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Abstract

The split-Hopkinson pressure bar (SHPB) technique has been in use in one form or another

for more than fifty years and has recently gained a great deal of attention for its ability to

characterize materials such as metals, plastics, and even stiff foams at strain rates of up to 105

sec-1 . Historically, however, numerous obstacles have stood in the way of applying this tech-

nique to softer biological tissues. This study is aimed at bridging this gap by employing various

innovations in the field of split-Hopkinson pressure bar techniques (including hollow aluminum

and solid polymeric pressure bars) to the characterization of trabecular bone. A preliminary

study is conducted on a polyurea (PU) blend to assess the advantages and shortcomings of

these approaches, as well as to validate the results obtained with each. Bovine trabecular

bone with marrow in-situ, which was chosen for its ability to be tested with a wide spectrum

of techniques, is then characterized with the selected techniques at rates of up to 1300 s-1 and

strains of 0.07. The results are presented for each technique in the form of engineering stress

vs. engineering strain curves. Average trend curves are also provided. Unfortunately, many

of the samples were too damaged to allow for accurate measurement of apparent density. Con-

sequently, a study into the effect of density on high strain rate responses is left as future work.

Recommendations are made for increasing the strain imposed on the samples and suggestions

for future studies on both trabecular bone and softer biological tissues are put forward.

Thesis Supervisor: Simona Socrate
Title: Assistant Professor of Mechanical Engineering
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Chapter 1

Introduction

The work presented in this thesis is part of an ongoing investigation at MIT's Institute for

Soldier Nanotechnologies focusing on the simulation of behind-armor effects of ballistic threats

(Project 6.9). This study is aimed at developing numerical models that can accurately predict

the effects of ballistic events on the human body, particularly one that is protected by a ballistic

armor system. It is well understood that the ability of such an armor system to neutralize

a threat is greatly affected by the coupled response of the armor and the backing material.

In the case of our study, the backing material is composed of the various biological tissues

of the human body. By accurately modeling each of these individual tissues, we hope to be

able to accurately capture the complex interactions between the armor and the user's body.

The insight gained through this modelling technique will help guide the design of future armor

architecture; allowing us to maximize personal protection while minimizing the weight of the

system and maximizing the mobility of its user.

This wide reaching project has three distinct phases, the first of which is the improved

characterization of the high rate properties of biological tissues and tissue simulants necessary

to obtain accurate models. This thesis is a first step towards achieving that characterization

ex-vivo. Because of its structural importance within the head and body, and also because its

material properties are such that it can be characterized using both the aluminum and PMMA

split-Hopkinson pressure bar (SHPB) techniques, trabecular bone was chosen as the first tissue

to characterize, and is the main focus of this thesis. Chapter 2 of this work provides a brief

overview of the current knowledge pertaining trabecular bone's mechanical properties, as well

17



as the history and theory of the SHPB technique employed in this study. Chapter 3 discusses

the specific experimental methods and analysis procedures. Finally, Chapter 4 presents the

results of the study and Chapter 5 provides conclusions and recommendations for future work

pertaining to trabecular bone. Future work is also planned to apply the high rate ex-vivo

characterization techniques employed in this thesis to softer tissues such as brain, muscle, and

fat. Also, concurrent work is being conducted to characterize these same materials in-vivo. It

is hoped that the combination of these two approaches will elucidate not only the mechanical

characteristics of these tissues, but also the nature of the changes in tissue properties associated

with ex-vivo testing protocols, thereby reducing the need for in-vivo testing procedures in the

future.

The second phase of Project 6.9 is the development of constitutive models for biological

tissues and tissue simulants under high rate loading. Unlike other approaches often taken in

the modeling of biological tissues, our constitutive model incorporates specific features which

reflect the tissue's molecular structure at the nano- and micro- scales, thereby relating the tis-

sues' mechanical properties directly to its biochemistry. This hierarchical approach to modeling

is naturally suited to allowing a singular constitutive framework to be specialized into differ-

entiated models by varying the appropriate biochemical parameters to capture the response of

different classes of tissues and organs. The supplemental task of modeling tissue simulants was

incorporated into our study because of its importance in assessing the validity of the currently

employed techniques for evaluating ballistic protection. Also, it is hoped that by concurrently

studying both biological tissues and tissue simulants, we will be able evaluate each simulant's

biofidelity, thereby aiding in the development of more accurate physical models of the both

the head and torso. Information pertaining to the work on tissue simulants can be found in

Appendix H.

The third and final phase of Project 6.9 will be the development and evaluation of three di-

mensional finite element models capable of predicting injury levels from non-penetrating bullets

and fragments. The development of these accurate numerical models will allow us to correctly

capture the complex interactions between the armor system and the biological backing material

it is meant to protect, guiding the refinement and optimization of future armor systems. As

a supplement to these models, and to check the accuracy of their predictions under realistic
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impact scenarios, we are currently developing an experimental set-up in our gas gun facility that

will allow us to impact a coupled armor-tissue stimulant system and map the resulting strain

waves as they travel through a tissue stimulant backing. This work is presented in Appendix I.
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Chapter 2

Background

2.1 Bone Structure

By simply looking at several intact bones, one can easily see that they come in wide variety

of complex shapes and sizes. What might not be as apparent, however, is that each bone is

not a homogeneous structure, but rather a complex system - optimally designed to fulfill its

individual role within the body.

In general, most bones have a two phase construction. The outer part is a shell of solid,

compact bone (also called cortical bone) which behaves as the loading surface and encloses a

core of porous cellular bone, known as either cancellous or trabecular bone. This two phase

construction allows the body to optimize bone strength while minimizing weight by adjusting

the density and composition of the internal trabecular core. In fact, it has been recognized

for well over a century that bone's growth increases in response to stress [33]. Perhaps even

more interesting is that this growth occurs preferentially in the directions of principal stress

[30], [9]. Areas within the bone where stress is low develop an open cellular framework with a

relatively low density of thin rod-like trabeculae [15]. Areas within the bone that experience

high levels of stress, however, develop a high density of thick plate-like trabeculae that result

in a nearly closed cell composition. Furthermore, areas which experience high stresses in one

direction and low stresses in others develop an anisotropic framework to match the stress fields;

these regions have plate-like trabeculae parallel to the high stress concentrations and rod-like

trabeculae along the lower stress orientations (Fig. 2-1).
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Figure 2-1: Scanning electron micrographs of cancellous bone. (a) Femoral head specimen

demonstrating a low-density, open-cell structure with rod-like trabeculae. (b) Femoral head

specimen demonstrating a higher-density composition with thick plate-like trabeculae. (c)

Femoral condyle specimen demonstrating intermediate density with plate-like trabeculae

parallel to stress orientation and rod-like trabeculae perpedicular. [14]

At an even smaller scale, on the order of nanometers, all bone can be seen as a composite

structure: a fibrous, organic matrix of collagen and other proteins intertwined with inorganic

molecules such as crystalline hydroxyapatite and amorphous calcium phosphate [15]. It is the

inorganic calcium compounds that gives bones their stiffness and the organic components that

bind everything together and give the system its strength and toughness.

Within cortical bone this collagen-calcium matrix forms osteons: hollow Haversian canals

carrying blood vessels and nerves surrounded by concentric rings of hard lamellae and intercon-

nected by a series of canaliculi, or Volkmann's canals (Fig. 2-2). This arrangement, also known

as Haversian systems, allows oxygen and nutrients to be carried to lacunae housed osteocytes

deep within the otherwise impenetrable regions of the bone.
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Figure 2-2: Microstructure of compact bone (Adapted from http://training.seer.cancer.gov).

In contrast, trabecular bone, because of its less compact structure, does not require this

complex arrangement. Nutrients are able to reach its osteocytes directly from the surrounding

vasculature. This open cellular structure within trabecular bone not only aids in the transport

of nutrients, but as we will see, also gives it some very interesting mechanic properties, not least

of which it's high strength to weight ratio.

2.2 Mechanical Characterization of Bone

Due to their importance in orthopedic and other medical applications, a great deal of work has

been devoted to understanding the mechanical properties of both trabecular and compact bone.

Compact bone, however, because of its more uniform structure on the mesoscale, is more easily

characterized and has therefore historically drawn more attention within the research commu-

nity [6], [10], [9], [27]. These studies have found that human compact bone ranges in density

from 1800 kg/m 3 to 2000 kg/M 3 , possesses a longitudinal Young's modulus of approximately

17 GPa, has radial and tangential Young's moduli of about 11.5 GPa, and exhibits a Poisson's

ratio of approximately 0.4 [8], [9]. In addition, widely accepted characteristic curves have been

derived for compact bone (Figure 2-3).

It is only recently, however, that the scientific and medical community's understanding of

trabecular bone has begun to truly advance, and even now the big picture seems to elude us.

For example Lorna Gibson and Michael Ashby, in their book Cellular Solids: Structures and
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Figure 2-3: Stress strain curves for wet compact bone generated by Gibson [15] (based on

data from Reilly and Burnstein [28] and Currey [9]).

Properties, provide a table (Figure 2-4) of the various experimental values of Young's modulus

for a single trabecula as calculated over the last 30 years; the results vary widely from 0.76 GPa

[29] to 14.1 GPa [31]. This variance is due in large part to the difficulty in preparing uniform

specimen geometries without introducing significant surface defects, but also to the natural

variance between species (usually bovine or human), anatomical locations, and individuals

from which the specimens were obtained. Using linear extrapolation, Gibson surmises that

the Young's modulus of fully dense trabecular bone, or in other words one trabecula, should be

between 2.7 GPa and 9.0 GPa [15].

A study by Richard Ashman and Jae Yong Rho may have found a way around the dilemma

of whether it is better to have an imperfect specimen geometry or to introduce surface defects by

mechanical machining [1]. They employed ultrasonic testing techniques to measure the time it

took for a series of waves to travel through a 5 millimeter diameter specimen of trabecular bone

that was 15 millimeters long. From this Ashman and Rho were able to easily approximate the

wave velocity, c, through the individual trabeculae. By also measuring the apparent density, p,
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Type of Method E (GPa)

bone)

Mechanical tests
Ryan and Williams (1989)
Kuhn etal. (1987)

Choieta. (1990)

Townsend et a. (1975)

hF
H T
H cortical

H PT
H cortical
H PT

Runkle and Pugh (1975) [1 DF

Ultrasound tests
Ashman and Rho 11988)

Finite element analysis
Pugher at (1973b)
Williams and Lewis(1982)
Menteand Lewis(1987)
Rietbergenet al. (1995)

0 F
H F

H DF
H PT
H F
H PT

tension unmachined

3-point bend machined

3-point bend machined

buckling unmachined

buckling

ultrasound on
trabecular bone

2D FEM
2D FEM
2DFEM
3D FEM

tAll specimens are of individual trabeculac unless stated otherwise. B = bovine;

H = human; F = femur; T = tibia; P = proximal; D = distal.

Figure 2-4: Table of trabecular Young's moduli compiled by Gibson and Ashby [15].
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Figure 2-5: Trabecular bone compressive stress vs. strain curves for various relative densities

(as generated by Hayes and Carter [17]).

they could then employ elastic wave propagation theory, c = VE/p, to estimate E, the Young's

modulus of the individual trabeculae. For human and bovine trabeculae they arrived at values

of 13.0 GPa and 10.9, respectively, both with a standard deviation of around 1.5 GPa.

These values, however, are only for one trabecula, whereas we are interested in how these

trabeculae behave when combined together to form cancellous bone. The answer, which is most

obvious in compression, is that they behave as a cellular solid (Figure 2-5). Cellular Solids:

Structures and Properties provides an excellent in-depth review of the mechanics behind this

behavior. For our purposes of background overview, however, it is sufficient to describe the

compressive stress vs. strain curves for trabecular bone as starting with an initial linear elastic

region, followed by a plateau in the stress representing plastic collapse and buckling of individual

trabeculae within the material, and finally and sharp upshoot indicating densification of the

material [15]. The values of strain bounding these regions, as well as the corresponding stress

levels, shift as the density is increased, but the nature of the curves appear to remain constant

at least until the relative density reaches an upper bound of about 0.5 (see again Figure 2-5).

Density also plays an important role in several other aspects of trabecular bone's behavior,

but should be considered in conjunction with the internal orientation of trabeculae. Reproduced
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Figure 2-6: Trabecular bone Young's moduli data of unspecified orientation from various

sources ((a) Carter and Hayes [4], (b) Carter et. al. [5], (c) Bensusan et. al. [2], (d) Hvid et.

al. [19], and (e) Linde et. al. [23]) as gathered and plotted by L. Gibson [15].

here are three figures compiled by Gibson and Ashby which demonstrate the effect of density

alone on Young's modulus (Figure 2-6), compressive strength (Figure 2-7 (a)), and tensile

strength (Figure 2-7 (b)). Close examination reveals a rather large variance in the data. The

principle reason for this is that these figures ignore any dependence upon trabecular orientation.

In reality, bones with a preferred stress orientation are highly anisotropic and have been shown

to demonstrate up to a ten fold increase in measured strength simply by changing the testing

orientation [32]. Utilizing data from the 1982 Williams and Lewis study, Gibson and Ashby

show that correlation with density for both Young's modulus (Figure 2-8 (a)) and compressive

strength (Figure 2-8 (b)) can be notably improved by taking trabecular orientation into account.

Bearing this information in mind, all samples in this study were prepared with their axis aligned

to the principal stress orientation of the bone and the density of each specimen was accurately

recorded for future statistical analysis (see Sample Preparation in Chapter 3).

In addition to dependence upon density and orientation, it has often been noted that tra-

becular bone's properties vary significantly when one varies the anatomical site from which the
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samples are taken. In a 2003 article published in the Journal of Biomechanics, Morgan, Keav-

eny, and Bayraktar cite that predicted values of modulus at a specific apparent density differ

by as much as 49% and that prediction errors can increase by more than 60% if site-dependence

is ignored [25]. Bearing this in mind, Morgan et. al. devised a study to investigate the site-

dependence of on-axis modulus-density relationships for human trabecular bone. They tested

142 specimens of human trabecular bone from the vertebra, proximal tibia, femoral greater

trochanter, and femoral neck to study if the differences with regard to anatomical site meant

that each site behaved as a different material and must be treated separately, or if there was

some additional underlying parameter that had been missing in earlier formulations. They

found that by including an architecture term representing the type of cellular structure within

the specimen, the difference in the calculated coefficients between anatomical sites was no longer

statistically significant. For our study this finding has several important implications. First, it

indicates that the end product of this entire project, the constitutive and finite element models,

will also have to take the architecture of the cellular structure into account. Second, and on

a more immediate time scale, it means that in order to reduce the number of variables in the

data analysis, the samples employed in our study have to be harvested from the same animal

model and anatomical site.

Finally, the last major factor affecting the mechanical response of trabecular bone, in ad-

dition to density, orientation, and anatomical site, is the rate at which it is strained. Dennis

Carter and Wilson Hayes were the first two researchers to explore this relationship in depth

and were able to greatly increase our understanding of these materials by quantifying how their

compressive strength changes as we increase the rate at which we deform them, i.e. the strain

rate. Employing a confined cylindrical compression fixture to test both human and bovine

trabecular samples to a minimum of 50% compressive strain at strain rates ranging from 0.001

s-1 to 10 s-1, they surmised that the longitudinal compressive strength of trabecular bone

can be related to the that of the better understood compact bone with the following empirical

relationship:

d 0.06 P2 (2.1)
(dt) std a

where p is apparent density of the sample being tested at a strain rate of and SC isthdt' h
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compressive strength of a compact bone sample with density pc, tested at a strain rate of 1.0

s-1 [3]. The apparent densities of the samples tested, being 5mm thick and 10.3 mm in radius,

varied greatly from 0.07 to 0.97 g/cm3 and gave excellent insight into the role of density in

this equation. In addition, they noted that viscous flow of marrow out of the pores led to a

strengthening of the marrow in situ specimens tested, but only at the highest rate strain rate

of 10 s1. Unfortunately, Carter and Hayes did not follow up this observation with future

studies at rates higher than 10 s-1. Also, while the relationship of compressive strength to

that of strain rate and apparent density was carefully quantified, many of the other important

mechanical properties were not addressed.

More recently, work has been conducted by Linde, Norgaard, Hvid, Odgaard and Soballe

to study how strain rate and apparent density might effect the measurement of some of these

additional mechanical properties; namely stiffness, strength and ultimate strain. Six decades

of strain rate, ranging from 0.0001 s1 to 10 s-, were imposed in 60 specimens of trabecular

bone taken from a human proximal tibia [23]. The samples ranged in apparent density from

0.23 g/cm3 to 0.59 g/cm3 , not as diverse as those employed in the Carter and Hayes study,

but still significant. They employed numerous linear and non-linear regression analysis models

with strain rate and apparent density as the independent variable to find quantitative models

for their dependant variables of strength, stiffness, and ultimate strain. Ultimately, they found

that ultimate strain varied independently of apparent density, but showed a power function

dependence upon strain rate. The exponent they calculated for this relationship was 0.03.

Additionally, they found the variations in strength and stiffness with strain rate could be cap-

tured equally well with linear or power function relationships. The power function relationship

between strength and strain rate had an exponent of 0.07, and that between stiffness and strain

rate an exponent of 0.05. Both of these values show a good correspondence with the values

derived in the previously discussed Carter and Hayes study.

While a significant amount work has been directed towards characterizing and understanding

both cortical and trabecular at low strain rates, very little is known about these materials at

strain rates of more than 10 s-1. In fact, during our extensive literature search we found

only one item that specifically addressed the high strain rate characterization of bone: James

McElhaney's 1966 article, "Dynamic Response of Bone and Muscle Tissue" [24]. In this
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article, McElhaney describes how he constructed a novel air gun testing apparatus capable of

conducting constant velocity compression tests at strain rates of up to 4000 s-1. He utilized

this apparatus, in conjunction with a Tinius Olsen electromatic testing machine for static and

low rate tests, to characterize bovine and human femora samples at rates of 0.001 s1 0.01 s,

0.1 s-1, 1 s- 1 , 300 s, and 1500 s.

McElhaney describes the samples tested as coming from either the right femur of a 24-

year-old white male who died of acute cardiac failure or the right femur of a 3-year-old steer.

He states that the middle third of the shaft of the femora was used to collect both sample

types and identifies the densities of each to be 0.068 lbs/in3 (1880 kg/M 3 ) and 0.070 lbs/in3

(1940 kg/M 3 ), respectively. McElhaney does not make any explicit note of whether these

specimens are cortical or cancellous, but given the density and the location from which the

samples were taken, it can be surmised that they were almost certainly cortical. McElhaney

also notes that, "no attempt was made to study the variation of properties with location."

Perhaps more importantly, almost no information was provided regarding the type or density

of each bone sample tested, parameters that are now known to be a major contributing factors

to the mechanical properties of bone.

The testing specimens were machined into 0.175" by 0.175" by 0.250" blocks prior to testing.

The bovine samples were stored in water and refrigerated until the time of testing, which for the

high rate trials was approximately thirty days after the animal had been sacrificed, while the

human samples were embalmed with formalin, phenol, alcohol, and glycerin. This embalming

may have changed the mechanical properties from those found in fresh tissue samples [211,

although at the time McElhaney maintained that it should not.

The final plot generated by McElhaney is true stress vs. engineering strain (Figure 2-9),

where the instantaneous area in the stress calculation was estimated by using a Poisson ratio

derived from a low rate compression test conducted on dry beef bone. Overall the work is

extremely insightful and the generated curves appear concise and accurate. Unfortunately

for us, no subsequent high rate work appears to have been undertaken by McElhaney or his

predecessors. As such, we felt it would be well worth undertaking a new high rate study,

this one specifically on trabecular bone and benefitting from the numerous insights gained in

the last forty decades regarding the importance of density, orientation, and proper specimen
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Figure 2-9: Stress vs. strain plots generated by McElhaney for human bone at various strain

rates [24].

preservation. To undertaken this work it was decided to employ the now widely accepted

split-Hopkinson pressure bar technique (SHPB), whose history and theory we will now review.

33

II

b .002 .004



2.3 Development of the Hopkinson Pressure Bar Technique

The theory underlying the modern spit-Hopkinson pressure bar was first presented by Bertram

Hopkinson in his famous paper of 1914 for the Philosophical Transactions of the Royal So-

ciety of London. At the time, Hopkinson was looking for a way to measure the pressures

produced by bullet impacts and the detonation of explosives. He could have easily measured

the total momentum produced by these events and divide by the time duration to calculate an

average pressure transmitted to the target, but he was interested in obtaining a more detailed

understanding of how these pressures varied with time [18].

Hopkinson realized that a pressure wave created by this type of impact or detonation, if

transmitted in a perfectly elastic manner, would travel along a cylindrical bar in such a way that

the relationship along the bar between pressure and position at any particular instant would

be directly related to the pressure versus time relationship during the initial loading (Figure

2-10). He also realized that the pressure distribution within the bar was linearly related to that

of the distribution of velocity within the bar. For example, in his experiments he calculated

that an instantaneous pressure of one ton per square inch would linearly correspond to an

instantaneous velocity of 1.3 feet per second at that same point. Furthermore, he realized

that for a steel rod with a longitudinal sound velocity of 17,000 fps, every inch along the bar

would be representative of approximately 1/200,000th of a second during the initial impact or

detonation. Consequently, Hopkinson could easily correlate velocity to pressure and position

to time.

Figure 2-10: Schematic of pressure vs. position along cyndrical bar [18].

A pressure wave will travel axially through a cylindrical linearly elastic rod at the longitu-

dinal sound velocity cel = VE/p, where E is the Young's modulus of the material and p is its
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density. As the wave passes over a section of rod it will accelerate the rod's particles to a max-

imum velocity and subsequently decelerate the particles to rest, leaving them at some forward

displacement. For example, examining Figure 2-10, we see that section A has been acted on by

the pressure wave for a time of AO/cei, the distance the front of the wave has traveled divided

by the velocity of the wave. At this instant, section A has experienced a momentum change

equal to that of the shaded area in Figure 2-10, the time integral of that portion of the pressure

wave which has already passed through section A. In the concise words of Mr. Hopkinson,

"The portion of the rod to the right of the section is continually gaining momentum at the

expense of the portion to the left while the wave is passing, the rate of transfer at any instant

being equal to the pressure."

Since strain gauges had not yet been invented, however, Mr. Hopkinson still needed to

devise a method to measure these velocity distributions with respect to position at any given

instant. Hopkinson was aware that a propagating compressive wave, upon reaching the free

end of a cylindrical rod, would be reflected as a tensile wave with the same velocity and profile

as the original compressive wave. He also knew that at any instant the resulting stress at

any one cross section of the bar would be equal to the summation of the compressive and

tensile waves which were currently acting on that section. Furthermore, he realized that if

he were to divide the bar at a particular cross section, creating a shorter rod at one end, a

compressive wave would travel through the break unperturbed, but this new end section would

separate from the whole as soon as the reflected tensile component of the wave became greater

than compressive component at the division (Figure 2-11). The end section of rod would then

continue moving forward with the momentum still trapped within it (represented in Figure

2-11 by the shaded region). Hopkinson then surmised that by varying the lengths of these

end pieces and measuring the momentum that remained trapped in each, he could deduce the

maximum pressure and total duration of the impact as well as the approximate shape of the

initial pressure curve (Figure 2-12).
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Figure 2-11: Reflection of a compressive wave as a tensile wave at the free end of a cylindrical

rod [18].
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primer as calculated by

Hopkinson's technique did allow better understanding of the shapes of pressure waves pro-

duced by events such as ballistic impacts and high explosive detonations, however, the wave

calculations were still discretized approximations, not the continuous measurement that Hop-

kinson would have liked. This level of accuracy was not achieved until 1948 when Davies

refined Hopkinson's technique by incorporating electronic condensers along the bar, allowing

continuous measurement of bar displacement [12]. A year later Kolsky, also using electronic

condensers, further refined the technique by divided the pressure bar into two sections and
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sandwiching a material specimen in between. The result was the incident and transmission bar

set-up that is most common today (Figure 2-13). This new configuration utilized the princi-

ples developed by Hopkinson, but enabled the measurement of both stress and strain within the

sandwiched specimen. Kolsky utilized this technique to characterize various rubbers, plastics,

and metals. On the softer specimens, he found that he was able to produce compressions of

up to 20% over a period of just 20 microseconds [22].

2.4 Linear Elastic Split-Hopkinson Pressure Bar Theory

In the split-Hopkinson bar configuration, a striker bar is forced at high speed towards an axially

aligned incident bar. This impact induces a compressive stress wave in the incident bar that

is twice as long as the length of the striker bar. The wave then travels down the length of

the incident bar until it reaches the incident bar-specimen interface. Because of an impedance

mismatch with the softer specimen, part of the wave is transmitted through the specimen

into the transmission bar, and part of the wave is reflected back along the original incident bar

(Figure 2-14). By measuring these signals one can consequently deduce the corresponding stress,

which is a function of the transmission signal, and strain, which is a function of the reflected

signal, to plot the material's stress vs. strain curves at rates of up to 10,000 strain-per-second.

Striker Bar Incident Bar Specimen Transmission Bar

Strain Gauges

Figure 2-13: Schematic diagram of the modern split-Hopkison pressure bar configuration.

To see how these calculations are carried out, we will now step through the underlying

principles of linear elastic split-Hopkinson pressure bar theory. Two basic assumptions are

necessary for this approach: first, wave propagation within the bars must be one dimensional

(a condition which is satisfied by having axially aligned bars which are much longer than their

diameter); second, the specimen must deform uniformly (a condition which can be verified after

the test by comparing the forces on the front and the rear of the sample or by recording the
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Figure 2-14: As shown here for a polycarbonate sample, part of the initial wave is reflected

back through the incident bar and part of the wave is transmitted through the sample into the

tranmission bar [26].

specimen's deformation with high speed photography). Bearing these requirements in mind,

we begin our formulation by defining the strain in the sample as:

e(t) = Ul - Ut (2.2)
Ls

where ui is the displacement of the front, or incident interface; ut is the displacement of the

rear, or transmission interface; and L, is the initial length of the specimen in the axial direction.

Note that in this sign convention compression is taken to be positive. By differentiating this

expression with respect to time, one can arrive at the following expression for strain rate:

de(t) _ vi(t) - vt(t) (2.3)
dt Ls

where vi(t) is the velocity of the specimen at the incident interface at time t, and vt(t) is that of

the specimen at the transmission interface. To calculate these velocities in the elastic case one

can take the product of the longitudinal sound velocity in the bar, cel, and the total strain at the

interface of interest. For the transmission bar, the total strain at the interface is simply et(t),

the signal measured by the transmission bar strain gauge; so the velocity at the transmission
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face is ci*et(t). For the incident interface, however, the total strain is Ei(t)-Er,(t), the difference

between the incident and reflected signals as measured by the incident bar strain gauge; so the

velocity at the incident face is cel * (ei(t) - Er(t)). Combining these new expressions for velocity

with (2.3), one can obtain a new formula for the strain rate in terms of the measured strain

waves:
de(t) cel

(t=_ (E(t) - 6r(t) - Et(t)) (2.4)
dt Ls

Next, by simple force balance, we can describe the average stress in the specimen as:

F1(t) F + F 2 (t)
o-(t) = A (2.5)

2 As

where F1 (t) is the force at the incident bar-sample interface, F2 (t) is the force at the sample-

transmission bar interface, and A, is the initial cross section of the specimen. For the elastic

case, the forces F1(t) and F2 (t) can be calculated as follows:

F1(t) = EAo(Ei (t) + Er (t)) (2.6)

F2 (t) = EAoEt(t) (2.7)

where E is once again the Young's modulus of the material composing the bar, and AO is the

cross sectional area of the bar. Combining equations (2.6) and (2.7) with equation (2.5), one

can obtain the three wave formulation of stress (so called because it is in terms of the measured

incident, reflected, and transmitted pulses):

EBA 0U(t) = (e(t) + er (t) + Et(t)) (2.8)
2 As

However, when the sample has reached dynamic equilibrium, and is therefore experiencing

uniform deformation, the forces at the front of the specimen will necessarily be equal to the

forces at the rear of the specimen. Setting equations (2.6) and (2.7) equal:

E (t) + er (t) = et (t) (2.9)

39



Utilizing this assumption, the equations for stress (2.8) and strain rate (2.4) can be simplified

to:
E Ao (.0

o(t) A Et (t) (2.10)
As

d =(t) 2cE r (2.11)
dt L8

This formulation is known as the one wave approach (so called because each calculation depends

on only one pulse), and while it is advantageous because of its simplicity and decreased sensi-

tivity to noise and timing, its validity should always be checked by examining the force balance

to assure that the sample is in dynamic equilibrium during the analysis. When planning an

experiment, a widely used rule of thumb is that the pulse must reflect three times within the

sample before dynamic equilibrium can be assumed. In addition, local failure at the incident

bar end of the sample is often indicative of a violation of the dynamic equilibrium requirement.

To avoid this problem, the magnitude of transient stress associated with the sudden application

of a velocity vo can be calculated as am = pcvo. This stress should not exceed the yield stress of

the specimen. Furthermore, high speed photography can be used for certain materials to make

sure failure of the specimen is uniform and does not start at either the incident or transmission

interfaces.

While the overall linear elastic SHPB technique is widely accepted and works well for samples

having impedances only slightly less than the bar, it loses its accuracy when the sample becomes

too soft. This is due to the fact that the signal-to-noise ratio in the transmission bar becomes

smaller as the specimens examined become softer. To overcome this shortcoming, numerous

approaches to refining the split-Hopkinson pressure bar technique have been introduced.

The first approach is simply to use a more sensitive quartz force gauge in place of the

standard strain gauges to measure the weak transmission pulse. For this investigation, it was

decided that the quartz gauges are too fragile and difficult to calibrate and maintain. Their

use in future studies, however, cannot be ruled out.

A second approach, and one employed in this study, is to simply use a hollow linear elastic

transmission bar [7]. This method, initially proposed by Chen, Zhang, and Forrestal, enables a

larger strain in the transmission bar with the same transmitted force by reducing the effective

impedance of the bar. This technique is advantageous in that it requires only slight modification
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of the linear elastic equations which were just derived for a solid cylindrical rod. Equations

(2.4) and (2.5) for strain rate and stress remain the same, as does equation (2.6) for the front

force calculation, but the rear force equation must be updated to reflect the changed area of

the transmission bar:

F2 (t) = EAtEt(t) (2.12)

where At is the area of the transmission bar. Now substituting equations (2.6) and (2.12) into

equation (2.5), we arrive at our new equation for stress:

o-(t) = (Ao * (e (t) + er (t)) + At * 6y(t)) (2.13)
2 As

In addition, when dynamic equilibrium is reached, the force balance previously represented by

equation (2.9) is replaced by:

Ao * (ei(t) + er(t)) = At * Et(t) (2.14)

As a result equations (2.10) and (2.11) of the one wave approach must be revised as follows:

a-(t) = A8 Et (t) (2.15)

d =(t) _ Cel 6 1 - -0NA 6r(t) (I+ AO (2.16)
dt L8 At) At_

As a final check we note that when At is set equal to A0 , as in the case of a solid linear elastic

transmission bar, all of the above equations reduce to their original form. It should also be

noted that this technique still requires a solid specimen interface on the transmission bar. This

change in bar geometry raises some concerns over the transmission behavior of high frequency

wave components. This concern is often addressed by utilizing pulse shapers to reduce the

magnitude of the higher frequency components [7].

The final approach widely used to overcome low signal strength in the transmission bar is

to utilize polymer bars. This technique is advantageous in that it produces a larger strain for

an equal amount of stress when compared to the softer metals, such as aluminum; however, it
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introduces the added complication that the pulse does not travel in a linear elastic manner be-

tween the strain gauge and the specimen. The theory and consequences of utilizing viscoelastic

pressure bars are discussed in the following section.

2.5 Viscoelastic Split-Hopkinson Pressure Bar Theory

Even while developing the fundamental theories employed in his 1914 paper, Bertram Hopkinson

recognized that the various harmonic components of a wave would travel down a cylindrical rod

at different velocities, and that as a consequence, the overall wave form would change slightly as

it propagated down the bar. He calculated, and experimentally verified, that for the materials

and length scales used in his particular experiment these effects would be negligible. Using

polymer pressure bars to test specimens of soft biological tissue, however, involves length scales

on which dispersion and attenuation cannot be neglected. Numerous theories and techniques

have been proposed to account for these effects experimentally. For our purposes, however, we

chose to employ the method presented by Bacon in his 1998 paper "An Experimental Method for

Considering Dispersion and Attenuation in a Viscoelastic Hopkinson Bar," because it accounts

not only for the viscoelastic effects of the polymer, but also for the geometric effects of the

individual testing system. Furthermore, this method incorporates experimental calculations of

the attenuation and dispersion characteristics that can easily be updated as the bars age or as

the system is updated with new polymer bars.

Bacon's method is based on the assumption that lateral motion of the bars can be ne-

glected. Using this assumption one can then relate normal stress and longitudinal strain to

axial displacement in the following manner:

09-(x,t) 2 u(x, t) (2.17)

e(x, t) = U(X, t) (2.18)
Ox

Where - is stress, e is strain, x is longitudinal position, t is time, p is density, and u is

displacement. Equations (2.17) and (2.18) can then be combined and the result described in
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the Fourier domain:

92 & (x, w) -pw 2 (x, w) (2.19)

where &(x, w) is the Fourier transform of stress and E(x, w) is the Fourier transform of strain.

Next, employing the concept of a complex Young's modulus, E*(w), for the polymer com-

posing the bar, the linear viscoelastic behavior is described in the following manner:

&(x,w) = E*(w)E(x,w) (2.20)

Based on E*, we can also define a propagation coefficient, 7(w), for the bar:

2 (2.21)

In addition, this propagation coefficient can be written in terms of the attenuation coefficient,

a(w); the wave number, k(w); and the phase velocity, c(w):

-y(w) = a(w) + ik(w) = a(w) + i (2.22)
tc(w)

where both a(w) and k(w) are continuous functions; ci(w) being a positive even function and

k(w) being an odd function.

Now, combining equations (2.19), (2.20), and (2.21), one can rewrite the one-dimensional

equation of axial motion to be:

( 92 - 2)(x, w ) = 0 (2.23)

The general solution of which is:

E(x, W) = P(W)e-x + N(w)e? (2.24)

where P(w) is the Fourier transform of strain due to waves moving in the positive direction at

x = 0, and N(w) is the Fourier transforms of the strain due to waves moving in the negative

direction at x = 0.

From equation (2.24), we can now calculate the Fourier transforms of axial particle velocity,
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i(x, w), and the normal force, F(x, w), at a cross section x to be:

iW
S(X, W) = [P(w)e-x - N(w)e] (2.25)

p Aw 2
F(x, w) - 2 [P(w)eYx + N(w)eyx] (2.26)

These are the equations can then be employed in calculating the stress and strain of the

specimens tested on the viscoelastic pressure bars. By setting x equal to d, the distance from

the strain gauge to the specimen, and taking the inverse transforms of equation (2.25) once for

both the incident bar and transmission bar signals, we can calculate both the velocity of the

front face, vi, and rear face, v2 . This information can then be combined with equation (2.3)

to calculate the rate of strain within the specimen:

de(t) _ v1(t) - v 2 (t) (2.27)
dt L8

Which can finally be integrated with respect to time to calculate the strain within the specimen,

e(t). Again setting x equal to d and taking the inverse transform of equation (2.26), one can

also calculate the force on both the front face, F1, and the rear face, F2. This information can

then be combined with equation (2.5) to calculate the specimen's average stress.

Before these calculations can be conducted, however, one must first experimentally deter-

mine the propagation coefficient values, -y(w), for both the incident and transmission bars. To

achieve this characterization on the incident bar, it is positioned away from the transmission bar

and impacted with a striker bar (varying lengths are used to assure accurate frequency response

characterization). The separation from the transmission bar makes it so that any compressive

pulse travelling down the incident bar will be fully reflected as a tensile pulse. This pulse is

then recorded as it travels back and forth through the bar (Figure 2-15).

A similar technique is used to characterize the transmission bar. The difference in this case

being that the incident and transmission bars are initially placed in contact with one another.

This allows the striker pulse to travel through the incident bar and into the transmission bar,

where it becomes trapped upon the bars' subsequent separation. The pulse is again recorded

as it reflects back and forth within the transmission bar.
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Figure 2-15: Example of a pulse's dispersion and attenuation as it travels back and forth

within a PMMA incident bar.

Using the data recorded from these experimental characterization trials, and provided that

there is no superpositioning of the waves at the strain gauge location, the Fourier transforms

of the first compressive and reflected tensile pulses may be calculated as 1 and E2. One may

subsequently equate P(w) to Ei and N(w) to E2 within equation (2.24). Then, because there

is no force at the free end of the bar, we can use equation (2.26) to obtain:

P(w)e--d + N (W) e = 0 (2.28)

Utilizing this result, we can then define the transfer function, H*(w), as follows:

H*(w) = 2  = e(-2d (2.29)

Finally, from this result it is possible to calculate the propogation coefficent values, y(w), which

in turn enables us to complete all of the subsequent PMMA SHPB calculations of interest.
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Chapter 3

Experimental Methods

There is still a surprising degree of dissension within the SHPB community as to what is the

best method for characterizing soft materials at high strain rates. As such, one of the goals of

this thesis was to run trials employing multiple techniques and approaches. It was hoped that

by taking this approach we might be able to accelerate the process of establishing a standard

SHPB testing procedure. To do so, however, placed some rather stringent requirements upon

the materials we could test. Namely, we needed a material that was hard enough to be tested

on the solid aluminum bar set-up, yet still soft enough to be tested on the PMMA bar set-up

without damaging the system. One of the few biological materials that fits this qualification is

trabecular bone. However, because the high rate response of trabecular bone had not yet been

well characterized within the literature, and because, as with all biological tissues, its properties

can be highly variable, it was decided that a second material was needed to validate the results

and assure that the curves obtained on the hollow aluminum and PMMA bars matched those

obtained with the more widely accepted solid aluminum bar set-up. To achieve this we chose

a polyurea (PU) blend that had already been well characterized within our lab. What follows

in this chapter is a description of the two aluminum pressure bar setups, a description of the

PMMA pressure bar set-up, and a brief section on the preparation of the PU and trabecular

bone specimens.
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Figure 3-1: Schematic diagram of MIT's split Hopkinson pressure bar facility.

3.1 The Aluminum Split-Hopkinson Pressure Bars

Both the solid and the hollow aluminum split-Hopkinson pressure bars used at our facility

(Figure 3-1) are composed of 7075 T640 Al, which has a Young's Modulus of 72 GPa and a

wave speed of 5090 m/s. The incident and transmission bars are both 3/4" (19.05 mm) in

diameter and 90" (2.286 m) in length. The hollow transmission bar has the same exterior

dimensions and an internal wall thickness of 1.5 millimeters, giving it an approximately 1:3.5

area ratio with that of the solid transmission bar. The ends of this bar are capped with a

solid aluminum plug so as to provide a flat, even contact surface with both the specimen and

the momentum trap. Because these plugs have the potential to change the way in which

higher frequency components of the stress wave travel, a study was undertaken utilizing the PU

samples to see if some form of pulse shaping was necessary to obtain reliable results. Three

different approaches were examined: 1) utilizing no pulse shaper, 2) utilizing a thin copper disk

measuring 5/16" (7.938 mm) in diameter, and 3) utilizing three sheets of paper held together

with a thin layer of Vaseline. The results of this study are presented in Chapter 4, but the
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ultimate conclusion was that no pulse shaper is necessary for the frequency components found

in our signals. This is most likely due to the fact that our samples have a viscoelastic nature

and will therefore dampen any high frequency components before they can be transferred to

the transmission bar.

Teflon bearings are used in the supports of the bars to assure the bars moved as freely as

possible. The ease of the bars' axial movement is extremely important because any extra resis-

tance from the bearings would alter the shape of the compression and tension pulses traveling

along the bar. Also, to satisfy the one-dimensionality assumption, great care was taken in

the set-up of the facility to assure near perfect uniaxial alignment amongst the bars. When

conducting trials, care is always taken to make sure that the amplitude of the imposed stress

pulse does not too closely approach the yield strength of the bars. This is important not only

to ensure the longevity of the system, but also because the subsequent data analysis assumes a

linear elastic response from the bars.

The strain gauges for both the incident and transmission bars are positioned 30" (0.7620 m)

from the specimen interface. This placement dictates the maximum length of striker bar to also

be 30" (0.7620 m), but a 19" (0.4826 m) striker bar, also composed of 7075 T640 aluminum, is

utilized in this study to assure that there is no overlap between the incident and reflected pulse.

In addition, the strain gauges are placed diametrically opposed to one another so as to cancel

out the effects any possible bending within the bars. To assure that the strain gauges are

an appropriate length to capture all relevant frequency components of the pulse the following

formulation was used:

L < 1 (3.1)
10fmax P

where L is the gauge length, fmax is the highest significant frequency component, E is the

Young's Modulus of the bar, and p is the density of the bar [13]. Finally, to assure that the

electrical signal output by the strain gauges is only due to the changing resistance of the internal

monofilament, a small grounding wire is attached to the bar directly in front of the gauge.

The electrical signal from the strain gauges is first transmitted to a Vishay 2100 condi-

tioner/amplifier system, set to a gain of 1000, before it is passed to an oscilloscope to be

recorded. The noise produced by activating the solenoid valve to release the striker bar at

the start of the trial is approximately 150 mV. As such, the signal capture trigger is set to
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Figure 3-2: A Cordin 550 high speed digital camera is used to record the compression of the

SHPB samples.

approximately 200 mV. Two different systems are employed depending on the nature of the

trial being conducted. Ordinarily, a 1450 CompuScope with a 50 MS/s sampling capacity is

utilized because it offers the most user friendly interface and has better resolution than the

alternative, a LeCroy Waverunner oscilloscope. The CompuScope model, however, does not

have an output trigger, necessary when high speed photographs of the trials are desired. As

such, it was decided that most trials for this study would be conducted with the more reliable

CompuScope oscilloscope, but that one trial from every group (an example of a group being

all PU specimens tested at 30 psi on the solid aluminum SHPB set-up) would be conducted

with the LeCroy oscilloscope to enable use of the high speed camera. The camera used to

capture the images of sample compression for these trials is a gas turbine drive Cordin model

550 digital camera, capable of capturing 32 frames at rates of up to 200 million frames per

second. The camera is outfitted with a Nikon 100 mm / 2.8 macro lens, positioned at the same

hight and approximately one foot from the specimen (Figure 3-2). A single continuous flash,

three milliseconds in duration, is used to illuminate the specimen.
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For experiments utilizing either the standard aluminum or hollow aluminum pressure bars,

the time and corresponding voltage data from both the incident and transmission bars is saved

immediately after each trial in ASCII format. This data is then analyzed using a MATLAB

script which implements the theory outlined in Chapter 2. This script, entitled ALSHPB.m,

combines Adam Mulliken's hoppy2.m code with insights specifically pertinent to the testing of

soft materials. A step by step explanation of this new code can be found in Appendix A, and

the code itself can be found in Appendix B.

3.2 The PMMA Split-Hopkinson Pressure Bars

The PMMA SHPB set-up is very similar to that of the aluminum bars. The same support

structure is used and the bars can be interchanged with the aluminum ones by simply removing

the tops of the supports and disconnecting the lead wires connecting the strain gauges to the

signal conditioner. The PMMA bars, like the aluminum bars, are 3/4" (0.7620 m) in diameter

and 90" (2.286 m) in length. The strain gauges are placed in the same relative position and their

connection to the signal conditioner and oscilloscopes are the same as for the aluminum bars.

The largest difference, aside from being composed of a different material, is that the PMMA

set-up has a variety of striker bars associated with it, ranging in size from just 2" (0.0508 m) to

a full 24" (0.6096 m). The shorter bars are used in characterizing the propagation coefficients

of the incident and transmission bars, and the longer striker bars are used to obtain varying

degrees of strain within the various material specimens. The longest striker bar employed in

this study, however, is only 10" (0.2540 m). This is because signal overlapping becomes a

significant concern with the longer bars. The data from these trials is once again saved in

ASCII format.

For experiments utilizing the aluminum pressure bars the calculations were fairly straight-

forward. When employing the PMMA bars, however, the analysis becomes more complicated

due to polymer's viscoelastic nature. As briefly outlined in the theory section, utilization of

the viscoelastic split-Hopkinson pressure bar technique breaks down into two equally important

components: (1) characterizing the bars' propagation coefficients, -y(w), and (2) employing these

coefficients in the analysis of the stress-strain data collected for individual specimens. Both
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tasks are accomplished with MATLAB m-files; the characterization of the bars with a script

entitled CHARACTERIZE.m (see Appendix C for a step-by-step explination and Appendix D

for the actual code) and the specimen data analysis with a code designated PMMASHPB.m

(see Appendix E for an explination and Appendix F for the code).

3.3 Sample Preparation

Sample preparation is extremely important in this study for two reasons. First, the selection of

an appropriate specimen geometry when employing SHPB technique is necessary for accurate

results and requires a great deal of attention from the experimentalists. Second, the manner in

which both the biological specimens and the tissue simulants are prepared and stored has the

potential to greatly affect their mechanical behavior. Hence, proper attention to preparation

of the samples was key to obtaining reliable results in this study. The criterion considered and

the methods employed will now be reviewed.

With regard to selecting the appropriate specimen geometry for the SHPB tests, it is valu-

able to first consider what stress, strain, and strain rate range is acceptable or desired. Shorter

specimens allow for higher strains and higher strain rates, while decreasing the area of the

specimen will clearly increase the stress. In this manner, an experimentalist has some room

to move when tailoring his or her experiment. For this study, however, the focus is more on

obtaining accurate, reliable results than obtaining results for one specific range of experimental

parameters. Bearing this in mind, it is important to remember that the assumption of dynamic

equilibrium within the sample is only valid after the pulses has reverberated forward and back

three times. The longer the sample, the more time it takes to reach this dynamic equilibrium.

Hence, if the initial elastic portion of the specimen's curve is of interest a thinner sample should

be used. In addition, samples with a large length-to-diameter (L/D) ratio are at risk for

buckling. The sample's length, however, cannot be decreased indefinitely. As the L/D ratio

decreases, the effects of both radial inertia and friction become greater, reducing the validity

the results. Consequently, it is very important to find the proper L/D ratio; one that enables

the sample to quickly reach dynamic equilibrium while also minimizing the effects of friction

and radial inertia. For materials with a Poisson ratio of approximately 0.33 and machined
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Figure 3-3: Intact bovine femurs are transported to the Orthopedic Biomechanics Laboratory

at Beth Isreal Deaconess Medical Center for machining.

into a right circular cylinder, E. Davies and S. Hunter theorized longitudinal and radial inertia

effects would cancel each other out when the L/D ratio is 0.5 [11]. This ratio is collaborated

by the ASM International's current recommendation that SHPB testing specimens maintain an

L/D ratio of between 0.5 and 1.0 [20]. Bearing this in mind, it was decided to use a 0.5 L/D

ratio for the polyurea (PU) calibration samples. These specimens were prepared utilizing a 7

mm diameter biopsy punch on an approximately 3.5 mm thick sheet of blended PU.

For the trabecular bone samples, however, it was decided to utilize slightly larger L/D

ratio; still within the range recommended by the ASM handbooks, but with a diameter of 8mm

diameter and a length of slightly less than 8mm. These dimensions were selected so that the

samples were large enough to allow a continuum assumption [16], [21], [35].

The manner in which the biological samples are prepared is extremely important because

the properties of biological materials can change drastically if not properly looked after. For

our study, partially intact cow legs were purchased at Bertolino Beef Co. in Boston, MA and

transported to MIT, where they are stored at -20'C until the time of specimen preparation.

The femur from each leg is subsequently removed and transported for machining to Beth Israel

Deaconess Medical Center's Orthopedic Biomechanics Laboratory (Figure 3-3).

The femur is first cut through the shaft, perpendicular to the axis, and the distal end is then
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Figure 3-4: The distal end of the femur is clamped in place to be cored with an 8mm diameter

diamond masonry bit.

placed vertically into a drill press outfitted with an 8mm diameter diamond coring bit (Figure

3-4). The bone is clamped vertically to reduce vibrations while coring, and to assure that the

specimens are cored parallel to the axis of the bone and their principal stress orientation. While

coring, the 8mm diameter diamond bit is continuously irrigated and run at a low speed to assure

that the bone stays well hydrated and does not burn or fracture [21]. Once the cores are cut, a

second cross-sectional cut is made through knee to release them (Figures 3-5 and 3-6). Finally,

a low-speed diamond-impregnated wafering saw is used to slice the core samples into cylinders

with parallel faces and an approximately 1:1 length to diameter ratio [21] (Figure 3-7). The

samples are then massed (to be used later in the calculation of initial density) and frozen at

-20 C in 0.1 M saline to ensure optimal preservation of their mechanical properties [21]. They

are stored for a maximum of one month prior to testing and, approximately 24 hours prior to

each test, the samples are thawed and stored in a fresh 0.1 M saline solution at 4C.
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Figure 3-5: A cut is made perpendicular to the knee to release the trabecular cores.

Figure 3-6: A trabecular bone core prior to sectioning.
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Figure 3-7: An irrigated diamond encrusted wafering saw is used to section the cores into

orthogonal right cylinders.
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Chapter 4

Results and Discussion

In this chapter the results from the trials on both polyurea (PU) and trabecular bone are

presented in graphical form as engineering stress vs. engineering strain plots. For the trials

utilizing the solid or hollow aluminum pressure bar set-ups the stress presented is the one

wave formulation and the strain presented is the three wave formulation. This approach

was employed in order to minimize the noise in the resulting curves. For a more complete

explanation of the difference between the two formulations the reader is encouraged to refer

to Section 4 of Chapter 2. In addition to the stress vs. strain plots, where trials are labelled

according to their respective strain rates, tables are provided to present a summary of the

experimental parameters which relate to each individual trial.

The first section of this chapter presents a summary of the trials conducted on a PU blend

which had been previously studied by Dr. Jin Yi [34]. The purpose of these trials was to

validate the results obtained with the various SHPB techniques employed and illuminate the

potential strengths and weaknesses of each technique. This particular PU blend was chosen

because it is easy to machine, readily available, and can be tested with all of the techniques

we wished to employ in the trabecular bone study. Furthermore, it does not demonstrate

significant temperature or age dependence.

The second section in this chapter presents the results obtained on bovine trabecular bone

specimens.
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Trial Approx. Striker Bar Specimen Specimen L/D

# Strain Rate Pressure Length Diameter Ratio
1 900 s-1  30 psi 3.75 mm 7.50 mm 0.500
2 1000 s-1 30 psi 3.70 mm 7.60 mm 0.487
3 975 s- 30 psi 3.70 mm 7.60 mm 0.487
4 980 s-1 30 psi 3.87 mm 7.56 mm 0.512
5 900 s-1 30 psi 3.87 mm 7.52 mm 0.515
6 1875 s-1 60 psi 3.83 mm 7.67 mm 0.499
7 1850 s-1 60 psi 3.88 mm 7.65 mm 0.507
8 1900 s-1 60 psi 3.80 mm 7.57 mm 0.502
9 1900 s-1 60 psi 3.77 mm 7.65 mm 0.493
10 1925 s-1 60 psi 3.88 mm 7.56 mm 0.513
11 2400 s- 1  90 psi 3.87 mm 7.66 mm 0.505
12 2500 s-1 90 psi 3.87 mm 7.55 mm 0.513
13 2550 s-1 90 psi 3.82 mm 7.68 mm 0.497
14 2550 s1 90 psi 3.80 mm 7.60 mm 0.500
15 2500 s-1 90 psi 3.90 mm 7.58 mm 0.515

Table 4.1: Polyurea samples tested with the solid aluminum SHPB set-up.

4.1 Polyurea (PU)

4.1.1 Solid Aluminum Pressure Bars

The first technique employed in the characterization of the PU blend was the solid aluminum

SHPB set-up. This technique was chosen because solid pressure bar systems composed of linear

elastic materials, i.e. metals, have been in use since Hopkinson first presented his work nearly

a century ago. The technique is well understood and widely accepted, thereby making it an

excellent benchmark with which to assess the validity and quality of the results obtained with

the less widely accepted hollow bar and polymer bar techniques. The PU trials employing

the solid aluminum bar are listed in Table 4.1 and the calculated stress vs. strain curves are

presented in Figure 4-1, Figure 4-2, and Figure 4-3. The signals are clearly quite noisy, a

consequence of the large impedance mismatch between the PU sample and aluminum bars, but

the general shape of the curves is clear and a wide range of strain rates, dependent upon the

pressure at which the striker bar was released, is achieved. Finally, a clear dependence upon

strain rate can be seen when we plot the average curves from each strain rate regime in Figure

4-4. Error bars have been included at selected strain intervals to denote the standard deviation

along each curve.
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Polyurea tested at 30psi with the solid AL pressure bars
(Strain rates of 900/s to 1000/s)

Triall (900/s)

Trial2 (1000/s)
Trial3 (975/s)

-- Trial4 (980/s)

Tria15 (900/s)0 1p

5

01

0 0.05 0.1 0.15 0.2 0.25

Strain

Figure 4-1: Polyurea specimens tested at 30 psi with the solid aluminum SHPB set-up.

Polyures tested at 60psi with the solid AL pressure bars
(Strain rates of 1850/s to 1925/s)
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Figure 4-2: Polyurea specimens tested at 60 psi with the solid aluminum SHPB set-up.

59

25

20

15

05
1

-

-

-

L

ilk

AW



Polyurea tested at 90psi with the solid AL pressure bars
(Strain rates of 2400/s to 2550/s)
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Figure 4-3: Polyurea specimens tested at 90 psi with the solid aluminum SHPB set-up.

Average trends for polyurea tested with the solid AL pressure bars
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Figure 4-4: Average trends for polyurea tested with the solid aluminum SHPB set-up.

60

4, er,

--- -- -



4.1.2 Hollow Aluminum Transmission Bar

The next technique employed, and that which is most closely related to the solid linear elastic

pressure bar approach, is the hollow aluminum pressure bar set-up. As discussed in Chapter

2, this technique employs the same basic linear elastic theory, but requires a few slight modifi-

cations in the analysis to account for the change in cross sectional area of the transmission bar.

In addition, there is cause for concern that high frequency components will be lost or changed

as they travel through the capped end of the hollow transmission bar. To assess the degree

to which this phenomenon would effect the calculation of results, three different pulse shaping

schemes were employed and evaluated: using no pulse shaper at all, utilizing a thin copper

disk pulse shaper, and finally employing a series of three paper pulse shapers. The results

from each technique are presented and discussed in the three subsequent subsections. Finally,

it should be noted that no 90 psi trials were conducted on the hollow aluminum pressure bar

set-ups because the resulting stress in the hollow transmission bar was deemed too high for the

system. It was feared that the stress would result in inelastic deformation of the bars, not only

invalidating the data, but destroying a valuable piece of laboratory equipment.

No Pulse Shaper

The no pulse shaper approach was the first hollw bar technique to be implemented and ulti-

mately provided the best results. Looking at the resulting curves in Figure 4-5 and Figure

4-6, we can see that the noise is dramatically reduced from that of the trials conducted on the

solid aluminum pressure bars. In addition, curve trends and obtained strain rates are nearly

identical. Finally, plotting the average trends we clearly see the expected increase in stress

corresponding to increasing strain rates (Figure 4-7). Furthermore, the error bars have been

decreased dramatically from those encountered with the solid aluminum bar analysis.
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Polyurea tested at 30psi with the hollow AL pressure bar (no pulse shaper)
(Strain rates of 850/s to 950/s)

25

20

15

10-

5

0
0.05 0.1 0.15

Strain
0.2

-Triall (925/a)
Trial2 (850/s)
Trial3 (850/s)

-Trial4 (875/s)
- Tial5 (950/s)

0.25

Figure 4-5: Polyurea specimens tested at 30 psi with the hollow aluminum SHPB set-up and

no pulse shaper.

Polyurea tested at 60psi with the hollow AL pressure bar (no pulse shaper)
(Strain rates of 1650/s to 1950/s)
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Figure 4-6: Polyurea specimens tested at 60 psi with the hollow aluminum SHPB set-up and

no pulse shaper.
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Average trends for polyurea tested with the hollow AL pressure bars (no pulse shaper)

0.05 0.10 0.15 0.20

Strain
0.25 0.30 0.35 0.40

Figure 4-7: Average trends for polyurea tested with the hollow aluminum SHPB set-up and

no pulse shaper.

Trial Approx. Striker Bar Specimen Specimen L/D

# Strain Rate Pressure Length Diameter Ratio

1 925 s- 1  30 psi 3.75 mm 7.80 mm 0.481

2 850 s1 30 psi 3.87 mm 7.65 mm 0.506
3 850 s-1 30 psi 3.91 mm 7.59 mm 0.515
4 875 s-1 30 psi 3.83 mm 7.71 mm 0.497

5 950 s-1 30 psi 3.45 mm 7.65 mm 0.456

16 1650 s-1 60 psi 3.91 mm 7.53 mm 0.519

17 1950 s-1 60 psi 3.29 mm 7.72 mm 0.426

18 1750 s-1 60 psi 3.89 mm 7.60 mm 0.512

19 1750 s-1 60 psi 3.67 mm 7.71 mm 0.476

20 1700 s-1 60 psi 3.81 mm 7.61 mm 0.501

Table 4.2: Polyurea samples tested with the hollow aluminum SHPB set-up and no pulse
shaper.
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Trial Approx. Striker Bar Specimen Specimen L/D

# Strain Rate Pressure Length Diameter Ratio

11 900 s- 1  30 psi 3.87 mm 7.44 mm 0.520
12 770 s- 30 psi 3.74 mm 7.66 mm 0.488
13 900 s-1 30 psi 3.63 mm 7.64 mm 0.474

14 725 s- 1  30 psi 3.62 mm 7.61 mm 0.476

15 700 s 1  30 psi 3.84 mm 7.68 mm 0.500

26 1625 s-I 60 psi 3.87 mm 7.62 mm 0.508
27 1600 s-I 60 psi 3.89 mm 7.6 mm 0.508
28 1750 s-1 60 psi 3.54 mm 7.64 mm 0.463

29 1625 s-I 60 psi 3.83 mm 7.68 mm 0.499

30 1600 s-i 60 psi 3.89 mm 7.60 mm 0.512

Table 4.3: Polyurea samples tested with the solid aluminum SHPB set-up and a copper pulse
shapper.

Copper Pulse Shaper

The next hollow bar approach evaluated, and the second most successful, employed a thin

copper disk as the pulse shaper. Examining Figure 4-8, Figure 4-9, and Figure 4-10 we can

see the noise of the resulting plots is again dramatically reduced from that encountered in the

solid aluminum pressure bar trials, and we are again able to achieve a wide range of strain

rates. The average curves for this approach also show the same strain rate dependence trend.

Utilizing this approach, however, we see that the results for the 30 psi, low pressure trials are

not as consistent as those obtained without a pulse shaper; in fact, two of the trials substantially

deviate from the previous obtained curves (compare Figure 4-8 to Figure 4-1 and Figure 4-5).

Also, while the rise time of the pulse was noticeable increased, the calculated frequency

spectrum of the transmission pulse was not appreciably effected. The aim of pulse shaping in

this approach is to eliminate additional high frequency components in the transmission signal

that might be subsequently affected by the hollow bar cap. Since this aim was not achieved

by the copper pulse shaper, it was deemed inferior to the technique of using no pulse shaper

(which also obtained more consistent results).
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Polyurea tested at 
3

0psi with the hollow AL pressure bar (copper pulse shaper)
(Strain rates of 700/s to 900/s)
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--- Trial15 (700/s)
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Figure 4-8: Polyurea specimens tested at 30 psi with the hollow aluminum SHPB set-up and a
copper pulse shaper.

Polyurea tested at 60psi with the hollow AL pressure bar (copper pulse shaper)
(Strain rates of 1600/s to 1750/s)

- Trial26 (1625/s)

Trial27 (1600/s)
Trial28 (1750/s)

-Trial29 (1625/s)
-- Trial3O (1600/s)
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Figure 4-9: Polyurea specimens tested at 60 psi with the hollow aluminum SHPB set-up and a
copper pulse shaper.
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Average trends for polyurea tested with the hollow AL pressure bars (copper pulse shaper)
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Figure 4-10: Average trends for polyurea tested with the hollow aluminum SHPB set-up and

a copper pulse shaper.
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Paper Pulse Shaper

The paper pulse shaping approach was the last hollow bar technique evaluated and the least

successful of the three. The resulting stress vs. strain plots, seen in Figure 4-11 and Figure

4-12, are again less noisy than the results obtained with the solid aluminum pressure bar set-up,

and again provide a wide range of strain rates. Similar to the copper pulse shaper approach,

however, we again see several 30psi, low pressure trials that are inconsistent and significantly

deviate from the previously obtained curves. A probable explanation for this phenomenon is

that the increased rise time resulting from these two pulse shaping approaches increased the

difficulty in isolating the start of the incident and reflected pulses. This difficulty was certainly

a factor when trying to match the force balance during the analysis of the paper pulse shaping

approach. This type of error in isolating the pulses would have then carried through in the

subsequent calculations of stress and strain.

Another problem with the paper pulse shaping approach was that the rise time was increased

so dramatically that many trials never reached a constant strain rate. Rather, the rate slowly

rose to a maximum then slowly decreased back to zero. Ideally, a constant strain rate should

be obtained as quickly as possible and maintained as long as possible to ease subsequent data

analysis.

Despite the difficulty in obtaining a constant strain rate, the curves for the average trends

still show a recognizable dependence upon strain rate (Figure 4-13). Due to the inconsistencies

at low pressures, however, and the fact that neither pulse shaping approach appreciably changed

the frequency spectrum of the transmission pulse, it was decided that pulse shaping was not

required to avoid attenuation due to the cap in the hollow bar. Therefore, future trials utilizing

the hollow bar set-up, specifically those on trabecular bone, were conducted without the added

complexity of employing pulse shaping approaches.
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Polyurea tested at 30psi with the hollow AL pressure bar (paper pulse shaper)
(Maximum strain rates of 700/s to 1000/s)
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Figure 4-11: Polyurea specimens tested at 30 psi with the hollow aluminum SHPB set-up and

a paper pulse shaper.
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Figure 4-12: Polyurea specimens tested at 60 psi with the hollow aluminum SHPB set-up and

a paper pulse shaper.

68

25

20 1 -

a

05

15

10

0

_Trial6 (1000/s)
- - - Tria17 (880/s)

-.-.- Trial8 (825/s)

Tria19 (825/s)

- Triall0 (700/s)

0 0.05 0.25

An



Average trends for polyurea tested with the hollow AL pressure bars (paper pulse shaper)
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Figure 4-13: Average trends for polyurea tested with the hollow
a paper pulse shaper.

aluminum SHPB set-up and

Trial Approx. Striker Bar Specimen Specimen L/D

# Strain Rate Pressure Length Diameter Ratio
6 1000 s-1  30 psi 3.45 mm 7.65 mm 0.451
7 880 s-1  30 psi 3.79 mm 7.55 mm 0.502
8 825 s-1 30 psi 3.90 mm 7.65 mm 0.510
9 825 s-1 30 psi 3.90 mm 7.64 mm 0.507

10 700 s-1 30 psi 3.58 mm 7.68 mm 0.466
21 1900 s-I 60 psi 3.55 mm 7.51mm 0.473
22 1750 s-1 60 psi 3.75 mm 7.55 mm 0.497
23 1750 s-1 60 psi 3.91 mm 7.61mm 0.514
24 1725 s-1 60 psi 3.91 mm 7.65 mm 0.511
25 1775 s-1 60 psi 3.63 mm 7.58 mm 0.479

Table 4.4: Polyurea samples tested with the solid aluminum SHPB set-up and a paper pulse
shaper.
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4.1.3 PMMA Pressure Bars

The final technique employed in the investigation on PU was the use of polymeric, namely

PMMA, pressure bars. For this technique two different approaches were employed. The first

was with a 10" (0.2540 m) PMMA striker bar (Trials 1-6), and the second with a 6" (0.1524

m) PMMA striker bar (Trials 7-12). The 10" striker bar was chosen because preliminary

calculations indicated that it would be the longest bar that could safely be employed without

incurring signal overlap between the incident and reflected pulses. During the analysis, how-

ever, it became apparent that at low rates the 10" striker was too long and some degree of

signal interference was noted due to dispersion within the incident bar. This difficulty explains

the inconsistent results seen in Trials 1 thru 3 of Figure 4-14. A 6" striker bar was therefore

subsequently employed to ensure the availability of low pressure trial data without signal over-

lap. With this information in mind, subsequent trials on trabecular bone, to be discussed in

the next section, would employ a 6" PMMA striker and an 8" PMMA striker.

As seen in Figure 4-14 and Figure 4-15, the PMMA SHPB technique gave excellent noise

reduction compared to the solid aluminum pressure bar technique and allowed for a comparable

range of strain rates compared to the various hollow aluminum bar techniques. Similar to

the hollow bar technique, the limit on striker bar pressure was set to 60 psi so as to avoid

permanent deformation of the bars. It is worth noting that one added advantage of the

PMMA bar approach was that it allowed for much more accurate and prolonged calculations

of the specimens' unloading behavior. Average curves for the techniques are show with error

bars in Figure 4-16.
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Polyurea tested at 30psi with the PMMA pressure bars
(Strain rates of 630/s to 790/s)
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Figure 4-14: Polyurea specimens tested at 30 psi with the PMMA SHPB set-up and either a

6" or 10" striker.

Polyurea tested at 6Opsi with the PMMA pressure bars
(Strain rates of 1310/s to 1550/s)
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Figure 4-15: Polyurea specimens tested at 60 psi with the PMMA SHPB set-up and either a

6" or 10" striker.
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Average trends for polyurea tested with the PMMA pressure bars

-4-i in 6Opsi (-1 520/a)
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-U-6in 30psi (-650/s)
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Figure 4-16: Average trends for polyurea tested with the PMMA SHPB set-up.

Approx.
Strain Rate

Striker Bar
Pressure

Striker Bar
Length

Specimen
Length

Stai Rate~__________

665
750
790

1500
1500
1500
630
675
650

1310
1400
1340

51
s-1
s-1
s-1
s-1
s-1

51
s-I

s-1
s-1
s-1

s-1

30
30
30
60
60
60
30
30
30
60
60
60

psi
psi
psi
psi
psi
psi

psi
psi
psi
psi
psi
psi

Table 4.5: Polyurea samples

0.2540
0.2540
0.2540
0.2540
0.2540
0.2540
0.1524
0.1524

m
m
m
m
m
m
m
m

3.85 mm
3.82 mm
3.76 mm
3.71 mm
3.60 mm
3.49 mm

3.87 mm
3.76 mm

Specimen
Diameter
6.85 mm
6.77 mm
6.85 mm
6.80 mm
6.78 mm
6.79 mm
7.55 mm
7.46 mm

0.1524 m 3.83 mm 7.54 mm
0.1524 m 3.84 mm 7.52 mm

0.1524 m 3.78 mm 7.55 mm

0.1524 m 3.80 mm 7.60 mm

tested with the PMMA SHPB set-up.
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Average Trends for Polyurea
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Figure 4-17: Summary of all polyurea results.

4.1.4 Polyurea (PU) Analysis Summary

Finally, to show that all of the techniques employed in this study do indeed provide comparable

results, the average trends for each testing configuration have been plotted overlying one another

in Figure 4-17. The error bars for each curve in this figure are representative of one standard

deviation.

4.2 Trabecular Bone

Having selected and validated the relevant SHPB techniques, we now turn our attention to

applying these procedures to the characterization of trabecular bone. Provided in this section

are the results, presented in the form of an engineering stress vs. engineer strain plot, for

the three selected techniques: the solid aluminum pressure bar set-up, the hollow aluminum

pressure bar set-up (without pulse shaping), and the PMMA pressure bar set-up (with both a

6" and an 8" striker bar configuration). For each set of plots a table is given to provide the

reader with the pertinent experimental parameters. Four trials were conducted on each set-up
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at striker bar pressures of 20 psi, 40 psi, and 60 psi. In order to assure that the deformation

for each method and each pressure was uniform, and to check that localized failure was not

occurring, one of these four trials was always conducted utilizing the high speed camera set-up

described in the experimental methods section.

4.2.1 Solid Aluminum Pressure Bars

Figure 4-19, Figure 4-20, and Figure 4-21 provide the results for the trials employing the solid

aluminum SHPB set-up. Figure 4-22 then summarizes the average trends for each of these

three different strain rate regimes. The reader should note, however, that the fourth trial

from each regime, indicated by "*" in Table 4.6 and representing the trial in which high speed

photography was employed (see Figure 4-18), was excluded from the averages because of the

low resolution (and consequently large amount of noise) in the signal acquisition set-up. For

the purposes of consistency, this convention is maintained throughout the subsequent hollow

bar and PMMA bar analyses as well.

The strain obtained in each of the solid aluminum bar trials was between 0.35 and 0.70, well

beyond the strains obtained by the previous high rate study on cortical bone by McElhaney

[24]. Significant also was the range of strain rates achieved, between 250 s-1 and 1300 s-1. It is

interesting to note, however, that the curves of the highest rate trials with this solid aluminum

bar technique, corresponding to a 60 psi striker bar pressure, fall below the curves of both

the 20 psi and 40 psi trials. This deviation seems counter-intuitive and furthermore does not

correspond to the trends seen in the results of the other SHPB techniques. This may, however,

simply be due to the small sample size of the group. Also, it should be noted that these

curves do not take into account the effect of apparent density, and it is possible that doing so

would subsequently raise the 60 psi curve relative to the others. Unfortunately, many of the

samples recovered after the trials were too far damaged to allow for accurate measurement of

the demarrowed mass. This is evident in Table 4.6 by the appearance of an "N/A" entry in

the apparent density column (a potential solution to this problem will be discussed in Chapter

5). Finally, this unexpected deviation may simply be indicative of the problems which arise

from the solid aluminum bar's low signal-to-noise ratio (further evidence of the need to employ

lower impedance bars).
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Figure 4-18: Select trials were conducted utilizing high speed photography. Seen here is a 60

psi trial on the solid aluminum SHPB in which the marrow can clearly be seen squeezing out

from within the trabeculae.

Bovine trabecular bone tested with the solid AL pressure bars
(Strain rates of 250/s to 350/s)
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Figure 4-19: Bovine trabecular bone specimens tested at 20 psi with the solid aluminum

SHPB set-up.
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Bovine trabecular bone tested with the solid AL pressure bars
(Strain rates of 650/s to 725/s)
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Figure 4-20: Bovine trabecular bone specimens tested at 40 psi with the solid aluminum

SHPB set-up.
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Figure 4-21: Bovine trabecular bone specimens tested at 60 psi with the solid aluminum

SHPB set-up.
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Average trends for trabecular bone tested with the solid AL pressure bars
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Figure 4-22: Average trends for bovine trabecular bone samples tested with the solid
aluminum SHPB set-up.

Trial Approx. Striker Bar Specimen Specimen Initial Apparent

# Strain Rate Pressure Length Diameter Density Density
1 300 s-1 20 psi 6.60 mm 8.11 mm 1339 kg/m 3  898 kg/m 3

2 350 s1 20 psi 5.34 mm 8.07 mm 1386 kg/M 3  1006 kg/M 3

3 275 s-1 20 psi 7.73 mm 8.07 mm 1367 kg/m 3  800 kg/M 3

4* N/AT 20 psi 6.45 mm 8.10 mm 1331 kg/M 3  846 kg/M 3

4B* 250 s-1 20 psi 7.31 mm 8.07 mm 1286 kg/M 3  N/A

5 650 s-1 40 psi 7.09 mm 8.07 mm 1350 kg/im3 N/A
6 725 s- 1  40 psi 6.42 mm 8.07 mm 1350 kg/M 3  N/A

7 700 s-1 40 psi 6.41 mm 8.06 mm 1343 kg/M 3  N/A
8* 650 s- 40 psi 7.78 mm 8.08 mm 1281 kg/M 3  N/A

9 1050 s-1 60 psi 6.56 mm 8.05 mm 1384 kg/m 3  N/A
10 1200 s-1 60 psi 5.76 mm 8.11 mm 1371 kg/M 3  N/A

11 1100 s-1 60 psi 5.98 mm 8.11 mm 1408 kg/M 3  N/A
12* 1300 s-1 60 psi 5.60 mm 8.14 mm 1394 kg/M 3  N/A

Average 6.54 mm 8.09 mm 1353 kg/n 3  877 kg/m 3

Standard Deviation 0.77 mm 0.03 mm 38.5 kg/m 3  88.5 kg/m 3

* Trial employing high speed photography (not included in the average trends).

" No transmission signal was recorded for this trial

Table 4.6: Bovine trabecular bone samples tested with the solid aluminum SHPB.
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Trial Approx. Striker Bar Specimen Specimen Initial Apparent

# Strain Rate Pressure Length Diameter Density Density
1 350 s- 1  20 psi 5.80 mm 8.10 mm 1405 kg/m 3  1090 kg/m3
2 300 s- 1  20 psi 6.02 mm 8.06 mm 1392 kg/M 3  824 kg/M 3

3 250 s-1 20 psi 6.77 mm 8.04 mm 1325 kg/M 3  731 kg/M 3

4* 275 s- 1  20 psi 6.77 mm 8.09 mm 1361 kg/m 3  863 kg/M 3

5 700 s-1 40 psi 6.01 mm 8.08 mm 1393 kg/m 3  N/A
6 650 s- 1  40 psi 7.19 mm 8.08 mm 1262 kg/M 3  N/A

7 600 s- 1  40 psi 7.16 mm 8.08 mm 1314 kg/M 3  N/A

8* 550 s-1 40 psi 8.08 mm 9.09 mm 1117 kg/M 3  N/A

9 700 s- 1  60 psi 7.75 mm 8.10 mm 1340 kg/m 3  N/A

10 1000 s-1 60 psi 6.14 mm 8.06 mm 1435 kg/M 3  N/A
11 750 s-1 60 psi 7.50 mm 8.04 mm 1412 kg/M 3  N/A

12* N/AR 60 psi 6.12 mm 8.10 mm 1381 kg/M 3  N/A

Average 6.78 mm 8.07 mm 1345 kg/M 3  877 kg/m 3

Standard Deviation 0.77 mm 0.03 mm 86.6 kg/m 3  152.4 kg/m 3

* Trial employing high speed photography (not included in the average trends).

-' Signal was not captured properly due to an improper trigger.

Table 4.7: Bovine trabecular bone samples tested with hollow aluminum SHPB.

4.2.2 Hollow Aluminum Transmission Bar

Figure 4-23, Figure 4-24, and Figure 4-25 of this subsection provide the results for the trials

employing the hollow aluminum SHPB set-up. The strains and strain rates obtained here

are comparable to those seen in the solid aluminum SHPB trials, but the standard deviation

amongst the results has been reduced slightly. This trend is best seen in Figure 4-22, which

summarizes the average trends for each of these three different strain rate regimes. Also, the

average stress-strain curves here show the anticipated increase in stress corresponding to an

increase in strain rate, which was not the case in the solid aluminum bar study. Unfortunately,

because many of the samples recovered were significantly damaged, not enough apparent density

data could be gathered to study its effect upon these curves.
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Bovine trabecular bone tested with the hollow AL pressure bars
(Strain rates of 250/s to 350/s)
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Figure 4-23: Bovine trabecular bone specimens tested at 20 psi with the hollow aluminum
SHPB set-up.
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Bovine trabecular bone tested with the hollow AL pressure bars
(Strain rates of 550/s to 700/s)
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Figure 4-24: Bovine trabecular bone specimens tested at 40 psi with the hollow aluminum
SHPB set-up.
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Bovine trabecular bone tested with the hollow AL pressure bars
(Strain rates of 700/s to 1000/s)
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Figure 4-25: Bovine trabecular bone specimens tested at 60 psi with the hollow aluminum

SHPB set-up.

Average trends for trabecular bone tested with the hollow AL pressure bars
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Figure 4-26: Average trends for bovine trabecular bone samples tested with the hollow

aluminum SHPB set-up.
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4.2.3 PMMA Pressure Bars (6" Striker)

The results for the PMMA SHPB trials employing a 6" striker bar are shown here in Figure

4-27, Figure 4-28, and Figure 4-29. The first thing that is apparent from examining these

stress-strain curves is that the strains achieved are noticeably less than those attained earlier

with either the solid or hollow aluminum SHPB techniques. Also, while similar strain rates

to those obtained in the solid and hollow bar techniques are achieved for the 20 psi and 40 psi

trials, the strain rates seen in the 60 psi trials are significantly lower. In fact, the rates for the 60

psi trials of this approach are only slightly higher than those of the 40 psi trials. Both of these

phenomenon can be accounted for by the fact that the PMMA set-up described here employs a

significantly shorter striker bar than that of the previous aluminum bar set-ups (19"). A second

contributing factor to the differences encountered between the respective techniques is that the

decreased density of the incident bar (PMMA instead of aluminum) meant that less energy was

available for transfer to the sample. Consequently, for the same striker bar pressures, lower

strains and strain rates are achieved. These shortcomings were partially rectified in the next

subsection by employing a longer, 8" striker bar.

The average trends for each of the striker bar pressures employed is summarized in Figure 4-

30. The results match well with those of the hollow bar technique and show the same apparent

correlation to strain rate, but the curves are noticeably shortened because of the smaller striker

bar employed in this technique. In this case, as with all the others, not enough samples were

recoverable to allow for a meaningful investigation on the effect of apparent density.
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Bovine trabecular bone tested at 20psi with the PMMA pressure bars and a 6" striker
(Strain rates of 175/s to 300/s)
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Figure 4-27: Bovine trabecular bone specimens tested at 20 psi with the PMMA SHPB set-up

and a 6" striker.

Bovine trabecular bone tested at 40psi with the PMMA pressure bars and a 6" striker
(Strain rates of 450/s to 575/s)
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Figure 4-28: Bovine trabecular bone specimens tested at 40 psi with the PMMA SHPB set-up

and a 6" striker.
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Bovine trabecular bone tested at 60psi with the PMMA pressure bars and a 6" striker
(Strain rates of 450/s to 575/s)
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Figure 4-29: Bovine trabecular bone specimens tested at 60 psi with the PMMA SHPB set-up
and a 6" striker.

Average trends for trabecular bone tested with the PMMA pressure bars a 6" striker
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Figure 4-30: Average trends for bovine trabecular bone specimens tested with the PMMA
SHPB set-up and a 6" striker.
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Trial Approx. Striker Bar Specimen Specimen Initial Apparent

# Strain Rate Pressure Length Diameter Density Density

1 300s- 1  20 psi 6.23 mm 8.05 mm 1249 kg/m 3  929 kg/M 3

2 250 s- 1  20 psi 6.02 mm 8.02 mm 1473 kg/M 3  931 kg/m 3

3 175 s- 1  20 psi 8.05 mm 8.03 mm 1417 kg/M 3  1106 kg/m 3

4* 225 s-1 20 psi 7.16 mm 8.08 mm 1304 kg/M 3  845 kg/M 3

5 525 s-1 40 psi 6.40 mm 8.05 mm 1255 kg/m 3  766 kg/m 3

6 450 s-1 40 psi 7.01 mm 8.07 mm 1341 kg/M 3  1006 kg/M 3

7 575 s-1 40 psi 6.60 mm 8.08 mm 1213 kg/m 3  629 kg/M 3

8* 500 s-1 40 psi 7.38 mm 8.09 mm 1301 kg/M 3  968 kg/M 3

9 550 s-1 60 psi 7.00 mm 8.04 mm 1342 kg/M 3  898 kg/m 3

10 625 s-1 60 psi 7.30 mm 8.08 mm 1208 kg/m 3  N/A

11 600 s-1 60 psi 7.27 mm 8.08 mm 1376 kg/M 3  918 kg/M 3

12* N/A' 60 psi 6.47 mm 8.07 mm 1173 kg/M 3  N/A

Average 6.91 mm 8.06 mm 1301 kg/M 3  900 kg/m 3

Standard Deviation 0.58 mm 0.02 mm 84.5 kg/M 3  369.8 kg/m3

* Trial employing high speed photography (not included in the average trends).
' Incident pulse not captured correctly (truncated).

Table 4.8: Bovine trabecular bone samples tested with the PMMA SHPB set-up and a 6"

striker.
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Trial Approx. Striker Bar Specimen Specimen Initial Apparent

# Strain Rate Pressure Length Diameter Density Density
13 240 s 1  20 psi 6.80 mm 8.08 mm 1362 kg/m 3  1011 kg/m3

14 225 s- 20 psi 8.38 mm 8.07 mm 1145 kg/M 3  691 kg/m 3

15 225 s 1  20 psi 7.63 mm 8.06 mm 1208 kg/M 3  702 kg/m 3

16* 250 s1 20 psi 6.94 mm 8.05 mm 1274 kg/M 3  782 kg/M 3

17 550 s-1 40 psi 5.87 mm 8.08 mm 1296 kg/m 3  961 kg/m 3

18 450 s-1 40 psi 7.07 mm 8.08 mm 1405 kg/M 3  1138 kg/M 3

19 600 s- 40 psi 5.60 mm 8.05 mm 1276 kg/M 3  797 kg/M 3

20* 500 s1 40 psi 5.78 mm 8.06 mm 1411 kg/m 3  985 kg/M 3

21 600 s-1 60 psi 8.50 mm 8.01 mm 1246 kg/m 3  N/A
22 500 s-1 60 psi 7.99 mm 8.05 mm 1310 kg/m 3  780 kg/m 3

23 525 s-1 60 psi 7.78 mm 8.01 mm 1462 kg/M 3  1150 kg/M 3

24* N/AR 60 psi 6.13 mm 8.08 mm 1388 kg/M 3  N/A
Average 7.04 mm 8.06 mm 1315 kg/M 3  901 kg/m 3

Standard Deviation 1.03 mm 0.02 mm 93.0 kg/m 3  383.0 kg/m 3

* Trial employing high speed photography (not included in the average trends).
' Signal was not captured properly due to an improper trigger.

Table 4.9: Bovine trabecular bone samples tested with the PMMA SHPB set-up and an 8"
striker.

4.2.4 PMMA Pressure Bars (8" Striker)

The final approach employed to study the high rate properties of trabecular bone was again

a PMMA SHPB technique, but this time employing a slightly longer 8 " striker bar. As

demonstrated with the preliminary trials on PU, this was the limit for the current polymer

configuration at MIT because for longer strikers interference between the pulses becomes prob-

lematic. The results from this last PMMA SHPB approach are shown in Figure 4-31, Figure

4-32, and Figure 4-33. These curves are again noticeably shorter than those of the aluminum

bar techniques, but still an improvement from the previous PMMA SHPB technique. The

strain rates for the 60 psi trials are again lower than those encountered in the aluminum bar

trials, but as seen in Figure 4-34, which summarizes the average trends for each of the striker

bar pressures employed, the results match well with those of the hollow bar technique and show

the same apparent correlation with strain rate. Finally, as in the other techniques, not enough

samples were recoverable to allow investigation into the effect of apparent density on high strain

rate mechanical properties.

85



Bovine trabecular bone tested at 20psi with the PMMA pressure bars and an 8" striker

(Strain rates of 225/s to 250/s)
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Figure 4-31: Bovine trabecular bone specimens tested at 20 psi with the PMMA SHPB set-up

and an 8" striker.

Bovine trabecular bone tested at 40psi with the PMMA pressure bars and an 8" striker
(Strain rates of 225/s to 250/s)
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Figure 4-32: Bovine trabecular bone specimens tested at 40 psi with the PMMA SHPB set-up

and an 8" striker.
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Bovine trabecular bone tested at 60psi with the PMMA pressure bars and an 8" striker
(Strain rates of 500/s to 600/s)
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Figure 4-33: Bovine trabecular bone specimens tested at 60 psi with the PMMA SHPB set-up

and an 8" striker.

Average trends for trabecular bone tested with the PMMA pressure bars an 8" striker
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Figure 4-34: Average trends for bovine trabecular bone specimens tested with the PMMA

SHPB set-up and an 8" striker.
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Average trends for trabecular bone
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Figure 4-35: Summary of all trabecular bone results.

4.2.5 Trabecular Bone Analysis Summary

Finally, to show that all of the techniques employed in this study do indeed provide comparable

results, the average trends for each have been plotted overlying one another in Figure 4-35.

The error bars for each curve in this figure are representative of one standard deviation. While

the curves do overlap one another and show the same general trend, it is immediately apparent

from this figure that there is significantly more scatter than in the case of the preliminary

PU study. This may simply be do to the fact that biological tissues are less consistent than

synthetic ones, but may also be a consequence of not weighting the curves with their relative

apparent denisities. The reasons for not being able to conduct this analysis were mentioned

and possible solutions will be discussed in Chapter 5.
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Chapter 5

Conclusions and Recommendations

for Future Work

The primary goal of this study was to lay the foundation for bridging the gap between the

current abilities of the split-Hopkinson pressure bar technique and those capabilities that will

be necessary to characterize the materials of interest for simulation of behind-armour effects

of ballistic threats. Historically, the main obstacle to applying the SHPB technique to the

study of such materials has been that a large impedance mismatch exists between standard

pressure bars and softer, biological specimens. With this in mind, trabecular bone, because

of its relatively high stiffness, was selected to be the first biological material to be examined

under the auspices of ISN Project 6.9.

To begin the process, a comprehensive literature search was conducted to see what mile-

stones had been previously reached in the understanding of this complicated biological material.

While a large number of studies pertinent to bone's low rate behavior were found, surprising

little was encountered for rates above 10 s-. This sparsity of information solidified our interest

in trabecular bone's characterization, but before testing could begin we needed to obtain an

understanding of the techniques available to us and which of these could be employed most

effectively in our studies of biological tissues. This understanding was achieved through an

extensive literature search, the fruits of which were presented to the reader in Chapter 2. After

reviewing the potential candidates, three techniques were chosen for implementation: the solid
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aluminum, the hollow aluminum, and the PMMA split-Hopkinson pressure bar techniques. To

augment our understanding of each, and because there has been some dissension within the

split-Hopkinson community as to the validity of the last two, a comprehensive series of experi-

ments was conducted on a polyurea blend to assess the capabilities of each technique. These

trials also allowed us to evaluate the effect of pulse shaping for the hollow bar case, ultimately

showing it to be an unnecessary complication for this application. The results of all three

techniques showed good correlation to one another. Noteworthy, however, was the low signal-

to-noise ratio of the solid aluminum bar set-up and the importance of selecting an appropriate

striker bar length, especially when employing polymer pressure bars.

With the techniques having passed the validation trials, they were ready for application

to the material of primary concern to us - trabecular bone. Overall, the various methods

employed were quite successful at characterizing trabecular bone's high strain rate properties.

The rates obtained were satisfactory and the curve trends corresponding to strain rate generally

matched those of previous low rate studies. There were, however, several areas where signifcant

improvements could still be made. First, signal alignment in the case of both aluminum bar

set-ups should be improved. Second, it would be extremely helpful to further extend the range

of our curves to higher levels of strain (while still obtaining the same strain rates). Finally, a

new, more reliable, method needs to be developed for measuring the apparent density of the

samples, if this factor is to be included in future studies.

In nearly half of the aluminum bar trials analyzed the initial ALSHPB.m assessment showed

noticeable misalignment between the incident and reflected pulses. It seems a better algorithm

is needed for this process because error from this type of mistake is easily propagated throughout

the entire series of stress and strain calculations. While this type of error is easily recognized by

the presence of two inverse spikes in the force equilibrium plot, and can be corrected manually

from within the code, its correction is nevertheless an unreliable and time consuming process.

One potential solution is to align the pulses by initial slopes, rather than by their initial deviation

from the baseline. This solution has been implemented in earlier codes, such as hoppy.m,

developed by Veli-Tapani Kuokkala and Taina Vuoristo at Sandia National Laboratories. A

more precise solution, however, would be to implement the PMMASHPB.m algorithm on the

aluminum SHPB system. This could easy be accomplished by running a set of characterization
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trials, identical in nature to those already conducted on the PMMA bars, on the aluminum set-

up. The advantage of employing this technique is that time keeping, which is ultimately

the underlying cause of poor signal alignment, is automatically accounted for by the transfer

function. The benefit of this approach is easily recognized by comparing the excellent force

balance shown for the PMMA trials (see Figure E-3) to that of the inferior aluminum bar trials

(see Figures A-4 and A-5).

With regards to increasing the strain levels achieved during the tests there is a simple,

straightforward solution: increase the length of the striker bars employed. The problem then

becomes how to increase the length of the striker bars without running into the problem of

signal interference, the importance of which was already demonstrated during the PU trials.

The long term solution would be to simply obtain longer incident and transmission bars so that

the strain gauges could be placed well away from the sample and allow for the use of longer

striker bars without the problem of pulses overlapping. A more immediate and economical

solution, however, would be to place new strain gauges on the current bars further away from

the test specimens. The optimization of this approach would be to place the gauges exactly in

the middle of the bars (any further away and interference from waves reflecting off the far end of

the bar would become a problem). By changing strain gauge location from its current position

(30" from the specimen end) to the middle of the bar (45" from the specimen end) we would

be able to employ striker bars that were approximately 50% longer. This would increase the

total attainable strain levels by roughly the same amount. Finally, in addition to using longer

striker bars, slightly shorter samples could be employed to further augment the strain levels

achieved. Care should be taken when implementing this solution, however, to assure that the

adjustment in specimen size does not violate the continuum assumption of the material.

Finally, there is substantial room for improvement in the measurement of apparent density.

Here the problem was that many of the specimens were only partially recovered after having

been seriously damaged during the experimental trials. A simple solution to this problem would

be to remachine the remaining portion of the specimens into regular shapes before following

the demarrowing procedure set forth in Chapter 3, Section 3. Unfortunately, there was not

time during this study to implement this new procedure, but samples from the project are still

in storage at -20'C in a 0.1 M saline solution so further analysis is possible and would be of
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interest.

Looking forward, beyond just achieving higher strains in trabecular bone, this laboratory

is committed to accurately characterizing the high rate behavior of a wide variety of biological

tissues and related soft materials. Preliminary trials have been conducted on soft tissue simu-

lants, such as Ordinance 250A Ballistic Gelatin and RTV6166 Silicon Gel (see Figure H-2), but

even with the low impedance polymer bars in place no measurable strain is transferred through

to the transmission bar. This indicates that the calculation of these materials' properties still

lie far beyond the capabilities of the techniques employed within this study and the current

abilities of the SHPB community as a whole.

One proposed solution would be to employ large diameter hollow pressure bars composed of

PMMA. Using a hollow PMMA bars would allow us to further decrease their impedance, while

the larger diameter would allow for increasing the diameter of the specimen, thereby increasing

its impedance. This combined benefit may bring the impedance mismatch within a measurable

range. It should be noted, however, that because of the slow wave speed seen in many soft

materials the specimens would have be made thinner in order to allow them to quickly reach

a state of dynamic equilibrium. This, in combination with the increased diameter, would

unfortunately go against previous recommendations that specimens maintain a 0.5 length-to-

diameter ratio. In this scenario, however, we feel that the benefits would far outweigh the

consequences. Furthermore, the effects of this change in geometry could be estimated and

corrected for with the use of finite element analysis.
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Appendix A

ALSHPB.m Procedure

In analyzing the data, the ALSHPB.m code prompts the user for the dimensions of the cylin-

drical specimen tested. Once these values have been loaded, the wave speed, Young's modulus,

and diameter of the bar are defined. Also, the internal diameter of the transmission bar is

established. If the solid transmission bar was used this value is simply set to zero. Next,

cross sectional areas of the incident and transmission bars are calculated and the parameters

for zeroing and isolating the pulse are established. The number of data points used to estab-

lish the zero strain baseline for the incident and transmission bars are stored in the variables

"inciLeading" and "transLeading". The importance of these parameters will be demonstrated

later. The values for "inciSlope," "refiSlope," and "transSlope," which determine the location

of the reference point in the pulse isolating algorithm, are then set to 0.5, or half of the max-

imum amplitude of the pulse to which they are applied. Finally, the percent deviation from

zero for the trigger is defined, the number of smoothing points used to find the start of the

transmission pulse for weak signals is established, the conditioner frequency range is set, and

the overall number of data points used for the signal processing is defined.

Next, ALSHPB.m loads the data file corresponding to the incident bar signal as specified

by the user. This data is first translated into microseconds and volts for the subsequent

calculations. Next, the time portion of each signal is zeroed, and a baseline for the voltage is

established. The accurate calculation of this baseline depends on specifying an ample pretrigger

delay during the experimental setup. If the leading section of the incident signal is too short,

the number of sample points, "inciLeading" (or "transLeading" in the transmission bar case),
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Figure A-1: Establishing a reliable baseline is essential to accurately isolating pulses.

requires manual adjustment to assure that an appropriate baseline is found (Figure A-1). Once

an appropriate incident baseline has been established, the signal is zeroed relative to it. The

signal is then plotted in blue along with the baseline in black (Figure A-1). Next, the minimum

strain value of the incident signal is found and its location marked on the previous plot with

a green triangle. Working backwards from this minimum strain value, a reference point,

whose strain value is half the magnitude of the minimum's, is established and plotted with

a second green marker. From the reference point the code continues working stepwise back

in time, searching for the first point that has a magnitude less than a certain percentage

("percentTrigger") of incident signal's minimum. This point is then recorded as the start of

the incident pulse and its position is plotted with another green marker. Finally, the end of

the incident pulse is found by working forward in time and marking the first non-negative point

with a fourth and final green marker (Figure A-1). Once the incident pulse has been isolated

it is recorded in two different formats. The first being with the time information zeroed to

coincide with the start of the individual pulse, and the second with the original time scale of

the experiment.

With the incident pulse information recorded, ALSHPB.m continues on to find the reference

points and starting point of the reflected pulse (indicated by the red markers in Figure A-1).

This is accomplished in a similar manner to that of the incident pulse, but using the maximum
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of the incident bar signal rather than the minimum. Also, the end of the reflected pulse is

selected manually by the user in order to assure accurate capture of the specimen's unloading

behavior.

Next, the transmission bar signal is specified by the user and loaded into the program.

This pulse is handled in a similar manner to that of the incident and reflected pulses but

with markers being plotted in cyan (Figure A-2). Calculating the start of the pulse, however,

can be unreliable when testing soft specimens because the pulses tend to have a very low

signal-to-noise ratios (especially those acquired with the solid aluminum transmission bar).

To help overcome this complication, a smoothing function is used to find the point where the

moving average's value becomes greater than the transmission bar's percent trigger value. This

smoothed function is then plotted in conjunction with the original transmission signal so the

user can check that an appropriate starting point was chosen (see again Figure A-2). As an

additional check on the start and end point selections, all three pulses are plotted together

both in the unshifted and shifted time frames (Figure A-3). If it is clear from these plots that

the starting points of the pulses are not being isolated accurately, there user can now opt to

terminate the program and activate the manual override point selection from within the code.

It should be noted, however, that it is normal for the unshifted transmission pulse to appear

to lag slightly behind the reflected pulse. This is due to the extra time it takes for the signal to

pass through the length of the specimen. More important is whether or not the pulses appear

to line up correctly in the shifted pulse time frame.

Next, the Fourier transform of each signal is taken and the frequency power spectrum

is calculated and plotted. The purpose of this exercise was two fold: one, to practice the

technique so it could be more easily implemented in subsequent viscoelastic codes; and two,

so that the frequency components of the signal can be checked against the capabilities of the

signal conditioner used to acquire the data (see Figure C-1 for an example of the frequency

power spectrum plots).

Continuing on in ALSHPB.m, the calibration factor for the strain gauges used is calculated

and multiplied by each individual strain signal to convert it from volts to percent strain. All

strain signal vectors are then defined to be the same length, the ends of the shorter signals

being padded with zeros. Next, the forces are calculated by implementing equations (2.6)
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(a) The low signal-to-noise ratio in the solid

transmission bar's signal for soft specimens makes it

difficult to decipher the start of the pulse

Figure A-2: A smoothing function is used to
pulse.
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(b) The smoothed transmission bar signal is used to

more effetively calculate the pulse start and is plotted

for visual verification by the user.

assist in finding the start of the transmission

(a) Unshifted time frame. (b) Shifted time frame.

Figure A-3: Overlapping pulse plots with visual markers allow the user to verify the selection

of starting and ending points.
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(a) A force diagram showing good force balance (b) The shifted time frame corresponding to good

between the front and rear face of the specimen. force balance: the incident and reflected signal
overlap one another.

Figure A-4: Good force balance obtained for a PU specimen tested on the solid aluminum bar

by manually adjusting the selection time.

and (2.12). These forces are then plotted, allowing user to check the validity of the dynamic

equilibrium assumption (Figure A-4 and Figure A-5). Because the front face force is calculated

using the difference of two pulses, it is consistently noisier than the calculated rear face force.

It should, however, oscillated equally above and below the calculated rear face force (Figure

A-4). If the two plots do not overlap one another, dynamic equilibrium was not achieved and

any subsequent calculations of stress and strain would be invalid. If it is observed that there is

a large spike at the beginning of the force overlay, and equally large inverse spike at the moment

of peak stress (Figure A-5), either the incident or reflected signal may have not been properly

isolated and therefore slightly shifted relative to the other. This can be easily remedied using

the manual override selection mentioned earlier. Once the forces are plotted, the program will

prompt the user to find where force balance is first achieved. This point will be marked on

subsequent stress, strain, and strain rate plots with an open dot. Finally, the user is prompted

to determine where force balance ends. The point chosen may either be the end of force balance

or, if the user does not wish to see the unloading behavior of the material, it may simply be

the point of maximum force. Either way, the program will only carry subsequent calculations

up to this reference time.

With the forces calculated and validated, the three wave stress analysis method (equations

(2.4) and (2.8)) is implemented to determine the engineering stress, strain rate, and strain
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(a) A force diagram showing poor force balance (b) The shifted time frame corresponding to

between the front and rear face of the specimen. improper force balance: the incident and reflected
signals do not overlap.

Figure A-5: The force balance for the same solid aluminum PU trial prior to manual
adjustment.

(calculated using MATLAB's cumtrapz function to integrate strain rate). Next, the true

strain for the three wave analysis is calculated from the engineering strain, and the true stress

is approximated by multiplying engineering stress by one plus the engineering strain (this

formulation, however, is valid only if the specimen tested is incompressible). Moving forward

under the assumption of dynamic equilibrium within the specimen, the one wave stress analysis

(equations (2.10) and (2.11)) is then implemented and used to calculate the same parameters

as described in the three wave analysis. In addition, true strain rate is calculated for both the

one wave and the three wave methods by dividing the change in calculated true strain by the

time interval between data points.

With all the calculations completed, the engineering stress is then plotted for both the one

wave and three wave analyses, as are the approximated true stress, engineering strain, true

strain, engineering strain rate, and true strain rate (Figure A-6, Figure A-7, and Figure A-8).

Finally the engineering stress vs. engineering strain and approximated true stress vs. true

strain are plotted (Figure A-9). In all of these plots blue is used for the three wave method

and red is used for the one wave method to allow for easy comparison of the results. The

results are then saved into two *.txt files so they can be easily accessed for further analysis at

a later date. Of these two files, the "OneWave.txt" file the contains the engineering strain,

engineering strain rate, engineering stress, true strain, true strain rate, and approximated true
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stress data for the one wave calculations, while "ThreeWave.txt" is written in the same order

but with the data for the three wave calculations.
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(a) Engineering stress vs. time. (b) True stress vs. time.

Figure A-6: Examples of the stress plots generated for a PU sample tested on the hollow

aluminum bars.

(a) Engineering strain vs. time.

Figure A-7: Examples of the strain plots for a PU

(b) True strain vs. time.
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(a) Engineering strain rate vs. time.

Figure A-8: Examples of the strain rate
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(b) True strain rate vs. time.

plots for a PU sample tested on the hollow aluminum

bars.

(a) Engineering stress vs. engineering strain. (b) True stress vs. true strain.

Figure A-9: Examples of the stress vs. strain plots for a PU sample tested on the hollow

aluminum bars.
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Appendix B

ALSHPB.m Code

% ALSHPB.m

% Timothy P. M. Johnson

% Institute for Soldier Nanotechnologies

% Massachusetts Institute of Technology

% June 2005

% NOTE SIGN CONVENTION: Compression is Positive

clear all

close all

/ SPECIMEN PARAMETERS

Dsmm=input('What is the diameter of the specimen in millimeters? ');

Ds=Dsmm*10^-3; % Diameter of the specimen in [ml\qquad

Lsmm=input('What is the length of the specimen in millimeters? ');

Ls=Lsmm*10^-3; % Length of specimen in [m]

Aspec=pi*(Ds/2)^2; % Cross sectional area of the specimen in [m^2]

% BAR PARAMETERS

CO=5091; % Wave speed Em/si

E=72000; % Modulus EN/mm^2 == MPa]
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Dbar=0.01905; % Bar Diameter [m]

Dhole=Dbar-(3e-3); % Diameter of hollow core in trasmission bar

Abar=pi*(Dbar/2)^2; % Cross sectional area of the bar

Atrans=Abar-pi*(Dhole/2)^2;

% PARAMETERS FOR ZEROING AND ISOLATING THE PULSE

inciLeading=150; % Number of initial points used to calculate incident

baseline

transLeading=650; % Number of initial points used to calculate transmission

baseline

inciSlope=0.5; % Location of reference point on incident slope, as a

fraction of signal minimum

reflSlope=0.5; % Location of reference point on reflected slope, as a

fraction of signal maximum

transSlope=0.25; % Location of reference point on transmission slope, as a

fraction of signal minimum

percentTrigger=0.005;% Percent deviation from zero that signals the start of a

pulse

smoothingPts=100; % Number of points used in the moving average smoothing

function to detect the start of the transmission pulse for low

signal-to-noise ratio transmission signals

% SIGNAL PROCESSING PARAMETERS

conditionerRange = 50000; % Frequency range of the data acquisition hardware

signalSize = 2^12; % Size of signal after padding

A CAPTURING INCIDENT AND REFLECTED PULSES

[fname, fpathl=uigetfile('*.asc','Select Incident Bar Signal'); % Read the

incident bar pulses; the data is time (seconds) vs. strain (in volts!)

cd(fpath)
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channell=load([fpath fnamel);

tim=channell(:,1);

dt=(tim(end)-tim(1))/(length(tim)-1); % dt is the time interval between

points in seconds

tim=tim*10^6; % Changes time from seconds to microseconds

tim=tim-tim(1); % Zero the time

EPS=channell(:,2);

sampleFreq=((tim(2)-tim(l))*lE-6)^-1;

% INCIDENT BAR SIGNAL AND PULSE MARKERS

figure('name','Incident Bar Signal')

hold on

title('Incident Bar Signal with Pulse Markers');

xlabel('Test Time [microseconds]');

ylabel ( 'Strain [volts]');

% Calculate incident pulse baseline, for zeroeing

flatBaseline=polyfit(tim(1:inciLeading),EPS(1:inciLeading),O); % Using y

constant method

EPS=EPS-flatBaseline(1); % Zeros the strain

plot (tim, EPS)

plot(tim,O,'k') % Plots black baseline

plot(tim(inciLeading),O,'ko') % Places black 'o' marker at last point used

in calculating baseline (allows user to see if larger inciLeading should be used)

% Locate reference point on incident slope

[minimum,centerIncidentIndex]=min(EPS);

plot(tim(centerIncidentIndex),minimum,'gv')

liml=inciSlope*minimum;

ind=1;
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while EPS(ind)>liml

ind=ind+1;

end

ipoint=ind;

plot(tim(ipoint),EPS(ipoint),'gv')

% Back up to find exact start of incident pulse

ind=ipoint;

while EPS(ind)<percentTrigger*minimum

ind=ind-1;

end

startIncident=ind;

% MANUAL OVERIDE FOR POINT SELECTION:

%startIncident=dsearchn(tim,ENTER TIME);

plot(tim(startIncident),EPS(startIncident),'gv')

% Move up to find finish of incident pulse

ind=ipoint;

while EPS(ind)<O

ind=ind+1;

end

endIncident=ind;

% MANUAL OVERIDE FOR POINT SELECTION:

%endIncident=dsearchn(tim,ENTER TIME);

plot(tim(endIncident),EPS(endIncident),'gv')

iTime=tim(startIncident:endIncident)-tim(startIncident);

onlyIncident=-EPS(startIncident:endIncident); % NOTE NEGATIVE SIGN: MAKES

COMPRESSION SIGNALS POSITIVE

incident=zeros(signalSize,1);

incident(startIncident:endIncident)=onlyIncident;
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% Locate reference point on reflected slope

[maximum,centerReflectedIndex]=max(EPS);

plot(tim(centerReflectedIndex),maximum,'r^')

liml=reflSlope*maximum;

ind=ipoint;

while EPS(ind)<limi

ind=ind+1;

end

rpoint=ind;

plot(tim(rpoint),EPS(rpoint),'r^')

% Back up to find the start of the reflected pulse

ind=rpoint;

while EPS(ind)>percentTrigger*maximum

ind=ind-1;

end

startReflected=ind;

% MANUAL OVERIDE FOR POINT SELECTION:

%startReflected=dsearchn(tim,ENTER TIME);

plot(tim(startReflected),EPS(startReflected),'r^')

% Move up to find finish of reflected pulse

Xind=rpoint;

%while EPS(ind)>O

% ind=ind+1;

%end

endReflected=ind;

A Manually input end of reflected pulse

disp('Choose the end point of the reflected pulse: ')

position=ginput(1);

endReflected=dsearchn(tim,position(1));

if endReflected>signalSize
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endReflected=signalSize;

end

plot(tim(endReflected),EPS(endReflected),'r^')

rTime=tim(startReflected:endReflected)-tim(startReflected);

onlyReflected=-EPS(startReflected:endReflected); % NOTE NEGATIVE SIGN:

MAKES TENSILE SIGNAL NEGATIVE

reflected=zeros(signalSize,1);

reflected(startReflected:endReflected)=onlyReflected;

print -dbmpl6m IncidentBarSignal

% CAPTURING TRANSMITTED PULSE

[fname, fpathl=uigetfile('*.asc','Select Transmission Bar Signal'); % Read

the transmission bar pulse; the data is time (seconds) vs. strain (in volts!)

channel2=load([fpath fname]);

timT=channel2(:,1);

dtT=(timT(end)-timT(1))/(length(timT)-1); % dtT is the time interval between

points in seconds for the transmission bar

timT=timT*10^6; % Changes time from seconds to microseconds

timT=timT-timT(1); % Zero the time

EPST=channel2(:,2);

sampleFreqT=((timT(2)-timT(1))*1E-6)^-1;

% TRANSMISSION BAR SIGNAL AND PULSE MARKERS

figure('name','Transmission Bar Signal')

hold on

title('Transmission Bar Signal with Pulse Markers');

xlabel('Test Time [microseconds]');

ylabel('Strain [volts]');
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% Calculate transmission pulse baseline, for zeroeing

flatBaselineT=polyfit(timT(1:transLeading),EPST(1:transLeading),O); % Using

y = constant method

EPST=EPST-flatBaselineT(1); % Zeros the strain

plot (timT, EPST)

plot(timT,O,'k') % Plots black baseline

plot(timT(transLeading),O,'ko') % Places black 'o' marker at last point used

in calculating baseline (allows user to see if larger transLeading should be

used)

% Locate reference point on transmission slope

[minimumT,centerTransmissionIndex]=min(EPST);

plot(timT(centerTransmissionIndex),minimumT,'cv')

lim2=transSlope*minimumT;

ind=1;

while EPST(ind)>lim2

ind=ind+1;

end

tpoint=ind;

plot(timT(tpoint),EPST(tpoint),'cv')

% Back up to find exact start of transmission pulse

smoothEPST=smooth(EPST,smoothingPts); % added to handle low signal to noise

ration transmission pulses

ind=tpoint;

while smoothEPST(ind)<percentTrigger*minimumT

ind=ind-1;

end

startTransmission=ind;

% MANUAL OVERIDE FOR POINT SELECTION:
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%startTransmission=dsearchn(timT,ENTER TIME);

plot(timT(startTransmission),EPST(startTransmission),'cv')

% Move up to find finish of transmission pulse

ind=tpoint;

while EPST(ind)<O & ind<signalSize

ind=ind+1;

end

endTransmission=ind;

% MANUAL OVERIDE FOR POINT SELECTION:

%endTransmission=dsearchn(timT,ENTER TIME);

plot(timT(endTransmission),EPST(endTransmission),'cv')

tTime=timT(startTransmission:endTransmission)-timT(startTransmission);

onlyTransmission=-EPST(startTransmission:endTransmission); % NOTE NEGATIVE

SIGN: MAKES COMPRESSION SIGNALS POSITIVE

transmission=zeros(signalSize,1);

transmission(startTransmission:endTransmission)=onlyTransmission;

print -dbmpl6m TransmissionBarSignal

figure('name','Smoothed Transmission Signal')

title('Smoothed Transmission Signal Used to Calculate Start of Transmission

Pulse')

hold on

plot(timT,smoothEPST)

plot(timT,0)

plot(timT(startTransmission),EPST(startTransmission),'cv')

print -dbmpl6m SmoothedTransmissionSignal
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X% COMPARITIVE OVERLAYS

figure('name','Raw Signal Overlays')

hold on

plot(tim,EPS)

plot (timT, EPST)

plot(tim,0)

plot(tim(startIncident),EPS(startIncident),'gv')

plot(tim(endIncident),EPS(endIncident),'gv')

plot(tim(startReflected),EPS(startReflected),'r^')

plot(tim(endReflected),EPS(endReflected),'r^')

plot(timT(startTransmission),EPST(startTransmission),'cv')

plot(timT(endTransmission),EPST(endTransmission),'cv')

title('Bar Signal Overlays')

xlabel('Test Time [microseconds]')

ylabel('Strain [volts]')

legend('Incident Bar Signal','Transmission Bar Signal')

print -dbmpl6m RawSignalOverlays

figure('name','Shifted Pulse Overlays')

hold on

plot(iTime,onlyIncident,'g')

plot(rTime,-onlyReflected,'r')

plot(tTime,onlyTransmission,'c')

title('Shifted Pulse Overlays');

xlabel('Time [microseconds]');

ylabel('Strain [volts]');

legend('Incident Pulse','Reflected Pulse' ,'Transmission Pulse','location',

'best')
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print -dbmpl6m ShiftedPulseOverlays

% FOURIER TRANSFORM OF INCIDENT SIGNAL

figure('name','Incident Transform')

IFourier=fft(incident);

iFourier=fftshift(IFourier);

Npts=length(iFourier);

% Handling folding frequency based on C. Bacon's fftfrequencies.m

Nshanon=ceil(Npts/2);

T=(tim(end)-tim(1))*10^-6;

df=l/T;

for q=1:Nshanon

\qquad freq(q,1)=(q-1)*df;

end

for q=Nshanon+1:Npts

\qquad freq(q,1)=(q-1-Npts)*df;

end

freq=fftshift(freq);

iFreq=freq(find(freq>=0));

iFourier=iFourier(find(freq>=O));

iPower=abs(iFourier).^2;

plot(iFreq,iPower)

title('Frequency Spectrum of the Incident Signal');

xlabel('Frequency (Hz)');

ylabel('Power Index');

axis([O conditionerRange/2 0 1E41);

freqz=iFreq;

print -dbmpl6m IncidentTransform
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% FOURIER TRANSFORM OF REFLECTED SIGNAL

figure('name','Reflected Transform')

RFourier=fft(reflected);

rFourier=fftshift(RFourier);

rFreq=freq(find(freq>=O));

rFourier=rFourier(find(freq>=0));

rPower=abs(rFourier).^2;

plot(rFreq,rPower)

title('Frequency Spectrum of the Reflected Signal');

xlabel('Frequency (Hz)');

ylabel('Power Index');

axis([O conditionerRange/2 0 1E4]);

print -dbmpl6m ReflectedTransform

% FOURIER TRANSFORM OF TRANSMISSION SIGNAL

figure('name','Transmission Transform')

TFourier=fft(transmission);

tFourier=fftshift(TFourier);

tFreq=freq(find(freq>=0)); % freq is the same for transmission signal because

signals are the same size and period is the same size

tFourier=tFourier(find(freq>=0));

tPower=abs(tFourier).^2;

plot(tFreq,tPower)

title('Frequency Spectrum of the Transmission Signal');

xlabel('Frequency (Hz)');

ylabel('Power Index');

axis([O conditionerRange/2 0 1E4]);
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print -dbmpl6m TransmissionTransform

% CONVERTING TO STRAIN FROM VOLTS

calibrationValue-incident=0.37471*10^(-3); % 1V = _____ strain (if 1000

microstrain, its le-3)

bridgeType=1; % if half-bridge, put 0.5: must

divide the strain by 2. quarter-bridge, put 1

calibrationValuetransmit=0.37471*10^(-3); % 1V = _____ strain (if 1000

microstrain, its le-3)

scalingFactor-incident=calibrationValue-incident*bridgeType;

scalingFactor-transmit=calibrationValue-transmit*bridgeType;

ei=onlyIncident*scalingFactor-incident;

er=onlyReflected*scalingFactor-incident;

et=onlyTransmission*scalingFactor-transmit;

analysisTime=[0:(dt*1e6):max([iTime(end) rTime(end) tTime(end)])];

analysisDuration=max([length(ei) length(er) length(et)]);

Ei=zeros(analysisDuration,1);

Er=zeros(analysisDuration,1);

Et=zeros(analysisDuration,1);

Ei(1:size(ei))=ei;

Er(1:size(er))=er;

Et(1:size(et))=et;

% CALCULATE SURFACE FORCES [MPA]

FP=E*Abar*(Ei+Er)*10^6;

F2=E*Atrans*Et*10^6;
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figure('name','Forces on Specimen Faces')

hold on

plot(analysisTime,F1,'b')

plot(analysisTime,F2,'r')

title('Forces on the Surfaces of the Specimen')

xlabel('Time [microseconds]')

ylabel ('Force [N]')

legend('Front Face','Rear Face','location','best')

print -dbmpl6m Forces-onSpecimenFaces

% Find force balance reference

disp('Indicate approximately where force balance begins (This point will be

used future plots as a reference): ')

position2=ginput(1);

forceRef=dsearchn(tim,position2(1));

% Shorten analysis duration to reduce noise at end of stress vs. strain curve

disp('Indicate where force balance ends (This will be the time up to which

stress and strain are calculated): ')

position3=ginput(1);

endAnalysis=dsearchn(tim,position3(1));

% THREE WAVE CALCULATIONS

threeWaveStress=E*(Abar*(Ei+Er)+Atrans*Et)/(2*Aspec);

threeWaveStrainRate=CO*(Ei-Er-Et)/Ls;

threeWaveStrain=CO/Ls*cumtrapz(Ei-Er-Et)*dt;

threeWaveTrueStrain=log(1+threeWaveStrain);

threeWaveTrueStress=threeWaveStress.*(1+(threeWaveStrain));

% ONE WAVE CALCULATIONS
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oneWaveStress=(E*Atrans/Aspec*Et);

oneWaveStrainRate=CO/Ls*(Ei*(1-Abar/Atrans)-Er*(1+Abar/Atrans));

oneWaveStrain=CO/Ls*cumtrapz((Ei*(1-Abar/Atrans)-Er*(1+Abar/Atrans)))*dt;

oneWaveTrueStrain=log(1+oneWaveStrain);

oneWaveTrueStress=oneWaveStress.*(1+(oneWaveStrain));

% APPROXIMATE TRUE STRAIN RATES

M=analysisDuration;

for index = 2:M(1)

threeWaveTrueStrainRate(index,1)=(abs(threeWaveTrueStrain(index))-

abs(threeWaveTrueStrain(index-1)))/dt;

oneWaveTrueStrainRate(index,1)=(abs(oneWaveTrueStrain(index))-

abs(oneWaveTrueStrain(index-1)))/dt;

end

% PLOT THE VARIOUS STRESS, STRAIN, AND STRAIN RATE RELATIONSHIPS

figure('name','Engineering Stress')

hold on

plot(analysisTime(1:endAnalysis),(threeWaveStress(1:endAnalysis)),'b')

plot(analysisTime(1:endAnalysis),(oneWaveStress(1:endAnalysis)),'r')

plot(analysisTime(forceRef),(threeWaveStress(forceRef)),'bo')

plot(analysisTime(forceRef),(oneWaveStress(forceRef)),'ro')

title('Engineering Stress in the Specimen')

legend('Three Wave Method','One Wave Method','location','best')

xlabel('Time [microseconds]')

ylabel ('Stress [MPa]')

print -dbmpl6m EngineeringStress

figure('name','True Stress')

hold on
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plot (analysisTime(1 endAnalysis) , (threeWaveTrueStress(1:endAnalysis)) , 'b')

plot (analysisTime(1 endAnalysis), (oneWaveTrueStress(1:endAnalysis)), 'r')

plot(analysisTime(forceRef) , (threeWaveTrueStress(forceRef)) , 'bo')

plot(analysisTime(forceRef), (oneWaveTrueStress(forceRef)), 'ro')

title('True Stress in the Specimen')

legend('Three Wave Method','One Wave Method','location','best')

xlabel('Time [microseconds]')

ylabel ('Stress [MPa]')

print -dbmpl6m TrueStress

figure('name','Engineering Strain')

hold on

plot(analysisTime(1 endAnalysis) , (threeWaveStrain(1:endAnalysis)) , 'b')

plot (analysisTime(1:endAnalysis) , (oneWaveStrain(1:endAnalysis)), 'r')

plot(analysisTime(forceRef) , (threeWaveStrain(forceRef)) ,'bo')

plot(analysisTime(forceRef) , (oneWaveStrain(forceRef)) , 'ro')

title('Engineering Strain in the Specimen')

legend('Three Wave Method','One Wave Method','location','best')

xlabel('Time [microseconds]')

ylabel ('Strain')

print -dbmpl6m EngineeringStrain

figure('name','True Strain')

hold on

plot (analysisTime(1 endAnalysis) , (threeWaveTrueStrain(1:endAnalysis)) , 'b')

plot(analysisTime(1:endAnalysis),(oneWaveTrueStrain(1:endAnalysis)),'r')

plot(analysisTime(forceRef) , (threeWaveTrueStrain(forceRef)) , 'bo')

plot (analysisTime(forceRef) , (oneWaveTrueStrain(forceRef)), 'ro')

legend('Three Wave Method','One Wave Method','location','best')

title('True Strain in the Specimen')
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xlabel('Time [microseconds]');

ylabel ('Strain');

print -dbmpl6m TrueStrain

figure('name','Engineering Strain Rate')

hold on

plot(analysisTime(1:endAnalysis),(threeWaveStrainRate(1:endAnalysis)),'b')

plot(analysisTime(1:endAnalysis),(oneWaveStrainRate(1:endAnalysis)),'r')

plot(analysisTime(forceRef),(threeWaveStrainRate(forceRef)),'bo')

plot(analysisTime(forceRef),(oneWaveStrainRate(forceRef)),'ro')

title('Engineering Strain Rate in the Specimen')

legend('Three Wave Method','One Wave Method','location','best')

xlabel('Time [microseconds]');

ylabel ('Strain Rate [1/s]')

print -dbmpl6m EngineeringStrainRate

figure('name','True Strain Rate')

hold on

plot(analysisTime(1:endAnalysis),(threeWaveTrueStrainRate(1:endAnalysis)),'b')

plot(analysisTime(1:endAnalysis),(oneWaveTrueStrainRate(1:endAnalysis)),'r')

plot(analysisTime(forceRef),(threeWaveTrueStrainRate(forceRef)),'bo')

plot(analysisTime(forceRef),(oneWaveTrueStrainRate(forceRef)),'ro')

title('True Strain Rate in the Specimen')

legend('Three Wave Method','One Wave Method','location','best')

xlabel('Time [microseconds]');

ylabel ('Strain Rate [1/si')

print -dbmpl6m TrueStrainRate

figure('name','Engineering Stress Vs. Engineering Strain')

hold on
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plot ((threeWaveStrain(1:endAnalysis)),(threeWaveStress(1:endAnalysis)), 'b')

plot((oneWaveStrain(1:endAnalysis)),(oneWaveStress(1:endAnalysis)),'r')

plot((threeWaveStrain(forceRef)),(threeWaveStress(forceRef)),'bo')

plot((oneWaveStrain(forceRef)),(oneWaveStress(forceRef)),'ro')

title('Engineering Stress vs. Engineering Strain')

legend('Three Wave Method','One Wave Method','location','best')

xlabel('Strain');

ylabel ('Stress [MPa]')

print -dbmpl6m EngineeringStressVsEngineeringStrain

figure('name','True Stress vs. True Strain')

hold on

plot((threeWaveTrueStrain(1:endAnalysis)),(threeWaveTrueStress(1:endAnalysis)),

'b')

plot((oneWaveTrueStrain(1:endAnalysis)),(oneWaveTrueStress(1:endAnalysis)),'r')

plot((threeWaveTrueStrain(forceRef)),(threeWaveTrueStress(forceRef)),'bo')

plot((oneWaveTrueStrain(forceRef)),(oneWaveTrueStress(forceRef)),'ro')

title('True Stress vs. True Strain')

xlabel('True Strain');

ylabel ('True Stress EMPa]')

legend('Three Wave Method','One Wave Method','location','best')

print -dbmpl6m TrueStressVsTrueStrain

% Create .txt files in work folder containing the one wave and three wave

results

oneWave = [oneWaveStrain(1:endAnalysis) oneWaveStrainRate(1:endAnalysis)

oneWaveStress(1:endAnalysis) oneWaveTrueStrain(1:endAnalysis)

oneWaveTrueStrainRate(1:endAnalysis) oneWaveTrueStress(1:endAnalysis)];

threeWave = [threeWaveStrain(1:endAnalysis) threeWaveStrainRate(1:endAnalysis)

threeWaveStress(1:endAnalysis) threeWaveTrueStrain(1:endAnalysis)
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threeWaveTrueStrainRate (1: endAnalysis) threeWaveTrueStress (1: endAnalysis)];

combination = [threeWaveStrain(1 :endAnalysis) threeWaveStrainRate(1:endAnalysis)

oneWaveStress (1: endAnalysis) threeWaveTrueStrain(1 endAnalysis)

threeWaveTrueStrainRate (1: endAnalysis) oneWaveTrueStress (1: endAnalysis)];

save OneWaveB.txt oneWave -ASCII -TABS

save ThreeWaveB.txt threeWave -ASCII -TABS

save CombinationB.txt combination -ASCII -TABS
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Appendix C

CHARACTERIZE.m Procedure

The first step in the CHARACTERIZE.m code is to clear all variables in MATLAB of any

possible residual definitions and to close all previous plots. Next, the length scales of the bar,

including strain gauge placement and length of the bar are established. Parameters for zeroing

the baseline and isolating the pulses are then defined utilizing the same method employed in

ALSHPB.m. Next, the response range of the signal conditioner used for the trials is defined.

This value is later used to determine what frequencies the calculations are valid up to and where

the calculations should be capped. The vector length of the signal after being padded with

zeroes is then defined to be "signalSize". It is important that this value match up to the value

used in the PMMASHPB.m code because it, in conjunction with the signal's time duration,

determines the frequencies for which -y(w) is calculated.

With these parameters in place, the characterization trial to be examined is then selected by

the user and loaded into the program. The selection of an appropriate trial is very important

in obtaining accurate -y(w) values. Trials using long striker bars are characterized by a lack

of higher frequency components (Figure C-1) which in turn results in calculations of -(w) that

are valid for a smaller frequency range than those calculations which utilize the signals from

the smaller striker bars (Figure C-2).

Once the appropriate trial has been loaded, the time portion of the signal is changed into

microseconds and zeroed, the time interval between samples is determined, and the strain

portion signal is zeroed and plotted in the same way described for the ALSHPB.m code. Next,

the first 5000 microseconds of the signal are resampled to occupy a vector that is "signalSize"
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Figure C-1: Shorter striker bars allow for a more complete frequency spectrum.
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Figure C-2: A more complete frequency spectrum allows for more accurate calculation of the

propagation coefficient gamma.

122

I

Frwuerzy 0.aum of NWe hIdenw SIgnMl

O ~ t- -

0

0

0

0

Frequency Spesnum of "W kndem SiWgna

2 2.5
K 10

1000



2-

0 ;000 2000_ 300 4000_ 500
lost Timew Piz~~aresasmf

Pwraa-4.d 3t41j wMt Puke Mmkom

2-

2

0 100 2000 000 400 5000
laT 1W if~r~3*Cn

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ I I I__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

(a) The original signal from the osciliscope as plotted (b) The resampled signal after padding with zeros up
by MATLAB. to the 5000 microseconds mark.

Figure C-3: The original and resampled signals are plotted side-by-side to assure they match.

in length. This is achieved using an interpolation function called out as ValAtTime. This

function, along with two others utilized further on, was personally furnished by Bacon and can

be found in Appendix G. It should be noted that if the original signal is not 5000 microseconds

in duration the end of the vector is padded with zeros up to the 5000 microsecond mark. In

addition, the resampled signal is plotted so that the user may visually check that it is a match

to the original (Figure C-3). The incident, reflected, and second reflection pulses are then

isolated utilizing the same algorithm employed in the ALSHPB.m code. Each of these pulses

is separated and stored in two distinct formats. One format with the time information being

zeroed to the start of the individual pulse, and the other with the time information being stored

as that of the original experimental scale. These shifted and unshifted pulses are then plotted

for the user to visually verify (Figure C-4).

The next step in the algorithm is to take the Fourier transform of the unshifted incident

and reflected pulses. These transforms are then fftshifted, and the corresponding frequencies

are calculated using a simple algorithm adopted from Bacon's method. Next, the non-negative

frequencies, and the corresponding portions of the Fourier transforms, are isolated and saved.

From this value the frequency power spectrums are then calculated by squaring the magnitude

of the transform and plotting the result against the corresponding non-negative frequencies (see

Figure C-1). At this point it is important that the user inspect the frequency power spectrums

to assure that frequency components are safely situated away from the conditioner's maximum
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Figure C-4: Pulse overlays are plotted for the user to check visually.

frequency response. If the frequency components are still of a significant magnitude near the

maximum frequency response of the signal conditioner, it may mean that a meaningful portion

of the signal is not being properly recorded.

If the frequency spectrum is appropriate, the transfer function, H*(w), is then calculated

in accordance with equation (2.29): by dividing the negative of the reflected pulse's Fourier

transform by the Fourier transform of the incident pulse. To avoid errors due to fftshifting,

this calculation is only carried out for the portions of the transform corresponding to non-

negative frequencies. In addition, to avoid errors due to division by zero during the calculation

of H*(w), all relevant zeroes are set to the smallest nonzero value available in MATLAB.

Using a combination of equations (2.22) and (2.29), we then calculate the attenuation coef-

ficients, a(w), by taking the negative natural log of H*(w) and dividing it by the distance the

pulse has traveled; namely twice the distance from the strain gauge to the end of the bar off

which the pulse will be reflected:

ln(IH*(w)I)2d) -(C.1)
2 d

Similarly, the wave number, k(w), can be calculated by dividing the transfer function's angle

by twice the distance from the strain gauge to the sample:

k(w) = arg(H* (w)) (C.2)
2d
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Before implementing this calculation, however, it is necessary to numerically unwrap the angle

of H* (w) in order to assure that there are no absolute jumps between consecutive entries which

are greater than 7r radians. This is necessary due to MATLAB's assumption when calculating

the angle that the value will always be between -r and -F.

The wave speed, c(w), is then obtained by dividing the angular frequency by the wave

number:

c(W) = (C.3)
k(w)

where the angular frequency, w, is calculated by multiplying 2-F by the non-negative frequencies,

isolated earlier.

Next, because the a(w), k(w), and c(w) values just calculated are only valid for the non-

negative frequencies, they must be properly reflected onto the full frequency spectrum. This is

done by applying MakeEven.m to a(w) and c(w), and MakeOdd.m to k(w) and the unwrapped

angle of the transfer function. MakeEven.m and MakeOdd.m are two simple functions provided

by Bacon which calculate the values for the negative frequencies by assuming the function to

be either even or odd respectively. The code for both of these functions can be found in

Appendix G. Once the negative frequency values for these parameters have been calculated,

the unwrapped angle, the phase velocity, the attenuation coefficient, and the wave number are

all fftshifted and plotted against the full frequency spectrum to verify that they have been

properly matched to the appropriate frequencies (Figure C-5, Figure C-7 (a), Figure C-8 (a),

and Figure C-9 (a)).

Because the characterization trials for PMMA rarely, if ever, contain significant frequency

components above 25 kHz, the resulting Fourier transforms are generally very small in magni-

tude at the higher level frequencies. Consequently, the transfer function, which is a ratio of

two of these transforms, can be very noisy at the higher frequencies. This results in unreliable

calculations for the attenuation coefficient, wave number, and phase velocity at high frequencies

(note this behavior above 25 kHz in Figure C-6, Figure C-7 (a), Figure C-8 (a), and Figure C-9

(a)). Bearing this in mind it was decided that the values of c(w) and a(w) would be kept con-

stant for frequencies above a threshold value equal to half of the signal conditioner's maximum

response range (Figure C-7 (b) and Figure C-8 (b)) and assigned their original values for fre-

quencies less than the threshold frequency (Figure C-10). In addition, the wave number values
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Figure C-7: Ammendment of the high frequeny phase velocities.

were also updated to match the amended phase velocities (Figure C-9(b)). This approach was

found to be particularly effective at eliminating the unrealistic amplification of high frequencies

associated with using the negative attenuation coefficients found in the original calculations.

The result is a much more reliable and less noisy prediction of strain within the bar (Figure

C-11).
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Figure C-8: Ammendment of the high frequeny attenuation coefficients.
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Figure C-9: The wave number is also updated in accordance with the ammended phase

velocities.
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Figure C-10: Coefficients for frequencies below the threshold frequency of 25 kHz.
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propagation predictions.
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As this demonstrates, the final check for the entire characterization process is whether or

not the calculated parameters can be employed to accurately predict a strain wave that has

propagated down the bar for several reflections. To do this, -y(w) is constructed by using a(w)

as the real part and k(w) as the imaginary part. Next, -1(w) is fftshifted so that it's indices

coincide with those of the full Fourier transforms. A new transfer function for the predicted

wave, H2*(w), is then defined as follows:

H2(w) = e-X (C.4)

where the value of x is two times the total length of the bars. Multiplying this new transfer

function by the full Fourier transform of the incident pulse gives the Fourier transform of the

strain after two reflections. Taking the inverse transform of this quantity and plotting the

result relative to the original pulses then gives the user an excellent indication of how accurate

the characterization parameters are in predicting the dispersion and attenuation in the bar

(Figure C-12).
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Figure C-12: The final check on the characterization parameters is their ability to accurately

predict a strain wave after travelling the length of the PMMA bar twice. This prediction was

obtained using the coefficients from a 2" striker bar characterization trial.

The final step for CHARACTERIZE.m is to save the frequency and a(w) vectors to the

file "alpha__m"; the frequency and k(w) vectors to the file "kappa__m"; and the frequency,

Re~y(w)), and Im(-y(w)) vectors to the file "gamma_.m"; where '_' is 12 or T2 for the incident
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and transmission bars respectively.
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Appendix D

CHARACTERIZE.m Code

% CHARACTERIZE.m

% Timothy P. M. Johnson

% Institute for Soldier Nanotechnologies

% Massachusetts Institute of Technology

% June 2005

clear all

close all

d = 0.7620; % Distance from strain gauge to the sample in meters

1 = 2.2828; % Total bar length in meters

x = 2*1; % Distance travelled to the cross section of interest in meters

% PARAMETERS FOR ZEROING THE PULSE

inciLeading=150; % Number of initial points used to calculate incident

baseline

inciSlope=0.5; % Location of reference point on incident slope, as a

fraction of signal minimum

reflSlope=0.5; % Location of reference point on reflected slope, as a

fraction of signal maximum
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percentTrigger=0.00;% Percent deviation from zero that signals the start of a

pulse

% SIGNAL PROCESSING PARAMETERS

conditionerRange = 50000; % Frequency range of the data acquisition hardware

signalSize = 2^13; % Size of signal after padding

smoothingPts=25; % Number of points used in the moving average

smoothing function

% CAPTURING INCIDENT AND REFLECTED PULSES

[fname, fpath]=uigetfile('*.asc'); % Read the incident bar pulses; the data is

time (seconds) vs. strain (in volts!)

channell=load([fpath fname]);

tim=channel1(:,1);

dt=(tim(end)-tim(1))/(length(tim)-1); % dt is the time interval between points

in seconds

tim=tim-tim(1); % Zero the time

tim=tim*10^6;\qquad % Changes time from seconds to microseconds

EPS=channell(:,2);

% BAR SIGNAL AND PULSE MARKERS

figure('name','Zeroed Bar Signal')

hold on

title('Zeroed Bar Signal');

xlabel('Test Time [microseconds]');

ylabel('Strain [volts]');

% Calculate incident pulse baseline, for zeroeing

flatBaseline=polyfit(tim(1:inciLeading),EPS(1:inciLeading),0); % Using

y = constant method
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EPS=EPS-flatBaseline(1); % Zeros the strain

plot(tim,EPS)

plot(tim,O,'k') % Plots black baseline

plot(tim(inciLeading),O,'ko') % Places black 'o' marker at last point used

in calculating baseline (allows user to see if larger inciLeading should be

used)

% RESAMPLE PULSE TO BE 5000 MICROSECONDS IN DURATION AND HAVE

"SIGNALSIZE" POINTS

newdt=(5000E-6)/(signalSize-1);

newtim=transpose(0:newdt:5000E-6);

% ValAtTime function courtesy of C. Bacon:

newEPS=ValAtTime(EPS(1:dsearchn(tim,5000)),dt,newtim);

newtim=newtim*10^6; % Changes newtim to microseconds

tim=newtim;

EPS=newEPS;

figure('name','Resampled Signal with Pulse Markers')

hold on

plot(newtim,newEPS)

plot(newtim,O,'k')

title('Resampled Signal with Pulse Markers')

xlabel('Test Time [microseconds]');

ylabel('Strain [volts]');

% Locate reference point on incident slope

[minimum,centerIncidentIndex]=min(EPS);

plot(tim(centerIncidentIndex),minimum,'gv')

liml=inciSlope*minimum;

ind=1;

while EPS(ind)>liml
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ind=ind+1;

end

ipoint=ind;

plot(tim(ipoint),EPS(ipoint),'gv')

% Back up to find exact start of incident pulse

ind=ipoint;

while EPS(ind)<percentTrigger*minimum

ind=ind-1;

end

startIncident=ind;

plot(tim(startIncident) ,EPS(startIncident), 'gv')

% Move up to find finish of incident pulse

ind=ipoint;

while EPS(ind)<O

ind=ind+1;

end

endIncident=ind;

plot(tim(endIncident),EPS(endlncident),'gv')

iTime=tim(startIncident:endIncident)-tim(startIncident);

onlyIncident=EPS(startIncident:endIncident);

incident=zeros(signalSize,1);

incident(startIncident:endIncident)=onlyIncident;

% Locate reference point on reflected slope

[maximum,centerReflectedIndex]=max(EPS);

plot(tim(centerReflectedIndex),maximum,'r^')

liml=reflSlope*maximum;

ind=ipoint;

while EPS(ind)<liml
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ind=ind+1;

end

rpoint=ind;

plot(tim(rpoint),EPS(rpoint),'r^')

% Back up to find the start of the reflected pulse

ind=rpoint;

while EPS(ind)>percentTrigger*maximum

ind=ind-1;

end

startReflected=ind;

plot(tim(startReflected),EPS(startReflected),'r^')

% Move up to find finish of reflected pulse

ind=rpoint;

while EPS(ind)>O

ind=ind+1;

end

endReflected=ind;

plot(tim(endReflected),EPS(endReflected),'r^')

rTime=tim(startReflected:endReflected)-tim(startReflected);

onlyReflected=EPS(startReflected:endReflected);

reflected=zeros(signalSize,1);

reflected(startReflected:endReflected)=onlyReflected;

% Find second negative pulse (after pulse is reflected twice)

flatEPS=EPS;

flatEPS(startIncident:endIncident)=0;

[minimum2,centerIncidentIndex2l=min(flatEPS);

plot(tim(centerIncidentIndex2),minimum2,'cv')

liml=inciSlope*minimum2;
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ind=1;

while flatEPS(ind)>liml

ind=ind+1;

end

ipoint=ind;

plot(tim(ipoint),EPS(ipoint),'cv')

ind=ipoint;

while flatEPS(ind)<percentTrigger*minimum

ind=ind-1;

end

startIncident2=ind;

plot(tim(startIncident2),EPS(startIncident2),'cv')

ind=ipoint;

while flatEPS(ind)<0

ind=ind+1;

end

endIncident2=ind;

plot(tim(endIncident2),EPS(endIncident2),'cv')

iTime2=tim(startIncident2:endIncident2)-tim(startIncident
2 );

onlyIncident2=EPS(startIncident2:endIncident2);

incident2=zeros(signalSize,1);

incident2(startIncident2:endIncident2)=onlyIncident2;

% UNSHIFTED PULSE OVERLAYS

figure('name','Unshifted Pulse Overlays')

hold on

plot(tim(1:signalSize),-incident,'g')
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plot(tim(1:signalSize),reflected,'r')

plot(tim(1:signalSize),-incident2,'c')

title('Unshifted Pulse Overlays')

xlabel('Test Time [microseconds]')

ylabel('Strain [volts]')

legend('Incident Pulse','Reflected Pulse','Second Reflection','location','best')

% SHIFTED PULSE OVERLAYS

figure('name','Shifted Pulse Overlays')

hold on

plot(iTime,-onlyIncident,'g')

plot(rTime,onlyReflected,'r')

plot(iTime2,-onlyIncident2,'c')

title('Shifted Pulse Overlays')

xlabel('Time [microseconds]')

ylabel('Strain [volts]')

legend('Incident Pulse','Reflected Pulse','Second Reflection','location','best')

% FOURIER TRANSFORM OF INCIDENT SIGNAL

figure('name','Incident Transform')

IFourier=fft(incident);

iFourier=fftshift(IFourier);

Npts=length(iFourier);

% Handling folding frequency based on C. Bacon's fftfrequencies.m

Nshanon=ceil(Npts/2);

T=(tim(end)-tim(1))*10^-6;

df=1/T;

for q=1:Nshanon

\qquad freq(q,1)=(q-1)*df;

end
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for q=Nshanon+1:Npts

\qquad freq(q,1)=(q-1-Npts)*df;

end

freq=fftshift(freq);

iFreq=freq(find(freq>=0));

iFourier=iFourier(find(freq>=O));

iPower=abs(iFourier).^2;

plot(iFreq,iPower)

title('Frequency Spectrum of the Incident Signal');

xlabel('Frequency (Hz)');

ylabel('Power Index');

axis([O conditionerRange/2 0 1E41);

freqz=iFreq;

% FOURIER TRANSFORM OF REFLECTED SIGNAL

figure('name','Reflected Transform')

RFourier=fft(reflected);

rFourier=fftshift(RFourier);

rFreq=freq(find(freq>=O));

rFourier=rFourier(find(freq>=0));

rPower=abs(rFourier).^2;

plot(rFreq,rPower)

title('Frequency Spectrum of the Reflected Signal');

xlabel('Frequency (Hz)');

ylabel('Power Index');

axis([O conditionerRange/2 0 1E41);

% CALCULATE DISPERSION AND ATTENUATION COEFFICIENTS USING BACON'S METHOD

iFourier(find(iFourier==0))=eps;
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transferFunctionH=-rFourier./iFourier;

transferFunctionH(find(transferFunctionH==O))=eps;

alpha=-log(abs(transferFunctionH))/(2*d);

unwrappedAngle=unwrap(angle(transferFunctionH));

k=-(unwrappedAngle)./(2*d);

k(find(k==0))=eps;

c=2*pi*freqz./k;

% MakeEven and MakeOdd Functions were courtesy of C. Bacon

alpha=fftshift(MakeEven(alpha));

c=fftshift(MakeEven(c));

unwrappedAngle=fftshift(MakeOdd(unwrappedAngle));

k=fftshift(MakeOdd(k));

% UNWRAPPED ANGLE

figure('name','Phase Angle')

plot(frequnwrappedAngle)

title('Unwrapped Phase Angle');

xlabel('Frequency (Hz)');

ylabel('Angle (Radians)');

% PHASE VELOCITY

figure('name','Calculated C')

plot (f req, c)

title('Calculated Phase Velocity')

xlabel('Frequency (Hz)')

ylabel('Velocity (m/s)')

% Assign values of C artificially above the Nyquist Frequency:
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c(find(abs(freq)>=conditionerRange/2))=c(dsearchn(freqconditionerRange/2));

figure('name','Ammended C')

plot(freq,c)

title('Ammended Phase Velocity')

xlabel('Frequency (Hz)')

ylabel('Velocity (m/s)')

figure('name','C')

plot (freq, c)

title('Phase Velocity at Low Frequencies');

xlabel('Frequency (Hz)');

ylabel('Velocity (m/s)')

axis([O conditionerRange/2 0 3000])

% ATTENUATION COEFFICIENT

figure('name','Calculated Alpha')

plot (f req, alpha)

title('Calculated Attenuation Coefficient')

xlabel('Frequency (Hz)')

ylabel('Attenuation Coeffcient (1/m)')

% Assign values of alpha artificially above the Nyquist Frequency:

alpha(find(abs(freq)>=conditionerRange/2))=

alpha(dsearchn(freq,conditionerRange/2));

figure('name','Ammended Alpha')

plot(freq,alpha)

title('Ammended Attenuation Coefficient')

xlabel('Frequency (Hz)')

ylabel('Attenuation Coeffcient (1/m)')
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figure('name','Alpha')

plot (freq, alpha)

title('Attenuation Coefficient at Low Frequencies');

xlabel('Frequency (Hz)');

ylabel('Attenuation Coeffcient (1/m)');

axis([O conditionerRange/2 0 11)

% WAVE NUMBER

figure('name','Calculated Wave Number')

plot (freq, k)

title('Calculated Wave Number')

xlabel('Frequency (Hz)')

ylabel('K')

c(find(c==O))=eps;

k=2*pi*freq./c;

figure('name','Ammended Wave Number')

plot (f req, k)

title('Ammended Wave Number')

xlabel('Frequency (Hz)')

ylabel('K')

gamma=ifftshift(complex(alpha,k));

xTransferFunctionH=exp(-gamma*x);

% MOVING SIGNAL AND TAKING THE INVERSE TRANSFORM

fourierStrain=IFourier.*(xTransferFunctionH);

strainAtX=(ifft(fourierStrain));

figure('name','Comparison')
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hold on

plot(tim(1:signalSize),-strainAtX)

plot(tim(1:signalSize),-smooth(strainAtX,smoothingPts),'c')

plot(tim(1:signalSize),-incident2,'k')

plot(tim(1:signalSize),-incident,'g')

plot(tim(1:signalSize),reflected,'r')

title('Calculated Reflected Wave and Actual Reflected Wave')

xlabel('Test Time [microseconds]')

ylabel('Strain [volts]')

legend('Predicted Second Reflection','Smoothed Prediction','Actual Second

Reflection', 'Incident Pulse', 'Reflected Pulse','location','best')

% Create .txt files in work folder containing parameters

cd(fpath)

A = [ifftshift(freq) ifftshift(alpha)];

K = [ifftshift(freq) ifftshift(k)];

G = [ifftshift(freq) real(gamma) imag(gamma)];

save alpha.txt A -ASCII -TABS

save kappa.txt K -ASCII -TABS

save gamma.txt G -ASCII -TABS
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Appendix E

PMMASHPB.m Procedure

Once the appropriate propagation coefficients have been calculated and saved for both the inci-

dent and transmission bars, the values are then used in evaluating the data for actual specimen

trials conducted on the PMMA pressure bars. The trials are saved in ASCII format and an-

alyzed using the PMMASHPB.m code described here. A full transcript of PMMASHPB.m is

found in Appendix F.

Similar to the ALSHPB.m code, PMMASHPB.m first clears all previous plots and variables

before prompting the user to enter the diameter and length of the specimen being evaluated.

Once entered, these values are converted to SI units and the cross sectional area is calculated.

Next, the placement of the strain gauge, diameter of the bar, cross sectional area of the bar,

and density of bar are established within the code. At this point the user is then prompted to

load the proper propagation coefficients for the incident bar. Having loaded this file, the values

of frequency, a(w), and k(w) are assigned to vectors and fftshifted so that they are arranged

linearly with the values corresponding to the largest magnitude negative frequencies first and

those corresponding to the largest magnitude positive frequency last. Next, in accordance with

the method outlined in section 2.5, the transfer functions corresponding to the forward moving

pulse transform, _P(w), and backwards moving pulse transform, N(w), are defined to be e-yd

and eyd, respectively. Here d is again the distance from the stain gauge to the sample interface.

The values of i2 are then calculated by squaring the values in the vector -y and ifftshifting

the result. Similarly, w is calculated by multiply the frequency vector by 27 and ifftshifting the

result. Finally, w2 is then calculated by repeating this calculation and squaring the entries of
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the vector. The purpose of ifftshifting these three vectors is to provide a convolution when they

are later multiplied, in either the form of a complex Young's modulus or a velocity coefficient,

with the "transferred" Fourier strains.

Next, the complex Young's modulus is calculated:

Pw 2
E* - (E.1)

As is "ViCoef", the velocity coefficient:

VlCoef = - (E.2)

where in this case the y values used are ifftshifted to match the indicial format of w.

To assure that all of the vectors have been saved corresponding to the proper frequency

components, the results are then plotted. First, the frequency vector is plotted against its

indices (Figure E-1). Next, the w2 values are plotted relative to the frequencies with which they

correspond (Figure E-2). And finally the attenuation coefficients, a(w), and phase velocities,

c(w), are plotted relative to the frequencies to which they correspond (see Figure C-8(b) and

Figure C-7(b) for an example). These last two plots enable the user to check that the correct

coefficient file was loaded and that it is being handled properly. Once this is complete the user

specifies the second set of propagation coefficients and the process is repeated for the case of

the transmission bar.

With the characteristics of the bar defined, PMMASHPB.m now establishes the parameters

for zeroing the pulses in the same manner used for the ALSHPB.m code. Next, the conditioner's

maximum frequency response range and the signal size after padding is defined. The user is

then prompted to select the incident pulse file to be analyzed. Once the data has been

loaded, the time is zeroed and changed to microseconds. Next, the strain signal is zeroed and

resampled using Bacon's ValAtTime function. The resulting vector is to be 5000 microseconds

in duration and consist of many data points as defined by the "signalSize" variable. This

approach is to ensure that the data matches the format used in the files previously generated

by CHARACTERIZE.m. Working on this new strain vector and employing the same algorithm

as the ALSHPB.m code, the start, end, and reference points are found for both the incident
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and reflected pulses. The technique is then repeated on the user specified transmission file to

isolate the transmission pulse.

To verify that the incident, reflected, and transmission pulses were captured correctly, they

are plotted in the same format employed in the ALSHPB.m code (see Figure A-3). Assuming

they were accurately isolated, the unshifted pulses are then transformed into the frequency

domain using an algorithm identical to the one in CHARACTERIZE.m. Next, to make sure

the signal's components fall within the response range of both the signal conditioner and the

propagation coefficients, the frequency power spectrum of each transforms is plotted (see Figure

C-1 for an example).

With the full Fourier transforms having just been calculated, the incident transform, P(w),

and reflected transform, N(w), are then multiplied by their respective transfer functions and

summed (see equation (2.26) where x is the positive distance from the strain gauge to the

specimen). This value is then multiplied by the cross sectional area and complex Young's

modulus of the incident bar, both of which were calculated earlier. The result is the fftshifted

Fourier transform of the force at the incident bar-specimen interface. The inverse Fourier

transform of this vector after it has been ifftshifted is calculated and then plotted to show the

forces on the front face of the specimen (Figure E-3). The Fourier transform of the transmission

pulse is used in a similar manner to calculate the forces on the rear face of the specimen and the

results are also shown on the previous plot. It is worth noting, however, that in conducting the

transmission bar calculations, the 1(w) pulse is taken to be zero and x is taken as the negative

distance from the strain gauge to the specimen. Finally, the user is requested to examine the

plot and choose where force balance begins and ends. The beginning of force balance will be

marked in subsequent plots by an open dot, and the stress, strain, and strain rate calculations

will only be conducted up to the selected end point.

At this point in the code a similar technique is used to calculate the velocities for the front

and rear faces of the specimen. The two differences are that "ViCoef" and "V2Coef" are

used in place of the complex Young's modulus times area and that the "transferred" Fourier

strains are subtracted from one another rather than added (see equation 2.25). From this point

the inverse Fourier transform of the ifftshifted results are again calculated, this time yielding

the velocities. Similar to the force balance calculation, the results for both faces are plotted
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verify dynamic equilibrium.

together on one figure (Figure E-4).

Next, utilizing equations (2.3) and (2.5), the engineering strain rate and stress within the

specimen are calculated. Engineering strain is then calculated by integrating the strain rate

with MATLAB's cumtrapz function. The true strain, true strain rate, and true stress are then

calculated from the engineering values in the same way as in ALSHPB.m. The results for strain,

strain rate, and stress are plotted against time in three separate figures with "engineering"

quantities being shown in blue and the "true" quantities being shown in red (Figures E-5, E-6,

and E-7). For the final two charts, the engineering stress vs. engineering strain is plotted

in blue and the approximated true stress vs. true strain is shown on a separate figure in red.

The vector results are then saved to a *.txt file with engineering strain followed by engineering

strain rate, engineering stress, true strain, true strain rate, and finally the approximated true

stress.
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Figure E-4: The calculated front and rear face velocities

Figure E-5: The engineering and true strains are

are plotted for inspection.

plotted side by side against time.
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Appendix F

PMMASHPB.m Code

% PMMASHPB.m

% Timothy P. M. Johnson

% Institute for Soldier Nanotechnologies

% Massachusetts Institute of Technology

% June 2005

% NOTE SIGN CONVENTION: Compression is Positive

clear all

close all

% SPECIMEN PARAMETERS

Dsmm=input('What is the diameter of the specimen in millimeters? ');

Ds=Dsmm*10^-3; % Diameter of the specimen in [ml\qquad

Lsmm=input('What is the length of the specimen in millimeters? ');

Ls=Lsmm*10^-3; % Length of specimen in [m]

Aspec=pi*(Ds/2)^2; % Cross sectional area of the specimen in [m^2]

% BAR PARAMETERS

d = 0.7620; % Distance from strain gauge to the sample [ml

Dbar=0.01905; % Bar Diameter [m]
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Abar=pi*(Dbar/2)^2; % Cross sectional area of the bar [m^2]

density = 1200; % [kg/m^3]

% LOAD INCIDENT BAR PROPERTIES

Efname, fpathProperties]=uigetfile('*.txt','Select Incident Bar Gamma Function');

incidentBarGamma=load([fpathProperties fname]);

igFreq=fftshift(incidentBarGamma(:,1));

igAlpha=fftshift(incidentBarGamma(:,2));

igKappa=fftshift(incidentBarGamma(:,3));

igGamma=(complex(igAlpha,igKappa));

iPosTransferFunctionH=(exp(igGamma*d));

iNegTransferFunctionH=(exp(-igGamma*d));

igGamma2=ifftshift(igGamma.^2);

iw=ifftshift(2*pi*igFreq);

iw2=ifftshift((2*pi*igFreq).^2);

iEstar=-density*iw2./igGamma2;

VlCoef=-i*iw./ifftshift(igGamma);

% LOAD TRANSMISSION BAR PROPERTIES

[fname, fpathPropertiesl=uigetfile('*.txt','Select Transmission Bar Gamma

Function'); % Loads gamma for the transmission bar

transmissionBarGamma=load([fpathProperties fname]);

tgFreq=fftshift(transmissionBarGamma(:,1));

tgAlpha=fftshift(transmissionBarGamma(:,2));

tgKappa=fftshift(transmissionBarGamma(:,3));

tgGamma=(complex(tgAlpha,tgKappa));

tPosTransferFunctionH=(exp(tgGamma*d));

tgGamma2=ifftshift(tgGamma.^2);
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tw=ifftshift(2*pi*tgFreq);

tw2=ifftshift((2*pi*tgFreq).^2);

tEstar=-density*tw2./tgGamma2;

V2Coef=-i*tw./ifftshift(tgGamma);

% PARAMETERS FOR ZEROING THE PULSES

inciLeading=150; % Number of initial points used to calculate incident

baseline

transLeading=1000; % Number of initial points used to calculate transmis

baseline

inciSlope=0.5; % Location of reference point on incident slope, as a

fraction of signal minimum

reflSlope=0.5; % Location of reference point on reflected slope, as

fraction of signal maximum

transSlope=0.5; % Location of reference point on transmission slope,

fraction of signal minimum

percentTrigger=0.01;% Percent deviation from zero that signals the start

pulse

sion

a

as a

of a

% SIGNAL PROCESSING PARAMETERS

conditionerRange = 50000; % Frequency range of the data acquisition hardware

signalSize = 2^13; % Size of signal after padding

% CAPTURING INCIDENT AND REFLECTED PULSES

[fname, fpath]=uigetfile('*.asc','Select Incident Bar Signal'); % Read the

incident bar pulses; the data is time (seconds) vs. strain (in volts!)

cd(fpath)

channel1=load( Ef path fname]);

tim=channel1(:,1);

dt=(tim(end)-tim(1))/(length(tim)-1); % dt is the time interval between

155



points in seconds

tim=tim*10^6; % Changes time from seconds to microseconds

tim=tim-tim(1); % Zero the time

EPS=channell(:,2);

figure('name','Incident Bar Characterization Frequencies')

plot (igFreq)

title('Incident Bar Characterization Frequencies')

xlabel('Index')

ylabel('Frequency [Hz]')

print -dbmpl6m IncidentBarCharacterizationFrequencies

figure('name','Incident Bar Omega Squared')

plot(iw2)

title('Incident Bar Omega Squared')

xlabel('Index')

ylabel('Incident Bar Omega Squared [rad^2]')

print -dbmpl6m IncidentBarOmegaSquared

figure('name','Incident Bar Alpha')

plot(igFreq,igAlpha)

title('Incident Bar Alpha')

xlabel('Frequency [Hz]')

ylabel('Incident Bar Alpha')

print -dbmpl6m IncidentBarAlpha

figure('name','Incident Bar Phase Speed')

plot(igFreq, 2*pi*igFreq./igKappa)

title('Incident Bar Wave Speed')

xlabel('Frequency [Hz]')

156



ylabel('Incident Bar Phase Speed')

print -dbmpl6m IncidentBarPhaseSpeed

figure('name','Transmission Bar Characterization Frequencies')

plot (tgFreq)

title('Transmission Bar Characterization Frequencies')

xlabel('Index')

ylabel('Frequency [Hz]')

print -dbmpl6m TransmissionBarCharacterizationFrequencies

figure('name','Transmission Bar Omega Squared')

plot(tw2)

title('Transmission Bar Omega Squared')

xlabel('Index')

ylabel('Transmission Bar Omega Squared [rad^2]')

print -dbmpl6m TransmissionBarOmegaSquared

figure('name','Transmission Bar Alpha')

plot (tgFreq,tgAlpha)

title('Transmission Bar Alpha')

xlabel('Frequency [Hz]')

ylabel('Transmission Bar Alpha')

print -dbmpl6m TransmissionBarAlpha

figure('name','Transmission Bar Phase Speed')

plot(tgFreq, 2*pi*tgFreq./tgKappa)

title('Transmission Bar Wave Speed')

xlabel('Frequency [Hz]')

ylabel('Transmission Bar Phase Speed')

print -dbmpl6m TransmissionBarPhaseSpeed
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% INCIDENT BAR SIGNAL AND PULSE MARKERS

figure('name','Zeroed Incident Bar Signal')

hold on

title('Zeroed Incident Bar Signal');

xlabel('Test Time [microseconds]');

ylabel('Strain [volts]');

% Calculate incident pulse baseline, for zeroeing

flatBaseline=polyfit(tim(1:inciLeading),EPS(1:inciLeading),0); % Using

y = constant method

EPS=EPS-flatBaseline(1); % Zeros the strain

plot(tim,EPS)

plot(tim,O,'k') % Plots black baseline

plot(tim(inciLeading),0,'ko') % Places black 'o' marker at last point used

in calculating baseline (allows user to see if larger inciLeading should be

used)

print -dbmpl6m ZeroedIncidentBarSignal

% RESAMPLE INCIDENT BAR SIGNAL TO BE 5000 MICROSECONDS IN DURATION AND HAVE

"SIGNALSIZE" POINTS

cd(fpathProperties)

newdt=(5000E-6)/(signalSize-1);

newtim=transpose(0:newdt:5000E-6);

% ValAtTime function courtesy of C. Bacon:

newEPS=ValAtTime(EPS(1:dsearchn(tim,5000)) ,dt,newtim);

newtim=newtim*10^6; % Changes newtim to microseconds

cd(fpath)

tim=newtim;

EPS=newEPS;
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figure('name','Resampled Incident Bar Signal with Pulse Markers')

hold on

plot(newtim,newEPS)

plot(newtim,O,'k')

title('Resampled Incident Bar Signal with Pulse Markers')

xlabel('Test Time [microseconds]');

ylabel('Strain [volts]');

% Locate reference point on incident slope

[minimum,centerIncidentIndex]=min(EPS);

plot(tim(centerIncidentIndex),minimum,'gv')

liml=inciSlope*minimum;

ind=1;

while EPS(ind)>liml

ind=ind+1;

end

ipoint=ind;

plot(tim(ipoint),EPS(ipoint),'gv')

% Back up to find exact start of incident pulse

ind=ipoint;

while EPS(ind)<percentTrigger*minimum

ind=ind-1;

end

startIncident=ind;

plot(tim(startIncident),EPS(startIncident),'gv')

A Move up to find finish of incident pulse

ind=ipoint;

while EPS(ind)<O

ind=ind+1;

end
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endIncident=ind;

plot(tim(endIncident),EPS(endIncident),'gv')

iTime=tim(startIncident:endIncident)-tim(startIncident);

onlyIncident=-EPS(startIncident:endIncident); % NOTE NEGATIVE SIGN: MAKES

COMPRESSION SIGNALS POSITIVE

incident=zeros(signalSize,1);

incident(startIncident:endIncident)=onlyIncident;

% Locate reference point on reflected slope

[maximum,centerReflectedIndexl=max(EPS);

plot(tim(centerReflectedIndex),maximum,'r^')

liml=reflSlope*maximum;

ind=ipoint;

while EPS(ind)<limi

ind=ind+1;

end

rpoint=ind;

plot(tim(rpoint),EPS(rpoint),'r^')

% Back up to find the start of the reflected pulse

ind=rpoint;

while EPS(ind)>percentTrigger*maximum

ind=ind-1;

end

startReflected=ind;

plot(tim(startReflected),EPS(startReflected),'r^')

% Move up to find finish of reflected pulse

%ind=rpoint;

%while EPS(ind)>O

% ind=ind+1;
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%end

%endReflected=ind;

% Manually input end of reflected pulse

disp('Choose the end point of the reflected pulse: ')

position=ginput(1);

endReflected=dsearchn(tim,position(1));

if endReflected>signalSize

endReflected=signalSize;

end

plot(tim(endReflected),EPS(endReflected),'r^')

rTime=tim(startReflected:endReflected)-tim(startReflected);

onlyReflected=-EPS(startReflected:endReflected); % NOTE NEGATIVE SIGN:

MAKES TENSILE SIGNAL NEGATIVE

reflected=zeros(signalSize,1);

reflected(startReflected:endReflected)=onlyReflected;

print -dbmpl6m ResampledIncidentBarSignal-withPulseMarkers

% CAPTURING TRANSMITTED PULSE

[fname, fpathl=uigetfile('*.asc','Select Transmission Bar Signal'); % Read the

transmission bar pulse; the data is time (seconds) vs. strain (in volts!)

channel2=load([fpath fname]);

timT=channel2(:,1);

dtT=(timT(end)-timT(1))/(length(timT)-1); % dtT is the time interval between

points in seconds for the transmission bar

timT=timT*10^6; % Changes time from seconds to microseconds

timT=timT-timT(1); % Zero the time

EPST=channel2(:,2);
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/ TRANSMISSION BAR SIGNAL AND PULSE MARKERS

figure('name','Zeroed Transmission Bar Signal')

hold on

title('Zeroed Transmission Bar Signal')

xlabel('Test Time [microseconds]')

ylabel('Strain [volts]')

% Calculate transmission pulse baseline, for zeroeing

flatBaselineT=polyfit(timT(1:transLeading),EPST(1:transLeading),O); % Using

y = constant method

EPST=EPST-flatBaselineT(1); % Zeros the strain

plot(timT,EPST)

plot(timT,O,'k') % Plots black baseline

plot(timT(transLeading),O,'ko') / Places black 'o' marker at last point used

in calculating baseline (allows user to see if larger transLeading should be used)

print -dbmpl6m ZeroedTransmissionBarSignal

% RESAMPLE TRANSMISSION BAR SIGNAL TO BE 5000 MICROSECONDS IN DURATION AND HAVE

"SIGNALSIZE" POINTS

cd(fpathProperties)

newdtT=(5000E-6)/(signalSize-1);

newtimT=transpose(0:newdtT:5000E-6);

% ValAtTime function courtesy of C. Bacon:

newEPST=ValAtTime(EPST(1:dsearchn(timT,5000)),dtT,newtimT);

newtimT=newtimT*10^6; % Changes newtim to microseconds

cd(fpath)

timT=newtimT;

EPST=newEPST;

figure('name','Resampled Transmission Bar Signal with Pulse Markers')
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hold on

plot(newtimT,newEPST)

plot(newtimT,O,'k')

title('Resampled Transmission Bar Signal with Pulse Markers')

xlabel('Test Time [microseconds]')

ylabel('Strain [volts]')

% Locate reference point on transmission slope

[minimumT,centerTransmissionIndex]=min(EPST);

plot(timT(centerTransmissionIndex),minimumT,'cv')

lim2=transSlope*minimumT;

ind=1;

while EPST(ind)>lim2

ind=ind+1;

end

tpoint=ind;

plot(timT(tpoint),EPST(tpoint),'cv')

% Back up to find exact start of transmission pulse

ind=tpoint;

while EPST(ind)<percentTrigger*minimumT

ind=ind-1;

end

startTransmission=ind;

plot(timT(startTransmission),EPST(startTransmission),'cv')

% Move up to find finish of transmission pulse

ind=tpoint;

while EPST(ind)<O & ind<signalSize

ind=ind+1;

end

endTransmission=ind;
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plot(timT(endTransmission),EPST(endTransmission),'cv')

tTime=timT(startTransmission:endTransmission)-timT(startTransmission);

onlyTransmission=-EPST(startTransmission:endTransmission); % NOTE NEGATIVE

SIGN: MAKES COMPRESSION SIGNALS POSITIVE

transmission=zeros(signalSize,1);

transmission(startTransmission:endTransmission)=onlyTransmission;

print -dbmpl6m ResampledTransmissionBarSignal-withPulseMarkers

% PULSE OVERLAYS

figure('name','Unshifted Pulse Overlays')

hold on

plot(tim,incident,'g')

plot(tim,reflected,'r')

plot(timT,transmission,'c')

plot(timT,O,'k')

title('Unshifted Pulse Overlays');

xlabel('Time [microseconds]');

ylabel('Strain [volts]');

legend('Incident Pulse','Reflected Pulse','Transmission Pulse','location','best')

print -dbmpl6m UnshiftedPulseOverlays

figure('name','Shifted Pulse Overlays')

hold on

plot(iTime,onlyIncident,'g')

plot(rTime,-onlyReflected,'r')

plot(tTime,onlyTransmission,'c')

plot(timT,O,'k')

title('Shifted Pulse Overlays');
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xlabel('Time [microseconds]');

ylabel('Strain [volts]');

legend('Incident Pulse','Reflected Pulse','Transmission Pulse','location','best')

print -dbmpl6m ShiftedPulseOverlays

% CONVERTING TO STRAIN FROM VOLTS

calibrationValueincident=0.37471*10^(-3); % 1V =

microstrain, its le-3)

bridgeType=1; % if h

divide the strain by 2. quarter-bridge, put 1

calibrationValuetransmit=0.37471*10^(-3); % 1V =

microstrain, its le-3)

_____ strain (if 1000

alf-bridge, put 0.5: must

_____ strain (if 1000

scalingFactorincident=calibrationValueincident*bridgeType;

scalingFactor-transmit=calibrationValuetransmit*bridgeType;

Ei=incident*scalingFactor incident;

Er=reflected*scalingFactorjincident;

Et=transmission*scalingFactor-transmit;

% FOURIER TRANSFORM OF INCIDENT SIGNAL

figure('name','Incident Transform')

IFourier=fft(Ei);

iFourier=fftshift(fft(incident));

Npts=length(iFourier);

% Handling folding frequency based on C. Bacon's fftfrequencies.m

Nshanon=ceil(Npts/2);

T=(tim(end)-tim(1))*10^-6;

df=1/T;

for q=1:Nshanon
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\qquad freq(q,1)=(q-1)*df;

end

for q=Nshanon+1:Npts

\qquad freq(q,1)=(q-1-Npts)*df;

end

freq=fftshift(freq);

iFreq=freq(find(freq>=0));

iFourier=iFourier(find(freq>=0));

iPower=abs(iFourier).^2;

plot(iFreq,iPower)

title('Frequency Spectrum of the Incident Signal');

xlabel('Frequency (Hz)');

ylabel('Power Index');

axis([O conditionerRange/2 0 1E41);

print -dbmpl6m IncidentTransform

freqz=iFreq;

% FOURIER TRANSFORM OF REFLECTED SIGNAL

figure('name','Reflected Transform')

RFourier=fft(Er);

rFourier=fftshift(fft(reflected));

rFreq=freq(find(freq>=0));

rFourier=rFourier(find(freq>=O));

rPower=abs(rFourier).^2;

plot(rFreq,rPower)

title('Frequency Spectrum of the Reflected Signal');

xlabel('Frequency (Hz)');

ylabel('Power Index');

axis([O conditionerRange/2 0 1E4]);
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print -dbmpl6m ReflectedTransform

% FOURIER TRANSFORM OF TRANSMISSION SIGNAL

figure('name','Transmission Transform')

TFourier=fft(Et);

tFourier=fftshift(fft(transmission));

tFreq-freq(find(freq>=0)); % freq is the same for transmission signal because

signals are the same size and period is the same size

tFourier=tFourier(find(freq>=O));

tPower=abs(tFourier).^2;

plot(tFreq,tPower)

title('Frequency Spectrum of the Transmission Signal');

xlabel('Frequency (Hz)');

ylabel('Power Index');

axis([O conditionerRange/2 0 1E4]);

print -dbmpl6m TransmissionTransform

iA=fftshift(IFourier).*iNegTransferFunctionH;

iB=fftshift(RFourier).*iPosTransferFunctionH;

iSum=(iA+iB);

FlFourier=Abar*iEstar.*iSum;

iDiff=(iA-iB);

VlFourier=VlCoef.*iDiff;

tSum=fftshift(TFourier).*tPosTransferFunctionH;

tDiff=tSum;

F2Fourier=Abar*tEstar.*tSum;

V2Fourier=V2Coef.*tDiff;

% CALCULATE SURFACE FORCES EMPA]
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F1=ifft(ifftshift(FiFourier));

F2=ifft(ifftshift(F2Fourier));

V1=-ifft(ifftshift(V1Fourier));

V2=-ifft(ifftshift(V2Fourier));

figure('name','Forces on Specimen Faces')

hold on

plot(tim,F1,'b')

plot(timT,F2,'r')

title('Forces on the Specimen''s Faces')

xlabel('Time [microseconds]')

ylabel ('Force [N]')

legend('Front Face','Rear Face','location','best')

print -dbmpl6m ForcesonSpecimenFaces

% Find force balance reference

disp('Indicate approximately where force balance begins (This point will be

used future plots as a reference): ')

position2=ginput(1);

forceRef=dsearchn(tim,position2(1));

% Shorten analysis duration to reduce noise at end of stress vs. strain curve

disp('Indicate where force balance ends (This will be the time up to which

stress and strain are calculated): ')

position3=ginput(1);

endAnalysis=dsearchn(tim,position3(1));

figure('name','Velocities of Specimen Faces')

hold on
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plot(tim,V1,'b')

plot(timT,V2,'r')

title('Velocities of the Specimen''s Faces')

xlabel('Time [microseconds]')

ylabel('Velocity [m/s]')

legend('Front Face','Rear Face','location','best')

plot(tim(forceRef),(Vi(forceRef)),'bo')

plot(timT(forceRef),(V2(forceRef)),'ro')

print -dbmpi6m VelocitiesofSpecimenFaces

% CALCULATE STRAINRATE, STRAIN, AND STRESS

strainRate=(Vi-V2)/Ls;

strain=cumtrapz(Vi-V2)*dt/Ls;

stress=(F+F2)/(2*Aspec*10^6); % in MPa

/ CALCULATE/APPROXIMATE TRUE VALUES

trueStrain=log(+strain);

trueStrainRate=zeros(signalSize,1);

for index = 2:signalSize

trueStrainRate(index,1)=(trueStrain(index)-trueStrain(index-1))/dt;

end

trueStressApproximation=stress.*(ones(signalSize,1)+(strain));

figure('name','Strain')

hold on

plot(tim(1:endAnalysis),strain(i:endAnalysis))

plot(tim(i:endAnalysis),trueStrain(i:endAnalysis),'r')

plot(tim(forceRef),(strain(forceRef)),'bo')

plot(timT(forceRef),(trueStrain(forceRef)),'ro')
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title('Strain')

xlabel('Time [microseconds]')

ylabel('Strain')

legend('Engineering Strain','True Strain','location','best')

print -dbmpl6m Strain

figure('name','Strain Rate')

hold on

plot(tim(1:endAnalysis),strainRate(1:endAnalysis))

plot(tim(1:endAnalysis),trueStrainRate(1:endAnalysis),'r')

plot(tim(forceRef),(strainRate(forceRef)),'bo')

plot(timT(forceRef),(trueStrainRate(forceRef)),'ro')

title('Strain Rate')

xlabel('Time [microseconds]')

ylabel('Strain Rate [1/s]')

legend('Engineering Strain Rate','True Strain Rate','location','best')

print -dbmpl6m StrainRate

figure('name','Stress')

hold on

plot(tim(1:endAnalysis),stress(1:endAnalysis))

plot(tim(1:endAnalysis),trueStressApproximation(1:endAnalysis),'r')

plot(tim(forceRef),(stress(forceRef)),'bo')

plot(timT(forceRef),(trueStressApproximation(forceRef)),'ro')

title('Stress')

xlabel('Time [microseconds]')

ylabel('Stress [MPa]')

legend('Engineering Stress','Approximated True Stress','location','best')

print -dbmpl6m Stress
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figure('name','Engineering Stress vs. Engineering Strain')

hold on

plot(strain(1:endAnalysis),stress(1:endAnalysis))

plot(strain(forceRef),(stress(forceRef)),'bo')

title('Engineering Stress vs. Engineering Strain')

xlabel('Engineering Strain')

ylabel('Engineering Stress EMPa]')

print -dbmpl6m EngineeringStressVsEngineeringStrain

figure('name','Approximated Stress vs. True Strain')

hold on

plot(trueStrain(1:endAnalysis),trueStressApproximation(1:endAnalysis))

plot(trueStrain(forceRef),(trueStressApproximation(forceRef)),'bo')

title('Approximated True Stress vs. True Strain')

xlabel('True Strain')

ylabel('Approximated True Stress EMPa]')

print -dbmpl6m ApproximatedTrueStressVsTrueStrain

% Create .txt files in work folder containing the results

stressStrain = [strain(1:endAnalysis) strainRate(1:endAnalysis)

stress(1:endAnalysis) trueStrain(1:endAnalysis) trueStrainRate(1:endAnalysis)

trueStressApproximation(1:endAnalysis)];

save PMMAresults.txt stressStrain -ASCII -TABS
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Appendix G

Functions Furnished by C. Bacon

G.1 ValAtTime.m

function y=ValAtTime(Y,dt,t)

%\qquad y=ValAtTime(Y,dt,t) determines the value of signal Y at time t.

%\qquad dt is the sample time

NbrePts=length(Y);

y=zeros(size(t));

for j=1:length(t)

i=f loor(t (j ) /dt)+1;

if i<1

y(j)=0;

elseif t(j)==(NbrePts-1)*dt

y(j)=Y(NbrePts);

elseif i>=NbrePts

y(j)=0;

else

y(j)=Y(i)+(Y(i+1)-Y(i))/dt*(t(j)-(i-1)*dt);

end

end
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G.2 MakeEven.m

function y2=MakeEven(yl)

N=length(yl);

y2=yl;

y2(N+1)=yl(N);

y2(N+2:2*N)=yl(N:-1:2);

G.3 MakeOdd.m

function y2=MakeOdd(yl)

N=length(yl);

y2=yl;

y2(N+1)=-y(N)-;

y2(N+2:2*N)=-yl(N:-1:2);
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Appendix H

Finding a Benchmark Synthetic

Material

Given the large variance of the mechanical properties found in biological materials, as well as the

novelty of the SHPB testing techniques utilized in their study, it was deemed necessary to find

a more consistent synthetic material as a base for comparison. In this thesis a polyurea (PU)

blend was used because its impedance was such that it could be studied on the PMMA SHPB

as well as the hollow and solid aluminum SHPB set-ups. Unfortunately, this material, while

convenient for validating the various SHPB testing techniques, does not accurately model the

behavior or characteristics of any particular human tissues. As described in the introduction,

one of the major goals of ISN Project 6.9 is to identify and characterize a wide range of suitable

tissue simulants. Ideally, this Benchmark Synthetic Material (BSM) would be stable, exhibit

minimal temperature dependence, and have a composition that could be varied in such a way

as to synthesize its properties to approximately match those of various classes and types of

biological tissue.

Currently, most ballistic evaluation techniques, including those of assessing armor solutions,

are conducted utilizing a synthetic material known as Ordinance 250A Ballistic Gelatin. This

material is little more than a denatured collagen gel, but has been the standard for comparison

for decades. As we move towards the characterization of ever softer materials at high strain

rates, understanding of the behavior of this ballistic gelatin is paramount to linking future
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Figure H-1: Ordinance 250A Ballistic Gelatine, the current industry standard, is highly
temperature dependent.

findings to previous studies. Through a series of low rate tests on our Zwick testing apparatus,

however, it has already been determined that this material is extremely temperature dependent

(Figure H-1). As such, while it is important to understand its high rate behavior, future

ballistic protection studies should instead be conducted utilizing more stable, and hopefully

more biofidelic, materials.

Work is currently underway to identify potential substitutes. Preliminary data seems to

indicate that a two part GE silicon gel called RTV 6166 may provide the solution. The material

is very stable, shows almost no temperature dependence, and its properties can be easily tailored

by adjusting the ratio of its constituent parts. Other potential BSMs include various hydrated

felts and open cell foams, as well as an oriented blend of Styrene-Isoprene-Styrene triblock

copolymer mixed with varying amounts of mineral oil.

Rheometry, dynamic-mechanical analysis (DMA), and quasi-static tests are all currently

underway to characterize these new simulants and assess each as a potential replacement for

Ordinance 250A Ballistic Gelatin in future tests. Work is also being done to characterize

these extremely soft materials at the high strain rates seen in this study for trabecular bone.

Unfortunately, however, these new materials are still many times softer than our current limits

of testing and work must be done to further increase the sensitivity of the SHPB technique

(Figure H-2).

176



Figure H-2: Seen here during a low pressure PMMA SHPB trial, the potential tissue simulant

RTV 6166 is too soft to accuractly characterize with the current techniques.
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Appendix I

Model Validation with Gas Gun

Trials

Once the constitutive models for human tissues have been refined, and biofidelic BSMs have

been identified, some form of experimental verification will be necessary to make sure that the

models are able to accurately predict the complex interactions between the armor system and its

wearer. Development of a technique to achieve this verification at the ISN gas gun facility was

part of my initial Master's thesis work. The devised approach allows us to impact a large block

of tissue simulant protected the armor system of interest. The tissue simulant is positioned

directly behind the armor (Figure I-1) and is held in place by a clear support clamp developed

during the course of this thesis (Figures 1-2 through 1-6). This set-up allows for high speed

photography of the impact and resulting strain waves (Fig. 1-7). To measure these waves, the

plane of impact within the gel is imbedded with numerous tracking particles. Utilizing image

correlation software from Correlated Solutions, we are then able to track the motion of these

imbedded beads and calculate the resulting strain waves as they propagate through the simulant

(Figure 1-8). By comparing the speed and magnitude of these propagating waves to the finite

element simulations of the same impact scenario, we will obtain an excellent understanding of

how accurate the models' predictions are.
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Schematic of the Gas Gun
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Impact side view. Rear side view

Figure I-1: Schematic representation of the gas gun facility used to evaluate the accuracy of
predictions made by the computational models.
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Figure 1-2: CAD drawing of the gel clamp's support side.
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Figure 1-3: CAD drawing of the gel clamp's view side.
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Figure 1-4: CAD drawing of the gel clamp's platform.
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Figure 1-5: CAD drawing of the gel clamp's supports.
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Figure 1-6: CAD drawing of the assembled gel clamp.

Figure 1-7: Penetration of Ordinance 250A Ballastic Gellatin block with a 1/2" diameter

polycarbonate projectile fired at approximately 500 m/s.
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(a) Original image acquired during the mechanial (b) Graphical representation of the calculated strain

testing. field.

Figure 1-8: Example of the image correlation technique applied a low rate mechanical test of

Ordinance 250A Ballistic Gelatin.
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