
Long-Range Video Motion Estimation

using Point Trajectories

by

Peter Sand

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

July 2006

@ Massachusetts Institute of Technology 2006. All rights reserved.

A uthor...................
Department of Electrical Engineering and Computer Science

July 31, 2006

C ertified by
Seth Teller

Associate Professor
Thesis Supervisor

/2 /5 7S;

Accepted by..
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUI = f8_ IN6ST•-1E.
OF TECHNOLOGY

JAN 112007RIES

LIBRARIES
. i

AftH"SE

Long-Range Video Motion Estimation

using Point Trajectories

by

Peter Sand

Submitted to the Department of Electrical Engineering and Computer Science
on July 31, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis describes a new approach to video motion estimation, in which motion is repre-
sented using a set of particles. Each particle is an image point sample with a long-duration
trajectory and other properties. To optimize these particles, we measure point-based match-
ing along the particle trajectories and distortion between the particles. The resulting motion
representation is useful for a variety of applications and differs from optical flow, feature
tracking, and parametric or layer-based models. We demonstrate the algorithm on challeng-
ing real-world videos that include complex scene geometry, multiple types of occlusion,
regions with low texture, and non-rigid deformation.

Thesis Supervisor: Seth Teller
Title: Associate Professor

Acknowledgments

Thank you to Seth Teller for numerous suggestions and discussions. Many thanks to the

other members of the thesis committee, Bill Freeman and Berthold K.P. Horn, for their time

and feedback. Thank you to Matt Brand for discussions and support of early experiments

in long-range motion estimation. Thanks to Fredo Durand, Jovan Popovi6, Bryt Bradley,

Tom Buehler, and other members of the MIT Computer Graphics Group. Thank you also to

the faculty and students in Computer Vision and other areas of Computer Science. Thank

you to the staff of EECS and MIT. Thank you also to National Science Foundation for a

fellowship supporting this research.

I especially wish to acknowledge my father Paul Sand, mother Peggy Booth, and the

memory of Carl Sand.

Contents

1 Introduction

1.1 M otivation .

1.2 Design Goals and Assumptions

1.3 O verview .

2 Related Work

2.1 Optical Flow

2.1.1 Parametric and Semi-Parametric Optical Flow .

2.1.2 Variational Optical Flow

2.1.3 Multi-Frame Optical Flow

2.1.4 Occlusion Detection for Optical Flow

2.2 Other Motion Estimation Techniques

2.2.1 Stereo Reconstruction

2.2.2 Feature Tracking

2.2.3 3D Scene Reconstruction

2.2.4 World-Space Ambiguity and Uncertainty . . .

3 Variational Optical Flow

3.1 Overview .

3.2 Variational Flow Optimization

3.2.1 Objective Function

3.2.2 Objective Derivatives

3.2.3 Fixed-Point Scheme

25

........... 25

. 25

........... 26

. 27

. 28

. 29

........... 30

........... 30

. 3 1

. 32

35

........... 35

. 36

........... 37

........... 39

........... 40

3.3

3.4

3.5

Occlusion Detection

Bilateral Flow Filtering

Multi-Frame Optical Flow

3.5.1 Flow Concatenation and Refinement

3.5.2 Maintenance of Optical Flow Sets

4 Particle Video Algorithm

4.1 Top-Level Particle Video Algorithm

4.2 Particle Channels

4.3 Propagating Particles

4.4 Particle Links

4.5 Particle Optimization

4.5.1 Particle Objective Function

4.5.2 Constructing a Sparse Linear System

4.5.3 Fixed-Point Scheme

4.6 Pruning Particles

4.7 Adding Particles using Scale Maps

5 Interactive Selection of Video Regions

5.1 User Interface .

5.1.1 User-Painted Labels

5.1.2 Com positing

5.2 Hierarchical Particle Clustering

5.2.1 Particle Feature Vectors

5.2.2 Clustering the Particles

5.3 Foreground/Background Modelling using Clusters

5.3.1 Pixel Distributions

5.3.2 Particle Probabilities

5.4 Label Propagation using Particle Graph Cuts

5.5 Post Processing

5.5.1 Pixel M odels .

8

5.5.2 Boundary Graph Cut 75

5.6 Discussion 76

6 Evaluation 77

6.1 Visualization . 77

6.2 Evaluation M easures 78

6.3 Evaluation Videos 80

6.4 Particle Video Configurations 82

6.5 Evaluation Results and Discussion 83

6.6 Future W ork 86

6.6.1 Linking and Distortion 86

6.6.2 Particle Density 87

6.6.3 Theoretical Framework 88

6.6.4 Other Areas of Future Research 90

6.7 Conclusion . 90

List of Figures

1-1 The top images show a world-space feature that appears in the frames of a

video. This feature defines a trajectory through a video cube (a sequence

of video frames stacked such that time forms a third dimension). We can

view this trajectory in image coordinates (lower left) or spatio-temporal

coordinates (lower right) 20

1-2 Each diagram represents point correspondences between frames of a hypo-

thetical sequence. Feature tracking is temporally long-range and spatially

sparse. Optical flow is temporally short-range and spatially dense. Our

particle video representation is both temporally long-range and spatially

dense. 21

1-3 Each diagram shows optical flow fields between different frames (increas-

ing left-to-right). To find correspondences between frames A and B, the

frame-to-frame fields (red, top) can be concatenated, but this requires an

expensive refinement process to avoid drift. Alternately, correspondences

can be obtained from reference-frame flow fields (red, bottom), but these

do not provide information about regions that do not appear in the refer-

ence frame. In contrast, the particle video representation provides efficient

and complete long-range correspondences; we simply select the particles

that occur in common between the two frames. 24

3-1 A standard image pyramid uses a scale factor of 0.5 between each resolu-

tion level, whereas we use a scale factor of 0.9, improving the results at a

cost of increased computation. 36

3-2 We use five image channels for flow estimation: the image brightness,

green component minus red component, green component minus blue com-

ponent, x gradient, and y gradient 38

3-3 The local smoothness image modulates the smoothness term in the optical

flow objective function. The objective discourages flow discontinuities in

uniform image regions 39

3-4 In this diagram, the motion discontinuities (red) include occluding bound-

aries, disoccluding boundaries, and shear boundaries. The occluded region

is the set of pixels that are not visible in the subsequent frame. 44

3-5 Each flow field is generated between a video frame (left) and the subse-

quent video frame. The flow field is visualized (right) using hue to denote

flow direction and saturation to denote flow magnitude. The black regions

are labelled as occluded. 46

3-6 F(tl,t 2) denotes a flow field from frame tl to t2. To move the multi-frame

flow fields (top) forward by one frame, the algorithm computes a new flow

field F(t - I, t) that it appends (bottom) to each of the previously computed

flow fields. After concatenating the new flow field, each flow field is refined

(from its start frame to end frame) as described in Section 3.5.1. 48

4-1 Each plot denotes a pair of consecutive frames. The algorithm propagates

particles from one frame to the next according to the flow field, exclud-

ing particles (blue) that lie within the flow field's occluded region. The

algorithm then adds links (red curves), optimizes all particle positions, and

prunes particles with high error after optimization. Finally, the algorithm

inserts new particles (yellow) in gaps between existing particles. 49

4-2 The algorithm sweeps back and forth across the video to better model oc-

clusions. The top sweeping scheme involves four passes across the entire

video. The bottom sweeping scheme makes shorter passes as it progresses

forward. We compare these schemes in Chapter 6. 51

4-3 For each video frame, the algorithm computes a scale map that determines

the placement of new particles (Section 4.7). Links are added using a par-

ticle triangulation (Section 4.4). The left side shows an entire frame. The

right side shows a magnified portion of the frame. 52

4-4 Particles with similar trajectories are connected by strong links (lighter)

while particles with different trajectories are connected by weak links (darker).

The left side shows an entire frame. The right side shows a magnified por-

tion of the frame. 55

4-5 A pair of linked particles moving in the same direction (left) have a low

distortion energy while linked particles moving different directions (right)

have a high distortion energy. 58

4-6 The algorithm computes a set of blurred images (red) for a given color

channel (black). A pixel for which all of the images agree is considered a

large-scale pixel. If the images disagree, it is a smaller-scale pixel. 62

5-1 The user paints foreground (red) and background (blue) labels onto the

video. 65

5-2 A compositing specification describes how to create a new video by com-

bining and manipulating existing videos. The specification can include data

sources (yellow), data filters (green), and compositing operators (blue),

each with optional parameters 67

5-3 Each cluster is represented as a rectangle in this plot, colored according to

the mean color of the particles within the cluster. For the purpose of visu-

alization, the tree is truncated when a cluster has fewer than 100 particles

or is below 6 levels deep 69

5-4 Each cluster (top) is augmented with a bar that shows the fraction of fore-

ground pixels (red) vs. background pixels (blue). The clusters are used

to assign a foreground probability to each particle (Section 5.3). These

probabilities are spatially reconciled using a graph cut (Section 5.4). As

a post-process, the algorithm uses a per-pixel graph cut along the particle

assignment boundary to generate the final matte (Section 5.5). 71

5-5 The algorithm constructs a graph (top) with a node for each particle (white

circles) and special nodes denoting the foreground (red) and background

(blue). The foreground and background weights (red and blue curves) are

set according to the particle cluster models. Other edges (green) describe

the connection strength between particles. (Thicker lines denote stronger

weights in this hypothetical example.) The minimum cut through this graph

(black dashed line, bottom) corresponds to assigning each particle to the

foreground or background. 74

6-1 This space-time plot shows a single particle (green) near an occlusion bound-

ary and other particles linked to this particle. The linked particles are shown

only for frames in which the links are active. They are colored by link

weight; red indicates a high weight and gray indicates a low weight. 78

6-2 Each plot shows the fraction of surviving particles (yellow, right axis) and

mean distance (red, left axis) of these particles from their positions in the

start frame. The green lines denote concatenated flow vectors. As de-

scribed in Section 6.3, the videos are temporally mirrored, so we expect all

unoccluded particles to return to their start positions. 85

6-3 Each plot shows the fraction of surviving particles (yellow, right axis) and

mean distance (red, left axis) of these particles from their positions in the

start frame. The green lines denote concatenated flow vectors. As de-

scribed in Section 6.3, the videos are temporally mirrored, so we expect all

unoccluded particles to return to their start positions. 92

6-4 Each row shows a frame pair from one test video.

shown for particles in common between the frames.

6-5 Each row shows a frame pair from one test video.

shown for particles in common between the frames.

6-6 Each row shows a frame pair from one test video.

shown for particles in common between the frames.

6-7 Each row shows a frame pair from one test video.

shown for particles in common between the frames.

Correspondences are

Correspondences

Correspondences

Correspondences

List of Tables

3.1 For our experiments, we use these optical flow parameter settings. 45

6.1 The evaluation videos include various camera motions and object motions.

R denotes rotation and T denotes translation. 82

6.2 These parameter settings are used for the PVBaseline configuration. 83

6.3 For each configuration, we evaluate the algorithm on videos that are con-

structed to return to the start frame (Section 6.2). We report the mean

fraction of particles that survive to the end frame and the mean spatial dis-

tance between the each surviving particle's start and end frame positions.

We also report the mean particle count, mean particle length, and mean

per-frame running time. The running time does not include optical flow

computation; it is a pre-process shared by all the algorithms. All statistics

are averaged over the 20 videos described in Section 6.3. 84

6.4 For each configuration, we report the mean per-frame running time in sec-

onds. The Opt. time includes optimization overhead but not the execution

of the solver or the update of the energy values at the end of the opti-

mization (which are reported in their respective columns). The total time

includes some additional overhead, such as computing the adaptive scale

map factor (Section 4.7). 86

Chapter 1

Introduction

Video is typically represented as a sequence of images. When these images are obtained

from a camera observing the real world, they have substantial consistency and redundancy.

However, the relationships between the images are not captured explicitly. A video rep-

resentation consisting of a large number of pixel values does not adequately describe the

underlying processes that generate the pixels: geometry, motion, light, and reflectance.

Our goal is to take a step towards a content-aware video representation by finding cor-

respondences between video frames. This problem is typically addressed using feature

tracking [71] or optical flow [9]. Feature tracking follows a set of salient image points over

many frames, whereas optical flow estimates a dense vector field mapping one frame to

the next. Our goal is to combine these two approaches: to produce motion estimates that

are both spatially dense and temporally long-range (Figures 1-1 and 1-2). For any image

point, we would like to know where the corresponding scene point appears in all other

video frames (until the point leaves the field of view or becomes permanently occluded).

Our approach represents video motion using a set of particles that move through time.

Each particle denotes an interpolated image point sample, in contrast to a feature patch that

represents a neighborhood of pixels [71]. Particle density is adaptive, so that the algorithm

can model detailed motion with substantially fewer particles than pixels.

The algorithm optimizes particle trajectories using an objective function that combines

point-based image matching and inter-particle distortion. The algorithm extends and trun-

cates particle trajectories to model motion near occlusion boundaries.

Our contributions include posing the particle video problem, defining the particle video

representation, and presenting an algorithm for building particle videos. We provide a new

motion optimization scheme that combines variational techniques with an adaptive motion

representation. The algorithm uses weighted links between particles to implicitly represent

grouping, providing an alternative to discrete layer-based representations. We present a

complete application algorithm that demonstrates the use of particles for interactive video

manipulation.

Video Frames

y

x

y

2 3 4 5

Trajectory in Image Space Trajectory in Video Space

Figure 1-1: The top images show a world-space feature that appears in the frames of a
video. This feature defines a trajectory through a video cube (a sequence of video frames
stacked such that time forms a third dimension). We can view this trajectory in image
coordinates (lower left) or spatio-temporal coordinates (lower right).

1.1 Motivation

Finding pixel correspondences is a step toward a much larger goal of decomposing video

into physical components (geometry, motion, light, and reflectance). This kind of decom-

position has many applications in robotics, surveillance, and human-computer interaction.

As memory, bandwidth, and imaging electronics become cheaper, we have begun to find

cameras in more locations (cars, robots, offices, streets, cell phones, etc.). These cameras

20

y

Feature Tracking

y

Optical Flow

y

Particle Video

Figure 1-2: Each diagram represents point correspondences between frames of a hypothet-
ical sequence. Feature tracking is temporally long-range and spatially sparse. Optical flow
is temporally short-range and spatially dense. Our particle video representation is both
temporally long-range and spatially dense.

provide a flood of information, but for this information to be useful and manageable, it

should be properly decomposed.

Of the potential applications for this work, this thesis will focus on one class of appli-

cations: the manipulation of video for synthesizing new video. We would like to explore

how video correspondences facilitate manipulation of video content.

Examples of video manipulation include copying objects from one video to another, re-

moving objects, changing the timing of some video elements with respect to others, mod-

ifying reflectance, and stabilizing the camera viewpoints. Multiple observations of each

scene point can be combined for super-resolution [5,32,59,95], noise-removal [83,50, 10],

segmentation [23], and increased effective dynamic range [25, 46, 10]. The correspon-

dences can also improve the temporal coherence of image filters that operate indepen-

dently on each frame. Additionally, long-range motion estimation can simplify interactive

video manipulation, including matting [21, 52, 85], rotoscoping [1, 88], and object re-

moval [92, 77, 24].

With existing software, many of these tasks require substantial user interaction, due to

the redundant nature of standard video representations. When the user wants to make a

change, many corresponding changes must also be made. We seek to minimize this manual

intervention.

Nonetheless, we recognize that some manual intervention is required for creative deci-

sions. Video manipulation by definition requires some specification of how the video is to

21

be manipulated (how it is transformed from an input video to an output video). This in-

volves human interaction that could be as simple as picking a new viewpoint or as complex

as manually modifying the appearance, arrangement, and timing of numerous components

of the video.

We focus on creative video applications for a variety of reasons. The initial motivation

is a personal interest in artistic filmmaking. Applications in filmmaking provide challeng-

ing research problems that require solutions with a high standard of quality. People from

non-film backgrounds are attracted to these applications because of widespread exposure

to visual media such as films, music videos, and television commercials. A visual demon-

stration of an algorithm with visual inputs and visual outputs could also motivate people

to explore non-visual aspects of computer science. The proper manipulation of video can

create new imagery that is compelling to the human mind and visual system, yet could not

otherwise be observed.

1.2 Design Goals and Assumptions

The particle video problem can be described as dense feature tracking or long-range optical

flow. We want to track the trajectory of each pixel through a given video. Ideally each

trajectory would correspond to the motion of a physical real-world point (or surface patch).

Our primary goal is the ability to model complex motion and occlusion. We want the

algorithm to handle general video, which may include close-ups of people talking, hand-

held camera motion, multiple independently moving objects, textureless regions, narrow

fields of view, and complicated geometry (e.g. trees or office clutter).

A particle approach provides this kind of flexibility. Particles can represent compli-

cated geometry and motion because they are small; a particle's appearance will not change

as rapidly as the appearance of a large feature patch, and it is less likely to straddle an

occlusion boundary. Particles represent motion in a non-parametric manner; they do not

assume that the scene consists of planar or rigid components.

To avoid being ill-posed, flexible systems often need to be augmented with constraints,

which motivates another design decision: consistency is more important than correctness.

If the scene includes arbitrary deforming objects with inadequate texture, finding the true

motion may be hopeless. Typically, this problem is addressed with geometric assumptions

about scene rigidity and camera motion. Instead, we simply strive for consistency; for

example, that red pixels from one frame are matched with red pixels in another frame. For

many applications, this kind of consistency is sufficient (and certainly more useful than

outright failure due to non-uniqueness).

This flexibility in modelling complex motion can also be achieved by optical flow, but

the optical flow representation is best suited to successive pairs of frames, not to long

sequences (Figure 1-3). Frame-to-frame flow fields can be concatenated to obtain longer-

range correspondences, but the resulting multi-frame flow must be refined at each step to

avoid drift.

In contrast, the particle representation allows a form of random-access motion eval-

uation: given a set of particles, we can easily find correspondences between any pair of

frames (assuming the frames have a sufficient number of particles in common). Further-

more, unlike a sequence of motion fields, the particle representation provides discrete mo-

tion primitives, which are valuable for subsequent use of the motion information, as shown

in Chapter 5.

1.3 Overview

Chapter 2 describes related work in video motion estimation. We combine several of these

previous methods to create an optical flow algorithm described in Chapter 3. This algorithm

provides a starting point for our particle-based motion estimation.

The particle video algorithm is explained in Chapter 4, which describes how particles

are added, propagated, linked, optimized, and pruned. These steps are performed as the

algorithm sweeps back and forth across a video, constructing a complete particle represen-

tation of the video's motion.

Chapter 5 applies the particle video algorithm to a real-world problem: interactive se-

lection of time-varying video regions (for video matting, filtering, and other manipula-

tions). This application demonstrates the practical value of the particle approach in terms

Frame-to-Frame Motion

))))1))))
A

Reference Frame Motion

))

) -.- -.- -.- -. -.- -.- --, -'" -..
A B

Figure 1-3: Each diagram shows optical flow fields between different frames (increasing
left-to-right). To find correspondences between frames A and B, the frame-to-frame fields
(red, top) can be concatenated, but this requires an expensive refinement process to avoid
drift. Alternately, correspondences can be obtained from reference-frame flow fields (red,
bottom), but these do not provide information about regions that do not appear in the ref-
erence frame. In contrast, the particle video representation provides efficient and complete
long-range correspondences; we simply select the particles that occur in common between
the two frames.

of computational efficiency, algorithm design, and user interaction.

Chapter 6 provides an evaluation of the particle video algorithm on a variety of real-

world videos. We quantify the performance of the algorithm and possible alternatives.

We provide several mechanisms for visualizing the algorithm's results and measuring its

performance.

24

Chapter 2

Related Work

Finding correspondences between two or more images is one of the most studied subjects in

computer vision. The approach most closely related to our work is optical flow, as detailed

in Section 2.1. In Section 2.2 we describe other motion estimation problems, such as stereo

reconstruction, ego-motion estimation, feature tracking, and 3D scene reconstruction.

2.1 Optical Flow

Optical flow is the apparent motion between a pair of images [38, 9, 8]. The estimation

of optical flow is usually performed with coarse-to-fine optimization based on local image

gradients, using some form of regularization. The problem is difficult because of a lack of

constraints (i.e. the aperture problem) and insufficient spatiotemporal sampling, especially

near occlusion boundaries.

2.1.1 Parametric and Semi-Parametric Optical Flow

One way to overcome optical flow uncertainty is to assume that the motion can be captured

by a set of simple parametric models. Many of these approaches perform simultaneous esti-

mation and segmentation of image motion [70, 57, 84]. Some methods allow components to

spatially overlap, in order to model transparency and fragmented occlusion [44, 15, 41]. In

other cases, correspondences are refined by finding deviations (e.g. due to depth) from the

simple motion models [43, 34]. These methods can successfully identify multiple moving

objects, but typically produce poor object boundaries, because disjoint parametric models

do not adequately describe real-world motion.

Wills and Belongie [93] present a somewhat more sophisticated approach, in which a

layer-based flow algorithm is initialized using feature correspondences. This allows the

algorithm to find dense, long-range correspondences that model large deformations. The

algorithm addresses the case of two widely separated views, but does not provide a mech-

anism for finding correspondences over many views. It also focuses on scenes with simple

geometry (that can be described by a few coherent layers), whereas we hope to address

more complicated scenes.

2.1.2 Variational Optical Flow

Variational optical flow methods estimate dense motion fields using continuous differen-

tial objective functions. These functionals are equivalent to many of the energy functions

used by other flow algorithms (in fact, the original optical flow algorithm by Horn and

Schunck [38] is variational).

As computational power increases, more complex variational methods have become

feasible. Recent work includes higher-order data constancy constraints and robust data

penalty functions [89]. These methods use a variety of regularization terms, including

discontinuity-preserving smoothness (driven by image edges and/or flow edges) with an

assortment of robust penalty functions [90]. The algorithms also vary in the methods of

optimizing the functional, including different linearizations, multi-grid accelerations, and

linear system solvers [19, 89].

Brox et al. [18, 63] present a variational approach that provides a robust data term

and robust spatio-temporal regularization. They focus on mathematical methods for easing

the optimization without the overuse of approximation. Because the algorithm makes few

simplifications of its functional, the algorithm is highly successful, though computationally

expensive. As discussed in Section 2.1.4, the algorithm does not provide a good model of

occlusion boundaries.

2.1.3 Multi-Frame Optical Flow

Some methods make use of multiple frames, aiming to disambiguate motion boundaries

through additional data. When estimating motion over many frames, these methods may

be more computationally efficient than computing flow independently for each frame.

Most multi-frame optical flow methods rely on some form of temporal coherence as-

sumption [8]. Black and Anandan [13] use a basic temporal smoothness constraint as

part of a method that provides robustness in the data terms and spatial smoothness terms.

Black [14] subsequently presents a method that adapts to temporal disruptions. Chin et

al. [20] use an approximate Kalman filter to model temporal variations within a differential

flow estimation algorithm. Elad and Feuer [27] present a differential estimation technique

with decaying temporal constraints. Farnebaick [28] uses oriented structures in a spatiotem-

poral video volume as the basis for locally parametric flow estimation. Shi and Malik [70]

use multiple frames to aid the segmentation and estimation of distinct motions.

For real-world video sequences, the temporal smoothness assumption is often violated.

Some sharp motion changes (e.g. due to hand-held camera operation) can be reduced by

whole-frame stabilization algorithms. However, other fast motions (such as someone walk-

ing or talking) cannot be stabilized. These motions violate temporal smoothness assump-

tions because of the limited time-domain sampling found in most videos.

Flow rank methods provide a substantially different approach, with the advantage of not

relying on assumptions of spatial or temporal smoothness. Irani [40] shows that matrices of

flow components are geometrically restricted to lie in low-dimensional subspaces. Using

these constraints, she presents an algorithm to simultaneously estimate flow over multiple

frames. Brand [16] applies a similar approach to non-rigid scenes by describing deformable

objects as linear combinations of basis shapes. Unfortunately, these constraints are only

valid for weak perspective or short windows in time. Nonetheless rank constraints could

be incorporated into particle video estimation.

2.1.4 Occlusion Detection for Optical Flow

Occlusion modelling is the most difficult part of estimating optical flow. All optical flow

algorithms rely on spatial agglomeration of information, but this information may be mis-

interpreted when combined from both sides of an occlusion boundary. Furthermore, the

core assumption of most flow algorithms is that each pixel goes somewhere, when in fact

some pixels may disappear due to occlusions.

A common way of handling occlusion boundaries is robustness in the data and smooth-

ness terms [15, 18]. This robustness allows an algorithm to cope with assumption violations

that occur near flow discontinuities. In the data term, a robust distance function allows

occluded pixels to mismatch. In the smoothness term, a robust distance function allows

discontinuities in the flow field. Because of this robustness, these algorithms fail gracefully

near occlusion boundaries, but they still fail. Methods that use anisotropic regularization

(whether robust or not) [89, 8], similarly fail to model the process of occlusion.

Amiaz and Kiryati [3] use level sets (rather than standard regularization) to refine the

localization of the Brox et al. [18] occlusion boundaries. By defining an explicitly piece-

wise smooth objective, optimized as a post-process to the Brox et al. algorithm, the error

near the boundaries is reduced. However, the algorithm still does not account for pixels

that disappear.

Thompson [81] explores occlusion boundaries in more depth. He describes several of

the difficulties with traditional boundary handling. He argues that, even though flow esti-

mates are regularized, the underlying point estimates can be seriously corrupted near oc-

clusion boundaries, because they usually have some spatial extent. (Computing a derivative

always requires more than one pixel.) Also, he explains, if the boundary itself has good mo-

tion estimates, the maximal flow gradient will systematically mislocate the boundary to be

over the occluded surface. Thompson proceeds by presenting an algorithm that addresses

some of these problems. His algorithm explicitly identifies the direction of occlusion at

each boundary. The algorithm also uses flow and boundary projection based on assump-

tions of temporal continuity. The main limitation of Thompson's method is that it only

estimates motion at image edges, ignoring valuable but subtle image textures.

Zitnick et al. [96] estimate optical flow using correspondences between segmented im-

age regions. Like particles, these segments provide small, simple, discrete motion entities.

The algorithm estimates blending between segments in order to model mixed pixels at

occlusion boundaries. The segments provide well-defined occlusion boundaries between

objects of different colors, but the algorithm fails when motion boundaries do not coincide

with segment boundaries. Also, the algorithm does not account for segments that become

fully occluded.

Because occluded pixels violate a basic assumption of optical flow (that each pixel

goes somewhere), several methods attempt to identify occluded pixels explicitly. Silva

and Victor [73] use a pixel dissimilarity measure to detect brightness values that appear

or disappear over time. Alvarez et al. [2] present an algorithm that simultaneously com-

putes forward and reverse flow fields, labelling pixels as occluded where the two disagree.

Strecha et al. [75] treat occlusion labels as hidden variables in an EM optimization. In this

case, pixel value mismatches (rather than flow mismatches) are used to identify occlusions.

The occluded pixels modulate anisotropic regularization, such that flow values to do not

diffuse across occluded regions.

Xiao et al. [94] also use pixel value mismatches to detect occluded regions across which

flow diffusion is restricted. They regularize flow estimates using a bilateral filter that in-

corporates flow from neighboring pixels that are similar in motion and appearance and that

lie outside occluded regions. The resulting algorithm is relatively successful at identify-

ing occlusion boundaries and computing accurate flow on both sides of such boundaries.

We incorporate some elements of this bilateral filter into the flow algorithm described in

Chapter 3.

2.2 Other Motion Estimation Techniques

Other motion estimation algorithms also have elements in common with the algorithm

described in this thesis, including stereo reconstruction, feature tracking, estimation of

camera motion, and generalized 3D scene reconstruction.

2.2.1 Stereo Reconstruction

Stereo reconstruction is a special case of optical flow in which known camera poses limit

the pixel matching to a single direction along single dimension. Because the stereo problem

is easier than the optical flow problem, researchers place a greater emphasis on the accuracy

of the results, especially near occlusion boundaries. Recent stereo algorithms [45, 48, 69]

reduce the search for occlusion boundaries to a graph cut problem [31]. To further im-

prove occlusion handling, Kang et al. [45] use shifted matching windows and dynamically

selected subsets of multiple input frames.

The graph cut formulation is a limited case of a Markov Random Field [69]; each

pixel is given a probability of having each label and a conditional probability of having a

label given the labels of its neighbors. Unlike most graph-cut stereo algorithms, we avoid

representations based on discrete layers (instead using a weighted linking structure).

Both stereo and optical flow estimation present an issue of matching pixels. Pixels are

difficult to match because they are merely samples of the true image (samples produced by

integrating incoming light over small sensor regions). In the context of stereo, Birchfield

and Tomasi [12] overcome translation-induced pixel sampling artifacts by comparing a

pixel with a small neighborhood of pixels in another image. Szeliski and Scharstein [79]

provide several extensions to Birchfield and Tomasi's sampling insensitive dissimilarity

measure. Kutulakos [49] matches pixels within a given radius of an image location, in

order to obtain a degree of spatial invariance. Several stereo algorithms [78, 97] attempt

to model mixed foreground/background pixels at occlusion boundaries. In the future we

would like to explore these kinds of techniques for particle/pixel matching.

2.2.2 Feature Tracking

Like our particle video approach, feature tracking involves finding trajectories of scene

points as they move through a sequence of images. Unlike particles, these features are

selected to be distinctive textured patches. Most feature point selectors [35, 60, 71] choose

patches that have significant texture along more than one direction. Once the features

are selected, they are tracked from one frame to the next, using iterative gradient-based

registration [56, 6, 71].

Recent methods utilize more sophisticated feature detectors and descriptors that are

invariant to certain changes in viewpoint and illumination [17, 47, 29]. Tracking these

features may allow correspondences to be found over a wider range of viewpoints than our

current particle approach.

Like optical flow and stereo, feature tracking has difficulty with occlusion boundaries.

When a feature patch lies across two independently moving surfaces, the feature cannot

correctly follow both. For example, an algorithm may track what appears to be a 'T' junc-

tion, but which is in fact a pair of overlapping lines, neither of which is tracked correctly.

These kinds of errors can be detected using correlation error [71, 33] or geometric con-

straints such as the fundamental matrix [37]. Another alternative is to adjust the region of

support for a feature to fall one one side of the occlusion [68, 55].

2.2.3 3D Scene Reconstruction

Both stereo and optical flow use a small number of images and work in image-centric co-

ordinates. In contrast, scene reconstruction methods work in world coordinates and usually

use a larger number of images. Given a set of images of a scene from a number of view-

points, these reconstruction algorithms estimate the 3D geometry of the scene [65]. This

process typically proceeds by finding 3D coordinates of a set of distinctive image points

that are shared between the images, then interpolating these features using a 3D model that

fits the remaining observations.

When the viewpoints are too far apart for feature tracking, correspondences are matched

using geometric constraints. These methods start by finding salient points in each image

using the same feature detectors as used for feature tracking. Matches between feature

points are pruned using robust fitting methods (such as RANSAC [30]) with geometric

constraints [37]. Once correspondences are found, they are converted to 3D points using

methods such as bundle adjustment [37]. This process also produces a camera pose estimate

for each input image.

The 3D coordinates of the feature points provide some information about the scene

structure, but not a complete model. Many of the pixels still must be assigned 3D coor-

dinates, which can be performed using the stereo methods described in Section 2.2.1. For

simple architectural scenes, the model may be constructed from planar components [91].

These methods can produce good results in certain cases, but have difficulty with general

video, because of issues such as non-Lambertian reflectance, pixel matching, and geometric

ambiguities (both in camera motion and scene geometry).

2.2.4 World-Space Ambiguity and Uncertainty

Irani and Anandan [41] discuss the difficulty of camera motion estimation across transitions

between sequences with significant depth effects and sequences without significant depth

effects. The first case requires a 3D formulation, while the second is best suited to a 2D

formulation, due to a lack of 3D constraints. Motion estimation algorithms typically handle

the 2D case or the 3D case, but not both.

To cope with these issues, some methods explicitly model ambiguity and uncertainty

in the estimation of motion and structure. In this context, uncertainty arises from errant

inputs (e.g. due to sensor noise) while ambiguity is a fundamental geometric property that

can occur even with noiseless inputs.

The ambiguity and uncertainty of estimating fundamental matrices and other structure-

from-motion quantities can be characterized in terms of the uncertainty of the input corre-

spondences [58, 37]. Modelling pose uncertainty is also central to many localization and

mapping algorithms [51, 82].

Modelling pixel-level uncertainty arises in several methods for volumetric reconstruc-

tion. Bhotika et al. [11] describe a method for voxel reconstruction that uses a probabilistic

formulation of global occlusion dependencies, explicitly distinguishing and modelling both

uncertainty and abiguity. Kutulakos [49] handles different kinds of uncertainties: inaccu-

rate intrinsic calibration, inaccurate camera poses, and small movements of the subject.

Both of these methods are limited in their ability to reconstruct general scenes because

they assume Lambertian reflectance and use voxel-based representations of geometry.

One way to handle motion ambiguity in 3D reconstruction is to utilize more of the

provided information. "Direct methods" for camera motion estimation [39, 67, 72, 42, 61]

use all pixels in the image, rather than discrete image features. These algorithms typically

use the brightness constraint equation [38] to estimate camera motion directly, rather than

computing optical flow as an intermediate step. These methods may provide better camera

motion estimates, but will still have some trouble with narrow fields of view and a lack of

apparent depth.

World-space uncertainty is one motivation for basing our algorithm in image space.

Although world-space constraints are useful, the algorithm needs to be able to handle cases

in which they do not apply. In the future, particle video algorithms could incorporate both

geometric and photometric approaches to uncertainty. The algorithm could then represent

motion both in 2D and 3D, as levels of certainty permit.

Chapter 3

Variational Optical Flow

Our particle video algorithm uses frame-to-frame optical flow to provide an initial guess of

particle motion. The algorithm treats flow estimation as a black box that can be replaced

with an alternate flow algorithm. Rather than assuming temporal smoothness, we estimate

optical flow independently for each frame; this enables the algorithm to perform well on

hand-held video with moving objects.

3.1 Overview

Our optical flow algorithm uses a combination of the variational approach of Brox et

al. [18] and the bilateral filtering approach of Xiao et al. [94]. The algorithm optimizes

a flow field over a sequence of increasing resolutions. At each resolution, the algorithm

performs the following steps:

* optimize the flow field using a variational objective with robust data and smoothness

terms (Section 3.2),

* identify the occluded image regions using flow field divergence and pixel projection

difference (Section 3.3),

* and regularize the flow field using an occlusion-aware bilateral filter (Section 3.4).

The sequence of resolutions is obtained by recursively reducing the original resolution

by a factor rl. As shown in Figure 3-1, a standard image pyramid uses r7 = 0.5 whereas

we (following Brox et al. [18]) use a larger factor (11= 0.9) to obtain better results at a

cost of increased computation. We set a 0.05 lower bound on the scale factor, which results

in 29 resolution levels from a standard video frame; the smallest level is 36 by 24 pixels.

(We crop the video frame from 720x480 to 712x480 to remove boundary artifacts before

estimating flow.) After scaling the image, we filter it using a cr = I Gaussian kernel.

To handle large motions, we add an initialization step consisting of estimating whole-

frame translation. The algorithm uses the KLT [56, 6] gradient-based optimization to reg-

ister the frames, in a course-to-fine sequence of resolutions (with a factor of 2 scale change

between each resolution). At each step we perform 8 optimization iterations. The entire

process takes a fraction of a second for a full-resolution frame pair. The resulting whole-

frame translational offset is used to initialize the flow field at the lowest resolution level.

Scale Factor: 0.5 Scale Factor: 0.9

Figure 3- I: A standard image pyramid uses a scale factor of 0.5 between each resolution
level, whereas we use a scale factor of 0.9, improving the results at a cost of increased
computation.

3.2 Variational Flow Optimization

Our variational flow optimization is adapted from Brox et al. [18]. The approach has proved

successful because it makes relatively few simplifications of the functional.

36

3.2.1 Objective Function

Let u(x,y,t) and v(x,y, t) denote the components of an optical flow field that maps image

point I(x,y, t) to an image point in the next frame:

I(x + u(x,y,t),y + v(x,y,t),t + 1). (3.1)

Like many optical flow methods, the Brox et al. [18] objective function combines a data

term and smoothness term:

EFlow(U, V,t) = EFlowData(U, v,t) + EFlowSnooth (U, V, t). (3.2)

Although these terms are motivated as functionals, for clarity we give them in discrete

form, in which u and v are estimated at integer indices.

Data Term

In our algorithm, we replace the scalar-valued image I with a multi-channel image I[ki . We

also modulate the data term by a visibility term r(x,y, t) (described in Section 3.3):

El'lowDaia(u, v,t) = r(x,y,t)([Il[k](x + u(x,y,t),y + v(x,y,t),t + 1) -l[k](xyt)]2).
x,v,k

(3.3)

Here k is summed over image channels. We use the same robust norm as Brox et al. [18]:

yp(s 2)= s2 F2 ; E = 0.001. (3.4)

This function, a differentiable form of the absolute value function, does not respond as

strongly to outliers as the standard L2 norm.

The original Brox et al. [18] formulation analytically enforces constancy of the image

gradient (and optionally other linear differential operators [63]), whereas we simply treat

the gradient as another image channel. Specifically, we use image brightness I (range

[0, 255]), the green minus red color component, the green minus blue color component, and

the x and y derivatives of brightness (Ix and /y), as shown in Figure 3-2. We scale the color

difference channels by 0.25 to reduce the impact of color sampling/compression artifacts

common in video. These additional channels do not substantially increase the algorithm's

running time because they do not increase the number of terms in the sparse linear system

that consumes the majority of the computation.

Original Frame Brightness Channel Green - Red Channel

Green - Blue Channel x Gradient Channel y Gradient Channel

Figure 3-2: We use five image channels for flow estimation: the image brightness, green
component minus red component, green component minus blue component, x gradient, and
y gradient.

Smoothness Term

As in the Brox et al. [18] algorithm, the smoothness term measures the variation of the

flow field using the robust norm \fl. We modify the smoothness term to discourage flow

discontinuities at locations with small image gradients:

EFlOwS/IIOO1" (ll, v, t) =

[(ag + a, .b(x,y,t)) . \fI(ux(x,y,tf + uy(x,y, t)2 + vx(x,y,t)2 + vy(x,y,t)2). (3.5)
x,y

Here ag is a global smoothness factor (equivalent to the a parameter in the original Brox et

al. [18] formulation) and at is a local smoothness factor, which is modulated by the local

smoothness b(x,y,t) (Figure 3-3).

38

We compute local smoothness using a Gaussian prior on the image gradient:

(3.6)

Here N denotes a zero-mean non-normalized Gaussian. We set crb = 2, at = 15, and ug =

10, based on a variety of flow experiments.

Video Frame Smoothness Image

Figure 3-3: The local smoothness image modulates the smoothness term in the optical
flow objective function. The objective discourages flow discontinuities in uniform image
regions.

3.2.2 Objective Derivatives

To optimize the objective function (Equation 3.2), we construct a system of equations

across the image domain R:

{
aEFlow _ 0 aEFlow - 0 R}

au(x,y,t) - 'av(x,y,t) - Ix,yE .

For the data term, we define the following shorthand notation:

a [k]axI (x+u(x,y,t),y+v(x,y,t),t+ 1),

a [k]ayI (x+u(x,y,t),y+v(x,y,t),t+ 1),

I[k](x +u(x,y,t),y + v(x,y,t),t + 1) - I[k](x,y,t).

39

(3.7)

(3.8)

(3.9)

(3.10)

For the remainder of this section, we omit the k and t indexing. Also, for the remainder of

this section, we only compute the derivatives with respect to u, which are analogous to the

derivatives with respect to v.

The derivative of the kth channel of the data term is:

aEFlowData 2Y' (Z)Izlx . (3.11)
au(x,y)

Here I' is the derivative of Y with respect to its argument s2 .

The derivative of the smoothness term is:

aEF lcSmoot hEFlwSmth 2a(x,y) 'FlowSmoth (X,y) [ux(x,y) + uy(x,y)
Su (x, y)

- 2a(x + 1,y) -WFlowSmooth(X + 1,y). [U(X+ 1,y)]

- 2a(x,y+ 1) ~Y'FlowSmooth(x,y+ 1) [Uy(X,y+ 1)]. (3.12)

Here we define:

'FllowSmooth(X,y) = 'p(Ux(X,y)2 + Uy(X,y) 2 x(X,y) 2 + (X,y) 2), (3.13)

a(x,y) = (ag+ai•b(x,y)). (3.14)

In these equations, we discretize the partial derivatives of u and v:

ux(x,Y) - u(x,y)-u(x-1,y), (3.15)

Uy(X,y) = u(x,y)-u(x,y- 1). (3.16)

3.2.3 Fixed-Point Scheme

These derivatives do not immediately provide a linear system of equations. Rather than

directly linearizing the equations, Brox et al. [18] use a fixed-point optimization. (This is

actually a nested pair of fixed-point loops, where the outer loop consists of the coarse-to-

fine iterations described in Section 3. 1.)

At the current resolution level, the algorithm computes an update (du(x,y),dv(x,y))

that is added to the previous flow field to obtain a new flow field:

Unew(X,y)

Vnew(X,y)

- u(x,y) + du(x,y),

= v(x,y) +dv(x,y). (3.17)

We use these offsets as the basis of a data-term linearization that replaces I,:

Iz -* Ixdu + Ivdv + Iz. (3.18)

Iteration j of the fixed-point loop computes (duj+1,dvj +1) from (du ,dvj) (where duo

and dvo are set to 0). This provides a new data derivative:

iEFlowDataEFlowData 2PY'([Ixduj + Ivdv' +- Iz2). [Ixduj +l + ldvj +l + Iz]l.
au(x,y)

(3.19)

The smoothness derivative is:

4EFlowSmooth

au(x,y)

-[ux(x,y) + Uy(x,y) +dux(x,y)j'l +duy(x,y) j + ']

- 2a(x+ l,y) Y'FlowSmooth(X- 1,y) j

-[x (x + 1, y) + dux (x + 1,y) j+]

- 2ao(x,y + 1) · Y lowSmooth (X, y + 1)

-[uv (x,y + 1) +du,,y(x,y + 1) J+]. (3.20)

Here we define:

•FlowSmooth (X, y) = 'Y'([ux(x,y) +dux(x,y)j] 2 + [uy(x,y) + duy(x,y)j]2

+[vx(x,y) + dvx(x,y)]2 + [vy(x,y) + dvv(x,y)j]2).

(3.21)

The partial derivatives of du and dv are defined with finite differences in the same way as

_ 2a(xy) • IFFlowSmooth(x,y)

the derivatives of u and v (Equation 3.16).

Both the data and smoothness derivatives (Equations 3.19 and 3.20) are linear in duj +l

and dvj +l, so we can construct a sparse linear system. The linear system has two equa-

tions for each pixel of the image (for the derivatives with respect to u(x,y) and v(x,y)).

Each equation has seven terms; the equation for flow component u(x,y) has coefficients for

u(x,y), v(x,y), u(x+ 1,y), u(x - 1,y), u(x,y + 1), u(x,y - 1), and a constant term.

By default, we solve the system using the successive over-relaxation method (SOR) [7].

At a given resolution level, the algorithm makes 3 fixed-point steps, each consisting of 500

SOR iterations. We also provide the option of solving the system using the preconditioned

conjugate gradient technique [7].

3.3 Occlusion Detection

Handling occlusions is the most challenging aspect of building a particle video. It is also

the most challenging part of optical flow estimation, stereo reconstruction, feature tracking,

and motion estimation in general.

Rather than solving the problem purely with particles, we use optical flow estimation to

provide information about occlusions. Ideally, the flow estimates will be able to incorporate

subtle details of the surface being occluded, which are not necessarily captured by the

particles.

The Brox et al. [18] algorithm uses the robust distance function IP to handle occlusions.

As discussed in Chapter 2, using robustness to account for occlusion boundaries is not

ideal. Rather than properly modeling the physical behavior of the occlusion boundary,

the algorithm is simply allowed to fail (with a small penalty due to the robust distance

function). In practice, the Brox et al. [18] algorithm produces flow fields that incorrectly

push the occluded pixels along with the occluding object, because this produces a lower

objective value.

Like other approaches [73, 2, 75, 94], we model occlusion by explicitly labelling oc-

cluded pixels. Once the pixels are labelled, they can be excluded from the data term, rather

than incorrectly matched with non-occluded pixels. A flow field augmented with an occlu-

sion mask correctly models the fact that some pixels disappear.

Our algorithm uses a combination of flow divergence and pixel projection difference

to identify occluded pixels. The divergence of an optical flow field distinguishes between

different types of motion boundaries:

div(x,y,t) = ý-u(x,y, t) + .- v(x,y,t). (3.22)

The divergence is positive for disoccluding boundaries, negative for occluding boundaries,

and near zero for shear boundaries (Figure 3-4). To select occluding boundaries, but not

disoccluding boundaries, we define a one-sided divergence function d:

d(x,y,t) = div(x, y, t) div(x,y,t) < 0 (3.23)
0 otherwise.

Pixel projection difference provides another occlusion cue:

e(x,y,t) = I(x,y,t) - I(x + u(x,y,t),y + v(x,y,t),t + 1). (3.24)

We combine the one-sided divergence and pixel projection using zero-mean non-normalized

Gaussian priors:

r(x,y,t) = N(d(x,y,t);od) -N(e(x,y,t);Ce). (3.25)

The r(x, y, t) values are near zero for occluded pixels and near one for non-occluded pixels.

We set ad = 0.3 and oe = 20 based on experimental observation of occluded regions.

3.4 Bilateral Flow Filtering

Detecting occluded pixels is part of the occlusion modelling process, but we must still

handle the mixing of pixel properties across boundaries. This mixing occurs for all types

of motion boundaries: disocclusions, occlusions, and shear motions. To improve boundary

sharpness, we use a bilateral filter based on the work of Xiao et al. [94].

Xiao and colleagues motivate the approach by pointing out an equivalence between

Occluding
Boundary

Shear
Boundary

1

~
Object Motion

Shear
Boundary

Disoccluding
Boundary

/

Figure 3-4: In this diagram, the motion discontinuities (red) include occluding boundaries,
disoccluding boundaries, and shear boundaries. The occluded region is the set of pixels
that are not visible in the subsequent frame.

variational smoothness optimization and Gaussian filtering of the flow fields. Using this

observation, they replace traditional anisotropic regularization with a filter that better sep-

arates distinct motions.

The filter sets each flow vector to a weighted average of neighboring flow vectors:

(3.26)

The update for v is analogous. The algorithm weights the neighbors according to spatial

proximity, image similarity, motion similarity, and occlusion labelling:

N(V (x - xJ)2 + (y - y.)2;ox)

. N(I(x,y,t) -/(Xl,yl,t);O;)

. N(V(u -Ul)2 + (v- Vl)2;om)

. r(xl,Yl,t) (3.27)

Here u denotes u(x,y,t) and u\ denotes U(XI ,Yl ,t) (and v similarly). We set Ox =4, OJ = 7.5,

44

Variable Description Value Units Section
11 multi-resolution scale factor 0.9 N/A §3.1
0ag global smoothness factor 10 N/A §3.2.1
at local smoothness factor 15 N/A §3.2.1
Ob image gradient prior 2 pixel value gradient §3.2.1
ad flow divergence prior 0.3 flow gradient §3.3
Ge pixel mismatch prior 20 pixel values §3.3
ox bilateral filter size 4 image space §3.4
ai filter image difference 7.5 pixel values §3.4
a,,n filter motion difference 0.5 flow values §3.4
ag flow gradient filter 3 image space §3.4

Table 3.1: For our experiments, we use these optical flow parameter settings.

on = 0.5, and restrict (xl,yl) to lie within 10 pixels of (x,y).

This filter computes weights for a neighborhood of pixels around each pixel, so it is

quite computationally expensive. Thus, for efficiency, we apply the filter only near flow

boundaries, which we localize using the flow gradient magnitude:

g(x,y,t) = u(x,y,t) + u2(x,y,t) + v(x, y,t) v2(x, y,t) (3.28)

The algorithm filters g(x, y, t) using a spatial Gaussian kernel (ag - 3), producing a smoothed

gradient magnitude §g(x,y, t). Note that, unlike the divergence, this gradient magnitude is

large for all types of motion boundaries (occlusions, disocclusions, and shear boundaries).

We apply the bilateral filter (Equation 3.26) to pixels with g(x,y, t) > 0.25.

Table 3.1 summarizes the parameters for our complete optical flow algorithm. Figure 3-

5 shows flow fields generated by the algorithm.

3.5 Multi-Frame Optical Flow

Typically video is temporally undersampled, but in some cases the motion between frames

is too small to obtain clear information about occlusions (e.g. if the flow is on the scale

of a single pixel). To better handle occlusion boundaries, we provide a mechanism for

estimating flow over a range of different frame separations (not just between one frame and

Figure 3-5: Each flow field is generated between a video frame (left) and the subsequent
video frame. The flow field is visualized (right) using hue to denote flow direction and
saturation to denote flow magnitude. The black regions are labelled as occluded.

the next).

This is not used in the current implementation of the particle video algorithm, but it

could be incorporated in the future. For example, during the particle propagation step

(Section 4.3), the algorithm could use occlusion masks from flow fields of multiple different

frame separations.

Unlike some multi-frame flow algorithms, we do not assume temporal motion smooth-

ness. Instead, we concatenate and refine a sequence of individually estimated frame-to-

frame flow fields.

3.5.1 Flow Concatenation and Refinement

Given two flow fields (u I,v d and (U2, V2) we concatenate them to produce a new flow field

(U3, V3). The algorithm performs this concatenation using the first flow field to look up the

46

appropriate flow extension in the second field:

u3(X,y) l(x,y) +U2(X+l (x,y),y+ v(x,y)), (3.29)

V3(X,y) = V1(x,y)+ 2(X+U(x,y),+ VI(x,y)). (3.30)

The algorithm uses bilinear interpolation of the second flow field. We augment the first flow

field's occlusion mask with any pixels that are projected into the second field's occlusion

mask.

This concatenation may result in drift, which we reduce by refining the concatenated

flow field, using its start and end frame, ignoring the intermediate frames. This refinement

consists of running the optical flow algorithm (variational update, occlusion labelling, and

bilateral filtering) at the full image resolution. We do not refine the flow at lower resolutions

because this would discard any motion detail estimated in the original flow fields.

3.5.2 Maintenance of Optical Flow Sets

Let F(tl, t2) denote a flow field from frame tl to frame t2. For a given frame t, we construct

flow fields from a sequence of previous frames: {F(t - d, t) I d E [1, T]}.

For computational efficiency we reuse previous multi-frame flow estimates as we move

forward through a video. Suppose we have previously computed {F(t - d - 1, t - 1) I d E

[1, T]}. We then compute F(t - 1, t) and concatenate it onto each of the previously com-

puted flow fields, refining each one. This produces the desired set: {F (t - d, t) I d E [1, T]}.

The process is illustrated in Figure 3-6.

Frame Index
I I I

t
I I I I I

------ F(t - 7, t - 1)
---- F(t - 6, t - 1)

--- F(t - 5, t - 1)

-- F(t - 4, t - 1)

- F(t - 3, t - 1)
~ F(t - 2, t - 1)

Previous Flow Fields

Frame Index t
I I I I I I I I I I I I I

• • F(t - 7, t)

• • F(t - 6, t)

• • F(t - 5, t)

• • F(1- 4,/)

• • F(1 - 3, I)

• • F(1- 2, I)

~F(1 - 1,/)

Extended Flow Fields

Figure 3-6: F(/I ,(2) denotes a flow field from frame II to 12. To move the multi-frame flow
fields (top) forward by one frame, the algorithm computes a new flow field F(I - 1,1) that
itappends (bottom) to each of the previously computed flow fields.After concatenating the
new flow field,each flow field is refined (from itsstart frame to end frame) as described in
Section 3.5.1.

48

Chapter 4

Particle Video Algorithm

A particle video is a video and corresponding set of particles. Particle i has a time-varying

position (Xi(t),Yi(t)) that is defined between the particle's start and end frames. (Each

particle has its own start time and end time.)

Propagate
(Section 4.3)

Link
(Section 4.4)

Optimize
(Section 4.5)

Prune
(Section 4.6)

Add
(Section 4.7)

Figure 4-1: Each plot denotes a pair of consecutive frames. The algorithm propagates
particles from one frame to the next according to the flow field, excluding particles (blue)
that lie within the flow field's occluded region. The algorithm then adds links (red curves),
optimizes all particle positions, and prunes particles with high error after optimization.
Finally, the algorithm inserts new particles (yellow) in gaps between existing particles.

49

4.1 Top-Level Particle Video Algorithm

Our algorithm builds a particle video by moving forward and backward across the video,

as illustrated in Figure 4-2. Moving backwards, occlusion boundaries become disocclusion

boundaries, which are easier to interpret than occlusion boundaries. By moving through

the video in both direction, new particles can be extended in both directions.

For each processed frame, the following steps are performed (Figure 4-1):

* Propagation. Particles terminating in an adjacent frame are extended into the current

frame according to the forward and reverse flow fields (Section 4.3).

* Linking. Particle links are updated (Section 4.4).

* Optimization. Particle positions are optimized (Section 4.5).

* Pruning. Particles with high post-optimization error are pruned (Section 4.6).

* Addition. New particles are added in gaps between existing particles (Section 4.7).

To reduce computation, the algorithm maintains a cache of information for each video

frame. This cache includes the frame itself, color and gradient channels (and gradients

thereof), a scale map (Section 4.7), forward flow (and its gradient magnitude), and reverse

flow.

4.2 Particle Channels

We use the same 5 channels used for flow estimation (Chapter 3): image brightness, green

minus red channel, green minus blue channel, x gradient, and y gradient. As before, k

denotes the channel index; at time t the kth image channel is I[k] (t).

The color and gradient channels are moderately insensitive to changes in lighting and

reflectance, which facilitates matching a particle with a temporally distant frame. However,

these channels depend on a wider spatial area of support, which may cause mismatches for

particles near occlusion boundaries. (The gradient is computed using multiple pixels and

the color channel has a low spatial resolution due to common video color compression.)

Frame Index

1

2

S3

4

Frame Index

0
s-

1

2

3

4

5
6

7

8

Figure 4-2: The algorithm sweeps back and forth across the video to better model occlu-
sions. The top sweeping scheme involves four passes across the entire video. The bot-
tom sweeping scheme makes shorter passes as it progresses forward. We compare these
schemes in Chapter 6.

To address this, we disable the gradient and color channels near occlusion bound-

aries, as determined by the filtered flow gradient magnitude g(x,y,t) (Section 3.4). When

g(xi(t),yi(t), t) > 0.01, the particle is probably near a flow boundary, so we exclude all but

brightness channel, because the other channels may be influenced by pixels on the other

side of the boundary.

We scale the gradient and color channels by a factor of 0.1 to reduce the effects of noise

in these channels. In our experiments, we find that these channels provide only a small

benefit. For the sake of simplicity, others may choose to omit these channels.

.,

Scale Map

Links

Figure 4-3: For each video frame, the algorithm computes a scale map that determines
the placement of new particles (Section 4.7). Links are added using a particle triangulation
(Section 4.4). The left side shows an entire frame. The right side shows a magnified portion
of the frame.

52

4.3 Propagating Particles

When propagating particles to a given frame, all particles defined in adjacent frames, but

not defined in the given frame, are placed in the frame according to the flow fields between

the frames. To propagate particle i from frame t - I to t, we use the flow field u(x, y, t -

1), v(xy, t - 1):

Xi(t) = xi(t- l)+u(xi(t- 1),yi(t- 1),t- 1), (4.1)

yi(t) = yi(t - 1) + v(xi(t - 1),yi(t - 1),t - 1). (4.2)

Backward propagation from frame t + 1 to t is defined analogously. (When making the

first forward pass through the video, there are no particles to propagate backward.) If the

optical flow field indicates that a particle becomes occluded, the particle is not propagated.

4.4 Particle Links

To quantify relative particle motion, our algorithm creates links between particles using

a constrained Delaunay triangulation [54] (Figure 4-4). The triangulation ensures a good

directional distribution of links for each particle. This is preferable to simply linking each

particle to its N nearest neighbors (which could all be in one direction from a given parti-

cle).

For any given frame, we create a particle link if the corresponding triangulation edge

exists for the frame or an adjacent frame. Using links from adjacent frames reduces tem-

poral linking variability, while still allowing links to appear and disappear as particles pass

by one another.

The algorithm assigns a weight to each link based on the difference between the tra-

jectories of the linked particles. If the particles have similar trajectories, they are probably

part of the same surface, and thus should be strongly linked. If the particles are separated

by an occlusion boundary, the weight should be near zero.

The algorithm computes the mean squared motion difference between particles i and j

over the set T of frames in which the link is defined: :

D(i, j) = _ (ui(t) - Uj(t))2 ((t) - Vj(t)) 2 . (4.3)

Here we let ui(t) = xi(t) - xi(t - 1) and vi(t) = yi(t) - yi(t - 1). The algorithm computes

the link weight using a zero-mean Gaussian prior (ol = 1):

lij = N(vD(i, j); (l). (4.4)

Link weights are illustrated in Figure 4-4.

4.5 Particle Optimization

The core of the particle video algorithm is an optimization process that repositions particles.

As described in Section 4.3, a flow field provides an initial location for each particle in a

given frame; the optimization refines these positions.

For a given particle, this optimization can modify the particle's position in any frame

except for the frame in which the particle was first added. This original frame defines the

particle's reference position. (The original frame will be different from the particle's start

frame if it was propagated backward from the original frame.)

4.5.1 Particle Objective Function

The algorithm repositions particles to locally minimize an objective function that includes

two components for each particle: a data term and a distortion term. This objective func-

tion has some similarities to the variational flow functionals described in Chapter 3, but it

operates just on the particles, not the full set of pixels.

The energy of particle i in frame t is:

E(i,t) = -Et j (i,t) + a EDistort(i,j,t). (4.5)
kEKi(t) jeLi(t)

Links

Optical Flow

Link Weights

Figure 4-4: Particles with similar trajectories are connected by strong links (lighter) while
particles with different trajectories are connected by weak links (darker). The left side
shows an entire frame. The right side shows a magnified portion of the frame.

Here Ki(t) denotes the set of active channels (Section 4.2), and Li(t) denotes the set of

particles linked to particle i in frame t. We find that a = 1.5 provides a reasonable trade-off

between the two terms.

Given a set P of particle indices and a set F of frame indices, the complete objective

55

function is:

E= = E(i,t). (4.6)
teF,iEP

Data Energy

The data term measures how well a particle's appearance (Section 4.2) matches the video

frames. We allow particle appearance to change slowly over time, to cope with non-

Lambertian reflectance and changes in scale. For particle i at time t the kth channel of

the particle's appearance is:

Clk (t) I [k] (Xi (t),yi(t),t). (4.7)

Using a Gaussian kernel (ac = 8), we filter these appearance values along the time axis,

producing a slowly-varying appearance denoted by c^k] (t). For a given frame, the data term

measures the difference between the observed appearance and filtered appearance:

,ata (i, t) = (Ck] (t) _ k] (t)]2). (4.8)

Here Y is the robust norm described in Section 3.2.1. Although we assume temporal ap-

pearance smoothness, we do not assume temporal motion smoothness. The data term sug-

gests that a particle's appearance changes slowly, but does not depend on the smoothness

of the particle trajectory.

Distortion Energy

The distortion term measures the relative motion of linked particles. If two linked particles

move in different directions, they will have a larger distortion term. If they move in the

same direction, they will have a smaller distortion term (Figure 4-5).

The distortion term is defined between a pair of linked particles i and j. As before, we

let ui(t) = Xi(t) - Xi(t - 1) and vi(t) = yi(t) - yi(t - 1). The larger the difference between

these motion values, the larger the distortion term:

E[istort (i, j,t) - lij}P([ui(t) - uj(t)]2 + [Vi(t) - Vj(t)] 2). (4.9)

Note that this is symmetric: EDistort (i, j, t) = EDistort(j, i, t).

The distortion term is modulated by the link weight lij so that a link across an occlusion

boundary (i.e. a low-weight link) is allowed greater distortion for an equivalent penalty.

Both the link weights and distortion term measure the relative motion of particles, but the

link weights take into account entire particle trajectories whereas the distortion term refers

to a single frame. By modulating the distortion term using the link weights, the algorithm

encourages particles that have moved together to continue moving together in the current

frame, while particles that have moved differently are allowed to move differently in the

current frame.

Note that the distortion term (like the data term) does not require or encourage temporal

motion smoothness. It measures the relative motion of particles, so the global motion does

not need to be smooth (the camera motion can be unstable).

The distortion term resists incorrect motions caused by the data term, especially near

occlusion boundaries. In the case that a particle is being occluded (but is not pruned by an

occlusion mask), the data term may push the particle into an unoccluded part of the back-

ground surface (unless the particle happens to better match the foreground surface). Also,

the flow field may incorrectly push or pull background pixels along with the foreground

surface. In both cases, a strong distortion term will improve the correctness of the particle

motion.

However, the distortion term cannot be too strong, because this rigidity would prevent

certain correct motions, such as those caused by changes in viewpoint or non-rigid ob-

ject deformation. This tradeoff can be modulated by adjusting the distortion factor a in

Equation 4.5.

xi(t-
•x

i (t)

xj(tI l)• xJ (t)
x (t-1) x(t)

Low Distortion High Distortion

Figure 4-5: A pair of linked particles moving in the same direction (left) have a low distor-
tion energy while linked particles moving different directions (right) have a high distortion
energy.

4.5.2 Constructing a Sparse Linear System

The algorithm optimizes Equation 4.6 in a manner similar to the variational technique

described in Chapter 3, using a fixed-point loop around a sparse linear system solver. In

this section, we describe the construction of this sparse linear system. In Section 4.5.3 we

provide the complete optimization algorithm.

Within the objective function E, we substitute dxi(t) -+ xi(t) for xi(t) (and instances

of y accordingly). Taking partial derivatives, we obtain a system of equations, which the

algorithm solves for dxi(t) and dyi(t):

i BE BOE =IEPFadxi(t) = dyi(t)
(4.10)

The dxi(t) and dyi(t) values produced by solving this system are added to the current

particle positions (xi(t) and yi(t)).

Data Derivative

For the data term, we use the image linearization from Brox et al. [18]:

[k]

EData (i, t)
adxi(t)

- !!k]dxi(t) + +lk]dyi(t) + I[k] _ k]l

2 2V'([Ik]]2)(k] k) Lkl

(4.11)

(4.12)

Here we omit the (xi(t),yi(t),t) indexing of I, Ix, Iv, and Iz. (Ix and Iv are the spatial

derivatives of I.) Y' is the derivative of Tp with respect to its argument s2. Note that this

linearization occurs inside the fixed-point loop; the algorithm is still optimizing the original

non-linearized objective function.

Distortion Derivative

For the distortion term, we use dui(t) as shorthand for dxi(t) - dxi(t - 1) and dvi(t) for

dyi(t) - dyi(t - I). This gives the following partial derivative:

JE lijstort (i, j, t)dxi(t) 21ij(t)WDistort(i, jt)(ui(t) +dui(t) -uj(t) -duj(t)). (4.13)

Here we define:

listort(i, j, t) =

YU'([ui(t) - dui(t) - uj(t) - duj(t)12 + [Vi(t) + dvi(t) - vj(t) - dvj(t)]2).

(4.14)

The dxi(t) variable also appears in the term for link i, j at time t + 1:

aE)istort(i,j,t + 1)

adxi (t)
-2lij(t + 1) YU'(i, j, t + 1)(ui(t + 1) + dui(t + 1) - uj(t + 1) - duj (t + 1)).

(4.15)

The dxi(t) variable also appears in the terms for particle j at times t and t + 1. These

derivatives are identical (since the terms are identical via the i, j symmetry of the distortion

energy), so we add an extra factor of two to the distortion derivatives.

4.5.3 Fixed-Point Scheme

Like the variational flow algorithm described in Chapter 3, the particle optimization itera-

tively solves for updates to the particle positions:

Loop until convergence

dxi(t),dyi(t) +-0

Solve system for dxi(t), dyi(t)

xi(t) -- Xi(t) + dxi(t)

yi(t) -- yi(t) + dyi(t)

End Loop

In our implementation, the loop terminates when the mean change in position is less

than 0.005 (with an upper bound of 10 iterations). The linear system solver performs 200

iterations inside each of the loop iterations. These numbers control the tradeoff between

accuracy and running time. Fortunately, because the optimization is performed only on the

particles (not on every pixel), the process is relatively fast.

The algorithm uses a pair of integer matrices to keep track of which sparse system

variables correspond to which particles. One matrix maps variable indices to (i, t) pairs.

The other maps (i, t) to variable indices.

The solver uses the SOR algorithm [7], with some conditioning and smoothing to make

sure the optimization does not become unstable. We limit |dxi(t) and Idyi(t) to be less

than 2 pixels for each step.

4.6 Pruning Particles

After optimizing the particles, we prune particles that continue to have high energy val-

ues. These particles have high distortion and/or a large appearance mismatch, indicating

possible occlusion.

As defined in Section 4.5.1, E(i,t) denotes the objective function value of particle i in

frame t. To reduce the impact of a single bad frame, we filter each particle's energy values

using a Gaussian (ao = 1 frames). (Note: this Gaussian is not strictly temporal; it filters the

values for the given particle, which is moving through image space.) If in any frame the

filtered energy value is greater than 6 = 10, the particle is deactivated in that frame.

4.7 Adding Particles using Scale Maps

After optimization and pruning, the algorithm adds new particles in gaps between existing

particles. The algorithm arranges for higher particle density in regions of greater visual

complexity, in order to model complex motions. (Motion complexity often implies visual

complexity, though the reverse is not generally true.)

To add new particles to a given frame, the algorithm determines a scale value s(x,y)

for each pixel. The scale values are discrete, taken from the set {G(j) = 1.9j I0 < j < 5}.

To compute the scale map, we start by filtering the image using a Gaussian kernel for each

scale G(j), producing a set of images {I }.

Then, for each pixel, we find the range of scales over which the blurred pixel value

does not change substantially. If the pixel has the same color in a large scale image as in

all smaller scale images, it is a large scale pixel (Figure 4-6). Specifically, the algorithm

chooses the maximum scale index k(x,y) such that Ill(x,y)- Ii(x,y) 12 < 6, for all j <

k(x,y). (Here we use (r, g, b) vector distance when comparing pixel values.)

These scale indices are filtered with a spatial Gaussian (sT = 2), producing a blurred

scale index map k(x, y) (which we round to integer values). We then set the scale values

from the indices: s(x,y) = o(k(x,y)). Figure 4-3 provides an example scale map.

Given the scale map, we iterate over the image adding particles. For each pixel, if the

distance to the nearest particle is greater than s(x,y), we add a particle at that pixel. The

algorithm does this efficiently in time (linear in the number of particles) by creating an

occupancy map at each scale.

The same process is used to position all particles in the first video frame. For the first

video frame, the algorithm adaptively sets the 8s parameter that controls the creation of the

scale map. The parameter is initially set to 10, then adjusted up and down until the number

of created particles falls between 8000 and 12000. The same is is used for the remainder

of the video.

100

o
o Position

Large-Scale Pixel

~

200

Figure 4-6: The algorithm computes a set of blurred images (red) for a given color channel
(black). A pixel for which all of the images agree is considered a large-scale pixel. If the
images disagree, it is a smaller-scale pixel.

62

Chapter 5

Interactive Selection of Video Regions

In this chapter, we focus on one application of the particle video algorithm: interactively

selecting part of a video. The goal is to identify the pixels belonging to a particular object,

person, or surface in the video, as specified by a human operator. The result is a time-

varying spatial mask (or matte), identifying a subset of pixels in each video frame.

This single application has a wide variety of uses. The selected region can be re-

moved from the video and composited into another video (as one could do via chroma-

keying 174] using a blue or green background). Alternatively, the brightness, color balance,

focus/sharpness, or other properties of the region can be modified (to improve the aesthetic

impact of a video shot). Another application is painting onto the video; the selected region

can guide the movement of paint strokes that the user applies to objects in the video.

Ideally, the user could manipulate video as easily as a photo in Photoshop [26]. Existing

software takes steps toward this goal by using optical flow between key-frames. However,

to be successful, this often requires a large number of key-frames. Our particle video repre-

sentation reduces the user's workload via long-range tracking of video elements, allowing

the user to achieve the same goal with substantially fewer key-frames. This goal, manipu-

lating videos as easily as images, is a major target of visual effects research. The ultimate

goal is not only to minimize the user's work, but also to increase the range of possible

creative choices.

Our approach is similar to methods previously developed for image matting. Chuang et

al. [22] introduce the Bayesian matting technique, which uses foreground and background

color density models to obtain high-quality mattes of mixed pixels. Sun et al. [76] present

poisson matting, a gradient-based approach to the same problem. The foreground and

background color models have been combined with a graph-cut [31] segmentation to create

more efficient and powerful image matting algorithms [53, 66, 86]. These methods reduce

the required amount of user input.

These image matting techniques have also been extended to video. Apostoloff and

Fitzgibbon [4] apply the Bayesian matting approach to video. Chuang et al. [21] present

a similar approach using optical flow between labeled key-frames. Agarwala et al. [1]

optimize key-framed curves to track video boundaries. Li et al. [52] use tracking to improve

a graph-cut video matting algorithm. Wang et al. [85] present another graph-cut video

matting algorithm that improves efficiency by using a spatiotemporal hierarchical mean-

shift segmentation [23].

The remainder of this chapter presents our approach to the video matting and region

selection problem. In Section 5.1 we describe the algorithm's user interface. Section 5.2

presents a method for particle clustering that we use as a pre-process for interactive la-

belling. Section 5.3 describes how interactive labelling uses the clustering to estimate

foreground/background probabilities for each particle. These probabilities are spatially

reconciled using graph cuts, as described in Section 5.4. After the interactive labelling

is complete, a post process produces the final foreground/background assignment, as de-

scribed in Section 5.5. Section 5.6 discusses future directions for this work.

5.1 User Interface

The algorithm's interface allows the user to provide information about what region of the

video should be selected. For brevity, we refer to the object or region being selected as the

foreground and the rest of the video as the background; despite this terminology, we do not

assume any depth ordering (the selected object could be the furthest from the camera). We

use the term label to refer to user-provided foreground/background designations and the

term assignment for computed foreground/background designations (which are estimated

with the help of the user's labels).

5.1.1 User-Painted Labels

The user interacts with the algorithm by painting foreground and background labels onto

the video, as shown in Figure 5-1. The user can erase these labels, reverting the pixels to

an unlabeled state. (Initially all pixels are unlabeled.) Standard painting mechanisms are

provided, such as setting the brush size and performing flood fills.

The algorithm uses the labeled pixels as training data for a model that classifies the other

pixels (as described in Sections 5.3 and 5.5). As the user draws the labels, the algorithm

dynamically re-computes and re-displays the foreground/background assignment. This al-

lows the user to quickly correct the algorithm's mistakes and to see where the algorithm is

successful (and thus does not need more information). The user is free to paint labels scat-

tered throughout the video; the algorithm does not require any completely labeled frames

or any particular spatiotemporal arrangement of the labels.

The user can adjust the visualization so that it does not interfere with viewing the un-

derlying video. The algorithm can display the computed assignment for every pixel, just

for particles, or just along the boundary between the foreground and background. The user

can also specify the level of transparency for the visualization.

Video Frame User Labels

Figure 5-1: The user paints foreground (red) and background (blue) labels onto the video.

5.1.2 Compositing

The algorithm outputs a mask sequence specifying which pixels belong to the foreground

for each frame. This mask sequence can be further manipulated, used to combine videos,

65

or exported for use by other software.

The system developed for this thesis includes a variety of mask manipulation tools. The

software can fill mask holes, smooth mask boundaries, expand/contract mask boundaries,

and filter mask components by size. The user can also choose to combine a mask with

other masks, using intersection, union, subtraction, and other operators.

The masks can be used to manipulate videos via hierarchical compositing specifications

(Figure 5-2). These specifications include data sources (videos, mask sequences, images,

etc.), data filters (blurring, color correction, contrast adjustment, etc.), and compositing

operations (blend, add, etc.). This specification is an expression that evaluates to a video,

consisting of values (data sources), unary operators (filters), and binary operators (compos-

ites). Each filter or composite operator can be modulated by a mask that specifies which

part of the image is filtered or composited. Each source, filter, or compositor can also take

a variety of parameters (such as the amount of blur or contrast adjustment), which can be

key-framed along the video's time axis.

The user can interactively construct the hierarchical specification and change node pa-

rameters, then execute a single command to render a new video. This form of compositing

specification is similar to what can be found in professional compositing programs, such as

Shake [62].

5.2 Hierarchical Particle Clustering

The algorithm builds a hierarchical particle clustering that groups particles with similar

properties, such as appearance, spatiotemporal position, and motion. This clustering allows

the algorithm to model the distribution of particles over these properties and to find particles

with a given set of properties.

Particle clustering demonstrates an advantage of discrete motion primitives such as

particles: they can be grouped into higher-level motion objects that allow sophisticated yet

efficient processing.

Video A

Video B

Output

Mask

Figure 5-2: A compo siting specification describes how to create a new video by combining
and manipulating existing videos. The specification can include data sources (yellow), data
filters (green), and compositing operators (blue), each with optional parameters.

5.2.1 Particle Feature Vectors

Particle clusters can be constructed using any distance function defined on pairs of particles.

For simplicity, we assign a feature vector to each particle and use Euclidean distance within

this feature space.

At any given frame index t along particle i's trajectory, we define a vector that combines

the particle's first three appearance channels, position, and motion:

67

fi(t) = {c O](t),c c'l] (t),l c 'C c2] (),t s 'Xi(t),~ s 'Yi(t),St " t, Pm ' Ui I), m ·vi(t))}. (5.1)

Here cIl (t) and c42] (t), denote the green minus red and green minus blue channels

(scaled as described in Section 4.2). The 3 factors control the trade-off between different

dimensions in the feature space (which have different units and different relative impor-

tances for the clustering). We use Pc = 3, P, = 0.02, P, = 0.02, and P,, = 2. For each

particle, the mean of these vectors (averaged along t) provides the particles feature vector

fi-

5.2.2 Clustering the Particles

After assigning a feature vector to each particle, the algorithm clusters particles within the

feature space. The algorithm starts with a single cluster containing all the particles, then

recursively splits the cluster into sub-clusters.

To split a cluster, the algorithm uses K-means clustering [36] with K = 2, producing a

pair of children for each cluster. If a cluster has fewer than 20 particles, the algorithm does

not split it further. We assign each cluster a feature vector that is the mean of its particle

feature vectors.

The resulting cluster tree has a depth that is approximately logarithmic in the number

of particles. (The K-means algorithm does not typically split each cluster evenly.)

5.3 Foreground/Background Modelling using Clusters

The clustering depends only on the particle video, not on the user's labels. After the algo-

rithm has clustered the particles, the user can start the interactive labelling process.

During interactive labelling, the algorithm builds models of the distribution of the user-

labelled foreground and background pixels. For example, given a set of labeled pixels, the

algorithm could determine that the foreground is brown and blue while the background is

green, orange, and white. Sometimes color may not be sufficient to distinguish the fore-

.~-;A•• 1."1.
Particle Clustering

Video Frame

Figure 5-3: Each cluster is represented as a rectangle in this plot, colored according to the
mean color of the particles within the cluster. For the purpose of visualization, the tree is
truncated when a cluster has fewer than 100 particles or is below 6 levels deep.

ground and background; blue pixels could occur both in the foreground and background.

In this case, the algorithm distinguishes the foreground and background according to time,

space, and motion within the video.

Our algorithm represents these foreground and background properties using particle

clusters. A standard matting algorithm may represent the foreground and background dis-

tributions using Gaussian mixture models in the color/space/time dimensions. Instead, we

use clusters to provide the structure of the model.

5.3.1 Pixel Distributions

For each cluster j, the algorithm estimates a simple foreground/background probability

using a foreground count F(j) and background count B(j), based on the user-specified

labels. When the user draws a new labelled region, each pixel in the region is recursively

inserted into the cluster tree.

To add a labelled pixel to a given cluster, the algorithm increments the foreground or

69

background count, then recurses into whichever child cluster is closest to the pixel. To

measure distance between a pixel and cluster, we define a pixel feature vector:

f(x,y,t)= - {[o(X,,t), c.c[I](x,y,t), c.C[2] (Xyt), ~s.X, s.Y,t -t}. (5.2)

This is similar to the particle feature vector, but lacks the final two dimensions (particle

motion). At each level, we only recurse into a single child, so the total computation is

roughly logarithmic in the number of particles.

5.3.2 Particle Probabilities

To assign a probability to each particle, we use the cluster foreground/background counts.

The algorithm recurses down the cluster tree, finding the lowest level (smallest cluster)

with a sufficient number of labelled pixels. We choose a low-level cluster because it pro-

vides information that is more specific to the particle's properties than a high-level cluster.

Specifically, we use the lowest cluster along each branch for which the labelled pixel count

(F(j) + B(j)) is greater than 10. For each particle i within cluster j, we assign a foreground

probability according to the cluster's counts:

F(j)
PFG(i) = F(j)B() (5.3)F(j) +B(j)

We compute the particle probabilities lazily, only updating the particles in the clusters for

which the foreground/background counts have changed since the last update.

Note that this algorithm uses the same data structure (a particle cluster tree) to model the

distribution of foreground and background properties and to efficiently find particles with

those given properties. The algorithm incorporates new information (new labels) without

any need for re-balancing; it automatically adjusts the level of detail within the cluster tree

according to the currently available data. This allows an interactive algorithm in which the

user immediately sees global changes as a result of providing new local information.

Particle Clustering

Video Frame

Particle Probabilities

User Labels

After Particle Graph Cut

Final Matte

Figure 5-4: Each cluster (top) is augmented with a bar that shows the fraction of foreground
pixels (red) vs. background pixels (blue). The clusters are used to assign a foreground
probability to each particle (Section 5.3). These probabilities are spatially reconciled using
a graph cut (Section 5.4). As a post-process, the algorithm uses a per-pixel graph cut along
the particle assignment boundary to generate the final matte (Section 5.5).

71

5.4 Label Propagation using Particle Graph Cuts

The particle clusters provide a probability that each particle belongs to the foreground.

We use these probabilities as local evidence in a belief propagation problem that spatially

distributes and reconciles the local information in order to compute a binary assignment for

each particle.

For the sake of computational efficiency, we use a graph-cut method to perform the

belief propagation. The algorithm constructs a weighted undirected graph in which each

particle is represented by a node. Graph edges represent particle links. Additionally, each

node is linked to a node representing the foreground and a node representing the back-

ground (Figure 5-5). After the graph is cut, particles attached to the foreground node

are given foreground assignments and particles attached to the background node are given

background assignments.

The use of particles as nodes, rather than pixels, provides a substantial increase in effi-

ciency. This is similar to approaches that segment pixels into groups to accelerate graph-

cut matting in images [53] and video [52, 85]. In most cases, our particles exhibit more

temporal longevity than these segmentations, allowing greater graph-cut efficiency. (De-

tennining the assignment for a single particle provides information about many pixels over

many frames.)

Using particle foreground probabilities, the algorithm sets the edge weights between

particle nodes and foreground/background nodes. Let wFG(i) denote the edge weight be-

tween the foreground node and the node for particle i. Let WBG(i) denote the corresponding

background edge weight. We set the weights so that the higher the foreground probability,

the larger the cost of separating the particle node from the foreground node:

WFG(i) = PFG(i), (5.4)

WBG(i) = 1 - PFG(i). (5.5)

Any particle that intersects a foreground label is locked to the foreground by setting

wFG(i) = 1000. Similarly, any particle that intersects a background label is locked to the

background by setting wBG(i) = 1000. (If, for some reason, a particle intersects conflicting

labels, we do not lock the particle to either assignment.)

We set the inter-particle edge weights using link weights. Let w(i, j) denote the weight

of the edge corresponding to a link between particles i and j:

w(i, j) = Spart * lij. (5.6)

Here lij is the link weight defined in Section 4.4). The parameter Spart is a smoothness

factor that influences the spatial contiguity of the resulting assignment; we find spart = 0.2

provides a good results.

5.5 Post Processing

After computing particle assignments, the algorithm refines the boundary between fore-

ground and background regions. To maximize the quality of the final matting, we do this

as a non-interactive batch post-process.

5.5.1 Pixel Models

To compute probabilities for individual pixels (rather than particles) the algorithm builds

Gaussian mixture models of the foreground and background labelled pixels. For each la-

belled pixel, the algorithm computes a feature vector f(x,y, t) as described in Section 5.3.1.

The algorithm then builds separate Gaussian mixture models for the foreground and back-

ground labels. For each label, the algorithm positions Gaussians in the feature space using

the K-means algorithm [36] to find K = 70 cluster centers.

Let Pk denote the kth component's mean and wk denote its mixture weight. We set

a =- 5. The combined density for a pixel (x,y, t) is:

K
D(x, y, t) = E k wkU(f(X,Y,t);Pk,G2). (5.7)

k=

For each unlabeled pixel, the algorithm computes a foreground density DFG (x, y, t) and

Foreground Node

Panicle Nodes

Background Node

Foreground Node

Panicle Nodes

Background Node

Figure 5-5: The algorithm constructs a graph (top) with a node for each particle (white
circles) and special nodes denoting the foreground (red) and background (blue). The fore-
ground and background weights (red and blue curves) are set according to the particle
cluster models. Other edges (green) describe the connection strength between particles.
(Thicker lines denote stronger weights in this hypothetical example.) The minimum cut
through this graph (black dashed line, bottom) corresponds to assigning each particle to the
foreground or background.

background density DBG(X,y, t) according to the Gaussian mixture models. If the pixel is

sufficiently likely in either model (if DFG(X,y,t) > e or DBG(X,y,t) > e for e = 0.0001),

then the Gaussian mixture models determine the pixel's foreground probability:

P (t) _ DFG(X,y,t)
FG x,y, - () () .DFG x,y,t +DBG x,y,t

(5.8)

Otherwise, if the pixel does not fall into either model, the algorithm assigns the proba-

bility according to the distance to the nearest neighbor in each model.

74

5.5.2 Boundary Graph Cut

For each frame, the algorithm computes a pixel assignment for a band of pixels along

the boundary between the foreground and background particles. Running the graph-cut

algorithm on the boundary pixels provides a substantial computational savings over running

it on full video frames.

To find the band of boundary pixels, the algorithm interpolates the particle assignments

using a constrained Delaunay triangulation [54]. The resulting assignment map is blurred

using a 9 by 9 box filter. Any pixel within the blurred boundary is defined to be part of the

boundary region.

We then construct a pixel-based graph-cut problem in the boundary region. Let wFG (x,y)

denote the weight of the edge from the foreground node to the pixel at (x,y) and wBG(x,y)

denote the corresponding background weight. (We omit the t indexing, because this op-

eration deals with a single frame at a time.) We set the weights according to the pixel

probabilities:

WFG(X,y) = PFG(X,y), (5.9)

WBG(X,y) = 1- PFG(x,y). (5.10)

Pixels along the foreground edge of the boundary region are locked to the foreground

by setting WFG(x,y) = 1000. Similarly, pixels along the background edge are locked to the

background by setting WBG(x,y) = 1000.

The algorithm then adds edges between diagonally, horizontally, and vertically adjacent

pixels. Let w(xl,yl ,x2,y2) denote the weight of the edge between the node for pixel (xl ,y)

and the node for pixel (x2,Y2). The cost of separating a pair of pixels is related to the

appearance difference between the pixels:

w(xl,yI,x2,y2) - Spixel g(xllX2,y2) - gnin (5.11)

Here g(x l, Y I, X2, Y2) denotes the gradient between the pixels (averaged over the r, g, b color

channels), clamped to lie between g,in, = 5 and gm = 15. The parameter spixel is a smooth-

ness factor, which we set to 0.01.

The pixel assignment provided by the graph cut is binary. For many purposes, this is

sufficient, but for some compositing operations, partial assignments are desirable to rep-

resent transparency, motion blur, fine structures, and otherwise mixed pixels. Standard

methods for this include Bayesian matting [22] and poisson matting [76].

5.6 Discussion

This application is useful for several key problems in visual effects, but some work remains

before these tools are ready for widespread usage. The algorithm should be easier to use,

more robust, and have fewer parameters.

In the future, we plan to explore interfaces for drawing meta-masks that apply opera-

tions to the underlying region mask. These operations will include filling holes, expand-

ing/contracting the boundaries, and forcing areas to foreground or background assignments.

These meta-masks could themselves follow the particles. The main challenge is providing

a simple and coherent way of letting the user working with all these interacting masks.

Additionally, advanced compositing techniques could be incorporated with these algo-

rithms. We could use the particles to enforce temporal coherence of texture synthesis for

hole filling or inpainting [92, 77, 24]. Particles could also improve the temporal coherence

of poisson compositing methods [64].

A system that combines these tools would be very useful to a large number of people

working in creative video fields. The particle video representation provides an effective

foundation for such a system.

Chapter 6

Evaluation

In this chapter we evaluate the algorithm on a variety of videos, including footage of chal-

lenging real-world scenes and contrived cases designed to test the limits of the algorithm.

We discuss quantitative evaluation measures and compare results obtained from different

algorithm configurations.

6.1 Visualization

Viewing particle videos is an important part of developing, debugging, and evaluating the

algorithm. Our system provides visualizations both of particle videos and the steps used to

create them.

The basic particle video viewer displays particles and links overlayed onto video frames

that can be browsed via a temporal slider interface. The user can choose to have particles

colorized by data energy, distortion energy, combined energy, active channels, proximity

to termination, or original frame color (as shown in the figures and videos for this thesis).

Particle links can be colorized by length, weight, or distortion energy. The background

can switched from the video frame to the flow field, flow gradient magnitude map, or scale

map. The user can zoom in to investigate the placement of particles and links with respect

to individual pixels.

The algorithm also provides space-time plots of particle trajectories. The user selects

particles by drawing a mask onto one or more video frames. All of the particles that pass

through the selection mask are plotted in space and time (either x vs t or y vs t). The user

can also choose plot a single particle and it's linked neighbors (Figure 6-1). The same

colorization modes are available for these plots.

--..
~
Q
o..............
{f.l

o
~

Frame Index (t)

Figure 6-1: This space-time plot shows a single particle (green) near an occlusion boundary
and other particles linked to this particle. The linked particles are shown only for frames
in which the links are active. They are colored by link weight; red indicates a high weight
and gray indicates a low weight.

6.2 Evaluation Measures

Objectively evaluating the algorithm's correctness is difficult given the lack of ground-truth

data. The ideal evaluation measurement should allow comparison with future particle video

algorithms and with non-particle approaches to long-range motion estimation.

One option is computing pixel value differences between distant frames according the

estimated correspondences. The algorithm can produce dense correspondence fields by

interpolating particles that exist in common between the frames. We can then measure

the pixel difference between the frames according to this projection. Unfortunately, this

measure is not monotonically related to correctness; the algorithm can obtain a lower error

by incorrectly deforming the correspondence field to reduce occlusions. If we allow the

algorithm to label pixels as occluded, the algorithm can obtain a lower error by errantly

labelling non-occluded pixels as occluded.

Alternatively, we can evaluate the algorithm by building a particle video for a given

test video, then independently building another particle video for a temporally reversed

78

copy of the test video. If the algorithm is successful, we expect consistent correspondences

between the videos. However, this approach is also foiled by occlusion. Without ground

truth occlusion labels, we do not know which correspondences should be consistent. The

algorithm can once again obtain a better consistency score simply by marking difficult areas

as occluded.

One solution is rendering synthetic videos with known correspondences. To mimic

challenging real-world videos, these rendered videos should include deforming objects,

complex reflectance, detailed geometry, motion blur, unstable camera motion, optical ar-

tifacts, and video compression. All of these factors can be obtained using modern com-

mercial rendering software, but setting up a wide variety of photo-realistic scenes would

require substantial effort. In the future we envision that rendering such scenes will be easy

enough that researchers will create a diverse set of ground-truth videos.

The particle video algorithm can also be evaluated using applications such as noise

removal [10] and super-resolution [95]. We can create noise-removal evaluation datasets

by adding synthetic noise to a low-noise video. Similarly, we can create super-resolution

ground-truth test sets by reducing the size of high-resolution videos. We can then numeri-

cally evaluate particle-based solutions to the noise-removal and super-resolution problems.

Unfortunately, these results would be strongly dependent on the particular selection of

noise-removal and super-resolution methods, introducing a number of additional parame-

ters and uncertainties.

For the purposes of this thesis, we quantify the algorithm's performance using videos

that are constructed to return to the starting frame. We replace the second half of each

evaluation video with a temporally reversed copy of the first half. This is similar to the

forward/backward evaluation described above, but we construct only one particle video for

each dataset, rather than two. We then compute the fraction of particles that survive from

the start frame to the end frame (which is identical in appearance to the start frame). For

each of these particles, we compute the distance between its (x,y) position in the start frame

and (x, y) position in the end frame. This spatial error value should be near zero.

Like the methods described above, this evaluation scheme is flawed. The algorithm can

easily obtain a lower spatial error by pruning more particles (at the cost of a lower particle

survival rate). Furthermore, by allocating less particles near occlusions and more particles

in other regions, the algorithm can both increase the survival rate and decrease the spatial

error.

Another problem with this return-to-start evaluation is that the algorithm may be able

to unfairly recover from mistakes. This prevents a comparison with techniques that refine

concatenated flow fields; a good refinement algorithm should be able to find the trivial (zero

flow) field mapping the first frame to the last frame, even if it has trouble with intermediate

frames.

Because of these issues, we provide the evaluation for descriptive purposes only. These

measures should not be used to compare the algorithm with future particle video algo-

rithms.

6.3 Evaluation Videos

Our evaluation dataset consists of 20 videos, representing a range of real-world conditions

and contrived test cases. These videos together include a variety of scenes, lighting condi-

tions, camera motions, and object motions.

The videos are recorded at 29.97 non-interlaced frames per second in the MiniDV for-

mat using a Panasonic DVX100 camera. The video frames are 720 by 480 pixels with a 0.9

pixel aspect ratio (width/height). Before constructing a particle video, we crop four pixels

from the left and right of each frame to remove sensor artifacts.

The videos are summarized in Table 6.1 and described here:

* VBranches. A hand-held camera records trees with many branches of different

thicknesses (Figure 6-4).

* VCars. Several cars move through the scene (Figure 6-4).

* VHall. The camera operator walks down an office hallway (Figure 6-4).

* VHand. The hand deforms as it moves in front of the background, observed by a

hand-held camera (Figure 6-4).

* VMouth. The head changes orientation while the mouth changes shape (Figure 6-4).

* VPerson. A person walks past the camera as it pans on a tripod (Figure 6-4).

* VPlant. A hand-held camera observes a plant and office clutter (Figure 6-5).

* VShelf. The camera moves vertically on a small crane device (Figure 6-5).

* VTree. The leaves on a tree flutter in the wind, observed from a moving hand-held

camera (Figure 6-5).

* VTreeTrunk. The hand-held camera motion induces large-scale occlusions around

a tree trunk (Figure 6-5).

* VZoomIn. The camera zooms in on a test pattern (Figure 6-6).

* VZoomOut. The camera zooms out from a test pattern (Figure 6-6).

* VRotateOrtho. The test pattern rotates, roughly parallel to the image plane (Fig-

ure 6-6).

* VRotatePersp. The test pattern rotates, viewed from off the axis of rotation (Fig-

ure 6-6).

* VRectSlow. A rectangular solid, covered in a test pattern, rotates in front of a pat-

terned background (Figure 6-6).

* VRectFast. The sequence is twice the rate of VRectSlow. (Figure 6-7).

* VRectLight. A rectangular solid, covered in a test pattern, rotates in front of a

patterned background, under one-sided lighting (Figure 6-7).

* VCylSlow. A cylinder covered in a test pattern rotates in front of a patterned back-

ground (Figure 6-7).

* VCylFast. This sequence is twice the rate of VCylSlow (Figure 6-7).

* VCylLight. A cylinder covered in a test pattern rotates in front of a patterned back-

ground, under one-sided lighting (Figure 6-7).

81

Object Motion
none
R+T

Name
VBranches
VCars
VHall
VHand
VMouth
VPerson
VPlant
VShelf
VTree
VTreeTrunk
VZoomln
VZoomOut
VRotateOrtho
VRotatePersp
VRectSlow
VRectFast
VRectLight
VCylSlow
VCylFast
VCylLight

Camera Motion
hand-held R+T
hand-held R+T
hand-held R+T
hand-held R+T
static
tripod R
hand-held R+T
crane T
hand-held R+T
hand-held R+T
static
static
static
static
static
static
static
static
static
static

Table 6.1: The evaluation videos include various camera motions and object motions. R
denotes rotation and T denotes translation.

For the videos of planar surfaces (VZoomln, VZoomOut, VRotateOrtho, and VRotate-

Persp), we replace the optical flow estimation with global parametric motion estimation.

6.4 Particle Video Configurations

We evaluate several configurations of the particle video algorithm:

* PVBaseline. This uses all of the parameter settings described in Chapter 4 and sum-

marized in Table 6.2. The following configurations are modifications, as specified,

of this configuration.

* PVSweepl. This configuration performs a single forward sweep (whereas the base-

line algorithm performs a forward sweep followed by a backward sweep).

* PVSweep4. This sweeps forward, backward, forward again, then backward again.

Occlusion
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
yes
yes
yes
yes
yes
yes

Figure
6-4
6-4
6-4
6-4
6-4
6-5
6-5
6-5
6-5
6-5
6-6
6-6
6-6
6-6
6-6
6-7
6-7
6-7
6-7
6-7

none
R+T;
R+T;
R+T;
none
none
R+T;
none
none
none
R

deformation
deformation
deformation

deformation

Length
50
50
50
70
70
50
70
50
70
50
40
40
90
90
80
80
80
50
50
50

Variable Description Value Units Section
ot motion difference prior for link weight 1 pixels per frame §4.4
a particle objective distortion factor 1.5 N/A §4.5.1
oc channel filter size 8 frames §4.5.1
Of pruning energy filter size 1 frames §4.6
8 pruning energy threshold 10 N/A §4.6

Table 6.2: These parameter settings are used for the PVBaseline configuration.

* PVNoOcc. This configuration ignores the occlusion maps (provided by the optical

flow algorithm) during particle propagation (Section 4.3).

* PVPruneMore. This configuration lowers the pruning threshold to 3 = 5, resulting

in more pruning.

* PVPruneLess. This configuration raises the pruning threshold to 6 = 20, resulting

in less pruning.

* FlowConcat. This is a simple concatenation of flow fields (computed as described

in Chapter 3) for each particle position in the first video frame (according to the

PVBaseline configuration). The flow trajectories are terminated when they enter an

occluded region, as determined by the flow algorithm.

6.5 Evaluation Results and Discussion

The return-to-start evaluation is summarized in Figures 6-2 and 6-3. In each case, the

particles return to their starting positions with lower error than the trajectories formed by

concatenating flow vectors. As expected, concatenated flow vectors drift. Ideally the plots

should be perfectly symmetrical (since the videos are temporally symmetrical); in some

cases, the particle trajectories deviate from this symmetry, suggesting occasional failures.

The yellow lines indicate the fraction of surviving particles. For each video, particles

disappear because they leave the frame boundaries or become occluded. A roughly constant

survival fraction across the second half (returning to the start) indicates that few particles

are lost for other (spurious) reasons.

Return Return Mean Mean Run
Configuration Fraction Error Count Length Time
FlowConcat 0.81 3.97 N/A N/A N/A
PVBaseline 0.65 1.10 13218 31.65 22.42
PVSweepl 0.69 0.95 11454 29.31 16.13
PVSweep4 0.65 1.22 14562 30.48 73.84
PVNoOcc 0.66 1.22 13171 32.93 57.33
PVPruneMore 0.42 0.79 14434 22.35 23.71
PVPruneLess 0.75 1.74 13305 36.87 30.54

Table 6.3: For each configuration, we evaluate the algorithm on videos that are constructed
to return to the start frame (Section 6.2). We report the mean fraction of particles that sur-
vive to the end frame and the mean spatial distance between the each surviving particle's
start and end frame positions. We also report the mean particle count, mean particle length,
and mean per-frame running time. The running time does not include optical flow compu-
tation; it is a pre-process shared by all the algorithms. All statistics are averaged over the
20 videos described in Section 6.3.

Table 6.3 provides a comparison of the algorithm configurations described in Sec-

tion 6.4. As expected, ignoring the occlusion masks provided by the flow algorithm results

in higher error and a larger fraction of surviving particles. Also, as expected, additional

pruning raises the accuracy while lowering the survival fraction.

Additional sweeps across the video add more particles, mostly in areas where other

particles were previously pruned (the more difficult regions of the video). Thus, even

though a single sweep has lower error, not necessarily providing a better model of the

motion. (This is why, as discussed in Section 6.2, the return-to-start measure should not be

used alone to evaluate particle videos.)

Table 6.4 gives a breakdown of the running time for each configuration. In each con-

figuration, almost half the running time is consumed by running the sparse linear system

solver. The remaining time is mostly spent constructing the linear system. The computa-

tional costs of adding, linking, and pruning particles are all relatively small.

All of the data used to generate these results, including the videos, plots, and particle

trajectories are available online at http: //rvsn. csail.mit. edu/pv/.

30
VBranchcs

E "
~~ v~ v ~

<5 ~ 0 ~~ "" 0 eo0 c ~
0 ~ 0 ~0- ~ 0-

U " 0

~
c

~
~

0 0

~ ~ ~ !~ ~
0 0

0 Frame Index 40 Frame Index

70
VHall

60 VHand

~ ~
~ ~ u~
~

~ ~0 0
0 "" ~ ""0 0 ~
0

~
0

~0- ...
~

c .~ c
0 0." ...

~~ £ Ii
~ ~
0 0

0 Frame Index Frame Index 70

55 VMouth
155

" "~ " ~~ .~ ~
0 0- 0~ .. :i0

0

~
0- ...
"
~ = .~0

~
...

Ii Ii
~ ~
0

0 Frame Index Frame Index

40
VPlant

\20
VShclf

" 8= ~ "~ ~ u
0 0 ~= " """ =
0 " ~0- ...
" "u
~ ~ =0

U
~ ~ J:
" "

0 0
Frame Index 70 I Frame Index

30
VTree

50
VTreeTrunk

~ il
~

il
~) u
is 0 ~~ "" ~

11'" 0

~ .~ ~
~v ~

~
~

~
c

" "
~ ! = !..
" ~

0
Frame Index Frame Index 50

Figure 6-2: Each plot shows the fraction of surviving particles (yellow, right axis) and
mean distance (red, left axis) of these particles from their positions in the start frame. The
green lines denote concatenated flow vectors. As described in Section 6.3, the videos are
temporally mirrored, so we expect all unoccluded particles to return to their start positions.

85

Add Link Opt. Solver Prune Total
Configuration Time Time Time Time Time Time
PVBaseline 2.25 1.06 5.46 9.42 0.64 22.42
PVSweepl 1.31 0.36 4.31 7.50 0.41 16.13
PVSweep4 6.21 2.12 21.04 31.49 3.00 73.84
PVNoOcc 3.63 0.81 17.31 27.37 1.98 57.33
PVPruneMore 2.25 2.59 5.26 8.73 1.48 23.71
PVPruneLess 2.58 0.73 8.35 13.80 0.86 30.54

Table 6.4: For each configuration, we report the mean per-frame running time in seconds.
The Opt. time includes optimization overhead but not the execution of the solver or the
update of the energy values at the end of the optimization (which are reported in their
respective columns). The total time includes some additional overhead, such as computing
the adaptive scale map factor (Section 4.7).

6.6 Future Work

The particle video algorithm has some limitations, mostly related to the interpretation of

occlusion. We discuss these problems and possible solutions in the following sub-sections.

6.6.1 Linking and Distortion

The largest difficulty in creating a particle video is handling occlusion boundaries. The

current implementation represents occlusion boundaries using weighted links between par-

ticles. This linking scheme fails because it occasionally allows incorrect distortion or pre-

vents correct distortion (such as that caused by non-rigid object deformation or changes

in viewpoint). We hope to explore statistical and/or geometric methods for distinguishing

correct and incorrect distortion.

The best approach may involve a hybrid of flow-based and particle-based occlusion

handling. Flow methods provide the advantage of accounting for subtle image details,

while the particle methods provide easier handling of long temporal ranges (and indeed

we expect occlusions to be clearest in long temporal ranges). A single optimization could

include both flow and particle objectives, possibly estimating flow over a range of different

temporal scales. This optimization could be directed toward occlusions by identifying high-

error manifolds in the spatiotemporal video volume.

Another possible way to handle occlusions is to create particle motion spaces. Each

particle could be projected into a space such that particles with similar motion are close to

one another and particles with different motions are not. This would allow efficient query-

ing to find a set of particles with motion similar to a given particle (extending beyond the

set of particles linked to the given particle). One option would be assigning a motion tra-

jectory distance to each link (as is currently done in Section 4.4) then running Isomap [80]

to project all of the particles into a low-dimensional (perhaps 2D or 3D) space. Hopefully

independently moving objects would appear as distinct clusters in the space (certain motion

patterns would appear as filaments or manifolds running through the motion space). This

low-dimensional motion description could be used to set link weights and as additional

feature dimensions for particle clustering (Section 5.2).

This motion space could also be used to help re-acquire image regions that are briefly

occluded. To do this, the algorithm could assign a hypothetical trajectory to each recently

pruned particle as it sweeps through the video. The algorithm could compute hypothetical

positions by fitting a regression model to the motion of active particles that are nearby in

the motion space. At each frame, the algorithm would then check whether the particle

appearance matches the image at the hypothetical particle position; if so, the particle can

be re-activated.

6.6.2 Particle Density

Another aspect of occlusion handling is deleting and creating particles in areas that become

occluded or disoccluded. This process is less complicated than link weighting, but still

rather difficult.

The current algorithm uses a scale map to create particles, but not to delete particles.

We experimented with a method for pruning particles in over-dense areas according to the

same scale map. To do this, we defined an age for each particle: the number of frames

between the current frame and the furthest frame in which the particle is active. We then

added the particles to the scale map in order of decreasing age. If the particle is added to a

location that already has a particle (according to the scale occupancy maps), we deactivate

it in the current frame. (In other words, in the event of overcrowding, old particles are

allowed to stay while young particles are pruned.) To obtain some hysteresis, we check

a scale that is two levels lower, so that the algorithm has a range of permissible particle

densities. This approach did eliminate over-crowding that sometimes occurred when an

image structure moved across a uniform background. However, it also resulted in a many

short-lived particles. Further research could attempt to find a better trade-off between these

effects.

In the future, we could also explore spatial regularization of addition and pruning, based

on the observation that particles tend to be pruned or added when their neighbors are added

or pruned. A set of particles with similar motions should have similar lifetimes.

One difficulty with regularizing particle lifetimes is that the regularization should be

quite weak; a slow-moving occlusion boundary may result in only a few particles being

added/deleted in any given frame. In fact, we should allow singleton additions and dele-

tions.

Also this regularization would require several new parameters describing the strength

and spatiotemporal extent of the regularization and how it interacts with the standard addi-

tion and pruning processes. Perhaps the best solution would be an entirely new approach

to managing particle density. For example, we could use the gradient of the particle motion

field to modulate the density (placing more particles near occlusions boundaries and fewer

in areas of uniform motion), rather determining particle density solely by image scale.

6.6.3 Theoretical Framework

In the future we expect researchers to develop better theoretical frameworks for particle

video representation and estimation. This could allow the current algorithm to be refor-

mulated in a simpler and more coherent way, reducing the number of parameters and rules

used to construct a particle video.

The main components of the algorithm that could use a stronger theoretical foundation

are particle linking and particle creation/deletion. These are crucial parts of the algorithm,

but they currently are undesirably complex and do not fully provide the desired behavior

(as discussed in Sections 6.6.1 and 6.6.2).

To unify the algorithm, we could develop a set of physical rules that describe or con-

strain particle motion. This could be analogous to the brightness constraint equation that is

the basis of most optical flow algorithms. However, physically characterizing long-range

motion is difficult. The brightness constraint equation is only valid over short ranges (when

the surfaces can be approximated as Lambertian). Geometric constraints, such as the fun-

damental matrix and trifocal tensor, handle longer temporal ranges, but do not apply to

non-rigid objects.

Mathematics could provide another theoretical basis for particle video estimation. This

could be analogous to how optical flow algorithms are derived as discrete approximations

to continuous variational problems. One could imagine a mathematical representation that

behaves like particles of infinite density. One could then formulate methods for particle

estimation that are approximations to the desired behavior of the continuous particles fields.

Finding a continuous representation that captures the long-range characteristics of par-

ticles may be difficult. For a specific reference frame we can represent particle motion as a

function with an x,y domain that maps each point to a trajectory (x(t),y(t)). However, we

need a parameterization that does not depend on a specific choice of reference frame; we

want to be able to characterize the motion of scene points that appear in frames other than

the reference frame.

One option is to return to a flow-based representation, which can be viewed as the

derivative of a particle-based representation. The main goal of the particle video algorithm

is to move beyond a flow-based representation, but it may be that our theoretical reasoning

about particles will have to occur in the derivative/flow domain. Much theoretical work has

already been done in the area of flow. The challenge would be augmenting this with long

range constraints that make statements about video properties along trajectories obtained

from integrals of flow-based representations. This approach could borrow mathematical

machinery from differential equations and applications of differential equations, such as

fluid dynamics.

6.6.4 Other Areas of Future Research

Particles are intended to be small point features in order to reduce the likelihood of strad-

dling occlusion boundaries, but for particles far from occlusion boundaries, we could use

larger areas of support. These areas of support could be characterized using invariant fea-

ture descriptors, such as SIFT descriptors [17], which would allow larger changes in scale

and reflectance. (The current model allows slow changes in appearance for a particle, but

does not obtain the level of invariance provided by some of these descriptors.) Invariant

feature descriptors could also be used to re-acquire previously occluded regions.

We could also explore world-space constraints for particle optimization. We have

avoided geometric constraints because the algorithm must be good at handling non-rigid

cases. However, once the non-rigid cases are well-modelled, we can obtain further perfor-

mance gains by using geometric constraints to improve the rigid cases.

Another area of future investigation is segmentation-based representations of long-

range motion. Several algorithms [96, 87, 85] use segments as simple, small (but adaptively-

sized), spatiotemporal primitives. Combining elements of a segmentation-based approach

with a particle-based approach could provide better handling of appearance changes and

occlusion boundaries.

6.7 Conclusion

The particle video algorithm provides a new approach to motion estimation, a central prob-

lem in computer vision. Dense long-range video correspondences could improve methods

for many existing vision problems, in areas ranging from robotics to filmmaking.

Our particle representation differs from standard motion representations, such as vector

fields, layers, and tracked feature patches. Some existing optical flow algorithms incor-

porate constraints from multiple frames (often using a temporal smoothness assumption),

but they do not enforce long-range correspondence consistency. Our algorithm improves

frame-to-frame optical flow by enforcing long-range appearance consistency and motion

coherence.

Current limitations of the particle video algorithm arise from our methods for position-

ing particles, rather than a fundamental limitation of the particle representation. Starting

with the particle tools presented in this thesis, we believe researchers will soon develop

better particle video algorithms. By making our data and results available online, we hope

others will explore the particle video problem.

VCylLighl

VRotatcPcrsp

Frame Index

20

85

VRectLight

VRectSlow

VRotatcOrtho

Frame Index
o

o
20

Figure 6-3: Each plot shows the fraction of surviving particles (yellow, right axis) and
mean distance (red, left axis) of these particles from their positions in the start frame. The
green lines denote concatenated flow vectors. As described in Section 6.3, the videos are
temporally mirrored, so we expect all unoccluded particles to return to their start positions.

92

VCars, Frame 0

VHall, Frame 0

VHand, Frame 0

VMouth, Frame 0

Correspondences

Correspondences

Correspondences

VBranches, Frame 25

VCars, Frame 25
...... ~ 1'4.1., .~ I ;

1..
- -1- I ~

.1/.'- ~t ..-.
~li '-I" T:r

I • ') \ I

VHall, Frame 25

VHand, Frame 35

VMouth, Frame 35

Figure 6-4: Each row shows a frame pair from one test video. Correspondences are shown
for particles in common between the frames.

93

VPerson, Frame a

VPlant, Frame a

VShelf, Frame a

VTree, Frame a

VTreeTrunk, Frame a

Correspondences

Correspondences

Correspondences

Correspondences

VPerson, Frame 25

VPlant, Frame 35

VShelf, Frame 25

VTree, Frame 35

VTreeTrunk, Frame 25

Figure 6-5: Each row shows a frame pair from one test video. Correspondences are shown
for particles in common between the frames.

94

YZoomln, Frame 0 Correspondences YZoomln, Frame 20

YZoomOut, Frame 20

YRotatePersp, Frame 45

•• "., '" ,- • I ~~.'.'.'.'.,,', .
:•., .

.:::;. 1/, •
= •• I~::j,j•• :.-1~~:..-m-IF=I~

YRectSlow, Frame 40Correspondences

Correspondences

•"
,:It:~

f,__ ~
-.=_. ,';
~,-- 't,',',.. -- ---;

- "

Correspondences

Correspondences
,(I.<

-
YRotatePersp, Frame 0

•••••• ::~~~\\~~~.~~:;. • 1

__~ Ij Ij •••• ~:~j,j•• ~
,•.I~II::::j,j •• :'. :~:~:::.l~'" -=.... ,

I --r---.-- ••
YRectSlow, Frame 0

Figure 6-6: Each row shows a frame pair from one test video. Correspondences are shown
for particles in common between the frames.

95

••••• .,:::::".'<,.; .\..\' ~ \ \\ •..•. \.............'-.M ...•• •• •~.•.~.:.r;.••..~••......•..,. .
I , ..

+++1! I ., I ~f~"-J
I I , -r- ••

YRectFast, Frame 40
.- .. :;:;:;r::;JfJ.."'-"---- ""--"'- ,,--:-::-'\ - \

; ~ "':.:.:......~ -III •• -;.:.:-:.-.
, " , ...
: ::~:::-..~

1'••••••~~~:::.••••
I .-.

YRectLight, Frame 40~1i:::~~~...!. -. l
• , '••••• -•. ~::::r;.•• ~,~I.-I':::r;.•••~-.- ..
,~ ...•.•' .
, , I , ..m:_.,1~1

YCylSlow, Frame 25

~-~:::~~~~~:~.~~I
, ~ ~ •••• - ..• J •••••...: •• 1:::::-.-•
, ..
I .

'" ~3
YCylFast, Frame 25

.,-r:;.;:;::~:r \-: : --,
, ~ ••,a ...
I ---+--f.~ I••••• :-••, ~. ,...,a.
: ~ I:': ::::.••:,

•

-r---' • ::::. ••
, .
" ..
; j I : I.' ~.:~..I
I I I I ~ - ••

VCylLight, Frame 25

Correspondences

-
Correspondences

Correspondences

e. f

Correspondences

....... ':::)..\>.\.\.\.\\~\ - 1" I
.V.'.'. " ..
~Ij.~ell -III ~::::. ••

- .~~ ..:::r;......••• •,......
•••• •.....

,~111~
YRectFast, Frame 0

gf:;~;:;1~~~)~~\~:~-...\
, ,.; .~.~.•••• t:.::.••:rn~"~:,~~~ft

YRectLight, Frame 0
.-..:..-:.-::~&~~".::.".1

illl'~ '~~:::::....J
, !.L - ~.::::-:.~.

•••• • •....
: : i .,~., .:~ •••

I i I~, r ••
YCylSlow, Frame 0

~-.. ~:-:::::~~~~~~:~.~ °.1
~ •••• - Ji ..
•• • I' •

. ~t:::r;. •• ~, I•••• _.

' :-..
I I ..

' ..
I , ••••

I ; II I II .11 ••
........... 1--I - • r- ••

YCylFast, Frame 0~ii1~~':-.~....1I -~ I•••• :-••
f I , .

I 'I - ~ • •.::::- ..-,~~---- .
, -+1 .~••••• ::.

; : : I :I'~ .:~..I
I I I I 'I , • ..-

YCylLight, Frame 0

Figure 6-7: Each row shows a frame pair from one test video. Correspondences are shown
for particles in common between the frames.

96

Bibliography

[] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz. Keyframe-based tracking

for rotoscoping and animation. ACM Trans. Graph., 23(3):584-591, 2004.

[2] L. Alvarez, R. Deriche, T. Papadopoulo, and J. Sanchez. Symmetrical dense optical

flow estimation with occlusion detection. In ECCV, pages 721-735, 2002.

[3] T. Amiaz and N. Kiryati. Dense discontinuous optical flow via contour-based seg-

mentation. In ICIP, pages 1264-1267, 2005.

[4] N. E. Apostoloff and A. W. Fitzgibbon. Bayesian video matting using learnt image

priors. In CVPR, pages 407-414, 2004.

[5] S. Baker and T. Kanade. Limits on super-resolution and how to break them. PAMI,

24(9):1167-1183, 2002.

[6] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV,

56(3):221-255, 2004.

[7] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. V. der Vorst. Templates for the Solution of Linear Sys-

tems: Building Blocks for Iterative Methods. Society for Industrial and Applied Math-

ematics, 1994.

[8] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow tech-

niques. IJCV, 12(1):43-77, 1994.

[9] S. S. Beauchemin and J. L. Barron. The computation of optical flow. ACM Computing

Surveys, 27(3):433-467, 1995.

[10] E. P. Bennett and L. McMillan. Video enhancement using per-pixel virtual exposures.

ACM Trans. Graph., 24(3):845-852, 2005.

[11] R. Bhotika, D. J. Fleet, and K. N. Kutulakos. A probabilistic theory of occupancy and

emptiness. In ECCV, pages 112-132, 2002.

[12] S. Birchfield and C. Tomasi. A pixel dissimilarity measure that is insensitive to image

sampling. PAMI, 20(4):401-406, 1998.

[13] M. Black and P. Anandan. Robust dynamic motion estimation over time. In CVPR,

pages 296-302, 1991.

[14] M. J. Black. Recursive non-linear estimation of discontinuous flow fields. In ECCV,

pages 138-144, 1994.

[15] M. J. Black and P. Anandan. The robust estimation of multiple motions: paramet-

ric and piecewise-smooth flow fields. Computer Vision and Image Understanding,

63(1l):75-104, 1996.

[16] M. Brand. Morphable 3D models from video. In CVPR, pages 456-463, 2001.

[17] M. Brown and D. G. Lowe. Invariant features from interest point groups. In British

Machine Vision Conference, pages 656-665, 2002.

[18] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow esti-

mation based on a theory for warping. In ECCV, pages 25-36, 2004.

[19] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnorr. Real-time optic

flow computation with variational methods. Computer Analysis of Images and Pat-

terns, 2756:222-229, 2003.

[20] T.M. Chin, W. C. Karl, and A. S. Willsky. Probabilistic and sequential computation of

optical flow using temporal coherence. IEEE Trans. Image Processing, 3(6):773-788,

1994.

[21] Y.-Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin, and R. Szeliski. Video matting

of complex scenes. ACM Trans. Graph., 21(3):243-248, 2002.

[22] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski. A bayesian approach to

digital matting. In CVPR, pages 264-271, 2001.

[23] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space

analysis. PAMI, 24(5):603-619, 2002.

[24] A. Criminisi, P. Perez, and K. Toyama. Object removal by exemplar-based inpainting.

In CVPR, pages 721-728, 2003.

[25] P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps from

photographs. In SIGGRAPH, pages 369-378, 1997.

[26] K. Eismann. Photoshop Masking & Compositing. New Riders Press, 2004.

[27] M. Elad and A. Feuer. Recursive optical flow estimation-adaptive filtering approach.

Visual Communication and Image Representation, 9(2): 119-138, 1998.

[28] G. Farnebdick. Fast and accurate motion estimation using orientation tensors and

parametric motion models. In ICPR, pages 135-139, 2000.

[29] V. Ferrari, T. Tuytelaars, and L. Van Gool. Real-time affine region tracking and copla-

nar grouping. In CVPR, pages 226-233, 2001.

[30] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fit-

ting with applications to image analysis and automated cartography. Communications

of the ACM, 24(6):381-395, 1981.

[31] L. Ford and D. Fulkerson. Flow in Networks. Princeton University Press, 1962.

[32] W. T. Freeman and E. Pasztor. Markov networks for super-resolution. In Proceedings

of the Conference on Information Sciences and Systems, 2000.

[33] A. Fusiello, E. Trucco, T. Tommasini, and V. Roberto. Improving feature tracking

with robust statistics. Pattern Analysis and Applications, 2(4):312-320, 1999.

[34] M. Han and T. Kanade. Homography-based 3D scene analysis of video sequences. In

Proceedings of the DARPA Image Understanding Workshop, pages 123-128, 1998.

[35] C. Harris and M. Stephens. A combined corner and edge detector. In Fourth Alvey

Vision Conference, pages 147-151, 1988.

[36] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-means clustering algorithm.

Applied Statistics, 28(1): 100-108, 1979.

[37] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge, UK, 2000.

[38] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence,

17:185-203, 1981.

[39] B. K. P. Horn and E. J. Weldon. Direct methods for recovering motion. IJCV, 2:51-76,

1988.

[40] M. Irani. Multi-frame optical flow estimation using subspace constraints. In ICCV,

pages 626-633, 1999.

[41] M. Irani and P. Anandan. A unified approach to moving object detection in 2D and

3D scenes. PAMI, 20(6):577-589, 1998.

[42] M. Irani and P. Anandan. All about direct methods. In International Workshop on

Vision Algorithms: Theory and practice, pages 267-277, 1999.

[43] M. Irani, B. Rousso, and S. Peleg. Computing occluding and transparent motions.

IJCV, 12(1):5-16, 1994.

[44] A. Jepson and M. Black. Mixture models for optical flow computation. In CVPR,

pages 760-761, 1993.

[45] S. Kang, R. Szeliski, and J. Chai. Handling occlusions in dense multi-view stereo. In

CVPR, pages 103-110, 2001.

[46] S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High dynamic range video.

ACM Trans. Graph., 22(3):319-325, 2003.

[47] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local

image descriptors. In CVPR, pages 511-517, 2004.

[48] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. In

ECCV, pages 82-96, 2002.

[49] K. N. Kutulakos. Approximate N-view stereo. In ECCV, pages 67-83, 2000.

[50] S. H. Lee and M. G. Kang. Spatio-temporal video filtering algorithm based on 3-d

anisotropic diffusion equation. In ICIP, pages 447-450, 1998.

100

[51] J. J. Leonard, R. J. Rikoski, P. M. Newman, and M. Bosse. Mapping partially ob-

servable features from multiple uncertain vantage points. International Journal of

Robotics Research, 21:943-975, 2002.

[52] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste. ACM Trans. Graph.,

24(3):595-600, 2005.

[53] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping. ACM Trans. Graph.,

23(3):303-308, 2004.

[54] D. Lischinski. Graphics Gems IV, chapter Incremental Delaunay Triangulation, pages

47-59. Academic Press, 1994.

[55] C. Liu, A. Torralba, W. T. Freeman, F. Durand, and E. H. Adelson. Motion magnifi-

cation. ACM Trans. Graph., 24(3):519-526, 2005.

[56] B. Lucas and T. Kanade. An iterative image registration technique with an application

to stereo vision. In International Joint Conference on Artificial Intelligence, pages

674-679, 1981.

[57] A. Mansouri, B. Sirivong, and J. Konrad. Multiple motion segmentation with level

sets. In Proc. SPIE Image and Video Communications and Processing, vol. 3974,

pages 584-595, 2000.

[58] D. D. Morris, K. Kanatani, and T. Kanade. Uncertainty modeling for optimal structure

from motion. In Workshop on Vision Algorithms, pages 200-217, 1999.

[59] N. Nguyen, P. Milanfar, and G. Golub. A computationally efficient superresolution

image reconstruction algorithm. IEEE Trans. on Image Processing, 10(4):573-583,

2001.

[60] A. Noble. Descriptions of Image Surfaces. PhD thesis, Oxford University, Oxford,

UK, 1989.

[61] J. Oliensis. Direct multi-frame structure from motion for hand-held cameras. In ICPR,

pages 1889-1895, 2000.

[62] M. Paolini. Apple Pro Training Series: Shake 4 (2nd Edition). Peachpit Press, 2005.

101

[63] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert. Highly accurate optic

flow computation with theoretically justified warping. IJCV, 2006 (to appear).

[64] P. Perez, M. Gangnet, and A. Blake. Poisson image editing. ACM Trans. Graph.,

22(3):313-318, 2003.

[65] M. Pollefeys and L. Van Gool. From images to 3D models. Communications of the

ACM, 45(7):50-55, 2002.

[66] C. Rother, V. Kolmogorov, and A. Blake. "GrabCut": interactive foreground extrac-

tion using iterated graph cuts. ACM Trans. Graph., 23(3):309-314, 2004.

[67] S. Roy and I. J. Cox. Motion without structure. In ICPR, pages 728-734, 1996.

[68] H. S. Sawhney, Y. Guo, K. Hanna, R. Kumar, S. Adkins, and S. Zhou. Hybrid stereo

camera: an IBR approach for synthesis of very high resolution stereoscopic image

sequences. In SIGGRAPH, pages 451-460, 2001.

[69] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. IJCV, 47(1-3):7-42, 2002.

[70] J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In

ICCV, pages 1154-1160, 1998.

[71] J. Shi and C. Tomasi. Good features to track. In CVPR, pages 593-600, 1994.

[72] C. Silva and J. Santos-Victor. Robust egomotion estimation from the normal flow

using search subspaces. PAMI, 19(9):1026-1034, 1997.

[73] C. Silva and J. Santos-Victor. Motion from occlusions. Robotics and Autonomous

Systems, 35(3-4):153-162, 2001.

[74] A. R. Smith and J. E Blinn. Blue screen matting. In SIGGRAPH, pages 259-268,

1996.

[75] C. Strecha, R. Fransens, and L. V. Gool. A probabilistic approach to large displace-

ment optical flow and occlusion detection. In Statistical Methods in Video Processing,

pages 71-82, 2004.

[76] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson matting. ACM Trans. Graph.,

23(3):315-321, 2004.

102

[77] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum. Image completion with structure propagation.

ACM Trans. Graph., 24(3):861-868, 2005.

[78] R. Szeliski and P. Golland. Stereo matching with transparency and matting. IJCV,

32(1):45-61, 1999.

[79] R. Szeliski and D. Scharstein. Symmetric sub-pixel stereo matching. In ECCV, pages

525-540, 2002.

[80] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for

nonlinear dimensionality reduction. Science, 290:2319-2322, 2000.

[81] W. Thompson. Exploiting discontinuities in optical flow. IJCV, 30(3): 163-174, 1998.

[82] S. Thrun. Robotics mapping: A survey. Technical Report CMU-CS-02-11 , Carnegie

Mellon University, 2002.

[83] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In ICCV,

pages 836-846, 1998.

[84] R. Vidal and Y. Ma. A unified algebraic approach to 2D and 3D motion segmentation.

In ECCV, pages 1-15, 2004.

[85] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Cohen. Interactive video

cutout. ACM Trans. Graph., 24(3):585-594, 2005.

[86] J. Wang and M. F. Cohen. An iterative optimization approach for unified image seg-

mentation and matting. In ICCV, pages 936-943, 2005.

[87] J. Wang, B. Thiesson, Y. Xu, and M. Cohen. Image and video segmentation by

anisotropic kernel mean shift. In ECCV, pages 238-249, 2004.

[88] J. Wang, Y. Xu, H.-Y. Shum, and M. F. Cohen. Video tooning. ACM Trans. Graph.,

23(3):574-583, 2004.

[89] J. Weickert, A. Bruhn, N. Papenberg, and T. Brox. Variational optic flow computa-

tion: From continuous models to algorithms. In International Workshop on Computer

Vision and Image Analysis, pages 1-6, 2004.

[90] J. Weickert and C. Schnorr. A theoretical framework for convex regularizers in pde-

based computation of image motion. IJCV, 3(45):245-264, 2001.

103

[91] T. Werner and A. Zisserman. New techniques for automated architectural reconstruc-

tion from photographs. In ECCV, pages 541-555, 2002.

[92] Y. Wexler, E. Shechtman, and M. Irani. Space-time video completion. In CVPR,

pages 120-127, 2004.

[93] J. Wills and S. Belongie. A feature-based approach for determining dense long range

correspondences. In ECCV, pages 170-182, 2004.

[94] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi. Bilateral filtering-based

optical flow estimation with occlusion detection. In ECCV, 2006 (to appear).

[95] W. Y. Zhao and H. S. Sawhney. Is super-resolution with optical flow feasible? In

ECCV, pages 599-613, 2002.

[96] C. L. Zitnick, N. Jojic, and S. B. Kang. Consistent segmentation for optical flow

estimation. In ICCV, pages 1308-1315, 2005.

[97] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. A. J. Winder, and R. Szeliski. High-

quality video view interpolation using a layered representation. ACM Trans. Graph.,

23(3):600-608, 2004.

104

