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Abstract

The phenomenal resolution and versatility of the atomic force microscope (AFM), has made
it a widely-used instrument in nanotechnology. In this thesis, a detailed model of AFM dy-
namics has been developed. It includes a new model for the piezoelectric scanner coupled
longitudinal and lateral dynamics, creep, and hysteresis. Models for probe-sample interac-
tions and cantilever dynamics were also included. The models were used to improve the
dynamic response and hence image quality of contact-mode AFM. An extensive paramet-
ric study has been performed to experimentally analyze in-contact dynamics. Nonlinear
variations in the frequency response were observed, in addition to changes in the pole-zero
structure. The choice of scan parameters was found to have a major impact on image qual-
ity and feedback performance. Further, compensation for scanner creep was experimentally
tested yielding a reduction in creep by a factor of 3 to 4 from the uncompensated system.

Moreover, fundamental performance limitations in the AFM feedback system were iden-
tified. These limitations resulted in a severe bound on the maximum achievable feedback
bandwidth, as well as a fundamental trade-off between step response overshoot and response
time. A careful analysis has revealed that a PID controller has no real advantage over an
integral controller. Therefore, a procedure for automatically selecting key scan parameters
and controller gain was developed and experimentally tested for I-control. This approach,
in contrast to the commonly used trial and error method, can substantially improve image
quality and fidelity. In addition, a robust adaptive output controller (RAOC), was designed
to guarantee global boundedness and asymptotic regulation in the presence and absence of
disturbances, respectively. Simulations have shown that a substantial reduction in contact
force can be achieved with the RAOC, in comparison with a well-tuned I-controller, yet
with no increase in the maximum scan speed. Furthermore, a new method was developed
to allow calibrating the scanner’s vertical displacement up to its full range, in addition to
characterizing scanner hysteresis. This work has identified and addressed crucial problems
and proposed practical solutions to factors limiting the dynamic performance of the AFM.

Thesis Supervisor: Kamal Youcef-Toumi
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

The field of nanotechnology has rapidly evolved over the years, as a result of a great in-
terest in sub-micron research studies and applications. This interest has been supported
by both academia and industry. For example, in fields like physics, biology, and chemistry,
there is a need to perform experimental studies to understand phenomena at molecular and
atomic levels. As for practical applications, there has been vast interest in miniaturization
of macro-machines and devices. The goal is to allow for integration of sensors, actuators,
and electronics to create the so-called micro and nano-machines. Accordingly, new chal-
lenges and technical problems are created both at the basic research and practical levels.
The challenges span a wide range of fields of science and engineering. One of such chal-
lenges is the ability to characterize surfaces and material properties at the sub-micron level.
Several tools are now available for this task, including scanning electron microscope (SEM)
, transmission electron microscope (TEM), and scanning probe microscopes (SPM), includ-
ing scanning tunneling microscope (STM), and atomic force microscope (AFM). Each of
these tools has its strengths and weaknesses, and in cases they may complement each other.
However, AFM offers very high resolution (10 nm lateral, 0.05 nm vertical are typical),
compatibility with different types of samples and operating media, and generally requires
no sample preparation. This has made the AFM a widely used instrument in many disci-

plines.

13
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An AFM consists of a cantilever-mounted probe, a sensor measuring the deflection of
the cantilever, and a scanner providing three dimensional relative motion between the probe
and a sample. In contact-mode, the probe is brought into contact with the sample, at a
user-specified contact force or cantilever deflection. The scanner is then moved in a raster
fashion. During scanning, changes in the sample topography change the cantilever deflec-
tion. A controller is used to maintain the deflection constant by moving the scanner up and

down. The sample image is composed of the correcting voltage sent to the scanner.

Since its invention [12], as a tool for measuring surface topography, AFM has been
used in a wide range of fields and applications. In materials research, it has been used
for studying indentation, friction, fracture, adhesion, and wear at the nano-scale [1]. Such
studies have great practical importance. For example, there is a great interest in designing
materials for bearings for micro-machines that have good tribological properties and can be
fabricated using MEMS fabrication techniques. AFM is also used in studying mechanical
and chemical properties of polymers to aid in their design for various applications. In
medicine and biology, researchers have used AFM to investigate atenzymatic degradation of
DNA, mechanics of single molecule domains (2], observation of infection of a cell by viruses,
imaging living human platelets during their activation, and in cardiovascular research [87].
In the field of semiconductors, AFM is being used for surface roughness measurements of
fabricated surfaces, in IC failure analysis, and for investigating nano-lithography (30 nm
patterning resolution [88]). For data storage media, AFM is used for analyzing surface
defects in compact disk drives, and investigating future technologies. Also, it has been used
in applications such as manipulation of micro and nano-particles, fabrication of a single

electron tunneling transistor, and quantum effect electronic devices.
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1.2 Technical Challenges and Research Objectives

The wide use of AFM in various fields has imposed ever-increasing stringent requirements on
its performance. At the Mechatronics Research Laboratory (MRL), at MIT, AFM has been
used in a high-precision metrology application for samples with ultra-sharp features. In our
experience and from experiences of other researchers from different disciplines, some limi-
tations of current AFM technology were encountered. In applications like metrology, ma-
nipulation of nano-particles, nano-lithography, and read/write for high-density data storage
media, it is required to achieve high image accuracy, repeatability, and precise positioning.
Among the factors limiting AFM performance and repeatability are undesirable dynamics
of the instrument. This can be attributed partly to user choice of operating environment,
cantilever (its stiffness, resonant frequency, probe size, etc.), scan parameters (scan speed,
force set-point, etc.), and feedback parameters [3]. Usually, AFM users start with some
default values of the parameters. In a trial and error manner, parameters are adjusted until
a reasonable image is collected. Alternatively, the image may be collected, for the same scan
line, in both scan directions instead of only one. The resulting images are called trace and
retrace images. If both look similar, then the scan parameters used are considered good. It
is therefore of great practical value to be able to select key scan parameters in a systematic
and automated fashion. This can improve repeatability, accuracy, and consistency. In ad-
dition, it aids in fully automating AFM technology for applications such as quality control

in semiconductor industry.

Atomic force microscopes may generate erroneous data. To demonstrate this, a com-
mercial AFM was used to scan a set of Silicon calibration steps. The AFM was run under
a proportional-plus integral (PI), control. A Silicon Nitride cantilever was used with a res-
onant frequency of 13 kHz, and stiffness of 0.2 N/m. Scan results demonstrate the high
sensitivity of collected images to scan and controller parameters (K, and K;). Comparing
Figure 1-1 (a) (72 pm/s, Kp = K; = 2) to Figure 1-1 (b) (96 pm/s, Kp = K; = 20), some
of the effects of scanning speed and controller gains on the image can be seen. Higher gains
result in oscillations as the cantilever falls along the right edge of the step, with peaks in-

dicating momentary loss of contact between the probe and the sample. The sharp peak on
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10 nm

Figure 1-1: AFM images: (a) 72um/s, K = K; = 2, (b) 96 um/s, Kp = K; = 20.

the left edge of the step, Figure 1-1 (b), can be attributed to a high scan speed compared to
closed loop bandwidth. The higher gains improve tracking, as the sharp left edge of the step
is resolved more accurately. Figures 1-2 (a) and (b) were generated with a scan speed of
180 pm/s using the same controller gains. The contact force set-point for Figure 1-2 (a) is
set to the manufacturer’s recommended value, while Figure 1-2 (b) a smaller force was used.
Choosing a small contact force set-point reduces contact deformation and friction, however,
it reduces stability of the contact. As seen from Figure 1-2 (b), the image generated with
a small contact force has erroneous height information, due to loss of contact between the

probe and the sample.

Furthermore, there are several factors that limit the AFM performance. The inher-
ent piezoelectric scanner nonlinear sensitivity, hysteresis, creep, and cross-coupling between
motion in different axes greatly affect imaging and positioning performance. Artifacts due
to scanner creep are depicted in Figure 1-3 (a), where the scan direction is now along the
steps. As the scanner creeps at the top of the step, the deflection of the cantilever changes.
The controller compensates for it by applying a correcting voltage. This correcting voltage
appears as part of the sample image. The change in step height in Figure 1-3, occurs over
a time scale of 6 s. This is much slower than the response time of the feedback loop (about

50 ms for the gains used), hence, this decay is not due to transient response of the piezo-
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Figure 1-2: AFM images: 180 um/s, (a) nominal contact force, (b) smaller contact force.

electric scanner. Presence of creep can, therefore, introduce artificial shadows and ridges
in the image near steep slopes. Moreover, scanner hysteresis can be as much as 25%, and
could cause shifts in the image both vertically and laterally. Further, commercial AFMs
are usually controlled by a PID controller. A fixed PID controller offers reasonable perfor-
mance with only few parameters to tune. AFM is used with a wide range of samples having
different effective stiffnesses, and with cantilevers that vary greatly in stiffness and resonant
frequency. Typical stiffness and resonant frequency values for contact-mode cantilevers are
0.01 to 1.2 N/m, and 10 to 90 kH z, respectively. The operating environment can be air,
vacuum, or fluid. Consequently, there is a large range of uncertanties in the system due to
the changing nature of AFM operation. The wide range of uncertanties, in addition to non-
linearities in the piezoelectric scanner, impose additional limitations on the performance of
the feedback system and hence, the AFM. Cantilever thermal noise, laser back-action, and
mechanical vibrations also affect performance by increasing the noise floor of the machine.
Other sources limiting performance that have a less dynamic nature include convolution

errors due to the finite probe size.

One possible approach for improving fidelity and repeatability of AFM images may be
through improving its dynamic response by integrating and automating scan parameter se-

lection and control to guarantee consistent performance. Therefore, factors affecting image
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Figure 1-3: AFM image of Silicon Steps: image artifacts due to scanner creep.

formation and their impact on performance of the AFM, need to be identified and under-
stood. This may be achieved through modeling of the main components of the AFM and

the dynamic interactions between them.

1.3 Literature Survey

1.3.1 Modeling

In the last few years, researchers’ efforts have focused on modeling AFM components in-
dependently. Three main components are of interest, namely the piezoelectric scanner, the
cantilever, and probe-sample interactions. Linear dynamic models of an ideal uncoupled
piezoelectric tube are available [5, 4, 80]. They are based on theory of thin-walled mem-
bers and describe the longitudinal (extension), and the lateral dynamics independently,
neglecting coupling between motion in different axes. Moreover, these models do not de-
scribe creep and hysteresis which have great impact on performance. Several models of
hysteresis in ferroelectric and piezoelectric materials have been proposed in the literature
(81, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 10]. Some have received attention from researchers,
such as Maxwell and Priesach’s models. These models are generally less suitable for feed-
back control analysis and design. They are composed of many operators or elements con-
nected in parallel . Hence, a large number of operators is needed to reproduce experimental

hysteretic behavior. The resulting model will have too many parameters which makes pa-
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rameter identification from experimental data complicated. Hence these models are rarely
used in practice. Another class of hysteresis models is in the form of a first order nonlinear
ordinary differential equation. These models have a small number of parameters and can
provide more insight for control analysis and design. Little work has been done to study
these models in the context of control. Similarly, modeling of creep for control applications
has not had attention in the literature. In applications where feedback control is utilized,
integral action in the controller will suffice in reducing the effect of creep on positioning
accuracy. However, for open loop applications where calibration of the actuator is relied on
(e.g. AFM), there is a great interest to model and control the creep phenomenon. In [90],
a common model consisting of a logarithmic equation was used to predict creep in the step
response of a piezoelectric actuator. The same model was used in [91], to compensate for
creep in step response. As will be seen in Section 4.9, this model is not physically accurate
and can not be used to predict creep for general excitation signals.

Tip-sample interaction forces could be due to different mechanisms. Dominant interac-
tions depend on operating conditions and operating mode. Continuum mechanics has been
used to model single asperity nano-contact. Experimental results support the adequacy of
these models [89]. In general, surface forces of different origins may be present [50]. This
may include van der Waals, capacitance, magnetic, or capillary forces. Simplified models

have been proposed in the literature.

For modeling of the cantilever, elementary beam theory has been used to develop models
for the flexural deflection. Most of the simulation studies available in the literature have
used a single-mode model. Moreover, the majority of the models available describe the
cantilever dynamics during intermittent or non-contact mode operation at a single point on
the sample [17, 47, 48, 49]. This can be schematically represented as in Figure 1-4. Little
work has been done to investigate dynamic response during scanning or in contact-mode.
This is a more involved task that requires analyzing the closed loop dynamic response,
and interactions between the cantilever and the piezoelectric scanner. It can be seen from
this survey that models that were available in the literature are incapable of capturing the

overall dynamics of the AFM. Therefore, there is a need for a competent model of the AFM.



1.3. Literature Survey 20

I Interaction force

— T

Sample

Figure 1-4: Schematic of an AFM model that has been commonly used in the literature.

1.3.2 Control

There has not been, to the best of the author’s knowledge, published work directly aiming at
automating the selection of scan parameters. A work that is of some relevance is (7], where
authors examined the limits of scan speed in different operating media by considering only
the cantilever and not including the piezoelectric scanner or the overall feedback system.
Published work on feedback control of AFM as a whole system was not available in the
literature, to the best of the author’s knowledge. However, there has been published work on
control of a piezoelectric tube scanner as a stand-alone actuator [8, 9]. Both references relied
on experimentally identified transfer functions to model the scanner lateral and longitudinal
dynamics, respectively. In addition, a displacement sensor was used for feedback which is
not commonly available in most AFMs. The models were 2"¢ and 4" order, respectively.
In [8], both lead-lag and an Ho, controller were designed and their performance tracking
a triangular wave was tested. On the other hand, in [9], a PI controller was designed and
small-amplitude step response was used to test the controller’s performance. On control of
piezoelectric actuators in general, there have been many contributions by different authors.
Researchers have taken three main approaches. One approach involved driving the actua-
tor with a charge amplifier instead of a voltage amplifier [83]. This results in reduction of
the hysteretic behavior at the expense of reduced displacement sensitivity, increased charge
leakage and hence actuator drift, and a more expensive implementation. As a result, charge

drivers are rarely used in practice. Other researchers have used fixed feedforward control
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as in [82, 43], and adaptive feedforward control as in [84]. In both cases the models used
were composed of a number of hysteretic operators in parallel. Using a small number of
operators can result in discontinuities in the hysteresis curve. A large number of operators
was needed [84], making the number of adaptation parameters 30. This may reduce the
maximum bandwidth of the closed loop system due to computational delays (20 Hz was
reported). The results also did not include mechanical dynamics of the actuator. Alterna-
tively, feedback control was used on linearized models of hysteresis to design an H, linear
fixed controller. Others developed adaptive inverse feedback control [86]. However, the
model used assumes that the hysteresis loop is quadrilateral which is a very crude model of
hysteresis. The aforementioned work on feedback control of piezoelectric actuators assumes
that the actuator’s displacement is measured, and that there are no other dynamics besides
those of the actuator. Finally, the body of literature available on adaptive control is too

large to list. References used in this work will be cited where relevant.

1.4 Thesis Overview

Despite the aforementioned results, a competent model describing the overall AFM dy-
namics is still lacking. In addition, there is a need for understanding dynamic interactions
between different AFM components and mechanisms by which image artifacts are generated.
Further, identification of possible performance limitations and their sources is essential for
improving the dynamic response of the AFM. Ultimately, key scan parameters are to be
automatically selected to ensure good dynamic response and a high level of data fidelity

and repeatability.

In Chapter 2, a detailed dynamic model of the AFM will be presented. It includes
models for probe-sample interaction forces, the cantilever, and the scanner. Models for the
scanner will include linear coupled dynamics, creep, and hysteresis. Sources of noise and
disturbances will also be discussed. A new method for calibrating the vertical displacement
of the scanner will be presented in Chapter 3. Experimental validation of the models is

provided in Chapter 4, and the results are discussed. In addition, simulation results will also
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be presented and compared to experimental data. Compensation for creep and hysteresis
will be presented and discussed in Chapter 5. In Chapter 6, fundamental performance
limitations of the AFM feedback system will identified and supported by experiments and
simulations. Based on the modeling results and the identified fundamental performance
limitations, a procedure for parameter and controller gain selection is presented for integral
control. The performance of PID and higher order LTI controllers is also discussed. Further,
a robust adaptive output controller (RAOC), is designed and stability analysis is provided.
Scan and controller parameter selection for the RAOC is also discussed. Finally, conclusions

and recommendations are presented in Chapter 7.



Chapter 2

Modeling

2.1 Atomic Force Microscope

As seen in Figure 2-1, an AFM has three main components, namely, a scanner, a cantilever
beam-mounted probe, and a cantilever deflection sensor. The scanner, typically a piezoelec-
tric tube, provides three-dimensional relative motion between the probe and the sample.
Information on sample topography or local material properties is obtained based on probe-
sample interactions. Probe displacement is commonly determined by measuring the slope at
the cantilever’s free-end using an optical-lever sensor. The optical sensor consists of a laser
source and a position sensative diode (PSD). There are two common AFM designs. In the
sample-on-scanner design shown in Figure 2-2, the sample is placed on the scanner, while
the cantilever is fixed in space. The size and weight of the sample is limited to avoid loading
the piezoelectric actuator. The second design, cantilever-on-scanner, involves attaching the
cantilever to the scanner while the sample is placed on a coarse motion stage that does not
move during scanning. Two variants of this design are popular, namely, a single-scanner and
a two-scanner design. In the two-scanner design of Figure 2-3 (a), two separate piezoelectric
tubes are attached to each other. The top tube is typically dedicated to lateral motion,
whereas the bottom tube provides vertical motion. In this design, the effect of vertical
motion on the lateral motion is reduced. In the single-scanner design depicted in Figure 2-3
(b), a piezoelectric tube is used to provide both lateral and vertical motions. In addition,

an extension tube attached to the scanner is used to provide means for attaching lenses for

23
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Figure 2-1: Schematic of the main components of an AFM.

the optical-lever sensor. Moreover, it provides additional mechanical amplification of the
lateral motion; extending the lateral range of the scanner. Models presented later in this

chapter will be for the more popular design; model of Figure 2-3 (b).

Atomic force microscopes have three main imaging modes, namely, contact [12], non-
contact [13], and intermittent [14]. In contact-mode, the probe presses against a sample
exerting a vertical force proportional to the cantilever’s deflection. The probe is then
dragged against the sample along each scan line in a raster fashion. The slope at the
cantilever’s free-end is measured and fed back. During scanning, a controller maintains a
constant cantilever slope by adjusting the vertical extension of the piezoelectric scanner.
Changes in the extension of the scanner are therefore, related to changes in the sample
topography. This is known as the constant-force contact mode which will be the focus of
this thesis. The cantilever and its holder are mounted on a piezoelectric crystal. This crystal
is used in non-contact mode to vibrate the cantilever near its resonance frequency, while
hovering above the sample surface. Surface forces between the sample and the probe change
the amplitude of oscillation. The change is detected and fed back to maintain a constant
vibration amplitude during scanning. Alternatively, a phase-lock circuit may be used as a
feedback signal. Intermittent mode is very similar to the non-contact mode, except that

the probe is brought closer to the sample until intermittent contact occurs, i.e. tapping.
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Figure 2-3: Cantilever-on scanner design of AFM, (a) two-scanner design, (b) single-scanner

design.
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2.2 Probe-sample Interactions

Depending on the operating environment of the AFM, different probe-sample forces may
be present. These forces can be classified as long-range and short-range forces. Long-
range forces can be due to different origins; electrostatic, electrodynamic, and liquid forces.
Short-range forces could be due to chemical or metallic bonding. Atomic force microscopes
are generally operated in Air, vacuum, dry Nitrogen, or in a suitable liquid. Operation
in vacuum or dry Nitrogen reduces capillary effects. Liquids are typically used to reduce
surface forces such as van der Waals forces. The choice of operation medium strongly
depends on the sample under consideration. In this section, in-contact, out-of-contact, and

lateral forces will be discussed.

2.2.1 In-contact Interactions: Vertical Forces

The starting point for modeling probe-sample contact is deciding on the dominant surface
forces. In this thesis, the focus will be on AFM operation in Air, which is the most common
and versatile medium. Capillary and adhesion forces are commonly present due to contam-
inants in Air. As a result, a meniscus forms around the probe and sample when in close

proximity holding them together even in the absence of an externally applied load.

The model presented here was first introduced by Maugis (15]. It describes the adhesion
contact of two elastic spheres each with a radius R; and elastic modulus of elasticity E;, and
Poisson’s ratio v. The Dupré work of adhesion is w. Maugis was able to obtain a closed-from
solution by modeling surface forces using a Dugdale approximation. As shown in Figure 2-4,
the Dugdale attractive force o,, is assumed constant for atomic planes separation h, such
that z, < 2, +h < z,+ h,, where, z, is the equilibrium separation of the atoms. For h > h,,
0, = 0. Maugis selected the value of o, to match the Lennard-Jones potential, Figure 2-4
(a), obtaining a value of h, = 0.97z,. Figure 2-5 gives a schematic representation of the
contact. For ease of visualization, one surface is represented as flat while the other surface
has a radius of curvature equal to the reduced radius of the spheres R = ( R% + Ri?)‘l. Both

surfaces mate over the central region r < a, with a separation h existing over a < r < ¢,
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Figure 2-4: Force law for Lennard-Jones potential and Dugdale approximation in arbitrary
units.

and increasing from zero to h,. Over the central region, the total pressure distribution p(r),
as shown in Figure 2-5, is composed of Hertzian pressure pp(r), plus adhesion stress p,(7),

and is given by

pr) = pal)+palr), palr) = 1~ (L2 2.1)
O, 202 — 2 — 12 |
pa,(r) = —;COS_I(—CZ—_—TT——) (22)

—y2 —p2
where the combined elastic modulus for the spheres is E* = [IT'—:'L + l.E_;’z]—l‘ Fora <r <cg,
the stress distribution is only due to adhesion and is constant p(r) = —o,. The total contact

force Fon = Fp, + F, is positive when compressive and is expressed as

* 3
Feon = 4§Ra _ 2aocg[cos"1(%) +ave? — a?] (2.3)

The model predicts the relative displacement 8, of two points on the spheres located far

away from the contact area as

a® 20,
6=6h+6a=§"’E*V02"a2 (24)

Moreover, the total separation between both surfaces at r = ¢, is h,, hence
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Figure 2-5: Schematic of the contact showing stress distribution.

2 a2 [(2a% - 2)sin1(2) + av/c? — a?)

e = sp~R* =
gle) = :2‘1 [Ve® — a2cos™ (=) +a — (]
ho = ha(e)+ ha(c) = 03 (2.5)

o

1

Maugis introduced a non-dimensional transition parameter A; defined as A = ao(—-ﬁg) :
This transition parameter can be viewed as the ratio of elastic deformation to the effective
range over which surface forces act. From its definition, it follows that large values of A
correspond to compliant (small E*), large spheres (R), and small adhesion (w) contacts,
whereas small values are for stiff small spheres with high adhesion. Equations (2.3,2.4,2.5)
form the Maugis model which can be solved numerically. The model equations were non-

dimensionalized by introducing the following non-dimensional variables

o s o amd B, mel
) 37rwR2 T a

- _ Feom = 16E** 1

Fon = TwR’ b= 6(97r2w2R)3 28)

Using (2.6) and the definition of A, the model can be expressed in non-dimensional form as
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52_4_’\2

5 = m2 —1
Feon = @ —Xa2[Vm? — 14 m?sec”(m)) (2.7)
=2
| = A%[( 2 _ 9)sec(m) + VmZ = 1] +
29—
4/\3 a[\/ m2 — 1sec”1(m) — m + 1]

The use of continuum models to describe nano-contacts has been supported by exper-
iments as in [89], and in Section 4.4 of this thesis. The level at which continuum models

break-down is not all clear.

2.2.2 In-contact Interactions: Lateral Forces

As the probe is dragged against the sample while in contact, a frictional shear force develops.
Based on contact load and possibly scan speed, this frictional interaction may involve sliding
and atomic stick-slip behavior. The nature of this atomic friction is not well understood
and is currently an active area of research. In [74], experiments on mica have shown that
in the absence of wear, the average friction force is directly proportional to contact area
ac, Fy = Ta., where 7 is the shear strength. For this work, the interest is in simulating
the effect of sliding friction force on the cantilever dynamics during scanning. As a first
order approximation, it will be assumed that the instantaneous friction force is directly

proportional to the instantaneous contact area (~ a?), as shown below
F(t) = Ga®(t) (2.8)

where G is a proportionality constant (~ shear strength of the contact junction). This
model does not consider any explicit dependence of friction on scanning speed. Although
contact models were originally developed for static loading, it has been shown in [74], that
it holds under sliding conditions with not very high sliding speeds. When the probe and

sample are out of contact the friction force is set to zero.
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2.2.3 Out-of-contact Interactions: Vertical Forces

When the probe and sample are not in contact, surface forces acting on the probe may be
due to different sources. This may include magnetic, capacitance, patch-charge, and van
der Waals forces, to name a few. The presence of multiple forces could modify the shape of
the force-separation curve. In general, these surface forces may depend on the geometry of
probe and sample, their permittivity and that of the operating medium and probe-sample
separation. The main characteristics of the attractive interactions could be captured by
a simple van der Waals forces model. It is therefore, assumed that van der Waals forces

between two spheres are the dominant interaction. The attractive surface force is then given

as
HR
Foo(b) = ——— 2.9
OC( ) 6(6 _ €0)2 ( )
where H is Hamaker constant, and ¢, is an offset constant.
2.2.4 Point of Contact
In [15], it was shown that in the limit when @ — 0, F,y, and § reduce to,
5 o~ Z5[/aN(r - 2)2 + 9mA — 202(r - 2)] (2.10)
O
Feorn ~ -2+ 8—/\(1;;22[\/4)\4@ —2)2+ 97X - 2/\2(7r - 2)] (2.11)
™

Equations (2.9,2.11,2.10) can be used to impose continuity on the force-separation curve at

the point of atomic contact by adjusting the value of ¢,.

2.3 Scanner Model

The piezoelectric scanner is a thin-walled tube. The tube has four electrodes of equal
segments on its outer surface, and either a single or four electrodes on its inner surface.
Applying a voltage to its inner electrode(s) results in extension motion along the Z axis.
Motion in the X or Y direction is generated by subjecting two opposite electrodes to two
voltage signals that have the same magnitude but opposite phase. The scanner design of

Figure 2-3 (b) is considered in this section. The design is shown schematically in Figure 2-6,
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Figure 2-6: Cantilever-on-scanner design: single piezoelectric scanner with extension tube.
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Figure 2-7: Cross-section of the piezoelectric tube.

where m, represents the mass of an optical lense part of the laser sensor and a fixture joining
the piezoelectric and extension tubes together. On the other hand, mgy, represents the mass
of the sample holder, the piezoelectric crystal, and an additional lense typically placed at
the end of the extension tube. The forces that the scanner experiences due to probe-sample
interactions are on the order 10712 to 1078 N and are several orders of magnitude smaller
than its force capacity which is typically about ~ 1 N. Consequently, the effect of these

minute forces on the scanner will be neglected.
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Figure 2-8: Free body diagram of the piezoelectric tube for lateral dynamics.

2.3.1 Piezoelectric Tube Lateral Dynamics

In [5, 4], a model for an ideal uncoupled tube scanner was presented. Due to inevitable
machining tolerances, some eccentricity is always present in the tube, typically a maximum
of 50 um for a 12.7mm diameter tube [18]. This seemingly small eccentricity is in fact
significant since the probe-deflection sensor has typically a sub-Angstrom RMS resolution.
The newly developed model presented within is based on two eccentric cylinders, as shown
in Figure 2-7, with eccentricity 6, and 6, from the geometric center of the outer cylinder
0,. The outer and inner radii are R, and R;, respectively. The angle 6 is measured from
the X-axis. The tube is fixed at one end, while a mass m, is rigidly attached to the other
end. In addition, a concentrated moment and a shear force act on m, as reactions from the

extension tube, as shown in Figure 2-8.

The model is based on elementary bending theory for thin-walled members. The main
assumptions are small deformations and angles, that plane sections of the tube remain plane
after deformation, material is linear elastic, and negligible effects of rotatory inertia and
shear deformation. The rotatory inertia of the end mass m, and extension tube are also
neglected. The first step in deriving the model is finding the centroid C' of the cross section.

The coordinates of the centroid Z and § relative to O, are giving by

JzdA e fg‘ita) r2cos(0)drdf
JaA (R - R)

(2.12)
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JydA _ [o" Jigyr2sin(6)drds
[dA m(RZ - R)

V62+62, 05 = tan"l(gﬂ)

Ri(8) = Rscos(6 —6s)+ \/R,2 - Rg sin?(0 — 0s)

(2.13)
where

R

For a positive §; and &, the centroid will be located below and to the left of O,. Because
of the eccentricity, the X and Y axes are no longer the principal axes of inertia, i.e. axes
along which lateral deflection occurs. The new principal axes of inertia 1 and 2 can be
found from symmetry. Axis 1 is along the point of minimum thickness at 65, while the
2-axis is perpendicular to it. The Z-axis (or 3-axis) passes through the centroid C. For
thin-walled members, the only stress is assumed to be in the Z-direction. Therefore, the

linear constitutive relation for piezoelectric material [34] reduces to

o)=C )G =
D, d31 €3 E; '

where o, is the stress, ¢, is the strain, D, is the electric displacement, E, is the applied
electric field, and subscript r denotes the radial direction. The electric field F, will be

assumed constant over the tube thickness.

Assuming constant inertia ppA, per unit length, where p, is the density and A, is the

cross sectional area, the equation of motion in the 1-direction is

0%y Ouq o
Prlv=gm t b=t = 5%

(2.15)

where by is the viscous damping coefficient, and Fig, is the shear force in the 1-direction.
The shear force is related to the bending moment by Fi4, = —0Map/0z, where the bending

moment is given by

My, = — / /'rcos(e + 0s) o, dO dr (2.16)

In Equation (2.16), the limits of integration with respect to r are from R¢, to Rc,; the
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distances from C to the inner and outer cylinders, respectively. The variation of the radii

with respect to 6, is given by

Rey(6) = Rcocos(8 — 0s) + \/ R? — Ry, 5in?(8 — 05) (2.17)

Rc,(0) = Rco,cos(8 —65) + \/RZ — Ry, sin(6 — 65) (2.18)
and

Roo, = /(&= 8a)2+(5-6,)?

Rco, = \/(#*+9?)

where Rco, and Rco, are the distances from C to O; and O,, respectively, and R; and R,
are the radii of the inner and outer cylinders measured from their own geometric center as
seen in Figure 2-7. Substituting the first equation of (2.14) into (2.16) and integrating with

respect to 7, leads to

M /2”((R 4.,(0) — RE,(6)) cos?(6 + 65)
2p 40 4 Rc’wrvlp ﬁ
_d31(RE,(8) — RE;(8))cos(6 + 65)Ex \d
33‘191
G{'ll.lp
= ——7Lt— 4 My (V 2.19
81E1 Rc’lL’I"Ulp * QV( ) ( )
M = — [ (B0 R O)orto 0V 0),
v 0 3s%i (Reo(0) — Res(9))

4

Ve, =V =5 <8<%
Vi — Ve §<0<3
V() = oo 7E 4 4 (2.20)
Voo =V, T <<

| Vi —Ve F<O0<F

d
My, = _s—g’El[7$+V$+ + Vo Voo + vy Vyy 1 Voo + Y.Ve]  (2.21)
11
and
ds1
My, = sE JV3

_ /“/4 (R%o(e) — Ri(6))cos(0 +65) 4
o+ n/t 3(Rco — Roi)
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= [ O RO 01,
‘ 0 3(RCO - RCz)
where Mjy, is the bending moment about the 2-axis, Mj,, is the bending moment about the
2-axis due to the applied voltages, and Rcury,, is the radius of curvature of the deformed

tube in the 1 — Z plane, which is related to u;,, for small deformations, by

1 82’11,1],
Rcurmp 022

(2.22)

The integrals for the constants a; and +;, do not lead to simple expressions, but can be

easily evaluated numerically. Substituting Equations (2.19) and (2.22) into Equation (2.15),

results in
0%y Oulp, Oy, 0%y
A L+b L 2 P =0 2.23
Pl g T T SE e (2.23)

The boundary conditions are zero deflection and slope at the fixed end z = 0, and a balance
of forces in the 1-direction and zero moment about the 2-axis at the free end. Mathemati-

cally, the conditions are

At z=0
wyp = 0
Ou1p(0,t) — 0
0z -
At z= L, (2.24)
0%u1p(Lp, t) Le Quyp(z,t) ay,, 03u O3u1p(0,t
Mo——ro— 1552” + bp1 / 1”( dz + ’%;1" —(%;” = EbIb—‘——'g;(:; )
Quyp 02 0 up 0%u15(0,t)
= Eply———— — M>,
sE 922 T h22 2

The concentrated loads depicted in Figure 2-8 appear in the boundary conditions making
the boundary conditions time-dependant. As a result the technique of separation of variables
could not be used to solve for the deflection. Alternatively, it is possible to use techniques
as outlined in [11]. However, the resulting transfer function model of the system would be

proper (number of zero equals the number of the poles). Consequently, that model would
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not capture the high-frequency magnitude roll-off observed in an experimental frequency
response. A low-order model is seeked in this work and therefore, an approximate solution
will be used. An nt* mode model based on Rayligh-Ritz method will be formulated. The

deflection w1, is approximated by a finite sum

u1p(z,t) Zwlm 2) Tpi(t) (2.25)

where 11p; are trial functions that satisfy the geometric (displacement and rotation) bound-
ary conditions but not necessarly the natural (force and moment) boundary conditions. The

reuslting model is

EbIb 83113;!0,t!
M T1p +C T1p +KTip = Q1p | Byl 2%e(08) (2.26)
%?}IL Zj YVi

where Tip = [Tip1...Tipi)T, M is the mass matrix, K is the stiffness matrix, C is the
damping coefficent matrix, and Q1 is the generalized loads input matrix. The elements of

these matrices are given by

Ly
miy = ppdy | Un@igs (2)dz + motgi L)z (L)

L
Cij = bpl./o " 1pi(2)1ps(2)dz
b = Cun /LP 0%1pi(2) 62 1/)11)1(2)
ij SE o 972 922

pi(L OP1pi(L
an = Wity 2l il

(2.27)

For a two-mode model with 91p1(2) = 22 and ¥1p2(2) = 23, the resulting model is given

by

5 LG
pPAP%E + moL;l, /)pAp_GE + moLg _ L? 2L, 2L,

16 7 . s ) ) (2.28)
ppAp=& + moLg ppAp=E + moLy L, 3L, 3L,
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Figure 2-9: Free body diagram of the extension tube for lateral dynamics.
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It is worth noting that as a result of machining, actual tubes are not perfectly round.
In addition, the wall thickness may vary along the tube’s length. This can be handled in
the model by using the desired thickness distribution as a function of #, and depth 2, in
Equation (2.16). However, this will only change the coefficients +;, and «; slightly, but the
structure of the model will remain unchanged. As will be seen later in the thesis, the model
indeed retains the correct structure and reproduces experimental results well. Therefore,
accounting for the aforementioned thickness variations proved to be unnecessary. Finally,

the equation of motion for ug, can be derived similarly.

2.3.2 Extension Tube Lateral Dynamics

As shown in Figure 2-9, the extension tube’s lateral deflection in the 1-direction w1, is mea-
sured with respect to the displacement of the piezoelectric tube u1,. Assuming a concentric

tube, the equation of motion is given by

0? [1L1m S5 ’1L1p(Lp, t) +z 62,,(L,,, t)] Ouim 6411,1
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where by, is the viscous damping coefficient, p,, is the mass density, and A,, is the cross

sectional area. The boundary conditions relative to the piezoelectric tube displacement are

At 2z, =0
Ulm = 0
Ouim(0,t) 0
Ozm, -
0*u1m (L, t) Ou1m(Lm, t) FPuim
mShT + bml—at'— = E’”I’”_az_f;,'
62?1,1m

The mode shape functions 1, is given by

Pimi = Bi1(cos(Aimiz) + cosh(Amiz)) + Ba(cos(Aimiz) — cosh(Aimiz))
+ Bs(sin(Aimiz) + sinh(Amiz)) + Ba(sin(Aimiz) — sinh(Aimiz)) (2.32)
(2.33)

Using Equation (2.31), ¥1mi reduces to

Yimi = Bimi(cos(A1izm) — cosh(Amizm)) +
c08(AmiLm) + cosh(AimiLm)
Si’n(/\lmiLm) + Sinh(x\lmiLm)

1
0 = (cos(A1miLm)cosh(A1milm) + 1) +
/\lmiLm

Msh
pPmAmLm
pmAmw%mi

Enly

(sinh(Amizm) — sin(A1mizm)) (2.34)

(co8(MmiLm)sinh(AmiLm) — cosh(A1miLm)sin(AmiLm))(2.35)

Mmi = (2.36)

Equation (2.35), can be solved to obtain the natural frequencies wim;. Bim; is an arbitrary

constant which can be used to scale the modal mass m1m;. The model mass, modal damping
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b1mi, and modal stiffness ki.n;, are given by

Lpm
Mims = PmAm/O d)%mi(z'm)dzm+m'sh77/)%mi(Lm)

Lm
bimi = bml/0 "/)%mi(zm)dzm, k1mi =w%mimlmi (2'37)

The effect of concentrated displacements are directly included in the temporal modal re-

sponse which is given by

Lm ..
lei = —[PmAm‘/0 T/)lmi(zm)dzm + T’lsh'l/)lmi(Lm)] U1p (Lp, t)
‘Lm .
—[PmAm /0 e ®1omi (2m)d2m + Mo L Prmi (L)) B2p (2.38)
Mimi Timi +01mi Timi +himitmi = Qimi (2.39)

2.3.3 Piezoelectric Tube Longitudinal Dynamics

Under similar assumptions of those in Section 2.3.1, the equation of motion for the tube’s

extension ugp, Figure 2-10, is given by

ppApW + bp3 5 = 52 (2.40)
where F3, = / o,dA, (2.41)
1
i
1 7 d3;
= & [ &dAp— =5 5V (2.42)
n 1
and J = r+,r—y+,y— 2
w = [[RO+ ROV (24

Substituting Equation (2.42) into (2.40), results in

8%us Ous A, 0%us
A P+ p_2 L= 2.44
Pl m T Tk o2 0 (2.44)
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Figure 2-10: Free body diagram of the piezoelectric tube for longitudinal dynamics.

where bp3 is the coefficient of viscous damping. The boundary conditions are zero displace-
ment at the fixed end 2z = 0, and a balance of forces at the other end 2z = L, which can be

expressed as

At z2=0
upp = 0 (2.45)
At z2=1L,
62“31)([41), t) i oDy BU3p(z, t) Ap 32U3p
mo—ézi_— + bpalnto sz = —EW
d31 o, EpApsf) Bus(0,1),
SE 2 35V5 + 7 o, (2:46)

The solution to Equation (2.44) can be obtained by means of a finite sine Fourier transform

which is given by

Ly
Usp(p, 1) =/0 uzp(2,t)sin(pz)dz (2.47)

Taking the Fourier transform of Equation (2.44) results in
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0%Us oUs, A, 0%Us
A P4+ E_ P L = .
Pl g t O sk 022 0 (2.48)
where it is assumed that
Lo 9%ug, . 0? (Lr . 0%Usp(p, t)
/0 Wsm(pz)dz =52 ./0 usp(z, t)sin(pz)dz = 2 (2.49)

2
The Fourier transform of %éﬂ is given by

sin(pz)dz

82U3p(p, t) _ /L” 62“31)(%’")
0z2 0 022

Ousp(z,t) .
(2850 i) — (2, cospE” ~ P Usplprt)  (2.50)

By using the boundary conditions of Equations (2.45) and (2.46), Equation (2.50) re-

duces to
('92U3p(p,t) . sﬁmoaz’?Lgp(L,,,t) sﬁbp;; 'Ly Qusp(2,t)
e = sinlply)Fale) - et p s 2 /0 220 4
syl Lpy )c03(pLp) — p*Usy(p, 1) (251)
_ dn ., EpApst) Bug(0,1)
Fo(t) = sfjl %:73]%4' A, P (2.52)

. (92113,,LL,, b))  Ousp(Lp,t)
Since yoTe o

, and ugp(Lp,t) are not known, they can be eliminated from

bl

Equation (2.51) by setting the sum of their terms to zero which gives

AL
pnLptan(pyLy) = 222222 (2.53)
Mo
which can be solved for p,. The natural frequencies wspy, are given by wgp, = —Al==. As a
PpS11

result, Equation (2.51) reduces to
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a2USp(pm t)

922 = Fa(t)sin(pnLyp) — p121U3p(pm t) (2.54)

Hence, Equation (2.48) becomes

d2Usp(pn, t)
dt?

au: ) A Ap .
+ bp3_ﬂ’(%l_2 + —Epp%ng(pn, t) = -fp'sm(an,,)Fa(t) (2.55)
It 1 1

PpAp

with initial conditions

LP
Usp(pn, 0) =/0 ugp(2,0)sin(pnz)dz

L
Usp(pn,0) = /0 ’ ‘%3776—(:’0)31371,(17,12)dz (2.56)

(2.57)

The displacement u3,(2,t) can be found by inverse Fourier transform given by

2 & :
usp(z,t) = L—ZU3p(pn,t) sin(pn2) (2.58)
P n=1

2.3.4 Extension Tube Longitudinal Dynamics

The extension tube is assumed to be rigidly attached to the mass m,, and its extension usy,,
is measured relative to the piezoelectric tube’s extension uz,(Lp). Under similar assumptions

of those in Section 2.3.1, the equation of motion for us.,, is given by

0% (usm + uzp(Lp, t)) + Ousm,

5 bmg " 0 (2.59)

PmAm

where b3 is the coefficient of viscous damping. As before, the concentrated load will be
accounted for in the modal equations of motion. The boundary conditions then become

zero displacement at z, = 0, and a balance of forces at the other end 2, = L,,, which can
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Figure 2-11: Free body diagram of the extension tube for longitudinal dynamics.

be expressed as

Atz, =0
Atzy, =L,
T el et O = — 2.
The solution can be expressed with respect to the mode shape functions 13,,;, as
oo
Ugm (2m, t) = Z"/)3mi(zm)T3mi(t) (2.61)
i=1
¢3mi(zm) = B3mi Si'n('g,—pw3mizm) (262)
m

where Bsn,; is an arbitrary constant, and the natural frequencies ws,; can be computed

from the solution of

AL
%::w;;miLmtan(%"i-wgmiLm) = % (2.63)

The modal response T3m,i(t), is governed by

o ; Ln .
M3mi T3mi +Y3mi Tami +k3miT3mi = —[pPmAm /0 Y3mi(2m ) d2m +MehV3mi(Lm)] usp (Lp,t)
(2.64)
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where

Ly
Mo = oA [ Vimilom) dzm + M Y (L)

Lm
2 2
b3mi = bms /0 1/13,m~(z) Az , k3mi = W3ms M3mi

2.3.5 Hysteresis and Nonlinear Displacement Sensitivity

Piezoelectric materials are ferroelectric, hence, they exhibit hysteretic relationship between
some of the electric variables (electric field and electric displacement) and the mechanical
variables (mechanical strain and force). Hysteresis in piezoelectric materials [31, 32, 33],
is generally attributed to molecular friction at sites of material imperfections as a result
of domain walls motion. In the absence of an applied electric field, domain walls form at
pinning sites to minimize associated potential energy. When a small electric field is applied,
domain walls motion is limited and reversible, hence hysteresis in not observed. At higher
magnitudes of electric field, the local energy barriers associated with the pinning sites are
overcome and domain walls move an extended distance. The motion of domain walls across
pinning sites provide an irreversible mechanism that contributes to the observed hystere-
sis. The experimental observations of absence and existance of hysteresis at low and high
electric fields, respectively, is demonstrated in Figure 2-12. The figure shows experimental
voltage to mechanical displacement response of a PZT-5H piezoelectric tube actuator for
a sinusoidal input at 300Hz and two voltage amplitudes. It is worth mentioning that the
first mechanical resonance of this particular actuator is at 9.7 kHz. Hence, the experiment

is considered quasistatic.

In practice, the electric field applied to a piezoelectric actuator is limited to avoid sat-
uration and degradation in the actuator performance. Therefore, typical hysteresis loops
can be characterized by their average slope, loop center point, and the loop width. These
characteristics strongly depend on the piezoelectric compound. In a quasistatic hysteresis
experiment, the frequency of the periodic input voltage signal should be much lower than

the first mechanical resonance. In addition, it should be chosen to be fast enough such
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Figure 2-12: Experiments using a sinusoidal input voltage at 300 Hz with two different
amplitudes, smaller amplitude in red.
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Figure 2-13: Relay hysteresis of Preisach model.

that creep response is not observed. Under these conditions, the width of the measured
hysteresis loop will be independent of the input frequency, i.e. rate-independent. The rate
independance nature of piezoelectric hysteresis has been expeiemntally verified by several

authors [10, 29, 30].

Hysteresis has been extensively studied in the literature. As a result, there are various
models of varying complexity that may be used to model hysteresis. In what follows,
several rate-independent models suitable for piezoelectric material hysteresis will be briefly
discussed. These models can be generally classified as of two types; superposition of a

basic hysteresis operator, or integral hysteresis operator. The latter can be written as
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an ordinary differential equation (ODE). The former type of models are based on a basic
hysteresis element (e.g. relay). A hysteresis loop can be reproduced by using as many
elements as needed to achieve a good fit to experimental data. Examples include Preisach
[19, 20], Krasnosel’skii and Pokrovskii [21], and the Generalized Maxwell Slip model [22].
Preisach model is the most common model in this category and will be discussed further.
The model consists of a weighted combination of elementary relay elements, Figure 2-13,
describing the hysteretic relation between an input # and an output F'. Mathematically the

model is given by

Fo= o= e 8 s dide (2.65)

where p(a,) > 0 is a weighing function comprised of two parts capturing both non-
hysteretic and hysteretic behavior, and S = {(a,8) : Zmin < 8 < &, Tmin < @ < Tmeg}-
In order to use the model for reproducing hysteresis data, pu(co, 3) needs to be identified.
There are several identification procedures available in the literature, such as that in [29].
However, real-time implementation of the Preisach model is complicated by the need to fit a
two-dimensional surface to the experimental data in order to evaluate u(ca, 3). As a result,
a large number of model parameters is needed to achieve a good fit. In addition, the model
output depends on the extrema of the input. Accordingly, the extrema for each relay need
to be updated in real-time during each sampling period. This requires that for each relay
a search for both extrema values (minimum and maximum) be performed based on the
input history. Hence, real-time implementation of Preisach model is cumbersome and slow,
and is rarely used in practice. Other models in this category share similar implementation

difficulties.

On the other hand, ODE-based models typically consist of a single nonlinear ODE.
Examples include Bouc-Wen [23, 24], Dahl [25], Chua-Stromsmoe [26, 27], and Coleman-
Hodgdon [28]. These equations describe the hysteretic relation between an input x and an

output F'. Most ODE models have the following form,
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dF dx Ny s
= === f(z, F,sgn(z)) & (2.66)

Note that f(z, F, sgn(z)) does not depend explicitly on time or & but rather on the sign of
4. This captures the rate-independence nature of energy loss in the hysteresis loop. The
dependence on z allows for capturing energy storage in the model. As an example, consider

Dahl’s model which has the following from

dF

F N F .
o= o|l - Esgn(r)l sgn(1l 7 sgn(z)) (2.67)

[

where sgn is the sign function, and F, and o are constants. For J{%{ L1, F~ox. Ina

mechanical system this expression represents a constitutive law of a spring, with F' being

a force and z a displacement. More generally, an element that stores potential energy. As
dF

|z] — oo, &= — 0 and |F| — F.. Hence, at large values of z, the model behave like a

Coulomb friction, providing a mechanism for energy dissipation that is rate-independent.

An advantage for ODE-based models is that they could be more tractable for control
design compared to operator-based models. In addition, the functions used in the ODE
can be chosen to shape the hysteresis loop as desired provided that some conditions are
satisfied. However, there could be a trade-off between complexity of the functions and
implementation. Complex nonlinear functions may give a good match with experimental
data. However, model parameter identification may become more difficult. Moreover, sim-
ple functions with few parameters may not be capable of reproducing experimental data
particularly well. In addition, sensitivity due to parameter variation is expected to be larger

than operator-based models with a large number of parameters.

In piezoelectric materials energy transduction occurs between the electrical and me-
chanical domains. As discussed earlier, impediment of domain wall motion contributes to
hysteresis. However, it is not clear whether there are other mechanisms in the mechanical

domain that contribute to the observed hysteresis. Answering this question allows including
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Figure 2-14: Piezoelectric scanner response to a sinusoidal input voltage at 20 Hz (a) elec-
trical displacement (arbitrary units AU) vs. input voltage, (b) mechanical displacement vs.
input voltage.

a physically consistent hysteresis model in the overall model of a piezoelectric actuator. As
before, it has been suggested that hysteresis occurs in the electrical domain between the
applied electric field and electric displacement or charge. This is supported by experimental
observations as in Figure 2-14 (a). Hysteresis is also observed, Figure 2-14 (b), between
electric field and mechanical strain or displacement. In'addition, hysteresis is noticed be-
tween force and mechanical strain [30], when actuator electrodes are shorted and charge is
allowed to flow. However, no hysteresis is observed when electrodes are open and no charge
flows within the material. More so, charge vs. mechanical strain as in Figure 2-15, shows

no hysteresis. Accordingly, hysteresis is believed to lie mainly in the electrical domain.

To include hysteresis in the piezoelectric tube model, its effect will be lumped into a
single element as seen in Figure 2-16. Due to hysteresis, the applied electric field E, is
balanced by a potential drop Ej, due to the combined capacitance and resistance of the
hysteretic element, in addition to a drop E,, across the hysteresis-free capacitance of the
piezoelectric material. Hence, E = Ej + E,. The models of sections 2.3.1 and 2.3.3, were

derived assuming that E, = E in the piezoelectric constitutive relation Equation (2.14).
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Figure 2-15: Piezoelectric scanner response to a sinusoidal input voltage at 20 Hz: electrical
displacement (arbitrary units AU) vs. mechanical displacement.

The new constitutive relation is given as

E
€ 8 d31 g
D, ds1 €5 Ep/) -
In addition, the electric charge in the scanner gp, is given by

w = [Drisy (2.69)
E. = Ehr+EIrf‘ (2'70)

As a result, Equations 2.26 and 2.52, know become

EbIb 63u5;!0,t!
M j.‘lp +C Tlp +KT1p = le EbIba2u1; 0,t
% 5;7(V5 — FijnVh)

d EyApsE Ousp(0,t
Fult) = S0 5 g (V] — ki) + 1 21080 1)
i P o

where kij, and kgjp are constants introduced to account for the fact that not the whole
piezoelectric material necessarily contributes to hysteretic behavior. A hysteresis model is
then expressed between the charge and the potential across the hysteresis capacitance Vj.

Both types of hysteresis models could be used by replacing = with charge gp, and F' with
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Figure 2-16: Schematic representation of piezoelectric scanner with hysteresis.

Vi. For the ODE models, this results in

Vi = f(ap Vi s97(dp)) dp (2.72)

The anhysteretic voltage to displacement curve may be used to model the nonlinear

voltage to displacement sensitivity of the piezoelectric scanner.

2.3.6 Creep

The response of a piezoelectric actuator to a rapid change in input voltage, Figure 2-17,
consists of two main parts. The initial part of the response occurs over a time scale dictated
by the mechanical resonance of the actuator, typically few millisecond. This is followed by
a slow creeping response occuring over tens to hundreds of seconds and could amount to
more than 20 % of the total response. The rate and amount of creep, strongly depend on
the piezoelectric compound. As discussed in Section 2.3.5, pinning sites impede on the
motion of domain walls. When an electric field is applied to the material, the domain walls
will eventually align in a way to conform with the applied electric field. The initial fast re-
sponse would be due to domain walls experiencing little resistance and their response would
be limited by the maximum mechanical strain rate of the material. Other domain walls,
on the other hand, would experience much more resistance to their motion. The effective

capacitance and path resistance of these domain walls, will dictate the amount of motion
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Figure 2-17: Two creep experiments: (a) initial fast response, (b) slow creep response.

and time scale over which this motion occurs. This could amount to the creep response.
Two models for creep will be presented, namely, a logarithmic model and a finite-dimension

linear time-invariant (LTT), model.

When creep response is plotted verses time on a logarithmic scale as in Figure 2-18, the

response appears to be linear. Therefore, a common equation [90, 94], to model creep is

2(t) = 2o[L + 710910(é)] (2.73)

where 2(t) is the actuator displacement, 2, is the nominal fast displacement to the applied
voltage, 7 is a constant controlling the rate of creep, and , is the time after which creep

response is considered to start, i.e. after the fast dynamics response has occured.

The aforementioned discussion on the origin of creep, may suggest that a model com-
posed of capacitive and resistive elements may be appropriate. Furthermore, experimental
frequency response of piezoelectric actuators shown in Figure 2-19 (a), displays very little
variation in phase at low frequency between input voltage and displacement, Figure 2-19
(b). Moreover, as seen in Figure 2-19 (b), a slight decrease in gain is observed with increased
frequency; 4.5% from 10 Hz to 300 Hz. Therefore, a transfer function model between the

input voltage and actuator displacement would have a relative degree zero at frequencies
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Figure 2-18: Experimental creep response plotted on logarithmic scale.

much lower than the actuator’s first resonance frequency. The relative degree is defined
as the number of poles minus the number of zeros. It is possible therefore, to simulate
creep behavior using a suitable LTI model composed of capacitive and resistive elements.
A schematic representation of one choice of such model is shown in Figure 2-20, and its

mathematical representation is given as

EI_J_ == bm+n—23m+n_2 + bm+n—33m+n_3 + oot bO (2 74)
V, - smtn am+n—13m+n_1 Fion oD :
== Gf(s) Gcreep(s) (2-75)

where Gy is the transfer function containing the fast dynamics and retains n poles and n —2
zeros as suggested by the models presented in Sections 2.3.1 to 2.3.4. Gereep is the transfer

function modeling the creep which has a zero relative degree and contains m poles.

Both creep models, however, assume that the ratio between the amount of creep and
the fast scanner displacement is independent of input amplitude and rate. Both assumption

were experimentally tested and results are given in Chapter 4.
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2.4 Cantilever Dynamics

2.4.1 Flexural Dynamics

This dynamic model for cantilever deflection is based on elementary bending theory, hence
neglects effects of shear deformation and rotatory inertia. The cantilever is assumed to
have a constant rectangular cross sectional area A., moment of inertia I., mass density pe,
Young’s modulus of elasticity E., Poisson’s ratio v,, and a probe of length l;. The cantilever
deflection usc(z, t), is measured relative to its base motion ugep(t) = uzp(Lp, t) +u3m (Lm, t).
Forces acting on the cantilever include a distributed force p(x, t), and concentrated force and
moment F(t) and M(t), respectively. The concentrated loads act on the probe at a distance
xs measured from the cantilever’s base. F(t) is due to the vertical probe-sample interactions,
while M (#) is a moment resulting potentially from probe-sample lateral friction force. Linear
damping originating from three possible sources is considered, namely, damping from air
F,(x,t), from contact of probe with the sample surface Fi(t), or internal material damping
Fn(r,t). Material damping is assumed to be proportional to strain rate. Both F, and
F, depend on the absolute velocity of the cantilever, while F,, depends on the relative

deflection of the cantilever with respect to its base. Hence, the form for damping forces is

as follows
_ Ouse(z,t) ., Ouge(xs,t)
Fa(.’II,t) = baT, Fc(t)—bcT
2 3
F(z,t) = bma_(jca_“%_(m’i)) (2.76)

020t

While in contact, Air damping is negligible. However, it has been included to account for
Air damping during loss of contact and for non-contact and intermittent contact modes.
The ratio between the probe to the cantilever mass is typically about 0.1%, and therefore,
the probe mass will be neglected. The boundary conditions are therefore, taken as zero
deflection and slope relative to the base at the fixed end, and zero moment and shear force

at the free-end. The boundary conditions are represented as
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Atz =0
71:3c = O
6'";3(: (0, t) _ 0
Or -
Atz =L,
OBus
ECIC_E?—S— = 0
2
ECIC%;;'—C = 0 2.77)
The mode shape functions are given by
G3ci(T) = (€08A36iT + coshAgeir) +
c08A3¢iLc + coshAge; L ) )
Esin/\zCZLc T sinh)\zm‘Lc; (sinhAgeix — SinAgeix) (2.78)
3 cilic 2 cilic
0 = coshgciLccoshAgeile +1 (2.79)
The natural frequencies are given by
E.I
wiei = (AgeiLe)? — (2.80)

(1 —v2)pcAcL?
where Azq L. are roots of Equation (2.79). The equation of motion in modal coordinates
Q3ci, 1S given as
. . L,
M3ci 93¢i +3¢i D3ci +K3ci3ei = /0 $3ci(z)p(z, t)dz + Paci(zs) F(t)
Le .
+¢1/3ci(xs)M(t) ~ pcAc /0 ®3ci (’I‘)d’l‘ U3sh (f)
L. .
~[ba | Gncla)dr + bedi(z)] Tt (0
Lc .
_PcAc/O ¢3cz(7')7'd7' Bysh

L X
~[ba /0 301 (2) 20 + bebsei ()] Oyoh (2.81)
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Figure 2-21: Coupling between cantilever twist and PSD signal due to cantilever bending.

Moreover, the modal mass mg.;, modal damping b3c;, and modal stiffness k3¢, are given by

L.
2 2
M3 = PcAc/O ¢3ci(x)dm, k3ci = W3e;M3ci

Le L.
b = b [ Sala)da + bedhalan) + b | 98 s}z

2.4.2 Cantilever Twist

When the laser spot is aligned onto the back of the cantilever, inevitably there will be an
offset form the axis of the cantilever (X-axis in Figure 2-21). In addition, the laser spot
size is finite. As a result, twist in the cantilever 6., results in a vertical change in the
position of the reflected laser beam falling on the detector. Cantilever twist can be due to
probe-sample friction force, changes in the sample topography, or an impact between the
probe wall and a high aspect ratio feature on the sample. The dynamics of twist will not be
considered as it is typically much faster than the flexural dynamics. However, a quasi-static

relation coupling twist angle 6. with sensor output ypsp will be assumed as

YypPSD = kzcOze (2.82)
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2.5 Noise and Disturbances

Thermal noise or Brownian motion contributes to a fundamental source of noise in AFM. At
thermal equilibrium, the mean value of the cantilever potential energy has to equal %kBT,
where kg = 1.38 x 10723 J/K is Boltzmann’s constant, and T is the absolute temperature in
Kelvin. By considering the first mode of the cantilever, the slope at the cantilever’s free-end
will oscillate with a RMS value, 2, = é%zzgms = %\/—EE—? , where k. is the stiffness of
the cantilever’s first mode. This expression is valid for a free standing cantilever. If the
cantilever is in contact with a sample, the expression has to be modified by including the
sample effective stiffness in k.. Another source of disturbance is the laser back-action. It is
due to incidence of photon flux from the optical sensor on the cantilever. Both thermal and
back-action noises will be effectively modeled as zero-mean white noise force disturbances
with a combined constant intensity x §(t — 7), where §(t — 7) is the Dirac delta function.
Further, mechanical vibrations transmitted through the mechanical structure of the AFM
may result in cantilever oscillations, and relative motion between the probe and the sample.

Consequently, the noise floor of the AFM would increase.

Feedback measurement noise arising from the optical sensor can be due to shot noise, a
fundamental noise for these sensors, in addition to noise from sensor electronics. Shot noise

can also be modeled as white noise.

2.6 Overall AFM Model

The models developed in Sections 2.2 to 2.4.2, constitute a detailed overall model for AFM
dvnamics. In addition, the complexity and order of the model can chosen based on the
objectives of using the model. The model can be used to analyze and simulate the dynamic
response between the five input voltages and any combination of desired outputs. Partic-
ularly important outputs include the displacements of the sample holder wugp, uosph, ussp in
the X, Y, and Z directions and the rotations (i.e. slopes), of the sample holder about X

and Y axes, namely ;55 and 85,. And most importantly, the PDS signal. The equations
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for the aforementioned outputs are

ven = c08(86)utp(Lps ) + tim(Limy 1)) = sin(06){uzp(Lips ) + gL, 8) (2.89)
yon = sin(0)1p(Lpy) + t1m(Lms )] + c05(88)izp (L ) + tzm(Lray )] (2.84)
zeh = uzp(Lp,t) + uzm(Lm,t) (2.85)
Oysn = co3(B8)tspLips) + Wom(Lims )] = 5in(0) [ty (Lps 1) + U (Lrns )] (2.86)
Oust = in(B5)[tsp(Lpy ) + W (Lems )] + c05(86) (L &) + Ly )] (2.87)

(2.88)

YpSD = aysh + kgsh Ozsh + kg Ozc — Zéc(-""La t)

where ki, is a coupling parameter between the PSD signal and the bending of the scanner
about the X-axis, and x5 is the distance from the cantilever’s base to the laser spot on the

back of the cantilever.

2.7 Summary

In this chapter, a detailed dynamic model for the AFM was presented. It includes a new
model for the piezoelectric scanner coupled longitudinal and lateral dynamics, creep, and
hysteresis. Models for probe-sample interactions and cantilever dynamics were also pre-

sented.



Chapter 3

Scanner Calibration

3.1 Introduction

The accuracy of AFM data ultimately depends on the calibration of the scanner. Piezo-
electric materials exhibit nonlinear quasistatic voltage to displacement response. Typically,
a trade-off between nonlinearity and displacement range exist based on the piezoelectric
compound. A scanner made of PZT-5H will have a displacement sensitivity twice of that of
a similar scanner made from PZT-4. However, nonlinearity of 3 to 5% is expected for the
PZT-4 scanner compared to 20 to 25 % if PZT-5H is utilized. Scanners used in AFM have
typical displacement ranges of 10 to 100 um laterally, and 4 to 10 um vertically. Calibration
of the scanner is usually performed by imaging a standard sample with a known character-
istic dimension. The voltage to displacement sensitivity is then computed from the applied
voltage and the known dimension(s) of the standard. A linear sensitivity is assumed for
vertical calibration, while a quadratic or a cubic polynomial is used for lateral calibration.
Structures with pitch of 200nm to 10 um are commercially available for lateral calibration.
For a large scan size, an adequate number of data points can be collected from the image
and used for lateral calibration. On the other hand, standards for vertical calibration are
available with height between 9nm and 1.6 um. However, utilizing images for calibration
could be problematic, especially for vertical calibration. As have been shown, image quality
depends strongly on scan and controller parameters. Due to scanner nonlinear displace-

ment, calibration may be affected by the bias voltage applied to the scanner to maintain
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probe-sample contact at the desired set-point during scanning. In addition, computed sen-
sitivity will depend on scan speed due to creep. Images obtained at a slow scan speed would
yvield larger sensitivity compared to images performed at faster speeds. Moreover, standards
with a small height compared to the scanner range, are commonly used for calibration to
reduce the effect of hysteresis. Consequently, calibration would only be accurate for a small
fraction of the total scanner range (typically ~ 3%). Imaging samples with features taller
than the standard used for calibration will be corrupted with both hysteresis and nonlin-
earity due to the scanner’s displacement. Consequently, there is a strong need to develop a
method to allow calibration of the scanner’s full range vertical displacement, in addition to

hysteresis identification.

3.2 New Method for Scanner Height Calibration

Typically, accelerometers, consist of a flexible structure of some effective mass and stiffness.
When the structure is subjected to an acceleration, its measured response is related to the
acceleration signal. A schematic representation of an accelerometer is shown in Figure 3-1.
In this simple representation and under sinusoidal acceleration é,,, the measured response
2. of the proof mass m. is governed by

ke

éc-{-wgzcz—:?}p, We = -/,n_ (3.1)
(¢

For z, = Asin(wt), and w < w,

|2l = 4 (-,j;i)2 (3.2)

C

Therefore, by measuring the response of z, the displacement amplitude of z, can be de-
termined. Figure 3-2, shows a schematic of the AFM scan unit, including the scanner, the
cantilever, and the optical sensor. The similarity between the scan unit and an accelerom-
eter can be seen from the figure. The source of acceleration is z,, and the cantilever is the
flexible structure. Accordingly, it may be possible to apply a sinusoidal input voltage V,
and relate the measured cantilever response to z,. By doing so, a calibration map could be

obtained for the entire displacement range. However, the PSD signal ypgp, measures the
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Figure 3-1: Schematic representation of an accelerometer.

Detector

Figure 3-2: Schematic of the AFM scanner, cantilever, and optical sensor.

absolute angle of the cantilever in space, which is given by
YypSpD = eysh - Zé(CI}L, t) (33)

Due to the coupling between V, and 6y, as shown in Chapter 2, z, can not be practically

inferred from ypsp.

As a remedy for this problem, the cantilever deflection relative to its base could be
measured and used for calibration. In the past, cantilevers with piezoresistive elements [36],
were utilized in AFM for imaging as an alternative to using the optical sensor. However,

their noise performance in Air was found far inferior to that of the optical sensor. In addi-
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Figure 3-3: Schematic of the piezoelectric scanner with a piezoresistive cantilever.

tion, piezoresistive cantilevers suffered from drift and poor long-term stability. Therefore,
their use did not gain wide spread and is mainly limited to AFM operation in ultra-high

vacuum.

The new proposed calibration method is based on using a piezoresistive cantilever as an
accelerometer, Figure 3-3. While in Air and far away from any sample surface, a sinusoidal
voltage V; is applied to the scanner, and the response of the piezoresistive cantilever is
detected. The measured response can easily be related to the displacement of the scan-
ner. These cantilevers can be fabricated to fit standard AFM cantilever holders. Therefore,
eliminating the need for specialized fixtures and allowing them to be used for almost all
commercial AFMs with a cantilever-on-scanner design. In addition, biasing the piezoresis-
tors can be accomplished easily. Cantilever holders are attached to a piezoelectric crystal
that is used to oscillate the cantilever for non-contact and intermittent modes. The wiring
used for driving the crystal may be used for biasing the piezoresistors. A simple Whetstone
bridge circuit can be used for detecting the resistance change in the piezoresistors. Further,
for each data point to be used for calibration, only few oscillation cycles at 10s to 100s Hz
need to be collected. Hence, drift and long term stability will not be a concern. What
remains to be shown, though, is that the cantilever’s noise performance in Air is adequate

for the calibration experiment.
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Design equations for piezoresistive cantilevers are available in [38]. A new fabrication
technique in [37], permitted fabrication of ultra-thin piezoresistive AFM cantilever with
thickness of 87 to 90 nm. The objective of this work was to improve force detection limit
of piezoresistive AFMs; detailed analysis and design equations were therefore given. Noise
performance predictions based on these design equations were found to be in good agree-
ment with the measured performance of the fabricated cantilevers. Therefore, these design
equations will be used below to demonstrate the feasibility of the proposed calibration tech-
nique. Sources of noise in piezoresistive cantilevers are mainly Johnson noise, 1/f noise,
and thermomechanical noise. Johnson noise is due to thermal energy of carriers in a resistor

R. 1t is a white noise with a spectral density function S; given by

Sy = 4kgTR (3.4)

where kg is Boltzmann’s constant, and T is temperature in Kelvin of the resistor. In a

bandwidth of far to fimin, the mean-square noise is

2 16kB T Ligg

ST wtipap (fmaz — fmin) (3.5)

where L, is the length of piezoresistive cantilever leg, w is the total cantilever width, 4 is
doped thickness, 1 mobility, g electron charge, and p doping density. On the other hand,

1/ f noise has a spectral density Sy, given by

Sp=—= (3.6)

where Vg is the voltage bias across the resistor, N number of carriers, and a a nondimen-
sional parameter that depends on annealing for an implanted resistor. In a bandwidth of

fmaz tO fmin, the mean-square noise is
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2
2 _ oVj

N f min

N is proportional to the cantilever volume for a constant doping concentration. It is assumed
that N = pLjegtqw. Thermomechanical noise is the mechanical equivalent of Johnson noise.

Its spectral density Sim, for a single mode approximation is given by

_ 4kgT
- kcwcQe

Stm (38)

where k. is the cantilever stiffness, and Q. is the quality factor. The corresponding RMS

displacement noise 2z¢yp,, is

Zetm = kcch , WKL We (3-9)
4kgT
Zetm = kfwc , W= We (3.10)

If the piezoresistor makes up one corner of a Wheatstone bridge, the output voltage V, can

be found from

VBAR
Ve B (3.11)
AR 3rEt(Lc — Liey/2)
7 = 2L3 Zc (3.12)

where 7 is the piezoresistive coeflicient, F' is modulus of elasticity, ¢ is total thickness, w is
cantilever width, and L. is cantilever length. In practice, thermomechanical noise is seldom
the dominant noise source. Exception to this are cantilevers with high @). that are operated
at their resonance. Under this condition, the total root-mean-squared (RMS), displacement

noise z,,,, is found as

V2 16kg T L
avVp Emaz 29%B 1 Lieg — ;
—_ \/Llegtd’LUpl’nl( min) + u’tdyl-‘qp (fmaz fm'm)
Zemin = 3VemL Et (Le—Lieg)
16L3

(3.13)
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Commercial piezoresistive cantilevers are generally optimized either for imaging or force
detection. As a result, they are generally not suitable for use in this calibration procedure.
In order to demonstrate the feasibility of using a piezoresistive cantilever for the proposed
calibration method, a cantilever has been designed to have adequate signal-to-noise ratio
(SNR), at 200 Hz. It is assumed that the first mechanical resonance of the AFM scan
unit will be a at least a factor of 2 to 3 higher than the driving frequency to ensure a
quasistatic response of the scanner. The resulting cantilever has a length Lc = 600 um,
width we = 50 um, thickness t. = 0.2 um, and resonance frequency w, = 785 Hz. Using the
model of Section 2.4, the sensitivity of the cantilever displacement to scanner displacement
is found to be f: = 0.1 at 200 Hz. For a 100 to 400 Hz bandwidth, Equation (3.13), gives
Zepin = 2.9nm RMS. The SNR is then SNR = 212" For example, if zp = 150nm
(3 % of typical scanner range), the expected SNR is 5.2. Consequently, the proposed cal-
ibration method could be used to calibrate the scanner’s vertical displacement from a few
percent of its range up to its full range. In addition, the maximum strain in this cantilever
would remain small; less than 2 x 1073 for scanner range of z, = 10um corresponding
to a maximum acceleration of 1.6g, where g is the acceleration of gravity. Linearity bet-
ter than 0.1% for piezoresistive-based accelerometers has been commercially demonstrated.
Moreover, the SNR can be further improved. As seen from Equation (3.2), z. and hence
SNR depend quadratically on the ratio of the frequency w, of the acceleration source z;,
to the cantilever’s resonance frequency w.. Hence, increasing this ratio would increase the
SNR. Increasing w is limited by the first resonance frequency of the scanner to ensure a
quasistatic measurement. Lowering w, can be easily done by adding a so-called proof mass
at the end of the cantilever as evident from Equation (3.1). In addition, by setting w = w,
hence operating the cantilever at resonance, the SNR. can be further improved by a factor
of Q.; experimental data show that typically Q. > 5. Consequently, operating at resonance
can permit using the proposed method to calibrate the scanner’s displacement from few

nanometers up to the full range of the scanner.

In order to use the cantilever for calibration, its output sensitivity to acceleration ky,q,

needs to be determined. Once, mounted on the scanner, the piezoresistive cantilever will
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experience the acceleration of gravity g. Hence, by merely measuring the cantilever’s output
with no scanner displacement, its acceleration sensitivity can be obtained. If designed to
permit so, the cantilever can be flipped and its output recorded. This allows using two
data points for determining the acceleration sensitivity. Since the cantilever displacement
or voltage output V; is linear in z,, Equation (3.2), the scanner calibration can be obtained

from

Vo

V) = R

(3.14)

The resulting curve between the input voltage V, and the scanner vertical displacement 2,
can be used to compensate for scanner displacement nonlinearity. The method may also
be used to characterize scanner hysteresis over the full scanner range. Another advantage
of this method, is that the calibration will not be affected by scanner creep or drift since
the dynamic measurements are done at frequencies in the 10s to 100s of Hz. Furthermore,
commercially available piezoresistive cantilevers cost less than $100 to purchase. In con-
trast, calibration standards cost about $200 for a set of three and their height is only a

fraction of the total scanner’s displacement.

3.3 Error Analysis

As seen in Section 2.3.1, when the scanner is commanded to move vertically by applying
a voltage V;, a slight bending motion also occurs. A first order analysis of errors due to
this coupling was performed. As seen in Figure 3-4 (a), offsets of 6, and &, are assumed
between the cantilever base and the centroid of the scanner’s cross-section. The actual
displacement at the cantilever base is not only due to z,. As a result of scanner bending,
displacements of the order of 6,6, and §,0,, are introduced. Geometric coupling between
bending and extension, as seen in Figure 3-4 (b), is also considered. The resulting change

in vertical displacement Az, is given by
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Az, = Lp-— \/4R§.,m, 31211,2(62—y) -y? (3.15)
2y
Where RCUT’U ey = Lp 9 01/ = - (3.16)
L Lp
4L2 6 L0
= — _P ) ,2 Yy - (ZP2Yy2 .
Az L, \j % sin (2) ( 5 ) (3.17)

A typical scanner with vertical and lateral ranges of 5 and 40 um, respectively, will be
used in this analysis. The maximum angle due to bending 6, ~ 2x 1075 rad was estimated
using two methods. First, the angle was estimated from experimental data using an AFM.
The displacement sensitivity of the cantilever was estimated by bringing the probe into
contact with a hard sample and moving the scanner up and down. Then, the probe was
moved far away from the sample and a triangular voltage signal V,, was applied to the
scanner. The output of the detector ypsp was then recorded. The output was converted
to an angle based on the cantilever length. In the second method, the scanner model was
used to predict scanner bending due to V,. The result using the model was off by a factor
of 30% from the experimental result. The maximum value of both estimates was used. The

errors are summarized below assuming a 1 mm offsets in X and Y

Ozbysh =~ 1lmm x 2 X 10~ %rad (0.4%of 5pm range)
6,0zsn =~ 1mm x 2 x 10 5rad (0.4%of 5pm range)
Lefz =~ 500um x 2 x 10 5rad (0.2%of 5pm range).
Az ~ 15x107° (0.3%of 5 pum range).

Therefore, errors &~ 1% is expected at full range. This is a substantial improvement over

possible errors of 20 to 25% due to scanner nonlinearity.

The calibration method can also be used for an AFM with the sample-on-scanner design,

Figure 2-2. However, it would require that a cantilever holder be mounted and centered
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Figure 3-4: (a) Cross section of scanner with sample holder, (b) Geometric coupling between
scanner bending and extension.

on the scanner. The piezoresistive cantilever can then be mounted on the holder and the
scanner calibration can be obtained. Finally, some means for biasing the piezoresistors is

needed. This may or may not be a challenge, depending on the AFM design.

3.4 Summary

In this chapter, a new method was developed and presented to allow calibrating the scan-
ner’s vertical displacement up to its full range, in addition to characterizing scanner hys-
teresis. Analysis demonstrating the practical feasibility of the method using piezoresistive

cantilevers was performed in addition to a first order error analysis.



Chapter 4

Model Validation

4.1 Experimental Setup

The setup used is based on a Quesant AFM [39]. The scanner used has a scan range of
40 pm and vertical range of about 4.25 um. To reduce the effect of noise, and environmental
effects due to temperature changes the AFM is placed inside an acoustic isolation chamber
[41]. Further, the AFM and the chamber are placed on top of a bench-top pneumatic

vibration isolation table [40], to reduce the effect of mechanical vibrations.

4.2 Modifications to Experimental Setup

The setup will be used for model validation, implementing custom controllers and scan
algorithm. Therefore, several modifications were required to enable performing the desired
experiments. A dSPACE controller board (42], was used to implement custom algorithms.
The board has 16-bit analog-to-digital converters (ADC), and 14-bit digital-to-analog con-
verters (DAC), and a 400 MHz IBM PowerPC 604e processor. Interface software accompa-
nying the board allows using MATLAB and SIMULINK codes. The software can automat-
ically generate executable code ready for real-time implementation. Code was developed
in MATLAB environment to allow probe-sample engagement, probe retraction, feedback
control, and scanning and image collection. The codes were implemented using a sampling

frequency of 60 kH z, while the expected feedback bandwidth is less than 1 kH 2. Therefore,
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delay effects due to sampling will have practically no effect of feedback performance. In
addition, the drive electronics of the AFM had to be bypassed. Accordingly, a high-voltage
piezoelectric amplifier was built based on commercial cards [39]. To further reduce noise
from the amplifier, filters were built and added to the amplifier. The amplifier has 3 input
channel with a range of £10V and 5 output channels at £200V. One out channel is dedi-
cated to the scanner electrode for Z motion, while X and Y-motions use two channels each.
The X /Y channels have a —3dB bandwidth of 300 Hz, and a peak-to-peak output noise
of 50 mV while connected to the scanner. The capacitance of the scanner is 8 pF. On the
other hand, the Z-channel has —3 dB bandwidth of 2.4 kH > with a phase of —45° at that
frequency, and a peak-to-peak output noise of 50 mV'. In addition, a K-type thermocouple

was mounted inside the acoustic chamber to monitor Air temperature.

4.3 Cantilever Specifications

Experimental results will be shown for two different Silicon cantilevers with rectangular
cross-sections. Cantilevers are labeled A [44], and B [45]. Cantilever-A has a length of
350 um £ 5 um, a width of 35 um £ 3 um, a thickness of 1 um =+ 0.3 um, a resonance fre-
quency between 7 to 14 kHz, and a stiffness between 0.01 to 0.08 N/m. Cantilever-B, on
the other hand, has a length of 450 um + 5 um, a width of 50 um =+ 5 um, a thickness of
2 um £ 0.5 um, a resonance frequency between 10 to 17 kH z, and a stiffness between 0.07
to 0.4 N/m. Both cantilevers have a probe length between 15 to 20 pum, and radius of
curvature of less than 15nm. In the figures presented, * will be used as a superscript to de-

note the use of a nominal value of a parameter for converting the units of a measured signal.

4.4 Force-separation Curve

Equations (2.7,2.9,2.10,2.11), were used to generate the nondimensional composite force-
separation curve of Figure 4-1. Parameters used to generate the curve are, w = 0.1.J/m?,
Ry = 20nm, Ry = oo, v = 0.3, v = 0.27, E; = 169 GPa, E3 = 6GPa, H =1 x 10719 J,

and 0, = 5 x 108 N/m, where subscripts 1 and 2 correspond to the probe and sample,
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Figure 4-1: Simulation: Quasi-static normalized force-separation curve.

respectively. It is worth noting that the model of Equation (2.7) can predict an instability
that has been observed in quasi-static experiments. This quasi-static instability, as seen
in Figure 4-2, occurs when an approaching/receding probe jumps in/out of contact (pull-
in/pull-out points), with the sample surface corresponding to a sudden jump in the contact
area. The actual point of instability on the force-separation curve will depend on the stiff-
ness of the cantilever k., as shown in Figure 4-1. The cantilever stiffness is estimated from
Figure 4-2 as the slope of the line just after the pull-off point. The stiffness is estimated
to be 0.06 N/m, which is in good agreement with the values given in Section 4.3. It can
be seen from both figures that the model captures the main characteristics of the experi-
mental curve. However, the difference in the approach and retract lines (i.e. hysteresis),
is not captured. This behavior may be attributed to viscoelastic behavior of the sample in

addition to scanner hysteresis.

4.5 Scanner Modes Identification

In order to identify the main resonance frequencies of the scanner, several experiments
were performed. In one experiment, the piezoelectric tube, Figure 4-3 (b), was excited by
applying a voltage to the two outer electrodes z+ and z— and the charge gp, on both the
y+ and y— electrodes was measured. The measured charge is proportional to the strain or

mechanical displacement, at least for small input amplitudes, since the applied voltage on
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Figure 4-2: Experimental force-separation curve

the y+ and y— electrodes is zero. This can be seen from Equation (2.14). The induced
stain is mainly due to the Z-axis displacement, in addition to a small contribution from the
bending modes as a result of coupling. However, the coupling induced strain will have an
opposite effect on the y+ and y— electrodes; one being negative while the other positive.
By adding gp(y+) and g,(y—), the effect of bending almost cancels out. Since each of the
electrodes will experience bending about both the X and Y-axis, a small contribution from
bending modes will be seen in the measured charge. Figure 4-3 (a), shows the frequency
response for this case labeled Vy4 z— — gp(y+) + ¢p(y—). The scanner’s main longitudinal
modes are at 4.6, 8, and 21 kHz. To identify the main bending modes in the X-direction,
a voltage signal was applied to the z+ electrode, and the charge on the z— electrode was
measured. The result is labeled V4 — gp(z—), in Figure 4-3 (a). A similar experiment
was performed for the Y-axis, and the result was found fairly identical to that for the
X-axis. The main bending modes are at 380 Hz, 3.4 and 11.8 kHz. However, there is a
small resonance at 540 Hz which the tests failed to identify its source. Because of its small
peak compared to other system resonances, further investigations for its source was not
performed. Further, the data labeled V, — ypsp in Figure 4-3 (a), are from V, to the
detector’s output ypsp, while the cantilever is not in contact with a sample. As seen from
the plot, the bending modes are observable from the feedback signal, as predicted by the
model, Equation (2.88).
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Figure 4-3: (a) Experimental frequency response, (b) Cross-section of the piezoelectric tube.

4.6 In-contact Dynamics

As described earlier, during scanning, ypsp is used as a feedback signal, while V, is used
as a control input. Due to feedback bandwidth limitations, scan speed is typically more
than an order of magnitude lower than the frequency of the first bending mode. As a
result, the effect of this low scan speed lateral motion on the feedback loop is not dramatic.
Consequently, it is essential to identify and understand the dynamics between the feedback
input-output pair (V,ypsp). In this section, the focus will be on hysteresis and creep-free
dynamics. Hysteresis and creep will be addressed in Sections 4.8 and 4.9, respectively.

Simulations will first be introduced followed by experimental results.

4.6.1 Frequency Responsc: Simulations

The models presented in Sections 2.3.1 to 2.4, and 2.6, are presented below in transfer

function form

i 2
/ _ (azi8° + a12i3)
Zc(s) = ; 32 + 2<c1,wC'1,3 + w

afg
T T 2Cawas + wi,-f(z‘" %01 Oy 72) (4.1)

(ag0is? + a16:8)
[7)
2 ¥ 2(iwes + W, oy (9)
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Sh( ) 11),Z=1 32 + 2<zmezymS + wgpm ( )
Ypsp = Oysh — 2 (4.4)

where 7*, 7%, and m* are the number of modes retained for the cantilever, scanner bending
and longitudinal dynamics, respectively. The probe-sample interaction force f(zc, zp, Opy, 2s),
is a nonlinear function of probe-sample separation, and depends on geometry, environment,
and probe and sample material properties. To obtain a linear model to be used for analysis,

the force was expanded as a Taylor series and linear terms were retained, giving

f(ze, 2p, epy’ zs) = ché +9:2pt+ gopyopy
+kszs + HO.T. (4.5)

where k; can be considered as a linear effective probe-sample contact stiffness. The probe-
sample contact can be represented schematically as in Figure 4-4, where again 2, is mea-
sured relative to z,. The contact and cantilever stiffnesses, are represented as two springs in
series. The contact stiffness does not change the order of the model, but has a great impact
on the system’s zeros. Substituting Equations (4.2), (4.3), and (4.5) into Equation (4.1),
and the resulting equation into Equation (4.4) gives the overall transfer function between
V., and y,g,, which describes the AFM Z-dynamics. The effect of probe-sample contact
properties on system zeros can be explained by considering a reduced order model where
bending dynamics 6, consists of the first bending mode and first zero-pair. In addition, the
scanner extention dynamics and cantilever flexural modes are ignored as they are typically

much faster than the bending dynamics of the scanner. The resulting model is given as

ypsp ~ Oyp— go,,0up — 9;317 (4.6)
b252 + bi1s+ bo b282 +bis+ by

st+aist+ao © I 21 ais +ag v:
_kzg;‘/z (47)
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Figure 4-4: Schematic of probe-sample contact.

where kz and g/, are proportionality constants. As seen from Equation 4.7, the first two
terms are due to the scanner bending mode. The coefficient gg,, multiplying the second
term depends on the probe-sample contact properties and surface forces between the sample
and probe. It is clear that changes in the contact properties (e.g. nominal contact force
set-point) would affect the zeros of the transfer function. However, the frequency of the
bending mode would not be affected as seen in Fig. 4-18. Physically, this is true since the
probe sample forces are orders of magnitude smaller than the force the scanner can provide,

(~10'snN vs. ~ 1N).

The model used in this study included four bending modes and two extension modes
for the scanner, in addition to a single bending mode for the cantilever. The parameter
values used are given in Appendix A. The ratio of sample to cantilever stiffness 7’%:, proved
to be an important parameter. Changes in this ratio have two main effects on the model
transfer function, namely, changes in the DC gain and changes in the frequency of the zeros
associated with the bending modes at 380 Hz and 3.4kHz2. Figure 4-5, shows the simu-
lated frequency response of the model for different ratios of stiffnesses. For large ratios (e.g.
%: = 7), the zeros are at a higher frequency than those of the modes. For smaller ratios
(eg. 1< 7"% < 2), their frequency decreases to be below that of the modes. This change
in pole-zero pattern is referred to as pole-zero flipping. Moreover, for some value (7'% ~ 4),

there is pole-zero cancelation and thus, the bending modes become unobservable. Figure
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Figure 4-6: Pole-zero map as a function of 7’3-:: (left) zoom on the 3.4 kHz mode, (right)
zoom on the 380 Hz mode.

4-6, presents a pole-zero map of the first two modes for different values of 7’2—: As a result,
as the zeros move away from the mode, the resonance peak appears more prominent in the
response. Furthermore, when 7’%-: is either too large or too small, the DC gain reaches a limit
" controlled by k. and ks, respectively. For intermediate values, the DC gain will depend on
both stiffnesses and changes in ks due to different set-pints or input amplitudes will change

the DC gain, and zeros location.

The model can be further improved on to include nonlinearities in the contact affecting
the DC gain and dissipation. These nonlinearities depend in great part on properties of the

sample. Hence, the form of this dependence is not known. It is possible to account for it
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in the model by generalizing the probe-sample force to include dissipative terms and retain

higher order terms. Therefore, Equation (4.5), changes to f (2¢s Zes Zps Zps Op, 9‘,,, 2s)-

4.6.2 Frequency Responsc: Experiments

The samples chosen for these experiments were Glass and Polydimethylsiloxane (PDMS),
having Young’s moduli of elasticity of 60 M Pa and 2.5 M Pa, respectively. The experimental
procedure is as follows, the probe was brought into contact with the sample until the desired
set-point is attained. The system was run in feedback with a PI controller. A disturbance
signal generated by a Dynamic Signal Analyzer HP35670A, was injected at the input to
the piezoelectric amplifier, as seen in Figure 4-7. The signal going to the amplifier input
is comprised of the disturbance signal plus the controller output. The amplifier input in
addition to the laser output signal were sent to the analyzer to obtain the frequency response
of the system. The results will be shown for different cantilevers. In addition, the effect
of the force set-point and input voltage amplitude on the dynamics will be investigated.
This will aid in choosing scan parameters to achieve a good dynamic response and improve

image quality.

Cantilever-A: Glass Sample

Figure 4-8, shows the force displacement curve for the Glass sample. The points labeled on

the plot are the force set-points used for the frequency response experiments. The effects
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Figure 4-8: Force displacement curve for cantilever-A with a Glass sample.

of the force set-point on the dynamics can be seen from Figure 4-9. For the larger set-point
of 17.6nN, the DC gain is smaller and the 380 Hz bending mode has a smaller resonance
peak. The decrease in DC gain suggests that the effective contact stiffness has decreased,
hence, the scanner displacement is transmitted more to the smaller stiffness; the contact’s.
The smaller resonance peak could be due to two reasons; the frequency of the zero-pair
associated with the bending mode has slightly decreased for the larger set-point. Hence,
the contribution of the bending mode appears less prominent in the response. In addition,
it could be a result of changes in the dissipative properties of the contact with changes in
the set-point. It is important to realize that the bending mode resonance frequency does
not change. The contact forces are orders of magnitude smaller than the force the scanner

can provide, ~ 10'snN vs. ~ 1N.

The effect of excitation amplitude on the frequency response is shown in Figures 4-10
and 4-11 for set-points of 14nN and 17.6nN, respectively. It is seen that the larger the
amplitude of excitation, the smaller the DC gain. The amount by which the DC gain
changes depends on the value of the set-point. Here, the larger the set-point, the less the
change is. At a large contact force, more plastic deformation might occur in the contact,
which in turn reduces the effective contact stiffness. Contacts with higher level of plastic
deformation, would experience smaller change in the contact stiffness and hence the DC

gain. The resonance peak also changes due to variation in the frequency of the bending
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Figure 4-9: In-contact frequency response of cantilever-A with a Glass samplc: same am-
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Figure 4-10: In-contact frequency response of cantilever-A with a Glass samplc: 14nN,
different amplitudes.

mode zeros. It is worth noting that the changes in the dynamic behavior greatly differs
around the first and second bending modes, possibly due to variation in the viscoelastic

response of the contact at different frequencies.

Cantilever-A: PDMS Sample

Figure 4-12, shows the force displacement curve for the PDMS sample. The penetration
region seems quite linear. This implies that what is being measured by the PSD is mainly
the deflection of the cantilever and not the deformation of the sample. This suggests that
cantilever stiffness is much smaller than the effective stiffness of the sample at that location.

Compared to results in Figure 4-8, the suggestion is surprising since the modulus of elasticity
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Figure 4-11: In-contact frequency response of cantilever-A with a Glass samplc: 17.6nN,
different amplitudes.

of PDMS is a factor of 24 smaller than that of Glass. However, the values of the moduli
are bulk values and they may not represent the local properties of the nano-contact. In
addition, the experiments with the Glass sample were performed before those of the PDMS
sample. It may be possible that the probe has become blunt. As a result, the contact stress
would be smaller for the same applied force. The results in Figures 4-13 to 4-15, are similar
to those for the Glass sample, except for the changes in resonance peak. As seen in Figures
4-14 and 4-15, the frequency of the bending mode zeros does not change with excitation
amplitude. This again implies that the contact stiffness is much greater than the cantilever
stiffness. As predicted by the model, most of the response will be absorbed by the cantilever
with little sample deformation. Therefore, the changes in resonance peak may be due to

changes in the dissipative properties of the contact.

Cantilever-B: PDMS Sample

The results with the Glass sample are similar to those with cantilever A and therefore, will
not be presented. However, the results with the PDMS sample are different and will be
presented and discussed.

Figure 4-16, shows the force-displacement curve for the PDMS sample. The penetration
region seems quite nonlinear. This implies that what is being measured by the PSD signal,
at least in part, is the deformation of the sample. The observations in Figure 4-17 for

a 36 nN set-point, are that increasing the input amplitude reduces the DC gain, and the
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Figure 4-13: In-contact frequency response of cantilever-A with a PDMS samplc: 17nm
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Figure 4-14: In-contact frequency response of cantilever-A with a PDMS samplc: 21 nN for
different amplitudes.
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Figure 4-16: Force displacement curve for cantilever-B with a PDMS sample.

frequency of bending-mode zeros, thus, increasing the resonance peak. This suggests that
the contact stiffness decreases with increased amplitude. In addition, increasing set-point,
Figure 4-18, results in pole-zero flipping for the first two bending modes. In addition, there
is no change in the location of the zeros with input amplitude for the 113 n.N step-point, as
seen in Figure 4-19. This implies that increasing the higher set-point increased the effective
contact stiffness, which agrees with Figure 4-16. These results are in agreement with model
predications in section 4.6.1, (Figure 4-5); implying that the contact and cantilever stiffness

values are relatively close at the 36 nN contact point.
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Figure 4-18: In-contact frequency response of cantilever-B with a PDMS samplc: 17nm
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Figure 4-20: Images of calibration steps using a PI controller: (a) scanning simulation, (b)
experiment.

4.7 Scanning Simulation vs. Experiments

Scanning simulations were performed using the developed models. The sample shape used
in simulation is an experimental AFM image of calibration steps. Figure 4-20 (a), shows
the simulated image vs. the actual sample. It can be seen that the sampled and averaged
image generated from the voltage V,, does not correspond well to the actual image. The
cantilever oscillations causes it to loose contact with the sample and the hammering action
could in fact be damaging to the sample. The AFM image shown in Figure 4-20 (b) is of
the steps used in the simulation. The simulations predict the actual response well. Also
note that the oscillations observed in Figure 4-20 (b), which are due to the bending mode,

introduce an artifact that could be interpreted incorrectly as surface roughness.

4.8 Scanner Hysteresis

The nonlinear voltage to displacement sensitivity of the scanner was measured by applying
a 10 Hz sinusoidal input and measuring the bending response of the scanner. The input
amplitude was varied from 20V up to the maximum allowable voltage of 400 V. The re-
sults are shown in Figure 4-21 with the input voltage scaled down by a factor of 10. The

data are typical of a PZT scanner where sensitivity initially increases with increased input
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amplitude. Although not seen from the data, however, when the input amplitude exceeds a
certain limit, the sensitivity starts decreasing with increased input amplitude approaching
a saturation limit. This limit is avoided in practice as it brings the input electric field close
to the depolarization field where piezoelectric effect would be lost. A 2*¢ order polynomial
was fitted to the data. The maximum relative error of the fit is 7% for the range 40 to
400 V. A linear fit was applied to the low-voltage data points and is also shown in Figure
4-21. The linear fit gives a 24% error at full range. Accordingly, for a 5 um scanner there
would be an error of 1.2 um at full scale using this linear fit as is commonly done. The new
calibration method presented in Chapter 3, can be used to generate data similar to Figure
4-21, which would allow for accurate calibration of the scanner. Therefore, eliminating the
shortcomings of using an AFM for measuring tall structures as in optical and semiconductor

devices.

Figure 4-22, presents experimental hysteresis loops for the piezoelectric scanner. The
input signal is a 10 Hz sine wave with amplitudes of 20, 50, and 100 V. In the figure, the
input values are scaled down by a factor of 10. The hysteresis loops can be characterized
by their average slope, loop center point, and the loop width. These characteristics change
with the input amplitude. As discussed in Section 2.3.5, hysteresis in piezoelectric actuators
occur mainly in the electrical domain between the applied electric field and the electric
displacement (or charge g,). Therefore, in order to use the hysteresis model of Equation
(2.72), the current ¢p, needs to be measured. Measuring the current given the high input
voltage is practically difficult and therefore, not used in practice. Some authors have used
the derivative of the input signal instead [95], and fitted the Bouc-Wen model to a single
hysteresis loop. However, using the input derivative will fail to capture the changes in the
characteristics of the hysteresis loop at various input amplitudes. The Bouc-Wen model
was fitted to the 100V hysteresis loop of Figure 4-22, and the model was later used to
predict hysteresis loop for the 50 V input. The results are given in Figure 4-23, where it
is seen that the model fails to accurately simulate the smaller loop. This is mainly due
to the nonlinearity in the voltage to charge response which will is not captured when the

derivative of the input is used instead of the current. A similar tested was done using the



4.9. Scanner Creep 86

0.16F o 2™ Order Polynomial Fit &
EO.M —  Experiment
E 0.12 —  Linear Fit
g o1
&
Bo08
2
§ 0.06f
2
& 0.04

0.02

00 5 10 15 2‘0 25 30 35 40
Input Voltage, [V]

Figure 4-21: Nonlinear voltage to displacement quasi-static curve of piezoelectric tube.

0.2

0.1

Displacement, [V]
& o &
w ~N — <?

s
1
'S

-0.5

-10 -5 0 3
Input Voltage, [V]

Figure 4-22: Experimental hysteresis curves for scanner for a sinusoidal input at 10 Hz:
20V, 50V and 100V.

Coleman model, and the results are shown in Figure 4-24. A solution for this problem is not
presented in this thesis. However, the main thesis contributions in dealing with hysteresis in
AFM are developing the method of Chapter 3, that allows characterizing hysteresis for the
full range of scanner displacement. In addition, developing a realistic scanner model that
can accommodate a hysteresis model in a physically-consistent manner. Finally, identifying

limitations of some of the methods that has been proposed in the literature [95].

4.9 Scanner Creep

A commercial AFM was used to measure the creep response of its piezoelectric scanner. The

AFM probe was brought into contact with a hard sample (Glass sample), while in open loop.
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Commanding the scanner to move up/down in the Z-direction, changes the PSD signal ac-
cordingly. This signal shows the scanner response including creep. However, the measured
PSD signal could also change due to the response of the AFM structure or scanner to vari-
ations in the environment temperature, and/or mechanical vibrations. More so, variations
in the laser source output, heating of the cantilever by the laser source, cantilever bending
due to thermal gradient between the probe and sample, relaxation in probe-sample contact,
and/or drift in the drive or sensing electronics can affect the PSD output. All these factors
are considered sources of noise in the creep data. To minimize their effect on measurement
and obtain a good signal-to-noise ratio, the AFM was placed inside an environmental and
vibration isolation chamber. The system was given enough time to reach an equilibrium
state, before data collection. A thermocouple measuring the Air temperature inside the
chamber was used to record the extremum temperatures during the experiments. Typical
temperature fluctuation was 0.4°C over the duration of an experiment, 30 — 40 minutes.
The choice of cantilever was dictated by a trade-off between sensitivity and noise. A low
stiffness gives a high displacement sensitivity and a small probe-sample force. This reduces
the effect of possibly nonlinear material behavior of the sample on the measurements. On
the other hand, the cantilever stiffness should not be too low causing reduced resolution by
increasing the cantilever displacement response to thermal noise. Another concern is the
choice of nominal cantilever deflection (PSD signal). The cantilever deflection vs. scan-
ner displacement curve can exhibit nonlinear behavior hence degrading the linearity of the
measurements. The selected nominal deflections and operating range during experiments
were chosen to be within the mostly linear part of the curve. In addition, the input voltage
V., was chosen to be small enough to ensure good linearity in scanner displacement. The
excitation signals consisted of steps and ramp signals that are saturated in amplitude. The
rate of ramp signal was varied to study the effect of input rate on creep response. The PSD
signal was recorded before the scanner is excited to measure total instrument drift (noise).
During the experiments, the scanner was commanded to move down a certain displacement.
After several minutes it was commanded to move the same displacement up. Both data

were combined and averaged to cancel the effect of drift in the PSD signal.
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Figure 4-25: Pre-data collection drift in PSD signal.

Two Silicon cantilevers were used for these experiments. A cantilever with nominal
stiffness of 0.03 N/m that had an equivalent displacement noise of 14 Arms and 7nm peak-
to-peak at 100 Hz. The second cantilever had a nominal stiffness of 0.2 N /m and an equiv-
alent displacement noise of 5.1 Arms and 3.5 nm peak-to-peak at 100 Hz. A typical scan
requires 2 to 5 minutes to complete, depending on scan rate and image resolution. Ideally,
this is the necessary duration for characterizing scanner creep. Instrument drift of 1.4 Als
was typical, Figure 4-25. Data collection was limited to a maximum of 3 minutes to ensure

small contributions of instrument drift to the collected data.

To test the linearity of creep response, different voltage ramp signals with different
saturated amplitudes were used. All signals had the same ramping rate of 1V/s, hence,
ramping time was different for each input. The amplitudes were chosen to be small enough
such that the nonlinearity in the scanner fast response would not be a concern. The results
are shown in Figure 4-26, where the cantilever response to a 260 nm scanner displacement
is compared with the response to a 104 nm displacement which has been scaled by a factor
of %—8—% = 2.5. The Figure shows the good linearity of the response. This tends to suggest
that the creep part of the response tends to scale linearly with the fast response. Therefore,
a linear model of creep may be justified. The nonlinearity in the fast scanner displacement
could be accounted for separately. Figure 4-27, displays the creep response for two ramp

inputs of the same saturated amplitude but ramped over 200 us and 10ms. The response
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Figure 4-27: Creep response to inputs with different rates.

does not show any dependence of creep rate on input rate.

Figures 4-28 and 4-29 show the response of the LTI and logarithmic models, respectively.
The parameter values for the logarithmic model are, v = 0.12, and ¢, = 0.18s. A 3rd
order LTI model was used with poles at 3.98 mHz, 79.57mH z, and 1.59 Hz and zeros at
4.48mHz, 84.79mHz, and 1.71 Hz. Both models reproduced the creep response reasonably
well. The fit for both models degraded at larger times. The fit can be improved by increasing
the order for the LTI model or adding more terms of different rates in the logarithmic model.

A model used to predict and compensate for creep in AFM has to be able to reproduce
creep behavior under excitations during typical operation. The input signals for lateral

motion (scanning), are a triangular wave, not necessarily with a linear slope, and a ramp
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for the fast and slow scan directions, respectively. The model fitting can be optimized
specifically for these signals, yielding good agreement with actual response. The Z input
voltage depends on sample topography and is not known a priori. Hence, a creep model for
the Z-direction scanner displacement has to be capable of reproducing scanner creep not

only for a prescribed input signal.

Both models presented displayed the ability to closely predict creep response for a step-
like input. However, the structure of the models is quite different. In the logarithmic model,
the strain rate of the scanner (or velocity) is assumed to be an explicit function of time
% = f(t,V,), suggesting that the scanner is a non-autonomous system. In contrast to the
LTI model, % = f(e,V;), which is time-invariant (autonomous). Physically the scanner
response depends on the input voltage V, history and the state of strain e of the scanner.
To portray this graphically, two experiments were performed. In the first experiment, the
scanner was stepped by 340 nm, and the PSD signal was recorded. In the second experiment,
the scanner was stepped by half the displacement of the first experiment 170 nm at time
zero. After 19s, it was stepped by an additional 170nm. The creep part of the response
is shown in Figure 4-30, for both experiments. The logarithmic model would predict, for
the second 170 nm step, the curve labeled f(¢,V,) which is the portion of the 340 nm curve
after t = 19s. This prediction does not match the actual response. Conversely, the LTI
model prediction labeled as f(e, V) matches the actual response well. It was obtained using
the portion of the 340 nm curve starting at 24 nm. Hence, demonstrating that the creep
response depends on the input and state of strain of the scanner and not explicitly on time.

Note that creep is also a function of temperature as the sensitivity of the scanner is. It
is assumed however, that AFM would be operated in an environment where temperature

fluctuations are not large. Otherwise, obtaining reliable measurements will be difficult.



Chapter 5

Creep Compensation

5.1 Introduction

It has been shown that the LTI model is more suitable for predicting creep response. To
compensate for creep, the model was inverted and a pole at 10 kHz was augmented to the
inverse filter to limit exciting high-frequency system modes. The filter, as seen in Figure
5-1, was placed in series with the controller. To test the performance of the filter, Silicon
steps of two different heights were imaged using different cantilevers than the ones used for

collecting the creep data.
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Figure 5-1: Feedback block diagram with creep compensation filter.
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Figure 5-2: Feedback block diagram with creep compensation filter.

5.2 Creep Compensation

5.2.1 530nm Steps

A Silicon Nitride cantilever with nominal stiffness of 0.37 N/m, a triangular cross section,
and resonance frequency of 20kH z was used for results in Figures 5-3 and 5-5. This shows
the images of 530 nm % 1.5nm Silicon steps scanned at 2.8 um/s with and without creep
compensation. The side walls of the steps appear to have different angles due to convolution
errors. As shown in Figure 5-2, the probe was tilted with respect to the sample, hence, one
side of the step is imaged by the probe’s side wall instead of its tip. As a result, one side of the
sample appears to the feedback system as a ramp disturbance, while the other could closely
approximate a step disturbance. This allows examining the effect of the rate of disturbance
on the image and compensation effectiveness. The image is created from the closed loop
scanner input voltage responding to changes in sample topography (disturbance). The
linear model of the system as given in Equation (2.75) has zeros which makes the response
dependant on the disturbance rate in addition to amplitude. This explains why the amount
of creep at the top of the steps is different from that at the bottom.

Without compensation, there is creep of 30 nm (5.7 % of step height), at the bottom of
the step over 0.26 s. With compensation this reduces to 4.5 nm (0.85 % of step height). At
the top, creep is 2.2nm(0.4 %) and 9.5nm(1.8 %) over 0.22 s with and without compensa-

tion, respectively. Figures 5-4 and 5-5, show the image at a very slow scan speed of 17.5nm/s
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Figure 5-3: AFM image of 530nm Silicon steps, with and without creep compensation,
2.8um/s.
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Figure 5-4: AFM image of 530 nm Silicon steps, with creep compensation, 17.5 nm/s.

with and without creep compensation. Without compensation, creep of 14.1 nm (3.1 %) over
35s and 48.5nm (10.1%) over 35s at top and bottom, respectively. With compensation,
this reduces to 2.9 nm (0.57 %) over 50 s and 13.7nm (2.6 %) over 35s. The compensation,
has dramatically reduced the effect of creep. However, as seen in Figure 4-28, there is as
much as 5nm error between the model and experiment during the first second of the creep
response. As a result, Figure 5-4, peaks just after the right-side walls of the sample were

not well compensated for.
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Figure 5-5: AFM image of 530 nm Silicon steps, without creep compensation, 17.5 nm/s.
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Figure 5-6: AFM image of 1590 nm Silicon steps, with creep compensation, 10 pm/s.

5.2.2 1590nm Steps

In Figure 5-6, an image of 1590nm + 1.5nm steps is shown for a scan speed of 10 um/s.

The measured height is 1495 nm due to nonlinearity of scanner displacement (6 % nonlin-

earity). Creep at the top and bottom of the steps, with compensation, is 6(0.4%) and

8.3nm (0.56 %) over 0.5s. At a much slower scan speed of 41.67nm/s, Figures 5-7 and

5-8, the images are shown with and without compensation. Un-compensated images show

creep of 135 nm (9 %) and 143 nm (9.6 %) at the top and bottom of the steps. Compensated

images show creep of 35nm (2.4%) and 41.6 nm (2.8%). Note that the compensation did

not degrade because of the larger sample height. This again suggests that the assumption

of linearity in creep response is reasonable.
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Figure 5-7: AFM image of 1590 nm Silicon steps, with creep compensation, 41.67nm/s.
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Figure 5-8: AFM image of 1590 nm Silicon steps, without creep compensation, 41.67 nm/s.
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5.2.3 Notes on Parameter Identification for the Creep Model

The creep model need to be validated before it can be used for compensation. Validation
data can be collected as described in Section 4.9. Alternatively, data could be collected
while the system is in contact and in feedback. However, the initial part of creep will
depend on the controller gains, and accurate data may not be easily obtained. In either
scenario, the duration for data collection should be limited based on instrument drift. It is
possible to automate the process of creep identification and compensation. The procedure
for Z-axis creep identification can be performed as follows, using a hard sample and a low-
stiffness cantilever. While the cantilever is far away from the sample, a frequency sweeping
voltage signal is sent to the x+ or z— electrodes, and ypgp is collected. The frequency of
the first resonance peak w;,, may be identified from the data. Alternatively, the collected
data may be displayed to the user to interactively select the point of the first resonance
peak. Thereafter, the probe is brought into contact with the sample and then retracted
until the contact is broke. Using this data, estimate of the sensitivity between ypsp and
V., (DC gain), can be computed as the ratio of ypsp to V, data around the contact point.
In addition, the pull-off point y,,, and the noise in ypsp while in-contact y,, can be found.
A ramp input with a saturated amplitude can be used to excite the scanner. The duration
of the ramp #,, should be chosen to be lower by a factor of 3 to 4 than the response time of
the scanner, e.g. t, > Fl?ﬁ' The nominal contact point is chosen to aloow a good SNR,
while not loosing contact with the sample during the experiment. This can be accomplished

by selecting the set-point y, as

SNRy,
expected % of creep

Ys = Ypot (5'1)

where typical values for creep percentage is 10 to 30 %. The SNR. can be chosen as desired,

typically > 5. The amplitude of the amplitude-saturated ramp is then given by

_ Iys—ypol
AV, = DCgain (5.2)
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The probe is brought back into contact with the sample at the desired set-point and
maintained by feedback. After several minutes, the instrument drift should be estimated
from the control voltage signal. Based on that the time duration over which creep data is col-

lected can be decided on such that instrument drift is only a small fraction of scanner creep.

Based on the presented compensation results, a 4" to 6 order model would be suffi-
cient. For the selected order, standard input-output identification techniques [96], could be
used to fit the data to the model. The resulting fit may require further fine tuning of the
parameters. An interactive window showing th experimental and simulated responses can
be displayed to the user, as in Figure 4-28. Poles and zeros can be displayed for the users as
tuning knobs. The regions of the response where each pole and zero contribute most to the
response could be labeled on the response window. The user can then fine tune the model
fit to make both the simulated and experimental data in agreement. This procedure needs
to be performed infrequently. Typically once or twice a year depending on how often the

AFM is used.

For X and Y, a different experiment is needed for collecting creep data. For the X-axis,
while the cantilever is in Air and the laser is aligned as in Figure 5-9, an amplitude-saturated
ramp signal is applied to both electrodes xz+ and x—, and the PSD signal is collected. To
avoid possible nonlinearities in the PSD response, the input amplitude should be kept small.
The SNR would still be good, since the PSD would be able to detect scanner bending ~ 14
RMS. Data for the Y-axis creep could be obtained similarly, however, the laser spot would

be aligned at the base of a rectangular cantilever as shown in Figure 5-9.

5.2.4 Open Loop vs. Closed Loop

We have shown one method to compensate for scanner creep when operated, as it is com-
monly, without measuring scanner displacement. An inverse filter can provide an inex-
pensive method of compensation. However, its performance will strongly depend on the
quality of creep data, the order of the filter, and fitting algorithm. Obtaining reliable creep

data for long time proved to be a difficult task especially for the common AFM user. In
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Figure 5-9: Locations for laser spot alignment for X and Y creep identification.

addition, the order of the model would grow if good short and long time compensation
is desired. Another compensation alternative is to sense the scanner displacement in the
Z-direction and use that signal to create the sample image. This would virtually remove
the effect of creep on the image. Many displacement sensing technologies, e.g. capacitive,
inductive, optical, can provide short term stability of 100 ppm/°C. For a 5 um scanner like
the one used in this study and a temperature change of 1°C' during experiments, a sensor
drift of 5 A is expected. These results are superior and more reliable than the results of the
filter. However, this option is far more expensive. In addition, most sensors do not have
large dynamic range at high bandwidth. As a result noise performance is worse than open
loop operation especially for small scans or when scanning samples with small features (few

nanometers).

5.3 Summary

In this chapter the LTI creep model of Equation (2.75) was inverted and used to compensate
for scanner creep in the Z direction. Experimental results showing AFM images of 530 and
1590 nm Silicon steps were presented to demonstrate the effectiveness of the compensation.
Moreover, methods for generating creep data for scanner displacement in the X Y and Z
directions were presented. Furthermore, identification procedure for model parameters was

discussed. Finally, open versus closed loop operation was discussed.



Chapter 6

Automatic Selection of Scan and

Controller Parameters

6.1 Introduction

In this chapter, the models and results presented in the earlier chapters will be used to aid
in selecting scan and controller parameters. First, factors affecting scan parameter selection
will be discussed. Then, performance trade-offs and limitations of the AFM feedback system
will be identified and analyzed. Parameter selection will then follow for different control

strategies.

6.2 On Factors Affecting Scan Parameter Selection

Several scan parameters are available to be freely specified by the user. These parameters
include scan size, scan rate, image resolution (number of data points per scan line), force
set-point, and controller gains. Scan size and resolution depend on the sample being im-
aged, hence, their values should be completely decided on by the user. The objective is to
be able to automatically select scan rate (or speed), force set-point, and controller param-
eters in order to consistently achieve a good image. Characteristics of achieving a good
image include, that probe and sample remain in- contact during scanning, that the set-

point error is maintained small at all times, and the signal used to create the image is free

101
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from mode oscillations. In addition, high-frequency noise level in the image signal should
not be amplified by feedback. The latter requirement is less stringent in this application,
because feedback stability will dictate a considerable limit on the bandwidth. In order to
synthesize simple yet realistic rules for automatically selecting parameters, few simplifying
assumptions are required. First, the requirements on scan speed will be addressed followed

by a discussion on selection of the contact force set-point.

During scanning, the probe is dragged along the sample surface while in contact. As-
suming negligible probe-sample deformations, the vertical speed of the probe v,, is related
to its constant lateral scan speed vseqn, by the local slope given by tan(a) at the probe-
sample contact point (ﬁ—; or ﬁé depending on scan direction). This can be seen from Figure
6-1, where v, is given by

_ Uscan
V2= tan(a) (6.1)

A lower bound on the slope is given using the included angle of the probe ¢, as seen in
Figure 6-1. The assumption of neglecting contact deformations may be reasonable if the
controller manages to keep the set-point error small at all times. Alternatively, if the ratio
between contact to cantilever stiffnesses is high, the assumption might be reasonable. Can-
tilevers used for imaging have resonance frequencies much higher than those of the scanner
bending modes; 10 to 90 kH z compared to 300 Hz to 5 kH z for scanner resonances. Hence
the feedback bandwidth is typically much lower than the cantilever resonance frequency,
therefore neglecting the cantilever (probe) response is very reasonable, as implicitly implied
by Equation (6.1). In the case of multiple contact points between the sample and the probe,
v, will depend on the smaller of the slopes at the contact points. Also in reality the probe,
especially long sharp ones, could flex and cause the cantilever to twist, which has also been

neglected.

The choice of contact force is motivated by four main factors, namely, contact stresses,
sample deformation, lateral friction force between the probe and the sample, in addition to
maintaining probe-sample contact during scanning. Using the model of section 2.2.1, the

force required to theoretically achieve zero deformation between the probe and sample was
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Figure 6-1: Dependance of probe vertical speed on local slope at contact point.

computed. The ratio between the zero-deformation force and the pull-off force is plotted
versus A in Figure 6-2. It is seen that except for very hard contacts (A < 0.1), the force
ratio is about 0.89. This implies that in order to achieve zero sample deformation, the force
set-point would be such that the cantilever is pulling the probe away from the sample. This
condition demands that during scanning, the set-point error be maintained very small at all
times. Consequently, requiring a high-bandwidth typically beyond the system’s mechanical
resonances, and hence is impractical. On the other hand, the set-point should be chosen to
minimize the friction force between the probe and the sample. In [74], experiments on mica
have shown that in the absence of wear, the average friction force is directly proportional
to contact area. The contact area is non-zero as long as the probe and sample remain in
contact. Hence, there is no set-point which will make the friction force zero. However, the
larger the contact force the greater the contact area, Figure 6-3, and the higher the friction
force will be. Accordingly, a small contact force is desired. The minimum contact area for

a stable contact will also depend on the cantilever stiffness.

Based on the above arguments, it is seen that the contact force should be selected as
small as possible. The maximum achievable feedback bandwidth should then be identified
for that particular set-point. The scan speed should be chosen to be smaller or equal to
the maximum value for which contact is maintained at all times during scanning. The

maximum feedback bandwidth will depend on the structure of the controller. Therefore,
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Figure 6-3: Contact radius vs. contact force for different values of A.

the following sections will discuss different control strategies.

6.3 Trade-offs and Performance Limitations in AFM Feed-

back System

When the probe is brought into contact with the sample, the controller should achieve
closed loop stability at the desired contact force set-point for the given cantilever and
sample. Moreover, the controller should maintain the set-point error within a prescribed
tolerance for all times (i.e. transient and steady state), such that probe-sample contact is
not lost nor excessive force is applied to the sample. In addition, system uncertanties due

to cantilever and sample properties, variations in contact stiffness an dissipation, and pole-
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zero flipping, should all be compensated for. In addition, good dynamic response should be
achieved in despite of these uncertainties. From a practical point of view, it would desired
that controller have integral action to avoid needing excessively high-gain to maintain the
desired set-point in addition to be able to reject constant disturbances. Furthermore, the
controller should be based only on output measurement (PSD output). In addition, the

controller should compensate for resonances within the desired closed loop bandwidth.

Before addressing the question of how to automatically select key parameters, it is
essential first to identify expected performance trade-offs and limitations. We will begin by
analyzing the linear model of the fast dynamics ignoring creep and hysteresis. In this section,
the controller is assumed to be LTI. A block diagram of the feedback system is shown in
Figure 6-4, where d, is output disturbance, n is sensor noise, G¢(s) is the controller transfer
function, and Gp(s) is the plant transfer function including driving amplifier, scanner, and
sensor filter dynamics. A typical frequency response of G, is shown in Figure 6-5. As
discussed previously, the dynamics of the typical cantilevers are much faster than scanner
lateral dynamics and therefore are neglected. Accordingly, sample topography maybe be
modeled as an output disturbance d,. The image is typically created from the input voltages
(2, Uy, u,). Therefore, the transfer functions between d, and e (sensitivity function S(s)),

and between d, and u (control sensitivity function Sy(s)), are the main interest and are

given by
e -1
S(S) = d_o = TL(S) (62)
Uu -G,
Su(s) = & - 17L0) (6.3)

L(s) = Gp(s)Gels)

Nominal feedback performance may therefore be specified in terms of Equations (6.2) and

(6.3).
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Figure 6-4: Block diagram of the AFM feedback system.
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Figure 6-5: Representative frequency response of Gp.
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6.3.1 Scanner Bending Modes

The results of Section 4.6 have demonstrated the coupling between the longitudinal and
bending dynamics. In addition, the bending modes were found to be observable from the
output signal. The frequency of the first bending mode is usually significantly lower than
the first longitudinal mode; 380 Hz and 4.6 K Hz for the AFM in use. As a result, a sub-
stantial reduction in feedback bandwidth is expected as a result of this coupling. Moreover,
the poles and zeros of the bending modes will impose additional performance limitations,

as will be shown in Section 6.3.3.

Further, when the scanner is commanded to move up/down, there will be a slight bend-
ing motion that gets detected by the PSD. The scanner is typically calibrated by imaging a
standard of known height usually in the 100 nm range. During imaging, the PSD signal will
change due to the sample topography as well as actuator bending. Imagining a sample of a
different height will result in a slightly different calibration factor, even if the nonlinearity
of the scanner is not a concern. The change in calibration due to scanner bending would

typically be less than 1 %.

6.3.2 Uncertainty

In Chapter 4, experiments and simulations have revealed several sources of uncertainties
including, changes in the resonance peak, contact stiffness and dissipation, transfer function
DC gain, and the pole-zero structure. These changes were found to be a strong function
of force set-point and disturbance amplitude. In addition, they may depend nonlinearly on
probe-sample contact properties. The large level variations and uncertainties would have a
strong impact on robust stability and performance. In order to demonstrate these points,
consider a reduced-order model consisting of the first bending mode and its zero pair as the
plant. As mentioned previously, the frequencies of the scanner resonances are not affected
by the probe sample interactions. Based on this simple model, uncertainty in DC gain,

modal damping, and pole-zero flipping can be modeled as an unstructured uncertainty as
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follows
bys® +bis +bo _ bes+histby  Bps+bhis+bo
s2+a1s+ay  s2+ais+ag s2+ais+ag
Gp(s) = Gp(s) +W(s)A(s) (6.4)
Al < 1 (6.5)

where " represents estimate values and ~represents deviation from the true value. Robust

stability requires that
| WS, |< 1 (6.6)

It is worth noting that this stability test is not conservative in the case of pole-zero flipping
since the phase may change by a total of 360°. Equation (6.6), implies that at frequencies
where uncertainties are large |W| is large, |S,| should be made small for robust stability.
Large variations and uncertainties would generally result in trading-off bandwidth (perfor-
mance) to guarantee robust stability. This point will be demonstrated using the experi-
mental frequency responses of Figures 4-17 and 4-19. The two responses were obtained for
the same disturbance input amplitude but for two different force set-points, namely, 36 and
113nN. An integral controller G(s) = Esl is used and the resulting loop transfer function

is shown in Figure 6-6. The controller gain was chosen to achieve a crossover frequency of

93 Hz and 112 Hz for the 36 nN and 113nN data, respectively.

Figure 6-7, shows the control sensitivity function S, for both force set-points. For the
smaller force, pole-zero flipping occurs resulting in a very large peak close to the frequency
of the bending mode. As a result, poor robustness properties and performance is expected;
despite a relatively low bandwidth compared to the open loop bending resonance at 380 H z.
In addition, the sensitivity function, depicted in Figure 6-8, similarly shows a large peak.
It is worth mentioning that the effect of an output disturbance at the frequency of the peak
will be amplified more by S compared to S, as seen by the magnitude of the peaks in their
response. Therefore, the expected oscillations will be large in the output signal,which may
be damaging to the probe and the sample. An image taken under these conditions would

show oscillation if the probe would be perturbed during scanning. This is demonstrated in
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Figure 6-8: Sensitivity function frequency response of experimental data with integral con-
trol.



6.3. Trade-offs and Performance Limitations in AFM Feedback System 110

Displacement, [pm]

s 0.56 1.12 1.68 224
1000} e
|
— 800} 380 Hz Scanner \
g‘ Bending Mode |
s |

= 600t

B |
Y |
mo
I,
0.34 0.36 0~381

0 0.2 0.4 0.6 0.8 1
Time, [s]

Figure 6-9: Oscillations due to scanner bending mode in experimental AFM image of a
1046 nm Silicon step.

Figure 6-9, where an experimental AFM image of a 1046 nm step is shown. A small force
helps reduce probe-sample friction, sample deformation hence, image distortion. However,
it may dictate a small bandwidth in order to eliminate oscillations in the image, therefore,

trading off bandwidth (performance) for robustness.

6.3.3 Poles and Zeros of a Transfer Function

Fundamental limitations in feedback control systems have been studied since the early work
of Bode [98] and Horowitz [99]. A recent review on this topic is available in [97, 101]. It
is fairly known that adding zeros to a transfer function can increase overshoot in the step
response. The presence of zeros, more formally, may impose a fundamental limitation on
the achievable performance. The results of [101] will be used and later expanded on to show

that zeros impose a trade-off between response time and overshoot.

Consider a stable proper single-input single-output (SISO), transfer function G(s) with
at least one zero at s = —s,, s, > 0. Furthermore, assume that all the poles of G(s) have
real parts less than —s,. Then the unit step response of G(s) satisfies the following integral

constraint

(6.7)
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where e(t) is the output error defined as the difference between the output and its steady
state value due to a unit step response. Equation (6.7), results from the application of the

Laplace transform to the error signal E(s) = G(0) — G(s), and noting that G(s,) = 0. For

a complex zero-pair at s, = —0, * jw,, 0;,w, > 0, Equation (6.7), leads to
o0
ot _ 9GO0
| /0 e eoswst)elt)dt = (6.8)
© G(0)
St sin(wt) e(t) dt = -2 :
./0 e?*" sin(w,t) e(t) dt R (6.9)

To demonstrate how these integrals constitute a constraint on performance, consider a plant
with a single real zero at s = —s, and assume that for t > ¢; e(t) ~ 0 and that s,t, < 5.

Furthermore, all the poles of G(s) have real parts that < —s,, then Equation (6.7) reduces

to
rts o) —
/ e’ e(t) dt + ee(t)dt = =¢O (6.10)
0 Jtg Sz
s —
/ e(t)dt ~ =GO (6.11)
Jo Sz

where it has been assumed that the contribution of the second integrand in Equation (6.10),
is negligible compared to that of the first integrand under the aforementioned assumptions.
If G(0) > 0, then the initial error is positive, and decays exponentially to zero. From Equa-
tion (6.11), it is seen that the integral of the error amounts to a negative value. Hence, the
error signal changes sign and the output signal will overshoot. A similar argument holds
for G(0) < 0. In addition, Equation (6.11) suggests that || e [loo> %gl, hence a large
overshoot would occur as the response time ts is made small compared to the frequency
of the zero s,. No rigorous reasoning was given for neglecting the contribution from the
second integrand in Equation (6.10). However, the argument was presented to demonstrate
the trade-off due to system zeros. It also demonstrates that if the system response was

allowed to be slow compared to the zeros, the trade-off is relaxed.

Furthermore, consider the step response of a system with a complex zero pair at 0.7+;0.7

and three real poles all at s = —\. Three cases are considered for A equal to 1, 2 and 3. The
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Figure 6-11: Step response of three transfer functions with a single real pole demonstrating

trade-off.

response is shown in Figure 6-10, where it is seen that as the response time is made faster

compared to the frequency of the zeros, large overshoot is observed in the step response.

Another system was also consider which has a single real zero at s = —1 and again three

real poles all at s = —\. The case of A = 3 was simulated and compared to the previous

system with the two complex zeros. The result is depicted in Figure 6-11. It is seen that

trade-off exist, however, the amount of overshoot is smaller for the case with a single pole.

The number of zeros is found to have more effect on the amount of overshoot rather than

the complex or real nature of the zeros. Thus, a fundamental trade-off between response

time and overshoot exists due to transfer function zeros.
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The structure of the feedback system imposes additional constraints. The values of S(s)
and the complementary sensitivity function T'(s), are constrained at the frequencies of the

plant poles s, and zeros s,,. At these frequencies, S(s) and S,(s) are given by

S(sp) = 0 (6.12)
S(sz) = 1 (6.13)
Su(sp) = O (6.14)
Su(sz) Ge(sz;) (6.15)

The response of the output error E(s), and the control signal U(s), to the reference signal
R(s) and the output disturbance D,(s) are governed by S(s) and Sy(s), respectively. By
applying the constraint of Equation (6.7), to S(s) and Sy(s), the response of the output
error and the control signal to a unit step in reference or a negative unit step in output

disturbance are found to satisfy the following Equations

For an open loop pole at s = —s,
o0 _—
/ evtetydt = S0 (6.16)
Jo Sp
oo —_
/ et [up — u(t))dt = Su(0) (6.17)
Jo Sp
For an open loop zero at s = —s,
oo - —_—
/ e e(t) dt [S—(‘?)—H (6.18)
JO 2
o0 -_— —_
/ e [up — u(t)]dt = [S"(O)s Gels:) (6.19)
Jo 2

where s, and s, could be real or complex, and u, is the steady state value of the control
signal to the unit step input. Following similar arguments to the ones presented earlier,

the open loop poles and zeros impose a trade-off between overshoot and response time at
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Figure 6-12: Simulated frequency response between input voltage V,, and the scanner’s
vertical displacement 2.

different degrees of severity.

For the AFM feedback system it is seen that the poles of the 1% bending mode will
appear as zeros for the sensitivity function S(s), and Sy(s) provided that they are not can-
celed by zeros in the controller. Hence, for any LTI controller, extending the bandwidth
beyond the first mode will result in overshoot in tracking step-like samples in both output
and voltage (image signal), responses. Attempts to cancel the bending mode by controller
zeros might lead to poor robustness due to the high-level of uncertainty in the system and
may lead to closed loop instability. Moreover, even if exact cancellation was possible, the
bending mode poles will remain zeros of Sy(s) but not S(s). Hence, the limitation would
remain for the input signal (image signal). Another option is to create the image from a
measurement of the scanner vertical displacement 2, by fitting the AFM with a displace-
ment sensor. The transfer function between input voltage V, and 2, is shown in Figure
6-12. Hence, overshoot and oscillations in the control voltage with frequencies close to that
of the bending mode, will pass unfiltered, and z, response will have same characteristics as

the input voltage.

The open loop zeros of the AFM, as seen from Equation (6.18), will also impose a sim-
ilar trade-off on the output error response. If the frequencies of the slowest open loop pole

and zero are relatively close, then Equation (6.18) would yield a more stringent constraint
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compared to Equation (6.16). Moreover, open loop zeros impose an additional limitation
on the achievable performance in terms of the control signal response (image signal). Many
model-based control methodologies including fixed linear control, and adaptive control, will
attempt to cancel the plant dynamics and introduce favorable dynamics as higher perfor-
mance is demanded from the closed loop system. If the controller introduces poles to cancel
the open loop zeros, these controller poles will appear as poles of the control sensitivity
function S, (s). Consequently, these lightly damped poles will make the response oscillatory
having poor transients with response time not faster than that of the zeros. The material
presented in this section applies to single-degree of freedom feedback configuration. It is
possible to alleviate these trade-offs using a two-degree of freedom design. This approach
may permit shaping the response of a measured input (e.g. reference signal or a measured
disturbance), however, it would not be possible with unmeasured disturbances. Therefore,
the performance of the AFM feedback system will be constrained with the aforementioned

trade-offs.

6.4 Performance of PID and Higher Order LTI Controllers

As discussed in Section 6.3.3, substantial increase in the feedback bandwidth beyond the
first resonance will result in overshoot and poor time response. As had been shown from
experiments and simulations, the frequency response of the AFM is that of a relative degree
zero transfer function. This is a reasonable approximation over frequencies below to the
second resonance. In order to reduce the effect of high-frequency modes on feedback stability
and performance, the relative degree of the loop transfer function should be made one or
higher by the controller. Commercial AFM use a PID controller . Due to the aforementioned
high-frequency roll-off constraint, in addition to the constraints of Section 6.3.3, a PID
controller does not provide any advantage over a simple integral controller. To show this
consider the open loop experimental frequency response of Figure 4-18 of the 113nNN set-
point. A PID controller with zeros at 400 Hz only 5% from the actual resonance was used.

In addition, a single pole was added to make the transfer function of the controller proper
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Figure 6-13: Loop transfer function frequency response with integral control and proper
PID controller.

for real-time implementation. The PID controller transfer function is given by

Gd)= b”s: (Js’j’f; Z; beo (6.20)
Figure 6-13, compares the frequency response of the loop transfer function for both integral
and the above proper PID controller. For the PID controller two cases are shown, one
with a pole at a lower frequency than the resonance frequency ( at 200 Hz), while in the
other case the pole frequency is higher (at 500 Hz). It is seen that in order to meet the
high-frequency roll-off constraint, the crossover frequency for both PID controllers is about
30 Hz, while for integral control it is 200 Hz. Hence, a PID would trade-off bandwidth in
order to meet the high-frequency modes constraint. In addition, a standard improper PID

controller would achieve an even smaller bandwidth.

The aforementioned limitations are true for any LTI controller. With higher-order
fixed controllers, only marginal increase in bandwidth may be obtained compared to an
I-controller, if the overshoot constraint is to be avoided. In addition, with the higher order

controller, the feedback loop may become more sensitive to the large system uncertainties.
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Figure 6-14: Loop transfer function frequency response with integral control.

6.5 Integral Controller

A simple integral controller can be used to stabilize the AFM feedback loop, provided that
the crossover frequency is chosen either lower than the first resonance frequency, or between
the first and second resonance frequencies where the phase is close to zero degrees, as seen
from Figure 6-14. Although having a crossover frequency between the first and the second
resonances may yield nominal closed loop stability, the resulting closed loop system will have
poor robustness properties because of the large resonance peak in the frequency response
and possible pole-zero flipping. This can be seen from Figures 6-15 and 6-17, for the two
possible pole-zero structures. In addition, the feedback system would have poor transient
performance due to oscillations in the step response, Figures 6-16 and 6-18. Accordingly, to
achieve robust stability, and oscillation-free response, one needs to sacrifices bandwidth by
selecting the crossover lower than the first resonance. Commonly, an integral action in the
controller is not used on its own but complemented with a proportional term to form a PI
controller. The reason behind this, is that for a system with a relative degree two, using an
integral controller will result in increasing the relative degree to become 3, which leads to
high-gain instability as seen in Figure 6-19 (a). However, the AFM model of Equation (6.4),
has a relative degree zero. Hence, as seen in Figure 6-19 (b), the AFM feedback system
with integral control would remain stable at high-gain, within the region where this model

is valid.
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Figure 6-15: Frequency response with integral control: (a) sensitivity function (d, to ypsp),
(b) control sensitivity function (d, to u), (red) high bandwidth (blue) low bandwidth.
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Figure 6-16: Unit step response in d, with integral control: (a) sensitivity function (do to
ypsp), (b) control sensitivity function (d, to u), (red) high bandwidth (blue) low bandwidth.
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Figure 6-17: Frequency response with integral control: (a) sensitivity function (do to ypsD),
(b) control sensitivity function (do to u), (red) high bandwidth (blue) low bandwidth.
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Figure 6-18: Unit step response in d, with integral control: (left) sensitivity function (do
to ypsp), (right) control sensitivity function (do to u), (red) high bandwidth (blue) low
bandwidth.
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Based on the previous discussion, the design of the AFM feedback system can performed
by imposing specifications on Sy, since it represents the response of the signal the image
is created from. In addition, if an AFM is equipped with scanner vertical displacement
sensor, the response of z, will be very similar to V, for the reason discussed earlier (Sec-
tion 6.3.3, and Figure 6-12). The performance specification on S, will be chosen such that
the bandwidth as defined by —3dB frequency be maximum such that the magnitude of
|Su(jw)| < 8/(DCgain) for w > w,, where § is design constant. The condition on |Su(jw)|
is to ensure that there are no large peaks in the frequency response. Closing the feedback
loop with the I-controller, the poles of the first mode will tend to the system zeros at high
gain. If there are peaks in the |Sy,(jw)| it would be at frequencies between the open loop
poles to and the zeros. Hence, w, should be set as the smaller of the resonance or zeros’

frequency. From experiments and simulations 6 < 0.4 seems to give good results.

As seen from Figure 6-7, limiting the bandwidth to be below the resonance by a factor
of 2 or 3 will not necessarily guarantee good performance, rather it will strongly depend
on the contact force set-point. Therefore, the feedback bandwidth may be improved for
a given set-point by estimating the frequency response function (FRF) to obtain G’,,(jw)

around that set-point. The procedure for estimating Gp(jw) starts as follows, while the
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cantilever is away from the sample and in Air, excite the scanner in bending along the axis
of the cantilever (X-axis in Figure 4-7) and collect the PSD signal. This can be done by for
example using a frequency sweeping input signal, the range of frequencies can be as low as
10 Hz and up to few kilohertz. From the data estimate resonance frequency and resonance
peak. These values may be stored and this step of the procedure need not be repeated before
each scan. It may be left as part of the AFM calibration procedure, typically performed

few times a year depending on how often the instrument is used.

Then the scanner moves the probe closer to the sample until it is in contact and zero
contact force is achieved. The probe is then retracted until contact is broken. The PSD
signal is collected. An estimate for DC gain (V; to ypsp) around zero-force point, the can-
tilever deflection at pull-off, output noise at zero-force point both peak-to-peak and RMS

can all be estimated from the collected data.

The probe is to be brought into contact at the desired set-point. While in contact and
in open loop, a perturbation voltage signal V; is sent to the scanner. The signal should be
rich enough to excite first resonance and dose not cause loss of contact. In addition, a good
signal-to-noise ratio should be obtained. For example, if a frequency sweep is used, then
the estimate of resonance peak in Air, in-contact DC gain, and pull-off can be used to select

the amplitude of the input voltage such that the probe remains in contact during this test.

The collected input output data can be used with standard spectral methods [96], to
compute the auto and cross corelation functions and use them to estimate the FRF. The
estimate of the DC gain obtained for the FRF may be corrected using the estimate from
the pull-off experiment. In addition, an estimate for the frequency of the zeros Wy, , can
be found. The FRF estimate could be displayed to the user and the user may identify the

frequency of the zeros. The FRF can be used to create Su(jw).

The controller gain k; can be found as follows

1. Define the maximum —3dB bandwidth of S,(s) as the frequency of the bending
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mode wry, as motivated by the constraints of Section 6.3.3. The gain to achieve this is
"ir DCgain*

2. Initialize two vectors k, and k,, where the former vector will contain tested values
of k; that satisfies the performance specification, and k;, are used to store tested value of

k; that does not. Initialize first entries e.g. k1y = m‘%lm and ki, = %.

3. Use an initial guess for k; (for example kin = 3p7ks), and compute Su(jw) and

find W_3dB-
4. Check if |S,(jw)| < -53%1% for w > w,, where w, = min(w,,,wr,), and § < 1.

5. If condition is satisfied store the used value of k; into the vector ki, and choose a
higher value of k; to repeat the test to check if performance objective will be met with the
new value of k;. The method of bisection could be used to find the new value of k; by taking

it as the average between the highest value in k;y and k;,.

6. If condition in step 4 is not satisfied store the used value of k; into the vector k;y,.

Choose a lower value in a similar manner as step 5.

7. The procedure should be stopped when the error (either relative or absolute) between

the last two values of w_34p satisfying the constraint are smaller than a prescribed value.

8. During the procedure it should be checked that the computed w_34p that meet the

performance specification are not larger than wy,.

The value of k; can then be used to find the maximum scan speed vgen such that
contact is maintained at all time. As had been previously discussed, while the probe is

in contact with the sample, the fastest output disturbance seen by the feedback system is

approximated by a ramp with a slope of kramp = ”“‘;;‘an; %N - Ag g result the maximum
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output error due to this ramp input may be found as

Gole) = ZpEheth g K (6.21)

2
§(s) = s(s? +ajs j—(fzo;-f;:(:;gL bi1s + bo) (6.22)
css = lim s-’f%;—nzS(s) = kmm,,% (6.23)
R Sl w s 620
= Yool tanag) s sy e 625)

Vscanmas = DCgain

where, k, /v, is the scanner linear displacement sensitivity in the Z direction i.e. calibration
factor. The value of o is given available in specification sheets of commercial AFM can-
tilevers which could be entered by the user. If not, then a value for the sharpest available

cantilever may be used which is about 20°.

The computed value for the maximum scan speed is such that probe-sample contact is
not lost, but does not guarantee a low set-point error. It is also possible to estimate the scan
speed needed to track the minimum sample feature that could be detected by the probe.
Hence, as seen in Figure 6-20, an estimate may be obtained by setting the scan speed such
that the probe moves laterally a distance of 4 R, within the response time of the scanner

Wry %Hﬂ’ hence’ the maXimum Uscanmam iS given by
VUscanmer — 4Rpwr1 (HZ) (6.26)

Then for the selected set-point, the scan speed may be chosen between both limits. In
Sections 6.7 and 6.6, two methods will be presented to further improve image quality. It
is possible that if vsacne, < Vscangi, OF some other minimum value set by the user that
set-point be increased by the ratio of %’ﬁm and the whole procedure is repeated to find
the controller gain and scan speed range. It is also possible to test different set-points and

give speed and scan times for each case.
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Figure 6-20: Schematic of probe sliding on sample.

In the above procedure, the initial choice for the set-point was the zero contact force
point. As discussed in Section 6.2, it is desired to use the smallest force that is practically
possible. The absolute minimum value for a set-point will be limited by the output signal
noise close to the pull-off point, in order for the contact not to be broken. In addition, if
the pull-off point is found to be too close to zero-force point, then a larger set-point may
be used as an initial guess. The initial guess should be at least a factor of 2 or 3 of the

peak-to-peak output signal noise.

If the perturbation signal is chosen appropriately, its effect on sample deformation or
damage should be minimal. Typically, the output noise is < 1 A, hence for a SNR of say 6
and a typical resonance peak of 2 to 3 the maximum displacement of the cantilever would
be < 1 nm typical, which is smaller than tracking error involved with PID controller used in
Commercial AFMs. In addition, because of the low stiffness of cantilevers used in contact-
mode operation (~ 0.1 N/m), the resulting force will be small (~ 1nN). Other operating
modes like the intermittent-mode use stiff cantilevers driven at high frequencies (100 to
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