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ABSTRACT

The variability of the hydraulic conductivity (K) and the sorption coefficient

(Kd) and the correlation between these two variables leads to the enhanced

dispersion of contaminants. Seventy-three (73) samples, at a spacing of 0.5 m, were

taken from a horizontal transect, and 26 samples, at a sampling interval of 0.15 m,
were taken from a vertical transect on a vertical undisturbed face at the Handy

Cranberry Bog on Cape Cod, Massachussetts. The soils at this site, Mashpee Pitted

Plain Deposits, are composed of the same glaciofluvial outwash sediments as the soils

at the USGS test site. The test site is near the source of an extensively studied

sewage contamination plume, which extends several kilometers into a sole source

aquifer that supplies drinking water for the Cape Cod area.

The hydraulic conductivity was measured with a falling head permeameter.

The variance of InK is 0.080; the correlation length is 1 m for the horizontal transect

and 0.1 m for the vertical transect. The percent organic carbon (POC) was measured

using a CHN Analyzer. The POC measurements and the partioning coefficient, K0 ,
were used to calculate Kd for three hypothetical contaminants: benzene, trichloro-

benzene (TCB) and pentachlorobenzene (PentCB). The soils at the bog have an

average POC value of 0.018%. The variance of the POC and lnKd for the entire

sample population is 1 x 107 and 0.145. For a series of ten measurements of POC

of the same sample, the variance is 4 x 10'. The correlation length of lnKd is 1 m for

the horizontal transect and 0.15 m for the vertical transect.
A linear regression of lnKd unto InK shows a significant correlation with a

slope (b) of -0.341 and a coefficient of correlation (r) of -0.233. The correlation



between InK and InKd is expressed in terms of the slope and an uncorrelated residual

term using a linear regression model. Several tests, based on cross-covariance and

cross-spectral analyses, indicate -that this simple linear regression model is an

adequate representation of the correlation structure of the In Kd and InK fields.

The longitudinal macrodispersivity for a nonreactive tracer is 0.076 m. For

reactive tracers such as benzene, TCB and PentCB, the macrodispersivity is 0.081 m,

0.142 m and 0.177 m respectively.

Thesis Supervisor: Dr. Lynn W. Gelhar

Title: Professor of Civl Engineering
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INTRODUCTION

'The last decade has seen rapid developments in theoretical

research treating groundwater flow in a probabilistic framework;

but actual field applications for these methods has been very

limited. The practitioner wishing to apply such theory faces a

bewildering maze of abstract probabilistic concepts and apparently

conflicting methodologies. The natural tendency of much research

in this area has been to emphasize theoretical refinements or

computational methodology without developing techniques which

address real field problems." (Gelhar, 1986)

Millions of dollars worth of investigative and remediation work has been

performed on a contaminant plume found in the Cape Cod area. This plume

resulted from the disposal of secondary-treated sewage effluent in rapid infiltration

beds for more than 50 year. This 4000 m long, 1000 m wide and 30 m thick plume

of groundwater plume contaminates a sole source aquifer that provides drinking

water for the Cape Cod area. Since 1978, this plume has been the subject of an

extensive, multidisciplinary study. Much of the work has been done at the U.S.

Geological Survey's Cape Cod Toxic-Substances Hydrology Research Site, hereafter

referred to as the test site, which is near the rapid-infiltration wastewater disposal

facility at the Otis Air Force Base. The test site is within two kilometers (km) of the

Handy Cranberry Bog, hereafter called the bog, where the samples for this study

were taken from an excavated exposure. Figure 1.1 shows the location of the bog

CHAPTER 1



and the test site. The soils at the bog and test site are of a similar geologic structure

since they are formed of the same glacial outwash sediments. This soil type is

classified as Mashpee Pitted Plain deposits and is defined as "mostly gravelly sand

and pebble to cobble gravel. Locally includes boulders." (U.S. Geological Survey

Geologic Map of Cap Cod).

1.1 BACKGROUND

In understanding the intricacies of the transport of a contaminant plume, such

as that found at the test site, one must understand the porous media through which

it moves. The movement of contaminants is caused by a concentration gradient that

results in diffusion and dispersion, the latter of which will be a major focus in this

study. Macrodispersion (Aij) is a parameter which quantifies the dispersion of the

contaminant. In this study, the focus will be on the dispersion in the direction of

flow, which is assumed as horizontal. This longitudinal macrodispersion is denoted

as A,1.

One factor that affects the contaminant movement is the heterogeneity of the

soil as evidenced by the variability of the hydraulic conductivity (K). The effects of

variability of K on the subsurface flow system has been the subject of extensive study

for the past 20 years. Several researchers (Sudicky et al, 1983; Garabedian et al.;

1988) have found that the coefficients of the advective dispersion equation (ADE)

which quantify the amount of dispersion, Aj, tends to increase with residence time

and travel distance. This can be explained by, the theory of enhanced mixing
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at larger scales, caused by the small-scale variation of K, which results in differential

velocity as mandated by the K value (Gelhar et al., 1979; Matheron and de Marsily,

1980; Dagan, 1982; Gelhar and Axness, 1983; Mackay et al, 1986; Neuman et at.,

1987). Researhers have developed models that account for the effect of enhanced

dispersion caused by this K variation on the transport process (Gelhar and Axness,

1983; Gelhar et al 1979).

In recent years, the focus has broadened to include investigations of

the effect of chemical heterogeneity on contaminant transport. In a situation where

the velocity of the solute is retarded by sorption to the porous media the

macrodispersivity is further affected. A measure of the sorptive capacity of the soil

is the distribution coefficient (Kd) the ratio of the concentration of contaminant

sorbed to the soil to the concentration of contaminant in solution. In particular, it

has been shown via stochastic theory that the correlation between the hydraulic

conductivity and sorption strongly affects the spreading of contaminants (Garabedian

et al, 1988; Valochi, 1989; Chysikopoulos et al, 1990; Robin et al., 1991).

Field application of this stochastic theory is very limited. In 1986, Sudicky

took a total of 1279 measurements on 32 cores at a tracer test site at the Canadian

Forces Bases (CFB) Borden. The results showed that the dispersion parameters for

nonreactive solute found using stochastic theory and the statistics of the variability

of K is consistent with that those estimated from the spread of the plume (Freyberg,

1986). Robin et al. (1991) made 1279 measurements of strontium Kd for the same

cores and found a weak but significant correlation between InK and lnK,; however,

they did not evaluate the enhancement of the macrodispersivity based on their



results. By analyzing spatial moments of tracer distribution at the test site on Cape

Cod, Garabedian et al. (1988) found that the reactive macrodispersivity for lithium

was 10 times greater than the nonreactive macrodispersivity for bromide (see Figure

1.2). Mackay et al. (1986) studied the spatial heterogeneity of tetrachloroethelyene

sorption at the Borden aquifer and found that Kd varied over an order of magnitude

at a scale of a 2 meters.

1.2 MATHEMATICAL EXPRESSION OF MACRODISPERSIVITY

Using a Fickian model, as predicted by stochastic theory, the mass flux (F,)

of a contaminant is:

Oc

FD= -qA c [1.1]

where q is the specific discharge and -&/ac is the concentration gradient in the j

direction. Applying the conservation of mass, the three-dimensional transport

equation can be written as:

ac a rqA, ac 1
n-- - qAxi ax - cq, i,j = 1,2,3 [1.2]

at a x

where n is the porosity and t is the time. The two important variables in this

equation are q, and A j. The specific discharge is dependent on the ability of the

medium to transmit water, otherwise called the hydraulic conductivity (Ki) such that:
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ahq= -K.. &iVOj ij= 1,2,3 [1.3]

where -ah/l&j, also denoted as J,, is the hydraulic gradient in the j direction. Based

on Gelhar and Axness (1983), for a nonreactive tracer the longitudinal

macrodispersity (Ao) is:

Y2 [1.4]

where f is the variance of InK, . is

(horizontal) and y is the flow factor:

the correlation scale' in the direction of flow

[1.5]
q

JjK,

where K, is the geometric mean K.

relationship between InK and Kd can

In the case of a reactive contaminant, the

be expressed in the following model:

[1.6]pKd = blnK + a + K

where Pb is the bulk density of the soil, b is the slope of the linear regression curve

of Kd unto InK, a is the y-intercept and K is the residual term. The longitudinal

macrodispersivity, A,, for the reactive contaminant is expressed as (see Garabedian

et al., 1988; Gelhar, 1993):

A Lf 1=. I((12+- 1 2 [1.7]

where o,2 and 1. is the variance and correlation scale of the residual and Y is:

'The correlation scale is the distance over which the variation in properties of the soil is correlated

18



PbE[ KdY=n +PbE[KKd] =nR R= 1 + PbE[K [1.8]
n

where R is the retardation factor.

1.3 SORPTION OF ORGANICS

Metals and organic contaminants are subject to different types of sorption.

Organics experience partitioning where the compound is sorbed to the soil,

preferably the soil organic matter, by molecular forces. This noncompetitive process

is a function of the amiount of the compound in the water and the organic content

of the soil. Partitioning is represented by:

Kd =focKo [1.9]

where Ko is the organic carbon sorption coefficient and f, is the organic carbon

content of the soil (Karickhoff et al., 1979; Schwarzenbach and Westfall, 1981;

Hassett et aL, 1983). Schwarzenbach and Westfall (1981) determined that when a soil

has a POC value which is less than 0.1%, other processes become involved in the

sorption process and the correlation between K, and f,, proposed in [1.9] is no longer

valid. The POC values for the soils at Cape Cod tend to be less than 0.1%.

However, Barber (1992) found that even with these low POC values, partioning of

tetrachlorobenzene and pentatchlorobenzene into organic carbon matter appears to

be the primary sorption mechanism; therefore [1.9] is a suitable approximation for



the Kd values for these soils.

For this study the organic sorbents, benzene, pentachlorobenze (PentCB) and

1,2,4 trichlorobenzene (TCB), were choosen as hypothetical contaminants.

1.4 OBJECTIVES AND SCOPE

The stochastic theory outlining the effect of the variability of K and Kd and the

correlation between these two variables on the transport of contaminants in the

subsurface is fairly extensive. However; the field applications of these theory,

especially in the area of organic sorption, has been limited.

The objective of this research is to:

i. Measure the variability of K and Kd for Cape Cod sediments. The hydraulic

conductivity (K) and POC will be measured with a permeameter and CHN

Elemental Analyzer respectively. The POC values will be converted to Kd

values using [1.9].

ii. Evaluate the suitability of a linear regression model in the form of [1.6] to

represent the relationship between K and Kd. Several tests will be performed

in the covariance and spectral (or frequency) domain to evaluate the

regression model.

iii. Quantify the enhanced macrodispersivity caused by the correlation between

K and Kd . Using the output of the regression model and the statistics of K,

Kd and the residual, the enhanced macrodispersivity will be evaluated.



INVESTIGATIVE METHODS

2.1 SAMPLE COLLECTION

The samples for this project were collected from an outcrop at the Handy

Cranberry Bog on Cape Cod, Massachusetts. The soils at this site ranged from

medium to coarse grained sand. A layer of top soil was found above the outcrop.

This clayey silt was approximately six inches deep at the sampling location.

A front-end loader was used to clear a vertical face until an area of

undisturbed soil was accessed (see Figures 2.1, 2.2 and 2.3). Sampling was performed

at 0.5 m intervals for the horizontal transect and at every 0.15 m for the vertical

transect. The disturbed samples were collected with an 8 inch diameter cylindrical

copper tube. The tube was forced into the sand and retrieved with the sample. The

300 g samples were placed in sealed bags and transported to the lab. Once at the

lab, the samples were air dried for the permeameter test.

2.2 HYDRAULIC CONDUCTIVITY

2.2.1 Hydraulic Conductivity Experiments

The hydraulic conductivity of the sand samples was measured with a falling

head permeameter. The permeameter consists of a 3-inch (3") diameter column

connected to a 1" diameter transparent measuring tube with a rubber tube as shown

in Figures 2.4 through 2.7. Hereafter, these tubes will be referred to as the

CHAPTER 2



Scale 1" = 20 m

Figure 2.1 Photograph showing the face being cleared with a bulldozer to access
an undisturbed exposure at the Handy Cranberry Bog



Scale 1" = 20 m

Figure 2.2 Photograph showing the exposure at the Handy Cranberry Bog.



Scale 1" = 1/4 m

Photograph showing the variability in the aquifer sediments at the
Handy Cranberry Bog.

Figure 2.3



Figure 2.4 The setup of the falling head permeameter
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permeameter, measuring tube and connector tube, respectively. The permeameter

and measuring tube are scaled.

Prior to the permeameter test or run, the connector tube is clamped and the

measuring tube is filled with water. The clamp is loosened and a volume of water

equivalent to 3" of water is allowed to flow into the permeameter. The connector

tube is clamped and gently tapped to remove entrapped air bubbles.

The sample is sieved using a 6.35 mm sieve. The large clasts and sand

fraction is weighed, and the sand fraction placed in a plastic beaker. A target sample

depth for the soil in the permeameter is calculated based on an average in-situ

packing density of 5.90 cm/pound.

The sample is poured into the standing water using a funnel. This funnel is

connected to a rubber tube that is long enough to span the distance from the top of

the permeameter to the water surface. The sample is poured into the funnel slowly

to minimize the amount of disturbance. While the sample is poured, the funnel is

continuously rotated to ensure that the soil column does not develop a sloping

surface. This process continues until the water level above the soil column is

reduced to 1 cm. The clamp is loosened and a volume of water equivalent to 2 cm

is allowed to flow into the permeameter at a rate of 5 cm/s. More soil is poured

into the standing water and soil as described above. This process continues until the

beaker is empty. The soil is then packed to the target depth. The clamp is then

loosened and water is allowed to flow from the measuring tube to the permeameter

until the water level in the permeameter is about 6 inches above the sample. The

clamp is tightened and the permeameter is filled with water until the water level is

approximately 8 cm below the top of the permeameter. This process is performed
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at a slow rate in order to avoid disturbing the sample.

The water temperature, thickness of the sand layer, water level in the

measuring tube and permeameter is measured. As a calibration method, the

corresponding water levels in the permeameter and measuring tube is recorded using

a carpenters level.

To start the run, the clamp is removed and a stopwatch is started. The time

measurements are recorded each time the water level reaches certain marked

intervals on the measuring tube.

After the test, the depth of the sample is measured. The setup is cleaned by

disconnecting the rubber tubing and draining out the water. The sand and water is

poured into a bucket and allowed to settle for an hour. The water is poured off and

the sand is removed with a spatula and placed in an aluminum plate. The sample

is air dried for approximately three days.

2.2.2 Calculation of K

In this study, the K measurements are needed for an open ground-water

system. However, the permeameter is a closed, smaller-scale system with certain

head losses. In using the permeameter results to represent an open system, two of

these losses are:

1) he, the loss due to the expansion in the flow area at the junction of

the connector and measuring tube. This results from turbulence.

2) happ , the loss due to the apparatus. This loss is caused by the

resistance to the flow of water that the walls of the permeameter

exhibit.



Both of these losses can be expressed in terms of q, the specific discharge. The

calculated head loss (h,) is subtracted from the measured head (h) to find the

absolute head ha:

ha = h - hl,,, [2.1]

The specific discharge is estimated by fitting a curve to the observation of h(t)

versus t. This curve can be represented by a polynomial:

h=a + 13t+yt 2 +8t 3 +........ [2.2]

Applying continuity and using h =H'-H, the flow is expressed as:

d a dh a dH
q= --d H'(t)= dh dH [2.3]

dt A+a dt A dt

where:

dh +2yt+38t 2  [2.4]
dt

The average water velocity in the connector tube (V,) can be expressed in

terms of q by applying continuity:

Vh = A q [2.5]
ah

where A, the area of the permeameter is 45.45 cm2 and a, the area of the connector

tube is 0.13 cm 2. The expansion head loss, in terms of V, is:

V2
hex = K - [2.6]

K2g

K&, the loss coefficient is proportional to the ratio of the cross-sectional flow areas



before and after expansion (Fox and McDonald, 1985). The area of the measuring

tube is 5.08 cm 2, this ratio is 0.026. The corresponding Kc value is 0.97. Substituting

these numerical values into [2.6]:

he = Kc(A •2 q2 = 60.425q 2 [2.7]

The apparatus head loss is modeled as a quadratic defined by equation 5.11.31

in Bear (1972):

J happ v 1
1 a p g cgk 1/

[2.8]

kapp and ,lap is an equivalent permeability and length of the soil layer.

The total head loss is:

h - V q + hx+ apq 2
kappg cgkapP

[2.9]

Dividing this equation through by q:

_ Vapp + 60.42 5 + a q
q kappg cgkap 2

[2.10]

This equation will be expressed as the equation of a line:

y =mx+b

vl
b - app

kappg

[2.11]

Im - p + 60.425
cgký,

where:



The coefficients of [2.11] were determined using the results of ten

permeameter runs performed without sand (Thompson, 1994). The average m and

b are 10.75 s2/cm 2 and 139.89 s2/cm, respectively. The total head loss is:

h, = 10.75q +200.32q 2  [2.12]

The permeameter experiment is based on the Darcy's equation:

hq = K [2.13]
1

which applies to most natural groundwater systems. This equation states that the

specific discharge (q) is proportional to the hydraulic gradient (dh/dz) scaled by the

K. For the permeameter, the hydraulic gradient has been replaced by ha(t)/l and the

specific discharge was substituted with the velocity of the water, v(t). The hydraulic

conductivity is the slope of the graph of q versus h,. Figures 2.8 and 2.9 shows the

plots of q versus ha for Samples 250 and Q.

The above analysis is based on a linear flow assumption. This assumption is

valid if the Reynolds number, R,, as defined in the following equation is greater than

1:

Rk- qVk [2.14]
V

where v is the kinematic viscosity and k is the intrinsic permeability. For the highest

flow calculated by equation [2.3], the Reynolds number is less than 1 and therefore

the linear flow assumption is appropriate.

2.2.3 Reproducibility of Data

Three sets of duplicate soil samples were run. The purpose of these
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Figure 2.8 Flow as a function of the calculated head (h,) for sample
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duplicate

1)

2)

runs is to quantify two effects:

the reproducibility of the hydraulic conductivity measurements, and

the effect of the soil compaction on the hydraulic conductivity

measurements.

Table 2.1 Reproducibility of the permeameter results

Depths of Sample in the LuK
Sample ID Permeameter (cm) (K in cm/s)

235 5.6 -2.62
Duplicate Sample 5.6 -2.62

Percent Difference 0.0% 0.0%

242 6.85 -2.86
Duplicate Sample 7.0 -3.07

Percent Difference 2.2% 7.4%

247 7.8 -2.55
Duplicate Sample 9.4 -3.26

Percent Difference 18.6% 24.4%

The following conclusions can be made from the above table:

1) The permeameter results are reproducible in instances where the

depth of the soil column is consistent.

2) A relative increase in the sample depth above the target depth,

produces roughly twice the relative decrease in the LnK value.

2.3 PERCENT ORGANIC CARBON TESTING

2.3.1 Determination of a Representative Sample

Each samples obtained from the field site weighed about 300 g. Up



to 300 mg of soil was needed for the percent organic carbon analysis. It became

necessary to develop a systematic method of reducing the bulk sample to a

representative subsample. Several subsampling methodologies were investigated,

including thief sampling, coning-and-quartering and riffling. Riffling resulted in the

most representative subsamples. In 1986, the American Society of Testing and

Methods (ASTM) subdivided samples by coning-and-quartering, thief sampling and

riffling. The standard deviation of consecutive sixteenths of a sample which had gone

through the riffling process was substantially lower than those that had been coned-

and-quartered or thief sample.

Riffling is performed with a riffle-box and three receiver bins. A riffle-box

consist of a metal box with sloping sides whose bottom incorporates two groups of

parallel chutes of equal width. These series of chutes alternate between 600 and 3000

from the horizontal. A drawing of three common types of riffle-boxes are shown in

Figure 2.9.

During the riffling process, two of the receptor bins (receptors) are placed

under each set of chutes. The sample is poured into the remaining bin. Care is

taken to spread the sample evenly in the bin. The contents of the bin is poured into

the riffle-box in an unbiased fashion. The sample is collected by the two receptors

positioned under the chutes.

Riffling was performed on three samples, this resulted in subsamples of

comparable masses (see Table 2.2)



Figure 2.10 Common forms of riffle boxes (from ASTM, 1986)



Table 2.2 Mass of subsamples divided by the riffling process

Original Mass Mass after first Mass after 2nd
Sample ID (1/64th Ib) division (1/64th b) division (1/64th b)

A 58 29 13.5 14.5
29 15.5 13.5

B 63 31.5 16.5 14.5
31.5 16 14.5

C 78 37.5 17 19.5
39.5 19.5 18.5

Equal subdivision of mass does not necessarily correspond to identical

subsamples (ASTM, 1991). The success of the riffling process is also based on the

reproducibility of the results. The spread of the percent organic carbon (POC)

values, shown in Table 2.3, also indicates that the riffling operation is effective.

About two hundred samples were riffled; it became necessary to optimize the

riffling process. In designing the most successful riffling routine, two constraints were

considered:

1) The amount of time spent subsampling - for the volume of sample collected

and the desired subsample volume, the amount of time spent riffling becomes

an issue of concern.

2) The ability of the box to handle small samples - the riffle box used is large

relative to the size of the subsample required.

Two methods were investigated. In method 1, the sample was homogenized

and divided into eights using the riffle box. One eight was riffled into four quarters.

Each quarter was homogenized. Coning-and-quartering was used to extract about

3 mg of soil that was ground to a fine powder for POC analysis. Each of the

subsamples were placed in glass vials.



In method 2, the sample was divided into 1/32 portions by riffling. Four of

these subsamples were selected at random and the entire portion ground into a

powder. The sample was homogenized and containerized in the glass vials.

The spread of the POC measurements for subsamples divided by these

methods are shown below:

Table 2.3 Percent organic carbon values for selected subsamples

Sample ID Standard Deviation from
(Method) POC Average POC Deviation the mean

0.029 52.63%
D 0.018 0.019 0.0073 5.26

(Method 1) 0.016 15.79
0.012 36.84

0.014 16.67%
E 0.013 0.012 0.0022 8.33

(Method 2) 0.012 0.00
0.009 25.00

0.019 9.52%
F 0.020 0.021 0.0025 4.76

(Method 2) 0.022 4.76
0.022 4.76

G 0.020 0.019 0.0014 5.26%
(Method 2) 0.018 5.26%

It is obvious that the second method yields better results.

2.3.2 Percent Organic Carbon Testing

The POC is measured with a Perkin Elmer Carbon Hydrogen Nitrogen

Elemental Analyzer (CHN analyzer) oven. This oven determines the weight percent

of carbon, hydrogen and nitrogen in a sample. The operation of this oven is defined

in this section.



Operation of the Instrument

A schematic of the CHN analyzer is shown in Figure 2.10. The machine

operates on a combustion method. There are four major zones: the pyrolysis zone,

gas control zone, separation zone and detection zone. The sample is transported

throughout the system by the carrier gas, helium.

At the start of each run, a known weight of sand surrounded by a tin capsule

is inserted into the pyrolysis zone. In this high temperature environment, with the

aid of platinized carbon reagent, this sample is converted to carbon monoxide rich

gas. This gas is then passed through the scrubbing agents copper and sodium

hydroxide to remove sulfur products and acid gases, respectively. The carbon

monoxide mixture is transported to the gas control zone.

In the gas control zone, the gas is homogenized to ensure that the results are

representative of the entire sample. This process occurs in the mixing chamber.

In the separation zone, the mixing chamber is depressurized. Frontal, not

standard, chromatography is applied here. By selective retention, this method

employs the steady-state stepwise signal rather than a peak signal.

In the detection zone, the carbon monoxide is passed through a thermal

conductivity detector system and the weight percent of carbon, hydrogen and nitrogen

determined.

These processes takes about seven minutes

Calibrating the Instrument

Before running a set of samples are run the machine must be calibrated as

follows. The oven is purged with a helium flow of 15 pound per second (psi) for 200
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second duration and with an oxygen flow of 28 psi for 20 seconds. The sensors are

monitored to determine the combustion temperature, reduction temperature, detector

oven temperature, pressure, detector counts and signal timing.

The K-factor is a standard, acetanilide, whose elemental make up is known

by the machine. A series of one K-factor, one blank, one K-factor, and one blank

is run to condition the machine. Three K-factors are run to check for the

reproducibility of the results. A known portion of acetanilide is run as an unknown

and the result from this run is compared to the theoretical values. The K-factors and

blanks are deemed acceptable if they are within the following range:

Blanks K-factors True Acetanilide ± 0.3% range

C ± 30 ± 0.15 71.09 (70.79 - 71.39)

H ± 100 ± 3.75 6.71 (6.41 - 7.01)

N ± 16 ± 0.16 10.36 (10.06 - 10.66)

Once the calibration is successful, the samples are run. If it is not successful,

the series of blanks and K-factors are run as described above.

Running the Sample

At the CHN analyzer station, the tin cups are weighed on a microbalance

scale. Approximately 200 mg of the sample is placed in a tin cup. The sample and

cup is weighed and the weight of the sample is determined by elimination. The tin

cup is folded carefully around the sample so that all of the ends are rounded; any

sharp corners may get trapped in the mechanism of the CHN analyzer.

The samples are run in a sequence of 5-6 samples, 1 blank, 5-6 samples ........



Shutdown

The system is purged with helium for 20 seconds. The regulator is set to 5 psi

and the oxygen supply is shut off.

2.3.3 Determination of Measurement Noise

Measurement noise is always an issue of concern. For the initial run of the

machine, the POC values ranged from 0.009 to 0.028. For such a range, it is

important to know how much measurement noise is present. The following table

shows the result of ten runs on two subsamples, Samples A and B.

Table 2.4 Determination of measurement noise for the CHN Analyzer

Percent deviation Standard Deviation
Sample ID POC Mean from the mean (Variance)

Sample A: 0.022 4.76%
0.019 9.52
0.019 9.52
0.020 4.76
0.020 0.021 4.76 0.002
0.021 0.00 (4.0 x 106)
0.023 9.52
0.024 14.29
0.024 14.29

Sample B: 0.019 14.29%
0.020 9.52
0.021 4.76
0.021 0.022 4.76 0.001732
0.022 0.00 (3.0 x 10')
0.022 0.00
0.022 0.00
0.023 4.76
0.025 14.29

The variance of the POC measurements for all the samples tested is 9.5 x 10 .

The variance of POC for the individual samples is much less than the variance of all



the samples. Therefore, the measurement noise is significant but it is not controlling.

If the measurement noise is independent of the POC values only, the variances would

be additive and the variance of the measured POC would be equal to the sum of the

actual variance of POC and the variance of the measurement noise. The variance

of the noise is about 1 percent of the measured variance of the entire population and

therefore it is reasonable to neglect the effect of measurement error in the

subsequent statistical analysis.

The distributions of POC for samples A and B are shown in Figures 2.11 and

2.12, these plots closely resemble a normal distribution.
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RESULTS AND DISCUSSION

3.1 STOCHASTIC PROCESSES AND SPATIAL SERIES1

"..... atmospheric variation, and variation in geologic processes, creates earth

materials that have highly variable hydraulic (and chemical) properties" (Gelhar,

1993). This variability of aquifer properties can best be demonstrated by taking a

number of measurements of physical and chemical processes over space or time.

Most times, these measurements will be highly variable. Each of these processes can

be defined as a stochastic or random process, since it varies significantly with space

or time. A plot of this variability over space or time is called a realization. In this

study, we will investigate the spatial heterogeneity of these physical and chemical

processes for an aquifer material.

The cumulative probability distribution function (cdf) is used to describe a

random variable, X. The cdf can be represented by the following equation:

Fx(x) =P[Xs.x] [3.11

which represents the probability that the random variable X will be less than or equal

to x. The value of the cdf ranges from 0 to 1.

The probability density function (pdf):
dF

fx (x) dF [3.2]

1 The nomenclature used in this section is adapted from Gelhar, 1993; capital letters denote
random quantities and lowercase letters denote deterministic numerical values.
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The pdf can be expressed as an integral:

The total area under the pdf is unity. An example of a cdf and pdf is shown in

Figure 3.1.

The moments of a random variable can be evaluated from the pdf. The mean

(gx), or expected value, of a random variable is defined as:

S= E[ f fuf,(u)du [3.4]

This first moment is an indicator of the central tendency of the random variable.

The mean of a random variable can be estimated from n samples of the variable as:

- i1
X= -E- Xi [3.5]

n i=1

E[X = P

The second moment around the mean is the variance (trX2):

ox= E[X-x ]= X-2x)d

which for n samples is estimated from:

n-1 j=1

E[S2]= 02

[3.6]

[3.7]

x

F -(x) =f f(u)dA
-aa

[3.3]



Fx(x) Sx (x)

0

Figure 3.1 Cumulative probability distribution function and probability density
function (from Gelhar, 1993)

fX(x)

-1 0 1 2 3

Figure 3.2 Probability density function for a normal and lognormal
distribution (from Gelhar, 1993)



Both the mean and the variance of a stochastic process may change with time. The

uncertainty of the estimated mean and the variance in [3.5] and [3.7] can be

quantified by calculating the variance of the mean and the variance of the variance

for a normal random variable, as:

var[Xi =E[(X-p)2] = o2/n =
- 2 [3.8]

var[S2] = E[(S2 - 02) 2 o 4 (n 1) = 0 2

In hydrology, normal or lognormal random variables are commonly used. The

normal random variable, Y, is represented by:

f xp-(y-p)2/202]f(Y) = exp[(Ty-a)2/2c1] [3.91
(21 o02)

The normal, or Gaussian, distribution is completely characterisized by its mean and

variance (Gelhar, 1993). This distribution sometimes applies to subsurface storage

properties like porosity or moisture content. The pdf of the normal distribution is

a bell shaped curve which may contain negative values.

A log normal distribution is one for which Y = In X is a normal random

variable. "The log normal distribution can be physically associated with phenomena

that involve multiplicative effects on a large number of independent random events",

(Gelhar, 1993). Transmissivity and hydraulic conductivity tend to have log normal

distributions. For the log normal distribution, the pdf is clearly skewed with a peak

smaller than the mean. The pdf for a normal and log normal distribution is shown

in Figure 3.2.

The adequacy of a hypothesized probability distribution model may be

evaluated using the Kolmogrov-Smirnov test. In this test, the cumulative probability



distibution of the data set is compared to a hypothesized cdf, Fo(x). The test uses the

difference in the maximum values of both cdfs:

D =max F(x) - Fo(x) [3.10]

This difference is compared to tabulated values for varying sample sizes and a

significance level is determined.

The covariance function and autocorrelation function represent the

relationship between adjacent points in the record. For a continious stationary

stochastic process, X(t), the covariance function, R(r):

R(r) = E[(X(t +,r) - EI[X]) (X(t) - E[X])] [3.11]

is dependent only on the lag (-). The relationship between the covariance function

and the autocorrelation function, p(r), is:

() R(r) _ E[(X(t +r) - E[X]) (X(t) - E[X])] [3.12]
a2  a2

For a discretely sampled finite length realization, the autocorrelation function can

be estimated using:

(rA)- (Nr)2E (Xn=-X)(X n -X) r = 0,1,........N-1 [3.13]

(N-r)a2

where N is the number of data measurements, A is the sampling interval, and N-r is

the number of enteries in the sum. For the data points that are closer together, the

data should be more correlated. Therefore, the autocorrelation function should have

a larger value. This function has a value of 1 at zero lag and decreases as the lag

increases.



The correlation scale (X), is the lag corresponding to the autocorrelation

function at a value of 1/e. The correlation scale can be determined in the horizontal

direction ( 1,) and the vertical direction (13). In this study, we will assume that the

subsurface is composed of a number of lenses with a lense length equivalent to 1,

and a height or bed thickness equivalent to 13.

Realizations tend to exhibit a degree of regularity and periodicity, they can be

thought of as a combination of sine and cosine waves, see Figure 3.3. The rate at

which a series oscillates is represented by the angular frequency or wave number (0),

measured in radians per unit time (or length). Many sources use the frequency, v:

V -W [3.14]
2n

measured in cycles per unit of time or length. Figure 3.4 illustrates a series of

oscillations of varying frequencies and cycles. A cycle is a sine or cosine wave

defined over 2rr. Though visual inspection may give an indication of the number of

oscillations and their contributions, there is a need for quantitative evaluation to

deduce the statistical implication of these oscillations. The statistical significance of

the oscillations is best gathered from spectral analysis, where the data is translated

to the frequency domain with the aid of Fourier transforms.

For a stationary process, a Fourier representation can be used to represent the

zero-mean2 stochastic process. This spectral representation expressed as a function

of a is:

2To convert a process, X, to a zero-mean process, the mean value of X is subtracted from X
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X(t) = e iW'dZ(&)) [3.15]

For this Fourier-Stieltjes integral, Z is a stochastic process with the following

properties:

E[dZ(b))] =0 [3.16]
E[dZ(, ) dZ*((a)] =0

The first condition in equation [3.16] indicates that the process is zero-mean. The

second condition shows that the increments of Z ' at varying frequencies are

uncorrelated. In the case that (A = (2 = *

E[dZ(o))dZ*((a)] =dO ((a) = S(oa)doa [3.17]

where I(D ) is the integrated spectrum, and S(w) is the spectral density function or

the spectrum. In [3.15], X(t) is real and e" 't is complex, thus Z must be complex also.

This can be thought of as a Fourier expansion in which dZ is a random amplitude.

Therefore, the spectrum is the amplitude squared per frequency increment (Gelhar,

1993). Readable forms of the proof of the spectral representation theorem is

provided in Priestly (1981).

The spectrum of a discrete process can be estimated using:

A N-1I
() = E A R(r)A(rA)e -irM; A(rA) = A(-rA) 13.18]

21 r-(-N-1)

When X(r) is equal to one, this direct estimate of the spectrum is known as a

pediogram. Though the spectral estimates provided by a pediogram are unbiased,

3In the text, the asterick is used to denote the complex conjugate
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they tend to be erratic (Gelhar, 1993). The lag window (X(r)) is used to produce

consistent, but potentially biased, spectral estimates. Further discussion of the

varying kinds of lag windows can be found in Priestly (1981). For all lag windows:

X(r) =0 for Ir JIM<N-1 [3.191

where M is an integer. This will lead to M spectral estimates at frequencies:

M_ m m=0,1.....,M [3.20]
MA

The lag window smooths the spectrum, possibly altering sharp peaks and depressions.

The spectrum and the covariance function shows similar information. The

spectrum can be thought of as the variance of the spatial series, X(t), in a frequency

interval of width do centered at o (Shumway, 1988). The covariance function also

expresses the variance as a function of r. The relationship between the spectrum and

the covariance function can be expressed using Fourier transforms. The covariance

function is the inverse Fourier transform of the spectrum:

R()= f e"S(co)dc [3.211

thus:

S(M) f e' fe R(t)dc [3.22]2n

Detailed development of this equation can be found in Gelhar (1993). Four

covariance-spectrum pairs are presented in Gelhar (1993), see Figure 3.5. For this

analysis, the exponential and hole type covariance-spectrum pairs will be considered.

The covariance function and spectrum for the exponential covariance function is:



exponential

V •v v '-I

harmonic

I II I

I I t
I I
I I

hote typo

white n~s

R (syr) o S(co)

I

0.

I I

R. 2 ,oa(r) 0o2
IT-

Figure 3.5 Schematic examples of covariance-spectrum pair (from Gelhar,
1993)

I~



R() = 
0

2 e -1I I/

o2a [3.23]
7r(I +X2(o2)

The covariance function and spectrum for the hole type covariance function is:

R(r) = o2(1 _ l//)e -I / lit

20213V2 [3.24]

n (1+.2(j2) 2

where 1 is a correlation length estimated as 2.311. The fourth covariance-spectrum

pair is white noise. This occurs when adjacent measurements are uncorrelated and

as a consequence A is equivalent to zero. The spectrum for white noise has a

constant value over the frequency range.

Consider two zero-mean random processes:

X(t) = fe i'tdZ,(o) [3.265]

Y)=fe "iwdZ (o) [3.26

The relationship between these two processes, as a function of r, can be expressed

as the cross-covariance function (R~,):

R (-) = cov[X(t + ,r), Y(t)] = EI[X(t + r) Y(t)] [3.27]

or in a normalized form, by the cross correlation function:



p (.)- =R(r) [3.28]
GO'y

where oa. 2=E[X2] and oa2=E[IP]. The cross covariance function can be written in

terms of the cross-spectral density function or cross-spectrum (S~,) as:

= fee 'Sxy(co)do [3.291

therefore:

S f e -"'R,(r)dv [3.301

The cross-spectrum tells how two processes are related within various frequencies.

This complex function is composed of a real and imaginary part referred to as the

cospectrum (CQ) and the quadrature (Q,) such that:

SXY( ) = CXY(O ) - iQY( ) = Axy (o)e -a~,o) [3.31]

The phase spectrum (0,) is:

Oxy = tan-I (QxI CXy) [3.321

The amplitude of the cross-spectrum is:

A 2 ( 3.33]

The coherency squared is:

IsXY



3.2 RESULTS

Before the statistical analysis is performed, the distribution of K and Kd must

be determined. The emperical cdf for both variables and the natural log (In) of

these variables are shown in Figures 3.6 through 3.9 in comparision with a

hypothesized normal distribution calculated with the first and second moments. The

Kolmogorov-Smirnov test and the visual inspection of these cdf show that the

empirical cdfs of InK and lnKd provides closer fits than the empirical cdfs of K and

Kd. Consequently, InK and lnKd were used as the random variables for all the

statistical analysis performed in this study.

The statistical results for both transects are presented in the Table 3.1. Note

that the table does not include a value for the mean of Kd, instead the mean of the

POC is presented. The mean of POC can be converted to the mean Kd using [1.9]

where the Koc values for benzene, TCB and PentCB are 83 mg/1, 2040 mg/1 and

13,000 mg/1, respectively.



Table 3.1: Summary of Statistics

................. ......... I. .... ....., .......................................................I ................ _. ........ .............................. ....... ?.. ......I. ................- -. .......* Horizontal Ve~rtical Both<:I*>
Transect Transect Transet:

Sample Size 73 25 (26)" 98

inK: (K in cm/s)
Lowest Value -1.92 -2.01
Highest Value -3.45 -3.17 (-4.45)'

Mean -2.57 -2.56 (-2.63)* -2.57
Variance of the mean 1.1 x 10.  3.5 x 10.  8.1 x 104

Variance 0.061 0.087 0.080
Variance of the variance 1.7 x 104 6.3 x 104 1.3 x 10

Correlation scale (A) 1.0 0.10

POC
Lowest Value 0.007 0.006
Highest Value 0.054 0.032 (0.132)"

Mean 0.019 0.016 (0.020)* 0.018
Variance of the mean 9.7 x 10.  1.3 x 10-  6.3 x 10

inKQ (/• in mg/I)

Variance 0.138 0136 0.145
Variance of the variance 5.3 x 104 1.5 x 10.  1.5 x 10.

Correlation scale (A) 1.0 0.15

Residual
Mean -0.00079 0.00214 0.00118
Variance of the mean 1.9 x 10.  5.0 x 103  1.4 x 10.

Variance 0.132 0.128 0.137
Variance of the variance 4.8 x 104 1.3 x 10.  3.9 x 10"

Correlation scale (A) 0.5 0.10

Slope of
iniI vs InK -0.339 -0.345 -0.341

* The bracketed values represent the vertical transect including the values for sample AB, the last point

on the transect.



Sample AB, the last point on the vertical transect characterizes the top soil

in the area. This sample has a large POC value, 0.132%, and consequently a large

sorption coefficient' and small InK, -4.45. This negative correlation supports the

notion that low hydraulic conductivity correspondes to high sorption coefficients.

However, this point is not suitable for our analysis since it is from a different

population. When this sample is included in the data set, the mean changes by as

much as 10%. The change in the values of InK and lnKd from sample AA (the

adjacent point) to sample AB is equivalent to the range of the values of the whole

transect. Appendix A shows the InK and lnKd results for both transects.

Is it suitable to treat the samples from each transect as a separate unit or

should all the data be grouped together? The summary of statistics shows the mean

and variance of the data for the individual transects and for both transects grouped

together. Though the means and variances of POC, InK and lnKd for the horizontal

and vertical transect are numerically different, the differences may not be statistically

significant. The range within which the mean or variance is statistically equivalent

can be determined by estimating the confidence interval of the mean or variance.

The confidence intervals for the vertical transect will be used for this analysis since

they will be wider than the confidence interval for the horizontal transect. The 95

percent confidence interval of the mean and variance can be estimated as two

standard deviations normalized by the mean or variance, respectively. The relative

confidence interval for the variance of lnKd is 0.289, therefore the variance of InK and

InKd for the horizontal and vertical transect found in Table 3.1 is statistically

4All Kd and InK, values are for TCB, except where mentioned.
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equivalent. Likewise, the mean of POC and the mean and variance of InK for the

horizontal and vertical transect are statistically equivalent. Since the mean and

variance of InK, lnKd and POC are statistically equivalent, it is reasonable to treat the

data for the vertical and horizontal transect as representing a sample from the same

two-dimensional stationary random field.

3.2.1 Scatter Plot

The scatter plot of InK versus lnKd for all of the values from both transects

shows a weak negative correlation between the variables (Figure 3.10). A linear

regression of the data shows a negative slope of -0.341 with a coefficient of

correlation, r, of -0.233.

3.2.2 Covariance Analysis

The covariance analysis includes the autocorrelation and cross-correlation

functions. The spatial behavior of InK and lnKd is observed in the realizations of InK,

lnKd and the residual. The spatial behavior of the variables was presented for the

horizontal and vertical directions.

Realizations and Cross Correlation Functions

The horizontal transect. Seventy-three measurements were taken at 0.5 m

intervals along the horizontal transect. The realizations of InK have a distinctive

high and low peak (Figure 3.11). These peaks have values of -1.92 and -3.44 and are



located at 35.5 m and 2.5 m, respectively'. For lnKd, there are two distinctive high

peaks with values of -0.085 and 0.135 and are located at 12 m and 32 m, respectively.

The lowest lnKd value of -1.68 occurs at 3 m and 4 m. The peak values of InK

correspond to regions of low lnKd. The peaks of lnKd correspond to regions of low

InK. The smallest values of InK does not necessarily correspond to the highest values

of lnK,. The smallest values of lnKd does not necessarily correspond to the highest

values of InK. The cross correlation function (R,/op,) supports this observations

(Figure 3.13). This function indicates that the maximum negative correlation occurs

at a lag of -5 m. It also shows that there is a noticeable negative correlation at a lag

of 0.5 m. There are regions of significant positive and negative correlation at varying

lags. The realization of the residual, rI =lnK, - 0.34linK, peaks at 12.5 m and 32 m

(Figure 3.14).

The vertical transect. Twenty-six measurements were taken at 0.15 m intervals

along the vertical transect. The realizations of InK and lnKd attain a maximum value

of -2.01 at 0.90 m and -0.419 at 0.15 m respectively (Figure 3.12). The maximum

value of InK does not correspond to the lowest value of lnK,. The maximum value

of lnKd does not correspond to the lowest value of InK. Low values of InK tend to

correspond to regions of high lnKd. The converse also holds true, low values of lnKd

tend to correspond to regions of high InK. The cross correlation function (Figure

3.16) shows that the maximum negative correlation occurs at a lag of -0.15 m. This

function cycles from positive to negative values. The realization of the residual, q7

5For the horizontal transect, the distances are measured from left to right. For the vertical transect,
the distances are measured from the lowest point on the exposure to the highest point.

61



= InKd - 0.341lnK, has the highest value of 0.80 at 0.15 m; the lowest value is -0.79

at 2.55 m (Figure 3.15).

Autocorrelation Functions

Visual inspection of the realizations can yield an estimate of the lense lengths

and bed thickness.

The horizontal transect. Based on the realization of InK and lnKd, the lense

length ranges from 0.5 m (the sampling interval) to 2 m. From the realization of the

residual, the lense length is equal to, or less than, the sampling interval of 0.5 m.

From the autocorrelation function of InK, InKd and the residual (Figures 3.17 through

3.19) the X, is 1 m, 1 m and 0.5 m for InK, lnKd and q.

The vertical transect. From the realizations of InK and InKd the bed thickness

ranges from 0.15 m to 0.60 m. The bed thickness for the residual ranges from 0.15

m to 0.30 m. Based on the autocorrelation functions of InK, lnKd and q for the

vertical transects, shown in Figures 3.20 through 3.22, X3 is 0.1 m, 0.15 m and 0.10 m

respectively.

The autocorrelation function for both transects and both variables exhibited

hole type features, see Figure 3.3. The functions decreased with increasing lag,

however, they never leveled out to zero. At higher lags, where a certain degree of

oscillation was evident, it became unreliable. To determine the significance of these

fluctuations, the 95% confidence interval for the autocorrelation function for large

lag where (p - 0) is computed as approximately 2/v'N2, where N2, the number of

independent samples is:



Nz =N-a a = e-IX [3.35]
1 +a 2

where N is the number of samples, A is the sampling interval, and I is the correlation

scale. All of the fluctuations fell within the 95% confidence interval, thus the

fluctuations are not regarded to reflect correlation that is significantly different from

zero.

In Figures 3.17 through 3.22, the autocorrelation function is presented along

with an estimate of the function. This estimate is calculated as p = es/X, where s is

the lag. These fits provide a reasonable smoothed estimate of the autocorrelation

function.

3.2.3 Spectral Analysis

The spectra shown in Figure 3.23 through 3.30, were calculated using the

function Spectrum (X, Y,M) in the Signal Processing Toolbox of MATLAB. The code

for this program is shown in Appendix B. According to the help screen found in

Matlab, this code "performs FFT (fast Fourier transform) analysis of the two

sequences X and Y using the Welch method of power spectrum estimation. The X

and Y sequences of N points are divided into K sections of 2M points each, (2M must

be a power of two). Using an 2M-point FFT, successive sections are Hanning

windowed, FFT'd and accumulated." Appendix B shows the codes for the program

Spectrum and other related programs, Appendix C shows the spectral estimates of

this program.



It is standard to present the spectral estimates on a semilog plot. The

variance of the logarithm of the spectral estimate can be approximated by (see

Priestley, 1981, p470):

var In [A(w)] = M [3.36]
N

where N is the number of samples and i is a coefficient which is dependent on the

spectral window used 6. The relative precision of this spectral estimate is proportion-

al to VM/N. As the M value doubles, the confidence interval will increase by a

factor of V2. There is a tradeoff between precision and resolution. Smaller M values

leads to narrower confidence intervals but lower resolution. Larger M values leads

to higher resolution coupled with less precision (larger confidence intervals).

In striking a balance between the precision and the resolution, Gelhar (1993)

suggests that one "selects M to be relatively small compared to N, say 5 to 30

percent, and then test the sensitivity of the estimated spectra to the change in M."

This test was applied to the data from the horizontal and vertical transect. For the

horizontal transect, M values of 8, 16 and 32 were used. Figure 3.23 shows the

spectral estimates for the varying M values. The confidence interval for the log of

the spectral estimates are 0.249, 0.352 and 0.498 for M values of 8, 16 and 32

respectively. These confidence interval differ by a factor of V/2. Though the spectral

estimates corresponding to M = 8 were more precise than the other two estimates,

this curve fails to highlight all the variation in the spectral density function. For the

plot of M = 32, the significance of the fluctuations of the spectral density function

6For the Hanning window 1 is 0.75.



cannot be determined based on the wide confidence interval. The curve for M = 16

shows a reasonable compromise between precision and resolution. A similar analysis

was done for the spectral estimates corresponding to M = 4 and M = 8 for the

vertical transect. The plot corresponding to M = 4 was selected.

Spectral estimates were calculated based on three spectral windows (the

Hanning window, Bartlett window and Triangular window), Figure 3.24 shows the

spectral estimate. It is obvious that the difference in these plots are minor compared

to the 95% confidence interval and are therefore insignificant. The Hanning window

was used for the all further spectral estimates. Appendix B shows the MATLAB

codes that correspond to each of the respective windows.

For the horizontal transect the behavior of the estimated spectrums of InK, lnKd

and the 7 are shown in Figures 3.25, 3.26 and 3.27, these spectral estimates are

referred to as S , S. and Sý, respectively. At the low frequency end of S , the curve

displays an increase in the spectral density function that is characteristic of the hole

type spectrum. At other frequencies, the spectral estimates fluctuates within the

confidence interval. For S, the spectral estimates are higher at lowever frequencies.

There is an unusual increase in the spectral density at the high frequency end of Sr.

This may be due to aliasing7 or "unaccounted variances at infinitely small scales"

(Robin et al., 1991) an example of which is measurement noise. The estimated

spectrum of the residual behaves in a similar manner. The spectral results for lnKd

are shown in Figure 3.26 with the empirically estimated confidence intervals

produced by MATLAB implicitly assuming that the spectral estimates are normally

7The "aliasing effect" occurs when "spectral contributions from higher frequencies are folded back

into the calculated frequency range, and increase the estimated spectral amplitude" (Gelhar, 1993).
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distributed and the standard theoretical estimates of confidence interval estimated

by [3.35].

For the vertical transect, the spectrums of InK, lnK, and 7 have quite flat

slopes. Based on the short record length and the resultant low M value, the spectrum

has a low resolution; it only remains to conclude that the flat slopes are caused by

white noise.

The Cross Spectra and Coherency

The quadrature spectra for both transects oscillates around zero, indicating

that there was no significant out of phase correlation. For the horizontal transect

(Figure 3.31), the cospectrum cycles between positive and negative values, showing

that the correlation is indeed scale dependent. The most significant negative

correlation is at a scale of 8 m. For the vertical transect (Figure 3.32) the

cospectrum cycles between negative values for smaller frequencies and positive values

for larger frequencies. The coherency squared spectrum for the horizontal transect

(Figure 3.33) shows that significant correlation between InK, and InK occurs at a

number of scales. For the coherency squared spectrum (Figure 3.34) for the vertical

transect shows that significant correlation occurs at scales of less than 8 m.
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3.3 MODELS

In order to characterize the relationship between InK and lnKd, a simple model

was examined. This model is similar to the model in [1.6]. This linear regression

model, termed the regression model, assumes that there is a linear relationship

between InK and InK,. The relationship between these two variables is expressed as

the equation of the scatter plot shown in Figure 3.10:

InKd=mlnK+c +ri  [3.37]

where m is the slope of the regression of the curve of lnKd onto InK, c is the y-

intercept and q is the deviation from the regression curve or the residual. In theory,

the residual is a zero mean process.

The effectiveness of the model is contingent upon a number of simple

assumptions. The variables, InK and INK, can be expressed as zero mean processes:

f= InK- E [inK] [3.38]
g =InKd-E[lnKd]

The mean of [3.37] is:

E[Kd] = mE [InK] + c [3.39]

The residual is a zero mean process, thus the j7 term is not represented in this

equation. The perbutation of [3.37] yields a form of the model:

g = mf+ 7 [3.40]

It is easily shown that linear regression produces residuals which are, by



identity, uncorrelated with the dependent variable (InK). Test I of the regression

model examines the correlation between f and rq.

Test I: Correlation between the f and q. The cross-correlation functions (ccf)

between f and q are shown in Figures 3.35 and 3.36 (page 102 and 103). The values

of this cross-correlation function is less than the values of the cross-correlation

function between InK and lnKd (Figures 3.13 and 3.16). The significance of the

correlation can only be judged in the spectral domain where confidence intervals can

be placed on the results.

The plots of the cross-spectrum (Figures 3.37 and 3.38) show that the

cospectrum and quadrature spectrum tend to be less than the 95% confidence

interval calculated by MIATLAB for all frequencies'. The coherency squared

spectrum (Figure 3.39 and 3.40) shows that the correlation betweenf and i7 for the

horizontal and vertical transect, the coherency squared is similar to coherency

squared of InK and lnKd. Since no definitive information can be gathered from the

cross-spectra and coherency squared plots, the magnitude of the cross-spectrum of

f and q is examined.

The cross-spectrum between q and f is:

S-f=A (w)e-ie q ) [3.41]

where Af is the magnitude of the cross-spectrum and 0, is the phase spectrum. If

A, is equivalent to zero, the f and T is not correlated. Figure 3.41 and 3.42 shows

1 The output of the MATLAB program for the cross spectrum between f and ri is found in
Appendix C.



that, according to the 95% confidence interval8, the magnitude of the cross-spectrum

is may be equivalent to zero for most frequencies in the horizontal and vertical

transect.

Based on the cross-correlation function, cross-spectrum, coherency squared

and the magnitude of the cross-spectrum, it is difficult to ascertain a definitive

conclusion about the correlation between f and 7 using covariance and spectral

analysis.

In order to analyze the adequacy of this model, the results of the model is

compared to the results from the sampled data. For this comparison, the model is

converted to a covariance and spectral representation and four other tests are

applied:

Test II: Cross Covariance Method. Multiplying [3.40] by f(x + s) and taking the

expected value of, we get:

E[g(x)f(x +s)] = m E[f(x)fx+s)] + E[rl (x)flx +s)] [3.42]

the last term goes to zero since the q and InK are uncorrelated. The resultant

equation can be expressed in terms of the covariance function:

R = mRf [3.43]

All of the analysis done in

cross correlation function.

be related by the variance.

this report has been in terms of the autocorrelation and

The correlation functions and covariance functions can

Thus, we will use equation [3.42] in the form:

8 The calculation of the confidence intervals are shownn in Appendix D.

98



pf =m a pf [3.44]
og

Figures 3.43 and 3.44 show the cross correlation functions of the horizontal

and vertical transects along with the cross correlation function calculated from [3.43]

and the fitted exponential covariance [3.23] for Rff as shown in Figures 3.17 and 3.20

(correlation scales from Table 3.1). This fit is representative of a smoothed version

of the empirical cross correlation function.

Test II.: Autocorrelation Method. Multiplying [3.40] by the "lagged" distribution

coefficient, g(x+s), we get:

E[g(x)g(x+s)] = E [m f(x) +i (x)] [mf(x+s) +i (x+s)J [3.45]

= m2E[f(x)f(x+s)] +E[I1 (x)n (x+s)]

where the cross-correlation between f and r is assumed as negligible. This equation

can be expressed in terms of the autocovariance function, and subsequently the

autocorrelation function as:

R =m2R +R

2 2 [3.46]
a = U fGg Og

Figure 3.45 and 3.46 shows the empirical and the fitted of the autocorrelation

function of lnK, for the horizontal and vertical transect; the fitted autocorrelation

function calculated using [3.45]. This fit provides a smoothed estimate of the

autocorrelation function with similar correlation lengths.

Test IV- Cross-Spectrum. The spectral representation of the sorption coefficient,

hydraulic conductivity and residual can be expressed as:



g(x)= fe ,xdZ(( ) [3.47]

jfx) =fe QxdZJ() [3.481

n (x)= fe ixdZ, () [3.491

Equation [3.40] can be expressed as a Fourier-Stieltjes integral:

dZg=mdZ,+dZ, [3.50]

This equation multiplied by dZ" leads to an equation of the cross-spectrum:

E [dZgdZ] =Sg dw =m E [dZZ# ] +E [dZ, dZ*] [3.51]

The last term goes to zero, thus:

S -= m S( •c)d6 [3.52]

The spectrum, Sf(w) is real; according to [3.51], S,(o), must also be real.

The complex cross spectra can also be written as:

Sd =A, t)e -ito•')Sff [3.53]

where Agf is the magnitude of the cross-spectrum between g and f and 0gf is the

phase. If the cross-spectrum is real, the value of the phase, 0f, must be equal to

zero. A phase of zero implies that there is no phase shift. Figures 3.47 through 3.50

show the plots of the tangent of the phase and the magnitude for the horizontal and

vertical transect. For both transects, the phase fluctuates around zero. Judging from

the confidence interval, most of the fluctuations are not significantly different from

zero. This null phase means that there is no phase shift, therefore the fourth test is
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successful. Figure 3.31 and 3.32 show the cross-spectrum calculated from [3.52] using

the InK spectral estimates of Figures 3.25 and 3.28.

Test V- Spectrum. If [3.40] is multiplied by dZ', the following equation results:

E[dZ, dZg,*]=Sgdk=m2 SIk)dk+Sj (k)dk [3.54]

The spectrum calculated from [3.53] and the spectral estimates for f and q (Figures

3.37 and 3.38) are transposed unto the estimated spectrum in Figures 3.51 and 3.52.

For both transects, the spectrum calculated by the model exhibits the same behavior

as the estimated spectrum. The differences in the empirical spectral density function

and that calculated by [3.18] is less than the 95% confidence interval. The regression

model produces spectral estimates that are statistically equivalent to the emperical

spectral estimates.

The five test indicate that the simple regression model provides a suitable first

approximation of the relationship between the InK and InKd data.
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3.4 LONGITUDINAL MACRODISPERSIVITY

The value of the longitudinal macrodispersivity is dependent on the

parameters of the regression model in [1.6]. The model presented in section 3.3 is

another form of that in [1.6], however the macrodispersivity is presented in terms of

the model in [1.6]. The applicable conversions between the two models is found in

Appendix E.

To calculate the macrodispersivity, the retardation factor is determined by

[1.8]. The porosity is considered constant with a value of 0.30 and the density of the

sand, Pb, is 1.855 g/cm^3. The parameter, y, is calculated using equation (60) in

Gelhar and Axness (1983):

y = exp 2( -gjj, [3.551

where g, (0.070) is estimated using Figure 4a (Gelhar and Axness, 1983) with 1, =

1.0 m, .3 = 0.5 m. The variance off for the horizontal transect, of, is 0.080 thus y

is 1.035. The following table shows the macrodispersivity for benzene, TCB and

PentCB:

3.2 Macrodispersivity values for Benzene, 1,2,4 Trichlorobenzene (TCB) and
Pentachlorobenzene (PentCB)

Compound K, E[dI. Rt Ao A. A. A,./Ao A./Ao

Benzene 83 0.0158 1.10 0.076 0.0808 0.0004 1.1 0.006

TCB 2,041 0.3878 3.40 0.076 0.1415 0.0278 1.9 0.37

PentCB 13,000 2.47 16.27 0.076 0.1770 0.0492 2.3 0.65
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The ratio of the macrodispersivity for a reactive tracer relative to a

nonreactive tracer ranges from 1.1 to 2.3 according to the sorptive capacity of the

chemical, as determined by the K,. These difference may seem modest, but they are

understandable in light of the low organic carbon content of the soil and consequent

low sorptive capability.

For the case of the reactive tracer, the negative correlation between InK and

lnKd leads to an additive effect in the calculation of the macrodispersivity. This

addition to the macrodispersivity is the second term on the right hand side of

equation [1.7], shown as A, in Table 3.2, and ranges from 0.0004 to 0.0049.

Therefore, the increase in macrodispersivity which is attributed to the correlation

between InK and lnKd leads to a 0.6% to 65% increase in the macrodispersivity and

is dependent on the K, of the compound.

3.5 RELATED RESEARCH

Thompson (1993) used geologic information to develop a stochastic

characterization on the variability of hydraulic conductivity for the glacial outwash

aquifer on Cape Cod. One of the sites for which this stochastic information was

gathered was the Handy Bog. Four stochastic parameters were estimated:

* the geometric mean hydraulic conductivity, Kg
* the variance of InK (var InK)
* the horizontal correlation scale, 11
* the vertical correlation scale, X,.

The mean hydraulic conductivity, K1 and the variance of InK (var InK) was estimated

using a model which links the maximum grain size found in the outcrop to K, and var
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InK. To estimate the correlation scales, the exposure was mapped and the bed

lengths and thickness estimated. For the horizontal direction, 1, is estimated as a

typical bed length. In the vertical direction, the correlation scale, %3, is estimated as

typical bed thickness.

Table 3.3 Comparison of stochastic information estimated from geological
information and stochastic information calculated from empirical
data.

Method 1: Method H. :
Stochastic information Stochastic information

Stochastic Parameters from sampling from geologic informatiou

Geometric Mean Hydraulic 0.077 0.053
Conductivity, Kg (cm/s)

Variance of InK 0.080 0.14

Horizontal Correlation Scale, A1 (m) 1.0 (InK) 1.5

Vertical Correlation Scale, )A (m) 0.10 (InK) 0.12

The 95% confidence interval for the K, and var InK is 0.003 and 2.6 x 102. The

differences in the K, and var InK, derived from method I and II, are greater than the

95% confidence interval. However, these differences are reasonable considering

uncertainties in Thompson's model. This suggests that the generalized geologically-

based approach of Thompson (1994) is quite promising as a simple, efficient and

reliable method of predicting stochastic characteristics of aquifer hydraulic

heterogeneity.

The concept of enhanced dispersion in the case of a retarded tracer has been

studied by a number of scientist including Pickens et al. (1981), Garabedian et al
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(1988) and Talbott (1994). The ratio of the dispersivity of the retarded solute (A,,)

to that of the nonreactive solute (A0) is shown in the following table:

Table 3.4 Enhanced dispersion of a retarded tracer:Comparison of four studies.

Picken et al. (1981) measured the sorption of strontium using a small-scale

experiment, on the order of meters, in sands at Chalk River. Garabedian et al.

(1988) performed their tracer experiment at a much larger scale. This tracer test was

performed in the same general aquifer material as that found at the Handy bog. The

relative macrodispersivity of lithium (nonreactive) and bromide (reactive) was

calculated based on the spatial moments of the distributions found in Figure 1.2.

Talbott (1994) results are based on hypothetical calculations of sorption for

strontium.

The ratio of the reactive to the nonreactive macrodispersivity for this study is

not as large as the values calculated in the other studies. However, this may be a
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Source ______

This study:
Sorption of benzene, TCB and PentCB 1.1 - 2.3
Sampling over a 80 m record

Pickens et al. (1981):
Sorption of Strontium 2.6
Analysis of a tracer test

Garabedian et al. (1988):
Sorption of lithium 10
Interpreting a plume

Talbott (1994):
Sorption of strontium 9.7
Hypothetical calculation



result of the low organic carbon content of the soil and the resultant low sorptive

capacity.
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SUMMARY AND CONCLUSIONS

4.1 OBJECTIVES

Several researchers have focused on the effects of the variability of hydraulic

conductivity on the spreading of contaminants in the subsurface. It has been

discovered that this heterogeneity leads to enhanced dispersion of contaminants. In

a chemically heterogeneous system where the contaminant interacts with the porous

media, by way of sorption, it is also plausible that this enhanced dispersion may, in

part, be a result of the correlation the sorption coefficient (KJ) and the hydraulic

conductivity (K).

The purpose of this research project is to:

1) measure the heterogeneity of the soil as indicated by the

variability of K and Kd.

2) examine the degree of correlation between K and Kd.

3) represent this correlation using a simple model.

4) quantify the affect of 1) and 2) on the dispersion.

4.2 SUMMARY OF PROCEDURES

The sampling for this study was performed on an excavated exposure

of glacial outwash at the Handy Cranberry Bog site, Cape Cod, Massachusetts. The

bog is within 2 km of the USGS tracer test site, which is at southeast of the Otis Air
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Force base, where an extensively studied sewage contamination plume extends to

several kilometers in the sole source aquifer. The soil at the test site and the bog

are composed of similar glaciofluvial outwash sediments which are classified as

Mashpee Pitted Plain deposits.

At the Handy Bog, a bulldozer was used to access a vertical undisturbed face

which consisted of cross-bedded sand. Seventy-three samples, at a spacing of 0.5 m,

were taken from a horizontal transect and 26 samples, at a sampling interval of 0.15

m, were taken from a vertical transect. The samples weighed about 300 grams each.

The samples were analyzed for the percent organic carbon (POC) and the

hydraulic conductivity (K) using the CHN Elemental Analyzer and a falling head

permeameter, respectively. It became nessesary to evaluate the experimental

measurement noise and the reproducibility of results in the CHN Analyzer and the

permeameter. For the permeameter, the results were found to be practically

reproducible in the case where the samples were packed to the same depth. Unlike

the permeameter which uses the entire sample, the CHN Analyzer is equiped to

handle samples which are in the order of 300 mg. Therefore, the reproducibility of

the results is a function of the subsampling procedure. The bulk sample was riffled

to extract 3 g subsamples. In an effort to quantify the measurement noise, 10

subsamples were analyzed, the variance of the POC for these subsamples is around

4 x 106, the overall variance for all of the samples from the horizontal and vertical

transect is about 1 x 10'. Therefore, the measurement noise is significant but not

controlling. The POC measurements were used to calculate the distribution
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coefficient (Kd) for three hypothesized dissolved organic contaminants; benzene, 1,2,4

Trichlorobenzene (TCB) and pentachlorobenzene (PentCB).

4.3 RESULTS AND CONCLUSIONS

For this data set, K and Kd are lognormal variables, thus InK and InK, were

used for the statistical analysis. In the case of the Borden aquifer in Canada, Robin

(1991) also found that these variables had lognormal distribution. Since the mean

and variance of the data for both transects is statistically equivalent, the data for both

transects are represented as a member of the same two-dimensional stationary

random field whose mean is -2.57 and -1.003 for InK (K in cm/s) and InKd (Kd in

ml/g), respectively.

Heterogeneity of the Soil

Though the sand appears to be homogeneous, the realization of InK and InKd

exhibits a substantial amount of variability; the variance of InK is 0.080, that of In Kd

is 0.145. The spatial structure of this variability was quantified using the

autocorrelation function which shows that, for InK and InKd, the horizontal

correlation scales is about 1 m and the vertical correlation scales are 0.1 m and 0.15

m respectively. There is a high degree of uncertainty in the spectral estimates based

on the limited number of points in the horizontal and vertical transect, 73 and 25

respectively.
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Thompson (1993) obtained stochastic information using a generalized geologic

modelling applied at several sites in Cape Cod including the Handy bog. The values

of the mean hydraulic conductivity, variance of InK and the correlation scales

estimated from geologic modelling are esentially equivalent to the results obtained

from analyzing samples taken from Handy bog.

Correlation between InK and lnKd

The scatter plot between InK and lnKd exhibits a weak negative correlation

between the variables. A linear regression of lnKd unto InK shows that this

correlation is indeed significant with a slope (b) of -0.341 and a coefficient of

correlation (r) of -0.233. The cross-correlation function indicate that there is a

substantial negative correlation at small lags. The results of the cross-spectra is

indeterminate since the cospectrum and quadrature spectrum fluctuates within the

95% confidence intervals. Based on the phase spectrum and the estimates of

uncertainty, there is no out of phase correlation for InK and lnKd.

The Linear Regression Model

Five different test were used to determine if the data can be represented by

the linear regression model in which lnKd is expressed in terms of InK, an

uncorrelated residual term and the slope from the best fit curve of the scatter plot

of lnKd versus InK. These test include a test of the correlation between hydraulic

conductivity and the residual, two test in the covariance domain and two test in the

spectral domain. Based on the results of these test, the regression model is
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appropriate as a first approximation representing the correlation between the two

variable.

Macrodispersivity

In the aquifer material at the Handy Bog, a nonreactive tracer would have a

longitudinal macrodispersivity of 0.076 m, whereas reactive tracers; such as benzene,

TCB and PentCB; have a macrodispersivity of 0.081 m, 0.142 m and 0.177 m,

respectively. The enhancement of dispersion due to the correlation between InK and

lnKd ranges from 0.6% to 65% and is dependent upon the K, values of the

compound. This difference may seem moderate, but it is understandable in view of

the low organic carbon content of the soil and the resulting low sorptive capability.

The ratio of the macrodispersivity for a retarded solute to that of a

nonreactive solute ranges from 1.1 to 2.3. This ratio is low compared to value of:

* 10 obtained from a large scale tracer experiment at the test site which

has the same aquifer material. Though this tracer test was performed

in the same general aquifer material, this macrodispersivity represents

that of metal sorption in which a lithium plume was interpreted

(Garabedian et al., 1988),

* 9.7 obtained from a hypothetical calculation based on strontium

(Talbott, 1994), and

* 2.6 obtained from a small scale experiment, in the order of a few

meters, with strontium at sands at Chalk River (Pickens, 1981).
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However, the difference in the ratio of the reactive to nonreactive dispersivity for this

study and the others mentioned above can be attributed to the low sorptive capacity

of the soil.

4.4 FUTURE RESEARCH

* The soils in this study have a low organic carbon content (the average POC

is 0.019%). Future research should also consider the variability and

correlation between InK and lnKd for soils with a wider range of organic

carbon content such that the degree of variability would be larger than that

studied in this case.

* The regression model should be tested on a variety of soils at a variety of

scales to determine how the model changes with scale and variance of the K

and Kd values.

* The scope of this research could be broadened to include the three-

dimensional case.
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APPENDIX A
Hydraulic Conductivity, Percent Organic Carbon and Sorption Coefficient
Measurements for the Vertical and Horizontal Transect

............... .. .....=: : : : i =: • : .= ii= i =i= :=i i i=
Horizontal Transect

Sample Distance (mi) I. Kd in Kd in Kd
ID.. POC Benzene TCB PentCB Lu K

Mean 0.019 -4.205 -1.003 0.849 -2.561

St. Deviation 0.008 0.372 0.372 0.372 0.247

Variance 6.87e-05 0.1386 0.1386 0.1386 0.0609

177 0.5 0.013 -4.529 -1.327 0.525 -2.562

178 1 0.012 -4.635 -1.432 0.419 -2.403

179 1.5 0.026 -3.836 -0.634 1.218 -2.385

180 2 0.014 -4.434 -1.231 0.620 -2.391

181 2.5 0.013 -4.529 -1.327 0.525 -2.456

182 3 0.012 -4.635 -1.432 0.419 -3.435

183 3.5 0.009 -4.886 -1.684 0.168 -2.362

184 4 0.014 -4.434 -1.231 0.620 -2.789

185 4.5 0.009 -4.886 -1.684 0.168 -2.428

186 5 0.014 -4.434 -1.231 0.620 -2.418

187 5.5 0.011 -4.743 -1.540 0.311 -1.971

188 6 0.015 -4.386 -1.184 0.668 -2.209

189 6.5 0.012 -4.609 -1.407 0.445 -2.349

190 7 0.011 -4.743 -1.540 0.311 -2.168

191 7.5 0.012 -4.609 -1.407 0.445 -2.298

192 8 0.017 -4.291 -1.088 0.763 -2.319

193 8.5 0.015 -4.386 -1.184 0.668 -2.420

194 9 0.014 -4.491 -1.289 0.562 -2.726

195 9.5 0.017 -4.291 -1.088 0.763 -2.024

196 10 0.017 -4.291 -1.088 0.763 -2.138
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197 10.5 0.012 -4.609 -1.407 0.445 -2.353

198 11 0.033 -3.598 -0.395 1.456 -2.254

199 11.5 0.017 -4.291 -1.088 0.763 -2.473

201 12 0.045 -3.287 -0.085 1.766 -2.535

202 12.5 0.027 -3.798 -0.596 1.256 -2.498

203 13 0.017 -4.291 -1.088 0.763 -2.481

204 13.5 0.021 -4.050 -0.847 1.004 -2.342

205 14 0.036 -3.511 -0.308 1.543 -2.496

206 14.5 0.029 -3.744 -0.542 1.310 -3.009

207 15 0.026 -3.855 -0.653 1.198 -2.699

208 15.5 0.024 -3.916 -0.714 1.138 -2.626

209 16 0.023 -3.981 -0.778 1.073 -2.431

210 16.5 0.021 -4.050 -0.847 1.004 -2.702

211 17 0.033 -3.605 -0.402 1.449 -2.638

212 17.5 0.020 -4.094 -0.892 0.959 -2.835

213 18 0.032 -3.638 -0.435 1.416 -2.778

214 18.5 0.019 -4.148 -0.946 0.906 -2.838

215 19 0.018 -4.206 -1.003 0.848 -2.583

216 19.5 0.016 -4.331 -1.128 0.723 -2.831

217 20 0.012 -4.641 -1.439 0.413 -2.466

218 20.5 0.014 -4.474 -1.272 0.580 -2.513

219 21 0.016 -4.331 -1.128 0.723 -2.712

220 21.5 0.012 -4.641 -1.439 0.413 -2.627

221 22 0.013 -4.554 -1.351 0.500 -2.578

222 22.5 0.020 -4.094 -0.892 0.959 -2.732

223 23 0.017 -4.266 -1.064 0.788 -2.780

224 23.5 0.018 -4.206 -1.003 0.848 -2.459

225 24 0.016 -4.331 -1.128 0.723 -2.613

226 24.5 0.023 -3.948 -0.745 1.106 -2.565
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227 25 0.022 -3.994 -0.792 1.060 -2.510

228 25.5 0.021 -4.043 -0.841 1.011 -2.862

229 26 0.019 -4.148 -0.946 0.906 -2.717

230 26.5 0.021 -4.043 -0.841 1.011 -2.710

231 27 0.012 -4.641 -1.439 0.413 -2.220

232 27.5 0.030 -3.689 -0.486 1.365 -2.618

233 28 0.015 -4.417 -1.215 0.637 -2.633

234 28.5 0.016 -4.315 -1.113 0.739 -2.623

235 29 0.014 -4.474 -1.272 0.580 -2.620

236 29.5 0.012 -4.597 -1.394 0.457 -2.626

237 30 0.015 -4.417 -1.215 0.637 -2.785

238 30.5 0.017 -4.284 -1.081 0.770 -2.907

239 31 0.019 -4.166 -0.963 0.888 -2.966

240 31.5 0.017 -4.253 -1.050 0.801 -2.583

241 32 0.056 -3.067 0.135 1.987 -2.796

242 32.5 0.030 -3.706 -0.504 1.348 -2.858

243 33 0.029 -3.724 -0.521 1.330 -2.610

244 33.5 0.014 -4.491 -1.289 0.563 -2.674

245 34 0.026 -3.835 -0.633 1.219 -2.682

246 34.5 0.016 -4.333 -1.131 0.721 -2.397

247 35 0.020 -4.078 -0.876 0.976 -2.546

248 35.5 0.024 -3.917 -0.714 1.137 -1.918

249 36 0.020 -4.078 -0.876 0.976 -2.701

250 36.5 0.030 -3.690 -0.487 1.364 -2.702
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Vertical Transect

136

Distance In Kd in Kd In Kd
Sample ID in) POC Benzene TCB PentCB Ln K

With Sample AB

Mean 0.020 -4.313 -1.111 0.741 -2.633

St. Deviation 0.023 0.554 0.554 0.554 0.464

Variance 5.26e-04 0.3070 0.3070 0.3070 0.2153

Without Sample AB

Mean 0.016 -4.397 -1.194 0.657 -2.561

St. Deviation 0.006 0.369 0.369 0.369 0.295

Variance 3.22e-05 0.1361 0.1361 0.1361 0.0868

a 0.15 0.032 -3.621 -0.419 1.433 -2.515

b 0.30 0.015 -4.395 -1.194 0.659 -2.708

c 0.45 0.013 -4.542 -1.340 0.511 -2.597

d 0.60 0.010 -4.798 -1.596 0.256 -2.910

e 0.75 0.020 -4.098 -0.896 0.956 -3.105

f 0.90 0.017 -4.266 -1.064 0.788 -2.009

g 1.05 0.010 -4.766 -1.563 0.288 -2.521

h 1.20 0.012 -4.584 -1.382 0.470 -2.732

i 1.35 0.015 -4.386 -1.184 0.668 -2.212

j 1.50 0.014 -4.459 -1.256 0.595 -2.381

1 1.65 0.017 -4.290 -1.088 0.764 -2.941

m 1.80 0.021 -4.032 -0.829 1.022 -3.170

n 1.95 0.025 -3.873 -0.670 1.181 -2.762

o 2.1 0.016 -4.322 -1.120 0.732 -2.486

p 2.25 0.008 -5.011 -1.809 0.043 -2.354

q 2.4 0.011 -4.697 -1.495 0.356 -2.203
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r 2.55 0.006 -5.283 -2.080 -0.229 -2.280

s 2.7 0.009 -4.895 -1.693 0.158 -2.511

u 2.85 0.018 -4.181 -0.978 0.873 -2.312

v 3 0.014 -4.454 -1.252 0.600 -2.177

w 3.15 0.013 -4.542 -1.340 0.511 -2.782

x 3.3 0.020 -4.076 -0.873 0.978 -2.920

y 3.45 0.019 -4.125 -0.923 0.929 -2.574

z 3.6 0.019 -4.125 -0.923 0.929 -2.422

aa 3.75 0.020 -4.098 -0.896 0.956 -2.432

ab 3.9 0.132 -2.214 0.988 2.839 -4.449



APPENDIX B
MATLAB Codes for the Spectral Estimates

function P = spectrum(x,y,m,noverlap)
%SPECTRUM Power spectrum estimate of one or two data sequences.
% P = SPECTRUM(X,Y,M) performs FFT analysis of the two sequences
% X and Y using the Welch method of power spectrum estimation.
% The X and Y sequences of N points are divided into K sections of
% M points each (M must be a power of two). Using an M-point FFT,
% successive sections are Hanning windowed, FFT'd and accumulated.
% SPECTRUM returns the M/2 by 8 array
% P = [Pxx Pyy Pxy Txy Cxy Pxxc Pyyc Pxyc
% where
% Pxx = X-vector power spectral density
% Pyy = Y-vector power spectral density
% Pxy = Cross spectral density
% Txy = Complex transfer function from X to Y
% (Use ABS and ANGLE for magnitude and phase)
% Cxy = Coherence function between X and Y
% Pxxc,Pyyc,Pxyc = Confidence range (95 percent).

% See SPECPLOT to plot these results.
% P = SPECTRUM(X,Y,M,NOVERLAP) specifies that the M-point secti
% should overlap NOVERLAP points.
% Pxx = SPECTRUM(X,M) and SPECTRUM(X,M,NOVERLAP) return
% sequence power spectrum and confidence range.

% See also ETFE, SPA, and ARX in the Identification Toolbox.

% J.N. Little 7-9-86
% Revised 4-25-88 CRD, 12-20-88 LS, 8-31-89 JNL, 8-11-92 LS
% Copyright (c) 1986-92 by the MathWorks, Inc.

% The units on the power spectra Pxx and Pyy are such that, using
% Parseval's theorem:

% SUM(Pxx)/LENGTH(Pxx) = SUM(X.^2)/LENGTH(X) = C(

% The RMS value of the signal is the square root of this.
% If the input signal is in Volts as a function of time, then
% the units on Pxx are Volts^2*seconds = Volt^2/Hz.
% To normalize Pxx so that a unit sine wave corresponds to
% one unit of Pxx, use Pn = 2*SQRT(Pxx/LENGTH(Pxx))

% Here are the covariance, RMS, and spectral amplitude values of
% some common functions:
% Function Cov=SUM(Pxx)/LENGTH(Pxx) RMS Pxx
% a*sin(w*t) a^2/2 a/sqrt(2) a^2*LENGTH(Pxx)/4
%Normal: a*rand(t) a^2 a a"2
iform: a*rand(t) a^2/12 a/sqrt(12) a^2/12

% For example, a pure sine wave with amplitude A has an RMS value
% of A/surt(2), so A = SORT(2*SUM(Pxx) /LENGTH(Pxx)).

ions

the single

)V(X)
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% See Page 556, A.V. Oppenheim and R.W. Schafer, Digital Signal
% Processing, Prentice-Hall, 1975.

if (nargin = = 2), m = y; noverlap = 0; end
if (nargin = = 3)

if (max(size(y)) = = 1)
noverlap = m;
m = y;
nargin = 2;

else
noverlap = 0;

end
end

x = x(:); % Make sure x and y are column vectors
y = y(:);
n = max(size(x)); % Number of data points
k = fix((n-noverlap)/(m-noverlap)); % Number of windows

% (k = fix(n/m) for noverlap= 0)
index = 1:m;
w = hanning(m); % Window specification; change this if you want:

% (Try HAMMING, BLACKMAN, BARTLETT, or your own)
KMU = k*norm(w)^2; % Normalizing scale factor

if (nargin = = 2) % Single sequence case.
Pxx = zeros(m,1); Pxx2 = zeros(m,1);
for i= 1:k

xw = w.*detrend(x(index));
index = index + (m - noverlap);
Xx = abs(fft(xw)).^2;
Pxx = Pxx + Xx;
Pxx2 = Pxx2 + abs(Xx).^2;

end
% Select first half
select = [1:m/2];
Pxx = Pxx(select);
Pxx2 = Pxx2(select);
cPxx = zeros(m/2,1);
if k > 1

c = (k.*Pxx2-abs(Pxx).^2)./(k-1);
c = max(c,zeros(m/2,1));

% (k = fix(n/m) for noverlap= 0)
cPxx = sqrt(c);

end
pp = 0.95; % 95 percent confidence.
f = sqrt(2)*erfinv(pp); % Equal-tails.
P = [Pxx f.*cPxx]/KMU;
return

end

Pxx = zeros(m,1); % Dual sequence case.
Pyy = Pxx; Pxy = Pxx; Pxx2 = Pxx; Pyy2 = Pxx; Pxy2 = Pxx;
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for i= 1:k
xw = w.*detrend(x(index));
yw = w.*detrend(y(index));
index = index + (m - noverlap);
Xx = fft(xw);

Yy = fft(yw);
Yy2 = abs(Yy)."2;
Xx2 = abs(Xx).^2;
Xy = Yy .* conj(Xx);
Pxx = Pxx + Xx2;
Pyy = Pyy + Yy2;
Pxy = Pxy + Xy;

% (k = fix(n/m) for noverlap= 0)
Pxx2 = Pxx2 + abs(Xx2).^2;
Pyy2 = Pyy2 + abs(Yy2).^2;
Pxy2 = Pxy2 + Xy .* conj(Xy);

end

% Select first half
select = [1:m/2];

Pxx = Pxx(select);
Pyy = Pyy(select);
Pxy = Pxy(select);
Pxx2 = Pxx2(select);
Pyy2 = Pyy2(select);
Pxy2 = Pxy2(select);

cPxx = zeros(m/2,1);
cPyy = cPxx;
cPxy = cPxx;
if k > 1

c = max((k.*Pxx2-abs(Pxx).^2)./(k-1),zeros(m/2,1));
cPxx = sqrt(c);
c = max((k.*Pyy2-abs(Pyy).^2)./(k-1),zeros(m/2,1));
cPyy = sqrt(c);

% (k = fix(n/m) for noverlap= 0)
c = max((k.*Pxy2-abs(Pxy).^2)./(k-1),zeros(m/2,1));
cPxy = sqrt(c);

end

Txy = Pxy./Pxx;
Cxy = (abs(Pxy).^2)./(Pxx.*Pyy);

pp = 0.95; % 95 percent confidence.
f = sqrt(2)*erfinv(pp); % Equal-tails.

P = [ [Pxx Pyy Pxy]./KMU ...
Txy Cxy ...
f.*[cPxx cPyy cPxy]./KMU ]; 2*SQRT(Pxx/LENGTH(Pxx))

SPECTRAL WINDOWS:
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function w = hanning(n)
%HANNING HANNING(N) returns the N-point Hanning window in a column vector.
w = .5*(1 - cos(2*pi*(l:n)'/(n+1)));

function w = bartlett(n)
%BARTLETT BARTLETT(N) returns the
w = 2*(0:(n-1)/2)/(n-1);
if rem(n,2)

% It's an odd length sequence
w = [w w((n-1)/2:-1:1)]';

N-point Bartlett window.

else
% It's even
w = [w w(n/2:-1:1)]';

end

function w= triang(n)
%TRIANG TRIANG(N) returns the N-point triangular window.
if rem(n,2)

% It's an odd length sequence
w = 2*(1:(n+1)/2)/(n+1);
w = [w w((n-1)/2:-1:1)]';

else

end

% It's even
w = (2*(1:(n+1)/2)-l)/n;
w = [w w(n/2:-1:1)]';
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APPENDIX C
Spectral Estimates from MATLAB

The input is in the form of:
SPECTRUM(X,Y,2M)

The output in the form:
P = [Pxx Pyy Pxy Txy Cxy Pxxc Pyyc Pxyc]
where
Pxx = X-vector power spectral density
Pyy = Y-vector power spectral density
Pxy = Cross spectral density
Txy = Complex transfer function from X to Y

(Use ABS and ANGLE for magnitude and phase)
Cxy = Coherency squared function between X and Y
Pxxc,Pyyc,Pxyc = Confidence range (95 percent).

1. Horizontal Transect with an M value of 16, the variables are InK (kh) and InKd (kdh)

> > spectrum(kh,kdh,32)

ans =

Columns 1 through 4

0.0888 0.1072 -0.0964 -1.0849
0.1083 0.1704 -0.0833 - 0.0893i -0.7688 - 0.8242i
0.0175 0.1765 -0.0294 + 0.0197i -1.6758 + 1.1240i
0.0530 0.0257 0.0137 - 0.0243i 0.2593 - 0.4584i
0.0640 0.0098 -0.0189 + 0.0068i -0.2951 + 0.1056i
0.0308 0.0625 -0.0265 - 0.0188i -0.8591 - 0.6103i
0.0415 0.0372 -0.0324 - 0.0163i -0.7822 - 0.3921i
0.0270 0.0276 0.0027 - 0.0202i 0.0999 - 0.7474i
0.0433 0.0362 0.0209 - 0.0279i 0.4816 - 0.6435i
0.0231 0.0280 -0.0158 - 0.0048i -0.6841 - 0.2086i
0.0311 0.0549 -0.0322 + 0.0145i -1.0346 + 0.4653i
0.0407 0.0597 0.0351 + 0.0334i 0.8621 + 0.8217i
0.0283 0.0786 0.0249 - 0.0001i 0.8766 - 0.0026i
0.0470 0.0712 0.0259 - 0.0507i 0.5518 - 1.0807i
0.0342 0.0741 -0.0319 - 0.0225i -0.9334 - 0.6578i
0.0169 0.0742 -0.0110 - 0.0076i -0.6517 - 0.4497i

Columns 5 through 8

0.9755 0.1091 0.0746 0.0950
0.8077 0.1711 0.2165 0.2251
0.4047 0.0286 0.1755 0.0455
0.5725 0.0997 0.0036 0.0509
0.6420 0.0523 0.0171 0.0419
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0.5469 0.0220 0.0857 0.0383
0.8537 0.0132 0.0085 0.0274
0.5574 0.0036 0.0448 0.0378
0.7737 0.0775 0.0441 0.0691
0.4227 0.0087 0.0429 0.0425
0.7290 0.0241 0.0013 0.0425
0.9670 0.0631 0.0901 0.0774
0.2771 0.0372 0.0330 0.0704
0.9716 0.0542 0.0695 0.0643
0.6017 0.0263 0.1091 0.0317
0.1430 0.0133 0.0611 0.0577

2. Vertical Transect with an M value of 4, the variables are InK (kv) and lnK, (kdv)

> > spectrum(kv,kdv,8)

ans =

Columns 1 through 4

0.0629 0.0555 -0.0469 -0.7455
0.1581 0.1489 -0.0462 + 0.0595i -0.2925 + 0.3763i
0.1742 0.1548 0.0039 + 0.1564i 0.0224 + 0.8975i
0.0878 0.0593 -0.0039 + 0.0619i -0.0440 + 0.7050i

Columns 5 through 8

0.6296 0.1059 0.0600 0.0937
0.2413 0.1456 0.1372 0.2314
0.9071 0.0572 0.0684 0.0854
0.7389 0.1124 0.0455 0.0784

3. Horizontal Transect with an M value of 16, the variables aref (fh) and ri (etaf)

> > spectrum(kh,etah,32)

ans =

Columns 1 through 4

0.0888 0.0520 -0.0663 -0.7459
0.1083 0.1264 -0.0466 - 0.0893i -0.4298 - 0.8242i
0.0175 0.1586 -0.0234 + 0.0197i -1.3368 + 1.1241i
0.0530 0.0411 0.0317 - 0.0243i 0.5983 - 0.4584i
0.0640 0.0043 0.0028 + 0.0068i 0.0439 + 0.1056i
0.0308 0.0481 -0.0160 - 0.0188i -0.5201 - 0.6103i
0.0415 0.0199 -0.0184 - 0.0163i -0.4432 - 0.3920i
0.0270 0.0325 0.0119 - 0.0202i 0.4389 - 0.7473i
0.0433 0.0553 0.0356 - 0.0279i 0.8206 - 0.6435i
0.0231 0.0199 -0.0080 - 0.0048i -0.3451 - 0.2086i
0.0311 0.0366 -0.0216 + 0.0145i -0.6956 + 0.4653i
0.0407 0.0882 0.0489 + 0.0334i 1.2011 + 0.8217i
0.0283 0.0987 0.0345 - 0.0001i 1.2156 - 0.0026i
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0.0418
-0.0203
-0.0053

- 0.0507i 0.8908 -
- 0.0225i -0.5943 -
- 0.0076i -0.3127 -

Columns 5 through 8

0.1091
0.1711
0.0286
0.0997
0.0523
0.0220
0.0132
0.0036
0.0775
0.0087
0.0241
0.0631
0.0372
0.0542
0.0263
0.0133

0.0227
0.1041
0.2015
0.0391
0.0053
0.0594
0.0165
0.0348
0.0728
0.0157
0.0184
0.1299
0.0015
0.1041
0.1020
0.0364

4. Vertical Transect with an M value of 4, the variables are f and r7 (eta)

> > spectrum(kv,etav,8)

ans =

Columns 1 through 4

0.0306
0.1358
0.1782
0.0671

-0.0252
0.0083 +
0.0640 +
0.0264 +

-0.4005
0.0595i 0.0525
0.1564i 0.3674
0.0619i 0.3010

Columns 5 through 8

0.1059
0.1456
0.0572
0.1124

0.0096
0.0763
0.0637
0.0431

0.0470
0.0342
0.0169

0.0941
0.0564
0.0687

1.0807i
0.6578i
0.4497i

0.9495
0.7407
0.3374
0.7328
0.1927
0.4114
0.7275
0.6246
0.8520
0.1888
0.5942
0.9776
0.4243
0.9786
0.4766
0.0740

0.0580
0.1773
0.0364
0.0783
0.0242
0.0452
0.0255
0.0373
0.0837
0.0396
0.0365
0.0922
0.0783
0.0775
0.0345
0.0604

0.0629
0.1581
0.1742
0.0878

0.3763i
0.8975i
0.7050i

0.3291
0.1681
0.9193
0.7692

0.0583
0.1886
0.0913
0.0805
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APPENDIX D
Calculation of Confidence Intervals for the Phase and Magnitude of
the Cross-Spectra

The following tables detail the calculations of the confidence intervals for the
phase and magnitude of the cross-spectrum.

S, and S,
The spectral estimates from MATLAB are scaled so that the results will be in a

form that is consistent with that used in Gelhar (1993) and Priestley (1989):

4%
P,(f) =W S=(W) I, -2nf

where c (27f) is the angular frequency and A is the sample spacing.

CY and Q,
The cospectrum and quadrature spectrum as calculated by MATLAB

wY' = s. 2/(ses&)
The coherency squared function between X and Y

Tan Phase
The tangent of the phase, 4, is -C,/Q,.

Magnitude
The magnitude, A,, is f(C2, + QY2 ).

Variance Magnitude and Tan Phase
According to Priestley (1981), the variance of the of the magnitude and

the tangent of the phase is:

varA , W) --§2 A I + w j W)I2}

2N 2 |w

95% Confidence Intervals
The 95% confidence interval is estimated as plus or minus two standard

deviations. The standard deviation is the square root of the variance.
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1. Horizontal Transect: x = InK
y = In Kd

Frequency Sxx S_ Cy _Q

0.0625 0.003533 0.004265 -0.00384 0

0.125 0.004309 0.00678 -0.00331 0.003553

0.1875 0.000696 0.007023 -0.00117 0.000784

0.25 0.002109 0.001023 0.000545 0.000967

0.3125 0.002546 0.00039 -0.00075 0.000271

0.375 0.001225 0.002487 -0.00105 0.000748

0.4375 0.001651 0.00148 -0.00129 0.000649

0.5 0.001074 0.001098 0.000107 0.000804

0.5625 0.001723 0.00144 0.000832 0.00111

0.625 0.000919 0.001114 -0.00063 0.000191

0.6875 0.001237 0.002184 -0.00128 0.000577

0.75 0.001619 0.002375 0.001397 0.001329

0.8125 0.001126 0.003127 0.000991 0.000004

0.875 0.00187 0.002833 0.001031 0.002017

0.9375 0.001361 0.002948 -0.00127 0.000895

1 0.000672 0.002952 -0.00044 0.000302

w 2  Tan Phase Magnitude Variance Variance 95% CI 95% CI Tan
Magnitude Tan Phase Magnitude Phase

0.9755 0 0.003836 2.45e-06 0.002064 0.00313 0.090869

0.8077 0.932811 0.004859 4.34e-06 0.068439 0.004168 0.523217

0.4047 1.492386 0.001408 5.66e-07 1.259178 0.001504 2.244262

0.5725 -0.56379 0.00111 2.78e-07 0.106592 0.001055 0.652968

0.642 2.779412 0.000799 1.34e-07 3.489154 0.000733 3.735856

0.5469 1.409574 0.001293 3.89e-07 0.607514 0.001247 1.558863

0.8537 1.98773 0.001443 3.72e-07 0.345275 0.001219 1.175203

0.5574 -0.13366 0.000811 1.51e-07 0.067617 0.000777 0.520064

0.7737 -0.7491 0.001387 3.63e-07 0.058591 0.001204 0.484113
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2. Vertical Transect: x = InK
y = InKd

Frequency S, S S O w 2

0.833 0.000751 0.000662 -0.00056 0 0.6296

1.667 0.001887 0.001777 -0.00055 0.00071 0.2413

2.5 0.002079 0.001848 0.000047 0.001867 0.9071

3.33 0.001048 0.000708 -0.00005 0.000739 0.7389

Variance Variance 95% CI
Tan Phase Magnitude Magnitude Tan Phase Magnitude

0 0.00056 4.87e-08 0.035299 0.000441

0.776471 0.000899 2.50e-07 0.484708 0.000999

-0.02494 0.001867 4.40e-07 0.006153 0.001327

0.063005 0.00074 7.74e-08 0.02137 0.000556
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0.4227 3.291667 0.000657 1.19e-07 15.72314 0.000691 7.930483

0.729 2.22069 0.001405 3.85e-07 1.074964 0.001241 2.073609

0.967 -1.0509 0.001928 6.21e-07 0.012421 0.001577 0.222902

0.2771 -249 0.000991 3.72e-07 8.24e +08 0.00122 57421

0.9716 -0.51085 0.002265 8.56e-07 0.00382 0.00185 0.123613

0.6017 1.417778 0.001553 5.28e-07 0.492968 0.001453 1.404234

0.143 1.447368 0.000532 1.86e-07 4.718017 0.000862 4.344199



3. Horizontal Transect: f = InK- E[lnK]
n= q

4. Vertical Transect: f = InK - E[lnK]
n=Til

Variance 95% CI
Sxx S_, CX . QX w 2 Magnitude Magnitude Amplitude

0.000751 0.000365 -0.0003 0 0.3291 0.000301 2.19e-08 0X000296

0.001887 0.001621 0.000099 0.00071 0.1681 0.000717 2.14e-07 0O000926

0.002079 0.002127 0.000764 0.001867 0.9193 0.002017 5.10e-07 0.001428

0.001048 0.000801 0.000315 0.000739 0.7692 0.000803 8.90e-08 01000597
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Tan Variance 95% CI
S,x S Cw Q w 2 Phase Magnitude Magnitude Magnitude

0.003501 0.002069 -0.00264 0 0.9495 0 0.002638 1.17e-06 0.002167

0.004309 0.005029 -0.00185 -0.00355 0.7407 -0.52184 0.004008 3.10e-06 0.003523

0.000696 0.00631 -0.00093 0.000784 0.3374 1.187817 0.001217 4.83e-07 0.001389

0.002109 0.001635 0.001261 -0.00097 0.7328 1.304527 0.001589 4.91e-07 0.001401

0.002546 0.000171 0.000111 0.000271 0.1927 -0.41176 0.000293 4.36e-08 0.000417

0.001225 0.001914 -0.00064 -0.00075 0.4114 -0.85106 0.000982 2.72e-07 0.001043

0.001651 0.000792 -0.00073 -0.00065 0.7275 -1.12883 0.000978 1.87e-07 0.000864

0.001074 0.001293 0.000473 -0.0008 0.6246 0.589109 0.000933 1.86e-07 0.000863

0.001723 0.0022 0.001416 -0.00111 0.852 1.275986 0.0018 5.79e-07 0.001521

0.000919 0.000792 -0.00032 -0.00019 0.1888 -1.66667 0.000371 7.13e-08 0.000534

0.001237 0.001456 -0.00086 0.000577 0.5942 1.489655 0.001035 2.36e-07 0.000972

0.001619 0.003509 0.001946 0.001329 0.9776 -1.46407 0.002356 9.23e-07 0.001922

0.001126 0.003927 0.001373 -4.0e-06 0.4243 345 0.001373 5.20e-07 0.001442

0.00187 0.003744 0.001663 -0.00202 0.9786 0.824458 0.002614 1.14e-06 0.002132

0.00136 0.002244 -0.00081 -0.0009 0.4766 -0.90222 0.001206 3.70e-07 0.001217

0.000672 0.002733 -0.00021 -0.0003 0.074 -0.69737 0.000369 1.62e-07 0.000805



APPENDIX E

Calculation of the Macrodispersivity

The calculation for the macrodispersivity proposed by Garabedian et al. (1988)

and Gelhar (1993) uses the model, model 1, in [1.6]:

PbKd=blnK+a + K [E-1]

where Pb is the bulk density of the soil, b is the slope of the linear regression curve of Kd

unto InK, a is the y-intercept and r is the residual term. The model proposed in this

study, model 2, is presented in terms of InK and InKd:

InKd = mlnK+c + q [E-2]

where m is the slope of the linear regression curve of InKd unto InK, c is the y-intercept

and qr is the residual term.

The longitudinal macrodispersivity is:

A1  (_b + -- Yb)2  [E-31

Y2 Y Yr

where a,2 and X, is the variance of the residual term in the model 1. If the parameters

of model 2 is used in the calculation of macrodispersivity the following conversion must

be made, where InKd is:

InKd = g [E4]

and the expected value of Kd is:

E[Kj =e e2; [E-5]
=Kwhere K is the geometeric mean of K. The sorption coefficient, K is:

where K.S is the geometeric mean of K,. The sorption coefficient, K, is:
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Kd = e i [E-6]

the pertubation Kd' expressed as a function of g' is:

Kd = eg [eg' -E(e')] 2[E-7]

[E-8]K 1+g +g /2/2.......-eK; o Kdsg' [E-8]
2 2 2r Kd 0 Kdg o

By using the perturbation Kd', model 1 becomes:

PbKd= bf+K [E-9]

Dividing through by p, and substituting [E-8]:

Kg '= -b + [E-10]
Pb Pb

By substituting [E-9], Kd' can be expressed in terms of the perturbation g':

b Kg = f+ -
PbKd P [EPK-11

Sb = pKdm K = PbK drl

2 = (pKd)o)2

which is the same as the perturbation of g' which results from model 2:

/ =mrf+ rl [E-12]

Therefore the slope, residual value and variance of the residual of model 1, expressed as

a function of model 2 is:

b=pbKdgm = PbKdgll O2 = (PbKd)22 [E-13]

The correlation length of the residual in model 2 (1•) is substituted for the correlation

length of the residual in model 1 (1•), this assumption is made based on Figure 4.3 in

Gelhar (1993).
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