phase is close to zero degrees, as seen

from Figure 6-14. Although having a crossover frequency between the first and the second

resonances may yield nominal closed loop stability, the resulting closed loop system will have

poor robustness properties because of the large resonance peak in the frequency response

and possible pole-zero flipping. This can be seen from Figures 6-15 and 6-17, for the two

possible pole-zero structures. In addition, the feedback system would have poor transient

performance due to oscillations in the step response, Figures 6-16 and 6-18. Accordingly, to

achieve robust stability, and oscillation-free response, one needs to sacrifices bandwidth by

selecting the crossover lower than the first resonance. Commonly, an integral action in the

controller is not used on its own but complemented with a proportional term to form a PI

controller. The reason behind this, is that for a system with a relative degree two, using an

integral controller will result in increasing the relative degree to become 3, which leads to

high-gain instability as seen in Figure 6-19 (a). However, the AFM model of Equation (6.4),

has a relative degree zero. Hence, as seen in Figure 6-19 (b), the AFM feedback system

with integral control would remain stable at high-gain, within the region where this model

is valid.
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Figure 6-15: Frequency response with integral control: (a) sensitivity function (do to YPSD),

(b) control sensitivity function (do to u), (red) high bandwidth (blue) low bandwidth.
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Figure 6-16: Unit step response in do with integral control: (a) sensitivity function (do to

YPSD), (b) control sensitivity function (do to u), (red) high bandwidth (blue) low bandwidth.
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Figure 6-17: Frequency response with integral control: (a) sensitivity function (do to YPSD),

(b) control sensitivity function (do to u), (red) high bandwidth (blue) low bandwidth.
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Figure 6-18: Unit step response in do with integral control: (left) sensitivity function (do

to YPsD), (right) control sensitivity function (do to u), (red) high bandwidth (blue) low

bandwidth.
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Figure 6-19: Root locus using an integral controller with (a) Gp(s) = + 8  fi , (b)
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Based on the previous discussion, the design of the AFM feedback system can performed

by imposing specifications on S,, since it represents the response of the signal the image

is created from. In addition, if an AFM is equipped with scanner vertical displacement

sensor, the response of zp will be very similar to Vz for the reason discussed earlier (Sec-

tion 6.3.3, and Figure 6-12). The performance specification on S, will be chosen such that

the bandwidth as defined by -3dB frequency be maximum such that the magnitude of

ISu(jw)l < 6/(DCgain) for w > wo, where 6 is design constant. The condition on ISu(jw)l

is to ensure that there are no large peaks in the frequency response. Closing the feedback

loop with the I-controller, the poles of the first mode will tend to the system zeros at high

gain. If there are peaks in the ISu(jw)l it would be at frequencies between the open loop

poles to and the zeros. Hence, wo should be set as the smaller of the resonance or zeros'

frequency. From experiments and simulations 6 < 0.4 seems to give good results.

As seen from Figure 6-7, limiting the bandwidth to be below the resonance by a factor

of 2 or 3 will not necessarily guarantee good performance, rather it will strongly depend

on the contact force set-point. Therefore, the feedback bandwidth may be improved for

a given set-point by estimating the frequency response function (FRF) to obtain dp(jw)

around that set-point. The procedure for estimating Gp(jw) starts as follows, while the

'~----
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cantilever is away from the sample and in Air, excite the scanner in bending along the axis

of the cantilever (X-axis in Figure 4-7) and collect the PSD signal. This can be done by for

example using a frequency sweeping input signal, the range of frequencies can be as low as

10 Hz and up to few kilohertz. From the data estimate resonance frequency and resonance

peak. These values may be stored and this step of the procedure need not be repeated before

each scan. It may be left as part of the AFM calibration procedure, typically performed

few times a year depending on how often the instrument is used.

Then the scanner moves the probe closer to the sample until it is in contact and zero

contact force is achieved. The probe is then retracted until contact is broken. The PSD

signal is collected. An estimate for DC gain (Vz to YPSD) around zero-force point, the can-

tilever deflection at pull-off, output noise at zero-force point both peak-to-peak and RMS

can all be estimated from the collected data.

The probe is to be brought into contact at the desired set-point. While in contact and

in open loop, a perturbation voltage signal Vz is sent to the scanner. The signal should be

rich enough to excite first resonance and dose not cause loss of contact. In addition, a good

signal-to-noise ratio should be obtained. For example, if a frequency sweep is used, then

the estimate of resonance peak in Air, in-contact DC gain, and pull-off can be used to select

the amplitude of the input voltage such that the probe remains in contact during this test.

The collected input output data can be used with standard spectral methods [96], to

compute the auto and cross corelation functions and use them to estimate the FRF. The

estimate of the DC gain obtained for the FRF may be corrected using the estimate from

the pull-off experiment. In addition, an estimate for the frequency of the zeros wzl, can

be found. The FRF estimate could be displayed to the user and the user may identify the

frequency of the zeros. The FRF can be used to create S,(jw).

The controller gain ki can be found as follows

1. Define the maximum -3dB bandwidth of Su(s) as the frequency of the bending
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mode wrl, as motivated by the constraints of Section 6.3.3. The gain to achieve this is
Wrl

ir DCgain'

2. Initialize two vectors k. and kn, where the former vector will contain tested values

of ki that satisfies the performance specification, and kin are used to store tested value of
-- Wrl n l 20 wrl

ki that does not. Initialize first entries e.g. kly = 20Dg and k -in =

3. Use an initial guess for ki (for example kin = ) and compute S,(jw) and

find W-3dB.

4. Check if IS(jw)I < for w > 0, where wo = min(wzl, wr), and 6 < 1.

5. If condition is satisfied store the used value of ki into the vector kiv and choose a

higher value of ki to repeat the test to check if performance objective will be met with the

new value of ki. The method of bisection could be used to find the new value of ki by taking

it as the average between the highest value in ki, and kit.

6. If condition in step 4 is not satisfied store the used value of ki into the vector kin-

Choose a lower value in a similar manner as step 5.

7. The procedure should be stopped when the error (either relative or absolute) between

the last two values of w-3dB satisfying the constraint are smaller than a prescribed value.

8. During the procedure it should be checked that the computed w-3dB that meet the

performance specification are not larger than Wrl.

The value of ki can then be used to find the maximum scan speed vcan such that

contact is maintained at all time. As had been previously discussed, while the probe is

in contact with the sample, the fastest output disturbance seen by the feedback system is
-ovscan Dain.As

approximated by a ramp with a slope of kramp = tCanDa) As a result the maximum
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output error due to this ramp input may be found as

G( b2 s2 + bis + bo G(s) -ki (6.21)
G() 82 + als + ao 8s

(2 + als + ao) (6.22)S(s) 8s(s2 + als + ao) + ki(b2 s 2 + b is + bo)

ess = slim krap S(s) = kramp a (6.23)e s--o s2m kibo
ys - Ypo = e - kramp _ Vscan DCgain (6.24)

kikzp/Vz tan(ap)kikzP/vi

Vslnmax_ - ypol tan(ap) ki kzý,Pv (6.25)Vscanm = DCgain

where, kz,/iv is the scanner linear displacement sensitivity in the Z direction i.e. calibration

factor. The value of ap is given available in specification sheets of commercial AFM can-

tilevers which could be entered by the user. If not, then a value for the sharpest available

cantilever may be used which is about 200.

The computed value for the maximum scan speed is such that probe-sample contact is

not lost, but does not guarantee a low set-point error. It is also possible to estimate the scan

speed needed to track the minimum sample feature that could be detected by the probe.

Hence, as seen in Figure 6-20, an estimate may be obtained by setting the scan speed such

that the probe moves laterally a distance of 4 Rp within the response time of the scanner

, hence, the maximum Vscanmax is given by
wri (Hz)'

Vscanmax = 4 Rpwri (Hz) (6.26)

Then for the selected set-point, the scan speed may be chosen between both limits. In

Sections 6.7 and 6.6, two methods will be presented to further improve image quality. It

is possible that if Vsacnma:, Vscanmin or some other minimum value set by the user that

set-point be increased by the ratio of V .. and the whole procedure is repeated to find
Vscan

the controller gain and scan speed range. It is also possible to test different set-points and

give speed and scan times for each case.
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Scan Direction

Probe

Figure 6-20: Schematic of probe sliding on sample.

In the above procedure, the initial choice for the set-point was the zero contact force

point. As discussed in Section 6.2, it is desired to use the smallest force that is practically

possible. The absolute minimum value for a set-point will be limited by the output signal

noise close to the pull-off point, in order for the contact not to be broken. In addition, if

the pull-off point is found to be too close to zero-force point, then a larger set-point may

be used as an initial guess. The initial guess should be at least a factor of 2 or 3 of the

peak-to-peak output signal noise.

If the perturbation signal is chosen appropriately, its effect on sample deformation or

damage should be minimal. Typically, the output noise is < 1 A, hence for a SNR of say 6

and a typical resonance peak of 2 to 3 the maximum displacement of the cantilever would

be < 1 nm typical, which is smaller than tracking error involved with PID controller used in

Commercial AFMs. In addition, because of the low stiffness of cantilevers used in contact-

mode operation (- 0.1 N/m), the resulting force will be small (- 1 nN). Other operating

modes like the intermittent-mode use stiff cantilevers driven at high frequencies (100 to

500 kHz) with typical oscillation amplitudes of 20 to 100 nm. The resulting tapping force

[14], will at be - 10s nN. Hence, the effect of the perturbation signal on the sample should

generally be acceptable.
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As seen from Chapter 4, the in-contact frequency response depends on input ampli-

tude and set-point. Therefore, the performance of the feedback system would depend on

how good the estimate of Gp is. In the above parameter selection procedure, the param-

eters were chosen such that the controller would be able to keep the output error small.

Hence, the system is expected to behave closer to the estimated dynamics. In addition,

possible errors in Gp would affect the performance and achievable bandwidth. However,

since small amplitudes were to be used in estimating Gp, the resulting estimate will typi-

cally underestimate modal damping compared to high amplitude signals. This may be seen

from results of Chapter 4, where dissipation is often seen to be amplitude dependant. As

a result, the procedure is expected to yield results that are on the conservative side. In

addition, uncertainties in estimating frequency response, pull-off force, and DC gain may

be compensated for by choosing a small value for 6. The advantages of this procedure

of automatically selecting scan and controller parameters, compared to the trial and er-

ror method usually employed will be demonstrated by experimental results which will be

shown shortly. Without this procedure a mere change in the set-point may result in closed

loop oscillation or instability, damage to sample. In addition, with trial and error, the

user would spend considerable time in tuning parameters and the resulting image may not

be close to the true sample. Furthermore, if the cantilever is changed or a new sample is

to be imaged the user would typically need to find new scan parameter using trial and error.

When choosing an input for perturbing the system, several factors have to be considered,

including, its spectrum, amplitude, SNR, spectral leakage, and time required for the exper-

iment. Since the range of frequencies of interest is known a priori, in addition to typical

noise floor of the instrument, the input signal can be generated off-line, while allowing some

of its characteristics (e.g. amplitude), to be scaled or modified based on the SNR of the

particular test according to the cantilever and sample, and environment. There are many

input signals that can be used, three types have been tested, namely, swept sine, chirp, and

bandwidth-limited white noise. Each has its advantages and disadvantages. Stepped sine

does not suffer from spectral leakage but requires a large time to complete the experiment

and may require a more elaborate software for running the experiment with the AFM hard-
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0
Time

Figure 6-21: Force vs. scanner displacement: identifying DC gain, pull-off point, and in-

contact output signal noise.

ware. Chirp signal, on the other hand, provides a smaller measurement time compared to

swept sine but may have low SNR at frequencies of the system zeros. In addition, spectral

lines other those of interest may appear due to nonlinear effects and they can not be sep-

arated. Finally, filtered white noise can be generated with a desired spectrum through a

proper filter. Drawbacks include the need for a frequency window to reduce spectral leak-

age and large number of averaging of results. The three signals were used and experiments

showed that with SNR > 6 good results were obtained. With random noise averaging of

20 to 30 yielded good consistent results. Experience from FFT-based signal analyzers can

be used. In addition, the fact that the structure of the system to be identified in known

a priori in the frequency range of interest should be used in designing the perturbation signal.

The proposed procedure was tested experimentally and the results are shown in Fig-

ures 6-21 to 6-23. The data in Figure 6-21 gives estimates for the DC gain of 0.3 V/V,

yp ; -0.42 V, noise of 5 mV peak-to-peak. A bandwidth-limited white noise of intensity

of 10-10 and a bandwidth of 20 kHz was used to perturb the system. Using Welch's aver-

aged periodogram method [96], an estimate of Gp was obtained giving Wz. - 420 Hz. These

estimates were used in the proposed controller gain selection procedure to yield ki = 4600

and W-3dB ; 115 Hz for a value of 6 = 0.4. The resulting estimates for the closed loop

sensitivity and control sensitivity functions are given in Figure 6-22. Based on Equations
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Figure 6-22: Estimate of IL(jw)|, IS(jw)1, and ISu(jw)I using Welch's averaged periodogram

method.

(6.26) and (6.25), the range for the scan speed is 9.2pm/s to 3071im/s. The wide range of

the possible scan speeds raises the question of what value to use. In Sections 6.6 and 6.7

two options will be given to address this question.

To compare the performance of the I-controller with the proposed tuning procedure

with the PID controller used with commercial AFMs, a set of Silicon steps were imaged

with a scan area of 10 x 10pm 2. The PID controller gains, scan rate, and force set-point

were set at the AFM manufacturer recommended values of 150 for the proportional and

integral gains, 50 for the derivative gain, 4 Hz for the scan rate and 1.7 muN for the force

set-point. The force set-point for the I-controller was set to zero and the scan rate to 2 Hz.

The resulting images are shown in Figure 6-23 (a) and (b) for the PID and I controller,

respectively. As clearly seen from the figures, the I-controller provides a more accurate

image of the steps while using a substantially smaller contact force and hence reducing the

probe-sample friction force. As a result, more details on the sample surface quality can be

observed while reducing the possibility of sample and probe damage and wear. One main

parameter governing how well the image closely resembles the true sample shape is the

ratio of feedback response time to the time over which sample topography changes. The

latter is governed by the scan speed or scan rate for a given scan size. A ratio smaller than

one would be desired. Since the default value for scan rate used with the PID controller is
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Figure 6-23: AFM images of Silicon steps: (a) PID controller with default parameter values,
(b) I-controller using proposed tuning method.

twice that used for the I-controller, using a smaller scan rate would improve the accuracy

of the image collected with the PID controller. However, as discussed in Section 6.4 the

I-controller can achieve a higher feedback bandwidth than the PID controller, therefore, a

much smaller scan rate compared to that used with the I-controller will be required with

the PID controller to resolve the sample shape accurately.

6.6 Feedforward Compensation

In the previous section, a procedure for automatically selecting scan and controller parame-

ters was presented. The procedure yielded a range of possible scan speeds. Choosing speeds

close to the minimum of the range would yield smaller set-point error, however would re-

quire longer scan time. Choosing the speed closer to the maximum allowable value would

yield the opposite result. In this section, it is suggested that an intermediate value be used.

In addition, a feedforward term is added to the controller to help reduce the set-point error.

The feedforward term is based on the control signal used in the first pass along the scan

line (the trace line). This voltage would be applied as the probe is dragged along the re-

traces line. A block diagram representation is shown in Figure 6-24. It is important to note

that because the feedforward term does not depend on a real-time signal during the retrace
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Figure 6-24: AFM feedback block digram with a feedforward term.

period, this term will not affect feedback stability. However, this method would be most

effective under two main conditions. The first is that the scan and controller parameters

values are selected such that the feedback system response is well behaved. This would be

expected by using the procedure of Section 6.5. For example, consider a condition where

the feedback response is oscillatory, and is used to image a step. As the probe climbs the

step along the trace line, oscillations are expected to occur at the top of the step. During

the retrace, the oscillations are expected to occur at the bottom of the step. Therefore, if

the trace signal was used as feedforward signal for the retrace line, large errors in the final

image may result. Hence, if scan and controller parameters are not selected to give a good

dynamics response and image is quite different than the sample, then the feedforward term

will not be effective. The second condition is that the distance in the slow scan direction

between the trace and retrace lines is small compared to the probe seize, e.g. < 2Rp (typ-

ically Rp - 20 nm). This is typically not a problem especially with new AFM where the

maximum number of scan lines is 1000 to 4000, over a scan range of 40 to 100 im.

6.7 Variable Scan Speed Scanning

The trade-off between scan speed and scan time motivates devising a procedure for varying

the scan speed as needed. The use of this procedure is not necessarily limited to I-control.

Conventionally, a triangular wave is applied to the so-called fast scan direction, while a

slow ramp signal is applied to the so-called slow scan direction. The resulting probe trace
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along the sample surface is depicted in Figure 6-25. The scan speed is therefore, given by

the frequency of the triangular wave (scan rate), and the scan size. The new proposed scan

voltage signals are shown in Figure 6-26, along with the resulting probe trajectory. While

the input to the slow scan direction is held constant, the first half of a triangular wave is

applied to move the probe along the trace line. The scan speed used can be selected as an

intermediate value of the scan range found from the procedure of Section 6.5 for I-control,

or an initial value specified by the user. At the end of the trace line, the probe is main-

tained at that position for a very short time period At 1 - one or two sampling periods (10

to 20 ~ps, typically). During this brief period, a new scan speed is computed based on the

output error signal from the trace line. The speed could be either increased or decreased

accordingly. The slope of the retrace line (return line) would be based on this new scan

speed. At the end of the retrace line, the probe is held for another period of At 2 , and the

scanner is commanded to move in the slow scan direction a distance equal to the scan size

divided by the number of scan lines (image resolution), as specified by the user. The choice

of At 2 should be based on the bending resonance frequency which has been identified as

in Section 6.5, e.g. t 2 w> ) The procedure is repeated. The scan speed used forin Sctio 6., e~. A2 > wj(Hz)'

the following trace line could be either as the one of the first trace line or as the one of

the last retrace line. It can be seen that with this scan voltages the probe will trace the

same line twice in comparison to the conventional scan trajectory, hence, using the proposed

feedforward compensation of Section 6.6 could be combined with the variable scan speed

for further improvement is image accuracy and reduced transient contact and friction forces.

The increase in scan time due to the new trajectory compared to the conventional one

will depend on the scan speeds of each line. However if the scan speed was initially selected

appropriately such than no change in the speed was needed, then the relative increase in

scan time would be given by

- image resolution (6.27)tco ny = (6.27)
scan rate

tnew = (image resolution) At, + (image resolution - 1) At2 +

image resolution (6.28)
scan rate
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Figure 6-25: Conventional scan voltage signals and resulting probe trace.

con = 1 + (scan rate) (At 1 + At 2 ) (6.29)
tnew

The increase in scan time, under these conditions, would be < 2% of a typical scan time of

3 min utes. Moreover, the variable scan speed may yield reduced scan time in addition to

improved image details. However, due to scanner creep, the voltage applied to the slow scan

speed may result in increased creep response in the slow scan direction due to the ladder-like

shape of the voltage signal compared to the conventional ramp signal. Therefore, unless

creep compensation is employed, this procedure may not be appropriate. However, if creep

compensation is employed for the lateral directions, then the resulting creep is expected

to yield good results. This scan trajectory would be ideal if closed loop is employed for

the lateral scan direction using additional scanner displacement sensors. One may imagine

varying the scan speed along the same line but the complexity in generating reference scan

trajectories that would not result in exciting the scanner lateral dynamics would probably

over weigh any expected reduction in scan time.

Different criteria may possibly be used to modify the trace-line scan speed based on the

retrace-line data. One possible algorithm is as follows

While in-contact and just before scanning starts, collect the output error data and com-

pute the in-contact RMS (CRMus(O)), peak-to-peak output noise nepp, in addition to an

estimate of the DC gain. Using the trace line data, find the maximum error emax, the
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Figure 6-26: New proposed scan voltage signals and resulting probe trace.

corresponding input voltage Vz(emax), and the minimum voltage along the line VZmin. The

latter value represents the reference point for sample height along that scan line.

Check if Iemax-eRMs(O)I is within the output noise level, e.g. check if Iemax-eRMs(O)| <

2

If the conditions satisfied then the maximum set-point error is small and no change

in the scan speed is needed. If the condition is not satisfied then the scan speed can be

changed based on the percentage of output error relative to measured sample height at the

point of maximum output error. The new scan speed can be found by doing the following

check if IVz(emax) - Vzmin I x DCgainv. < nepp,, i.e. is the point of maximum error has

if not then use Vcanc = )31DCgain IVz(emax)-Vz mi scantrc where 1 > 0 and is the per-lemax-eRMs(O) Vscant

centage of acceptable dynamic error, e.g. < 10%.

if yes then the new scan speed Vscanrtc can be given in terms of the trace speed VScantrc as

Vscanrtc =" 2 lem•- s() scantrc i.e. dynamic error compared to the output noise, 31 > 1.Vsant Vsatc i2e. error output
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6.8 Robust Adaptive Output Control

It has been shown that in-contact AFM dynamics can vary dramatically depending on the

choice of scan parameters, and sample and cantilever properties. The large level of uncer-

tainties in the AFM dynamics invites more advanced control methodologies to be used in

order to compensate for uncertainties and improve performance. The careful modeling and

analysis of the AFM dynamics presented in the previous chapters provides valuable infor-

mation that should be used by the controller to maximize possible gains in performance.

The aforementioned work has identified the correct model structure in addition to various

sources of uncertainties. Commonly in control, there are two methods for handling uncer-

tainties. If the uncertainty can be parameterized appropriately, adaptation may be used to

compensate for these parametric uncertainties. When the uncertainties are bounded but

their structure is unknown or too complicated to model, robust control can be used to han-

dle these types of uncertainties and disturbances. For the AFM, both types of uncertainties

are present and a robust adaptive controller will be designed to handle them.

The controller to be designed is to be based only on output measurement, YPSD and have

both adaptive and robust parts to compensate for parametric and time-varying bounded

uncertainties and disturbances. Moreover, it is desired that the controller have integration

action in order to maintain the desired set-point and reject constant disturbances without

needing excessively high gain. A mechanism for avoiding integrator anti-wind up is also

desired for a practical implementation. In addition, the dynamic order of the controller

should be kept as low as possible, and have a minimum number of design parameters. A

systematic method for choosing these design parameters is desired and parameters should

ultimately be related to scan parameters' selection. Furthermore, some degree of tuning for

transient performance would be advantageous.

The field of adaptive control is very rich with various control algorithms. These algo-

rithms vary in their complexity, and the class of systems and uncertainties they can be

applied to. However, adaptive control is hardly used in practice. This is mainly due to

the complexity and high-order of typical adaptive controllers. In addition, no systematic
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procedures are available for to relating controller parameters to feedback performance. The

proposed controller which will be presented, is based on several main results in the lit-

erature. The references will be appropriately cited in the presentation. However, several

simplifications were made to ensure a practically viable controller, while achieving improved

performance over a fixed controller.

In the absence of a rigid body mode (double integrator in a transfer function model),

mechanical structures in many cases can be modeled as zero relative degree transfer function,

over the frequency range of interest. As a result, the derivative of the physical control signal

would be required in order to synthesize the adaptive control signal. This difficulty was

circumvented by augmenting a ficticious first order low-pass filter with the plant model.

The resulting design model will have a relative degree of one. A ficticious control signal

1, is then synthesized and passed through the filter to obtain the physical control signal

V. Alternatively, an integrator could have been augmented with the plant model. The

ficticious control signal would then be required to stabilize the integrator in addition to

the original plant model. However, the filter dynamics are known, which would simplify

selecting controller parameters. In addition, the filter bandwidth can be selected to reduce

the effect of unmodeled dynamics and sensor noise by filtering high-frequency components

from the control signal. As discussed previously, the sample topography may be modeled as

an output disturbance. In addition, disturbance at the plant input may arise from actuator

nonlinearities and hysteresis. Therefore, both types of disturbances are included in the

model. The plant model considered for controller design is therefore, given as

bn s + bn- 1sn- 1 + ... + bo  p
y = n - s n- + . . . a o V, V = (6.30)

s'n + an-s- 1 +... -+aGo s+ p
_ _ _ __ n-1_ 8 q+1 l __ 8 q + _l,_+r

b'ns n + bnl-18 ... + bNo rqj rq "'" r+qod
Y + do + di (6.31),n+1 + a+_asn +o a sn+1 + a/ do

where, q < n - 1. Equation (6.31), can be written is state space form as,

, 1 X2 - a/. 1 + bnu

2 3 - an-2 1 + bn-1 •_

134



6.8. Robust Adaptive Output Control 135

(6.32)

Xn-q Xn-q+1 - aqx1 + b +n + rqdj
J

(6.33)

4n = -aoxl + b'ou, + rodi
i

y = x +do

k = Ax - a'xi + b'u+ rjdij (6.34)
J

* = Ax - a' y + b'u + a' do + rj dij (6.35)

0 ...
A = . (6.36)

In-1

where do is output disturbance, dij is the jth input disturbance, rj is vector of known

constant parameters, and a' and b' are vectors of unknown constant parameters. The main

assumptions involved are

A.1 The plant is minimum phase, i.e. b'(s) is Hurwitz.

A.2 The sign of the high-frequency gain, sgn(b'n) is known and is positive.

A.3 Plant order n is known and plant relative degree is 1, else a first order filter is

augmented with the plant model.

A.4 Bounds on the uncertain parameters and disturbances are known.

Since only output measurements are available, an observer needs to be designed to

estimate the unmeasured states. The so-called K-filters [63], will be used for this task.

Equation (6.35), can be rewritten as

5 = Ax + F(y, ,)T E) 9+ a' do + rj'dij (6.37)

F(y, u)T = [Im+U, -Iny] (6.38)

E = [b', a']T (6.39)



6.8. Robust Adaptive Output Control

Now consider an observer of the form

x = Ax + F(y, ,)TE + k(y - eTT) (6.40)

where el is the standard basis vector in R n + 1l, and k = [kl, ... , kn]T such that Ao =

A - kelT is Hurwitz, which implies that 3P Ao + AoTP = -I, P = pT > 0. However,

Equation (6.40) involves the unknown parameter vector E, therefore, can not be directly

used. Furthermore, consider the filters ( and f given by

= Ao + ky (6.41)

IT = AonT + F(y, u)T (6.42)

The state estimation is given by R = ( + GTE. This may be seen by considering

S= + ToE (6.43)

x = I+ To (6.44)

x = Ao0 + ky + AoITO + F(y, u)T (6.45)

= (A - kejT)( + •8T) +ky + F(y,Iu,)T8 (6.46)

= AR + F(y, u)TE + k(y - eITR) (6.47)

The dynamics of estimation error e = x - x are governed by

1 = Ao0e + (a' -k)do + rjdi (6.48)j i

Hence, e are exponentially stable in the absence of disturbances. With assumption of

bounded disturbances, the disturbed dynamics of e are bounded but the bound is unknown.
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Consider the columns of T = [n, -. , v, E]. The first n + 1 columns are given by

i = Aovj +en-j , j = 0,...,n (6.49)

Also note that, AoJen = en-jj = 0,..., n - 1. Therefore, the following filter can be used

in addition to a single algebraic equation to evaluate vj,

A = AoA + en u (6.50)

vj = AoJA, j= 0,...,n (6.51)

Similarly, E can be obtained from as follows

il= A 0 7o + en y (6.52)

E = -[Aon-0 1 ,...,Ao, r]1 (6.53)

Using the identity, Aonen = -k, leads to ( = -Aon.

Now that the observer filters are available, the controller design may be carried out.

First define the output error z1 = y - Ys. The output dynamics are given by

i1 = X2 - an 1 y + b u + r di, + d + a'n- 1 do (6.54)

J

X = +QTo +E (6.55)

X2 = 2 T E 2 (6.56)

i1 = (2 + T 2 +n-ly + b u + r di j do+an-1do (6.57)

1 = 62 TA+ ex, + b'n u + D (6.58)

where AT = Q• + en+ 2 Ty, and D = j rd +a 1 d. Define, = - (, =
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-= - •. Now consider the choice of control law u given by

U = (ýai + a2)

and

b' gal = b' gal + al - a, = al - Lb'nai

Substituting the above control law into Equation (6.58), results in

i• = 2 T A + i2+ bn ( al + a2) + D

Zl = 2 TA + -2+ al - b' al + b'na2 + D

Choosing a, as

al = -62-- _ TA

Zl = T A + ex2 - b' •azI + b'a2 + D

In order to proof closed loop

function candidate V1 given by

stability with the above control law consider the Lyapunov

Vl = 1

V1 = z[T A + e ~- b'n al + b'•na2 + D]

(6.65)

(6.66)

Before completing the stability analysis the choice of adaptation law and robust control

functions need to be addressed. For an adaptation law, parameter projection is used. There

are several options [100] including continuous and discontinuous projection. The adaptation

laws have to ensure the following two properties, namely

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)
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OT[ziA - r-' 1 ] < 0

E(t) H

(6.67)

(6.68)

where 1 = FT is a constant gain matrix. Equation (6.67) ensures that the adaptation law

will render the Lyapunov function non-increasing. The following update law is used

6 = Proj(O, FrzA)

S - -sgn,(b'n)7^>zlal

0 ei < Oimiand'/iizlFi < 0

Proj()i{, Fi) = 0 O)i > TihzaandyiizlFi > 0
yjiiziF otherwise

(6.69)

(6.70)

(6.71)

where yi are constants.

Now a2 could be chosen to ensure that V1 < 0. a2 is chosen to compensate for dis-

turbances D, uncertain parameter estimation error, and state estimation error ,20o. The

following form is chosen for a2

a 2 = -kz /bnminzi + a2 1 + a 2 2 , kz, > 0 (6.72)

Since bounds on uncertain parameters and disturbances are known we can choose a 21 to

satisfy the following two conditions

zi(bna 2 1 + 6TA - b'n 9a + D) < 1 (6.73)

ZlCa21 < 0 (6.74)

where el > 0 is a design parameter. Equation (6.73) is used to bound the disturbances and

uncertainties by a known function to enable controlling transient performance at all times.

Equation (6.74) is used to ensure that when adaptation is on a 2 1 is dissipative in nature so
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VI will remain negative semidefinite. To handle cE2, a22 is used and is chosen to satisfy the

following condition

zi(b' a22 + Ex,) •< (2C- (6.75)

zIa22 < 0 (6.76)

where 62 > 0 is a design parameter, and eZ2 is bounded (Equation (6.48)) , and assumption

A.4), but unknown.

The stability analysis can know be completed. With the proper choice of a21 and a22,

Equation (6.66) reduces to

V1 < -kzlZ2 + 61 + F2 E2  (6.77)-- X2

V1  < -2k~zl VI + 1 + e2 E (6.78)

Vl(t) < Vl(0) e-2kzlt+ C -2kz (t -T) ((: 1  2 2 (t))dT (6.79)
•0

Vi(t) _ Vi(0) e - 2 kz l t + 2 1- e 2kzlt(• 1 2 'X l 1a) (6.80)

Hence, Z = y-Ys is bounded. From Equation (6.48) e is bounded and also e is also bounded

as a result of the adaptation law of Equations. (6.69) and (6.70). The boundedness of zl

leads to boundedness of il, Equation (6.52). To prove the boundedness of A consider the

transfer function representation of Equation (6.50) given by

Si - 1 + kl S i - 2 +... + ki-1
Ai(s) = s- +, 1+ i= 1,...,n+1 (6.81)s1+1 + kg sn + . .. + kn+1

b' (s)Y = n (6.82)

Ai (s) = (s i - 1 + k1s i-2 + ... + ki- 1 ) a'(s) (6.83)(sA l
i

- c ss) . + = l  ' ( ) y , i = 1,...,n+t1 (6.83)
( n+1 + kisn + . .. + kn+1) b'(s)'

Based on assumption A.1, Ai, i = 2,..., n + 1 is also bounded. By referring to Equation

(6.55) it is seen that the states x are also bounded. Finally, u is also bounded. Conse-
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quently, the closed loop system is stable and all signals are bounded.

Now assume that the disturbances D are zero, and consider the following Lyapunov

function candidate V, and its time derivative both given as

1 2 1 n 1 2 + 1O -16) +1- 2j '
V = 2z b Z b' 2  Ty- 2 P (6.84)

2 27 0  T 2

V = Z [A + ez2 - b'n oa1 + ba 2]

|bnj O -1 T99 - ( -F - e2eTe (6.85)

Substituting Equation (6.72) into Equation (6.85) leads to

1.
V • -kzl T [zIA - F-1 '] + b b[-zlal - -- ] + b'zi•2 + Z[ z2 + b'a22

- T2ETE (6.86)

The second and third terms on the right hand side of inequality (6.86) < 0 using Equation

(6.67) and (6.70), respectively. The fourth term < 0 from Equation (6.74) while the fifth

term is •< 2E2 from Equation (6.75). Hence, Equation (6.86) reduces to

V -kz 2 - 22 2 2 (6.87)
i=1,3,4,...,n

1 <-kz 2 (6.88)

Therefore, zI is bounded. By inspecting Equation (6.64), zj is also bounded. Hence, by

Barbalat's lemma, z1 -+ 0 as t -- oo, achieving asymptotic regulation.

It is worth nothing that Assumption A.2 can be relaxed using results of [64].

Possible choices for the robust function c21 are available in [65, 66], and are presented

below

g > |16A - b' gaj + DI (6.89)
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-g 0.2785 gz1g2 1  tanh( .2785 ) (6.90)
blnmin ,l

where

0 < Ix - xtanh(x) < 0.2785c, c > 0, x E R (6.91)

Alternatively, a 12 may be chosen as

g > ~ TA - b' •az1 + D12  (6.92)

21 = g Zl (6.93)
4 bn/ F1

Similarly, a 22 can be chosen to satisfy Equations (6.75) and (6.76), using the following

form

z1
a 2 2  =I (6.94)

4 bnmin F2

6.9 Robust Adaptive Output Control Applied to AFM

The dynamic order of the adaptive controller will depend on the number of uncertain pa-

rameters and the number of states of the model. The latter governs the order of observer

dynamics needed to estimate the unmeasured sates since only output measurement is uti-

lized. Therefore, in order to minimize the dynamic order of the controller a simple low-order

model is desired. The model chosen consists of the scanner bending pole-zero pair as in

Equation (6.4). In addition, a first order filter is augmented with the model. To include

integration action in the controller, a constant input disturbance di is considered. The

design model is therefore given by

X1 = 2 - (a p).xI -+pb 2 U+ di

X2 = 3 - (a pal)1 +pblu
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T3 = -p aoxl + p bou

y = xl +do

c = Ax- a'.x1 + b'u + r (6.95)

a' = [al +p,ao+pal, pao] , b'= p[b2 ,bi ,bo] , r= [di ,0,0]T

The results of section 6.8, can be applied directly to obtain the controller. The update

law for di is di = -d z, =z - di = d .[ zldt, which provide the desired integration action of

the output error as part of the control signal.

6.9.1 Selection of Controller Parameters

Estimates on bounds on the unknown parameters may be obtained as follows. The scanner

is excited in bending and the PSD signal is collected. The first resonance frequency wr, may

be identified automatically by software. Alternatively, the collected data may be graphically

presented to the user. The user then identifies the first resonance by clicking on the first

peak in the amplitude data. The value of wri can be stored for future usage. This procedure

could be done during calibration of the AFM and need not be repeated before each scan

experiment. Therefore, ao = wo 1, and al = 2Cwrl. Damping ratio (, of the scanner bending

is expected to be low as in typical mechanical structures. However, an accurate estimate

is not needed, and an overestimate of the rage of damping will not affect performance so

much. Hence, ( can be let to vary from a very small number say 0.1% up to say .2. The

probe is then brought into contact with the sample and then retracted until the contact

is broken. using this data an estimate of the cantilever deflection at the pull-off point can

be obtained. The estimate may be reduced by a factor of safety to account for variations

in the sample properties, hence different pull-off forces at different points on the sample

surface. In addition, an estimate of the sensitivity of Vz to PSD signal can be obtained

from probe retraction data. The sensitivity is the DC gain of the transfer function GP(0).

Due to possible variations in the DC gain based on set-point and sample properties the

range for the DC gain may be increased to vary for example within an order of magnitude.

Therefore, bo = Gp(0) ao. The frequency of the modal zeros (wz) has been shown to vary

around the resonance frequency. Hence, b2 = b. Finally, bl = 2(zwzb2, where again 4z. 0.)
Z ,
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made to vary as for (.

Bounds on sample topography disturbance or equivalently, do may be obtained by con-

sidering that while in-contact, the cantilever deflection would take the minimum value of

pull-off force and would vary during the short response time of the feedback system (- 4 wb)

with a maximum rate of Ido = t'). Hence, bounds on do E [ypo, ys + V 4/wb]. Addi-

tional margins can be included to account for variations in the pull-off point. The constant

input disturbance di was introduced to realize an integral action in the controller. For

practical implementation, a mechanism for integrator anti-wind up need to be included.

The mechanism could be devised by appropriately choosing the range of the unknown dis-

turbance di. The integral part of the control signal is u1i = d d= d 'fzldt, where,

E [1/b 2 ma..., 1/b 2 m..]. Hence, u, in/b 2m ax<_ di > u lmax/b2min, where 7 acts as an integral

gain. Therefore, the output of the integrator is saturated at the minimum and maximum

values of the control signal, umi, and umax, respectively.

Th observer gain vector k, is chosen to place the eigenvalues of the observer filters at the

desired locations. In general the observer eigenvalues should be faster than the first bending

resonance. However, excessive observer bandwidth would result in amplifying measurement

noise, and may increase the effect of unmodeled dynamics on the feedback system. The

first order filter cut off frequency p should also be chosen similarly. It is interesting to note

that the filter p can help reduce exciting unmodeled dynamics of the AFM and reduce the

effect of high-frequency measurement noise. Therefore, the filter is practically valuable, in

addition it is simple and intuitive to tune. The gain kz1 dictates the decay rate of transient

response with a time constant of -. So it should be chosen about the order of the first2k1

resonance response time.

The values of :1 and 62, may be chosen small to reduce the final set-point error, at least

theoretically. Choosing small values would increase the feedback bandwidth, hence, may

violate the validity of the assumed design model. As a result, unmodeled dynamics may

cause feedback instability. Further work is needed to understand how values of F1 and F2,

may be chosen in the presence of unmodeled dynamics. In the simulation study which will
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be presented shortly, eF = 3 and F2 = kz 1, were used.

The scan speed may be used to control the frequency content of sample topography

disturbance as seen by the AFM feedback system. The adaptive controller contains an

inverse of the plant dynamics which is tuned in real time to compensate for parametric

uncertainties. Thus, if the disturbance contains frequencies close to the plant complex zeros,

the response of the control signal is expected to be oscillatory, as it strives to maintain the

output error small. Consequently, in contrast to I-control, the scan speed should be selected

first, and then the contact force set-point may be chosen accordingly. The minimum sample

features that the probe can detect laterally depends on the probe radius of curvature. There

maybe different definitions for the size of the minimum detectable feature. However, from

a dynamics point of view, it is desired that the probe track the finest sample features it

can detect without introducing oscillations in the control signal. Hence, as seen in Figure

6-20, the scan speed may be estimated by setting the scan speed such that the probe moves

laterally a distance of 4 Rp within the response time of the scanner , hence, the

maximum VscanmaT is given by

Vscanmax = 4Rpw (Hz) (6.96)

As has been discussed previously, within the response time 1an estimate of theWrj (Hz), netmaeo h

maximum distance the cantilever can deflect from the set-point AyPSD, under the sharpest

feature is given by

AyPSDI = Ys - ypo = Vscan DCgain (6.97)
Wr1 tan(ap) kzp/v(

where DC gain is the estimate of sensitivity between Vz and YPSD, and kzp/v is the small

amplitude linear calibration factor between Vz and the scanner vertical displacement zp.

Hence, the minimum force set-point can be estimated. The actual set-point may be cho-

sen slightly larger to allow for variations in the pull-off force over the sample surface and

approximations made in the above equations.
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6.9.2 Simulation Results

In order to test the performance of the RAOC controller, simulations were performed. The

model used for simulations was far more realistic than the low-order design model. The

model is 10th order with a relative degree of 6, in contrast to the 2nd order zero relative

degree design model. The simulation model retained the first two bending modes at 380

and 3.4 kHz, and the associated zeros at 430 Hz and 3.8 kHz. In addition, a single mode

for the cantilever was also included. The phase lag introduced by the dynamics of the drive

amplifier was accounted for using two 2nd order filters with resonance frequency of 8 kHz

and damping ratio of 0.707. This matches the measured frequency response of the amplifier

within the frequency range of interest. Finally, a bandwidth-limited white noise source was

used as a input to the cantilever. This simulates the effect of thermal and measurement

noise on the cantilever output. The resulting cantilever noise oscillations were 2A peak-to-

peak at a bandwidth of 10 kHz. These values were chosen to reflect typical specifications

of commercial AFMs. The sample shape used in the simulation is that of the calibration

steps. The sample contains both high-aspect ratio features in addition to fine features,

which would allow testing the controller performance for different types of samples. Other

parameter values used in the simulations are given in Appendix A.

The scanning simulations were performed using both the RAOC and an I-controller.

The gain of the I-controller was maximized until oscillations were observed in the image,

which leads to no conservatism is selecting the integral gain. This allows a fair comparison

between both controllers. Figure 6-27, shows the retrace image at scan speed of 30 Lm/s

for both controllers. The results show that both images portray the general shape correctly,

however, some of the details are lost with the I-controller. It is seen that the sharpness of

the edges is not tracked well. Hence, for quantitative measurements they may result is large

errors. In Figure 6-27, the slope of the right side of the step-like sample is measured with

a 10.4 % error using the I-controller. The set-point error is shown in Figure 6-28, where

it is seen that a substantial reduction in output error (4.7 A), is achieved with the RAOC

compared to I-controller (329 A), a reduction by a factor of 70 in the maximum dynamic

error. In addition, Figure 6-29, shows the set-point error for both the trace and retrace
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lines. It can be seen that in the retrace (second pass) the tracking error is substantially

improved compared to the trace image as a result of adaptation; 2.3 A versus 24 A. Hence,

with the adaptive controller it is advantageous to create the image from the retrace lines.

Figure 6-30, show the simulated image at 70 um/s. The increased scan speed causes the

topography disturbance to contain higher frequency components. This is especially true

around areas where a rapid change in topography occurs. Figures 6-31 and 6-32, show a

zoomed view at the top left and bottom right corners of the step, respectively. It can be seen

that for the RAOC, artifacts are generated due to oscillations in the control signal as the

controller tries to maintain a small set-point error. Maximum amplitude of oscillations of 4

and 16 A, at the top left and bottom right corners of the step. The numbers show that the

faster disturbance has caused larger oscillation amplitudes. The slope at the left is 22.7% in

error for the I-controller compared to 2.6 % for the RAOC. Hence, for quantitative data the

RAOC would provide a substantial improvement in data accuracy compared to I or PID

control. The set-point error is shown in Figure 6-33. The maximum error of 11.7 A for the

RAOC in contrast to 574.7 A for the I-controller. Hence, substantial reduction in maximum

contact force, as a result, a smaller contact force set-point may be selected compared to I

or PID control for the same scan speed. Figure 6-34, shows the so-called convolution errors

that result in the image due to the finite size of the probe. There are several procedures for

deconvolving the image in order to recover an estimate of the true sample shape. Convo-

lution is especially important for sample features with characteristic dimension similar to

that of the probe or having a high-aspect ratio. The quantitative errors produced above by

the I-controller would translate to more error and uncertainties in the deconvolved sample

shape estimate. The above results also demonstrate that the noise level in the image is low.

This is a result of choosing of a reasonable bandwidth of 1 kHz for the observer and the

first order filter dynamics.

It is worth noting that the effect of creep compensation filter on stability and perfor-

mance of RAOC is expected to be minor. The error in approximating creep by a low-order

zero relative degree transfer function can be viewed as an input disturbance di. This dis-
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Figure 6-27: Imgae of a step scanned at 30 m/s.

Time, [s]

Figure 6-28: Set-point Error in A for image of a step scanned at 30 im/s.
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Figure 6-29: Set-point Error in A for image of a step scanned at 30 jm/s.
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Figure 6-30: Image of a step scanned at 70 pim/s.
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Figure 6-31: Zoom on top left of step image scanned at 70 ~m/s.
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Figure 6-32: Zoom on bottom right of step image scanned at 70 Lm/s.
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Figure 6-33: Set-point Error in A for step image scanned at 70 tm/s.

Convolution for different probes

Figure 6-34: AFM image convolution due to finite size of the probe.
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6.10. Summary

turbance will be within the feedback bandwidth. Hence, the RAOC can easily compensate

for this modeling error.

6.10 Summary

In this chapter, procedures for selecting scan and controller parameters were presented.

First, factors affecting scan parameter selection were discussed. Then, performance trade-

offs and limitations of the AFM feedback system were identified and analyzed. These limi-

tations resulted in a severe bound on the maximum achievable feedback bandwidth, as well

as a fundamental trade-off between step response overshoot and response time. A careful

analysis has revealed that a PID controller has no real advantage over an integral controller.

Therefore, a procedure for automatically selecting key scan parameters and controller gain

was developed and experimentally tested for I-control. This approach, in contrast to the

commonly used trial and error method, can substantially improve image quality and fidelity.

Furthermore, procedures for variable scan speed and feedforward compensation were pre-

sented. In addition, a robust adaptive output controller (RAOC), was designed to guarantee

global boundedness and asymptotic regulation in the presence and absence of disturbances,

respectively. Simulations have shown that a substantial reduction in contact force can be

achieved with the RAOC, in comparison with a well-tuned I-controller, yet with no increase

in the maximum scan speed.



Chapter 7

Conclusions and Recommendations

The phenomenal resolution and versatility of the atomic force microscope (AFM), has made

it a widely-used instrument in nanotechnology. The fidelity of AFM data relies, among other

factors, on the AFM's dynamic response and the performance of its feedback system. As

a result, data artifacts may result from poor AFM dynamics. The work in this thesis

has focused on achieving consistent and improved dynamic response of the AFM, through

identifying, analyzing, and controlling sources that may contribute to an undesirable poor

performance. Consequently, substantially improving data accuracy, and consistency in ad-

dition to expanding the range of applications of the AFM.

As a first step, a detailed model of the AFM dynamics has been developed. It includes

a new model for the piezoelectric scanner coupled longitudinal and lateral dynamics, creep,

and hysteresis. Models for probe-sample interactions and cantilever dynamics were also

included. The wide use of the tube scanner in many applications including other scanning

probe microscopes (SPM), makes the developed scanner model remarkably valuable for the

design and performance analysis of such applications.

An extensive parametric study has been performed to experimentally analyze in-contact

dynamics. The experiments were performed for different samples, cantilevers, contact force

set-points, and disturbance amplitudes. Nonlinear variations in the frequency response were

observed, in addition to changes in the pole-zero structure. The choice of scan parameters
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was found to have a major impact on image quality and feedback performance. Moreover,

the developed model was used to analyze the AFM dynamics, and was found competent in

reproducing experimental observations both for in-contact frequency response and scanning

simulations. In addition, the analysis has shown that the coupled scanner response have

a substantial impact on AFM performance in several ways. It was found that the scanner

bending mode is observable form the output signal. Consequently, the feedback bandwidth

is limited by the bending rather than the longitudinal mode as commonly stated in the lit-

erature. A substantial reduction in the potentially achievable feedback bandwidth occurs;

a reduction from 4.6 kHz to 380 Hz in the AFM used in this work. Furthermore, it was

found that the frequency of the first system resonance (bending mode), is not affected by

probe-sample interactions. This is a result of the large force capacity of the actuator - 1 N,

in comparison to the minute probe-sample interaction forces - 10s nN. This important

finding was used in the procedures developed for improving the AFM performance. Fur-

thermore, the coupling as observed from the output signal, is expected to affect the scanner

vertical calibration by < 1% at full range, typically. Further analysis has revealed that the

ratio of the effective contact to cantilever stiffnesses governs the pole-zero structure of the

system. For large ratios, a pole-then-zero structure appears. On the other hand, ratios

close to 1 may result in pole-zero flipping causing a zero-then-pole structure. The impact

of this uncertainty on feedback stability and robustness is dramatic.

Hysteresis was addressed by first discussing mechanisms contributing to its presence in

piezoelectric materials. A brief discussion on models available in the literature was then

presented. Based on physical reasonings the scanner model was modified to allow including

a hysteresis model in a physically-consistent manner. The two hysteresis variables in the

model are the electric displacement and an equivalent hysteresis voltage. As a result, im-

plementation difficulties arise since measuring the charge or current have several practical

drawbacks. Experimental hysteresis data was used to demonstrate some of the hysteresis

models. A suggestions in the literature to use the derivative of the input in a hysteresis

model was shown to be not only physically-unmotivated but in addition does not capture

the nonlinear variation in the hysteresis loop average slope and loop width. This issue re-
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mains unresolved to be addressed in future work.

Experimental tests were performed to validate the creep model and study creep behav-

ior of common AFM scanners. It was found that creep did not depend on input rate and

assumption on linearity of the amount of creep is reasonable. A procedure for identifying

creep response for vertical and lateral directions was presented, and an interactive routine

was proposed for fitting the data to the creep model. Model-based creep compensation was

proposed to reduce creep effects on AFM data and on scanner vertical and lateral calibration

, hence achieving more consistent results for different scan speeds. Moreover, compensation

for scanner creep in the vertical direction was experimentally tested and it was found that

creep was reduced by a factor of 3 to 4 from the uncompensated system.

Moreover, the model was used to identify fundamental performance limitations in the

AFM feedback system. The main limitations were found to be due to the high-level of un-

certainty including pole-zero flipping, in addition to the pole-zero structure of the system.

These limitations resulted in a severe bound on the maximum achievable feedback band-

width, as well as a fundamental trade-off between step response overshoot and response

time. Careful analysis on the requirement for robustness to high-frequency unmodeled dy-

namics in addition to the fundamental time response trade-off, has revealed that a PID

controller has no real advantage over an integral controller. Therefore, a procedure for

automatically selecting key scan parameters and controller gain was developed and exper-

imentally tested for I-control. This approach, in contrast to the commonly used trial and

error method, can substantially improve image quality and fidelity.

Additionally, further improvement on performance was suggested by utilizing a feedfor-

ward term based on trace-line data to be used with retrace line. The method would work

best for high-resolution images. In addition, a variable scan speed algorithm was proposed.

The use of the algorithm is not limited to I-control. The scan speed of the retrace line was

varied based on the maximum output error of the trace line. The procedure is simple and

would improve consistency and accuracy of data to a user prescribed tolerance on output
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error. However, the algorithm would work best if either creep compensation or closed loop

are employed for scanner lateral direction.

In addition, a robust adaptive output controller (RAOC), was designed to guarantee

global boundedness and asymptotic regulation in the presence and absence of disturbances,

respectively. Simulations have shown that a substantial reduction in contact force can be

achieved with the RAOC, in comparison with a well-tuned I-controller. This would trans-

late to reduced probe-sample friction in addition to improved data accuracy. This would be

a substantial gain for imaging soft fragile samples and samples that suffer for convolution

errors. However, using the RAOC no increase in the maximum scan speed was achieved.

This is a result of the controller inversion of plant complex zeros. Furthermore, a new

method was developed to allow calibrating the scanner's vertical displacement from few

nanometers up to its full range, in addition to characterizing scanner hysteresis.

This work has identified and addressed crucial problems and proposed practical solutions

to factors limiting the dynamic performance of the AFM. The developed comprehensive and

realistic AFM model, in addition to the analysis and compensation methods presented, rep-

resent new contributions complementing the existing literature. In addition, the work has

opened new directions for possible future work.

Suggestions for future work include experimental verification of the performance of the

adaptive controller. Additionally, issues of parameter selection in the presence of unmodeled

dynamics should be addressed. Moreover, additional testing of all proposed algorithms un-

der different operating conditions, with different samples and cantilevers should be beneficial

for further developments and improvements to the algorithms. Furthermore, the proposed

calibration method for the scanner's vertical displacement should be experimentally tested

and compared to the conventional calibration method for small scanner displacements.

Moreover, the aforementioned problem of hysteresis control could be addressed. Finally,

innovative redesigns of the AFM may provide solutions to increasing the AFM bandwidth.
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Appendix A

Parameter Values Used in

Simulations

Extension Tube Parameter Values

Lm = 44.45 mm Rom = 7.435 mm

Rim =6.285 mm Pm = 2520 kg/m 3

Em = 66.9 GPa Msh = 120g

bmi = 3 x 104 kg/ms bm 2 = 3 x 104 kg/ms

bm 3 = l x 104 kg/ms

Piezoelectric Tube Parameter Values

811 = 1.587

Fx = 4•. •pm

Ro = 6.35 mm

Lp = 44.45 mm

3 x 10-11 m 2/N d3 1 = -1.73

pp = 7500 kg/m bpi =

b 2 = 5 x 103 kgq/m s b 3 =

= -o.imD.1 p-m
= 5.84 mm

Mo = 140g

10-1 0 m/V

103 kg/m s

103 kgq/m s
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Cantilever beam Parameter Values

Lc = 350 pm Pc = 2430 kg/m 3

Wc = 35 umh tc = 1pm

Ec = 169 GPa vc = 0.3

It =3 3m

Adaptive Controller Parameter Values

sign(b2 ) = 1 p = 27r x 103

ki = 67 x 103  k2 = 12(7 x 103 )2

k3 = (27r x 103) 3  kz =7r x 103

y11 = 5 x 1018  22 
= 5 x 1018

7-33 = 5 x 1018  44 = 5 x 1018

755 = 5 x 1018  766 = 5 x 1018

777 = 5 x 105  7Y88 = 5 x 102

almin = 6.287 x 103 almax = 1.131 x 104

aomin = 3.5767 x 106 aomax = 3.7899 x 107

bomin = 1.1162 x 1010 bomax = 5.9532 x 1010

b2min = 7.8540 x 102 b2max = 3.7699 x 104

bimin = 1.9739 x 104  bimax = 2.8424 x 108

9min = -10 3  gmax = 10 3

Omin = 1/b2max Omax = 1/b2min


