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ABSTRACT

A novel 3D surface imaging technique using Active Wavefront Sampling (AWS) is presented. In
this technique, the optical wavefront traversing a lens is sampled at two or more off-axis locations
and the resulting motion of each target feature is measured. This target feature image motion can
be used to calculate the feature's distance to the camera. One advantage of this approach over
traditional stereo techniques is that only one optical train and one sensor can be used to obtain
depth information, thereby reducing the bulk and the potential cost of the equipment. AWS based
systems are also flexible operationally in that the number of sampling positions can be increased
or decreased to respectively raise the accuracy or to raise the processing speed of the system.
Potential applications include general machine vision tasks, 3D endoscopy, and microscopy. The
fundamental depth sensitivity of an AWS based system will be discussed, and practical
implementations of the approach will be described. Algorithms developed to track target features
in the images captured at different aperture sampling positions will be discussed, and a method
for calibrating an AWS based method will also be described.

Thesis Supervisor: Douglas P. Hart
Title: Professor of Mechanical Engineering





Contents

1 Introduction 7
1.1 M otivation/B ackground ............................................................................ 7
1.2 Introduction to Active Wavefront Sampling .................................................... 12
1.3 Performance Potential of Active Wavefront Sampling ........................................ 20
1.4 Roadmap for In-Depth Analysis of AWS-based 3D Imaging ................................ 26

2 Design and Implementation of AWS 27
2.1 Size of Sampling Aperture ........................................................................ 27
2.2 Placement of Sampling Plane ..................................................................... 28
2.3 Mechanical Implementation of AWS ............................................................ 30
2.4 Electronic Implementation of AWS .............................................................. 33
2.5 Illum ination of T arget .............................................................................. 34
2.6 Implementation Using 50mm Nikkor Lens ...................................................... 36

3 Image Processing 41
3 .1 In troduction .......................................................................................... 4 1
3.2 Review of Motion Tracking Algorithms ......................................................... 41
3.3 Algorithms Developed for Two Image AWS Processing ..................................... 58
3.4 Extension of Two-Image Algorithms to Many Sampling Locations ........................ 70
3.5 Multi-Image Algorithm Using Large Spatio-Temporal Filters .............................. 76

4 Calibration and Quantitative Measurement 91
4 .1 In troduction .......................................................................................... 9 1
4.2 Geometrical Optics Aberration Theory .......................................................... 93
4.3 Determination of Aberration Coefficients ....................................................... 100
4.4 Performance of Calibration Model ............................................................... 111
4.5 Comparison of Calibration Model to Linear Interpolation Method .......................... 117

5 Conclusions
5.1 Theoretical Background and Utility .............................................................. 123
5.2 Implementation of Active Wavefront Sampling ................................................ 123
5.3 Motion Tracking Algorithms ...................................................................... 124
5 .4 C alibration ........................................................................................... 12 6

5



6



Chapter 1: Introduction

1.1 Motivation/Background

For the past 150 years or so, one of the most efficient means to convey information about the

world we live in has been through the use of two dimensional images. These images have been

recorded and displayed using chemical or more recently with electronic techniques, and have

been very effective at capturing and conveying the light intensity, color, and x and y coordinates

of targets within a scene. Since these images record the two dimensional projection of our 3D

world onto an imaging plane, all quantitative depth information is lost. Only subtle cues such as

shading and the mind's a-priori knowledge of the scene allow the human observer to qualitatively

extract depth cues from these two dimensional projections. Clearly, even these qualitative depth

cues can fail the observer in situations where the target is completely unknown, or if depth

ambiguities in the 2D projection exist which can easily fool the human observer. One such

"optical illusion" is shown in Figure 1.1.

Because of the inherent limitations of 2D technology, making the transition from 2D to 3D image

capture and display is extremely desirable. In terms of 3D capture, any endeavor requiring the

quantitative measurement of a target's dimensions would benefit from a sensor system that could

also measure depth. Some obvious applications include quality control of parts on an assembly

line, facial recognition for security, autonomous vehicle navigation, measurement and registration

of tissues during medical procedures, and 3D model capture for the movie and entertainment

industries. Indeed, it is difficult to imagine any imaging application where the added capability to

measure a target's depth along with its color, intensity, and its x and y position would not be

welcome.
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Figure 1.1 M.C. Escher Waterfall, 1961. An example of an optical illusion, where the clever use of shading and perspective are used
to confuse the observer's visual system.

In terms of transitioning to 3D display technologies, only the latter can take advantage of the

human user's "built in" stereoscopic vision system to further enhance the sensation of depth. Just

as the use of fully rendered and shaded 2D projection graphics was a huge improvement over the

previous use of point clouds, wireframe drawings or flat color projections, the jump to full

fledged 3D display represents a huge improvement in how the user can perceive and manipulate

target information. Indeed, the final addition of the stereoscopic depth cue should allow for the

creation of near perfect virtual optical input; so perfect that the user has difficulty in

differentiating between a real scene and its recorded version.

In order to overcome the inherent limitations of standard 2D imaging techniques, research into

technologies that can capture and display the full three dimensional information in a scene has

been very active. A survey of current technology suggests that image recording and display

technology is in a transition stage from two dimensional to three dimensional techniques. In the

case of 3D recording techniques, one of the oldest approaches to capturing depth information has

been through the use of a pair of 2D recording devices whose relative orientation is known.

Much like the optical system of predator animals in Nature, this depth from stereo approach is a

triangulation technique that relies on the difference or disparity between the recorded position of
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each target point on the two imaging sensors. For each target feature, the magnitude of this

disparity is directly related to that feature's distance from the imaging system. Some of this

technique's shortcomings include occlusion (where a target feature is visible to one sensor but not

to the other), the need to constantly calibrate the system due to camera alignment difficulties,

high cost due to the use of multiple camera/lens systems, and high computational cost due to

large target feature disparities between one sensor and the other.

Laser scanning systems represent another approach that utilizes triangulation in order to capture

the depth information in a scene. In a typical system, a laser sheet is swept across the target

object and the position of the resultant line (which is the laser sheet's projection onto the target

surface) is recorded by a camera. Just like in stereo camera systems, the relative position and

orientation of the recording camera and the laser projector are known, so that the calculation of

the laser line's position uniquely determines the distance from the sensor of target features along

that line. Though laser scanners are amongst the most accurate 3D imaging systems available,

some of this technique's inherent shortcomings include high cost, size and complexity, and

scanning times on the order of seconds or minutes.

Figure 1.2. A typical laser scanner system, this Cyberware Model 3030 RGB/MS uses two linear and one rotational stages to capture
full view 3D data from a target. Sampling pitch is 0.25-1.0mm in X and Y directions, and 50-200 microns in the Z direction. The
translation table is approximately waist high.

9



Time of flight range scanners, meanwhile, measure the time taken by a pulsed laser beam to

bounce off a target and return to its source. These systems are often used in surveying

applications as their operating range reaches up to 100 meters. Their positional accuracy is

typically about 6mm at 50 m distances, but their disadvantages include their complexity and

expense, as well as prolonged operation time required to scan a full target scene.

Figure 1.3. Leica model HDS3000 time of flight range scanner. Mounted on a tripod at a worksite, this range scanner pulses a laser
beam and measures the time taken by the beam to bounce off the target and return to its source. Typical accuracies are on the order of
6mm over target distances of 50 m.

Much progress has also been made in the development of devices that can use and display 3D

data. For decades, computer graphics libraries have existed that allow the display and

manipulation of shaded, photo realistic 2D projections of 3D objects on standard 2D displays.

The ability to handle 3D data and display realistic 2D projections of that data has been useful in

fields ranging from computer aided design (CAD) to entertainment applications like movies and

video games. More recently, devices that seek to give the user an actual sensation of the target's

depth (as opposed to just displaying the 2D projection of a 3D object) have become more

common in the marketplace. For example, wearable display glasses that transmit the left and
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right stereoscopic views to the user's corresponding eyes have been in use for some time and are

quite good at creating a virtual reality effect. Computer screens with modified LCD screens are

also appearing in the marketplace with some success. These create the impression of depth by

having part of the LCD screen project the left image so that it is only visible to the user's left eye,

and by having the other part of the LCD screen project the right image so that it is only visible to

the user's right eye. Holography based technologies are also being developed that allow multiple

users to achieve the same depth sensations from differing vantage points. A similar effect can

also be obtained by projecting different 2D views of the 3D data on a rapidly rotating screen.

(a)

(b)

Figure 1.4. (a) Dimensions Technologies Inc. switchable 2D1/3D LCD monitor. A special illumination scheme behind the LCD panel
sends alternate pixel columns to the viewer's right and left eye, creating the stereoscopic illusion of depth without the user having to
wear any special glasses. (b) Actuality Systems Perspecta Spatial 3D display uses a rotating screen onto which are projected different
2D views of the 3D data, creating the sense of depth for many viewers from almost any perspective
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It can be argued that at the current time, technologies to manipulate and display 3D datasets

(either in full 3D fashion or simply through 2D display of photorealistic projections) are more

widely diffused than 3D recording devices. This gap between 3D input and output technologies

will need to be filled by improvements in current measurement devices, as well as by the

development of entirely new approaches to the problem. One such approach may well be 3D

surface imaging using active wavefront sampling, and the remainder of this thesis will attempt to

describe it and to measure its capabilities.

1.2 Introduction to Active Wavefront Sampling

The active wavefront sampling (AWS) approach to 3D surface imaging has several attractive

attributes. Its most important characteristic is that, unlike stereoscopic systems, it requires only

one optical path to capture depth information. This attribute reduces system costs by halving the

cost of the optics, and also allows the technique to be applied to a wide range of currently

available 2D imaging systems such as cameras, endoscopes, and microscopes. AWS also reduces

system cost by dispensing with expensive laser based target illuminators, and minimizes target

acquisition time by not having to slowly sweep an illumination sheet across the target. Instead,

the AWS approach can calculate a 3D depth map with as little as two image frames (like a stereo

system), thereby allowing real time (>30 Hz) operation.

1.2.1 Depth-From-Defocus

In order to understand the fundamental principle behind the use of AWS to calculate depth, one

must first analyze how a target feature's depth is encoded by the diameter of its defocus blur on

the sensor plane. This principle is well known and is the basis for an entire range of 3D surface

imaging techniques known as depth-from-defocus. As can be seen in Figure 1.5, the diameter of

a target feature's defocus blur is directly related to that feature's distance from the optical
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Figure 1.5. Schematic of depth-from-defocus approach. In top diagram, the target feature of interest is located on the lens in-focus
plane. The feature's image is perfectly in focus and its blur spot diameter is effectively zero. In the bottom diagram, the target feature of
interest is located some distance from the lens in-focus plane. The feature's image is out of focus, and the non-zero diameter of its blur
spot is directly related to how far away the target is from the in-focus plane.
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system's in-focus plane. If the feature is situated on the in-focus plane, the target is in perfect

focus and the defocus blur diameter is zero (neglecting diffraction effects). As the target feature

moves away from the in-focus plane, however, the diameter of the defocus blur increases. A

straightforward geometrical optics analysis of the system reveals that the image plane blur

diameter can be calculated using the following expression:

d Y Z,

D _

(1.1)

In equation 1.1, d is the disparity at the image plane in pixels, D is the diameter of the lens exit

pupil,f is the focal length of the lens, Z, is the distance of the target to the lens, and Zfp is the

distance of the in-focus plane to the lens' principle plane. Remembering that the denominator in

Equation 1.1 is nothing but the distance of the lens' principle plane to the imaging sensor, ZCCD I

the expression can be rewritten as follows:

d I
- =ZCC x - - -

D CCDZ, Zz

(1.2)

When this expression is evaluated over a range of normalized target depths, the plot in Figure 1.6

is obtained. As expected, this plot shows that the blur diameter drops to zero when the target is

located on the in-focus plane and that the blur diameter rises as the target moves away from the

in-focus plane. It should be noticed that the sensitivity or accuracy of this method is directly

proportional to the slope of the line in Figure 1.6, since a larger slope implies a greater disparity
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change on the image plane (which is what is being measured) for a given change in target depth

(which is what is being calculated).

d
D

0.4 -

0.3 -

0.3 -

0.2 -

0.15 -

0.1 -

0.05 -

n -L
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Z/ Z P

Figure 1.6. Normalized blur spot diameter vs. normalized target distance to the principal plane. "d" is the blur spot diameter, "D" is
the diameter of the lens exit pupil, "Zt" is the target distance to the principal plane, and "Zfp" is the distance of the focal plane to the
principal plane.

In a typical depth-from-defocus system, the optical train's entire wavefront is allowed to travel

through and hit the imaging plane. The challenge is then to calculate the diameter of each target

feature's blur spot in order to determine its depth. The difficulty of accurately calculating the

blur spot diameter and complications related to having overlapping blur spots from feature rich

targets have traditionally limited the utility of depth-from-defocus techniques.

1.2.2 Static Wavefront Sampling

Certain limitations in standard depth-from-defocus techniques can be overcome by switching to a

wavefront sampling approach. Unlike depth-from-defocus systems, the wavefront sampling

approach only allows specific parts of the optical train's wavefront to reach the imaging plane.
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The simplest sampling pattern that allows the calculation of a target feature's depth is a sampling

plane with two apertures, as shown in Figure 1.7. This static wavefront sampling results in the

formation of two quasi-in-focus images of the target feature. If the two static apertures are

separated by a distance equal in magnitude to the full exit pupil diameter of the depth-from-

defocus case shown in Figure 1.6, then the separation between the two quasi-in-focus images

resulting from the static wavefront sampling will be exactly equal to the blur spot diameter

resulting from the depth-from-defocus approach (for the same optical train and target position

conditions). In effect, one can think of wavefront sampling in terms of sampling the defocus blur.

With a two aperture static wavefront sampling mask, the separation between the two images of

the same target feature needs to be calculated in order to determine that feature's depth

(determined by equation 1.1). There exist several motion tracking algorithms available, ranging

from block matching methods (autocorrelation, etc...), optical flow techniques, and Fourier

domain algorithms that can be used to determine this separation distance to within a small

fraction of a pixel. However, the fact that multiple images of the same feature are recorded on

each frame can still cause overlap problems when the target is feature rich and can also result in a

depth ambiguity. Indeed, looking once again at Figure 1.6 shows that for a given disparity

measurement, there are two possible target positions. One possible target position is located

between the lens and the in-focus plane, and the other possible target position is located beyond

the in-focus plane. Without any a priori knowledge of the target's position, it is impossible to tell

from a double exposed image resulting from a static mask which of these two possible target

positions is correct.
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Focal Plane

CCD Plane

Sampling Position 2

Figure 1.7. Static sampling of the wavefront with two diametrically opposed apertures separated by a distance equal to the overall
aperture diameter in Figure xx. Instead of a defocus blur of diameter d, two quasi-focused images separated by the same distance d
are recorded on the image plane.

One implementation of a two aperture static sampling system has been carried out by researchers

at the National Research Council of Canada (Blais and Rioux [1], and Beraldin et. Al. [2]). The

BIRIS sensor comes in various versions but essentially consists of a camera and lens equipped

with a two aperture mask, as well as a laser that projects a sheet onto the target (see Figure 1.8).

Because of the two apertures, the laser line produces two images on the sensor plane and the

depth of the target points illuminated by the laser is calculated by measuring the distance between

the two image lines. The target depth is then calculated using equation 1.1. Just like with a

regular laser scanner, this system needs to gradually scan the laser line across the target in order

to obtain the entire depth map. Recent versions of the BIRIS system also takes advantage of

triangulation between the camera and the laser projector to get a second estimate of the depth, and

the final output is the result of taking a weighted average of the wavefront sampling derived depth
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and of the triangulation derived depth. Because of this, the BIRIS system can be considered to be

a hybrid approach between a laser scanning system and a true wavefront sampling system.

Laser
Z -------- --------------

Object Ln

Mask .

Figure 1.8. Schematic of and typical image obtained from BIRIS range finding system. A two aperture mask is used to get an initial
depth estimate, and triangulation between the laser projector and the camera is then used to obtain a higher accuracy depth estimate.
On the right, a square pyramid (top) is illuminated with several laser light stripes and the resulting image with the lines doubled due to
the two aperture mask is shown below. The distance between the two lines on the image is proportional to the depth of that part of the
target.

By simple extension, more than two sampling positions can be used to estimate depth. A

sampling mask with three or more apertures would result in pictures with a corresponding number

of target images. Measurements of the displacement between the various images of each target

feature can be used to back calculate the actual depth of that feature. The exact transformation

from the image displacement measurement to actual depth will depend on the pattern of the

sampling mask, but is generated in a similar fashion as equation 1.1. Clearly, a higher potential

depth estimation accuracy is attained with a greater number of sampling positions but at the same

time a greater confusion is caused due to multiple image overlap with a feature rich target.

1.2.3 Active Wavefront Sampling

As was shown above, sampling the wavefront of an optical system with several apertures allows

one to estimate the depth of a target feature. However, the use of static aperture masks results in

a depth ambiguity (one cannot determine whether the target is located in front of or behind the in-

focus plane) and can lead to confusion due to overlapping images from feature rich targets. One
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solution to both problems is to use an active wavefront sampling approach. With this technique, a

single aperture is moved from one position to another in the sampling plane and a single image is

recorded at each spot. This results in clear single exposure images of the target with no confusion

due to multiple image overlap, and the depth ambiguity present with a static mask is resolved so

long as the motion of the aperture on the sampling plane is known. If, for example, a single

aperture is rotated in a circle centered on the optical axis of the lens and images are taken at

regular angular intervals, a movie of the resulting images would show the target also rotating in a

circular pattern. Under these operating conditions, the depth information for each target feature is

coded by the diameter of its rotation; a feature located right on the in-focus plane would have a

zero diameter rotation (and would appear stationary) while features located at increasing

distances from the focal plane would rotate along circles of greater and greater diameter.

Furthermore, a target feature located beyond the in-focus plane will rotate 180 degrees out of

phase with a target feature located between the lens and the in-focus plane. This phase difference

therefore allows the resolution of the depth ambiguity present in depth-from-defocus and static

aperture mask systems described earlier.

Of course, a circular pattern of aperture motion is not the only possible path that can be used with

AWS. The aperture can be simply translated in a horizontal, vertical, or diagonal line; or the

aperture path can be chosen to follow any arbitrary closed loop. As long as the aperture path is

known, target depth can in theory be recovered by tracking the resulting motion of each target

feature from one image to the next. However, a simple circular aperture motion does have at

least two major attractive qualities: the first is that it is relatively simple to implement

mechanically, and second is that it presents certain advantages for the processing algorithms used

to track target features from one image to the next. These advantages will be discussed in more

depth in Chapter 3.
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Besides resolving the discussed depth ambiguity and the multiple image overlap problem, the

active wavefront sampling approach allows the user to select from a wide range of operating

regimes within the high accuracy/low speed - low accuracy/high speed domain. Indeed, for high

speed imaging applications where some measurement accuracy can be sacrificed, as little as two

wavefront sampling positions can be used to estimate a target feature's diameter of rotation. In

this scenario, the displacement between the two images is taken as the estimate of the rotation

diameter. For applications where higher accuracy is required but acquisition speed can be

sacrificed, more sampling positions can be used. In this multiple sampling position scenario, a

circle can be fitted in the least square sense to the image positions, and the accuracy of the depth

estimate will rise with the number of sampling positions.

1.3 Performance Potential of Active Wavefront Sampling

1.3.1 Depth Sensitivity of A WS-based System

As was discussed above, the idealized optical performance characteristics of the active wavefront

sampling (AWS) approach are identical to those of the classic depth-from-defocus approach, as

described quantitatively by Figure 1.6. Again, this figure shows that as a target feature moves

farther away from the in-focus plane, the motion diameter of its image rotation caused by a

circular aperture sampling pattern increases. This diameter increases more steeply if the target

feature moves toward the lens than away from the lens. Also, it can be seen that if the target

feature is moved away from the lens, the diameter asymptotically reaches a constant value. These

characteristics suggest that the optimal operating regime for AWS based systems is defined by

having the target located between the in-focus plane and the lens, where system sensitivity to

depth is highest. This sensitivity can be calculated by taking the derivative of equation 1.2 with

respect to target depth, and rearranging slightly:
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di 1
= -D x ZCCD X

(1.3)

All other things being equal, the field of view of the optical system decreases as the target is

brought closer to the lens. It is therefore instructive to generate a disparity sensitivity expression

where the size of the field of view (in pixels, say) is kept constant by changing the distance

between the lens and the sensor, ZCCD. In practice, this can be achieved by changing the focal

length of the lens as the target is moved. By using similar triangles, it can be found that

Z
ZCCD SSensor t

SFOV

(1.4)

where SSensor is the size of the CCD sensor, and SFOV is the size of the field of view (in pixels,

say). Inserting equation 1.4 into equation 1.3 results in the following expression:

- -Dx Sensor 1
JZt SFOV Z,

(1.5)

With constant values for Ssensor and SFOV , it can be seen that the sensitivity of the AWS system

now varies inversely with Z,, as opposed to inversely with Z,2 in the case where the lens focal

length is held constant and the field of view size is allowed to vary. The expressions in equations

1.4 and 1.5 are plotted in Figure 1.9 below, where it can be seen that the sensitivity of an AWS

system drops off quickly with depth. Furthermore, it can also be seen from this figure that the

depth sensitivity of a constant focal length AWS system drops off more quickly than the

sensitivity of a constant field of view AWS system.
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Figure 1.9. Disparity gradient, cM , as a function of target distance, Zt . These simulations assumes a sampling diameter, D, of

800 pixels and a sensor size of 1024 pixels. For the constant field of view (FOV) size simulation, a constant FOV size of 8333 pixels
is used. For the constant focal length simulation, a constant lens to sensor distance of 4166 pixels is used.

1.3.2 Comparison to Standard Stereo Imaging

It is instructive to compare the performance of an AWS system to a standard depth-from-stereo

imaging system (see Schechner and Kiryati [3], who compared a stereo system to a depth-from-

defocus system). A canonical stereoscopic system has two cameras whose sensors are perfectly

aligned (ie: they have parallel optical axes and aligned x axes), as can be seen in Figure 1.10.

This schematic shows that a target feature produces an image at a different location on each

image sensor.

22



Target

Left Camera

Zccd

L

/

/
/

/
/

/
/

Rig

zt

R

d=L+R

d 1

Figure 1.10. Canonical stereo imaging system composed by a left and right camera. The distance from the optical axis of the target
image on the left and right cameras is denoted by "L" and "R" respectively. The total disparity d is just the sum of these two
distances.

The disparity between these images, d, is clearly related to the distance of the target to the

cameras in the z direction. Indeed, a simple geometrical analysis reveals that the disparity

between the two images is given by the following equation:

-= ZCCD
b Z,

(1.6)

In this equation, ZCCD is the distance from the lens' principal plane to the imaging sensor, b is

the baseline distance between the optical axes of each camera, and Z, is the distance of the target

feature to the lens' principal plane. Comparing this expression to Equation 1.2, we can see that

23

ht Camera

----------



they only differ by a constant term involving the distance of the in-focus plane to the camera lens.

This fact can be seen in Figure 1.11, which shows the disparity between two images of a target

feature for both the nominal stereo imaging system as well as the AWS imaging system.

600

C,,

L

Cn

E

500 -

400

300 -

200 -

100

0

-100,
0 0.5 1 1.5 2

Target Depth, Zt (pixels)
3

X 10

Figure 1.11. Disparity as a function of target depth (both in pixels) for an AWS system and for a canonical stereo system. Using the
same values baseline/sampling diameter and lens-to-sensor distance, it can be seen that the two curves are identical but displaced by a
constant amount. This constant is introduced by the l/Zfp term in equation 1.2.

Just like in the AWS case, the sensitivity to depth of the canonical stereo system can be estimated

by taking the derivative of equation 1.6 with respect to target distance. The following equation is

the result of this operation:

il
= -bx ZCCD X

(1.7)
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Comparing the above expression to equation 1.3, we see that the sensitivity to depth of a

canonical stereo system and of an AWS system is exactly the same. It can therefore be concluded

that an AWS system with two diametrically opposed sampling positions responds exactly like a

stereo system whose baseline is equal to the AWS sampling diameter. Therefore, the only

physical system parameters that can be varied to increase depth sensitivity are the sampling

diameter (equivalent to the baseline in a stereo system) and the distance of the principal plane of

the lens to the imaging sensor (ZCCD). Depth sensitivity increases with sampling diameter, but

the latter is limited by the lens' exit pupil size; the bigger the lens, the larger the maximum

sampling diameter. Depth sensitivity also increases with ZCCD , but the field of view with a

given lens also decreases as ZCCD is increased. Compromises must therefore be made in

increasing lens size (and therefore increasing cost), and increasing ZCCD length (and decreasing

the field of view).

A typical commercial stereo system might be composed of two lenses and cameras separated by a

baseline on the order of 20cm, while an AWS system made with an identical lens and camera

might only have a sampling diameter of 1 cm. All other things being equal, therefore, an AWS

system using only two sampling positions would only have 1/2 0 th the depth sensitivity of the

stereo system. This difference in performance would at first seem to rule out the use of AWS in

favor of a standard stereo system, but the comparison requires further examination. First of all, it

must be remembered that the larger baseline present in stereo systems comes at the cost of greater

occlusion (which is when a target feature is visible in one camera but not in the other), higher

hardware cost, greater difficulty with calibration, and higher computational cost (since the

matching problem needs to be solved over a larger disparity range). Additionally, there exist

operating conditions where a large baseline is undesirable or completely impossible, such as with

endoscopes used during surgical procedures; the diameter of the optical instrument in this case

needs to be as small as possible in order to minimize trauma to the patient. Finally, though it is
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certainly true that a stereo system may be on the order of 20 times more sensitive to depth than a

similarly built AWS system that uses two sampling positions, this performance differential can be

significantly reduced by increasing the number of sampling positions used by the AWS system.

Indeed, it will be shown in later sections that the use of more than two sampling positions

increases both the accuracy and the robustness of the algorithms that track target features from

one image to another. The higher accuracy of these multi-sampling tracking algorithms results in

a smaller uncertainty in the measurement of the target feature's rotation diameter. The better

rotation diameter estimate therefore compensates for the shallower sensitivity curve caused by the

smaller baseline present in AWS.

1.4 Roadmap for In-Depth Analysis of AWS-based 3D Imaging

With the brief introduction to the concept of using active wavefront sampling to calculate 3D

surface models given in this first chapter, a detailed examination of the most important aspects of

the approach can be discussed in the subsequent parts of this thesis. In Chapter 2, a description

will be given of how the AWS concept can be implemented in hardware. This will include

various approaches to moving a sampling aperture, as well as discussing the optimal placement of

the sampling plane. Chapter 3 will concentrate on describing the algorithms required to track

target features between images captured as the aperture is moved from one sampling position to

the next. This third chapter will assume that the optical train behaves ideally, so that a circular

motion of the sampling aperture leads to a circular motion of the target feature image on the

image plane. In Chapter 4, this assumption will be removed and the effect of aberrations in the

optical train will be incorporated. It will be shown that these aberrations can have a very

important effect on the calculated target depth, even for relatively fast and expensive optical

trains. Finally, Chapter 5 will summarize the results of this work and will indicate areas of

potential future study.
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Chapter 2: Design and Implementation of AWS

There are many possible ways to implement an AWS system, each with different hardware

components and performance flexibility. The aperture sampling can be performed mechanically

or electronically, and there are many different aperture sampling paths that can be used. Whether

the sampling is implemented mechanically or electronically, the size of the aperture and the

placement of the sampling plane itself should be optimized so as to maximize captured image

quality. The target illumination method must also be considered as it can have a strong influence

on image quality. These design parameters will now be discussed, and the simple mechanical

setup used to obtain the results presented later on in this thesis will be described.

2.1 Size of Sampling Aperture

The size of the sampling aperture can have a strong effect on image quality. A larger aperture

will be able to image higher frequency features due to its higher numerical aperture (NA), but it

will also have a smaller depth of field which will reduce the depth range over which 3D surface

imaging is possible to a narrower band surrounding the in-focus plane (see Figure 2.1 .a). A

larger aperture will also allow for shorter image exposure times, thereby increasing the possible

frame rate of the imaging system. Conversely, a smaller aperture size will increase the operable

depth band (allowing increased depth sensitivities) but will low pass filter the image due to the

smaller NA (see Figure 2.1 .b). The smaller aperture size will also require an increased exposure

time, reducing the maximum frame rate of the system.

The aperture size representing the best tradeoff between depth range, spatial frequency sensitivity

and frame rate will depend very much on the particular application at hand. However, we will

see in Chapter 3 that the image processing algorithms used to track target features from one

image to the next work best with low spatial frequency images, so that using a smaller aperture

does not necessarily hinder the quality of the calculated 3D surface model.
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Figure 2.1. (a) Practical target depth range over which the AWS sampled image is in-focus enough to allow processing, for a large aperture size. (b)
Practical target depth range over which the AWS sampled image is in-focus enough to allow processing, for a small aperture size.

2.2 Placement of the Sampling Plane

For a pre-existing optical system, the aperture sampling plane should be placed as close as

possible to the optical train's exit pupil. This should be done so as to minimize vignetting and

intensity variation as the aperture is moved from one sampling position to another. This effect

can be seen in Figure 2.1 and Figure 2.2, where schematic ray traces of the image side of an

optical system are drawn for the case of a sampling plane located far from the exit pupil and for

the case of a sampling plane located right at the exit pupil, respectively. In Figure 2.1, the

sampling plane is located at some distance from the optic's exit pupil. With the aperture in the

top position, (Figure 2.1(a)), rays from point 2 are sampled while all rays from point 1 are

blocked from reaching the sensor plane. Conversely, with the aperture in the bottom position

(Figure 2.1(b)), rays from point 1 are sampled while all rays from point 2 are blocked. This

vignetting condition is undesirable as target features cannot be tracked from one sampling

position to the next resulting in a loss of 3D data. In contrast, Figure 2.2 shows the ray tracings

for the case where the sampling plane is located right at the exit pupil. Here, we see that for both
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Figure 2.2. Effect of placing the sampling plane far from the exit pupil of the optical train. In case (a), the aperture is located at the
top and light rays from Point 2 are able to reach the CCD plane while all light rays from Point 1 that pass through the lens are blocked.
In case (b), the aperture is located at the bottom and all possible light rays from Point 2 are blocked while light rays from Point 1 are
able to reach the CCD plane. This extreme vignetting prevents 3D surface reconstruction.
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Figure 2.3. Effect of placing the sampling plane close to the exit pupil of the optical train. In case (a), the aperture is located at the
top and light rays from both Point I and from Point 2 are able to reach the CCD plane. In case (b), the aperture is located at the
bottom and once again light rays from both Point I and Point 2 are able to reach the CCD plane. Since both Point I and Point 2 are
visible, 3D surface reconstruction is possible.
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the top and bottom sampling positions rays from both points 1 and 2 are sampled; the vignetting

from the previous setup is removed and full 3D reconstruction is possible.

For optical trains where complete access to all lens elements is available, another possible

position for the sampling plane is at the lens aperture plane. This location would also minimize

vignetting and intensity variation from one aperture position to the next.

2.3 Mechanical Implementation of AWS

There are several possible mechanical implementations of AWS, each with varying degrees of

complexity. A full blown metal leaf system where both the aperture's position and size are fully

adjustable gives complete flexibility to the user in terms of number of samples and lighting

conditions. If light levels are relatively constant, simpler designs with fixed aperture size can be

used. Some fixed aperture mechanical designs in the literature permit only translation in one

direction, while others allow full movement within the aperture plane.

Perhaps the simplest mechanical implementation of AWS is the already mentioned rotating

aperture approach. This design uses a rotating disk with an off axis, fixed diameter aperture to

sample the wavefront. The rotating disk can be supported by a single bearing, and can be

powered by a small DC or stepper motor. Angular position accuracy can be maintained by using

a DC motor with angular feedback or by using a fine stepped stepper motor and controller.

Positional accuracy can also be maintained by using a fixed mask located ahead of the rotating

disk with all desired sampling positions pre-drilled. When the rotating aperture passes next to an

open hole on the fixed mask, the aperture position is effectively fixed by the accurately

manufactured fixed mask.

If high frame rate operation using only two horizontally opposed sampling positions is desired, a

rotating disk with several elongated apertures can be used in conjunction with a fixed mask with

two aperture holes as shown in Figure 2.4. Increasing the number of elongated apertures on the
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rotating disk has the effect of reducing the required motor speed for a desired frame rate, while

elongating the aperture arc has the effect of increasing the exposure time for a given frame rate.

Rotating ,afmpfing Disk

Figure 2.4. Schematic of a static two aperture mask in conjunction with a rotating sampling disk. The rotating disk has four elongated
apertures which allow for a reduced rotation speed for a given image frame rate. The length of the elongation and the operating frame
rate determine the exposure time of each image. The separation between the two disks is exaggerated for clarity.

Another approach is to modify the rotating aperture by filling the aperture hole with a small lens

(Figure 2.5). The effect of this lens is to converge the sampled rays so that target features very

far from the in-focus plane appear in-focus on the imaging plane. In effect, the microlens shifts

the in-focus region of Figure 1.6 from a depth band surrounding the in-focus plane to a depth

band further away from the in-focus plane, as is shown in Figure 2.6. This new depth band falls

on a section of the curve with a higher slope and therefore a higher sensitivity to depth. It is

important to note, however, that this same increase in sensitivity to depth can be achieved by

simply moving the in-focus plane closer to the lens by focusing it. Though the latter adjustment

does in theory reduce the field of view, the reduction is so small as to not have a great effect in

practice.
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Figure 2.5 (a) Standard mechanical AWS implementation. In this case, the target feature is so far in front of the focal plane that the
sampled image is blurry, leading to poor processing performance. (b) Rotating micro-lens implementation. Here, the same target
feature is perfectly focused onto the CCD plane by the converging lens located inside the rotating aperture. Processing performance is
optimized and the system depth sensitivity is increased.
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Figure 2.6. Effect of using a microlens in the AWSM. This figure plots the non-dimensional disparity diameter vs. the non-
dimensional target distance from the focal plane. The in-focus range of the original optical system (blue lines) is shifted by the
rotating lens further away from the focal plane (red lines), to a region whose greater slope indicates an increased sensitivity to depth.
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2.4 Electronic Implementation of AWS

The AWS approach can also be implemented electronically. One way to do this is to replace the

mechanical aperture with an LCD plane, whose elements can be switched on and off in the shape

of an aperture at various locations on the plane. This approach can potentially control both the

size and the position of the aperture without any moving parts, and with short response times.

One important disadvantage with this approach, however, is that at least 50% of the sampled light

is rejected due to the polarization inherent to the LCD technology. Another disadvantage with

LCD's is that they have a low fill-factor. This is the percentage of the panel area that actually

transmits light, and is typically less than 70% for LCDs. This low fill-factor can have the effect

of both reducing the amount of light reaching the sensor plane and of degrading the quality of the

image itself.

A second electronic solution to the sampling problem is the use of a Digital Micromirror Device

shown in Figure 2.7 (a). This device, developed and marketed by Texas Instruments, is an array

of small mirrors whose tilt can be individually controlled electronically. By placing such a device

at an angle to the optical axis, as shown in Figure 2.7 (b), and by turning on specific mirrors so

that they reflect light onto the CCD, a wavefront sampling effect can be obtained.

Like the LCD version described earlier, the micromirror approach offers flexible control of both

the aperture size and position, but has the added benefit of allowing more light to hit the CCD

since the mirror reflectivity is approximately 88% and the chip fill factor is approximately 90%.

One disadvantage of the micromirror approach, however, is that the necessity of placing the

sampling plane at an angle may introduce some vignetting. This is due to the fact that the

wavefront sampling is occurring at different axial positions depending on where the aperture is

moved, and as we saw in Figure 2.2 this can lead to some parts of the target disappearing from

view depending on the position of the aperture.
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(a)

CCD Plane

Point 1

Point 2 Activated Area of Micromirror Array

(b)

Figure 2.7. (a) The Digital Micromirror Device (DMD) is a chip that can hold more than 1 million tiny mirrors on it. The whole chip
appears to be a normal mirror to the naked eye. Each 14- Lm 2 binary mirror can tilt +12 or -12 degrees when a voltage is applied to its
base, resulting in different reflecting directions of the same incident light. Based on whether these mirrors are switched on or off, the
CCD sees dark or bright areas reflected off the DMD (http://www.dlp.com ). (b) Schematic of a micromirror based AWS system.
The computer-controlled micromirror array selectively reflects the incident light onto the CCD camera.

2.5 Illumination of Target

The illumination of the target to be modeled can be critical to the output of high quality 3D

results. Structured or random patterns can be projected onto the surface of the target so as to

increase its signal to noise ratio, and a variety of different kinds of projectors can be used for this

purpose (from simple slide projectors to computer projectors). One key design feature is to align
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the illumination source with the imaging optical train as much as possible. This step insures that

shadows on the target are minimized and that the entire target is illuminated as uniformly as

possible. Indeed, the best possible solution is to have coaxial illumination, as shown in Figure

2.8. In this conceptual design, the light from the illumination source travels down the same path

as the light from the target. Besides minimizing shadows, this approach also reduces the overall

bulk of the system and eliminates the need to separately aim the imaging system and the pattern

projector at the target.

In terms of the best design for the projected pattern, its spatial frequency and contrast should be

adjusted in order to maximize overall system performance. This will be discussed in detail in

Chapter 3.

Figure 2.8. Exploded view of the conceptual design of the 3D monocular system. A readily changeable commercial lens views the
object space. The computer-controlled micromirror array selectively reflects the incident light onto the CCD camera. A set of relay
lenses determines the position of the micromirror array along the optical path to ensure optimum imaging quality. Coaxial illumination
unit consisting of a 50% beam-splitter, a pattem generator that adds texture onto the object surface and a white light illuminator
projects light onto the object being imaged. Courtesy of Dr. Sheng Tan, MIT Hatsopoulos Microfluidics Laboratory.
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2.6 Implementation Using 50mm Nikorr Lens

In order to explore the 3D surface imaging capabilities of Active Wavefront Sampling, a system

was implemented using a f/1.2 50mm Nikorr lens, a mechanical rotating aperture module, and a

Dalsa 1024A CCD camera. The Dalsa camera has a 1024x1024 pixel sensor, with 12 micron

pixels, and has an 8 bit grayscale dynamic range. The CCD can be binned down to a 512x512

pixel resolution, and random noise is listed to be approximately 1 Digital Number (DN) by Dalsa

(where the full range is given by 256 DN). The camera is connected to a Coreco Imaging Viper

Digital capture card, allowing a 30 Hz frame rate.

Several rotating aperture AWS modules were designed and built over the course of this project,

(see Figure 2.9) but all work presented in this thesis using the 50mm Nikorr lens was

accomplished using a simple belt driven design built by the Industrial Technical Research

Institute (ITRI), in Taiwan ROC. This module, shown in Figure 2.10, mounts the aperture

sampling disk on a ball-bearing supported and belt driven gear. The axial position of the rotating

aperture sampling disk can be adjusted, and a second fixed sampling mask can be mounted in

front of the rotating sampling disk if needed. As was mentioned before, this optional fixed mask

serves the purpose of accurately positioning the sampling locations, as well as of removing any

smearing caused by the rotating aperture disk moving during the exposure time of the image

being acquired. This latter role becomes more important as the speed of rotation increases in an

effort to increase the system frame rate. The rotating aperture disk has a single aperture hole with

a diameter of approximately 1.5 mm, located at a radial position of 4 mm from the axis of

rotation. It was found that increasing the radial position of the aperture any more than this would

introduce large amounts of vignetting in the images.

36



(a) (b)

Figure 2.9. (a) Prototype mechanical AWS module designed for use with an optical train specially designed for monochromatic laser
illumination. The aperture disk is driven by a small stepper motor connected via a plastic belt. (b) Compact mechanical AWS module
using a ring type DC motor and optical encoder for position feedback (designed by J. Rohaly, Hatsopoulos Microfluidics Laboratory)

Figure 2.10. (a) Exterior view of ITRI designed AWS module, mounted between the Dalsa CA-D4 camera and the Nikkor 50 mm
lens. Wires from the stepper motor can be seen protruding from the back of the main casing. (b) Internal view of the same AWS
module, achieved by removing the lens and front housing. This view shows the pinion gear, drive belt, and spur gear to which is
attached the aperture disk (seen here having a single offset aperture hole). Also visible here is the Hall sensor located between the
pinion and spur gears, as well as the metal lip on the spur gear which triggers the zero angular position signal.

The aperture assembly is driven by a Haydon Switch and Instrument, Inc. 36540-12 stepper

motor, which is controlled by an Advanced Micro Systems, Inc. MAX-410 controller. The

stepper motor is rated at 24 steps per revolution, and the gearing of the motor pinion gear to the

aperture spur gear is 10:75. This yields a final aperture angular resolution of 1 degree per motor

step when in half-stepping mode. The maximum sustained speed of the stepper motor is

approximately 2000 steps/second. A small Hall-effect sensor is also incorporated into the
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module, and its role is to provide a zero position for the rotating aperture. Before images are

acquired, the rotating aperture is moved until a signal from the Hall sensor is received. This

angular position is defined as the zero position and the angular position of the aperture is

determined by the number of steps taken by the motor relative to this zero position. Though, the

overall motor control of the system is clearly open loop, a large number of system tests have

shown that the positioning of the aperture to be both accurate and robust.

One end of the AWS module has a standard Nikon F-mount to secure the lens, while the other

end is threaded so as to screw into the M42x1 thread on the Dalsa camera. The module thickness

is such that the distance between the rear of the Nikkor lens and the CCD plane on the camera is

approximately 46.5 mm, the standard F-mount distance. This distance insures that the Nikkor

lens is operating under the same conditions it was designed for.

Illumination of the target was performed by using a standard computer projector. One projector

that has been used is a 3 LCD type manufactured by Toshiba. A second projector that has also

been used is a Digital Light Projection type manufactured by InFocus. This projector uses a

single Texas Instruments micromirror array with a spinning color wheel to project an image. It

has higher brightness and contrast ratio than the LCD model, and it is also smaller and less bulky.

However, it was found that for short camera exposure times (less than 20-30 msec), the

brightness variation from one captured image to the other became very large. This suggests that

the response time of the single micromirror array combined with the spinning color wheel

becomes too long for operating conditions below 20-30 msec. For longer exposure times,

however, the captured images showed very uniform brightness using this projector.

A photo showing a typical complete hardware setup for the acquisition of images with the AWS

module is shown in Figure 2.11 below.
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Figure 2.11. Photo of complete system setup, with the ITRI AWSM mounted between the Dalsa camera and the Nikkor 50 mm lens,
the stepper motor driver, and the 3 LCD projector. The inset image in the top right corner shows a dot pattern being projected onto the
target, in this case a human size mannequin head.
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Chapter 3: Image Processing

3.1 Introduction

As was discussed in the previous chapters, the Active Wavefront Sampling (AWS) technique

encodes depth by shifting the position of a given target's image as a function of the aperture's

position on the aperture plane. For the simplest case of a rotating off axis aperture as used in this

work, a target point's image will appear to rotate on the image plane as the aperture moves from

one angular position to another. Under ideal non-aberrated conditions, the diameter of this

circular rotation directly determines the depth of the target point as was shown in Equation 1.6.

In order to quantify a target point's depth, therefore, the diameter of this rotation needs to be

estimated very accurately by tracking the image motion from one aperture position to the next. In

this chapter, background information on some of the various types of tracking algorithms

described in the literature will be given, and the algorithms developed specifically for AWS

image processing will be described. In describing the algorithms developed for an AWS

application, it will be assumed in this chapter that the system's optical train is aberration free.

This assumption will be removed in Chapter 4, where the effects of optical aberrations will be

incorporated.

3.2 Review of Motion Tracking Algorithms

A large body of work concerning algorithms that track feature motion between image frames

exists. An excellent review of the subject was performed by Barron and Fleet [4]. In this section,

several of the most important approaches to the problem will be discussed, including block

matching algorithms, frequency domain approaches, as well as gradient methods. The

advantages and disadvantages of each approach will also be discussed.
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3.2.1 Block Matching Algorithms

Block matching algorithms are perhaps the simplest form of motion tracking that can be

performed. In this approach, the image is divided into small regions (interrogation areas) which

are then individually tracked from one image to the next. Matching of the interrogation areas

between images is performed by minimizing an error function such as:

Error = j (C[ I+,y,to ),I+ d,,y+ d,,tj)]
(x,y)eR

(3.1)

In this expression, R is the region defined by the interrogation area, (d ,, d,) is the displacement

vector, I(x,y, t) is the intensity of the image at given spatial and temporal coordinates, and C[]

is a function that indicates the amount of dissimilarity between the two arguments (Lim [5], Little

and Verri [6]). Two commonly used choices for video processing applications are the squared

difference or the absolute value of the difference between the two arguments

Error= j j[I,y,to--I +d,,y+d,,ti 2

(x,y)eR

(3.2)

Error = (I(xIyIto) - I+ + dX ,y + d,,9t)
(x,y)ER

(3.3)

For each interrogation area in the first image, the error is calculated for a range of displacements

in both the x and y directions in the second image. The displacement whose error value is the
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smallest is chosen as the true displacement of that particular interrogation area. Block matching

in this way can only calculate integer displacement values; in order to calculate subpixel

displacements, the original images need to be interpolated so as to provide a finer mesh to the

block matching algorithm. Block matching approaches in general can be extremely

computationally intensive, especially for long search lengths and for finely interpolated intensity

images.

Another evaluation function used to match interrogation areas from one image to another is the

discrete cross-correlation function #(d,, d,),

Xh = YhI(x,y, to) -I(x + dx,,y + d,,5ti )
p(d,d, ) =

Xh ZYh I(xy, t )I Xh Y I(x + d,y + dt)
dx;X d,=yl dx X dy;y

(3.4)

The cross-correlation function approaches 1 when the match between the interrogation area in the

first and second images is perfect, and goes to zero where there is no match. Again, the cross-

correlation function is calculated for a range of displacements in the x and y directions, so that a

cross-correlation table is produced (see Figure 3.1). The displacement vector corresponding to

the highest peak in the correlation table is taken to be the actual displacement of the interrogation

area. This algorithm is very popular in the experimental fluid mechanics community, where it is

used to process images obtained from Digital Particle Image Velocimetry (DPIV) experiments

(Willert and Gharib [7]). Just as with the previous metrics, subpixel displacements can be

evaluated by first interpolating the original intensity images to a finer grid. Another subpixel

approach that avoids interpolation is to fit a Gaussian curve on the correlation plane peak and use

the real-valued center of the Gaussian curve as the interrogation area displacement. In order to

speed up the processing, the cross-correlation plane is typically calculated by transforming to the
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frequency domain and using the fast Fourier transform (FFT). Instead of performing a sum over

all the elements of the sampled region for each element, the operation can be reduced to a

complex conjugate multiplication of each corresponding pair of Fourier coefficients. This new

set of coefficients is then inversely transformed to obtain the cross-correlation value.

"U

Figure 3.1. Typical correlation table, with the position of the high peak corresponding to the integer pixel displacement of the
interrogation area.

A more recent approach to finding the integer pixel displacement is described by Hart [8], who

develops an error correlation based approach using compressed images. This algorithm

compresses the images to be correlated based by ignoring all pixels whose spatial gradients are

smaller than a certain threshold, and then performs the following error correlation on the

remaining image data:

I(xYto)+ I(x+d,,y+d,,ti) - JI(x, y,to)- I(x+d,,y+d,,)

0( d X5 d y X/ , Xh Yh I(x ,y ,to) + I(x + d , ,y + d , ,t lz)]

(3.5)
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Just as with previous algorithms, a correlation table is generated whose peak corresponds to the

displacement estimate. Using particle image velocimetry (PIV) type images, as shown in Figure

3.2, compression ratios on the order of 10:1 can be used. These high compression ratios, in

conjunction with the fact that the error correlation expression uses only sum operations, can make

the approach much faster than traditional correlation techniques.

Figure 3.2. Particle image velocimetry (PIV) image. A water flow (here flowing from bottom to top) is seeded with fluorescent
particles and is illuminated by a laser sheet. This kind of image lends itself well to compression since there are many dark areas with
little information present.

Whether the correlation plane is determined using FFT methods or not, the size of the

interrogation area has an important effect on the robustness and accuracy with which block

matching methods can find the integer value of the displacement. Clearly, the smaller the

interrogation area the easier it is to find spurious matches in the subsequent image. Larger

interrogation areas therefore typically increase the probability of finding the correct displacement

peak, and allow for longer displacement search lengths without increasing the probability of a

spurious match. However, if the interrogation area is chosen to be so large as to incorporate large

velocity differences within it, the correlation peak will flatten out and will be harder to detect.

Furthermore, individual pixels' displacement may vary substantially from their interrogation
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area's average displacement as represented by the flattened correlation peak. It can be seen,

therefore, that the interrogation area size must be chosen carefully depending on the

characteristics of the images themselves.

One way to avoid the tradeoff in accuracy or robustness due to interrogation area size is to

perform the correlation step in a hierarchical fashion. For instance, a large interrogation area can

first be used to find an estimate of the integer displacement for that part of the image. Next, the

original large interrogation area is broken down into smaller interrogation areas, which are in turn

correlated with a much smaller search area, centered on the displacement found with the larger

interrogation area (Hart [9]). This "top-down" approach in interrogation area size can also be

reversed into a "bottom-up" technique (Rohaly, Frigerio, and Hart [10]). Finally, robustness can

also be increased by multiplying (element by element) the correlation tables of adjacent

interrogation areas. This correction method can enhance the size of the correct displacement peak

relative to random noise peaks, which tend to cancel each other out during the multiplication

process (Hart, [11]). These approaches require some additional computational time but provide

higher spatial resolution with a higher accuracy than the standard algorithm.

In terms of estimation accuracy, it has been found that the overall accuracy of correlation based

techniques with subsequent Gaussian fitting of the correlation plane to find the subpixel

displacement is typically in the 0.05-0.1 pixel range.

3.2.2 Frequency Based Algorithms

A significant amount of work has gone into calculating optical flow using frequency methods.

One approach relies on the following relationship between the phase difference at the same point

of an image pair and the displacement between the images at that point:

AO = dk
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(3.6)

where AO is the phase difference, d is the displacement and k is the wave vector of the kernel's

main frequency (Subramaniam et. Al [12]). The estimate of k is obviously very important, and it

can be calculated by using the local frequency model:

8#Dq(x)k(x) = x

(3.7)

where

#x= 0 (x) + #Rightt ()

(3.8)

In order to calculate the phase at any given point in the image, it is desirable to utilize filters that

are localized in both space and time. Gabor filters are often used since they achieve the minimum

product of the uncertainty principle's localization in both space and time. An example of a Gabor

filter is shown in Figure 3.3 below.

In summary, the image pair is filtered using a set of Gabor wavelets and the phase of a point is

averaged over both images. The derivative of this average is calculated in order to obtain the

wave vector at that point, and finally the estimated displacement is calculated by dividing the

phase difference of that point over the two images by the wave vector, k.

It has been claimed that phase methods like the one described above are more robust than

magnitude response methods. The phase methods are practically immune to image intensity

variation, for example. However, phase methods do suffer from computational complexity and

from the requirement that some parameters be determined experimentally based on the particular
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images and motions being analyzed. Because of these drawbacks, these methods are not pursued

any further in this work.
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Figure 3.3. Two 2D Gabor filters (left and right) with different scales and orientations

3.2.3 Gradient Based Algorithms

Gradient methods, also known as gradient optical flow methods, are based on the assumption that

the intensity of any given target point remains constant as the target point moves from one image

to the next. This assumption can be codified mathematically using the material (or total)

derivative of the brightness intensity I(x,y, t)

DI(x, y, t) _ I(x,t) + I(x, y, t) &' +IMx' y, 0) 03,l
Dt 9tY a 9

(3.9)

Setting the material derivative equal to zero (the constant brightness assumption) and replacing

the time derivatives of the spatial coordinates with velocities u and v, we obtain
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dI(x,y,t) +I(x,y,t)U+ dI(x,y,t) = 0

(3.10)

The above equation clearly relates the temporal and spatial partial derivatives of the image

intensity to the x-velocity and y-velocity of the image feature. The velocities are the two

unknowns being sought, and only the spatial and temporal partial derivatives can be calculated.

Clearly, this optical flow problem has two unknowns (u,v) and only one equation, so several

methods have been developed to give a solution for the two unknown velocities. The simplest

method is to assume a constant velocity for all the pixels within an interrogation area, and solve

for the velocities u and v in the least squares sense. Mathematically, this amounts to minimizing

(Ifu + I v + 
u)2

(3.11)

over the interrogation area (where I,, I,, and I, are the partial derivatives with respect to x, y

and t). Differentiating this expression and solving for the velocities results in the following

expression

uIXIX IXI) IxIt

Uv) IXI, IIY II,)

(3.12)

where the sums are again taken over the entire interrogation area. Though this approach is

attractive in its simplicity, it does have the disadvantage of assigning a single velocity value to an

extended region. Clearly, the larger the interrogation area used, the coarser the resulting velocity

mesh. Conversely, the larger the interrogation area the more robust the velocity estimate.
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A more computationally intensive approach to solving the velocity used by Horn and Schunck

[13] combines the gradient constraint with a global smoothness term. This term helps to

constrain the velocity field by assuming that the field has to vary smoothly. In this approach, the

following error term is minimized over the interrogation area:

( it + IXu + IYv)' + A' (JVu|| + J|Vv||2

(3.13)

The relative importance of the second, smoothing term is controlled by the constant A . This

approach leads to a finer and smoother mesh of velocity estimates, but unfortunately does require

the user to choose a value of A , which may be image dependent.

Several other solution formulations for gradient based optical flow can be found in the literature.

For example, Lucas and Kanade [14] used a weighted least squares approach that gives higher

importance to pixels near the center of the interrogation area than to pixels at its periphery.

Others (Negahdaripour [15], Haussecher & Fleet [16]) have attempted to include physical models

of brightness variation into the constant brightness equation, essentially replacing the right hand

side of equation 3.9 with a function describing how the brightness of a target point varies from

frame to frame.

No matter what formulation is used to solve for the two velocity terms, a key step in this overall

approach is the calculation of the spatial and temporal derivatives. In Horn and Schunck's [13]

original formulation of the approach, derivatives were calculated using simple backward

differences operating on a single image pair. Simple two point interpolators were used to co-

locate the derivative estimates at the center of a 2x2x2 pixel cube:

F f1 1 1 j=t (Iz+ I, j,kj- 4i,j,k]+ I[i+ 1,j+ I, k]-I4i,j+ I, kj+ I[i+ I, j,k+ I]- I4i,j,k+ 11+I[i+ I,]j+ I, k+1]-I4i,i+ I, k+ 1])
2 2 2]4
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1 ] (I[i,j+ 1,k]- I[i,j,k]+ I[i+ t,j+ 1,k]- I[i+ 1,j,k]+I[i,j+ 1,k+ 1--I[i,j,k+ I+I[i+ 1,j+ 1,k+ 1]-I[i+ 1,j,k+ I)

I . + ' (I[ij,k]+I[i+ 1,j,k]+ I[i+ 1,j+ 1,k]+I[ij+1,k]-I[i,j,k + 1]- I[i+ 1,j,k + 1]-I[i+ 1,j+ 1,k+ 1]- I[i,j+ 1,k + 1)

(3.14)

These two point derivative and interpolating filters are prone to error, however, and their

accuracy drops off precipitously as the motion between frames increases beyond 1 pixel. This

effect can be seen in Figure 3.4, where the calculated displacement is plotted as a function of the

actual displacement, d, for two one dimensional images with a sinusoidal intensity of the form:

I,(x) = A sin(cox)

1 2 (x) = Asin(wox+d)

(3.15)

-4 -3 -2 -1 0 1
Displacement (pixels)

2 3 4 5

Figure 3.4. Actual and calculated displacement between a synthetic sinusoidal intensity image pair. The displacement is calculated
using the two point derivatives shown in equation 3.14. It can be seen that the accuracy of the estimate decreases significantly as the
displacement becomes greater than 1 pixel.
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One solution typically used to solve for displacements larger than one pixel is to downsample the

image repeatedly, until the measured motion is reduced to a subpixel value. The images are then

repeatedly upsampled and shifted by the calculated displacement, until the original image

resolution is obtained. Besides the limitation to subpixel displacement estimation, Davis and

Freeman [17] showed that this two point derivative approach is prone to a systematic error or bias

that increases as the images' spatial frequency increases. This result is recreated in Figure 3.5,

which shows the calculated displacement of a sinusoidally varying intensity image, for various

values of spatial frequency. Over the two pixel displacement range (from -1 to 1), it can be seen

that the error between the calculated and actual displacement increases significantly as the image

spatial frequency is raised.

-0.6 -0.4 -0.2 0 0.2
Displacement (pixels)

0.4 0.6 0.8

Figure 3.5. Spatial frequency effect on accuracy of 2 point filter based gradient method. As the spatial frequency of the synthetically
generated images is raised, the error in the calculated displacement relative to the actual displacement increases.
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In order to mitigate this undesired frequency effect, Davis and Freeman [17] proposed using the

following simple linear model to describe the error between the calculated, (i, ), and the actual

(u,v) displacement:

u = alu+ pv

(3.16)

v = a 2u + /32v

(3.17)

where a , a 2 , i8 2 are constants. In this Linear Bias Compensation (LBC) approach, the linear

model parameters are determined by performing three additional gradient optical flow

calculations where the first image is displaced by one pixel first in the x and then in the y

direction, so that the disparity between the two images is always kept below one pixel. With the

model parameters calculated, the bias corrected displacements can be found from equations 3.15

and 3.16. Though this LBC technique increases the computational cost by a factor of 4, the

systematic error in the displacement calculation is also reduced by approximately a factor of 4.

The same disparity calculations performed to generate Figure 3.5 above were performed using

LBC, and the much improved results can be seen in Figure 3.6.
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Figure 3.6. Effect of using Linear Bias Compensation (LBC) to mitigate the frequency bias in standard 2 point filter based
gradient optical flow. (a) LBC and standard displacement estimates calculated for images with a spatial frequency of 1.4. (b) LBC
and standard displacement estimates calculated for images with a spatial frequency of 2.6. It can be seen that the LBC method
outperforms the standard method significantly, especially at the higher spatial frequency.

3.2.4 Gradient Methods using Multiple Images

This approach to the optical flow problem can be seen as a subset of the gradient techniques

described above. Its main attribute is the use of multiple images collected in time in order to

increase the accuracy of the calculated spatial and temporal derivatives. These higher accuracy

derivative estimates are used in the constant brightness equation in order to determine better

estimates of the optical flow velocity (Simoncelli [18], Otte and Hagel [19]).

A thorough treatment of how to maximize the benefit of using multiple images to improve optical

flow performance is given by Timoner and Freeman [20], and their development will be followed

here. By considering the determination of optical flow as a signal processing problem, it can be

seen that the accuracy of the method comes down to choosing good derivative and interpolating

filters. In the two image case discussed above, two point derivative and interpolating filters are

used. When applied to the optical flow problem, these 2 point derivative and interpolating filters

calculate the velocity of a point at the center of a 2 pixel x 2 pixel x 2 image spatio-temporal
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cube. By using multiple images, filters with larger regions of support can be used, exponentially

increasing their accuracy. If these longer derivative and interpolating filters have a length N,

their application to the optical flow problem results in the calculation of the velocity at the center

of a N pixel x N pixel x N image cube (see Figure 3.7).

2 Imnages MANY Imna s777

Figure 3.7. Schematic showing where exactly in space-time velocities are calculated using gradient based optical flow techniques. On
the left, 2 point derivative and interpolating filters estimate the velocity at the center of a 2 pixel x 2 pixel x 2 image cube (red dot).
On the right, N point derivative and interpolating filters estimate the velocity at the center of a N pixel x N pixel x N image cube

An ideal derivative filter has a frequency response whose magnitude for all spatial frequencies is

equal to the frequency itself, o . An ideal interpolating filter, meanwhile, has a frequency

response whose magnitude is equal to 1 for all frequencies. In Figure 3.8, the magnitude

response of the two point derivative filter, [-1, 1] and the two point interpolating filter, [ , ], is

plotted. It can easily be seen that these simple filters deviate increasingly from ideal behavior as

the spatial frequency of the image is increased. The poor high frequency performance of these

filters as shown in Figure 3.8 therefore explains the previously described bias experienced by

gradient based methods using only two images. In contrast, the use of more than two images

allows the use of longer derivative and interpolating filters. In Figure 3.9, the magnitude

response for filters of varying lengths is plotted as a function of spatial frequency. It can be seen
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that as the filter length is increased, the deviation from ideal performance decreases. The

increased accuracy compared to the two point filters is especially noticeable.
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Figure 3.8. Magnitude response of the 2 point gradient filter (on the left) and interpolation filter (on the right), along with the ideal
response for each.
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Figure 3.9. Magnitude response of several multipoint gradient filters (on the left) and interpolation filters (on the right), along with
the ideal response for each.
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The calculation of multi-point, one dimensional derivative and interpolation filters can be

performed using the Parks-McClellan algorithm (described by Oppenheim and Schafer [21]).

This well-known algorithm takes in as input a desired filter response, Hd (w), the desired length

of the finite impulse response filter (FIR), and a weighting function, W(w), which represents the

relative importance of the filter error as a function of frequency. The algorithm determines the

filter, Haic (w) , that minimizes the maximum of the absolute value of the weighted error, E(w) ,

given by

|E(w) = W(w)[Hd (w) - Haic (W)]I

(3.18)

To minimize this error, the algorithm creates a filter whose error oscillates from positive to

negative with equal weighted amplitude.

Timoner and Freeman [20] showed that improved tracking performance can be achieved by

optimizing the spatial derivative and interpolation filters together. Instead of minimizing the

Parks-McClellan error for each filter individually, the error of the ratio of the derivative and

interpolation filters is minimized. In this way, a small error in the spatial derivative filter can be

compensated by an opposite error in the spatial interpolation filter. This minimization can be

performed using the simplex method, and can be initialized using the filters obtained using the

Parks-McClellan algorithm. Though this modified approach can improve the performance of the

spatial filters, the same technique cannot be used on the temporal filters. This is due to the fact

that changing the spatial filters modifies the images without affecting the apparent motion,

whereas changing the temporal filters does change the target's apparent motion.
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For periodic motions of the target, an improvement in the temporal filters can be obtained by

noting that changes in brightness are periodic and consist of a linear combination of a

fundamental frequency and its harmonics. Therefore, temporal filters must only be accurate in a

small region surrounding those frequencies. For example, if there are eight images per cycle, the

important frequencies are pi/4, pi/2, 3*pi/4, and pi, where pi is the Nyquist frequency.

3.3 Algorithms Developed for Two Image AWS Processing

As has been mentioned previously, the goal of this operating mode is to generate 3D surface

models of targets in "real time", which we define as refreshing the 3D model in less than 30

msec. Due to this speed constraint, only two images are used to generate the 3D data, and the

AWS sampling positions are chosen to be diametrically opposed on the sampling circle so as to

maximize depth sensitivity. As our analysis in Chapter One showed, this operating regime is

equivalent to operating a compact stereo system with a small baseline. As was also mentioned in

Chapter One, the experimental setup using the Dalsa CA-D-1024A camera and the Nikkor 50mm

lens can image a -20x20x20 cm volume of space onto the CCD plane with a disparity range of

approximately 0-10 pixels. This disparity range is clearly too large to rely solely on algorithms

whose accuracy breaks down for displacements greater than one pixel, but is also too small to

rely solely on algorithms that can only calculate the displacement to within 1 pixel precision (this

precision would appear too coarse, as shown in Figure 3.10). Clearly, our test system requires an

algorithm that can efficiently calculate a displacement much larger than one pixel but to subpixel

precision. The approach taken here is to break the calculation down into two steps: first the

integer pixel displacement is calculated, and then the images are warped by the integer pixel

amount so that any remaining disparity is necessarily subpixel. This remaining subpixel

displacement is then calculated, and finally the sum of the integer and subpixel displacements is

taken to be the total disparity. The following sections will describe in detail both the integer and
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subpixel displacement calculations and will also describe how to take into account any image

brightness variations. Finally, the optimization of the projected pattern and how the pattern and

disparity algorithm can be fine tuned to each other will be discussed.

Figure 3.10. Integer pixel resolution 3D surface model of a human sized mannequin head. All dimensions are in pixels, and it can be
seen that the depth range is -010 pixels.

3.3.1 Integer Pixel Displacement Calculation

Our test system's approximately 10 pixel disparity range suggests the use of a block matching

type algorithm to find the integer displacement, since this kind of algorithm has been found to be

robust in finding large integer pixel displacements. A gradient based optical flow approach could

also be used, but this would require repeatedly downsampling the image until the displacement is

reduced to being subpixel, and then repeatedly distorting the image, upsampling, and

reprocessing until the original image resolution is returned. This laborious process can quickly

become computationally expensive. Instead, the approach used here is to perform a compressed

image correlation step as described in Hart [9]. This approach works well with the relatively
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short disparity ranges found in the experimental setup, and image compression ratios up to about

5:1 have been used successfully. Increased performance is also possible due to the fact that

motion between the left and right images is known to be essentially horizontal. This fact reduces

the size of the correlation table to that of a correlation "strip", since the vertical motion can be

assumed ot be near zero. Under these conditions, the compressed image correlation approach has

been shown to be faster than FFT based correlation methods. Indeed, processing times for the

compressed correlation step performed on 512x512 images using 8x8 pixel interrogation areas

have been measured to be approximately 15-20 milliseconds on an Intel Pentium IV 1 GHz

desktop computer.

3.3.2 Subpixel Displacement Calculation

As was mentioned above, the major weakness of block matching algorithms is the fact that they

can only calculate integer displacements and are therefore limited by the resolution of the grid.

Without performing any interpolation on the image, this means that these algorithms can only

calculate the displacement to within one pixel precision. With block matching algorithms, one

way to calculate the subpixel component of the disparity is to first interpolate the image onto a

finer grid. The higher the desired precision of the estimate, the finer the required grid and the

higher the computational cost. A less computationally expensive approach previously described

is to fit a Gaussian curve or a bi-linear approximation to the correlation table peak, and use its

real valued peak location as an estimate for the subpixel displacement. However, it has been

found that this subpixel calculation approach is only accurate to approximately 0.05-0.1 pixels,

and that this level of accuracy is not high enough to create smooth 3D surface models.

In order to improve this accuracy, a gradient based optical flow approach has been implemented

for the subpixel displacement calculation. First, the interrogation area from the right image is

shifted in space by the integer displacement calculated using compressed image correlation, so

that the right image interrogation area "overlaps" its position in the left image. Now that the
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interrogation areas overlap, any remaining displacement is necessarily smaller than one pixel.

Gradient based optical flow techniques such as the Linear Bias Compensation (LBC) approach

originally described by Davis and Freeman [17] can now be used to estimate this remaining

subpixel displacement, and much smoother 3D surface models can be achieved. A comparison of

the 3D surface models obtained by using a Gaussian fit of the correlation table and optical flow

techniques to find the subpixel displacement can be seen in Figure 3.11. Clearly, better

performance is obtained using the latter technique.

Figure 3.11. Comparison of subpixel calculation methods. (a) On the left is a 3D surface model generated by fitting a Gaussian
curve to the correlation plane in order to find the subpixel displacement. On the right is a 3D surface model generated by warping
the image by the integer pixel displacement, then calculating the remaining subpixel displacement with the LBC gradient optical
flow technique. Both models were generated from the exact same image data.

3.3.3 Illumination Variation Compensation

It was shown in the previous section that gradient optical flow techniques are more accurate at

determining subpixel displacement than fitting a Gaussian curve on a correlation plane.

However, using the constant brightness equation to solve for the subpixel velocity components

can only result in accurate estimates if there is little to no illumination variation between the

images. If the brightness of the target changes between the left and the right images, the resulting
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3D model will be less accurate. The magnitude of this effect can be modeled synthetically by

adding a gain and an offset to the intensity of the second image, and the result is shown in Figure

3.12. The data here was generated identically to that generated in Figure 3.4, except that the

second image's intensity was modified by a gain CI and an offset C2 as follows:

I,(x) = Asin(ax)

I 2 (x) = C * A sin(ox+d) + C2

(3.19)
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----------..............

.0.4 ........----------- -----

I -060 -0.6 -0!4 -002 0 0.2 04L 06. 0

Actual Displacement (pixels)

80

2<

0.
C
02
E
02
(.0
00

60
5
0
02
CO

u
CO

0

S -06A 4 a6 -0.4 -0s2 a 0 2 04 06 0

Actual Displacement (pixels)

Figure 3.12. (a) Effect of increasing illumination offset on accuracy of gradient optical flow calculation. Offsets used were 0, 40
and 80 pixels of brightness. (b) Effect of increasing illumination gain on accuracy of gradient optical flow calculation. Gains used
were 1, 1.2, 1.4, and 1.6. The spatial frequency for all experiments was 2, and the arrows indicate directions of increasing
illumination offset or gain..

Clearly, the above figures show that the accuracy of gradient optical flow methods can fall off

dramatically if intensity variations as small as 10% occur between the images. One way to

attenuate this problem is to incorporate variables representing an intensity gain and offset into the

optical flow approach (Negahdaripour [15]). For example, if one assumes that the velocities are

constant over a given interrogation area, then the following linear system can be derived:
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SuX X I I I I Y, -( 1XI -( IX - I, I

CV - X I -1 II I2I - I tI
C2>, - IXI -( j J,2 , I JLJC Q 2 UX IYlz]

(3.20)

Since there are now four unknowns in this system, the minimum size of the interrogation area

over which the sums are calculated is larger than in the calculation where intensity is assumed to

be constant. In practice, the interrogation area size can be reduced to about 4x4 pixels. The use

of this illumination compensation model can be combined with the Linear Bias Compensation

discussed above by using it to estimate the different displacements required by LBC. The effect

of using this illumination compensation model in the LBC implementation can be seen in Figure

3.13, which shows the calculated displacement for the cases where there is no illumination

variation, where there is uncompensated illumination variation, and finally where the illumination

variation is compensated for.
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Figure 3.13. Pot showing the performance gain achievable by using the gain and offset illumination compensation model. The
standard optical flow algorithm (red line) is unable to compensate for the illumination variation in the images. The illumination
compensated algorithm performs much better (light blue line), and almost achieves the same performance as the standard algorithm
operating on ideal images with equal brightness (green line).

Though this figure shows that the illumination compensated result is not quite as good as the

result where there is no illumination variation between the images, the compensated result still

removes most of the error shown by the uncompensated model.

The effectiveness of using an illumination compensated LBC algorithm for the subpixel part of

the displacement calculation can be seen in Figure 3.14, which shows the calculated 3D surface

model of a mannequin head for the cases with and without illumination compensation. Clearly,

the use of the illumination compensated model results in a much smoother and less noisy result.
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Figure 3.14. (a) 3D surface model generated with standard LBC gradient optical flow algorithm calculating the subpixel
displacement. (b) 3D surface model generated with illumination variation compensated LBC gradient optical flow algorithm.
Both 3D surfaces were generated using the same image data. The target is a human sized mannequin head.

3.3.4 Optimizing the Projected Pattern

Projecting a pattern onto the target has the effect of increasing the signal to noise ratio and

improving the robustness and the accuracy of the calculated 3D surface model. With an

understanding of the algorithms used to calculate feature displacement from one image to the

next, it is possible to give guidelines on what kind of projected patter should be used to maximize

performance.

From the discussions above, the most important image characteristic affecting the subpixel

algorithm performance is the spatial frequency. As is shown in Figure 3.5, increasing the spatial

frequency of the image increases the bias in the optical flow estimate. Conversely, decreasing the

spatial frequency reduces the bias and increases the estimate accuracy. This latter trend is limited

by noise in the image, however, so that in effect there is a minimum spatial frequency below

which performance is degraded. Indeed, as the spatial wavelength is increased, the actual spatial

gradients become smaller and any noise due to quantization error, shot noise, readout noise and

dark current becomes more and more important.
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The existence of a lower limit on the projected pattern's spatial frequency can be seen in Figure

3.15, which shows the resulting 3D surface model as the sinusoidal pattern's wavelength is

increased. This figure also suggests that the spatial frequency should be maintained at

approximately 0.8.

In order to minimize the effect of the frequency bias on the calculated surface models, a projected

image consisting of a sinusoidal intensity pattern in the horizontal direction was selected. The

pattern intensity is designed to vary only in the x direction since for the present case where only

two horizontally opposed aperture positions are used all target feature movement on the image

plane is horizontal. Furthermore, this pattern design maximizes the signal power in the x

direction, reducing the effect of noise on the calculations.

Further improvements in the 3D surface model can also be obtained by capturing several image

pairs with phase-shifted sinusoidal projection patterns. The advantage from acquiring an image

pair, then shifting the sinusoidal projection pattern, then acquiring another image pair, etc..., and

finally averaging the results from all the image pairs comes from the fact that all target features

get illuminated with maximum brightness in at least one of the image pairs. Since the signal to

noise ratio rises as the square root of brightness intensity, insuring that all parts of the target are

illuminated by the bright part of the sinusoidal pattern in at least one image pair increases the

quality of the 3D model.
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Figure 3.15. Effect of projected pattern spatial frequency. From top to bottom, the spatial frequency of the image is approximately
0.2, 0.4, 0.6, and 0.8. The images' size is 512x512 pixels, and the interrogation areas used measured 8x8 pixels.
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3.3.5 Stripe Tracking Algorithm

With the use of a sinusoidal intensity projection pattern, it is possible to speed up the overall

tracking algorithm by modifying the integer displacement calculation step. As was mentioned

above, the general approach developed in this work is to use correlation based block matching to

find the integer displacement of each interrogation area, followed by gradient optical flow

methods to find the subpixel displacement. The striped projection pattern, however, makes it

easy to calculate the integer displacement by "counting stripes".

This process first involves finding the correspondence of one or more interrogation areas in the

left and right images. These interrogation areas can be larger than normal (16x16 pixels, say) as

the displacement estimation is only required to have pixel precision. Using these interrogation

areas as anchors, it is a simple matter to count stripes out to the right and the left of the anchor

position, for both the left and the right images. The counting of the stripes is achieved by moving

horizontally across the image and setting the position of a stripe to the location where there is an

intensity slope change from positive to negative and the intensity value is above a given

threshold. As long as the projected pattern on the target image is well defined and of high

contrast, this criterion is very effective. Since the anchor positions are known in both the left and

right images, any stripe (say the 13 th stripe to the right of the anchor IA) is also be known in both

images. Once the stripes have been counted out to the right and to the left, each stripe can be

followed in the up and down directions by following the pixels with the highest intensity values.

Once all the stripes' pixels have been accounted for in this way, calculating the integer

displacement of any interrogation area in the image is just a question of taking the average of the

difference between the position of corresponding left and right image stripes that pass within the

IA's region. This approach can be seen in Figure 3.16.
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Figure 3.16. Schematic of stripe-counting algorithm. In this process, the disparity of an "anchor" interrogation area is calculated
using correlation, and stripes are then counted using the anchor IA as a base in both the left and right images. Stripes having the same
number in the left and right image therefore correspond to each other, and the integer displacement of all interrogation areas traversed
by the stripes can then be found. Subpixel displacements are then calculated using derivative optical flow techniques.

Even though it is seemingly more complex than the block matching approach, the above

algorithm is approximately 50% faster at finding the integer displacement estimate. This speed is

due to the limited number of IA correlation searches performed (typically one or two), and to the

fact that most of the processing involves only pixel value comparison (whether it be during the

horizontal scan looking for stripe positions, or the vertical traveling along the stripe intensity

ridge).

Inevitable problems with the stripe tracking approach include the occlusion of a stripe that is

visible in the left image, but not in the right (or vice-versa). Another issue to be aware of is the

possibility of aliasing in both the anchor determining step, as well as in the later stripe counting

and stripe tracking steps. For the anchor determination step, aliasing can be minimized by

choosing a larger interrogation area (16x16 say), which increases the probability of finding the

correct integer precision displacement. Furthermore, choosing a projection pattern whose
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wavelength is less than the maximum displacement range of the target will insure that a stripe in

the left image is not matched to its neighboring stripe in the right image.

A typical result using the two sampling position algorithm developed in this section can be seen

in Figure 3.17. This 3D surface model was generated from a single pair of 512x512 pixel images,

using 8x8 pixel interrogation areas. A sinusoidal projection pattern was used, and the processing

time was less than 20 milliseconds on a Pentium IV 1 GHz computer.

Figure 3.17. This 3D surface model was generated from a single pair of 512x512 pixel images, using 8x8 pixel interrogation areas. A
sinusoidal projection pattern was used, and the processing time was less than 20 milliseconds on a Pentium IV I GHz computer.

3.4 Extension of Two-Image Algorithms to Many Sampling Locations

This section will discuss a first way to use more than two horizontally opposed AWS sampling

positions in order to achieve more accurate results. This first approach involves a straightforward

extension of the illumination compensated, LBC gradient based, two image approach discussed in

Section 3.3 to an operating regime where a circular array of aperture sampling positions is used.

The performance advantages of using a circular sampling array will be discussed, both from a 3D

model quality and computational complexity standpoint.
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3.4.1 Description of Algorithm

In this approach, the first image (typically located at the 9 o'clock position on the sampling

circle) is defined as the "anchor image" and is divided up into a grid of interrogation areas. As

the aperture is rotated and each subsequent image is acquired, the two image algorithm described

in Section 2.3 is performed on the anchor image and the newly acquired image. For each image

acquired after the original anchor image, an x and y direction disparity is therefore calculated for

each IA. This set of disparities must then be processed in order to estimate the rotation diameter

of each interrogation area. By using simple geometric considerations, and knowing the angular

separation between sampling positions, the best fit (in the least squares sense) sampling circle

radius for each interrogation area in the anchor image can be found (see Figure 3.18).

"Anchor" Image

Figure 3.18. Left: schematic of extension of pair-wise processing algorithm to multiple images. An "anchor" image is chosen as the
reference, and pair-wise processing is performed between it and the images captured at other sampling positions. Right: schematic
showing the geometry underlying the calculation of the rotation radius based on each individual result.

First, we begin by defining for each image pair analyzed the angle 02, which is just the motion

direction of that image pair, and is defined by the x and y component of motion (Ax , Ay)

02 = tan-
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Next, the cosine law is used to calculate what the motion radius R is in terms of the motion

distance L and the angle separating the two images, 01

L2 = 2R 2 - 2R 2 cos01

R =L
2(1 - cos 01)

The distance L can also be expressed in terms of the x and y components of motion, and the angle

02 as follows

L = x
cos0

2

L =Ay
sin 02

Finally, the following overdetermined set of equations can be set up and solved for R:

S2(1 -cos 1 ) cos 0 2  R = ]
2(1 - cos0 1) sin 02] Ay_

Note that if N sampling positions are used and N images are acquired, then N-1 image pairs can

be processed and an over-determined system composed of 2(N-1) equations can be solved for R.

3.4.2 Simplification of Algorithm With Respect to Two Sampling Position Case

The use of multiple images allows the simplification of the two image algorithm described in

Section 3.3. Indeed, if enough AWS sampling positions are used, the disparity between the first

anchor image and the second image can be reduced to being subpixel. When this is the case, the

first half of the two image algorithm (consisting of the block matching processing used to find the

integer displacement) can be eliminated, saving processing time. Figure 3.19 shows the required

number of evenly spaced sampling positions for a given expected maximum disparity diameter.
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Figure 3.19. Plot showing the number of equally spaced images required to insure subpixel motion between the first and second
image sampled, as a function of the target feature's image rotation diameter.

It should be noted that the required number of images shown in Figure 3.22 can be substantially

reduced if the sampling interval is not uniform. For example, if the second image is sampled very

close to the original image, an accurate enough rotation diameter estimate can be calculated to

allow the third image to be sampled at a greater angular distance from the first.

3.4.3 Increased Accuracy of Circular Sampling Pattern and Algorithm

The increased accuracy achievable by using multiple images sampled in a circular pattern can be

seen in Figure 3.23, where a plot of the diameter estimation error as a function of the number of

AWS sampling positions is shown. This figure was generated synthetically by first calculating

the expected position of an interrogation area on the image plane due to the given number of

sampling positions. In this case the diameter of rotation on the image plane was chosen to be 8

pixels, which is typical for our AWS system. To each expected position was then added random

noise sampled from a Gaussian distribution with zero mean and a standard deviation of 0.05

pixels (the approximate accuracy of our two image processing algorithm). This synthetically

generated noisy data was then used to calculate a least squares fit circle diameter as discussed
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above. The results of 10,000 randomly generated data sets were averaged to produce the graph in

Figure 3.20 below.

a)
Cu
E

E

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
0

( LSQ Diameter Fit

- -- - --- -- --- -- - - - - - - - -- - --y - -

10 20 30 40 50 60 70 80 90 100
Number of Images Used

Figure 3.20. Diameter estimation error as a function of number of evenly spaced positions in the circular sampling array.

As can be seen from the plot, the addition of sampling points initially increases the accuracy of

the diameter estimate dramatically, but this increase in accuracy eventually flattens out to the

point where the addition of more sampling positions becomes less useful. Overall, it can be seen

that the calculation error can be reduced by about a factor of four by using 30 sampling positions

instead of just two.

It is also interesting to compare the accuracy of using multiple sampling positions arrayed in a

circle to using only two horizontally opposed aperture positions, but taking more than just two

images. The result of this comparison is shown in Figure 3.21, where the estimate error is plotted

as a function of the number of images taken. For the circular array, the number of images

captured represents the number of sampling positions on the circle. For the horizontally opposed
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two aperture case, the number of images represents the number of image pairs (left/right) taken

divided by two. It can be seen from the figure that using multiple image pairs captured from only

two horizontally opposed sampling positions increases the estimate error by approximately a third

relative to processing the same number of images captured in a circular sampling pattern.
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Figure 3.21. Diameter estimation error as a function of number of images processed. The blue data points represent the case where
multiple image pairs are captured from two horizontally opposed sampling positions. The green data points represent the case where
the images are captured from a circular array of sampling positions.

3.4.4 Further Advantages of Using a Circular Sampling Pattern

There are two other advantages to capturing a given number of images in a circular sampling

pattern instead of through only two apertures. The first is that by using a circular array, the

subpixel displacement of the anchor interrogation area varies from one image to the next, so that

any error due to frequency bias varies around the circle of images and may even cancel out. In

the case of only two sampling positions, however, very similar subpixel displacement estimates

are calculated for each image pair, so that any frequency bias present is reinforced.
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The second advantage of the circular sampling array lies in the fact that the motion direction of

each interrogation area in the anchor image varies from one image in the circular array to the

next. Indeed, if a large number of sampling positions are used (>~10) the motion between the

anchor image and the next image in the circle is almost vertical. In subsequent images, the

motion between the anchor image and the just acquired image progressively becomes more

horizontal. When the sampling position passes the horizontally opposed position, the motion

direction again begins to increase its vertical component. This variability in the motion direction

increases the robustness of the algorithm by mitigating any effects of the target intensity pattern

on the measurement of spatial and temporal gradients. To explain this, one need only imagine the

use of a horizontally oriented sinusoidal projection pattern captured by only two horizontally

opposed sampling positions. Since the pattern has no intensity gradients in the x-direction, no

feature movement would become apparent by capturing images at two horizontally opposed

sampling positions. However, using more than two horizontally opposed sampling positions

would clearly create an apparent movement of the target, as most of the anchor image/acquired

image pairs would have a sizeable intensity gradient in the y direction.

3.5 Multi-image Algorithm Using Large Spatio-Temporal Filters

In the previous section, it was shown that the use of multiple images from different AWS

sampling positions can increase the accuracy of the target feature depth estimate. However, the

algorithm used in the previous section still relies on processing the images in pairs, and only

achieves a higher accuracy by fitting a best circle diameter in the least squares sense to the

multiple data points. In contrast, this section will examine the use of large spatio-temporal filters

(as introduced in section 3.2.4) to actually improve the estimates of the gradients involved in the

constant brightness equation (repeated here below):

76



I(x, yt) +I(xyt) u+ 1T(xyt) v= 0

(3.9)

3.5.1 Performance Measurement Using Ideal Synthetic Images

The effect of using longer filters to calculate the spatial and temporal gradients can again be

quantified using a one dimensional sinusoidal intensity image moving uniformly in time, and

applying various length filters to calculate the motion velocity (including the standard 2 point

filters already discussed). The synthetic one-dimensional images are defined by:

I(x,t) = A sin[co(x - dt)]

(3.20)

where A is the intensity brightness amplitude, d is the constant velocity value, co is the spatial

frequency, x is the spatial coordinate, and t is the temporal coordinate. The pixel intensities are

here assumed to be ideal in the sense that no effects from noise are considered (ie: truncation

noise, shot noise, etc...). Using even length derivative and interpolating filters, velocity estimates

can be calculated at space-time points located half-way between pixels and half-way between

image frames. Figure 3.22 and 3.23 show the result of such a velocity calculation, using filters

with lengths ranging from 2 to 36, and with a spatial frequency of 0.8 and 2.0 respectively. In

these figures, the absolute value of the estimated velocity error is plotted as a function of the

actual velocity.
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Figure 3.22. Absolute value of the calculated velocity as a function of the actual velocity, using synthetic sinusoidal images having a
spatial frequency of 0.8, for varying filter lengths. The error can be seen to decrease significantly as the size of the filter is increased
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Figure 3.23. Absolute value of the calculated velocity as a function of the actual velocity, using synthetic sinusoidal images having a
spatial frequency of 2.0, for varying filter lengths. Again, the error can be seen to decrease significantly as the size of the filter is
increased
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Clearly, the improvement achievable by using longer filters is substantial, as shown by the fact

that the use of a 36 point filter reduces the estimate error by a factor of approximately 1x107-

1x10 8 relative to the 2 point filter. Furthermore, Figures 3.22 and 3.23 show that while

increasing the spatial frequency of the image has a deleterious effect on the 2 point filter case

(whose error rises from approximately 5x10-3 to 3x10-2 pixels), the longer filters are much more

immune to high frequency bias. This confirms the performance predictions of Section 3.2.4.

3.5.2 Performance Measurement Using Synthetic Images with Quantization Noise

In order to obtain a more realistic measure of the performance gain possible from using long

filters, it is necessary to consider the effect of image noise. Timoner [22] thoroughly investigates

the effects of fixed pattern noise, shot noise, and models the quantization error inherent in a 12-bit

scientific grade CCD camera. In contrast, this section will only investigate the effect of

quantization noise by comparing the performance of various length filters using both 12-bit and

8-bit quantized images. This is particularly relevant to the particular AWS implementation

investigated in this research as the Dalsa CA1024-A camera only has an 8-bit dynamic range.

Just as in the previous section, images were synthetically generated with a one dimensional

sinusoidal brightness pattern defined by Equation 3.20. However, here each pixel's calculated

intensity was truncated to the next lowest integer value. For the 8-bit simulations, the sinusoidal

intensity ranged between 0-255, while for the 12-bit simulations the sinusoidal intensity ranged

from 0-4096. For a velocity range between 0 and 1 pixel/image frame, the absolute value of the

error between the calculated and actual velocity was recorded, and the plotted results can be seen

in Figure 3.24 below.
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Figure 3.24. Quantization effects on filter performance. On the left, synthetic sinusoidal images are generated using 8-bit
quantization, whereas the plots on the right were generated using 12-bit quantization. Clearly, the advantage gained by using longer
filters is decreased when using an 8-bit camera.

As can be seen from the plots, the performance at low spatial frequency (w=0.4) of the 2 point

and 36 point filter algorithms is comparable for both the 8 bit and 12 bit case. When changing

from 8 to 12 bits of dynamic range, both algorithms' performance improves by a factor of
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approximately 10, but there is still no obvious advantage to using the longer filters at this low

spatial frequency. At a higher spatial frequency of w=0.8, the results show that there is little to

no advantage in using the 36 point filters over the 2 point filters for images with bit depths of 8.

With only 8 bits of dynamic range, the error level of the 2 point and the 36 point filters is nearly

indistinguishable. If the dynamic range is increased to 12 bits, however, then a significant

improvement in performance can be obtained by using the 36 point filters instead of the 2 point

filters. This performance improvement for a spatial frequency of 0.8 can be seen to be

approximately a factor of 10. Finally, at the very high spatial frequency of w=2.0, it can be seen

that using the longer filters results in a significant performance improvement using both 8 and 12

bit images. The reduction in error from the 2 point filter case can be seen to be approximately a

factor of 10 and a factor of 100, respectively for the 8 bit and 12 bit images.

These results suggest that for the images captured by the AWS implementation currently under

study, a noticeable performance gain will not be experienced by switching from 2 point filters to

longer gradient and interpolation filters. Indeed, the use of an 8 bit CCD camera (in our case the

Dalsa CA1024-A) will remove any advantage of the longer filters for the middle-low spatial

frequency range present in the images acquired in this work. In order to obtain a significant

performance gain from the longer filters, the use of a 12 bit camera is required.

3.5.3 Use of Multi-Image Gradient Filters with Targets Exhibiting Non-Uniform Motion

Even though the previous section indicated that a large performance gain should not be expected

from the use of longer filters due to the 8 bit limitation of the camera system being used in this

work, it is still worthwhile developing the details of how these filters could be used by a system

having a camera with a higher dynamic range. In their development of optimal multi-image

gradient and interpolation filters for use with optical flow problems, Timoner and Freeman [20]

dealt solely with images undergoing spatially uniform velocity motion. For example, some of the

images investigated were undergoing sinusoidal motion in time, but at any given instant the entire
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scene was moving with the exact same velocity. Clearly, this uniform motion does not occur in

the images captured by an Active Wavefront Sampling system. As was shown in Chapter 1, the

diameter of motion of any given target feature is dependent on its distance to the camera so that

for all but the most uninteresting targets, feature motion is expected to vary from one point in the

image to the next. Indeed, large velocity gradients can be expected to appear in target regions

where steep changes in depth are present.

Despite the incorrect assumption relative to the AWS application, it is still instructive to first

examine how a uniform motion flow could be processed using a 36 point filter algorithm. With

36 equally spaced sampling positions on the sampling circle, the AWS module would capture an

image sequence showing each target feature rotating on a circle (assuming for now no

aberrations). Assuming that the motion is uniform over the image, the radius of this circular

image motion is also uniform for all target features. With the sampling being performed at

equally spaced intervals, and the motion being periodic, it is possible to "wrap around" the image

data since the last image sampled appears to smoothly flow into the first image. Because of this

periodicity, the spatiotemporal filters of size N can be applied to calculate N velocity values

where each velocity is calculated at a time half way between successive images. Since the

motion is uniform across each image, each of the N velocities can be calculated for the exact

same x-y position. Indeed, a spatiotemporal interrogation cuboid can be defined (8 pixels x 8

pixels x 36 images, say) over which the constant brightness equation is solved for the rotation

radius in the least squares sense.

minI G,(i, j, k)u(k) + G,(i, j, k)v(k) + G, (i, j, k)
i,j,k

21r 2
u(k)=- R sin( k)

N (N
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Replacing the velocity terms into the expression to be minimized, and setting the derivative with

respect to R equal to zero, we obtain the final equation for the radius, R:

R = [ Gi,j,k)2 sin2 rk) - 2G,(i,j,k)Gy(i,j,k)sin r{k cos(.2; k) + Z G,(i, j,k) cos2(27r k]

G,(i,j,k)G,(i,j,k) - Gx(ij,k)G(i,,k) sin( N kj

In the case where the motion is not uniform across the entire image, the approach described above

cannot be used. This is because with non uniform motion the actual radius of motion, R , at any

given spatial position can change in time. This effect can be seen schematically in Figure 3.25.

Equation 3.29 above, in contrast, by definition assumes that R remains constant throughout the

spatiotemporal interrogation cuboid. In order to take the non-uniformity of the motion into

account, the spatiotemporal interrogation cuboid must be made to track the target feature of

interest as it moves from one image to the next. This can be done by moving the spatial position

of the interrogation cuboid based on the displacement calculated at the previous time. This

approach is shown schematically in Figure 3.26, where only the interrogation cuboid's 2D

projection onto the x-y plane is shown. Some error is inevitably introduced by this approach

since the spatial position of the interrogation cuboid can only by moved by an integer number of

pixels, but this small difference becomes less important as the spatial extent of the cuboid

increases.
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Figure 3.25. The effect of non-uniform motion on the measured velocity at a given point in the x-y plane. At Time Point 1, above, the
interrogation area of interest will measure the velocity of the target feature represented by the black circle. At Time Point2, however,
the same interrogation area will measure the velocity of the target feature represented by the green circle. These two target features
may well have differing velocities, as shown here by their different rotation diameters.
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Figure 3.26. One remedy to the non-uniform velocity problem is to move the interrogation area in the x-y plane so that it tracks the
same target feature at all points in time, as shown in the above two schematics.

3.5.4 Use of Prefilter with Non-Uniform Image Motion

In order to increase the performance of optical flow techniques, many researchers have utilized a

prefilter to low pass filter the images before actually calculating the motion (Timoner and

Freeman [20]). The purpose of this low-pass filtering of the images has always been to attenuate

high frequency noise, which can adversely affect the motion estimates. Typically, a Gaussian

type low pass filter is used since this kind of filter's magnitude response rapidly attenuates to zero
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at high frequencies. However, as can be seen in Figure 3.27, the magnitude response of a typical

Gaussian filter follows a decreasing trend even at low frequencies, where the actual signal is

located.
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Figure 3.27. Magnitude response of a typical Gaussian low pass filter. The filter response drops off almost immediately, so that even
the desired low frequency signal becomes attenuated.

This low frequency attenuation has no effect on the processing of uniform motion image

sequences, but it does have a negative effect on non-uniform motion sequences. This is due to

the fact that when adjacent target features move by different amounts from one image to the next,

the picture of the target appears effectively "stretched" in some areas and "compressed" in others.

This stretching and compressing actually represents a change in the spatial frequencies of the

image. If the spatial frequency of a target feature's neighborhood changes from one image to the

next and a Gaussian prefilter is applied, the target feature's intensity will vary from one filtered

image to the next. This variation is due to the fact that the Gaussian prefilter will attenuate the

image with the slightly higher spatial frequency ("compressed") more than the image with the

lower spatial frequency ("stretched"). This intensity variation (caused by the Gaussian prefilter)
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contradicts the constant brightness assumption in the constant brightness equation (Equation 1.6)

thereby reducing the accuracy of the calculated displacement.

The only remedy to this undesired effect is to design a low pass filter whose magnitude response

is as flat as possible in the low frequency range where the majority of the signal is and whose

magnitude response drops off quickly above the cutoff frequency. A longer and more

computationally expensive prefilter is unfortunately necessary to meet these more exacting

requirements. The magnitude response of such a filter is plotted in Figure 3.28, where it can be

seen that the low frequency range where the signal of interest is located has a magnitude very

nearly one and the frequency range above the cutoff has a rapidly decreasing magnitude response.
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3.5.5 Comparison of Multi Image Algorithm Approaches

Having described an algorithm using large spatiotemporal filters, it is now possible to compare its

performance to the multi image extension of the 2 point filter algorithm discussed in section 3.4.

Images of a human size mannequin head were taken from 36 evenly spaced sampling locations on

the aperture plane, while the target was illuminated with a speckle pattern. These 36 images were

processed with both multi-image algorithms, and the resulting 3D surface models can be seen in

Figure 3.29. Figure 3.29 clearly shows that the large spatiotemporal filter algorithm developed in

this section creates a much noisier 3D surface model than the multi-image LBC algorithm

developed in section 3.4. There are several probable reasons for this difference in performance,

the first being that using the large spatiotemporal filters with an 8-bit camera does not create any

performance gain in the spatial frequency regime where most of the signal is located. This effect

was described in section 3.5.2. The second reason for the difference in performance is due to the

fact that large spatiotemporal filter algorithm relies on moving the spatial location of the

interrogation cuboid according to the calculated displacement. Since this movement can only be

performed with integer pixel resolution, some error is inevitably introduced.
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Figure 3.29. (a) First of 36 images sampled by AWS system. The image measures 512x512 pixels and is the central part of a
1024x1024 pixel image. (b) 3D surface model obtained using multi-image LBC approach described in section 3.4. (c) 3D surface
model obtained using the large spatio-temporal filter approach described in section 3.5. All filters were 36 points long. For both 3D
models, the interrogation area size was 8x8 pixels for a total of 4096 3D points.
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Chapter 4: Calibration and Quantitative Measurement

4.1 Introduction

In the previous chapters, the sensitivity to depth of the Active Wavefront Sampling system was

described as obeying the following equation

d ri1
- ZCCD X

D C Z, Zf

(1.2)

In this equation (repeated from chapter 1), D is the diameter of the circular path traveled by the

sampling aperture on the aperture plane, d is the diameter of the circular path traveled by the

target feature image on the image plane, ZCCD is the distance between the rear principal plane of

the optical train and the image plane, ZfP is the distance from the in-focus plane to the front

principal plane, and finally Z, is the distance from the target to the front principal plane. This

fundamental equation dictates that rotating the sampling aperture and acquiring images of a target

at regular intervals on the sampling circle will result in a series of images in which the target

image also rotates in a perfect circle. In chapter 3, several algorithms were developed that could

track target features from one image to the next on this image circle so as to estimate the circle's

diameter, d.

Unfortunately, real optical systems do not necessarily exhibit the ideal behavior described by

equation 1.2 above. Aberrations due to errors in lens design, manufacturing limitations, and

misalignment of components can cause deviations from the ideal circular behavior. These

deviations must be taken into account in order to obtain an accurate quantitative measurement.

Indeed, the effect of ignoring aberrations on the quality of the final 3D surface model can be seen
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in Figure 4.1, where the calculated 3D surface of a flat plate is shown. This model was generated

from 30 1024x1024 pixel images evenly sampled around the sampling circle, with 16x16 pixel

interrogation areas, using the Dalsa CA-1024A camera based AWS system described in chapter

1. The algorithm used to generate the surface model was the multi-image extension of the 2 point

filter algorithm. As described in section 3.3, the motion of each interrogation area was tracked

from one image to the next and the diameter of the best fit circle was used to calculate the target

depth according to equation 1.2.

1000

400

000

71

Figure 4.1. 3D surface model of a flat plate. This model was generated from 30 1024x1024 pixel images evenly
sampled around the sampling circle, with 16x16 pixel interrogation areas, using the Dalsa CA-1024A camera based
AWS system described in chapter 1. The algorithm used to generate the surface model was the multi-image extension
of the 2 point filter algorithm. All axes units are pixels.

It is obvious that the 3D surface model shown in Figure 4.1 deviates significantly from flatness.

Indeed, if a best fit plane is fitted to the model data, the standard deviation of the distance of the

target points to that best fit plane is approximately 1000 pixels (12 mm). Further insight into the

magnitude of aberration effects can be seen by plotting out the path of an interrogation area as the

sampling aperture moves along its circular path. As can be seen in Figure 4.2, the motion of an
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interrogation area located near the center of the image is circular, but the motion of an

interrogation area at the edge of the image is far from circular. Clearly, the deviation from

flatness in the 3D surface model shown in Figure 4.1 can be explained by the fact that a circle

was fitted to a path that is anything but circular near the image edges.

Figure 4.2. Interrogation area image paths, for an experiment where the aperture sampled 24 evenly spaced positions on the
sampling circle. On the left is the path of an interrogation area located near the center of the image. On the right is the path of an
interrogation area located far from the axis. All dimensions are in pixels.

In order to incorporate the effects of aberrations into the image processing algorithms, this

chapter will first describe aberration theory in terms of geometrical optics. This discussion will

lead into an aberration model for the AWS approach, as well as an experimental methodology to

quantitatively estimate the aberrations present in the system. A performance comparison between

using the aberration model or an interpolating approach will also be made. Finally, calibrated 3D

surface models of a few targets will be compared to surface models of those same targets

generated using a laser scanner.

4.2 Geometrical Optics Aberration Theory

In this section, a quick introduction to monochromatic geometrical aberration theory will be

given, based on the work by Born [1] and [2]. For an on axis target feature, an ideal lens emits

93



from its exit pupil a spherical wave whose center of curvature coincides with the origin of the

imaging plane (in our case the camera's CCD plane). The equation of this ideal wavefront is

X2 + y2 + [W(x,y) - ZCCD 2 = ZCCD 2

(4.1)

where (x, y) are the coordinates of the exit pupil of the lens and ZCCD is the distance between the

exit pupil of the lens and the CCD plane. Assuming that W(x,y) is small so that A W(x,y) 2 can

be neglected, equation 4.1 can be reduced to the following

W(, X2 +2x2+y2
W(x,y) = 2 ZCCD

(4.2)

which is the equation of a parabola. In contrast, a real lens will have an aberrated wavefront with

an optical path difference relative to the ideal wavefront defined by a function A W(x, y), (see

Figure 4.3).
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Figure 4.3. Schematic of ideal and aberrated wavefronts for an on-axis target feature.

The goal here is to quantify the separation between the aberrated ray's intersection with the CCD

plane and the origin at the CCD plane (which is where the ideal ray intersects it). For simplicity

in the following calculations, only aberrations in the x direction will be considered since the

exact same relations can be applied to the y direction as well. Assuming that the optical path

difference A W(x,y) is small, the ray angles with the optical axis is small, and that the angle a

between the ideal and aberrated ray is also small, it can be shown that

a = AW(x,y)
x

(4.3)
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The x coordinate distance of the aberrated ray's intersection with the CCD plane to the ideal

ray's intersection with the CCD plane is then

, = ZCCDa = -ZCCD -A W(x,y)
69x

(4.4)

Similarly, the y coordinate distance of the aberrated ray's intersection with the CCD plane to the

ideal ray's intersection with the CCD plane is

Ly = -ZCCD 1AW(x,y)

(4.5)

Equation 4.2 is fundamental in that it relates the positional error of a target feature's aberrated

image to the distance between the lens and the CCD plane and the optical path difference function

of the wavefront. Obviously, the optical path difference function AW(x,y) must be quantified

before the positional error can be calculated.

Complicating matters is the fact that we are interested in calculating the positional error of off-

axis target points as well as on-axis points. Because of this, the aberrated wavefront needs to be

expressed in terms of the exit pupil / aperture plane coordinates (x,y) and the non-aberrated

image coordinates on the CCD plane (x, ,y) . A schematic showing both the aperture plane and

CCD plane coordinate systems can be seen in Figure 4.4 below.
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Figure 4.4. Schematic of the aperture plane (same as lens exit pupil plane) and CCD plane coordinate systems. Both
Cartesian and polar coordinates are shown. The coordinates (r,0) refer to the position of the sampling aperture while

the coordinates (R, a) refer to the position of the ideal un-aberrated image position of a given target feature.

A classic approach to this problem is to perform a double expansion in terms of the exit pupil and

imaging plane coordinates. Assuming that the optical system is rotationally symmetric, the

wavefront will only be a function of the following three terms:

x2 +y2 2+Y 2 5 +yy0

(4.6)

A power series expansion can then be performed as follows:

W = C1 -(x0 2 + yO2 )+C 2 .(x 2 + y 2 )+C 3 .(xx, + yy 0 )+C 4 .(x 0 2 + y 0
2) 2

+ C5 .(x 2 +y 2 )2 + C6 (X(X +yyv) 2 + C7 .(X0
2 +YO 2 )(X2 +y 2 )

+ C8 -(x2 + y2 )(xx0 + yyo)+ C9 . (X2 + y 2)(XX + Yyo)+...

(4.7)
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where the terms C, , C2 , ... , C9 are constants. The first and fourth terms gives rise to a constant

phase shift across the exit pupil, depending on the position of the image in the CCD plane. The

second term is a longitudinal shift of the center of the wavefront sphere and therefore represents

defocus. The third term is referred to as "tilt", as it describes a transverse shift of the center of the

wavefront reference sphere. This term is nothing else but the ideal off-axis position of an off-axis

target point. The terms C, through C9 are named after Seidel (1865), and are more specifically

known as spherical aberration, astigmatism, curvature of field, distortion, and coma. These

terms are also known as third order terms, because their derivatives with respect to x and y have

terms with powers of three. Clearly, the expansion can be continued to include fifth order,

seventh order, etc... terms. However, since the values of both (x,y) and (x0 ,y,) are less than

one due to normalization, the higher order terms progressively have less and less effect on the

wavefront value.

Removing the third term (C 3) in order to obtain the optical path difference of the wavefront, and

taking the derivative of the expression with respect to the aperture plane coordinates x and y

results in the following expressions:

~A W
= 2C 2 -x+4C. .x(x

2 + y 2)+2C6 x, (xx, + yy,)+ 2C7 -x(x, 2 + y,2 )

+ C8 -x (X 2 + yO2)+ C .(3x 2 x0 + xOy2 + 2yyox)

(4.8)

AW 2C2 y+4C -y(x2 +y2) +2C6 - X+yyo)+2C-y +y, 2)

+ C8 -y (X2 + yO2)+ C -(3y 2y 0 +yOx2 + 2xxoy)

(4.9)
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Referring back to Figure 4.4, we can use a polar coordinates defined by

x=rcos9, y=rsinO

x0 = Rcosa, yo = Rsina

(4.10)

Using these polar coordinates in equations 4.7 and 4.8 results in the following:

A W = 2C2 -rcos + 4 C 3 -r 3 cos + 2 C6 -rR2 cosa(cos6cosCa + sin*sina)+ 2C7 -rR 2 cosO

+ C8 -R 3 cos a + C -(3r 2 R cos2 O Ocosa + r 2R sin2 Ocosa + 2r 2 R sin 0 cos 0sin a) ...

(4.11)

69)WdW= 2C2 -r sin + 4C5 -r 3 sinO + 2C 6 '-rR2 sin a(cos 0cos a + sin 0 sin a) + 2C7 -rR 2 COSO

+ C8 - R 3 cosa + C9 -(3r 2 R sin2 0 sin a + r 2 R cos2 0 sin a + 2r 2 R cos6 cos a sin a) ...

(4.12)

Combining equations 4.4, 4.5, 4.8, and 4.9 allows for the calculation of the aberrated image

position (whose coordinates on the CCD plane are x0 + Ex and y, + -,) generated by a specific

ray emanating from the wavefront (at coordinates x and y on the aperture plane). This

calculation requires that the ideal non-aberrated image position be known (coordinates x0 and

yo ) as well as the aberration constants C2 , C5 , C6,..., C9 . In a practical application, an image

will record the aberrated position of target features; fortunately, as long as the aberration

constants are known the same equations can be used to solve for the non-aberrated target feature

coordinates. It is important to note that these calculations can be applied to the AWS system

under investigation if it is assumed that the sampling aperture is small enough so that any change

in the wavefront across the aperture is negligible.
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4.3 Determination of Aberration Coefficients

In the previous section it was shown how geometrical aberration theory allows for the calculation

of a target feature's aberrated image position based on the ideal image position, the position of

the sampling aperture on the aperture plane, and on a set of aberration constants. Unfortunately,

these aberration constants must be experimentally determined for each individual optical setup.

This section will describe an experimental method developed to estimate these coefficients.

The experimental method developed here can be described as being a much extended version of

Tsai's ([25],[26]) calibration method for a simple stereo camera setup (see also description by

Horn, [27]). A known three dimensional target is required for the calibration, which involves

determining external parameters such as the relative orientation of the camera and calibration

target coordinate systems as well as the camera's internal parameters. These internal parameters

include the lens focal length, lens distance to the CCD sensor, rotating aperture characteristics,

and of course the aberration constants. The approach first obtains estimates of some parameters

using linear least squares fitting methods. The error in the image plane is not minimized in this

step, but rather a quantity that can be rninimized using linear methods. Subsequently, the initial

estimates are used as a starting point for a non-linear minimization step that searches for the best

fit between the observed image points and the image points predicted by the calibration model

(Horn, [27]).

4.3.1 Calibration Target

The calibration target used in this work is a machined aluminum plate made by TSI Incorporated

with accurately placed circular markers. This aluminum plate measures approximately 200 x 200

mm and has machined diagonal grooves of depth 0.97 mm. The circular markers are machined

into the surface of the plate and are painted white on a black background. The 13 x 13 grid of

points has an equal spacing of 15 mm, but only the central 11 x 11 points are used in the
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calibration process due to the field of view of the optical system. In order to increase the

effective depth range of the target, the aluminum plate was mounted on a 50 mm micrometer

stage with 0.5 micron precision. For a typical calibration, images of the calibration plate are

taken at 20 or more depths within the 50mm travel of the micrometer. The calibration plate and

calibration setup geometry can be seen in Figure 4.5 below.

Figure 4.5. At top can be seen the TSI machined calibration plate, with white circular target points. Below can be seen
a photo of the calibration plate (mounted on the 50mm micrometer stage) placed approximately 75-80 cm from the
AWS equipped camera.

4.3.2 Tracking of calibration target points

At each depth position of the calibration plate, an image is captured at up to 90 evenly spaced

rotating aperture sampling positions. Each calibration target point needs to be tracked along its

path, and this is first done by fitting a Gaussian surface over its pixel intensity values. A second

tracking pass is then performed by centering an 8x8 interrogation area above the first image of the

target point, and then tracking this interrogation area from one image to the next using the

gradient optical flow techniques developed in section 3.3. These two different tracking
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approaches result in slightly different paths, mostly due to the fact that in the optical flow

approach the interrogation area can only be centered on the target point image within integer

pixel precision. If a best fit shift of the interrogation area path towards the Gaussian surface path

is performed, however, a smoother overall path can be obtained as shown in Figure 4.6.
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Figure 4.6. Gaussian fitting and optical flow based tracking of target point paths. In the left hand plot, the Gaussian fit
path and the optical flow path are plotted together. It can be seen that the optical flow path is smoother, but offset from
the Gaussian fit path due to the interrogation area's initial placement being limited to a precision of one pixel. On the
right, the optical flow path is shifted towards the Gaussian path by a best fit amount. This shifted optical flow path is
taken to be the correct tracking of the target point. All dimensions are in pixels.

A full calibration target dataset can be seen in Figure 4.7, which shows all the paths taken by each

target point in the 11 x11 point grid, over 22 depth positions on the micrometer stage, and 90

sampling positions on the circular aperture path.
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Figure 4.7. The top image represents the traces from all target points on the I lx1I point grid, rotating through 90
aperture sampling positions, and translating through 22 depth positions on the micrometer stage. The traces circled in
green (near-axis) and orange (off-axis) are shown in greater detail in the middle and bottom images. The on-axis point
can be seen to rotate in a circle, with the diameter of the circle decreasing as the point moves further away from the
camera. The off-axis point, in contrast, can be seen to move in a progressively more distorted pattern as the point is
moved farther from the camera. All dimensions are in pixels.
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4.3.3 First Estimate the External Parameters and Lens Distance to CCD Plane

Following Tsai's derivation ([25],[26]) an estimate of some of the internal and external

parameters is first made by assuming that all aberration coefficients are equal to zero. For this

initial linear estimate, the position of each target point image is taken to be the center of mass of

the surface defined by the target's image path. This "true" image position is matched up to its

corresponding target point, and calculations are performed that estimate the rotation and

translation matrices relating the camera and target coordinate systems, as well as the distance

separating the lens from the CCD plane.

We first start by relating the image coordinate system to the camera coordinate system using the

perspective projection equations:

X 1 -X _ XC YI - _ Y C

ZCCD ZC ZCCD ZC

(4.13)

where (xI , yI) are coordinates on the CCD plane, (x, , y0 ) is the intersection of the optical axis

with the CCD plane, ZCCD is the distance between the lens and the CCD plane, and (xC , YC ,zC )

are target point coordinates in the camera frame. The latter coordinate system can be related to

the target's coordinate system with a rotation and a translation matrix as follows:

xC 1 r 12 r13  XS

YC 21 r 22 r 23 YS + y

ZC,/ \ 31 r32 r 33J \ZS/ \z/

(4.14)

where (xs ,Ys ,zs) are target point coordinates in the scene or target reference frame. Combining

the two expressions in equation 4.13 yields
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XI XC

YI YC

(4.15)

where x, = x- x and y' = - yo. Inserting the relationship between camera and target

coordinate systems defined by equation 4.14 into equation 4.15 yields

(xsyI)ri + (YsYI)r 2 + (ZsYI)r 3 + y'tx - (xsxI)r21 - (Ysx)r 22 - (zsx)r 23 - M, 0

(4.16)

This equation is a linear homogeneous equation in the following eight unknowns:

rl1 I I 12 I r13 I r21l I 22 I r23 I tx 5 t y

Each correspondence between a target point's image coordinates and target frame's coordinates

yields one distinct version of 4.16. Since equation 4.16 is homogeneous, any one of the unknown

variables can be arbitrarily set to one, and the remaining seven unknowns can be solved for if at

least 7 target point correspondences are known. The scale factor required to estimate the actual

value of all eight variables can be found by enforcing the normal condition of the rotation matrix

rows:

2 2 2~ad 2 2 2
ri1 + 12 + 132 =I and r2 1 + r2 + r23 2

(4.17)

These conditions lead to the scale factor

1
c =

, 2 . 2 ' 2

2 22 +23

(4.18)

where the primed terms refer to the solved variables of equation 4.16 where ty is set equal to

one.
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With the eight parameters of equation 4.16 estimated, the final parameters ZCCD and tZ can be

estimated. Combining equations 4.13 and 4.14 yields:

XI _ rJxs + r12YS + r13Zs +tX

ZCCD T3 1XS + r 32 yS + r33ZS +z

y' r21 S + r2 2 yS +r23ZS +t,

ZCCD T3 1XS + r 32 yS + 33ZS + tz

(4.19)

Cross multiplying both equations results in the following two linear equations:

(r 1xS + r12 YS +r3ZS + t,)ZCCD - X'tz (r 3 1 XS + r3 2 yS + 33Zs + t )X

(r 2 1 xS + r2 2 ys 3ZS + ty)ZCCD - Yt= (r3 1 xS + r3 2 yS +33ZS + tZ O

(4.20)

Once again, using two or more correspondences between target points' image and scene

coordinates yields an estimate for ZCCD and tZ . With these two parameters found, an estimate

for all the external parameters and the internal parameter ZCCD are found. In the next steps, a

non-linear optimization of all the parameter values will be performed.

4.3.4 Non-Linear Optimization and Solution for All Variables

In this second part of the calculation, the error between the actual image positions and the

predicted image positions for the known target coordinates is minimized using non-linear

methods. The approach used here is a modified Levenberg-Marquardt method. The values of the

variables that were estimated in the first part of the calculation are used here as starting values in

the iterative optimization.

Besides refining the estimates of the external parameters, the distance of the lens to the CCD

plane, and some of the aberration coefficients, this part of the calculation also estimates the

intersection of the optical axis with the CCD sensor, the remaining aberration coefficients, the
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exact radius of rotation of the sampling aperture, the exact angular position of the sampling

aperture for the first image, the relative orientation of the rotating aperture axis and the optical

axis, and the position of the in-focus plane. The defocus aberration constant for each target point

is also found, and this can be related to the target's depth through equation 1.2.

C2 = ZCCD . ZjIZC, z fp/

(4.21)

where the index i represents each target point.

4.3.5 Sources of Error in Calibration Procedure

There are several sources of error in the calibration procedure which will place a lower limit to

the agreement between the re-projected image positions predicted by the model and the image

positions actually measured on the CCD plane. The two largest of these sources are the error in

determining the exact position of the target point images on the CCD plane and machining errors

in the target itself.

The first source of error is the actual measurement of the position of the target point images

themselves. By experimenting with synthetic images, it was found that the Gaussian fit algorithm

has an accuracy of approximately 0.05-0.10 pixels depending on the exact noise level in the

camera. The use of the optical flow approach as described in section 4.2.2 reduces this error to

approximately 0.01-0.05 pixels.

The other major source of error lies in the manufacture of the target plate itself. The machining

tolerances are most likely on the order of 0.0005-0.001 inches. With the target being

approximately 75 cm from the camera, this range of machining error translates into an image

position error of approximately 0.075-0.150 pixels on the CCD plane. Due to these sources of

error, the minimum re-projection error is expected to range between 0.075 and 0.20 pixels.
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4.3.6 Effect of Expansion Higher Order Terms on Re-projection Error

The accuracy of the wavefront model described by equation 4.7 depends very much on the

number of terms used in the expansion. The re-projection error, as mentioned above, is the

difference between the target point image plane location predicted by the model and the actual

location of the target point on the image plane. This error is an indicator of how well the

calibration model is able to fit the image data.

The re-projection error can be seen plotted as a function of the number of terms in the wavefront

model expansion in Figure 4.8. This data was calculated using 18 equally spaced sampling

positions on the circular sampling path, using every other point on the target plate, and using 20

depth values on the target plate micrometer stage. The plotted RMS error values spans all of

these image points.

20 40 60 80 100 120 140
Number of Terms in Expansion

160 180 200

Figure 4.8. Plot showing dependence of the re-projection error on the number of terms used in the wavefront expansion
(equations 4.8 and 4.9). The re-projection error can be seen to asymptotically decrease as the number of terms in the
expansion is increased.
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Clearly, Figure 4.8 shows a diminishing returns effect as the wavefront expansion is carried out to

higher and higher terms. It should be noted that the increased computational cost of the

aberration coefficient determination and the risk of the model over-fitting the data both increase

as higher and higher order terms are used.

A comparison of the actual image data with the model's re-projected target positions can be seen

in Figure 4.9. Here, actual and re-projected image data can be seen both for a target point located

near the optical axis, and for a target point located far from the axis. It can be easily seen how the

ideal circular image path is distorted by aberrations, and also how well the wavefront aberration

model matches the data.
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Figure 4.9. Actual and model predicted paths of two target points. All blue circles represent actual image positions,
while the solid red line represents the calibration model's re-projected path. The top plot shows the actual and re-
projected paths of a near-axis target point, while the bottom plot shows the actual and re-projected paths of an off-axis
target point. Eighteen sampling positions on the aperture plane were used, and twenty depth positions on the translation
stage were used. All dimensions are in pixels.
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4.4 Performance of Calibration Model

In the previous sections, the geometrical optical theory behind the calibration model was

explained and results showing how well the calculated model could fit the calibration target

image data were presented in Figures 4.8 and 4.9. However, one cannot judge the performance of

the calibration model only on how well it can fit the raw data that was used to calculate the

model's coefficients in the first place. In this section, the calculated calibration model will be

used to extract quantitative 3D data from images of "new" objects whose 3D information is

known but which were not used to calculate the model coefficients. A direct comparison of the

calculated and known 3D surface data will shed light on how well the calibration model works in

conjunction with the tracking algorithms developed in Chapter 3. It is also important to note that

all the new object data shown in this section was captured more than one month after the images

of the calibration plate (used to calculate the aberration coefficients) were captured. The 3D

surface data comparisons will therefore also shed light on the robustness of the AWS hardware

and its resistance to thermal and mechanical disturbances which can drive the system out of

calibration.

4.4.1 Flat Plate Target

The first object with which the calibrated AWS system was tested was a flat aluminum plate.

This flat surface was covered with an adhesive sheet of paper on which was printed a black and

white speckle pattern. A typical image captured by the system can be seen in Figure 4.10. Thirty

images were captured along the sampling circle, and the tracking algorithm described in section

3.3 was used along with the calibration model to calculate the 3D depth and position of the

interrogation areas. The number of terms used in the wavefront expansion was fifty, since using a

larger number or a smaller number of terms resulted in worse 3D surface results. This fact
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reinforces the idea that using too many terms in the aberration model can lead to over-fitting the

data.

The resulting 3D surface model can also be seen in Figure 4.11, where it can be compared to the

uncalibrated surface model generated from the same images. Placing a best fit plane through the

calibrated 3D surface and measuring the standard deviation of the distance of the calculated

points to this plane resulted in a value of approximately 15 pixels. This corresponds to a distance

of 0.18 millimeters, and is significantly improved over the uncalibrated standard deviation value

of 12 millimeters.

Figure 4.10. Image of flat plate used for AWS system testing. An adhesive sheet with a printed dot pattern was affixed
to a machined, flat aluminum plate and images were captured from 36 evenly spaced sampling positions on the circular
aperture path.
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Figure 4.11. 3D surface models of a flat plate, both uncalibrated (above) and calibrated (below). The uncalibrated
model's deviation from flatness is 1000 pixels (12 mm), while the calibrated model's deviation is approximately 15
pixels (0.18 mm). All dimensions are labeled in pixels, and the calibrated model's z dimension range is actually
smaller, magnifying any deviation from flatness as compared to the uncalibrated model.

4.4.2 Mannequin Head

Much more complicated than the flat plate used in the previous section is a human size

mannequin head. A ground truth 3D surface model of this target was made using a laser scanner
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(courtesy of Prof. Fredo Durand, MIT) and was used to evaluate the accuracy of the calibrated 3D

model created by the AWS system. Both the laser scanner and AWS surface models can be seen

in Figure 4.12 below.

Figure 4.12. Comparison of 3D surface models generated by a laser scanner (left) and by the AWS system under
investigation (right).

The AWS model was generated using 30 sampling positions, and a total of 4096 3D data points

were calculated. The main difference between the laser scanner model and the AWS model is

that the former is a 360 degree surface model, which was generated by rotating the model on a

turntable. The AWS model only shows the frontal view of the target. The AWS model also

exhibits some noise near the edges, though this could be removed either through pre or post

processing relatively easily. The most important difference lies in the spatial resolution of the 3D

surface models, which is clearly higher for the laser scanner model on the left. A quantitative

comparison of the two models can be made by taking cross sections of the two models and

comparing their spatial positions. First, the two models need to be registered to each other, and

this can be done using the Iterative Closest Point (ICP) algorithm, and this work used the

114



Show: W, Scak F Mesh edps Pts fom tam Wier W False cokxrs

Scale: 10^ -3 mm F Ept to to* Eso image

x ang; 0.272326 x used 0.172445 z tange: 0. 106817

Show P swae r Moth edge* r Pts rmm ham buffet 9 Fake colmrs

Scalr 1G^ -3 mm 17; r o E xportto teA E xpot mge

x tang: 209642 x ud 0S24 z rang 0105937

Figure 4.13. Cross sections of 3D surface models, comparing performance of a commercial laser scanner and the AWS
system. The green line is the laser scanner, while the red line is the AWS system model. The top graph shows a
horizontal cross-section while the bottom graph shows a sagittal cross-section. The size of the graph grid in both cases
is one millimeter.
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implementation of this algorithm in the freeware program Scanalyze, developed at the Stanford

Computer Graphics Laboratory. Two typical cross-sections showing the registered AWS and

laser scanner models can be seen in Figure 4.13. These plots show that for most of the target

surface the two models lie within one millimeter of each other. For certain high slope regions,

this discrepancy can rise up to approximately two millimeters.

4.4.3 Bunny Rabbit Target

Scans of a bunny rabbit model (about 20 cm X 10 cm X 10cm in dimension) were also taken

using both the laser scanner and the AWS system. These scans can be seen in Figure 4.14 below.

Figure 4.14. Comparison of 3D surface models generated by a laser scanner (left) and by the AWS system under investigation (right).

Clearly, the spatial resolution of the laser scanner is higher than that of the AWS system (4096

3D points in this example), but the latter definitely captures the larger scale features of the target.

A depth comparison of the ICP matched surface models is plotted in Figure 4.13, where it can be

seen that the AWS result again follows the laser scan model within approximately 1-2

millimeters.
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Figure 4.15. Cross sections of 3D surface models, comparing performance of a commercial laser scanner and the AWS
system. The green line is the laser scanner, while the red line is the AWS system model. The target in this case is a
bunny rabbit model. The size of the graph grid in both cases is one millimeter.

4.5 Comparison of Calibration Model to Linear Interpolation Method

The effort to develop a calibration model such as the one described above can be circumvented by

acquiring a large set of known 3D data with the AWS system and using such a database in order

to interpolate the world coordinates of a new unknown target point. Using the tracking algorithm

developed in section 3.3, and moving the known target plate through the micrometer stage's 50

mm of depth allowed for the generation of a database for the 3D volume defined by the plate and

the translation distance. In this database, the world coordinates were known for each of the 11 x

11 target points, for the motion defined by each image pair in the circular sampling pattern, and

for each depth position chosen along the 50 mm micrometer stage translation. The world

coordinates of a new incoming target point would then be interpolated along the image X

position, Y position, and x and y displacement variables. There is one such interpolation possible
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for each image pair in the x and the y directions, and the results over all image pairs in the

sampling circle can be averaged. This interpolation is shown schematically in Figure 4.16 below.

N N

Image of Flat Plate with Pattern Calibration Traces on CCD Plane

Figure 4.16. Schematic showing interpolation approach to calibration. The 3D data collected from the known
calibration target is used to perform a linear interpolation in the x position, y position, and x and y displacement
variables in order to calculate the depth of an unknown interrogation area. All dimensions are in pixels.

Using the same images of a flat plate shown in Figure 4. 10, the above described method was

performed using linear interpolation. The resulting 3D surface data can be seen in Figure 4.17

alongside the surface map obtained using the aberration model described earlier in the chapter.

The quality of the interpolation based surface model can be seen to be worse than the aberration

model generated data, and the standard deviation from flatness of the former is more than four

times greater than the latter.
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Figure 4.17. Comparison of 3D surface model of a flat plate generated using the aberration model (left) and the linear
interpolation approach (right). The standard deviations from flatness are approximately 15 pixels and 60 pixels,
respectively. All dimensions are in pixels. The absolute depth value differs between the two models due to the fact that
the interpolation approach measures a target's position relative to the calibration volume, while the aberration model
approach measures a target's distance relative to the camera.

An explanation for this difference in performance can be found by examining the nature of the

wavefront as described by the calculated aberration model itself. Both the expected x and y

displacements of a given image pair in the circular sampling pattern can be synthetically

examined using the calculated aberration model. In order to check the feasibility of using linear

interpolation to calculate depth, the expected x and y displacements can be plotted as a function

of the interrogation area's x position on the image plane.

The results of these calculations are shown in Figure 4.18 below. This figure shows that for

interrogation areas imaged onto a horizontal line located halfway down the image vertically, both

the expected x and y displacements behave in a decidedly non-linear way. An even more obvious

non-linear behavior can be seen if the expected x and y displacements of interrogation areas

located on a line located at the bottom of the image are examined, as shown in Figure 4.19. This

increased non-linear behavior can be explained by the increasing impact of the aberration terms in

the wavefront equation as xO and yo increase (equations 4.11 and 4.12).

The calculations used to generate Figures 4.18 and 4.19 show that the spacing between known

target points must be small. If the spacing is too large, the piecewise linear interpolation between

points will not be a good estimate of the underlying function and 3D surface errors will result.
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Figure 4.18. Predicted X and Y displacement (top and bottom, respectively) for an interrogation area, as a function of
the interrogation area's X position along a line located half way down the image (as shown in schematic at left). All
measurements are in pixels.
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Figure 4.19. Predicted X and Y displacement (top and bottom, respectively) for an interrogation area, as a function of
the interrogation area's X position along a line located at the bottom of the image (as shown in schematic at left). All
measurements are in pixels.
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Since the distance between the images of the aluminum target plate points is about 100 pixels on

the image plane, the spatial interpolation is too coarse for the non-linearity of the wavefront and

the poor 3D surface model shown in Figure 4.17 is the inevitable result.

The interpolation approach could be made to be much more accurate by increasing the density of

the known target points. This increased density would allow the piece-wise linear approximation

to approximate the function more closely. This increased density could only be achieved with a

more complex and costly calibration target, however.
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Chapter 5: Conclusions

This research has described the development of a novel optical approach to quantitatively

measure a target object's 3D surface. In this final chapter, the results achieved in this research

will be summarized and potential future work directions will be discussed.

5.1 Theoretical Background and Utility

The theoretical underpinnings of the active wavefront sampling (AWS) approach were described

in Chapter 1. It was shown that an AWS implementation using two horizontally opposed

sampling positions is analogous to a canonical stereo system with a smaller baseline. The image

disparity as a function of target depth for the AWS approach was shown to be offset from the

stereo system value by a simple constant, and the depth sensitivity of the two approaches was

shown to be identical. The advantages of actively sampling the wavefront instead of doing so

statically were also discussed, including the removal of depth ambiguity and the acquisition of

clear single exposure images.

The ability to capture quantitative depth information using a single optical channel is attractive in

several respects. The approach clearly has advantages in applications that cannot use two

separated optical channels, such as minimally invasive surgery using an endoscope. The

approach also lends itself to the relatively inexpensive retrofitting of existing single channel

systems (microscopes, cameras, etc...).

5.2 Implementation of Active Wavefront Sampling

Several practical implementations of an AWS system were also discussed. In Chapter 2, some

mechanical implementations of a rotating aperture setup were shown. These were simple devices

placed between a standard camera and lens, and were composed of a motor driving a bearing
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supported aperture disk. A high frame rate implementation using a fixed sampling mask and a

rotating aperture disk was shown, and the actual experimental system used to capture the 3D data

discussed in this thesis was described. This system was composed of a standard 8 bit digital

camera and a 50mm Nikon lens.

More advanced electronic implementations of the AWS concept were also discussed and

outlined. The use of LCD or micromirror aperture planes was shown to provide flexibility in

aperture size and sampling path, though an actual experimental implementation needs to be made

in order to determine whether or not image quality can be maintained using such devices.

Possible concerns arising from the use of these electronic devices include light attenuation and

reduced spatial resolution of the images.

The optimal placement of the aperture sampling plane whether electronic or mechanical was also

discussed. It was found that the exact placement of the aperture plane has a strong effect on the

presence or not of vignetting in the images.

Finally, the implementation of a coaxial illumination system was described. Such a system needs

to be constructed and evaluated. One concern with this approach is the light losses that will occur

due to the use of partially reflective mirrors to angle both the incoming target rays and the

outgoing illumination rays.

5.3 Motion Tracking Algorithms

A review of the major types of motion tracking algorithms described in the literature was

performed. For high speed AWS imaging applications where only two diametrically opposed

sampling positions are used, it was found that a two step algorithm was optimal. The first step

utilizes a compressed image error correlation algorithm originally designed for particle image

velocimetry analysis, while the second step uses gradient based optical flow techniques. The

correlation step is used to find the integer pixel displacement of each interrogation area, and the

optical flow algorithm is used to calculate the remaining subpixel displacement amount. Splitting
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up the tracking problem into its pixel and subpixel parts in this manner increases robustness and

processing speed.

A simple illumination variation compensation method was also incorporated into the tracking

algorithm, increasing its robustness. The overall algorithm processing time was found to be

approximately 25 milliseconds on a Pentium IV 1 GHz processor.

Increased processing speeds were noted by using a stripe counting algorithm to calculate the

integer pixel displacement instead of the correlation step. This method relies on projecting a

sinusoidally varying pattern onto the target, matching one part of the target in both images using

correlation techniques, and then tracing and counting the projected lines away from this "anchor"

area. This method was found to reduce total processing time to less than 20 milliseconds on a

Pentium IV 1GHz processor.

Algorithms were also developed to process images taken from more than two sampling positions

on the aperture plane. The first algorithm was a simple extension of the two image approach in

that it uses the first image as an "anchor" and performed pair-wise processing between it and the

other images in the circular sampling array. The results from these pair-wise processing steps are

then combined in a least squares sense to calculate the radius of rotation. It was shown that the

accuracy of the algorithm increases as the number of aperture positions used rises, and that

capturing a given number of images in a circular sampling pattern results in higher accuracy than

capturing the same number of images from only two sampling positions. Other described

advantages of the circular sampling pattern include the doing away with the correlation step to

find the integer displacement (since the first motion processed can be made to be subpixel), and

an increased robustness in the face of adverse image intensity gradients since the direction of

motion varies across the sampled circular array.

The second algorithm described to take advantage of multiple AWS sampling positions involved

the use of long multi-point interpolation and gradient filters. It was shown that the use of these

longer filters with 12 bit images could decrease the motion estimation error by a factor of 10
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compared to the two point filters used in the two image algorithms. However, this impressive

advantage was significantly decreased if the filters were used on 8 bit images like the ones used

in this work. In the spatial frequency range of interest here, little to no advantage is gained by

using longer filters with 8 bit images.

It was also found that the use of these large spatiotemporal filters on images with non-uniform

motion (such as the images captured from the targets investigated in this work) requires the

development of an algorithm that moves the spatiotemporal interrogation volume along with the

calculated motion. This approach is prone to error due to the fact that the interrogation volume

can only be positioned with integer pixel accuracy and that any error in the calculation will

accumulate from one measurement to the next. Future work is required in this area, and possible

ways to remove this tracking error include interpolating the individual displacement calculations

in the x and y directions without trying to track the original interrogation volume from one

position to the next. This approach would eliminate the accumulated tracking error and might

result in a more accurate 3D surface model.

It was also found that a standard Gaussian prefilter cannot be used to low-pass filter images with

non-uniform motion. This is due to the fact that the spatial frequency of an image region

undergoing non-uniform motion changes from one image to the next and the sloping of the

Gaussian filter magnitude response changes the feature's image intensity based on this frequency.

A longer filter with a flat magnitude response in the pass zone removes this adverse effect.

5.4 Calibration

It was found that optical aberrations play an important role in determining a target feature

image's path, even for relatively sophisticated consumer lenses. In order to take the aberrations

into account, classic aberration theory was described and a calibration model for the AWS system

was developed. A performance comparison between this calibration model and a 3D linear

interpolation model was made, and it was shown that the aberration model was much better at
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compensating for the aberration effects. It was found that this performance difference was due to

the non-linear aspect of the aberration effect in the x-y plane.

Using the calibration model to quantitatively calculate target depths and comparing the results to

the 3D surface maps generated by a laser scanner revealed AWS inaccuracies on the order of

about a millimeter for a target object located approximately one meter away from the camera. It

is important to note that this result was obtained with images captured over a month after the

system had been calibrated, suggesting both that the AWS system is relatively robust and that

better results could in theory be obtained.

Though it was shown that the calibration model could compensate for the aberrations introduced

by the optical train, it is important to note that further work should be performed on it. The most

important step is to sample images at more than one sample radius. If one looks at the wavefront

derivative expansions in equations 4.11 and 4.12, it can be seen that the radius of the aperture, r,

appears in growing powers. Several different values of r must therefore be used in order to find a

unique solution for the values of the aberration coefficients. Unfortunately, the current

mechanical AWS only allows image acquisition from one fixed sampling aperture radius and

does not allow for on-axis sampling without removing the Nikon lens. This un-mounting and re-

mounting has been found to disrupt the alignment of the optical train. Preliminary work using

synthetic data shows that using an on-axis aperture position (r=O) in addition to the circular

sampling array allows the actual values of the coefficients to be found more accurately than

relying on the circular array images alone.
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