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Abstract

Nanowires and nanotubes have drawn a great deal of recent attention for such potential applications as
lasers, transistors, biosensors, and thermoelectric energy converters. Although the thermal properties of
nanowires can differ greatly from their bulk counterparts, the theoretical and experimental understanding
of these differences is still limited. Thermal performance is especially important for nanowire
thermoelectrics, which are expected to have energy conversion efficiencies far superior to bulk materials.
This efficiency increase may lead to a broad range of applications for reliable, solid-state energy
conversion, including household refrigeration and waste heat scavenging for power generation.

In this thesis, the fundamental thermal properties of nanowires and nanotubes are explored from both
theoretical and experimental perspectives. Modeling and experiments on titanium dioxide nanotubes
confirm that quantum size effects can cause enhancements in the specific heat at low temperature, while
modeling of classical size effects in nanowires and superlattice nanowires shows that the thermal
conductivity can be reduced by several orders of magnitude compared to bulk, in agreement with
available experimental data. To facilitate further experimental studies of individual nanowires, the "3-
omega" methods for thermal properties measurements were made more rigorous, simpler to implement,
and generalized to 1-omega and 2-omega methods which may be advantageous for nanoscale systems.
These methods are used to deduce the thermal properties of a system from its electrical response at the
first, second, or third harmonic of a driving current. Finally, a detailed design and preliminary
measurements are presented for a new type of hot-wire probe based on Wollaston wire and used to
measure the thermoelectric properties of individual nanowires and nanotubes inside a transmission
electron microscope.

Thesis Supervisor: Gang Chen
Title: Professor of Mechanical Engineering
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Chapter 1: Introduction

Nanowires and nanotubes have attracted a great deal of attention in recent years. The initial

research focused on the synthesis of many varieties of these remarkable structures, including single-

walled [1,2] and multi-walled [3] carbon nanotubes with diameters down to about one nm [4, 5], as well

as nanowires with diameters typically ranging from 10-100 nm and morphologies that can be

homogeneous [6], segmented [7-10], or core-and-shell [11 ]. The electrical, optical, mechanical, and

thermal properties of these small structures can differ from bulk materials in many exciting ways [12, 13].

Consequently, nanowires and nanotubes have proven to be fertile areas for fundamental studies of

nanoscience. The extraordinary properties of nanowires and nanotubes make them appealing for a broad

range of technological applications (Fig. 1-1), including non-volatile memory [14, 15], biosensors [16],

lasers [17, 18], dye-sensitized (Gritzel) solar cells [19, 20], and thermoelectric energy conversion [21-23],

and there are high hopes that some of these applications may be commercialized within a decade. This

chapter introduces some of the unique physical properties of nanowires and nanotubes and their potential

applications. Of particular interest are nanowire-based thermoelectric devices, which can be used for the

direct conversion of heat to electricity, with no fluids or moving parts.

1.1 Nanowires and nanotubes
The unique physical properties of nanowires and nanotubes can be divided into at least four

different categories, listed in order of increasingly interesting and challenging physics: smaller size, the

increased importance of surfaces and interfaces, classical / particle size effects, and quantum / wave size

effects (Fig. 1-2).

(a) Smaller size

The most obvious benefit of making devices from nanowires and nanotubes is that more devices

can be packed in a given area or volume [Fig. 1-2(a)]. Although this phenomenon does not invoke any

exotic physics, it is important for most nanowire and nanotube devices, including non-volatile memory,

biosensors, and lasers [Figs. 1-1(a-c)]. Nanowires and nanotubes may even permit Moore's law

(governing the rate of progress in manufacturing transistors of ever-smaller size) to scale to dimensions

smaller than the current limits of photolithography, an application with the potential for tremendous

economic impact.
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Figure 1-1. Examples of devices made with nanowires and nanotubes.

(b) Increased importance of surfaces

The ratio of surface area to volume increases as the characteristic length scale is reduced [Fig. 1-

2(b)]. For example, the ratio of surface area to volume for a nanowire of diameter D and length L (with

L>>D) is proportional to the inverse of the diameter. Thus, the surfaces of a nanowire with 10 nm

diameter can in some sense be considered 10,000 times more important than a conventional wire of 100

ýtm diameter. This scaling places relatively more emphasis on the surface properties compared to bulk

properties, which is particularly important for such applications as sensing, catalysis, and dye-sensitized

(Gratzel) solar cells [Figs. 1-1 (b,d)].

(c) Classical / particle size effects

As nanowires and nanotubes are made smaller, their characteristic length may become

comparable to, or smaller than, the mean free path of the fundamental carriers of charge, mass, energy,

etc. This "classical" (or "particle") size effect is analogous to rarified gas flow inside a tube, except that

Ti
Nanc

(a) Non-volatile memorv !,o) t•losensor
\-/-·---



-------------------------------------------------------

(a) More devices per unit area or volume

; ;

(b) Increased importance of surfaces

(c) Classical / particle effects:
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Altered dispersion relations

SA ;rDL 1

Vol D 2 L D
4

Figure 1-2. Size effects when shrinking large wires down into nanowires.

in most solids of interest the carriers are not gas molecules but rather electrons or phonons (the quanta of

sound waves). In the classical regime the electrons and phonons can still be treated as point particles. The

thermal conductivity of such a collection of particles can be understood using kinetic theory,

k = CvLeff (1-1)

which states that the thermal conductivity is proportional to the specific heat per unit volume, C, the

velocity of the particles, v, and the effective mean free path of the particles between collisions, Leff. If the

phonons are constrained inside a nanostructure, the classical size effect of increased scattering at the

boundaries and interfaces tends to impede transport [Fig. 1-2(c)]. For example, in bulk silicon at 300 K,

the mean free paths of most phonons are in the range of 100 nm to 10 rtm, so phonons in a silicon

nanowire of 50 nm diameter will experience greatly increased scattering due to collisions with the rough

000

40011-*



sidewalls. The reductions in mean free path due to boundary scattering can be understood approximately

using Matthiessen's rule,
1L-1 -LI- + (1-2

eff bul + oundary (1-2)

which shows how boundary scattering reduces the effective mean free path compared to purely bulk

scattering mechanisms. The boundary scattering mean free path for a rough-walled nanowire is simply

the diameter [24]. An additional boundary scattering effect is important for samples of finite length,

including carbon nanotubes [25] and macro-sized cylinders [26]. Although Matthiessen's rule is rarely

exactly correct, it is widely used to capture the essential physics of the increased scattering when multiple

scattering mechanisms are active [27, 28].

Equations (1-1) and (1-2) show that boundary scattering in nanostructures reduces the mean free

path and thus the thermal conductivity. In most applications this increased boundary scattering introduces

potentially serious problems in thermal management because of the increased heat generation and reduced

thermal conductivity [Fig. 1-1(a-d)], but in thermoelectric applications the reduced thermal conductivity

is actually very helpful [Fig 1-1(e)] [12, 21-23]. It should also be noted that the bulk scattering

mechanisms and boundary scattering mechanisms may be manipulated somewhat independently, because

they have different dependencies on temperature, material properties, and geometry.

(d) Quantum / wave size effects

Nanowires and nanotubes can also be made so small as to be comparable to or even smaller than

the wavelength of the fundamental energy carriers [Fig. 1-2(d)]. This "quantum" (or "wave") size effect

is closely related to the interference of light in thin-film optics, and also the guiding of electromagnetic

waves in optical fibers and microwave waveguides, because in all of these cases the wave nature of the

energy carrier (phonon, electron, photon, or atom/molecule [29]) is essential to understanding its behavior

inside the host structure. These quantum confinement effects can change the dispersion relations, the

relationship between energy and wavelength. For example, the bandgap of electrons in a nanowire may

be increased compared to a bulk material [30], potentially allowing the wavelength of nanowire lasers

[Fig. 1-1(c)] to be tuned by synthesizing nanowires of different diameters. Quantum confinement can

also introduce sharp features in the electron density of states, with potentially beneficial impacts on the

thermoelectric performance [Fig. 1-1(e)] [12, 21-23]. Quantum confinement is also important for the

phonon specific heat, which may be increased or decreased compared to bulk depending on whether the

boundary conditions are free or fixed [31-33]. Broadly speaking, quantum confinement becomes a new

variable to tailor the properties of materials in many exciting ways that are simply not possible in bulk,

three-dimensional systems.
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Figure 1-3. Thermoelectric devices and their performance. (a) Thermoelectric generator. (b) Efficiency
as a function of temperature and ZT. (c) 65 years of progress in ZT [39].

1.2 Thermoelectricity in low-dimensional structures
At the heart of all thermoelectric phenomena is the coupling between heat and electricity [34-36].

The most familiar example is a thermocouple, where the open circuit voltage of a junction between two

dissimilar conductors is determined by the temperature of the junction. If instead of open-circuit

operation, the thermocouple is allowed to do work across an electrical load, then the device operates as a

thermoelectric heat engine [Fig. 1-3(a)]. Alternatively, if the load is replaced with an electrical power

source to reverse the current flow, then the device operates as a refrigerator or heat pump.

Compared to traditional refrigerators and heat engines, thermoelectric energy converters have the

advantages of simplicity, reliability, and no vibrations. Furthermore, because they use no refrigerants or

working fluids, thermoelectric devices may be expected to have negligible direct emissions of greenhouse

gases over their lifetime, likely reducing their contribution to global warming compared to conventional

~L- L
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technologies [37]. The greatest disadvantage of thermoelectric energy converters is their low efficiency

and high cost. Therefore, applications are currently limited to certain niches, including power generation

for deep space probes [35, 38], seat warmers and coolers for luxury automobiles, and temperature control

of some laboratory equipment.

The efficiency of a thermoelectric generator operating between absolute temperatures Th (hot

side) and Tc (cold side) is given by

1+Z11(1-3)TII 1+ZT +Tc/Th
where T is the average temperature and ZT is the dimensionless figure of merit, discussed below [34, 35].

The second term in parentheses is always less than unity, showing that the efficiency for thermoelectric

energy conversion can never exceed the fundamental thermodynamic limit of the Carnot efficiency (the

first term in parentheses). This efficiency function is depicted in Fig. 1-3(b) for several values of Th / Tc.

The derivation of Eq. (1-3) reveals that ZT depends on several underlying material properties [34,

35]:

S2ar
ZT= IT (1-4)

ke +kp

Here S the Seebeck coefficient, a the electrical conductivity, and ke and kp the electron and phonon

contributions to the thermal conductivity, respectively. A material with good efficiency for

thermoelectric energy conversion will have: a large Seebeck coefficient, to optimize coupling between

thermal and electrical energy; a large electrical conductivity, to minimize resistive losses; and a low

thermal conductivity, to minimize the parasitic heat leakage by conduction from hot to cold sides.

However, it is important to recognize that a and ke are closely coupled in most materials through the

Wiedemann-Franz law:

kk = L 0 . (1-5)
aT

Here Lo is the Lorentz number which is typically around 2 x 10-8 to 3 x 10-8 V2/K2 (or F =L 140-170

tV/K) for bulk materials at room temperature [28], although in semiconductors the Lorentz number

depends on doping. The figure of merit can then be expressed as

ZT = (S/ (1-6)
1 + kp/k e



Quantum Dot Superlattice
PbSeTe / PbTe
[Harman et al.]

Bulk Nanostructure

Superlattice
Bi 2Te3 / Sb2Te3

[Venkatasubramanian et al.]
Bulk Nanostructure

ZT (at 300 K) 0.36 1.6 1.0 2.4

Power Factor, S2ac [W / cm K2] 24 34 35 40

Thermal conductivity, k [W / m K] 2.0 0.6 2.0 0.5

Table 1-1. Thermoelectric properties of two superlattice material systems with high ZT [40, 41].

Compared to Eq. (1-4), this form breaks ZT into two different dimensionless groups and shows that the

criterion for a "small" phonon thermal conductivity is to compare it to the electron thermal conductivity.

More than 60 years of progress in ZT are summarized briefly in Fig. 1-3(c) [39]. Traditional

bulk thermoelectric materials include alloys such as Bi2Te3, PbTe, and SiGe, with ZT up to around 1.

Figure 1-3(b) shows that the efficiency of such materials for energy conversion with Th / T=3 is about

16%. This situation might apply to waste heat scavenging from automobile exhaust (Thi630 C, Tc;30 C)

[38]. However, the last decade has seen tremendous progress in pushing ZT beyond 2, thanks to novel

nanostructured materials [40-42]. If nanostructured materials can be pushed further to ZT=3, the

efficiency of the same waste heat scavenging application almost doubles to 29% [Fig. 1-3(b)]. This vastly

improved efficiency could open up many more potential applications for thermoelectric energy

conversion by lowering the operating cost, although the important issue of the capital cost of the materials

still needs to be addressed.

Table 1-1 shows that the increased ZT reported in the literature for two representative

nanostructured materials is largely due to reduced thermal conductivity, with some additional help from

the electrical performance. Both the quantum dot superlattice of Harman et al. [41] and the superlattice of

Venkatasubramanian et al. [42] show increases in the power factor by about 15-40%, although even

larger increases in the power factor (S2 r) are expected [43, 44]. Table 1-1 shows that the thermal

conductivity of the nanostructures is 3 to 4 times smaller than bulk, and thus dominates the overall

increase in ZT.

The high-ZT measurements reported to date have all been for superlattices, which are essentially

2-dimensional systems. The mechanisms of increased ZT are expected to be even stronger in 1-

dimensional nanowires [Fig. 1-1 (e)]: the power factor should increase further due to stronger singularities

in the electron density of states, and the thermal conductivity should decrease further due to increased



phonon scattering at the nanowire sidewalls [21 - 23]. However, this expected enhancement in nanowire

ZT has yet to be confirmed experimentally, and remains an important open challenge in the field.

1.3 Outline of the thesis
This thesis is broadly concerned with the thermal properties of nanowire and nanotubes, from

both theoretical and experimental perspectives.

Chapter 2 is the most fundamental of the thesis, focusing on quantum / wave effects on phonons

in nanostructures. A low-dimensional Debye-Einstein model is developed and compared with

measurements of the specific heat TiO2 nanotubes down to 1.4 K.

Chapter 3 transitions to classical / particle size effects, using kinetic theory to model the reduced

thermal conductivity in nanowires and superlattice nanowires. Careful consideration is given to the

frequency-dependence of the phonon properties and to the broad range of mean free paths that are

important for heat transport.

Chapter 4 generalizes the existing "3o)" method for thermal measurements, to "2o" and "lo."

These techniques are used to deduce the thermal properties of a system from the electrical response at the

first, second, or third harmonic of a driving current. Several practical improvements over the traditional

3o methods are also presented, making the experiments easier to implement and the data analysis more

rigorous.

Chapter 5 describes the detailed design and preliminary testing of a new probe which can be used

to measure the thermoelectric properties of individual nanowires and nanotubes inside a transmission

electron microscope (TEM). To overcome problems arising from poor thermal contact, the TEM was

modified for local electron-beam induced deposition of metals at either end of the nanowire.

Finally, Chapter 6 summarizes the major contributions of this thesis and identifies some

important directions for future work.
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Chapter 2: Quantum size effects on the specific heat

2.1 Introduction
This portion of the thesis is concerned with phonons in nanostructures. The first half of the

chapter develops a model for the phonon dispersion, density of states, and specific heat in low

dimensional systems, including thin-walled nanotubes. This model begins from continuum elasticity and

includes the effects of phonon confinement, the discreteness of the lattice, and optical modes. The second

half of the chapter describes an experimental test of the model against measurements of the specific heat

of TiO 2 nanotubes (anatase phase, wall thickness 2.6 nm) from 1.5 to 95 K. The most important

conclusion from both modeling and experiments is that low dimensional behavior is only important when

the thermally averaged wavelength is comparable to, or longer than, the nanostructure size. The model

successfully explains a shift from T3 to T 2 behavior in the nanotube specific heat for temperatures T

below about 10 K, with the nanotube specific heat becoming more than double the bulk value. At higher

temperatures the nanotube specific heat is the same as bulk. However, below about 2 K the measured

nanotube specific heat is enhanced even more than expected. This may be due in part to low energy

vibrations amongst adjacent nanotubes, which can be captured phenomenologically by adding an

additional term to the model.

The experimental portion of this chapter has been presented in a previous publication, along with

a very brief description of the model [1]. More details about the modeling will appear in a subsequent

publication.

2.2 Model

2.2.1 Phonons and specific heat

The specific heat C is defined as

aE
C=- a(2-1)

aT

where E is the internal energy and T the absolute temperature. For materials such as insulators and most

semiconductors, the internal energy is dominated by phonons rather than electrons, and can be expressed

as

E(T) = hco f(co,T) DOS(ao)do (2-2)



where h is Planck's constant divided by 21r, w is the phonon frequency, DOS the phonon density of states,

andf is the Bose-Einstein factor:

1
f = ,(2-3)f = exp(hco/kT)-1' (2-3)

where kB is Boltzmann's constant. Thus,

C(T) = wh af(o, T) DOS(co)dwo (2-4)aT

The density of states is the only term of Eq. (2-4) that varies from material to material, and is also the

only term that changes in a low-dimensional system.

Although C(T) is easily measured, the full phonon dispersion relation is of greater fundamental

interest. The dispersion relations are commonly studied with inelastic neutron scattering, as well as

scattering of x-ray and visible photons (e.g. Brillouin and Raman scattering) [2, 3]. Equation (2-4) shows

that the specific heat also contains useful information about the phonon dispersion relation, through the

density of states. It is tempting to consider the possibility of inverting C(T) to yield DOS(co). However,

for any reasonable level of experimental uncertainty in C(T), such an inversion is known to be

impractical [4]. Nonetheless, C(T) is still useful for characterizing model dispersion relations with only a

few parameters, such as the Debye and Einstein temperatures. In the following section we derive a

similar simple model for low-dimensional systems.

2.2.2 Elastic continuum model of an elastic box: A low-dimensional

Debye model

As a first step, consider the well-established Debye model for the density of states and specific

heat [2, 3]. The Debye model can be derived beginning from the wave equation for an elastic continuum

with isotropic properties,

p au (p + A)V(V -U)+v u (2-5)
at

where p is the mass density, u the local displacement vector, and p and A the Lame constants. To

simplify further, we approximate the material as incompressible so that V.u=0. Then

a2U = V2v2u (2-6)
at2



where v is the sound velocity. This simplification neglects the distinction between longitudinal and

transverse polarizations. The displacement field u can be expressed as a Fourier transform,

u(x,t) = JUo 3  (q, co)exp[i(q -x --t)] (2-7)

where x is the position, q is the wavevector, and U is the polarization vector. Thus, for each eigenmode

indexed by a particular value of q,

u(x,t) = U(q,co(q))exp[i(q -x - cot)] (2-8)

Substituting Eq. (2-8) into Eq. (2-6) yields

CO2 U = v 2q 2 U (2-9)

where q = Iqi. This shows that the dispersion relation is

co(q)= vqj . (2-10)

That is, the frequency is linearly proportional to the wavevector. Thus, these are acoustic modes.

The Debye model is usually presented using periodic boundary conditions because those are the

simplest to analyze for bulk materials. For low dimensional structures we need to revisit the boundary

conditions. For an isolated sample, the boundaries are free and experience no force. This implies that

there are no gradients in the displacement field (i.e. no strain) at the boundaries. For further

simplification we restrict the analysis to a rectangular box of size (Lx, Ly, Lz), and place the origin at one

corner of the box. Then the governing equation and boundary conditions are satisfied by the standing-

wave product solution

u = u(cosqxxXcosqyy cosqzzXcoscot) (2-11)

where each component of the wavevector must satisfy

qi= , i=x,y,z, Yi = 0,1,2,... (2-12)
Li

Note that the traditional Debye analysis using periodic boundary conditions results in wavevectors spaced

by 2;r/L rather than r/L.

If the sample is assumed to have fixed rather than free boundaries, then the displacement itself

must go to zero at the boundaries. In this case the solutions are of the form

u = U(sinqxxXsinqyysinqzzXcos cot) (2-13)
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Figure 2-1. Modeling the phonon density of states in low dimensional structures. Columns: (Left) real
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nanowire / 1D, (d) nanotube (NT) unrolled into a sheet. The characteristic lengths of the thin film and

nanowire are 2.6 nm. The nanotube has 2.6 nm wall thickness and 6.5 nm average diameter. In all cases

the sound velocity is 3560 m/s and the Debye temperature is 260 K. In 3D, 2D, and ID the low-

frequency power-law exponent of the density of states is one less than the dimensionality. The nanotube

density of states shows behavior reminiscent of 3D, 2D, and 1 D over various different energy ranges.
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(2-14)

Real Spa

0

w

qz I x

1ý

T L 1,



Note that 0=O is allowed for free boundaries but forbidden for fixed boundaries. This is because

substituting y-=0 into Eq. (2-13) would force the entire displacement field to be zero. This seemingly

minor distinction turns out to be the difference between enhanced specific heat (free boundaries) and

reduced specific heat (fixed boundaries).

Focusing on free boundaries, Eq. (2-12) shows that the vibrations are discrete eigenmodes, each

of which is conveniently represented by a (qx, qy, qz) point in reciprocal space. The allowed energy of

each eigenmode is quantized into discrete levels, each of which corresponds to a phonon. While the

traditional Debye analysis passes into the limit Li--*oo, to model nanostructures we focus here on the case

when one or more of the length scales Li is small. The resulting calculations are depicted in Fig. 2-1(a-c)

for bulk, 2D, and ID systems. The left-hand column shows a typical eigenmode for each system. The

center column shows many such eigenmodes as represented in reciprocal space (notice that wavevectors

with q,=O0 are permitted). The right-hand column shows the resulting density of states, discussed next.

Density of states for 3D, 2D, and 1D systems

The right-hand column of Fig. 2-1(a-c) shows the density of states for 3D, 2D, and 1ID systems,

for a model system with sound velocity 3560 m/s and characteristic length 2.6 nm in the thin direction.

These parameters were chosen to be a good approximation to TiO 2 (anatase phase), as discussed below.

Although the calculations shown in Fig. 2-1 were performed numerically by directly summing all of the

allowed eigenmodes according to Eqs. (2-10) and (2-12), these density of states are also readily obtained

analytically, as discussed later in this section.

For the simplest interpretation, consider the limiting behavior of the DOS at low energies. From

the fundamental definition of DOS:

DOS(w)de - (# of phonon modes between o and o + dc) / (generalized volume) (2-15)

where "generalized volume" refers to volume, area, or length, for 3D, 2D, and 1D systems, respectively.

By considering the density of dots in reciprocal space near the origin in the center column of Fig. 2-1 (a-

c), the appropriate expressions are readily derived:

DOS3D(o- )d = ( I ) ) q2dq
LxLyLz 2 ( / LxLyL)

1 dqDOS 2D (O -* 0)dco = (qdq (2-16a-c)(LXL, 2(; 2 ILxL)

DOSI ( 0'-Od- _ I )dq



where in each equation the first term in parentheses is the inverse of the generalized volume, and the

second term in parentheses is the volume of a single phonon mode in reciprocal space according to Eq.

(2-12). These simple expressions are only valid for the lowest acoustic subband, that is, the limit co-+0.

Expressions for the higher subbands are given later in this section. For the lowest subband, substituting

the linear dispersion of Eq. (2-10) and simplifying leads to

2

DOS3D (0 -CO 0) -23
2z)V

DOS2D(Co -O 0) = 2 (2-17a-c)

2rv
DOSI D ((0 _> O) =I

ZV

The pattern is clear: for dimensionality nŽl, the density of states has the limiting behavior at low

frequency

n-1

DOS.D(w-+•O)oc- , n > 1 (2-18)
V ,n

where the numerical prefactors are different for the different dimensionalities.

The simple result of Eq. (2-18) only holds for phonon systems with linear dispersion, which is a

good approximation for the vast majority of materials in the limit of low-frequency. However, parabolic

phonon dispersion is also present in some materials such as graphene [6]. In general

DOSn (O 0) qc'dq (2-19)
nD do

regardless of the type of dispersion. For a more general analysis consider the power-law dispersion:

o x qP (2-20)

This form describes both acoustic phonons (p=l) and electrons in a parabolic band (p=2). For the power-

law dispersion,

q oc oml p  (2-21)

and

dq oc (I / p)o(-P - )do (2-22)

Substituting Eqs. (2-21) and (2-22) into Eq. (2-19) yields



DOSnD,power law(o - 0) cc m (2-23)

which is a generalization of Eq. (2-18).

The pattern of Eq. (2-18) for the power-law exponents of DOS(ro) is apparent from the small-mo

portion of the DOS plots of Fig. 2-1(a-c). In 3D systems, DOS3D C 2 . For the 2D system, each acoustic

subband has DOS2 D cC C. And for the 1ID system, the lowest subband has a constant DOS

(DOSID oc 00 ).

Analysis of Fig. 2-l (c, center) shows that the DOS for higher acoustic subbands in the ID system

are given by

1 __ 2E
DOSID(O > vq°)= v 2  2 (2-24)

where qo is the offset in reciprocal space between the origin and the subband of interest. For example, for

the nanowire of Fig. 2-1 (c), the offsets are given by

qO,1D(yz) (2ry + 2  , y=0,1,2,..., yZ = 0,1,2,... (2-25)

Eq. (2-24) shows that the singularities apparent in Fig. 2-1(c) are integrable, and each approaches the

constant value /Iv as co>>vqo, regardless of the subband offset q0.

Interestingly, analysis of Fig. 2-1(b, center) shows that the DOS for higher acoustic subbands in

2D do not have any singularities, but rather are given by

DOS2D(o)> vqo)= o (2-26)2;r v2,-v 2

where the offset wavevectors are given simply by

qoo 7,y)= Y =1
q0,2Dy -- y = 0,1,2,... (2-27)

Equations (24-27) form the basis of a fully analytic solution for the phonon density of states in a

thin film or nanowire of square cross-section, by simply summing over all the subbands indexed by y, and

yz. Although the plots of Fig. 2-1(right) were obtained by direct numerical summation over all allowed

points in reciprocal space (qx was discretized by assuming some large but finite value of Lx), the analytic

expressions were used to check the numerical results for several cases.



A very important feature of the DOS plots in the right-hand column of Fig. 2-1 is that the

averaged trend over a broad range of energies is still quadratic in co. This is because high energies

correspond to short wavelengths. At sufficiently high energies the wavelengths become far smaller than

the nanostructure size, for example 2<<Lr in Fig 2-1(b), and so the confinement effects become

unimportant. This transition occurs when A,2L, which is expected when

/gv

c0tans 5 (2-28)
L

Minimum length scale: Debye cutoff

Because the model described so far assumes a continuum, there is no minimum length scale, and

thus the wavelengths can become arbitrarily small. Equivalently, there is no upper limit on the energy or

wavevector. In reality, the wavelength cannot be smaller than two unit cells of the underlying crystal

lattice. Thus, following the traditional Debye model [2, 3], we define a cutoff wavevector as

qmax= •2 (6ri/3 (2-29)

where 7 is the number density of primitive unit cells. This corresponds to a maximum frequency of

Ommax max = (6 2 V3 )/3 (2-30)

which is the cutoff used in the DOS plots of Fig. 2-1. The corresponding Debye temperature is given by

9D hO max =- (62r)2 3 (2-31)
kB k-

Specific heat for 3D, 2D, and 1D systems

Having modeled the density of states, it is straightforward to compute the specific heat

numerically from Eq. (2-4). Figure 2-2(a) shows the results for 3D, 2D, and ID systems. It is clear that

the limiting behavior in C(T) at low temperature is a power law whose exponent is the same as the

dimensionality of the system, n:

CnD(T->0)ccT , n>1. (2-32)

We now demonstrate that this simple pattern is a direct consequence of the limiting density of states given

by Eq. (2-18). Ignoring numerical constants, according to Eqs. (2-3), (2-4), and (2-18) the specific heat

can be expressed as
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Figure 2-2. Calculated specific heat of the low-dimensional structures shown in Fig. 2-1. (a) Bulk (3D),
thin film (2D), and nanowire (1 D), showing that the power law exponent of the low-temperature specific
heat is equal to the dimensionality. (b) Nanotube compared to bulk. The nanotube specific heat
transitions from 3D (C oc T3 ) to 2D (C oc T2 ) to ID (Coc T') behavior with decreasing temperature. In all
cases the high-temperature specific heat approaches a constant value, in accordance with the law of
DuLong and Petit.

&2 WUx 2 exp(hw/kT) an-(
CnD(T) oc h dwo (2-33)kBT 2 J [exp(hol/kBT)-1]2  n )

where the last term in parentheses reflects the dependence of the density of states on dimensionality.

Making the usual substitution r =ho / kBT [2, 3], the integral simplifies to

CnD(T) oc kBk f rBT)n r rn+ exp(r) dr (2-34)t vj J0 exr1]

For any dimensionality n, the integrand decays exponentially for r >> 1, and so the integration is

dominated by relatively small values of r (of order unity). Thus, there always exists a low enough

temperature such that rm,,, =h,,,,. / kBT can be approximated as infinity, in which case the integral loses

all temperature dependence and becomes simply a numerical constant depending only on n. For example,

in 3D the integral approaches 4nt4/15 as rma-+'oo [2]. Thus, the low temperature limit becomes

CnD(T-+O) ock kB ac Tn (2-35)
hv
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justifying the observation of Eq. (2-32).

The transition from bulk to low-dimensional specific heat is expected at temperatures so low that

the average wavevector is too small to populate anything beyond the first acoustic subband, for example,

-2Ly in the thin film of Fig. 2-1(b). The average wavelength can be estimated roughly from the energy

criterion of Eq. (2-28) and hOrans=kBTtrans,

2avg ;2Av (2-36)

Thus we would expect

Aavg T ~ 240 nm K (v / 5000 m/s), (2-37)

where the fundamental constants kB and h have been re-expressed in more convenient units using nm, K,

and m/s. However, a better estimate for the numerical prefactor in Eq. (2-37) is found by analogy to

Wien's displacement law for thermal radiation, ATz2898 gm K (here v=speed of light) [5].

Aavg T z 50nmK(v/50O0m/is). (2-38)

This expression assumes linear dispersion and is useful for quick, approximate estimates in 3D, 2D, or ID

(but not necessarily OD) systems. Careful consideration of the transitions in C(T) show that the full

range of the transition spans from approximately 12 nm K to 200 nm K:

12nmK< tran(v/5000m/s) < 200nmK (2-39)
(v/5000m/s))

For example, we would expect a 5 nm thin film made of material with sound velocity 2500 m/s to be

dominated by 2D phonon behavior (C-T 2) at temperatures below 1.2 K (LyT=6 nm K), and revert to fully

3D behavior (C-T 3) above 20 K (LyT=100 nm K).

2.2.3 Elastic continuum model of an unrolled nanotube

The analysis described above in Eqs. (2-11) through (2-28) is limited to rectangular

parallelepipeds. However, it can also be used to approximate the phonons in a nanotube as long as the

nanotube wall is thin compared to its diameter. This is done by imagining cutting along the length of the

nanotube and unrolling it into a flat, narrow sheet [Fig. 2-1(d, left)]. Like some models for the phonon

specific heat in carbon nanotubes, this model neglects the effects of curvature in changing the energy of

some out-of-plane modes that correspond to radial breathing modes [6, 7]. As shown in Fig. 2-1(d, left),

the unrolled sheet is as thick as the nanotube wall, w, and as wide as the nanotube circumference, nrD.

Now a periodic boundary condition must be applied in the circumferential direction:



27Ycircumf
qcircumf = 2 yrcum , circumf = 0,1, 2,... (2-40)

while the thickness and length directions still have free boundaries and are described in Eq. (2-12). This

is essentially a zone-folding scheme similar to those that have been applied to carbon nanotubes [6, 7].

Although this model does not explicitly distinguish between longitudinal, transverse, and twist acoustic

modes, the method for counting modes should ensure the correct density of states at low energies as long

as curvature effects can be neglected. The nanotube phonon modes are depicted in reciprocal space in

Fig. 2-1 (d, center).

Density of states for a nanotube

The density of states for this model nanotube is shown in Fig. 2-1 (d, right). This plot shows three

different types of behavior depending on the energy range of interest. As with the ID and 2D systems,

the smoothed nanotube DOS follows a parabolic trend, corresponding to the 3D behavior of Fig. 2-1(a).

Again, this is because large energies correspond to short wavelengths, which become smaller than all of

the nanotube length scales, causing confinement effects to be negligible.

Looking somewhat more closely at the nanotube DOS, several noisy steps are apparent, each

proportional to co1 and spanning about 5 x 1012 rad/s. These are clearly reminiscent of the steps in the 2D

DOS of Fig. 2-1(b), and are caused by phonon confinement in the nanotube wall-thickness direction. The

boundary condition of Eq. (2-12) requires that an integer number of half-wavelengths span the nanotube

wall. As co increases, the set of allowed wavevectors in the radial direction progress from qradial=O to

include qradia=gn/w, 27r/w, 3r/w, ... Each additional qradial corresponds to accessing another radial acoustic

subband, leading to the stepwise increase in the DOS.

At the finest level of detail, the nanotube DOS in Fig 2-1(d) shows many small spikes, for

example at awl1, 2, and 3 x 1012 rad/s. These are lD singularities similar to Fig. 2-1(c) and Eq. (2-24). In

this regime the wavelengths are so long as to be comparable to the circumference of the nanotube. These

first three singularities correspond to the circumferential acoustic subbands when 1, 2, and 3 wavelengths

span the circumference: qcircumferentia= 2 /D, 4/D, and 6/D.

Specific heat for a nanotube

The DOS of Fig. 2-1 (d) suggests that the phonon properties of a nanotube may exhibit 3D, 2D, or

1 D behavior, depending on the energy range of interest. This pattern is indeed apparent in the calculated

specific heat shown in Fig. 2-2(b). As the temperature decreases, the average wavelengths increase, and

we see a transition from 3D, to 2D, to 1D behavior. Well above the Debye temperature, the bulk and

nanotube specific heats both saturate, in accordance with the law of Dulong & Petit. From -100 K down



to -30 K, the nanotube specific heat follows a T 3 trend, corresponding to 3D behavior. At around 5 K,

the nanotube specific heat transitions to a T2 trend, corresponding to 2D behavior. This is because the

average wavelengths are long enough to feel the constraint in the wall thickness direction. With that

dimension "frozen out", there are effectively only two free dimensions remaining. Below -1 K, the

nanotube specific heat follows a T 1 trend, corresponding to ID behavior. Here the average wavelengths

are long compared to both the wall thickness and the circumference. With two dimensions frozen out,

only one free dimension remains.

2.2.4 Accounting for optical modes: Einstein model

The generalized Debye model described thus far is appropriate for materials with only acoustic

phonons, that is, crystal structures with only one atom per primitive unit cell (i.e., a monatomic basis).

However, most materials of technological interest have polyatomic bases, which introduces optical

phonon modes as well. For example, a material with q primitive unit cells per unit volume, and a basis of

b atoms, has 3 q acoustic modes, leaving

1/optical = 31(b- 1) (2-41)

optical modes per unit volume. In the Einstein model [2, 3] these optical modes are assumed to all have

the same frequency wE, corresponding to an Einstein temperature of

OE hE / kg . (2-42)

That is, the dispersion relation for Einstein modes is

co(q) = WE. (2-43)

Thus, the DOS for an Einstein model is simply a delta function:

DOSE ) = 7opticalS(o- COE) (2-44)

Applying this DOS to the specific heat integral Eq. (2-4) gives the optical contribution to the specific

heat:

BE2exp(OE/)
Coptical (T) = °optical k B( [exp(OE /IT) (2-45)

T [exp(OE I)-I

Like the Debye model outlined above, this Einstein specific heat saturates to the Dulong and Petit value

well above its characteristic temperature (OD and OE, respectively), but at low temperatures Coptical (T) falls

off much more sharply than the Debye specific heat.



Like acoustic phonons, optical phonons in nanostructures will also have their wavevectors

quantized due to subband folding effects. However, because of the assumed Einstein dispersion relation,

this does not have any effect on the resulting specific heat calculation. The key difference is that the

density of states for acoustic phonons is sensitive to confinement effects, because the frequency depends

on the wavevector [Eq. (2-10)]. Thus, altering the allowed wavevectors alters the density of states (Fig.

2-1, right). However, for the Einstein dispersion relation [Eq. (2-43)] the density of states is always a

delta function at co=cE, regardless of the altered wavevectors.

2.2.5 Accounting for intertube modes

The low-dimensional Debye-Einstein model described above is appropriate for an isolated

nanotube, but experimentally it is far easier to measure the specific heat of a collection of many

nanotubes, which may be pressed together as a loose pellet. In this case we would expect some amount of

coupling between adjacent nanotubes. It is difficult to calculate the precise coupling strength, but we can

estimate the influence of the coupling on the specific heat by considering the following limiting case.

Each nanotube can be thought of as a new super-unit cell, with many hundreds or thousands of atoms in

the basis. The analysis above deals with the phonon modes internal to each nanotube, while the modes

among nanotubes would be a new set of acoustic phonons. These supercell acoustic phonons would be

expected to have very low energies, because the coupling is only through the few atomic sites between the

adjacent nanotubes, while the mass is due to many thousands of atoms within each nanotube. Stated

another way, the characteristic frequency can be estimated as wo - /m , where g is the stiffness and m is

the mass. For the supercell acoustic phonon, g is expected to be comparable to or somewhat larger than

the covalent bonding stiffness between adjacent atoms, while m should be many thousands of times larger

than the mass of a single atom. Thus, the characteristic frequency for intertube modes is expected to be

much lower than the characteristic phonon frequencies of the bulk. Thus, for sufficiently weak intertube

coupling, the intertube modes will already be saturated in the Dulong and Petit regime for all

temperatures of interest. Therefore the contribution from intertube modes is expected to be a small

constant, independent of temperature:

Cintertube (T)= 7lintertubekB (2-46)

Here lintertube is the number of intertube phonon modes per unit volume, expected to be much smaller than

the number density of primitive unit cells, q. Equation (2-46) applies for temperatures well above the

characteristic intertube temperature given by

Ointertube - h intertube / kB (2-47)



Low- Optical
Submodel Dimensional Debye Modes Intertube

Elastic Box Cutoff (Einstein) Modes
Temperature range of importance T< -O0  T >- OD T >-9 E Very low

Sound velocity, v

Geometry: Lx, Ly, Lz

Boundary conditions (fixed, free, or

periodic)

Number density of primitive unit cells, qr

Number of atoms in the basis, b

Number density of intertube phonon V
modes, 7intertube

Einstein energy, WE, or temperature, OE /

Upper limit on intertube phonon energy,

o4intertube,max, or temperature, Ointertube,max

Table 2-1. Required input parameters for the 4 sub-models for the specific heat of nanostructures (The
Debye temperature, OD, is not an independent parameter because it is determined by v and q.) For
example, the number density of primitive unit cells is required for both the Debye cutoff sub-model and
the optical modes sub-model. Values of these parameters are given in Tables 3 and 4.

It is difficult to estimate this temperature but it is expected to be well below 1 K. To model the intertube

contribution to the specific heat below Ointertube, either a Debye or Einstein model may be appropriate.

2.2.6 Summary of model

As summarized in Table 2-1, the model described above has 3 key elements, as well as a 4th

phenomenological element which may be relevant at very low temperatures:

(1) The heart of the model is the low-dimensional Debye sub-model for an elastic continuum box

or nanotube. For this sub-model, a material is fully specified by its sound velocity, geometry, and

boundary conditions (fixed, free, or periodic). The resulting temperature-dependent specific heat shows a

power law exponent equal to the dimensionality.



(2) At high temperatures a Debye cutoff wavevector is introduced. This takes into account the

granularity of the atomic lattice, which imposes a minimum wavelength and ensures that the specific heat

saturates to a constant value at high temperature. The sound velocity and number density of primitive

unit cells are required to specify the specific heat of a material for this sub-model.

(3) At high temperatures the sub-model for optical modes is also important. To specify the

appropriate Einstein contribution, the number density of primitive unit cells, number of atoms in the

basis, and Einstein energy or temperature are necessary.

(4) At very low temperatures the model can be speculatively extended to account for intertube

vibrational modes, by specifying a number density of intertube phonons and an upper limit on the

characteristic intertube frequency or temperature.

2.3 Experiment

2.3.1 Previous work

Limited experimental data are available to test models for the specific heat of nanostructures.

The first experiments were on zero-dimensional (OD) metallic nanoparticles of -2-10 nm diameter, where

experiments [8, 9] show a specific heat enhanced by 50%-100% at temperatures where the average

wavelength is comparable to the diameter, an exponential decay at lower temperatures, and an asymptotic

return to bulk values at higher temperatures. These results have been successfully explained by theories

which sum over all of the normal modes of an elastic sphere with free boundaries [10, 11], similar to the

principle of the low-dimensional Debye sub-model described above.

More recently, there has been considerable effort to study the specific heat of carbon nanotubes

(CNT). Yi et al. [12] observed a linear temperature dependence from 300 K down to 10 K in multi-

walled (MW) CNT, in close agreement with isolated sheets of graphene. In contrast, another MWCNT

experiment by Mizel et al. [13] showed a much steeper decay with temperature of about T2 5 down to -1

K, a better match to graphite. Bundles of single-walled (SW) CNT were studied by both Hone et al. [14]

and Mizel et al. [13], and the specific heat exhibited a linear or slightly superlinear temperature

dependence from -100 K down to -2-4 K, consistent with multiple 1D acoustic subbands. At lower

temperatures Lasjaunias et al. [15, 16] reported a transition to a T 3 dependence, attributed to the filling

up of inter-tube modes, plus a surprising additional term proportional to T 0 34 or T 0 _6 2 below -1 K. The

additional contribution below 1 K was qualitatively attributed to localized excitations of atomic
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Figure 2-3. Modeling the specific heat of TiO2 nanotubes. (a) Transmission electron micrograph of
typical anatase nanotubes used in this experiment. (b) Unrolling a nanotube into a sheet. (c) Phonon
phase diagram indicating the dimensionality for various temperatures and intertube coupling strengths,
after Hone et al. [14]. The dashed line indicates approximately the regime explored in these experiments.
Intertube coupling may have prevented lD behavior from being observed.

rearrangements, as in glasses and amorphous materials. In all of these studies, the temperature

dependence of the specific heat is bounded between that of graphite and graphene. Various theoretical

efforts have had mixed success at explaining these MWCNT and SWCNT measurements by extending

isolated tube models [7] to include the effects of interlayer coupling (in MWCNT) and intertube coupling

[13, 14, 17, 18]. Overall, more work is still needed to reconcile the diverse experimental results with

theory [6].

2.3.2 Ti0 2 nanotubes (anatase phase)
As a test of the model for low-dimensional specific heat described above, we have measured the

specific heat of multi-walled TiO 2 nanotubes (anatase phase) from 1.4 to 90 K, and we have compared

these results with measurements of anatase powder. Because the powder size is several microns, it

represents the intrinsic specific heat of bulk anatase. Powders of the rutile phase of TiO 2 were also

measured for comparison. These are the first measurements of the specific heat of any non-carbon

nanotubes, and the results show that the nanotube specific heat is enhanced by up to an order of

magnitude or more compared to bulk.

/7

Strength of
Intertube
Coupling



Sample Purity Crystallinity Cold Press Comment
(qualitative) Pressure

[MPa]
NTI <0.5 at% Na Excellent 160 Highest quality sample.

NT2 -10 at% Na Poor 480

NT3 -7 at% Na Excellent 160

NT4 -10 at% Na Poor 160

Anatase 99.9% Excellent 800 Particle size <44 u m.
Bulk
Rutile 99.5% Excellent 800 Average particle size 1
Bulk - 2 p m.

Table 2-2. Properties of the nanotube and bulk samples used in the specific heat experiments.

Although these anatase nanotubes were chosen primarily for their small size and availability in

large quantities, they have potential applications for solar cells, electrolysis, and photocatalysis [19].

Compared to the strongly anisotropic layering of graphite, anatase is more nearly isotropic, making this

material system distinct from CNT. Our nanotubes were synthesized by a hydrothermal method,

described in more detail elsewhere [20]. The optimized synthesis conditions result in very pure,

crystalline nanotubes [Fig 2-3(a)]. Typical dimensions are L=500 - 1000 nm in length, w=2.5 nm in wall

thickness, and D=6.5 nm average diameter (9 nm outside diameter). The spacing between adjacent wall

layers is about 0.70 to 0.75 nm, about double the spacing between [100] anatase planes. In contrast to

carbon nanotubes, these anatase nanotubes are believed to form by the rolling up of a flat sheet [21]. We

also tested nanotubes with poor crystallinity and various levels of sodium contamination obtained from

sub-optimal synthesis conditions [20]. Energy dispersive x-ray analysis (EDX) was used to estimate the

level of sodium contamination, ranging from about 10 at% to less than 0.5 at%, the detection limit. Table

2-2 summarizes the properties of the nanotube samples as well as the anatase and rutile powder samples.

2.3.3 Experimental method
For each measurement, the as-prepared nanotubes, or as-received powders, were cold-pressed

into a pellet and then cleaved into a mm-scale sample weighing about 5 - 15 mg. In an effort to study the

effects of inter-tube coupling, the cold-press pressure was varied from 80 to 800 MPa. Although no

systematic relationship between pressure and specific heat was observed, in the samples contaminated
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Figure 2-4. Experimental apparatus to measure specific heat. (a) Schematic of the calorimeter The
sample comprises a mm-scale pellet of -10 mg mass, cold-pressed from loose powder. It is mounted on a
small sapphire stage using grease. The stage includes a heater (htr) and temperature sensor (temp), and is
suspended on fine wires inside a copper can, which itself is placed a continuous-flow liquid helium
cryostat. (b) Thermal relaxation method used to determine the total heat capacity from the thermal time
constant in response to a step change in heat input. The points are from an actual data trace. The thermal
resistance and background heat capacity of the stage were calibrated previously, allowing the change in
specific heat due to the sample to be calculated.

with sodium we did notice a surprising green tint that became more prominent with increasing pressure.

Seven nanotube samples were measured but for clarity only four are reported here. A small amount of

thermal grease (Wakefield 120-2) was used to attach the sample to the sapphire stage of a calorimeter

(Oxford Instruments) for measurements by a standard relaxation method in a liquid helium cryostat

(Figure 2-4). This relaxation method uses one time constant. For the powder samples below -10 K there

was slight evidence of a secondary time constant due to internal thermalization (a "two-tau" problem),

which using the method suggested by Tsujii et al. [22] we estimate to contribute -5-10% uncertainty in

this temperature range.

The contributions of the grease and addenda heat capacities (calibrated separately) were

subtracted from the total measured heat capacity before calculating the sample's specific heat. For

nanotube samples, this adjustment for grease and addenda represented about 10 -30% of the total heat

capacity over this temperature range, although for the anatase and rutile powders the adjustment ranged

up to about 70%. The uncertainties are dominated by the scatter in the total heat capacity data, and are

estimated as ±4% (±1 standard deviation) for the nanotube specific heat. Because the powder samples



require a relatively larger addenda correction, their uncertainty is magnified to about ±10% at low

temperatures. The temperature sensor (Cernox) is believed to be accurate to better than ±1%.

The measurements were repeatable without hysterisis, even after He was introduced into the

sample space and then pumped off at elevated temperatures (-70 K). Most of the sodium impurities are

thought to be distributed and taken up in sodium titanate [20] (NaxHxTi30 7, x - 0.75) with unknown

specific heat, but if clusters of metallic Na are assumed, then the contribution to the specific heat would

be less than 10% for the most-contaminated samples. However, we cannot rule out the possibility of

adsorbed gases influencing the low-temperature NT data because the samples typically were degassed

only briefly (-30 minutes) under vacuum at 300 K prior to cooling [14-16]. A later annealing study at

573 K in vacuum for 24 hours suggests that the NT samples may have been contaminated by up to -7.3%

(NT 1) or -11% (NT2) by mass by an unknown adsorbate. EDX analysis leads us to suspect the

contaminant was water. The bulk powder samples showed no evidence of similar contamination.

Although it is difficult to account for the contribution of monolayers of water, we have used the mass-

averaged properties of bulk anatase (our measurements) and bulk ice [23] to estimate the impact of

possible ice contamination below.

2.3.4 Results and discussion: bulk

Figure 2-5 shows the measured specific heat for bulk anatase, bulk rutile, and anatase nanotubes.

The bulk rutile data are in good agreement with literature values above 20 K [24-26]. Below 5 K,

both the current and literature data follow a T3 trend down to 2.5 K where they transition to a T2.2 trend.

However, below 9 K the current values are over twice as large as the only literature source [27], an

unexplained discrepancy which far exceeds our experimental uncertainty.

The bulk anatase data are in good agreement with literature values above 50 K [25, 26]. We are

unaware of any literature values at lower temperatures. As shown in Fig. 2-6, these data can be described

to within 10% by a combined Debye and Einstein model (OD= 260 K, OE= 475 K, obtained by fitting),

implying an average sound velocity of 3560 m/s. This calculation uses the known number density of

primitive cells for anatase of r7 =1.47 x 1028 m 3 and the fact that anatase has a 6-atom basis. The

properties used in this calculation are summarized in Table 2-3.

Accounting for possible ice contamination

As mentioned previously, we have reason to suspect that the nanotube samples were

contaminated by ice (for example, 7.3 mass% for NTI). This means that the bulk counterpart to compare

with nanotube calculations is not the pure anatase measured here, but rather a combination of 92.7%

anatase and 7.3% ice. A revised bulk curve for C(T) was obtained from a simple weighted average, by
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Figure 2-5. Measured specific heat of anatase nanotube samples NT1-NT4 and bulk anatase compared to
literature. [25] Inset: measured specific heat of bulk rutile compared to literature [24-27].
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Figure 2-6. Extracting Debye and Einstein temperatures from the measured specific heat of bulk anatase.
This calculation also requires the number density of primitive unit cells and the number of atoms in the
basis.

assuming that the contributions from ice and anatase added linearly. This new bulk curve was then

reanalyzed for revised Debye and Einstein temperatures (0D= 2 35 K, 0 550 K) to be used in the

modeling below designated "adjusted for ice" [Fig. 2-7(b)].



Property Symbol Value

Average sound velocity v 3560 m/s

Number density of q 1.47 x 1028
primitive unit cells

Debye temperature OD 260 K

Einstein temperature OE 475 K

Number of atoms in the b 6
basis

Table 2-3. Properties used in modeling the specific heat of bulk anatase, without any ice contamination.

2.3.5 Results and discussion: nanotubes

As shown in Fig. 2-5 and Fig. 2-7, the anatase nanotube specific heat data always exceed those of

bulk anatase. From 100 K down to about 60 K, the excess is about 20 - 30%, with the highest-quality

sample (NTI1) showing the least enhancement. From 50 K down to about 5 K, all of the nanotube curves

shift to a T2.6 dependence, clearly diverging from the bulk anatase. Below about 4 K the available

nanotube data shows a second transition to a nearly constant value, exceeding the bulk anatase values by

factors of 25 to 50 at 1.5 K. Again, the highest quality nanotube sample shows the least enhancement,

about half that of the lower-quality samples (NT2-4). After adjusting the bulk specific heat for possible

ice contamination, however, the bulk and NT1 specific heats are very similar above about 10 K [Fig. 2-

7(b)].

Phonon phase diagram

The transitions in the specific heat can be interpreted in terms of a conceptual phase diagram [Fig

2-3(c) ] which shows the dimensionality of a nanotube as a function of temperature and the strength of

intertube coupling. This has been generalized from a similar diagram by Hone et al. [14] for CNT by

including 3D behavior in the high temperature limit for anatase nanotubes, in contrast to the limiting 2D

graphitic behavior for CNT. The dashed line indicates approximately the regime explored in this

experiment.
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Figure 2-7. (a) Modeled and measured specific heat for anatase nanotube sample NT1 and bulk anatase.
(b) Possible adjustment to analysis of NT1 assuming 7.3% contamination by ice. The NT1 data is the
same as (a), while the bulk data from (a) has been adjusted to incorporate 7.3% ice.

Transition from 3D to 2D

Using the model described earlier, the upper transition in the nanotube specific heat is interpreted

as a shift from 3D to 2D behavior. As shown in Fig. 2-3(c), a transition is expected because the average

thermal wavelength A is comparable to the nanotube wall thickness. Because of the uncertain coupling

strength between layers of the wall, we have performed the calculation for assumed wall thickness of both

0.725 nm (model A: weak coupling) and 2.5 nm (model B: strong coupling). These and other parameters

are summarized in Table 2-4. The circumferential periodic boundary condition in a rolled-up structure

still requires the assumption of some coupling between layers. A more advanced model would take this

into account by using an adjustable coupling strength or radial sound velocity. As shown in Fig. 2-7,

these two calculations approximately bound the measurements of NT1. Above about 15 K model A

(weak wall coupling / thin wall) is a good fit to the unadjusted data [Fig. 2-7(a)]. However, below 15 K

the nanotube specific heat decreases more quickly than the models, and below about 6 K, model B (strong

wall coupling / thick wall) is a better fit to the unadjusted data. After adjustment for possible ice

contamination, C(T) is well-described by the strong-coupling/thick-wall limit for all temperatures above

about 3 K [Fig. 2-7(b)].



Property Symbol Value

Average sound velocity v 2970 m/s

Number density of
r 1.87 x 1028

primitive unit cells

Boundary conditions --- Free (radial and axial), Periodic (circumferential)

Debye temperature OD 235 K

Einstein temperature OE 550 K

Number of atoms in the b 6
basis

Average diameter D 6.5 nm

A: weak wall B: strong wall C: strong wall
coupling, no coupling, no coupling, yes

intertube modes intertube modes intertube modes

Wall thickness w 0.725 nm 2.5 nm 2.5 nm

Number density of 77intertube 0 0 1.23 x 1025 m-3
intertube phonon modes

Maximum intertube Ointertube=  na na 0.6 K
phonon energy h(Ointertube/ kB

Table 2-4. Properties used in modeling the specific heat of bulk and nanotubes, assuming 92.7% anatase
and 7.3% ice by mass. "na"=not applicable.

Possible transition from 2D to ID?

Around 3 K the average phonon wavelength becomes comparable to the nanotube circumference,

and the model predicts another transition from 2D to 1D behavior [Fig 2-3(c)]. However, instead of the

expected T' trend at the lowest temperatures, the data become essentially constant. Zero-dimensional

behavior can be ruled out because A is still much shorter than the nanotube length, and furthermore the OD

specific heat is known to fall off exponentially at low temperatures just like Einstein modes. The trend of

flattening C(T) at low T is present in all of the samples, suggesting that the underlying mechanism is not

dependent on Na contamination or large amorphous fractions. One tentative explanation is the low
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Figure 2-8. Possible contribution to the specific heat from low-energy intertube phonons. These modes
add a constant term indicated by the dashed line labeled "L", increasing the specific heat below about 2
K.

energy vibrations of nanotubes against their neighbors. Since this contribution appears to be a constant, if

the intertube phonons are treated as Einstein modes, their characteristic temperature must be less than

about 0.6 K, corresponding to an intertube coupling energy of less than 50 peV. The solid lines in Fig. 2-

8 show the effect of adding this sub-model for intertube modes. As indicated by the low-temperature end

of the dashed line in Fig. 2-3(c), this regime would be a return to an effectively 3D regime. The

concentration of intertube phonon modes is treated as an adjustable parameter, with the best agreement

found for approximately one low energy mode per every 7200 atoms (lintertube = 1.23 x 1025 m 3).

The flattening in C(T) is also reminiscent of that reported below about 0.6 K for single-walled

CNT ropes [15-16], which was attributed to localized two-level systems of atomic rearrangement. The

two-level system was thought to be the transitions of an individual carbon atom between two bi-stable

sites, for example at a Stone-Wales (pentagon-heptagon) defect in the otherwise perfect hexagonal lattice.

Although the anatase nanotube structure is quite different from CNT, similar atomic-level rearrangements

might still occur near defects, and the fact that the anatase nanotubes with more amorphous character

show greater enhancement at low T is consistent with this interpretation. A related explanation would be

the rearrangement not of individual atomic bonds but rather of entire layers, by sliding which may be

permitted by the weak interlayer bonds. Although we are unable to draw any firm conclusions from the

data here, with further experiments on nanotubes of various diameters and wall thicknesses it might be

possible to identify if either of these mechanisms is correct.

9
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2.4 Summary
This portion of the thesis focused on modeling and experiments on low-dimensional phonons.

The familiar Debye model for phonon dispersion was generalized to an elastic box of finite size. The

resulting density of states and specific heat differ markedly from bulk. In particular, the specific heat at

low temperature is proportional to T", where n is the dimensionality. Einstein modes and a Debye cutoff

wavevector were also incorporated to make the model relevant for real materials over a wide range of

temperatures. The model was also extended to thin-walled nanotubes. This model has no free parameters

but requires as inputs the sound velocity, atomic number density, number of atoms in the basis, and

geometry and boundary conditions of the sample. The most important feature of the model is that the

phonons in a nanostructure transition from bulk to low-dimensional behavior when the average thermal

wavelength is comparable to the nanostructure size, freezing out energy storage in that dimension.

The model was tested against measurements of anatase nanotubes from 1.5 to 95 K. The data

show that the nanotube specific heat can be enhanced by more than an order of magnitude compared to

bulk anatase. Two transitions are clearly observed which can be understood as changes in dimensionality.

At about 50 K the average phonon wavelength is comparable to the wall thickness, and there is a

transition from 3D to 2D behavior. At about 3 K an expected transition from 2D to 1D is obscured by a

surprising flattening in the C(T) curve, which may be due to low-energy intertube phonon modes (EL<50

peV), or to localized two-level systems of atomic and/or layer rearrangement. Quantitative interpretation

of the experimental data was complicated by the likely presence of a contaminant, probably ice. Attempts

to correct the data for ice contamination were particularly complicated at lower temperatures where a

relatively larger fraction of the total specific heat is thought to be due to the contaminant, because the

Debye temperature of ice is lower than that of anatase. Nonetheless, the results presented in this chapter

confirm the guideline that transitions to low dimensionality can be determined by comparing the average

phonon wavelength to the structure size, and that low dimensional systems can have a specific heat much

larger than in bulk.
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Chapter 3: Classical size effects on thermal

conductivity

3.1 Introduction
In the last chapter we focused on the wave nature of phonons, and the quantum size effects that

arise when phonons are confined in nanostructures that are comparable in size to the phonon wavelength

in bulk. In this chapter we move on to study the particle nature of phonons, and the classical size effects

that arise when phonons are confined in nanostructures that are comparable in size to the phonon mean

free path in bulk. As pointed out in Chapter 1, these classical size effects can lead to thermal

conductivities that are reduced by an order of magnitude or more compared to bulk. This reduced

conductivity leads to potentially serious challenges in the thermal management of most nanowire devices,

but is also of great benefit for the efficiency of nanowire thermoelectrics.

This chapter begins by considering the conditions for quantum size effects to be neglected.

Fortuitously, it turns out that quantum size effects on phonons can indeed be neglected in many nanowire

systems of practical interest, and in this limit we can safely treat the phonons as classical particles.

Having made this considerable simplification, we then develop a model for the phonon thermal

conductivity. The model is based on a spectral (frequency-dependent) form of kinetic theory, and

includes several scattering mechanisms in bulk and nanostructures. In developing this model there is a

tension between simplicity and accuracy. Here we pay particular attention to approximating the nonlinear

phonon dispersion relations, and accounting for the frequency dependence of the various scattering

mechanisms, while using as few adjustable parameters as possible. The resulting calculations of thermal

conductivity are in good agreement with literature measurements of nanowires and superlattice

nanowires, including diameters as small as 56 nm and reductions in thermal conductivity by more than

100-fold compared to bulk.

The analysis shows that we can expect significant reductions in thermal conductivity for

nanostructures of sizes that are comparable to, or smaller than, the mean free path of phonons in bulk.

However, we further show that it is important to consider the full range of mean free paths for bulk

phonons, rather than lumping all of the bulk phonons into a single effective mean fee path. This point is

quantified by deriving distribution functions for the range of mean free paths that contribute to thermal

conductivity, showing that long mean free paths are more important for heat transfer than is commonly

realized.

Portions of the work described in this chapter have appeared in previous publications [1-3].
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Figure 3-1. Transitions from quantum/wave to classical/particle behavior. (a) Comparison of wavelength
and nanostructure size. When the nanostructure is much larger than the wavelength, phonons can be
treated as wavepackets, corresponding to classical particles. (b) Comparison of wavelength and
surface/interface roughness [Eq. (3-1)]. When the nanostructure surface is rough compared to the
wavelength, phonons scatter diffusely (p-0O) rather than specularly (p-1). This randomizes the phase of
the scattered phonons, so that the resulting interferences are incoherent, again corresponding to classical
particles.

3.2 Transition from quantum to classical behavior
In Chapter 2 we focused on the wave nature of phonons. Classical models for phonons, such as

kinetic theory, are considerably easier to work with than quantum models, but classical models are only

appropriate when the phonons can be treated as particles. To answer the important question of whether

phonons are in the quantum or classical regime for size effects, there are two different mechanisms to

consider, having to do with both the size and roughness of the nanostructure as compared to the average

wavelength (Fig. 3-1).



3.2.1 Wavelength vs. diameter

The most obvious transition from wave to particle behavior occurs when the nanostructure size is

much larger than the phonon wavelength [Fig. 3-1 (a)]. In this regime we can consider isolated phonon

wavepackets. Because each wavepacket is only a few wavelengths in size, it can travel around freely

throughout the bulk of the nanostructure, scattering at the surfaces only occasionally. As the analysis of

Chapter 2 showed, in such "large" nanostructures the confinement effects on the dispersion relation and

density of states is negligible, and we can make the very important simplification of using the bulk

dispersion relations to model the phonon transport. Each phonon wavepacket travels with the group

velocity a0/aq corresponding to its wavelength and polarization from bulk, where o is the frequency of

the phonon and q is its wavevector.

As we saw in Chapter 2, this transition is responsible for the onset of enhanced specific heat C at

temperatures T below -10 K for the TiO2 nanotubes (Fig. 2-7). At high temperatures the average

wavelengths are smaller than the nanotube wall thickness, so the confinement effects were unimportant

and the phonon dispersion, density of states, and specific heat were all similar to bulk. Below -10 K, the

average wavelengths were long enough to be comparable to the nanotube wall thickness. This changes

the phonon dispersion and density of states as shown in Fig. 2-1(d) of Chapter 2, leading to the enhanced

specific heat. Thus the transition in C(T) at -10 K in Fig. 2-7(b) of Chapter 2 can interpreted as

transition from quantum/wave behavior to classical/particle behavior. For these TiO2 nanotubes, we

would expect kinetic theory to be a good model for the phonon thermal conductivity well above -10 K.

This guideline of comparing the phonon wavelength to the characteristic length of the

nanostructure should be used with some caution, however, in systems where many surface scattering

events can happen within the distance equivalent to one bulk mean free path. This is because surface

scattering is elastic, preserving the phonon phase, so there is still the potential for coherent interference

from multiple surface scattering events, until an inelastic bulk scattering event truly randomizes the phase.

This concern is most common in superlattices, where previous work has shown that coherent wave

interference effects may be important for the shortest periods [4, 5]. Localization is a related concern,

especially for 2D and 1D systems at temperatures of -1 K or below [6-9]. However, the equivalent

localization mean free path for a nanowire (1D) is typically -100-1000 times larger than the nanowire

diameter [7-9], so this effect should only be important for smooth surfaces where the equivalent boundary

scattering mean free path is even longer than the localization mean free path.



3.2.2 Wavelength vs. roughness

The other type of transition from wave to particle behavior is more subtle. Consider the

scattering of a nearly monochromatic wave at a surface with some root-mean-square roughness s. If the

roughness is very small compared to the wavelength 2, then we expect the wave to reflect specularly, and

if there is a second material on the back side of this smooth surface, we also expect there to be a

transmitted wave obeying Snell's law. On the other hand, if the roughness is very large compared to the

wavelength, then we expect both reflected and transmitted waves to scatter diffusely in all directions.

Importantly, this diffuse scattering will also effectively randomize the phase of the reflected and

transmitted waves that are scattered from different portions of the rough surface. If many such waves

superpose with each other, there will be no net constructive or destructive interference, because there is

no coherence between the different waves. Thus, in the limit of diffuse scattering we can also ignore the

wave nature of the phonons, and treat them as particles (albeit with a random distribution of directions

after scattering).

For intermediate levels of roughness, we can define a "specularity," p, as the fraction of incident

phonons that are scattered specularly. (Thus 1-p is the fraction of phonons scattered diffusely.) The

specularity can be estimated from the result of Berman, Ziman, and co-workers for a continuum [10-12]

[Fig. 3-1(b)]

(-167r3 21 31

p = exp 2
2  (3-1)

Although this relation was derived for a continuum, we expect the essential physics of a transition from

diffuse to specular scattering to be similar for a discrete lattice. Equation (3-1) shows that the diffuse

limit is reached (p<0.01) when the rms roughness is greater than about A /10. We now show that this is

usually true.

3.2.3 Most nanowires should behave classically

As we saw in Eq. (2-38) of Chapter 2, the typical thermal wavelength can be estimated from

AT = 50nmK(v/5000m/s) (3-2)

for an elastic continuum, where v is the sound velocity. For typical materials at 300 K, this estimated

wavelength is only -0.16 nm. However, for real materials a lower bound on the wavelength is

approximately double the primitive lattice constant, for example, about 0.5 nm in bulk silicon. Thus,

based on the comparison of diameter to wavelength, we expect the phonons in Si nanowires at 300 K to



behave classically for diameters greater than D-2.5 nm (D>5A). Similarly, for a 20 nm diameter Si

nanowire, we would expect classical phonon behavior down to T-• 5 K.

Furthermore, most nanowires synthesized by either the vapor-liquid-solid method or by filling of

alumina templates typically exhibit 1 or 2 nm of roughness [13-16], and even carefully grown epitaxial

superlattices may have 1 - 3 monolayers of interface interdiffusion [17]. Because this roughness is

greater than 2 /10 at room temperature, we can expect the phonon scattering to be highly diffuse and

incoherent. There is also some experimental evidence that diffuse scattering dominates nanostructures at

temperatures of about 10 K and up [11, 12, 18, 19]. Thus, the comparison of roughness to wavelength

further supports treating phonons classically in most realistic nanowires at typical temperatures of

interest.

3.3 Spectral form of kinetic theory
In Chapter 1 we introduced the simplest form of kinetic theory for the thermal conductivity of a

collection of phonons treated as particles,

k = - CvLeff (3-3)

where C is the specific heat, v the velocity, and Lgff the effective mean free path which incorporates bulk

and boundary scattering through Matthiessen's rule:
L-' -L -1 (3-4)

L= bulk + Lboundary(3-4)

Although the Matthiessen's rule assumption that the scattering mechanisms are independent of each other

is rarely satisfied rigorously [20, 21] it is widely used with reasonable accuracy [10]. For more refined

calculations, the Boltzmann transport equation is often used, where the boundary scattering is

implemented as a boundary condition rather than a correction to the effective mean free path [10, 22].

The frequency-independent model of Eqs. (3-3) and (3-4) captures in a crude way the physics of

phonon scattering in bulk materials and the additional scattering in nanostructures, including nanowires,

superlattices, and superlattice nanowires (Fig. 3-2). However, it is well known that the properties of

phonons in real solids have a strong frequency dependence. Therefore it is much better to use the spectral

form of kinetic theory:

k = j fC•ovLeff do,, (3-5)

Now the specific heat, group velocity, and mean free paths are all frequency-dependent:
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Figure 3-2. Boundary and interface scattering in nanowires, superlattices, and superlattice nanowires.
The diameter and segment length act as boundary scattering terms which reduce the thermal conductivity
in accordance with Matthiessen's rule [Eqs. (3-4) or (3-8)]. In a nanowire, the equivalent diameter FID is
comparable to or smaller than the bulk mean free path LBulk. Similarly, a superlattice is characterized by
an equivalent segment length F2w that is comparable to or smaller than LBulk. In a superlattice nanowire
both F1D and F2w are less than LBulk. The coefficients F1 [Eq. (3-23)] and F2 [Eq. (3-22)] depend on the
specularity p and transmissivity t, which in turn depend on the phonon wavelength and the roughness at
sidewalls (SD) and between segments (sw).

v(w) =
aq

C,((w, T)= hco DOS(ao) af (o, T)
(T

Lef (O, T) = Lb-ulk (, T)+ Lboundary( (0)

(3-6)

(3-7)

(3-8)

Note that C, can be thought of as a specific heat per unit frequency.

To proceed further we need three pieces of information: the dispersion relation o(q), the bulk

mean free paths Lbulk(oT), and the boundary scattering mean free path Lboundary(0). These inputs are

discussed next.
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3.3.1 Approximating dispersion relations

In Chapter 2 we used continuum elasticity to model bulk materials. This led to a linear

dispersion relation, o=vq, which is a good approximation at low temperatures when only long-wavelength

acoustic modes are excited. This simplification was also necessary so that the resulting low-dimensional

dispersion relations could be easily derived and presented. Here we have argued that for most practical

nanowire systems at reasonable temperatures, the quantum confinement effects on the dispersion relation

can be neglected, so now we can afford to relax the assumption of linear dispersion and consider the true

nonlinear dispersion relation more carefully.

The experimentally-measured phonon dispersion relation for bulk silicon is depicted in Fig. 3-

3(a) [51, 52]. The longitudinal acoustic (LA) and transverse acoustic (TA) branches are shown again in

Fig. 3-3(b) for the [100] and [111] directions. It is clear that the sound velocities of the two polarizations

differs by about a factor of two, and that the assumption of linear dispersion is only valid for less than half

of the first Brillouin zone. Figure 3-3(b) also depicts two approximations for the acoustic branches of the

dispersion relation, the Debye and Born von Karman models, both of which are discussed below.

Debye dispersion

The Debye model, o=vq, is the simplest approximation for the real phonon dispersion relation. It

is straightforward to extend kinetic theory to multiple phonon branches simply by summing over each

polarization. In this case there would be three Debye branches: a single LA branch with the longitudinal

sound velocity, and a doubly-degenerate TA branch with the transverse sound velocity. However, for

simplicity it is sometimes desirable to combine these 3 branches into one, triply-degenerate branch with

one effective sound velocity. Given literature values for the longitudinal and transverse speeds of sound,

what is the best choice for the effective speed of sound? It turns out that the weighted average,

vef = ½vL + Zv3, is not the best choice. Instead, by focusing on the limiting case of low temperature and

long mean free path phonons, we can derive an analytical solution [3]. At low temperature the mean free

path is limited by boundary scattering, and so is independent of phonon frequency. Furthermore,

dispersion can be neglected and all of the phonons can be approximated as traveling at the sound velocity.

Then the kinetic theory expression for thermal conductivity of these three phonon branches simplifies to

k- CvLLA + I[-CvL (3-9)

which we would like to equate to the effective expression

k=ICvL (3-10)
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Figure 3-3. Phonon dispersion relations in bulk silicon. (a) Calculated [51] and experimental [52]
phonon dispersion relation for bulk silicon. (b) Detail of the dispersion relations for the acoustic branches
in the [100] and [111] directions, comparing the experimentally measured dispersion with both the Debye
and Born-von Karman (BvK) approximations. The Born-von Karman approximation is much better than
the Debye approximation at capturing the rolloff of the dispersion relation at high frequencies.

From the analysis in Chapter 2 of the density of states for bulk systems with linear dispersion, we know

that the specific heat is proportional to va:

C(T -+ 0) = 4r 4kB (kT3 (3-11)
15 .vV

Substituting Eq. (3-11) into Eqs. (3-9) and (3-10) and canceling out constant terms including the

boundary-limited mean free path yields

v-2 = -2 v2 -2 (3-12)
V&effTVL + TVT

Thus, a better estimate for the effective sound velocity is

vI - (v2 -+ v2) 1/2  (3-13)

That is, we should take the weighted average of the inverse squares of the velocities, not of the velocities

themselves, This will guarantee the correct limiting behavior at low temperature. For example, in silicon

VL is about 8973 m/s and vr is about 5398 m/s (Table 1), each taken to be the average of the appropriate

velocities in the [100], [110], and [111] directions. The effective velocity according to Eq. (3-13) is

a.



Quantity Units Si Ge PbTe

k, at 300 K W/mK 149 53 2.0

r7, primitive unit cells m-3  2.50 x 1028 2.21 x 1028 1.45 x 1028

VsL, longitudinal m/s 8973 5247 ---

VsT, transverse m/s 5398 3267 ---

vs, effective average m/s 6084 3662 1730

0o=2n/qo nm 0.55 0.57 0.66

TDebye=hsqo / kB K 530 306 126

coo / 2n, for Born-von Karman model THz 7.02 4.06 1.68

2.4 x 10-45

A , impurity/alloy scattering s3  --- 4 x 10-42

(A2= 1.2 x 10-42 for Sio0.Geo. 1)

BI, umklapp scattering s/K 1.7 x 10 1' 9  --- 6.2 x 10- 18

B2, umklapp scattering K 210 --- 30

LNaive, 300 K = [3k/Cv]Lit 5 --- 3

LTrradl, 300 K nm 210 134 ---

Llo, 300 K nm 87 --- 6

Ls50 (median MFP), 300 K nm 580 --- 42

L90, 300 K nm 12,800 --- 860

Table 3-1. Basic parameters used in the modeling of the thermal conductivity of Si, Ge, and PbTe, with
Born-von Karman dispersion relations [1-3]. Entries marked "---" are either unavailable or were not
evaluated as part of this work.

veg=6084 m/s, and the resulting Debye dispersion is depicted by the dashed line in Fig. 3-3(b). For

comparison, the direct weighted average is about 6590 m/s, which is about 8% too high (possibly an

acceptably small error for these types of models).

Born-von Karman dispersion

Although the Debye dispersion gives satisfactory results for the specific heat at all temperatures,

it leads to serious errors when calculating the thermal conductivity (except at temperatures well below the

Debye temperature). This is because all Debye phonons have the same group velocity, namely the speed

of sound, while it is clear from Fig. 3-3(b) that the acoustic phonon branches flatten out to a much lower

group velocity for a significant portion of the dispersion relation, approaching zero group velocity at the



boundary of the first Brillouin zone. This well-known phenomena is present even in the simplest model

lattice of a 1 D monatomic chain [20, 2 1 ]. In this "Born-von Karman" model the dispersion relation is

o = co0 sin( q (3-14)
2qo

where w0 and q0 depend on the mass, stiffness, and atomic spacing of the model lattice. We now adapt

this expression to approximate a dispersion relation in 3D. Although in general 00 and qo could be treated

as adjustable parameters to give the best fit to experimental dispersion relations, we can define them

uniquely from well-known material properties without any fitting. First, to ensure the correct number of

phonon modes, qo is simply the Debye cutoff wavevector:

qo = (6)2r2 /3  (3-15)

where 1 is the number density of primitive unit cells. Then, we define 00 to ensure the correct limiting

behavior at low temperature. In this limit only small-q phonons are active, and Eq. (3-14) reduces to the

linear form:

co = (2ZWO 9q (3-16)
S2q 0o)

Thus, the term in parentheses should simply be the sound velocity, requiring

oo = 2vqo /;r (3-17)

Finally, substituting Eqs. (3-15) and (3-17) into Eq. (3-14), the Born-von Karman dispersion can be

expressed as

2w=2v(6r 2 /3si ( J (3-18)
/T ( ~2(66K2 1713

For dispersions with multiple branches, this velocity should be averaged according to Eq. (3-13), just like

the Debye model. Alternatively, for slightly improved accuracy, the longitudinal and transverse branches

could each be fit separately, and the thermal conductivity of each branch treated separately as in Eq. (3-9)

The Born-von Karman (or "sine-type") dispersion relation of Eq. (3-18) is also depicted in Fig. 3-

3(b). Notice how it lies naturally in between the experimental LA and TA branches over the entire

dispersion relation. The Born-von Karman dispersion is just as easy to specify as the Debye dispersion,

requiring only q and v as inputs. However, the Born-von Karman dispersion gives a much better

approximation to the high-frequency rolloff seen in the full, experimental dispersion relations, and so it is

strongly preferred over the Debye dispersion for calculations involving transport [3].



Besides the Born-von Karman dispersion, several other approaches have been used to

approximate the high-frequency rolloff of acoustic phonons, including a two-segment piecewise-linear fit

[23] and a truncated Debye model [24], but these are not considered further here.

3.3.2 Scattering mechanisms

Bulk mean free paths

The two most important scattering mechanisms in typical bulk materials are impurity/alloy

scattering and phonon-phonon umklapp scattering:

L-bulk (, T) = L;, (0)+ Lmk, (o),T) (3-19)

Impurity / alloy scattering

Impurity (and alloy, when present) scattering is usually calculated using the fourth-power

dependence of Rayleigh scattering,

L7' =_A 0 4 / v, (3-20)

where AI is a fitting parameter which may also be estimated from other properties [25].

Umklapp (phonon-phonon) scattering

There is no uniformly accepted expression for Umklapp scattering, but one common form is [26]

L1k BI
2Texp(-B 2 /T)/v (3-21)

where B1 and B2 are fitting parameters. Recent work based on molecular dynamics simulations of

umklapp scattering supports the co2 dependence of Eq. (3-21) and may also be able to give a more

accurate relationship overall [27].

Boundary scattering mean free paths

Transport perpendicular to interfaces

Superlattices and thin films are the model systems for studying transport perpendicular to

interfaces, and are of great interest as thermoelectric materials [1, 28-30]. The emerging understanding,

reviewed elsewhere [22, 31-33], is that most systems can be explained by the action of incoherent phonon

particles scattering sequentially at isolated interfaces. In this view a superlattice is a set of thin films

connected by boundary resistances. As mentioned at the beginning of the chapter, coherent interference

and localization effects can also play a role for thin, smooth layers, at low temperatures and for materials



with long bulk mean free paths. These wave effects are not considered further here. Because of the

boundary resistance, the thermal conductivity is well below the simple average based on the Fourier law

of heat conduction, and can fall below the alloy limit and even below theories of minimum thermal

conductivity [32, 34-36] In this regime the thermal conductivity is proportional to the superlattice period,

indicating that the classical size effect of interface scattering dominates the mean free path. A simple

energy transmissivity picture yields the following expression for the boundary scattering mean free path

perpendicular to superlattice interfaces [3]

-Awt3--WLbdy,SL - (t) (3-22)(1- t)

where w is the thickness of superlattice layers (e.g. half of the period), and t is an energy transmissivity,

which may depend on frequency. Understanding the details of this interfacial scattering is a difficult and

ongoing research challenge, leading to techniques such as the acoustic mismatch model [37], diffuse

mismatch model [37], maximum transmission model [3], lattice dynamics, molecular dynamics, and an

adjustable balance between specular and diffuse scattering. To minimize the thermal conductivity

perpendicular to interfaces, the transmissivity should be minimized. For materials with weak acoustic

contrast, the interfaces should be made rough to maximize the diffuse scattering. Ideal wave calculations

predict that materials with strong acoustic contrast have high reflectivity, including the total internal

reflection of phonons with high incident angles which effectively cuts them off from participating in heat

transport. For these high acoustic contrast materials the overall reflectivity may actually be maximized

for specular rather than diffuse interfaces. There are additional complications as the superlattice period

becomes very short (- 3-5 unit cells), where tunneling and coherent wave effects start to become

important and there is a slight recovery in the thermal conductivity [38-40]. Modeling in this regime is

even more complicated but has been addressed by models allowing for partial phonon coherence [4, 5].

Transport parallel to interfaces

Transport parallel to interfaces is important for thermoelectric nanowires [41, 42] and the in-plane

direction of superlattices [28] and thin films. The essential difference compared to cross-plane transport

is that for transport parallel to interfaces, specular scattering is not effective at reducing the phonon

momentum in the direction of transport. For axial transport in a cylindrical nanowire, the effective mean

free path due to boundary scattering is given by [10]

Lbdy,D D + p I(3-23)
I +- p)



where p is the specularity parameter given in Eq. (3-1). As noted previously, pý0 because of the

roughness in most realistic nanowires, so this mean free path is typically simply equal to the diameter. In

the opposite limit of specular sidewalls, this mean free path diverges, because specular reflections do not

impede the axial phonon transport. Eq. (3-23) applies to an infinitely long circular wire, but can be

applied to an infinitely long square wire of side a by replacing D with 1.12a [43]. Corrections also exist

for the effects of finite sample length, which leads to reduced thermal conductivity [11, 12].

3.3.3 Modeled thermal conductivity of nanostructures

The sequence of steps in a typical modeling calculation are summarized in Fig. 3-4, which is a

good summary of the entire chapter. For a new material, the initial inputs to the calculation are literature

values for the thermal conductivity as a function of temperature, and also some approximation to the true

dispersion relation. Here we focus on the Born-von Karman approximation, which requires the sound

velocity and number density of primitive unit cells as inputs. Optical modes are ignored in this

approximation because of their small group velocity. Using the spectral kinetic theory model of Eqs. (3-

5) through (3-8) and (3-19) through (3-21), values ofAI, B1, and B2 are determined to give the best fit to

the bulk thermal conductivity k(T) over the entire temperature range (Fig. 3-5). For this example, the

optimized values for Si are AI= 2.4 x 10-4 s3, B1= 1.73 x 10-"' 9 s/K, and B2= 210 K (Table 3-1). The fitting

often requires a 4 th parameter at low temperature, corresponding to the sample size, because literature

reports on the thermal conductivity are still subject to boundary scattering at low temperatures. The

resulting mean free paths for bulk silicon are depicted in Fig. 3-6, along with a typical nanowire diameter

of 83 nm. It is clear that the nanowire boundary scattering is much stronger than the bulk scattering

mechanisms for low frequency phonons, but high frequency phonons will also be affected by impurity

scattering and, at higher temperatures, umklapp scattering.

Silicon nanowires

Having fixed all of the adjustable parameters, the next step in the modeling is to input the

nanowire diameter and roughness to Eq. (3-23) and calculate the effective mean free path of Eq. (3-8).

As mentioned previously, the specularity p is expected to be negligibly small for most practical nanowires

and temperatures, so in practice the only input is the nanowire diameter. As shown in Fig. 3-7, this model

gives fairly good agreement for literature measurements of silicon nanowires of diameter 56 nm and 115

nm [44]. At low temperature the model underpredicts the thermal conductivity of the 56 nm silicon

nanowire by up to -50%, but is better for the 115 nm diameter nanowire, and the agreement is excellent

for both diameters above -150 K. The reasons for the underprediction are not known, but it could be



Figure 3-4. Detailed flowchart for modeling the phonon thermal conductivity of nanowire, superlattices,
and superlattice nanowires, assuming the phonons can be treated as classical particles.
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Figure 3-5. The thermal conductivity of bulk silicon [49], fit with the spectral kinetic theory model
described in the text. The important regime for each scattering mechanism has been indicated
approximately.
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Figure 3-6. The frequency dependence of the phonon mean free paths for various scattering mechanisms
in bulk silicon at various temperatures [2]. For comparison, the boundary scattering due to a typical
nanowire diameter of 83 nm is also shown. In this example the boundary scattering is the most important
scattering mechanism, with additional scattering of high-frequency phonons by impurity scattering and, at
high temperatures, umklapp scattering.

caused by the true nanowire diameters being larger than reported, or the nanowire boundaries having

finite specularity (p>0).
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Figure 3-7. Modeled thermal conductivity of silicon nanowires (NW) and Si/SiGe superlattice nanowires
(SLNW), compared with experimental data from the literature [44, 45]. Boundary scattering reduces the
thermal conductivity of the nanowires over the entire temperature range, and at 20 K the thermal
conductivity of the nanowires is reduced by more than 100-fold compared to bulk Si. Compared to the
pure Si nanowires, the superlattice nanowires show additional reductions in thermal conductivity. This is
not due to interface scattering between segments, but rather due to alloy scattering within the SiGe
segments.

SilSiGe superlattice nanowires

To extend the model from a nanowire to a superlattice or superlattice nanowire, the next step is to

input the superlattice period and transmissivity to Eqs. (3-17) and (3-8). We have applied this calculation

to the Si/Silx-.Gex, (x-0.05-0.10) superlattice nanowire shown in Fig. 3-2 [16]. Because the Ge

concentration in the SiGe segment is relatively small, there is not much acoustic contrast between the two

segment types. Thus the transmissivity t is close to unity, and LbdySL should be large enough to be

unimportant (that is, the scattering rate proportional to Lbr,SL is negligibly small). Because of the

uncertain stochiometry of the Si1.xGex segment, it is, however, necessary to introduce another fitting

parameter to account for the alloy scattering. This alloy scattering has the same form as the impurity

scattering expression of Eq. (3-20), but with a different coefficient A2. Using the same values for A1 , BI,

and B2 determined previously, the best value for the alloy parameter A2 was found to be 1.19 x 10-42 S3.

This value for A2 is close to what would be predicted with standard theory for Si0.gGeo.1 [25]. As shown in

Fig. 3-7, the resulting model calculations again compare favorably with the experimental values from the

literature [45], especially at temperatures above ~150 K. A comparison of the 56 nm nanowire and the 58

I



nm superlattice nanowire reveals that the additional alloy scattering is very important over most of the

temperature range considered, although it becomes less important below -20 K. This is because low

temperature phonons have lower frequencies, so both alloy/impurity and umklapp scattering become

weaker (Fig. 3-6). Thus the only scattering mechanism remaining at low temperature is boundary

scattering, which is independent of the level of alloying.

Regime map

The thermal conductivity of nanowires, superlattices, and superlattice nanowires can be nicely

summarized by a regime map indicating the relative importance of bulk vs. nanostructure scattering

mechanisms as a function of segment length and diameter (Fig. 3-8).

As shown in the top half of Fig. 3-8(a), for a rough-walled nanowire (pz0) the transition from

bulk to nanowire behavior occurs when the diameter becomes smaller than the bulk mean free path. For

nanowires with smooth walls, the specularity p may become appreciable, in which case the transition

from bulk to nanowire behavior will be suppressed to smaller diameters. In the limit of perfect

specularity (p-+ 1), the nanowire regime cannot be accessed no matter how small the diameter.

Similarly, the right half of Fig. 3-8(a) shows that for a superlattice with average energy

transmissivity (t 1/2), the transition from bulk to superlattice behavior occurs when the superlattice

segment length becomes smaller than 4 of the bulk mean free path. However, in the limit of perfect3

transmissivity (t- 1), the superlattice regime cannot be accessed no matter how small the period.

A quantitative example of this regime map calculation is shown in Fig. 3-8(b) for a Si/Ge system.

This calculation assumes diffuse scattering at the sidewalls and interfaces and uses Born-von Karman

dispersion relations, but neglects the spectral dependence of the mean free paths. Some of the modeling

parameters are given in Table 3-1. It is clear from the figure that the nanowire and/or superlattice effects

become very important when the diameter and/or segment length becomes -300 nm or less. This is

expected because it is the order of magnitude of the bulk mean free path in both Si and Ge. The important

issue of estimating these bulk mean free paths is taken up in the next section.

Sensitivity analysis

To gain a more complete understanding of the contribution of each phonon scattering mechanism

over the entire temperature range, we have performed a sensitivity analysis which is depicted in Fig. 3-9.

The best fits of Fig. 3-7 are repeated in Fig. 3-9(a). The dashed lines of Fig. 3-9(b) show the

effect of uniformly scaling all of the diameters by a factor of 1.5. For example, how would the modeled

thermal conductivity change if the 56 nm nanowire were replaced with either an 84 nm (56 nm x 1.5) or

37 nm (56 nm / 1.5) nanowire? This plot shows that the diameter scattering effect is important in all of
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Figure 3-8. (a) Generalized regime map for the thermal conductivity of a superlattice nanowire, as a
function of diameter, segment length, sidewall specularity p, and interface transmissivity t. Four limiting
cases are apparent: bulk, nanowire, superlattice, and superlattice nanowire. (b) A particular regime map
for Si/Ge segments at 300 K. The lines are contours of constant thermal conductivity ("isoconductivity
lines"). The calculation in (b) assumes diffuse scattering at sidewalls (p=0) and a diffuse mismatch model
for t, and neglects the frequency dependence of the mean free paths [3].

the nanowires, especially at lower temperatures, and also that the bulk silicon data used here is also

sensitive to boundary scattering below -50 K.

Similarly, the dashed lines of Fig. 3-9(d) show the effect of scaling the Umklapp parameter B2

[Eq. (3-21)] by a factor of 2. For bulk Si the effect is to shift the location of the peak in k(T). The Si

nanowires also show some sensitivity to this parameter, while the Si/SiGe superlattice nanowires are not

affected at all. Fig. 3-9(c) shows the effect of scaling the Umklapp parameter B, [Eq. (3-21)] by a factor

of 1.5. Taken together, panels (c) and (d) show that Umklapp scattering is very important for bulk Si

above -50 K, is somewhat important in these Si nanowires above ~150 K, and is negligible for the

Si/SiGe superlattice nanowires at all temperatures. Finally, the dashed lines of Figs. 3-9(e) and 3-9(f)

show the effect of scaling the impurity (A,) and alloy (A2) scattering parameters, respectively, by a factor

of 2. Impurity scattering is only important for bulk Si in the intermediate temperature range -10-100 K,

but is negligible for the nanowires and superlattice nanowires. As expected, alloy scattering is much

stronger than impurity scattering, and makes a significant contribution to the superlattice nanowire

thermal resistance above -30 K.
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Figure 3-9. Sensitivity analysis of the modeled thermal conductivity for silicon nanowires and

superlattice nanowires, isolating the effects of each of the fitting parameters. [2]. (a) Best fits, repeated

from Fig. 3-7. (b) Multiplying and dividing the diameter by a factor of 1.5, to show where boundary

scattering is important. (c&d) Varying the umnklapp parameters B, and B2 by a factor of 1.5, to show

where phonon-phonon scattering is important. (e) Varying the Si impurity parameter A I by a factor of 2.

(f) Varying the SiGe alloy parameter A2 by a factor of 2 (only relevant for the Si/SiGe superlattice
nanowire).
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Figure 3-10. Modeled thermal conductivity of silicon nanowires assuming (a) frequency-independent and
(b) frequency-dependent mean free paths. It is important to consider the frequency dependence in order
to capture the full reduction in thermal conductivity at temperatures where both boundary scattering and
umklapp scattering are important.

Effect of assuming frequency-independent mean free path

To emphasize the importance of the spectral nature of the mean free paths, we have performed

the same calculation with and without the frequency dependence of the mean free paths. For the

frequency-independent calculation, the effective mean free path was found from Matthiessen's rule:
L-_1(T) = L-l 1 -1

L(T)Lulk(T)+ D, (3-24)

The average bulk mean free path was estimated using the Born-von Kaman dispersion for C and v and

literature values for the thermal conductivity, from

Lbulk (T) kLit (T) (3-25)
1 fCvdw3

which is about 210 nm for silicon at 300 K. As shown in Fig. 3-10, treating the mean free path as

constant leads to thermal conductivity predictions that are up to -50% larger than experiment above -100

K. The frequency-dependent model is in much better agreement with experiment above 100 K, and still

in good agreement at lower temperatures. We will see later that part of the problem is that the average

bulk mean free path from Eq. (3-25) is too small: most of the phonons in the bulk material have mean free

I



paths much longer than 210 nm, and so boundary scattering is more important than we might otherwise

expect.

3.4 The importance of various mean free paths
The regime map of Fig. 3-8(a) shows that the transition from bulk to nanowire (or superlattice)

behavior is determined by comparing the bulk mean free path to the characteristic length of the

nanostructure. A very important question is: what is the best estimate for the bulk mean free path?

A simple but naive estimate is to calculate the bulk mean free path from the sound velocity and

literature value of specific heat in a lumped sense [Fig. 3-11(a)],

LNaive kLit (3-26)
ICLit s

However, the group velocity and bulk mean free path are both strongly spectral quantities. In particular,

most phonons travel far slower than the speed of sound, so the true mean free path should be much longer

than the naive estimate of Eq. (3-26). It is now becoming common in the literature to perform some kind

of averaging similar to Eq. (3-25). We refer to this as the "traditional" estimate for the mean free path:

LTradl(T) kLit(T) , (3-27)
JCvda

which typically results in estimates from 200-300 nm [Fig. 3-11 l(b)]. However, we saw from Fig. 3-10

that using this traditional mean free path estimate fails to capture the full reduction in thermal

conductivity, while performing the frequency integration does.

3.4.1 Thermal conductivity distributions per unit mean free path

To better understand the potential for thermal conductivity reduction by boundary scattering, it is

important to understand the full range of mean free paths that contribute to heat transfer in a bulk material

[1I]. The greater the fraction of heat carried by phonons with long mean free paths in the bulk material,

the greater the potential reduction in the thermal conductivity in a given nanostructure. This effect can be

quantified by changing variables in the kinetic theory expression [Eq. (3-5) ], to integrate over the mean

free path rather than the frequency as the independent variable [Fig. 3-11(c)]:

k= fk ddo :> k = kLdL (3-28)
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Figure 3-11. Estimating mean free paths in bulk silicon at 300 K. (a) Naive estimate using literature
values for thermal conductivity, specific heat, and sound velocity. (b) Improved traditional estimate,
using a modeled dispersion relation for C and v. (c,d) Thermal conductivity distributions per unit mean
free path. The area of the darkest shaded region, from 0 to LI0 (87 nm), equals 10% of the total thermal
conductivity. Similarly, the area between 0 and L50 (580 nm) equals 50 % of the total.

where the integrand changes from

S2r 2 aT

kL= --Lhco q2 f-L df
3 2 2 aT dL

(3-29)

(3-30)

The negative sign in Eq. (3-30) comes about from changing the limits of integration, and will be canceled

because do/dL is negative (small co corresponds to large L, and vice versa). Recall that f is the Bose-

k L•l II E,JVV I "
~--"ccc~-r...".



Einstein factor and q is the wavevector, which can be uniquely related to co. We are assuming isotropic

properties, and this derivation also takes advantage of the fact that the density of states in 3D is given by

2
DOS q (3-31)222;r v

To proceed further, the dispersion relation o(q) and the spectral mean free paths L(o) are necessary. For

the sake of illustration, we have performed calculations using the Born-von Karman dispersion for both Si

and PbTe. Using the umnklapp and impurity/alloy scattering expressions described previously, the

parameters A,, B1, and B2 were calculated by fitting literature data for the temperature-dependent thermal

conductivity of bulk Si and PbTe (Table 3-1). [46-49]. In these materials, umklapp scattering is dominant

at most temperatures of interest for thermoelectric applications. Impurity scattering is only important at

lower temperatures, near the peak in k(T). When present, alloy scattering can be important at all

temperatures.

The quantity kL, which can be termed a "thermal conductivity per unit mean free path," is best

interpreted as a weighting function for the relative importance of various mean free paths in contributing

to the total thermal conductivity. To the best of my knowledge we are the first to present this concept [1].

A representative distribution of this thermal conductivity per unit mean free path is shown in Fig. 3-1 1(d)

for bulk Si at 300 K. Notice how broad the distribution is, and specifically how far the tail extends

beyond the naive (5 nm) and traditional (200-300 nm) estimates.

3.4.2 Cutoff mean free paths

A deeper understanding of the range of important mean free paths is achieved by defining a

cutoff mean free path La, which accounts for a fraction a of the total heat flux. These cutoff mean free

paths are defined by

La () k L(T)dL La ) kL (T) dL
a -- = (3-32)

fkL(T)dL k(T )

For example, the area under the curve of Fig. 3-11(d) from L=0 to L=87 nm accounts for 10% of the total

area. Thus, for L=87 nm, a=10%, so we have determined that L10=87 nm for bulk Si at 300 K. Similarly,

integrating from 0 to 580 nm yields 50% of the total area, so L50=580 nm. Notice that this median mean

free path is 2 or 3 times larger than the traditional estimates. Even more important is the quantification of

the long tail of the distribution. To capture 90% of the total thermal conductivity in this example, we
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Figure 3-12. The temperature dependence of the range of mean free paths that are important for carrying
the heat in bulk Si (dashed lines) and bulk PbTe (solid lines). The 300 K values for Ll 0, L50, and L90 in Si
were previously depicted in Fig. 3-11(d).

have to integrate out to 12.8 pm (that is, L90=12.8 pm). This is about 40 - 60 times larger than the

traditional estimates.

Thus, over two orders of magnitude of mean free paths are important for carrying the heat in bulk

Si at 300 K (-87 nm to -12,800 nm). At lower temperatures the distribution has a similar breadth, while

shifting to larger values (Fig. 3-12). Although the large value of L90 is surprising compared to the

traditional estimates, it is consistent with observations in neutron-irradiated thin films [24] and

microporous thin films [50] that an important fraction of the heat is carried by phonons with bulk mean

free paths of the order of microns. Thus there is greater potential for thermal conductivity reduction by

boundary scattering than might traditionally be thought from LTradl.

The thermal conductivity of good bulk thermoelectric materials such as PbTe is already much

smaller than in bulk Si (2.0 W/mK compared to 150 W/mK at 300 K), and so it may seem that there is no

practical potential for further thermal conductivity reduction by nanostructuring. However, the thermal

conductivity is proportional to the group velocity which is also significantly lower in PbTe than in Si, and

as mentioned previously it is the bulk mean free paths which determine the potential for thermal

conductivity reduction in nanostructures. Figure 3-13 shows the thermal conductivity for PbTe bulk and

nanostructures of several different sizes. It is clear that there is still ample potential for reducing the

thermal conductivity through nanostructuring, especially at lower temperatures and for nanowire

diameters of -56 nm or less. Although Fig. 3-12 shows that the important bulk mean free paths are about

an order of magnitude shorter in PbTe than in Si, over a wide range of temperatures, they are still long

enough to be significantly impacted by nanostructures. For example, in bulk PbTe at 300 K the median

C1~7
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Figure 3-13. Theoretical and experimental thermal conductivity of PbTe bulk and nanowires, showing
that boundary scattering can reduce the already low bulk conductivity even further [1].

mean free path (L50) is about 42 nm, and the central 80% of the heat is carried by mean free paths between

6 nm (L10) and 860 nm (L9 0). These mean free path values are much larger than the naive estimate of only

3 nm (LNaive) at 300 K.

3.5 The importance of various wavelengths
Similar to the transformation of Eq. (3-28), we can express the thermal conductivity integral in

terms of the contributions of various wavelengths:

k= fkmda co k= fk, dA (3-33)

where the thermal conductivity per unit wavelength is

k =-'h 2 o L d (3-34)2 2 - T dA

These distributions have been analyzed for both Debye and Born-von Karman dispersion relations,

assuming that the mean free path is dominated by boundary scattering [1]. Cutoff wavelengths are

defined analogously to Eq. (3-32):

(T) kA (T)dA kA (T)d2

a - k(T) (3-35)
kA (T)dA k(T)

For example, 10% of the heat is carried by phonons with wavelengths shorter than X10. The resulting

cutoff wavelengths for Si and PbTe are shown in Fig. 3-14. At low temperatures the cutoff wavelengths
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Figure 3-14. The range of wavelengths that are important for carrying the heat in Si and PbTe
nanostructures, using the Born-von Karman phonon dispersion and neglecting the frequency dependence
of mean free paths [1].

are proportional to l/T, in accordance with the phonon analog of Wien's displacement law [Eq. (3-2)]. At

higher temperatures the cutoff wavelengths become constant and range from about 0.5 to 2 nm. Thus, at

typical temperatures of interest for most thermoelectric applications (100 K and up), classical rather than

quantum effects can be expected for nanostructures larger than -5-10 nm, as we discussed in the

beginning of this chapter.

3.6 Summary
This portion of the thesis focused on modeling of thermal conductivity in nanostructures when the

phonons can be approximated as classical particles. This approximation is appropriate in most realistic

nanostructures above ~100 K because the phonon wavelengths (-1-2 nm) are small compared to the

nanostructure size and also small or comparable to the nanostructure roughness. Kinetic theory was

combined with Matthiessen's rule to model alloy/impurity scattering, phonon-phonon umklapp scattering,

and scattering off of boundaries and interfaces. It is important to account for the frequency dependence of

various properties or the full extent of thermal conductivity reduction in nanostructures will not be

appreciated. The Born-von Karman dispersion was found to be significantly better than the Debye

dispersion at modeling real experimental phonon dispersion relations. The resulting model gives good

agreement with literature measurements of the thermal conductivity of silicon nanowires as small as 56

nm diameter, with no adjustable parameters, and good agreement for Si/SiGe superlattice nanowires of

similar size with one adjustable parameter. Finally, by introducing a change of variables it was possible

to present distribution functions indicating the relative importance of a broad range of mean free paths. In



bulk materials the distribution of important mean free paths (10% to 90% of the total thermal

conductivity) spans more than two orders of magnitude, indicating that long mean free paths play a more

important role than is commonly realized.
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Chapter 4: 1R, 2o, and 3w methods for measurements

of thermal properties

4.1. Introduction

3o methods have proven to be valuable for measuring the thermal properties of various systems.

In the basic method, a line heater is driven by a sinusoidal current source at angular frequency o, causing

a temperature fluctuation at 20) related to the thermal properties of the heater and/or its surrounding

environment [4, 7, 8]. This perturbs the heater resistance at 20o, leading to a voltage signal at 3o. By

varying the configuration of heater and surroundings, 3o) methods have been used to measure the specific

heat c [1, 2] and thermal conductivity k of a suspended wire [3], k of solids [4] and thin films [5, 6], and k

and c of liquids [7, 8]. To achieve a good signal to noise ratio, the much larger Ohmic signal at 1 co is

typically canceled either by nulling a bridge [1,2,8] or by subtraction with a multiplying digital-to-analog

converter [4], although when using a lock-in amplifier with sufficient dynamic reserve it is simpler to

omit this cancellation step [3]. Another issue in implementing 3o methods is that some lock-in amplifiers

do not have 3rd harmonic detection built-in, requiring an external frequency-tripler [2, 4, 8].

A different class of experiments involves Joule heating of a serpentine on a platform using a large

DC current, and measuring the resulting temperature rise using lock-in detection of a small AC current

superposed through the same heater. As reported by Shi et al. [9], the proportionality between

temperature and voltage can vary by a factor of three depending on the period of the AC sensing current

compared to the thermal time constant of the system.

In this chapter the various traditional 30 methods as well as the DC-heating/AC-detection

experiments are united under a more general framework of thermal and electrical transfer functions. This

framework can be applied to any thermal system containing a line heater that is also used to sense

temperature. A related transfer function approach is used in hot-wire anemometry, with a focus on DC

currents only [10]. Here, voltages at 1 co and 20 are shown to contain the same information about thermal

properties as the 3o voltage does. The 2o signal requires a DC offset at the driving current source. The

1 co signal eliminates the need for higher-harmonic detection and may also be useful for systems with very

fast thermal response, such as nanowires. The 1o, 2w, and 3o methods are verified experimentally using

both a line heater on a Pyrex substrate, and a suspended platinum wire, without any common-mode

subtraction.



The usual 3o analysis assumes that the circuit is driven with an ideal current source, but it is

more common and convenient to use a voltage source instead. The important distinctions between current

and voltage sources have not been adequately discussed in the literature. Here we also derive and verify a

correction factor that permits the usual current-source analysis to be adapted to experiments performed

with a voltage source. This correction factor is important whenever the electrical resistance of the sample

is a significant fraction of the total resistance of the circuit.

This chapter is based very closely on recent work by Dames and Chen [14], but includes more

explanations about the concept of thermal transfer functions. Some of the techniques developed in this

chapter are also important for the single-nanowire measurements described in Chapter 5.

4.2. General transfer function framework

4.2.1. Thermal transfer functions

We are interested in systems containing a single heater that is also used to sense temperature

through changes in its electrical resistance. Such systems may be described quite generally by a linear

thermal transfer function, Z, relating the average temperature rise of the heater, Oavg, to the heat input, Q.

In the frequency domain,

0. (a) = Qo (wO)Z(O) (4-1)

where the co subscript denotes Fourier-transformed quantities. In the time domain,

Oavg (t)= Q(t)® Z, (t) (4-2)

where ® denotes convolution and Z, is the inverse Fourier transform of Z. For example, sinusoidal

heating at frequency oH

Q(t) = Q0 sin(o•Ht) (4-3)

leads to a temperature response in the time domain

Oavg (t) = Qo Re(Z)sin(.oHt) + Qo Im(Z) cos(Ht) . (4-4)

The thermal transfer function may be complex and frequency dependent. It contains information about

the thermal properties of the system, such as thermal conductivity and/or specific heat of the heater and/or

its surroundings.



In general the full frequency-dependent, complex transfer function of Eq. (4-1) can be determined

from basic heat transfer analysis. For readers unfamiliar with convolution, Z can also be defined through

Eqs. (4-3) and (4-4), and understood as a generalization of the familiar concept of thermal resistance. For

example, for a system where heat capacity effects can be neglected, the system can be modeled in the

quasi-static limit. Stated another way, when we can neglect the thermal mass, the temperature response is

always in-phase with the heating. In this case Z is purely real, and is simply the thermal resistance

measured between the temperature of the surroundings and the average temperature of the heater.

Another elementary example is an isolated, adiabatic mass of heat capacity C (units of J/K). In this case

energy conservation requires that Q(t)= c(ao/at). Analysis of Eqs. (4-3) and (4-4) then shows that

Z=Il/jC for this system, with j = /-. Two more examples of Z for more complicated systems are

given below in Eqs. (4-24) and (4-33).

4.2.2. Electrical transfer functions

By measuring the electrical current I and voltage V across the heater, we can determine the

thermal properties of the system. First the thermal transfer function must be related to an electrical

transfer function.

The traditional 30 approaches are summarized in Figure 4-1(a). A sinusoidal current at

frequency co leads to Joule heating with a 20 component. The magnitude and phase of the resulting

temperature rise at 20 depends on Z. Due to the temperature coefficient of resistivity a, the electrical

resistance of the heater also contains a modulation at 20. Finally, the current at o mixes with the

resistance at 2w leading to a voltage signal at 3a. Here we derive the analogous results for the more

general case of a sinusoidal current with a DC offset. As shown in Fig. 4-1(b), we will see that the DC

offset leads to Joule heating at 1 co and a voltage at 20.

In general, the electrical resistance of the heater is given by

Re(t) = Reo (1+aOavg (t)) (4-5)

where Reo is the electrical resistance in the limit of zero current and 0 avg is averaged over the length of the

heater. The temperature fluctuations within the heater must be small enough so that a may be treated as a

constant. It is easily shown that Eq. (4-5) holds even if the temperature profile 0(x) varies along the

length of the heater, as long as the cross-section is uniform. Because aOavg << 1, to leading order Q can

be approximated as

Q(t) = 12 (t) Reo . (4-6)
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Figure 4-1. Schematic relationship between current, voltage, and thermal transfer functions for 10o, 20),
and 3o methods. (a) Traditional 3o methods. (b) Addition of a DC offset to the driving current, resulting
in additional terms for 1 o heating and 2o voltage.

Combining Eqs. (4-5) and (4-6), the voltage drop across the heater is

V(t) = I(t)Reo ( + aReoZ 2 (t)), (4-7)

Finally, using the frequency convolution theorem of Fourier transforms, the voltage in the frequency

domain is given by

V, =(Reo/ 2r)I, ® [2;r5(co) + a(Reo / 2;rXI ®0 Io )z] (4-8)

where 6 is the Dirac delta function.

Equation (8) applies to any current. Because it is nonlinear in I, we cannot use superposition, and

instead focus on the particular case of heating by a sinusoidal current at frequency co with a DC offset:

I(t) = IDC + I, sin(o 1t) (4-9)

where it is convenient to define



q = IDC /I.

In the frequency domain,

I, = I, (172z8(co)+ jiz[3(co + co )-3(-co-)]), (4-11)

where j= -i.

Applying this current to the analysis described above, the voltage response occurs at DC and

three harmonics

V(t) = VDC + Vi(t) + V2 w (t)+ V3 Q(t) (4-12)

which can be expressed as

3

V(t) = aReo ~ [X (Xo, q) sin(ntoet)+ Yn (ow, 1) cos(nao)t)] (4-13)
?=0

where the summation is over the harmonics n. Here X,, and Y, are the in-phase and out-of-phase electrical

transfer functions. In terms of RMS quantities as usually measured by lock-in amplifiers,

VnW'r" = X, (coh , 7) + jY, (coI , M) (4-14)
2aReo 1,rms

The resulting X,, and Y,, are given in Table 4-1. This is the most important result of the paper. It shows

that the various electrical harmonics are rich with information about any thermal transfer function. For

example, at 3w the in-phase (X3) and out-of-phase (Y3) voltages are proportional to the real and imaginary

parts of the thermal transfer function, respectively. Because they are a response to the Joule heating at

twice the driving current, Z is probed at 23 1.

The 2e voltages X2 and Y2 are only present in the case of a DC offset (q #0). The in-phase 20

voltage is sensitive to the imaginary part of Z, while the out-of-phase 2w voltage is sensitive to the real

part of Z. Furthermore, each 2w voltage has contributions from the thermal response at both c1 and 2wo.

This is because the Joule heating now has components at both 1w1 and 2o 1, as seen in Fig. 4-1(b). The

heating at 1l 1 becomes a voltage at 2w1 after mixing with the lw 1 component of the current; and the

heating at 2w1 becomes a voltage also at 2w1, after mixing with the DC component of the current.

The 1I voltages X, and Y1 are somewhat more complicated. Similar to Y3, YI has information

about the imaginary part of Z(2w1), arising from the 2w heating which is mixed back to 1w by the 1o

component of the current. Whenever there is a DC offset in the current Y1 has an additional contribution

from Z(w1), due to the mixing of 1I heating and DC current. The in-phase voltage AXt has analogous

(4-10)



Harmonic, In-phase electrical transfer function, Out-of-phase electrical transfer function,
n Xn (o1 ,7) Y. (W1 r7)

O 0 N2aRe 1 1 (72 +(1/2))(O)+Re(Z(i))j
2aReo In,,s

1 + ( 2 + (1/ 2))(0) +
2aReo1,rms (1/4) Im(Z(2co )) + 217 2 Im(Z(o I))

2q 2 Re(Z(m )) + (1/4)Re(Z(2mo))

2 7(1/ 2)[Im(Z(2c ))+ 2 Im(Z(v A)] - r(1/2)[Re(Z(2wco))+ 2 Re(Z(a )]

3 -(1/4)Re(Z(2col)) -(1/4)Im(Z(2qo))

Table 4-1. 0o, lo, 2c0, and 3o electrical transfer functions defined by Eq. (4-14), for a thermal transfer
function Z driven by current I=I[il+sin(o)lt)]. This very general result applies to any system with a line
heater that is also used to measure temperature.

contributions from both of these effects (the final two terms of X, in Table 4-1), plus two other terms.

The first term of X, is simply the large Ohmic response V=I1 Reo, after normalizing according to Eq. (4-

14). The second term of X1, multiplying Z(0), is the response to DC heating. This arises from both DC

current (the q2 term), and, importantly, the DC component of [I, sin(coit)]2.

The in-phase 1 co voltage is unique because it contains information about the DC thermal response

even in the high frequency limit. Because of thermal capacitance effects, most thermal transfer functions

should become small at high frequencies. Thus X2, X3, Y1, Y2, and Y3 should die out at high frequency.

But X, retains a term multiplying Z(0), allowing the DC thermal response to be measured at high

frequency. This is because there is always a DC component in the 12R heating of Eq. (4-9), even at high

frequencies. For example, with IDc= 0 (7 =0), the high-frequency limit of X, has an Ohmic voltage plus

Z(0)/2, while in the low-frequency limit the contribution is 3Z(0)/4. The opposite limit is IDc>>I (Y7

>>1). In this case the high-frequency limit of X, is dominated by the contribution of r72Z(0), while the

dominant contribution at low frequency is 3q2Z(0). This shows that the factor of three difference

between low- and high-frequency resistances reported by Shi et al. [9] (q10) is a general result, further

indicating the broad applicability of the current transfer function framework.

Finally, in the presence of a DC offset in the current there is also a DC voltage across the sample.

This is labeled as out-of-phase in Table 4-1 because of the convention introduced in Eq. (4-13). The three



terms of Yo comprise: a large Ohmic voltage; a contribution from the same DC heating as the second term

of XI; and the mixing of lo heating and lo current back to DC. These DC signals are not expected to be

useful because they are subject to low-frequency drifts and thermoelectric voltages.

4.2.3. Current source vs. voltage source

The derivation above follows the usual assumption of an ideal current source at 1 co. In practice it

is often easier to use a voltage source, such as a function generator or the reference signal of a lock-in

amplifier. Although an op-amp circuit may be used to convert this voltage source to a current source, 3 it

is more common to use the voltage source directly while analyzing the data as if a current source had

been used. Here we show that this simplification is valid only if the sample resistance is small compared

to the total resistance of the circuit, and give a correction factor to use when the sample resistance is

larger. Holland and Smith have also briefly considered the case of a voltage source for the special case of

a suspended wire [11].

Referring to Figure 4-2(a), the total electrical resistance of the circuit RTotal consists of the time-

varying sample resistance, Re(t), plus all other "ballast" resistances, Rb, which are assumed constant over

time. The ballast resistance includes the leads, the output impedance of the voltage source, and any

additional resistors. For this voltage divider it is always true that

V(t) Re(t) - (4-15)
Vs (t) Rb +Re(t)

where Vs(t) is the time-varying voltage source.

In the usual way, we neglect the small resistance perturbations when calculating the Joule

heating,:

V 2 (t) V2 (t) Reo 2
Q(t) V V (4-16)

Q Reo Reo Rb +Reo

Eqs. (4-2) and (4-5) still hold, so

Re(t) = Reo0(1 +aZ ® Q(t)) (4-17)

The current through the circuit is then
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Figure 4-2. (a) Circuit for analyzing the effects of using a voltage source rather than a current source
which is usually assumed. (b) Schematic of equipment for simple 1 o, 20), and 3o experiments. No steps
were taken to remove the large 1 o common-mode voltage. A voltage source was used to approximate a
current source. Lock-in B was used to infer current from the voltage across a standard resistor. If Lock-
in B is omitted, the current can be estimated from the ratio of source voltage to total circuit resistance.

VI(t)= V (t) Vs (t) 1- Re aZ® Q(t) (4-18)
Rb+ Re (t) Rb+ Reo Rb + Reo)

where the negative sign arises from the leading order Taylor-series expansion of (1+aZ®Q)-'. This

shows that, if Re0 is a small fraction of (Rb+ReO), the true current is approximated well by the usually-

assumed VI(Rb+ReO), but that an adjustment must be made otherwise. Comparing Eq. (4-18) with Eq. (4-

7) further suggests that in the case of a voltage source at 10 o, it would be more appropriate to measure the

harmonics of current to determine the thermal transfer function. Results analogous to Table 4-1 could be

derived to give the electrical transfer function for a current in response to a voltage input of

Vs (t) = Vs,DC + Vs,I sin(colat) (4-19)

However, it is perhaps more useful to summarize this analysis by providing a correction factor to

the results previously derived for a current source. To see this combine Eqs. (4-15) and (4-17), again

using leading order expansions, yielding

V(t) b V, (+ Reo 1+ Rb aQ(t) Z (4-20)
it ua a s Reo + Rb ) Reo + Rb

Finally, recognizing that the usual analysis assumes the current to be given by

Voltage
Source,

VK(t)



I(t) V, (t) I(Rb + Reo )

then the voltage across the sample can be expressed as

V(t) = I(t)Reo I + aRe°I2(t) @ Z1 - Reo R (4-22)
1 Reo + Rb

This is identical to Eq. (4-7), except for the factor of 1-Reo/(ReO+Rb) multiplying Zt. Thus, even when

using a voltage source, it is still possible to use the current-source analysis of Table 4-1 for data

processing as long as the resulting calculated ZApparent is corrected using

I -1
ZTrue = ZApparent I- Ral (4-23)RTotal

The Rsample term should include all current-carrying resistances that exhibit 30 harmonics, even if they lie

outside the voltage probes, and thus may actually be larger than Re0. This important point is clarified in

Section 4.3. The relative importance of the correction factor is seen to be the same as the relative

contribution of the sample resistance to the total resistance of the circuit. This correction factor applies to

any 3o system using a voltage source for experiment but assuming a current source for data processing.

4.3. Experiment
To demonstrate the validity and generality of the analysis summarized in Table 4-1 and Eq. (4-

23), these 1m, 20), and 30) methods were applied to two traditional 30) systems: an isolated suspended

wire (SW), and a line heater on a substrate (LHOS). In the former system the goal is to measure both k

and c of the heater itself, while in the latter system the goal is to measure k of the substrate.

The experimental apparatus is summarized in Fig. 4-2(b). The various voltage harmonics across

the sample were measured using Lock-in A (Stanford Research Systems SR850). A sinusoidal voltage

source at 1I0 was used to approximate a current source. The 1I current was determined by measuring the

1lo voltage across a heat-sunk 10 Q precision resistor (Vishay Dale, ot-10-5 K-') using Lock-in B

(SR830), which was also useful for precise phase corrections of the 1I signals. The correction of Eq. (4-

23) was applied whenever the sample resistance was more than a few percent of the total circuit

resistance. When DC offsets were required the voltage source was a function generator (HP 33120a);

otherwise the sine wave output of Lock-in A was preferred to minimize phase errors.

Samples were mounted in a vacuum chamber and the temperature controlled to 300 K (Lakeshore

330). Radiation losses were minimized by shielding, convection losses by operating in vacuum of

typically -10 5 torr, and conduction losses by using small diameter alloy wires for electrical connections.

(4-21)



For the suspended wire experiment the sample was a 50.8 pm (2 mil) diameter, 28.7 mm long platinum

wire (99.99% purity, Re0o-1.5 n) soldered in a four-point configuration directly to the prongs of the

sample holder. For the line heater on substrate experiment, the sample was Pyrex, about 3 mm thick, with

a microfabricated metal heater about 33 pm wide. The voltage drop was measured across the central

1000 p.m (Reo-54 fl) of the 3000 pm long heater. For both systems the temperature coefficient of

resistivity was determined by measuring the resistance at several temperatures between 300 K and about

320 K.

Similar to Lu, Yi, and Zhang's approach for suspended wires [3] but counter to common practice

for 3o measurements, we have not used any noise cancellation scheme, such as nulling a bridge [1, 2, 8],

or subtraction of the voltage across a series resistor using a multiplying digital-to-analog converter [4].

This omission is successful only because of the high resolution and large dynamic reserve of Lock-in A.

With the optimal settings of maximum gain and minimum dynamic reserve, we routinely observe stable

voltage steps of approximately 0.06 parts-per-thousand (ppt) of the full-scale sensitivity, corresponding

to 1 part in 214. This is far better than the specified 1% absolute accuracy of the instrument, and

highlights an important detail when studying the 1 o) signals: to avoid absolute errors between the various

gain settings, we always keep the gain constant when sweeping frequency and/or amplitude at any one

temperature point.

Other experimental details include DC coupling the input and turning off all line filters, to keep

from distorting these signals over the typical frequency range of 0.01 Hz to 100 Hz. We assumed that the

phase reported by Lock-in B for the current represented the true value, and so some of the measurements

were affected by phase disagreements between Lock-ins A and B of -0.1 degree. We have confirmed

that the phase accuracy could be improved to -0.02 degree in the future, by zeroing the phase of each

lock-in at each frequency while driving a small-amplitude I0o current. This is especially important for 10)

measurements and when using an external function generator. Finally, it is possible to omit Lock-in B,

and instead measure the current simply by the ratio of the source voltage to the total resistance of the

circuit. This gives sufficient accuracy for most purposes, but requires knowledge of the circuit resistance

at each temperature of measurement, and may lead to unacceptable phase errors in the out-of-phase 1 co

signal.

4.4. Results
The suspended wire and line-heater-on-substrate systems are discussed separately. For each, the

theoretical thermal and electrical transfer functions are first derived. Then, data are presented to validate

the expected dependencies on AC and DC currents. Finally, the measured electrical transfer functions are



presented, and the corresponding thermophysical properties of platinum (k and c) and Pyrex (k) are

extracted according to 1 0, 20), and 3o methods independently. The correction factor of Eq. (4-23) is also

verified below.

4.4.1. Suspended wire (SW)

Theoretical transfer functions

The thermal transfer function for an isolated, suspended wire (SW) with thermally clamped ends

was given by Lu, Yi, and Zhang as a series solution [3]. A closed-form solution for the spatial

temperature profile is derived in Appendix A. The resulting thermal transfer function for a wire of length

21 and cross-sectional area S is

Zsw (OH) = [sinh(fl) - sin(f/)]+ j[sinh(fl) + sin(fl) - f,(cosh(fi) + cos(/J))] (4-24)
flCm)H [cos(fl) + cosh(fl)]

where C is the thermal capacitance of the wire,

f6 = ýo) r /2, (4-25)

the characteristic diffusion time is

r = 412 /K, (4-26)

and Ic is the thermal diffusivity.

This transfer function is depicted by the solid lines in Fig. 4-3. The shape is reminiscent of a

lumped first order (RC) system, so we are motivated to determine the lumped transfer function ZSW,Lump

that is the best approximation to Zsw. As derived in Appendix B, the appropriate transfer function is

ZSWLump 1cHr/lO (4-27)
12 (1+ (mifr / 10)2

where

Rth = 21/ kS. (4-28)

As shown by the dots in Fig. 4-3, ZSW.Lump is an excellent approximation to Zsw over most frequencies.
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Figure 4-3. Thermal transfer functions (average temperature rise per unit heat input) as a function of
heating frequency, for an isolated, suspended wire with thermally clamped ends. The transfer function is
nondimensionalized using the thermal resistance Rth=21/kS, and the frequency using the thermal diffusion
time c=412/K. The solid lines are the exact solution, and the dots are a lumped approximation.
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2 2(9/2t - + ] -(q/2  { +

3 (-1/4) 1 (1/4)

1+4 1 +4

Table 4-2. Dimensionless Ow, Io), 2o, and 3o electrical transfer functions defined by Eq. (4-14), for the
special case of a suspended wire in the lumped approximation [Eq. (4-31)].
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Figure 4-4. 1 o), 2o), and 3w electrical transfer functions (voltage divided by the cube of the current) for a
suspended wire. The solid lines are the exact solution, the dashed lines are a lumped approximation, and
the points are experimental data for a platinum wire at 300 K. The lumped approximation is almost
indistinguishable from the exact solution. The values of thermal conductivity and specific heat used to fit
the data from each harmonic are given on the right, and compared with literature values [12].

It is convenient to nondimensionalize Zsw, X,,, and Y,, using Rth/1 2 :

Zsw = 12Zsw / RI,, (4-29a)

2, =12X,, /Rth. (4-29b)

Y,, = 12Yn / R,h. (4-29c)

Similarly, define

0H = /10 lO. (4-30)

Then Eq. (4-27) becomes
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Figure 4-5. 3w voltage vs. 10 current, at constant frequency, showing the expected 13 trend. (a)
Suspended platinum wire at 300 K. (b) Line heater on a Pyrex substrate at 300 K.

lIcOZswp () = (4-31)

The electrical transfer functions obtained by substituting Eq. (4-24) into Table 4-1 are easily

evaluated but cumbersome to write out. On the other hand, Eq. (4-31) is so simple that it is worthwhile to

give the electrical transfer functions explicitly for the lumped approximation (Table 4-2). As shown in

Fig. 4-4, the exact (solid lines) and lumped (dashed lines) electrical transfer functions are essentially

identical at low frequencies, and still agree very closely even at high frequencies. Although the data

analysis in the present work uses the exact solution, the lumped solution is simpler to use and should be

adequate for most purposes.

Current dependencies

The various electrical transfer functions of Table 4-1 show different scalings with 11 and IDC

(through q). The scalings are compared with SW experiments in Fig. 4-5(a) for 3w, Fig. 4-6(a-b) for 2w,

and Fig. 4-7(a-d) for 1I . Fig 5 confirms that at constant frequency, both in-phase (Vx3) and out-of-phase

voltages (VY3) at 3w are proportional to I . Similarly, Fig 4-6(a-b) confirms that the 20 voltages scale

with 13 and are linearly proportional to ril.
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current I,, showing the expected linear trend. (a,b) are for a suspended platinum wire at 300 K, while
(c,d) are for a line heater on a Pyrex substrate at 300 K.
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Figure 4-7(a-d) also shows the expected scaling with 13 and q/2 . Figure 4-7(a) in particular

shows that the small change in Vx1 due to Joule heating can be distinguished from the much larger Ohmic

signal, without any common-mode subtraction. The intercepts at I=0 of the two curves of Fig. 4-7(a)

should in principle be identical, and the slight disagreement of approximately 1 ppt is an indication of the

uncertainties in phase and amplitude at the two different frequencies. The fact that the 7r=0 intercepts of

Fig. 4-7(d) are positive rather than negative as predicted by Table 4-2 is due to the phase error between

Lock-in A and the function generator. The phase uncertainty between Lock-in A and Lock-in B was

typically -0.1 degree, corresponding to a coupling of about 2 ppt from Vx1 into Vy. Figure 4-7(c) shows

that Vx1 was typically 10 mV, corresponding to an uncertainty of -20 tV coupled into Vny. This value is

consistent with the offset in Fig. 4-7(d). Particularly for the Ico methods, this shows that it is not the

absolute values of X,, and Y,, but rather their slopes with respect to I, and/or IDC, that are most reliable for

determining the thermal transfer functions.

Measured transfer functions

Having confirmed the expected dependencies on I, and IDC at constant frequency, the electrical

transfer functions at I o, 2o, and 3o were then measured at constant current while sweeping frequency.

The results are compared to the theoretical transfer functions in Fig. 4-4. The lowest frequency measured

was 0.01 Hz. Because of the long thermal diffusion time (rt30 s), it was inconvenient to measure data at

lower or because of the long settling times involved.

For each harmonic, a least squares fit was used to determine the Rth and r that give the best

match between measured and theoretical transfer functions. The fit was applied to both in-phase and out-

of-phase transfer functions of a given harmonic simultaneously, although either could also be fit

separately. The thermal conductivity is calculated directly from Rth using Eq. (4-28). The specific heat is

calculated from

c R (4-32)mRtth

where m is the mass of the sample based on measured geometry and the literature value of density.

Because c involves two different experimentally measured parameters its uncertainty is larger than the

uncertainty in k.

The resulting values of k and c are included in Fig. 4-4 and compared with literature values [12].

The values calculated from the 3o method are within about 1% of the literature values for both k and c.

The errors in values calculated from Io and 2o methods are somewhat worse, about 5% for k and 10%

for c. This is consistent with the fact that there is slightly more scatter of the measured points about the



Harmonic, In-phase electrical transfer function, Out-of-phase electrical transfer function,
n Xn,LHos(C1,77) n,LHOS (O, (7)

0 0 +i 2 q 2 + (1 / 2))(0) 
- In c, + cons t

2aRo It,,,s 2 zkSubsL

1 2 2 + (1 / 2))(0)
2aReollrns

1 -( 8q2 )In lo + const In 2 (-I/16ksubs L +8 872)
8nk,,,bsL 8nkS, hsL

2 -3q / 8ks,,bsL (q / 4;r kSubs L)[3 In o, + In 2+3 const]

3 (1 / 8r ksubsL)(ln co, + In 2 + const) 1/16kSubs L

Table 4-3. ow, 1(o, 20o, and 30 electrical transfer functions defined by Eq. (4-14), for the special case of a
line heater on a substrate. The unknown constant const is the same for all terms.

theoretical curves of Fig. 4-(4) for 1 co and 2o. The increased uncertainty at 1 co may be due to the greater

demands it places on the stability of both amplitude and phase of the voltage source (in this case Lock-in

A). The increased uncertainty at 2o may be due to the necessity of using the external function generator

as the voltage source.

4.4.2. Line heater on substrate (LHOS)

Theoretical transfer functions

The most widely known 3o method is that popularized by Cahill [4] and Birge and Nagel [7, 8]

to measure the thermal conductivity of a substrate adjacent to a line heater. For the case of a heater of

length L on a semi-infinite substrate of thermal conductivity ksubs, the thermal transfer function is given by

[4]

Z LHOS (H ) = (- / 2nkSubs L ) In w + jz / 2 + const] (4-33)

where the unknown constant const is purely real, and the frequency must be such that the thermal

wavelength X=(KSubs/OH)1/ 2 is large compared to the heater width yet small compared to the substrate

dimensions. This transfer function is depicted in Fig. 4-8. When COH=0 Eq. (4-33) diverges, but ZLHOS(0)

is actually limited to some finite value due to the finite substrate size. Table 4-3 gives the specific

electrical transfer functions obtained by substituting Eq. (4-33) into Table 4-1. They are depicted



U.U

. -0.5

N -1.0
C)

0

,- -

0 2 4 6 8

Frequency, In oH

Figure 4-8. Thermal transfer functions (average temperature rise per unit heat input) as a function of
heating frequency, for a line heater on a substrate. The transfer function is nondimensionalized using the
product of the substrate's thermal conductivity ksubs and the heater length L. An arbitrary constant has
been subtracted from the in-phase transfer function.

graphically by the solid lines of Fig. 4-9. For each harmonic, one of the (X,, Y,,) signals is expected to

vary linearly with ln(03), while the other signal is expected to be a constant.

Current dependencies

The scalings of the LHOS voltages with current at two different frequencies are shown in Fig 5(b)

for 3o, Fig. 4-6(c-d) for 2o, and Fig. 4-7(e-h) for 1m. Fig 5(b) shows that the 3w voltages are

proportional to 13 as expected. Fig. 4-6(c) shows that the 2w voltages also scale with 13 as expected.

However, the scatter of the experimental points about the expected linear q dependence shown in Fig. 4-

6(d) is larger than expected.

Figure 4-7(e) also shows the expected scaling with 13, with the two resistance estimates (the

intercepts at I, = 0) agreeing to better than 1 ppt. The out-of-phase voltages in Fig. 4-7(f) show large

scatter in discrete steps because they are at the limit of the sensitivity of the instrument. To detect the in-

phase voltages [Fig 7(e)] of -300 mV the full scale sensitivity was set to 500 mV. The 0.06 ppt voltage

steps mentioned early are then 30 ýLV, consistent with the limiting resolution apparent in Fig 7(f). The

variation with DC current in Fig. 4-7(g-h) shows the expected r72 scaling for both in-phase and out-of-

phase voltages. According to Table 4-3, the two curves of Fig. 4-7(h) should be identical. The errors are

due to the residual -0.1 degree phase uncertainty between the function generator and Lock-in A after

using Lock-in B for phase correction. This coupling of about 2 ppt of Vx1 into Vyl corresponds to about
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Figure 4-9. Io, 20o, and 30 electrical transfer functions (voltage divided by the cube of the current) for a
line heater on a substrate. The solid lines are the exact solution, and the points are experimental data for a
Pyrex substrate at 300 K. The values of thermal conductivity used to fit the data from each harmonic are
given on the right and compared to literature values [12].

400 p.V of uncertainty in the intercept at r =0 in Fig. 4-7(h). Again, for the 1 o signals in particular, the

slopes with respect to /72 and/or I13 are more reliable than the intercepts for determining thermal

properties.

Measured transfer functions

Figure 4-9 compares the measured and theoretical electrical transfer functions at lo), 2c0, and 30.

For each harmonic the thermal conductivity was found by fitting the slope of the appropriate signal (XI,

Y2, and X3) with respect to ln(ao). This is a generalization of the "slope method" commonly used in

traditional 3w analysis [6]. The other signal (Yi, X 2, and Y3) was not used in the fitting, and the

measurements show large deviations from the theoretical value at 20) (-0.375) and especially at 1 ) (-
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Figure 4-10. Apparent and corrected thermal transfer functions (average temperature rise per unit heat
input), according to Eq. (4-23). The sample resistance Rsample includes the full length of the line heater,
which may be longer than the portion spanned by the voltage probes. This correction applies to any 10o,
20), or 3co experiment that uses a voltage source but assumes a current source for analysis and data
processing.

0.0625). As with the suspended-wire system, these deviations may be due to the phase disagreements

between function generator and Lock-in A at 20), and the extreme sensitivity of Y1 to phase errors. For

the traditional 30o method, Cahill also reported that the slope method gives more accurate results than

using the magnitude of the constant out-of-phase voltage [4]. The resulting values of thermal

conductivity agree with each other to within 5%, and are about 5-10% higher than a literature value of

1.10 W/mK [12]. Again, the 1I0 data shows the largest scatter compared to the theoretical curve, because

of the large offset voltage which is not canceled. The root-mean-square deviation of the measurements in

Fig. 4-9(a) from the theoretical curve is only about 0.02 ppt rms. However this is enough to contribute

significantly to the uncertainty because the total range of the data only spans -0.5 ppt (439.73 to 439.95).

4.4.3. Current source vs. voltage Source

Figure 4-10 shows an example of measured thermal transfer functions both with and without the

correction of Eq. (4-23) for using a voltage source instead of an ideal current source. These data were

taken by varying the additional resistors [Fig 2(b)] in the line-heater-on-substrate experiment described

above. Although only 3o data are used in this example, the correction should be the same for any

harmonic and any type of thermal transfer function that can be described using Table 4-1. For each

measurement, the total resistance was determined along with the apparent thermal transfer function

ZApparent, calculated assuming an ideal current source according to Table 4-3. Using the measured

resistance ratio the thermal transfer function was corrected to ZCorrected using Eq. (4-23). Finally, the
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average of these ZCorrected was taken as the true thermal transfer function ZTrue. When making this

correction it is essential to correctly account for the other portions of the electrical circuit which are

subject to the same thermal transfer function as the test section. In this line-heater-on-substrate example,

the voltage taps of the four-point probe at the sample only span the central 1000 prm of a 3000 pm long

heater line. However, the remaining 2000 pm of the heater still respond thermally in a similar way

(neglecting end effects), so we may think of the effective sample as being 3000 ptm long, with triple the

resistance as measured by the four-point probe. In effect, those extra 2000 pm of current-carrying leads

should not be counted as stable ballast resistance, but instead exhibit 3o behavior like the sample

resistance. Therefore, in this example, when making the correction of Eq. (4-23), Rsample = 3 Reo. This

can also be understood by considering the sample itself to be the 3000 Pim long line, and simply

multiplying the four-point probe voltages by a factor of 3. In the case of a suspended wire, however, this

adjustment for leads should not be necessary, because any extra leads are likely to be heat sunk and/or

have much lower resistance than the test section.

The raw and corrected Z of Fig. 4-10 are clearly in good agreement with the analysis of Eq. (4-

23). The correction factor is unimportant when the sample resistance is negligible compared to the total

resistance of the circuit. On the other hand, when the sample resistance is a significant fraction of the

total resistance, the correction becomes large. The latter situation is undesirable because it is more

sensitive to experimental uncertainties in measuring Rb and in measuring the unnecessarily small values

of Xn.Apparent, and YnApparen. If a voltage source must be used with RSample >> Rb, it would be better to either

measure the current harmonics directly as suggested in Eq. (4-18), or use an op-amp to implement a true

current source [3]. In practice Rb is likely to be at least 50 Q due to the output impedance of most voltage

sources, suggesting that the correction of Eq. (4-23) may be an important consideration whenever Re0 is

more than a few Ohms, unless additional ballast resistance is used.

Finally, we note that even with the widespread practice of common-mode subtraction it is still

necessary to consider the correction for using a voltage source instead of a current source. This is evident

from Eq. (4-22). To implement common-mode subtraction a "series resistor" is introduced into the circuit

[4]. This Rseries is chosen to have nearly the same resistance as R~eo, but with good heat sinking and/or a

small temperature coefficient so that its resistance is constant and its voltage drop is always simply

I(t)Rseries. Lock-in A is then used to measure the difference in voltage drops across the sample and the

series resistor. This has the effect of canceling the first term in Eq. (4-22), but it does not affect the (1-

Reo/(Reo+Rb)) term multiplying Z. Therefore the correction of Eq. (4-23) is still necessary.
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At this harmonic
10) 10,203)To Maximize: Filter DC at lock-in? i0, 4h, 2uf 30

in-phase out-of-phase

Signal No filter 7=0 r= 1+ =t 1.79 r= 1/2 r=0

Signal Filter DC rr=0 r= 1+ 5= 1.79 r= 1/2 r/=O0

Signal-to-background No filter r=0 r'= 1+ /=1.79 r=1/2 r-=0

Signal-to-background Filter DC r=o00 r=00 = 1 ==0

Table 4-4. Optimal values of the current ratio TV=IDc/II for best signal, or signal-to-background, for
various harmonics. In some cases the optimum rl depends on whether the DC portion of the voltage is
filtered at the lock-in amplifier. The temperature rise is assumed to be constrained to 0avg<Omax, which is
equivalent to constraining the total current II+IDC <Imax. The experiment is further assumed to include low
frequencies.

4.5. Discussion and Recommendations

4.5.1. Selection of optimal DC current

As shown in Table 4-1, the voltage signals at 1o and 2co increase with increasing DC current

(increasing q). However, this also increases the common-mode voltage, and the temperature variations

within the sample, both of which may be undesirable. Calculations for the optimum values of 1 for

several different constraints are discussed below and summarized in Table 4-4. However, these

optimization calculations still have to be confirmed experimentally. Future work should also consider the

effects of operating with 'i away from the calculated optimum value, and determine an allowable range of

q for reasonable uncertainty.

Maximum signal for a limited temperature rise

The maximum temperature fluctuations of the sample, 0 max, should generally be limited to a few

Kelvins in order to avoid ambiguity about the temperature of the measurement. This limits the currents as

well. To simplify the analysis we assume that the experiment will include low frequencies, so that Z(o)

and Z(2o) can be approximated with Z(0). This should be the maximum value of Z. In this case the

largest temperature rise is given by

Oavg (t) = IDC + 11 sin(col t)]2 ReoZ(O) (4-34)

leading to the constraint

I + IDC • 1max (4-35)
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where [max = 0 max / ReoZ(0).

From Table 4-1 and Eq. (4-14), the 3o signals are not enhanced by IDC, and so should always

operate with q=0. The 2o) voltages, on the other hand, are proportional to I2Doc. Subject to Eq. (4-35),

the optimum currents are found to be II=2Imax/3 and IDC=max/ 3, that is, q =1/2. With these optimizations,

the 2o and 3o voltages have similar magnitudes for the two transfer functions considered in Tables 4-2

and 4-3.

The useful part of the 1o signals has terms proportional to IcI2 as well as I3. Optimization

constrained by Eq. (4-35) now leads to 1i=0 to maximize the in-phase signal (Vix), and /= 1+ 5/ =1.791

to maximize the out-of-phase signal (V1 y). DC currents are more important in the optimized V1 r

compared to the optimized V1x, because the i72 terms are relatively more important in Y, than in X1.

Maximum signal-to-background for a limited temperature rise

Instead of maximizing the signal voltage itself, we may wish to maximize the signal-to-

background ratio. This makes the best use of the gain and dynamic reserve of the lock-in amplifier,

which is especially important when common mode subtraction is omitted, as in the present work. If the

voltages are not filtered at the lock-in, then the peak background voltage for all harmonics is ImaxReo, and

optimization for maximum signal-to-background is equivalent to the optimization for maximum signal

just discussed. However, if the DC component is filtered at the lock-in amplifier, then the background

voltage contains only the Ohmic Io component IReo. In this case the 2o signal-to-background is

optimized at q =1, and is approximately 1.5 times larger than the optimized 3o signal-to-background.

For the 1 o signal with DC filtering at the lock-in, the optimization leads to 7 -*oo, i.e. a small AC

sense current combined with a much larger DC heating current.

Other limitations

Sometimes the experiment will be constrained by the current or voltage limits of the equipment.

For example, the current will be limited when a voltage source is used with large ballast resistances to

approximate a current source. In other cases the background signal voltages may be so large as to

saturate the input of the lock-in amplifier. These situations are equivalent to the Imax constraint already

discussed. For a current-limited power supply, Imax is the equipment limitation, while for a voltage-

limited power supply, Imax= Vs,max/(Reo+Rb). For a saturated lock-in, 'max = VLock-in,max/Reo.
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Higher-harmonic
detection
Current source

Stability of current
source

30 (IDc=O)
Requires 3rd

Use lock-in's own
reference
Not important

2o (IDc O)
Requires 2nd

Requires DC offset
(extra hardware)
Not important

1o (IDC =0)
Not necessary

Use lock-in's own
reference
Very important
(subtracting 2 large
numbers)

I o with DC offset
(IDc o0)
Not necessary

Requires DC offset
(extra hardware)
Very important
(subtracting 2 large
numbers)

Sensitivity to phase Insensitive Insensitive Very sensitive Very sensitive
errors
Probes Zpurely at One frequency Combines two One frequency (plus DC) Combines two (plus DC)
one frequency, or
combines several?
Frequency of voltage Higher (good for Higher and same Lower (good for Lower and same
signal compared to thermally slow systems) thermally fast systems)
heating
Precedents Well-established [1-8] New New Tr>>l used previously [9]
Recommendation Most straightforward Niche application: use Use for systems with Use for systems with

method. Use when not instead of 3o when very fast characteristic very fast characteristic
limited by fast system hardware has frequency frequencies. Use to frequencies. Use to
frequencies or need for doubler, but not frequency avoid implementing avoid implementing
3rd harmonic detection. tripler, built-in. higher-harmonic higher-harmonic

detection. Be wary of detection. Be wary of
phase errors. phase errors.

Table 4-5. Recommendations and
measurements.

comparison of lo, 20, and 30 methods for thermal properties

4.5.2 Relative merits of 1co, 24 and 3co methods

Some of the strengths and weaknesses of these 10, 20, and 30 methods are outlined in Table 4-5.

The table highlights some important differences in the need for higher-harmonic detection, DC offset, and

stability of the current source. The various methods also have important distinctions when studying the

frequency response of systems with very slow, or very fast, characteristic thermal times. For example, k

and c of a single nanowire might be studied with the suspended wire technique. However, the

longitudinal thermal diffusion time is on the order of microseconds, corresponding to frequencies on the

order of 100s of kHz. To minimize electrical noise from inductive and capacitive coupling, it is desirable

to conduct the experiment at as low a frequency as possible. Table 4-1 shows that a 1w study with rq =0

probes the thermal response at twice the electrical detection frequency, in contrast to a 30 study which

probes the thermal response at 2/3 of the detection frequency. That is, the thermal response at 100 kHz is

detected electrically at 50 kHz using 10, but at 150 kHz using 30. This shows that lw may be

advantageous for systems with very fast dynamics. The argument is reversed for thermally very slow

systems, where 3o may be preferred.

Overall, the basic 3w method is still the best option for most experiments. The 2w method may

be preferred for certain lock-in amplifiers which have frequency doubling built-in but not frequency
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tripling. 1.0 methods place greater demands on the stability of the current supply, but eliminate the need

for higher-harmonic detection, and are an important option when studying the dynamics of thermally fast

systems. If a direct measurement of the thermal transfer function is desired, without combining the

thermal response at multiple frequencies, then 3w or 1 with q =0 should be used.

4.6. Summary
In this portion of the thesis, a new framework of thermal transfer functions was developed to

describe any thermal system containing a line heater that is also used to sense temperature (Table 4-1).

This includes the traditional 3o systems of a suspended wire (Fig. 4-4) and a line heater on a substrate

(Fig. 4-9), as well as experiments combining a large DC heating current with a small AC sense current

[9]. The analysis naturally identifies 10, 2w, and 3w variations which each have their own benefits in

certain situations (Table 4-5).

This chapter also demonstrated that this class of thermal experiments can be simplified

considerably [3] compared to traditional implementations, which relied on noise cancellation via a bridge

or multiplying digital-to-analog converter [Fig. 4-2(b)]. Thanks to the excellent accuracy and dynamic

reserve of modem lock-in amplifiers, we saw that good experimental accuracy can now be obtained

without any noise cancellation.

Finally, this chapter showed that the widespread practice of using a voltage source to approximate

a current source can lead to large errors if the sample resistance is not negligibly small compared to the

total circuit resistance. These potential errors have not been discussed previously. A correction factor

was derived [Eq. (4-23)] and verified (Fig. 4-10), which allows the usual current-source analyses to be

rigorously adapted to the more common situation of a voltage-source experiment.

4.7. Appendix A: Temperature profile in a suspended wire
When a thin isolated wire is driven at a frequency much faster than the longitudinal thermal

diffusion time the resulting temperature rise is related to c [1, 2, 11]. Similarly, the DC temperature rise

is related to k [13]. A series solution for all frequencies was recently given by Lu, Yi, and Zhang [3].

Here we derive a closed-form solution and give a lumped approximation.

The unsteady, one-dimensional heat conduction equation neglecting convection and radiation

losses, for a wire of length 21, is
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ao a20  Q(t) (4-A)PC - =k-+ (4-Al)a t ax' 2Sl

Here 6(x,t) is the temperature rise at a position x along the wire axis, and p is the density. The cross-

sectional area of the wire is S, which must be constant but need not be circular. Assuming perfect thermal

contact at x=-l, the boundary conditions are

ao(O, t) 0
ax (4-A2)

0(l, t) =0

Taking the Fourier transform with respect to time and defining

W(x, o) = O-, QO (4-A3)
jo)C

the governing equation becomes

J W = aw (4-A4)
K ax 2

with transformed boundary conditions

aW(0,o) 0
8xax Q (4-A5)

W (1, W) = - "jpC

For heating given by Eq. (4-3), Eqs. (4-A3) through (4-A5) can be solved for 0. After considerable

manipulation, the temperature profile in response to heating is found to be

O(Qxt) = ( - sin(qo (x + l))sinh(q° (x -1)) - sin(qo (x -1)) sinh(qo (x + 1)) sin(

CWH cos(2qol) + cosh(2qol)

+( Qo Ycos(qo(x-1))cosh(qo(x + 1)) + cos(qo(x + 1))cosh(qo(x-1)) COS(H
Co+ cos(2qol) + cosh(2qol)

(4-A6)

where the thermal wavevector qo is given by

qo = (4-A7)
12
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Figure 4-11. Temperature profiles for a suspended wire driven by sinusoidal heating at various
frequencies. The solid lines are the in-phase temperature, and the dashed lines out-of-phase. The
temperature rise is nondimensionalized by the average value at DC, and the frequency is
nondimensionalized by the thermal diffusion time r=412/K. At low frequencies the response is large,
parabolic, and in-phase, while at high frequencies the response is smaller, flatter, and out-of-phase.

Temperature profiles are depicted in Fig. 4-11 for various frequencies. At low frequencies the

temperature response is a quasi-static parabola typical of a uniformly heated wire, in phase with the

heating. At high frequencies the temperature profile is nearly flat and out-of-phase with the heating,

because there is very little time for heat diffusion compared to the heating period. Interestingly, in the

high frequency case the peak value of temperature occurs not at the center, but near the wire ends. This is

also evident in the perturbation solution given by Holland and Smith for a semi-infinite wire [11]. It can

be understood by considering the 90 degree phase difference between the heat source Q(t) and conduction

down the temperature gradient.
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The spatially averaged temperature is given by:

Qo° [(sinh(f,) - sin(fl) sin(t) sinh(f) + sin(fl) - (cosh(fl) + cos(f)) cosoOav() = •• •p(cos(f,) + cosh(fl)) i (cos(O) + cosh(f))

(4-A8)

where 03 is defined in Eq. (4-25). This leads directly to the transfer function given in Eq. (4-24).

4.8. Appendix B: Lumped approximation for suspended wire

Consider a lumped thermal mass with temperature OLump(t) and total heat capacity CLump connected

to 0.=0 by an external thermal resistance Rth,Lump. The well-known transfer function for this system is

ZSWLump (OH) = Rth,Lump 1- CH Lump (4-B 1)
1 + (OH T'Lump

As shown in Fig. 4-3, ZSWLump is a remarkably good approximation to Zsw over most frequencies as long

as Rth,Lump=Rth/1 2 , and rLump=Tr/10. These relations are justified mathematically by requiring ZSW,Lump and

Zsw to have the same asymptotic behavior at low frequencies, for both real and imaginary parts. These

constraints are not unique. For example, if instead the correct magnitude of ZLump was desired at both low

and high frequencies, the constraints would be Rth,L,,ump=Rth/12 and tump=/1 2 (that is, CLu,,mp=C).

An expression similar to Eq. (4-B 1) was derived by Lu, Yi, and Zhang [3] by retaining only the

first term of a series expansion. In particular, Eqs. (4-B 1) and (4-14) lead to
aR2

VX3 + V23 Ro /10)2 Rth (4-B2)
24+ (2cor/10)2

which is slightly more accurate than Eq. (19) of Ref. [3]. That equation has T4 /4 in place of 24 in the

denominator (too large by 1.47%) and n2 in place of 10 inside the radical (too small by 1.30%).
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Chapter 5: Thermoelectric measurements of

individual nanowires and nanotubes

5.1 Introduction
Previous chapters of this thesis have described some of the quantum (wave) and classical

(particle) size effects that are expected to cause dramatic changes in the thermoelectric properties of

nanowires (NWs) and nanotubes (NTs) compared to their bulk counterparts. It is essential to test these

models experimentally, and the most compelling experiments are those on individual NWs and NTs

rather than samples comprising thousands or millions of NWs or NTs. This chapter introduces some of

the challenges in single-NW measurements and then presents the detailed thermal and mechanical design

of a new type of thermal probe developed as a part of this thesis work. The probe is based on

commercially-available Wollaston wire, a marked departure from the microfabricated measurement

platforms previously described in the literature. The Wollaston wire probes are easier to assemble than

the microfabricated measurement platforms, and have the potential for better sensitivity as well.

Wollaston wire probes can be used to measure the thermal conductivity, electrical conductivity, and

Seebeck coefficient of individual NWs and NTs, and they have been deployed inside of a high-resolution

transmission electron microscope (TEM) to correlate the measurements with detailed observations of

atomic structure. Some preliminary thermoelectric measurements are presented below.

Because the techniques described in this chapter apply equally well to measurements of

nanowires and nanotubes, in this chapter the terms "NW" and "NT" should be treated interchangeably.

5.1.1 Challenges in the thermal measurements of individual nanowires

and nanotubes

The two greatest challenges in measuring the thermal resistance of a single NW or NT are: (1)

that the thermal resistance of a single NW is very large, requiring very high levels of thermal isolation;

and (2) the difficulty in obtaining good thermal contact to the ends of the NW. These two challenges can

be understood from Fig. 5-1 (a,b), which depicts a generic system for thermal measurements of single

NWs. A suspended NW bridges between a hot platform and a cold sink. Heat is generated at the hot

platform and flows through the NW, causing a temperature difference between the hot platform and cold

sink. By measuring the temperature difference across the NW and the heat flow through the NW, the
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Figure 5-1. (a) Schematic of a generic experiment to measure the thermal resistance of a single nanowire

or nanotube. Some of the heat input at the hot platform is lost, rather than flowing through the nanowire.
The measured temperature drop includes the temperature drop across any thermal contact resistance. (b)

Equivalent thermal circuit of (a). (c&d) Two previous approaches to measure the thermal resistance of a

single nanowire or nanotube [2, 7]. Both of these systems rely on microfabrication to achieve sufficiently
large thermal isolation resistance.
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thermal resistance of the NW can be calculated. Finally, using knowledge of the NW geometry, its

thermal conductivity can be calculated. One problem is that some of the heat generated at the hot

platform may flow through the supports of the hot platform, rather than through the NW. This heat

leakage can be corrected for if the thermal resistance of these supports (the "isolation resistance") is

known [Fig. 5-1(b)]. For best sensitivity the isolation resistance should be much larger than the NW

resistance, and in fact the measurement will fail if the isolation resistance is much smaller than the NW

resistance. Furthermore, the measured temperature difference is generally that between the hot platform

and cold sink, and thus includes the undesired temperature drop across any thermal contact resistances. In

theory this issue could be bypassed by implementing a four-point temperature measurement, but it would

be considerably more difficult to create and align two more temperature probes at the scale of an

individual NW. If the contact resistances were known they could be subtracted from the total measured

thermal resistance, but it is difficult to estimate the contact resistances and they also may not be very

repeatable between different measurements. The only satisfactory solution is to create contacts with

much lower thermal resistance than the NW. Besides the problems of heat leakage and contact resistance,

additional experimental issues include physically aligning the target NW to the measurement apparatus,

measuring the geometry of the NW accurately, and devising a measurement scheme sensitive enough to

detect the small thermal signals of a single NW.

5.1.2 Previous thermal measurements of individual nanowires and

nanotubes

Although the field of single-NW thermal measurements is still young, the challenges just

described have been addressed in two types of experimental systems reported in the literature. Li Shi and

co-workers [1-6] pioneered the field by using microfabrication to create two platforms suspended on long,

slender beams made of silicon nitride [Fig. 5-1(c)]. Each platform has a serpentine (i.e. meandering)

metallic heater, which is also used to measure the temperature of the platform using resistive

thermometry. A single NW is deposited somewhat randomly between the two platforms by allowing a

drop of a NW suspension to dry in place. In some cases a carbon NT can be grown in-situ. The thermal

contacts are improved by local deposition of amorphous carbon and/or platinum by an electron beam or

ion beam technique. More recently, Fujii and co-workers [7] used electron-beam lithography to pattern a

very thin metallic line heater which is also used to measure temperature [Fig. 5-1(d)]. A manipulation

probe inside a scanning electron microscope (SEM) is used to suspend a NT between a heat sink and the

midpoint of the line heater. The thermal contacts are again improved by local deposition of amorphous

carbon.
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System Dia.(e) Length Thermal Resistance [K/W]

106 107 108 109

Kim et al., PRL (2001) MWCNT 14 nm 1.0 pm
Yu et al., NanoLett (2005) SWCNT 1 nm 2.8 p.m

Li et al., APL (2003) Si NW 37 nm 2.0 pm
SShi Isolation 1.1 p.m 420 p.m

Fujii Isolation 140 nm 5.5 ptm

Wollaston Pt 3 pm 2.0 mm

Wollaston PtRh 1.5 pm 2.0 mm

Wollaston PtRh 500 nm 5.0 mm

Wollaston Wire (this work)

Figure 5-2. Thermal resistances of several representative NT and NW, compared with the isolation
thermal resistances of the Shi et al. and Fujii et al. platforms and several Wollaston wire probes.

The Shi et al. and Fujii et al. platforms have proven valuable for the first measurements of the

thermal resistance of individual NWs and NTs. However, they do have some limitations. Fig. 5-2

compares the thermal isolation resistance of both the Shi et al. and the Fujii et al. measurement platforms

with the resistance of several NWs and NTs. It is clear that even with such long and slender measurement

platforms, the isolation resistance is still smaller than, or at best comparable to, the NW resistance. Thus

these measurements require significant corrections for the heat leakage through the supports, especially

for the NWs with large thermal resistances. A second limitation is that both schemes require time and

resources to be invested in the microfabrication. Also, implementations that rely on deposition of

suspended NWs out of solution have a significant degree of randomness in getting a NW of desired

geometry (length and diameter) to deposit onto one of the measurement platforms. This inherent

randomness also limits the speed at which multiple samples can be prepared and measured. The Fujii et

al. approach may have higher throughput because of the ability to select individual NWs for

measurement, but lacks the ability of Shi et al.'s platform to measure the Seebeck coefficient. Finally, in

most prior schemes the NW geometry was measured by SEM or atomic force microscopy (AFM), both of

which may have limited accuracy in certain dimensions: SEM measurements have several nanometers of

uncertainty for in-plane distances and cannot measure out-of-plane distances, while AFM measurements

also have nanometer-level uncertainty in-plane but improve to Angstrom-level uncertainty out-of-plane.
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(a) As-received
Wollaston wire

Sheath (silver)
Dsheath = 60 ýim

(b) Expose core using
nitric acid etch Core (platinum)

I

L z 2 mm
Sheath

(c) Touch nanowire
to midpoint

Nnnnwirt- -

(schematic)

Cold side
/ heat sink

(d) Schematic Woll. Wire

Nanowire

Figure 5-3. Etching Wollaston wire to make a thermal probe. (Diagrams are for the sake of illustration
only: some micrographs were duplicated and shifted.)

5.2 Basic concept of the Wollaston wire thermoelectric probe
The Wollaston wire probe developed in this thesis has several advantages compared to the earlier

techniques of Shi et al. [1-4] and Fujii et al [7]. As described below, it offers comparable or higher

thermal isolation resistance yet requires no microfabrication, has the potential for high throughput, has the

ability to select an arbitrary NW or NT for measurement, can measure the Seebeck coefficient, and, as

currently implemented inside a high-resolution TEM, has atomic-level accuracy in determining the

geometry of the sample. Disadvantages compared to the prior approaches include the need for skilled
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Figure 5-4. Schematic of Wollaston wire probe integrated inside a high-resolution TEM for in-situ
thermoelectric measurements of individual nanowires and nanotubes. STM=scanning tunneling
microscope.

manual assembly of one delicate Wollaston wire probe at a time, the need to pretension the Wollaston

wire, and the lack of on/off control when depositing contacts in-situ.

Wollaston wire is normally used in hot-wire anemometry to measure the velocity and/or

temperature of a flowing gas [8-11]. A typical, commercially-available Wollaston wire (Sigmund-Cohn

Corp., Mount Vernon, NY) comprises a silver sheath (outer diameter about 50 - 100 ptm) surrounding a

core of platinum or platinum-rhodium alloy (Fig. 5-3). The as-received core diameters range from a few

tens of microns down to around 0.5 micron, and they can be drawn down even smaller [12]. A simple

etch in nitric acid is used to remove the silver sheath from a select region, exposing the platinum core.

Platinum and platinum-rhodium are not etched by nitric acid. With practice it is fairly easy to control the

length of this etched region from several millimeters down to hundreds of microns. Because the core

diameter is so small, and the etched lengths can be relatively long, the thermal isolation resistance of such

a length of Pt or Pt/Rh core can be similar to or even much larger than the isolation resistance of the
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Heater and T sensor

04(x)

+

(a) Uniform Joule heating.

OB,,avg/OA,avg

0)
10 10 10- 10-1 100 101 102

* NW (C) th,NW / Rth, Woll

old Sink

(b) NW at center pulls down Oa,,vg.

Figure 5-5. Basic concept of thermal conductivity measurements using a Wollaston wire probe. (a)
Baseline temperature profile OA(x) for a bare Wollaston wire with steady DC current, neglecting
convection and radiation. The Wollaston wire is both the heat source and, through resistance
thermometry, the temperature sensor. (b) Depressed temperature profile 9

B (x) after touching a nanowire
to the center of the Wollaston wire. (c) Ratio of the spatially averaged temperatures OB,avg /OA,avg as a
function of the ratio of thermal resistances Rth,NW/Rth, Woll. By measuring the temperature ratio, the thermal
resistance ratio can be determined.

previously reported measurement platforms (Fig. 5-2). This opens up the possibility of fundamentally

better sensitivity when studying NWs of very high thermal resistance ( > 108 K/W).

The basic Wollaston wire thermoelectric probe, depicted inside a TEM in Fig. 5-4, can be used to

measure the thermal conductance of an individual NW with a technique very similar to that of Fujii et al.

[7], although conceived independently. Figure 5-5 presents the basic concept. The essential idea is to

pass a steady DC current through the Wollaston wire, and to measure the resulting temperature rise of the

Wollaston wire both with [Fig. 5-5(b)] and without [Fig. 5-5(a)] the bridging NW. Without the NW, and

assuming perfect contacts and no losses to radiation or convection, the steady-state temperature profile

will be a parabola. By measuring the electrical resistance of the Wollaston wire, its average temperature
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can be determined using the temperature coefficient of resistivity. Then, with the NW in place, some of

the joule heat from the Wollaston wire can leak out through the NW, rather than conducting through the

length of the Wollaston wire. The temperature profile now consists of two parabolic regions joined with a

kink at the point where the NW touches the Wollaston wire. The average temperature is reduced due to

this heat leakage, and a simple calculation yields the thermal resistance of the NW. The detailed thermal

and mechanical analysis of this system are described in the next section.

Although it is possible to implement the Wollaston wire measurement inside a cryostat and use an

optical microscope to align the NW to the Wollaston wire, we are currently pursuing experiments inside a

high-resolution transmission electron microscope (Fig. 5-4). This TEM, a JEOL 2010 OF located at Boston

College, has a special sample holder with a built-in scanning tunneling microscope (STM) (Nanofactory

Instruments). The STM is normally used to probe current and voltage with very high spatial resolution

(-Angstrom-level) in 3 dimensions. We have modified this sample holder by adding a Wollaston wire

probe. A length of the Pt core about 2 mm long is electrically and thermally anchored at each end

through its unetched leads to the surrounding environment. The manipulation capabilities of the STM are

used to select a NW and attach one end to the approximate midpoint of the Wollaston wire. The other

end of the NW is anchored electrically and thermally to the STM probe, which itself is well-coupled to

the surrounding environment. Electrical connections are made to both ends of the Wollaston wire as well

as to the STM tip. The rest of this chapter describes how this experimental configuration can be used to

measure the thermal conductance, electrical conductance, and Seebeck coefficient of the NW.

5.3 Thermal and mechanical design of a Wollaston wire

probe

5.3.1 Solution of the heat equation for a Wollaston wire with bridging

nanowire

Neglecting convection and radiation, the steady, one-dimensional heat equation for a Wollaston

wire of length L and constant cross sectional area S is

k d 2 x  I 2 Reo  (5-1)
dx2  SL

Here x is the coordinate along the NW length, k is the thermal conductivity of the Wollaston wire, I is the

electrical current, and Re0 is the electrical resistance of the Wollaston wire at the reference temperature.

Also Ox(x) is the local temperature of the Wollaston wire minus the reference temperature of the
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surrounding environment (9~.=0), to be contrasted with 0 (no subscript) which is the spatially averaged

temperature, used later. Expressing the heat source term in this way neglects the higher-order effects on

the joule heating due to small changes in electrical resistance with temperature [13], which is a good

approximation in the present circumstances. One end of a NW of thermal resistance Rth.NW is placed at

x=-0, the midpoint of the Wollaston wire, and the other end of the NW is anchored to a heat sink at 0,=0

This boundary condition can be expressed as

Ox( -= kSOOx ox (5-2)
Rth,Wol ( x x=0 x x= 0"

Because the Pt core and Ag sheath of the Wollaston wire are in intimate contact at both ends of the

exposed core, for the other boundary condition we assume perfect thermal contacts:

Ox(+L/2) = oxr(-L/2) =0. (5-3)

The solution of Eqs. (5-1) - (5-3) is

Ox(x,r) -_1 L)L X -(1(+ X , (5-4)

and is depicted in Fig. 5-6(a). It is convenient to introduce a dimensionless parameter, y, defined as one-

quarter of the ratio of the Wollaston wire thermal resistance to the NW thermal resistance:

Rth,WollR =- - .(5-5)4Rth,NW

The reason for the factor of 4 will become apparent later, below Eq. (5-27).

The electrical resistance of the Wollaston wire, Re, depends only on the spatial average of its

temperature: 1 / 2r, (1 + O(56Re= Reo 1+a - /2Ox(x)dx = Reo(l+a )  (5-6)[ L JL/2/

where a is the temperature coefficient of resistivity and 0 is the spatially averaged temperature. Thus,

measurements of the electrical resistance of the Wollaston wire reveal the average temperature of the

Wollaston wire. This is not ideal, because to analyze the thermal properties of the NW we are more

interested in the temperature at x=0 than the average along the entire Wollaston wire. Thus, one

important goal of the thermal modeling is to relate the average temperature 0 to the point temperature

Ox(O). Because the analysis assumes that the Wollaston wire has homogenous properties, constant cross

section, and linear behavior, any non-idealities will introduce some errors in relating the average
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Figure 5-6. Solutions of the heat equation for a Wollaston wire thermal probe with a nanowire or
nanotube touching its midpoint. (a) Spatial temperature profiles Ox(x,y), for various values of the thermal
resistance ratio y. (b) Dependence of the spatially-averaged temperature rise on the thermal resistance
ratio '. (c) Sensitivity as a function of the thermal resistance ratio, y, showing that best sensitivity is
achieved when y=l. (d) Range of permitted thermal resistance ratios (y+/y.) as a function of the minimum
sensitivity, Smin. The dashed lines in panels (b)-(d) depict an example calculation for a particular scenario
with smin=O.025 (see text). For this value Of smin, panel (c) shows that y must lie between 0.0358 and 27.96
in order for the experiment to have acceptable sensitivity. The range of acceptable sensitivity indicated in
panel (b) is only relevant for the example scenario where smi,n=O.025 . A lower value of Smin will give a
broader range of acceptable y.

temperature rise to the NW properties. Ignoring any such non-idealities, the average temperature of the

profiles of Eq. (5-4) is given by

=I 2ReoL
12kS 4JL (5-7)
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and is depicted in Fig. 5-6(b).

As described in Chapter 4, this system may also be characterized in terms of a thermal transfer

function Z, defined in Eqs. (4-1)-(4-4) as the ratio of 0 / Q, where in this chapter the heat input Q is the

joule heating of the Wollaston wire, I 2Reo. Depending on the frequency of the heat source compared to

the longitudinal thermal diffusion time, the experiment can be treated in low- or high-frequency limits.

For quick estimates of the transition frequency, heat loss through the NW can be ignored, making the

Wollaston wire experiment identical to the "suspended wire" (SW) configuration considered in Chapter 4.

In this limit the thermal diffusion time r is given simply by

r ý L2 K (5-8)

where ic is the thermal diffusivity of the Wollaston wire. The transition frequencies are then readily

estimated from Fig. 4-3 of Chapter 4. That figure shows that the low-frequency limit is a good

approximation when oHr < 1, and the high-frequency limit when oHr > 100, where the H subscript refers

to the frequency of the heater. For a typical Pt Wollaston wire of length 2 mm at 300 K, K=2.5 x 105 m2/s

and r -0.16 s, resulting in the requirements (wH/ 2 ;r) <1 Hz (low-frequency limit) and (COH/ 2 n) >100 Hz

(high-frequency limit). It is easy to experimentally verify that the limiting behavior has been achieved by

varying the frequency by a factor of approximately 10 (for example, from 0.1 Hz to 1 Hz) and confirming

that the voltages remain constant.

In the low-frequency limit the thermal mass of the Wollaston wire and NW can be neglected, and

the system is described by the quasistatic analysis of Eqs. (5-1)-(5-5). In this case inpsection of Eq. (5-7)

reveals that the transfer function is

Z(,co - 0)= Rth I - J, (5-9)

with no imaginary part. At both small and large y this transfer function tends to a constant value, but the

large-'y limit is four times smaller than the small-y limit. This is because y-+>oo means RehNW-+O, which is

equivalent to anchoring the midpoint of the Wollaston wire to the temperature of the surroundings,

Ox(0)=O9=0. Because the temperature profile is quadratic in x, reducing the effective length by a factor of

2 reduces the average temperature rise by a factor of 4.

In the high frequency limit, the heating period is so brief that the amplitude of the characteristic

temperature rise becomes negligible:

( * CC) Z 2'Reo- 0 (5-10)
omc
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where m is the mass of the Wollaston wire and c is its specific heat. Thus, in the high-frequency limit

both the real and imaginary parts of Z go to zero:

Z(r, - oo) -+0+0j. (5-11)

The thermal transfer function for intermediate frequencies is a more complicated function of the

properties of the NW and Wollaston wire, but this regime is easily avoided by selecting the appropriate

frequency of the driving current.

Measurements are typically performed in the low-frequency limit (for example, using currents

with frequencies below 0.5 Hz). Applying the thermal transfer function of Eq. (5-9) to the in-phase Ico

entry of Table 4-1 of Chapter 4, we see that the ratio of the resulting sinusoidal voltage drop across the

Wollaston wire to the driving current is the electrical resistance

V3
Re(, - 0) = vlc',rms - Reo lI +-a QavgRth,Wol 1- 4 (5-12)

le- o,rms  1 +Y--

where Qavg is defined as the time-averaged heat input:

Qavg 
- 1I2 ,rmsReo

The experiment can also easily be performed in the high-frequency limit (for example, by driving

the current faster than 100 Hz). Recall from Table 4-1 of Chapter 4 that Vigrms depends on Z(0) as well as

Z(co) and Z(2co). But according to Eq. (5-11) the latter two terms are negligible in the high-frequency

limit, so that the lo) voltage is only sensitive to the DC behavior of Z. The thermal contribution to the

voltage drop is only 2/3 as large as in a low-frequency experiment, and so the factor (1/8) in Eq. (5-12)

should be replaced by (1/12):

V3Re("- 0) -V wrms = Reo I + La QavgRthWol l 1 - I (5-13)
Jr(,coo) 'Ilrms [ 12 1+YaJ

Thus, the high-frequency measurement is only 2/3 as sensitive as the low-frequency measurement.

Physically, this is because a very high frequency AC current results only in DC heating, while a very slow

AC current results in both DC and AC heating that can be tracked by the Wollaston wire quasistatically.

In either the low- or high-frequency limits, the measured electrical resistance can be used to

determine the thermal resistance of the NW. First a baseline measurement is necessary to determine the

thermal resistance of the Wollaston wire [Fig. 5-5(a)]. For example, in the low frequency limit the

electrical resistance can be plotted as a function of the average heat input. The resulting slope gives

Rth, woll:
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RWol n11, R o N) (5-14)
aR. 0 (

8Qavg no NW

while in the high frequency limit the 8 is replaced by 12. Because the geometry and thermal conductivity

of the Wollaston wire are presumably already known, this measurement provides a useful check of the

equipment and data analysis. After touching a NW to the midpoint of the Wollaston wire [Fig. 5-5(b)],

the new slope (aRe/OQavg)touching NW gives the thermal resistance of the NW. It is convenient to define the

ratio of the slopes as

aRe
Q- avg )touching NW (5-15)

aRe
8Qavg no NW

and also the difference in slopes

aRe 8Re
_Qavg )no ,W aQavg )touc hingw (5-16)NWc - -4 =(5-16)

aR
e

'avg no NW

Finally, the NW thermal resistance is given by

(3

RthNW = I Rth,Woll -1 (5-17)
14 4

where all quantities on the right-hand-side are known. This formula has not yet been checked

experimentally against a standard NW sample such as a silicon nanowire of large diameter. Although

Eqs. (5-17) and (5-18) are nonlinear in the measured quantities such as (aRjaQavg)touching NW, Eq. (5-18)

does lend itself to linearization in the common limit of RthNW >> Rh, Woll. In this case F-' >> 1 and the NW

thermal conductance is linearly proportional to the change in slopes:

Re CaRe
1 6R - 1  avg )no NW aQg )touchingNW (5-19)

th,NW 63 Rth,Wol

v ag g no NW
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Note that using the ratios of slopes in Eqs. (5-15) through (5-19) has the benefit of canceling out

quantities such as the temperature coefficient of resistance ct and the cold-wire resistance Reo, thus

reducing the number of parameters which can contribute to experimental uncertainty.

5.3.2 Lorentz number considerations

Because of the wide range of Wollaston wire lengths and diameters that can be fabricated, it is

important to consider the relationships between current, voltage, and the geometry and properties of the

Wollaston wire. It turns out that the relationship between the average temperature rise 0 and the voltage

drop across the Wollaston wire is nearly independent of the Wollaston wire geometry and material. This

surprising result can be understood by the following argument. The average temperature rise of the

Wollaston wire (in the absence of the NW) is given by Eq. (5-7) as

0 = QavgRth,woll /12 (5-20)

where as explained in Chapter 4 the factor of 12 arises for this particular configuration of an isolated,

uniformly heated wire with thermally-clamped ends. The average heating can be expressed as

V2
Qavg = -RMS, (5-21)

eO

so

12 Vrms th,Woll /Reo. (5-22)

But because the Wollaston wire is metallic, we can apply the Wiedemann-Franz law relating the ratio of

thermal resistance to electrical resistance:

Rth,Woll _ 1 (5-23)
Reo k LoT

where L0 is the Lorentz number and T is the absolute temperature. Thus

V2

0 =Z (5-24)
12LOT

Remarkably, this expression now shows that the average temperature rise is independent of all geometric

factors, and, to the extent that the Lorentz number can be considered approximately constant, independent

even of the choice of the Wollaston wire material. For quick calculations it is convenient to express this

baseline temperature rise as
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S(1 KXV /9.4 mV)2

where the characteristic voltage of 9.4 mV assumes a 300 K ambient and the standard value of 2.45 x 108

V2/K2 for the Lorentz number. Eq. (5-24) should be useful for metallic Wollaston wires over a wide

range of temperatures (as long as the Wiedemann-Franz law is approximately valid). If this same

measurement technique were used with a semiconducting "Wollaston wire," Eq. (5-24) would not be

expected to be valid because the significant contribution of phonons to the total thermal conductivity will

invalidate Eq. (5-23).

Equation (5-25) shows that for typical room temperature experiments imposing a temperature rise

at the Wollaston wire of approximately 1 - 10 K, the voltages across the Wollaston wire will range from

approximately 10 mV to 30 mV, regardless of the geometry or material of the Wollaston wire. This has

been verified approximately for several Wollaston wires made from both Pt and PtRh cores, with

diameters ranging from about 0.6 ýtm to about 3 pm. Voltages in this range are convenient for

experiments. The magnitudes of the currents are also reasonable, but vary over a much larger range,

because the electrical resistance of the Wollaston wire will change depending on its geometry and

material (typically about 30 - 300 Q).

5.3.3 Thermal matching is required for good sensitivity

The analysis of Eq. (5-7) and Fig. 5-6(b) reveals an important limitation of this technique: the

thermal resistance of the Wollaston wire needs to be approximately matched to the thermal resistance of

the NW in order for the measured temperature to have good sensitivity to changes in the thermal

resistance of the NW. Consider the change in the temperature of the Wollaston wire for a given change in

the thermal conductance of the bridging NW. For a sensitive measurement of Rth,Nw, we would like small

changes in Rth,NW to result in large changes in the measured temperature. To quantify this concept, we can

define a dimensionless sensitivity as

s = (relative change in 9 of Wollaston wire) (80/090) (5-26)
(relative change in thermal resistance of nanowire) (SRth,Nw /Rth,NW

where 00 is the average temperature of the Wollaston wire before touching it with the NW, 8M is the

uncertainty in the measured temperature, and SRthNW is the uncertainty in the calculated Rth,NW. A large

sensitivity minimizes SRh.Nw.

Applying this definition of s to Eq. (5-7), we see that the sensitivity is related to the thermal

resistances through
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s + =) y + (Y (5-27)s=4(1 + y)24 -

This dependence is depicted in Fig. 5-6(c). It is clear that the sensitivity approaches zero in the limit of

very large and very small Rih,Nw, which is also apparent from the asymptotically flat regions of Fig. 5-6(b).

It is also clear that s is symmetric about y-=l on a semi-log plot, that is, s(y)=s(1/y). The factor of 4 in the

definition ofy [Eq. (5-5)] was introduced in order to provide this symmetry.

An important practical question is just how well Rth, Woll must match Rth,NW in order to achieve a

specified level of experimental accuracy, expressed as

(3Rth,NW / Rth,NW ) < (3Rth,NW / Rth,NW )max (5-28)

As a concrete example, consider an experiment to determine the thermal resistance of the NW with an

uncertainty of less than 20%. In order to minimize the ambiguity about which temperature of the NW

corresponds to the measured properties, we will limit the average temperature rise of the Wollaston wire

before touching the NW to 00 =10 K. Furthermore, the experimental configuration and equipment

limitations will result in some minimum uncertainty in the measured Wollaston wire temperature, 6O, of

perhaps + 0.05 K. What then is the range of y that can be tolerated to achieve this specified level of

uncertainty in Rth,Nw? This condition is equivalent to requiring S>>Smin, where

Smin = (80/00)o (5-29)
mn (Rth,NW / Rth,NW max

In this example, Smi,=(0.05 K / 10 OK)/(20%)=0.025. Solving Eq. (5-27) for y yields the two roots

3 - 8Smin + 9 - 4 8 Smin
m = , (5-30)

8 smin

3 - 8smin - /9 - 48sminr_ = (5-3 1)
8smin

For best sensitivity, an ideal Wollaston wire probe should be designed with y-=l. However, the

uncertainty in Rth,NW will still be less than the allowable uncertainty as long as

Y_ < y < Y+, (5-32)

Note that Eqs. (5-30) and (5-31) only have solutions for smin<3/16: that is, the best possible sensitivity is

s=3/16, which is achieved only when y=1. Also note that y- always equals l/y+. In this example, y.

=0.0358 and Y+=2 7.96 , so y is allowed to range from
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0.0358 <y < 27.96

to ensure that the uncertainty in Rth,NW is less than 20%. Thus, in this example the thermal resistance of

the NW must be estimated in advance to within a factor of about 28 of its true value, in order to design

the Wollaston wire probe with appropriate thermal resistance. That is, the Wollaston wire probe will be

designed to achieve y=1 based on the estimated Rth,NW. As long as the true Rh.Nw is within a factor of 28

of the estimate, the true value of y will lie between 0.0358 and 27.96, and the uncertainty in Rth.NW will be

less than 20%. In the best case, y-=, from Eq. (5-26) we see that the uncertainty in Rth.NW would be

improved to 2.67%. In general, the range of allowable y spans

r+ 3 - 8smin + 9 - 48smin  (534)
7- 3 - 8smin - 9 - 48smin

As shown in Fig. 5-6(d), this range is a very strong function of Smi,n. The range of allowable y can be

greatly increased by (1) tolerating greater relative uncertainty in Rth,NW, (2) reducing the uncertainty in

temperature measurements 60, or (3) increasing the baseline temperature rise 00o. The latter strategy will

also introduce ambiguity about the effective temperature of the NW properties, and may cause problems

with thermal expansion if it overwhelms the pretension of the Wollaston wire (described further below).

For the most accurate results it may be necessary to perform two measurements: first to determine the

approximate Rth.NW, and then a second measurement with a fresh Wollaston wire probe optimized to have

y close to unity.

5.3.4 Thermal contact resistance and spreading resistance
Thermal contact resistances Rco,t between the Wollaston wire and the NW, and between the NW

and the cold sink, lead directly to errors in the calculated Rth,NW [Fig. 5-1(b)]. That is,

Rth,NW,apparent = Rth,NW + Rcont,Wol-NW + Rcont,NW-cold sink (5-35)

As a first approximation, the expected magnitude of these contact resistances can be estimated from

Rcon,, 1/ hAcont (5-36)

where A is the contact area and hcon, is the specific contact conductance. This expression assumes a one-

dimensional geometry at the contact. Because this assumption may be violated in the current experiment,

spreading resistance effects are discussed below. Cahill et al. [14 ] report that typical values of hcon, at

300 K range from about 30 - 800 MW/m 2K for various material combinations. For a 10 nm diameter NW

contacted at the end, A.80 nm2, and so Rco,,t might be expected to range from 2 x 10 7 to 4 x 108 K/W.
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These resistances are comparable to or larger than the expected Rh,Nw, and thus would be a serious

experimental obstacle to quantitative measurements of Rth,NW. The contact resistances may be reduced

greatly by increasing the effective contact area. For example, if the same NW can be contacted around its

circumference over the last 200 nm of its length, the contact area would become 6300 nm2, reducing the

contact resistance by a factor of 80 to the more acceptable neighborhood of 3 x 105 to 5 x 106 K/W.

Because the contact region is much smaller than the diameter of the Wollaston wire, spreading

resistance effects within the Wollaston wire and within the gold STM probe must also be considered. The

magnitude of the thermal spreading resistance can be estimated from the conduction shape factor for a

disc-shaped contact of diameter D on a semi-infinite substrate [15]:

Rspreading Z 1/(2ksubsD) (5-37)

where ks,,bs is the thermal conductivity of the substrate, in this case the Wollaston wire. The semi-infinite

substrate assumption is justified because the diameter of the Wollaston wire is more than 5 times larger

than the diameter of the contact area. Assuming a platinum Wollaston wire, the spreading resistance

portion of the contact resistance is estimated as 7 x 105 K/W for a 10 nm diameter contact. Again, if the

area of the contact is increased, the spreading resistance will be reduced. In some cases the size of the

contact area may be comparable to or even smaller than the mean free path of the electrons in the

Wollaston wire. In this situation the so-called "phonon rarefaction" effect becomes important, and the

spreading resistance will increase compared to the ideal calculation of Eq. (5-37) [16].

5.3.5 Radiation corrections

The analysis of Eqs. (5-1) - (5-18) neglected radiation losses from the Wollaston wire. To check

this assumption we model the Wollaston wire as a fin, and incorporate the radiation losses through a

radiation convection coefficient,

hrad = 46radO'SBT 3  (5-38)

where Crad is the emissivity of the Wollaston wire (assumed, conservatively, to exist in black

surroundings), orsB the Stefan-Boltzmann constant (5.67 x 10-8 W/m2K4), and T the mean absolute

temperature of the Wollaston wire and its surroundings. For shiny metals such as platinum at 300 K, the

emissivity typically ranges from 0.02 to 0.1 [15], and so for typical experiments:

O.1 < hrad < 0.6 W/m2K. (5-39)
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From traditional fin analysis [15], we know that radiation/convection losses can generally be

neglected if the fin half-length is short compared to the characteristic length f -', where 8 is the fin

parameter:

f = kD (5-40)
4hrad

For a typical platinum Wollaston wire of 3 pm diameter, this length is about 9 - 23 mm. Because this is

much longer than the typical Wollaston wire half-length of about 1 mm, we can expect that radiation

losses will be a very small correction.

To proceed further and quantify these potential errors from radiation losses, we can include the

radiation/convection term in the original heat equation:

1 d2Ox= QD +(5-41)
f12 dx2  4 hrad

where Q=I2Reo/SL. The boundary conditions at x=0 and x=+±L/2 are unchanged from Eqs. (5-2) and (5-3).

Radiation losses will be most important when there is no heat loss through a nanowire, that is, when y=0,

so to be conservative (and simple) we focus on that limit here. The solution of Eqs. (5-2), (5-3), and (5-

41) is

OX(x, hrad,=) QD( 1  cosh(fix)
= 4 hrad cosh(fL /2)) (5-42)

The average temperature is then

avg (hrad, Y = 0 ) QL2 - tanh- (5-43)
4k(L / 2) 3  2 2

By performing a Taylor series expansion for small hrad (that is, small fl), it is readily verified these two

expressions give the correct limiting behavior in the absence of radiation [(Eqs. (5-4) and (5-7) with y-=0].

The fractional error in the estimated temperature can be expressed as

fractional error in Oavg avg,neglect radiation - Oavg,include radiation (5-44)
Oavg,inchlude radiation

which, considering Eqs. (5-7) and (5-43) turns out to be

(pL /2)
fractional error in avg = (L / 2)-tanh(fL / 2)] 1

S3[(,8L / 2)- tanh(fiL / 2)] (5-45)
2 (fL / 2)2  (for fiL < 5)
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where in the second step we have performed a Taylor series expansion for small fiL. Thus, to keep the

error in temperature measurements less than 10%, it is necessary to keep BL/2 < 1/2, or simply fiL<1. For

the 3 jtm x 2 mm Wollaston wire discussed previously, jL/2 ranges from 0.043 to 0.11, so the fractional

error is expected to be between 0.073% and 0.48%. Clearly, radiation errors should be negligible for this

type of Wollaston wire.

However, in order to measure NW of very high thermal resistance, a more sensitive Wollaston

wire probe might be fabricated with a diameter of 0.5 jim and a length of 5 mm, made out of PtRh with a

lower thermal conductivity of 38 W/mK (Rth,wo11=6 x 108 K/W, see Fig. 5-2). In this case, for an

emissivity of 0.02 to 0.1, JL/2 would range from 0.36 to 0.89, resulting in temperature errors between

5.2% and 32%.

Thus, we can conclude that radiation corrections at 300 K are negligible for the standard 3 Ptm x 2

mm Wollaston wires, may become significant for the most sensitive Wollaston wires, but should not be

overwhelming. There is tradeoff when optimizing the thermal design of the Wollaston wire for negligible

radiation losses compared to sensitive measurements of Rh.,vw. This is clearly seen by expressing 8L/2 in

terms of Rth, Wo, and eliminating L:

=- Rthwoll k  (5-46)
2 2

Rth, Woll is already constrained by the thermal matching with the expected NW thermal resistance. For

radiation considerations we would like to keep BL/2 < 0.5. Eq. (5-46) shows that we should do this by

choosing Wollaston wire materials with small hrad, and, less obviously, small k. Furthermore, we should

choose small diameter Wollaston wires, which also means that they will be shorter (because we should

hold constant Rth, wollocL/D 2)

5.3.6 Mechanical aspects of probe design

Although the thermal calculations above show that a Wollaston-wire thermal probe should be

able to measure the thermal resistance of individual NWs, the mechanical design of the Wollaston wire

probe also requires some care.

The need for pretensioning

The thermal design described above assumes that the Wollaston wire is rigidly fixed throughout

the experiment. However, in practice there are three effects which tend to make the Wollaston wire

move: thermal expansion, thermal vibrations due to fundamental thermodynamics, and, when deployed

inside the TEM, Lorentz forces. A good solution to overcome these mechanical stability issues is to
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pretension the Wollaston wire. Additional challenges of the high-vacuum, high-magnetic field TEM

environment are described later.

Thermal expansion

The coefficient of thermal expansion (CTE) of Pt is about 9 x 10-6 K- 1 (9 parts-per-million per K,

ppm/K) and the CTE of PtRh alloy is likely about double this value. For a Wollaston wire of length L=2

mm and a temperature rise of 0 10 K, the change in length would be about 5L= 180 nm if only one end

were fixed:

,L = (CTE). LO 0 (5-47)

However, because both ends are fixed, this will cause a lateral shift of much larger deflection. This

lateral shift can be estimated from Euler-Bernoulli beam theory for a buckled column [17]. For a perfect

column whose ends are constrained to not rotate (i.e. fixed-fixed boundary conditions), the deformed

beam will have a shape

y(x)= yo( + cos(2n7x/L)). (5-48)

as shown in Fig. 5-7(a). Note that the maximum lateral deflection is denoted yo, and occurs at x-O=0. The

total arc length, A, of a curved beam is given by

L12 (dy 2A 2 = - + 1 dx (5-49)

which for small deflections simplifies to

L/2 2SfLI2 4+y') 2 dx (5-50)
f / 2 2dx

For the profile given in Eq. (5-48), the resulting arc length is

A= L 1+(.2 (5-51)

so we can equate

02 0 (5-52)
L 2L

Thus,
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Figure 5-7. Mechanical issues in the design of a Wollaston wire probe. (a) Lateral buckling due to
thermal expansion. (b) Force balance to determine an approximate, effective spring constant for lateral
deflections.
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For the typical Pt Wollaston wire example described here, the lateral deflection of yoA12 Pm is

more than 60 times larger than the axial elongation of 8L- 180 nm. Lateral and longitudinal deflections of

the Wollaston wire may be acceptable if they are small compared to the length of the NW. Because

typical NWs are only about 0.5 - 5 ptm long, a lateral deflection of 12 pm would pose serious challenges.

Fortunately, it is easy to avoid this problem by pretensioning the Wollaston wire by more than the

anticipated thermal 8L. For a wire in tension, the built-in stretch 6LBI is given by

SLB = LeBi = LoBI /E, (5-54)

where &B1 is the built-in strain, oBI is the built-in stress, and E is the Young's modulus of the Wollaston

wire. As long as the built-in strain exceeds the thermal expansion strain, &TE=(CTE)0, the wire will

remain in tension rather than buckling, and there should ideally be no deflections in either the lateral or

longitudinal directions. For the representative example considered here, the requirement becomes SBI> 9
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x 10-5 -0.01%. Because of the small cross-sectional area S of the Wollaston wire, this strain corresponds

to a fairly small force:

FBI = SuB = SE,6BI. (5-55)

For example, the common 3 pm diameter Pt Wollaston wire requires only about 100 PN of force to

achieve 0.01% of built-in strain. This force is equivalent to the weight of a 10 mg mass, which suggests

one practical approach to pretensioning. First, one end of the Wollaston wire is anchored to the

supporting frame with epoxy, and a 10 mg mass is attached to the other end of the Wollaston wire. Next,

the frame and Wollaston wire assembly are tilted 90 degrees to orient the Wollaston wire vertically, with

the etched portion of the Wollaston wire supporting the weight of the mass. At this stage the epoxy joint

is uppermost. Then, a second small droplet of epoxy is applied to the lower support of the frame,

anchoring the Wollaston wire. Finally, after the second epoxy joint has hardened, the mass can be

removed, transferring the load to the epoxy joint.

This deadweight approach has been used to successfully pretension 3 Pm Wollaston wires, using

masses that typically range from 10-30 mg. The quality of pretensioning can be observed experimentally

by noting the relationship between the lateral deflection and applied temperature at the Wollaston wire, in

the absence of any NW. For a poorly-tensioned 3 pm diameter Wollaston wire, typical lateral deflections

are about 50 - 100 nm/K, while the best-tensioned Wollaston wires made so far have deflections of about

2 - 5 nm/K.

Fundamental thermal vibrations

It is well-known that a simple spring-mass system at finite temperature exhibits small random

fluctuations in position, due to the thermal population of the vibrational modes. This is analogous to

Johnson noise in a resistor. An intuitive understanding comes from equating the thermal energy, kBT, to

the sum of kinetic and potential energies. From equipartition of energy [18], we know that the average

values of kinetic and potential energies are the same, so this condition becomes

2 = 'k T, (5-56)

where g is the spring constant and yh is the average thermal displacement. Thus, a rough estimate for yh

is

YT, Ak BT (5-57)

gNotice that this result is independent of the mass attached to the spring.

Notice that this result is independent of the mass attached to the spring.
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A more sophisticated analysis has been used by Treacy et aL. [19] to estimate the stiffness of a

single carbon NT from its vibrations under a TEM, and is described in detail by Krishnan et al. [20]. The

analysis can be presented briefly in terms of conditional probabilities. For example, P(ylT) is the

probability that the oscillator will be found at a location y, given that it is in a bath of temperature T. This

can be expressed as an integral over energy,

P(y I T) = fP(y I e)P(c I T)de (5-58)
6

where P(sIT) is the probability of the oscillator having energy E, given that it is in a bath of temperature T.

This probability is found from the Boltzmann factor [18],

P(eIT)de =-Iexp -- de. (5-59)
kBT kBT)

Also in Eq. (5-58), P(yle) is the probability of finding the oscillator at location y, given that it has a total

energy &. This probability is found from the kinematics of simple harmonic motion,

P(y l c)dy= dy (5-60)
Y2e

g

Combining Eqs. (5-58) - (5-60) leads to a Gaussian probability distribution,

1 (~2~
P(y I T) - 1 F exp - (5-61)

where the thermal standard deviation crh is

h =kT (5-62)
rgj-

identical to the simplistic estimate of Eq. (5-57).

Thus, to ensure that the thermal vibrations are negligibly small, the effective spring constant of

the Wollaston wire must be sufficiently large, regardless of its mass. For example, to keep vibrations

below 100 nm, g must be greater than 0.4 gN/m, while to keep vibrations below 1 nm, g must exceed 4

mN/m. What is the effective lumped spring constant of a pretensioned Wollaston wire for these lateral

thermal vibrations? Although the methods of Krishnan et al. [20] could be used to develop a rigorous

answer in terms of the normal modes of the Wollaston wire, here we will be content with a rougher

estimate. As a first approximation, assume that the profile of the fundamental mode is triangular rather
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than sinusoidal [Fig. 5-7(b)], and consider the response to a point force applied at the Wollaston wire

midpoint. Because the additional strains due to deflection will be far smaller than the built-in strain due

to pretensioning, to a very good approximation the tension in the Wollaston wire will remain constant

during deflections. From a simple force balance, the spring constant is found to be

g ; 4ESCBI I/L (5-63)

Although Eq. (5-63) shows that decreasing L or increasing S improves the mechanical performance of the

Wollaston wire probe, this would be bad for the thermal performance of the probe because it would

reduce the thermal resistance of the Wollaston wire, Rth,wol=L/kS. It is better to express the spring

constant in terms of thermal parameters,

4 ECBIg 4 -- (5-64)
k Rth,Woll

This shows that geometric factors have canceled out. Assuming that Rth, Wol is already fixed by the

thermal requirements, Eq. (5-64) shows that to achieve good mechanical performance, a Wollaston wire

material should have large Young's modulus, low thermal conductivity, and tolerate a large built-in

strain. For Pt, the quantity Em/,,,,k is approximately 7 x 105 (N/m)/(K/W). Thus, to keep arh less than 1

nm (requiring g greater than 4 mN/m), Rth,Woll is restricted to be smaller than about 2 x 108 K/W.

Fortunately, this upper limit on Rth.,wol is still large enough to permit accurate measurements of a wide

range of NW and NT, as shown in Fig. 5-2.

Additional mechanical issues when used inside a TEM

Designing a Wollaston probe to work inside a TEM brings three additional challenges. First, a

standard TEM sample holder only allows a very small volume in which to add the Wollaston probe. The

allowed volume is approximately (5 mm) x (3 mm) x (1.5 mm), which must include clearances to avoid

colliding with the sample holder, or worse, one of the TEM lenses. A second issue is that the TEM

operates at a base pressure of typically 1.5 x 10-5 Pa (-10,7 torr or mbar). Thus all materials of the

Wollaston probe must be compatible with high-vacuum conditions, ruling out certain polymers and

epoxies. The third challenge is the very high magnetic fields present near the final lens of the TEM, of

the order of 0.1 - 1 Tesla. This requires that the Wollaston probe be free of all magnetic materials, which

could be torn off of the sample holder and collide with a lens. A related concern is the Lorentz forces

exerted on a Wollaston wire. Experience has shown that a Wollaston wire with good pretension is not

affected by Lorentz forces as long as the TEM lens is in low-magnification mode, but in the high-

magnification mode, the Lorentz forces are strong enough to destroy the Wollaston wire if any current is
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flowing. Thus, as a precaution the Wollaston wire is short circuited to itself whenever the TEM is

operated in the high-magnification mode.

5.4 Thermal resistance measurements using the Wollaston

wire probe

5.4.1 Experimental procedure to measure thermal conductivity

Mounting the Wollaston probe, powder source, and sample

The first step in preparing for a Wollaston wire measurement inside the TEM (Fig. 5-4) is to

mount the Wollaston probe, sample, and powder source for in-situ contact deposition (described later).

First, the wire supporting the powder source is soldered to part of the TEM sample holder frame. This is

primarily for mechanical support, although there may also be some benefit in grounding the powder

source in order to prevent charging effects. Next the powder source is gently filled with precursor

powder. Then, the gold wire attached to the Wollaston wire probe is inserted into its cylindrical sleeve at

the far end of the sample holder frame. The two leads from the probe are carefully soldered to the

appropriate electrodes on the frame. Excess heating from the soldering iron appeared to result in loss of

pretension in the Wollaston wire in several trials, especially when the Wollaston wire was mounted on a

quartz substrate thinner than the usual 500 gm. Finally, the sample itself is mounted. The sample

consists of a single NW that was previously attached to the sharp end of a gold wire. In most cases the

gold wire has already been etched down to a very sharp point for use as a scanning tunneling microscope

(STM) tip, but adequate results may also be possible simply by using scissors to cut a sharp end on gold

wire. This gold probe wire is then attached to the xyz piezoelectric manipulator that is built in to this

TEM holder.

Instrumentation

The existing TEM sample holder has 4 auxiliary electrodes in addition to the electrode on the

STM tip. This would permit 4-point electrical measurements of the Wollaston wire, but for simplicity in

the current experiments we limit ourselves to 2 point measurements. The typical lead resistances are

several ohms, which represents an important correction for some of the Wollaston wires, whose

resistances range from about 30 - 300 0 depending on material and geometry. A homemade cable and

breakout box are used to access the necessary electrical leads for our measurements, but by setting the

appropriate switches, full control can be reverted to the manufacturer's hardware.
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The basic circuit used for Wollaston wire thermal measurements is depicted in Fig. 5-8(a). An

AC voltage source, such as the reference signal from a lock-in amplifier, is used to drive the circuit. A

ballast resistance, typically 1000 0, is often used so that the voltage source behaves like a current source.

A lock-in amplifier is used to measure the resulting voltage drop across the Wollaston wire, including the

effects of lead resistances. Finally, for precise current measurements, an optional second lock-in

amplifier can be used to measure the voltage drop across a 10.00 02 standard resistor. Alternatively, the

current can be estimated from the magnitude of the source voltage and an estimate for the total resistance

of the circuit. For experiments where the total circuit resistance is dominated by the well-known ballast

resistance, this should be a good estimate. The experiment is most conveniently performed at frequencies

slower than the characteristic longitudinal diffusion frequency of the Wollaston wire. For example,

operating at 0.5 Hz for the typical 2 mm long Wollaston wire ensures the low-frequency limiting behavior

of Eq. (5-12). On the other hand, the high frequency limit of Eq. (5-13) is also sometimes useful.

For example, operating at 102 kHz (the limit of our SR830 lock-in amplifier) is much faster than the

mechanical resonance of the Wollaston wire, ensuring that there is very little lateral displacement due to

Lorentz forces. This is particularly important in the high magnification mode, because the local magnetic

fields seem to be much stronger and could easily cause a Wollaston wire to go slack.

Checking the mechanical stability

After inserting the sample holder into the TEM and reaching base pressure, a few preliminary

checks are in order prior to beginning thermal experiments. The most important issue is to confirm that

the Wollaston wire retains adequate pretension. To check this, the magnitude of the thermally-driven

displacement can be estimated. Several values of drive voltage are set, covering the expected range of the

experiment. For each drive voltage, the peak-to-peak lateral displacement of the Wollaston wire is

estimated by observing it in the low-magnification mode of the TEM. The average temperature rise can

be estimated from the guideline of Eq. (5-25). A plot of displacement versus temperature yields an

estimate for a thermal displacement coefficient in units of nm/K. Experience has shown that the best

Wollaston wire probes so far respond at about 5 nm/K, while bad probes exhibit thermal expansion of

around 100 nm/K or worse.

If the thermal expansion is adequately small, it is also appropriate to check for thermal vibrations

at very high magnification. This should be done with zero current and the Wollaston wire shorted to itself

for additional security. In a slack Wollaston wire it is impossible to image the Wollaston wire at high

resolution, not only due to its thermal vibrations but also because the focal spot of the electron beam tends

to "push" the Wollaston wire around when the beam is focused near the wire. The origin of this lateral

force is unclear. However, we believe the displacement is real, and not some artifact of the electron

139



M····

".,..°...°.°............°..°°..°°...........°...°...,....°......

Figure 5-8. Circuit diagrams for measuring the thermoelectric properties of a single nanowire with a
Wollaston wire probe inside a TEM. (a) Thermal resistance of the NW. (b) Electrical resistance of the
NW. (c) Seebeck coefficient of the NW. By using knowledge of the source voltage and assuming that
the electrical resistances obey RNW >> RBaIast >> Rwoit, the optional secondary equipment can be omitted
(see text).
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Figure 5-9. Preliminary thermal measurements of a ZnO nanobelt using a Wollaston wire probe inside a
TEM. (a) Baseline thermal response of a bare Wollaston wire. (b) Preliminary thermal resistance data
for an individual ZnO nanobelt. The three curves correspond to three different trials with different
lengths of the same nanobelt, and show that the non-repeatable contact resistance dominates the
measurement.

optics, because in these situations the Wollaston wire is "pushed" around even though an adjacent rigid

feature such as the STM tip remains fixed.

5.4.2 Preliminary measurements of thermal conductivity
Representative preliminary data are shown in Fig. 5-9 for measurements of the thermal

conductance of a ZnO nanobelt using a 3 ýtm diameter Wollaston wire. First the bare Wollaston wire is

calibrated by itself (uppermost line). Several driving currents were chosen to give a temperature rise of

up to approximately 25 K. By measuring the changes in electrical resistance and dividing by the

temperature coefficient of resistivity, the average temperature rise of the Wollaston wire was determined.

The slope of temperature versus power input gives the thermal resistance of the Wollaston wire according

to Eq. (5-14),
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while in the high frequency limit the factor of 8 should be replaced by 12.

Next a ZnO nanobelt of -3 jm width but uncertain thickness (very likely < 100 nm) was brought

into contact with the Wollaston wire. In contrast to the usual configuration of end contact, here it was the

side of the nanobelt that was contacted to the Wollaston wire by bringing the belt down from above. With

the belt in contact a new 0-Q curve was measured. The slope of the new curve was normalized by the

slope of the uncontacted Wollaston wire O-Q curve to calculate 4 from Eq. (5-15), and then finally the

thermal resistance of the nanobelt was estimated from Eq. (5-17) or (5-18).

Because no special measures were taken to improve the quality of the thermal contacts in this set

of experiments, the results were not repeatable when the contact was broken and remade. The middle

curve corresponds to an approximately 14 pim length of ZnO, with a calculated thermal resistance

(including contacts) of 4.8 x 106 K/W. The curve above corresponds to doubling the length of nanobelt to

about 29 pm, but the calculated thermal resistance increased by about a factor of 5, to 2.4 x 107 K/W.

However, the lowermost curve corresponds to an even longer length of about 45 jim, but has the lowest

thermal resistance of 2.8 x 106 K/W. These data show that the contact resistances must be the dominant

contribution to the total thermal resistance, and vary greatly from trial to trial whenever the nanobelt was

removed and then replaced on the Wollaston wire. Clearly, the thermal contact resistance must be

improved.

5.5 Electrical conductance measurements using the

Wollaston wire probe

5.5.1 Experimental procedure to measure electrical conductivity

The same "T" shaped configuration used to measure the thermal conductance of a NW can also

be used to measure its electrical conductance. The electrical measurement is considerably simpler than

the thermal measurement. As shown in Fig. 5-8(b), a DC or AC current is passed in one end of the

Wollaston wire, through the NW, and then out from the cold sink. The current may be measured with an

ammeter, or determined from the voltage drop across the 10.00 0 standard resistor. Because the

electrical resistance of a single NW is expected to be tens of kQ if not much larger, the resistance of the

rest of the circuit can often be neglected in comparison to the resistance of the NW. In this limit the

voltage across the nanowire is taken to be the same as the voltage of the DC or AC source. This
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Figure 5-10. Preliminary electrical measurements of a carbon nanotube using a Wollaston wire probe

inside a TEM. Further annealing of the carbon nanotube contacts results in linear IV curves (not shown).

assumption is easily checked for self-consistency in any data set and turns out to be appropriate for our

measurements so far. Of course, it would be better to use a second voltmeter to measure the voltage

across the NW directly.

5.5.2 Preliminary measurements of electrical conductivity

Representative I-V curves for a carbon nanotube with carbon contacts are shown in Fig. 5-10.

The technique to deposit amorphous carbon is described in the next section. It is clear that the IV curves

of Fig. 5-10 are nonlinear but fairly symmetric. This is due to the poor electrical properties of the

amorphous carbon contacts. The amorphous carbon can be partially graphitized, and its electrical

properties improved, by passing a relatively large annealing current (of the order of 100 jtA) through the

CNT for several minutes [22]. This is the reason for the three different curves of Fig. 5-10: they

correspond to successive attempts at annealing. Although not shown here, further annealing is known to

reliably result in ohmic I-V curves for these CNT with amorphous carbon contacts [22].

5.6 Seebeck measurements using the Wollaston wire probe

Calculations of the Seebeck coefficient require measurements of both the voltage and temperature

differences across the NW. In conventional macro-scale experiments this is readily achieved with

separate temperature probes and voltage probes at each end of a sample. However, for single-NW

measurements it would be very difficult to make more than one contact at each end of the NW. Shi et al.

143



(b) Current, I

Junction
Temp., Oj

INW/NT

V = IR + (Swolaston - SNanowire j- oo )

(d) Preliminary Wollaston Result
-20

-22

-24

-26

-28

Voltage, V IoR

VSeebeck

(c) Proof of Concept (type K thermocouple)
200U -

200 -

100 -

0

-1009 11 13 15
Time [s]

.................. ..................... .....

AV=167 pV

AO=4.25 K
S=-AV/A ) -- - K

=39.3 gV/K (40.7 Lit.)

Time [s]

Figure 5-11. Preliminary Seebeck measurements using a Wollaston wire probe. (a) Measurement circuit.
(b) Evolution of current, junction temperature, and voltage when the current is suddenly turned off. (c)
Proof-of-concept data taken in a benchtop experiment for a millimeter-scale thermocouple (type K:
chromel-alumel). (d) Preliminary data for a single carbon nanotube taken with the Wollaston wire probe.
Although the decay signal is clearly resolved, the Seebeck coefficient cannot be estimated quantitatively
because of the large thermal contact resistance.

[2] addressed this problem by microfabricating a heater/thermometer and a voltage probe at the platforms

on either end of the NW, with a total of 10 electrical leads.

The Wollaston wire probe used in this work (Fig. 5-4) includes only 3 electrical leads and is

simpler than the Shi et al. system. However, with some additional assumptions, the Seebeck coefficient

can still be measured by a technique similar to Harman's method [21]. A key concept is that each

measurement is a sequence of two steps, and so by multiplexing the measurement in time we can

essentially double the functionality of the leads.
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In the first step, a NW is touched to the midpoint of the Wollaston wire and a DC current is

passed through the Wollaston wire [Figs 5-11 (a,b)]. From the thermal analysis described above (Eq. 5-4),

the temperature Ojo at the NW-Wollaston wire junction is

I( 2ReoL Y 1Ojo () =- ). (5-66)(8kS ) I+V1+
where all quantities on the right-hand side are known from calibration and earlier measurements. This

NW-Wollaston wire junction is also one junction of a thermocouple formed between the Wollaston wire

and the NW. The voltage AV measured between the STM tip and either end of the Wollaston wire

contains both an Ohmic term and a Seebeck voltage:

AV = IReo 0  o -o 9,Swoi - SNW) (5-67)

where 9~. is the temperature of the surrounding environment, including the STM and the ends of the

Wollaston wire.

In the second step, the electrical current is set to zero. Now the voltage difference decays

according to

AV(t) = (Oj (t)0-O Swo1, - SNw). (5-68)

As the heat flows out of the Wollaston wire, the temperature difference (9Oj- o-) decays to zero in an

approximately exponential fashion. Importantly, the timescale of this decay is determined by the thermal

diffusion time along the length of the Wollaston wire [Eq. (5-8)], and not by the diameter of the

Wollaston wire or length of the nanowire. For a typical Wollaston wire probe made from platinum and 2

mm long, r 160 ms. This is slow enough that the transient can be measured with reasonable accuracy,

using, for example, a nanovoltmeter. In principle the microfabricated "T" platform of Fujii et al. could

also measure the Seebeck coefficient using this technique, but would require much faster instrumentation

because the thermal diffusion time for a 6 pm long Pt heater is only around 1 ps. Although Eq. (5-68)

could be combined with a solution of the transient heat conduction equation to fit the entire voltage

transient, it is simpler to measure only the magnitude of the voltage decay:

AVtrans = (Oj - S Swou - SNW ) (5-69)

Assuming that the Seebeck coefficient of the Wollaston wire is known (from handbook values or previous

calibration), the only unknown is the NW Seebeck coefficient.

This technique, which has not been reported previously, depends on several assumptions and has

several limitations. The greatest difficulty is that good thermal and electrical contacts are required for
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quantitative measurements. In addition, previous measurements or estimates of y are necessary, though

this method actually works better in the common limit of large RthNW because 0 j0 becomes independent of

y for y<<1. The duration of the transient decay is brief enough that some care is necessary in the

instrumentation, though this is not a major problem.

5.6.1 Experimental procedure to measure Seebeck coefficient

The circuit of Fig. 5-8(c) can be used to measure the Seebeck coefficient of a NW. A function

generator is used to generate a square wave with DC offset equal to the amplitude. Thus, the current is

some constant Io during the first half of the period, and zero during the second half of the period. The

period is typically around 10-20 s, chosen to be much longer than the thermal decay time r. The

nanovoltmeter monitors the voltage between the STM/cold sink and one end of the Wollaston wire, as

described in Eq. (5-67). A program was written in Labview to average many transients of the

nanovoltmeter data and obtain time resolution as fine as approximately 10 ms.

5.6.2 Preliminary measurements of Seebeck coefficient

Because this is a new technique, to prove the concept a benchtop experiment was performed

using macro-sized type-K thermocouple wire. The voltage decay curve is shown in Fig. 5-11(c). It is

important to measure the voltage decay to whatever the constant asymptote value is, even if this is not

actually zero. Non-zero asymptotes are most likely due to static thermoelectric voltages elsewhere in the

circuit, and as such only add a constant offset term to the analysis of Eqs. (5-67) - (5-69). Non-zero

asymptotes would also occur if the function generator voltage at "zero" has an offset. Because the

heating is proportional to the square of this off-state current, small residual currents will have a negligible

impact on the off-state temperature. This argument has been confirmed experimentally for several values

of the off-state current. For the data shown in Fig. 5-11(c), the magnitude of the voltage decay is 167 ptV.

The thermal analysis described above was used to estimate the corresponding temperature decay of the

junction as (o-j0-0c0)=4.25 K. The implied Seebeck coefficient is then 39.2 pV/K, which is within 4% of

the nominal value of 40.7 [tV/K, validating the basic approach.

A preliminary attempt to measure the Seebeck coefficient of a CNT is shown in Fig. 5-11(d).

The voltage and temperature decay is only about 2 pV over about 1 second, but is still resolved

adequately by the nanovoltmeter. However, these data cannot be interpreted quantitatively because this

experiment had a large thermal contact resistance, and so we do not know how much of the measured

temperature drop occured across the CNT and how much across the contact resistance.
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5.7 Improving the thermal contact resistance through

electron-beam induced deposition (EBID)
The above discussion has shown that poor electrical and thermal contacts are a great challenge to

quantitative thermoelectric measurements of individual NWs. NW measurement schemes that place a

NW in contact with a prefabricated metal contact, such as the Shi et al. and Fujii et al. platforms and the

Wollaston wire probe described in this chapter, are likely to have large electrical and thermal contact

resistances unless special care is taken. To reduce these resistances, it is common to deposit additional

material around the two endpoints of the NW where it meets the contacts. This is usually achieved by

local chemical vapor deposition (CVD), where a focused beam of energy (ions, electrons, or photons)

induces vapors of a precursor molecule to deposit locally as a solid. When the energy source is ions, the

process is known as focused ion beam (FIB) deposition. When the energy source is electrons, the process

is commonly known as electron-beam induced deposition (EBID). A laser beam can also be used.

Because many single-NW experiments involve some fabrication steps inside an SEM and/or TEM, EBID

is a natural choice for local CVD because the electron beam is already present. FIB deposition, on the

other hand, requires additional hardware. In this thesis, EBID was implemented in the high-resolution

TEM at Boston College. Although amorphous carbon was deposited in the preliminary experiments, this

was found to give unreliable contacts, and so subsequent work focused on EBID of tungsten.

5.7.1 EBID of carbon

The vacuum chambers used in SEM and TEM often contain significant levels of residual organic

vapors even at the operating pressures of --105 - 10-3 Pa ( 10-7 - 10-5 torr or mbar). These organics are a

natural precursor for the simplest form of EBID, the local deposition of amorphous carbon. This is the

first form of contact improvement implemented by Shi et al., and is still in use [1-6]. However, our

attempts at EBID of carbon inside the TEM met with mixed results. The greatest problem was that the

carbon deposition rate varied greatly from trial to trial. In some cases the deposition rate was virtually

zero, while in other cases the deposition was very fast (several nm/s). Sometimes a faster deposition rate

could be elicited by applying a small drop of alcohol near the sample immediately prior to inserting it into

the TEM vacuum chamber, but even this technique would often fail to lead to carbon deposition. Another

problem is that the carbon was amorphous and often resulted in nonlinear I-V curves with very high

resistivity. Previous experience from the Boston College group showed that such amorphous carbon

deposits could often be "annealed" by passing an electrical current [22]. This treatment commonly

resulted in linear I- V curves, much lower electrical resistance, and a graphitic crystal structure as imaged

by the TEM [22]. However, this approach requires current to be passed through the contact region, and
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Figure 5-12. Electron-beam induced deposition (EBID) of tungsten inside a TEM. (a) Basic deposition

process. W(CO) 6 powder is loaded in a small holder. The powder sublimes inside the TEM, and where

the electron beam strikes the vapor, solid W+C deposits and CO vapor is pumped away. (b) An arbitrary

pattern ("RLE MIT") written by manually rastering the TEM focus spot. Inset: Linewidths as small as 15

nm are possible. (c) EBID tungsten at the junction between a Wollaston wire and a silicon nanowire. (d)

The same junction after pulling on the nanowire to failure. The EBID joint was stronger than the

nanowire itself.

thus is limited to electrically-conducting NWs. Furthermore, because it is difficult to ensure that adequate

carbon can be deposited in any given trial, and the electrical and thermal resistances of these contacts may

still be larger than what can be achieved with metal, EBID of metals is preferred.

5.7.2 EBID of metals

Deposition of metals using an electron beam may be less well-known than deposition using an

ion beam, but the materials and principles are similar. Common precursor materials include tungsten

hexacarbonyl [W(CO) 6, CAS# 14040-11-0], (trimethyl)methyl-cyclopentadienyl-platinum(IV)

[(CH 3)3(CH 3C5H4)Pt, CAS#94442-22-5], iron pentacarbonyl [Fe(CO)5], and gold [PF 3AuCl]. These

precursors are usually solid powders at standard temperature and pressure, but with a high vapor pressure

[-10 Pa (-0.1 mm Hg) for W(CO) 6 at 300 K]. Literature precedents show that both SEMs and TEMs can
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be modified for EBID deposition, and include the creation of a variety of arbitrary shapes in two and

three-dimensions [23-27]. Most prior work reports the addition of a separate chamber to store the

precursor powder, along with valves, tubing, and possible temperature control to better manage the flow

of precursor vapors. However, the work in this thesis follows a few other reports of a much simpler

implementation, omitting the extra vacuum hardware and simply placing a small, open vessel of powder

within a few millimeters of the sample, inside the TEM. The design of the powder holder is described in

more detail below.

Using this system inside the Boston College TEM, we were able to deposit various tungsten

shapes with feature sizes as small as 15 nm (Fig. 5-12). In a typical experiment, a charge of about 1 mm3

of tungsten hexacarbonyl powder was located about 1-2 mm away from the sample. By focusing the

electron beam down to a diameter of about 30-100 nm, tungsten deposition progressed at a fairly rapid

rate of several nm/s. The location of the irradiated region was scanned manually using the beam shift

controls, tracing out various patterns. This process of tracing out shapes could be automated in systems

with scanning TEM (STEM) capability. The sublimation rate of the powder was such that the initial rapid

deposition rate persisted for tens of minutes, then gradually slowed down to zero. In most cases

deposition ceased after about 30-60 minutes. Energy-dispersive x-ray spectroscopy of the resulting

deposits confirmed that they contain both tungsten and carbon. Electrical measurements of one deposit

showed an ohmic I-V curve with a resistivity estimated very roughly as 9000 pa)-cm, compared to about

5 ptQ-cm for bulk tungsten. Thermal measurements of another deposit suggested a thermal conductivity

of the order of 1 W/mK, compared to about 170 W/mK for bulk tungsten.

5.7.3 Powder source for EBID of metals

Most traditional systems with EBID or FIB deposition have special vacuum hardware to control

the flowrate of precursor vapors near the sample region. Because it was not practical to make such

extensive modifications to the existing TEM, a much simpler system comprising a small, open container

of powder was used. Initial trials used a piece of fine glass capillary tubing (about 300 prm inner diameter

and a few mm long), coated with conducting epoxy to eliminate charging effects from the electron beam.

However, this was difficult to load with powder, and the powder charge typically ran out within just a few

minutes of inserting the powder container into the TEM. Stainless steel tubing and/or needles are

available in a wide range of appropriate sizes, but unfortunately the various pieces tested all had enough

residual magnetism to be a risk if inserted close to the TEM lenses. Heat treating the stainless steel

reduced the magnetism significantly, but not enough to be judged safe for the TEM. Aluminum and brass

are non-magnetic, but the smallest standard tubing available is 1.59 mm (1/16 inch) in outer diameter, too

large for the allowed space. Finally, adequate powder holders were created by rolling small pieces of
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aluminum foil into cylinders or cones, and sealing with small amounts of silver epoxy as appropriate. A

typical foil vessel is a cylinder 1 mm in diameter and 2 mm long, closed at one end. The other end is left

open while filling with powder and then crimped partway shut, leaving an orifice about 100-200 pm

diameter pointed towards the sample about 1-2 mm away. This foil technique has the advantages of ease

of manufacture, arbitrary shapes and sizes, a very thin wall resulting in maximum powder volume, and

good vacuum, electric, and magnetic properties. However, the foil vessels are difficult to seal well and

can only be reused a few times before they fail.

5.8 Summary
This portion of the thesis presented a new type of probe for thermoelectric measurements of

single nanowires and nanotubes, including thermal resistance, electrical resistance, and Seebeck

coefficient. Because this probe is based on commercially-available Wollaston wire, it is easier to

fabricate than previously-reported probes based on microfabrication. The new probe also has the

potential to be more than an order of magnitude more sensitive than the previously reported probes.

Detailed thermal and mechanical design calculations also reveal some limitations of the new probe,

including: the nonlinear relationship between temperature rise and nanowire thermal resistance; the need

to pretension the Wollaston wire to avoid problems from thermal vibrations and thermal expansion; and

the likely impact of thermal contact and spreading resistances. The Wollaston wire probe has been

implemented inside of a high-resolution TEM with a built-in STM manipulator. This introduces the

challenges of high vacuum and strong magnetic fields, but brings the benefits of atomic-level imaging and

rapid sample selection. Preliminary experiments have measured the thermal resistance, electrical

resistance, and Seebeck coefficient of various samples including a carbon nanotube and ZnO nanobelt,

but in most cases the data is qualitative rather than quantitative due to the large and uncertain thermal

contact resistance. To improve the contacts the TEM sample holder was modified to facilitate electron-

beam induced deposition (EBID) of tungsten from an organo-metallic precursor powder, similar to

approaches reported previously for the measurement probes based on microfabrication. Our preliminary

attempts at EBID succeeded in patterning arbitrary two-dimensional shapes with linewidths as small as 15

nm. Local EBID at either end of a nanowire/nanotube has been shown to greatly increase the contact

area, and in fact to be mechanically stronger than the nanowire itself.

Future work on this project will combine the EBID technique with the thermoelectric

measurements to overcome the problem of thermal contact resistance. Then this project will move into its

most productive phase: the high-throughput measurement of thermoelectric properties of many different

nanowires and nanotubes. One early goal will be to measure the thermal resistance of a multi-walled
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carbon nanotube as a function of the number of walls, by using electric current to controllably burn off

the outermost walls one at a time.
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Chapter 6: Summary and Future Directions

6.1 Summary

This thesis has made several contributions towards better modeling and measurements of the

thermal properties of nanowires and nanotubes, summarized below.

Chapter 2 dealt with phonons as waves, and the quantum effects of confining them in

nanostructures. The traditional Debye-Einstein model for three-dimensional phonons was generalized to

lower dimensions, resulting in a simple model for the specific heat with few parameters, all of which can

be extracted from bulk properties. To test this model the specific heat of TiO2 (anatase) nanotubes with

2.6 nm wall thickness was measured down to 1.4 K. Although the interpretation of the experimental data

was complicated by possible contamination of the nanotubes by ice, overall the model and experiment are

in good agreement above about 2.5 K, including enhancements in the nanotube specific heat by more than

a factor of 3 compared to bulk. These are the first specific heat measurements on non-carbon nanotubes.

The most important conclusion of this chapter was to confirm that quantum / wave effects on thermal

properties can be neglected as long as the characteristic thermal wavelength is smaller than the size of the

nanostructure. The phonon wavelength at room temperature is only about 1-2 nm for most practical

materials, suggesting that quantum / wave effects on the thermal conductivity and specific heat may be

neglected at room temperature and above for most nanostructures larger than about 5 nm. Although a few

individual phonon modes may still be affected by quantum confinement, these effects are averaged out

because the thermal conductivity and specific heat are based on an integration over all of the modes.

Chapter 3 began by analyzing the transition from quantum to classical behavior, considering both

nanostructure size and roughness. Kinetic theory and Matthiessen's rule were then used to model the

reductions in thermal conductivity due to boundary scattering in nanowires and superlattice nanowires.

With no adjustable parameters, the model agrees well with available thermal conductivity data for

nanowires of diameters ranging from about 60-115 nm [1], including thermal conductivities 1000 times

smaller than bulk.

Considerable care in the modeling was necessary to give good results with minimal complexity.

For example, we approximated the experimentally-determined phonon dispersion relations with the Born-

von Karman model rather than the Debye model. Although both models use the same input parameters,

namely sound velocity and atomic number density, the Born-von Karman model is much better than the

Debye model at capturing the high-frequency rolloff in the dispersion relation. As a result, when

boundary scattering is dominant, the Born-von Karman model gives much better results for high-
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temperature thermal conductivity, typically within 10-20% of experimental values. The Debye model, on

the other hand, overpredicts the same experimental thermal conductivity by a factor of 2 or more [2].

This chapter also illustrated the importance of accounting for the frequency dependence of the bulk mean

free paths. Neglecting the frequency dependence can also lead to large overpredictions of the

experimentally measured thermal conductivity.

Chapter 3 also established the concept of a distribution function for the thermal conductivity per

unit mean free path. These distributions depict the full range of mean free paths that are important for

carrying the heat in bulk and in nanostructures. Long mean free paths play a more important role in heat

transfer than may be commonly realized. For example, in bulk silicon at room temperature it is important

to consider mean free paths ranging from about 90 nm up to about 12 pm. This range spans over 2 orders

of magnitude, and includes mean free paths that are much longer than the naive estimate of about 5 nm or

the traditional average value of about 200-300 nm.

Chapter 4 improved and extended the existing "30" methods for measurements of thermal

properties. In the traditional 3o methods, an electrical current at frequency o is used to drive a resistive

heater. The resulting voltage signal includes a small contribution at the third harmonic, 30, which can be

related to the thermal properties of the system. Using both analysis and experiments, this thesis showed

that the thermal properties can also be related to the voltages at the second harmonic (2o) and first

harmonic (1w). Additional analysis and experiments showed that a simple correction factor can be used

to reconcile the widespread current-source analyses with the more common voltage-source experiments.

This correction appears to have been ignored previously in the literature. Although the 3w method is still

recommended for most situations, the newly identified 1w method should be simpler to implement, and

may be advantageous for studying the thermal dynamics of nanoscale systems.

Chapter 5 presented the detailed thermal and mechanical design of a new probe to measure the

thermoelectric properties of individual nanowires and nanotubes inside a TEM. The probe, based on

comercially-available Wollaston wire, is easier to fabricate and potentially more sensitive than the

microfabricated measurement platforms previously reported in the literature. By analyzing various

signals, the probe can measure the thermal conductivity, electrical conductivity, and Seebeck coefficient.

Although the preliminary thermoelectric data obtained in this thesis proves the concept, it is not

quantitative because of the large and non-repeatable thermal contact resistances at the ends of the

nanowire or nanotube. To overcome this problem the TEM sample holder is being modified for local

electron beam-induced deposition of metals from a metallorganic precursor vapor such as tungsten

carbonyl. By manually scanning the electron beam, this technique was used to pattern arbitrary shapes
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with line widths as small as 15 nm. The metal bonds have proven to give stronger, more reliable contacts

than our previous approach using amorphous carbon.

6.2 Future Directions
This thesis points towards several research directions which may be worthy of further effort.

(a) Thermoelectric measurements of single nanowires and nanotubes

The Wollaston wire probe described in Chapter 5 is nearly complete. The final step is to

incorporate the local metal deposition process with the thermoelectric measurements. It is hoped that this

will then enable high-throughput thermoelectric measurements of a wide range of nanowires and

nanotubes. This is important to build up a broader set of experimental data than is currently available in

the literature. One interesting experiment will be to measure the thermal conductivity of a multi-walled

carbon nanotube as a function of the number of walls. It will also be important to study the effect of

making contacts at the end of the nanotube compared to the nanotube sidewall. Another important

objective is to measure ZT for various thermoelectric nanowires, with the hope of observing the largest ZT

ever reported.

(b) Thermal conductivity distribution functions

The distribution functions for the thermal conductivity per unit mean free path presented in

Chapter 3 made certain assumptions about the dispersion relation and phonon scattering laws, but other

assumptions are possible. It would be interesting to repeat this analysis with different assumptions, to

learn how sensitive the distribution functions are to the input assumptions. It would also be interesting to

compare these analytical curves with some analogous distribution functions obtained from molecular

dynamics [3].

(c) Thermal conductivity of silicon nanowires below 40 nm diameter

Although our classical model for nanowire thermal conductivity is in good agreement with

available experiments for diameters above 50 nm and temperatures down to about 20 K, there are large

disagreements between the model and the only available measurements of smaller Si nanowires (37 and

22 nm) [1]. The data reported for the 22 nm diameter nanowire in particular show a thermal conductivity

dependence that is linearly proportional to temperature T, whereas in our model the conductivity is

proportional to T3 in this temperature range. The usual interpretation of this exponent is that it tracks the

low-temperature specific heat; however, the work in Chapter 2 of this thesis showed that the specific heat
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of a 22 nm Si nanowire should clearly be in the T3 regime over this range of temperatures. To the best of

my knowledge no other theory in the literature has been able to explain the T' trend either for these

nanowires. Therefore, we can conclude that the thermal conductivity of Si nanowires below about 40 nm

is still not well understood. More experimental data are necessary, and it is hoped that the Wollaston wire

probe will be able to contribute here for nanowires made of silicon as well as many other material

systems. If the T' trend is confirmed experimentally, then several fundamental aspects of the modeling

will have to be reconsidered.
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