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Abstract

In this thesis, we advance a collection of new geometric techniques for the analysis
of combinatorial algorithms. Using these techniques, we resolve several longstanding
questions in the theory of linear programming, polytope theory, spectral graph theory,
and graph partitioning.

The thesis consists of two main parts. In the first part, which is joint work with
Daniel Spielman, we present the first randomized polynomial-time simplex algorithm
for linear programming, answering a question that has been open for over fifty years.
Like the other known polynomial-time algorithms for linear programming, its running
time depends polynomially on the number of bits used to represent its input.

To do this, we begin by reducing the input linear program to a special form in
which we merely need to certify boundedness of the linear program. As boundedness
does not depend upon the right-hand-side vector, we run a modified version of the
shadow-vertex simplex method in which we start with a random right-hand-side vector
and then modify this vector during the course of the algorithm. This allows us to
avoid bounding the diameter of the original polytope.

Our analysis rests on a geometric statement of independent interest: given a
polytope {x I Ax < b} in isotropic position, if one makes a polynomially small per-
turbation to b then the number of edges of the projection of the perturbed polytope
onto a random 2-dimensional subspace is expected to be polynomial.

In the second part of the thesis, we address two long-open questions about finding
good separators in graphs of bounded genus and degree:

1. It is a classical result of Gilbert, Hutchinson, and Tarjan [25] that one can find
asymptotically optimal separators on these graphs if he is given both the graph
and an embedding of it onto a low genus surface. Does there exist a simple,
efficient algorithm to find these separators given only the graph and not the
embedding?

2. In practice, spectral partitioning heuristics work extremely well on these graphs.
Is there a theoretical reason why this should be the case?
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We resolve these two questions by showing that a simple spectral algorithm finds
separators of cut ratio O( g/n) and vertex bisectors of size O( gn) in these graphs,
both of which are optimal. As our main technical lemma, we prove an O(g/n) bound
on the second smallest eigenvalue of the Laplacian of such graphs and show that this
is tight, thereby resolving a conjecture of Spielman and Teng. While this lemma is
essentially combinatorial in nature, its proof comes from continuous mathematics,
drawing on the theory of circle packings and the geometry of compact Riemann
surfaces.

While the questions addressed in the two parts of the thesis are quite different,
we show that a common methodology runs through their solutions. We believe that
this methodology provides a powerful approach to the analysis of algorithms that will
prove useful in a variety of broader contexts.

Thesis Co-Supervisor: Daniel A. Spielman
Title: Professor of Applied Mathematics and Computer Science, Yale University

Thesis Co-Supervisor: Madhu Sudan
Title: Professor of Computer Science
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Chapter 1

Introduction

In this thesis, we advance a collection of new geometric techniques for the analysis
of combinatorial algorithms. Using these techniques, we resolve several longstanding

questions in the theory of linear programming, polytope theory, spectral graph theory,
and graph partitioning.

In this chapter, we shall introduce and summarize the main contributions of this
thesis. The remainder of this document will be divided into two main parts. Here,
we discuss the main components of each part and then briefly explain the common
methodology that runs between the two. The contents of this thesis are drawn heavily
from previously published works; please see page 5 for a full discussion of the origins
of the different sections.

1.1 A Randomized Polynomial-Time Simplex
Method for Linear Programming

In the first part of this thesis, we shall present the first randomized polynomial-time
simplex method for linear programming. Linear programming is one of the funda-
mental problems of optimization. Since Dantzig [14] introduced the simplex method
for solving linear programs, linear programming has been applied in a diverse range
of fields including economics, operations research, and combinatorial optimization.
From a theoretical standpoint, the study of linear programming has motivated major
advances in the study of polytopes, convex geometry, combinatorics, and complexity
theory.

While the simplex method was the first practically useful approach to solving
linear programs and is still one of the most popular, it was unknown whether any
variant of the simplex method could be shown to run in polynomial time in the worst
case. In fact, most common variants have been shown to have exponential worst-case
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CHAPTER 1. INTRODUCTION

complexity. In contrast, algorithms have been developed for solving linear programs
that do have polynomial worst-case complexity [38, 32, 19, 4]. Most notable among
these have been the ellipsoid method [38] and various interior-point methods [32]. All
previous polynomial-time algorithms for linear programming of which we are aware
differ from simplex methods in that they are fundamentally geometric algorithms:
they work either by moving points inside the feasible set, or by enclosing the feasible
set in an ellipse. Simplex methods, on the other hand, walk along the vertices and
edges defined by the constraints. The question of whether such an algorithm can be
designed to run in polynomial time has been open for over fifty years.

We recall that a linear program is a constrained optimization problem of the form:

maximize c - x (1.1)

subject to Ax < b, x E R',

where c E Rd and b E R" are column vectors, and A is an n x d matrix. The vector c
is the objective function, and the set P := {x Ax b} is the set of feasible points.
If it is non-empty, P is a convex polyhedron, and each of its extreme vertices will be
determined by d constraints of the form a, - x = bi, where {a1, ... , an} are the rows
of A. It is not difficult to show that the objective function is always maximized at an
extreme vertex, if this maximum is finite.

The first simplex methods used heuristics to guide a walk on the graph of vertices
and edges of P in search of one that maximizes the objective function. In order
to show that any such method runs in worst-case polynomial time, one must prove
a polynomial upper bound on the diameter of polytope graphs. Unfortunately, the
existence of such a bound is a wide-open question: the famous Hirsch Conjecture
asserts that the graph of vertices and edges of P has diameter at most n - d, whereas
the best known bound for this diameter is superpolynomial in n and d [31].

Later simplex methods, such as the self-dual simplex method and the criss-cross
method [15, 22], tried to avoid this obstacle by considering more general graphs
for which better diameter bounds were possible. However, even though some of
these graphs have polynomial diameters, they have exponentially many vertices, and
nobody had been able to design a polynomial-time algorithm that provably finds the
optimum after following a polynomial number of edges. In fact, essentially every such
deterministic algorithm has well-known counterexamples on which the walk takes
exponentially many steps. However, for randomized pivot rules very little is known.
While the best previously known upper bounds on the running time of randomized
pivot rule is Q (exp (/d logn)) [30], there exist very simple randomized pivots rules
for which essentially no nontrivial lower bounds have been shown.

In this thesis, we present the first randomized polynomial-time simplex method.
Like the other known polynomial-time algorithms for linear programming, the running
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CHAPTER 1. INTRODUCTION

time of our algorithm depends polynomially on the bit-length of the input. We do
not prove an upper bound on the diameter of polytopes. Rather we reduce the
linear programming problem to the problem of determining whether a set of linear
constraints defines an unbounded polyhedron. We then randomly perturb the right-
hand sides of these constraints, observing that this does not change the answer, and
we then use a shadow-vertex simplex method to try solve the perturbed problem.
When the shadow-vertex method fails, it suggests a way to alter the distributions of
the perturbations, after which we apply the method again. We prove that the number
of iterations of this loop is polynomial with high probability.

It is important to note that the vertices considered during the course of the al-
gorithm may not all appear on a single polytope. Rather, they may be viewed as
appearing on the convex hulls of polytopes with different b-vectors. It is well-known
that the graph of all of these "potential" vertices has small diameter. However, there
was previously no way to guide a walk among these potential vertices to one opti-
mizing any particular objective function. Our algorithm uses the graphs of polytopes
"near" P to impose structure on this graph and to help to guide our walk.

Perhaps the message to take away from this is that instead of worrying about
the combinatorics of the natural polytope P, one can reduce the linear programming
problem to one whose polytope is more tractable. The first result of this part of the
thesis, and the inspiration for the algorithm, captures this idea by showing that if one
slightly perturbs the b-vector of a polytope in near-isotropic position, then there will
be a polynomial-step path from the vertex minimizing to the vertex maximizing a
random objective function. Moreover, this path may be found by the shadow-vertex
simplex method.

We stress that while our algorithm involves a perturbation, it is intrinsically dif-
ferent from previous papers that have provided average-case or smoothed analyses of
linear programming. In those papers, one shows that, given some linear program, one
can probably use the simplex method to solve a nearby but different linear program;
the perturbation actually modified the input. In the present document, our perturba-
tion is used to inform the walk that we take on the (feasible or infeasible) vertices of
our linear program; however, we actually solve the exact instance that we are given.
We believe that ours is the first simplex algorithm to achieve this, and we hope that
our results will be a useful step on the path to a strongly polynomial-time algorithm
for linear programming.

11



CHAPTER 1. INTRODUCTION

1.2 Spectral Partitioning, Eigenvalue Bounds, and
Circle Packings for Graphs of Bounded Genus

In the second part of the thesis, we shall take up several long-open problems in the
spectral and algorithmic theory of graphs. Spectral methods have long been used
as a heuristic in graph partitioning. They have had tremendous experimental and
practical success in a wide variety of scientific and numerical applications, including
mapping finite element calculations on parallel machines [46, 51], solving sparse linear
systems [9, 10], partitioning for domain decomposition, and VLSI circuit design and
simulation [8, 28, 2]. However, it is only recently that people have begun to supply
formal justification for their efficacy [27, 47]. In [47], Spielman and Teng used the
results of Mihail [41] to show that the quality of the partition produced by the ap-
plication of a certain spectral algorithm to a graph can be established by proving an
upper bound on the Fiedler value of the graph (i.e., the second smallest eigenvalue of
its Laplacian). They then provided an 0(1/n) bound on the Fielder value of a pla-
nar graph with n vertices and bounded maximum degree. This showed that spectral
methods can produce a cut of ratio O(V1/n) and a vertex bisector of size O(vii) in
a bounded degree planar graph.

In this part of the thesis, we use the theory of circle packings and conformal
mappings of compact Riemann surfaces to generalize these results to graphs of positive
genus. We prove that the Fiedler value of a genus g graph of bounded degree is 0(g/n)
and demonstrate that this is asymptotically tight, thereby resolving a conjecture of
Spielman and Teng. We then apply this result to obtain a spectral partitioning
algorithm that finds separators whose cut ratios are O(/in) and vertex bisectors
of size O( gn), both of which are optimal. To our knowledge, this provides the only
truly practical algorithm for finding such separators and vertex bisectors for graphs
of bounded genus and degree. While there exist other asymptotically fast algorithms
for this, they all rely on being given an embedding of the graph in a genus g surface

(e.g., [25]). It is not always the case that we are given such an embedding, and
computing it is quite difficult. (In particular, computing the genus of a graph is
NP-hard [49], and the best known algorithms for constructing such an embedding
are either no(g) [20] or polynomial in n but doubly exponential in g [17]. Mohar has
found an algorithm that depends only linearly on n [42], but it has an uncalculated
and very large dependence on g.) The excluded minor algorithm of Alon, Seymour,
and Thomas [1] does not require an embedding of the graph, but the separators that
it produces are not asymptotically optimal.

The question of whether there exists an efficient algorithm for providing asymp-
totically optimal cuts without such an embedding was first posed twenty years ago

12



CH APTER 1. INTRODUCTION

by Gilbert, Hutchinson, and Tarjan [25].1 We resolve this question here, as our algo-
rithm proceeds without any knowledge of an embedding of the graph, and it instead
relies only on simple matrix manipulations of the adjacency matrix of the graph.
While the analysis of the algorithm requires some somewhat involved mathematics,
the algorithm itself is quite simple, and it can be implemented in just a few lines
of Matlab code. In fact, it is only a slight modification of the spectral heuristics
for graph partitioning that are widely deployed in practice without any theoretical
guarantees.

Ve believe that the techniques that we employ to obtain our eigenvalue bounds
are of independent interest. To prove these bounds, we make what is perhaps the
first real use of the theory of circle packings and conformal mappings of positive
genus Riernann surfaces in the computer science literature. This is a powerful theory,
and we believe that it will be useful for addressing other questions in spectral and
topological graph theory.

1.3 The Common Methodology

While the results proven in the two parts of the thesis are quite different, it will
become clear that a common methodology that runs between them. In both cases,
we provide bounds on the performance of algorithms using very similar geometric
techniques. In particular, the innovations of this thesis revolve around new techniques
for relating the performance of combinatorial algorithms to geometric quantities and
then using a careful volumetric analysis to bound these quantities. To do so, we
introduce a variety of tools from pure mathematics that are not typically used in a
computer science context, including Riemann surface theory, differential and algebraic
geometry, circle packing theory, geometric probability theory, harmonic analysis, and
convex geometry.

The techniques advanced herein appear to be quite widely applicable and have
already been applied in a variety of broader contexts [37, 43]. In one noteworthy such
application, Kelner and Nikolova use random matrix theory to generalize the analysis
of the simplex method to provide the first smoothed polynomial-time algorithm for
a broad class on nonconvex optimization problems [37], providing an illustration of
the wide-ranging usefulness of the ideas that we shall present.

1Djidjev claimed in a brief note to have such an algorithm [18], but it has never appeared in the
literature.
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Chapter 2

Introduction to Linear

Programming Geometry

In this section, we shall briefly review some basic facts about linear programming
geometry and the simplex method. As this material is quite standard, we shall often
omit the proofs and aim only for intuition. For a more thorough treatment of the
classical theory of linear programming, see Chvatal's book [13], or see Vanderbei's
book [50] for a more modern viewpoint.

2.1 Linear Programs as Polytopes

Suppose that we are given a linear program of the form described in equation (1.1):

maximize c - x

subject to Ax < b, x E R',

where c e Rd and b E Rn are column vectors and A is an n x d matrix, and let

P= {x G Rd | Ax < b}

be its feasible region. Suppose further that the feasible region is nonempty and has
nonempty interior. In particular, this implies that P is full-dimensional and therefore
is not contained in any proper linear subspace of Rd. ' If a,,. . . , a, are the rows of

'We make these assumptions solely to facilitate the exposition in this section; our actual algorithm
will work for fully general linear programs.
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CHAPTER 2. INTRODUCTION TO LP GEOMETRY

A, then we can rewrite the feasible region as

P = {x E Rd I ai -x < bi, Vi} = fH,

where
Hi = {x E Rd I ai -x < bi, Vi}.

We now note a sequence of simple facts that will provide us with a dictionary to
translate the given algebraic formulation of our linear program into a geometric one:

* Each of the Hi is a half-space, and their intersection P is a convex polyhedron2 .

" Each facet of P may be given as the set of points at which some constraint

{ai - x < bi} is tight (i.e., where it is satisfied with equality).

" Each face of codimension k may be given as the set of points at which some
collection of k constraints is tight. In particular, every vertex is the point at
which a collection of d constaints is tight.

* If P is bounded, the objective function will have a finite maximum.

" Since the objective function is linear and P is convex, every local maximum is
a global maximum as well.

" If the objective function has a finite maximum, all points at which it is maxi-
mized occur on the boundary of P. The collection of such points constitutes a
proper face of P and, in particular, contains some vertex of P.

Remark 2.1.1. The last fact implies that it suffices to search over the vertices of P
to find the optimum. We shall make significant use of this in Chapter 3 when we
introduce the simplex method.

2.2 Duality

In this section, we shall introduce one of the basic tools for linear programming:
duality. Given any linear program, linear programming duality allows us to construct
a second linear program (in a slightly modified form) that appears quite different
from the original but actually has the same optimal value.

2 From here on, all polyhedra shall be assumed convex, unless otherwise noted.

16



CHAPTER 2. INTRODUCTION TO LP GEOMETRY

Definition 2.2.1. Let P be the linear program

maximize c- x

subject to Ax < b, x c Rd

Its dual is the linear program D given by

minimize b y

subject to ATy = c, y > 0.

We shall call the original linear program the primal linear program when we wish to
contrast it with the dual.

Theorem 2.2.2 (Strong Linear Programming Duality). The primal and dual linear
programs have the same optimal value. That is, if either the primal or dual program
is feasible with a finite optimum, then both are feasible with finite optima. In this
case. if x0 is the point that maximizes c -x in the primal program and yo is the point
that minimizes b - y in the dual program, then c -xo = b - yo.

Lemma 2.2.3 (Weak Linear Programming Duality). For any x0 that is feasible for
P and any yo that is feasible for D,

c - xo < b - yo.

In particular, this inequality holds for xo and yo as described in the statement of
Theorem 2.2.2.

Proof of Lemma 2.2.3. Since x0 is feasible for P, we have that Axo b. Any yo
that is feasible for D has all positive components, so multiplying this inequality on
the left by yo' yields

y0rAxo 5 yT b. (2.1)

However, the feasibility of yo implies that yTrA - cT. Combining this with equa-
tion 2.1 yields

cTxO = y 5 yib,

as desired. l

We now use weak duality to sketch a proof of strong duality. The argument used
here is a slightly nonstandard one; it is drawn from Schrijver's book on linear and
integer programming [45].

17



CHAPTER 2. INTRODUCTION TO LP GEOMETRY 18

Sketch of Proof of Theorem 2.2.2. Let the polyhedron P be the feasible region of P.
We assume here that P is nonempty and bounded. The other cases inhere no signif-
icant additional difficulties and are omitted for concision.

Our proof sketch is based on Newtonian physics:. We place a ball inside of our
polyhedron P, and we subject this ball to a "gravitational" force with the same
magnitude and direction as c. We then let the ball roll down to its resting place,
which will be the point x0 that maximizes the dot product c -xo, and we analyze the
forces on the ball at equilibrium.

In order for the ball to be at rest, the total force on the ball must equal zero.
Facets may only exert forces in their normal directions, and the forces may only be
directed inward. As such, the ith facet may only exert a force f in the direction of
a , and this force must have a negative dot product with ai. We can thus define a
vector yo with all positive components such that fi = -yoiai for all i.

Since the total force on the ball must equal zero, we have

0 T = cT - fi = cT - E yoiai = cT - yT A,

and thus
AT yo = c.

It therefore follows that yo is feasible for D.
Now, the only facets that can exert a nonzero force on the ball are the ones that

are touching it, i.e., those i for which ai -x0 = b6. This is equivalent to the statement
that

(a -xo - bi)yi = 0 for all i,

or, written in matrix form,
yo(Axo - b) = 0.

It thus follows that we have a point xo that is feasible for P and a point yo that is
feasible for D for which

c xO = yo Axo = yorb.

This implies that the maximum value of c - x in P is greater than or equal to the
minimum value of b - y in D. Weak duality implies the opposite inequality, and the
desired theorem follows.

Remark 2.2.4. By weak linear programming duality, every feasible point of the dual

3 This recourse to physics is not fully rigorous and leaves us with something between an intuition
and a proof. Nevertheless, our intuition may easily be translated into a rigorous argument; see
Schrijver's book [45] for the details.



CHAPTER 2. INTRODUCTION TO LP GEOMETRY

program yields a finite upper bound on the maximum of the primal program, and
every feasible point of the primal program yields a finite lower bound on the minimum
of the dual program. Furthermore, the argument used in the proof of strong duality
shows that a finite optimum for one program yields a feasible point for the other. It
thus follows that P is bounded if and only if D is feasible, and D is bounded if and
only if P is feasible.

2.3 Polarity

In this section, we shall consider another type of duality operation known as polarity,
which operates on convex polyhedra, not linear programs. While it is sometimes
referred to as polyhedron duality, we stress that polarity bears no relation to linear
programming duality and is a completely different operation.

Polarity may actually be defined on the larger class of arbitrary convex bodies, but
for our purposes it will suffice to restrict our attention to polyhedra containing the
origin in their interiors. Any such polyhedron can be described as {x E Rd ai - x <
bi, i = 1,.. . , n} where all of the bi are strictly positive and the a span Rd. For an
exposition of the general theory, see the book by Bonneson and Fenchel /citeBF.

Definition 2.3.1. Let P = {x E Rd I a - x < bi, i = 1, .. ., n} be a polyhedron with
bi > 0 for all i. Its polar P* is the polyhedron given by the convex hull

P* = conv(ai/bi, ... ,/b).

2.4 When is a Linear Program Unbounded?

Suppose that we are given a linear program with feasible region P {x c Rd I Ax <
b} with b > 0. In this section, we take up the question of when P is unbounded. It
turns out that there is a very simple criterion for this in terms of the polar polytope
P*.

Theorem 2.4.1. Let P be as above. P is unbounded if and only if there exists a
vector q G Rd such that the polar polytope P* is contained in the halfspace Hq
{x Rd| q -x < 0}.

Proof. Suppose first that P is unbounded. Since P contains the origin and is convex,
this implies that there exists some vector q for which the ray rq := {tq t > 0}
extends off to infinity while remaining inside of P. We claim that this implies that
P* C Hq.
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CHAPTER 2. INTRODUCTION TO LP GEOMETRY

To see this, suppose to the contrary that P* 9 Hq. This implies that there
exists some ai for which ai/bi ( Hq, i.e., for which (ai/bi) - q > 0. In this case,
the corresponding inequality ai x < bi will be violated by the point tq whenever
t > bi/(a - q), contradicting the infinitude of the ray rq.

For the converse, we shall suppose that P is bounded and shall deduce that P* is
not contained in any halfspace through the origin. Indeed, this follows from the same
argument as above: if P* were contained in the halfspace Hq then the ray rq would
extend off to infinity, which would contradict the presumed boundedness of P. D

A convex body is contained in a half-space if and only if it does not contain the
origin in its interior. We thus deduce:

Corollary 2.4.2. P is bounded if and only if P* contains the origin in its interior.

Remark 2.4.3. Corollary 2.4.2 allows us to produce a certificate of boundedness for
P by expressing the origin as a convex combination of the ai with all strictly positive
coefficients. (The positivity of the coefficients guarantees that the origin is contained
in the interior and not on the boundary of P*. Here, we use our assumption that the
ai span Rd.) We shall make use of this in Chapters 5 and 6.
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Chapter 3

The Simplex Algorithm

In this chapter, we shall introduce our primary object of study, the simplex algorithm.
As this material is standard and widely available, we shall restrict our discussion to
a high-level overview. For an implementation-level discussion of the simplex method,
we refer the reader to Vanderbei's book [50].

3.1 The General Method

As we saw in Section 2.1, the feasible region of a linear program is a polytope P, the
objective function achieves its maximum at a vertex of P, and the objective function
has no nonglobal local maxima. It thus suffices to search among the vertices for a
local maximum of the objective function.

Since P has finitely many vertices, this suggests an obvious algorithm for linear
programming, known as the simplex algorithm or simplex method. Simply neglect all
of the higher-dimensional faces of P and just consider the graph of vertices and edges
of P. Start at some vertex and walk along the edges of the graph until you find a
vertex that is a local (and thus global) maximum.

Of course, the above is really just a meta-algorithm. To make it into a fully
specified algorithm, one must further specify two things:

1. How does one obtain the starting vertex?

2. Given the current vertex, how does one obtain the next vertex? This is known
as the pivot rule.

Since the simplex method was first introduced, this definition has been broadened to
allow the algorithm to walk on other graphs associated with the polytope; noteworthy
examples of such algorithms include the self-dual simplex method and the criss-cross
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method [15, 22]. Nevertheless, while there have been numerous pivot rules set forth
for linear programming, up until the present work none have been shown to terminate
in a polynomial number of steps.

In the following section, we shall describe a classical pivot rule known as the
"shadow-vertex method." We stress that this pivot rule does not always terminate
in a polynomial number of steps. Instead, we shall use it as a component of a more
complicated algorithm that does indeed have the desired polynomial running time.

3.2 The Shadow-Vertex Method

Let P be a convex polyhedron, and let S be a two-dimensional subspace. The shadow
of P onto S is simply the projection of P onto S. The shadow is a polygon, and every
vertex (edge) of the polygon is the image of some vertex (edge) of P. One can show
that the set of vertices of P that project onto the boundary of the shadow polygon
are exactly the vertices of P that optimize objective functions in S [6, 24].

These observations are the inspiration for the shadow-vertex simplex method,
which lifts the simplicity of linear programming in two dimensions to the general
case [6, 241. To start, the shadow-vertex method requires as input a vertex vo of P.
It then chooses some objective function optimized at vo, say f, sets S = span(c, f),
and considers the shadow of P onto S. If no degeneracies occur, then for each vertex
y of P that projects onto the boundary of the shadow, there is a unique neighbor of
y on P that projects onto the next vertex of the shadow in clockwise-order. Thus,
by tracing the vertices of P that map to the boundary of the shadow, the shadow-
vertex method can move from the vertex it knows that optimizes f to the vertex that
optimizes c. The number of steps that the method takes will be bounded by the
number of edges of the shadow polygon. For future reference, we call the shadow-
vertex simplex method by

SHADOWVERTEX(al,.. . , an, b, c, S, vo, s),

where a1 ,.. . , an, b, and c specify a linear program of form (1.1), S is a two-dimensional
subspace containing c, and vo is the start vertex, which must optimize some objective
function in S. We allow the method to run for at most s steps. If it has not found
the vertex optimizing c within that time, it should return (fail, y), where y is its
current vertex. If it has solved the linear program, it either returns (opt, x), where
x is the solution, or unbounded if it was unbounded.
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Chapter 4

Bounding the Shadow Size

In this chapter, we shall show that if the polytope is in a "good" coordinate system and
the distances of the facets from the origin are randomly perturbed, then the number
of edges of the shadow onto a random subspace S is expected to be polynomial. We
shall then provide a slight generalization of this theorem that we will need in the
analysis of our algorithm. The one geometric fact that we will require in our analysis
is that if an edge of P is tight for inequalities a - x = bi, for i C I, then the edge
projects to an edge in the shadow if and only if S intersects the convex hull of {ai}iej.
Below, we shall often abuse notation by identifying an edge with the set of constraints
I for which it is tight.

4.1 The Shadow Size in the k-Round Case

Definition 4.1.1. We say that a polytope P is k-round if

B(O, 1) C P C B(O, k),

where B(O, r) is the ball of radius r centered at the origin.

In this section, we will consider a polytope P defined by

{xjVi, a Tx } ,

in the case that P is k-round. Note that the condition B(Q, 1) 9 P implies |1ai| 1.
We will then consider the polytope we get by perturbing the right-hand sides,

Q={xVi, a T < 1+ri},

where each ri is an independent exponentially distributed random variable with ex-
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pectation A. That is,
Pr [r, t] et/A

for all t > 0.
Note that we will eventually set A to 1/n, but could obtain stronger bounds by

setting A = c log n for some constant c.
We will prove that the expected number of edges of the projection of Q onto a

random 2-plane is polynomial in n, k and 1/A. In particular, this will imply that
for a random objective function, the shortest path from the minimum vertex to the
maximum vertex is expected to have a number of steps polynomial in n, k and 1/A.

Our proof will proceed by analyzing the expected length of edges that appear on
the boundary of the projection. We shall show that the total length of all such edges
is expected to be bounded above. However, we shall also show that our perturbation
will cause the expected length of each edge to be reasonably large. Combining these
two statements will provide a bound on the expected number of edges that appear.

Theorem 4.1.2. Let v and w be uniformly random unit vectors, and let V be their
span. Then, the expectation over v, w, and the ris of the number of facets of the
projection of Q onto V is at most

127rk(1 + A ln(ne))vdn
A

Proof. We first observe that the perimeter of the shadow of P onto V is at most 27rk.
Let r = maxi ri. Then, as

Q {xjVi, a TX < 1 +r} = (1 + r)P,

the perimeter of the shadow of Q onto V is at most 27rk(1 + r). As we shall show in
Proposition 4.1.3, the expectation of r is at most A ln(ne), so the expected perimeter
of the shadow of Q on V is at most 27rk(1 + A ln(ne)).

Now, each edge of Q is determined by the subset of d - 1 of the constraints that
are tight on that edge. For each I E (" n), let SI(V) be the event that edge I appears
in the shadow, and let f(I) denote the length of that edge in the shadow. We now
know

27rk(1 + A ln(ne)) E [f(I)]

E E[f(I)|S1 (V)] Pr [S 1(V)3.
JE()$
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Below, in Lemma 4.1.9, we will prove that

E [f(I)|Sj(V )] 2
6Avdn

From this, we conclude that

E [number of edges) = Pr [S 1(V)]

1E(d-~)

127rk(1 + A ln(ne))V dn

A

as desired. 0

We now prove the various lemmas used in the proof of Theorem 4.1.2. Our first
is a straightforward statement about exponential random variables.

Proposition 4.1.3. Let r 1,... , r, be independent exponentially distributed random
variables of expectation A. Then,

E [max ri] A ln(ne).

Proof. This follows by a simple calculation, in which the first inequality follows from
a union bound:

E [max ri] =j Pr [maxri > t]
t=0

f Pr [min(1, ne~t/\)]
t=0

t=0 
A 1n nt/

S(A Inn) + A
SA ln(ne),

as desired.

We shall now prove the lemmas necessary for Lemma 4.1.9, which bounds the
expected length of an edge, given that it appears in the shadow. Our proof of
Lemma 4.1.9 will have two parts. In Lemma 4.1.7, we will show that it is unlikely
that the edge indexed by I is short, given that it appears on the convex hull of Q.
We will then use Lemma 4.1.8 to show that, given that it appears in the shadow,
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it is unlikely that its projection onto the shadow plane is much shorter. To facili-
tate the proofs of these lemmas, we shall prove some auxiliary lemmas about shifted
exponential random variables.

Definition 4.1.4. We say that r is a shifted exponential random variable with pa-
rameter A if there exists a t E R such that r = s - t, where s is an exponential random

variable with expectation A.

Proposition 4.1.5. Let r be a shifted exponential random variable of parameter A.
Then, for all q E R and e > 0,

Pr [r < q+ Ecr > q] < E/A.

Proof. As r - q is a shifted exponential random variable, it suffices to consider the
case in which q = 0. So, assume q = 0 and r = s - t, where s is an exponential

random variable of expectation A. We now need to compute

Pr [s < t + els > t] . (4.1)

We only need to consider the case E < A, as the proposition is trivially true otherwise.
We first consider the case in which t > 0. In this case, we have

+ ft e-P'ds
(4.1) = Pr [s < t + els > t] = t 1- d

Sf e-sl Ads

e~*/A - e-t/,\~'/,\
e-t/A

- 1 - ef/A < c/A,

for E/A < 1.
Finally, the case when t < 0 follows from the analysis in the case t = 0. 0

Lemma 4.1.6. For N and P disjoint subsets of {1,... , n}, let {ri}iE and {rj }EN be

independent random variables, each of which is a shifted exponential random variable
with parameter at least A. Then

Pr min(ri) + min(rj) <cEJ min(ri) + min(rj) 0l
iEP JEN iEP jEN

< nE/2A.

Proof. Assume without loss of generality that P 5 INI, so IP 5 n/2.
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Set r+ = minicp ri and r- = minjEN rj. Sample r according to the distribution
induced by the requirement that r+ + r- > 0. Given the sampled value for r-, the
induced distribution on r+ is simply the base distribution restricted to the space
where r+ > -r-. So, it suffices to bound

max Pr [r+ <e -- r-r+> _-

= max Pr min(ri) < e - r~ min(ri) > -r-
r- ri:iGP IiP iCP

<max Pr rk < f - r- min(ri) > -rj
r- kcP -ii~ -e

= max Pr rk < e - r min(ri) > -r-
kEP rj:iEP L IkEP

= max Pr [rk < c - r~ rk -r-]
kEP r-rk

FP (c/A),

where the last equality follows from the independence of the ri's, and the last inequal-
ity follows from Proposition 4.1.5. L

Lemma 4.1.7. Let I E (), and let A(I) be the event that I appears on the convex
hull of Q. Let 6(I) denote the length of the edge I on Q. Then,

Pr [6(I) < elA (I)] < --
- 2A

Proof. Without loss of generality, we set I = {1, 1..,d - 1}. As our proof will not
depend upon the values of ri,..., r-1 , assume that they have been set arbitrarily.
Now, parameterize the line of points satisfying

aTx = 1+ ri, for i I,

by
l(t) := p + tq,

where p is the point on the line closest to the origin, and q is a unit vector orthogonal
to p. For each i > d, let tj index the point where the ith constraint intersects the
line, Z.e.,

a71 (ti) = 1 + ri. (4.2)

Now, divide the constraints indexed by i V I into a positive set, P = {i > dIa Tq > 0}
and a negative set N = {i > dja Tq < 0}. Note that each constraint in the positive

27



CHAPTER 4. BOUNDING THE SHADOW SIZE

set is satisfied by l(-oo) and each constraint in the negative set is satisfied by l(oo).
The edge I appears in the convex hull if and only if for each i E P and j E N, t3 < ti.
When the edge I appears, its length is

min ti - tj.
iEPJEN

Solving (4.2) for i E P, we find ti = (1 - aTp + ri). Similarly, for j E N, we find
'zi q

t = j~(-1+ ap - ri) . Thus, ti for i E P and -tj for j E N are both shifted

exponential random variables with parameter at least A. So, by Lemma 4.1.6,

Pr min t - tj < E|A(I) < ne/2A.
{rilii1} IiEPijENI

G]

Lemma 4.1.8. Let Q be an arbitrary polytope, and let I index an
and w be random unit vectors, and let V be their span. Let S1(V)
the edge I appears on the convex hull of the projection of Q onto V.
the angle of the edge I to V. Then

Pr [cos(9 1(V)) < eISI(V)I < de2 .

w

Vq

Figure 4-1: The points x, y and q.

Proof. As in the proof of Lemma 4.1.7, parameterize the edge by

l(t) := p +tq,

edge of Q. Let v
be the event that
Let 01(V) denote
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where q is a unit vector. Observe that SI(V) holds if and only if V non-trivially
intersects the cone {MiEI ajailai ;> 0}, which we denote C. To evaluate the proba-
bility, we will perform a change of variables that will both enable us to easily evaluate
the angle between q and V and to determine whether SI(V) holds. Some of the new
variables that we introduce are shown in Figure 4-1.

First, let W be the span of {aili E I}, and note that W is also the subspace
orthogonal to q. The angle of q to V is determined by the angle of q to the unit
vector through the projection of q onto V, which we will call y. Fix any vector c E C,
and let x be the unique unit vector in V that is orthogonal to y and has positive
inner product with c. Note that x is also orthogonal to q, and so x E V n W. Also
note that S1 (V) holds if and only if x E C.

Instead of expressing V as the span of v and w, we will express it as the span of
x and y, which are much more useful vectors. In particular, we need to express v
and w in terms of x and y, which we do by introducing two more variables, a and
/3, so that

v = x cos a + y sin a, and

W = x cos 0 + y sin 0.

Note that number of degrees of freedom has not changed: v and w each had d - 1
degrees of freedom, while x only has d - 2 degrees of freedom since it is restricted
to be orthogonal to q, and given x, y only has d - 2 degrees of freedom since it is
restricted to be orthogonal to x.

We now make one more change of variables so that the angle between q and y
becomes a variable. To do this, we let 6 = 61 (V) be the angle between y and q,
and note that once 6 and x have been specified, y is constrained to lie on a d - 2
dimensional sphere. We let z denote the particular point on that sphere.

Deshpande and Spielman [16, Full version] prove that the Jacobian of this change
of variables from v and w to a, , X, 6, z is

c(cos 6)(sin 6 ) d- sin(a - )d-2)

where c is a constant depending only on the dimension.
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We now compute

Pr [cos(01(V)) < |S 1 (V)]
V

fv,weSn-1:vnc+0 and O(V)<E 1 dv dw

fV,wGSn-1:Span(v,w)nc+0 1 dv dw

f0S-1w, c(cos 9)(sin )d-3 sind-2 (a-0) dx dz da d,3 d6

fXECOzaflc(cos)(sj )d3 sn- 2 (&-3) dx dz da d3 dO

_fOcs.(E(cos 6)(sin 9 )d-3 dO

c (cos 0)(sin O)--3 dO

(sin )-2 r/2o=(cos ' (sin)d-

(sin O)d-2 17,/2

1 -(sin(cos-(6))d-2

< 6 1 2)(d-2)/2 <d - 22
2

Lemma 4.1.9. For all I E ( ),

Ev,rl,...,r, [t(I)SI(V)] A

Proof. For each edge I, f(I) = 6(I) cos(OI(V)). Lemma 4.1.7 now implies that,

Pr 6(I) > - A(I)] > 1/2.
1 n

By Lemma 4.1.8,
Pr cos(OI(V)) 1/v'd SI(V) > 1/2.

Given that edge I appears on the shadow, it follows that f(I) > (1/ 2d) (Q) with
probability at least 1/4. Thus, its expected length when it appears is at least . 1

4.2 The Shadow Size in the General Case

In this section, we present an extension of Theorem 4.1.2 that we will require in the
analysis of our simplex algorithm. We extend the theorem in two ways. First of
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all, we examine what happens when P is not k-round position. In this case, we just

show that the shadow of the convex hull of the vertices of bounded norm probably

has few edges. As such, if we take a polynomial number of steps around the shadow,
we should either come back to where we started or find a vertex far from the origin.

Secondly, we consider the shadow onto random planes that come close to a particular

vector, rather than just onto uniformly random planes.

Definition 4.2.1. For a unit vector u and a p > 0, we define the p-perturbation of

u to be the random unit vector v chosen by

1. choosing a 9 E [0, 7r] according to the restriction of the exponential distribution

of expectation p to the range [0, 7r], and

2. setting v to be a uniformly chosen unit vector of angle 0 to u.

Theorem 4.2.2. Let a1 ,..., a be vectors of norm at most 1. Let r1 ,. .. ,r be

independent exponentially distributed random variables with expectation A. Let Q be

the polytope given by
Q={xVi, a T x <1+r,}.

Let u be an arbitrary unit vector, p < 1/vG/, and let v be a random p perturbation of

u. Let w be a uniformly chosen random unit vector. Then, for all t > 1,

Er,...r,,,w [ShadowSizespa(v,w)(Q n B(O, t))] < 42irt(1 + Alogn) vfn
Ap

Proof. The proof of Theorem 4.2.2 is almost identical to that of Theorem 4.1.2, except

that we substitute Lemma 4.2.3 for Lemma 4.1.7, and we substitute Lemma 4.2.4 for

Lemma 4.1.8.

Lemma 4.2.3. For I ; ( i"]) and t > 0,

Pr [6(I) < ejA(I) and I n B(O, t) / 0] < .

Proof. The proof is identical to the proof of Lemma 4.1.7, except that in the proof of

Lemma 4.1.6 we must condition upon the events that

r+ > _Vt -i|p| and r~ < Vt -lp|.

These conditions have no impact on any part of the proof.
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Lemma 4.2.4. Let Q be an arbitrary polytope, and let I index an edge of Q. Let u
be any unit vector, let p < 1/vfd, and let v be a random p perturbation of u. Let w
be a uniformly chosen random unit vector, and let V = span(u, v). Then

Pr [cos(9 1(V)) < e|SI(V)] K 3.5e 2 / 2
V W

Proof. We perform the same change of variables as in Lemma 4.1.8.
To bound the probability that cos 0 < e, we will allow the variables x, z, a and

3 to be fixed arbitrarily, and just consider what happens as we vary 0. To facilitate
writing the resulting probability, let IL denote the density function on v. If we fix x,
z, a and 3, then we can write v as a function of 0. Moreover, as we vary 0 by #, v
moves through an angle of at most #. So, for all # < p and 0,

A(v(0)) < p(v(9 + #))/e. (4.3)

With this fact in mind, we compute the probability to be

fv'weSn-i:vnc+O and 8I(V)<E Ip(v) dv dw

fv,wcsn1:vnc+0 p(v) dv dw

fecs1e(cos 9)(sin 9)d-3p(v(9)) d9
" JaxfO=COS-' (E) (o )(i 0)d

< max
x,Z,&43 f0"(cos 0)(sin0)d-3/p(v(9)) dO

7/ max a (cos 0)(sin )d-3 p(0) dO
" max f'CS

x,z,a f0 1=, 1 2- (cos 0) (sin o)d--3p() d9

e f0oS ()(cos 0)(sin 0)d-3 d9
S r/2 ,by (4.3)

f</2-p(cos 9)(sin o)d-3 dO

(sin -)d-2 1/2

e cos 1 (E)

(sin9)d-2

1 - (sin(cos-l(e))d-2
1 - (sin(p)d-2

1 - (1 - e2)(d-2)/2

1 - (1 - p2/ 2 )d-2

<e5 (d - 2)2
-(d - 2)4(l - 1/,/2)p2 a

<3.5 (E/p)2_
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Chapter 5

Reduction of Linear Programming
to Certifying Boundedness

5.1 Reduction to a Feasibility Problem

We now recall an old trick [45, p. 125] for reducing the problem of solving a linear
program in form (1.1) to a different form that will be more useful for our purposes.
We recall that the dual of such a linear program is given by

minimize b - y (5.1)

subject to ATy = c, y 0,

and that when the programs are both feasible and bounded, they have the same
solution. Thus, any feasible solution to the system of constraints

Ax b, x E d , (5.2)

AT y = C, y 0,
c-x = b -y

provides a solution to both the linear program and its dual. Since solving the above
system is trivial if b is the zero vector, we assume from here on in that b # 0.

By introducing a new vector of variables 6 E Rd, we can replace the matrix
inequality Ax < b by an equality constraint and a nonnegativity constraint:

Ax +± = b

6 > 0.

Now the variables 6i and yi are constrained to be nonnegative, whereas each xi may be
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positive or negative. We would like to convert our system so that all of our variables
are constrained to be nonnegative. To do this, we replace each variable xi by a pair

of variables, <+ and x7, each of which is constrained to be nonnegative. We then

replace every occurrence of the variable xi with the difference x+ - x-. It is not

difficult to see that, at any finite optimum, one of the two variables will be zero and
the other will equal the magnitude of the value that xi would have assumed at the

optimum of the original system.

Collecting all of our variables into one vector z1 now gives us a feasibility problem
of the form

A Tzi = b (5.3)

z, > 0,z, # 0

where A1 is a matrix constructed from A, b, and c, and the vector b1 is not the zero
vector. If a .. , a (n) are the rows of A 1, expressed as column vectors, we can write
this as

zi,=a = bi (5.4)

zi 0, zi #0.

Lemma 5.1.1. Solving the system in (5.4) can be reduced in polynomial time to
solving a system of the form

ATZ2 = 0 (5.5)

z 2 > 0, z 2 # 0.

Proof. Suppose that the bit-length required to express the system in (5.4) is L. It
is a standard fact in the analysis of linear programs that if (5.4) has a solution then
there is a value , = i (L) that is singly-exponential in L so that (5.4) has a solution
with Iz 2 I1 < r, [50]. Using this value of K, add a new coordinate z 2 ,0 and form the
system

-z 2 ,ob 1 + E Z2,i ya(' - bi) 0 (5.6)

z 2 > 0, z 2 / 0.

We claim that the system in (5.6) is feasible if and only if the system in (5.4) is.
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To see this, first suppose that z 1 is a solution to the system in (5.4), and let

Z2,i = Zi'i

' ~11}1zi111

for i > 1

for i = 0.

Clearly z 2 0 and z 2 # 0, so we just have to check the equality constraint:

-z 2,ob 1 +
i>1

H1111)
.2,i (a(') bi b1 + zii,

i>1

1
- ilz 1 ) b1 +

al( W

1
b1- -l Izil||1b

- 0,

as desired.
Conversely, suppose that z 2 is a solution to the system in (5.5). By definition

z 2 = 0, so it is well-defined to set

Zl,i (2, Z2,0 +
1

K

-1

SZ2J)

for all i > 1. Clearly zi > 0 and z, # 0, so we again need only check the equality
constraint:

zi,2a(1
= Z2,0 +

= Z2,0 +

=bi,

K
j 0

Z2J)

Z2J

z2,a(i)
i>1

Z2,0 +
K

Z Z 2 ,k) bl

where the second equality follows from the equality constraint in (5.6). This completes
the proof of Lemma 5.1.1. 0

- bi
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5.2 Degeneracy and the Reduction to Certifying
Boundedness

Let
R={wA 2w < 1}, (5.7)

and let a(, a(') be the rows of A2 . A feasible solution z to the system in (5.5)
is a nontrivial positive combination of the rows of A2 that equals the zero vector.
Scaling the coefficients will give us a convex combination of the 2 that equals the
zero vector. Since the polar polytope R* is the convex hull of the a2i, the system
in (5.5) is thus feasible if and only if the origin is contained in R*.

We recall from Section 2.4 that R is bounded if and only if R* contains the origin
in its interior. By Remark 2.4.3, a feasible solution to the system in (5.5) is thus
quite close to a certificate of boundedness for R; they differ only in the degenerate
case when the origin appears on the boundary of R*. In this section, we shall use a
procedure similar to the E-perturbation technique of Charnes [11] and Megiddo and
Chandrasekaran [40] to reduce solving (5.5) to solving it in the nonndegenerate case,
where a solution to (5.5) is equivalent to a certificate of boundedness for R.

Let A2 be an rn x n matrix. By restricting to a subspace if necessary, we can
assume that the rows of A 2 span R" so that R* is a full-dimensional polytope, and
our problem is to determine whether the origin lies in the polytope. We shall now
perturb our problem slightly by pushing to origin very slightly toward the average of
the a(). More precisely, we shall seek a feasible solution to the system

A' (q - E (E q/m) 1) = 0 (5.8)
q 0, q # 0,

where c = 1 / 2PoY(m)L with a sufficiently large polynomial in the exponent. We can
write this in the same form as the system in (5.5) by letting A3 be the matrix whose
ith row is given by

3 = ME- a2 (5.9)

and considering the system

q 0, q 0.

We claim that this yields a polynomial-time reduction to the nondegenerate case.
This follows from the following four properties of the system in (5.8):
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Property 1: Given the system in (5.5), we can construct the system in (5.8) in
polynomial time.

Property 2: If (5.5) is feasible then (5.8) has a solution whose coordinates are all
strictly positive.

Property 3: If (5.5) is infeasible then (5.8) is infeasible.

Property 4: Given a solution to (5.8), one can recover a solution to (5.5) in poly-
nomial time.

Proof of Property 1. This follows immediately from the description of the system
in (5.8) and the fact that the bit-length of e is polynomial in L.

Proof of Property 2. Let - be a feasible point for (5.5), so that

A= 0.

Let

m( - i)
We note that q is a feasible solution to (5.8):

( /n 1) cm(q1 - -

c~i

m(1- C))

I,, )
- (1 C)+

m 1 -e

S:q )

(z
=0+0 A T1

= 0,

as desired.
Property 2.

Since all of the coefficients of q are strictly positive, this establishes
0

Proof of Property 3. Let a( be as in equation (5.9). The system in (5.5) is feasible
if and only if the origin is contained in the convex hull R* of the a2 , whereas the

1)

(5.10)
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CHAPTER 5. REDUCTION TO CERTIFYING BOUNDEDNESS

system in (5.8) is feasible if and only if the origin is contained in the convex hull of

the a (.
Suppose that (5.5) is infeasible; we show that this implies that (5.8) is infeasible

as well. To this end, let p C R* be the point on R* that is closest to the origin. The
point p lies on the boundary of R*, so there exists some collection of n of the all
that spans a nondegenerate simplex A that contains p. Without loss of generality,
let this collection consist of a, . ( ). Let

A = conv(A, 0).

The n-dimensional volume of A equals 1/n times the (n - 1)-dimensional volume of
A times the orthogonal distance from the hyperplane spanned by A to the origin.
We thus have

IP112 > n voln(A)
-VOln-1 (A)

If M1 is the n x n matrix whose zth row equals a (T, and M 2 is the (n - 1) x n matrix
whose rth row equals a2 - a , we can expand this as

n- vol1 (A)

n - (1/n!)/det (MTMI)
(1/(n - 1)!) /det (AfM M 2 )

det (MTM 1 )
det (MfM 2 )

All of entries in M, and M 2 have bit-lengths that are bounded above by L, so the
numerator and denominator of the fraction under the square root can both be written
with poly(m) - L bits, and thus so can the entire fraction. Since we have assumed
that IIP112 # 0, this implies a 1/ 2 1Y(m)"L lower bound on 11P|12-

We thus have a lower bound f on the distance between the convex hull of the a)

and the origin. If we displace each a(' by less than f, no convex combination of the
a2 can move by more than f, so the perturbed polytope will not contain the origin.

The distance between a 9 and a is at most

m
2
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so, as long as
em

(z ai)) 2 2PoIym))

the convex hull of the a3M will not contain the origin. This implies the infeasibility
of (5.8), as desired.

Proof of Property 4. Given any solution to (5.8), standard techniques allow one to
recover, in polynomial time, a solution at which exactly n of the qi are nonzero
and for which the corresponding ala are linearly independent [45]. Scaling so that
the coefficients add to 1, this shows that the origin is contained inside the simplex
spanned by n of the a3(. The proof of Property 3 shows that the simplex spanned by

the corresponding afj) will also contain the origin, i.e., that the origin can be written

as a convex combination of the corresponding a2). We can find the coefficients of this
convex combination in polynomial time by solving a linear system, and this is our
desired solution.

It thus suffices to be able to find a certificate of boundedness for the polytope
described in (5.7). This is equivalent to proving that

A 2 w < b 2  (5.12)

is bounded for any b2 > 0, since the choice of the vector b2 does not affect whether
the polytope is bounded. (We require b 2 > 0 in order to guarantee that the resulting
system is feasible.) By solving this system with a randomly chosen right-hand side
vector we can solve system (1.1) while avoiding the combinatorial complications of
the feasible set of (1.1).

In our algorithm, we will certify boundedness of (1.1) by finding the vertices
minimizing and maximizing some objective function. Provided that the system is
non-degenerate, which it is with high probability under our choice of right-hand sides,
this can be converted into a solution to (5.5).
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Chapter 6

Our Algorithm

Our bound from Theorem 4.1.2 suggests a natural algorithm for certifying the bound-
edness of a linear program of the form given in (5.12): set each bi to be 1 +ri, where ri
is an exponential random variable, pick a random objective function c and a random
two-dimensional subspace containing it, and then use the shadow-vertex method with
the given subspace to maximize and minimize c.

In order to make this approach into a polynomial-time algorithm, there are two
difficulties that we must surmount:

1. To use the shadow-vertex method, we need to start with some vertex that
appears on the boundary of the shadow. If we just pick an arbitrary shadow
plane, there is no obvious way to find such a vertex.

2. Theorem 4.1.2 bounds the expected shadow size of the vertices of bounded norm
in polytopes with perturbed right-hand sides, whereas the polytope that we are
given may have vertices of exponentially large norm. If we naively choose our
perturbations, objective function, and shadow plane as if we were in a coordinate
system in which all of our vertices had bounded norm, the distribution of vertices
that appear on the shadow may be very different, and we have no guarantees
about the expected shadow size.

We address the first difficulty by constructing an artificial vertex at which to start
our simplex algorithm. To address the second difficulty, we start out by choosing our
random variables from the naive distributions. If this doesn't work, we iteratively use
information about how it failed to improve the probability distributions from which
we sample and try again.
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6.1 Constructing a Starting Vertex

In order to use the shadow-vertex method on a polytope P, we need a shadow plane S
and a vertex v that appears on the boundary of the shadow. One way to obtain such
a pair is to pick any vertex v, randomly choose (from some probability distribution)
an objective function c optimized by v, let u be a uniformly random unit vector, and
set S = span(c, u).

However, to apply the bound on the shadow size given by Theorem 4.2.2, we need
to choose c to be a p-perturbation of some vector. For such a c to be likely to be
optimized by v, we need v to optimize a reasonably large ball of objective functions.
To guarantee that we can find such a v, we create one. That is, we add constraints
to our polytope to explicitly construct an artificial vertex with the desired properties.
(This is similar to the "Phase I" approaches that have appeared in some other simplex
algorithms.)

Suppose for now that the polytope {x Ax < 1} is k-round. Construct a modified
polytope P' by adding d new constraints, {ff5 <1 i 1, ... , d}, where

W= - e3) + V'dei/3k2,

and ii = wi/(2 |wsi|). Let xo be the vertex at which W..., Wd are all tight.
Furthermore, let c be a p-perturbation of the vector 1/ji, with p = 1/6dk 2, and let
x1 be the vertex at which c is maximized. We can prove:

Lemma 6.1.1. The following three properties hold with high probability. Further-
more, they remain true with probability 1 - (d + 2)e-n if we perturb all of the right-
hand sides of the constraints in P' by an exponential random variable of expectation
A = 1/n.

1. The vertex x 0 appears on P',

2. -c is maximized at xo, and

3. None of the constraints w 1 ,.... Wd is tight at x 1.

Proof. This follows from Lemma 7.0.1 and bounds on tails of exponential random
variables.

Set
k := 16d+ 1 and s:=4- 10 7 d9/2n.

Let S = span(c, u), where u is a uniform random unit vector. If P is k-round, then
by Lemma 6.1.1 and Theorem 4.1.2 we can run the shadow vertex method on P'
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with shadow plane S and starting at vertex xo, and we will find the vertex x1 that
maximizes c within s steps, with probability at least 1/2. Since none of the wi are
tight at xi, x1 will also be the vertex of the original polytope P that maximizes c.

This gives us the vertex x 1 of P that maximizes c. We can now run the shadow
vertex method again on P using the same shadow plane. This time, we start at x 1

and find the vertex that maximizes -c. We are again guaranteed to have an expected
polynomial-sized shadow, so this will again succeed with high probability. This will
give us a pair of vertices that optimize c and - c, from which we can compute our
desired certificate of boundedness. It just remains to deal with polytopes that are
not k-round position.

6.2 Polytopes that are not k-Round

In this section, we shall present and analyze our general algorithm that deals with
polytopes that may not be k-round. The pseudocode for this algorithm appears at
the end of the section, on page 46.

We first observe that for every polytope there exists an affine change of coordinates

(i.e., a translation composed with a change of basis) that makes it d-round [5]. An
affine change of coordinates does not change the combinatorial structure of a polytope,
so this means that there exists some probability distribution on b and S for which
the shadow has polynomial expected size. We would like to sample b and S from
these probability distributions and then pull the result back along the change of
coordinates. Unfortunately, we don't know an affine transformation that makes our
polytope k-round, so we are unable to sample from these distributions.

Instead, we shall start out as we would in the k-round case, adding in artificial
constraints w 1,.. . , Wd, and choosing an objective function and shadow plane as in
Section 6.1. By Theorem 4.2.2, running the shadow-vertex method for s steps will
yield one of two results with probability at least 1/2:

1. It will find the optimal vertex x 1, or

2. It will find a vertex y of norm at least 2k.

In the first case, we can proceed just as in the k-round case and run the shadow-vertex
method a second time to optimize -c, for which we will have the same two cases.

In the second case, we have not found the optimal vertex, but we have with high
probability learned a point of large norm inside our polytope. We can use this point
to change the probability distributions from which we draw our random variables and
then start over. This changes our randomized pivot rule on the graph of potential
vertices of our polytope, hopefully putting more probability mass on short paths from
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the starting vertex to the optimum. We shall show that, with high probability, we
need only repeat this process a polynomial number of times before we find a right-
hand side and shadow plane for which the shadow-vertex method finds the optimum.

Our analysis rest upon the following geometric lemma, proved in Chapter 7:

Lemma 6.2.1. Let B C Rd be the unit ball, let P be a point at distance S from the
origin, and let C = conv(B, P) be their convex hull. If S > 16d + 1, then C contains
an ellipse of volume at least twice that of B, having d -1 semi-axes1 of length 1- 1/d
and one semi-axis of length at least 8 centered at the point of distance 7 from the
origin in the direction of P.

We remark that the number of times that we have to change probability distri-
butions depends on the bit-length of the inputs, and that this is the only part of
our algorithm in which this is a factor. Otherwise, the execution of our algorithm is
totally independent of the bit-length of the inputs.

Theorem 6.2.2. If each entry of the vectors a, is specified using L bits, then
CHECKBOUNDEDNESS() either produces a certificate that its input is bounded or that
it is unbounded within O(n3 L) iterations, with high probability.

Proof. It will be helpful to think of the input to CHECKBOUNDEDNESS() as being
the polytope {x I aTx < IVi} instead of just the vectors a,..., an. We can then talk
about running this algorithm on an arbitrary polytope { X Ix < Ti Vi } by rewriting
this polytope as {x I (a2 /Ti)Tx < lVi}.

With this notation, it is easy to check that running an iteration of the Repeat
loop on a polytope P with Q = Q0 and r = ro is equivalent to running the same
code on the polytope QO(P + ro) with Q = Id and r = 0. The update step at
the end of the algorithm can therefore be thought of as applying an affine change of
coordinates to the input and then restarting the algorithm.

If Q = Id, and r = 0, the argument from Section 6.1 proves that the first iteration
of the Repeat loop will either prove boundedness, prove unboundedness, or find a
point with norm at least k with probability at least 1/2. In either of the first two
cases, the algorithm will have succeeded, so it suffices to consider the third.

If a point y is in the polytope P' = {x I Ax b}, the point y/ 2 will be in the
polytope P = {x I Ax < 1} with probability at least 1 - ne~". This guarantees that
P contains a point of norm at least k. Since P contains the unit ball, Lemma 6.2.1
implies that P contains an ellipse of volume at least twice that of the unit ball. The

1If an ellipsoid E is given as the set E ={x xTQ-x < 1}, where Q is a symmetric, positive
definite matrix. then the semi-axes of E have lengths equal to the the eigenvalues of Q. For example,
the semi-axes of the sphere are all of length 1.
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update step of our algorithm identifies such an ellipse and scales and translates so
that it becomes the unit ball, and it then restarts with this new polytope as its input.
This new polytope has at most half the volume of the original polytope.

All the vertices of the original polyhedron are contained in a ball of radius 20(n2L)

where L is the maximum bit-length of any number in the input, and so their convex
hull has volume at most 20(n3 L) times that of the unit ball [26]. Each iteration of the
algorithm that finds a point of norm at least k decreases the volume of P by a factor
of at least 2. All of the polytopes that we construct contain the unit ball, so this can
occur at most O(n3L) times. This guarantees that the Repeat loop finds an answer
after a O(nr3L) iterations with high probability, as desired. L

While the algorithm requires samples from the exponential distribution and uni-
form random points on the unit sphere, it is not difficult to show that it suffices to
use standard discretizations of these distributions of bit-length polynomial in n and
d.
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Algorithm 6.2.1: CHECKBOUNDEDNESS(a,. . ., an)

Require each ai has norm at most 1.
Set k= 16d+ 1, A = 1/n, p= 1/6dk 2

s = 4 - 107 d9/2n, and -iff as described in text;
Initialize Q := Ida, r := 0;
Repeat until you return an answer

Construct constraints for starting corner:

an4i : = Q'-iff-/ (1 - -iff- - (Q r)) for i = 1, .... , d;7
bi := (1 + 03)(1 + a7 r) for i = 1.... n + d, (1)

/3i exponential random vars with expectation A;
Set starting corner xo := point where a'xo = bi

for i=n+1,...,n+d;
If x0 violates a To bi for any i, go back to (1)

and generate new random variables;
c := QT^y, with -y a p-perturbation of 1/v/d;
Shadow plane S := span(c, QTU),

with u a uniformly random unit vector;
Run SHADOWVERTEX((a,. .. , an+d), b, C, S, xos )

If returns unbounded then
return (unbounded);

If returns (fail, yo) then
set y := yo and go to (3);

If returns (opt, vo) then
set v := vo and continue to (2);

Run SHADOWVERTEX((al. . . ,an), b, C, , v,) : (2)

If returns unbounded then
return (unbounded);

If returns (fail, yo) then
set y := yo and go to (3);

If returns (opt, vo) then
set v' := vo and return (v, v');

Update Q and r: (3)
If 11Q(y + r)II 2k then

don't change Q or r

else
Set M := the matrix that scales down

Q(y + r) by factor of 8 and scales

vectors in orthogonal complement up

by factor of 1 - 1/d;

Q := MQ;
:r ± 7Q(y + r)/IIQ(y + r)l|;
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6.3 Towards a Strongly Polynomial-Time Algorithm
for Linear Programming?

While it is usually best to avoid the risky business of predicting yet-unproven results,
it is worth briefly noting that we believe these results to be encouraging progress

towards finding a strongly polynomial-time algorithm for linear programming.
First of all, these results provide significant geometric insights into the structure

of linear programming and polytope theory, and they provide a new approach to con-
structing algorithms for linear programming. Our algorithm proceeds almost entirely
in strongly polynomial time, and it runs in strongly polynomial time for a large class
of linear programs. The only part of the algorithm that is not strongly polynomial is
the outer loop in which we alter the various probability distributions. It seems quite
plausible that this dependence can be eliminated by a slightly more clever variant of
our algorithm.

Furthermore, our methods suggest a wide variety of similar approaches. While
the shadow-vertex method was the easiest simplex method to analyze, it may well
be the worst one to use when searching for a strongly polynomial-time algorithm.
The dependence of the running-time of the algorithm on the bit-length arises from
the linear program being given initially in a "bad" coordinate system. The shadow-
vertex method is perhaps, among reasonable pivot rules, the one that depends the
most adversarially upon the ambient coordinate system. If one could obtain a similar
analysis of the behavior on linear programs with perturbed right-hand sides of a less
coordinate-dependent pivot rule, such as RANDOM-EDGE (see [23], for example), it
is quite possible that the dependence on the bit-length would disappear.
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Geometric Lemmas for Algorithm's
Correctness

Lemma 7.0.1. Let P be a k-round polytope, let c and q be unit vectors, and let

v = argmax c -x
xEP

be the vertex of P at which c -x is maximized. If c -q < -(2k2 -1)/2k 2, then v -q < 0.

Proof. We first note that

2k 2 - 1
Iq+ c1 2  jq12 +IcI2 + 2(c - q) <2- k2 1 k

so IIq + cli 1/k. The fact that P is contained in B(0, k) implies that IlvIi I k, and
the fact that P contains the unit ball implies that

v - c = max c -x> 1.
xEP

We therefore have

q -v = -c -v + (q + c) -v < -1 + |q + c||||vi| < 0,

as desired.

We now prove some geometric facts that will be necessary for the analysis of our
algorithm. We first prove a two-dimensional geometric lemma. We then use this to
prove a higher-dimensional analogue, which is the version that we shall actually use
to analyze our algorithm.
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7.1 2-Dimensional Geometry Lemma

In this section, we prove a lemma about the two-dimensional objects shown in Fig-
ure 7-1. In this picture, C is the center of a circle C of radius 1. P is a point
somewhere along the positive x-axis, and we have drawn the two lines tangent to
the circle through P, the top one of which we have labeled L. E is the center of an
axis-parallel ellipse E with horizontal semi-axis M > 1 and vertical semi-axis m < 1.
The ellipse is chosen to be a maximal ellipse contained in the convex hull of the circle
and P. Furthermore, let S be the distance from C to P, and let Q = (1 - m2)/2.

1M L

Q=(1-m2)/2

Figure 7-1: The geometric objects considered in Lemma 7.1.1

Lemma 7.1.1. With the definitions above,

M = Q(S - 1)+1.

Proof. Without loss of generality, let E be the origin. The circle and ellipse are
mutually tangent at their leftmost points on the x-axis, so C is at (-M + 1, 0), and
P is therefore at (S - M + 1, 0). Let

S= T

and let L be the line given by

L = (xy)| i- (x, y) S-M+1

We claim that L has the following three properties, as shown in Figure 7-1:
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1. L passes through P.

2. L is tangent to C.

3. If we take the major semi-axis M of the ellipse E to be Q(S - 1) + 1. then L is
tangent to E.

Establishing these properties would immediately imply Lemma 7.1.1, so it suffices to
check them one by one.

1. This follows by direct computation-we simply note that the point P = (S -
M + 1, 0) satisfies the equation for L.

2. It suffices to show that the distance from the point C to the line L is exactly 1.
Since L is the unit normal to L, it suffices to check that

.C(S-M+1~ -=-M+1
f - C = -SM 1 _1 =

S S

which again follows by direct computation.

3. Let

S
L = (LX, LV) = S - f +

(S-M+1'S-M+1

so that L = {(x, y) I L - (x, y) = 1}. When expressed in this form, L will be

tangent to E if and only if L2M 2 + L 2m 2 = 1. This can be verified by plugging
in M = Q(S - 1) + 1 and Q = (1 - m2 )/2, and then expanding the left-hand
side of the equation.

7.2 High-Dimensional Geometry Lemma

Lemma 7.2.1. Let B C Rd be the unit ball, let P be a point at distance S from the
origin, and let C = conv(B, P) be their convex hull. For any m < 1, C contains an
ellipsoid with (d - 1) semi-axes of length m and one semi-axis of length (1 - m 2 ) (S_

1)/2 + 1.
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Proof. Without loss of generality, take P = (S, 0, . . . , 0). Consider an axis-parallel

ellipsoid E with the axes described in the above theorem, with its distinct axis parallel
to el, and translated so that it is tangent to B at (-1, 0, ... , 0).

We assert that E is contained in C. It suffices to check the containment when we
intersect with an arbitrary 2-dimensional subspace containing 0 and P. In this case,
we have exactly the setup of Lemma 7.1.1, and our result follows immediately. El

of Lemma 6.2.1. If we set m = 1 - 1/d, then Lemma 7.2.1 guarantees that the length
of the longer semi-axis of the ellipse will be at least

(1 12 16d
d 2 8.

So, the ratio of the volume of the unit ball to the ellipse is at least

V/vol(B) > I - - 18
d

8
> -=2.

-4

n
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Part II

Spectral Partitioning, Eigenvalue
Bounds, and Circle Packings for

Graphs of Bounded Genus
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Chapter 8

Background in Graph Theory and

Spectral Partitioning

In this chapter we provide the basic definitions and results from graph theory and
spectral partitioning that we shall require in the sequel.

8.1 Graph Theory Definitions

Throughout the remainder of this part of the thesis, let G = (V, E) be a finite,
connected, undirected graph with n vertices, m edges, and no loops. In this section,
we shall define two objects associated to G: its Laplacian, and its genus.

Let the adjacency matrix A(G) be the n x n matrix whose (i, j)th entry equals 1
if (i, j) E E, and equals 0 otherwise. Let D(G) be the n x n diagonal matrix whose
ith diagonal entry equals the degree of the ith vertex of G.

Definition 8.1.1. The Laplacian L(G) is the n x n matrix given by

L(G) = D(G) - A(G).

Since L(G) is symmetric, it is guaranteed to have an orthonormal basis of real
eigenvectors and exclusively real eigenvalues. Let A, < A2 5 ... An be the eigenval-
ues of L(G), and let vI, ... , Vn be a corresponding orthonormal basis of eigenvectors.
For any G, the all-ones vector will be an eigenvector of eigenvalue 0. It is not dif-
ficult to see that all of the other eigenvalues will always be nonnegative, so that

.1)T, and A, = 0.
There has been a great deal of work relating the eigenvalues of L(G) to the struc-

ture of G. In the present paper, we shall concern ourselves exclusively with A2, also
known as the algebraic connectivity or Fiedler value of G. We call the vector v 2 the
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Fiedler vector of G. As we shall see in Section 8.2, the Fiedler value of a graph is

closely related to how well connected the graph is.
A different measure of the connectivity of a graph is provided by its genus, which

measures the complexity of the simplest orientable surface on which the graph can

be embedded so that none of its edges cross. Standard elementary topology provides

a full classification of the orientable surfaces without boundary. Informally, they are

all obtained by attaching finitely many "handles" to the sphere, and they are fully

topologically classified (i.e., up to homeomorphism) by the number of such handles.

This number is called the genus of the surface. The genus 0, 1, 2, and 3 surfaces are

shown in Figure 8-1.

Figure 8-1: The surfaces of genus 0, 1, 2, and 3.

Definition 8.1.2. The genus g of a graph G is the smallest integer such that G can

be embedded on a surface of genus g without any of its edges crossing one another.

In particular, a planar graph has genus 0. By making a separate handle for each

edge, it is easy to see that g = O(m), where m is the number of edges in G.

Using these definitions, we can now state our main technical result:

Theorem 8.1.3. Let G be a graph of genus g and bounded degree. Its Fiedler value

obeys the inequality
A2 < O(g/n),

and this is asymptotically tight.

The constant in this bound depends on the degree of the graph. The proof that

we provide yields a polynomial dependence on the degree, but no effort is made to

optimize this polynomial. Finding the optimal such dependence is an interesting open

question.

8.2 Spectral Partitioning

We recall that a partition of a graph G is a decomposition V = A U A of the vertices

of G into two disjoint subsets. For such a partition, we let J(A) be the set of edges
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(i, j) such that i E A and j E i, and we call IJ(A)I the cut size of our partition. The
ratio of our partition is defined to be

O(A) = jJ(A__
min(IAI, IAI)

If our partition splits the graph into two sets that differ in size by at most one, we
call it a bisection.

Spectral methods aim to use the Fiedler vector to find a partition of the graph
with a good ratio. A theorem that begins to address why these work was proven by
Mihail and restated in a more applicable form by Spielman and Teng:

Theorem 8.2.1 ([41, 47]). Let G have maximum degree A. For any vector x that
is orthogonal to the all-ones vector, there is a value s so that the partition of G into

{i : xi <; s} and {i : xi > s} has ratio at most

xTLL(G)x

If x is an eigenvector of L(G), the fraction -TL-- is equal to its eigenvalue. So,
if we find the eigenvector with eigenvalue A2 , we will thus quickly be able to find a
partition of ratio V2AA2 . By Theorem 8.1.3, finding the second eigenvector of the
Laplacian thus allows us to find a partition of ratio O( g/n) for a graph of bounded
degree. There is no guarantee that this partition has a similar number of vertices in
each of the two sets. However, a theorem of Lipton and Tarjan [39] implies that a
simple method based on repeated application of this algorithm can be used to give a
bisector of size O(g5n).

For every g, Gilbert, Hutchinson, and Tarjan exhibited a class of bounded degree
graphs that have no bisectors smaller than O(VgJ) [25]. This implies that our al-
gorithm gives the best results possible, in general. Furthermore, it establishes the
asymptotic tightness of our eigenvalue bound, as a smaller bound would show that
every genus g graph has a partition of size o(Vgn).

Putting all of this together yields our main algorithmic result:

Theorem 8.2.2. Let G be a genus g graph of bounded maximum degree. There is a
polynomial time algorithm that produces cuts of ratio O( g/n) and vertex bisectors
of size O( gn) in G, and both of these values are optimal.

All that remains of the proof of Theorem 8.2.2 is the eigenvalue bound set forth
in Theorem 8.1.3, which is the goal of the remainder of this paper.



Chapter 9

Outline of the Proof of the Main
Technical Result

The proof of Theorem 8.1.3 necessitates the introduction of a good deal of techni-
cal machinery. Before launching into several pages of definitions and background
theorems, we feel that a brief roadmap of where we're going will be helpful.

The basic motivation for our approach comes from an observation made by Spiel-
man and Teng [47]. They noted that one can obtain bounds on the eigenvalues of a
graph G from a nice representation of G on the unit sphere in R3 known as a circle
packing for G. This is a presentation of the graph on the sphere so that the vertices
are the centers of a collection of circles, and the edges between vertices correspond
to tangencies of their respective circles, as shown in Figure 10-1. Only planar graphs
can be embedded as such if we require the circles to have disjoint interiors. However,
if we allow the circles to overlap, as shown in Figure 10-2, we can represent nonplanar
graphs as well. This will give rise to a weaker bound in which the eigenvalue bound
is multiplied by the maximum number of circles containing a given point (i.e.. the
number of layers of circles on the sphere).

There is a well developed theory of circle packings, both on the sphere and on
higher genus surfaces. The portions of it that we shall use will tell us two main
things:

1. We can realize our graph as a circle packing of circles with disjoint interiors on
some genus g surface.

2. The theory of discrete circle packings can be thought of as a discrete analogue
of classical complex function theory, and many of the results of the latter carry
over to the former.

In classical complex analysis, you can put a complex analytic structure on a genus
g surface to obtain a Riemann surface. Any genus g Riemann surface has a map to the
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sphere that is almost everywhere k-to-one for k = O(g), with only O(g) bad points
at which this fails. With this as motivation, we shall try to use the representation of
G as a circle packing on a genus g surface to obtain a representation of it as a circle
packing on the sphere with O(g) layers.

Unfortunately, the discrete theory is more rigid than the continuous one, and this
will turn out to be impossible. Instead, we shall actually pass to the continuous theory
to prove our result. To do this, we shall provide a subdivision lemma that shows that
it suffices to prove Theorem 8.1.3 for graphs that have circle packings with very small
circles. We shall then show that the smooth map that we have from the Riemann
surface to the sphere will take almost all of the circles of our circle packing to curves
on the sphere that are almost circles. We will then show that this representation of
our graph as an approximate circle packing is enough to provide our desired bounds.



Chapter 10

Introduction to Circle Packings

Our proof of Theorem 8.1.3 operates by obtaining a nice geometric realization of G.
We obtain this realization using the theory of circle packings. In this section, we
shall review the basics of circle packing theory and quote the main results that our
proof will employ. For a more comprehensive treatment of this theory and a historical
account of its origins, see [48].

Loosely speaking, a circle packing is a collection of circles on a surface with a
given pattern of tangencies. We remark at the outset that the theory that we are
discussing is not the same as the classical theory of sphere packing. Our theory is
concerned with the combinatorics of the tangency patterns, not with the maximum
number of circles that one can fit in a small region. The coincidence of nomenclature
is just an unfortunate historical accident.

10.1 Planar Circle Packings

For simplicity, we begin by discussing circle packings in the plane.

Definition 10.1.1. A planar circle packing P is a finite collection of (possibly over-
lapping) circles C 1 , . . . , C,, of respective radii r, .. . , r, in the complex plane C. If all
of the Ci have disjoint interiors, we say that P is univalent.

The associated graph A(P) of P is the graph obtained by assigning a vertex vi
to each circle C, and connecting vi and vj by an edge if and only if C, and Cj are
mutually tangent.

This is illustrated in Figures 10-1 and 10-2.
We thus associate a graph to every circle packing. It is clear that every graph

associated to a univalent planar circle packing is planar. A natural question to ask
is whether every planar graph can be realized as the associated graph of some planar
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Figure 10-1: A univalent circle packing with its associated graph.

Figure 10-2: A nonunivalent circle packing with its associated graph.

circle packing. This is answered in the affirmative by the Koebe-Andreev-Thurston
Theorem:

Theorem 10.1.2 (Koebe-Andreev-Thurston). Let G be a planar graph. There exists

a planar circle packing P such that A(P) = G.

This theorem also contains a uniqueness result, but we have not yet developed the
machinery to state it. We shall generalize this theorem in Section 10.3, at which point
we shall have the proper terminology to state the uniqueness part of the theorem.

We note that if we map the plane onto the sphere by stereographic projection,
circles in the plane will be sent to circles on the sphere, so this theorem can be
interpreted as saying that every genus 0 graph can be represented as a circle packing
on the surface of a genus 0 surface. This suggests that we attempt to generalize
this theorem to surfaces of higher genus. The theory of circle packings on surfaces
of arbitrary genus acts in many ways like a discrete analogue of classical Riemann
surface theory. As such, a basic background in Riemann surfaces is necessary to state
or motivate many of its results. It is to this that we devote the next section.
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10.2 A Very Brief Introduction to Riemann Sur-
face Theory

In this section, we provide an informal introduction to Riemann surface theory. Our

goal is to provide geometric intuition, not mathematical rigor. We assume some

familiarity with the basic concept of a manifold, as well as with the basic definitions

of complex analysis. For a more complete exposition of the theory, see [21].

We recall that an n-dimensional manifold is a structure that looks locally like

R'. More formally, we write our manifold M as a topological union of open sets Si,
each endowed with a homeomorphism wo : Si -+ Bs, where B, is the ball {|xj < 11
x E R71}. Furthermore, we require a compatibility among these maps to avoid cusps

and such. To this end, we mandate that the compositions op o : p (S, n S,)
cpjo(Si n Sj) be diffeomorphisms. The orientable 2-dimensional manifolds are precisely

the genus g surfaces described above.

An n-dimensional complex manifold is the natural complex analytic generalization

of this. We write our manifold M as a union of open sets Si and endow each such

set with a homeomorphism oj : Si -+ Bc,, where Bc. is the complex unit ball

{IxI < 1 Ix E C"}. Now, instead of requiring the compositions of these functions to

obey a smooth compatibility condition, we require them to obey an analytic one: we

demand that the compositions i o oj be biholomorphic maps.

As such, an n-dimensional complex manifold M is a 2n-dimensional real manifold

with additional complex analytic structure. This structure allows us to transfer over

many of the definitions from standard complex analysis. The basic idea is that we

define these notions as before on the Si, and the compatibility condition allows them

to make sense as global definitions. In particular, if M = (Sr", #') and N = (S7, #7)
are complex manifolds of the same dimension, we say that a function f : M -+ N is

holomorphic if its restriction to a map fij : Sl --+ S7 is holomorphic for all i and j.

Since the compositions cpi o ((pI)1 and pf a are holomorphic, this notion

makes sense where the regions overlap.

Definition 10.2.1. A Riemann surface is a one-dimensional complex manifold.

In this paper, we shall take all of our Riemann surfaces to be compact. Since there

is a natural way to orient the complex plane, we note that the complex structure can

be used to define an orientation on the manifold. As such, all complex manifolds,
and, in particular, all Riemann surfaces, are orientable. Compact Riemann surfaces
are thus, topologically, two-dimensional orientable real manifolds. Every compact
Riemann surface is therefore topologically one of the genus g surfaces discussed above.
The complex structure imposed by the pj, however, varies much more widely, and
there are many different such structures that have the same underlying topological
space.
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Nothing in the definition of a Riemann surface supplies a metric on the surface.
Indeed, there is no requirement that the different qi agree in any way about the
distance between two points in their intersection. One can assign many different
metrics to the surface. However, it turns out that there is way to single out a unique
metric on the surface, called the metric of constant curvature. This allows us to
supply an intrinsic notion of distance on any Riemann surface. In particular, this
allows us to define a circle on our Riemann surface to be a simple closed curve that is
contractible on the surface and all of whose points lie at a fixed distance from some
center.

One particulary important Riemann surface that we shall consider is the Riemann
sphere, which we denote C. It is topologically a sphere. It should be thought of as
being obtained by taking the complex plane and adjoining a single point called oo.
One way of visualizing its relation to C is to consider the stereographic projection
away from the North Pole of a sphere, onto a plane. The North Pole corresponds to
00, and the rest of the sphere corresponds to C.

We recall from single variable complex analysis that the requirement that a map
be analytic is quite a stringent one, and that it imposes a significant amount of
local structure on the map. Let f : C - C be nonconstant and analytic in a
neighborhood of the origin, and assume without loss of generality that f(O) = 0.
There is some neighborhood of the origin in which f can be expressed as a power
series f(z) = az + a2 z2 + a3 z3 + .... If a, # 0, f(z) is analytically invertible in
some neigbhorhood of the origin, so it is locally an isomorphism. In particular, it is
conformal- -it preserves the angles between intersecting curves, and the image of an
infinitesimal circle is another infinitesimal circle.

If a, = 0 and a, is the first nonzero coefficient in its power series, f has a branch
point of order n at the origin. In this case, f operates, up to a scale factor and lower
order terms, like the function f(z) = z". This function is n-to-I on a small neigh-
borhood of the origin, excluding the origin itself. It sends only 0 to 0, however. The
preimages of the points in this small neighborhood thus trace out n different "sheets"
that all intersect at 0. This confluence of sheets is the only sort of singularity that
can appear in an analytic map. We note that the angles between curves intersecting
at the branch point are not preserved, but they are instead divided by n.

This local behavior is identical for Riemann surfaces. From this, we can deduce
that if f : M -- N is an analytic map of Riemann surfaces, it has some well-defined
degree k. For all but finitely many points p in N, #f '(p) = k. The preimage of
each of these points looks like a collection of k sheets, and f has nonzero derivative
at all of them. There exist some points q C M at which f'(q) = 0. At each such point
there is a branch point, so the sheets intersect, and f(q) has fewer than k preimages.

However, the global structure of Riemann surfaces provides further constraints on
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maps between them, and there are, generally speaking, very few functions f : M -+ N
of a given degree. For example, topological arguments, using the local form of analytic
maps described above, show that there are no degree 1 maps from the torus to the
sphere, and no degree 2 maps from the genus 2 surface to the sphere.

There is a deep theory of maps of Riemann surfaces that describes rather precisely
when a map of a given degree exists between two Riemann surfaces, and, if it exists,
where and how such a map must branch. Of this theory we shall only require one
main result, which is a direct corollary of the celebrated Riemann-Roch theorem:

Theorem 10.2.2. Let M be a Riemann surface of genus g. There exists an analytic
map f : M -+ C of degree O(g) and with 0(g) branch points.

10.3 Circle Packings on Surfaces of Arbitrary Genus

We now have the machinery in place to deal with general circle packings. Throughout
this section, let G be a graph of genus g, and suppose that it is embedded on a genus
g surface S so that none of its edges cross. The graph G divides S into faces. We
say that G is a fully triangulated graph if all of these faces are triangles, in which
case we say that it gives a triangulation of S. If G is not fully triangulated, one can
clearly add edges to it to make it so. It will follow immediately from equation (11.2)
in Chapter 11 that this will only increase A2(G), so we shall assume for convenience
that G gives a triangulation of S. We are now ready to define our primary objects of
study:

Definition 10.3.1. Let S be a compact Riemann surface endowed with its metric
of constant curvature. A circle packing P on S is a finite collection of (possibly
overlapping) circles C1,... , C, of respective radii r, ... ., r,, on the surface of S. If all
of the Ci have disjoint interiors, we say that P is univalent.

The associated graph A(P) of P is the graph obtained by assigning a vertex vi
to each circle Ci and connecting vi and vj by an edge if and only if Ci and Cj are
mutually tangent. Alternatively, we say that P is a circle packing for A(P) on S.

The main result on circle packings that we shall use is the Circle Packing Theo-
rem, which is the natural extension of the Koebe-Andreev-Thurston Theorem to this
more general setting. It was originally proven in a restricted form by Beardon and
Stephenson [3] and then proven in full generality by He and Schramm [29].

Theorem 10.3.2 (Circle Packing Theorem). Let G be a triangulation of a surface
of genus g. There exists a Riemann surface S of genus g and a univalent circle
packing P such that P is a circle packing for G on S. This packing is unique up to
automorphisms of S.
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If G is embedded in a surface of genus g but is not fully triangulated, the Riemann
surface and circle packing guaranteed by the theorem still exist, but they need not
be unique.

The complex structure on the Riemann surface allows us to define the angle at
which two edges of a face meet. If the points u, v, and w are the vertices of a face, we
denote the angle between the edges ;U and Uw at v by (uvw). We can thus define the
angle sum at a vertex to be D (uvw), where the sum is taken over all faces containing
v. If P is a univalent sphere packing, the angle sum at any vertex of A(P) is clearly
27.

In a nonunivalent circle packing, it is possible for the circles at a point to wrap
around the point more than once. In the case of a nonunivalent circle packing, the
edges of its associated graph may intersect, but we can still define an associated
triangulation of the surface-there just may be more than one triangle covering a
given point. We can therefore compute the angle sum at a point. In this case, it need
not be 27r. However, the circles must wrap around the vertex an integral number of
times, so it must be some multiple 27rk. (See Figure 10-2.) We then say that the
vertex is a discrete branch point of order k.

These discrete branch points behave very much like the continuous branch points
present on Riemann surfaces. In fact, there is an extensive theory that shows that a
large portion of the theory of Riemann surfaces has an analogue in the discrete realm
of circle packing. One can define maps of circle packings, just as one can define maps
of Riemann surfaces. They consist of a correspondence of the circles on one surface to
those on another in a way that commutes with tangency. While analytic maps send
infinitesimal circles to infinitesimal circles, maps of circle packings send finite circles
to finite circles. The analogue of branched covering maps in Riemannian geometry
takes univalent circle packings and places them as nonunivalent circle packings on
other surfaces. Unfortunately, these maps are somewhat rarer than their continuous
analogues.

In particular, if we have a circle packing on a genus g surface S, there is no known
analogue of the Riemann-Roch theorem, and thus no analogue of Theorem 10.2.2.
We are therefore not guaranteed that there is a nonunivalent circle packing on the
sphere carrying the same associated graph. Intuitively, this comes from the fact that
the analytic maps from S to C are required to be branched over a very restricted
locus of points. The discrete maps, however, can only be branched over the centers of
circles. If there does not exist an admissible set of branch points among the centers
of the circles, we will have difficulty constructing a discrete analytic map. This will
lie at the root of many of the technical difficulties that we shall face in the remainder
of this paper.
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Chapter 11

An Eigenvalue Bound

In this section, we prove Theorem 8.1.3. The proof will assume a technical lemma
whose proof we shall postpone until Chapter 12.

We begin by recalling the expression of the Fiedler value of G as a so-called
Rayleigh quotient:

A2 = X TL(G)x (11.1)
xI(I,...,1)T xTx

A straightforward calculation shows that for x = (X,... Xn)T E R n,

xTL(G)x= Z (x -xj) 2

(i,j)CE

so that equation (11.1) becomes

A2 Min ' . (11.2)
XIi1...,1)T X X

As noted by Spielman and Teng [47], it follows easily from equation (11.2) that we
can replace the scalar values xi with vectors vi E R', so that

Z(i j)eE ii - Vj j2
A2 = min Z' IIVi 2  (11.3)

where the minimum is taken over all sets of n-vectors such that E vi = (O,..., )T

and such that at least one of the vi is nonzero.
The general goal is thus to find a set of vi that gives a small value for this quotient.

The vi that we use will almost be the centers of a nonunivalent circle packing on the
unit sphere S2 C R'. The efficacy of this follows from the following theorem, which
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follows easily from the work of Spielman and Teng [47].

Theorem 11.0.3. Let P be a circle packing on the sphere S2 = {x R 1 I X112 =1}

so that the graph A(P) has no vertex of degree greater than A. Suppose further that
the packing is of degree k, so that no point on the sphere is contained in the interior
of more than k circles, and that the centroid of the centers of the circles is the origin.
Then the Fiedler value

A2(A(-P)) < O(Ak/n).

Proof. This follows from equation (11.3). Let the circles be C 1, . . . , Cn, and let the
corresponding radii be ri,. . . , r,,. Let vi E R' be the x, y, and z coordinates of the
center of the ith circle. The sum E vi = 0 by assumption, so / 2 is less than or equal
to the fraction in equation (11.3). Since all of the vi are on the unit sphere, we have

E ||v,|| 2 = n, so it just remains to bound the numerator. If there is an edge (i,j),
the two circles Ci and C must be mutually tangent, so that |1v - Vj| 2 < (ri +r) 2 <

2(r2 +,r.). It thus follows that

n
Vi V-vj2 < E 2(r2 + r) < 2A r .

(ij)E E (ij)EG Ei=

However, the total area of all of the circles is less than or equal to k times the area of
the sphere, since the circle packing is of degree k. We thus have that EnI r 2 0 (k),
from which the desired result follows. E

This suggests that we use the Circle Packing Theorem (Theorem 10.3.2) to embed
our graph on a genus g surface and then try to use some analogue of Theorem 10.2.2
to obtain a branched circle packing on the sphere of degree O(g). Unfortunately, as
previously noted, such a circle packing need not exist, due to the restrictiveness of
the discrete theory. As such, we shall instead show that a certain subdivision process
on our graph does not significantly decrease nA2. We shall then show that performing
this subdivision enough times causes our discrete circle packing to approximate a con-
tinuous structure on the Riemann surface, at which point we can use the continuous
theory in addition to the discrete one.

The refinement procedure that we shall use is called "hexagonal refinement." It
operates on a triangulation of a surface by replacing each triangle with four smaller
triangles, as shown in Figure 11-1. This process produces another triangulation of
the same surface, so we can iterate it arbitrarily many times.

Lemma 11.0.4 (Subdivison Lemma). Let G be a graph with n vertices, m edges, and
maximum degree A that triangulates some surface without boundary, and let G' be

65



CHAPTER 11. AN EIGENVALUE BOUND

Figure 11-1: The hexagonal subdivision procedure applied to a triangulation with
two triangles.

the graph with n' vertices and m' edges obtained by performing k successive hexagonal
refinements on G. Then

nA2 (G) <_ C(La)n'A2(G').

Proof. For the sake of continuity, we defer this proof to Chapter 12.

The refinement process replaces each triangle in our graph with four smaller tri-

angles. If all of the original triangles remained the same size and shape, this would
imp~ly that performing enough hexagonal refinements would give rise to a circle pack-
ing whose circles have arbitrarily small radii. However, it is possible for the original
triangles to change size and shape as we refine, so this is no longer obvious. Never-
theless, it remains true, as shown by the following lemma:

Lemma 11.0.5. Let C be a graph that triangulates a genus g Riemann surface without
boundary, and let G(k) be the graph obtained by performing k hexagonal refinements
on G. For every e > 0, there exists some keso that for all e > k_, every circle in GMe
has radius less than e.

Proof. This was essentially proven by Rodin and Sullivan [44]. Their proof, however,
was only stated for the genus 0 case. The precise statement above was proven by
Bowers and Stephenson [7]. LI

We get a new Riemann surface for each iteration of the refinement procedure.
It is intuitive that, as the number of iterations grows and the circles in the refined
graph get arbitrarily small, the Riemann surfaces will somehow converge, and the
embedding of the graph on these Riemann surfaces will somehow stabilize. This can
be made formal by the following lemma:

Lemma 11.0.6. Let G be a graph that triangulates a genus g compact Riemann
surface without boundary, let G(k) be the result of performing k hexagonal refinements
on G, and let S(k) be the Riemann surface on which G(k) is realized as a circle packing.
Further, let hk : S(k) -~ S(k+1) be the map that takes a triangle to its image under the
subdivision procedure by the obvious piecewise-linear map. The sequence of surfaces
{ S(k)} converges in the moduli space of genus g surfaces, and the sequence of maps
{hk} converqes to the identity.
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Proof. This is proven by Bowers and Stephenson [7].

We shall also require one last definition:

Definition 11.0.7. Let f : X - Y be a map between two locally Euclidean metric
spaces. The quantity

maxlxy=, If(x) - f(y)I 1
minix-ylr If(x) - f(y)

is called the radius r distortion of f at x.

We are now finally ready to prove Theorem 8.1.3.
Proof of Theorem 8.1.3. Using the Circle Packing Theorem (Theorem 10.3.2),

realize the graph G = GO) as a circle packing on some Riemann surface S of genus g.
Let G(k) be the result of performing k hexagonal refinements on G, and let S(k) be the
Riemann surface on which it can be realized as a circle packing. By Theorem 10.2.2,
there exists an analytic map f(k) from S(k) to the Riemann sphere of degree O(g) and
with O(g) branch points. Embed the Riemann sphere as the unit sphere in R' using
the conformal map given by inverse stereographic projection. By the work of Spielman
and Teng (Theorem 9 of [47]), post-composing with a M6bius transformation allows
us to assume, without loss of generality, that the centroid of the images of the vertices
of each G(k) under f(k) is the origin. By Lemma 11.0.6, the S(k) converge to some
surface S( , and the f(k) can be chosen so as to converge to some continuous limit
map f(00.

By Lemma 11.0.4, it suffices to the prove the theorem for an arbitrarily fine
hexagonal refinement of the original graph. Away from its branch points, a map of
Riemann surfaces is conformal, meaning it sends infinitesimal circles to infinitesimal
circles. In particular, given a map f : S -+ C, the compactness of S guarantees that
for every e, n > 0, there exists a 6 > 0 so that the radius 6' distortion Hf(x, 6') is less
than c for every x that is at least distance K from any branch point and any 6' < 6.
In fact, by the convergence results of the last paragraph, there exist some N and 6
such that this holds for every f(k) with k > N. Fix c and r,, and let 6 and N be
chosen so that this is true. By possibly increasing N if necessary, we can assume by
Lemma 11.0.5 that all of the circles on S(k) have radius at most 6 for all k > N.

Let k be at least N. We shall break S(k) into two parts, S(k) = S(k) U S(k), as
follows. Construct a ball of radius r, around each branch point of f(k), and let Sk)

be the union of these balls. Let S k) be the complement S(k) - S .k).
We can now use equation (11.3) to bound A2 , just as in the proof of Theorem 11.0.3.

Let G(k) have nk vertices. The denominator of equation (11.3) is equal to nk, so it

67



CHAPTER 11. AN EIGENVALUE BOUND

suffices to bound the numerator. We shall consider separately the circles contained
entirely in S k) and those that intersect S().

We begin with the circles contained in S k). Every circle of the packing gets
mapped by f to some connected region on C, and there are at most O(g) such regions

covering any point of the sphere. Let C be a circle in Sik), let D be the diameter
function, which takes a region to the length of the longest geodesic it contains, and
let A be the area function. Since the radius 6 distortion of f inside of S k) is at most
E. and the radius of C is at most 6, the ratio D 2 (f (C))/A(f (C)) is at most 0(1+ ).
Using the same argument as in the proof of Theorem 11.0.3, the vertex at the center
of a circle C cannot contribute more than O(dD 2 (f (C))) to the sum, and the total

area of the regions from S k) cannot exceed O(g), so the total contribution to the

numerator of the vertices in S k) cannot be more than O(dg(1 + E)).
If this were the only term in the numerator, we could complete the proof by

setting e to be a constant. It thus remains to show that the contribution from the
circles intersecting S k) can be made small. To do this, we need only show that the
contribution 6 (k) (x) to the numerator per unit area at a point x from these circles

remains bounded as we subdivide, since we can make the area of S k) arbitrarily small

by sending n to zero, and thus the area of the circles intersecting Slk) will go to zero
as k goes to infinity and the circles get arbitrarily small.

Let xi, i = 1, . . , 3, be the coordinate functions on R 3, and let f(k)*xi be their
pullbacks along f(k) to S(k). (That is, if y is a point on S(k), f(k)*X,(y) = X (f(k)(y)).)
In addition, let Ck) and Ck) be a pair of adjacent circles in Slk) with respective radii

r(k) and rk) and respective centers c) and ck) . The contribution of the corresponding
edge in G(k) to the numerator of equation (11.3) will be

f(k)*x,(c(k)) 
3  (f(k)*x,(c(k)) 2 (11.4)

( f(k)*x(C(k)) - f(k)*x,(c(k))

The distance between ck and c2 equals r,) + .2 As k goes to infinity, the
radii r(k) and r(k) both go to zero, by Lemma 11.0.5. By the smoothness of the f(k),
their convergence to f('), and the compactness of their domains, we can approximate
each term on the right-hand side of equation (11.4) arbitrarily well by its first order
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approximation, so that

(f(k)*X (Ck)) - f(k)*X (Ck)) 2 (11.5)

< (1 + o(1))(r(k) + rk))2IVf (k)*Xi(c~k) 2

as k goes to infinity and the distance between c4 k) and c() shrinks to zero.
The right-hand side of equation (11.5) is bounded above by

(2 + o(l))[(r(*k)2 + (rk)2 f(k)*xi(c(k)) 112 (11.6)

= O(1)[(r 1))2lIVf(k)*Xi(ck)) 112 + (rk))2IVf(k)*Xi(ckk)) 112.

The degree of our graph is bounded, so every vertex appears in at most a constant
number of edges. If we sum the right-hand side of equation (11.6) over all of the
edges in our graph, the total contribution of terms involving a fixed circle of radius r
centered at c is thus bounded above by

O(1)r 2jj (k)*Xi(C)jj2,

so the contribution per unit area is bounded above by

O(1) IVf(k)*X(c)j12.

This clearly remains bounded as k goes to infinity and f(k) approaches f( ) It thus
follows that the contribution to the numerator of equation (11.3) of the vertices in

S2 tends to zero as k goes to infinity and , is made arbitrarily small. By setting 6
to be a constant and sending r, to zero, Theorem 8.1.3 follows. f
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Chapter 12

The Proof of the Subdivision
Lemma

In this section, we shall prove Lemma 11.0.4. In proving this bound, it will be
convenient to consider a weighted form of the Laplacian:

Definition 12.0.8. The weighted Laplacian Lw(G) of a graph G is the matrix

£w(G) =W-1/2L(G)W-1/2

where L(G) is the Laplacian of G, and W is a diagonal matrix whose ith diagonal
entry wi is strictly positive for all i.

We shall denote the eigenvalues of £w(G) by Awl(G) - - '(G) and the
corresponding eigenvectors by U{(G) ... JUr(G). A straightforward calculation shows
that the weighted Laplacian has Aw = 0 and ~UfW = W 1/2 1. Our main quantity
of interest will be A'(G), which we can compute using a weighted analogue of the
Rayleigh quotient:

= min . (12.1)

The second eigenvector Uf(G) equals W1 1 2x, where x is the vector that achieves the
minimum in equation (12.1).

If all of the weights are E(1), standard linear algebra shows that A2 (G) and )' (G)
differ by at most a constant factor, so proving a bound on one implies a bound on
the other. (See Chung's book [12] for detailed proofs of the above facts and for other
foundational information about the weighted Laplacian.)

Before we can proceed to the body of the proof of Lemma 11.0.4, we shall require
two fairly general technical lemmas about independent random variables.
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Lemma 12.0.9. Let a1,... , an be independent real-valued random variables, possibly
drawn from different probability distributions. Let w 1,... ,w E R+ be strictly positive
constants. If the expectation E[Zi w ai] = 0, then

Eo Tifls exani g E sida

Proof. This follows by expanding out the left-hand side:

E (wja )2] = E [w a2] +E wiai (Zwja)

= E [wE a 21+ (E[wiai) 2

i i

2 E a 2,

where the second equality follows from the independence of the variables and the fact
that the sum of their expectations is zero. 0

We shall now use this lemma to establish our second lemma, which is the one that
will actually appear in our main proof:

Lemma 12.0.10. Let a1 ,... , an be independent
drawn from different probability distributions,
positive constants such that E[ZK w aj] = 0.
maxi wi. Further let

bS w ai) 1,

real-valued random variables, possibly
and let w 1,. .. ,wn E R+ be strictly

Let a = (a1 ,... ,an), and let Wa =

and let c = a - b.

Then

EWi] 1 > -ma ) E wa].
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Proof. This follows by direct calculation:

EZwici] =E ( y)

= E 1 - jw[ja)]

>[uiz E[Ewja- z wj

- E[1- E 2jw2Ewia(

> i -i Wj)) E[Ew ]

where second-to-last inequality follows from Lemma 12.0.9. E

We are now prepared to prove Lemma 11.0.4.
Proof of Lemma 11.0.4. Let C = (VG, EG) be the original graph, and let G' =

(VG', EG,) be the graph that results from performing k successive hexagonal refine-
ments on G. The embeddings into surfaces endow both G and C' with triangulations;
let TG; and TG' be the respective sets of triangles in these triangulations. There is a
natural inclusion t : VG VG', since the subdivision procedure only adds vertices to
the original set. There is also a map 1) : TG' --+ TG that takes a triangle from the
subdivided graph to the one in the original graph from which it arose. For a vertex v
in either graph, let N(v) be the set of triangles containing it. For a vertex 'w E VG, let
P(w) = g 1 (N(w)) be the set of triangles in T(G') taken by 9a to elements of N(w).
(See Figure 12-1.)

Our proof will proceed by producing a randomized construction of a subgraph
H of G'. Given a vector that assigns a value to every vertex of G', we can obtain
such a vector on H by restriction. We shall also show how to use such a vector on
H to construct such a vector on G. The vectors on the different graphs will give
rise to Rayleigh quotients on the graphs (some of which will be weighted), where
the Rayleigh quotients for G and H will depend on the random choices made in the
construction of H. By relating the terms in the different Rayleigh quotients, we shall
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Figure 12-1: A subdivided graph, with P(w) and N(w) shaded for a vertex w.

then provide a probabilistic proof that there exists an H that gives rise to a small

Rayleigh quotient on G, which will suffice to prove our desired bound.

H will be produced by randomly choosing a representative in VG' for each vertex

in VG and representing every edge in EG by a randomly chosen path in G' between

the representatives of its endpoints.
We first construct the map 7rv : VG --+ VG' that chooses the representatives of the

vertices. For each v E VG we choose Wv(v) uniformly at random from the vertices

contained in P(v) that are at least as close to t(v) as to t(w) for any other w E VG-

Vertices in P(v) that are equally close to t(v) and t(w) should be arbitrarily assigned

to either v or w, but not both.
We now construct WE, which maps edges in EG to paths in G'. Let e = (vi, v2)

be an edge in G, and let w, and w2 equal 7v(vi) and WV(v2) respectively. The two

neighborhoods in G, N(vi) and N(v 2 ), share exactly two triangles, ti and t2. Let x

be a vertex randomly chosen from the vertices in q-'(tl U t2). We shall construct a

path from each wi (i = 1, 2) to x, so that their composition gives a path from wi to

w2 . We shall use the same construction for each, so, without loss of generality, we

shall just construct the path from wi to x.

Both w, and x are in P(vi), and we give a general procedure for constructing a

path between any two such vertices. The images under the inclusion t of the triangles

in N(vi) encircle t(vi). Suppose w, is contained in T1, and x is contained in T2 .

Traversing the triangles in a clockwise order from T to T2 gives one list of triangles,
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and traversing in a counterclockwise order gives another. Let T 1, Q,... Qe, T2 be the

shorter of these two lists, with a random choice made if the two lists are the same

length. Choose a random vertex ai in each Qi, and let ao = wi and at+, = x. We

thus have a vertex representing each triangle in the list. Our path will consist of a

sequence of segments from each representative to the next.

Note that all of the triangles are distinct, except if T = T2 and the list is of length

2. We suppose for now that we have two vertices ai and ai+1 in distinct triangles, and

we deal with the degenerate case later. The two triangles in question are adjacent,
and their union contains a grid graph as a subgraph. (See Figure 12-2.) Given two

vertices in a grid, there is a unique path between them that one obtains by first

moving horizontally and then vertically, and another that one obtains by moving

vertically and then horizontally. (These two coincide if there is a line connecting the

two points.) Randomly choose one of these two paths. This is the path connecting

ai to ai+1. If a, and ai+1 lie in the same triangle, randomly choose one of the two

adjacent triangles to form a grid, and then use the above construction. Composing

the paths between each ai and ai+ 1 completes the construction of IrE. The entire

construction is illustrated in Figure 12-3.

Figure 12-2: An illustration of how the grid graph exists as a subgraph of the union

of two adjacent subdivided triangles.

We now consider the Rayleigh quotients for the three graphs that we have con-

structed. After k hexagonal refinements, every edge in G is split into r = 2 k pieces,
every triangle gets replaced with r 2 smaller triangles, and the number of vertices

grows quadratically in r. A vector y E Rlc'l that assigns a value to each vertex in

G' gives the Rayleigh quotient

Z(f =Y(iJ)1EG,,(Yi _ yj) 2

R(G') =yy

This induces a vector on the vertices of H by restriction. The probability, taken

over the random choices in the construction of 7V and 7rE, that a given edge of G'
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Figure 12-3: The entire construction illustrated for a given edge of the original graph.
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appears on the path representing a given edge e of G is zero if it is not in P(a)
with a equal to one of the endpoints of e, and at most O(1/r) otherwise. Since the
maximum degree of a vertex in G is assumed constant, the expected number of times
that a given edge of G' occurs in H is O(1/r). Every vertex in G' is selected as a
representative of a vertex in G with probability e(1/r 2 ). It thus follows that

E (yi - y)2 1 < O(1/r) (yi - yj) 2 , (12.2)

( )(i,j)EEG,

and

E wiy ]= e(1/r 2) y, (12.3)
EVG -iEVG

where the expectations are taken over the random choices in the construction of

(IFV, irE), and the wi are any weights that are bounded above and below by positive
constants.

Let V be the vector in R1VGI whose ith coordinate is yrv(i). Each coordinate Vi of
7 is chosen independently from a distinct set Si of the coordinates of y, and every
coordinate is contained in one of these sets. Let si = |Sj, let Smin = mini si, and
take W to be the diagonal matrix whose ith diagonal entry wi equals si/Smin. The
probability that a given vertex in Si is selected equals 1/si, so we have that

E[ Ewyj] = E y = 0.
jEVG kENVG'

(The necessity to weight the terms on the left-hand side of this expression by the wi
is what will necessitate the use of the weighted Laplacian in our proof.) The size of
each Si is approximately proportional to the degree of the ith vertex of G, so the wi
are all bounded above by a constant, and they are all at least one by definition. The
eigenvalue 4"(G) of the weighted Laplacian is thus within a constant factor of the
standard Fiedler value A2(G).

Let z be the vector
z (- y W-i) 1,

so that z differs from y by a multiple of the all-ones vector and is orthogonal to W1.
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By applying Lemma 12.0.10 to equation (12.3), we obtain

E wizi 2 1 - " E[ w ] =E (1/r2) Z y 2 . (12.4)
.EVG . .iEVG - GVG1 G

Multiplying the inequalities in (12.2) and (12.4) by the appropriate factors and com-
bining them yields

0(r) (yi yj)2 -E w _z 2 y2 -E (y, - yj)2 (12.5)
(j)EEG' -,G . iEVG (i,j)EEH

This implies that there exists some choice of (7rV, 7rE) for which the left-hand side
of (12.5) is greater than or equal to the right-hand side, in which case we would have

Z(ij)EEH(Yi _ y)2 Z(ij)EEG,(Yi 2

Wz2 ()2IiEVG i :EVG' Y

= O(r)R(G'). (12.6)

Now suppose that we assign to each vertex v E VG the value assumed by y at
7rv(v). Using the fact that maximum degree of a vertex is bounded, so that there are
0(1) triangles surrounding any vertex in G, we see that every path representing an
edge is of length 0(r). We note that if i, . . . , i, is a sequence of vertices,

8- 1

(y, - Yi,) 2  
2 S(Ya'i _ Ya) 2 .

a=1

As such, we have

(yrV(i) - Y-7v(j)) 2 < O(r) (yi - yj) 2. (12.7)
(i,j)EEG (i j)EEH

Since z is obtained from y by subtracting a multiple of the all-ones vector,

Zi - Zj = yrv(i) - Yv(j)

for any i and j. Plugging this into equation (12.7) gives

(zi - zj) 2 < O(r) (yi - yA)2

(i,j)EEG (ij)EEH
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and applying this to the inequality in (12.6) yields

(ij)EG(Zi 
2)R(G).

ZiVGWiZi

We have thus constructed an assignment of values to the vertices of G that is or-
thogonal to the vector W1 and produces a weighted Rayleigh quotient of O(r 2 )R(G').
If we choose the yj to be the values that give the Fiedler value of G', we thus obtain,
by equation (12.1) and the fact that the wi are 6(1),

A2(G) = 6(1)AW(G) O(r 2)A2 (G').

Since the number of vertices in G' grows as r2 times the number of vertices in G, this
completes the proof of Lemma 11.0.4. 0
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