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Abstract

This dissertation shows how statistical dependence estimation underlies two key problems
in visual surveillance and wide-area tracking. The first problem is to detect and describe
interactions between moving objects. The goal is to measure the influence objects exert on
one another. The second problem is to match objects between non-overlapping cameras.
There, the goal is to pair the departures in one camera with the arrivals in a different camera
so that the resulting distribution of relationships best models the data. Both problems have
become important for scaling up surveillance systems to larger areas and expanding the
monitoring to more interesting behaviors. We show how statistical dependence estimation
generalizes previous work and may have applications in other areas. The two problems
represent different applications of our thesis that statistical dependence estimation underlies
the learning of the structure of probabilistic models.

First, we analyze the relationship between Bayesian, information-theoretic, and classical
statistical methods for statistical dependence estimation. Then, we apply these ideas to
formulate object interaction in terms of dependency structure model selection. We describe
experiments on simulated and real interaction data to validate our approach. Second, we
formulate the matching problem in terms of maximizing statistical dependence. This allows
us to generalize previous work on matching, and we show improved results on simulated
and real data for non-overlapping cameras. We also prove an intractability result on exact
maximally dependent matching.
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Chapter 1

Introduction

This dissertation shows how statistical dependence estimation underlies two key problems
in visual surveillance and wide-area tracking. The first problem is to detect and describe
interactions between moving objects, such as one pedestrian following another. The second
problem is to match objects between non-overlapping cameras, such as inferring that a
pedestrian first seen at an entrance, and later at an exit, is the same person. Both problems
have become important for scaling up surveillance systems to larger areas and expanding the
monitoring to more interesting behaviors. We show how statistical dependence estimation
generalizes previous work and may have applications in other areas. The two problems
represent different applications of our thesis: statistical dependence estimation underlies
the learning of the structure of probabilistic models.

The goal of surveillance is to monitor the behavior of objects [80, 11]. Behavior, con-
sisting of actions, manifests itself through the motion of an object. Technological advances
in tracking and classifying moving objects have dramatically increased the interest in auto-
mated surveillance. Machine surveillance has the potential to relieve the burden of human
operators. Furthermore, machines are less susceptible to psychological factors such as lim-
ited attention and inconsistency. Although many aspects of behavior are intuitively clear
and well-studied, the theory and practice of automated monitoring is far from mature.

Most of the research to date has focused on single-object behaviors, such as vehicles per-
forming U-turns or pedestrians loitering [65, 27, 28, 2, 6, 26, 69, 15, 57, 19, 8, 9, 56, 7, 91].
However, it is also important to understand the interaction between objects. Previous re-
lated work [63, 41, 66, 35, 36] includes training classifiers to detect behaviors and adapting
natural language-based grammars for describing behavior. The task was often to develop
a, computational framework for known interactions. Our goal is to understand the nature
of interaction itself. We show how statistical dependence is a natural basis for a quanti-
tative theory of object interaction. More specifically, the amount of statistical dependence
mneasures the strength of interaction, while the form of dependence reflects the type of inter-
action. This makes intuitive notions about interaction precise, yet remains general enough
to explain a variety of interactions.

Matching is the process of arranging the elements of two sets into a one-to-one corre-
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spondence. In motion analysis [88], it is the problem of finding corresponding features in
an image sequence. In target tracking, matching tracks and measurements is called data
association, and is a mature field in the single camera case [76, 13]. We study a new case,
where the problem is to pair observations of the same object in different cameras. In gen-
eral, matching is a difficult problem because of the one-to-one constraints and the large
feasible set of possible matchings.

Clearly, multiple cameras are required for wide-area surveillance. In some cases, the cam-
eras have overlapping fields-of-view, so that both cameras see the same object at the same
time. This dramatically reduces the ambiguity in matching, and we can apply techniques
from multi-view geometry to obtain a relative calibration between the cameras [82, 52, 37].
In general, however, it is unrealistic to assume overlapping fields-of-view because cameras
may be aimed in a wide variety of directions and often have limited viewing angles be-
cause of obstructions such as buildings. Furthermore, it is often desirable to monitor only
a few areas with narrow fields-of-view, but which are spatially dispersed, such as entrances
and exits. The problem then is matching across non-overlapping cameras. This is a much
more difficult problem for two reasons: first, there is no geometric relationship between
the camera views because, by definition, they image different parts of the scene; second,
unlike the case of overlapping views, here the cameras never see the same object at the
same time, which increases the match ambiguity. We show how statistical dependence can
be used as a general measure of match quality, thus providing an optimization criterion for
finding the best match. Our work generalizes previous work on inferring the topology of
non-overlapping cameras [55] and also explicitly addresses the matching problem. We can
regard inferring the topology of a network of cameras as a weaker form of relative calibration
for the case of non-overlapping cameras. It helps us to determine, when an object leaves
the field-of-view of one camera, where is it expected to be seen again, if at all, and when.
Matching is the crucial component in this inference because a match across cameras implies
that the field-of-views are topologically connected.

1.1 Object Interaction

interaction, n.
Reciprocal action; action or influence of persons or things on each other.
Oxford English Dictionary [78]

The problem of object interaction involves analyzing the influence of objects on each
other. What kinds of interaction are there, and what is their structure? For example,
consider the two pedestrians shown in Figure 1-1: X (center of first image) traces out some
path, and Y (lower-left corner of first image) follows X. Intuitively, Y takes a path very
similar to X's, but stays behind X. We can deconstruct the interaction as X's motion in-
fluencing Y's. Or, to put it another way, Y's motion is dependent on X's. More specifically,
"following" behavior reflects a particular type of dependence. Thus, the qualitative notion
of interaction can be quantified by measuring the amount of statistical dependence. Con-
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Figure 1-1: Image sequenceof one pedestrian followinganother. Images are approximately
six seconds apart.

----------

Figure 1-2: Trajectories for "Y followingX".

versely, the lack of statistical dependence implies non-interaction, or independently moving
objects. The kind of interaction is represented by the type of dependence. Unlike previous
work, we do not simply fit observed data to predefined dependency structures, but aim to
infer the model structure from the data.

The actions of an object are perceived through its motion. The time sequence of posi-
tions or states captures the motion history and is called a trajectory. Figure 1-2 shows the
corresponding position trajectories for the example from Figure 1-1. The trajectory of an
object can be modeled as a Markov process so that its present state Yt is dependent on only
its previous state Yt-l:

(1.1)

This model is inspired by the classical mechanics of particles where the state consists of
position, velocity, and acceleration. The Markov assumption is commonly used in target
tracking and other statistical applications because it simplifies the theory and makes com-
putations efficient.

When there is no interaction, the trajectories of two objects can be described by two
independent Markov processes. However, when there is an interaction (X influences Y),
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Xt- 1  Xt

Yt -i Yt

Figure 1-3: Dependency graph for "Y following X".

the model should reflect this influence:

p(ytlyt-1, xt-1). (1.2)

Relating back to our "Y follows X" example, the state of Y depends on not only its
previous state, but also the previous state of X. Thus when X turns, Y must react to
continue following X. Figure 1-3 is a graphical representation of this dependency structure.
Nodes represent states and arcs denote influence. In general, the Markov assumption places
arcs only between the previous and next states within a trajectory, while influence between
objects requires arcs between trajectories. The details about the kind of interaction are
further encoded by the specifics of conditional distribution p(yt lyt-1, xt-1).

In the object interaction problem, the model for X and Y are unknown. Thus, detecting
whether there is any interaction means determining the influences or structure of the model
(that is, the arcs in the dependency graph). Furthermore, the exact form of the conditional
probability distribution p(yt Iyt-1, xt-1) is unknown and also reflects the kind of interaction.
We will show how statistical dependence estimation allows us to infer the structure of
the interaction model for the observed data. The strength of this approach is that it is
intuitive yet quantitative, and allows us to relax the assumptions on the nature of possible
interactions.

As an example, consider again the image sequence in Figure 1-1. In the first image,
pedestrian Y (lower-left corner) begins to follow pedestrian X (center). A third pedestrian
Z, independent of X and Y, is seen in the third image. The trajectories for X and Y
are shown in Figure 1-2, while the trajectories for X and Z are shown in Figure 1-4. The
estimated statistical dependence is 1.08 for "Y following X" compared to 0.09 for "Z and
X moving independently"'. In addition, the estimated statistical dependence between Z
and Y is 0.13, which is consistent because if Z were dependent on Y, then because Y
and X are dependent, there would be a dependency chain from Z to X, contradicting the
previous result. In summary, our approach would infer the "Y following X" dependency
model shown in Figure 1-3 along with a separate independent Markov chain for Z.

'See chapter three for details.
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Figure 1-4: Trajectories for "Z and X moving independently".

1.2 Matching between Non-Overlapping Cameras

matching, a.
That matches or corresponds; being a suitable counterpart; forming one of

a pair or set.
matching, n.
Math. A subset of the set of edges of a (usually bipartite) graph in which

no two edges share a common vertex; a subgraph of a graph which may be
constructed by selecting a subset of the set of vertices and assigning a distinct
adjacent vertex to each member of this subset.

Oxford English Dictionary [78]

In the previous section we discussed how statistical dependence estimation can be used
to analyze the interaction between objects. Here we describe how statistical dependence can
also be used to match objects across non-overlapping cameras. Consider the simplest case
of two cameras (Figure 1-5), and assume that we can detect and track objects within each
camera. Let x, ... , xn represent departures from the first camera, and yi, ..., yn represent
arrivals in the second camera 2 . A matching M is a permutation of the indices 1,..., n such
that the corresponding pairs are (xi, yM(i)). In other words, departure xi is matched with
arrival YM(i). A matching must be a one-to-one correspondence so that each xi is matched
with only a single YM(i) and vice versa. If the arrival times are in-order with respect to
the departures times, then clearly the true matching (pairing departures and arrivals of the

2Refer to chapter four for discussion of the case of unequal numbers of arrivals and departures and the
possibility of missing matches.
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Camera 1
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Camera 2

Figure 1-5: Two camera views of two portions of the same road.

same object) is simply the identity permutation (M(i) = i). However in many cases, such
as vehicles and pedestrians moving with different speeds, arrival times will be out-of-order,
so the true matching will be unknown.

How do we find the true matching? First, we must have some way of knowing that a
proposed matching is correct. The probability of the data given a matching is

The problem can be solved by finding the most likely matching:

arg max p( {YM(i)} Ip( {Xi} ) 1M).
M

(1.3)

(1.4)

This is the matching that makes the matched pairs most probable. Still, searching for the
true matching is difficult because there are an exponential number of possible matchings3.

Previous related work simplified the problem by making various assumptions. The
simplest case is when p(ylx) is known exactly. The problem then turns out to be an
instance of the classic assignment problem which, surprisingly, can be solved in polynomial
time [67, 64, 48]. An example of such a case is when all objects have the same known
distribution of transition times. When p(ylx) is unknown but belongs to a parametric
family such as a Gamma(a, b), gradient descent techniques can be used to find locally
optimal solutions [25]. This case still assumes a single fixed relationship between X and Y
(subsuming the previous case), but does not assume that the relationship is known exactly
(that is, the parameters a, b of the Gamma distribution are unknown).

What happens when the conditional distribution p(ylx) is not only unknown, but may
vary depending on the particular object? For example, vehicles and pedestrians have differ-
ent transition times because they travel at different speeds. Inother words, the relationship
between x and Y is potentially one of Pl(ylx), ".,Pm(ylx), where m is unknown. A par-

3The number of permutations is n!, which by Stirling's approximation is R:l V27rnn+t e-n [181.
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Figure 1-6: Exampleof objectsbetweenthe cameraviewsof Figure 1-5 matchedby our approach.
The top and bottom rowsare objects fromcameras 1 and 2, respectively.The secondobject from
the right in the bottom rowwasconsideredan outlier.

ticularly simple way to formulate the problem is to model p(ylx) as non-parametric. This
is the most general case and includes the more restrictive cases previously described. The
situation is that there are many possible relationships between each Xi and YM(i), none of
which can, a priori, be assumed known. We would still like to find a best matching, but
now we regard best as the matching that leads to the best model of the data. We are no
longer searching over real valued parameters, but over explanatory models. This problem
is unique because we must simultaneously solve for both the matching and the model. As
an analogy, consider trying to solve a special kind of jigsaw puzzle where most of the pieces
can be fit together and what the final image should look like is unknown. Our approach to
matching corresponds to fitting the puzzle pieces together so that the resulting image looks
typical or realistic. The idea is that typical, real images possess a great deal of structure,
even if that structure can vary widely.

The best model of observed data can be quantified by its minimum description length
[75]. The quality of a matching is based on how well the corresponding relationships explain
the data and howcompactly the relationships can be encoded. The more structure there is in
the relationships, the more it can be compressed. It turns out that maximizing statistical
dependency minimizes description length because dependency between X and Y induces
structure. Maximum dependence also implies maximum average probability because short
code length corresponds to large average probability. Unfortunately, we will prove that
exact non-parametric matching is intractable. Thus, we resort to a Markov chain Monte
Carlo approximation algorithm as was done in related work [16, 71, 21].

As an exampIe, consider the two cameras views of two portions of the same road in
Figure 1-5. Both vehicles and pedestrians move from one camera to the other and do so
with different, unknown transition times. Our approach searches for the matching with
maximum statistical dependence. It is able to find many correct matches (86% in total),
some of which are shown in Figure 1-6. In contrast, a naive approach using raw image
appearance similarity had only 15% correct matches as shown in Figure 1-7. Given a
matching, we can compute the corresponding travel times between cameras for the matched



22 CHAPTER 1. INTRODUCTION

[]~.r~'~~Gi~[j[J
11I•• ~.~I!De

Figure 1-7: Examples of objects matched by naive raw pixel appearance.
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Figure 1-8: Our approach finds a travel time distribution that is closer to the true one
(dotted) because we use a more general measure of statistical dependence and explicitly
addresses the matching problem.

objects. In this case, the distribution of travel times should be roughly bi-modal because
pedestrians and vehicles move at different speeds. A random matching generally produces
a set of randomly distributed travel times. Figure 1-8 shows how our approach is better
able to estimate the true travel time distribution than previous work.

1.3 Contributions

The primary contributions of this dissertation are two-fold:

1. Formulate object interaction in terms of dependency structure model selection,

(a) Analyze the relationship between Bayesian, information theoretic/geometric, and
classical methods for statistical dependence estimation,

(b) Empirical validation on simulated and real interaction data,



1.4. OUTLINE OF THE DISSERTATION

2. 'Formulate matching problem in terms of maximizing statistical dependence,

(a) Recast previous matching methods in our formulation,

(b) Prove intractability of exact maximally dependent matching,

(c) Generalize previous non-overlapping camera matching, and show improved re-
sults on simulated and real data.

1.4 Outline of the Dissertation

In retrospect, it is no surprise that statistical dependence estimation underlies both the
problem of object interaction and matching across non-overlapping cameras because both
problems involve estimating the structure of relationships between objects. Statistical de-
pendence enables quantitative comparisons between dependency structures. In object in-
teraction, we are interested in measuring the influence objects exert on one another. In
matching, the goal is to pair the departures in one camera with the arrivals in a different
camera so that the resulting distribution of relationships best models the data. The primary
contribution of this dissertation is showing how statistical dependence estimation underlies
these two problems and generalizes previous work. Our thesis is that statistical dependence
estimation is the key to learning the structure of probabilistic models.

The next chapter introduces the statistical background necessary for a precise definition
of statistical dependence. It also discusses how statistical dependence estimation relates
to the machine learning problem of model selection. Chapter Three discusses the object
interaction problem in depth. There we review previous work and show how statistical
dependence naturally captures the idea of interaction. We show how the dependency model
reflects the type of interaction, while the amount of statistical dependence measures the
strength of interaction. The fourth chapter reviews the matching problem and studies
the case of non-overlapping cameras. We show how statistical dependence, as a generic
measure of match quality, can be used for optimizing the match between observations in non-
overlapping cameras. We prove the problem to be intractable, and thus use a Markov chain
Monte Carlo approximation to find a good match. Experiments validating our statistical
dependence estimation approach to the problems of object interactions and matching across
non-overlapping cameras are presented in their respective chapters. The concluding chapter
summarizes the dissertation and discusses future work.
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Chapter 2

Statistical Dependence

Our thesis is that statistical dependence is the key to learning the structure of probabilistic
models. In the opening chapter we discussed how estimating dependency structure underlies
the problems of object interaction and matching. In this chapter we show how to measure
statistical dependence and how to estimate it from observed data. These general statistical
techniques are the basis for applying our ideas to any problem involving the structure of
probabilistic dependencies.

Information theory [77, 12, 54] provides the quantitative tools for measuring statistical
dependence. The original motivation for a theory of information came from problems in
communication engineering, such as transmitting messages across telephone wires. Kull-
back [.49] then explored the intimate connection between information theory and statistical
inference. We continue along these lines and study the relationship between information
theory, statistical dependence and model structure.

Readers with a background in information theory can skip the introduction in Section
2.2 and Section 2.2.1. The material on information theory in this chapter is intended as a
detailed but quick overview so proofs may be omitted. For a more rigorous treatment, the
reader may refer to a standard textbook[12, 54].

2.1 Statistical Dependence

Our starting point is the abstract notion of statistical independence [14, 68, 18]. The non-
intuitive, mathematical definition of statistical independence is that the joint distribution
is a product of the marginal distributions:

p(X, y) = p(x)p(y). (2.1)

We are illustrating the case of two random variables (RVs) X and Y; the extension to an
arbitrary number of variables will become clear. Independence is more easily understood
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p(x, y)

0
X 1

Y
0 1

(1 -p)(1 -q) (1 -p)q

p(1 - q) pq

Table 2.1: Joint distribution of two independent binary RVs.

by factoring the joint distribution:

p(x, y) = p(x)p(ylx). (2.2)

This leads to equality between the conditional and marginal distributions:

p(yfx) = p(y), (2.3)

that is, knowing X does not change our knowledge about Y1. In other words, independent
RVs do not interact.

As an example, consider tossing two fair coins so that the outcome of the second coin Y
is independent of the outcome of the first coin X. The probability of each pair (x, y) has an
equal probability of 0.25. In general, for p(X = 1) = p and p(Y = 1) = q, the independent
joint distribution is of the form shown in Table 2.1. There are only two instead of three
degrees of freedom for the four possible outcomes.

With independence well-defined, we can naturally define dependence as the absence of
independence, or that the RVs do interact. For example, consider the joint distribution of
two binary RVs shown in Table 2.2. Clearly X and Y are dependent because p(ylx) depends
on the value of X. This is manifest in a higher probability for pairs with equal values, namely
(0, 0) and (1, 1). In fact, these two pairs account for 90% of the probability. A physical
explanation for this joint distribution is: first, toss a fair coin X, where p(X = 1) = 0.5; if
X = 0, toss a coin Y with bias p(Y = 1|X = 0) = 0.1, otherwise, when X = 1, toss a coin
Y with bias p(Y = 1IX = 1) = 0.9. The statistical dependence comes from the fact that
the bias of the second coin Y depends on the result of the first toss X. Another way to
look at it is to notice that it is impossible to put this dependent distribution into the form
of the joint distribution for independent RVs as shown in Table 2.1.

In data modeling, assuming independence is equivalent to choosing a model structure a
priori. This is a good idea when we have strong prior beliefs about the dependency structure
of the data. However, in our case, the problems themselves, that is object interactions and
matching, are explicitly about determining dependency structure. The key difference is
that this type of learning must decide between different representations of the data, rather
than just different values of the parameter of a single, fixed representation. In summary,
our problems are truly about knowledge discovery and acquisition, an arguably higher level

'By symmetry we also have p(x, y) = p(y)p(xjy), so knowing Y also does not affect our knowledge of X.
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p(z,y)

0
X

1

Y
0 1

0.45 0.05

0.05 0.45

Table 2.2: The RVs X and Y are dependent because the conditional distribution p(yIx)
depends on the value of X.

of learning than simply choosing parameter values.
Based on our indirect definition of statistical dependence, it is clear that any absence

of independence is dependence. However this is only a qualitative definition, and we may
wish to distinguish between joint distributions that are nearly independent versus ones that
are far from independent (or very dependent). For example, if the joint probabilities in
Table 2.2 are all close to 0.25, then the distribution would be similar to two tosses of a
fair coin 2. This naturally leads us to consider a quantitative measure of dependence (and
independence) so that we could, for example, order the set of all distributions on two binary
RVs by the amount of statistical dependence. Before we study such a measure, we first need
some background in information theory.

2.2 Information Theory

If communication is the transmission of information, then information theory begins by
quantifying the amount of information transmitted. Abstractly, we have a sender, a receiver,
and a channel for communication between the two. Information is transmitted when the
receiver learns something new from the sender. For example when the sender transmits a
binary answer to a question, the receiver has obtained information. For the receiver to gain
information or learn something new, the answer must obviously, at the outset, be uncertain.
This leads to the idea of a probabilistic source because with a known deterministic source,
there (:an be no uncertainty, and hence no information. In fact, the more uncertain the
answer is at first, the more information the answer gives when it is received. It is important
to keep in mind that probability distributions are the objects of interest in the algebra of
information theory.

Perhaps the simplest probabilistic source is the outcome of a coin toss. If the coin is
heavily biased towards heads (that is, p(heads) • 1), then when we learn the outcome,
we are not very surprised because we would have bet on heads as the result. So the
information content here is low. On the other hand, if the coin is fair, then we go from
complete uncertainty before the toss, to complete certainty after the toss, so the information
received is high. So we see that information is proportional to prior uncertainty.

2One meaning of similar could be that both distributions would generate samples in similar proportions,
namely similar amounts of each pair (0, 0), (0, 1), (1,0), (1, 1).
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H(p)

0
1

Figure 2-1: The entropy of a Bernoulli distribution decreases symmetrically to zero as the
probability moves from 0.5 towards zero and one.

2.2.1 Entropy

How would we go about measuring information or uncertainty? One way is to specify a few
intuitive axioms on any measure of uncertainty as a function3 of a probability distribution,
such as requiring that uncertainty increase with the number of equally likely outcomes. As
a consequence, we can derive entropy,

H(p) = - pi log pi, (2.4)

as the unique measure of information [77]. We see that entropy grows as log n for n equi-
probable outcomes. We are illustrating the case of discrete probability distributions; we
can extend to continuous RVs by replacing summations with integrals, with some caveats
that we will point out when important.

As an example, a fair coin, which can be modeled as a Bernoulli(0.5) distribution, has
a maximum entropy of one bit (in log 2 units), and is, of course, also the coin with the most
uncertain outcome. Figure 2-1 shows how the entropy of a Bernoulli distribution decreases
symmetrically to zero as the probability moves from 0.5 towards zero and one, consistent
with our intuition about the uncertainty of a Bernoulli distribution.

We can extend entropy to two RVs,

H(X, Y) = - p(x, y) log p(x, y), (2.5)
xy

3For notational convenience, a function f of a probability distribution is sometimes written as f(p), and
other times as f(X), where RV X has probability distribution p.

0
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and define conditional entropy,

H(YIX)= - Zp(x)H(Y x). (2.6)

Straightforward calculations with entropy yield a rich algebraic structure, which greatly
aids reasoning with information sources [77, 12, 54]. We have the chain rule:

H(X, Y) = H(X) + H(YIX), (2.7)

so that the uncertainty of the pair (X, Y) is the sum of the uncertainty in X and the
uncertainty in Y, conditioned on knowing X. We also have the fact that conditioning
reduces entropy:

H(YIX) • H(Y), (2.8)

which intuitively says that knowing X, or having more information, can only reduce the
uncertainty in Y. Thus we see that entropy, which resulted from a set of axioms on any
measure of uncertainty, has a natural and intuitive set of algebraic properties. We can think
of entropy as measuring the randomness of an RV. Because structure is by definition less
random than chaos, entropy will prove crucial to characterizing dependency structure.

2.2.2 Mutual Information

How is entropy related to statistical dependence? If two RVs are independent, p(ylx) = p(y),
and the conditional entropy H(Y!X) is equal to the marginal entropy H(Y). Then the
joint entropy H(X, Y) = H(X) + H(Y), so intuitively, the uncertainty in two independent
RVs is simply the sum of their individual uncertainties. Once again we can naturally
regard dependence as the absence of these conditions. In particular we can use the mutual
information (MI),

I(X; Y) = H(Y) - H(YIX), (2.9)

to measure exactly the extent to which X and Y are dependent [77, 12, 54]. MI is simply
the reduction in uncertainty of one RV given another. Two RVs are independent if they
have zero mutual information because conditioning does not reduce entropy in that case.
Conversely, two RVs are dependent if knowing one tells you something about the other. It
can be shown that MI is symmetric,

I(Y; X) = H(X) - H(XIY) = H(Y) - H(YIX) = I(X; Y), (2.10)

which is a desirable property of a measure of statistical dependence.
MI is always non-negative because H(Y) Ž> H(YIX). Statistical dependence is highest

when H(YIX) - 0, or when knowing X removes all of the uncertainty in Y (that is, Y
is a deterministic function of X)4 . MI is a function of both unconditional and conditional
uncertainties. Thus, for Y to be strongly dependent on X, not only must the conditional

4For continuous Y, a deterministic function leads to infinite information.
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entropy H(YIX) be small, but the prior entropy H(Y) must also be large. This is important
because, for example, in object interactions, we are more sure that pedestrian Y is following
X when Y stays behind X even as X makes many turns, than if X's trajectory was a straight
path.

As an example, consider again the distribution of two binary RVs shown in Table 2.2.
The marginal entropies H(X) and H(Y) are both 1 bit, making the RVs, on their own,
maximally uncertain. However, the conditional entropy, H(YIX) is 0.3251 bits which says
that X tells us something about Y. Indeed, I(X; Y) = 1 - 0.3251 = 0.6749 bits, consistent
with the fact that X and Y are statistically dependent. The MI reaches its maximum of
one bit when both p(O, 0) = p(l, 1) = 0.5, or Y is a deterministic function of X.

We have now reinterpreted statistical dependence in terms of mutual information. The
advantage of this quantitative definition is that it allows us to measure the amount of
statistical dependence. For two RVs, statistical dependence ranges from zero to H(Y)5 . We
can now answer to what extent are two RVs dependent.

2.2.3 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence [49, 12, 54],

D(pll q) = -p(x) log p(x) (2.11)p(x)'

is the average log-likelihood ratio in a hypothesis test [14, 68] between p and q, when x is
distributed according to p. It can be interpreted as a pseudo-distance6 between probability
distributions because when p and q are far apart, they are easily distinguished by sampling.
For example the KL divergence between two Gaussian distributions increases with the
distance between their means.

KL divergence generalizes the information theoretic quantities defined previously and
makes the connection to statistical inference explicit. It enables us to re-interpret MI as
the divergence between the joint distribution and the product of marginals:

I(X;Y) = p(x, y) log p(,y) (2.12)
x y

KL divergence makes clear the close connection between MI and statistical dependence by
way of deciding between dependent and independent hypotheses of the data. In summary,
when statistical dependence is high, conditional entropy H(YIX) is low, MI is high, and
KL divergence between the joint p(x, y) and the product of marginals p(x)p(y) is high. All
this means is that X and Y are strongly related in the sense that although highly uncertain
by themselves, one can be well predicted with knowledge of the other.

5For continuous RVs, statistical dependence ranges from zero to the logarithm of the ratio of the volumes
of Y and Y X. The volume is the effective alphabet size of coding the RV.

6 Unlike a true distance, KL divergence is asymmetric and does not satisfy the triangle inequality.
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As an example, consider jointly Gaussian RVs X and Y. Statistical dependence can be
measured by computing the KL divergence between the joint Gaussian and the product of
marginal Gaussians:

/ G(x, y; , log, , E) 1 log( - 2)
, ,y ,G(x; ux, ux)G(y; uy, ay) 2

(2.13)

where G is the Gaussian distribution and px, ux, pIy, ay are the marginal elements of the
mean p and the covariance matrix E. The correlation coefficient is

cIXY

0TXoy
(2.14)

where axy is the off-diagonal element of E. This result is consistent with the fact that p
measures correlation, which is a commonly used measure for statistical dependence. We
see here that this is valid for Gaussians. When p = 0, the RVs are uncorrelated (indepen-
(lent); otherwise, larger p means more correlated (dependent). Figure 2-2 shows how with
highly correlated Gaussians, Y is well predicted by X; on the contrary, with uncorrelated
Gaussians, predicting Y given X is no better than without X. By measuring the distance
between the dependent joint distribution and independent product of marginals, the KL
divergence is exactly the amount of statistical dependence.

We can also easily generalize to more than two RVs, so that for example the statistical
dependence between X, Y, and Z can simply be measured with

D(p(x, y, z) lp(x)p(y)p(z)). (2.15)

It should not be surprising that information theory is a useful background from which
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to analyze statistical dependence because both dependence and information quantify the
probabilistic relationship between two RVs. Information is about predicting one RV from
another, and statistical dependence is exactly how one variable influences the other. By
using information to measure dependence, we are measuring influence by its effect on pre-
diction (or uncertainty).

2.2.4 Information Geometry

To gain further insight into the hypothesis testing formulation of statistical dependence,
we look at an information geometric interpretation of KL divergence [49, 1, 12]. Let M1
be the manifold of dependent distributions p(x, y), and Mo be the manifold of independent
distributions p(x)p(y). The space M• 1 contains all distributions on two RVs, while Mo is a
subspace of M1 . Clearly, a probability distribution p is independent if it is a member of M0.
As p moves away from Mo it becomes more dependent. The distance of p from M0 is related
to the KL divergence between p and its projection onto M0o, p1 . This is the distribution in
M0 that minimizes the KL divergence to p as shown in the following theorem.

Theorem 1. The KL diveiyence between a dependent joint distribution and an independent
product of marginal distributions is minimized by the corresponding marginals p(x) and p(y)
of the joint:

D(p(x, y) Ilp(x)p(y)) <_ D(p(x, y) If(x)g(y)), (2.16)

where f and g are distributions for X and Y, respectively.

Proof.

D(p(x, y)j f(x)g(y)) = /p(x, y) log p(x,y) dxdy (2.17)
f(x)g(y)

= p(x, y) log p(x, y)dxdy - p(x, y) log f (x)dxdy - p(x, y) log g(y)dxdy
(2.18)

= p(x, y) log p(x, y)dxdy - p(x) log f (x)dx - p(y) log g(y)dy.
(2.19)
(2.20)

Because fp(x) log p(x)dx > fp(x) log p'(x)dx for any p', p(x) and p(y) are the minimizing
marginal distributions. O

Consider again the example of two binary RVs. Here, M1 is a three-dimensional manifold
determined by p(O, 0), p(O, 1), and p(1, 0). Under M0o, the joint distribution must be of
the form shown in Table 2.1, so M0o is a sub-manifold with only two degrees of freedom,
p(X = 1), and p(Y = 1). The statistical dependence of a distribution p is the distance
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0

1)
1)

Figure 2-3: The dependent manifold M2 (tetrahedral solid) is the set of all probability
distributions on two binary RVs. The independent manifold Mo0 (mesh) is a two-dimensional
sub-manifold of M1 . The length of the line between the two points represents the KL
divergence between a distribution and its projection onto Mo, and measures the amount of
statistical dependence.

from p to its best-approximating distribution in Mo in terms of KL divergence as shown in
Figure 2-3.

The information geometry analogy also allows us to interpret our results in the jointly
Gaussian case. There, we can parameterize the dependent manifold with (p, E), where IL E
R 2 and E R2 x2 : positive definite, and the independent manifold with (LIx, ax, ly, ay),
where x, py, ax,ay E R. It then becomes clear that the independent space is a sub-
manifold of the dependent space because IL = (mx, my), and (ax,ay) are the diagonal
terms of E. Indeed, the structure of the covariance matrix naturally governs the dependency
structure of jointly Gaussian RVs.

2.3 Dependency Structure

We have seen how information theory provides a quantitative and intuitive background for
studying statistical dependence. We will now investigate how information and dependence
is related to the structure of probabilistic models. A probabilistic model is designed to
explain observed data by accounting for its regularities. This is done by quantifying the
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Figure 2-4: Dependent and independent dependency graphs for two RVs and their corre-
sponding factorizations.

relationship between the RVs. A simple example of a model is a linear relationship:

Y = aX + N, (2.21)

with additive Gaussian noise N - G(O, a). The regularity is expressed as a noisy linear
relationship. Indeed our earlier example of correlated jointly Gaussian RVs is captured
exactly by this type of model.

By dependency structure, we do not mean the value of a, or even the linearity, but the
dependence between X and Y. In this case, the alternative dependency structure would
be simply treating X independent of Y. The same dependency structure can instantiate
different probability distributions by varying the functional form and/or the parameter val-
ues. In this sense, the dependency structure is the most basic and stable property shared
by all of the probability distributions. Statistical dependency structure is a useful concept
because it provides a general yet compact way to characterize probabilistic models. It cap-
tures the representational structure of any model. In addition, the sparsity of a dependency
structure has a profound on the efficiency of the storage and computational requirements of
probabilistic inference. In short, explicitly modeling dependency structure is both compu-
tationally practical and cognitively plausible. For us, determining the dependency structure
is exactly the question posed by the problems of object interaction and matching.

2.3.1 Dependency Graphs

Dependency graphs [72, 50, 42] are a convenient way to represent dependency structure.
The idea is to borrow the syntax from graph theory but use probabilistic semantics. Each
node is a RV and arcs represent dependency information. The overall joint probability
of the variables can then be written as a product of appropriate functions of subgraphs.
The advantage of dependency graphs (as with graphs for other representing other types of
knowledge) is their ability to decompose the overall structure into the relationship between
local structures based on the topology of the graph. In the simplest cases, separation in
a graph corresponds to independence conditioned on the separating nodes. For example,
the case of two variables discussed previously is represented simply as either a connected
(dependent) or disconnected (independent) graph of two nodes as show in Figure 2-4.
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Z Z Z
qxy(x, y)¢yz(y, z) p(x)p(y)p(zlx, y) f(x, y)g(y, z)h(z, x)

Markov network Bayes net Factor graph

Figure 2-5: Different types of dependency graphs and their corresponding factorizations.

For three variables, there are many more possibilities, corresponding to different factor-
izations of p(x, y, z). For example, a Markov network [72, 23] can be used to represent the
factorization

p(x, y, z) oc Oxy(x, y)¢yz(y, z), (2.22)

where the potential functions € represent compatibilities whose normalized product gives
probabilities. The corresponding graph is the Markov network shown in Figure 2-5. The
semantics encoded by the chain is that X and Z are conditionally independent given Y.
This type of dependency models, for example, the direct physical analogy of a kinematic
chain, where knowing Y determines X irrespective of Z.

Bayes nets [72, 30] introduce a notion of causality by using directed edges. For example,
the Bayes net in Figure 2-5 represents the factorization

p(x, y, z) = p(x)p(y)p(z X, y), (2.23)

which can describe a decision Z based on two independent coin tosses X and Y. Causally we
think of X and Y as independent, but from a probabilistic standpoint, knowing Z renders
X and Y dependent. For example if Z is the function that indicates whether X and Y are
the same or different, then knowing Z and X clearly tells us something about Y.

What if we want the joint to be a product of every pairwise interaction:

p(x, y, z) oc f (x, y)g(y, z)h(z, x)? (2.24)

There is no way to consistently represent this with either a Bayes or Markov network. The
more general dependency graph we can use is a factor graph [47] shown in Figure 2-5. As
the name implies, factor graphs are designed to represent the factorization of a function by
adding function nodes, which makes the graph bipartite (edges only occur between variable
and function nodes) and edges undirected.

To recapitulate, first we formulated the abstract notion of statistical dependence in terms
of MI and KL divergence so that it could be measured quantitatively. Then, we showed
how statistical dependence is related to dependency structure, and introduced dependency
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graphs as a convenient representation of structure. Up to now, we have assumed knowledge
of the probability distributions discussed. In practice, we are only given samples from the
distributions. Thus the next section discusses how to estimate our items of interest from
observed data.

2.4 Inference and Estimation

Given data, the most common form of statistical inference is to first choose a model, and
then estimate the parameters of that model by maximizing the likelihood of the data under
the model [14, 5, 54]. In our previous example of linear-Gaussian relationships, this means
estimating the value of a. The key limitation is that the dependency structure of the
model, the direct linear-Gaussian relationship, is assumed instead of inferred from the data.
Thus the form of statistical dependence between the variables is already determined when
the model is chosen because it is the structure of the model that determines the nature
of statistical dependence. What we infer, namely the value of a, is not the statistical
dependence, but the exact form of the linear-Gaussian dependency. The fact that the
dependency is linear is already determined by the model, and the strength of dependence
is also known if we fix a.

Assuming a dependency structure is tantamount to assuming that we know the type of
object interaction or that we know the dependence between two non-overlapping cameras.
Of course, these are exactly the questions posed by our motivating problems. In other words,
the dependency structure is unknown, and the goal is to infer this structure. Unfortunately,
with fewer assumptions the inference is made more difficult.

2.4.1 Model Selection

The problem of inferring dependency structure falls under the general problem of model
selection [5, 54, 75]. The goal is to choose the model that best explains the data. The best
model is understood as the one that generalizes the best in terms of accurate predictions
on future unseen data. By model we mean a set of probability distributions, such as the set
of all bivariate Gaussians.

In principle, the solution to the model selection problem is clear: simply choose the
model that is a posteriori most probable. We illustrate the case for two models; the ex-
tension to multiple models is straightforward. Let the two models be M1 and M0o. The
quantity of interest is the log posterior odds of the models given data D,

log =(MID) log )p(M) (2.25)
p(Mo I ) p(DIMo)p(Mo)

Slog fp(DJl0, Mi)p(M1)d01 p(M) (2.26)
f p(DnOo, Mo)p(dojMo)dlo p(Mo)

Notice that this integrates over all possible probability distributions in each model. This
is required because we do not know which distribution (that is, the exact value of 0i)
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the data actually came from. The log prior odds of the models provides the appropriate
threshold for choosing between the models; when the priors are equal, the threshold is zero.
The advantage of this Bayesian model selection over traditional hypothesis and goodness-
of-fit testing is that it directly computes the quantities of interest. In addition, because
the computed quantities are probabilities, they are automatically calibrated. Furthermore,
Bayesian model selection is conceptually simpler. The primary disadvantage is that the
computations are usually more difficult.

An interesting feature of Bayesian model selection is that it automatically applies Oc-
cam's Razor [5, 54, 53] to penalize more complex models. Consider the space of all possible
data sets. A simple model assigns probability to only a few data sets, while a complex model
distributes probability to more data sets. Because probability must integrate to unity, the
probability assigned to some data sets will be larger in the simple model than the complex
one. Thus, if the observed data happens to be one of these data sets, the simple model
will provide a better explanation. Another way to look at it is to assume that the data
is only explained well by a single 0i in each model. Because the more complex model has
to distribute probability over more parameter values, the weight p(Oi Mi) is smaller for the
more complex model.

As a particularly simple example, consider two models for coin tosses: Mo is a fair coin
and M1 is a biased coin. Let the observed data be 52 heads out of 100 tosses. Now M0o con-
tains a single probability distribution 00 = 0.5, giving logp(DIMo) = log 0.5100 - -69.31.
The best distribution in M1  is 01 = 0.52, giving logp(DL 1, Mi) = log(0.52520.4848) -

-69.23. However, M1 also contains other distributions, one for each value of 01. A rea-
sonable prior for 01 is the Jeffreys prior [39], which is designed to be invariant to trans-
formations of the parameter. For a binomial, it is a Beta(1/2,1/2) distribution which
favors more biased coins as shown in Figure 2-6. With a Jeffreys prior, logp(DIMI) =
log fp(Dl10, Mi)p(01IMI)d01 = -71.77. Thus, with equal prior odds for the models, we
would decide M 0, the fair coin, in accord with intuition. In this case of 100 tosses, we need
either 62 or more heads, or 38 or fewer heads for M1 to be the more probable model. If
the number of tosses is 10, then 8 or more heads, or 2 or fewer heads is required for M1 to
be more probable. In general, if the observed proportion of heads deviates from 0.5, then
as the number of tosses increases, the biased coin model becomes more probable; again,
agreeing with intuition.

Notice that the log posterior odds in Bayesian model selection has a similar form to
the KL divergence. This enables us to draw a connection to classical hypothesis testing,
except here we average over all probability distributions in a model. If we approximate
the integrals based on a single distribution 0i, then we get exactly approximations to KL
divergences. The next section will show this in detail when testing different dependency
models.
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Figure 2-6: Jeffreys prior for the binomial distribution. Higher probability is assigned to
more biased distributions.

2.4.2 Dependency Structure Selection

Dependency structure selection is a special case of model selection where the dependency
structure is what differentiates the models. In other words, we want to infer the most
probable dependency graph given observed data. Naturally the inference should integrate
over all possible parameter values.

Consider testing the statistical dependence between two RVs as illustrated in Figure
2-4. The Bayes factor [4, 43] is

p(x, y IMI) p(x,y 1, M)p(OIM1)d (2.27)
p(x, y Mo) f p(x|9x, Mo)P(Ox IMo)dOx f p(y Oy, Mo)p(OylMo)dOy'

which simply compares a dependent versus independent model. To derive the connection
to KL divergence, we take the logarithm of a Laplace (saddle-point) approximation of the
integrals around the posterior modes Oi:

log p(X, y M) log P(x, yI1, Mi)p( 11 lM1 ) A 1  (2.28)
p(x, y Mo) p(X Ox, Mo)P(OxI Mo)/Aoxp(Y Oy, Mo)p(OYIMo)AoY

p(x,ylO1,Mi) p(0 1 M1 )A 0 1= log A log (2.29)
p(xlOx, Mo)p(ylOy, Mo) P(Ox Mo)Aoxp(Oy|Mo) (2.29)

= slog +p(xiYi0,i1) O0 (2.30)
p(xilOx, Mo)p(yi Oy, Mo)

where O is the Occam factor [5, 54, 53] which penalizes more complex models. If the
data actually came from the M1  distribution (dependent), then the log Bayes factor is
approximately

(2.31)nD(p(xi, yi l01, Mj ) jp(xi jOx, Mo)p(yji y , 1Mo)).
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On the other hand, if the data came from the Mo distribution (independent), then we have

-nD(p(xi16x, Mo)p(yily, Mo) I lp(xi, yi 1, Mi)) = 0, (2.32)

because a dependent joint distribution can always explain an independent product of marginals
distribution. This is easily seen by recalling that p(x, y) = p(x)p(yJx), so that the dependent
distribution can mimic the independent one by simply letting p(ylx) = p(y). In general this
occurs when the models are nested, meaning one model is a subset of the other. Related
analysis can be found in [12, 92, 34]. Learning structure from data has increasing become
an active research area [10, 72, 30].

As an example, consider again the space of probability distributions on two binary RVs
as shown in Figure 2-3. The dependent model is a Multinornial(0) while the independent
model is a product of a Multinomial(Ox) and a Multinomial(0y). By using a conjugate
Dirichlet prior we can compute the evidence analytically [92]:

p(DO)p(O)dO = i- l nif (Ei ai) (2.33)
ORi>0;E4 i=1 i r(ai
= (i) 1ni+a -1 (2.34)
Hi F(ai) Oi>0;E 0i=1I

Sr(Ei ai) I r(ni + Z ) (2.35)
Ili r(a) r(n + ai '

where ni are the multinomial counts, and a are the parameters for the Dirichlet prior. We
can then compute the Bayes factor:

r(CE ai) Ili r(ni+ai)
p(x, = yMi) _ H r(ai) r(n+Ei±a) (2.36)
p(x, y Mo) r(Ei ai) , r(n r(•, • •i) Hi r(n,y+,i)

Hi r((Z) r(n,+CE axi) 1I r(a•) r(n,+Ei ayi)

1-i r(ni + ai) r(nx + Ei axi)r(ny + Ei ayi) (2.37)
1i F(nxi + axi) Hi F(nyi + ayi) F(n + Ei ai)
Fr(Ei a) r(Ei y) r(ai) (2.38)

For multinomials, the classical X2 statistic [14, 68, 49] can be used to test for statistical
dependence:

X2  (Pi- qi)2, (2.39)
qi

where p and q are maximum likelihood estimates of the dependent and independent distri-
butions, respectively. The statistic is a goodness-of-fit criterion that measures how much
the counts from the two distributions are likely to differ. In fact, we can derive X2 as an
approximation to the KL divergence between p and q by taking a Taylor series expansion
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Figure 2-7: The ROC curve for deciding between dependence and independence. Bayes
performs the best on average, especially when the number of data points is small. The KL
approximation also performs well when the number of data points is large.

[12, 49]:

D(p Iq)= pi log Pi  (2.40)qi

(p -q)2 (2.41
"C (pi - qi) + 2 qi (2.41)

iqi

S2. (2.42)

We see that the X2 statistic is a quadratic approximation to the KL divergence.

As a simple demonstration of these ideas, we performed Monte Carlo simulations for
the two binary RVs case. We randomly generated 1000 dependent and independent distri-
butions. We then sampled points from each distribution and performed model selection.
Figure 2-7 shows the receiver operating characteristic (ROC) for the Bayes, KL approxima-
tion, and a traditional X2 test for dependence. Truly dependent distributions generally have
high estimated KL divergence. Some of the randomly sampled dependent distributions are
very close to independent distributions and thus have low KL divergence. This also pushes
the ROC curve down because those distributions have low statistical dependence. On aver-
age, Bayes performs the best, especially when the number of data points is low. When there
is a lot of data, the KL approximation also performs well. As a further illustration, Figure
2-8 shows the area under the ROC curve as a function of n. For all n, Bayes performs the
best, followed by KL, and finally X2, with the performance difference decreasing with n, as
expected.

In summary, statistical dependence estimation involves comparing a dependent versus an
independent explanatory model for the observed data. This model selection can be approx-

| || 1| ||
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Figure 2-8: The area under the ROC curve as a function of n for deciding between de-
pendence and independence. Bayes out-performs KL which out-performs X2, with the
differences decreasing with n.

imated as computing the KL divergence between the posterior most probable probability
distributions in each model.

2.5 Order, Regularity, and Structure

Recall that we started by defining statistical dependence abstractly and then related it to
entropy, mutual information, and KL divergence. Model selection tied these concepts to
hypothesis testing of dependency structures. Another view of these ideas is in terms of
complexity and organization. Perception can be thought of as the identification of patterns
in data. By pattern we mean order as in some sort of regularity. This regularity is captured
by the underlying structure of the pattern, and for probabilistic patterns, the structure is
exactly the statistical dependency structure. As an analogy, in graphics we want variability
from known structure, while in vision and pattern recognition we want the underlying struc-
ture despite the variability in the data. The key idea is that dependency relates variables so
that from an unstructured set of variables we get systems of structured probabilistic models.
Measuring statistical dependence is a way of measuring structure and is therefore a way to
infer structure. We believe this to be an important aspect of perception and learning which
has rec.eived less attention than it deserves.
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2.6 Summary

We discussed the connections between statistical dependence, information theory, and model
structure. Entropy, mutual information, and KL divergence turn out to be the key quantities
for measuring dependence. Model selection compares model dependency structures and thus
also measures dependence by comparing dependent versus independent models.

We have shown details for the simple cases of two RVs and linear-Gaussian models, but
the approach generalizes in a straightforward manner to multiple variables and arbitrary
distributions. In the next chapter we apply these ideas to the problem of object interactions.



Chapter 3

Object Interaction

In our introductory chapter, we briefly discussed how statistical dependence could be used
to study object interaction. With the technical background from the previous chapter, we
can now study the problem in earnest. This chapter will show how statistical dependence
is the key concept for understanding object interaction. After presenting the framework,
we describe experiments demonstrating the performance of our approach.

We will begin by describing the nature of object interaction and show how statistical
dependence allows us to formulate a quantitative theory. The theory is simple and intuitive,
yet allows for the detailed measurement of object interaction in a wide range of scenarios.

For our purposes, a good example of object interaction is the cartoon video of Heider
and Simmel [31] shown in Figure 3-1. Although the objects were simple geometric figures,
humans tended to explain what they saw in terms of interactions such as pursuit. Thus,
it is clear that it is the motion of objects that cause us to perceive interactions. In the
extrenme case, even the motion of points is enough, such as the recognition of huian motion
from point light displays' [40]. Furthermore, in far-field surveillance, an object occupies a
small number of pixels, so we can reliably track only its gross motion.

The reason that humans interpret the motion of objects in terms of interactions is
because an interaction model provides a better explanation of the observed data. By better,
we mean that the interaction model improves our understanding of the object motions by
offering more accurate predictions. For example, by knowing that Y is in pursuit of X, we
can more accurately predict Y's motion with knowledge of X's.

3.1 Interaction and Statistical Dependence

For simplicity, consider the case of two objects X and Y. Recall that the important feature
is the motion of the objects, so we can think of the objects as simply points. Motion can be
represented as a trajectory or time series of states X(t). A state usually consists of position,
velocity, and possibly acceleration. Intuitively, an interaction between X and Y means that

1Perception with minimal stimuli is also apparent in depth perception from random dot stereo-grams.
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Figure 3-1: A frame from Heider and Simmel's
terms of interactions such as pursuit.

0y

cartoon video, which humans interpret in

Xt-1

Figure 3-2: Dependency graph for X influencing Y.

there is some influence of the objects on each other. We can formalize this by defining the
probability distributions:

p(xtlOx) and p(ytlxt-1_,y). (3.1)

This simply states that Y depends of X, along with other factors Oy. It is clear then that our
theory simply states that interaction implies statistical dependence. We can then borrow
all of the properties associated with statistical dependence, and apply them to interaction.
The corresponding dependency graph is shown in Figure 3-2.

In particular, when there is no interaction between X and Y, the arc from Xt-1 in the
dependency graph disappears, and the conditional distribution for Y becomes

p(yt xt-1, 0y) = p(yt u0y), (3.2)

indicating that X and Y and independent. When X and Y do interact, the strength of
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C

Figure 3-3: X (solid) moves randomly, and Y (dotted) follows X.

interaction is exactly the amount of statistical dependence. This is important in a case such
as "Y follows X" because intuitively we are more confident that this type of interaction
is occurring if X makes many turns, or in general moves in a complicated fashion. For
example, if both X and Y move in a straight line, then it is possible that Y is following
X, but we are not so confident. On the other hand, if X moves in a random fashion and
Y remains near and behind X, then we are very confident that the interaction truly exists.
Now recall that statistical dependence can be measured by the mutual information between
X and Y:

I(X; Y) = H(X) + H(Y) - H(X, Y) = H(Y) - H(YIX). (3.3)

Thus when X and Y move in a straight line, each entropy term is low and the difference
in entropies is also low. However, when X moves randomly, H(X) and H(Y) is high, while
H(X, Y) and H(YIX) are low because Y follows X, and so statistical dependence is high.
This is an illustration of why a quantitative theory of object interaction is more useful than
a. purely qualitative one.

As an example, consider two scenarios: X moves at roughly the same speed along a
straight line versus X moves at roughly the same speed but randomly (Figure 3-3). In both
cases, Y would appear to be following X. In a straight line case, it is difficult to be certain
because Y may happen to be taking the same path as X, such as two pedestrian on the
same sidewalk. In the case where X moves randomly while Y follows a very similar path, it
is easy to decide that "Y follows X" because it is highly improbable that the paths are so
similar by chance, such as two pedestrian making exactly the same turns over a long period
of time. The decomposition of the statistical dependence is shown in Table 3.1. The higher
unconditional entropy h(Y) in the case where X moves randomly is the primary reason for
the correspondingly larger statistical dependence. Basically, in the straight line case, Y is
well explained by a simple straight line model without knowledge of X. In other case, the
random turns that Y makes appear unstructured until we realize that conditioned on X,
the random turns are simply a result of trying to follow X's random turning.

In summary, our basic theory of object interaction is simply that interaction implies
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Random Straight
h(Y) 3.5470 -0.4959

h(YIX) 0.3335 -1.5654
I(X; Y) 3.2135 1.0695

Table 3.1: The larger mutual information I(X; Y) in the random case is primarily a result
of higher unconditional entropy h(Y).

X Y X Y X Y

p(x)p(ylx) p(xy)p(y) p(x, y)

Figure 3-4: Dependency graphs corresponding to "Y follows X," "X follows Y," and sym-
metric influence, respectively from left to right.

statistical dependence. Object motions are random processes and interact if and only if they
are statistically dependent. The theory is general enough to account for any interaction, and
yet allows one to precisely measure the strength of interaction by the amount of statistical
dependence. This and other properties of statistical dependence are fortuitously in accord
with intuition about object interaction. Below, we explore further details of our basic
theory.

3.2 Causal Structure and Interaction Roles

In the previous section, we formulated object interaction in terms of statistical dependence.
This enables us to decide whether objects interact by measuring the strength of statistical
dependence. In this section we take a deeper look into object interaction by relating the
roles of the objects in an interaction to the causal structure of their dependency. This will
allows us to not only decide whether two objects are interacting, but how they interact.

Consider again our example of "Y follows X." The dependency graph for this partic-
ular interaction was shown in Figure 3-2. However, saying that X and Y are statistically
dependent does not unambiguously determine the dependency graph. In fact, any of the
dependency graphs shown in 3-4 is possible. What differentiates the graphs is their causal
structure. For our example, it could be that "Y follows X," "X follows Y," or that they
both influence each other (for example, in the case that they move symmetrically as a pair).

How can we determine the causal dependency structure from data? In general, learning
causal structure is difficult [73]. In our case, each dependency graph has an arc and hence
the same number of parameters. Thus each graph has the same complexity and it is unclear
how to choose the directionality of the arc. Indeed, we can see this more simply by recalling
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Xt-1 X t Xt-1 X t Xt-1 X t

Yt- 1 Yt-1 Yt- Yt

p(XtXt--1)P(yt]yt--I,Xt-1) p(Xt1Xt--,yt--1)P(ytyt--1) p(Xt]Xt--I,Yt--)P(ytyt--I,Xt--1)

Figure 3-5: Causal dependency graphs corresponding to "Y follows X," "X follows Y," and
symmetric influence, respectively from left to right.

that we can always write the joint distribution as a product of conditionals:

p(x,y) p(x)p(yx) (3.4)
p p(x y)p(y)

Fortunately we are working with trajectories, so we need only concern ourselves with
temporal causality. This leads us to consider the causal dependency graphs shown in Figure
3-5. Now each dependency graph has a different set of arcs. Also, the directionality of arcs
is always causal, from previous to next time steps.

As an example, if we analyze Figure 3-3 with the roles of X and Y reversed, then we
obtain a much smaller mutual information of 0.0399. Intuitively, Yt-1 does not predict Xt
well because, causally, Y reacts to X instead of the other way around. In summary, we
can properly conclude that there is an interaction, and that "Y follows X" instead of vice
versa.

3.3 Form of Interaction

Up to now, we have studied the causal dependency structure of interactions at a general
level. This enables us to determine whether an interaction exists, and the roles of objects
in the interaction. In certain applications, such as simply grouping the set of interacting
objects, general causal dependency structure may be sufficient. Now consider the problem
of deciding between "X and Y move together" versus "Y pursues, X evades." In both
cases, the general dependency structure is the fully-connected, causal model in Figure 3-5,
because both X and Y exert influences on each other. However, in the case of "X and Y
move together," the objects try to stay near each other, while in the case of "Y pursues, X
evades," exactly the opposite is true.

Our discussion of dependency structure has deliberately omitted any statement about
the exact form of the probability distributions related to the graph. This is in accord with
properly treating the details of the distributions as nuisance parameters. However, as we
have seen in the example above, general dependency structure alone may be insufficient in
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"X and Y move together" "Y pursues, X evades"

Figure 3-6: Moving local coordinate system representations of objects.

some scenarios. To answer the questions about what particular type of object interaction is
occurring, we must step back from measuring statistical dependence to characterizing the
form of dependence. In other words, we need to model the fact that X and Y not only
interact, but interact in a particular way.

Based on our model, the information for the type of interaction is found in the pa-
rameters Oy for the conditional distribution p(ytlyt--1, xt-1, 0Y). For a particular causal
dependency structure, 0y is an element of the space of all interaction types O. Different
regions of 8 then correspond to different interaction types. Overall the conditional distribu-
tion p(yt I) consists of two factors: (1) its arguments determined by the causal dependency
graph, (2) its form determined by the value of Oy. Thus, both "X and Y move together"
and "Y pursues, X evades" have the same dependency graph, but different parameter values
for the type of interaction.

For example, imagine that we represent each object as a moving local coordinate system
as shown in Figure 3-6. For "X and Y move together," the conditional distributions would
tend to keep the local coordinate systems aligned and next to each other. Conversely, for
"Y pursues, X evades," X might turn to move away from the forward direction of Y, and Y
would move towards X and match X's turns. In particular, we could model the relationship
between the coordinate systems with a Euclidean transformation:

Y = RX + t, (3.5)

where R is a rotation and t a vector. Interesting this use of transformations captures the
notion of prepositions such as "in front," "behind," and "side." This kind of simple rela-
tive representation not only illustrates different forms for the conditional distributions, but
could be the basis of a more ad-hoc system for categorizing object interactions [85]. The ad-
vantage of our theory is that it makes each factor in the representation of object interaction
explicit and allows for quantitative measurements. To recap, it is important to consider
the precise form of the conditional probability distribution p(yil') in order to distinguish
between different object interactions that have the identical dependency structures.
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Figure 3-7: Trajectories for Z (dotted) stays in between X (solid) and Y (dashed) moving
independently and randomly.

3.4 Beyond Two Objects

For simplicity and clarity, we have presented our general theory of object interaction in
the common case of two objects. Now consider the interaction between three or more
objects. An interesting example is when one object Y stays in between two others X and
Z moving independently as shown in Figure 3-7. In this case, Y is dependent on X and Z
corresponding to the causal dependency graph shown in Figure 3-8. Our theory is able to
handle the general case of n objects with an n node dependency graph. For the example
above, if we ignore causality, the dependency graph is a star with Y at the center. A star
graph represents any interaction involving one object influenced by many others. The other
objects are independent but become dependent through Y.

A second common dependency architecture is a tree. This could represent, for example,
a convoy where vehicles are dependent on their immediate predecessors. The extreme case
of a tree is a chain where each node follows its parent, such as in a line formation. In
general the dependency graph captures the interaction between multiple objects and all of
our operations and measurements that we discussed for the two node case applies.

This section concludes the general discussion of our theory of object interaction. In
summary, by defining interaction in terms of statistical dependence, we are able to measure
the strength of object interactions. Causal dependency graphs and the form of the associated
conditional probability distributions allow us to decompose an interaction in its general
dependency structure, and its detailed probabilistic form. In the next sections we present
details of our approach and experimental results.
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Figure 3-8: Causal dependency graph for "Y stays in between X and Z."

3.5 Modeling Details

To implement our general theory of object interaction, we need specific models for trajecto-
ries and dependencies. Recall that interaction is manifest through object motion. Therefore
our observations are fundamentally a time series of object locations because motion is a tra-
jectory in space. In particular for terrestrial2 objects such as vehicles and pedestrians, the
plane R 2 is often adequate.

3.5.1 Stochastic Processes and Entropy Rate

Recall that statistical dependence is measured by mutual information which is computed
from entropies. Because trajectories are stochastic processes (that is, sequences of possibly
non-independent, non-identically distributed RVs), we need a new measure of uncertainty
for stochastic processes. Clearly, we cannot assume that the individual observations in
a trajectory are independent because the next position is dependent on the current one.
Fortunately, entropy can be generalized to the entropy rate [77, 12, 68]

H(Y) = lim H(Y1, ..., YT), (3.6)
T-*oo

when the limit exists.
A common and reasonable assumption is to consider only stationary processes [68]:

Vkp(yl, ... , YT) = p(Yl+k, ... , YT+k), (3.7)

so that the joint distribution of the sequence of random variables is invariant with respect to
time shifts. This translates into an assumption that the motion dynamics do not vary with
respect to time. For stationary processes, the entropy rate exists, and can be computed as

20ur theory works for aerial objects and higher dimensions as well.
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[12, 68]
H(y) =- lim H(YTIYT-1,..., Y1 ). (3.8)

T---oo

The next simplification is to assume Markov dynamics as alluded to in the first chapter.
This is a common assumption in the tracking literature [76] and is motivated by the physics
of motion. This allows us to represent a motion trajectory as

P(yt ll , ..., Yt-1) = P(Yt lYt-1), (3.9)

so that only memory of the previous state is required. Essentially, we ignore long-term
dependencies. This simplifies the entropy rate to

H(y) = H(YtIYt-1). (3.10)

Intuitively, entropy rate measures how uncertain or predictable a process is. For stationary,
Markov processes, this is simply the uncertainty of the next state given the current. Thus
to measure statistical dependence of stationary, Markov trajectories, we extend mutual
information to

I(X; Y) = H(y) - H(YIX) (3.11)
= H(YtYt- 1) - H(Yt Yt- 1, Xt-1). (3.12)

Basically, this is the conditional mutual information of Yt and Xt-1 given Yt-1.

3.5.2 Auto-Regressive Process

One way to compute entropy rate is to directly estimate the conditional distribution p(yt yt-1).
However, it is important to realize that trajectories, although embedded in the two-dimensional
p)lane, are inherently one-dimensional curves. Even if we assume ergodicity [68], we would
need a very long trajectory to accurately estimate conditional probabilities. A typical ob-
servation of a motion trajectory might visit a particular location only once. Thus to ensure
that the direct estimates are useful, either the area of motion has to be very small or the
trajectories have to be very long.

Our earlier discussion on relative local coordinate systems reminds us that the absolute
coordinate system is not important. In other words, the starting position or orientation
shouldr not affect the statistical dependence. It is really the accelerations of speeding up
and turning that determine the predictability of a motion trajectory. The absolute positions
are an artifact of the observation process. In general, we should analyze relative

A simple but effective model for Markov trajectories is an auto-regressive (AR) process
[68]. An AR.(1) model is a linear first-order Markov process:

Yt = Ayt-1 + w, (3.13)

where A is the Markov dynamics matrix and w is zero-mean Gaussian noise with covariance
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Behavior Algorithm
Follow desired velocity = position behind predicted position of target -

current position
Together desired velocity = (position beside predicted position of target - current

position + target velocity)/2
Pursuit desired velocity = predicted position of target - current position
Evade desired velocity = - (predicted position of target - current position)
Mirror desired velocity = - (estimated velocity of target)

Table 3.2: Summary of behavioral algorithms for simulating interactions.

matrix E. The parameters Oy = (A, E) can be estimated using least-squares methods. The
entropy rate can then be estimated as the entropy of the Gaussian noise:

H(y)= - log(27re)dlIE, (3.14)
2

for y E Rd. To capture statistical dependence between processes, we AR models with inputs
from the other variable:

yt = Ayt-1 + Bxt-1 + w. (3.15)

The AR parameters A and B captures the form of statistical dependency and is useful for
categorizing the type of object interaction as discussed in Section 3.3. For object motion, a
second-order AR(2) model is used to capture velocity information.

3.6 Experiments

We assume that the data are motion trajectories. We focus on two-dimensional data because
most objects are terrestrial, although our approach generalizes to higher dimension in a
straightforward manner. In general, we will be measuring statistical dependence as mutual
information. Large mutual information between variables in the dependency graph suggests
that the corresponding arc exists.

3.6.1 Simulations

We simulated a variety of interactions including objects moving independently. Objects
were modeled as particles with a maximum speed on one. Random motion was generated
by adding a random acceleration drawn from a zero-mean spherical Gaussian distribution
with variance 0.25. Velocities were updated by averaging the current and desired velocities.
Interactive behaviors were implemented with the simple algorithms summarized in Table
3.2. To make some behaviors more interesting, turns were added to the trajectories by
injecting random motion. Examples of the interactions are shown in Figure 3-9.

In Table 3.3, we report the estimated mutual information for the simulated interactions.
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Trial Independent Follow Together Chase Mirror
1 0.01/0.04 0.03/1.03 0.52/0.51 0.23/2.49 0.04/62.22
2 0.03/0.05 0.02/1.05 0.77/0.85 0.20/2.62 0.01/59.45
3 0.02/0.03 0.01/1.05 0.32/0.25 0.27/2.78 0.02/59.48
4 0.06/0.08 0.01/1.02 0.61/0.59 0.21/2.64 0.02/54.57
5 0.03/0.01 0.02/1.01 0.40/0.37 0.23/2.56 0.03/54.31
6 0.03/0.01 0.03/0.95 0.58/0.48 0.21/2.43 0.03/53.64
7 0.03/0.08 0.02/1.00 0.69/0.70 0.24/2.58 0.01/57.73
8 0.01/0.04 0.04/1.03 0.49/0.36 0.22/2.47 0.01/59.24
9 0.02/0.05 0.01/1.05 0.56/0.60 0.16/2.41 0.04/55.32

10 0.04/0.05 0.01/1.14 0.50/0.56 0.23/2.61 0.01/55.42
I 0.03/0.04 0.02/1.03 0.54/0.53 0.22/2.56 0.02/57.14

or 0.01/0.02 0.01/0.05 0.12/0.17 0.03/0.11 0.01/2.88

Table 3.3: Estimated I(Xt-1; Yt)/I(Xt; Yt-1) for ten trials of simulated interactions along
with average I and standard deviation al.

Ten trials were run with sample trajectories of length 200. As expected, objects moving
independently had low values of MI. For "Y follows X", I(Xtl; Yt) is large while I(Xt; Yt- 1)
is neglible since X moves randomly and independent of Y. When objects move together,
both MI terms are significant and roughly equal because X and Y influence each other
symmetrically. In the chase interaction, I(Xt-1; Yt) is larger than I(Xt; Yt- 1) because Y
always pursues X, while X makes random turns while evading so its future position is less
predictable even when given information about Y. This is not too surprisingly because,
intuitively, the pursuer and evader have asymmetric roles. The large MI values associated
with the "mnirror" interaction are due to the fact that Y exactly mirrors the motion of X.
From the sample trajectory, we can see that Y's motion can be very precisely predicted
from X's. The MI is asymmetric because, Y mirrors X is causally similar to "Y follows
X".

The estimated MI for each arc in the dependency graph allows us to discriminate between
independent, asymmetric and symmetric interactions. As a simple illustration, we built
a nearest neighbor classifier [17, 5] with a single example from each of the interactions
listed in Table 3.3. The feature vector was simply the estimated MI values I(Xt-1; Yt) and
I(Xt; Yt-1). We then computed the confusion matrix for classifying the other examples.
The cross-validated results in Table 3.4 show how dependency structure features are useful
for classifying the interactions. In general, fine-grained discrimination of interactions within
a dependency structure equivalence class requires inspection of the form of the conditional
probability distributions. With AR, models, this is detemined by the parameters matrices
A and B of Equation 3.15.
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Independent
Follow

Together
Chase

Mirror

Independent
9/1
0

0.70/0.08
0
0oo

Follow Together Chase Mirror
0

9/1
0
0
0oo

0
8.3/0.92

0
0

0 0
0 0
0 0

9/1 0
0 9/1

Table 3.4: The cross-validated confusion matrix (n/%) for classifying
dependency structure as represented by estimated MI values.
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Figure 3-10: Trajectories of simulated independently moving objects and Z (dotted) be-
tween X (solid) and Y (dashed).
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Trial Independent Between
0.11/0.07/0.05
0.05/0.02/0.01
0.04/0.01/0.03
0.06/0.02/0.02
0.13/0.04/0.08
0.13/0.06/0.03
0.08/0.02/0.05
0.12/0.05/0.04
0.08/0.04/0.01
0.12/0.07/0.04
0.09/0.04/0.04
0.03/0.02/0.02

1.29/0.32/0.21
1.40/0.29/0.30
1.56/0.40/0.31
1.40/0.33/0.25
1.48/0.40/0.23
1.26/0.36/0.20
1.41/0.27/0.30
1.41/0.34/0.22
1.37/0.21/0.29
1.38/0.36/0.19
1.40/0.33/0.25
0.08/0o.o06/0.04

Table 3.5: Estimated I(Zt; Xt-1, Yt-1|Zt-i)/I(Zt; Xt-1 Zt-i)/I(Zt; Yt-1lZt-i) for ten trials
of simulated interactions along with average I and standard deviation ao.

I........_.._.............................
...... ...........................I................... ............0 ........... ...........

....................

U.......... ..............

Figure 3-11: Three frames
cartoon video.

from a chase sequence similar to that of Heider and Simmel's

3.6.2 Heider and Simmel

In the introduction to this chapter, we referred to the study by Heider and Simmel [31] that
demonstrated how humans interpreted motions as interactions. Figure 3-11 shows three
frames from a chase sequence similar to that of Heider and Simmel's cartoon video. The
large square Z chases both the small square X and the circle Y. The largest statistical
dependency we found was for Z dependent on X and Y with a mutual information of
0.58. The next most significant values were 0.41 and 0.43, for I(Xt; Zt-1i) and I(Yt; Zt- 1)
respectively. This corresponds naturally to the fact that Z pursues X and Y, who evade
Z. We also find that I(Xt; Yt-i) and I(Yt; Xt-1) have the next largest values of 0.27 and
0.20 respectively, because X and Y evade together.
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Figure 3-12: The "Interaction Game" window. Players use the mouse pointer to move the
objects.

Independent
0.02/0.03
0.02/0.01
0.03/0.03

Follow
0.06/0.40
0.01/0.38
0.07/0.79

Together
0.16/0.28
0.35/0.27
0.09/0.32

Chase
0.52/0.06
0.31/0.02
1.01/0.04

Table 3.6: Estimated I(Xt-1;yt)/I(Xtiyt-d for the "Interaction Game" data.

3.6.3 Interaction Game

To obtain real data while sidestepping low-level tracking issues, we created an "Interaction
Game" user data collection tool. Players used a computer mouse to move points in a display
window shown in Figure 3-12. They were told to either move independently, or to engage in
some type of interaction. Samples of the trajectories are shown in Figure 3-13. Statistical
dependence estimation results are shown in Table 3.6 for trajectories of length 500. In the
chase interaction, one player chases the other, however the evader often did not move until
the pursuer was close. This resulted in lower MI for the "evader depending on pursuer"
arc. In contrast, in the simulated chase, the objects were in a constant pursuit and evade.

3.6.4 Video Data

We collected video of two people moving in a small area. The camera was located about 6
meters above the ground plane. An example of a frame from the video is shown in Figure
3-14. For a video sequence, trajectories can be obtained with a blob-based tracker [80].
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Figure 3-13: Trajectories from players in the "Interaction Game," X (solid) and Y (dashed).
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Figure 3-14: Sample frame from a video of two people moving in a small area.

59

Independent Follow
0.03/0.02 0.14/0.24

Together
0.19/0.09

Chase
0.42/0.12

Table 3.7: Estimated I(Xt-1; }t)/I(Xt; }t-l) for video data.

When objects are close together such as in a "together" or "chase" interaction, automated
trackers have difficulty discriminating the motions, so we hand-corrected those tracks.

The results here are consistent with those from simulation and the "Interaction Game."
Two people moving independently produced very low MI, while all other interactions in-
creased statistical dependence between the motions. The asymmetric MI the people moving
together was due to the fact that one person primarily dictated the turns other even though
they were instructed to "move together." One way to disambigute this interaction from
"Y follows X" is to simply check whether the other person is behind or to the side of the
other. Note that our positive results are despite the fact that for our video data, the tracks
undergo projective distortion, unlike the simulated and "Interaction Game" data.

We also collected a second video of two people interacting in a different environment
(see Figure 3-17). The results (see Table 3.8) are similar to those of the first video.

Independent
0.17/0.17

Follow
0.54/1.62

Together
0.46/0.38

Chase
0.21/0.20

Table 3.8: Estimated I(Xt-1; }t)/I(Xt; }t-l) for video data.
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Figure 3-15: Trajectories from video data, X (solid) and Y (dashed).
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Figure 3-16: Sample frame from a video of two people moving in a small area.

3.7 Related Work

61

Recently, analyzing the behavior of objects has become a hot topic because of increased
interest in automated surveillance. However, work on automated analysis of behavior dates
back to the seminal work of Nagel [65]. The literature on activity perception is both large
and diverse [27, 28, 2, 6, 26, 69, 15, 57, 19, 8, 9, 56, 7, 91]. Much of the work has focused
on finding good representations for activity and training classifiers for detecting particular
behaviors. Many approaches try to leverage ideas designed for analying images in computer
vision and pattern recognition for activity analysis. Most of the approaches have, as of yet,
focused on single object activities.

To our knowledge, our formulation of object interaction explicitly in terms of statistical
dependence and model selection is novel. Of course, our work has been inspired by a growing
body of research. Below, we review prior important contributions to understanding object
interaction. In general, previous work has primarily focused on specific applications of
interaction analysis, such as training a detector of anomalous activity. In contrast, we have
tried to develop a general theory of object interaction from first principles.

A particularly simple approach for detecting anomalous interactions was presented by
Morris and Hogg [63]. They consider a pedestrian interacting with parked vehicles. Fea-
tures such as walking speed and distance to a vehicle are computed, and the associated
probability distribution fit to non-anomalous data. Anomalies are then detected as simply
any observation with low probability under the learned distribution. Johnson et al. [41]
also developed a system for human hand-shaking based on learning the joint distribution
of human silhouette features. They were interested in acquiring an interaction model for
synthesizing a virtual hand-shaker. The primary limitations of these approaches are their
narrow definitions of interaction, which are specialized to scenarios such as parking lots
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Figure 3-17: Trajectories from video data, X (solid) and Y (dashed).
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and hand-shaking. Nevertheless, these approaches are notable for their use of probabilistic
representations of behavior.

A different section of work is well-represented by the grammar-based approaches of
Intille and Bobick [35] and Ivanov and Bobick [36]. The goal here was to examine language-
inspired frameworks for representing complicated sequences of interactions. Intille and
Bobick [35] analyze football plays with temporal constraint graphs on objects and goals.
Ivanov and Bobick [36] use stochastic context free grammars to parse the separate behavior
of multiple objects into coordinated multi-object behaviors. Grammar-based approaches
operate on symbolic representations of behavior and focus on parsing individual behaviors
into known interactive behaviors. These approaches are complementary to our method of
discovering the structure of interactions based on statistical dependence.

Finally, the approach of Oliver and Pentland [66] is closest in spirit to our ideas. Their
goal was to train models for a known set of interactive behaviors. To this end, they used
coupled hidden Markov models on features such as distance and relative angle. The coupled
model structure is fixed and assumes full dependency for two objects. Thus the important
difference with our approach is that we do not assume a fixed dependency structure, and
instead, infer it from the observed data.

In summary, our primary contribution over previous approaches is two-fold: (1) an
explicit examination of the link between statistical dependence and object interaction, (2)
learning the structure of dependencies from observed data rather than assuming a fixed
model. Overall, our approach combined with the previous work reviewed here will be useful
to engineers interested in developing a recognition system for a particular application and
scientists studying the statistical nature of object interaction.

3.8 Summary

In this chapter we presented our theory of object interactions based on statistical depen-
dence. The theory essentially equates interaction with dependence and shows how the
various properties of statistical dependence have intuitive meanings in terms of object in-
teractions. In particular, the theory enables us to do three things: (1) decide if there is an
interaction, (2) explain how the objects are interacting, (3) describe what kind of interaction
is occurring.

We then described computational details of our model and the results of experiments
validating our approach. We also compared our approach to prior related work. Our primary
contribution is drawing the connection between object interaction, statistical dependence,
and model structure which enables the discovery of interaction models from observed data.
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Chapter 4

Matching

In the previous chapter, we presented our theory of object interaction based on statistical
dependence. In this chapter, we present the second part of our thesis that statistical de-
pendence estimation also underlies the matching problem. We will begin by reviewing the
problem of matching in general and explain the connection to statistical dependence. We
then prove an intractability result for exact maximally dependent matching and suggest a
Markov chain Monte Carlo (MCMC) approximation.

The second half of this chapter applies our ideas to the problem of matching objects be-
tween non-overlapping cameras. In particular, we show how our theory generalizes previous
work and describe experiments demonstrating improved performance with our approach.

We defined statistical dependence in the second chapter, and explained how it could be
estimated from observed data. We have tacitly assumed that observations are in the form
of matching pairs (x, y). However in many cases, the low-level problem is often to find these
matching pairs in the first place. For example, photogrammetry [32] requires matching
points in two images, and motion analysis [88] looks for corresponding features across video
frames. In general, the matching problem arises whenever corresponding observations are
acquired by different sensors or are separated in space or time.

To gain intuition into the matching problem, consider a toy example with two cameras
looking at different parts of a road. Four vehicles traveling at different speeds depart
camera one and later arrive at camera two. The departure, travel, and arrival times are
shown in Table 4.1. From the perspective of camera two, arrivals happen at times 3, 5,
6, 8, so the vehicles actually arrive in the order (1,3,2,4), which is the correct matching of
departures and arrivals between the cameras. In general, we can represent the matching as
a permutation of indices. Here, the matching problem is to decide the best correspondence
between the departing and arriving vehicles. As with any optimization problem, we need
to examine the cost function and the feasible set. The space of possible rmatchings is the
set of all permutations1 of (1,2,3,4). Thus we have a combinatorial (discrete) optimization

problem [67], where the size of the feasible set is exponential. Our first concern, however,
is, "what should be the cost function?"

1Sonme permutations are infeasible because arrival times cannot occur before departure times.
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Departure Travel Arrival
1 2 3
2 4 6
3 2 5
4 4 8

Table 4.1: Departure, travel, and arrival times for a toy example of four vehicles moving
between two cameras.

Clearly, we cannot match the vehicles in-order, nor minimize the average travel time
because both would lead to the incorrect matching (1,2,3,4). If we knew the exact vehicle
travel times or the distribution of travel times, the problem would be simpler. However,
we could have many different vehicles traveling at various speeds, not to mention other
objects such as bicycles and pedestrians. In general, it is unrealistic to assume we know
the distribution of travel times a priori. At this point, the reader may ask, "why not
use other features such as appearance?" We agree that appearance can and should be
used. Often, the cost function for appearance assumes that it should not change. But
appearance may change between cameras because of lighting, pose and other geometric and
photic parameters. Furthermore, the type of appearance change may vary depending on the
object. For example, although color change may be approximated well by a linear model,
different colors often require different linear transformations [87].

Given the uncertainty described above, how can we formulate a well-defined cost function
for matching? We can get some inspiration from the problem of clustering [17] a set of
points. Clustering is often considered an unsupervised learning problem because the proper
cost function is debatable. One way to make it well-defined is to cast it as a problem of
grouping the data so that the grouping has maximum likelihood under a certain mixture
distribution. Each component distribution of the mixture is then identified as a cluster. In
the same way, we can define the best matching as that which has maximum likelihood.

To make the connection between matching and statistical dependence, we first reinter-
pret entropy as negative mean log probability:

H(X) = - p(x) logp(x). (4.1)

In the finite sample case, we have an approximation:

n

log p(xi) - -nH(X). (4.2)
i=1

Thus maximizing likelihood is the same as minimizing entropy [90]. For matching this is
the joint entropy H(X, Y). Recall that mutual information can be written as a difference



between the marginal and joint entropies:

I(X; Y) = H(X) + H(Y) - H(X, Y). (4.3)

Thus, minimizing H(X, Y), maximizes I(X; Y) which is our measure of statistical depen-
dence. Matching is akin to pairwise clustering to maximize the likelihood of the matches.

In our toy example, consider the matching M1 = (1, 3, 2, 4) versus M2 = (1, 2, 3, 4). We
want to examine the probability distribution of the pairs induced by each matching. The
probability of a pair can be written as p(x, y) = p(x)p(ylx), so that matching only affects
the conditional distribution. Here, the conditional distribution is intimately tied to the
distribution of travel times as we will show later. The difference between the matchings is
then reflected in the entropy of the travel time distribution. The pairs for M1 are (1,1),
(2,3), (3,2), (4,4), leading to travel times of 2, 4, 2, 4, while the travel times for M2 are 2, 3,
3, 4. Assuming possible transition times of 1, 2, 3, 4, the corresponding travel time entropies
are 0.69 for M1 versus 1.04 for M 2. Thus M1 induces more statistical dependence than IA10
because its travel time distribution has lower entropy. In particular, M1 hypothesizes a
bi-modal travel time distribution compared to the more uniform one associated with Mo/10.
Our assumption is that we favor a lower entropy distribution because it explains more of the
regularity in the data. From a modeling perspective, maximizing statistical dependence is
the same as maximizing the regularity in the data. Regularity is a generic guiding principle
in modeling when few assumptions can be made of the data.

We can also look at the matching problem from the perspective of estimating dependency
structure as we did with object interactions. A matching induces pairs (x, y), from which
we can estimate the amount of statistical dependence. The matching problem then is to
find pairs such that the overall dependence between X and Y is maximized. Thus, the
dependency structure is assumed to be simply that X and Y are dependent. The problem
is that we do not have direct access to samples (x, y) from this dependency. A matching
generates samples, and we assume that the best matching corresponds to samples from a
maximally dependent distribution. This distribution gives the largest mean probability of
the data, which corresponds to maximizing the regularity in the data. A variant of this
problem occurs in the tracking literature under the name of data association [76, 13]. There,
the problem is to match targets with measurements, and the joint distribution of targets
and measurements is assumed known. The main focus is on tackling the combinatorial
challenge of efficiently finding the best matching among an exponential number of them.

The subsequent sections will discuss matching and statistical dependence in more detail.
Finally, we apply our approach to matching between non-overlapping cameras and describe
experiments to evaluate its performance. First, we will start with a review of the general
matching problem.
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4.1 Problem Formulation

For simplicity we describe the bi-partite matching scenario; conceptually, the extension to
more than two sets is straightforward, although the associated properties of the problem and
the algorithmic challenges can change dramatically [67]. We are given two sets of objects
X - {x 1 ,...x,} and Y - {yi,..., y,}. A matching is a one-to-one correspondence between

the elements of X and Y. The one-to-one constraints mean that each xi must match only
one other yj and vice versa. As stated earlier, the feasible set is the set of permutations on
the indices 1, ..., n. The matching problem then is to

min c(ir; X, y), (4.4)
7r

where 7r is a permutation and c is some cost function. The pairs induced by a matching are
(xi, y,(i)). We will show that, in the general case, c is the statistical dependence between
X and Y.

4.1.1 Transformations

One way to motivate the use of statistical dependence as the optimization criterion for
matching is to consider transformations between the matched pairs. A common way to
model the relationship between two variables is with a transformation:

Y = T(X), (4.5)

where T is the transformation. The idea is not new; for example, coordinate transformations
were used in a theory for comparing natural shapes [84]. Commonly, T is assume fixed for
all X, such as a single rigid body transformation for all points on an object. In our case, we
generalize the model so that T is drawn from a probability distribution of transformations
such as travel times between two cameras. In this case, the relationship becomes a simple
translation:

Y = X + T, (4.6)

where X and T are assumed independent.
Recall that mutual information can be written as a difference of entropies:

I(X; Y) = h(Y) - h(Y(X). (4.7)

A matching only affects the second term, which we can simplify:

h(YIX) = h(X + TIX) (4.8)

= h(TIX) (4.9)

= h(T) (4.10)

because T is independent of X. This makes intuitive sense because once we know X, the
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uncertainty in Y should be exactly the randomness of the transformation. We see now that
maximizing statistical dependence is the same as minimizing the entropy of the distribution
of transformations:

max I(X; Y X, y, ir) = max h(Y) - h(Y X; X, y, r) (4.11)
7r 7r

= min h(T; X, y, r). (4.12)
7r

Entropy then becomes the cost function c that we minimize over matchings. Below we show
how other cost functions can be shown to be special cases of this generic criterion.

4.1.2 Fixed, Known Cost

A very special case is when the distribution of transformations p(T) is known. An example is
the identity transformation with noise so that Y is Gaussian distributed around X. Basically
this says that the Y is most likely to be the same as X. In this case, h(YIX) = h(W), and
the cost function becomes a least-squares log likelihood. We can encode all possible match
costs in a matrix with elements

cij = L(xi, yj), (4.13)

where L is a least-squares loss function. The cost function then becomes

c(r) = ciz(i) = E cijzij, (4.14)
i i,j

with one-to-one match constraints:

zi =j 1 and zij = 1, zij E {0, 1}. (4.15)
j i

This is the assignment problem [67, 64, 48], an integer programming problem because of
the constraints on zij, but which can be solved as a standard linear programming problem
because of unimodularity. Indeed the nonlinear constraints are what make the problem
seemingly difficult. However, the feasible set can be be made convex with a theorem by
Birkhoff [83] which shows that any doubly stochastic matrix can be written as a convex
combination of permutation matrices. Because the cost function and doubly stochastic
constraints are linear, the optimal solutions are at the corners of the convex polytope,
namely the permutation matrices. The Hungarian algorithm solves the assignment problem
in O(n3 ) [67, 64, 48].

4.1.3 Parametric Model

The Gaussian model of the previous section can be extended to allow a parameterized set
of transforniations:

Y = f(X; O) + W, (4.16)
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so that Y is some function of X parameterized by 0 plus Gaussian noise. In image alignment
we may allow an affine warp between the coordinate systems of the X and Y pixels [90, 61].
The transformation implicitly encodes the matching constraints. In translation, each X is
guaranteed to match a single Y and vice versa. For affine warps, the transformation from
X to Y may be many-to-one. The optimization problem is then to minimize

c(0) = c((f(xl; 0), yi), ... , (f(x,; 0), y,)). (4.17)

Note that here, all X's share a single transformation. The cost function may take into
account both the matched X's and Y's and the transformation 0. This is often solved
using local search such as steepest descent. Note that by representing the matching with
a transformation, the one-to-one matching constraints are implicitly satisfied so that the
optimization is effectively unconstrained in the feasible space of transformations. As an
example, computing correlation between X and Y with a time lag is a simple time shift
transformation.

What if some of the X's use a transformation specified by 01, while other X's use a
different transformation specified by 02? For this type of finite mixture distribution of
transformations, one may then use the expectation-maximization algorithm with the single
parameterized transformation cost problem as an inner loop. Much of the registration and
alignment work in computer vision is based on this and related ideas [25, 90, 60].

4.1.4 Non-parametric Cost

In many problems, we do not expect the distribution of transformations p(T) to be known
nor Gaussian, such as in the case of pedestrian and vehicle transition times between cameras.
We thus retain the simple additive model

Y = X + T, (4.18)

but allow p(T) to be non-Gaussian. This type of model makes fewer restrictive assumptions.
The price we pay for this generality and flexibility is that matching becomes a hard opti-
mization problem. Basically, the optimization will be difficult because of the nonlinearity
of both the constraints and the cost function.

Recall that our cost function for a matching is the entropy of the transformation distri-
bution. As shown at the beginning of this chapter, entropy is simply the negative average
log likelihood. So in a sense it measures how well the distribution models its own samples.
Given a sample x, an estimate of its entropy is then an estimate of its log likelihood in a
general sense:

p(x) log p(x) , log p(xi). (4.19)

Therefor the maximally dependent matching is also the most likely matching in this general
sense.
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4.2 Maximally Dependent Matching

We are given two sets of measurements {xI, X2, .. , Xn} and {yl, y2, ..., yn with unknown
correspondence. If we knew the distribution of matching pairs p(x, y), we could find the
maximum likelihood matching efficiently using an algorithm for assignment. Without this
knowledge, we set as our goal the matching with maximum dependence. Based on our previ-
ous discussion, the matching with maximum statistical dependence will also have the lowest
entropy, and hence maximum likelihood. The description length of data is proportional its
entropy. This allows us to identify maximal dependence with minimum description length
(MDL) [75]. Note that this does not presuppose a true model of the data, but only attempts
to find a good or compact model.

Entropy, in turn, can be viewed as negative average log probability. Because we do not
know the distribution of the data, we must estimate it from the data as well. One way to
estimate entropy given only a sample is to compute the leave-one-out probability with a
non-parametric kernel density estimate:

/p(z) log p(z) - log p(zi) (4.20)

= - log E ((zi, zj), (4.21)
i j~i

where ( is a kernel. From the matching perspective, we are favoring matchings such that
the resulting matched pairs have maximum probability without assuming a known distri-
bution. Let tij be the transformation relating the matched pair yj - xi + tij. We then
seek a matching that maximizes the probability of the resulting set of transformations. In
summary, our optimization criterion is based on the following principle:

Proposition 1. Maximally Dependent Matching (MDM): The best matching maximizes
statistical dependence.

A short description length for tij means that given X, we can describe Y with a short
description of the transformation. This is the interpretation of statistical dependence in
terms of description length and complexity. The best matching makes the data most de-
pendent. This maximizes likelihood or minimizes entropy and hence description length. Our
model selection problem is to choose a matching that gives the most compact description
of the data. This description automatically maximizes the probability of the data without
assuming any known model.

The corresponding decision problem for maximally dependent matching optimization is

MAXIMALLY DEPENDENT MATCHING (MDM)
INSTANCE: A bipartite graph G = (V, E), values x(e), Ve E E, kernel 4), a positive integer
K, and a number L.
QUESTION: Is there a matching of size K with likelihood ,e log 1e(, 4(x(e), x(e')) > L?
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4.2.1 MDM is NP-complete

We will show MDM is NP-complete [22] by transforming the weighted clique problem to
it. Intuitively, MDM is a hard problem because the likelihood of each match depends on
the other chosen matches. The deceptively similar problem of maximum weight matching
where the weights are fixed and independent of other weights is actually in P, and can be
solved in O(IVj3) as previously mentioned. First we show that the weighted clique problem
is NP-complete.

WEIGHTED CLIQUE (WC)
INSTANCE: A complete graph G = (V, E), weights w(e), Ve E E, a positive integer
K < IVI, and a number W.
QUESTION: Does G contain a clique V' of size K with weight ZVEV' log w(v) _ W, where

W(V) - ECEV',-Ov W((V= U))'

Theorem 2. WC is NP-complete.

Proof. WC E NP because given a clique, clearly we can compute its weight and check that
it is larger than W in polynomial time.

We transform CLIQUE [22], which is known to be NP-complete to WC. Given a graph
G' for CLIQUE, we build a complete G for WC by giving each edge in G' weight 2. All
edges not originally in G' are given weight 1. Let K = J and W = J(J - 1), where J is the
clique size in CLIQUE.

If there is a clique of size J in CLIQUE, then there is a clique in WC of size J by
construction. Each edge in the clique has weight 2, so each vertex has weight J - 1. Thus
the weight of the clique is J(J - 1).

If there is a clique in WC of size J and weight J(J - 1), then let that be the clique
for CLIQUE as well. Each edge in the clique must have weight 0 or 1 by construction,
so each edge must have weight 2 in order for the clique weight to be J(J - 1). Then by
construction each edge in the clique must exist in G', so the clique for WC is a clique of
size J for CLIQUE.

The transformation can be done in polynomial time because there are only a polynomial
number of edges to add to G' to make it complete. O

Theorem 3. MDM is NP-complete.

Proof. MDM E NP because given a matching, clearly we can compute the likelihood and
check if it is greater than L in polynomial time.

We transform WC to MDM. Given an instance of WC, we construct a bipartite graph of
size IVI so that each match is a vertex in the graph of WC, and only edges in WC are present
in MDM. This can be done by only adding one-to-one edges in the bipartite graph. The
kernel is chosen so that D(x(e), x(e')) = w(e"), where e" is the weight of the corresponding
edge in WC. We set L = W.
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If there is a clique of size K and weight W in WC, then clearly the corresponding
matches in MDM will be a matching of size K with likelihood W > L by construction.

If there is a matching of size K with likelihood L, then clearly the corresponding vertices
in WC are a clique with weight W.

Clearly, the transformation can be (lone in polynomial time because the number of edges
added is jVJ, and the kernel can be computed in O(1VI2). 0

So although we have a flexible and general formulation of the matching problem, it is
unlikely that there is an efficient algorithm for the optimization problem. This is not unlike
other problems in unsupervised learning [17] such as clustering which often lead to hard
combinatorial optimization problems. This naturally leads to approximation algorithms
which we will present later in the chapter.

4.2.2 MDM Criterion Revisited

Recall that our optimization criterion was to choose the matching with maximal dependence.
This could be equated with finding the maximum likelihood matching and minimizing en-
tropy. Given samples from p, the cross-entropy [5] of modeling with q is2

hp(q) =-p(z) log q(z) (4.22)

(z)log p(z)q(z) (4.23)

= - p(z) log p() - p() log q(z) (4.24)

= h(p) + D(pllq) (4.25)

> h(p). (4.26)

The inequality follows because KL divergence is non-negative [12]. The KL divergence
D(pllq) is the description length penalty for using an incorrect model. This shows how
minimizing the entropy finds the true model that generated the samples.

However in our case, the matching determines the sample itself, before we can even
estimate p with q. In other words, both the p(z) and q(z) terms in the cross-entropy
depend on the matching because z depends on the matching. So we cannot guaranteed
that the MDM matching will be the true matching. Nevertheless, it is a good matching
because it explains the data well. Without some sort of side information or assumptions, it
is unreasonable to expect any more than this. It maybe possible to analyze the probability
that a false matching will have minimum entropy, but again this requires assumptions on
the distribution p.

2Here we are using the entropy functional h in its proper form as taking a probability distribution
argument.
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4.3 Markov Chain Monte Carlo Approximation

We have defined the maximum likelihood matching problem that results from analyzing the
statistical dependence between two random variables when the matching pairs of variables is
unknown. This occurs in applications such as our non-overlapping camera network topology
problem because observations from one camera to another arrive out-of-order. We have
also shown how dependence is related to mutual information, entropy and likelihood. Our
formulation allows us to generalize previous work to handle a larger variety of situations by
eliminating restrictive assumptions. Unfortunately, the price for this generality is that the
problem is NP-hard, as was shown in the previous section.

In such a situation we naturally look to approximation algorithms. We have chosen
the Markov Chain Monte Carlo (MCMC) [24] framework for our problem because it has
asymptotic performance guarantees, is simple, and easy to implement. Also it gives promis-
ing results for our data. Similar versions of MCMC have been used for related problems
[71, 16, 21]. Briefly, MCMC is a way to draw samples from the posterior distribution of
matchings given the data. It does this by cleverly using a Markov chain whose stationary
distribution is the posterior distribution. In a sense, it is a smart random search with
convergence guarantees.

4.3.1 Metropolis-Hastings

The Metropolis-Hastings sampler [24, 29, 59, 58] (see Algorithm 1) is the most general
MCMC algorithm. The initial sample is a random matching or permutation. New samples
are obtained by conditionally sampling a new matching given the current one via a proposal
distribution q(ir' lrj). The new sample is accepted with probability proportional to the
relative likelihood of the new sample versus the current one. The likelihood of a matching is
proportional to the log probability of the corresponding transformations, which we compute
as -h(T). The acceptance probability has the form of an energy function:

exp[-(c(7r') - c(7r))]. (4.27)

It is easy to see that lower cost matchings are always accepted. In addition, high cost
matchings are accepted with exponentially decreasing probability. This is what differenti-
ates MCMC from simple greedy local search. By allowing movements to higher cost feasible
matchings, the algorithm gives itself a chance to explore more of the feasible set.

The algorithm repeats the sampling process for the desired number of samples. We
can compute I(X; Y,,) for each sample 7rj and take the average as the expected posterior
MI, or choose the maximally dependent sample. The algorithm is very simple and easy to
implement. The approximation improves with increasing number of samples at the cost of
more computation.

Indeed Metropolis-Hastings sampling is very generic and can be applied to other opti-
mization problems. It has roots in statistical mechanics especially with respect to simulating
Ising models [45]. The advantages of the algorithm are convergence guarantees based on
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Algorithm 1 Metropolis-Hastings
1: Initialize -ro; j = 0.
2: loop
3: Sample 7' from q(-.rj).
4: Sample U from U(O, 1).

5: Let a(y, 7r') = min (1 p ( ') q( '7rj 7 ' )

6: if U < ac(rj, 7') then
7: 7rj+1 -- .

8: else
9: 7rj = 7rj.

10: end if
11: j <- j + 1.
12: end loop

ergodic Markov Chain theory [24], and that the nonlinear matching constraints are always
explicitly satisfied.

4.3.2 Proposal Distribution

The key to the efficiency of an MCMC algorithm is the choice of proposal distribution.
Indeed, if the proposal distribution was the true posterior distribution, then clearly every
sample is accepted and we have already converged. In practice, it seems effective to use
proposals which make both local and more global changes. The local changes allow for fine
tuning while the more global ones help avoid local minima. As stated before, MCMC is
simply a more principled way of doing random search.

We use three different types of proposals for sampling matches:

1. Add,

2. Delete,

3. Swap.

Swapping matches is related to augmenting paths [67] used in algorithms for assignment
such as the Hungarian algorithm. For an xi, the idea is to choose a new match yj and check
if we violate the one-to-one constraints. If so, we look for a new match for the xi, which
was previously matched to yj. This process is repeated until either no match constraints
are violated or failure. If we fail, we can choose a different starting xi. This allows the
algorithm to sample a new matching with large changes in the matches.

The ability to add and delete matches enables matches to be swapped without generating
samples with highly improbable matches in the process. This might occur if we try to match
everything at once because even with augmenting paths, new samples are generated in a very
particular way. By allowing the number of matched objects to change, we effectively create
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opportunities for fine tuning the matching. Of course we must prevent convergence to no
matches at all. Furthermore our problem is formulated as matching all n observations. We
can handle this by considered non-matches as matching a missing corresponding observation.
In fact this will also enable us to deal with actual missing matches in real data. To make the
cost function non-degenerate, we impose a penalty for missing matches. This is equivalent
to setting these matches to some nominal probability. In summary, the proposals are simple
to implement and work well in our experience.

4.3.3 Simulated Annealing

In optimization uses of MCMC sampling, the method of simulated annealing [46] is often
used to speed up convergence and to avoid local minima. Once again the analogy is a
physical one of cooling of a metal. A temperature , is added to the energy function
resulting in

exp - (c(.r') -  c 0 . (4.28)

It is clear that starting at high temperature allows more transitions to higher cost matchings,
while at low temperature only transitions to matchings which improve the cost are allowed.
Essentially a tuning parameter is added to control the exploration of the feasible set. The
heuristic of early exploration and late exploitation seems to work well in practice. An
annealing schedule requires choosing an initial temperature and a rule for decreasing the
temperature. We use the standard exponential cooling scheme

l- k3, (4.29)

where 0 < k < 1. The initial temperature can be calibrated by choosing one that results in
a certain average probability of acceptance, such as 0.8. We have found that clamping the
temperature until a certain number of swaps have been made improves performance in our
problems.

4.3.4 Entropy Estimation

The MCMC sampler requires a likelihood given a matching. We have shown how this like-
lihood can be computed as the entropy of the transformation distribution. The differential
entropy of a random variable is defined as

h(T) = -E[logp(t)]. (4.30)

It is an average of the log probability of the samples, not their values as in simpler quantities
such as moments. Thus entropy cannot be calculated directly from samples as simply as
moments.

There are many ways to estimate the entropy given a sample [3]. Because entropy is a
function of the density, an approach to calculate it is to first estimate the density. Indeed
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all of the approaches do this, if only implicitly. The kernel density estimator [70] is a simple
way to estimate the density given samples. It is defined as

I( )n= - ti (4.31)
i=1

where a is the bandwidth, ( is the kernel, and ti, ..., tn are independent and identically dis-
tributed samples called centers. The Gaussian function makes a convenient kernel. Kernel
density estimators are simple yet flexible enough to model densities with multiple modes.
In addition they can clearly be fit easily to data.

We approximate the entropy as

h(T) = -E[logp(t)] - log (ti). (4.32)
i=1

Given a single set of samples, we use a leave-one-out estimate that evaluates the probability
of a sample using all other samples but itself. This gives an estimate with smaller bias.
The computation is O(n 2). In fact, the bandwidth a is optimized to minimize the entropy
which maximizes likelihood as previously shown.

For one-dimensional data we can use the faster m-spacings estimate [89]. The estimate
is

n-m

(t) - log( (zi+m - zi)) (4.33)
i=1

where zi are the order statistics for ti. The primary computation is sorting the data to
obtain order statistics, which is O(n log n). The spacings estimate implicitly uses a piecewise
uniform density estimate. This type of entropy estimator has been used in other problems
such as independent components analysis [51].

4.4 Missing Matches

As previously mentioned, real data often contains missing observations which results in
missing matches X and Y. For example, this can occur in a camera network if an object
is undetected in one camera or simply enters a building or does not transition to the other
camera at all. Thus some xi's may not have corresponding y,(i)'s. We consider missing
data as outliers, and model the distribution of transformations as a mixture of the true and
outlier distributions. To use the spacings estimate of entropy, we can minimize an upper
bound on the mixture entropy. Let pl = p(TIw = missing), P2 = p(Tlw = present) and
A = p(w = missing). The joint entropy can be written as,

h(T, w) = H(w) + h(TIw) (4.34)

= h(T) + H(wlT). (4.35)
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Thus,

h(T) = H(w) + h(Tlw) - H(w T) (4.36)

= H(A) + Ah(pl) + (1 - A)h(p 2 ) - H(w T) (4.37)

< H(A) + Ah(pi) + (1 - A)h(p 2 ) (4.38)

because H(wlT) > 0. Often a uniform outlier distribution is used both for simplicity and
because it makes minimal assumptions on the outlier distribution.

Recall that we wanted to compute the maximally dependent matching which was shown
to be NP-hard. Thus we used an MCMC algorithm with a proposal distribution that
added, deleted, and swapped matches. Essentially this gives us a guided random search or
local replacement algorithm. The Markov chain dynamics ensure convergence to the true
posterior distribution. Overall the algorithm is quite simple and easy to implement.

4.5 Non-overlapping Cameras

We now return to our motivating problem of matching in a network of non-overlapping
cameras described in chapter one. Recall that this problem is what led us to consider the
idea of maximally dependent matching. In this chapter we apply the general reasoning from
the previous chapters to our specific problem. An earlier version of our work is described
in [86].

Consider the problem of wide-area surveillance, such as traffic monitoring and activity
classification around critical assets (e.g. an embassy, a troop base, critical infrastructure
facilities such as oil depots, port facilities, airfield tarmacs). We want to monitor the flow of
movement in such a setting from a large number of cameras, typically with non-overlapping
fields of view. To coordinate observations in these distributed cameras, we need to know
the connectivity of movement between fields of view (i.e. when an object leaves one camera,
it is likely to appear in a small number of other cameras with some probability). A simple
example with two cameras imaging the upstream and downstream sections of a road is
shown in Figure 4-1. We want to infer that objects leaving the upstream view are likely
to transition to the downstream view. We also want to infer the distribution of transition
times between the two views.

In some instances, one can carefully site and calibrate the cameras so that the ob-
servations are more easily coordinated. However even with calibrated cameras, the depar-
ture/arrival locations, connectivity, and transition time distribution still have to be learned.
In many cases, cameras must be rapidly deployed and may not last for long periods of time.
Hence we seek a passive way of determining the topology of the camera network. That
is, we want to determine the structure of the set of cameras, and the typical transitions
between cameras, based on noisy observations of moving objects in the cameras.

Departure and arrival locations in each camera view are nodes in the network. An
arc between a departure node and an arrival node denotes connectivity (transition). We
want to infer both the topology (that is, which arcs exist) and the transition distribution.
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t
camera 1 (upstream) camera 2 (downstream)
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Figure 4-1: Upstream and downstream camera views of two portions of the same road.

For the example in Figure 4-1 we want to infer that the views are connected and estimate
the distribution of transition times. Simply put, we are given observations in a set of
non-overlapping cameras and must infer how the cameras are related to each other. The
problem can be viewed as system identification in that we are given only a myopic view of
the system, namely the inputs and outputs, and must infer the dynamics or inner workings.

4.5.1 Related Work

Previous work on tracking across multiple cameras generally either assumed known camera
topology or known correspondence. Methods which use assignment algorithms for tracking
across multiple cameras assume the transition models are known or fit them with hand-
labeled correspondences [33, 44, 38]. Other work for calibration also assume known corre-
spondence [20, 74].

Makris et al. [55] have tackled the problem of estimating a multi-camera topology
from observations. They assume a single mode transition distribution and exhaustively
search for the location of the mode. Their method assumes all departure and arrival pairs
within a time window are implicitly corresponding. The distribution of transition times
obtained from this correspondence is examined for a peak by thresholding based on the
mean and standard deviation. Essentially the correlation between arrival and departure
times is computed using a loose, implicit notion of correspondence. They show promising
results using this method.

Correlation is effective for monotonic relationships in general, but is not flexible enough
to handle multi-modal distributions. Makris and Ellis [55] have acknowledged this fact,
which can occur when both cars and pedestrians are part of the observations. Their ap-
proach essentially assumes a Gaussian transition distribution and implicit true correspon-
dences within a chosen time window. However for a given departure observation, the true
correspondence is a single arrival observation. So for all observations within a time win-
dow, the true and false correspondences generate a mixture of the true and false transition
distribution. The time window size and distribution of observations determines the number
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of false correspondences versus the single true correspondence. In general the more dense
the observations and the longer the transition time, the more false correspondences. Thus
their method suffers from assuming a unimodal transition distribution, and only implicitly
dealing with the matching problem.

Our method generalizes their approach to more flexible, multi-modal transition dis-
tributions, and explicitly handles the matching problem. This is accomplished by using
our information theoretic formulation of statistical dependence described in the previous
chapters. Our approach makes very few assumptions and does not require supervision.

4.5.2 Limitations of Correlation

Given two stochastic processes x(t) and y(t), the classic way to measure their dependence
is via the cross-correlation E[x(t)y(t - T)] (assuming zero mean processes). The strength
of dependence is proportional to correlation and the nature of dependence time lag 7 is
searched over some suitable range. The canonical example is a fixed linear dependence with
Gaussian noise. There are two major limitations of this approach. The first is that corre-
lation only correctly measures linear dependence, and at best can approximate monotonic
dependence. This leads to weak values of dependence when the nature of dependency is
nonlinear. For our application, arrivals may arrive out of order with respect to their depar-
ture times. This is a simple consequence of objects moving at different speeds, for example
vehicles versus pedestrians. In this case, there is no single time lag shared by all objects.
In addition, other transformations such as appearance change may be highly nonlinear.

The second limitation is not so much a property of correlation as to how it is usually
applied for problems such as ours. Arrivals and departures are more appropriately treated
as point processes or stochastic events on the time axis. In this case, rather than just
computing correlation strictly at a fixed time lag, a time lag window is chosen to calculate
p(y at t + h x at t). The window is used to sidestep sampling problems resulting from the
discretization of time and to smooth out values to combat the sparsity of data. The problem
is apparent when we look at this from the point of correspondence. Effectively, all arrivals
and departures with the time window are considered matching. We call this a pseudo-
matching. Already we see that this violates the natural one-to-one matching constraints of
a permutation of indices. We are thus hampered by a distorted measure of dependence and
less precise characterization of the nature of dependence.

Thus although correlation is simple and leads to simple algorithms, the formulation is
inherently limited and inappropriate for the matching problem at hand. Indeed we can
study how correlation performs in different situations. From the above discussion, the
resulting distribution of transformations obtained is a mixture of the true distribution from
a correct matching and the false distribution from incorrect matches:

p(6) = Api(6) + (1 - A)Po(6), (4.39)

where A is the proportion of true matches, and pl and po are the distributions of true and
false matches, respectively. Assuming linear dependence, correlation will perform well when
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A is close to one so that the pseudo-matching contains mostly true matches. This is the case
if objects for example all shared the same time lag and the time between arrivals/departures
is larger than the pseudo-matching time window. However, when the process is dense in
observations, within a time window, the pseudo-matching will consist of a single true match
and all other matches false. In addition if the time lag is large relative to the density
of observations, then this ratio of true to false matches worsens. More formally, a non-
parametric estimate of the densities is

p(6) = _-1(6 ) + n- o(6) .  (4.40)n n

This shows how either the number of matches in a time lag window has to be small, so
that n is small, or the distribution of true lags has to have very low entropy, so that P1(6)
has much larger values than Po(6). One way to visualize this is with the true distribution
being a narrow peak while the false distribution is low and wide, or nearly uniform. Note
that even when a strong enough dependence is detected, the nature of this distribution as
represented by the transformation distribution is almost always corrupted by false matches
except in the case when the time lag window is large enough to accommodate all true
matches, but the time between arrivals/departures is larger than this window. In contrast
our approach of directly searching for valid matchings while maximizing dependency avoids
these problems.

4.5.3 Camera Networks

Figure 4-1 shows two portions of a road that both vehicles and pedestrians move between.
The corresponding camera network is shown in Figure 4-2. Nodes are camera arrival and
departure locations while arcs represent the transition of objects locations. Each node can
also contain information about the camera such as arrival and departure rates. Associated
with an arc is information about how objects move from the source to destination node.
For example, in the simplest case, the arc encodes the distribution of transition times for
an object to move between the nodes. It can also encode other types of transformations
such as changes in appearance. Arcs within a camera are assumed known from tracking in
a single camera. We only assume that within a camera we can detect arrival and departure
locations. Note that two cameras can be considered connected if there exists some arc
between any of their respective nodes.

If we could identify the same object in different cameras (for example, using a license
plate reader or face recognition system), then learning the topology and transitions would be
easy. In practice, in wide-area surveillance, the matching between observations in different
cameras is difficult to obtain because cameras may be widely separated and the observations
may occupy only a few pixels. A key feature we can exploit is the time of arrival and
departure. It can be measured fairly accurately by tracking in individual cameras. Other
features such as image color can also be used.
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Figure 4-2: Camera network of Figure 4-1. Nodes correspond to arrival and departure
locations in the camera view. Within-camera arcs are known via within-camera tracking.

4.5.4 Problem Formulation

To infer the topology of a camera network, assume we have identified arrival and departure
locations and observations in each camera. For example, this can be done with a blob-based
tracker in each camera separately [80]. For each pair of cameras, we want to infer whether
they are connected and the distribution of transition times. Recall that this is made more
difficult because the matching between observations in different cameras is unknown.

Suppose we are given observations of departure Xl, .. , xn and arrival yi, .., yn times in

two connected cameras, respectively. Also, assume that the correspondence between the
observations is given by a permutation r of the indices such that (xi, y,(i)) is a corresponding
pair. We formalize this by writing

Y-r(i) = ti(xi), (4.41)

where the distribution of transformation ti is parameterized by 0.
For departure and arrival time observations X and Y, the transformation T is an ad-

ditive transition time between cameras: Y = X + T. Our formulation also captures other
transformations such as color variations between cameras. We will show this in the experi-
ments. Based on our formulation, both the strength and nature of dependence is determined
by the distribution of T. Basically T tells us how X and Y are related, and the randomness
in p(T) indicates strength of dependence. In particular, strong dependence means that
observations y are highly predictable given x. This will be reflected by low entropy in the
distribution of T. So the strength of statistical dependence measures how connected two
cameras are, and the nature of this dependency is encoded in the corresponding distribution
of transformations.

4.5.5 Optimization

The combinatorial nature of permutations makes computation by direct enumeration in-
tractable. We use the approximate MCMC algorithm described previously to find the maxi-
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mally dependent matching. These matchings give us correspondences between observations,
from which we can infer the strength and type of connectivity between cameras.

In-order Case

Assume, say for the non-overlapping camera network problem, the observations arrive in
order. In other words, (xi, yi) is the true match. Obviously this makes finding the true
matching trivial by simply matching in order. Now it may be the case that many of the
observations do in fact arrive in order although we do not know this in advance. Thus it is
useful to check that our method works in the simplest case.

If the in-order condition is met, then it must be the case that the maximum transition
time is smaller than the time between observations. Even if the true transition distribution
makes out-of-order possible, the fact that the data is in-order means that we can effectively
truncate the transition distribution to the one actually observed. Perhaps the simplest
transition distribution is a uniform U(O, a], where a is the maximum transition time. Then
we must have the time between observations b > a. A true match (xi, yi) will give transition
time

yi - xi < a, (4.42)

while a false match j , i will give

Yj - xi = xj + wj - xi (4.43)

> xj - zi (4.44)

> b. (4.45)

Clearly then false matches will increase the range of transition times, thereby increasing
the transition distribution entropy and decreasing mutual information and statistical depen-
dence. So for the simple in-order case, our optimization criterion gives the true matching.

Out-of-order Case

The general out-of-order case may occur if the time between observations can be smaller than
the maximum transition time. As previously noted, because of the complex dependency
between the samples and the entropy estimate, this case is difficult to analyze. It is possible
that given the true matching, we might be able to find some set of matches such that
swapping them would reduce the entropy. One way this can happen is to take true matches
which result in points at the tail of the transition distribution, and swap them so that
they fall closer to the mode of the distribution. This corresponds to a tightening of the
transition distribution that would tend to give an overly optimistic value of dependence.
Nevertheless it would preserve the form of the true distribution. Of course it is possible
that false matches can give rise to an entirely different distribution which has even lower
entropy.
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We can write the result of combining true and false matches as a, mixture

p(w) = Ap(w) + (1 - A)q(w), (4.46)

where 0 < A < 1 controls the relative proportions of true vs. false matches. By the convexity
of entropy, we have

h(p) > Ah(p) + (1 - A)h(q) (4.47)

> h(p) if h(q) > h(p). (4.48)

Thus if the distribution resulting from false matches has higher entropy than the true
distribution, then all is well and we are guaranteed to find the true matching. Otherwise
the generality of our approach might choose a false matching that exhibits higher statistical
dependency. Note that all of our analysis is asymptotic because n needs to be large for
the estimates to converge to their true values. We leave any finite sample size analysis for
future work.

4.5.6 Experiments

First, we show detailed results for a simulated and real road. In both cases, two cameras
are positioned at two non-overlapping portions of the road. Finally, we show results for a
simulated and real traffic network of cameras.

Simulated Road

To study the differences between our approach and previous work we simulated a data set of
100 points from a Poisson(0.1) departure process. The transition distribution is a mixture
of Gamma(16.67,0.33) and Gamma(266.67, 1.33). This generates a dense arrival process
and two transition time modes with different means and identical variance. Real objects
such as pedestrians and vehicles often exhibit this type of process.

Recall that the correlation method matches all observations within a transition time
window. These assumed correspondences are used to estimate the distribution of transition
times. Figure 4-3 shows the transition distributions estimated using the correlation method
with various time windows. The number of false correspondences causes the transition
distribution to differ greatly from the true distribution. It is difficult to choose a best
correlation time window. Also, correlation weakens with increasing distance between the
means of the mixture component distributions because it assumes unimodality. Although
the transition distribution has low entropy, correlation fails to capture this.

Figure 4-4 shows our approach on the same data. Although we do not recover the
transition distribution exactly, it is much closer in shape than the ones obtained from the
correlation method. The estimated MI of 2.47 is close to the true value of 2.12. In general
it is difficult to recover the true transition distribution, however our algorithm does find
distributions that are qualitatively similar in structure (multi-modal) and quantitatively
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Figure 4-3: Transition distributions obtained using correlation with different time windows
all fail to match the simulated multi-modal distribution (dashed plot). In addition, there is
no clear maximum peak indicating statistical dependence.
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similar in MI. Departure and arrival times alone may not be able to resolve the ambiguity
that can occur by correspondences which shift the modes of the transition distribution.

Single Road

Consider the two views shown in Figure 4-1 of upstream and downstream portions of the
same road. Cars and pedestrians passing through the scene will appear in one view and sub-
sequently in the other. We hand-labeled 100 matches in one day of tracking data obtained
from a blob-tracker [80]. The data also contained about 25% unmatched outliers.

Figure 4-5 shows the transition distributions estimated using the correlation method.
As in the case for the simulated data, correlation cannot accurately recover the multi-
modal nature of the transitions. The also results in a higher entropy distribution and
less statistical dependence. Figure 4-6 shows the results of our approach on this data.
Note how the number of matches changes rapidly initially but eventually converges. Our
recovered transition distribution matches the true distribution fairly well. The sharpness of
the posterior correspondences point to why we can recover the transition distribution fairly
accurately. Figure 4-7 shows a sample of the correspondences we obtain from our method.
In total, 86% of the matches were valid. This is using temporal information alone. As a
comparison, a naive approach which matches objects based on raw image appearance and
the Hungarian algorithm results in only 15% valid matches as shown in Figure 4-8.

Simulated Traffic Network

We built a traffic simulator to generate data for a simulated network of cameras at in-
tersections. The simulator was based on a real road network, and took into account real
traffic patterns and vehicle dynamics. An example network is shown in Figure 4-9. Nodes
represent traffic intersections with cameras, while arcs are roads. We simulated 1000 car
trips using shortest paths from start to end node with some noise in the path. Departure
and arrival times were recorded.

We computed MI for each pair of cameras. For each camera, edges with MI values above
a fixed percentage of all values were added. For a Markov chain X -- Y -- Z, the data pro-
cessing inequality guarantees I(X; Y) > I(X; Z) and I(Z; Y) > I(Z; X) [12]. Thus directly
connected cameras have higher statistical dependence (assuming roughly equal uncondi-

tional entropies). Examples of learned graphs based on different percentage thresholds are
shown in Figure 4-9. In our experiments greedy selection closely approximates the correct
topology.

Real Traffic Network

We obtained data from a real traffic network of five cameras. Examples of the tracked
vehicles in this network are shown in Figure 4-10. Once again we applied our method as
for the simulated traffic network. For this experiment we also added color transformations
from one camera to another. This is commonplace because cameras often have different
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Figure 4-8: Examples of objects matched by naive raw pixel appearance.
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Figure 4-11: (a) Matching color flow (b) Non- matching color flow

sensor responses. In addition, for wide area surveillance the lighting conditions for vary
dramatically across cameras. Color transformations are modeled as flows in RGB space,
Cy = Cx + ~c, for an RGB vector c. Figure 4-11 shows estimated color flows for a good
correspondence and an essentially random one. Note how the corresponding color flow is
essentially a brightening, while the non-corresponding one is less unstructured. The total
transformation entropy is the sum of the temporal and color transition entropies. In this
case we had greater difficulty inferring the camera transition topology. Many of the primary
transitions are recovered as shown in Figure 4-12. Each rectangle is a camera where each
corner of the rectangle represents an entry Iexit point. Weaker second order connections
also show up. We believe these difficulties are primarily caused by the lack of data. Many of
the links between cameras had only about 30 correspondences. In addition, accurate times
of departure and arrivals were only available at frame resolution.

We have described how to formulate the inference of camera network topology in terms
of maximally dependent matching. This method generalizes previous work by removing
restrictive assumptions and enables more complicated transition distributions between cam-
eras. We have shown results on both simulated and real data using the algorithm described
in the previous chapter.
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Figure 4-12: Links inferred for the real traffic network. Line thickness is proportional to
strength of statistical dependence. (a) low MI threshold (b) high MI threshold.
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4.6 Summary

We have analyzed the problem of estimating statistical dependence when the correspon-
dence or matching between observations is unknown. In particular we considered the case
of minimal restrictive assumptions where the distributions are unknown and non-parametric.
We proposed to find the matching that maximized the statistical dependency the resulting
data. In other words, we have a distribution-free matching problem. The corresponding
maximally dependent matching decision problem was shown to be NP-complete. Neverthe-
less, in the following chapter, we show how an approximate solution can be obtained via a
randomized algorithm.
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Conclusion

Estimation of statistical dependence is the key underlying task for problems which involve
learning the structure of probabilistic models. We have seen two demonstrations of this
for the problems of object interaction and matching. In object interaction, statistical de-
pendence arises as a natural, quantitative measure of interaction. In matching, statistical
dependence serves as an optimization criterion by which to judge the quality of a matching.
We have shown theoretically how this approach generalizes previous work and empirically
how it outperforms previous methods.

An advantage of formulating our problems in terms of statistical dependence estimation
is that we can leverage the large body of existing work on information theory and model
selection. The ideas from these fields allow us to view interaction and matching in terms of
statistical dependency structure and uncertainty in prediction.

Our primary goal has always been to simplify the motivating problems as much as
possible so that we could precisely formulate and analyze the underlying task. Although
abstracting has given us much insight into the problem, the practical application of these
ideas requires a move in the opposite direction. That is, studying more constrained models
will lead to more practical algorithms.

To recap, our primary contributions are two-fold:

1. Formulate object interaction in terms of dependency structure model selection,

(a) Analyze the relationship between Bayesian, information theoretic/geometric, and
classical methods for statistical dependence estimation,

(b) Empirical validation on simulated and real interaction data,

2. Formulate matching problem in terms of maximizing statistical dependence,

(a) Recast previous matching methods in our formulation,

(b) Prove intractability of exact maximally dependent matching,

(c) Generalize previous non-overlapping camera matching, and show improved re-
sults on simulated and real data.



CHAPTER 5. CONCLUSION

It is important to remember that our motivating applications are problems in discovery
and description, as opposed to simply recognition. We are given observed data and must
infer the model structure, which involves deciding the statistical dependency relationships
between RVs. Description is more difficult than recognition because the answer consists of
more information than simply a class label. In our case, the description is the dependency
structure of data.

5.1 Future Work

Estimating statistical dependency structure is not a new idea. We have applied it to different
problems and drawn explicit connections to model selection and information theory. We
believe that statistical dependence may also be useful in many other problems. Below we
discuss some of these avenues for future work.

In the object interaction problem, we have assumed that motion trajectories are given,
and remarked how accurate measurements of interacting trajectories are actually difficult
to acquire with current tracking technology. This is because interacting objects are often
close to each other and may occlude one another. One way to tackle these issues is to
retain our approach but start with the actual video data and infer both the trajectories and
interactions jointly. We expect that knowing that two objects are interacting should help
any tracking system reduce the uncertainty in predicting their states. Perhaps the simplest
way to expand our model is to consider the nodes currently in the causal dependency graphs
as hidden, and to add observation nodes for the video data. Although the corresponding
computations may be more involved with this type of all-encompassing model, the inference
should be more accurate.

Another extension of our object interaction model is to allow the interaction state to
vary over time. We expect that this occurs naturally, such as when two pedestrians start off
moving independently, then walk together, and finally move independently again. One way
to capture this type of process is with a hidden Markov model on top of the dependency
estimation [79].

For matching, one line of future work involves exploring the relationship between trans-
formations between matched objects and object similarity. These issues have been partially
explored in non-matching contexts [87, 62, 81, 61]. The matching problem can be viewed
as a search for most similar pairs if we regard the similarity between two observations
as a function of the probability of the transformation between them. For example, two
observations of the same object under different lighting conditions leads to a color transfor-
mation between them. We expect the true matching between observations to correspond
to a distribution of transformations that assigns high probability to the matched pairs.
Thus, optimizing for the matching may enable us to learn the natural similarity between
corresponding observations in two cameras or more generally two different settings.
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